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ABSTRACT 

 

 

ADVANCEMENT OF SATELLITE-BASED RAINFALL APPLICATIONS FOR 

BASIN-SCALE HYDROLOGIC MODELING  

 

 

 

Derin, Yağmur 

M. Sc., Department of Geological Engineering 

Supervisor: Assist. Prof. Dr. Koray K. Yilmaz 

 

June 2014, 181 pages 

 

 

Accuracy and reliability of hydrological modeling studies heavily depends on quality and 

availability of precipitation estimates. However hydrological studies in developing 

countries, especially over complex topography, are limited due to unavailability and 

scarcity of ground-based networks. This study evaluates three different satellite-based 

rainfall retrieval algorithms namely, Tropical Rainfall Measuring Mission Multi-satellite 

Precipitation Analysis (TMPA), NOAA/Climate Prediction Center Morphing Method 

(CMORPH) and EUMETSAT’s Multi-Sensor Precipitation Estimate (MPE) over 

topographically complex Western Black Sea Basin in Turkey, using a relatively dense 

rain gauge network. The results indicated that satellite-based rainfall products 

significantly underestimated the rainfall in regions characterized by orographic rainfall 

and overestimated the rainfall in the drier regions with seasonal dependency. Further, a 
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new bias adjustment algorithm has been devised for the satellite-based rainfall products 

based on the “physiographic similarity” concept. The results showed that proposed bias 

adjustment algorithm is better suited to regions with complex topography and provided 

improved results compared to the baseline “inverse distance weighting” method. To 

evaluate the utility of satellite-based products in hydrologic modeling studies, the MIKE 

SHE-MIKE 11 integrated fully distributed physically based hydrological model was 

implemented in the Araç Basin and driven by ground-based and satellite-based 

precipitation estimates. Model calibration was performed by a constrained calibration 

approach that is guided by multiple “signature measures” to estimate model parameters 

in a hydrologically meaningful way rather than using the traditional “statistical” objective 

functions that largely mask valuable hydrologic information during calibration process. 

Diagnostic evaluation has the potential to provide a consistent estimates of the parameters 

of watershed models. 

 

 

Keywords: Satellite-based rainfall algorithms, bias adjustment, MIKE SHE-MIKE 11, 

calibration, diagnostic evaluation 
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ÖZ 

 

 

UYDU-TABANLI YAĞIŞ ÖLÇÜMLERİNİN HAVZA ÖLÇEKLİ HİDROLOJİK 

MODELLEMELERDEKİ GELİŞİMİ 

 

 

 

Derin, Yağmur 

Yüksek Lisans, Jeoloji Mühendisliği 

Tez Yöneticisi: Dr. Koray K. Yilmaz 

 

Haziran, 2014, 181 sayfa 

 

 

Hidrolojik modelleme çalışmalarının kesinlik ve güvenilirlikleri büyük ölçüde yağışın 

alansal ve zamansal dağılımının güvenilir şekilde ölçümüne dayanır. Yağış ölçerlerin 

yeterli sayıda veya hiç bulunmaması nedeniyle gelişmekte olan ülkelerde özellikle 

karmaşık topoğrafya üzerinde yapılan çalışmalar kısıtlıdır. Bu çalışmada üç farklı uydu 

tabanlı yağış tahmin algoritması, Tropical Rainfall Measuring Mission Multi-satellite 

Precipitation Analysis (TMPA), NOAA/Climate Prediction Center Morphing Method 

(CMORPH) ve EUMETSAT’s Multi-Sensor Precipitation Estimate (MPE), topoğrafik 

olarak karmaşık özellik gösteren Batı Karadeniz Havzası, Türkiye üzerinde sık bir yağış 

ölçer ağı ile değerlendirilmektedir. Çalışmanın sonuçlarına göre, uydu tabanlı yağış 
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ürünleri, orografik yağışa sahip bölgelerdeki yağışı olduğundan az, iç kısımlardaki kurak 

bölgelerde ise olduğundan fazla göstermekle birlikte mevsimsel olarak da farklılıklar 

göstermektedir. Ayrıca, uydu tabanlı yağış algoritmaları için "coğrafi benzerlik" 

prensibine dayalı bir hata düzeltme algoritması önerilmektedir. Çalışmanın sonuçlarına 

göre, önerilen hata düzeltme algoritması topoğrafik olarak karmaşık özellik gösteren 

çalışma alanları için uygunluk göstermektedir ve uzaklık-bazlı algoritmalara kıyasla daha 

iyi performans sergilemektedir. Uydu tabanlı yağışların hidrolojik modellemelerdeki 

performansını ölçmek amacıyla Araç Havzası’nda fiziksel bütünleşik bir hidrolojik 

model olan MIKE SHE-MIKE 11 hem yağış ölçerler hemde uydu tabanlı yağış 

algoritmaları ile çalıştırılmıştır. Model kalibrasyon/değerlendirmesi, istatistiksel 

fonksiyonlar yerine hidrolojik anlamı olan özet fonksiyonlar kullanılarak daraltma 

kalibrasyon yöntemi ile gerçekleştirilmiştir. Havza modelleme çalışmalarında daraltma 

kalibrasyon yönteminin kavramsal olarak uyumlu parametre değerleri tahmin 

edebilmektedir.  

 

 

Anahtar Kelimeler: Uydu tabanlı yağış algoritmaları, hata düzeltme, MIKE SHE-MIKE 

11, kalibrasyon, tanılayıcı değerlendirme 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1. Purpose and Scope 

Water is fundamental to all known forms of life on Earth as well as many activities such 

as agriculture, industry, power generation, transportation and waste management. Hence 

protection of its quality and quantity is critical for the sustainable development of any 

society. Water on Earth cycle continually between land, sea and air. Changes in the 

cycling of water could have significant impacts on environment and society. The changes 

in climate are expected to severely affect hydrologic cycle which in return can be 

observed as extreme weather conditions, for example, scarcity of water resulting drought 

and excess of water resulting flood.  

Floods are one of the most devastating and frequent natural disaster giving to the 

significant loss of lives and property each year. According to the IFNet Action Report 

(2006) number of people affected by floods has been rising rapidly not only due to 

extreme weather conditions but also increasing unplanned urbanization. In Western Black 

Sea Basin of Turkey situation is the same if not worse. Due to lack of suitable construction 

sites at hilly formations and political constraints, settlements are located on floodplains 

(Yanmaz and Usul, 1999). One of the most effective way to minimize this loss of life and 

property is flood early warning systems.  

To understand and manage water systems under the changing climate and meet the 

increasing demand for water, quantitative understanding of the hydrological cycle is 

important which has two important aspect. Firstly processes elaborated in hydrological 
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cycle cannot be separated, for example surface water and groundwater are integrated and 

should be modeled together. Secondly understanding of the physics of the hydrological 

processes which controls the catchment response should be represented by physically 

based equations. Therefore integrated physically based distributed hydrological models 

can represent hydrological cycle thoroughly and can be applied to any kind of 

hydrological problem.  Physically based hydrological models requires detailed input data 

which can be provided by remote sensing data and application of Geographical 

Information Systems to some extent. The application of remote sensing and GIS to 

hydrological models facilitates hydrologists to study large scale, complex and spatially 

distributed hydrological processes. 

The accuracy and reliability of any hydrologic study whether related to flood forecasting, 

drought monitoring, water resources management or climate change impact assessment 

depend heavily on the availability of good quality precipitation estimates. Rain gauges 

provide direct physical measurement of the surface precipitation, however they are 

susceptible to certain errors arising from location, spatial scale (point), wind, mechanical 

errors and density (Groisman and Legates 1994). Especially in remote parts of the world 

and in developing countries ground-based precipitation measurements, such as rain gauge 

and radar networks, are either sparse or non-existent mainly due to high cost of 

establishing and maintaining the infrastructure. This situation is further exacerbated in 

regions with complex topography, where precipitation is characterized by high spatio-

temporal variability. In these regions, rain gauges are generally located in lowland due to 

accessibility considerations, thus under-representing the precipitation occurring in 

highland. Satellite-based precipitation (SBP) products are perhaps the only source to fill 

this important gap. 

Recent improvements in SBP retrieval algorithms enabled representation of high space-

time variability of precipitation field with quasi-global coverage which make them 

potentially attractive for hydrologic modeling studies in data sparse regions. Even though 

satellite-based rainfall measurements are quasi global and high resolution, these products 

has limitations that necessitates a bias adjustment or merging procedure using more 

accurate rainfall products. 
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Analysis of satellite-based precipitation products in flood simulation is an important step 

to investigate whether these products are potentially attractive for hydrological modeling 

or not. Distributed physically based hydrological models has many parameters therefore 

calibration procedure has to be completed carefully. Automated model 

calibration/evaluation procedures rely on a single statistical measure (e.g. RMSE) often 

lead to ill-posed parameter values due to projection of the high dimension of the data set 

down to single dimension of the residual-based summary statistics. Statistical metrics 

only measure the (weighted) distance between observed and simulated runoff and fail to 

incorporate diagnostic information regarding to causes of poor model performance. In 

addition to classical single objective calibration, model evaluation is also conducted by 

diagnostic approach since it uses hydrological context and theory while defining the 

watershed model inadequacies. Aforementioned hydrological context is derivation of 

hydrologically-relevant summary metrics and/or signature patterns in the 

observed/simulated data derived, for example, from flow duration curve (FDC). FDC 

summarizes catchments ability to produce discharge values of different magnitudes, and 

is therefore strongly sensitive to the vertical distribution of soil moisture within a basin. 

The primary objective of this study is to advance the utility of satellite-based rainfall 

estimates for hydrologic modeling over Araç Basin, a sub-basin of Filyos Basin, in the 

West Black Sea catchment of Turkey, which is characterized by complex topography. 

The conceptual framework is provided in Figure 1. To achieve this end goal main 

objectives of the thesis are defined as follows. 

[1] Application of Precipitation-elevation Regression on Independent Slopes Model 

(PRISM) to the study area to obtain rain gauge gridded precipitation dataset  

[2]  Performance evaluation of SBP products over complex topography and 

understand the advantages/disadvantages of the satellite-based precipitation estimation 

algorithms  

[3]  To assess how SBP products can be improved for complex topography, bias 

adjustment algorithm is proposed based on “physiographic similarity” concept  
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[4] Application of MIKE SHE-MIKE 11 hydrologic model driven by RGP, SBP 

products and bias adjusted SBP products. 

[5] Application of diagnostic evaluation of physically based distributed integrated 

hydrological modeling in complex topography to conduct sensitivity analysis. 

[6]  Application of calibration methodology by step wise model parameter 

constraining approach. 

 

 

Figure 1 Conceptual framework of research 



5 
 

1.2. Study Area 

The study area is located in the Western Black Sea Region of Turkey covering an area 

between 30.750-34.50 E longitude bands and 400-42.250 N latitude bands for evaluation 

and bias adjustment of satellite-based precipitation products. The hydrological modelling 

study was performed on Araç Basin, a sub-basin of Filyos Basin (Fig. 2).  

The study area is surrounded by the Black Sea on the north, and steep mountain ranges 

on the south. Zonguldak, Bartın, Düzce, Bolu, Kastamonu, Karabük and Araç are the 

main settlements in the study area. The region is characterized by a complex topography, 

marked by Northeast-Southwest aligned mountain ranges running parallel to the 

shoreline. The altitude in the study area ranges in between 0 m in the north to 2500 m in 

the south where mountains start immediately after the shoreline (distance to shoreline 

between 5 km to 50 km). The study region covers an area of 52272.54 km2 and the 

catchment area of the Araç basin is calculated as 854.92 km2.  

 

 

Figure 2 Study area 

 

The main river of the region namely Araç River flows along East to West and cuts narrow, 

deep valley with the lowest elevation of around 750 m. At the South part of the region 
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elevation exceeds 2000 m. Araç River’s upstream is situated to the South of the Ilgaz 

Mountain and downstream of the river is at Iğdır. Land cover of the region is mainly 

forest. Along the flood plain and near the river agriculture can be observed. Beet, 

vegetable and fruit trees are common agricultural products. 

Study area is divided into two regions based on the climatic and topographic 

characteristics, both of which are predominantly influenced by the mountains; hence the 

region boundary closely follows the orographic divide (Fig. 2). Region 1, located to the 

north of the mountains (windward) receives significant orographic precipitation and 

characterized by Mid-latitude Humid Temperate Climate, whereas Region 2 is located to 

the south of the mountains (leeward) and hence is characterized by a Dry/Sub-humid 

Continental Climate. Mean monthly precipitation distribution (2007-2011 period) 

obtained from rain gauges located in Region 1 and Region 2 are provided in Figure 3. It 

can be seen from Figure 3 that Region 1 receives more precipitation throughout the year, 

more significantly during winter. 

 

 

Figure 3 Mean monthly precipitation distribution (2007-2011 period) obtained from rain 

gauges in (a) Region 1 and (b) Region 2 
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1.3. Earlier Studies Performed in the Study Area 

Within and around the Western Black Sea Basin of Turkey, geological, hydrogeological 

and hydrological studies have been carried out by other researchers. Brief explanation 

about these studies is given below.  

Hydrogeological characterization of the Araç Basin was conducted by DSİ (1968). DSİ 

(1968) investigated the geological and lithological characters and water bearing 

properties of the formations in the Araç Basin. Region is characterized as forested 

mountains which receives 512.2 mm annual precipitation. Paleozoic schist is 

characterized as base-rock of the region and overlain by Mesozoic, tertiary and quaternary 

formations. Tertiary andesite, tuff and agglomerates are observed on top of Eocene flysch 

and limestone alterations at the Eastern part of the region. They concluded that due to 

geologic character of the region, lithology and water retention ability of the formations, 

there is no significant aquifer within the basin. 

Turan (2002) integrated Geographic Information Systems (GIS) and MIKE 11 hydrologic 

model for Ulus Basin, a sub-basin of Bartın Basin, in the Western Black Sea Basin of 

Turkey. In his Master Thesis Turan (2002) analyzed flood events by integrating GIS and 

MIKE 11 and obtained inundation maps of the study region for 1991, 25 year, 50 year 

and 100 year flood events separately.  

Turkey Emergency Flood and Earthquake Recovery (TEFER), Flood Forecasting Model 

Development project in 2002 developed a flood forecasting model for Western Black Sea 

Basin. The forecasting system incorporated the three major river systems in the 

catchment: the Filyos, Melen and Bartin. Decision support system for flood management 

(FLOOD WATCH), developed by DHI Water and Environment was implemented during 

this project. FLOOD WATCH combines the compilation of real time data with rainfall 

and flood forecasting and presentations of the information and results. It operates within 

GIS environment, the hydrologic model MIKE 11 is at the core of this system. 

Tombul et al (2004) determined soil hydraulic properties using pedotransfer functions in 

Kurukavak Creek, a sub-basin of the Sakarya Basin, in the Western Black Sea Basin. In 

this study field measurements of soil hydraulic properties are evaluated against the 
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indirect methods including various pedotransfer functions. As a result they concluded that 

since soil hydraulic property values may affect the performance of hydrologic model, 

accurate site-specific measurements of these values are the only and probably the most 

accurate method.   

Soytekin (2010) modelled the Çoruh Basin (close to the study region) by using HEC-

HMS. In her MSc thesis model is driven by TMPA 3B42 and 3B43 for 2003 and 2005 

water years. As a result she found out that TMPA 3B42 and 3B43 are promising while 

estimating the flow values. 

Geological map of scales 1/500000, 1/100000 and 1/25000 of the study area were 

prepared by the General Directorate of Mineral Research and Exploration (MTA). Latest 

studies about geology of the study area were performed by Uğuz and Sevin (2011). 

Hydrogeological map of scales 1/500000 of the study area were prepared by the District 

Office of State Hydraulic Works (DSİ).  

Moreover, Yücel and Onen (2014) evaluated the performance of Weather Research and 

Forecasting (WRF) model and MPE algorithm for chosen heavy rainfall events with rain 

gauges over Western Black Sea region of Turkey. Heavy rainfall events in general 

generated by deep convection system. They concluded that while WRF can capture the 

timing of extreme events and to some extent its spatial distribution and magnitude, MPE 

showed poor performance. Further they stated that MPE requires adjustments for its 

substantial underestimation behavior. Yücel and Onen (2014) suggest that significant 

underestimation of the MPE might be due to MPE’s insensitivity to deep convection and 

look-up table of MPE should be tuned.  
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CHAPTER 2 

 

 

SATELLITE-BASED PRECIPITATION PRODUCTS 

 

 

 

2.1. Introduction 

The accuracy and reliability of hydrologic studies heavily depends on the availability of 

good quality precipitation estimates. Precipitation measurement can be conducted as 

ground-based precipitation measurements (such as rain gauge and radar networks) and 

satellite-based precipitation measurements. Rain gauges provide direct physical 

measurement of the surface precipitation, however they are susceptible to certain errors 

such as, size of collector, evaporative loss, out-splash, levelling, siting of gauges, the 

effect of wind, etc. (Strangeways, 2011). Moreover, establishing and maintaining 

infrastructure of the rain gauge and radar network are costly. Further these networks are 

either sparse or non-existent in remote parts of the world and in developing countries. 

This situation is further exacerbated in regions with complex topography, where 

precipitation is characterized by high spatio-temporal variability. In these regions, rain 

gauges are generally located in lowland due to accessibility considerations, thus under-

representing the precipitation occurring in highland. SBP products are perhaps the only 

source to fill this important gap. SBP retrieval algorithms enables representation of high 

space-time variability of precipitation field with quasi-global coverage hence they are 

potentially attractive for hydrologic modeling studies in data sparse regions.  
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2.2. Satellite-based Precipitation Estimation Methods 

Physical measurement of precipitation by satellite is not possible. Satellites measure 

electromagnetic radiation which is indirectly converted to precipitation rate by 

algorithms. Electromagnetic radiation is solar radiation in the 

 Visible (VIS) and near infrared (IR) bands reflected or scattered without any 

change of wavelength by the earth’s surface and atmosphere.  

 Thermal infrared and microwave (MW) bands, radiated by feature of the surface 

and atmosphere having been heated by solar radiation, re-emitting the energy at 

longer wavelengths (measure radiation of natural origin). Also active microwave 

which emits radiation actively from the platform and measure the returned 

scattered signal.  

These wavelengths are measured by different sensors on board different types of satellites 

which are grouped according to their orbital placements (Strangeways, 2011). They can 

be grouped into three as geostationary, polar and skewed.  

 If satellite is placed an orbital distance of 35786 km from the earth and orbits in 

the same direction as the earth rotates, satellite appears stationary in the sky, hence 

named geostationary. 

 If satellite track is placed over the poles. For example, meteorological satellites 

usually fly an altitude of 850 km with an orbital period of around 100 minutes. 

The plane of these orbits is usually kept facing the sun keeping the same angle to 

sun at each pass. Therefore these satellites provide same view of the earth at 

different times of the day which is a disadvantage for precipitation detection when 

we consider their diurnal variations. These satellites can also be skewed where 

satellite orbiting by any angle relative to the poles (Strangeways, 2011). 

Geostationary satellites provide same view of the earth all the time, earth’s surface is seen 

square-on, with pixel resolution typically for visible wavelength as 2.5 km x 2.5 km while 

for IR wavelength as 5 km x 5 km. These satellites mainly collect information on clouds 

once every 30 minutes. Off-nadir view is oblique to a point where there is no view at all 
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therefore restricting the measurement from high polar regions. Even though they provide 

continuous coverage range and resolution of the images are limited. There are several 

operational geostationary meteorological satellites in orbit such as Geostationary 

Operational Environmental Satellites, Meteosat, Elektro-L 1and MTSAT-1R.  

In contrast polar orbiting satellites sweep out swap up and down the earth and over the 

poles to higher spatial resolution and use MW with other channels. These satellites can 

pass over the poles at any point several times a day on the other hand at any point on the 

equator satellite provides only two overpasses a day. Satellites in skewed orbits cannot 

pass over the poles though they can provide measurement at different times of the day at 

each overpass. There are several operational polar orbiting satellites in orbit such as 

NOAA, METEOR, US Defense Meteorological Satellite Program (DMSP) and TRMM. 

Satellite sensors provide images composed of numerous individual pixels which should 

be converted to numerical information. Radiometers measure the radiance and the 

strength of the received signal in the IR and MW bands which are then converted to 

temperature by using the concept of brightness temperature. By Planck’s radiation law 

for perfect absorbers or emitters brightness temperature is expressed as: 

 

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑇𝐵 = 𝐼(
𝜆2

2𝑘
)   (2.1) 

where, I: radiance  

λ: wavelength  

k: Boltzmann’s constant 

Brightness temperature then converted to precipitation by the algorithms.  Therefore we 

can say that accuracy of the precipitation measurement is limited by the skill of the 

algorithms. Limitations can be the physical complexity that need to be modeled and the 

resolution provided by the sensors. SBP algorithms estimate precipitation rate based on 

one or more remotely-sensed characteristics of clouds, such as: reflectivity of clouds 
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(VIS), cloud-top temperature (IR) and scattering effects of raindrops or ice particles 

(passive microwave, PMW) (Kidd and Levizzani 2011). 

Visible and IR bands measurements starts from 1970s which are the first satellite 

measurements to measure precipitation (Strangeways, 2011). Even though today these 

datasets are the longest run of data, their precipitation measurements are not so accurate. 

Visible and IR sensors are available on geo-stationary orbiting satellites; these sensors 

provide data at fine and continuous temporal scales. However, the link between cloud top 

temperature and precipitation is indirect and often weak, hence these sensors provide 

crude estimates.  There are three main approaches to measure precipitation from visible 

and IR band measurements: cloud indexing, bispectral methods and life-history methods. 

It should be noted that these methods usually restricted to the tropics. 

Cloud indexing 

Thermal IR measurements (10.5 to 12.5 μm) of cloud-top temperature (typically around 

-40 0C) are used to estimate precipitation. These measurements can be coupled with the 

ground network to obtain more accurate results since measurements are conducted by 

observing clouds from above rather than rain falling from cloud to ground and within 

cloud. The widely used cloud indexing algorithm is developed by Arkin (1979) and 

improved by Arkin and Meisner (1987) named as GOES Precipitation Index (GPI). 

Algorithm uses cloud area that is colder than -38 0C and radar ground network. By using 

their correlation, clouds with this temperature are assigned a constant rain rate at 3 mm/h 

(suitable for tropical precipitation) over an area of 2.50 x 2.50. Further this algorithm is 

improved by local rain gauges and MW datasets. To take advantage of spatial resolution 

and coverage, this algorithm is also used with polar orbiting satellites (Strangeways, 

2011). Algorithms advantage is that its dataset has the longest run. 

Bispectral methods 

The RAINSAT algorithm (Lovejoy and Austin 1979, Bellon et al. 1980) combines IR 

band with visible channel. This algorithm cannot be used at night. They combine the 

information from visible band such as cold clouds (thin cirrus) which lack water vapor 

within and warm clouds (stratiform) which cannot produce precipitation. 
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Life-history methods 

By examining the convective clouds life cycle, probability and intensity of the 

precipitation can be estimated (Strangeways, 2011). This examination can be conducted 

by geostationary satellites since temporal resolution is finer. This method works well in 

the regions dominated by convective clouds such as tropics and not work well in higher 

latitudes dominated by stratus clouds (Levizzani et al. 2002). 

PMW sensors are available on polar-orbiting satellites; although these sensors provide 

accurate estimates of precipitation their temporal resolution is coarse. They provide the 

direct interaction between the hydrometeors and the radiation field by monitoring 

precipitation structure inside the clouds. Since these sensors are on polar orbiting 

satellites they can overpass the same location twice a day resulting in significant gaps in 

time series data. With the launch of SSM/I in 1987 several algorithms developed to 

determine precipitation rate from MW bands.  

MW is either scattered, radiated or absorbed by ground and hydrometeors as can be seen 

from Figure 4. MW reaches to satellite after multiple integration of emission, absorption 

and scattering form ground, cloud, snow, sea and rain drops. Since signal received by 

satellite is not from a single source, signal should be differentiated. However neither 

ground nor hydrometeors has strong polarization signature therefore differentiation is 

complex procedure.  
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Figure 4 Microwave interaction with land, sea and hydrometeors (modified from 

Strangeways (2011)). 

 

The most used algorithm to determine precipitation rate from MW bands is developed by 

Kummerow and Giglio (1994a, 1994b) the Goddard Profiling (GPROF) algorithm. To 

retrieve instantaneous rainfall this algorithm uses Bayesian based approach through a 

radiative transfer model to match observed and simulated brightness temperature 

databases (Kummerow et al. 2001, Wang et al. 2009). 

More recent algorithms combine measurements from multiple sources, such as IR, PMW 

and rain gauges, to take advantage of the strengths of each source and provide more 

accurate and reliable precipitation estimates (Huffman et al. 2007; 2010; Huffman 2013; 

Joyce et al. 2004; Aonashi et al. 2009; Sorooshian et al. 2000). Even though SBP 

estimates contain considerable error, the ongoing improvements and future planned 
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satellite missions (Global Precipitation Measurement, GPM)  make them potentially 

useful for hydrologic modeling studies in large basins (Yilmaz et al. 2005; Su et al. 2008; 

Thiemig et al. 2013).  

 

2.3. Satellite-based Precipitation Products 

2.3.1. TRMM Multi-satellite Precipitation Analysis (TMPA) 

TMPA provides precipitation estimates by combining information from multiple 

satellites as well as rain gauges where feasible, and is available at 3-hourly, 0.25ox0.25o 

latitude–longitude spatial resolution. There are two TMPA products: (1) an experimental 

real-time monitoring product which is available approximately 9 hours after real-time and 

covering the globe between the 60o N–S latitude bands; (2) a post-real-time research 

quality product available nearly 10-15 days after the end of each month and covering the 

globe between the 50o N–S latitude bands. The real-time product makes use of TRMM’s 

highest quality observations, along with a high quality PMW-based rain estimates from 

three to seven polar-orbiting satellites and IR estimates from the international 

constellation of geosynchronous earth orbit satellites, all calibrated by information from 

TRMM. Post-real-time research quality product differs from experimental real time 

monitoring product mainly in two ways: (1) it incorporates monthly rain gauge analysis 

for bias correction; (2) it uses the TRMM Combined Instrument (TCI) precipitation 

product for calibration, as opposed to the TRMM Microwave Imager (TMI) used in 

experimental real time monitoring product. TRMM provide a coverage from 40oN-S 

latitudes, thus present study will highlight the performance of the TMPA products at 

latitudes higher than the TRMM coverage.   

