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ABSTRACT

BACKGROUND TRACKING OF A VIDEO TAKEN FROM A FRONT CAMERA
OF NON MANEUVERING VEHICLE

Ünver, Önder
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Mübeccel Demirekler

February 2014, 64 pages

In this study, a novel background tracking technique is proposed that uses extended

Kalman Gaussian mixture probability hypothesis density filtering approach. Since the

background in a movie, taken from a front camera of a non maneuvering moving vehi-

cle, exhibits a non-stationary nature, tracking the background is usually done by using

pixel-wise comparisons in consequent frames. Besides, some methods use features of

the background to track it. The proposed method uses the feature tracking approach.

The features are chosen as the corner points extracted from each video frame by using

Harris corner detector. Linear motion model and non-linear measurement model are

developed to predict and update the states of the features. Based on these models,

the time varying number of features are tracked by extended Kalman Gaussian mix-

ture probability hypothesis density filter. The method propagates the intensities of

the targets based on random set theory and the Kalman filtering approach. MATLAB

environment is used to implement the proposed background tracking method. Some

simulated results of proposed method are shown for different conditions. The results

indicate that the proposed method can be used for background tracking of a video
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instead of classical background tracking methods under some assumptions.

Keywords: Background Tracking, Random Finite Sets, Probabilty Hypothesis Filter,

Harris Corner Detector, Extended Target Tracking,Extended Kalman
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ÖZ

İLERİ YÖNDE HAREKET EDEN ARACIN ÖN KAMERA GÖRÜNTÜSÜNDE
ARKA PLAN TAKİBİ

Ünver, Önder
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler

Şubat 2014 , 64 sayfa

Bu tez çalışması kapsamında, arka plan takip tekniği olarak kendine has özellikleri

olan genişletilmiş Kalman olasılıksal hipotez yoğunluk süzgeci önerilmiştir. Hare-

ket eden kameradan alınmış videolardaki arka planın değişken özellik göstermesi

nedeniyle, arka plan takibi genellikle ardışık resimler kullanılarak ve piksel sevi-

yesinde karşılaştırmalar yapılarak gerçekleştirilmektedir. Bununla birlikte, bazı yön-

temler arka plan takibi için arka plandan elde edilen özellikleri de kullanmaktadır.

Önerilen yöntemde arka plandan elde edilen belirli özelliklerin izlenmesi yaklaşımı

kullanılmaktadır. Özellik olarak videodan elde edilen fotoğraflardaki köşe noktaları

seçilmiştir. Bu köşe noktaları Harris köşe bulucu algoritması ile elde edilmektedir.

Elde edilen köşelerin durum vektörlerini tahmin etmek ve güncellemek için doğru-

sal hareket modeli ve doğrusal olmayan ölçüm modeli türetilmiştir. Arka plan takibi

için bu modelleri temel alan, değişken sayıdaki çoklu hedef takibinde ideale yakın

bir çözüm üreten genişletilmiş Kalman olasılıksal hipotez yoğunluk süzgeci kulla-

nılmaktadır. Önerilen metod, rastgele küme teoremi ve Kalman süzgeci yaklaşımını
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kullanarak hedeflere ait yoğunlukları zaman içerisinde ilerletmektedir. Önerilen me-

todu gerçeklemek için MATLAB ortamı kullanılmıştır. Farklı durumlar için önerilen

metod ile ilgili çeşilti deneyler yapılmış ve sonuçları açıklanmıştır. Sonuçlara göre

belirli varsayımların varlığında, önerilen yöntemin klasik arka plan takip algoritma-

larının yerine kullanılabildiği görülmüştür.

Anahtar Kelimeler: Arka Plan Takibi, Rastgele Sınırlı Setler, Olasılıksal Hipotezler

Filtresi, Harris Köşe Bulucu, Genişletilmiş Hedef Takibi, Genişletilmiş Kalman
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CHAPTER 1

INTRODUCTION

The aim of this study is to track the "background" of a scene taken from a front cam-

era of a non-maneuvering vehicle. Background tracking for this setup is a challenging

problem especially when there are changes in the illumination, background geometry,

motion etc. Such problems cannot be solved by simplistic, static-background models

because of the non-stationary nature of the background, [1]. Various different meth-

ods exist in the literature to solve this type of problems [1], [2], [3], [4], [5]. Most of

these methods are computationally very expensive. Alternatively, some methods use

features or interest points of the background in order to decrease the computational

load such as [6], [7], [8], [9] and [10].

In this thesis, we propose a method that utilizes the feature tracking approach to track

the background of a video. The features are chosen as the corner points extracted from

each frame of the video by using well known corner detection technique, known as the

Harris corner detector [11]. Motion of the features is handled by a non-linear mea-

surement and a linear motion models. Since the measurement model is non-linear,

extended Kalman filter (EKF) can be utilized to handle the prediction and update

stages for tracking a feature. Extended Kalman filter deals only with state estimation

.In order to track multiple target, a method is needed for measurement assignment.

Although the multiple target Bayesian filter is the optimal solution, it is computa-

tionally very expensive because multi target posterior density is propagated. A new

method, the probability hypothesis density (PHD) filter, is proposed by Mahler [12],

as an approximation of the multiple target Bayesian filter. The first order statistical

moment of the state is propagated rather than the multiple target posterior density in
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the PHD filter (PHDF). Furthermore, data association is not needed for PHDF. Hence,

the PHD filter is capable of multiple target tracking when a time varying number of

targets and data association uncertainty exist. Using some assumptions, Vo and Ma

[13] proposed a version of the PHD filter as Gaussian Mixture PHD filter, namely

GMPHDF and given in [13]. The GMPHDF uses KF equations to propagate the co-

variance matrix and mean vector of the state. Existence of the linear observation and

motion models is precondition to use the GMPHDF. Since the observation model is

non-linear in our problem, a specific version of the PHD filter is used. This specific

filtering method is the same as the GMPHDF except that the new method uses the

extended Kalman filter equations instead of Kalman filter equations. The specific

filter is named as extended Kalman GMPHDF and denoted as EK-GMPHDF. The

flowchart of the proposed method is given in Figure 1.1.

Video to
Frame
Converter

 Sensor
 (Video
Camera)

Captured video Frames of the captured video

Harris Corner Detector
   (Feature Extraction)

Features for each frame

     EK−GMPHD 
           Filter

   
   Filter
  Output

Figure 1.1: Flowchart of the proposed method

We flesh the proposed method out in the following chapters. After validation of the

models and the proposed method, several experiments are done to investigate the

performance of the proposed method. Lastly, the extracted features of the background

are tracked by using the EK-GMPHDF to solve the defined problem.

1.1 Outline of thesis

In Chapter 2, the Bayesian filtering concept is briefly reviewed. Some commonly

used filtering approaches are also given in this chapter.
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In Chapter 3, the random set filtering approach, single and multiple target RFS are

explained. The basics of the PHD, GMPHDF and the EK-GMPHDF that is used

as the filtering approach of the proposed method in this thesis are also explained in

detail.

In Chapter 4, the feature extraction method, the motion model and the measurement

model are given.

The results obtained with the proposed method are elaborated in Chapter 5.

Finally, a brief summary of this study, the derived conclusions and the suggested

future work are given in Chapter 6, the last chapter.

3



4



CHAPTER 2

BAYESIAN FILTERING

In this chapter a brief review of Bayesian filtering is given. As stated in [14], Bayesian

signal processing is related with the estimation of the probability distribution of a ran-

dom signal, to perform statistical inference. The sequential estimation of the system

state at each time step according to received noisy measurement sequence is called

filtering as stated in [15]. The system and measurement processes are modeled as

probabilistic forms to apply filtering. Theoretically optimal and the commonly used

filtering approach is the Bayesian approach. In Bayesian approach, system states

are predicted based on process model and then updated by measurements. Bayesian

approach recursively propagates the updated state estimate (also called the posterior

pdf) using the Bayes’ theorem given in (2.1).

P(A | B) =
P(B | A)P(A)

P(B)
(2.1)

The posterior probability density uses all information about the system collected up

to that time step. In a general filtering framework, the process model can be stated as

in (2.2).

xk = fk|k−1(xk−1,wk−1) (2.2)

where, fk|k−1 is a known function that describes characteristics of the system, xk is the

system state and wk−1 is the process noise. Recursive update of the state xk is done

by using measurements �k = [Z1,Z2, ...,Zk]T at time k. Notice that, in this general

form, no assumptions are made about the noise characteristics, for instance additive,
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multiplicative etc. The only assumption about the noise is that it is white. In other

words, knowing wk−1 gives no information about wk for all k. The measurements are

related to the states at time k are given in (2.3).

