IDENTIFYING THE PUTATIVE G PROTEIN COUPLED RECEPTOR/S CANDIDATES OF COCAINE AND AMPHETAMINE REGULATED TRANSCRIPT (CART) PEPTIDE

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MERVE KASAP

IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGY

FEBRUARY 2014

Approval of the thesis:

IDENTIFYING THE PUTATIVE G PROTEIN COUPLED RECEPTOR/S CANDIDATES OF COCAINE AND AMPHETAMINE REGULATED TRANSCRIPT (CART) PEPTIDE

submitted by **MERVE KASAP** in partial fulfillment of the requirements for the degree of **Masters of Science** in **Biological Sciences Department**, **Middle East Technical University** by,

Prof. Dr. Canan Özgen Dean, Graduate School of Natural and Applied Sciences	
Prof. Dr. Gülay Özcengiz Head of Department, Biological Sciences	
Assoc. Prof. Dr. Çağdaş D. Son Supervisor, Biological Sciences Department , METU	
Examining Committee Members:	
Prof. Dr. Ufuk Gündüz Biological Sciences Department, METU	
Assoc. Prof. Dr. Çağdaş D. Son Biological Sciences Department, METU	
Assoc. Prof. Dr. Mesut Muyan Biological Sciences Department, METU	
Assoc. Prof. Dr. Tülin Yanık Biological Sciences Department, METU	
Assist. Prof. Dr. Bala Gür Dedeoğlu Biotechnology Institute, Ankara University	

Date:

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: Merve KASAP

Signature:

ABSTRACT

IDENTIFYING THE PUTATIVE G PROTEIN COUPLED RECEPTOR/S CANDIDATES OF COCAINE AND AMPHETAMINE REGULATED TRANSCRIPT (CART) PEPTIDE

Kasap, Merve

M. Sc. Department of Biology Supervisor, Assoc. Prof. Çağdaş D. SON

February, 2014. 80 pages

Cocaine and amphetamine regulated transcript (CART) peptides are neurotransmitters and endocrine factors in the nervous system and periphery. CARTPT codes for a neuropeptide hormone with a number of biological roles which are important for the mammalian physiology such as controlling feeding behavior, drug reward, bone remodeling, neuroendocrine function, sensory processing, stress anxiety, cardiovascular function, gastrointestinal motility and development. In hypothalamus, behavioral and drug studies showed that CART can suppress the feeding behavior. Also, due to having neuroprotective survival promoting properties, and and ability to initiate differentiation of neurons in vitro, CART peptides appear early in the development of the CNS and other tissues. It is suggested that they have a role in the development of specific regions of the brain, GI tract, pancreas and ovary. Although CART peptide plays very important roles and has important physiological functions, CART receptor/s has not been identified yet. There are two forms of the CART peptide: CART-I (55-102) and CART-II (61-102). These active forms cause an increase in c-Fos levels in a variety of neurons.

Because of the observed effects of CART peptide on differentiation and development, CART 55-102 effects are examined to alter the MAPK cascade and the phosphorylation state of ERK1 and 2. ERKs are known to be activated by a variety of growth factors, hormones and neurotransmitters. It is found that CART peptide stimulation strongly regulates ERK activity in pituitary-derived cell lines. The CART effect is blocked by inhibitors such as U0126, genistein and pertussis toxin, indicating the involvement of the upstream kinases, MEK1 and 2. Therefore, the involvement of a G_i/G_0 coupled GPCR in CART signaling is considered as possibility. G_i/G_0 is a member of α subunit of heterotrimeric G-protein that inhibits the production of cAMP from ATP. Also, previous electrophysiological studies suggested that the effects of CART may involve G-proteins, but concrete biochemical evidence for a G-protein-mediated pathway activated by CART has been lacking. The CART receptor is suspected to be a GPCR, possibly one that coupled to G_i/G_0 .

Keywords:

CART peptide, receptor, ERK phosphorylation, AtT-20 cell line, N2a cell line

"KOKAİN VE AMFETAMİN İLE REGÜLE EDİLEN TRANSKRİPT" (CART) PEPTİDİNİ TANIDIĞI VARSAYILAN G-PROTEİNE KENETLİ RESEPTÖR ADAYLARININ TAYİNİ

Kasap, Merve.

Yüksek Lisans, Biyoloji Bölümü Tez Yürütücüsü: Doç. Dr. Çağdaş D. SON

Subat 2014, 80 Sayfa

CART (Kokain ve Amfetamin ile Regüle Edilen Transkript) peptidi; mekanizmalarında, yeme ve ödül ilaç bağımlılığı, stres, kardiovasküler aktiviteler ve kemik yenilenmesinde görev alan önemli nörohormon/modülatörlerden biridir. Hipotalamustaki davranış ve ilaç çalışmaları CART peptidinin yeme alışkanlığını baskıladığını göstermiştir. Nöronlarda koruyucu etki göstermesi ve nöron başkalaşmasını sağlama özelliklerinden dolayı gelişme evresinin erken süreclerinde merkezi sinir sisteminde önemli rol oynamaktadır. Ayrıca beyinin belli bazı bölgelerinde, hipofizde, adrenal bezlerde, pankreasta, yumurtalıklarda ve mide-bağırsak yolunda yüksek miktarlarda sentezlenmektedir. Bu önemli fizyolojik fonksiyonlara sahip olmasına rağmen CART reseptör ya da reseptörleri henüz belirlenememiştir. CART peptidinin; CART-I (55-102) ve CART-II (62-102) olmak üzere iki aktif formu bulunmaktadır. Bu aktif peptidler pek çok nöronda c-Fos seviyesini arttırarak sinyal yolaklarını indüklemektedir. Gelişme ve başkalaşma evrelerinde önemli rol oynamasından dolayı, MAPK yolağındaki yer alan ERK 1-2'nin fosforilasyonuna etkileri incelenmiştir. Hipofizden alınmış hücre

hatlarında CART; büyüme faktörlerini, hormonları ve nörotransmiterleri aktive etmekten sorumlu ERK (Hücre dışı sinyalle regüle edilen kinaz) aktivitesini uyarmaktadır. ERK1 ve 2'nin aktifleşmesini indükleyen CART'ın etkisi; boğmaca toksini, genistein ve U0126 gibi MEK (MAPK/ERK kinaz) inhibitörleri tarafından bloke edilmekte, ayrıca MEK1 ve 2 kinazları da bu oluşuma katılmaktadır. Böylece, fosfo-ERK (PERK) oluşumunun engellenmesiyle, CART sinvalinin G_i/G_o, G proteine kenetli reseptör alt biriminin, katılımıyla gerçekleştiği düşünülmektedir. Gi/Go alt birimi ATP'den cAMP oluşumunu engellemektedir. Elektrokimyasal çalışmalar sonucunda CART etkisinin G proteine bağlanan reseptörler (GPCR) üzerinde gerçekleştiği düşünülse de, deneysel analizlerin yetersizliğinden reseptörler tam olarak tanımlanamamıştır. Bugüne kadar yapılan araştırmalarda CART reseptörünün özellikle Gi/Go kenetli bir reseptör GPCR olduğu düşünülmektedir.

Anahtar Kelimeler: CART peptidi, reseptör, ERK fosforilasyonu, AtT-20 hücre hattı, N2a hücre hattı

To my dearest beautiful blue eyed friend-my beloved mother...

ACKNOWLEDGEMENTS

In a long night of this August, I try to write all over again once more. Unbelievably, I am writing for the end of a chapter of my life this time. There were a lot of people to thank... First and above all, I pay my sincere respect to my cheerful and patient advisor Assoc. Prof. *Çağdaş Devrim SON*. Whenever I knock his already welcoming door, I received infinite support. Little or huge from every kind, problems have just flown away with his guidance and supervision. I am honored to be his student.

I want to thank to Assoc. Prof. *Tülin YANIK* for her warm welcome. I had the chance to meet this project thanks to her.

When I found myself in the analysis part, actually the rough part of this study, I thought that I was in a nightmare because I had no idea what to do. Then, I saw two shining stars; Assist. Prof. *Bala Gür DEDEOĞLU*, and Assist. Prof. *Yeşim Aydın SON*. For more than three months, I was welcomed with my all kinds of questions. My greatest appreciation is obviously for them. Their contributions are irreplaceable for this study.

Then, I'd like to inform all the readers of this thesis that I was nothing without the help of my two teachers, my dear faithful friends *Gizem KURT* and *Aktan ALPSOY*. They were always there for me, when I got stuck with my q-results, western blot gels and whatsoever. I owe these two beautiful friends more than a simple "thank you". Wherever I go it doesn't matter, I will have two more cups of coffee for them in case they come.

Moreover, there is someone who deserves the gold medal for his endless company, my dear friend *Hikmet Taner TEKER*. He is the origin of philosophy of my thesis, translation of the naivety, and reminder of that there is still good in people. He makes me see "the good" in every living on earth. I always appreciate what he's done for me. He is the invisible hero of this thesis.

For the passing seven years, from waking me up in the mornings to dragging me to library when I feel that I cannot move anymore, I had her: *Seren ATILGAN*. I will always be the lucky one for having her by my side. She's the only friend. She's that *song* playing in the depths of my mind. I want to thank her for saving my soul and of course in a mediate manner for saving this thesis.

There are two guys also; I cannot forget to mention them here: my little brother *Şerif Mert KASAP* and my dear father *Abdullah KASAP*. I'd like to thank them for their fabulous support; especially, for the online lecture on Microsoft Office.

For now and forever, I'd like to thank to my dear friend: my beautiful mother. She is the creator of this thesis from many aspects. She always knew when my primers were coming, or where I was wrong. I hope I can make her proud by dedicating this study to her.

To conclude, as in the song: "The longer I run, the lesser I find". This is the storyline of this study. How happy I would be, if I could contribute to unknowns' world of science by adding it one more.

Merve Kasap

February, 2014.