The latest version of the TMPA products (Version 7; Huffman, 2013) were used in this 

study. In this new version, both TMPA products have been retrospectively processed by 

algorithm developers with an aim to improve the fine-scale patterns of precipitation 

during 2000-2010 for post-real-time research quality product and 2000 to late 2012 for 

experimental real time monitoring product (Huffman, 2013). Hereafter, experimental real 

time monitoring product will be referred as TMPA-7RT and post-real-time research 
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quality product will be referred as TMPA-7A. TMPA-7A product include reprocessed 

datasets used in previous version (Version 6) and has the following upgrades relevant to 

the current study: Additional datasets were incorporated (e.g. Special Sensor 

Microwave/Imager ,SSM/I); Microwave Humidity Sounder, MHS; Meteorological 

Operational satellite programme and the 0.070 Gridsat-B1 infrared data),; single, 

uniformly processed surface precipitation gauge analysis were used as computed by the 

Global Precipitation Climatology Centre (GPCC), latitude-band calibration scheme were 

used for all satellites. Note that four rain gauge stations used in this study, namely ZNG, 

INB, BOL, KST, report to the GPCC and hence already incorporated into the TMPA-7A 

product. Input data for both TMPA-7A and TMPA-7RT products were uniformly 

reprocessed in time for consistency (Huffman 2013). 

2.3.2. Climate Prediction Center Morphing Technique (CMORPH) 

CMORPH estimates precipitation from high quality passive microwave satellite sensors 

(AMSU-B, SSM/I, TMI), which are than propagated by motion vectors derived from 

more frequent geostationary satellite IR data (GOES-8, GOES10, Meteosat-7, Meteosat-

5 and GMS-5). Advection vectors of cloud and precipitation systems over the globe are 

computed by successive IR observations. With the help of these advection vectors, 

infrequent MW observations are interpolated by “moving” the precipitation systems 

along the advection vectors in the combined time-space domain.  The resulting product 

is a spatially and temporally complete microwave-derived precipitation analyses that is 

independent of the infrared temperature field (Joyce et al. 2004). In this study 3 hourly, 

0.250 x 0.250 spatial resolution CMORPH data spanning 600 N-S latitude bands were 

used. 

2.3.3. Multi-Sensor Precipitation Estimate (MPE) 

MPE algorithm (Heinemann, 2003) estimates near-real time precipitation rates by 

blending measurements from Special Sensor Microwave/Imager (SSM/I) with brightness 

temperatures from IR channel of the METEOSAT geostationary satellites (METEOSAT-

7, METEOSAT-8 and METEOSAT-9). SSM/I and METEOSAT measurements are 

temporally and spatially co-registered to derive look-up tables (LUTs). LUTs describe 

the rain rate as a function of the METEOSAT IR brightness temperature. Product is 
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generated over the regions up to 600 longitude and latitude from the nominal sub-satellite 

points of three satellites. Since MPE is produced on the assumption that cold clouds 

produce most rain, product estimation is most effective for convective precipitation. For 

this study, MPE product having a 15-minute temporal and 4km x 4km spatial resolution 

is used. 

 

2.4. Literature Review of Evaluation of Satellite-based Precipitation Products 

SBP products are available with quasi-global coverage however their performance largely 

depends on the hydro-climatic characteristics of the region (Yilmaz et al. 2005). Hence 

evaluation of these products in different regions will provide the expected error 

characteristics to the end-users and feedback to the algorithm developers. There is an 

increasing number of studies focusing on the evaluation of the performance of SBP 

products (Ebert et al. 2007; Sapiano and Arkin 2009; Tian et al. 2007; Kidd et al. 2012). 

However, studies evaluating the performance of these algorithms over complex 

topography is still very limited.  

The regions characterized by complex topography are among the most challenging 

environments for SBP estimation due to high spatio-temporal variability of precipitation 

controlled by the orography. Orographic precipitation is generated by the cooling of the 

air as the mountains block and force the wind to rise in order to pass over them. This 

phenomenon is evident worldwide (Hutchinson 1968, Vuglinski 1972). Since mountains 

block the wind and forces the air to rise, windward side of the mountain receives more 

precipitation and leeward side remains drier. As a result of this rain shadow effect sharp 

climate transition is observed. 

SBP products that utilize information from combination of IR and PMW sensors are faced 

with challenges over complex topography. The challenge for IR retrievals is mainly 

attributed to warm orographic rain which cannot be detected by the IR retrievals that use 

cloud top temperature hence lead to underestimation of orographic rains (Dinku et al. 

2008) and miss light-precipitation events (Hong et al. 2007). The underestimation by 

PMW retrievals over mountainous region is attributed to warm orographic clouds without 
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ice particles that produce heavy rain (Dinku et al. 2010). The overestimation by PMW 

retrievals over mountains can be related to classification of cold surface and ice covers as 

rain clouds (Dinku et al. 2007; Gebregiorgis and Hossain 2013). SBP algorithms are 

prone to all these errors in mountainous regions and should therefore be evaluated in 

detail. Despite the importance of SBP products over complex topography, there are only 

a few studies that focus on evaluation of these products over mountainous regions. Hirpa 

et al. (2010) found out that TMPA 3B42RT and CMORPH SBP products have similar 

performances at lower elevations, however over higher elevations both products suffer 

from elevation dependent bias. Dinku et al. (2010) compared CMORPH, TMPA-3B42 

and TMPA-3B42RT over two mountainous regions which are characterized by complex 

topography. They found out that both products have low correlation and underestimated 

occurrence and amount of precipitation. Another study by Stampoulis and Anagnostou 

(2012) indicated that over mountainous regions in Europe both CMORPH and TMPA-

3B42V6 products significantly overestimate precipitation in cold season due to snow/cold 

surface contamination and that CMORPH shows higher accuracy in winter relative to 

TMPA 3B42V6. Moreover, they noted that the error variance of the SBP products is 

season dependent and generally higher over mountains. In summary performances of SBP 

products vary significantly over topographically complex regions and complicated by 

significant elevation change, seasonality and snow cover. Yücel et al. (2011) used hydro-

estimator algorithm to evaluate its performance over mountainous region against point 

based rain gauges. The product is already orographically corrected however elevation-

dependent biases still exists which were observed as underestimate in the occurence of 

light precipitation at high elevations and overestimate in the occurrence of precipitation 

at low elevations.
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CHAPTER 3 

 

 

EVALUATION OF SATELLITE-BASED PRECIPITATION PRODUCTS 

 

 

 

The objective of this chapter is to evaluate multiple SBP products over Western Black 

Sea Region of Turkey, which is characterized by complex topography. The effect of the 

complex topography on the performance of these products is studied using a rain gauge 

network and a rain gauge-based gridded dataset interpolated via a procedure considering 

physiographic controls on precipitation. Four different SBP products are evaluated: 

TMPA including experimental real time monitoring product and post real time research 

quality product; CMORPH and the MPE. 

Present study differs from and complements previous studies in several aspects. First the 

study area is characterized by a complex topography with significant orographic 

precipitation and a distinct rain-shadow effect. Second the evaluation is based on a 

gridded rain gauge dataset constructed using the “physiographic similarity” concept 

which is well-suited to regions with complex topography. Third, the TMPA products 

(TMPA-7RT and TMPA-7A) are retrospectively processed with the latest algorithm 

hence the performance of these new products having uniform temporal error 

characteristics are presented. In addition, the source of the error in SBP products were 

further investigated via an analysis of the input data (IR and MW data) utilized in the 

development of these products. 

 

3.1. Study Area 

The study area is explained in detail in Chapter 1.2. 
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3.2. Datasets 

3.2.1. Rain Gauge Dataset 

Rain gauge dataset was provided by the Turkish State Meteorological Service (TSMS). 

There are 39 rain gauges in the study region (Fig. 5) where TSMS operates two types of 

meteorological stations in the study region; Automated Weather Observing Systems 

(AWOS, 25 station in study region) and pluviometer type stations (14 station in study 

region) (Table 1).  



 

 
 

2
1
 

 

 

Figure 5 Geographic location of the study region. Meteorological stations within Region 1 are marked by a “dot marker” and those 

within Region 2 are marked by a “triangle marker”. 



 

22 
 

Data from the AWOS stations were available at the hourly timescale, whereas the 

pluviometer type stations report three times a-day. Since the number of pluviometer 

stations are less than the AWOS stations, AWOS stations are chosen for this study. 

Pluviometer stations datasets are quality controlled by the TSMS however AWOS are not 

thus requiring quality control of the dataset. All pluviometer stations are co-located with 

an AWOS station hence providing an opportunity for the quality control of the data.  

 

Table 1 General information about the meteorological stations 

Station Name Station 

IDRegion 

Elevation  

(m) 

Mean Annual 

Precipitation 

(mm/year)* 

Type 

AKCAKOCA AKC1 1 1069.08 AWOS, Pluviometer 

BARTIN BRT1 33 907.26 AWOS, Pluviometer 

DUZCE DZC1 146 715.32 AWOS, Pluviometer 

AMASRA AMS1 33 833.16 AWOS, Pluviometer 

CIDE CID1 25 1046.8 AWOS, Pluviometer 

BOZKURT BZK1 82 1149.26 AWOS, Pluviometer 

ACISU RADAR ACS1 1096 952.32 AWOS 

EREGLI ERG1 6 1142.73 AWOS 

ULUS ULS1 179 824.22 AWOS 

BOLUDAGI BLD1 883 1000.08 AWOS 

DEVREK DVR1 70 809.00 AWOS 

INEBOLU INB1 36 1039.84 AWOS, Pluviometer 

ZONGULDAK ZNG1 74 1077.42 AWOS, Pluviometer 

KARABUK KRA2 242 444.16 AWOS, Pluviometer 

DEVREKANI DVN2 1142 565.58 AWOS, Pluviometer 

CERKES CRK2 1111 386.42 AWOS, Pluviometer 

ILGAZ ILG2 859 433.46 AWOS, Pluviometer 

KIZILCAHAMAM KZL2 1023 560.64 AWOS, Pluviometer 

ESKIPAZAR ESK2 740 413.41 AWOS 

GEREDE GRD2 1305 536.34 AWOS 

SEBEN SBN2 767 447.44 AWOS 

KIBRISCIK KBR2 1129 432.75 AWOS 

TOSYA TSY2 869 466.42 AWOS 

KASTAMONU KST2 906 560.2 AWOS 

BOLU BOL2 728 533.86 AWOS, Pluviometer 

*based on quality controlled AWOS data for the 2007 – 2011 time period. 
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Pluviometer stations measure rainfall within 07:00-13:59 (time stamp as 07:00) / 14:00-

20:59 (time stamp as 14:00) / 21:00-06:59 (time stamp as 21)) hour intervals on the other 

hand AWOS record hourly rainfall. It should be noted that time stamps for both stations 

are accumulated time intervals and pluviometer measurement time zone is defined as 

UTC+2 time zone on the other hand AWOS time zone is defined as UTC. TSMS defined 

daily rainfall by adding yesterday’s 14:00 and 21:00 and today’s 07:00 time stamps. Since 

quality control is going to be conducted according to the pluviometer stations we defined 

the daily rainfall same with TSMS. While obtaining daily precipitation daylight saving is 

considered also. 

In the quality control step, first metadata errors are checked. Mislocated stations are 

identified via Google Earth software and discussions with Dr. Kurtuluş Öztürk of TSMS. 

The corrected coordinates elevations of the stations are provided from the DEM with a 3-

arc second (0.000830) resolution (obtained from the HYDROSHEDS dataset (Lehner et 

al. 2006)). All these corrections are provided in the Table 2. 
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Table 2 Quality control of the metadata errors of AWOS stations 

Station 
Lat from 

TSMS 

Long from 

TSMS 

Elevation  

from TSMS (m) 

Lat 

corrected 

Long 

corrected 

Elevation 

from DEM 

Lat  

Differences 

Long 

Differences 

Elevation 

Differences 

AKCAKOCA/17015 41.083 31.167 10 41.089 31.143 1 -0.006 0.024 9.0000 

BARTIN/17020 41.633 32.333 32. 41.625 32.357 32.8 0.008 -0.024 -0.3160 

ZONGULDAK/17022 41.450 31.800 135. 41.449 31.799 73.5 0.001 0.001 61.8180 

INEBOLU/17024 41.983 33.783 63.8 41.979 33.764 35.8 0.004 0.019 27.9230 

BOLU/17070 40.733 31.600 743 40.732 31.605 728 0.001 -0.005 14.9170 

DUZCE/17072 40.833 31.167 145.6 40.843 31.154 146.3 -0.010 0.013 -0.6340 

KARABUK/17078 41.200 32.633 259.3 41.194 32.624 242.2 0.006 0.009 17.1390 

AMASRA/17602 41.750 32.383 73 41.753 32.383 33.3 -0.002 0.000 39.6660 

CIDE/17604 41.883 33.000 36 41.883 33.000 24.7 0.000 0.000 11.2860 

BOZKURT/17606 41.950 34.017 167 41.950 34.017 81.6 0.000 0.000 85.3400 

DEVREKANI/17618 41.583 33.833 1050 41.583 33.833 1141.7 0.000 0.000 -91.7980 

CERKES/17646 40.817 32.900 1126 40.815 32.883 1111.5 0.002 0.017 14.5290 

ILGAZ/17648 40.917 33.633 885 40.917 33.633 859.1 0.000 0.000 25.8660 

KIZILCAHAMAM/17664 40.467 32.650 1033 40.473 32.644 1023.3 -0.006 0.006 9.6970 

ACISU RADAR/17018 41.181 31.799 1112 41.182 31.798 1096 -0.001 0.001 16.0000 

EREGLI/17611 41.267 31.417 191 41.271 31.433 5.5 -0.004 -0.015 185.5330 

ULUS/17615 41.582 32.637 162 41.582 32.637 178.5 0.000 0.000 -16.4750 

BOLUDAGI/17637 40.740 31.419 948 40.729 31.433 882.9 0.011 -0.014 65.0970 

ESKIPAZAR/17641 40.967 32.533 757 40.944 32.533 740.5 0.023 0.000 16.4920 

GEREDE/17642 40.800 32.200 1270 40.803 32.206 1304.5 -0.003 -0.006 -34.5290 

SEBEN/17693 40.417 31.583 757 40.413 31.573 766.6 0.004 0.010 -9.5740 

KIBRISCIK/17694 40.417 31.850 1025 40.406 31.848 1128.9 0.011 0.002 -103.9600 

KASTAMONU/ 17074 41.367 33.783 799.9 41.367 33.783 905.8 0.000 0.000 -105.9750 

DEVREK/ 17613 41.217 31.950 100 41.229 31.965 70.5 -0.011 -0.015 29.4340 

TOSYA/ 17650 41.017 34.033 870 41.017 34.033 869.4 0.000 0.000 0.5820 
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Further consistency between the daily records of the co-located stations was checked 

through graphical (double mass curves, time-series and scatterplot) and statistical 

methods such as bias and correlation coefficient. Double mass curves, time-series and 

scatterplots are used to identify outliers and flat lines. Identification of outliers are 

conducted by determining threshold by using exceedence probability and outliers are 

flagged. Flagged data are later filled by pluviometer dataset if both stations are co-located. 

In the following Station Bozkurt is given as an example to this quality control. 

Firstly flat lines are identified by double mass curves. It is clear from Figure 6 starting 

from 01/07/2011 there is a distinct flat line that needs to be quality controlled where 

AWOS rainfall measurements are around zero. 

 

 

Figure 6 Double mass curve for Station Bozkurt (green lines represents the years (2007-

2011) red line is diagonal 1-1 line and blue line is the double mass curve of Bozkurt 

AWOS & Pluviometer stations. 
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Secondly outliers are obtained by exceedence probability of bias in which threshold is 

defined as 95% exceedence probability of bias for every year. In order not to deteriorate 

the AWOS characteristics we did not flag every data which passes the threshold. For 

example biases in 2008 year are not flagged (Fig. 7a, b, and c). Flat line was observed in 

double mass curve after 01/07/2011, we are able to see the same problem in time series 

also. There are no precipitation record for this time period and biases are flagged for the 

same time period (Fig. 7d, e, and f). In the end the flagged dates are filled by collocated 

pluviometer station. 

 

 

Figure 7 Time series to identify outlier for Station Bozkurt for two years one (2008) 

without flag and one (2011) with flag. (a, d) AWOS stations, (b, e) Pluviometer stations, 

(c, f) biases from AWOS and pluviometer stations and red line is threshold determined 

by exceedence probability. 

 

After flagged dates are filled we checked scatter plot and double mass curve of the 

stations as can be seen from the Figure 8. It is clear that after the quality control station 

does not observe any false or missed reading (Fig. 8a) and there is no flat line after quality 

control (Fig. 8b). 
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Figure 8 (a) Scatter plot of AWOS & pluviometer stations of Bozkurt to identify missed 

records and false readings after quality control, (b) Double-mass curve of AWOS & 

pluviometer stations of Bozkurt after quality control 

 

If there is no collocated pluviometer stations with AWOS station we followed different 

approach. Double mass curves, time-series and scatterplots between similar stations 

(similarity is based on elevation and rainfall occurrence) are used to identify outliers and 

flat lines. Identification of outliers are conducted by determining threshold by using 

exceedence probability and outliers are flagged. Flagged data are later filled by using 

correlation weighting method (CCWM, Westerberg et al. 2009). CCWM has same 

principle with inverse distance weighting (IDW) method but correlation coefficient used 

instead of distance to calculate the weight of the surrounding stations. 

 

𝑄𝑚 =
∑ 𝑄𝑖𝑅𝑚𝑖
𝑛
𝑖=1

∑ 𝑅𝑚𝑖
𝑛
𝑖=1

     (3.1) 

where, Qm: missing value to be patched,  

Rmi: coefficient of correlation.  
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It should be noted that stations are grouped according to the defined regions since rainfall 

regimes of the two regions are different. In the following Station Eskipazar is given as an 

example to this quality control. Since there is no collocated pluviometer station in this 

location Station Çerkes is used to define outliers and flat lines, further, surrounding 

stations are used to correct flagged dates of Station Eskipazar by using CCWM. Station 

Eskipazar and Çerkes correlates very well and as can be seen from Figure 9 there are no 

flat lines, therefore there are no flagged dates related with flat line. 

 

 

Figure 9 Double mass curve for Station Eskipazar and quality controlled Station Çerkes 

(green lines represents the years (2007-2011) red line is diagonal 1-1 line and blue line is 

the double mass curve stations. 

 

Outliers are defined by exceedence probability in which threshold is defined as bias at 

95% of the data for every year. In order not to deteriorate the AWOS characteristics we 
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did not flag every data which passes the threshold. For example biases in 2009 year are 

not flagged (Fig. 10a, b, and c) since their trends are similar. On the other hand biases in 

2010 are flagged (Fig. 10d, e, and f). Outliers in between day 150-200 points out that 

precipitation recording in between these days are not correlated with the general trend of 

the station. Therefore days in between 20/05/2010-13/06/2010 are flagged. Flagged dates 

are filled by CCWM method by using the surrounding stations Karabük, Gerede and 

Çerkes.  

 

 

Figure 10 Time series to identify outlier for Station Eskipazar & Çerkes for two years one 

(2009) without flag and one (2010) with flag. (a, d) station Eskipazar, (b, e) station 

Çerkes, (c, f) biases from Eskipazar and Çerkes stations and red line is threshold 

determined by exceedence probability. 

 

After flagged dates are filled we checked scatter plot and double mass curve of the 

stations as can be seen from the Figure 11. It is clear that after the quality control station 

does not observe any false or missed reading (Fig. 11a) and there is no flat line after 

quality control (Fig. 11b). 
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Figure 11 (a) Scatter plot of Eskipazar & Çerkes stations to identify missed records and 

false readings after quality control, (b) Double-mass curve of Eskipazar & Çerkes stations 

after quality control 

 

The daily precipitation data from the quality controlled AWOS type stations were used 

in this study (Fig. 5). Hypsometric curve for the study region is provided in the next 

Figure. It is clear that there is no station located higher than 1500 m. Red dots in Figure 

12 represent the stations in Region 1 and generally located in lowland and purple triangles 

represent the stations in Region 2 and generally located in highland. 
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Figure 12 Hypsometric curve of the study region. Red dots represent the rain gauges in 

Region 1 and purple triangles represent the rain gauges in Region 2. 

 

3.2.2. Rain gauge-based Gridded Precipitation dataset 

Studies focusing on the evaluation of SBP estimates using rain gauge networks are 

hampered by the scale differences (grid vs. point) between the two products. In an effort 

to reduce this scale dependent inconsistency and to have a continuous rain gauge-based 

precipitation field, a rain gauge-based gridded precipitation product has been constructed. 

The procedure for gridded precipitation estimation is based on the Precipitation-elevation 

Regressions on Independent Slopes Model (PRISM; Daly et al. 2002; 2008; Daly 2006). 

The advantage of the PRISM approach is that it incorporates physiographic descriptors 

in the precipitation estimation, thus providing a knowledge-based system in which 

statistical approaches and human expertise are combined in a semi-automated fashion 

(Daly et al. 2002).  Our ultimate goal is to incorporate the influence of the complex 

topography on the precipitation estimation process. The PRISM approach is specifically 

developed for regions having low/moderate density of rain gauges and under the influence 
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of significant topographic features, coastal effects and rain shadows (Daly 2006); such as 

the study area selected for this study.  

PRISM calculates a linear precipitation-elevation relationship for each grid cell, the slope 

of which changes locally by the physiographic similarity between observed and estimated 

point/grid. A moving window procedure is used to calculate a unique climate-elevation 

regression function for each grid cell (Daly et al. 2008): 

 

𝑌 = 𝛽1 ∗ 𝑋 + 𝛽0    (3.2) 

where, Y: predicted precipitation  

β1: slope of the regression line  

β0: intercept of the regression line  

X: elevation at target cell obtained from the digital elevation model (DEM).  

The DEM with a 3-arc second (0.000830) resolution is obtained from the HYDROSHEDS 

dataset (Lehner et al. 2006) and further rescaled to 0.05o resolution via nearest neighbor 

interpolation; this is the grid scale that is used for the PRISM-based precipitation 

estimation.  

In the PRISM approach precipitation estimation, a locally-weighted regression function 

(Fig. 13) is constructed for each grid.  
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Figure 13 Linear regression graph of station KRA for February 2010. Red dots are 

surrounding stations, their size is related with the combined weight of that station. 

 

In the procedure, each station is assigned weights based on the physiographic similarity 

between the observed and estimated station/grid. The similarity or the combined weight 

(W), of a station/grid is a function of the following set of physiographic descriptors:  

 

𝑊 = ([𝐹𝑑 ∗ 𝑊𝑑
2 + 𝐹𝑧 ∗ 𝑊𝑧

2]1/2 ∗ 𝑊𝑝 ∗ 𝑊𝑓 ∗ 𝑊𝑒)   (3.3) 

where, Fd: distance weighting importance factor 

Fz: elevation weighting importance factor  

Wd: the distance weight  

Wz: elevation weight  
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Wp: coastal proximity weight  

Wf: facet weight  

We: effective terrain weight  

These descriptors were selected based on the physiographic setting of the study area and 

the guidelines provided by Daly (2006). Note that all weights and importance factors, 

individually and combined are normalized to sum to unity (Daly et al. 2008).  

 Distance weight (Wd): Stations influence in regression function is assumed to 

decrease as its distance from the target grid cell increases. The distance weight is 

given in Equation 3.4. 

𝑊𝑑 = {
1;  𝑑 = 0
1

𝑑𝑎
;  𝑑 > 0

}        (3.4) 

where, d: horizontal distance between station and the target grid cell 

a: distance weighting exponent typically set to 2 (Daly et al. 2008) 

 Elevation weight (Wz): Elevation weighting allows the model to focus on a 

vertical range that is specific to the target grid cell. A station’s influence decrease 

as vertical, or elevation, distance from the target grid cell increases. Elevation 

weight is calculated as in Equation 3.5. 

𝑊𝑧 =

{
 

 
1

∆𝑧𝑚
𝑏 ;                       ∆𝑧 ≤ ∆𝑧𝑚
1

∆𝑧𝑏
;           ∆𝑧𝑚 < ∆𝑧 < ∆𝑧𝑥

0;                           ∆𝑧 ≥ ∆𝑧𝑥}
 

 
   (3.5) 

where, Δz: absolute elevation difference between the station and the target grid cell  

b: elevation weighting exponent, generally set to 1  

Δzm: minimum elevation difference typically varies from about 100 to 300 m  

Δzx: maximum elevation difference typically varies from 500 to 2500 m (Daly et 

al. 2002). 
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 Facet weight (Wf):  A topographic facet is contiguous terrain slope with a common 

orientation, delineated at a variety of scales, from major leeward and windward 

sides of large mountain ranges to north-south facing hill slopes. At each grid cell, 

the model chooses the topographic facet scale that best matches the data density 

and terrain complexity, and assigns the highest weights to stations on the same 

topographic facet. 

The smoothed DEM for each level is prepared by applying Gaussian filter to the 

original DEM. The filtering wavelength for each of the 6 levels is controlled by 

user-defined maximum wavelength (λs=60/80/100km). The DEM is filtered at 

equal intervals between wavelengths equal to the DEM resolution. The orientation 

of each cell is computed from elevation gradients between the 4 adjacent cells and 

assigned to an orientation bin on an 8-point compass. At higher wavelengths, a 

distribution of orientation bins is created for the target cell by calculating the 

orientations of all neighboring cells within a radius that matches the filter 

wavelength. 

Combination of station data density and local terrain complexity determines the 

appropriate facet smoothing level for a target grid cell. To find this level PRISM 

attempts to retrieve a user-specified number of stations (Sf=3/5/8 stations) that are 

on the same contiguous facet as the target cell. Starting with the smallest-

wavelength facets at level 1 then proceeding to level 2 and beyond if necessary, 

PRISM accumulates stations until either Sf reached or all facet levels have been 

exhausted.  

The facet weight for a station is calculated as; 

𝑊𝑓 = {
1;              ∆𝑓 ≤ 1 𝑎𝑛𝑑 𝐵 = 0

1

(∆𝑓+𝐵)𝑐
;       ∆𝑓 > 1 𝑜𝑟 𝐵 > 0

}   (3.6) 

where, Δf: absolute orientation difference between the station and target grid cell      

(maximum possible difference is 4 compass points or 1800)  
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B: number of intervening barrier cells with an orientation significantly different 

than that of the target grid cell. It is calculated by identifying a line of cells that 

follows the shortest distance between a station and the target grid cell, and 

counting the total number of cells that do not possess orientations within one 

compass point of that of the target grid cell (∆f>1), c is the facet weighting 

exponent (0/1.5/2) in mountainous coastal regions c is typically set at about 1.5 to 

2 because of the sharp rain shadows that occur on leeward side of coastal 

mountains in inland and relatively flat regions, where rain shadow is less 

pronounced, a value of 1.5 or less will suffice. 

A station is considered to be on the same facet as the target grid cell and receives full 

weight if it meets 2 conditions; 

1)  It resides on a cell that has a terrain orientation within one compass point of 

the target cell (checked by ∆f) 

2) The stations cell is located within the same group of similarly-oriented cells or 

facet as the target cell (checked by B) 

The same mountain slope can be defined if ∆f=1 and B=0 meaning stations are on the 

same facet as target cell. On the other hand different mountain ranges can be defined if 

∆f=1 and B>0 meaning same orientation but on completely different group of similarly 

oriented grid cells (Daly et al, 2002). 