Zk = hk|k(xk, vk) (2.3)

where, hk|k is a known function that describes the relationship between the state (xk)

and the measurement (vk) at time k. wk−1 and vk are used to compensate the mismatch

in the assumed and actual process and measurement models respectively. As it will be

seen, the general form has no analytic solution for the functions ( f , h) and noise types

(w, v). To obtain a closed form analytic solution, general model is constrained to a

specific case by using some approximations. For instance, the Kalman filter provides

such a solution for linear process and measurement models in the presence of additive

white Gaussian noise. In Bayesian approach, the posterior density, i.e p(xk | �k) is

estimated by using all received measurements up to time k, i.e. �k. Prediction density,

i.e. p(xk | �k−1), is calculated starting from the initial density p(x0 | Z0) where x0 is

the initial state and Z0 is the initial measurement set. Assuming that p(xk−1 | �k−1) is

known at time k − 1. The prior density or prediction is obtained as given in [16] and

follows;

p(xk | �k−1) =

∫
p(xk | xk−1)p(xk−1 | �k−1)dxk−1 (2.4)

where, p(xk | xk−1) is an order one Markov process and known as transition density.

This equation is sometimes called the Chapman-Kolmogorov equation [16]. The pre-

diction density p(xk | �k−1) is updated after the measurement set Zk is received at time

k according to Bayes’ rule as given in (2.5).

p(xk | �k) = p(xk | Zk,�k−1) =
p(Zk | xk,�k−1)p(xk | �k−1)

p(Zk | �k−1)
=

p(Zk | xk)p(xk | �k−1)
p(Zk | �k−1)

(2.5)

where
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p(Zk | �k−1) =

∫
p(Zk | xk)p(xk | �k−1)dxk (2.6)

p( Zk | xk ) is known and determined by the measurement model. Although the

Bayesian approach is theoretically optimal, the computational complexity of calcu-

lating the integrals may hinder the feasibility of this approach for practical imple-

mentation. Since these integrals are most of the time analytically intractable, certain

numerical methods are needed. The number of the numerical calculations increases

exponentially, if the dimension of the state (or measurement) vectors increases. In

spite of this drawback, there are popular filtering methods that use the Baysesian

approach for state estimation using some assumptions. In the following sections,

two commonly used filtering methods, the Kalman filter (KF) [17] and the extended

Kalman filter (EKF) [18] which use Bayesian approach, are explained. Other meth-

ods that are well studied in the literature are the unscented Kalman filter (UKF) [19]

and the particle filter (PF) [20]. However in the scope of this thesis we will restrict

ourselves to KF and EKF.

2.1 Kalman Filter

The Kalman filter (KF) proposed in [17] is the optimal filtering algorithm for recur-

sive Bayesian state estimation under some restrictive assumptions [16]. The assump-

tions are that the posterior density is Gaussian, measurement and process noises are

independent white noises with zero mean. The process and measurement models are

assumed to be linear. KF propagates the covariance matrix and mean vector of the

posterior density, since Gaussian density is completely characterized by its covariance

matrix and mean vector. The equations of process and measurement models [21] that

the Kalman filter uses are given in (2.7) and (2.8) respectively.

xk = Fk|k−1xk−1 + wk−1 (2.7)

zk = Hk|kxk + vk (2.8)
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Fk|k−1 is an nxn linear transition matrix and Hk|k is an mxn measurement matrix where

n and m are dimensions of the state and measurement vectors respectively. wk−1 and vk

are additive white Gaussian noises with covariance matrices Qk−1 and Rk respectively,

and given in the following equations.

wk−1 ∼ N(x; 0,Qk−1) (2.9)

vk ∼ N(x; 0,Rk) (2.10)

The notation shown in (2.11) will be used in this thesis for representation of any

Gaussian density.

N(x; m, P) =
1

√
| 2πP |

e−0.5(x−m)T P−1(x−m) (2.11)

In this representation; x is the argument, P is the covariance matrix and m is the

mean vector. The prior and posterior densities are represented in (2.12) and (2.13)

respectively.

P(xk | �k−1) = N(xk; x̃k|k−1, Pk|k−1) (2.12)

P(xk | �k) = N(xk; x̃k|k, Pk|k) (2.13)

The prior and posterior mean and the covariance matrices of the KF can be derived

as in [16]. The prior covariance matrix and mean are given in (2.15) and (2.14)

respectively.

xk|k−1 = Fk|k−1 xk−1|k−1 (2.14)

Pk|k−1 = Qk|k−1 + Fk|k−1Pk−1|k−1Fk|k−1
T (2.15)
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The posterior covariance mean is given in (2.16) where the term zk − Hk|kxk|k−1 is

innovation and the Kg,k is Kalman gain.

xk|k = xk|k−1 + Kg,k(zk − Hk|kxk|k−1) (2.16)

The Kg,k is given in (2.17).

Kg,k = Pk|kHk|k
T S k

−1 (2.17)

where the covariance matrix of the innovation is denoted by S k and given as follows;

S k = Hk|kPk|kHk|k
T + Rk (2.18)

The posterior covariance matrix of the state is given in (2.19).

Pk|k = Pk|k−1 − Kg,kS kKT
g,k (2.19)

The Pk can be rewritten in terms of the prior covariance matrix according to (2.17)

and (2.18) as

Pk|k = [Inxn − Kg,kHk|k]Pk|k−1 (2.20)

2.2 Extended Kalman Filter

In practice, process and measurement models are usually non-linear. The Kalman

filter cannot be used for these cases because the linearity assumption of the Kalman

Filter is no longer valid. Extended Kalman Filter (EKF) [18] is a suboptimal non-

linear filter that uses linear approximations of the process and the measurement func-

tions. The linear approximations of the non-linear functions are obtained by using the

first terms of their Taylor series expansions instead of the non-linear functions. The
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assumptions about the process and the measurement noises that are explained in the

Section 2.1 still hold. The non-linear process and measurement equations are given

in (2.21) and (2.22) respectively.

xk = fk|k−1(xk−1) + wk−1 (2.21)

zk = hk|k(xk) + vk (2.22)

fk|k−1 and hk|k are the non-linear analytic functions. The linear approximations of fk|k−1

and hk|k are

F̃k|k−1 =
∂ fk|k−1(xk−1)

∂xk−1

∣∣∣∣∣
xk−1=xk−1|k−1

(2.23)

H̃k|k =
∂hk|k(xk)
∂xk−1

∣∣∣∣∣
xk=xk|k−1

(2.24)

where, H̃k|k and F̃k|k−1 are Jacobians evaluated at the estimates of the state vector.

Although not true, it is assumed that both the predicted and the filtered states are

Gaussian. If the assumptions hold, the prior covariance matrix and mean can be

written as:

xk|k−1 = fk|k−1(xk−1|k−1) (2.25)

Pk|k−1 = Qk|k−1 + F̃k|k−1Pk−1|k−1F̃T
k|k−1 (2.26)

The posterior covariance mean is given in (2.27) where the term zk − Hk|kxk|k−1 is

innovation and the Kg,k is Kalman gain.

xk|k = xk|k−1 + Kg,k(zk − hk|k(xk|k−1)) (2.27)

The Kg,k is given as
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Kg,k = Pk|k−1H̃T
k|kS k

−1 (2.28)

where the covariance matrix of the innovation is denoted by S k. The equation for S k

is given below.

S k = H̃k|kPk|k−1H̃T
k|k + Rk (2.29)

The posterior covariance matrix of the state is given in (2.19).

Pk|k = Pk|k−1 − Kg,kS kKT
g,k (2.30)

Pk can be rewritten in terms of the prior covariance matrix using (2.28) and (2.29) as

Pk|k = [Inxn − Kg,kH̃k|k]Pk|k−1 (2.31)

where Inxn is an n by n identity matrix.

The extended Kalman filter works well, when the non-linear function is well char-

acterized by a linear function around the state estimates. As explained before, the

unscented Kalman filter and particle filter are the two other popular state estimation

methods that can handle the non-linearities in the process and measurement models

[16]. However these methods will not be investigated in the scope of this thesis.
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CHAPTER 3

RANDOM SET FILTERING

Many different algorithms have been developed to track multiple targets so far. There

have been an extensive study on multiple target tracking (see [22] and [23] for a

detailed analysis on the subject). Recursive Bayesian nonlinear filtering is accepted as

the theoretically optimal solution to track multiple targets in the presence of multiple

sensors [12]. However, the computational load of this filter is challenging even for the

single target tracking applications. In that case, the multiple target recursive Bayesian

filter is not applicable unless the computational load of the filter can be handled in

practice. The load can be decreased by using some approximatons like the constant-

gain Kalman filter as explained in Section 2.1. The constant-gain KF that propagates

the mean, is the fastest filtering approach for single target tracking.

Mahler [12] proposed a new method, namely Probability Hypothesis Density filter

(PHDF), for tracking a time varying number of multi-target based on the propagation

of the means in the presence of measurement and data association uncertainty, and

false alarms. The mean of the multi-target posterior distribution called as the PHD

which is a function whose integral in any region gives the mean value of the number

of targets in the region. Peaks of the PHDs are used to estimate the states. The

PHD filter models the states and the measurements as random finite sets (RFS) and

applies PHD recursion to propagate the posterior intensity. PHD is used instead of

the all multiple target posterior distribution because less computation. Although the

computational advantages of the PHD filter, absence of a closed-form solution of the

PHD filter is a drawback. In order to solve this problem, some assumptions given in

Section 3.2 are used. Detailed explanation about the random finite set formulation is

13



given below.