TABLE OF CONTENTS

ABSTRACT V				
ÖZVII				
ACKNOWLEDGEMENTSXI				
TABLE OF CONTENTSXIII				
LIST OF TABLESXV				
LIST OF FIGURESXVI				
LIST OF ABBREVIATIONSXVIII				
CHAPTER 1				
INTRODUCTION1				
1.1. Cocaine and Amphetamine Regulated Transcript				
1.1.2. CART Peptide Structure				
1.1.3. Tissue Distribution of the Peptide				
1.1.4. Biogenic Actions of the CART Peptide				
1.1.4.1. In Energy Homeostasis				
1.1.4.2. In Bone Remodeling				
1.1.4.3. In Stress Response				
1.1.5. CART Induced Signaling				
1.1.6. CART Receptor(s)				
1.2. G Protein Coupled Receptors14				
1.2.1. Classification				
1.2.1.1. Class A GPCRs 16				
1.2.1.2. Class B GPCRs 17				
1.2.1.3. Large N-terminal Family B-7 Transmembrane Helix				
1.2.1.4. Frizzled/Smoothened receptors				
1.2.1.5. Class C GPCRs				
1.2.1.6. Taste 2 and Vomeronasal 1 receptors				
1.2.2. GPCR Signaling Mechanisms				
1.3. Aim of the Study 22				
CHAPTER 2				
MATERIALS AND METHODS23				
2.1. Microarray Data Analysis				
2.2. Cell Culture				
2.3. RNA Extraction				
2.4. DNase treatment				

2.5. Agarose Gel Electrophoresis for total RNA	36
2.6. cDNA Synthesis	37
2.7. Primer Design	37
2.8. q-RT-PCR	46
CHAPTER 3	49
RESULTS & DISCUSSION	49
3.1. Microarray Data Analysis Results	49
3.2. q-RT-PCR Results	54
3.2.1. Results for <i>Bai 3</i> gene	55
3.2.2. Fold Changes of Selected Gene Expressions	59
CHAPTER 4	63
CONCLUSION	63
REFERENCES	65
APPENDIX	71
A	71
A1. Casr	71
A2. Crhr1	72
A3. Fzd10	73
A4. Glp1r	74
A5. Glp2r	75
A6. Gpr113	76
A7. Gpr116	77
A8. Gpr133	78
A9. Grm1	79

LIST OF TABLES

Table 1 Growth Media of N2a cells	
Table 2 Growth Media Components of AtT-20 cell line	
Table 3 Primer Sequences designed for the targeted genes and the p	roduct
size	
Table 4 SYBR Green Mixture Components for q-RT-PCR	
Table 5 2-step Reaction Conditions for q-RT-PCR experiment	
Table 6 Genes Selected By Microarray Data Analysis	
Table 7 Bai3 and GAPDH products loaded in agarose gel	59

LIST OF FIGURES

Figure 1 Ensembl exon-intron view of human CARTPT	2
Figure 2 Amino acid sequence of CART from UniProtKB, ID number:	
Q16568	3
Figure 3 Human CART shows a 95% homology with rat and mouse	3
Figure 4 3D structure of CART peptide from PyMOL v1.6.	4
Figure 5 Energy Homeostasis	5
Figure 6 Bone remodeling via CART signaling regulation	6
Figure 7 Pie chart of gene-product representation for oGPCRs	10
Figure 8 Three-state model	14
Figure 9 Examples to different classes of GPCRs and their ligands	16
Figure 10 View of data set GSE25901 in GEO	23
Figure 11 View of data set GSE25901 in GEO continues	24
Figure 12 GEO2R Server Data Representation of the platform GPL1105	59 25
Figure 13 Screenshot of BRB ArrayTools Add-in Excel	26
Figure 14 A screenshot in BRB ArrayTools Array Importer Wizard	26
Figure 15 Data Folder Tab of BRB ArrayTools	27
Figure 16 Platform Preferences of BRB ArrayTools	27
Figure 17 Dual-channels Preference of BRB ArrayTools	28
Figure 18 Column Selection for the data import in BRB ArrayTools	28
Figure 19 a, b Annotation tab of the BRB ArrayTools	29
Figure 20 a, b, c Filters Option of BRB ArrayTools	30
Figure 21 After successful import of the data, excel sheet view	32
Figure 22 Annotation File of Platform opened in GEO2R	33
Figure 23 Webgestalt Annotation of the data set	34
Figure 24 NCBI Primer-BLAST results for Crhr1 gene	40
Figure 25 Primer details of Crhr1 gene	40
Figure 26 BLAST results of the picked primer	41
Figure 27 Primer 3 Output of crhr1 gene	42
Figure 28 BLAST result of the 2nd primer from Primer3 output	43
Figure 29 Detailed report of the desired primer pair in "OligoAnalyzer 3	3.1"
	44
Figure 30 Experimental Design of cDNA dilutions for N2a samples	46
Figure 31 Raw Data Result after BRB ArrayTool analysis	49
Figure 32 A sample from GEO2R Top 250 genes selection	50
Figure 33 Scatter Plot of Data Analysis by BRB ArrayTools	51
Figure 34 KEGG Pathway Analysis Results	53
Figure 35 Neuroactive ligand-receptor interactions	53
Figure 36 Long-Term Depression	54
Figure 37 Samples with color interpretations	55
Figure 38 Quantitation of <i>Bai3</i> concentrations	56
Figure 39 Melt Curve of <i>Bai3</i>	56
Figure 40 Standard Curve of <i>Bai3</i>	57

Figure 41 Gel view of Bai3 and GAPDH q-RT-PCR products	58
Figure 42 Fold Changes of Selected Genes	60
Figure 43 Quantitation of <i>Casr</i> concentration	71
Figure 44 Melt Curve of <i>Casr</i>	71
Figure 45 Quantitation of <i>Crhr1</i> concentration	72
Figure 46 Melt Curve of <i>Crhr1</i>	72
Figure 47 Quantitation of <i>Fzd10</i> Concentration	73
Figure 48 Melt Curve of <i>Fzd10</i>	73
Figure 49 Quantitation of <i>Glp1r</i> Concentration	74
Figure 50 Melt Curve of <i>Glp1r</i>	74
Figure 51 Quantitation of <i>Glp2r</i> Concentration	75
Figure 52 Melt Curve of <i>Glp2r</i>	75
Figure 53 Quantitation of <i>Gpr113</i> Concentration	76
Figure 54 Melt Curve of <i>Gpr113</i>	76
Figure 55 Quantitation of <i>Gpr116</i> Concentration	77
Figure 56 Melt Curve of <i>Gpr116</i>	77
Figure 57 Quantitation of <i>Gpr133</i> Concentration	78
Figure 58 Melt Curve of <i>Gpr133</i>	78
Figure 59 Quantitation of <i>Grm1</i> Concentration	79
Figure 60 Melt Curve of <i>Grm1</i>	79
Figure 61 Quantitation of <i>Sctr</i> Concentration	80
Figure 62 Melt Curve of <i>Sctr</i>	80

LIST OF ABBREVIATIONS

Aa	Amino Acid			
AgRP	Aguti-Related Peptide			
ATP	Adenosine Tri Phosphate			
AtT-20	Iouse pituitary epithelial-like tumor cell line			
BLAST	Basic Local Alignment Search Tool			
BRB	Biometric Research Branch Array Tools			
Array I ools Bp	Base pairs			
cAMP	Cyclic adenosine mono phosphate			
CART	Cocaine and Amphetamine Regulated Transcript			
CATH <i>M. musculus</i> pituitary derived cell line				
cDNA Complementary deoxyribonucleic acid				
CEL	File that stores the results of the intensity calculations on the pixel values of the DAT file			
CELSR1	Cadherin EGF LAG seven-pass G-type receptor 1			
cGMP	Cyclic guanosine mono phosphate			
CG	Chorionic gonadotrophin			
CH3	Lymphatic endothelial cell line 3			
CIRL1	Ca^{2+} -Independent Receptor of α -Latrotoxin 1			
CNS	Central Nervous System			
CRD	Cysteine rich domain			
CRF	Corticotropin-releasing factor			
CRF ₁ R	Corticotropin-releasing factor 1 receptor			
CRLR	Calcitonin-receptor-like receptor			
Cy3	Cyanine dye 3			

Cyanine dye 5		
Complement factor 5a		
Dickkopf 1		
Deoxyribonucleic acid		
Digital micromirror device		
Dulbecco's Modified Eagle Medium		
Extracellular loop		
Ethylenediaminetetraacetic acid		
Epidermal growth factor		
Epidermal growth factor 7-trans membrane		
Extracellular-signal Regulated Kinase		
Fetal Bovine Serum		
Formyl-Methionyl-Leucyl-Phenylalanine		
Follicle Stimulating Hormone		
Antagonized protein of Dipkoff 1		
Kaighn's Modification of Ham's Medium		
γ-amino-butyric acid		
GTPase-activating-proteins		
Guanosine di-phosphate		
Graphic Data System File		
Gene Expression Omnibus		
GEO dataset analysis tool		
Gonadotropin-releasing hormone		
Growth hormone secretagogue receptor		
Gastrointestinal		
G _i alpha subunit		
Glucagon-like peptide-1		

GPL	GEO Platform of microarray			
GPR	G protein receptor			
GPR file	GenePix Results File			
GPCR	G protein coupled receptor			
GSE	GEO Series Number			
GSE file	GeneSys Export File			
HBD	Hormone binding domain			
HEK293	Human Embryonic Kidney 293 cells			
ICL	Intracellular loop			
JNK	c-Jun N-terminal kinase			
LH	Luteinizing hormone			
LRR	Leucine-rich repeat			
LGR	leucine-rich repeat containing receptors			
LN-7TM	Long N-termini seven transmembrane			
LRP5	Dickkopf 1's accessory protein			
МАРК	Mitogen-activated protein kinase			
Mc3r	Melanocortin 3 receptor			
Mc4r	Melanocortin 4 receptor			
MEK	A dual-specificity protein kinase of the STE7 kinase family			
MIAME	Minimum Information About a Microarray Experiment			
MAS	Maskless Array Synthesizer			
Nac	Nucleic Accumbens			
NCBI	National Center for Biotechnology Information			
NPY	Neuropeptide Y			
N2a	Neuro 2a			
NTC	No Template Control			