 Coastal Proximity Weight (Wp): It is used to define gradients in precipitation that 

may occur due to proximity to large water bodies. Stations with coastal 

proximities similar to that of the target grid cell are assigned relatively high 

weights. 

For smooth terrains, coastal proximity grid for precipitation was composed simply 

of distances form the generalized coastline grid. A simple distance is enough since 

lack of terrain features. The generalized coastline is used since bays and inlets 

were not considered to be as important moisture sources as open ocean for 

precipitation.  
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For complex terrain a simple trajectory model was designed to assess relative 

moisture availability to guide precipitation mapping. The trajectory model is 

similar to the coastal advection model in that it accounts for changes in moisture 

content due to path length and terrain effects. It differs in that the air parcel 

trajectories are straight line and invariant throughout the simulation, as might be 

the case within large-scale synoptic circulations that produce significant 

precipitation. The premise here is that mean potential for precipitation 

experienced at a site is the result of; 

 Loss of moisture throughout rainout, which accumulates as the path length 

over land increases 

 Enhancement and suppression of precipitation caused by adiabatic cooling 

and warming during flow over terrain obstacles. 

To begin the simulation, ocean pixels along the coastline were assigned a 

‘precipitation index’ (PI) score of zero. The original unfiltered DEM is used.  

 

𝑃𝐼𝑛 = 𝑃𝐼𝑛−1 + 𝑡𝑢𝑝 + 𝑡𝑑𝑜𝑤𝑛 + 𝑝     (3.7) 

where, n-1: adjacent upstream pixel  

tup and tdown: terrain penalties for uphill and downhill flow paths respectively  

p: precipitation path length for each pixel travelled.  

𝑡𝑢𝑝 = −0.1ℎ     (3.8) 

𝑡𝑑𝑜𝑤𝑛 =  0.3ℎ      (3.9) 

𝑝 =  0.5/𝑝𝑖𝑥𝑒𝑙               (3.10) 

where, h: terrain height difference in meters between a pixel and its upstream neighbor. 

Positive h denotes upslope conditions. 
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𝑊𝑝 = {

1; ∆𝑝 = 0
0; ∆𝑝 > 𝑝𝑥

1

∆𝑝𝑣
; 0 < ∆𝑝 ≤ 𝑝𝑥

}               (3.11) 

where, Δp: absolute difference between station and target grid cell coastal proximity 

index  

v: coastal proximity weighting exponent typically set to 1  

px: maximum coastal proximity difference (varies with application). 

 Effective terrain weight (We): Using 2.5 min DEM an effective terrain height grid 

was prepared by 

 Finding the minimum elevation within a approximately 40-km radius of 

each grid cell 

 Spatially averaging the minimum elevations over a 40-km radius to 

smooth “base” elevation grid 

 Subtracting the base elevation grid from the original DEM grid to get an 

effective terrain height grid 

 Spatially averaging the effective terrain height grid across a 20-km radius 

to produce a smooth grid 

PRISM uses the effective terrain grid in a multi-step process. A 3D index for the 

target grid cell (I3c) is determined by comparing the effective terrain height of the 

target cell with thresholds for 2D and 3D model operation. If the effective terrain 

height exceeds the 3D threshold, I3c is set to 1. If effective terrain height is less 

than the 2D threshold, I3c is set to 0. 

𝐼3𝑐 = {

1;                      ℎ𝑐 ≥ ℎ3
ℎ𝑐−ℎ2

ℎ3−ℎ2
;     ℎ2 < ℎ𝑐 < ℎ3

0;                     ℎ𝑐 ≤ ℎ2

}               (3.12) 

where, hc: effective terrain height for the target grid cell,  
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h2 and h3: user defined thresholds for 2D and 3D operations 

If I3c<1 signaling 2D or 2D/3D mixed situation, I3a, an areal 3D index, is calculated to 

assess whether the target grid cell is near a significant 3D terrain feature. 

 

𝐼3𝑎 = {

1;                      ℎ𝑎 ≥ ℎ3
ℎ𝑎−ℎ2

ℎ3−ℎ2
;     ℎ2 < ℎ𝑎 < ℎ3

0;                     ℎ𝑎 ≤ ℎ2

}                (3.13) 

where, ha: distance-weighted effective terrain height  

hi: effective terrain height for grid cell i  

n: number of grid cells within 100 km of target grid cell  

di: horizontal distance between the center of the target grid cell and nearby grid 

cell i 

 

ℎ𝑎 =
∑ 𝑤𝑖ℎ𝑖
𝑛
𝑖=1

𝑛
                 (3.14) 

𝑤𝑖 =
1

𝑑𝑖
                             (3.15) 

The final 3D index is expresses as; 

 

𝐼3𝑑 = max [𝐼3𝑐 , 𝐼3𝑎]                (3.16) 

A scalar form 0 to 1, I3d represents the degree of importance terrain should play in the 

estimation of precipitation. When I3d=1, the PRISM regression function operates in its 

normal fashion. When I3d is zero, the slope of the precipitation/elevation regression 

function is forced to zero and stations are weighted by distance and clustering only 

resulting 2D interpolation. Effective terrain weight requires that I3d be calculated for each 

station. This is done by calculation I3d for the pixel on which a station resides in exactly 
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the same manner as was described in the previously for the target grid cell. The effective 

terrain weight is then given as, 

 

  𝑊𝑡 = {
1;                                                      𝐼3𝑑𝑐 = 1

1

(100|𝐼3𝑑𝑐−𝐼3𝑑𝑠|)
0.5(1−𝐼3𝑑𝑐)

;        0 ≤ 𝐼3𝑑𝑐 ≤ 1}              (3.17) 

where, I3dc and I3ds: effective terrain indices of the target cell and station 

When I3dc=1 target grid cell is 3D Wt becomes 1 and all stations are weighted equally. 

When I3dc falls towards zero (2D situation) 3D stations are down-weighted. The down-

weighting exponent increases to 0.5 as I3dc approaches zero. When I3dc=0 3D stations are 

down-weighted by a factor of one hundred compared to 2D stations (Daly, 2002). 

These physiographic descriptors are controlled by a set of parameters. Daly et al (2002) 

suggests default values for many of these parameters; however the values of a few 

parameters are highly region dependent. In this study the values of these region dependent 

parameters (Fd, Δzm, Δzx, c, px, h2, h3) were selected via an optimization procedure. In the 

optimization procedure, each rain gauge station is removed, one-at-a-time, from the 

dataset and the precipitation value for that station is estimated via the remaining stations 

using the PRISM approach. The Shuffled Complex Evolution (SCE) algorithm (Duan et 

al. 1992) is then used to minimize the mean square error between PRISM-estimated and 

observed monthly precipitation values for all stations. This procedure was used to 

estimate the seasonal (winter [DJF], spring [MAM], summer [JJA] and autumn [SON]) 

PRISM-parameters separately for Region 1 and Region 2.  

A comparison of the performance of the optimized PRISM-parameters and the default 

PRISM-parameters indicated that the optimization procedure increased the agreement 

between the observed and PRISM-estimated precipitation. As mentioned earlier, TMPA-

7A product incorporates four of the GPCC stations located in the study area in 

precipitation estimation. Hence to minimize this bias during the evaluation process, these 

four stations should not be used in the PRISM-parameter estimation process. However, 

two of these GPCC stations (KST and INB) are located in data sparse regions and their 
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observations are deemed critical for the reliability of the estimation procedure and hence 

included in the PRISM approach. The other two GPCC stations (BOL and ZNG) were 

not used in the estimation of gridded precipitation via PRISM approach and left for 

independent data for evaluation. Table 3 lists the correlation coefficient and mean 

absolute bias statistics calculated using monthly precipitation observations from 

independent rain gauges and PRISM-estimated monthly precipitation values using default 

and optimized parameters. It can be seen that the optimized PRISM parameters provided 

slightly improved statistics even for these independent rain gauges. 

 

Table 3 Evaluation of the PRISM monthly precipitation estimates with default and 

optimized parameters using observed precipitation from independent rain gauges. 

Station ID  Season Monthly 

Correlation  

Coefficient  

Mean  

Absolute Bias 

(mm/month) 

ZNG 

(Region 1) 

Default  

Parameters 

Winter 0.95 16.2 

Spring 0.79 25.86 

Summer 0.69 33.66 

Autumn 0.97 19.29 

Optimized  

Parameters 

Winter 0.95 14.53 

Spring 0.80 24.83 

Summer 0.70 33.06 

Autumn 0.97 19.66 

BOL 

(Region 2) 

Default  

Parameters 

Winter 0.96 8.76 

Spring 0.59 14.72 

Summer 0.68 21.64 

Autumn 0.94 12.36 

Optimized  

Parameters 

Winter 0.96 8.77 

Spring 0.65 13.74 

Summer 0.70 20.54 

Autumn 0.95 10.25 

 

The optimized PRISM parameters were then used to interpolate the precipitation values 

for each 0.05o x 0.05o grid within the study area at the daily timescale assuming monthly 

PRISM parameters are also valid for the daily time scale. PRISM interpolated grids were 

further coarsened to 0.25o resolution via box-averaging technique (Fig. 14). The Rain 
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gauge-based Gridded Precipitation dataset will be referred hereafter as “RGP”. Figure 14 

shows the 5-year mean annual precipitation values obtained from the RGP dataset and 

the rain gauge network. RGP dataset captures the sharp precipitation gradient caused by 

the mountain ranges well, with high precipitation values along the windward side of the 

mountains and low precipitation values on the leeward side. 

 

 

Figure 14 Rain gauge-based gridded precipitation dataset of mean annual precipitation 

for 2007-2011 period. Dots represent the rain gauges, their colors are representative of 

their mean annual precipitation for 2007-2011 period 

 

3.2.3. Satellite-based Precipitation Products 

SBP products that have been used in this study are explained in detail in Chapter 2.3. 

 

3.3. Evaluation Methodology 

The primary objective of this study was to evaluate the performance of various SBP 

products over complex topography using a rain gauge network. The evaluation was 

performed at various spatial scales. First, point-scale precipitation measurements from 



 

43 
 

the rain gauge network were compared with the co-located grid-scale precipitation 

estimates (0.25ox0.25o) from SBP algorithms. Second, the RGP product has been further 

utilized in the evaluation of the SBP products. 

Based on data availability 2007-2011 period was selected. The evaluation methodology 

consisted of daily, monthly, seasonal and annual time scales. In the procedure, the daily 

time steps marked as “missing” for a single product has been removed from the analysis. 

The agreement between different precipitation products were investigated using 

quantitative and categorical statistics as well as graphical tools such as scatter plots.  The 

quantitative statistics include percentage bias (%BIAS), correlation coefficient (CORR) 

and normalized root-mean-squared error (NRMSE): 

 

𝑁𝑅𝑀𝑆𝐸 = (√
∑ (𝑆𝐴𝑇𝑖−𝑅𝐺𝑖)

2𝑛
𝑖=1

𝑛
) (

∑ 𝑅𝐺𝑖
𝑛
𝑖=1

𝑛
)⁄               (3.18) 

%𝐵𝐼𝐴𝑆 = (
∑ 𝑆𝐴𝑇𝑖−𝑅𝐺𝑖
𝑛
𝑖=1

∑ 𝑅𝐺𝑖
𝑛
𝑖=1

) ∗ 100               (3.19) 

where, SAT: SBP products 

RG: rain gauge gridded precipitation estimates  

i=1, 2,…, n is the number of daily or monthly precipitation data pairs for each 

grid.  

The contingency table-based categorical statistics measure the daily rain-detection 

capability and include false alarm ratio (FAR) and probability of detection (POD). These 

are based on a 2 x 2 contingency table (Table 4) [a: SAT yes, RG yes; b: SAT yes, RG 

no; c: SAT no, RG yes; and d: SAT no, RG no]. 
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Table 4 2 x 2 contingency table  

Gauge Observed 

Rainfall 

 
Satellite-based precipitation products (SBP) 

Rain (Yes) No Rain (No) 

Rain (Yes) (a) Hits (c) Misses 

No Rain (No) (b) False Alarms (d) Correct negatives 

 

The POD gives the fraction of rain events that were correctly detected and ranges from 0 

to 1; 1 being the perfect score.  

 

𝑃𝑂𝐷 = 
𝑎

(𝑎+𝑐)
                (3.20) 

The FAR measures the fraction of rain events that were actually false alarms and ranges 

from 0 to 1; 0 being the perfect score. 

 

𝐹𝐴𝑅 = 
𝑏

(𝑎+𝑏)
                                                  (3.21) 

 

3.4. Results and Discussion 

3.4.1. Comparison of Rain Gauge vs. Satellite-based Precipitation 

To examine the influence of orography on the performance of the SBP products, cross 

section lines were taken along and perpendicular to the mountain ranges (Fig. 5). Figure 

14 shows the annual precipitation from rain gauges and co-located SBP grids along cross 

section line 1 together with the topographic elevations. Note that cross section line 1 is 

perpendicular to the shore line; station BRT is in Region 1 (on the coast, windward side 

of the mountains) and other two stations are located in Region 2 (on the drier, leeward 

side of the mountains). Cross section lines 2 and 3 are taken along the coastal region 

(Region 1) and inland region (Region 2), respectively.  
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The influence of the orography on the precipitation distribution is clearly seen in Figure 

15 with station BRT receiving significantly more mean annual precipitation (850.5 mm) 

compared to stations KRA (408.1mm) and CRK (344.2mm) located inland in Region 2. 

Along the coastal region (Region 1) all SBP products underestimate observed 

precipitation (Fig. 16a). In this region, TMPA-7A performs better than other products 

with slight underestimation possibly due to the monthly rain gauge correction procedure. 

CMORPH consistently and significantly underestimates the precipitation compared to 

rain gauges along the coast. MPE, on the other hand, shows underestimation with a wide 

range of scatter between years. TMPA-7RT underestimates along the coast, however with 

less annual bias compared to CMORPH.  

In Region 2 (Fig. 15 & Fig. 16b) CMORPH provides consistent annual precipitation 

estimates compared to rain gauges with slight underestimation. Both TMPA-7A and 

TMPA-7RT products overestimate the observed precipitation in Region 2. The correction 

procedure employed within the TMPA-7A algorithm resulted in an improved product 

with less overestimation compared to the TMPA-7RT product. 
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Figure 15 (a) Topographic elevations, (b) annual precipitation for each SBP product and 

rain gauge along cross section line 1. 
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Figure 16 Annual precipitation for each SBP product and rain gauge along (a) cross 

section line 2 and (b) cross section line 3. 

 

The maps in Figure 17 show the 5-year (2007-2011) mean annual precipitation values 

estimated by each SBP product at 0.250 spatial resolution together with the point-scale 

observations from the rain gauge network. Note that the region divide is shown by a red 

line. Starting with the TMPA-7RT product, it can be seen that the precipitation estimates 

are significantly less along the shoreline and significantly more inland compared to the 

rain gauges. Underestimation by TMPA-7RT and CMORPH along the shoreline is 

possibly due to the precipitation detection problems over water-land mixed cells 

(Huffman et al. 2007). TMPA-7RT produces heterogeneous precipitation estimates 

marked by sharp change in precipitation amounts in neighboring cells which may be 

caused by direct replacement of PMW-calibrated IR estimates with PMW estimates 

whenever the latter is available. This behavior will be investigated in more detail in 

section 3.4.3. In TMPA-7A product, the gauge-based correction procedure seems to work 
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well and improved the precipitation estimates with less significant underestimation along 

the shoreline and less significant overestimation inland. While it can be seen that the 

TMPA-7A precipitation estimates decrease as going from shoreline towards inland, as 

expected, the precipitation gradient is not as sharp as characterized by the rain gauges and 

marked by the region divide. CMORPH precipitation estimates are significantly lower 

and more uniform over the study area compared to other SBP products, thus 

underestimating the orographic precipitation along the shore more significantly compared 

to other products. In Region 2 the CMORPH precipitation estimates are more consistent 

with the rain gauge observations compared to other SBP products. While TMPA and 

CMORPH products show precipitation patterns with north-south gradients (although with 

varying magnitudes) over the study region at the mean annual time scale, spatial pattern 

of the MPE product differs with a decreasing precipitation trend from east to west. MPE 

product is characterized by underestimation in Region 1 and overestimation in Region 2.   
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Figure 17 Spatial maps of 5 year (2007-2011) mean annual precipitation at 0.250 spatial 

resolution over study area (a) TMPA-7A, (b) TMPA-7RT, (c) CMORPH, (d) MPE, (e) 

RGP. Note that gray cells are over the sea. 

 

To investigate the performance of the SBP products in a more detailed manner, Figure 18 

shows comparison of monthly precipitation from two region-representative rain gauges 

and their co-located SBP grids using scatterplots and quantitative statistics for cold 

(September-February, black-circle markers) and warm (March-August, gray-triangle 

markers) seasons. Note that station AMS is located in Region 1 and station DVN is 

located in Region 2. These scatterplots show that CMORPH (more significantly) and 

MPE products suffer from a precipitation detection problem (points are scattered along 

the x-axis) in Region 1 during cold season. On the other hand TMPA-7RT and TMPA-

7A provide better monthly precipitation estimates for both regions and seasons. TMPA-

7RT resulted in underestimation in Region 1 and slight overestimation in Region 2 during 
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winter. TMPA-7A resulted in improved precipitation estimates compared to TMPA-7RT 

in both Regions, the only exception being the overestimation in Region 2 winter season. 

In summary gauge-corrected TMPA-7A outperforms satellite-only SBP products at the 

monthly time scale as expected. Satellite-only SBP products generally suffer from 

precipitation detection problem in Region 1 during cold season, CMORPH being more 

and TMPA-7RT being less significant. In Region 2 all SBP products overestimate 

monthly precipitation regardless of the season (more significantly during winter), the only 

exception being CMORPH.  

 

 

Figure 18 Monthly scatterplots of rain gauge observations vs. four SBP products over 

2007-2011 during cold and warm seasons. Stations AMS (in Region 1) vs. (a) TMPA-

7A, (b) TMPA-7RT, (c) CMORPH, (d) MPE, Station DVN (in Region 2) vs. (e) TMPA-

7A,  (f) TMPA-7RT, (g) CMORPH, (h) MPE. Note that the data points in triangle (circle) 

and statistics in gray (black) color are for warm (cold) season. 

 

Comparison of daily precipitation from two region-representative rain gauges and their 

co-located SBP grids (Fig. 19) indicate deteriorated SBP performance (marked by a wide 

scatter) compared to monthly time-scale. The points located along x-axis and y-axis show 

missed and falsely detected daily precipitation events respectively, which are specifically 

important if these products will be used in modeling of floods. The underestimation of 
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precipitation by CMORPH in Region 1 (Fig. 19c) is mostly due to the consistently missed 

daily precipitation events especially during cold season. In Region 2, however, CMORPH 

shows improved performance as indicated by the statistics and by the points located closer 

to the diagonal 1:1 line. MPE product, although properly detected a few high daily 

precipitation events, suffers from significant false detection and missed events in both 

regions and seasons. TMPA-7RT product suffers from precipitation detection problem 

whereas TMPA-7A showed falsely detected high daily precipitation estimates in Region 

1 during cold season. In Region 2 both TMPA products overestimate daily precipitation 

regardless of the season. 

 

 

Figure 19 Daily scatterplots of rain gauge observations vs. four SBP products over 2007-

2011 during cold and warm seasons. Station AMS (in Region 1) vs. (a) TMPA-7A, (b) 

TMPA-7RT, (c) CMORPH, (d) MPE, and Station DVN (in Region 2) vs. (e) TMPA-7A, 

(f) TMPA-7RT, (g) CMORPH, (h) MPE. Note that the data points triangle (circle) and 

statistics in gray (black) color are for warm (cold) season. 

 

3.4.2. Comparison of Rain gauge-based Gridded Precipitation (RGP) vs. 

Satellite-based Precipitation 

Figure 17e shows the 5-year mean annual precipitation values obtained from the RGP 

dataset (Section 3.2.2) and the rain gauge network. RGP dataset captures the sharp 
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precipitation gradient caused by the mountain ranges well, with high precipitation values 

along the windward side of the mountains and low precipitation values on the leeward 

side.   

Box plot in Figure 20 shows summary statistics calculated by comparing monthly 

precipitation estimates from RGP grids and their co-located SBP grids located in Region 

1 and Region 2 during cold and warm seasons. In these box plots horizontal lines are 25th 

and 75th percentiles and median of the distribution, vertical lines represent the extent of 

the rest of the data which is 1.5 times the 25th-75th percentile range and outliers are 

represented by ‘+’ markers. In general TMPA-7A, TMPA-7RT and MPE products 

underestimate (negative %Bias) precipitation in Region 1 and overestimate (positive 

%Bias) precipitation in Region 2 regardless of the season. CMORPH results in more than 

50% underestimation in both regions in cold season. In warm season CMORPH is 

characterized by underestimation in Region 1 and slight underestimation in Region 2. 

Among satellite-only SBP products TMPA-7RT shows better CORR with the RGP 

dataset in both regions and seasons. TMPA-7A performance is superior compared to 

satellite-only products in terms of CORR and NRMSE statistics possibly due to the 

monthly correction procedure. 
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Figure 20 Monthly statistical results (a) CORR, (b) NRMSE and (c) %BIAS for RGP 

grids in Region 1 (Gray box) and Region 2 (White box) and their corresponding co-

located SBP product grids during cold and warm seasons. 

 

Focusing on the daily time scale (Fig. 21) it can be seen that the performance of the SBP 

products diminishes significantly. A general observation is that among all the SBP 

products MPE shows the lowest performance in terms of CORR and NRMSE statistics. 

TMPA-7A shows a general improvement in performance compared to TMPA-7RT. 

CMORPH produced highest CORR and lowest NRMSE statistics in Region 2 during cold 

season which is possibly due to the surface snow and ice screening process embedded in 

the algorithm (Joyce et al. 2004, Xie et al. 2007), however a significant negative %BIAS 

is evident.  Overall, CMORPH shows the best daily statistics in Region 2 in both seasons 

with the exception of the significant negative bias in cold season. All SBP products 

underestimate RGP in Region 1 and overestimate RGP in Region 2 regardless of the 

season; CMORPH being an exception shows underestimation in both regions and 

seasons. The %Bias values during cold season ranges between -20% (TMPA-7A) and -

82% (CMORPH) in Region 1, and between +60% (TMPA-7RT) and -64% (CMORPH) 

in Region 2. The %Bias values during warm season ranges between -22% (TMPA-7A) 
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and -54% (CMORPH) in Region 1, and between +40% (TMPA-7RT) and -15% 

(CMORPH) in Region 2. Note that the performance of the TMPA-7A, TMPA-7RT and 

MPE products over Region 2 is deteriorated more significantly in cold season compared 

to warm season possibly due to surface snow cover contamination. 

 

 

Figure 21 Daily statistical results (a) CORR, (b) NRMSE and (c) %BIAS for RGP grids 

in Region 1 (Gray box) and Region 2 (White box) and their corresponding co-located 

SBP product during cold and warm seasons. 

 

Figure 22a and 22b compare respectively, the frequency of light precipitation (1-

3mm/day) and heavy precipitation (10-20mm/day) reported by RGP and SBP products. 

These threshold values were selected based on an analysis of daily RGP precipitation 

distribution in both regions. While 1-3mm/day interval is a good representation of light 

precipitation in the study area, 10-20mm/day interval represents heavy precipitation 

events with significant number of occurrences. Focusing on the light precipitation 

detection capability, it can be seen that TMPA-7RT underestimates the number of days 

with light precipitation in Region 1 regardless of the season. The correction algorithm 
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employed in TMPA-7A further deteriorates this situation. In Region 2, TMPA-7RT 

slightly underestimates the number of days with light precipitation in both seasons. Again 

TMPA-7A further deteriorates this situation in cold season and had minor improvement 

in warm season. CMORPH product slightly underestimated the number of days with light 

precipitation in cold season regardless of region and resulted in similar light rain 

frequency with RGP dataset in warm season. The number of days with light rain reported 

by MPE product is consistent with the RGP dataset regardless of region and season.  

Focusing on the heavy precipitation events (Fig. 22b), it can be seen that RGP dataset 

reported significantly more number of days with heavy precipitation in Region 1 

compared to Region 2 in cold season whereas SBP products fail to discriminate this 

behavior. CMORPH reported significantly less number of days with heavy precipitation 

compared to RGP dataset and other SBP products regardless of the region and season. 

TMPA products significantly overestimated the number of days with heavy precipitation 

in Region 2 and underestimated the number of days with heavy precipitation in Region 1 

regardless of the season. However, TMPA products showed the best performance among 

SBP products in detecting heavy precipitation in Region 1. In general MPE product 

reported similar number of days with heavy precipitation with RGP dataset in Region 2 

while underestimated the number of days with heavy precipitation in Region 1. 

It can be seen that CMORPH product suffers from heavy precipitation detection in Region 

1 especially in cold season; this behavior can be partly attributed to the morphing 

algorithm; heavy precipitation events occurring in between infrequent PMW scans will 

likely be missed. 
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Figure 22 The frequency of (a) light precipitation (1-3 mm/day) and (b) heavy 

precipitation (10-20 mm/day) reported by RGP and by SBP products during cold and 

warm seasons. 

 

Figure 23 shows the seasonal variation of categorical performance measures for 

precipitation magnitudes greater than 1 mm/day and for those greater than 9 mm/day. 

Note that the heavy precipitation threshold (9mm/day) is selected to ensure that the 

categorical measures for each grid combination is calculated based on at least 4 samples. 

It should be noted that POD and FAR are complementary measures and hence should be 

considered together to understand the performance trade-off between correctly detected 

observed precipitation and falsely estimated precipitation. In terms of precipitation 

detection, it can be seen from Figures 23a and 23b that CMORPH has the lowest POD 

performance (less than 0.3) among the SBP products in cold season indicating 

precipitation detection problems in both regions.  Due to this detection problem 

CMORPH provided the best (lowest) FAR performance in cold season in Region 1 and 

Region 2. MPE precipitation estimates are characterized by low POD values varying 

between 0.30 and 0.45 in Region 1 and Region 2 respectively, followed by worst (highest) 

FAR values among the compared SBP products. TMPA-7RT showed the best (highest) 

POD performance in both seasons and regions ( 0.4 in Region 1 and 0.6 in Region 2) 

followed by poor (high) FAR values (0.35) in Region 2 and moderate FAR values (0.18) 

in Region 1. Therefore TMPA-7RT can be characterized by a detection problem (low 

POD and low FAR) in Region 1 and overestimation problem (high POD and high FAR) 

in Region 2. The correction procedure included in TMPA-7A deteriorated the POD 

performance while slightly improving the FAR performance compared to TMPA-7RT 
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product. Focusing on the warm season, an improvement in POD and FAR performance 

of all SBP products is evident compared to cold season for both regions. In warm season, 

MPE product is characterized by low POD and FAR performance compared to other SBP 

products. As a summary considered SBP products are characterized by varying degrees 

of precipitation detection problems in Region 1, which are more significant in cold season 

and they showed improved precipitation detection performance in Region 2 especially in 

warm season.  