3.1 Multiple Target Filtering by using Random Finite Sets

In this section, theory of the random finite sets is explained to be used for multiple

target tracking. According to random finite set theory, size of the measurement set

and size of the state set may change for different time step k. A target that existed in

the previous time step may survive or die. There are also new-born targets. If number

of targets changes because of deaths or births, size of the target state changes. It is

possible that sensors can generate one measurement, more than one measurement or

no measurement for a target. Therefore, size of the measurement set is time-varying.

Furthermore, measurements are indistinguishable and also include false alarms and

noise. Only some of the measurements really belong to targets. Therefore states

and measurements are represented by random finite sets and given in (3.1) and (3.2)

respectively, where CoS (X) is the collection of all subsets of X and CoS (Z) is the

collection of all subsets of Z.

Xk = [xk,1, ..., xk,NoTk]
T ∈ CoS (X) (3.1)

Zk = [zk,1, ..., zk,NoMk]
T ∈ CoS (Z) (3.2)

As mention above, a target that existed in previous time step k − 1 may survive or die

at time step k and the process is characterized by a probability as known as survival

probability, i.e. pS ,k. The survival probability is a function of the target states xk−1

and given as pS ,k(xk−1). Since a target survives with the probability pS ,k, it dies with

the probability 1 − pS ,k(xk−1) at time k. An RFS model, i.e. S k|k−1(xk−1), is written

according to the behavior of xk−1 ∈ Xk−1 at time step k and is given following.

S k|k−1(xk−1) =

 xk, if target survives

∅, if target dies

This is done for each target that exists at the previous time step k−1. Size of the target
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state may also change with births at time k in addition to survivals and deaths. New-

born and spawned targets form the births. A target may spawn at time k from a target

that existed at previous time step k− 1. For instance, a missile is launched from a war

craft while the war craft is flying results in the birth of a new target. The other birth

type is spontaneous birth of a target at time k. The targets are known as new-born

targets. Consequently, the multiple target state is a union of the all survival, spawned

and new-born targets at time step k and is given in (3.3). S k|k−1(x`) is the RFS of the

survival targets, S pk|k−1(x`) is the RFS of spawned targets and Nk(xk) is the RFS of

new-born targets. In (3.3), RFSs are independent of each other and S pk|k−1(x`) and

Nk(xk) are problem dependent where x` ∈ Xk−1 and L is equal to size of the target state

(Xk).

Xk =

 L⋃
`=1

S k|k−1(x`)

 ∪  L⋃
`=1

S pk|k−1(x`)

 ∪ Nk(xk) (3.3)

At each time step k, a measurement set (Zk) is produced by the sensors for the multiple

targets. The targets are detected with the probability pD,k(xk) and missed with the

probability 1− pD,k(xk). Since the measurement set contains true target measurements

and false alarms (clutter), size of the Zk is time-varying. An RFS corresponding to

target state is produced, i.e. Mk, where

Mk(xk) =

 mk, if target is detected

∅, if target is not detected

Multiple target measurement RFS (zk) is the union of measurements and clutter as

given in (3.4), where Ck is problem dependent clutter RFS.

Zk =

⋃
x∈Xk

Mk(x)

 ∪Ck (3.4)

Multiple target transition density ( fk|k−1(Xk | Xk−1)) can be written using (3.3) as stated

in [12], [24]. The multiple target transition density ( fk|k−1) is a function or matrix that

characterizes the changes of the states from time step k − 1 to time step k. According

to relationship between the previous state (Xk−1) and the current state (Xk), fk|k−1 can

15



be linear or non-linear.

Similarly, multiple target likelihood density gk(Zk | Xk) can be written using (3.4). The

multiple target likelihood density gk(Zk | Xk) is a function or matrix that characterizes

the prediction of the measurement set from states of the targets at that time step k.

The gk(Zk | Xk) can be linear or non-linear according to measurement model.

As a consequence, multiple target prediction density and the multiple target posterior

density can be written using Bayes’ recursion, and given in (3.5) and (3.6) respec-

tively.

pk|k−1(Xk | �k−1) =

∫
fk|k−1(Xk | X) pk−1(X | �k−1)(dX) (3.5)

pk(Xk | �k) =
gk(Zk | Xk) pk|k−1(Xk | �k−1)∫

gk(Zk | X) pk|k−1(X | �k−1) (dX)
(3.6)

3.2 Probability Hypothesis Density Filter

It is hard to cope with the complexity of the joint multiple target likelihood when

the number of the targets increases in the multiple target tracking problems [25].

The PHD filter of Mahler is based on recursive propagation of the intensities [12].

An intensity is a non-negative function and represented by γ. Integration of γ over

any region that belongs to state space X gives the expected number of targets in that

region. In PHD filter, all the RFSs are modeled as Poisson RFSs that are completely

characterized by their intensities [13]. The parameters used in PHD filter are given

following.
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pS ,k : survival probability

pD,k : detection probability

nk : intensity of the new-born targets

spk|k−1 : intensity of the spawned targets

ck : intensity of clutter

γk|k−1 : prior intensity

γk : posterior intensity

PHD filter uses some assumptions which are used by almost all tracking algorithms.

The first assumption is that the clutter is Poisson and independent from targets. The

second assumption is that predicted number of targets is also Poisson [13]. The third

assumption is that statistics of targets and observations are independent of each other.

Based on these assumptions, prior density is calculated by using the intensity of the

survived targets, intensity of the spawned targets and intensity of the new-born tar-

gets. Integration of the density over the surveillance region gives the expected num-

ber of target at that region. Hence, integrations of the intensities mentioned above are

calculated separately and then summed to find the prior intensity (γk|k−1(x)), i.e. pre-

dicted number of targets at that region [26], as given in (3.7). After that, the posterior

intensity (γk(x)) is calculated by the summation of no measurement update and mea-

surement update as given in (3.10). No measurement update is done if the target is

not detected and given in (3.8). If the target is detected then the measurement update

is done and as given in (3.9).

γk|k−1(x) =

(∫
pS ,k(δ) fk|k−1(x | δ) γk−1(δ) dδ

)
+

(∫
spk|k−1(x | δ) γk−1(δ) dα

)
+ nk(x)

(3.7)

no measurement update : [ 1 − pD,k(x) ] γk|k−1(x) (3.8)

measurement update :
∑
z∈Zk

pD,k(x) gk(z | x) γk|k−1(x)

ck(z) +
∫

pD,k(β) gk(z | δ) γk|k−1(δ) dδ
(3.9)
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γk(x) = [ 1 − pD,k(x) ] γk|k−1(x) +
∑
z∈Zk

pD,k(x) gk(z | x) γk|k−1(x)

ck(z) +
∫

pD,k(δ) gk(z | δ) γk|k−1(δ) dδ
(3.10)

3.2.1 Gaussian Mixture Probability Hypothesis Density Filter

The Gaussian mixture PHD filter, GMPHDF for short, is proposed in [13], [27] and

[26]. The GMPHDF is implemented by [27] and [26] for several extended multiple

target tracking applications. As explained before, the PHD filter does not have a

closed form solution. Based on some assumptions, Vo and Ma [13] proposed a closed

form solution for the GMPHDF to track multiple targets. The first assumption is that

process and measurement models are linear Gaussian models as given in (3.11) and

(3.12) respectively.

fk|k−1(x | ξ) = N(x; Fk|k−1ξ,Qk|k−1) (3.11)

gk(z | x) = N(z; Hk|kx,Rk) (3.12)

where

Fk|k−1 : state transition matrix

Qk|k−1 : the covariance matrix of the process noise

Hk|k : observation matrix

Rk : the covariance matrix of the measurement noise

The second assumption is that the intensity of the new-born target RFS is modeled as

the summation of Gaussians and is given in (3.13). The m( j)
n,k indicates the maximum of

the new-born target intensity where Jn,k is maximum number of the new-born targets.

In other words, the first show up probability of the new-born targets is maximum

at m( j)
n,k. For instance, harbors for ships, parking lots for cars etc. P( j)

n,k denotes the

dispersion of the new-born targets’ intensity around the maxima. The w( j)
n,k is the

expected number of the new-born targets at the maximum, i.e. m( j)
n,k.
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nk(x) =

Jn,k∑
j=1

w( j)
n,k N(x; m( j)

n,k, P
( j)
n,k) (3.13)

The third assumption is that intensity of the spawned target RFS are modeled as sum-

mation of Gaussians and is given in (3.14) in common with the new-born target inten-

sity. The term F(i)
sp,k|k−1δ + d(i)

sp,k|k−1 indicates the expected state of the spawned target

and is a function of the previous state δ. A target spawns at neighborhood of its par-

ent. For instance, when a missile is launched from an aircraft it means that the missile

spawned from the parent, i.e. the aircraft. The Q(i)
sp,k|k−1 denotes the dispersion of the

spawned targets’ intensity around the parent. The w(i)
sp,k is the expected number of the

spawned targets from the parent δ.