NTD	N Terminal Domain			
oGPCR	Orphan G protein coupled receptor			
PAC1	Pituitary adenylate cyclase-activating peptide ligand/type 1 receptor			
PACAP	Pituitary adenylate cyclase-activating peptide			
PC12	Pheochromocytoma 12			
PERK	Phosphorilated Extracellular Regulated Kinase			
Pen/Strep	Penicillin/Streptomycin			
PI3Ks	Phosphoinositide 3-kinase			
POMC	Pro-opiomelanocortin			
РТН	Parathyroid hormone			
РТХ	Pertussis Toxin			
q-RT-PCR	Quantitative Real Time Polymerase Chain Reaction			
RANKL	Receptor Activator of Nuclear factor Kappa-B Ligand			
rlCART	Rat-long-CART			
ТМН	Transmembrane Helices			
T1R	Taste 1 Receptor			
T2R	Taste 2 Receptor			
TRF	Thyrotropin-Releasing Factor			
TSH	Thyroid Stimulating Hormone			
U0126	0126 A selective inhibitor of both MEK1 and MEK2			
WEBGESTALT	WEB-based GEne SeT AnaLysis Toolkit			
VTA	Ventral Tegmental Area			
V1R	Thyrotropin-releasing factor			
Y ₁ r	Neuropeptide 1 receptor			
7TM	Seven transmembranes			

CHAPTER 1

INTRODUCTION

1.1.Cocaine and Amphetamine Regulated Transcript

During the addiction studies, a group in Oregon found out that cocaine administration caused an increase in an mRNA level in animals (Douglass *et al*, 1995). Product of this mRNA is called "Cocaine and Amphetamine Regulated Transcript (CART)". When injected to animals, it produced similar effects like cocaine and amphetamine. However, when they co-administered together, CART blocked the effect of cocaine and amphetamine.

Research showed that CART is abundantly found in throughout the body, not just in brain. Therefore, it is thought to be involved in drug addiction, endocrine control, feeding, stress, and many other functions. When the findings of that hypothalamic CART causes anorexigenic effect revealed in 1998, CART peptide became a hot topic in research.

Further studies showed that CART is an important neuropeptide playing key roles in a variety of biological mechanisms such as the control of feeding behavior, drug reward, bone remodeling, sensory processing, and modulation of stress, anxiety, cardiovascular function, gastrointestinal motility and development.

Although it is an important neuropeptide, its receptor has not been identified yet.

1.1.1. CARTPT Gene

In human, CART is encoded by *CARTPT*. CARTPT is localized on a segment of genomic DNA which is approximately two kb on

chromosome 5. Transcript is 900-nucleotide-long and has 3 distinctive exons (Kuhar, *et al.*, 2002).

No.	Exon / Intron	Start	End	Start Phase	End Phase	Length	equence	
	5' upstream sequence							cctggaacccggcgggcattgacgtcaagcgccggcggagcgctgcctac
1	ENSE00001306358	71,014,990	71,015,279	-	0	290	AGACGG TGCACG GTTTCA TGCTGA CCCTGG	DESTIGACCEGAGECCTCCTCCACACCCCCTTCCTTCTCGCCTCCTCCTCTTCC ACEGAGECCCGAGECTCACTATAAAAGETGGGAGCGCGGTGGTGCCCCACCAACGACGA ICAGAACGATGGAGAGECTCCCGCGTGAGGTGGTGCCCCTCCGGGGCGCCCCGC IGATGCTACCTCTTGGGTACCCGTGCCCAGGAGGACGCCGAGCTCCAGCCCCGAG IGGACATCTACTCTGCCGTGGATGATGCCTCCCACGAAAGGAGCTG
	Intron 1-2	71,015,280	71,015,706			427	gtcggt	ggtattcccctcgctctcgacccaggctccgaagcggtgtgttgcag
2	ENSE00001083530	71,015,707	71,015,790	0	0	84	ATCGAA AAGAAG	BAAGCGCTGCAAGAAGTCTTGAAGAAGCTCAAGAGTAAACGTGTTCCCATCTATGAG AAGTATGGCCAAGTCCCCATG
	Intron 2-3	71,015,791	71,016,334			544	gtaagg	aggtttgtggtcactcccttccatgaccacacattttgttgtttcag
3	ENSE00003474230	71,016,335	71,016,875	0	-	541	TGTGAC TGTCCC GTTTGG TGCTGI TGGTGI TTGTG TGAAAR TAAGTG C	BACGCC6GTGACCAGTGTGCAGTGAGGAAAGGGCCAAGGATCGGGAAGCTGTGTGAC CCCCGAGGAACCTCCTGCAATTCCTCCTCCTGAAGGGCTTCGAGGGCGCCCCAT DCTCCATACATCCCCATCCTTCCTCCCAGAGGACCACCACCTTCCTCCCGGA FGGCTTAAGCAACAGATAAAGTTTTTATTTTCCTCTGAAGGAAAGGSCTCTTTTCC TGTTCAAAAATAAAAGAACACATTAGATGTTACTGTGGAGAATAAGGCCTTGTA TGTTGATACGTGTGGAAGACACATTAGATGTTACTTGTCGAGAGAATAAGGCTCTTGTG TGTTAAAAAGGGAACCCTTGATTTATTTGTCTGCGAAAAATAAGGCACTGTAC STGTAAAAAGAGGAACCTTTGTTCATTTTTTTTGTGTGCGAAACTCTTGGTACC STGTAAAAAGAGGAACCTTGTTGTTGTTTTTTTTGTGTGCGACAAAATCAGAGA AAATTAGATCTAGCTAACTCGGTAGATGTCATTACAACCTGGAAAATAAAT
	3' downstream sequence						catagt	agtgcactgctgttttcatataagtaatttaagtggaaatggtgaga

Figure 1 Ensembl exon-intron view of human *CARTPT*

Similar to mouse (m) and rat (r), in human there are two alternatively spliced variants of *CARTPT*: 129 aa long (l) peptide, and 116 aa short (s) form. On exon 2, rlCART is spliced by missing 39 nucleotides resulting to 116 aa peptide. This is found in human mouse and rat species. However, 129 aa peptide found in just mouse and rat (Kuhar, *et al.*, 2002).

1.1.2. CART Peptide Structure

Post-translational process gives rise to two biologically active peptides: CART 55-102, CART 61-102, CART I and CART II respectively.

Figure 2 Amino acid sequence of CART from UniProtKB, ID number: Q16568 (Last modified on November 1, 1996. Version 1)

CART is conserved within species. Coding region shows 98% identity among rat and mouse. This conservation suggests that tertiary structure of the peptide may be conserved and stabilized by disulfide bonds (Thim *et al.*, 2001).

Figure 3 Human CART shows a 95% homology with rat and mouse

Crystallization studies show that CART has two antiparallel β sheets and three disulfide bonds in **Figure 4**.

Figure 4 3D structure of CART peptide from PyMOL v1.6. Arrows show antiparallel β sheets, and yellow lines represent disulfide bonds.

1.1.3. Tissue Distribution of the Peptide

CART is synthesized in brain, mesolimbic dopamine system (VTA and Nac), several nuclei of hypothalamus, pituitary, hindbrain, several islet types, sympathetic preganglionic neurons and adrenal glands and myentric neurons in gastrointestinal tract.

1.1.4. Biogenic Actions of the CART Peptide

1.1.4.1. In Energy Homeostasis

In arcuate nucleus there are two neuronal cells, AgRP/NPY and POMC/CART neurons. AgRP is agouti relating protein, and NPY is neuropeptide Y. These are neuropeptides stimulating the food intake while decreasing the energy expenditure. On the other hand, proopiomelanocortin, POMC, and CART are neuropeptides inhibiting food intake and increasing the energy consumption. Insulin and leptin inhibit AgRP/NPY neurons while stimulating the POMC/CART neurons. Likewise, lower insulin and leptin cause to activation of AgRP/NPY. There is ghrelin, a circulating peptide secreted from the

stomach, also activates Agrp/Npy neurons. Therefore, ghrelin plays a role as stimulant of food intake (**Figure 5**). It is seen that plasma ghrelin levels are increased before a meal and decreased after a meal (Cummings *et al.*, 2001).

Figure 5 Energy Homeostasis (Here, Ghsr is growth hormone secretagogue receptor; Lepr is leptin receptor; Mc3r/Mc4r is melanocortin 3/4 receptor; and Y_1r is neuropeptide Y_1 receptor.) (Cummings *et al*, 2001).

1.1.4.2. In Bone Remodeling

Bone remodeling is the process that the skeleton adaptation happens through time. Within the adulthood, bone forming osteoblasts and bone-resorbing osteoclasts interact with each other to keep bone mass stable. Regulations of these cells are quite complex. Current studies showed that it is regulated via neuronal pathways. Leptin, for example, signals to osteoblast receptors in sympathetic pathway directly driven by hypothalamus. Since leptin is related with energy homeostasis pathways, it is found out that CART and serotonin interact with the brainstem and hypothalamus to regulate bone formation resorption in cancellous bone (Driessler & Baldock, 2010). Likewise, NPY acts via hypothalamic Y_2r to modulate the skeletonwide osteoblast activity by coordinating body weight and bone mass.

Since CART is broadly expressed in the hypothalamus and the peripheral organs such as the pancreas and adrenal glands, and CART knockout mice shows decreased levels of CART while shows increased resorption, it is implicated that, CART may be a potential regulator of bone resorption. Consistently, these animals are also osteoporotic due to an increase in bone resorption (Elefteriou, et al., 2005). Moreover, CART deficient mice express higher levels of RANKL (Receptor activator of nuclear factor kappa-B ligand, a member of tumor necrosis factor) in bone than wild-type mice. The effect of CART on bone is not cell autonomous, suggesting that there is a local mechanism for the central CART changes (Driessler & Baldock, 2010).