In terms of heavy precipitation (Fig. 23c and 23d) both CMORPH and MPE products 

show significant deterioration in POD performance in cold season. MPE further showed 

significant deterioration in FAR performance (FAR > 0.75) in both Regions in cold 

season. Evaluated SBP products are characterized by poor POD performance specifically 

in Region 1 and they are characterized by poor FAR performance specifically in Region 

2 regardless of the season. TMPA products perform better than other SBP products in 

terms of detecting heavy precipitation; TMPA-7A outperforming others. 
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Figure 23 Categorical performance results for precipitation greater than 1 mm/day (a) 

POD, (b) FAR and for precipitation greater than 9mm/day (c) POD, (d) FAR during cold 

and warm seasons. 

 

3.4.3. Comparison of 3B40RT, 3B41RT and MWCOMB 

Since the datasets utilized in the development of these SBP products are different and 

have undergone various quality control procedures, caution is needed while evaluating 

the performance of these products. For example, TMPA-7RT algorithm produces rain 

rates by combining information from both MW and IR retrievals via a calibration 

procedure, whereas CMORPH produces rain rates solely from MW retrievals and 

propagates these temporally sparse retrievals via temporally rich IR retrievals. To 

investigate potential sources of errors in these algorithms, we further analyzed the IR and 

MW datasets used in developing these products. TMPA-7RT product combines MW-

only and IR-based precipitation estimates, named as 3B40RT and 3B41RT respectively. 

3B40RT is a merged microwave (Microwave Imager on TRMM (TMI), Advanced 

Microwave Scanning Radiometer-Earth Observing System (AMSR-E), SSM/I, Special 

Sensor Microwave Imager/Sounder (SSMIS), Advanced Microwave Sounding Unit-B 

(AMSU-B) and MHS) precipitation estimate averaged at 0.250x0.250 spatial and 3 hourly 
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temporal resolution. 3B41RT is an IR-based precipitation estimate that converts 

0.250x0.250 averaged IR brightness temperature to precipitation rates via a local space-

time calibration procedure incorporating high quality MW data. CMORPH product 

derives precipitation estimates at 0.250x0.250 spatial 3-hourly temporal resolutions by 

merging various microwave retrievals (TMI, SSM/I and AMSU-B) which are than 

propagated in space by cloud motion vectors derived from IR images. This merged 

microwave product is named as MWCOMB. In the procedure, the daily time steps 

marked as “missing” for a single dataset has been removed from the analysis. Note that, 

time steps used in this analysis are different from those used in Section 3.4.2 hence a 

comparison of the statistics between these two sections is not appropriate.  

Figure 24 shows summary statistics calculated by comparing daily precipitation estimates 

from RGP grids and their co-located 3B41RT, 3B40RT and MWCOMB grids. It can be 

seen that the MW datasets used in TMPA and CMORPH products (3B40RT and 

MWCOMB respectively) perform very similar in cold season in both regions, indicated 

by CORR values less than <0.15, NRMSE values ranging between 1.5 and 2, and %BIAS 

values ranging between negative 75-100%. The IR dataset used in TMPA-7RT 

(3B41RT), shows similar CORR and NRMSE performance with the MW datasets in 

Region 1 during cold season with improved (less negative) %BIAS performance. In 

Region 2, however, 3B41RT shows higher performance in terms of CORR and %BIAS 

(also opposite sign with overestimation) and lower performance in terms of NRMSE (due 

to false alarms) as compared to MW datasets in cold season.  In warm season, MW dataset 

used by CMORPH performs slightly better than that used by TMPA in terms of CORR 

and %BIAS, however performs slightly poorer in terms of NRMSE.  It can be concluded 

that the performance of the MW and IR datasets are similar in warm season, moreover 

the performance of the IR dataset is generally better than MW dataset in cold season in 

Region 2. The uniform nature of underestimation by CMORPH in Region 2 can be 

attributed to the MW dataset used in the algorithm and spatially heterogeneous nature of 

TMPA-7RT product in Region 2 can be explained by the differences in precipitation rates 

produced by IR and MW datasets used in this algorithm. 
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Figure 24 Daily statistical results (a) CORR, (b) NRMSE and (c) %BIAS obtained by 

comparing RGP grids in Region 1 (Gray box) and Region 2 (White box) and their 

corresponding co-located 3B41RT, 3B40RT and MWCOMB grids during cold and warm 

seasons. 
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CHAPTER 4 

 

 

DEVISING A BIAS ADJUSTMENT METHODOLOGY FOR 

SATELLITE-BASED PRECIPITATION PRODUCTS 

  

 

 

The objective of this chapter is to propose a bias adjustment methodology for SBP 

products over Western Black Sea Region of Turkey, which is characterized by complex 

topography. The effect of the complex topography on the performance of these products 

was studied in Chapter 3. Four different SBP products are evaluated: TMPA including 

experimental real time monitoring product and post real time research quality product; 

CMORPH and MPE (See Chapter 2 for detailed information). In Chapter 3 the results of 

the evaluation methodology indicated that considered SBP products are characterized by 

varying degrees of precipitation detection problems in windward region, which are more 

significant in cold season and they showed improved precipitation detection performance 

(high POD and low FAR) in leeward region especially in warm season. Noting these error 

characteristics of the SBP products, research problem addressed in this chapter is to adjust 

these products so that the performance of a hydrological model driven by these products 

would improve. 

 

4.1. Introduction 

Uncertainties in hydrologic predictions can be attributed to a large extent to errors in the 

precipitation products since precipitation is the main driver of the hydrologic system. 

Therefore, reliability and accuracy of any hydrologic study largely depends on realistic 

representation of the spatio-temporal distribution of precipitation (Segond et al. 2007). 

SBP measurements are quasi-global, high resolution and easily accessible however these 
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products have certain limitations that necessitates a bias adjustment or merging procedure 

using more accurate precipitation estimates. Limitations of the SBP products originates 

from the fact that they indirectly measure atmospheric characteristics and then interpret 

precipitation estimates with the help of different algorithms. 

Bias definition depends on the defined error model. There are several error model 

descriptions, which are simply mathematical representation of measurement’s deviation 

from observed data. According to Tian et al. (2013) two type of error models are 

commonly used for precipitation measurements: additive (Vila et al. 2009, AghaKouchak 

et al. 2012) and multiplicative (Hossain and Anagnostou 2006) error models. 

Another important aspect of bias adjustment of SBP products is spatial distribution of 

results of the error model. This can be achieved by using several interpolation techniques.  

We propose a bias adjustment algorithm for the SBP products based on the 

“physiographic similarity” concept which incorporates topographical and location 

specific variables in the bias adjustment process. The premise of the algorithm is that, the 

rain gauges within physiographically similar regions are grouped to calculate weights of 

the bias adjustment procedure rather than the rain gauges in proximity. In the literature 

weights of bias adjustment algorithm are mostly calculated based on proximity of rain 

gauges (Vila et al. 2009, Boushaki et al. 2009). However in topographically complex 

terrain two close stations might have different precipitation characteristics. Hence 

proximity concept does not work affectively in topographically complex terrain. 

Therefore, weights of the proposed bias adjustment algorithm is calculated based on the 

rain gauges within physiographically similar regions and bias adjustment further 

conducted by adding the weighted bias to the SBP product. Even though multiplicative 

scheme is suggested by Tian et al. (2013) to remove the daily bias, this methodology is 

not useful while determining the magnitude of precipitation when SBP product estimate 

is zero and observed precipitation magnitude is different than zero (Vila et al. 2009). The 

performance of the proposed bias adjustment algorithm is compared to inverse distance 

weighting (IDW) bias correction algorithm which is selected as the “baseline model”. We 

will conclude this chapter with a discussion of the utility of satellite-based precipitation 
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(SBP) algorithms as input to hydrologic models in topographically complex regions. The 

evaluation of the bias adjustment methodology is performed at multiple time and space 

scales using quantitative, categorical and graphical measures.  

Present study differs from and complements previous studies in several aspects. First the 

study area is characterized by a complex topography with significant orographic 

precipitation and a distinct rain-shadow effect. Second the bias adjustment is based on a 

gridded rain gauge dataset constructed using the “physiographic similarity” concept 

which is well-suited to regions with complex topography. Third, the TMPA products 

(TMPA-7RT and TMPA-7A) are retrospectively processed by the algorithm developers 

with the latest algorithm hence the performance of these new products having uniform 

temporal error characteristics are presented. 

 

4.2. Error Models for Precipitation Measurements 

4.2.1. Additive Error Model 

Additive error model is defined in its simplest form as; 

 

𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖      (4.1) 

where, i: index of a datum 

 Xi: reference data 

 Yi: measurement 

 a: offset (determine systematic error) 

 b: scale parameter to represent the differences in the dynamic ranges between 

reference data and the measurement (determine systematic error) 

 εi: instance of the random error which has zero mean and variance of σ2 (Tian et 

al. 2013) 
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4.2.2. Multiplicative Error Model 

Multiplicative error model is defined in its simplest form as; 

 

𝑌İ = 𝑎𝑋𝑖
𝑏𝑒𝜀𝑖       (4.2) 

where, eε
i: multiplicative factor with mean of εi being zero and the variance σ2 (Tian et al. 

2013) 

 

Depending on the error model formulation for both additive and multiplicative models, 

values of σ will be different from each other. However, error definition for both models 

can be summarized as the difference between measurements and observation for additive 

error model and ratio between the two for multiplicative error model. 

 

4.3. Interpolation Algorithms  

Spatial distribution of the precipitation is important for hydrological studies. If only a 

single rain gauge is used to simulate flow of the basin, simulation would not be accurate 

at the basin scale (Segond et al 2007). Moreover, averaging the precipitation datasets 

restrict the accuracy of the hydrologic model compared to distributed model (Shah et al. 

1996). Accurate representation of the spatial variability of precipitation is important since 

it affects the catchment response, peak flow time and model outputs. There are many 

different interpolation techniques to construct spatially distributed precipitation 

estimates, however the problem is to choose the correct method according to the study 

region and available data (Caruso et al. 1998). However, challenges in estimation of 

precipitation persist specifically over complex topography where precipitation is 

characterized by high spatio-temporal variability. In these regions, rain gauges are 

generally located in lowland due to accessibility considerations, thus under-representing 

the precipitation occurring high land that is of main interest in hydrologic studies. 
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Therefore interpolation of rain gauge observations generally results in underestimation of 

precipitation in topographically complex regions. Especially capturing the influence of 

orographic lifting on precipitation is difficult due to underrepresentation of gauge 

locations at high elevations (Adam et al. 2006).  

Interpolation algorithms estimate a value at unsampled points based on weight of 

observed regionalized values (Ly et al. 2013) 

 

𝑃𝑟 = ∑ 𝜆𝑖𝑅𝐺𝑖
𝑛𝑠
𝑖=1        (4.3) 

where, Pr: interpolated precipitation value at required point 

 RGi: observed precipitation value at point i 

 M: total number of rain gauges 

 λi: weight contributing to the interpolation 

The main difficulty is calculating the weights, and interpolation methods mainly differ in 

this aspect. Weight estimation methods can generally be classified into two main groups 

as deterministic methods and geostatistical methods.  

4.3.1. Deterministic Interpolation Methodologies 

The most commonly used deterministic methods are Thiessen polygon (THI), Inverse 

Distance Weighting (IDW), spline interpolation and moving window regression method. 

THI method calculates its weight according to the distance and gives the highest weight 

to the closest stations proportion to the catchment area. Therefore this method is not 

suitable for topographically complex regions due to orographic influences (Goovaerts, 

1999). IDW on the other hand calculates its weights again according to the distance 

however this time method uses inverse distance so that weights decrease as the distance 

increases. Weights are normalized so the sum equals one. If IDW is used along with 

elevation weighting method could be more suitable for topographically complex regions 

(Masih et al. 2011). Spline interpolation method fits a minimum-curvature surface to a 

specified number of nearest input points. Again this method is not suitable for 
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topographically complex regions (Ruelland et al. 2008). Finally moving window 

regression method is a linear regression method where precipitation is selected as primary 

variable and elevation as secondary variable. Therefore interpolation is based on 

relationship between precipitation and elevation. 

4.3.2. Geostatistical Interpolation Methodologies 

The most commonly used geostatistical interpolation method is kriging. Kriging 

interpolates observed values to a certain point by using weighted sum of available 

observed values. There are several types of kriging depending on the mean of the interest 

variable. If the mean is constant and known it is the simple kriging, if mean is constant 

but unknown the ordinary kriging and if mean is a polynomial function of spatial 

coordinates it is the universal kriging. System variables in the kriging equation can be 

determined in several ways. If mean locally varies and it is not constant it is Simple 

Kriging with locally varying mean (Goovaerts, 2000), if mean depends on auxiliary 

variables it is Kriging with External Drift (Hengl et al.  2003), if first order trends are 

removed using secondary variables by linear regression it is called residual kriging and 

finally if weighted linear combination of observations are used it is called ordinary 

kriging.  

It is widely known that kriging interpolation is superior to IDW since estimates tend to 

be less biased as predictions are accompanied by prediction standard errors (Creutin and 

Obled (1982), Basistha and Goel (2007) and Diodata and Caccelelli, 2005). 

 

4.4. Literature Review of Bias Adjustment of Satellite-based Precipitation 

Products 

Most of the bias adjustment procedures assume rain gauge measurements are unbiased 

and SBP product contains useful information on spatial patterns of precipitation. It should 

also be noted that as with any modeling exercise, there is probably no unique way of 

representing error completely (Hossain and Huffman 2008). For example, TMPA-7A is 

bias adjusted against monthly GPCP precipitation product by locally defined adjustment 
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factors. Bias adjustment by rain gauge in real time is generally not possible because of 

the availability of gauge data and it should also be kept in mind that regional effects like 

topography play an important role in rainfall regime which can be smoothed at the 

monthly time scale.  

Boushaki et al (2009) proposed a grid-based merging procedure to correct the bias in 

PERSIANN product by CPC daily gauge product. The procedure removes the weighted 

mean difference between the two products. On sub-daily scale methodology reduced bias 

and correlation but with limited improvement on the latter one. They concluded that in 

regions where rain gauge number is limited, improvement of SBP product depends on its 

own quality. Vila et al (2009) developed a methodology adjusting SBP products with 

daily gauge data. They used additive, multiplicative and combination of additive and 

multiplicative (CoSch) bias correction schemes. As a result, it is stated that CoSch method 

outperforms additive and multiplicative methods where CoSch can get more correct 

estimates in each defined category and the amount of false alarm estimated is smaller. It 

is also stated that CoSch tends to overestimate lower values and underestimate the larger 

values. Tian et al. (2010) on the other hand, train an algorithm by using Bayesian 

approach. Algorithm establishes a statistical relationship between SBP estimate and 

gauge measurements in historical time period. This learned relationship is then applied to 

real time SBP products when gauge data are not available. They concluded that this 

method works best for error corrections on seasonal scales or longer and it cannot improve 

performance metrics such as probability of detection or false-alarm ratio. Cheema and 

Bastiaanssen (2012) adjusted SBP products by using regression analysis and geographical 

differential analysis. They concluded that geographical differential analysis perform 

much better than regression analysis especially over mountainous regions. Hossain and 

Anagnostou (2006) developed two dimensional satellite rainfall model which generates 

ensembles of satellite rainfall fields. One of the strength of this algorithm is that, 

algorithm can improve missed rainfall and falsely detected rainfall by introducing rainfall 

in areas where SBP does not detect rain and correcting falsely detected rainfall. 

It should be noted that several approaches suffer from a number of drawbacks. SBP 

products suffer from spatially varying, temporally changing and range dependent biases 



 

68 
 

that need to be adjusted. Errors in magnitude and temporal structure of rainfall should be 

adjusted since both factors are important for hydrological predictions. However error 

adjustment of magnitude of rainfall (PDF corrections) do not correct temporal structure 

of rainfall. Spatially varying errors are especially important for complex topography to 

represent orographic precipitation. Interpolation methodologies of reference data that bias 

adjustment is conducted affects spatially-explicit corrections adversely.  

To sum up, it is stated that two error models can be used in bias adjustment of SBP 

products which are additive and multiplicative models. The result of these error models 

can be interpolated by using different weight calculations. Since the study area is a 

topographically complex region two nearby stations might have different precipitation 

characteristics. Therefore calculating the weights of the bias adjustment procedure based 

on proximity would not be accurate. Rather, assigning weights according to the 

physiographic similarities of the rain gauges should improve the results. Moreover, even 

though multiplicative scheme is suggested by Tian et al. (2013) to remove the daily bias, 

this methodology is not useful while determining the magnitude of precipitation when 

SBP product estimate is zero and observed precipitation magnitude is different than zero 

(Vila et al. 2009).  

 

4.5. Study area & Datasets 

Detailed information about study area and datasets used is provided in Chapter 1.2, 

Chapter 2.3 and Chapter 3.2 respectively. 

 

4.6. Bias Adjustment Based on Physiographic Similarity (BAPS) 

Proposed bias adjustment algorithm for the SBP products is based on “physiographic 

similarity” concept. The premise of the algorithm is that, the rain gauges within 

physiographically similar regions are grouped to calculate weights of the bias adjustment 

procedure rather than the rain gauges in proximity. Hence the proposed bias adjustment 
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algorithm methodology will be called bias adjustment based on physiographic similarity, 

or, “BAPS”. 

In the PRISM approach the physiographic similarity between rain gauges and grids are 

represented by the PRISM weights, which are weighted combination of a set of 

physiographic variables (Section 3.2.2). These PRISM weights representing 

physiographic similarities are used in estimating the weight of the rain gauges in bias 

adjustment procedure. Bias adjustment will be conducted in 0.250 resolution; native 

resolution of satellite-based precipitation products. As explained in section 3.2.2 

parameters of the PRISM approach were optimized for four different seasons. Therefore, 

weights adjustment vary as a function of both seasons and regions, in our effort to correct 

spatial and temporal errors in the SBP products. Note that the bias adjustment procedure 

is only utilized for the satellite-only SBP products (TMPA-RT, CMORPH and MPE), and 

TMPA-7A, which is already corrected by algorithm developers using GPCC rain gauge 

network, is not bias adjusted. 

Bias of the SBP products are evaluated at every rain gauge location by subtracting SBP 

estimation from the rain gauge measurement. This point based bias values are then 

spatially distributed using the weights that we obtained from the PRISM approach. 

However weights are obtained from PRISM in 0.050 resolutions which need to be 

coarsened to 0.250 which is the native resolution of SBP products. Weights should be 

coarsened carefully while considering their physiographic properties.  

For each 0.250 satellite-only SBP grid, precipitation is adjusted based on weighted 

difference between precipitation measurement from rain gauges and their co-located SBP 

grids. The adjustment weights are calculated by first grouping the 0.050 PRISM grids 

within a 0.250 SBP grid than sorting the PRISM weights assigned (Fig. 24) to every 

station (23 station) for estimation of the grouped PRISM grids. 50th quantile (Q50) 

PRISM weight threshold is selected after trial and error process to exclude the 

insignificant PRISM weights within 0.250 window. In other words, the rain gauges with 

insignificant weight are located in regions that are physiographically not similar to the 
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region of interest. Later the bias adjustment weights are assigned to each rain gauge based 

on frequency of its occurrence within this Q50 range (Eqn. 5.1). 

 

 

Figure 25 PRISM weight distribution for a 0.250 SBP grid. 

 

𝑤𝐵𝐴𝑃𝑆,𝑖𝑛 =
# 𝑜𝑓 𝑅𝐺𝑖𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑄50

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑎𝑙𝑙 PRISM 𝑤𝑒𝑖𝑔h𝑡𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑄50
    (4.1) 

where, wBAPS,in:  weight of rain gauge (RG) i for SBP grid n for BAPS methodology 

Note that, 

 

∑ 𝑤𝐵𝐴𝑃𝑆,𝑖
𝑀
𝑖=1 = 1       (4.2) 

for each SBP grid. 

where, M: total number of rain gauges (23) 

Bias is calculated and distributed spatially as the weighted difference between rain gauges 

and their co-located SBP grids. Further these distributed bias values are added to the SBP 

to obtain adjusted SBP rainfall estimates (Eqn. 5.3 & Eqn. 5.4). 

 

𝐵𝑖𝑎𝑠𝐵𝐴𝑃𝑆,𝑛 = ∑ 𝑤𝐵𝐴𝑃𝑆,𝑖𝑛(𝑅𝐺𝑖 − 𝑆𝐵𝑃𝑖)
𝑀
𝑖=1     (4.3) 

𝐵𝐴𝑃𝑆 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝐵𝑃𝑛 = 𝑆𝐵𝑃𝑛 + 𝐵𝑖𝑎𝑠𝑛    (4.4) 
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where, n: selected SBP grid (0.250) 

We further compare this method with inverse distance weighted method (IDW) where 

weights are calculated as a function of inverse of the distance, d, between estimated grid 

(n) and reference rain gauge (i) (Eqn. 5.5, Eqn. 5.6 & Eqn. 5.7). 

𝑤𝐼𝐷𝑊,𝑖𝑛 = 
1

𝑑𝑖𝑛
2        (4.5) 

𝐵𝑖𝑎𝑠𝐼𝐷𝑊,𝑛 = ∑ 𝑤𝐼𝐷𝑊,𝑖𝑛(𝑅𝐺𝑖 − 𝑆𝐵𝑃𝑖)
𝑀
𝑖=1     (4.6) 

𝐼𝐷𝑊 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝐵𝑃𝑛 = 𝑆𝐵𝑃𝑛 + 𝐵𝑖𝑎𝑠𝑛    (4.7) 

where, wIDW,in: weight of rain gauge i for the grid n for IDW methodology 

 

4.7. Results and Discussion 

Evaluation of the bias adjustment algorithm is initially, performed using two independent 

stations ZNG (Region 1) and BOL (Region 2). Cumulative precipitation of independent 

rain gauge stations ZNG and BOL, as well as satellite-only SBP products and bias 

adjusted SBP products are compared to understand the performance of BAPS and IDW 

bias adjustment methodologies (Fig. 26). Daily performance statistics are also provided 

in this figure. In general it is clear that all SBP products significantly underestimated the 

precipitation occurring in ZNG station and both BAPS and IDW bias adjustment 

algorithms improved the results. However, over the long term, it is clear that IDW 

algorithm underestimates ZNG station precipitation while BAPS algorithm performed 

better than the IDW algorithm, with less underestimation. For Station ZNG in Region 1, 

BAPS algorithm consistently provided better performance statistics compared to IDW 

method in cold season (Fig. 26 a, b, c) during which majority of the annual precipitation 

occurs (see Figure 3). In warm season, however, IDW algorithm seems to provide slightly 

improved statistics compared to BAPS algorithm, with the exception of the %BIAS 

statistic. It can be seen from these statistics that the large negative bias in the SBP products 
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is reduced more significantly by the BAPS algorithm. For station BOL in Region 2 (Fig. 

26 d,e,f), both BAPS and IDW bias adjustment algorithms provided improved 

performance statistics compared to satellite-only SBP products. However, over the long 

term, IDW algorithm resulted in significant positive bias, even more than the SBP 

products, while BAPS algorithm resulted in slight underestimation as compared to the 

BOL station. The only exception is the TMAP-RT product for which, both IDW and 

BAPS algorithms significantly overestimating BOL station while failing to correct for the 

long term bias (see Fig. 26d). For BOL station during cold season, BAPS algorithm 

resulted in improved performance statistics NRMSE and %BIAS compared to IDW 

algorithm, while the latter provided better CORR statistic. In warm season, IDW 

algorithm showed improved performance in terms of CORR and NRMSE statistics as 

compared to BAPS algorithm, while the latter providing better %BIAS statistic. For BOL 

station, during warm period, BAPS algorithm was unable to improve the performance 

statistics over the satellite-only SBP products. Possible explanations for this situation 

could be the heterogeneous spatial distribution of the TMPA-RT SBP product due to 

direct replacement of IR estimates in to the product. 

Inability of BAPS algorithm in improving CORR statistic shows similarity with the study 

of Boushaki et al. (2009) who reported that  their algorithm was successful in improving 

RMSE and BIAS statistics however their CORR statistic did not show significant 

improvement as did the other statistics they have used. 
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Figure 26 Cumulative precipitation of independent rain gauge stations (a, b, c) ZNG and 

(d, e, f) BOL, satellite-only SBP products and bias adjusted SBP products. Note that 

statistics in red represent warm season and blue represent cold season. 
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To investigate the performance of the SBP products before and after the BAPS and IDW 

bias adjustment process in a more detailed manner, Figure 27 and 28 shows comparison 

of daily precipitation from two independent stations ZNG (Region 1) and BOL (Region 

2), respectively, and their co-located SBP grids before and after bias adjustment, using 

scatterplots and quantitative statistics for cold (September-February) and warm (March-

August) seasons. In general these plots show that before bias adjustment at the daily 

timescale, there is a wide scatter between precipitation obtained from rain gauges and 

SBP products indicating poor performance. The points located along x-axis and y-axis 

show missed and falsely detected daily precipitation events respectively, which are 

specifically important if these products will be used to drive hydrologic models for flood 

estimation. It is clear from these plots that problems associated with missed and falsely 

detected daily precipitation are solved to a large extent with the proposed bias adjustment 

algorithm, as indicated by points scattered closer to the 1:1 line after the adjustment; for 

example, compare Figure 27 g & h. Notice that heavy precipitation generally occurring 

in cold season (circle markers) are largely missed by the satellite-only SBP products and 

bias adjustment algorithms were able to correct for these events. For station BOL (Fig. 

28), TMPA-7RT significantly overestimates precipitation regardless of the season and 

neither of bias adjustment algorithms was able to correct this problem significantly. On 

the other hand underestimation problem by CMORPH in cold season (negative 64.49 

%BIAS in Fig. 28d) is reduced to negative 14.73 %BIAS by BAPS algorithm while this 

underestimation is turned into positive 47.62 %BIAS overestimation by IDW algorithm. 