γsp,k|k−1(x | δ) =

Jsp,k∑
i=1

w(i)
sp,k N(x; F(i)

sp,k|k−1δ + d(i)
sp,k|k−1,Q

(i)
sp,k|k−1) (3.14)

The fourth assumption is that the detection and survival probabilities are time invari-

ant.

pS ,k(x) = pS (3.15)

pD,k(x) = pD (3.16)

Before proceeding further, we would like to mention the two following facts that are

used in derivations.

Fact 1: If P and R are positive definite and symmetric matrices, multiplication of

the two Gaussians can be written by using the derivations which is explained in the

Section 3.8 of [16] as:

N(x; Hx,R) N(x; m, P) = ψ(z) N(x; m̂, P̂) (3.17)

where
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ψ(z) = N(z; Hm,R + HRHT ) (3.18)

m̂ = m + C [z − Hm] (3.19)

P̂ = [I −CH] P (3.20)

C = PHT [ HPHT + R ]−1 (3.21)

HT indicates the transpose of the matrix H and R−1 indicates the inverse of the matrix

R.

Fact 2: If P and Q are symmetric and positive definite matrices, integral of the

multiplication of two Gaussians can be written as another Gaussian [13] using Fact 1,

and is given in (3.22). In addition, dimensions of the given matrices, i.e. P,m,Q, d, F,

must be suitable.

∫
N(α; m, P) N(x; Fα + d,Q) dα = N(x; Fm + d,Q + FPFT ) (3.22)

We proceed by computing the predicted intensity assuming that the posterior intensity

is a Gaussian mixture as given below.

γk−1(x) =

Jk−1∑
j=1

w( j)
k−1 N(x; m( j)

k−1, P
( j)
k−1) (3.23)

At time step k, the predicted intensity is derived by using (3.22) and by substituting

(3.11), (3.15), (3.14), (3.13), (3.23) into (3.7). The predicted intensity is given in

(3.24). The predicted intensity has 3 components that correspond to survival, spawn-

ing and new-born targets.

γk|k−1(x) = γs,k|k−1(x) + γsp,k|k−1(x) + nk(x) (3.24)
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where γs,k|k−1 is the intensity of the survival targets, γsp,k|k−1 is the intensity of the

spawned targets and nk(x) is the intensity of the new-born targets. The predicted

intensity of the survival targets γs,k|k−1 is given in (3.25).

γs,k|k−1 = pS

Jk−1∑
i=1

w(i)
k−1 N(x; m(i)

s,k|k−1, P
(i)
s,k|k−1) (3.25)

where

m(i)
s,k|k−1 = Fk|k−1 m(i)

k−1 (3.26)

P(i)
s,k|k−1 = Qk|k−1 + Fk|k−1P(i)

k−1FT
k|k−1 (3.27)

The predicted intensity of the spawned targets is given in (3.28).

γsp,k|k−1 =

Jk−1∑
i=1

Jt−1∑
t=1

w(i)
k−1 w(t)

sp,k−1 N(x; m(i,t)
sp,k|k−1, P

(i,t)
sp,k|k−1) (3.28)

where

m(i,t)
sp,k|k−1 = F(t)

sp,k|k−1m(i)
k−1 + d(t)

sp,k−1 (3.29)

P(i,t)
sp,k|k−1 = Q(t)

sp,k|k−1 + F(t)
sp,k|k−1P(i)

sp,k−1(F(t)
sp,k|k−1)T (3.30)

If the previously explained four assumptions hold, then the prior intensity γk|k−1 is a

Gaussians mixture and is given in (3.31).

γk|k−1 =

Jk|k−1∑
j=1

w( j)
k|k−1 N(x; m( j)

k|k−1, P
( j)
k|k−1) (3.31)

The Jk|k−1 is the predicted number of Gaussians, w( j)
k|k−1 is the predicted weight, m( j)

k|k−1

is the mean of the prediction and P( j)
k|k−1 is the covariance matrix of the predictions.
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Once the prediction intensity is found, the posterior intensity can be found using the

measurements and predictions. In a similar manner, the posterior intensity can be

written as a sum of Gaussians and is given in (3.32).

γk = γNMU + γMU (3.32)

Equation 3.32 is written as the summation of the no measurement update intensity

(γNMU) and measurement update intensity (γMU). The no measurement update inten-

sity is calculated by using the prior intensity in the absence of measurement and is

given in (3.33).

γNMU = (1 − pD) γk|k−1(x) (3.33)

The measurement update is written as the summation of the all the intensities that are

calculated for each measurement z ∈ Zk and is given in (3.34). Zk is the measurement

set at time step k.

γMU =
∑
z∈Zk

γD,k(x | z) (3.34)

The intensity of measurement update γD,k(x | z) is calculated for each measurement

as given in the following equations.

γD,k(x | z) =

Jk|k−1∑
i=1

w(i)
k (z) N(x; m(i)

k|k(z), P(i)
k|k) (3.35)

where

w(i)
k (z) =

pD w(i)
k|k−1 ψ

(i)
k (z)

ck(z) + pD
∑Jk|k−1

t=1 w(t)
k|k−1 ψ

(t)
k (z)

(3.36)

m(i)
k|k(z) = m(i)

k|k−1 + K(i)
g,k (z − Hk|k m(i)

k|k−1) (3.37)
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P(i,t)
k|k = [ I − K(i)

g,kHk|k ] P(i)
k|k−1 (3.38)

K(i)
g,k = P(i)

k|k−1 HT
k|k ( Hk|k P(i)

k|k−1 HT
k|k + Rk )−1 (3.39)

Note that K(i)
g,k is the Kalman gain and ck(z) is the clutter intensity at time step k.

3.2.1.1 Truncation of Gaussian Terms

The number of Gaussian terms which are used to represent the posterior intensity

increases to a value given in (3.40). This makes the problem intractable. Hence a

truncation algorithm is required to decrease the number of the Gaussian terms. At

time k, the complexity of the posterior intensity increases without bound and given in

(3.40) where NoMk is the number of measurements Zk.

O( Jk−1 NoMk ) = O( Jk−1( 1 + Jb,k ) + Jn,k ) ( 1 + NoMk ) (3.40)

The truncation algorithm explained in [13] is basically formed by pruning and merg-

ing. Elimination of the Gaussian terms is called as pruning. Pruning algorithm elim-

inates the Gaussian terms whose weights are less than a pruning threshold Tp. After

this elimination, the pruned posterior intensity γp,k is used instead of the posterior

density γk which is given by

γp,k(x) = µ

Jk∑
j=Np

w( j)
k N(x; m( j)

k , P
( j)
k ) (3.41)

where, j = 1, ...,Np − 1 are the indices for the Gaussians terms whose weights are

smaller than Tp. µ is a scaling term to normalize the weights after pruning operation,

to ensure that the sum of the weights add up to the sum of the weights before pruning.

The equation for µ is given as follows.
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µ =

∑Jk
j=1 w(i)

k∑Jk
j=Np

w(i)
k

(3.42)

Joining the similar Gaussian terms is called merging. Statistically similar Gaussians

are merged by using a clustering method that chooses the largest weighted Gaussians

as the cluster center. Each Gaussian with a weight greater than the threshold Tp is

selected as a cluster center. Others are distributed among these centers according to

their distances from these centers. In (3.43), S oCC denotes the set of cluster center

candidates. The i term denotes the cluster center in (3.44).

S oCC = { j | w( j)
k > Tp} (3.43)

i = argmax j∈S oCC(w( j)
k ) (3.44)

After the cluster center is determined, distance between the center and the other tracks

are calculated. If the merging threshold, i.e. Tm, is greater than the distance, then the

Gaussians are merged. The merged Gaussians form the set of merged Gaussians,

namely S oMG and is given below.

S oMG = { j = S oCC | (m( j)
k − m(i)

k )T (P j
k)
−1 (m( j)

k − m(i)
k ) ≤ Tm} (3.45)

The new weights, means and covariance matrices are calculated as given below.

w̄(l)
k =

∑
j∈S oMG

w( j)
k (3.46)

m̄(l)
k =

1

w̄(l)
k

∑
j∈S oMG

w( j)
k x( j)

k (3.47)

P̄(l)
k =

1

w̄(l)
k

∑
j∈S oMG

w( j)
k ( P( j)

k + (m̄(l)
k − m( j)

k ) (m̄(l)
k − m( j)

k )T ) (3.48)
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After that a new center is determined and the process is repeated until all the tracks

are put into process. Finally the state estimation is done with the truncated Gaussians

that have weights are greater than target threshold TT . If the weight of a target is

greater than TT , the target is considered a real target and processed for at the state

estimation block. As explained in [13], the pseudo code of the truncation algorithm

is given below.