Figure 6 Bone remodeling via CART signaling regulation. CART expression can change according to serum leptin. When expression is

low, an increase in bone resorption is induced via higher levels of RANKL, whereas increased expression of CART creates a higher bone-mass (Driessler & Baldock, 2010).

1.1.4.3. In Stress Response

Any factor causing to a threat to organism disturbing the homeostasis is called stressor, and the resulting responses counteract this threat to regain the homeostasis is called stress response. Stress response composes neuronal and neuroendocrinal routes. Hypothalamopituitary pathway has an important role leading these routes (Pacak & Palkovits, 2001) . HPA axis has the major role in stress response; however, hypothalamo-pituitary control contributes it significantly. In this extent, CART's remarkable expression in HPA axis suggests a role for CART peptide in stress response mediation (Pogun *et al*, 2006).

There is a strong relation between stress response, eating disorders and the psycostimulant actions. Stress is one of the major factors in drug abuse also. According to a study, food shock stress redeemed cocaine seeking behavior in male rats; however, this effect was not observed in adrenalectomized animals (Piazza & Le Moal, 1998). Stress-drug abuse relation is due to increased sensitivity of glucocorticoid-exposed dopaminergic neurons (Piazza & Le Moal, 1998).

In drug addicts, HPA axis more active than in normal subjects, while there is a directly proportional relation between HAP axis activation and CRF levels in addiction (Goeders, 2003).

CART gene activation, thus CART peptide synthesis and secretion in hypothalamus and pituitary are regulated by glucocorticoids. Blood CART levels may be affected by the interaction between the HPA axis activity and glucocorticoids (Pogun *et al*, 2006).

Due to unknown molecular pathways of CART mechanism, these cannot be understood clearly although evidences show the relations.

1.1.5. CART Induced Signaling

In fact, little is known about the pathway of CART interacting with its receptor(s), or how it initiates a downstream cascade (Zhang, Han & Xu, 2012).

It is known that CART I and II cause an increase in c-Fos levels in many neurons. Due to the observations of CART peptide effects on differentiation and development, CART 55–102 is tested whether it causes any changes in the MAPK cascade and the phosphorylation of ERK 1 and 2 proteins (Extracellular signal Regulated Kinases 1 and 2). ERKs are known to be activated by a variety of growth factors, hormones and neurotransmitters. Then, it is found out that CART peptide stimulation strongly regulates ERK activity in pituitary-derived *in vitro* cell lines. The CART effect can be blocked by inhibitors such as U0126 (artificial, highly selective MAPK/ERK inhibitor), genistein and pertussis toxin (PTX), indicating the involvement of the upstream kinases, MEK1 and 2. Therefore, the involvement of a G_i/G_o coupling via GPCR in CART signaling is considered as possibility by Kuhar team (2005).

Previous electrophysiological studies suggested that CART effect may involve G-proteins. However, solid evidences are still missing for a Gprotein-mediated pathway. It is strongly suggested that CART receptor or receptors should be a GPCR specifically the one coupled to G_i/G_o . As a GPCR using G_i/G_o works, **CART I** also inhibits voltage-dependent intracellular calcium signaling (Kuhar *et al*, 2005).

In order to find ERK related pathway relation, many cell types examined whether **CART I** application cause a response as giving increased levels of phosphorylated ERKs (P-ERKs). HEK293, PC12, N2a and CATH.a cell lines were used for this purpose. Only pituitaryderived ones AtT20 and GH3 gave significant responses (Dominguez, Lakatos, & Kuhar, 2002), (Kuhar *et al.*, 2005). PERK levels are tested by western blot over time and results showed that PERK levels changed significantly over time (Kuhar *et al.*, 2005).

1.1.6. CART Receptor(s)

Both by inhibiting the voltage-dependent intracellular Ca⁺⁺ signaling and activating ERK1 and 2 specifically in AtT-20 cell line, CART I shows evidences of having a GPCR. CART II also has the same specific binding in AtT-20 cell line. Studies also showed that CART I and II binding are saturable and have a high affinity for a single site in the same cell line (Jones, Lakatos, & Vicentic, 2006). Binding of the CART peptides also depends on temperature, pH, protein concentration, and time. These data shows that CART has a specific receptor binding in AtT-20 cell line.

With different relative potencies for CART I and II are seen in food consumption (Thim *et al*, 1998; Douglas *et al*, 2001) increased plus maze activity (Okuyama *et al*, 2003), hot plate antinociception, acoustic startle response, and prepulse inhibition (Douglas et al, 2001). Since potencies for CART peptides differ in magnitude and direction, it is possible that CART peptides induce multiple signal transduction mechanisms. Moreover, this may be due to multiple receptor subtypes (Kuhar *et al*, 2005).

Since evidences indicate the involvement of a G_i/G_o coupling, CART signaling might be induced via a G protein coupled receptor. Receptor or receptors of the CART peptides might be one of the orphan GPCRs.

Orphan GPCRs (*o*GPCRs) are the GPCR class that is revealed after genome project is completed. Which endogenous ligand belongs to these orphan GPCRs is not known. However, apart from their molecular structure; there is no information related with their physiological roles and what roles they might have in disease state (Tang *et al.*, 2012). Most of these *o*GPCRs are seen to be expressed in nervous tissues.

*o*GPCRs can be from one of seven GPCR classes: A, B, large N-terminal family B-7 TMH, C, Frizzled/Smoothened, taste 2, and vomeronasal 1 receptors (Kristiansen, 2004). Distribution of these *o*GPCR classes are shown in figure.

Figure 7 Pie chart of gene-product representation for oGPCRs. Outer Circle constitutes genes of related GPCRs, and the inner circle represents receptor numbers of *o*GPCRs.

It is possible that receptor(s) of CART peptides is one these orphan G protein coupled receptors based on the assumption that CART peptide induces a GPCR signaling pathway. When examined in detail by means of different subclass types:

• A Class GPCRs comprise the largest group of GPCRS. Ligands of A Class GPCRs differ in structure and character; however, amino acid sequences of receptors are very similar and share a common structure constituting 7TM helices. Peptide receptors of class A GPCRs compose many important physiological functions that are performed by acting as neurotransmitters, hormones, and paracrines. Ligands of peptide receptors of A Class GPCRs are angiotensin II, arginine vasopressin/oxytocin, bradykinin, cholecystokinin/ gastrin, chemokines, complement factor 5a (C5a), fMLP, gonadotropin releasing hormone (GnRH), neurotensin, NPY, opioids, somatostatin, and TSH (Gether, 2000). When compared to these ligands of A Class GPCRs, the possibility of CART's receptor belonging to A Class GPCRs is relatively weak due to being a smaller peptide.

B Class GPCRs, also known as secretin-like family receptors, activate adenylyl cyclase and IP3-Ca⁺⁺ signaling pathway. During the signal transduction, ERK1&2 might be stimulated via induction of a B Class GPCR. It may point out that CART might have receptor from B Class GPCRs. Also, B class GPCRs may act by splitting the corticotropin-releasing factor (CRF) (Sakmar, 2011). CRF should include both a C-terminal region binding the N terminal domain (NTD) of receptor with high affinity, and Nterminal region activating the receptor by interacting helical bundles with high potency (Sakmar, 2011). For example, adenylyl cyclase activating poly peptide (PACAP) receptor (PAC1), glucagon, and GLP1 receptors cannot account alone for the binding affinity of their ligands. According to a recent study, PACAP 6-38 is defined as an antagonist of CART I (Kuhar et al, 2011). This finding increases the probability of CART's receptor belonging to B Class receptors.

Having similarities to B class GPCRs, Large N-terminal Family B-7 Transmembrane Helix (LNB-7TM) Class GPCRs have large N-termini playing roles in cell-to-cell adhesion and cell migration via attachment to the extracellular matrix components or interaction of other cells' membrane proteins (Stacey et. al, 2000). It seems that interactions among these domains from different homomultimerization receptors can be resulted in or heteromultimerization of same cells' such other receptors. These receptors are related with the biological roles such as the controlling of brain angiogenesis, synaptic exocytosis, immune

system regulations, cell polarity and synaptogenesis (Foord *et al.*, 2002). Plenty of orphan GPCRs belong to this family such as BAI1 – 3 (Brain-specific Angiogenesis Inhibitor), CIRL1 – 3 (Ca²⁺ -Independent Receptor of α -Latrotoxin), GPR113, GPR124, and GPR125. Only one GPCR is demonstrated to have an intracellular ligand (Hamman *et al*, 1996), others remain to be undefined. Therefore, only link of this subclass with CART peptide is the physiological relations. That is, CART is known to be inducing neuronal differentiation in early development (Sundler *et al*, 2004). It is a probability that CART can induce this effect via one of this LNB-7TM Class GPCRs.

• C Class GPCRs have large N termini by having 11 subunits. Their well-known endogenous ligand-bound receptors are metabotropic glutamate (mGlu1–8) receptors, receptors of major excitatory neurotransmitter in CNS, and the γ -aminobutyric acid (GABA) and the Ca²⁺ sensing receptor (Kristiansen, 2004). Ca⁺⁺ sensing receptor is highly related with neuroendocrine pathways. They may work by cooperation with other GPCRs. For example, the mGluR2 came into prominence as a potential drug target and it cooperates with 5-HT2A serotonin receptors, which is an A Class GPCR (Bruno *et. al*, 2012). Since CART is also active in both brain and CNS, and blocks Ca⁺⁺ signaling by activating ERK1 and 2, it is probable that CART have a receptor from C Class GPCRs.