MPE showed significant amount of daily false precipitation which were corrected by both 

bias adjustment algorithms, however IDW further deteriorated the performance of the 

SBP product by significant overestimation while BAPS algorithm outperforms IDW. 
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Figure 27 Daily scatterplots of rain gauge ZNG observations vs. SBP products before and 

after bias adjustment during 2007-2011 period. Station ZNG (in Region 1) vs. (a) TMPA-

7RT, (b) TMPA-7RT BAPS, (c) TMPA-7RT IDW, (d) CMORPH, (e) CMORPH BAPS, 

(f) CMORPH-IDW, (g) MPE, (h) MPE BAPS, and (i) MPE-IDW. Triangle markers and 

gray colored statistics are for the warm season and circle markers and black colored 

statistics are for the cold season. 
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Figure 28 Daily scatterplots of rain gauge BOL observations vs. SBP products before and 

after bias adjustment during 2007-2011 period. Station BOL (in Region 2) vs. (a) TMPA-

7RT, (b) TMPA-7RT BAPS, (c) TMPA-7RT IDW, (d) CMORPH, (e) CMORPH BAPS, 

(f) CMORPH-IDW, (g) MPE, (h) MPE BAPS, and (i) MPE-IDW. Triangle markers and 

gray colored statistics are for the warm season and circle markers and black colored 

statistics are for the cold season. 

 

Comparison between rain gauges (point scale) and corresponding SBP grid performance 

are studied up to this point. In order to understand spatial performance of the proposed 

bias adjustment methodology investigation of the correspondence between RGP grids and 

corresponding SBP grids will be presented next. To understand the temporal variation in 

the performance of the BAPS bias adjustment methodology the time series of monthly 
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precipitation averaged over Region 1 and Region 2 is presented in Figure 29. In Region 

1 (Fig. 29 a, b, c), significant underestimation is apparent for the SBP products compared 

to RGP, especially in cold season. This underestimation is largely corrected by extent by 

both BAPS and IDW bias adjustment algorithms. In Region 2 (Fig. 29 d, e, f) SBP 

products in general overestimates RGP at the monthly time scale with the exception of 

CMORPH. It can be seen that both BAPS and IDW algorithms resulted in improved 

precipitation estimates as indicated by red and green dot markers aligned close to the 

black line (RGP). However, it can also be seen that after adjustment with the IDW 

algorithm overestimation still persists in the precipitation estimates indicating inability of 

the algorithm to correct for this error. In summary, BAPS adjustment algorithm resulted 

in better precipitation estimates compared to IDW algorithm at the monthly timescale 

without significant seasonal dependency.  
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Figure 29 Monthly time-series of average precipitation for BAPS, SBP and RGP over (a, 

b, c) Region 1 and (d, e, f) Region 2. 
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Box plots in Figure 30 show summary statistics calculated by comparing daily 

precipitation estimates from RGP grids and their co-located SBP grids located in Region 

1 and Region 2 during cold and warm seasons. In these box plots horizontal lines are 25th 

and 75th percentiles and median (50th percentile) of the distribution, vertical lines 

represent the extent of the rest of the data which is 1.5 times the 25th-75th percentile range 

and outliers are represented by ‘+’ markers. Note that TMPA-7A product already 

incorporated monthly rain gauge information and hence was not bias adjusted using 

BAPS and IDW algorithms. Starting with the CORR statistic, it can be seen from Fig. 

30a that all SBP products are characterized by CORR statistics lower than 0.5, while 

TMPA-7A resulted in highest values in general since already includes rain gauge 

information. After bias adjustment with BAPS and IDW algorithms (Fig 30b and c) 

CORR statistics significantly increased with values around 0.9 for Region 1 and with 

values ranging 0.5 to 0.9 for Region 2. Note that improvements were less significant for 

the TMPA-7RT algorithm in Region 2 for both BAPS and IDW methodologies. This 

might be again due to the fact that TMPA-7RT product is characterized by heterogeneous 

spatial distribution in Region 2. It can be seen that IDW algorithm resulted in slightly 

better performance than the BAPS algorithm in terms of CORR statistic. Focusing on the 

NRMSE statistic (Fig. 30d, e, f) it can be seen that BAPS algorithm resulted in improved 

performance regardless of season and region, but more specifically for cold season in 

Region 2.  In terms of %BIAS statistic (Fig. 30g,h,i) all SBP products are characterized 

by significant overestimation in Region 2 and significant underestimation in Region 1, 

CMORPH being an exception (Fig. 30g). Bias adjustment with BAPS algorithm resulted 

in significantly favorable %BIAS values compared to IDW algorithm, which is more 

pronounced for the cold season in Region 2. It can be seen from Figure 30i that IDW 

algorithm has difficulty in correcting the %BIAS especially in Region 2 cold season. In 

summary, bias adjusted SBP products agree well with the rain gauge based gridded 

precipitation products with high CORR, low NRMSE and favorable %BIAS statistics, 

more specifically in Region 1. While IDW algorithm resulted in slightly improved CORR 

statistic as compared to BAPS algorithm, the later performed better in terms of NRMSE 

and %BIAS statistics especially in Region 2 cold season. It is clear that cold season 
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performance is better than warm season. BAPS bias adjustment procedure seems to 

perform better during cold season and in Region 1, due respectively to less convective 

precipitation occurrence and higher density of rain gauges.
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Figure 30  Daily statistical results computed between RGP grids in Region 1 (Gray box) and Region 2 (White box) and their 

corresponding co-located SBP product grids before bias adjustment, (a, d, g) after BAPS bias adjustment and  (b, e, h) after IDW bias 

adjustment.
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Figure 31a, b, c and 31d, e, f compare respectively, the frequency of light precipitation 

(1-3mm/day) and heavy precipitation (10-20mm/day) reported by RGP and SBP products 

before and after bias adjustment. Before bias adjustment (Fig. 31a) it is clear that TMPA-

7RT underestimated the number of days with light precipitation in Region 1 regardless 

of the season, and bias adjustment algorithms were able to correct for this error with slight 

overestimation for cold season. CMORPH product slightly underestimated the number of 

days with light rain in cold season regardless of the region and after bias correction slight 

overestimation is evident in cold season. In general, it can be seen that both BAPS and 

IDW bias adjustment algorithms improved the frequency of light precipitation detection 

to the same extent in Region 1 with slight overestimation in cold season. In Region 2, 

however, BAPS algorithm provided better light precipitation frequency compared to IDW 

algorithm more specifically in cold season. Focusing on the heavy precipitation events 

(Fig. 31d, e, f), it can be seen that RGP dataset reported significantly more number of 

days with heavy precipitation in Region 1 compared to Region 2 in cold and warm 

seasons and before bias adjustment SBP products fail to discriminate this behavior. After 

bias adjustment using BAPS algorithm this behavior is successfully represented by the 

SBP products (Fig. 31e). IDW algorithm was able to represent this behavior to some 

extent, with underestimation of heavy precipitation in Region 1 and overestimation in 

Region 2.
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Figure 31 The frequency of (a, b, c) light precipitation (1-3 mm/day) and (d, e, f) heavy precipitation (10-20 mm/day) reported by RGP 

and by SBP products before and after bias adjustment. 
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Figure 32 and 33 shows the seasonal variation of POD and FAR categorical performance 

measures for precipitation magnitudes greater than 1 mm/day and for those greater than 

9 mm/day, respectively. Note that the heavy precipitation threshold (9mm/day) is selected 

to ensure that the categorical measures for each grid combination is calculated based on 

at least 4 samples. It should be noted that POD and FAR are complementary measures 

and hence should be considered together to understand the performance tradeoff between 

correctly detected observed precipitation and falsely estimated precipitation. It can be 

seen from these figures that bias adjustment algorithms significantly improved both light 

and heavy precipitation detection capability of the SBP products. Focusing on light 

precipitation (Fig. 32), in Region 1 BAPS algorithm provided slightly higher (better) 

POD and lower (better) FAR statistics regardless of the season compared to IDW 

algorithm. In Region 2, IDW algorithm provided higher (better) POD values compared 

to BAPS algorithm, however at the expense of higher (poorer) FAR values. For heavy 

precipitation events (Fig. 33) similar performance trend can be observed. In Region 1 

BAPS algorithm provided significantly higher (better) POD and lower (better) FAR 

statistics regardless of the season compared to IDW algorithm. In Region 2 cold season, 

IDW algorithm provided higher (better) POD values compared to BAPS algorithm, 

however at the expense of higher (poorer) FAR values. In Region 2 warm season, BAPS 

and IDW algorithms provided similar POD values, with the former providing lower 

(better) FAR values.  

Next, performance improvement of individual SBP products with the BAPS algorithm 

will be discussed for light (Fig. 32) and heavy (Fig. 33) precipitation events. Before bias 

adjustment CMORPH had the detection problem for precipitation magnitudes greater 

than 1 mm/day, and BAPS bias adjustment provided significant improvement over this 

problem. TMPA-7RT can be characterized by a detection problem (low POD and low 

FAR) in Region 1 and overestimation problem (high POD and high FAR) in Region 2. 

The BAPS correction procedure overcome these problems significantly for Region 1 but 

for Region 2 it is not as significant as in Region 1. Moreover before the correction SBP 

products had seasonal dependency with higher performance in warm season, with the 

BAPS correction procedure the performance of the SBP products improved for cold 
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season significantly. In terms of heavy precipitation events, both CMORPH and MPE 

products show significant deterioration in POD performance in cold season before 

correction. These deteriorations are corrected to some extent but heterogeneity still exists 

for the heavy precipitation. For all SBP products, the BAPS algorithm performance in 

Region 1 is much better than the Region 2. Related with these significant improvements 

in POD and FAR, it can be concluded that proposed BAPS correction algorithm can 

introduce rain in areas where the SBP does not detect rainfall and algorithm can assign 

no rainfall where SBP falsely detects rainfall. 
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Figure 32 Categorical performance results for precipitation greater than 1 mm/day of (a, b, c) POD values and (d, e, f) FAR values 

before and after bias adjustment with BAPS and IDW algorithms. 
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Figure 33  Categorical performance results for precipitation greater than 9 mm/day of (a, b, c) POD values and (d, e, f) FAR values 

before and after bias adjustment with BAPS and IDW algorithm.
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CHAPTER 5 

 

 

IMPLEMENTATION, DIAGNOSTIC EVALUATION AND 

CALIBRATION OF THE MIKE SHE-MIKE 11 MODEL IN THE ARAÇ 

BASIN  

 

 

 

This chapter firstly presents the physically based, spatially distributed, integrated 

hydrologic modeling, and then define MIKE SHE-MIKE 11 hydrologic modeling 

modules. Finally implementation of the MIKE SHE-MIKE 11 model for the Araç Basin 

located in the Western Black Sea Region is explained.  Parameter sensitivity analysis and 

evaluation using a diagnostic approach is presented followed by constraining of the 

parameter sets based on signature measures representing major functions of a watershed 

system. The performance of the model driven by gridded RGP product and SBP products 

before and after bias adjustment using BAPS algorithm is provided. 

 

5.1. Introduction 

To better understand and manage water systems under changing climate and meet the 

increasing demand for water, hydrologic modeling has become essential tool with two 

main roles. Hydrological model’s first main role is to improve understanding of the 

physical processes and interactions within a watershed. Second main role is the 

application of this understanding for forecasting in order to manage and protect the water 

resources. To improve our understanding of the physical processes and interactions 

quantitative understanding of the hydrological cycle is essential. Water cycle or 

hydrologic cycle describes the movement of water on, above and below the Earth’s 
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surface. Due to great variability in space and time scales it is often difficult to understand 

and manage water resources; existence of complex interactions between different 

compartments and fluxes add further difficulties to measure and observe variable of 

interest. Hydrologic system is affected by many factors which make it very complex such 

as climate system, heterogeneities in soil and geologic units and modification by human 

activities. This heterogeneity makes it difficult to represent hydrological processes 

accurately (Grayson and Blöschl, 2000). Comprehensive research and engineering studies 

are conducted in this area to understand the various aspects of hydrologic cycle. However, 

these studies were mainly conducted only concentrating on either surface water or 

groundwater without emphasizing their often complex interrelations. Groundwater and 

surface water are hydraulically connected at various degrees in different landscapes, 

therefore in order to increase our knowledge in this area and better manage water 

resources we have to conduct studies on interrelation of surface water and groundwater.  

Questions related with;  

 Basin scale water management 

 integrated use of surface water and groundwater 

 floodplain and wetland management 

 anthropogenic effects on water resources 

 water quality influences of surface water on groundwater, vice versa 

cannot be answered by traditional surface water and groundwater models. Some surface 

water models have basic, limited groundwater component, therefore they are used for 

only surface water modeling. Same goes with the groundwater models with basic surface 

water components.  Therefore, to be able to answer these questions, watersheds modeling 

should be conducted by fully integrated hydrologic models. Integrated hydrological 

models can simulate, water flow processes, movement of sediment, chemical, nutrient, 

waterborne organisms and their role in watershed habitats and ecology. 

Mainly hydrological models can be classified according to; 
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 description of the physical process (as conceptual and physically based) 

 spatial description of catchment processes (as lumped and distributed) (Refsgaard, 

1997). 

Understanding of the physics of the hydrological processes which controls the catchment 

response is important and should be represented by physically based equations. 

Physically based equations describes mass flow and momentum transfers which solves 

the partial differential equations such as St. Venant equations and Darcy’s equations. 

Therefore integrated physically based distributed hydrological models can represent 

hydrological cycle thoroughly and can be applied to many kinds of hydrological 

problems.  However it should be noted that physically based models requires a significant 

amount of data and time to solve equations and complexity may lead to over 

parameterization and predictive uncertainty. 

As it is stated earlier, hydrologic system is affected by climate system, heterogeneity in 

soil and geologic units and modification by human activities, all of which makes the 

system heterogeneous and complex and as a result makes it difficult to represent 

hydrological processes accurately. Lumped models make the assumption that rainfall and 

hydrologic parameters are uniform across the watershed and operate at the “point scale”. 

Through representing dominant processes at a conceptual level, lumped models are 

comprised of relatively simple model structure that enables short run times. Lumped 

models are generally used for flood forecasting and/or reservoir operation purpose due to 

this short run times and simpler model structures. Spatially distributed models, on the 

other hand, consider spatial variations in the landscape and hydrologic processes across 

the watershed through spatially variable parameters and states such as climatic 

conditions, topography, soil, geology and vegetation which are related to the physical 

characteristics of a watershed (Refsgaard et al., 1996). Distributed models simulate: 

 spatial variability of both input and output of hydrologic variables, 

 hydrologic response at interior ungauged sites within a watershed basin (Smith et 

al. 2004). 
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Spatial distribution of hydrologic processes can be simulated by distributed hydrological 

models to improve the knowledge of watershed functioning so that we can understand 

and manage water related natural hazards such as flooding. Smith et al. (2004) reported 

that for flood forecasting at the basin outlet, distributed models does not necessarily 

outperform the lumped models. They note however that, testing the performance of 

simulation at the interior point of the basin is not studied in detail yet. Moreover, 

distributed models have potential advantages for predicting runoff in ungauged basins, 

and simulate the impact of land use/land change effects on hydrologic response for the 

watershed basin (Refsgaard et al. 1997; Downer et al. 2002; Hayakawa et al. 1995).  

Main difficulty in implementation of physically-based spatially distributed integrated 

hydrologic models is the requirement of detailed spatial and temporal datasets regarding 

physical and dynamic characteristics of the watershed, such as climate, soils, land cover, 

geology and hydrogeology, which are often not available. Some of these detailed input 

data can be provided by remotely sensed information and application of Geographical 

Information Systems (e.g. Khan et al. 2011). It should be noted that even though 

physically based distributed hydrological models simulate majority of the hydrologic 

processes, it is often not practical to include all the processes in the model because of 

data, time and budget limitations. Instead dominate hydrological processes selected based 

on the conceptual understanding of the flow system and the purpose of the modeling could 

be represented in the model.  

There exist a number of hydrologic models that are widely used with the objective of 

integrating surface waer and groundwater processes, such as MODHMS (Panday and 

Huyakorn, 2004), ParFlow (Kollet and Maxwell, 2006), HydroGeoSphere (Therrien et 

al., 2007) and MIKE SHE (Graham and Butts, 2005). The advantage of the MIKE SHE-

MIKE 11 model is that it is widely used, well documented and its modular structure 

allows representation of hydrological processes at various level of complexity. 
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5.2. Literature Review on MIKE SHE - MIKE 11 Hydrologic Modeling 

MIKE SHE has been used for wide range of hydrologic applications. Table 5 summarizes 

the literature review on hydrological modeling studies that utilized MIKE SHE-MIKE 11 

integrated model at different geographic regions of the world. 
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Table 5 Literature review on hydrological modeling with the MIKE SHE-MIKE 11 model. 

Reference Model 
Watershed & Time 

Interval 

Grid 

Size 
Inputs & Model Setup Calibration 

Sultana 

and 

Caulibaly 
(2011) 

MIKE SHE/ 

MIKE 11 

Spencer creek 

(291 km2) 

12 year for calibration 
8 year for validation 

50m 

 50m DEM 

 Precipitation interpolated by using Theissen polygon method 

 Potential ET calculated by using Blaney-Cridle method 

 Snow melt simulated by using degree day method 

 Land use data included 30 different type which is further lumped to 

six type. 

 LAI, root depth and Kc are determined from MIKE database 

 Finite difference method used for overland flow Manning M and 
detention storage are obtained from literature 

 Initial water depth set to zero 

 Soil is divided into 16 type however they lumped to 5 type 

 2 Layer UZ is used to simulate unsaturated zone flow component 

 River network is simplified to 18 river channel 

 Uniform Manning M used for river channels  

 Total 174 cross sectional data obtained, some of which are added by 

interpolation and some are obtained from 1m DEM. 

 Water level and discharge values from flow stations are used as initial 

conditions 

 All branches are coupled with MIKE 11 and MIKE SHE 

 Model calibrated against daily flows 
(4 flow stations) 

 First peak flows are calibrated then 
base flows 

 Peak flows are calibrated by 
adjusting Manning’s M, snowmelt 

parameters and detention storage 

 Model was able to capture the snow 
storage well. 

 Simulated flows were in good 
agreement with observed flow. 

 

Wijesekara 

et al 

(2012) 

MIKE SHE/ 
MIKE 11 

Elbow River 

(1238 km2) 
5 year for calibration 

5 year for validation 

200m 

 Land use land cover includes 9 type 

 LAI, root depth are obtained from literature 

 25m DEM 

 Soil is divided into 2 different class 

 16 survey cross sections are used and remaining cross sections are 

digitized from DEM. Total 141 cross section entered 

 10 flow stations 

 Finite difference is used for overland flow 

 2 Layer UZ is used for unsaturated zone 

 Linear reservoir method is used for saturated zone 

 Sensitivity analysis is conducted for 
saturated hydraulic conductivity, 

ET surface depth, degree day 
coefficient, detention storage, 

surface roughness, and time 

constants for interflow and baseflow 

 According to sensitivity analysis 

two parameters area calibrated, 
saturated hydraulic conductivity 

and manning’s M 

 MIKE SHE-MIKE 11 is used to 
assess the impact of land-use 

changes on different hydrological 
processes of the study region. 
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Table 5 (continued) 

Sahoo et al 

(2006) 
MIKE SHE 

Two sub basins (2.6 
km2 and 24.6 km2) 

1 year calibration 

1 year validation 

 

 Soil classification divided area to 31 major soil types which are further 

lumped to 16 type. Van Genuchten parameters of the soils estimated 
using RETC computer code and neural network option 

 7 LU/LC type 

 2 meteorological station used 

 2 flow station used 

 Reference Evapotranspiration is calculated by using Penman 

Monteith equation 

 Kc values are obtained from MIKE SHE database 

 Detention storage set to 1m and tie constant to 120 day 

 Manning number is set constant for all channels 

 Study find out that distributed 

rainfall along the watershed is 
important for flow estimation. 

 Calibration results produced better 

flows. 

 Initial soil moisture tension, initial 

phreatic level and initial drainage 
depth were found not so important 

as long as values are physically 

realistic. On the other hand 
Manning’s M and hydraulic 

conductivity values are found 

important and changing the shape of 
the hydrograph. 

Thompson 
et al 

(2013) 

MIKE 
SHE/MIKE 

11 

Mekong River 

(795000 km2) 
29 year calibration 

7 year validation 

10km 

 1km DEM 

 1km FAO digital soil map of the world is used to classify the soil and 
it is aggregated to 4 broad categories. Infiltration rate and percentage 

water content at saturation, field capacity and wilting point for each 
soil obtained from literature. 

 1km LU/LC from USGS global land cover characterization dataset 
used with 24 classes aggregated to 9 class. 

 Variation in LAI through year taken from Kite (2000) which is based 

on time series of NDVI derived from NOAA AVHRR imagery. Root 
depths are obtained from literature and database of MIKE SHE. 

 LU/LC grids are used (all forest types combined into one category) 
used to spatially distribute Manning’s M (values are taken from 

literature) for overland flow resistance. 

 Cross sections are taken from literature and Mekong river 
commission. Cross section widths are checked at google earth pro. 

Cross section bank elevations are taken from relevant MIKE SHE 
topographic grid square. Manning n values are taken from literature. 

 Degree day snow scheme selected 

 PET is calculated by Linacre method 

 Automated calibration method used 

 Interflow time constants for 

saturated zone interflow reservoirs, 
percolation time constants for 

saturated zone interflow reservoirs, 

time constant for base-flow 
reservoirs, dead storage in base flow 

reservoirs, precipitation lapse rate, 

temperature lapse rate, snow melt 
degree-day coefficient are 

calibrated. 

 Model performance is stated as 
excellent/very good and found out 

that superior to the SLURP model. 
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Table 5 (continued) 

Gül et al 

(2010) 

MIKE 
SHE/MIKE 

11 

Havelse river system 

(250 km2) 

3 year calibration 
2 year validation 

100m 

 Corine land cover 2000 dataset is used for LU/LC 

 100 m DEM 

 Soil data obtained from GEUS 

 Degree day snow scheme selected 

 Overland flow method is chosen as finite difference method. 

Manning’s M set uniformly to 3. Detention storage again uniformly 
to 10 mm which are both calibrated later. 

 2 Layer water balance method chosen for unsaturated flow. Soil 
hydraulic parameters are assigned values according to FAO. 

 Hydraulic conductivities for 

geological layers, manning’s 
roughness coefficient, detention 

storage, drainage level, drainage 

time constant, soil water content at 

saturation, at field capacity, at field 

wilting point and infiltration rate of 

each soil type are calibrated. 

 Model is found to be suitable for 

modeling lowland river systems and 
mentioned that model has important 

capacity if groundwater head levels, 

flows and UZ components are 
included. 

Thompson 
et al 

(2009) 

MIKE 
SHE/MIKE 

11 

Elmley Marshes (8.7 

km2) 

18 month calibration 
18 month validation 

30m 

 1:2500 topographic map is used. 

 Zero flow boundary around the model area specified 

 Uniform soil profile 

 Potential evapotranspiration is calculated by Penmann Monteith 
equation 

 Cross sections are based on field surveys, aerial photography and from 

literature 

 Uniform channel roughness and leakage coefficients are used 

 Overland flow resistance, channel 
roughness, leakage coefficient are 

calibrated. 

 Model sufficiently simulates 
changes in hydrological conditions 

to infer ecological impacts. 

Singh et al 

(2010) 

MIKE SHE/ 

MIKE 11 

Loktak Lake (4947 

km2) 
600 

 7 rain gauge is used, interpolated by using Theissen polygon method 

 PET is calculated by Penmann Monteith equation. 

 Dynamic coupling of MIKE SHE with MIKE 11 includes river-

aquifer exchange, overland flow from MIKE SHE and MIKE 11 river 
branches 

 1:50000 scale land cover map is used 

 LAI, RD are taken from literature 

 90 m resolution DEM is used 

 MIKE 11 branches are extracted from 1.50000 scale map. Cross 

sections are defined based on field surveys. All branches are coupled 
with MIKE SHE. Uniform manning M is assigned. 

 Calibrated parameters are 
horizontal and vertical hydraulic 

conductivity of the saturated zone, 

unsaturated zone infiltration rate, 
overland flow resistance and flow 

resistance within stream channels. 

Initial values of these values are 
taken from literature. 

 Model successfully simulated 
impacts of climate change upon 

river discharge within Lake 

catchment. 
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5.3. MIKE SHE-MIKE 11 Integrated Hydrologic Model 

Water on Earth cycle continually between land, sea and air where water evaporates from 

the oceans, lakes, rivers, soil and transpired by plants. Evaporated water vapor is 

transported in the atmosphere and precipitates to earth as rain and snow. Precipitated 

water infiltrates to the groundwater and discharges either to the streams and rivers as 

baseflow or to the oceans and also runs off directly to the streams and rivers which flows 

back to the ocean (Fig. 34). Hydrologic cycle is a closed loop and anthropogenic effects 

do not remove water but affect the movement and transfer of water within the cycle. 

  

 

Figure 34 Hydrologic cycle simulated by MIKE SHE 

 

Freeze and Harlan (1969) proposed a blueprint to model hydrologic cycle in which they 

described different flow processes by their governing partial differential equations. Later, 

consortium of the Institute of Hydrology in the United Kingdom, SOGREAH in France, 

and Danish Hydraulic Institute in Denmark applied these blueprints and developed 

Système Hydrologique Européen (SHE; Abbot et al. 1986). MIKE SHE emerged from 

this work later on. After mid-1980’s MIKE SHE is further developed by DHI Water & 
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Environment. Today MIKE SHE evolved into a flexible, physically based, spatially 

distributed, integrated hydrological model. 

MIKE SHE models hydrologic processes of evapotranspiration, overland flow, 

unsaturated flow, groundwater flow, channel flow and their interactions. Most 

importantly each of these processes can be modeled at different level of spatial and 

temporal resolution and complexity, according to the objectives of study, availability of 

field data and budgetary constraints. MIKE SHE can be applied to a variety of scales from 

single soil profile to large regions including several river catchments (Sahoo et al. 2006; 

Thompson et al. 2013). To simulate channel flow MIKE SHE uses MIKE 11 (Havnø et 

al. 1995) which can model complex channel networks and river structures. 

MIKE SHE has a flexible structure enabling descriptions for each hydrologic process at 

various complexity levels, it can either use fully distributed conceptual approach and can 

simulate all the processes by using physics-based methods (Fig. 35). 
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Figure 35 Schematic view of the process in MIKE SHE, including available numeric 

engines for each process. The arrows show the available exchange pathways for water 

between the process models (modified from DHI, 2012). 

 

In the next sub-sections all the hydrologic processes included in MIKE SHE-MIKE 11 

will be explained in detail. 

 

5.3.1. Precipitation and Evapotranspiration 

Precipitation is direct input to the model. Evapotranspiration is the sum of direct 

evaporation from water surfaces (lakes, rivers, snow surfaces and rainfall drops on leaves) 

and transpiration from plants. Depth of groundwater table, soil hydraulic properties and 

soil wetness effects the evaporation from soil. On the other hand root depth, water 

extraction capacity of roots from soil, leaf characteristics affects the transpiration. 

Unsaturated zone soil moisture content also affects the transpiration rate. In other words, 
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spatial variation of evapotranspiration is related with daily, seasonal, climate and land use 

changes.  