Algorithm 1 Truncation of the Gaussian Terms

1: procedure Truncation Algorithm(w( j)
k , m( j)

k , P( j)
k , Tw, Tm)

2: SoCC← { j | w( j)
k > TP}

3: repeat

4: ` ← ` + 1

5: i← argmaxi∈S oCCw( j)
k

6: S oMG ← {i ∈ S oCC | ( m( j)
k − m(i)

k )T (P( j)
k )−1 ( m( j)

k − m(i)
k ) ≤ Tm}

7: w̄(`)
k =

∑
i∈S oMG w(i)

k

8: m̄(`)
k = 1

w̄(`)
k

∑
i∈S oCC w( j)

k x( j)
k

9: P̄(`)
k = 1

w̄(`)
k

∑
i∈S oCC w( j)

k (P( j)
k + ( m̄(`)

k − m(i)
k )( m̄(`)

k − m(i)
k )T )

10: S oCC ← S oCC/S oMG

11: until S oCC → ∅

12: end procedure

3.2.2 Extended Kalman Gaussian Mixture Probability Hypothesis Density Fil-

ter

The extended Kalman GMPHDF, namely EK-GMPHDF, is proposed in [13] and [26].

The main differences between EK-GMPHDF and GMPHDF filter are the given pro-

cess and measurement models. The process model and/or measurement model are

non-linear in the EK-GMPHDF, whereas they are linear in the GMPHDF. The func-

tions of the process and the measurement models are fk|k−1(xk−1, βk−1) and hk|k(xk, εk)

and are given in below.

xk = fk|k−1(xk−1, βk−1) (3.49)
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zk = hk|k(xk, εk) (3.50)

The time invariance assumption of the survival probability pS and the detection prob-

ability pD still holds. Additionally, the new-born target intensity and the spawned

target intensity are still assumed Gaussians. The EK-GMPHDF is basically a special

version of the GMPHDF. The prior intensity of EK-GMPHDF is approximated as a

summation of Gaussians and is given in following.

γEK,k|k−1 → γs,k(x) + γsp,k(x) + nk(x) (3.51)

where γs,k is the approximated intensity of the survival targets, γsp,k is the approxi-

mated intensity of the spawned targets and nk is the intensity of the new-born targets.

The survival intensity is approximated as

γs,k|k−1 → pS

Jk−1∑
i

w(i)
s,k|k−1 N(x; m(i)

s,k|k−1, P
(i)
s,k|k−1) (3.52)

where

w(i)
s,k|k−1 = pS w(i)

s,k−1|k−1 (3.53)

m(i)
s,k = fk|k−1(m(i)

s,k−1|k−1, 0) (3.54)

P(i)
s,k|k−1 = G(i)

k−1Qk−1(G(i)
k−1)T + F(i)

k|k−1P( j)
k−1(F(i)

k|k−1)T (3.55)

The Fk|k−1 and the Gk−1 are the Jacobians of fk|k−1 and are given by

F(i)
k|k−1 =

∂ fk|k−1(xk−1, 0)
∂xk−1

∣∣∣∣∣
xt−1=m(i)

k−1

(3.56)
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G(i)
k−1 =

∂ fk|k−1(m(i)
k−1, βk−1)

∂βk−1

∣∣∣∣∣∣∣
βt−1=0

(3.57)

At time k, Jsp,k number of Gaussian components are produced by each Gaussian com-

ponent that existed at time k − 1. The spawned target intensity is given as follows.

γsp,k|k−1(x | m( j)
k−1) =

Jsp,k∑
t=1

w(t)
sp,k N(x; F(t)δ

sp,t−1 + d(t)
sp,t−1,Q

(t)
sp,t−1) (3.58)

Then, the spawned target intensity approximates as

γsp,k|k−1(x)→
Jk−1∑
i=1

Jsp,k∑
t=1

w(i)
k−1 w(t)

sp,k N(x; m(i,t)
sp,k|k−1, P

(i,t)
sp,k|k−1) (3.59)

where

m(i,t)
sp,k|k−1 = F(t)

sp,t−1m(t)
k−1 + d(t)

sp,t−1 (3.60)

P(i,t)
b,k|k−1 = H(t)

b,k−1Qb,k−1(H(t)
b,k−1)T + F(i)

b,k−1P(i)
b,k−1(F(i)

b,k−1)T (3.61)

The posterior intensity of the EK-GMPHDF approximates PHD as

γEK,k(x)→ ( 1 − pD,k ) γk|k−1(x) + pD γD,k(x | z) (3.62)

where, the parameters are

γD,k(x | z) =

Jk|k−1∑
j=1

w( j)
k|k−1 φ

( j)
k (z)

ck(z) + pD
∑Jk|k−1

t=1 w(t)
k|k−1 φ

(t)
k

N(x; m( j)
k|k, P

( j)
(k|k)) (3.63)

m( j)
k|k(z) = m( j)

k|k + K( j)
k ( z − hk (m( j)

k|k ) ) (3.64)

φ(i)
k (z) = N(z; η( j)

k|k−1, Rk + (H( j)
k )T P( j)

(k|k)H
( j)
k ) (3.65)
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H(i)
k|k =

∂( hk|k(xk, 0) )
∂xk

∣∣∣∣∣
xk=m(i)

k|k−1

(3.66)

P(i)
k|k = ( I − K(i)

k H(i)
k|k ) P(i)

k|k−1 (3.67)

K(i)
k = P(i)

k|k−1 (H(i)
k|k)

T (S (i)
k )−1 (3.68)

S (i)
k = H(i)

k|k P(i)
k|k−1 (H(i)

k|k)
T (3.69)
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CHAPTER 4

MODELING OF THE TRACKING PROBLEM

The difficulty in obtaining a model for the motion of the objects on the image plane is

the absence of the range information. Due to the lack of this information it becomes

difficult to relate the real position of the object to the corresponding pixel in the image.

To overcome this difficulty we made an assumption that all background objects appear

first around the vanishing point which is at a constant point on the image plane. Figure

4.1 shows the defined variables related with the appearance of a background object

on the image plane under the above assumptions.

Figure 4.1: The schematic representation of the relative motion of the background
object on the image plane. (a) x − y plane, (b) z − r plane.
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The camera is assumed to be moving with almost constant velocity along the +z-axis

which is perpendicular to the image plane. The background object (shown by a small

circle in Figure 4.1) is assumed to be r meters away from the z-axis. The motion is

related to the real motion of the camera that is represented by two variables, distance

between the camera and the position of the background object projected onto the z

axis, i.e. dk, and velocity of the camera, i.e. lk. When a background object is projected

onto the image plane, it is r′k pixels away from the vanishing point O. The image plane

is f ′ meters far from the camera. Designations of the symbols which are used in the

motion model are given below.

O : vanishing point of the image plane

` : velocity of the vehicle or camera

f ′ : focal length of the camera

dk : the actual distance between the camera and the position of the object

projected onto the z axis at time k

d0 : the actual initial distance between the camera and the position of the object

projected onto the z axis at time k = 0

r′k : projection of the object onto the image plane at time k

r : the actual radial distance between the object and the z axis

θk : angle between the object and the x coordinate at time k

Note that the actual distance dk is assumed to be a function of r′k. This assumption

corresponds to the assumption that all objects are seen for the first time at the van-

ishing point which is fixed for the given camera. However, the objects may not be

recognized by Harris corner detector (HCD). If they are recognized at r′k, then they

have the same motion characteristics with the ones starting at O. The relationship

between dk and r′k is given below.

dk =
f ′ r
r′k

(4.1)
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where f ′ and r are constants. Due to the lack of the range information it is not possible

to obtain true values for ( f ′ r) multiplication. During testing, we have used a constant

value, namely f for this term. Hence the relationship between dk and r′k becomes

dk =
f
r′k

(4.2)

4.1 Motion Model

The motion model is the model of the motion of a stationary object as observed on the

image plane while a video camera is approaching to it. The mathematical model used

is based on the assumption that the camera is moving in +z direction with a constant

velocity. The first parameter of the motion model is the velocity that is assumed

constant and denoted as lk at time k. The second parameter of the motion model is the

actual distance between the camera and the object. The distance decreases with the

velocity of the train or camera (lk) at each time step and denoted as dk at time k. The

last parameter of the model is the angle, namely θk, between the object and the x-axis.