• F/S Class GPCRs and Vomeronasal -Taste Receptors are slightly small when compared to A Class GPCRs. Their ligands are called "Wnts". Wnts are the products of more than 16 vertebrate genes, nearly 350-amino-acid long proteins (Kristiansen, 2004). Frizzled receptors do not often signal via G-proteins and only some of the members show G-protein signaling. On the contrary, Smoothened receptors may activate G-proteins. However, unlike other GPCRs this activation is independent of ligand binding. Although it is suggested that different Wnts can

activate the same Frizzled receptor, it is seen that they activate different pathways: 'agonist trafficking' (Holbrook *et. al*, 2002). Frizzled receptor responses may depend on accessory proteins. Their smaller sizes make them probable targets for CART peptide. Also, like the other examples of this class CART peptides may induce a pathway via an accessory protein.

In the light of this information, orphan GPCRs can be used to search for the correct match of CART peptide receptor.

By reaching a comprehensive study of orphan GPCRs and their related products published in 2011, it became possible to find full repertoire orphan GPCRs - nearly 360 - expressed among the most commonly used cell lines: HEK293, AtT-20, BV2 and N18 (Atwood *et al*, 2011).

BV2 cells have 108, N18 cells 105, AtT-20 cells 79 and HEK293 cells 73 *o*GPCRs expressed. From the previous studies it's known that CART peptide has a specific binding in the cell lines of AtT-20, GH3 and differentiated PC12.

In this study of microarrays carried out by Atwood *et al*, A Class oGPCRs are found in the greatest abundance among four cell lines. As most widely cited cell line, HEK293 has numerous identified oGPCRs. AtT-20 cell line is known having the least expression of GPCRs and GPCR-related gene product among these four cell lines. Significant expression of nearly 45 GPCR related gene products are found in AtT-20 cell line, whereas other cell lines have 72 or more related gene products. N18 cells have numerous GPCRs, GPCR-related proteins and having the highest GPCR expression among these four cell lines. On the other hand, BV2 cells which are commonly used in microglial studies have predominantly A Class GPCRs and related proteins. AtT20 cells have wide range of A Class oGPCRs, large number of BAI (Brain Angiogenesis Inhibitor) as B Class oGPCRs, six frizzled receptors but no smoothened receptors for

Frizzled/Smoothened Class GPCRs. Therefore, revelation of this study makes enable to study CART's receptor by using these CART responsive and non-responsive cell lines.

1.2.G Protein Coupled Receptors

G protein coupled receptors, GPCRs, also known as seven transmembrane domain receptors, serpentine-like receptors, or heptahelical receptors, are the largest family of membrane receptors. Although these other names are used, GPCR term is preferred today because of the presence of other heptahelical proteins such as bacteriorhodopsin that is unrelated with GPCRs in function and also evolution (Pierce et al., 2002). GPCRs are found in eukaryotic cells like cyanoflagellates, yeast and higher eukaryote species. GPCRs are found in the interface of a cell's external and internal environments. A specific ligand, that is binding and activating the receptors, may range from an ion to nucleoside, amine, peptide, protein, and lipid or, for optical receptors to light. These ligands cause a conformational change in receptor, leading to an active state. This triggers G-proteins inside the cell to release the components that activate cellular mechanisms (Filmore, 2004). There is an alternative model suggested called "three-state model" (Bouvier, 2013). The receptor is found in intermediate state at resting while showing some activity. When the ligand binds to receptor, it became more stable and the active form showing higher activity. In Figure 8, conformation ensembles are shown for this model.

Figure 8 Three-state model (Bouvier, 2013)
The intracellular signaling molecules triggered by GPCRs are arachidonic acid, cytosolic ions, cAMP, cGMP and inositol phosphates. Sometimes, receptors other than GPCRs can activate G-proteins. It is implicated that signal transduction on tyrosine kinase receptors such as epidermal growth factor, insulin, insulin-like growth factor I and II and colony-stimulating factor-1 can also activate G-proteins not related with GPCRs (Kuemmerle & Murthy, 2001).

The superfamily of GPCRs is the receptor of many neurotransmitters, neuromodulators, hormones, and paracrines (local hormones) with important physiological functions. They are active in just about every organ and system. Their dysfunction cause many diseases including central nervous system disorders, cancer, cardiac dysfunction, diabetes, inflammation, obesity, and pain. Therefore, approximately 40% of the drugs and pharmaceuticals of modern medicine target GPCRs (Filmore, 2004).

1.2.1. Classification

Among mammalian species, which is the focus of this thesis, there are seven sub-classes of GPCRs: A, B, large N-terminal family B-7 TMH, C, Frizzled/Smoothened, taste 2, and vomeronasal 1 receptors (Kristiansen, 2004). Members of this superfamily classified according to their native ligands, phylogenetic analysis of their amino acid sequences, analysis of clustering of genes in the human genome, and analysis of globular domains and motifs in the N terminus of large N-terminal family B-7TM receptors. Previously, there were 6 different families of GPCRs (Kolakowski, 1994). Each member of this superfamily has more than 20% amino acid sequence identity by transmembrane helices. Only A, B and C class of GPCRs are represented among multicellular animals (Kolakowski, 1994). Since then, other mammalian GPCR families are identified such as Frizzled/Smoothened (F/S), vomeronasal 1 receptor (V1R), and taste 2 receptor T2R) (**Figure 9**). In addition, with the human genome project

it is found out that there are still many *orphan GPCRs (oGPCRs)*. These are the GPCRs having no defined ligands yet.

Figure 9 Examples to different classes of GPCRs and their ligands (Kristiansen, 2004)

1.2.1.1. Class A GPCRs

Among others, class A GPCRs are the largest and most studied GPCRs. Family A receptors include opsins, some odorant receptors, small endogenous antagonists, peptide receptors, leucine-rich motif including receptors, and protease activating receptors (Kristiansen, 2004).

In order to study Class A receptors, "position identifiers" are used. Position identifiers are representing the positions of residues to a reference amino acid appearing in the TMH. The most conserved amino acid residue in the THM is taken as a reference residue.

When compared with other Class A receptors, it will be seen that opsins are activated by photons. Therefore, they have a chromophore attachment so that they can response to absorption of light (Filipek *et. al*, 2003).

Peptide receptors of class A GPCRs compose the largest sub-group and many important physiological functions are performed by acting as neurotransmitters, hormones, and paracrines. With the peptide like receptors of А Class angiotensin II. arginine vasopressin/oxytocin, bradykinin, cholecystokinin/ gastrin, chemokines, complement factor 5a (C5a), fMLP, gonadotropin releasing hormone (GnRH), neurotensin, NPY, opioids, somatostatin, and TSH it is shown that they interact directly with the residues of N terminus and ECLs of receptors (Gether, 2000).

Protease-activated receptors (PARs), another Class A receptor, are activated by proteolytic cleavage. PAR_1 and PAR_2 are thrombin receptors, PAR_2 is serine protease receptor, and PAR_4 is both serine and protease receptors working by cleavage of the receptor while creating a new N-terminus (Macfarlane *et al*, 2001).

1.2.1.2. Class B GPCRs

It is considered that there are 15 receptors in B class GPCRs in humans, also known as secretin-like family receptors. Among them, glucagon and glucagon-like peptide 1 (GLP1) receptors play roles in glucose metabolism; calcitonin and PTH receptors regulate Ca⁺⁺ homeostasis; and the corticotropin-releasing factor receptor (CRF₁R) regulates the hypothalamic-pituitary-adrenal axis. All B class GPCRs bind to endogenous large peptide hormones ranging between 30–40 residues and had long extracellular N-terminal tail domains (NTDs) (Alexander-Thomas & Manfred, 2011). When compared to A Class GPCRs, TMHs of the B class show very little primary structural conservation.

Characterized by nearly 120-amino-acids-long extracellular Nterminal hormone binding domain (HBD), B class GPCRs act by splitting the corticotropin-releasing factor (CRF) (Sakmar, 2011). HBD varies in length from 35 residues to 350 residues (Kristiansen, 2004). CRF, on the other hand, is 41-amino-acids-long peptide which binds and activates its receptor, CRF₁R. CRF should include both a Cterminal region binding the NTD of receptor with high affinity, and Nterminal region activating the receptor by interacting helical bundles with high potency (Sakmar, 2011). HBD of PTH and adenylyl cyclase activating poly peptide (PACAP) receptor (PAC1), glucagon, and GLP1 receptors cannot account alone for the binding affinity of their ligands.

1.2.1.3. Large N-terminal Family B-7 Transmembrane Helix

It is reported that at least 30 receptors of six novel members of GPCRs have long N-termini, which are previously termed EGF-7TM, LNB-7TM, B2 or LN-7TM (Foord *et. al.*, 2002). These receptors have similarities to B class in their THMs. Their N-termini, however, play roles in cell-to-cell adhesion and cell migration via attachment to the extracellular matrix components or interaction of other cells' membrane proteins (Stacey *et. al*, 2000).

These receptors are related with the biological roles such as the controlling of brain angiogenesis, synaptic exocytosis, immune system regulations, cell polarity and synaptogenesis (Foord *et al.*, 2002).

Plenty of orphan GPCRs belong to this family such as BAI1 – 3 (Brain-specific Angiogenesis Inhibitor), CIRL1 – 3 (Ca²⁺ - Independent Receptor of α -Latrotoxin), CELSR1 – 3 (Cadherin EGF Laminin a G-type repeat 7-pass Receptor), GPR113, GPR124, and GPR125.

1.2.1.4. Frizzled/Smoothened receptors

10 members of Frizzled and only one member of Smoothened receptors have many similarities with B class GPCRs. Their ligands are called "Wnts". Wnts are the products of more than 16 vertebrate genes, 350-amino-acid long proteins (Kristiansen, 2004).

Frizzled receptors do not often signal via G-proteins and only some of the members show G-protein signaling. On the contrary, Smoothened receptors may activate G-proteins. However, unlike other GPCRs this activation is independent of ligand binding. Although it is suggested that different Wnts can activate the same Frizzled receptor, it is seen that they activate different pathways: 'agonist trafficking' (Holbrook *et. al*, 2002). Frizzled receptor responses may depend on accessory proteins. These accessory proteins are the keys of another control level.