Evapotranspiration and precipitation is important since timing and amount of recharge 

and overland flow is determined by evapotranspiration and infiltration to the unsaturated 

zone. 

MIKE SHE calculate actual evapotranspiration from reference evapotranspiration. 

Reference evapotranspiration is calculated by idealized reference grass crop 

(Shuttleworth, 1992). MIKE SHE calculates actual evapotranspiration by Kristensen and 

Jensen method or Two-layer water balance method. Since two-layer water balance 

method is used in this study, this methodology will be explained in detail.  

Two-layer water balance method is simplified water balance method for 

evapotranspiration calculation and unsaturated zone storage. This method divides 

unsaturated zone into two zone; 

 root zone where evapotranspiration can be extracted 

 zone below root zone where evapotranspiration does not occur (Yan and Smith, 

1994). 

Evapotranspiration is calculated explicitly and storages that water extracted are as 

follows; 

 evaporation and sublimation is removed from snow 

 infiltration to unsaturated zone and recharge to saturated zone is calculated 

 evaporation from the canopy is calculated 

 evaporation from ponded water is calculated 

 transpiration from the unsaturated zone is calculated 

 transpiration from the saturated zone is calculated 
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𝐸𝑇𝑟𝑎𝑡𝑒 = 𝐸𝑇𝑐𝑟𝑜𝑝 = 𝐸𝑇𝑟𝑒𝑓𝑘𝑐     (5.1) 

where, ETref: reference evapotranspiration 

 ETcrop: crop reference evapotranspiration 

 kc: crop coefficient 

Maximum evapotranspiration that can be extracted in one time step; 

 

𝐸𝑇𝑚𝑎𝑥 = 𝐸𝑇𝑟𝑎𝑡𝑒 ∗ ∆𝑡        (5.2) 

where, ETmax: maximum amount of evapotranspiration that can be removed in one time 

step 

 

𝐸𝑇𝑠𝑛𝑜𝑤 = 𝐸𝑇𝑤𝑒𝑡𝑠𝑛𝑜𝑤 + 𝐸𝑇𝑑𝑟𝑦𝑠𝑛𝑜𝑤     (5.3) 

where, ETsnow: evapotranspiration from snow storage 

 ETwetsnow: evapotranspiration from wetsnow storage 

 ETdrysnow: evapotranspiration from drysnow storage 

 

𝐸𝑇𝑤𝑒𝑡𝑠𝑛𝑜𝑤 = 𝐸𝑇𝑟𝑒𝑓 ∗ ∆𝑡      (5.4) 

If wet snow storage is insufficient then evapotranspiration will be extracted as 

sublimation from dry snow; 

 

𝐸𝑇𝑑𝑟𝑦𝑠𝑛𝑜𝑤 = 𝐸𝑇𝑟𝑒𝑓 ∗ 𝑆𝑓 ∗ ∆𝑡    (5.5) 

where, Sf: sublimation reduction factor 

Again, if dry snow storage is not enough either, then snow storage reduction will be zero. 

 

𝐸𝑇𝑐𝑎𝑛𝑜𝑝𝑦 = 𝐸𝑇𝑟𝑎𝑡𝑒 ∗ ∆𝑡     (5.6) 

where, ETcanopy: evapotranspiration from canopy storage 
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If there is not enough canopy storage, canopy storage reduction will be zero. 

 

𝐸𝑇𝑝𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑇𝑟𝑎𝑡𝑒 ∗ ∆𝑡     (5.7) 

where, ETponded: evapotranspiration form ponded storage 

If there is not enough ponded storage, ponded storage reduction will be zero. 

Evapotranspiration from unsaturated zone will be conducted only at the upper layer and 

when wilting point is reached evapotranspiration will stop. Evapotranspiration rate will 

be maximum until plant deficit fraction is reached, then evapotranspiration will be 

reduced linearly to zero while water content falls to wilting point. ETrate will be reduced 

by; 

𝐹𝐸𝑇𝑈𝑍 =
min(𝜃𝑎𝑐𝑡,𝜃𝑝)−𝜃𝑚𝑖𝑛

𝜃𝑃−𝜃𝑚𝑖𝑛
     (5.8) 

where, θp: water content when evapotranspiration begins to be restricted 

 θact: current water content in the upper layer 

 

𝜃𝑝 = 𝜃𝑚𝑖𝑛 + 𝐹𝑝 ∗ (𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛)    (5.9) 

where, θmin & θmax: minimum and maximum water contents  

 Fp: plant-specific deficit fraction 

 

𝐸𝑇𝑈𝑍 = 𝐸𝑇𝑟𝑎𝑡𝑒 ∗ 𝐹𝐸𝑇𝑈𝑍 ∗ ∆𝑡              (5.10) 

where, ETUZ: evapotranspiration from unsaturated storage 

  

𝐸𝑇𝑆𝑍 = 𝐸𝑇𝑟𝑎𝑡𝑒 ∗ 𝐹𝐸𝑇𝑆𝑍 ∗ ∆𝑡              (5.11) 

where, ETSZ: evapotranspiration from saturated storage 
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 FETSZ: when water table is in the root zone is equal to 1 and linearly decreases to 

zero if water table is below the root zone 

If water table is below the extinction depth, there will be zero extraction from saturated 

zone. 

Finally actual evapotranspiration is calculated as; 

 

𝐸𝑇𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐸𝑇𝑠𝑛𝑜𝑤 + 𝐸𝑇𝑐𝑎𝑛𝑜𝑝𝑦 + 𝐸𝑇𝑝𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑇𝑈𝑍 + 𝐸𝑇𝑆𝑍              (5.12) 

while ETactual cannot be greater than ETmax and ETactual is calculated until ETmax is reached. 

 

5.3.2. Unsaturated Flow 

Precipitation replenish soil moisture in the unsaturated zone while evapotranspiration 

extract water from it, creating cyclic fluctuations. Since gravity dominates infiltration, 

unsaturated flow in MIKE SHE is calculated only vertically to reduce computation cost. 

MIKE SHE calculates unsaturated flow by 3 methods; full Richards equation, simplified 

Gravity flow procedure and Two-Layer water balance. Since Richards equation and 

Gravity flow procedures are computationally intensive and requires detailed soil data, 

such as soil horizon information, which is not available for the study area, Two-Layer 

water balance method is used in this study. 

As stated in the previous section, Two-Layer water balance divides unsaturated zone into 

two as; root zone and zone below the root zone. After evapotranspiration extraction water 

recharges to the saturated zone as follows; 

If there is a ponded water on the ground FETSZ is multiplied by anaerobic tolerance factor, 

Fantol. After extraction of water remainder water recharges to the saturated zone as; 

 

𝐸𝑇𝑙𝑒𝑓𝑡 = (𝐸𝑇𝑚𝑎𝑥 − 𝐸𝑇𝑠𝑛𝑜𝑤 − 𝐸𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝐸𝑇𝑈𝑍) ∗ 𝐹𝑎𝑛𝑡𝑜𝑙             (5.13) 
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5.3.3. Overland Flow 

Overland flow path and amount is affected by topography, flow resistance, evaporation 

and infiltration. MIKE SHE calculates overland flow in two different methods as; finite 

difference method or semi-distributed method. In this study finite difference method is 

used which uses diffusive wave approximation of the Saint Venant equations.  

The conservation of mass gives; 

 

𝜕ℎ

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑢ℎ) +

𝜕

𝜕𝑦
(𝑣ℎ) = 𝑖               (5.14) 

where, h(x,y): flow depth above ground surface 

 u(x,y) & v(x,y): flow velocities in the x and y directions respectively 

 i(x,y): net input into overland flow 

 

And the momentum equation gives; 

𝑆𝑓𝑥 = 𝑆𝑂𝑥 −
𝜕ℎ

𝜕𝑥
−
𝑢

𝑔

𝜕𝑢

𝜕𝑥
−

1

𝑔

𝜕𝑢

𝜕𝑡
−

𝑞𝑢

𝑔ℎ
               (5.15) 

𝑆𝑓𝑦 = 𝑆𝑂𝑦 −
𝜕ℎ

𝜕𝑦
−

𝑣

𝑔

𝜕𝑣

𝜕𝑦
−

1

𝑔

𝜕𝑣

𝜕𝑡
−

𝑞𝑣

𝑔ℎ
               (5.16) 

where, Sf: friction slopes in x and y directions 

 So: slope of the ground surface 

Equations 6.14, 6.15, 6.16 are known as St. Venant equations which calculates fully 

dynamic description of 2D free surface flow. It is clear that these equations are 

numerically challenging, the complexities of the equations are reduced by ignoring 

momentum losses due to local and convective acceleration and lateral inflows 

perpendicular to the flow direction. This reduced equations are known as diffusive wave 

approximation and MIKE SHE implements this equation. 



 

105 
 

𝑢ℎ = 𝐾𝑥(−
𝜕𝑧

𝜕𝑥
)1/2ℎ5/3                (5.17) 

𝑣ℎ = 𝐾𝑦(−
𝜕𝑧

𝜕𝑦
)1/2ℎ5/3               (5.18) 

where, Kx & Ky: Strickler coefficients in the two directions which is equivalent of 

Manning M which ranges in between 100 (smooth channels) to 10 (thickly 

vegetated channel). Manning M is the inverse of the commonly used Mannings n.  

 uh & vh: discharge per unit length along the cell boundary in the x and y directions 

5.3.4. Channel Flow (MIKE 11) 

Overland flow is input to the streams and rivers where topography is lower than the 

surrounding region. In MIKE 11 channel flow is calculated by implicit, 1D finite-

difference formulation. MIKE 11 also contains simple hydrologic routing methods such 

as Muskingum and Muskingum-Cunge methods. In this study river branches are defined 

as kinematic routing and calculated by Muskingum-Cunge. Muskingum-cunge is based 

on diffusion wave model while including pressure term, method neglects local and 

convective acceleration terms, in other words method approximates the diffusion of 

natural flood wave. Kinematic routing method starts calculation from upstream in the 

river network. In other words discharge computation is conducted successively. At 

kinematic routing points (Fig. 36) discharge is calculated from one time level to the next 

by considering previous and new discharges at the location of the upstream boundary. 
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Figure 36 MIKE 11 kinematic routing branch elements and transformation points (DHI, 

2012). 

 

𝑄𝑖+1
𝑗+1

= 𝐶1𝑄𝑖
𝑗+1

+ 𝐶2𝑄𝑖
𝑗
+ 𝐶3𝑄𝑖+1

𝑗
+ 𝐶4              (5.19) 

where, i & j: considered grid point and time level, respectively 

 

𝐶1 =
∆𝑡−2𝐾𝑥

2𝐾(1−𝑥)+∆𝑡
               (5.20) 

𝐶2 =
∆𝑡−2𝐾𝑥

2𝐾(1−𝑥)+∆𝑡
               (5.21) 

𝐶3 =
2𝐾(1−𝑥)−∆𝑡

2𝐾(1−𝑥)+∆𝑡
               (5.22) 

𝐶4 =
𝑄𝑙𝑎𝑡∆𝑡

2𝐾(1−𝑥)+∆𝑡
               (5.23) 

𝐾 =
∆𝑥

𝑐𝑘
                (5.24) 

𝑥 = 1/2(1 −
𝑄

𝐵𝑐𝑘𝑆0∆𝑥
)              (5.25) 

𝑐𝑘 =
𝑑𝑄

𝑑𝐴
=

𝑑𝑄

𝑑𝑥

𝑑𝑥

𝑑𝐴
+
𝑑𝑄

𝑑𝑡

𝑑𝑡

𝑑𝐴
              (5.26) 
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where, Δx: length of kinematic routing element 

 S0: bed slope 

 B, A & Q: width, cross sectional area and discharge, respectively and calculated 

at the elevation point just upstream of the considered kinematic routing point (Fig. 35). 

 x & t: space and time variables, respectively. 

To calculate water level at a specific point, one upstream and one downstream kinematic 

routing points are located and water level is calculated at those point, if the specific point 

is in-between these two points, linear interpolation is conducted to obtain water level at 

that point. If upstream and downstream kinematic routing points cannot be located then 

Manning equation is used to compute discharge: 

 

𝑄 = 𝑀𝑅2/3𝑆0
1/2
𝐴               (5.27) 

where, M: manning resistance number 

 R: hydraulic radius 

 S0: bed slope 

 A: cross sectional area 

MIKE 11 is coupled with MIKE SHE where river network contains digitized points and 

calculation points where cross-sections are defined. All these information interpolated to 

the edges of MIKE SHE grids for overland flow and saturated flow exchange with MIKE 

11 (Fig. 37). MIKE SHE only exchange water with intersect MIKE SHE overland flow 

and groundwater grids. Exchange water are input to MIKE 11 as lateral flow. 
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Figure 37 MIKE SHE river link cross-section compared to equivalent MIKE 11 cross 

section (DHI, 2012). 

 

5.3.5. Saturated Groundwater Flow 

MIKE SHE can model saturated groundwater flow in two methods, 3D finite difference 

scheme similar to MODFLOW or conceptual, linear reservoir method. Since the study 

area does not contain a productive aquifer system, groundwater utilization in the area is 

negligible and hydrogeological datasets such as well logs, pumping tests, groundwater 

levels etc. is not available. Therefore linear reservoir method is used in this study to 

simulate saturated flow. In this method the catchment is subdivided into sub-catchments 

and each sub-catchment is represented by shallow interflow reservoirs, deep baseflow 

reservoirs and the percolation from interflow reservoir. Further each baseflow reservoirs 

are subdivided into two parallel reservoirs. Water will infiltrate into interflow reservoirs 

and then percolate into baseflow, which later added to the river as lateral inflow (Fig. 38). 
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Figure 38 Linear reservoir module of MIKE SHE for saturated zone (DHI, 2012). 

 

Linear reservoir storage is linearly related to the output by a storage constant with the 

time as: 

 

𝑆 = 𝑘𝑄                (5.28) 

where, S: storage in the reservoir 

 k: time constant 

 Q: outflow from reservoir 
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Interflow reservoir is treated as single linear reservoir with two outlets and calculated as: 

 

𝑄𝐼 = (ℎ − ℎ𝑡ℎ𝑟𝑒𝑠ℎ)/𝑘𝑖               (5.29) 

where, h: depth of water in the interflow reservoir 

 ki: time constant for interflow 

 

Baseflow reservoir is calculated as: 

 

𝑄𝐵 =
ℎ−ℎ𝑡ℎ𝑟𝑒𝑠ℎ

𝑘𝑏
               (5.30) 

where, h: depth of the water in the baseflow reservoir 

 hthresh: depth of water required before baseflow occurs 

 kb: time constant for baseflow 

 

5.4. Study Area 

The study area is the Araç Basin, a sub-basin of Filyos Basin located in the West Black 

Sea Region of Turkey (Fig. 39). The catchment area of the Araç basin is calculated as 

854.9 km2. Araç River flows from west to east in between the city of Kastamonu and 

Araç town. The outlet of the selected basin is situated in Araç town. Araç river basin is 

characterized by steep slopes with mountains reaching up to 2400 m in the southern 

headwaters and 1600 m in the northern headwaters. 
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Figure 39 Araç River Basin 

 

Elevation ranges in between 2400 m and 800 m in the basin as can be seen from Figure 

40. 90% of the local area elevation ranges in between 800 m and 1600 m and 10% of the 

local area elevation ranges in between 1600 m and 2400 m.  

 

 

Figure 40 Hypsometric curve of the study region Araç Basin. 
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5.5. Datasets 

5.5.1. Flow Data 

There are two stream gauges in Araç River Basin operated by General Directorate of State 

Hydraulic Works (DSİ). Stream gauge situated on the Başköy stream a tributary of the 

Araç River, does not have data available for 2007-2011 period for which continuous 

precipitation datasets are available (Table 6).  

 

Table 6 Stream gauges within Araç Basin. Black boxes represent the period for which 

data is available. 

 Station 

No 

Station 

Name 
Location 

Area 

(km2) 

Available data set 

2007 2008 2009 2010 2011 

A
ra

ç 
R

iv
e
r
 

D13A060 
Başköy 

Stream 
Başköy 141      

D13A061 
Araç 

River 
Araç 876      

 

Daily stream gauge data collected at station Araç River D13A061 is obtained from DSİ 

for the period 01.01.2007 through 09.05.2011. This station is located at the bridge in the 

Araç Town and marks the outlet of the Araç Basin for this study. Total runoff can be 

represented by hydrograph which is usually divided into two components as direct runoff 

and baseflow (Fig.41). 
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Figure 41 Daily basin mean hyetograph (a) and hydrograph for station D13A061 (b) 

covering 2007-2011 period. 

 

The implementation of the saturated flow component of the MIKE SHE-MIKE 11 model 

requires specification of the baseflow recession time constant parameter value, which can 

be described as the groundwater drainage rate into the stream channel long after 

precipitation ceases. This drainage can be observed over time in the form of an 

exponential curve in the hydrograph and as a straight line in the log-transformed 

hydrograph.  
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Available data interval for stream gauge D13A061 is plotted in Figure 41. From this 

figure apparent recession periods are identified as, for example shown in Figure 42. These 

recession periods are separately plotted on log transformed flow versus time graph in 

which baseflow recession constants were approximated by the slope of the best fit lines. 

(Equation 7.1). 

 

𝑙𝑛𝑄 = 𝑙𝑛𝑄0 − 𝑎𝑡               (5.31) 

where, Q: flow at some time, t, after the recession has started 

 Q0: flow at the start of the recession, i. e. t=0 

 a: recession constant for the basin (1/time) 

  

 

Figure 42 Natural logarithm of daily flows versus time graph for year 2007. Period of 

data circled by red provide one of the recession curves used to determine baseflow 

recession time constants. 

 

Chosen recession curve (Fig. 42) is used to determine baseflow recession time constant 

by plotting natural log of flow versus time graphs and determining slopes of their best fit 

lines (Fig. 43). 
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Figure 43 Natural log of flow versus time graph. Slopes of their best fit lines is used to 

determine baseflow recession time constant. 

 

All these procedures were conducted for 2007-2011 time interval and 11 periods were 

identified (Table 7). 
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Table 7 Recession time constants estimated for 2007-2011 period. 

Years 
Recession time 

constant (days) 

Assigned Runoff 

type 

2007 

15.21 Interflow 

13.44 Interflow 

62.59 Baseflow 

222.5 Baseflow 

2008 
17.64 Interflow 

26.69 Interflow 

2009 
16.65 Interflow 

16.11 Interflow 

2010 
59.99 Baseflow 

348.2 Baseflow 

2011 24.14 Interflow 

 

To understand the low flow characteristics of this basin baseflow separation is conducted. 

Automated baseflow separation as described in Arnold et al (1995) is used. In this 

methodology surface runoff is filtered from baseflow. The filter can be passed over the 

stream flow data three times as forward, backward and forward. The resulted baseflow 

separation for water year 2008 and three pass can be seen from following Figure 44. 
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Figure 44 Automated baseflow separation by using digital filter. 

  

Baseflow index for water year 2008 is 45%, which means that stream flows 45% is 

baseflow. However it should be noted that 2008 water year is a relatively dry year and 

hence computed baseflow component is relatively high. 

 5.5.2. Precipitation 

Rain gauge gridded precipitation dataset, satellite-based precipitation dataset and bias 

adjusted satellite-based precipitation datasets are used to drive the model. All these 

dataset are explained in detail in Chapter 2 & 3. Note that rain gauge based gridded 

precipitation dataset was used in evaluation and calibration of the hydrologic model 

parameters. After calibration of the hydrologic model parameters, other precipitation 

datasets were used and the performance of the flow simulation by the hydrologic model 

was investigated. 
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5.5.3. Temperature 

Hourly temperature dataset measured by the AWOS type stations is obtained from TSMS. 

Following table provides the 5 year averaged temperature values for every station in 

Region 2.  

 

Table 8 5 year averaged temperature values for stations in Region 2. 

Station ID Station Name Elevation (m) Tavg (0C) 

17078 KRA 242 13.6 

17618 DVN 1142 7.9 

17074 KST 906 10.1 

17641 ESK 740 11.1 

17648 ILG 859 10.6 

17646 CRK 1111 8.6 

17650 TSY 869 11.3 

 

5.5.4. Reference Evapotranspiration 

The principal atmospheric variables affecting evapotranspiration are radiation, air 

temperature, humidity and wind speed. Several procedures have been developed to assess 

the evaporation rate using these parameters (Table 9). 

 

Table 9 Reference evapotranspiration calculation methodologies 

Method Temperature 
Solar 

Radiation 

Relative 

Humidity 

Wind 

speed 

Atmospheric 

pressure 

Sunshine 

hours 

Temporal 

Data 

Period 

Penman X X X X X  Daily 

Penman-

Monteith 
X X X X X  Daily 

Kimberly-

Penman 
X X  X X  Daily 

Priestley 

Taylor 
X X     Daily 

Hargreaves X      Monthly 

Samani-

Hargreaves 
X      Monthly 

Blanney-

Criddle 
X  X X  X Monthly 
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The evaporative power of the atmosphere is expressed by the reference crop 

evapotranspiration (ET0). The ET0 represents the evapotranspiration from a standardized 

vegetated surface. Relating evapotranspiration to a specific surface provides a reference 

to which evapotranspiration from other surfaces can be estimated. The only factors 

affecting ET0 are climatic parameters. ET0 expresses the evaporating power of the 

atmosphere at a specific location and time of the year and does not consider the crop 

characteristics and soil factors. 

The FAO Penman-Monteith method is one of the most widely used and recommended 

method for determining ET0. This method closely approximate grass ET0 at a specific 

location, utilizes physically based equations and explicitly incorporates both 

physiological and aerodynamic parameters. 

Since resistance to diffusion of vapor strongly depends on crop height, ground cover, LAI 

and soil moisture conditions, the character of reference crop should be well defined and 

fixed. FAO accepts a hypothetical reference crop with an assumed crop height of 0.12 m 

a fixed surface resistance of 70 s/m and an albedo of 0.23. FAO Penman-Monteith 

equation is given by; 

 

𝐸𝑇0 =
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇+273
𝑢2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34𝑢2)
              (5.32) 

where, ET0: Reference evapotranspiration (mm/day) 

Rn: Net radiation at the crop surface (MJ/m2day) 

G: Soil heat flux density (MJ/m2day) as the magnitude of the day soil heat flux 

beneath grass reference surface is relatively small, it might be ignored 

T: Mean daily air temperature at 2m height (0C) 

u2: Wind speed at 2m height (m/s) 

es: saturation vapor pressure (kPa) 

ea: actual vapor pressure (kPa) 

es-ea: saturation vapor pressure deficit (kPa) 
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Δ: Slope vapor pressure curve (kPa/0C) 

γ: Psychrometric constant (kPa/0C) 

 

Required meteorological datasets to calculate the ET0 are temperature, atmospheric 

pressure, relative humidity, solar radiation and wind speed. All these datasets are obtained 

from TSMS which are recorded by AWOS type stations at hourly time scale. The 

variables in Equation 7.2 are calculated as follows:     

 

𝛾 = 0.665 ∗ 10−3 ∗ 𝑃               (5.33) 

where, P: atmospheric pressure (kPa) 

 

𝑒𝑠 =
𝑒0(𝑇𝑚𝑎𝑥)+𝑒

0(𝑇𝑚𝑖𝑛)

2
               (5.34) 

𝑒0(𝑇) = 0.6108exp (
17.27𝑇

𝑇+237.3
)              (5.35) 

𝑒𝑎 =
𝑒0(𝑇𝑚𝑖𝑛)

𝑅𝐻𝑚𝑎𝑥
100

+𝑒0(𝑇𝑚𝑎𝑥)
𝑅𝐻𝑚𝑖𝑛
100

2
              (5.36) 

∆=
4098[0.6108exp(

17.27𝑇𝑚𝑒𝑎𝑛
𝑇𝑚𝑒𝑎𝑛+237.3

)]

(𝑇𝑚𝑒𝑎𝑛+237.3)2
              (5.37) 

𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙                (5.38) 

where, Rns: incoming net shortwave radiation 

 Rnl: outgoing net longwave radiation 

 

𝑅𝑛𝑠 = (1 − 𝑎)𝑅𝑠                (5.39) 

where, a: albedo, 0.23 for grass 

 Rs: solar radiation (MJ/m2day) 

 

𝑅𝑛𝑙 = 4.903 ∗ 10−9[
𝑇
𝑚𝑎𝑥,𝐾4

+𝑇
𝑚𝑖𝑛,𝐾4

2
](0.34 − 0.14√𝑒𝑎)(1.35

𝑅𝑠

𝑅𝑠𝑜
− 0.35)  (5.40) 

where, Tmax,K: maximum absolute temperature during 24 hour period  

 Rso: clear-sky solar radiation 
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𝑅𝑠𝑜 = (0.75 + 2 ∗ 10−5𝑧)𝑅𝑎              (5.41) 

where, z: station elevation above sea level (m) 

 Ra: extraterrestrial radiation (MJ/m2day) 

 

𝑅𝑎 =
24(60)

𝜋
0.0820𝑑𝑟[𝑤𝑠 sin(𝜑) sin(𝛿) + cos(𝜑) cos(𝛿) sin (𝑤𝑠)             (5.42) 

where, dr: inverse relative distance Earth-Sun 

 ws: sunset hour angle (rad) 

 φ: latitude (rad)  

δ: solar decimation (rad) 

 

𝑑𝑟 = 1 + 0.033cos (
2𝜋

365
𝐽)               (5.43) 

𝛿 = 0.409sin (
2𝜋

365
𝐽 − 1.39)               (5.44) 

𝑤𝑠 = arccos (− tan(𝜑) tan(𝛿))              (5.45) 

where, J: number of the day in year between 1 and 365 or 366 

AWOS type stations measures wind speed at 10m above ground, therefore we have to 

convert this measurement to 2m above ground as follows; 

 

𝑢2 = 𝑢𝑧
4.87

ln (67.8𝑧−5.42)
               (5.46) 

where, z: height of measurement above ground surface (m) 

Finally reference evapotranspiration is calculated daily for four stations in and around the 

Araç Basin (stations Karabük, Kastamonu, Ilgaz and Çerkes). Daily reference 

evapotranspiration values for Kastamonu station during 2007-2011 time period can be 

seen in Figure 45. 
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Figure 45 Daily reference evapotranspiration for station Kastamonu calculated by FAO 

Penmann Montheith method (2007-2011 period). 

 

Reference evapotranspiration values are spatially distributed by using Theissen polygon 

over the Araç Basin by using four station (Karabük, Kastamonu, Ilgaz and Çerkes). Area 

of the stations over the Araç Basin for Karabük 47.6%, Kastamonu 23.5%, Çerkes 6.4% 

and Ilgaz 22.4%. 