θk is also assumed to be constant in time. Based on the given information above, the

state equations of the model are given in (4.3), (4.4) and (4.5) where wl
k, wd

k and wθ
k

are white independent Gaussian processes.

lk+1 = lk + wl
k (4.3)

dk+1 = dk − lk + wd
k (4.4)

θk+1 = θk + wθ
k (4.5)

Equations (4.3), (4.4) and (4.5) are the state equations. The measurements are the

(xk, yk) pixel positions of the object projected onto the image plane at time step k. The

measurements can be written in terms of the states as given in (4.6) and (4.7).
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xk =
f cos(θk)

dk
(4.6)

yk =
f sin(θk)

dk
(4.7)

Note also that, the states can be written in terms of the measurements and are given

in (4.8) and (4.9).

dk =
f√

x2
k + y2

k

(4.8)

θk = atan(
yk

xk
) (4.9)

The model is tested by comparing the real data (b) that is extracted from [28] and

the generated synthetic data (a) based on the motion model. The results are shown in

Figures 4.2 and 4.3. It is clearly seen that the motion model is suitable according to

the graphs shown in the following figures.
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a) generated measurement data based on the model
b) real measurement data

Figure 4.2: Generated data based on the model vs real data taken from the video
sequence manually - x axis
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a) generated measurement data based on the model
b) real measurement data

Figure 4.3: Generated data based on the model vs real data taken from the video
sequence manually - y axis

4.2 Measurement Model

Measurement model is used to define the relationship between states and the mea-

surements. In other words, measurements are predicted by using states based on the

measurement model. The measurements are the corner points of the background ob-

jects. The corner points (measurements) are extracted by using the HCD, which will

be explained in the next sections. Equations of the measurement model are given in

(4.10) and (4.11).

hx
k =

f cos(θk)
dk

(4.10)

hy
k =

f sin(θk)
dk

(4.11)
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where

hx
k : x coordinate of the measurement at time k

hy
k : y coordinate of the measurement at time k

vx
k : measurement noise for x-coordinate

vy
k : measurement noise for y-coordinate

4.3 Feature Extraction Method

In this thesis, our aim is to extract isolated points as features. The feature extraction

method must be invariant to rotation, intensity shift or scaling. These requirements

are satisfied by the popular interest point detector, namely the Harris corner detector

(HCD) [29]. The HCD will be explained next.

4.3.1 Harris Corner Detector

Harris corner detector is an auto-correlation detector that uses a local auto correlation

function, flac. The function gives measures for the local changes in a window by

shifting it in any direction on an image. In other words, the local auto-correlation

function gives how similar the image function, I(x, y), is at point (x,y) to itself when

shifted by (∆x, ∆y). A point is defined as a corner at the point where the flac has

distinct peaks. The flac is defined in [11], [30] as

flac(x, y) =
∑

(u,v)∈W

w(u, v) [ I(u, v) − I(u + ∆x, v + ∆x) ]2 (4.12)

where w(x,y) is a window centered at the point (x,y) and I(u, v) is the image function.

The window function can be either constant or Gaussian. Constant window takes the

value 1 if all points are in the window and 0 otherwise. Gaussian window is a better

choice to overcome the noise problem [11] and is given in (4.13).

w(u, v) = e−
(u−x)2+(v−y)2

2σ2 (4.13)
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The shifted image function, i.e. I(u + ∆x, v + ∆x), is approximated by its first-order

Taylor series expansion as

I(u + ∆x, v + ∆x) ≈ I(u, v) + Ix(u, v)∆x + Iy(u, v)∆y

= I(u, v) + [Ix(u, v)Iy(u, v)]

 ∆x

∆y

 (4.14)

where Ix and Iy are the partial derivatives of I(x,y) with respect to x and y respectively

[11]. The partial derivatives are given as

Ix =
∂I(x,y)
∂x ≈

I(x+1,y)−I(x−1,y))
2

Iy =
∂I(x,y)
∂y ≈

I(x,y+1)−I(x,y−1))
2

(4.15)

∑
w is used instead of

∑
(u,v)∈W w for simplicity. The auto-correlation function is ap-

proximated by a quadratic function, i.e. Q(x, y) for small shifts and is given in (4.16).

flac(x, y) =
∑

W[I(u, v) − I(u + ∆x, v + ∆x)]2

≈
∑

W(
[
Ix(u, v) Iy(u, v)

] ∆x

∆y

)2 = Q(x, y)
(4.16)

Q(x, y) =

 I2
x IxIy

IxIy I2
y

 =


∑

W I2
x

∑
W IxIy∑

W IxIy
∑

W I2
y

 (4.17)

Let λ1 and λ2 be the eigenvalues of Q(x, y). The eigenvalues form a rotationally

invariant description of Q(x, y) [11] and [30]. There are three cases to be considered

1. If both λ1 and λ2 are low, the local autocorrelation function flac(x, y) is flat. That

means flac(x, y) has small changes in any direction and the windowed image

region has approximately constant intensity.

2. If one eigenvalue is high and the other is low, the local autocorrelation function

flac(x, y) is ridge shaped. That means flac(x, y) has small changes along the ridge

direction and significant changes in the orthogonal direction. This indicates an

edge.
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3. If both eigenvalues are high, the local auto-correlation function flac(x, y) has a

distinct peak. flac(x, y) has significant changes in any direction. This indicates

a corner.

Corner response function, R, is used to measure the quality of a corner. Isolated corner

points are selected according to the magnitude of the corner response function. R is

characterized by eigenvalues of Q(x, y) as

R = (λ1 + λ2) − k(λ1λ2)2 (4.18)

where k is an adjustable positive constant. k is selected empirically between 0.04 and

0.06. R is positive and large at corner regions, small at flat regions, negative and large

at edge regions. Local maxima of R give the corner points. An adjustable threshold

for R can be used to eliminate some less quality corner points.

4.3.2 Parameter Settings for New-Born Targets

A measurement is a two dimensional vector denoted by z = [zx, zy]T which is an

element of Zk at time k. Unless the intensity is less than the predefined threshold

value, it means that the measurements correspond to the pixel positions comes from

a new-born target. The mean values of the parameters of initial state of a new-born

target, i.e. d0, l0 and θ0, are calculated by using the measurement z and is given in

(4.19) and (4.20) except l0. Since, l0 is the velocity of the vehicle and is assumed to be

same for all targets. Hence, l0 for a new-born target is given as a constant predefined

value. Covariance matrix of the state of a new-born target is taken to be same as the

Q given in (4.22).

d0 =
f
r

(4.19)

θ0 = atan(
zy

zx
) (4.20)
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Consequently, any target is born with its mean and covariance as given in following

equations.

mn =


d0

l0

θ0

 (4.21)

Pn =


w2

l 0 0

0 w2
d 0

0 0 w2
θ

 (4.22)
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CHAPTER 5

EXPERIMENTS AND RESULTS

5.1 Introduction

In this chapter the test results of the proposed algorithm will be given. The algo-

rithm is tested with both synthetic and real data. The synthetic data is used to validate

the algorithm and the real data is used to observe the performance of the proposed

method for real measurements. Synthetic data contains generated noisy measure-

ments and clutter. Generation process of the measurements is based on the motion

and measurement models. "True" state sequence is generated by using the motion

model. Related measurements are generated according to the measurement model by

considering the probability of detection, pD. Consequently, some measurements are

discarded according to pD. Clutter is generated by assuming uniform distribution in

the surveillance area. Predefined number of clutter points are generated and added to

the measurement set at each time step as well.

Firstly, single target tracking is done to validate of the proposed method. Since

the measurement equations are nonlinear and the noises are additive Gaussian white

noises, extended Kalman filter is a good solution for single target tracking. However,

a different solution is needed for multiple target tracking because the EKF filter can

track only a single target. Therefore, EK-GMPHDF is chosen because of its advan-

tages that are explained in Chapter 3.2. Before using the EK-GMPHDF for multiple

target tracking, the filter is tested for tracking a single synthetic target with different

clutter densities.

For multiple target tracking using EK-GMPHDF, birth process is critical and should
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be defined appropriately. In this thesis, it is assumed that a birth process occurs at a

predefined region around the vanishing point and the number of births is modeled as

a Poisson process. In our specific problem, targets cannot spawn. Therefore, if a new

target appears it is a new-born target. Obviously a target may die at any time. A target

dies when its weight is so small relative to other targets. If the measurements are not

close to its predicted position, weight of a target becomes small. The birth and death

processes are the same both for synthetic and real data experiments.

After the all experiments are done for synthetic data, the real data is used to investigate

the performance of the proposed EK-GMPHDF. Real data is the output of the HCD.

The first step of the proposed method is to extract the features from the movie. The

movie is taken from [28].

The video used in this study is 60 seconds long. The frame rate is 29 frames per

second and each frame has 1280x720 pixels. In the selected part, velocity of the train

is almost constant and the railway is linear. A frame captured from the video is shown

in Figure (5.1).

Figure 5.1: A frame captured form the movie

Each frame of the movie (5.1) is an input of the HCD. The HCD finds the corners

as interest points or features with their x and y coordinate values (pixels). A sample

output of the HCD is given in Figure (5.2) when its input is the image given in Figure

(5.1). The positions of the extracted features are the outputs of the HCD and named
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as the "real data".

Figure 5.2: Output of the HCD for the real data frame. Black dots show the corners

Figure 5.3 shows the union of all corners detected by the HCD for 100 frames.
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Figure 5.3: Multiple targets measurements taken from real video of time length 100
frames. All extracted features on 100 frames are superimposed into one picture

For each of these 100 frames, vanishing point is computed manually. The vanishing

point can be seen in Figure 5.3 according to perspective and the point is calculated by
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finding the crossing point of the lines in a frame. Here, the vanishing point is calcu-

lated manually using the railway lines. It is observed that the vanishing point is ap-

proximately same for each frame. As a result, the vanishing point is set to (693, 231)

pixel location. The center (0, 0) is moved to the vanishing point.