Known Wnt inhibitors are CRBs, Cerberus, Dickkopf 1 (DKK1) and Wif. These inhibitors may be specific for each Wnts. For example, Dickkopf 1 acts to antagonize the association between FR7 and its accessory protein LRP5, therefore prevents the activation of Wnt.

1.2.1.5. Class C GPCRs

Receptors belong to C class GPCRs form constitutive dimers. Constitutive dimerization of C Class occurs in both forms of homoand heteromers (Bruno *et. al*, 2012). Nevertheless, antagonist activation association of the receptor dimerization remains to be unclear (Lane & Canals, 2012). Similar to class A, C class GPCRs also have TMDs composed of seven hydrophobic helices.

By having 11 subunits, endogenous ligand-bound receptors of C class are metabotropic glutamate (mGlu1–8) receptors, receptors of major excitatory neurotransmitter in CNS, and the γ -aminobutyric acid (GABA) and the Ca^{2 +} sensing receptor (Kristiansen, 2004). For example, the mGluR2 came into prominence as a potential drug target. It cooperates with 5-HT2A serotonin receptors, which is an A Class GPCR (Bruno *et. al*, 2012).Umami taste receptors also belong to C Class GPCRs (Nelson *et al.*, 2001).

1.2.1.6. Taste 2 and Vomeronasal 1 receptors

Chemical signals, like pheromones, are thought to be detected by vomeronasal organ located on the base of nasal septum. There are three receptors known to be related with vomeronasal organ: V1Rs, V2Rs and V3Rs, all GPCRs. It is thought that human V1R genes mostly are pseudogenes (Pantages & Dulac, 2000). Expression of these V1Rs in human has not been clarified yet. On the other hand, taste 2 receptors (T2R) are encoded for bitter taste stimulating molecules.

This receptor family is characterized by a very large NTD that likely acts an ECL. However, all members of V1R and T2R families have short N-terminal segments. Therefore, it is suggested that the ligand binding pocket is buried in between 7TMHs (Kristiansen, 2004).

1.2.2. GPCR Signaling Mechanisms

There are two types of G-proteins: heterotrimeric G-proteins interacting with GPCRs by a signal transduction pathway, and small cytoplasmic G-proteins. Heterotrimeric G-proteins have α (39-45 kDa), β (35-39 kDa), and γ (6-8 kDa) subunits. β and γ subunits often regarded as one functional unit due to their tight association. Not including the splicing variants, there are 5 different β and 12 different γ subunits described.

All these heterotrimeric G-proteins follow up same cycle of activation-deactivation signal transmission in a specific and reversible fashion. GDP binds to α subunit, and then $\beta\gamma$ complex joins to form an inactive heterotrimeric G-protein.

With binding of an agonist receptor is activated and undergone a conformational change. This change initiates an increase affinity for G-protein by allowing the release of GDP from α subunit. Physiologically, GDP is replenished by GTP immediately after the concentration of GDP is exceeded by several folds. The active state

continues till the GTP is hydrolyzed by $G\alpha$ subunits' GTPase activity. Moreover, GTPase-activating-proteins (GAPs) can inactivate the Gproteins. Some proteins can enhance the activation of G-proteins, called as effectors. To turn off the signal transduction some processes like desensitization, neurotransmitter-reuptake, and extracellular degradation of neuropeptides can take place (Kristiansen, 2004).

Majority of GPCR signaling is rather linear and sequential. Also, one G-protein can interact directly with various effectors; therefore, cause a change in second messenger concentration. Second messengers may alter the activity of effectors by integration of highly complex signaling networks.

GPCRs can activate mitogen-activated protein kinases (MAPKs) via Ca⁺⁺, Ras (small GTPase family), phospholipase C, cAMP, phosphatidylinositide 3 kinases (PI3Ks), and tyrosine kinases.

Many GPCRs are known for making complexes with PAR₂ (protease activated receptor), ERK1/2, and JNK (c-Jun N-terminal kinase), which are the components of MAPKs.

1.3. Aim of the Study

In this study, from the microarray data supplied in the research of Atwood *et al*, mRNA levels of a comprehensive profile of nonchemosensory orphan GPCRs and over a hundred GPCR signaling related gene products are analyzed to choose 10 candidate genes that can be CART peptide receptor. Microarray data were derived from four cell lines: HEK293, AtT-20, BV2, and N18. As mentioned previously, CART peptide causes an increase in PERK levels in AtT-20, GH3 and differentiated PC12 cell lines, but not induces such an increase in N2a, HEK293, and CATH cell lines.

The hypothesis based in this study is that between the CART responsive cell lines and CART nonresponsive cell lines, one or more of differentially expressed GPCR genes induce ERK1 and 2 signaling pathways by interaction, therefore cause an increase in PERK levels. This gene or genes might be CART receptor(s) depending on the findings that CART receptor can be a GPCR. In order to test this hypothesis, candidate genes are determined by analyzing microarray data supplied in the study of Atwood *et al.* in 2011. Most differentially expressed genes in CART responsive cell lines when compared to nonresponsive cell lines are selected from the microarray data. After mining out candidate genes, expressions of these candidate genes are validated by q-RT-PCR. As a starting point, differentiated PC12 and AtT-20 cell lines are tested for increasing the PERK levels as found in the study carried out by Kuhar et al, in 2005. Then, as CART responsive cell line AtT-20 cell line and as CART nonresponsive cell line N2a are used. The results obtained from this presented study might narrow down the candidate genes for CART peptide receptor. As further studies, by transfecting these candidate genes to N2a cell line, candidate gene products can be investigated if they are the receptors of CART peptide. Here, aim is to identify CART receptor candidates which in turn helps to identify unknown CART functions, CART related pathways and related drug design investigations.

CHAPTER 2

MATERIALS AND METHODS

2.1. Microarray Data Analysis

There are limited numbers of microarray analyzing software. The numbers of free-web based ones are even less. Also, most of them are designed to analyze the most commonly used microarrays like Affymetrix. In this thesis study, the microarray data that is going to be used for analysis belong to Nimblegen. Since there is no analyzing tool developed for this data, following steps are used for the analysis.

Data set is obtained from GEO (gene expression omnibus database), NCBI. GEO accession number of the data set is GSE25901 showed as in **Figure 10**.

Series GSE2590	L	Query DataSets for GSE25901
Status Title	Public on Feb 01, 2011 Expression of G protein-coupled receptors a AtT20, BV2, and N18 cell lines as revealed b	and related proteins in HEK293, y microarray analysis
Organisms	Homo sapiens; Mus musculus	,,,
Experiment type	Expression profiling by array	
Summary	This SuperSeries is composed of the SubSer	ies listed below.
Overall design	Refer to individual Series	
Citation(s)	Atwood BK, Lopez J, Wager-Miller J, Mackie I coupled receptors and related proteins in H lines as revealed by microarray analysis. <i>BM</i> PMID: 21214938	K et al. Expression of G protein- EK293, AtT20, BV2, and N18 cell IC Genomics 2011 Jan 7;12:14.
Submission date	Dec 07, 2010	
Last update date	Dec 27, 2012	
Contact name	Jacqueline Lopez	
E-mail	jacqueline.ann.lopez@gmail.com	
Phone	5/4-631-/8/5	
Organization name	Diversity of Notre Dame	
Department	Biology Dfronder Laboratory	
Street address	112 Galvin Life Science Center	
City	Notre Dame	
State/province	Indiana	
ZIP/Postal code	46556	
Country	USA	

Figure 10 View of data set GSE25901 in GEO

It is performed on NimbleGen 4x72k platforms GPL11059 designed for *Mus musculus*, and GPL11289 designed for human. As shown in the bottom part of **Figure 11**, supplementary files are downloaded accordingly.

Platforms (2)	GPL11059	NimbleGen	Mus musculus MM8 Ex	pression Array (4x72k)
	GPL11289	Nimblegen Probes)	Homo sapiens HG18 E	xpression Array 4x72k (All
Samples (16)	GSM63546	54 AtT20 1		
More	GSM63546	55 AtT20 2		
	GSM63546	56 AtT20 3		
This SuperSeries is GSE25886 Analysi cell line	s composed s of mRNA l es: AtT20, B	of the follow evels of GPC V2 and N18	ving SubSeries: R and GPCR-related si	gnaling proteins in 3 mouse
GSE25894 Analysi HEK293	s of mRNA l 3 cell line	evels of GPC	R and GPCR-related si	gnaling proteins in the
Relations				
BioProject	PRJNA135	767		
Analyze with GEO	2R			
Download family				Format
SOFT formatted fa	mily file(s)			SOFT 2
MINiML formatted	family file(s)		MINIML 🗵
Series Matrix File(s	5)			TXT 🖸
Supplementa	ry file	Size	Download	File type/resource
GSE25901_RAW.ta	ar	74.6 Mb	(http)(custom)	TAR (of PAIR)

Figure 11 View of data set GSE25901 in GEO continues

Since the dataset has .gz extensions, in order to display the files GEO2R (under NCBI server) is used (**Figure 12**). There are 12 sample groups. Since interested ones are AtT-20 and N2a, blue and pink labeled data sets are used for further studies in this thesis.

GEO accessio	n GSE25901	Set	Expression of G protein-	coupled receptors and related prote	eins in HEK293,	AtT20, BV2, and	N18 cell line	s as revealed b	y microarray
Platform	GPL11059 💽		analysis						
▼ Samples) De	efine groups	1					Selected 8	out of 12 sample
								Columns	∗ Set
Group	Accession	♦ Title	i i	Source name	\$	Cell line	\$	Cell type	ŧ
att20	GSM635464	AET 2	10 1	Immortalized cell line A(T20		Att 20		normal	
att20	GSM635465	AfT?	0.2	Immodalized cell line AT70		AfT20		normal	
att20	GSM635466	ACT2	03	Immortalized cell line A(T20		Att20		normal	
att20	GCM635467	AET2	10 4	Immortalized cell line AtT20		AtT20		normal	
-	GSM635468	BV2	1	Immortalized cell line BV2		BV2		normal	
- e - j	GSM635469	HV2	2	Immortalized cell line BV2		BVZ		normal	
	GSM635470	BV2	3	Immortalized cell line BV2		BV2		normal	
	GSM635471	BV2	4	Immortalized cell line BV2		BV2		normal	
n2a	GSM635472	N18	1	Immortalized cell line N18		N18		normal	
n2a	GSM635473	N18	2	Immortalized cell line N18		N18		normal	
n2a	GSM635474	N18	3	Immortalized cell line N18		N18		normal	
n2a	GSM635475	N18	4	Immortalized cell line N18		N18		normal	

Figure 12 GEO2R Server Data Representation of the platform GPL11059

In order to analyze microarray data "BRB ArrayTools Version 4.3.0", an analysis program developed by Biometric Research Branch of National Cancer Institute is used.