5.5.5. Topography & River Network 

1/25000 scale digital topographic contour maps were obtained from General Directorate 

of Mineral Research and Exploration. A 10 m resolution DEM was constructed for the 

study region using these contour maps (Fig. 46). To create the DEM, ArcGIS software 

was used with the topo to raster interpolation method. This is an interpolation method 

specifically designed for construction of hydrologically correct DEM and is based on the 

ANUDEM program developed by Hutchinson et al. (2009, 2011). The river network 

extracted from 10 m DEM can be seen in Figure 46. 

 



 

123 
 

 

Figure 46 DEM & river network of the Araç Basin. 

 

5.5.6. Land Use/ Land Cover 

Land use/land cover classification is obtained from the CORINE land cover dataset. The 

CORINE land cover 2006 database provides a pan-European inventory of biophysical 

land cover, using a 44-class nomenclature. It is made available on a 250m by 250m grid 

database, which has been aggregated from the original vector data at 1:100 000 SCALE. 

There are, in total, 22 different land cover/land use classification for the Araç basin. 

However the dataset has been reclassified where similar classifications were grouped, and 

8 different classes were obtained (Figure 47, Table 10). 

MIKE SHE model requires LAI, RD and Kc values of the vegetation which are 

determined from the vegetation library provided with the MIKE SHE model. This library 
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contains seasonal variations of the variables for certain vegetation types except apple tree. 

Therefore we obtain vegetation development values for apple tree from the literature. For 

every agricultural product, planting months are determined for Turkey from literature.  

 

 

Figure 47 Land Cover/Land Use map of the study region 
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Table 10 Land use/Land cover classification for study region. 

Corine Land 

Cover Classes 
Area (km2) % 

Artificial surfaces 0.85 0.09 

Crops 

(Wheat) 
162.04 18.57 

Crops 

(Grass) 
65.42 7.49 

Crops 

(Barley) 
54.49 6.24 

Forest 415.12 47.57 

Shrub 126.39 14.48 

Bare rocks 48.31 5.53 

Total area 872.62  

 

Overland flow module requires specification of detention storage and overland Manning 

M parameters. Manning’s M for overland flow is an effective roughness coefficient that 

includes the effect of raindrop impact, drag over the plane surface, obstacles such as litter, 

crop ridges, rocks, erosion and also transportation of sediment. Therefore land use/ land 

cover conditions are used to determine initial spatial distribution of overland flow 

Manning’s M values. The amount of water must exceed the detention storage value, 

which is the depth of ponded water so that it can form sheet flow. These values have been 

developed using land use relationships. Water in detention storage is not available for 

overland flow but is available for infiltration to the unsaturated zone and 

evapotranspiration. Initial values for these parameters (Table 11) have been estimated 

using land use/land cover information and literature review. (Table 11) (Lull 1964; Zinke 

1967; Chow 1964; Haan 1982; Earth Tech and DHI 2007; Zhao 2012). 
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Table 11 Overland Manning M & Detention Storage values classified according to the 

land cover/land use classes. 

Corine Land 

Cover Classes 

Range of 

Manning’s n 

Range of 

Manning’s M 

Detention Storage 

(mm) 

Artificial 

surfaces 
0.011-0.05 20-90.9 63.5 

Crops 0.17-0.48 2.08-5.88 1.5 

Evergreen 

Forest 
0.2-0.8 1.25-5 31.8 

Deciduous 

Broadleaf 

Forest 

0.2-0.8 1.25-5 31.8 

Bare rocks 0.01-0.033 30.3-100 1-5 

 

5.5.7. Soil 

Soil map of the study region is obtained from Turkish National Soil database inventory 

which is available at 1/25000 scale. Turkish Soil database classifies the soils within the 

study region as alluvial soil, colluvial soil, brown forest soil, rendsina and vertisol. 

Unsaturated zone module requires the values of the soil hydraulic parameters such as 

water content at saturation, wilting point, field capacity and saturated hydraulic 

conductivity. Since Turkish Soil database does not contain these required parameters, or 

information such as soil texture values to derive these parameters. The values estimated 

by Tombul et al (2004) were utilized in this study. Tombul et al (2004) utilized several 

pedotransfer functions to estimate soil hydraulic properties for loam, sandy clay loam and 

sandy loam soil textures in Kurukavak Creek subbasin located in Sakarya Basin. These 

soil textures were overlain with the Turkish soil database map and the soil groups within 

the Araç Basin were reclassified (Fig. 48) based on the soil texture descriptions provided 

by Tombul et al (2004). As a result soil hydraulic properties listed in Table 12 were used 

in this study as initial parameters. 
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Figure 48 Soil map of the Araç Basin 

 

Table 12 Soil hydraulic properties for the study region 

 Water content 

at saturation 

(Qsat) 

Water content at 

field capacity 

(Qf) 

Water content at 

wilting point 

(Qw) 

Saturated hydraulic 

conductivity  

(Ksat (m/s)) 

Loam  0.47 0.362 0.172 0.264x10-5 

Sandy loam 0.46 0.338 0.168 0.286x10-5 

 

Unsaturated zone module requires capillary fringe thickness which is then added to the 

root depth to define the thickness of Layer 1 in the Two-Layer Water Balance 

evapotranspiration/unsaturated zone method. Capillary fringe depends on soil type, in 

coarse to medium sands, the capillary fringe is typically less than 10cm. In fine sands and 

silts, the capillary fringe could be a half a meter or more. Capillary fringe thickness values 
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for loam and sandy loam are obtained from literature (Table 13) (Richardson and 

Vepraskas, 2000). 

 

Table 13 Capillary fringe values for different soil classes. 

Soil classes ET surface depth (cm) 

Loam 25 

Sandy loam 15 

 

5.5.8. Geology 

Geological map of the study region is determined from General Directorate of Mineral 

Research and Exploration at 1/25000 and 1/100000 scales, where the latter comes with a 

report describing the geological units and structures present in the map coverage.  

 Regional Geology 

Study region is located along Safranbolu Basin and Araç-Daday Belt which reside in 

Sakarya Composite Terrane. Sakarya Composite Terrane is extending along 100-200 km 

east-west trending belt, covering almost the entire northern Anatolia (Goncuoglu, 2010). 

According to Goncuoglu the lower part of the overstep sequence is Early Jurassic in age, 

followed by a more or less continuous succession of Jurassic-Cretaceous platform 

sediments. From Late Cretaceous onward, slope-type sediments dominate, which in turn 

were covered by flysch-type deposits with ophiolitic blocks. 

 Local Geology 

The most characteristic feature in the area is the basalt-andesite formations. They cover 

the middle of the study area dominantly. Along the margins ophiolitic rocks are widely 

observed, especially at the Northern part alteration of schist, serpentinite, migmatite, 

gneiss, metagranite and marble are dominant. Marble in the study region is observed as 

massive and have moderate thickness. At Southern part of the overthrust structure where 

ophiolitic rocks are in contact with the limestone, clastic and basalt-andesite alluvial fan 

and slope debris are observed. At the western part of the study region, near Araç limestone 
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and clastic rocks can be observed. Moreover clastic rocks extend towards the East of the 

study region which are observed on top of the basalt-andesite formation.  Faults examined 

in Araç Basin stretch in the E-W direction. The longest fault enters the study region near 

Araç and stretches to Akkaya. Over-thrust structures are observed at the North of the 

study region (Uğuz and Sevin 2011). As seen from the geologic map of the study area 

(Fig.49), there are 11 different geological units. 

Sakızdağ formation contains conglomerate, sandstone, mudstone and gypsum overlay all 

formations by unconformity. Ilıca formation mainly contains limestone, sandstone and 

marl. Ilıca formation has two members, these are clastic member and Akyörük volcanic 

member. Clastic member contains sandstone and mudstone in which sandstone is poorly 

graded and well rounded. Akyörük volcanic member contains basalt, andesite, tuff and 

agglomerate. Kavak formation contains sandstone, conglomerate, siltstone, mudstone, 

chert, clayey limestone and volcanic where volcanic in this formation is andesite lava 

flows. Kavak formation overlain ophiolities and overlain by metamorphic by angular 

unconformity. Bekirli formation contains sediment origin phyllite, schist, metadiabase 

and marble blocky in places. Başakpınar metacarbonate contains calcite marble and 

dolomite marble. 
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Figure 49 Geological map of the study region (Uğuz and Sevin, 2011). 

 

5.5.9. Hydrogeology 

Hydrogeological information about the study area is mainly obtained from the 

“Hydrogeological Investigation Report for Kastamonu, Araç Plain” report published by 

DSI (1968). Moreover 1/500000 scale national hydrogeological map was also obtained 

from DSI. According to the DSI Report (1968) geological units in the Araç Basin do not 

contain significant amount of groundwater. Metamorphic series including schists and 

marbles were classified as impervious. Flysch series comprised of conglomerate and 

marn alternation are poor in groundwater; however, they feed a large number of low-yield 

springs at locations where permeability contrasts occur. Eocene aged limestone is perhaps 

the most significant source of groundwater due to the karstic features and fractures. Most 

of the springs in the region originate from the contact between limestone and the 
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ophiolites with yields up to 80 lt/sec.  Table 14 lists the groundwater potential of the 

geological units present in the study area based on the 1/500000 scale hydrogeological 

map. Considering this information together with the hydrogeological classification of the 

geological units described by the DSI (1968) report a hydrogeological map of the study 

region is constructed (Fig. 50).  

 

Table 14 Groundwater potential of the geological units based on 1/500000 

hydrogeological map of Turkey. 

Groundwater 

potential 
Lithology 

Degree of groundwater 

productivity 

Formation 

containing local 

groundwater 

Limestone Poor 

Formation not 

containing 

groundwater 

Metamorphic 

series 
Very poor 

Formation not 

containing 

groundwater 

Ophiolitic 

series 
Very poor 

Formation 

containing local 

groundwater 

Flysch Poor 

Formation not 

containing 

groundwater 

Andesite Very poor 

Formation 

containing local 

groundwater 

Clay, sand, 

gravel 
Poor 
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Figure 50 Hydrogeological map of the Araç Basin. 

 

5.5.10. Cross Sections 

MIKE 11 module requires channel cross section information to calculate discharge 

values.11 channel cross sections were surveyed during a field trip held in 21-23 March 

2014 (Fig. 51).  
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Figure 51 Picture showing measurement of a channel cross section along Araç River 

during a field trip held in 21-23 March 2014. 

 

However MIKE 11 requires at least two cross section for every branch. For the remaining 

branches at least two trapezoidal cross sections are taken from the 10 m DEM. In total 34 

cross sections are input to the model. To compare the cross sections surveyed in the field 

and obtained from the DEM Figure 52 is plotted. It can be seen that the general cross 

section information are somewhat similar while the DEM lacks the local details as 

expected.  
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Figure 52 Comparison of surveyed cross section with that of constructed from 10m DEM. 

 

5.5.11 Initial Model Setup 

MIKE SHE model is setup for the Araç Basin using a 110x150 square grids with 350m 

resolution. Data inputs were explained in detail earlier in this Chapter. Parameters of the 

MIKE SHE-MIKE 11 utilized in this study are summarized in Table 15. After 

determining initial values for the parameters, their lower and upper bounds are 

determined from the literature. 
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Table 15 Parameters of the MIKE SHE-MIKE 11.  

Parameters  Initial Value Lower 

Bound 

Upper 

Bound 

Degree day coefficient Ddc 2 mm/C/d 1 15 

Manning M (overland flow) Mo Spatial distributed 1.25 65.15 

Detention Storage DS Spatial distributed 1.5 63.5 

ET Surface Depth ETsd Spatial distributed 15 30 

Manning M (channel) Mc 25 12 50 

Groundwater depth (m) (relative to ground) Gwd -10 -20 0 

     

Soil (L) water content at saturation WtS 0.47 0.44 0.61 

Soil (SL) water content at saturation WtS 0.46 0.44 0.61 

Soil (L) water content at field capacity WtF 0.362 0.15 0.44 

Soil (SL) water content at field capacity WtF 0.338 0.15 0.44 

Soil (L) water content at wilting point WtW 0.172 0.09 0.26 

Soil (SL) water content at wilting point WtW 0.168 0.09 0.26 

Soil (L) saturated hydraulic conductivity Shc_L 0.264x10-5 10-9 10-5 

Soil (SL) saturated hydraulic conductivity Shc_SL 0.283x10-5 10-9 10-5 

     

Specific Yield of interflow (loam) SYint 0.2 0.15 0.25 

Specific Yield of interflow (sandy loam) SYint 0.27 0.17 0.31 

Initial Depth for interflow (loam) Dinintl 5 (m) 2 15 

Initial Depth for interflow (sandy loam) Dinintl 5 2 15 

Bottom & Threshold Depth for interflow (loam) DbotIn 5 (m) 0.5 15 

Bottom & Threshold Depth for interflow (sandy loam) DbotIn 5 0.5 15 

Interflow time constant (loam) Tint 3 (day) 1 40 

Interflow time constant (sandy loam) Tint 2 1 40 

Percolation time constant (loam) Tperc 4 (day) 1 40 

Percolation time constant (sandy loam) Tperc 3 1 40 

     

Fraction of percolation (medium aquifer) Frac 0.5 0 1 

Fraction of percolation (poor aquifer) Frac 0.5 0 1 

Specific Yield of baseflow 1&2 (medium aquifer) Sybase 0.25 0.15 0.4 

Specific Yield of baseflow 1&2 (poor aquifer) Sybase 0.1 0.05 0.15 

Time constant for baseflow 1 (medium aquifer) Tbase1 20 (day) 20 80 

Time constant for baseflow 1 (poor aquifer) Tbase1 20 (day) 20 80 

Time constant for baseflow 2 (medium aquifer) Tbase2 85 (day) 80 350 

Time constant for baseflow 2 (poor aquifer) Tbase2 85 (day) 80 350 

Subtract constant to calculate Initial Depth for 

baseflow 1&2 (medium aquifer) 

DiniBt 1 (subtraction) 0 5 

Subtract constant to calculate Initial Depth for 

baseflow 1&2 (poor aquifer) 

DiniBt 1 0 5 

Bottom & Threshold Depth for baseflow 1&2 

(medium aquifer) 

DbotBt 50 20 80 

Bottom & Threshold Depth for baseflow 1&2 (poor 

aquifer) 

DbotBt 50 20 80 

 

To evaluate the model first inconsistencies in the initial model setup were investigated. 

Simulated flow vs observed flow through 2007-2011 can be seen from the Figure 53. 
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Statistics of percent bias (BIASP), Nash–Sutcliffe model efficiency coefficient (NSE) 

and correlation (CORR) between observed and simulated discharge can be seen in Figure 

53b. It is clear that model overestimates discharge by 15%. Since precipitation dataset is 

already quality controlled inconsistency in overall bias is further investigated using the 

evapotranspiration estimates. 

 

 

Figure 53 Simulated discharge of initial model setup. (a) mean areal RGP data of Araç 

Basin, (b) simulated (red) vs. observed (blue) streamflow and (c) mean temperature of 

Station Ilgaz and Kastamonu. 

 

As it is mentioned in detail earlier that reference evapotranspiration is calculated by FAO 

Penmann Monteith equation and further this value is converted to evapotranspiration by 

using two layer water balance methodology in MIKE SHE model. Reference 

evapotranspiration input to the model is performed by station based datasets, therefore 

there is a chance that these four stations might not fully represent the basin reference 

evapotranspiration values. Therefore to understand the long term behavior of the initial 

model annual major water balance components such as precipitation, streamflow and 

evapotranspiration are plotted in Figure 54. Note that water balance components are 

calculated for water years. 
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Figure 54 Annual variation of major water balance components (RGP: mean areal rain 

gauge gridded precipitation of Araç Basin, Obs flow: observed flow of stream gauge 

located at the outlet of the Araç Basin, Sim flow: simulated flow and ET: 

evapotranspiration by using FAO Penmann Monteith equation 

 

It is clear that simulated discharge consistently overestimates observed discharge which 

likely indicate that initial calculated reference evapotranspiration value is not high enough 

to match the long term simulated flow with the observed flow. Therefore all four stations 

reference evapotranspiration is multiplied by a factor of 1.3 Figure 55. 
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Figure 55 Annual variation of major water balance components (RGP: mean areal rain 

gauge gridded precipitation of Araç Basin, Obs flow: observed flow of stream gauge 

located at the outlet of the Araç Basin, Sim flow: simulated flow by reference 

evapotranspiration multiplied by 1.3 and ET: evapotranspiration. 

 

After adjusting the ET component simulated and observed flows in years 2008 and 2009 

match much better than the initial value (Fig. 54). Therefore reference evapotranspiration 

is updated for four station by multiplying with a factor of 1.3. 

After these checks it is clear that initial model setup still consist of significant bias. 

Remaining bias could be due to specification of initial states, biases in meteorological 

datasets and incorrect model parameterization. However remaining bias is assumed to be 

incorrect specification of the model parameter fields. Therefore next step of this study is 

to determine which parameter is incorrectly specified and responsible for the bias among 

other performance measures. 
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5.6. Calibration of the Model Parameters by Diagnostic Evaluation Methodology 

Physically based models require a significant amount of data and time to solve equations 

and their inherent complexity may potentially lead to over parameterization. Determining 

all these parameters might not be possible in data sparse regions and obtaining from 

similar basins might lead to incorrect specification of the model parameter fields. Or else 

generalizing over large basins without taking into account of the heterogeneity raises 

many difficulties. Therefore these initial parameter values should be refined. There are 

variety of model calibration techniques however pinpointing the causes of model 

inadequacies and providing meaningful guidance to improve model is still not fully 

understood (Gupta et al. 2008). Most of the calibration methodologies do not point toward 

the causes of the poor model performance (diagnostic power) but simultaneously adjust 

all parameters so to optimize an aggregate measure of the model fit (e.g. RMSE) to the 

observed data (Duan et al. 1992). These methodologies can improve the model result for 

wrong reasons. There is a significant amount of parameters all of which has varied 

influence on model output and differentiation of these influences by single regression-

based aggregate measure of performance in general is weak (Gupta et al. 1998, 2008 and 

Wagener and Gupta 2005).  

Automated model calibration procedures rely on a single statistical measure (e.g. RMSE) 

and often lead to ill-posed parameter values due to projection of the high dimension of 

the data set down to single dimension of the residual-based summary statistics. Statistical 

metrics only measure the (weighted) distance between observed and simulated runoff and 

fail to incorporate diagnostic information regarding to causes of poor model performance. 

Dynamic aspect of hydrological model can be evaluated by hydrologically-relevant 

metrics that enable quantitative evaluation of the hydrological behavior.   

In this study to evaluate the performance diagnostic evaluation methodology is used 

incorporating hydrologically relevant metrics and in model evaluation and calibration.  

5.6.1. Diagnostic Approach 

Diagnostic model evaluation approach is capable of pinpointing inadequacies in model 

performance, parameters that cause problems and specific aspects of model structure. 
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Basis for diagnostic model evaluation is derivation of hydrologically-relevant summary 

metrics and/or signature patterns in the observed/simulated data derived, for example, 

from flow duration curve (FDC). FDC summarizes catchments ability to produce 

discharge values of different magnitudes. Derivation of hydrologically-relevant summary 

metrics can be conducted from primary functions of any watershed.  These watershed 

functions can be listed as partitioning, storage and release (Yilmaz et al. 2008, Wagener 

et al 2007) (Fig. 56). 

 

 

Figure 56 Primary functions of watershed system. 

 

In this study signature measures related to primary watershed functions are determined 

by considering to; 

 maintain overall water balance 

 vertically redistribute excess rainfall between faster and slower runoff 

components 

 redistribute runoff in time (Yilmaz et al. 2008) 

Signature measure related with overall water balance can be determined by considering 

characteristic watershed behavior at longer time scales. Signature measure related with 
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vertical redistribution can be determined by characteristic watershed behaviors at shorter 

time scales and flow timing.  

Signature measure related to overall water balance 

To evaluate violations in the overall water balance of the catchment Yilmaz et al. (2008) 

used percent bias in overall runoff ratio (%BiasRR) as diagnostic signature measure 

(Equation 7.17). Since this measure can be characterized at longer time scale, it is highly 

sensitive to climatic variability of evapotranspiration. Therefore parameters controlled by 

evapotranspiration are more sensitive to this signature measure. These parameters can be 

soil water content at saturation, soil water content at field capacity, soil water content at 

wilting point, saturated hydraulic conductivity, ET surface depth and detention storage.  

 

%𝐵𝑖𝑎𝑠𝑅𝑅 =
∑ (𝑄𝑁
𝑡−1 𝑆𝑡−𝑄𝑂𝑡)

∑ 𝑄𝑂𝑡
𝑁
𝑡=1

𝑥100              (5.47) 

where, QS: simulated flow 

 QO: observed flow 

Signature measure related to vertical soil moisture redistribution  

Vertical redistribution of excess precipitation are characterized by overland flow, runoff, 

interflow and primary and secondary baseflow. These processes performance can be 

determined from streamflow hydrograph as fast and slow runoff process. Since these 

processes are not time dependent, their responses can be best observed from FDC. To 

determine fast and slow runoff processes FDC is divided into three segments. Heavy 

precipitation event’s responses can be detected from high-flow segment of FDC. 

Moderate size precipitation events, primary and secondary baseflow relaxation response 

of the watershed can be detected from mid-segment of FDC. Interaction of baseflow with 

evapotranspiration during dry period can be detected from low-flow segment of FDC. 

Moreover FDC slope indicates flashy or slow response of watershed. If FDC slope is 

steep this indicates that watershed has flashy response however if slope is flatter 

watershed has slow and more sustained groundwater flow response.  
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All these FDC properties can be used as signature index for model evaluation and 

calibration. Vertical redistribution of soil moisture signature measure is defined from 

slope of FDC mid-segment (Yilmaz et al. 2008). Yilmaz et al. (2008) also find out that 

volume of water of high flow segment provide information about vertical redistribution 

of soil moisture. Vertical redistribution signature measures used in this study are percent 

bias in FDC mid-segment slope (%BiasFMS) and the percent bias in FDC high-segment 

volume (%BiasFHV). 

 

%𝐵𝑖𝑎𝑠𝐹𝑀𝑆 =
[log(𝑄𝑆𝑚1)−log (𝑄𝑆𝑚2)]−[log(𝑄𝑂𝑚1)−log (𝑄𝑂𝑚2)]

[log(𝑄𝑂𝑚1)−log (𝑄𝑂𝑚2)]
𝑥100      (5.48) 

where, m1: lowest flow exceedance probability (0.2) 

 m2: highest flow exceedance probability (0.8) 

 

%𝐵𝑖𝑎𝑠𝐹𝐻𝑉 =
∑ (𝑄𝑆ℎ−𝑄𝑂ℎ)
𝐻
ℎ=1

∑ 𝑄𝑂ℎ
𝐻
ℎ=1

𝑥100             (5.49) 

where, h=1,2,…H flow indices for flows with exceedance probabilities lower than 0.04 

Signature Measure Related to Behavior of Long-Term Baseflow 

Total volume of low flow segment is index for long-term baseflow response. Yilmaz et 

al. (2008) defined long-term baseflow signature measure to be the percent bias in FDC 

low-segment volume (%BiasFLV). 

 

%𝐵𝑖𝑎𝑠𝐹𝐿𝑉 = −1𝑥
∑ [log(𝑄𝑆𝑙)−log (𝑄𝑆𝐿)]
𝐿
𝑙=1 −∑ [log(𝑄𝑂𝑙)−log (𝑄𝑂𝐿)]

𝐿
𝑙=1

∑ [log(𝑄𝑂𝑙)−log (𝑄𝑂𝐿)]
𝐿
𝑙=1

𝑥100          (5.50) 

where, l=1,2,…L index of flow value located within the low-flow segment (0.8-1.0 flow 

exceedance probabilities) of the flow duration curve, L being the index of the minimum 

flow. 

Signature Measure Related to Snow Melt & Timing 



 

143 
 

Signature measure commonly used to evaluate hydrograph timing is linear correlation 

coefficient between observed and simulated runoff. Therefore our signature measure to 

determine hydrograph timing is the correlation coefficient (CORR).  

 

5.7. Results  

5.7.1. Model Driven by RGP Dataset 

In the diagnostic model evaluation process a sensitivity analysis was performed using by 

hydrologically meaningful signature measures described earlier. Sensitivity analysis was 

performed by generating random parameter sets within the pre-defined interval between 

upper and lower boundaries of the parameters, see Table 15 and consequently running 

MIKE SHE-MIKE 11 model for each of the sampled parameter sets. It should be noted 

that 2007/01/01-2007/09/30 period was set as warm up period and signature measures 

were calculated for the 2007/10/01-2010/03/24 period. The period between 2010/03/25-

2011/05/09 was left for evaluation. Prior to the sensitivity analysis, based on the 

understanding of the hydrologic processes and the model structure it is expected that the 

parameters controlling baseflow should be sensitive to the low flow measure, %BiasFLV, 

those controlling interflow should be sensitive to high flows, %BiasFHV, the degree day 

coefficient parameter should be sensitive to the timing, CORR, and the soil hydraulic 

parameters to %BiasRR due to ET control.  

Initially 360 random parameter sets were generated and for every parameter set model 

was run and signature measures were calculated from the simulated and observed stream 

flow values. The results are presented in Fig. 57. Note that each gray colored point in 

these plots represent a sampled parameter within the defined parameter range with a total 

of 360 sampled sets in this case. The dashed lines indicate the 25% and 75% quantile 

(solid line indicates the median) of the signature measure distributions [computed using 

a binning technique; see Yilmaz et al, 2007]; the region between the two dashed lines 

contains 50% of the sampled points. The orientation of this region indicates the existence, 

or not, of a relationship between the signature measure and the parameter whereas a 

horizontal region indicates no relationship. From the results of the sensitivity analysis it 
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is clear that water content at field capacity for sandy loam (Fig. 57a) is sensitive to the 

%BiasRR since it affects the evapotranspiration rate and hence overall water balance. It 

can be seen that higher values of this parameter results in better %BiasRR measure. On 

the other hand degree day coefficient being a snow model parameter, is not expected to 

affect the overall water balance but will affect the timing of the flow. This is clearly 

reflected in Figure 57b as this parameter shows no sensitivity to the overall water balance 

signature measure. %BiasFMS signature measure is related with vertical soil moisture 

redistribution, it can be seen from Figure 57c that saturated hydraulic conductivity of 

loam is highly sensitive to this measure as expected. %BiasFLV signature measure is 

related with long term baseflow and it is expected that baseflow time constant should be 

sensitive to this measure. It can be seen that time constant of slow baseflow reservoir is 

highly sensitive to the %BiasFLV (Fig. 57g) and high values of this parameter is more 

favorable. %BiasFHV signature measure is related with vertical soil distribution also, and 

it is expected to be sensitive to the interflow time constant. As expected, Figure 57e shows 

that the time constant of interflow is highly sensitive to the %BiasFHV signature measure. 

Finally defree day coefficient as stated earlier should be sensitive to the time related 

signature measure of CORR (Fig. 57i). 