5.2 Single Target Tracking

We have done several experiments for single target tracking using the proposed model

and the EKF to investigate the performance of EKF and validate the model. Synthetic

measurement data is used in the experiments before real data. We flesh the experi-

ments out in the following sections.

5.2.1 Synthetic Measurement Generation for a Single Target

First step of the single target tracking is the generation of the synthetic measurement

data based on the model. In our case, a target can be born in a predefined specific

region. The position of the new-born target gives initial r0 and θ0 values. The r0 is

selected from uniform distribution on the interval [55, 65]. As mentioned before, the

real data is the output of the HCD for the input video [28]. θ0 value is selected from

a uniform distribution between −π and π. Then initial measurement z0 = [x0, y0]T is

calculated as given in (5.1) and (5.2).

x0 = r0 cos(θ0) (5.1)

y0 = r0 sin(θ0) (5.2)

After calculation of initial measurement vector, initial state x0 = [d0, l0, θ0]T is calcu-

lated. The third component of the state vector, θ0, is already known. d0 is selected

according to the value of r0 as

d0 =
f
r0

(5.3)
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and l0 is set to a fixed value of 0.8. The constant f (f = 1000 in our experiments)

and l0 is determined from the real data experiments. A target dies if generated

measurement is outside of the surveillance area. The surveillance area is taken as

([−640, 640]x[−360, 360]) that is similar with the real data.

After initiation a target is propagated according to (4.3), (4.4) and (4.5). After all

the states are calculated, measurements are generated according to (4.6) and (4.7) for

each time step. Hence the synthetic measurement set for a single target, i.e. Z =

[z1, ..., zk]T , is generated.

5.2.2 Single Target Tracking with EKF

The potential of EKF is investigated as a tracker for our problem. For this purpose,

the synthetic measurement obtained as explained in Section 5.2.1 is used. In the

simulations, the covariance matrix of the process noise, i.e. Q, and the covariance

matrix of measurement noise, i.e. R are selected as given in (5.4) and (5.5).

Q =


w2

l 0 0

0 w2
d 0

0 0 w2
θ

 (5.4)

R =

r2
x 0

0 r2
y

 (5.5)

where wl = 0.04, wd = 4, wθ = 0.0001 and r = 4. In figures 5.4, 5.5 and 5.6, the true

trajectory of the target (a), measurements (b) and the tracked trajectory (c) are shown

respectively. According to these results, it is decided that the EKF filter is capable of

tracking the non-linear movement of the background objects.
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Figure 5.4: Tracking results of EKF in x-t coordinate with synthetic data
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Figure 5.5: Tracking results of EKF in y-t coordinate with synthetic data
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Figure 5.6: Tracking results of EKF in x-y coordinate with synthetic data

After the validation of the EKF as the tracker, we used the EKF with the real data.

The model is the same as the synthetic data simulation. The only difference is the

measurements that are taken manually from the input video. The EKF can track the

target successfully according to results that are given in (5.7), (5.8) and (5.9).
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Figure 5.7: Tracking results of EKF in x direction with real data
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Figure 5.8: Tracking results of EKF in y direction with real data
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Figure 5.9: Tracking results of EKF in xy direction with real data

Figures show that the EKF using the given model that gives satisfactory performance

and also validates the model. Although the tracking performance of EKF is satis-

factory for tracking a single target, for multiple targets case some additional tools

are required. PHD filter is selected as the tracker of the multiple targets in this the-
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sis because of the absence of data association. When the Gaussian assumptions for

noises hold like in our case, GMPHDF can be used. However, GMPHDF uses lin-

ear Kalman filter equations that are not suitable with the models. Therefore, EKF

equations are used instead of the Kalman filter equations in GMPHDF and the filter

became EK-GMPHDF can track any number of targets. Tracking of a single target

with EK-GMPHDF is given in the following section.

5.2.3 Single Target Tracking with EK-GMPHDF

Single target tracking is performed to investigate the performance of the algorithm

before multiple target tracking. Similar to the single target EKF tracking given in the

previous section, the real data is used with detection probability pD = 1 and number

of clutter per unit volume nClutter = 10. In these experiments, another target mea-

surement is added that does not fit the model to see the performance of the filter. In

Figures (5.10) and (5.11), filter results are given as x − time, y − time and x − y. Fig-

ure (5.12), extracted number of targets is given. As it can be seen in the following

figures, the target can be tracked with EK-GMPHDF successfully. In Section 5.3,

tracking different number of targets with EK-GMPHDF is given in detail.

Single target tracking is performed to see the algorithm works well before multiple

target tracking. Similar with the single target EKF tracking given previous section, the

real measurements were used with detection probability pD = 1 and number of clutter

per unit volume nClutter = 10. In these experiments, there is added another target

measurement that does not fit the model to see the performance of the filter. In Figures

(5.10) and (5.11), filter results are given for both x and y coordinates separately and

together respectively. Figure (5.12), it is seen that how many target could be extracted.

As it can be seen in the following figures, the target can be tracked with EK-GMPHDF

successfully. In section 5.3, tracking different number of targets with EK-GMPHDF

will be given in detail. Single target tracking is performed to see the algorithm works

well before multiple target tracking. Similar with the single target EKF tracking given

previous section, the real measurements were used with detection probability (pD) =

1 and number of clutter per unit volume (nClutter) = 10. In these experiments, there is

added another target measurement that does not fit the model to see the performance
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of the filter. In Figures (5.10) and (5.11), filter results are given for both x and y

coordinates separately and together respectively. Figure (5.12), it is seen that how

many target could be extracted. As it can be seen in the following figures, the target

can be tracked with EK-GMPHDF successfully. In section 5.3, tracking different

number of targets with EK-GMPHDF will be given in detail.
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Figure 5.10: Tracking results of EK-GMPHDF in x and y coordinates with real data
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Figure 5.11: Tracking results of EK-GMPHDF in xy coordinate with real data
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Figure 5.12: Real target number vs Extracted target number(EK-GMPHDF - 1 Target)

5.3 Multiple Target Tracking with EK-GMPHDF

Multiple target tracking experiment are also done using both the real and the synthetic

data. The synthetic data experiments are done for different values of probability of

detection pD and number of clutter per unit volume nClutter. Output of HCD has nat-

ural false alarms with a unknown pD. In the real data experiments, different values of

probability of detection pD are used in the EK-GMPHDF algorithm. In EK-GMPHDF

algorithm, data association between measurements and the targets is not done. In ad-

dition, number of targets, birth times of the targets, death times of the targets, and

birth places of targets are not known. In order to detect and then track a target, a well

defined birth process must be used. The birth process is explained in the following

section.

5.3.1 Birth Process

According to the inspection of the video, births occur at positions that are approxi-

mately 60 pixels far from the center of the image. Intensity of a new-born target is
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modeled as an exponential distribution which is zero for r < r0 and given in (5.6) and

n(r) = λrer−r0u[r − r0] (5.6)

r =

√
z2

x + z2
y (5.7)

In (5.7), z = [zx, zy]T is an element of Zk at time k and is considered as a measurement

that belongs to a new-born target if the intensity of this pixel is greater than the prede-

fined threshold value. Then initial mean of the new-born target is calculated and the

target joins the survival targets. States of the initial mean, i.e. d0, l0 and θ0, are calcu-

lated by using the measurement z and given in (5.8) and (4.20) except l0. Because, l0

is the velocity of the vehicle and it is assumed constant for all targets. Hence, l0 for

the new-born target is given as a constant predefined value, i.e. l0 = 0.8. Covariance

of the new-born target is taken same as the Q given in (5.4).

d0 =
f
r

(5.8)

θ = atan(
zy

zx
) (5.9)

Consequently, any target births with its mean and covariance as given in following

equations.

mn =


d0

l0

θ0

 (5.10)

Pn =


w2

l 0 0

0 w2
d 0

0 0 w2
θ

 (5.11)
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5.3.2 Truncation Process

Merging and pruning processes are done as explained in Section 3.2.1.1. Furthermore,

the merging and pruning parameters are chosen similar to the parameter given in [13]

and [26]. Basically, there are three parameters, i.e. weight threshold (Tw), merge

threshold (Tm) and extracted weight threshold (Tew). At first, all the weights less than

Tw are eliminated. Tw is chosen as 10−5. After the elimination of the small Gaussians,

the remaining ones are clustered and each cluster is merged to single Gaussian.

After that, maximum intensity is found and then he distances between the maximum

intensity and the others are calculated. If any distance is less than the merge threshold,

i.e. Tm, the targets are combined. Tm is chosen as 2. Then, scaling of intensities is

done and finally the intensities that are greater than Tew are accepted as real extracted

targets. Here, Tew is chosen as 0.5.