Data is imported via general importer of ArrayTools add-in as in following Figures.

BRB ArrayTools appears as an add-in within Excel after setup. This program perfectly analyses GDS files. Since GDS are curated datasets, the data within the project has all required information. However, GSE data sets are user-submitted data sets. Therefore, "general format importer" is used as in **Figure 13**.

<u>↓ 9 ~ (2 ~</u>) ÷				deneme	.xlsx - Micros	oft Excel ti	icari olmaya	n kullanım	
Giriş Ekle Sayfa Düzeni	Formi	üller Veri	Gözden Geçir	Görünüm	Eklentiler				
ArrayTools -									
Getting started	×								
Import data		<u>D</u> ata impor	t wizard						
Graphics	- > -	<u>G</u> eneral for	mat importer						
<u>Analysis wizard</u>		NCBI GEO a	irchive					1	
Clustering	•	<u>A</u> ffymetrix (Gene 1.0 ST Array Im	porter		J	K	L	N
Class compariso <u>n</u>									
Pre <u>d</u> iction									
Survival analysis									
Quantitative trait analysis									
Ime course analysis									
Be filter, pormalize and subset the dat									
Pluging									
Litilities									
Support	-								
Manuals									
License and version information									
Eccuse and version monitation									

Figure 13 Screenshot of BRB ArrayTools Add-in Excel

Downloaded separate files from NCBI GEO are imported via "Arrays in Separate Files" tab, as can be seen in **Figure 14**.

This General Format	Importer will allow you a your files must be tab-	to specify the file type,	data type, and structure of or other file types, please us
the Data Import Wiza	rd and other importers.		
File type:			
Arrays are saved	n separate files stored i	n one folder.	Evalain More
C Arrays are saved	n a horizontally aligned	file.	

Figure 14 A screenshot in BRB ArrayTools Array Importer Wizard.

There were 8 sub-groups of data set four coming from AtT-20 cell line, and other four coming from the N2a. Log files of these data sets are imported accordingly, as it is shown in **Figure 15**.

eneral Form	at Importer parate files for	mat, expre	ssion data fo	or each arra	y should be	e stored in	a separa	te file, and
all files st Folder co Folder	nould be store ntaining expre	d in one da ssion data merve\Desk	ta folder. files: ctop\GDS259	01\log			•	<u>B</u> rowse
		<u>R</u> eset	<u>B</u> ack	Nex	t <u>C</u>	ancel		
		Microsoft E There are Is this col	xcel 8 expression rrect?	data files in y Evet	rour folder. Hayır			

Figure 15 Data Folder Tab of BRB ArrayTools.

Since NimbleGen array platform information says that it is a dual channel data, in order to choose correct platform feature "Dual-channels data" is clicked on as it appears on **Figure 16**.

Platform:						
Dual-chann	iels data.	C Single	e-channel d	ata.	Explain More	
		1		1		

Figure 16 Platform Preferences of BRB ArrayTools

Due to using log files of data sets, dual channel data information is set as "log transformation is already transformed" as in **Figure 17**.

budi chumeb u	ata:			
C The expressio	n data contains	Red and Green	intensities.	
The expression	n data contains	ratios, but no R	ed and Green i	ntensities.
I▼ The ratios a	re already log2	transformed.		

Figure 17 Dual-channels Preference of BRB ArrayTools.

Header line is choosen as the tab showing column ID. First, data line is set as the second line just appears after the header line. Then, log ratios is set as Log2 values (**Figure 18**).

			POSITION	~	v	_
IMAGE_ID GE	ENE_EXPR_OPTION	SEQ_ID PROBE_ID	POSITION	~	T	_
– First data line: —						
250443A01_X4_U0	1_Musculus_532	BLOCK1 NM_00100113	0 NM_00100113	0P00930	930	•
- Filo formatı dual o	hannols LogPatios					
- File format: dual c						
Unique ID (Probeset,	Col 4: PROBE_ID					•
well, or Spot ID):						
LogRatios :						•
-						_
Spot Flag (optional):	Col 5: POSITION					_
	Col 6: X					
	Col 7: Y					
Spot Size (optional):	Col 8: MATCH_INI	DEX				
	Col 10: log2(pm)					
Print-Tip Group	Col 11: PM					-
(opuonal):	1					-
			5			
			EX	plain More	•	

Figure 18 Column Selection for the data import in BRB ArrayTools.

Next, gene identifiers are set. In the provided data, probe IDs designed using Refseq gene IDs. Columns of Probe IDs are set to "EnterezID", since there is not any other option (**Figure 19a**). Annotation of the data will be provided after importation. Since annotation could not be handled, program creates a template with the array IDs (**Figure 19b**).

a Import Wizard					
Please specify the	location of your gene ic	lentifiers:			
The identifiers are	stored alongside the expre	ession data.	C The identif	iers are stored in a separ	ate file.
– Please select your	Gene identifiers file: —				
File:			•	Browse line #:	Y
Please select the a	vailable gene identifier	5:			
Unique ID (Well or Spot ID, etc.):	Col 4: PROBE_ID	- Entre	zId:	Col 3: SEQ_ID	•
Clone ID (IMAGE or ATCC ID, etc.):		✓ Gene Descr	Name ,Title or ription:		•
UniGene Cluster ID:		▼ GenB	ank Accession:		•
Gene Symbol:		▼ Map I	Location:		•
microRNA ID:		•			
Annotate the pr	oject with these gene is	ls, instead of using	Organisms	:	•
	viter adapase.				
	Rese	t <u>B</u> ack <u>N</u> e:	kt E <u>x</u> it	Explain More	

ta Import	Wizard	
I do n	ot have an experiment descriptor file. Please create a template with just array ids.	
- Experi	ment descriptor file:	1
File:	C:\Users\merve\Desktop\GDS25901\log\\ExpDescFile.xls	owse
	Back Next Exit Explain 1	More

Figure 19a, b Annotation tab of the BRB ArrayTools.

Importer progresses the array by colltaing them in few minutes, then asks the spotting of the filters, how to normalize the submitted data and entering desired gene filters as in **Figure 20 a, b** and **c**. Since it is a done-experiment, its intensity optimizaiton is already set. Therefore, it is enough to click "Average the Replicate Spots" tab (**Figure 20a**). Secondly, in order to normalize the data "Normalize each array" with "Using median over entire array" for log 2 transformed data as in **Figure 20b**. When come to "Gene Filter" option, in order to increase significance, log-ratio variation is pulled to 90 percentile in Figure **20c**.

Red minimum: Intensity Filter: C EXCLUDE the spot if BOTH intensities are below the minimum. EXCLUDE the spot if AT LEAST ONE of the two intensities is below the minimum. EXCLUDE the spot if BOTH intensities are below the minimum. If only ONE intensity is below the minimum, increase it to the minimum. Intensity Intensity	Spot Flag Filter:
--	-------------------

Figure 20 a Spot filters Option of BRB ArrayTools.

Using median over entire array	C Using median with print-tip group
C Using median over housekeeping g	yenes:
C HG-U133 (Affy) C HG- Specify a set of housekeeping gu	U95 (Affy) C HG-Focus (Affy) enes: Browse
Truncate large intensity ratios (a	nd inverse ratios):

Figure 20 b Normalization tab of the BRB Arraytools

Refilter, normalize and subset the data
1. Spot filters 2. Normalization 3. Gene filters
Gene filters are used to exclude corresponding spots for an entire gene from all arrays.
EXCLUDE a gene under any of the following conditions:
Minimum Pole-Change:
Less than 20 % of expression data values have at least a
A did change in either direction nom die genes median value.
•• whose variance is in the bottom 90 th percentile
C P-value > 0,01
Percent Missing: exceeds: 50 %
OK Cancel Reset Help

Figure 20 c Gene Filters Option of BRB ArrayTools

Coming data appears on Excel as four data sheets: "Experiment descriptors", "Gene annotations", "Filtered log ratio", and "Gene identifiers" as indicated with red rectangular in **Figure 21**. On the first data sheet, there are descriptors of the experiment. There were approximately 72000 genes in data set first. After the filtering data according to significance, 1512 genes are appeared as current data set. Significance filtration is made due to pick the genes having most significant changes. In order to annotate this data as a part of it appears on **Figure 21**; WEBGESTALT (WEB-based GEne SeT AnaLysis Toolkit) web page is set.

Figure 21 After successful import of the data, excel sheet view

WebGestalt is one of the popular software tools since 2005. For the gene lists derived from large-scale genetic, transcriptomic and proteomic studies, latest version of WebGestalt enables to interpret 8 organisms and 201 gene identifiers from various databases & different technology platforms (Zhan *et al*, 2013). Since the annotation of the data couldn't be made via BRB Array Tools, WebGestalt is used for this purpose. The *.ndf* file was old version of annotation file seen in **Figure 22**. From here, a *.txt* file is created and uploaded to WebGestalt in order to annotate the data (**Figure 23**).