Due to space availability not all the scatter plots are shown here since there is 36 

parameter and 6 signature measure. Sensitivity analysis for every parameter can be seen 

from Table 16. The numbers in this table is obtained by  

 first by fitting a line to the median, function of that signature measure is calculated 

 Second, by subtracting this function value at maximum and minimum parameter 

values sensitivity of that specific parameter for signature measure is obtained 

 Finally, all these sensitivity values are normalized by standard deviation values 

so that comparison of different parameters can be done. 

Table 16 is conditional color formatted table, where parameter is most sensitive to the 

signature measure is colored red and where not sensitive colored green.  



 

 
 

1
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Figure 57 Sensitivity analysis using 360 randomly sampled model parameter sets. Parameters that are sensitive (a, c, e, g, and i) and 

not sensitive (b, d, f, h, and j) to signature measures %BiasRR, %BiasFMS, %BiasFLV and CORR. 
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Table 16 Summary of the sensitivity analysis result for initial 360 random parameter sets. 

 

Volume Partition High Flow Low Flow Timing

PBIAS FMS FHV FLV CORR

Ddc 0.19 1.42 0.39 0.81 4.68

Sensitive

snow

Mo 0.16 0.73 0.37 0.47 0.89

DS 0.02 0.11 2.04 0.76 1.22

Mc 0.02 0.49 0.35 0.49 0.05

ETsd 0.13 0.02 0.66 0.33 0.65

WtSL 0.59 0.49 0.39 0.53 0.77

WtSSL 0.24 0.57 0.11 0.45 0.18

WtFL 3.63 1.73 2.08 2.46 0.66

WtFSL 3.19 1.69 2.12 2.01 0.49

WtWL 1.64 0.99 1.17 1.87 0.72

WtWSL 1.55 0.74 1.02 1.62 0.69

Shc_L 0.76 1.76 0.12 0.70 1.93

Shc_SL 1.75 2.81 0.68 0.24 0.07

Gwd 0.45 0.01 0.39 0.04 0.20 gw

SYintL 0.08 0.51 0.04 0.03 0.39

SYintSL 0.11 0.98 0.64 0.44 0.75

DiniInL 0.18 0.52 0.64 0.45 0.62

DiniInSL 0.18 0.52 0.64 0.45 0.62

DbotInL 0.10 0.29 0.77 0.12 0.12

DbotInSL 0.10 0.29 0.77 0.12 0.12

TinL 1.13 0.27 2.80 0.05 0.54

TinSL 0.22 0.65 2.63 0.73 0.33

TpercL 0.56 0.33 1.06 0.28 0.14

TpercSL 0.24 0.19 0.59 0.31 0.89

FracMA 0.12 1.48 0.85 1.02 0.77

FracPA 0.12 1.48 0.85 1.02 0.77

SYbaseMA 0.01 0.79 0.24 1.45 0.10

SYbasePA 0.28 0.43 0.29 1.48 0.22

Tbase1MA 0.40 0.03 0.92 0.28 0.23

Tbase1PA 0.40 0.03 0.92 0.28 0.23

Tbase2MA 0.20 1.66 0.24 2.00 0.43

Tbase2PA 0.20 1.66 0.24 2.00 0.43

DiniBtMA 0.25 0.17 0.51 0.10 0.03

DiniBtPA 0.25 0.17 0.51 0.10 0.03

DbotBtMA 0.27 0.05 0.49 0.33 0.04

DbotBtPA 0.27 0.05 0.49 0.33 0.04

S
a

tu
r
a

te
d

 F
lo

w

B
a

se
fl

o
w

In
te

r
fl

o
w

O
ver

la
nd

Channel

U
n

sa
tu

r
a

te
d

 F
lo

w



 

147 
 

After this initial sensitivity analysis, a step-wise model parameter constraining approach 

was utilized that starts from the slow hydrologic processes and continue towards faster 

hydrologic processes. First goal in the parameter constraining was to improve %BiasFLV 

which is sensitive by baseflow parameters. Hence model parameters controlling the 

baseflow were constrained to ranges that provide favorable %BiasFLV values. For 

example, baseflow time constant for slow reservoir (Fig. 57g) was constrained to the 

range [250 350] days that provide favorable %BiasFLV values (close to zero). Table 17 

lists the constrained upper and lower boundaries of the baseflow parameters. Using these 

constrained parameter ranges for parameters controlling baseflow and initial ranges for 

the rest of the parameters another 150 random parameter sets was generated. 

 

Table 17 Baseflow parameter range after constrain 

Parameters  
Initial 

Value 

Lower 

Bound 

Upper 

Bound 

Fraction of percolation (poor aquifer) Frac 0.5 0 0.5 

Specific Yield of baseflow 1&2 (medium aquifer) Sybase 0.25 0.3 0.4 

Specific Yield of baseflow 1&2 (poor aquifer) Sybase 0.1 0.12 0.15 

Time constant for baseflow 1 (medium aquifer) Tbase1 20 (day) 50 80 

Time constant for baseflow 1 (poor aquifer) Tbase1 20 (day) 50 80 

Time constant for baseflow 2 (medium aquifer) Tbase2 85 (day) 250 350 

Time constant for baseflow 2 (poor aquifer) Tbase2 85 (day) 250 350 

Subtract constant to calculate Initial Depth for 

baseflow 1&2 (medium aquifer) 
DiniBt 

1(subtrac

tion) 
0 5 

Subtract constant to calculate Initial Depth for 

baseflow 1&2 (poor aquifer) 
DiniBt 1 0 5 

Bottom & Threshold Depth for baseflow 1&2 

(medium aquifer) 
DbotBt 50 10 40 

Bottom & Threshold Depth for baseflow 1&2 (poor 

aquifer) 
DbotBt 50 10 40 

 

After the first round of constraining, it can be seen from Figure 58(c, f, i) that %BiasFLV 

median value improved significantly. This new parameter sets sensitivity analysis can be 

seen from Table 18. It is clear that since we constrain the baseflow parameters, sensitivity 

values of other parameters are more pronounced. Next step in the constraining approach 

focused on the interflow parameters that are sensitive to the %BiasFMS and %BiasFHV 

which are representing vertical soil distribution. Percolation time constant is the 
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parameter that represents the time it takes for the water to seep down to the baseflow, 

therefore this parameter is sensitive to the %BiasFLV even though it is an interflow 

parameter set (Fig 58c). Constraining the interflow parameters using these signature 

measures resulted in a new ranges for these parameters sets (Table 19). Further by using 

these new constrained parameter set boundaries 150 random parameter sets were 

generated and model was run for each of these parameter sets.   
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Figure 58 Sensitivity analysis of the parameters after baseflow constraining (150 model run). Interflow parameters percolation time 

constant (a, b, and c), and j) interflow time constant (d, e, and f) and bottom depth for interflow (g, h, and i) sensitivity for %BiasFMS, 

%BiasFHV and %BiasFLV. 



 

150 
 

Table 18 Sensitivity analysis after baseflow constraining (150 model run) 

 

Volume Partition High Flow Low Flow Timing

PBIAS FMS FHV FLV CORR

Ddc 0.33 0.45 1.45 0.17 4.08

Sensitive

snow

Mo 0.13 0.63 0.43 0.12 0.23

DS 0.96 0.45 1.45 0.80 0.58

Mc 0.17 0.54 0.06 0.36 1.17

ETsd 0.28 0.43 1.05 0.63 0.14

WtSL 0.14 0.81 0.33 0.43 0.20

WtSSL 0.17 0.07 0.47 0.53 0.33

WtFL 3.87 2.04 1.79 2.67 0.83

WtFSL 3.22 1.43 1.53 2.24 0.01

WtWL 1.25 0.45 0.24 0.51 0.94

WtWSL 1.00 0.49 0.39 0.72 0.90

Shc_L 0.12 1.02 1.07 0.56 0.88

Shc_SL 1.50 1.82 1.13 0.11 0.13

Gwd 0.95 0.68 1.07 1.52 0.70 gw

SYintL 0.14 1.09 0.50 1.24 0.47

SYintSL 0.37 0.88 0.37 0.60 0.73

DiniInL 0.63 0.20 0.61 0.35 0.67

DiniInSL 0.63 0.20 0.61 0.35 0.67

DbotInL 0.75 0.59 0.89 0.57 0.68

DbotInSL 0.75 0.59 0.89 0.57 0.68

TinL 0.60 1.78 2.64 1.18 1.80

TinSL 0.41 1.47 2.60 0.77 0.73

TpercL 0.82 1.79 1.13 1.16 0.43

TpercSL 0.18 1.83 0.77 1.46 1.11

FracMA 0.04 0.72 0.40 0.20 0.74

FracPA 0.04 0.72 0.40 0.20 0.74

SYbaseMA 0.17 0.17 0.82 1.52 0.44

SYbasePA 0.26 0.13 0.97 0.45 0.27

Tbase1MA 0.30 0.96 0.13 0.89 0.36

Tbase1PA 0.30 0.96 0.13 0.89 0.36

Tbase2MA 0.11 1.45 0.17 1.41 0.41

Tbase2PA 0.11 1.45 0.17 1.41 0.41

DiniBtMA 0.11 0.11 0.15 0.94 1.25

DiniBtPA 0.11 0.11 0.15 0.94 1.25

DbotBtMA 0.18 0.11 0.40 0.19 0.22

DbotBtPA 0.18 0.11 0.40 0.19 0.22
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Table 19 Interflow parameter range after constraining. 

Parameters  Initial 

Value 

Lower 

Bound 

Upper 

Bound 

Specific Yield of interflow (loam) SYint 0.2 0.15 0.21 

Specific Yield of interflow (sandy loam) SYint 0.27 0.2 0.29 

Initial Depth for interflow (loam) Dinintl 1 0 5 

Initial Depth for interflow (sandy loam) Dinintl 1(subtr

action) 
0 5 

Bottom & Threshold Depth for interflow (loam) DbotIn 5 (m) 0.5 15 

Bottom & Threshold Depth for interflow (sandy loam) DbotIn 5 0.5 15 

Interflow time constant (loam) Tint 3 (day) 20 40 

Interflow time constant (sandy loam) Tint 2 20 40 

Percolation time constant (loam) Tperc 4 (day) 15 40 

Percolation time constant (sandy loam) Tperc 3 15 40 

 

After this second step in constraining, %BiasFHV values improved significantly (see Fig. 

59 b, e, and h). Further parameter constraining could be performed utilizing soil hydraulic 

properties, although at this point further improvement steps were not taken due to run 

time limitations.   

 

 

 



 

 
 

1
5
2
 

 

Figure 59 Sensitivity analysis of the parameters after baseflow & interflow constraining (150 & 150 model run). Soil hydraulic 

parameters water content at field capacity (a, b, and c), and j) water content at wilting point (d, e, and f) and saturated hydraulic 

conductivity (g, h, and i) sensitivity for %BiasFMS, %BiasFHV and %BiasFLV.
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Final step of the constraining approach is to constrain the signature measures with the 

150 random samples generated at the last step and obtain a calibrated parameter set from 

final model runs. To do this, %BiasRR, %BiasFMS and %BiasFHV are constrained to be 

within +/- 20% and %BiasFLV to be within +/- 15% as can be seen from Figure 60. The 

shaded gray area in this figure represents the constrained region. There was only a single 

feasible parameter set within this constrained region and this parameter set is given in 

Table 20. It is clear from the Figure 60 that there is a significant improvement from the 

initial parameter set considering the signature measure values. 

 

 

Figure 60 Signature measure values for optimum and initial parameter sets. 
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Table 20 Feasible parameter set in the constrained space. 

Parameter Value 

Ddc 9.06 

Mo Spatially distributed 

DS Spatially distributed 

ETsd Spatially distributed 

Mc 19.86 

Gwd -18.89 

WtSL 0.45 

WtSSL 0.44 

WtFL 0.33 

WtFSL 0.31 

WtWL 0.203 

WtWSL 0.198 

Shc_L 10-5.86 

Shc_SL 10-8.57 

SYintL 0.21 

SYintSL 0.29 

DinintlL 4.68 

DinintlSL 4.68 

DbotInL 7.95 

DbotInSL 7.95 

TintL 26.01 

TintSL 20.0 

TpercL 40.0 

TpercSL 35.42 

FracMa 0.34 

FracPa 0.34 

SybaseMa 0.35 

SybasePa 0.142 

Tbase1Ma 77.54 

Tbase1Pa 77.54 

Tbase2Ma 295.872 

Tbase2Pa 295.872 

DiniBtMa 24.42 

DiniBtPa 24.42 

DbotBtMa 27.60 

DbotBtPa 27.60 

 

 

Simulated hydrograph for the constrained parameter set can be seen in Figure 61 for 

calibration period and evaluation period. Since flow data in between 2008/11/18-

2009/03/31 deemed to be erroneous, this period is excluded from the analysis. It can be 

seen from this figure that, with this constrained parameter set, MIKE SHE-MIKE 11 is 
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able to simulate a number of important flow events during evaluation and calibration 

periods.  

 

 

Figure 61 (a) FDC and hydrographs (b) for calibration period (c) for evaluation period 

using the constrained set. 

 

 

5.7.2. Comparison of Model Performance Driven by SBP and Bias Adjusted 

SBP products 

As mentioned earlier, SBP products performances can further be evaluated by hydrologic 

model since stream flow observations have the potential to provide an independent check 

on the degree of errors in the precipitation datasets that are important for hydrologic 

applications. Determined constrained parameter set is used to run the model by SBP 

products and bias adjusted SBP products using BAPS algorithm. First of all TMPA-7A 

SBP product is run by the constrained parameter set (Figure 62). As a result the TMPA-
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7A SBP product was able to detect the timing of peak flows however significant 

overestimation of flows is evident (Fig. 62a) especially during the evaluation period. It 

should be noted that this product has its own bias adjustment procedure hence not adjusted 

further with BAPS algorithm, therefore it can be said that its performance is impressive, 

in terms of detecting the timing of flows. 

 

 

Figure 62 Simulated and observed flow FDC (a) and hydrograph (b) for calibration period 

(c) hydrograph for evaluation period for constrained parameter set run by TMPA-7A. 

 

Secondly hydrologic model is driven by the TMPA-7RT product (Figure 63). Upon 

comparison with Figure 62, it is clear that TMPA-7A is superior to this product in terms 

of precipitation magnitude whereas the timing of flows is also somewhat well simulated 

using the TMPA-7RT product. It is evident from these results that the utility of the TMPA 

products in hydrologic simulation studies will improve further using bias adjustment. 
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While evaluating this product against the RGP, products overestimation over Region 2 

was emphasized (Chapter 3). This overestimation is simulated in hydrologic model as 

significant overestimation in all events and this situation is evident in FDC (Fig. 63a). 

Performance of the product especially deteriorates during the evaluation time period, 

which is drier. 

 

 

Figure 63 Simulated and observed flow FDC (a) and hydrograph (b) for calibration period 

(c) hydrograph for evaluation period for constrained parameter set run by TMPA-7RT. 

 

Note that evaluation of the CMORPH by RGP the product determined significant 

underestimation in Region 2 (Chapter 3). This problem is more significant in the 

hydrologic model results driven by the CMORPH product (Figure 64). CMORPH driven 

model was unable to generate any flow during the calibration period, while there is only 

single simulated flow event in evaluation period which is not evident in the observed 
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flow. Simply it can be said that this product without a bias adjustment cannot be used in 

hydrologic modeling studies in this region. 

 

 

Figure 64 Simulated and observed flow FDC (a) and hydrograph (b) for calibration 

period (c) hydrograph for evaluation period for constrained parameter set run by 

CMORPH. 

 

As mentioned earlier, bias adjustment algorithms provided better results while comparing 

SBP products with the RGP product (Chapter 5). The same results are also obtained when 

the hydrologic model is driven by the bias adjusted SBP products. Significant 

overestimation of stream flow by TMPA-7RT driven model is corrected to a significant 

extent when BAPS algorithm is used to adjust this product (Fig. 65).  Analysis of this 

figure indicates that significant overestimation for both high flow and low flow 
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magnitudes are corrected accordingly (Fig. 65a). However there still exits a slight 

underestimation for high flow and this situation is also evident in evaluation period. 

 

 

Figure 65 Simulated and observed flow FDC (a) and hydrograph (b) for calibration period 

(c) hydrograph for evaluation period for constrained parameter set run by TMPA7RT 

BAPS. 

 

On the other hand BAPS adjusted CMORPH driven model performance for high flow is 

much better than the BAPS adjusted TMPA-7RT results (Fig. 66). This might be due to 

the fact that TMPA-7RT was significantly overestimating precipitation over Region 2 

with spatially heterogeneous estimates while CMORPH showed significant but uniform 

underestimation when compared to RGP dataset. However there seems to be a mismatch 

in the simulated low flows when BAPS corrected CMORPH is used to derive the model. 

It can be seen that the BAPS adjusted CMOPRH driven model slightly overestimates low 

flows. 
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Figure 66 Simulated and observed flow FDC (a) and hydrograph (b) for calibration period 

(c) hydrograph for evaluation period for optimum parameter set run by CMORPH BAPS. 

 

Table 21 shows the summary statistics during calibration and evaluation periods. 
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Table 21 Signature measure results for optimum parameter set calibration and evaluation 

period 

  %BiasRR %BiasFMS %BiasFHV %BiasFLV CORR 

RGP 

calibration 

period 
-12.25 -19.96 6.44 -2.65 0.70 

evaluation 

period 
-19.08 17.41 -17.81 -42.86 0.67 

TMPA-v7 

calibration 

period 
169.70 -7.61 193.21 91.74 0.68 

evaluation 

period 
131.86 17.03 178.93 223.02 0.55 

TMPA-RT 

calibration 

period 
183.93 6.51 228.52 99.96 0.64 

evaluation 

period 
151.28 24.47 220.00 194.09 0.54 

CMORPH 

calibration 

period 
-86.18 -40.48 -89.26 -180.18 -0.05 

evaluation 

period 
-91.36 -39.27 -96.00 -431.02 -0.29 

TMPA 

BAPS 

calibration 

period 
62.94 -8.45 79.21 52.44 0.72 

evaluation 

period 
39.96 25.40 63.95 59.54 0.62 

CMORPH 

BAPS 

calibration 

period 
-21.23 -19.25 -10.30 26.09 0.63 

evaluation 

period 
-26.31 -9.45 -40.40 90.58 0.68 
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CHAPTER 6 

 

 

CONCLUSIONS & RECOMMENDATIONS 

 

 

 

6.1. Satellite-based Precipitation Products 

 All evaluated SBP products underestimated precipitation along the coast 

(windward region) at various levels compared to rain gauge dataset. 

Underestimation of RGP precipitation by SBP products on the windward side is 

generally characteristic for both warm and cold seasons, however more 

pronounced for the cold season. Underestimation by SBP products on the 

windward side is possibly due to warm orographic precipitation that cannot be 

detected by any passive (MW or IR) sensor. TMPA-7RT and CMORPH products 

suffered from precipitation detection problem over water-land mixed cells along 

the shore and TMPA-7A algorithm was able to correct for this problem. 

 Along the drier (leeward) side of the orography, SBP products were generally 

characterized by overestimation of precipitation. CMORPH, being the only 

exception, provided slight underestimation compared to rain gauge dataset while 

producing the best performance at the annual scale on the leeward side of the 

orography. Overestimation by TMPA and MPE products on the leeward (drier) 

side could be attributed to a number of limitations by MW and IR sensors. 

Overestimation by MW sensors is likely due to surface snow/ice contamination 

in cold season. Overestimation by IR sensors is possibly due to overestimation of 

both area and magnitude of summer convective precipitation, which usually 

occupies only a small fraction of cold cloud area detected by the sensor. Further, 
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IR-based techniques may overestimate due to misidentification of some cold 

clouds, such as cirrus, that may not generate any rainfall. 

 Investigation of the spatial distribution of the precipitation estimates over the 

study area showed that evaluated SBP products failed to represent the sharp 

precipitation gradient normal to the orography (rain-shadow affect) revealed by 

the RGP dataset.  

 The uniform nature of underestimation by CMORPH product can be attributed to 

the significant underestimation by the MW dataset used in the algorithm and 

spatially heterogeneous nature of TMPA-7RT product can be explained by the 

differences in precipitation rates produced by IR and MW datasets used in this 

algorithm. 

 RGP dataset showed a distinct difference in heavy precipitation frequency in 

windward region (more frequent) compared to leeward region, which is more 

significant in cold season. However the tested SBP products failed to discriminate 

this behavior while most significantly underestimating heavy precipitation 

frequency in cold season over windward region.  

 

6.2. Bias Adjustment 

 Proposed bias adjustment algorithm is based on physiographic similarity of the 

rain gauges over topographically complex topography characterized by 

orographic precipitation is better suited to complex regions and generally 

provided better results compared to the benchmark ‘Inverse Distance Weighted’ 

method. 

 In Region 1 significant underestimation is improved by both algorithms. Further, 

BAPS algorithm consistently provided better performance compared to IDW 

method in cold season. However in warm season IDW method provide slightly 

improved statistics. Precipitation detection is significantly improved for light 
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precipitation for both bias adjustment algorithms to some extent in Region 1 and 

slight overestimation in cold season. 

 In Region 2 IDW product overestimated the precipitation even worse than the 

SBP products while BAPS algorithm provided slight underestimation. For cold 

season IDW was not able to correct %BIAS. Precipitation detection performance 

of BAPS is better compared to IDW for Region 2. 

 In overall BAPS performance is better especially in cold season. Bias adjustment 

procedure seems to perform better during cold season and in Region 1, due 

respectively to less convective precipitation occurrence and higher density of rain 

gauges. For all SBP products, the BAPS algorithm performance in Region 1 is 

much better than the Region 2. 

 BAPS algorithm was not able to improve CORR statistics which shows similarity 

with the study of Boushaki et al. (2009) who reported that their algorithm was 

successful in improving RMSE and BIAS statistics however their CORR statistic 

did not show significant improvement as did the other statistics they have used 

and might be due to heterogeneity of the precipitation estimation of SBP products.  

 Investigation of the spatial distribution of the precipitation estimates over the 

study area showed that bias adjustment using BAPS algorithm is successfully 

represent the sharp precipitation gradient normal to the orography (rain-shadow 

affect) while IDW algorithm was able to represent this behavior to some extent, 

with underestimation of heavy precipitation in Region 1 and overestimation in 

Region 2. 

 Seasonal dependency of the SBP products before the bias adjustment is improved 

significantly after the correction.  

 Related significant improvements in POD and FAR, it can be concluded that 

proposed BAPS correction algorithm can introduce rain in areas where the SBP 

does not detect rainfall and algorithm can assign no rainfall where SBP falsely 

detects rainfall.  
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 SBP estimations are directly related with the topographically complex terrain 

especially estimation of orographic precipitation and bias adjustment for these 

regions is not effective if weights of bias adjustment calculated based on 

proximity. Bias adjustment weights calculated with physiographic similarity 

concept works more effectively for complex terrain.  

 

6.3. Hydrologic Modeling 

 Sensitivity analysis is conducted by randomly generated parameter sets. Initially 

360 random parameter sets were generated and for every parameter set model was 

run and signature measures were calculated from the simulated and observed 

streamflow values. As a result of the sensitivity analysis, it was found that the 

parameters controlling baseflow are sensitive to the low flow measure, 

%BiasFLV, those controlling interflow are sensitive to high flows, %BiasFHV, 

the degree day coefficient parameter is sensitive to the timing, CORR, and the soil 

hydraulic parameters to %BiasRR due to ET control. These sensitivities are also 

conceptually realistic. 

 After sensitivity analysis, a step-wise model parameter constraining approach was 

utilized that starts from the slow hydrologic processes and continue towards faster 

hydrologic processes. First goal was to improve %BiasFLV which is sensitive to 

parameters controlling baseflow. Hence model parameters controlling the 

baseflow were constrained to ranges that provide favorable %BiasFLV values and 

further 150 random parameter set were generated in this constrained space. After 

this constraint %BiasFLV significantly improved. Next %BiasFHV which are 

representing vertical soil distribution are constrained to improve %BiasFHV. 

Constraining the interflow parameters using these signature measures resulted in 

new ranges for these parameter sets (150 random parameter set generated). After 

this step it is observed that %BiasFHV values improved significantly also. Finally 

signature measure values of randomly sampled parameter sets at the last step were 

further constrained and a final calibrated parameter set was obtained that satisfied 
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all constrains. Result of this feasible parameter set showed that MIKE SHE-

MIKE11 is able to simulate a number of important flow events during evaluation 

and calibration period. 

 There was only one feasible parameter set within constrained region and this 

parameter set is further used to drive hydrologic model by SBP and bias adjusted 

SBP products. TMPA-v7 outperforms TMPA-7RT and CMORPH in terms of 

flow simulation performance. Product was able to capture the timing of the 

significant events well, however with overestimation in the flow magnitude. If 

satellite only SBP products are compared with each other, it can be concluded that 

CMORPH is not able to generate any flow in both calibration and evaluation 

period, which is a serious drawback for this product in terms of hydrologic 

modeling studies in the study area.  

 Performance of proposed bias adjustment algorithm BAPS proves that it is able 

to correct significantly missed precipitations and falsely detected precipitations. 

Significant overestimation by TMPA-7RT and underestimation by CMORPH is 

corrected accordingly. Overestimation by TMPA-7RT for both high and low flow 

magnitudes were also corrected accordingly. However there still exists a slight 

underestimation for high flows. While CMORPH driven model performance for 

high flows is much better than the BAPS adjusted TMPA-7RT results. This might 

be due to the fact that TMPA-7RT was significantly overestimating precipitation 

over Region 2 with spatially heterogeneous estimates while CMORPH showed 

significant but uniform underestimation when compared to RGP dataset. 

 

6.4. Future Work and Recommendations 

Evaluation studies performed in different hydroclimatic regions in Turkey and elsewhere 

will further shed light on the utility of these products for use in hydrologic studies in 

ungauged and/or poorly gauged regions with complex topography around the globe. 
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In a future study, the proposed bias adjustment algorithm could be compared with 

atechnique that also incorporates elevation in the interpolation of error (such as kriging). 

Further multiplication error model (Tian et al., 2013) can be compared to see if there is 

improvement in the error correction relative to the additive error model. 

The diagnostic evaluation methodology utilized in this study could be compared with a 

classical single objective calibration methodology to investigate the improvements (or 

lack of) in the model performance. For example dynamically dimensioned search 

algorithm (DDS) proposed by Tolson and Shoemaker (2007) is well suited to distributed 

hydrological models with extensive run times. 

MIKE SHE-MIKE 11 hydrologic model is calibrated by using RGP products and this 

calibrated parameter set is used with SBP product runs. In a future study the model could 

be calibrated by individual SBP products and the performances of these calibrated model 

parameters could be compared.  

Hydrogeological component of the model could be improved, if further data such as well 

logs, groundwater elevations etc. become available. 
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