5.3.3 Synthetic Measurement Experiments

The detection probability pD, clutter intensity and number of targets NoT are the pa-

rameters that effect the performance of the proposed method. In order to investigate

the performance of the proposed method, a performance measure is used. The mea-

sure is the average of the differences between the number of true tracks and number

of the extracted tracks. Furthermore a single measure that shows the performance for

correct number of targets is defined as follows.

PM = 1 − EoF (5.12)

where

EoF =
1∑T H
k=1

T H∑
k=1

| NoT t
k − NoT e

k | (5.13)

T H denotes the time horizon; NoT t
k is the true number of targets at time k and NoT e

k

is the output of the system as number of targets.
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The performance measure is calculated as the average of results of 15 runs. The mea-

surement data corresponding to a target is generated as given in Section 5.2.1. All

the measurements corresponding to targets are generated explicitly and then com-

bined according to birth times of the targets. Birth times of the targets are determined

according to Poisson distribution with mean λ = 15.

In the first set of experiments to observe the effects of number of targets, detection

probability pD is set to 1 and the number of clutter per time step NoC is set to 10.

The typical results obtained from a single run when NoT = 10 are given in Figures

5.13, 5.14, 5.15 and 5.16. In this experiment, the survival probability pS is set to 0.99,

number of clutters per time step NoC is set to 10. In Figure 5.13, generated synthetic

measurement data for 10 targets is shown. The extracted and predicted targets are

shown in the Figure 5.14. The blue dots show the predicted target positions and the

magenta circles show the filter output and the black crosses show the measurements.

In Figure 5.15, filtered target positions are shown in x and y axes separately with

respect to time horizon. The extracted number of targets and the real number of

targets are shown in Figure 5.16.
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Figure 5.14: Tracking result of EK-GMPHDF with synthetic data
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Figure 5.15: Tracking results of EK-GMPHDF in x and y coordinates with synthetic
data
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Figure 5.16: Extracted number targets vs real number of targets: o represents the
extracted and x represents the number of targets

Table 5.1 gives this performance measure (PM) for different number of targets (NoT ).

As it can be seen in Table (5.1), performance of the proposed method decreases when

the number of targets increases.

NoT 10 20 30 40 50
EoF 2.36% 4.95% 7.45% 8.86% 10.13%
PM 97.64% 95.05% 92.55% 91.14% 89.87%

Table5.1: Performance of the EK-GMPHDF for different number of targets (NoT )

In the second set of experiments to observe the effect number of clutters per time

step (NoC), the detection probability and number of targets are kept constant as pD =

1 and NoT = 10. The performance of the filter slightly decreases when the NoC

increases and is given in Table 5.2.

NoC 10 20 30 40 50
EoF 2.36% 2.83% 3.76% 3.97% 4.13%
PM 97.64% 97.17% 96.24% 96.03% 95.87%

Table5.2: Performance of the EK-GMPHDF for different clutter intensity (NoC)

In the third set of experiments to observe the effect of detection probability pD to the
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performance of the filter, number of clutter per time step over the surveillance area is

kept constant as NoC = 10. The number of targets is also kept constant as NoT = 10.

Performance of the EK-GMPHDF for different detection probability (pD) is given

Table 5.3. If the detection probability decreases, then the performance of the filter

decreases according to Table 5.3.

pD 1.00 0.98 0.95 0.9
EoF 2.36% 5.77% 7.80% 13.02%
PM 97.64% 94.23% 92.20% 86.98%

Table5.3: Performance of the EK-GMPHDF for different probability of detection
(pD)

To sum up the calculated errors and the performances of the proposed method for

artificial data is given in the following figures. In the Figure 5.17, output errors of

the filter are shown for different values of the parameters. The performance of the

EK-GMPHDF is given in Figure 5.18.
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5.3.4 Real Measurement Experiments

The video given in [28] is and used as the input of the proposed method to track the

background objects. The video is processed image by image by the HCD that formed

a measurement set, i.e. zk, at time k. It is not possible to know which measurements

are real which ones are clutters. Furthermore, number of targets, exact birth positions,

birth times, death times, detection, and survival probabilities of the targets are other

unknown parameters. Although the detection and survival probabilities are unknown,

we have used they are predefined constant values in these experiments. The proba-

bilities are set empirically according to the video. Birth position and birth time of

a new-born target are determined according to birth process as explained in Section

5.3.1. Additionally, a target dies when it is in the outside of the image plane. Several

experiments are done for different values of the parameters that are explained above.

As a result, the parameters are approximately found to be suitable for the input and

the proposed method.

In this experiment, the same parameters are used that are given in Section 5.3. In

Figure 5.19, all the predicted and the extracted targets are shown. The blue dots

are the predicted positions of the targets and the magenta circles are the extracted
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positions of the targets. Measurements are shown as the black crosses and the cyan

triangles show the last extracted state. It helps to follow the movements of the tracks.
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Figure 5.19: Tracking results of EK-GMPHDF in x and y coordinates with real data
taken from the video camera

The number of extracted targets is given in Figure 5.20.
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Figure 5.20: Number of the extracted background objects by using EK-GMPHDF
and output of the video camera
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In order to investigate that the proposed method tracks only the background objects

which behave according to given models, the following experiment is done. Measure-

ments for a target which are stationary at fixed points are added to HCD output and

the union of these measurements is used as the input of the proposed EK-GMPHDF.

Since the measurements of the target are incompatible with the motion and the obser-

vation model, the EK-GMPHDF does not detect and track the object. Result of the

experiment is shown in Figure 5.21 where the black crosses in the red circle are the

added measurements belong to the irrelevant target.
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Figure 5.21: Tracking results of EK-GMPHDF in x and y coordinates with added
irrelevant data to the real data

The measurements associated to the related targets are found to investigate conve-

nience of the true measurements and the extracted targets. The algorithm takes a

matrix as an input and matches the targets and measurements according to a given

criteria. In our case, the criteria is a function of (r, θ). r is the radial distance from

the vanishing point and the θ is the angle between the position in x-y coordinate and

x axis. The criteria is named as the cost function, i.e. fauc, and given in (5.14).

fauc =
1

cnorm
( mr ( rt − rm)2 + Mθ ( θt − θm)2 ) (5.14)
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The mr and Mθ are the constant multipliers. Since θ is more reliable parameter than

r in our problem, Mθ is selected as 100 and mr is selected as 1. The normalization

parameter, i.e. cnorm, is selected as 1000. The rt, rm and θm are calculated as given in

followings. θt is known since it is a state parameter.

rt =

√
(

f cos( θm )
d

)2 + (
f sin( θm )

d
)2 (5.15)

rm =

√
(x2

m + y2
m (5.16)

θm = atan(
ym

xm
) (5.17)

The states of the targets and the measurements are in the form of [d l θ]T and [xm ym]T

respectively. After the auction algorithm is run with this set up, the measurements are

associated to the related targets and are given in Figure 5.22. The black crosses are

the measurements and the magenta circles are the positions of the extracted tracks.
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Figure 5.22: Tracking results of EK-GMPHDF in x and y coordinates after auction
algorithm is run
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CHAPTER 6

SUMMARY AND CONCLUSIONS

In this thesis study, we have proposed a method that utilizes the feature tracking ap-

proach to track the background of a video. Firstly, the features are chosen as the

corner points of the background objects and are extracted from each frame of the

video by using well known corner detection technique, namely the Harris corner de-

tector. Then a linear process model and a non-linear measurement model are utilized

to track these features. The performance is tested using both the real and the syn-

thetic data. The real data in these tests are manually extracted from the test video.

The results show that models are suitable for the problem under consideration. To

handle the non-linear measurement model EKF type approach is utilized in the GM-

PHD framework. Then the proposed method, namely EK-GMPHDF, is tested with

synthetic data generated for a time varying number of targets. Performance of EK-

GMPHDF is investigated by altering the number of targets, detection probability and

clutter density. It is observed in these tests that the performance of the filter increases

with higher detection probability and lower number of targets. Effect of the clutter

density is relatively small. The parameter configuration of the proposed method is

determined with the test results obtained from the synthetic data. As a result, all the

features of the background which fit the models are successfully tracked by the pro-

posed method. Lastly, it is observed from the test results that the proposed method can

be used for background tracking of a video instead of classical background tracking

methods under some assumptions.
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6.1 Future Work

The performance of the proposed background tracking algorithm depends on the mo-

tion and the observation models. Better models can be designed to improve the per-

formance of the proposed method depending on the configuration of the camera on

the vehicle and the a more accurate knowledge about the motion dynamics. More-

over, a better feature extraction method can be utilized, again depending on the mea-

surements hardware. The proposed method contains many adjustable parameters that

influence the performance. Different combinations of these parameters can be stud-

ied to increase the overall performance. In addition, the proposed method can be

improved to be used in the case of maneuvering motion of the vehicle. Finally, a

post processing method can be utilized which may provide improvement in the per-

formance of the tracker.
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