	AAGAATTA GCTGTTTGT AGTAGCCAG AGTAGCCAG CCACTGGGGG CCTTCCAA CCTTCCAA	AACTICTGEGCTGCAGC GCGGAATAAGTTCTAACT AACTITTCA CAGAACTCC CAGAACTCC AGTTTTGA AGTTTTGA ATCATAAA TTTCTCAGA CACAATCTC CACAATCTC	AIGGAGTCTTAAAGGCT AACTCCAAAA LAICCACTG LAICTCAAGG LAICTGTAAG GTAGTTTTG GTGCCTCTT GGGGGAATTAC ACCCTGTTT GAGAGGTTG GACCACTGG GACCACTGG CCCCAGAGT
	SCCAGGCAACTCAAGACATTGT TTGTCTGTCTACTTAGTAGCTA TGTCTGTGTCACTAGTAGCTA CCATCTGTGCCAGGGCCACCCCCAC CGGCGGCATGCATGTATGCT TGTCAGATTGGGCGAATGCATGCT ACACTGTTTGGGAGGATGGCGTCATCC	AGTTAACTCGAACACAGGCTGC ACTCTGCTTCCTATCCAGCCTGC ACTCTGCTTCCTATCCAGGCTTAT ATTGGAGGCGATCATAGTTCT AGTTGGCGGGGGCGCGAGGCTTTCT CATTTGCTTATGGCGGGGCGG	DAGGGGACCATIGCTCAGGAT CATATTCCTGGGGGCTTGCA GAACAAATTTACCTGGGGGCTTGCA GAACAAATTTACCTGGGAGCTTCACA HIGGAAAATTTACCTGGGGGTACCG ATGTGGCAGGACATCCGGAGAGG ATGTGCCTGGAGGATACCG ATTGTGGCGGGGGGAAGCTCGGG SCCATTAGTGGCTTGGGATACCG SCCATTAGTGGCTTGGGATACTGG ATCCACAAGCCTTGGGATACTG ATCCACAAGCCCTAGGCATACTA ATCCACAAGCCCTAGGCATACTA ATCCACCAAGCCCTAGGCATACTA ATCGACAGGCCCTAGGCATACTA
	GGACACAGANTAACCATCACTT TGGAGATACTTCAATACCACGAG GATGCTGCAAGCGAAGCG	GGAACCGGTGCGGCACTCAA TGAGAATTCTGGATTCTTG CTCCTTACAGTACGGAATGGCAC TCAGGAATCCAAGGAATGGCAC TCACCAGAATCCAAGGAATGGAAT	ATTCCCTTAATATCAGATCC AACCAGAGGTGTGTCCAGAGA CGGGCTTTAATCGCCTTCGGGAG GGGGTTTAATCGGCTTCGGGAG GGGATATCTGGGGCTCTTAGGCGAG GGTGATGTGGGGTTTAGGCGAG AGTGGCTTGGCAAAAATTAGGCAAG GAAGCATGGGATGCCAAGGGAGG CCAGGCATGGGATGCCACGAGGAGG ACTGGGATGGCCACAATTAGGCTAG ACTGGGATGGCCACAATTAGGCTAG GCCATGGGCATGGGTAGCAAGGAGGGAGG GCAAGTGCCAGACAAGAGCAAGG
in SEQ_ID CC SEQUENCE	92799 TCTCTG 46837 GGCCTG 28835 AAACACA 28835 AAACAACA 08323 AAACAACA 16799 AAGGGA 26685 TTTTCG	Image: 103 Image:	03 XM 001003382 46891 ATGAACI 35479 GGGAACI 35479 GGGAACI 83149 AGCAAACI 83149 AGCAAACI 23119 TGTGAA 19482 TGTGCAA 11480 TGTGCAA 133357 TGGCCAG 33355 TGTGCCAG 23445 TTATCAA
file on number; NimbleGe se DESIGN ID GB /	5045 0135 0003 XM 5045 0137 0003 XM 5045 0139 0003 XM 5045 0141 0003 XM 5045 0143 0003 XM 5045 0147 0003 XM 5045 0147 0003 XM	5045 5045 0149 0 5045 5045 0151 00 5045 5153 003 MM 0 5045 0153 003 MM 0 0 5045 0153 003 MM 0	5045 5045 0167 00 5045 0173 0003 MM 5045 0171 0003 MM 5045 0173 0003 MM 5045 0175 0003 MM 5045 0177 0003 MM 5045 0177 0003 MM 5045 0177 0003 MM 5045 0181 0003 MM 5045 0183 0003 MM 5045 0183 0003 MM 5045 0187 0003 MM 5045 0187 0003 MM 5045 0187 0003 MM 5045 0187 0003 MM 5045 0189 0003 MM
<pre>#ID = PROBE_ID from .ndf #DESIGN_ID = #PROBE_DESIGN_ID = #EROBE_DESIGN_ID = #GE_ACC = GenBank Access: #SEQUENCE = probe sequen ID DESIGN_ID]</pre>	XM_892799P00106 5045 NM_146837P00579 5045 NM_028835P02890 5045 NM_0208232P0170 5045 NM_016799P02836 5045 NM_0167799P00877 5045 NM_026685P1286 5045	NN_001033527F00303 NN_001033769F00120 NN_019951F01025 5045 NN_177236F03755 5045 NN_177236F03755 5045 NN_025605F001149 5045 NN_025605F00449 5045 NN_025605F00291 5045 NN_007760F044123 5045	XXM 001003322P00151 NW 14691P00001 5045 NM 011070P00005 5045 XXM 135479P04329 5045 NM 183449P01867 5045 NM 023119P01058 5045 NM 023119P01058 5045 NM 011480P04065 5045 NM 011480P04065 5045 NM 023440P00066 5045 NM 023440P00066 5045

Figure 22 Annotation File of Platform opened in GE02R.

User ID information t	able		
Mapped User IDs back			
NM_001001881 72190	ENSMUSG00000043391	510009E07Rik	RIKEN cDNA 2510009E07 gene
NM_001001179 232400	ENSMUSG00000047228	C048546	cDNA sequence BC048546
NM_001001882 269400	ENSMUSG00000038685	tel1	regulator of telomere elongation helicase 1
NM_001001714 227631	ENSMUSG00000059625	iohlh1	spermatogenesis and oogenesis specific basic helix-loop-helix 1
NM_001001490 239283	ENSMUSG00000044819)xgr1	oxoglutarate (alpha-ketoglutarate) receptor 1
NM_001001446 226143	ENSMUSG0000025197	yp2c44	cytochrome P450, family 2, subfamily c, polypeptide 44
NM_001001804 384214	ENSMUSG00000033805	phx4	epoxide hydrolase 4
NM_001001737 414758	NA AN	fp826	zinc finger protein 826
NM_001001152 238690	ENSMUSG00000055480	fp458	zinc finger protein 458
NM_001001187 408068	ENSMUSG00000048280	fp738	zinc finger protein 738
NM_001001452 387514	ENSMUSG00000046652	as2r143	taste receptor, type 2, member 143
NM_001001318 209380	NA	3m4759	GTPase, very large interferon inducible 1 pseudogene
NM_001001320 109575	ENSMUSG00000037477	bx10	T-box 10
NM_001001803 408198	ENSMUSG0000060201	ipink7	serine peptidase inhibitor, Kazal type 7 (putative)
NM_001001489 215928	ENSMUSG0000038528	C021785	cDNA sequence BC021785
NM_001001444 75400	ENSMUSG00000044249)efb29	defensin beta 29
NM_001001805 258248	NA	olfr576	olfactory receptor 576
NM_001001332 100038854	4 ENSMUSG00000079594 E	C117090	cDNA sequence BC1179090
NM_001001321 70484	ENSMUSG0000033114	ilc35d2	solute carrier family 35, member D2
NM_001001496 414089	ENSMUSG00000055691	ija6	gap junction protein, alpha 6
NM_001001183 407831	ENSMUSG0000024168	mem204	transmembrane protein 204
NM_001001883 329152	ENSMUSG00000042807	lecw2	HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2
NM_001001326 76954	ENSMUSG0000031024	\$5	suppression of tumorigenicity 5
NM_001001451 387513	ENSMUSG00000058250	as2r138	taste receptor, type 2, member 138
NM_001001334 381350	ENSMUSG0000037708	C061194	cDNA sequence BC061194
NM_001001322 279028	ENSMUSG00000014852	damts 13	a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 13
NM_001001453 387515	ENSMUSG00000051917	as2r144	taste receptor, type 2, member 144
NM_001001559 384701	ENSMUSG00000057321)ub2a	deubiquitinating enzyme 2a
NM_001001807 258502	ENSMUSG00000054036	olfr279	olfactory receptor 279
NM_001001499 414105	NA	1732465J04Rik	RIKEN cDNA 4732465J04 gene
NM_001001495 414084	ENSMUSG00000044162	nip3	TNFAIP3 interacting protein 3
NM_001001449380878	NA	F067063	cDNA sequence AF067063

Figure 23 Webgestalt Annotation of the data set

2.2. Cell Culture

In this thesis study, two cell lines are used: Neuro 2a (N2a), and AtT-20. N2a cell line is derived from *Mus musculus* brain. These cells are adherent neuroblasts. In order to culture this cell line, Dulbeco's Modified Eagle Medium (DMEM), fetal bovine serum (FBS), and penicillin/streptomycin are used according to **Table 1**.

Table 1 Growth Media of N2a cells

Components of Culture Media	Final Concentration
FBS	10 %
Pen/Strep	1 %
DMEM	q.s.p.

Cells are cultured in an atmospheric environment composed of 5 % CO_2 and 95% air in 37 °C.

In sub-culturing, 0.25% (w/v) Trypsin - 0.53 mM EDTA solution is used to remove cells. Sub-culturing is carried in a ratio of 1:6.

AtT-20 cell line is derived from pituitary of *Mus musculus*. They are small rounded cells, but loosely adherent. For the growth of AtT-20 cell line, F-12K selective medium, horse serum, FBS and penicillin/streptomycin are combined as in **Table 2**.

Components of Culture Media	Final Concentration
Horse Serum	15 %
FBS	2.5 %
Pen/Strep	1 %
F-12K Selective Media	q.s.p.

 Table 2 Growth Media Components of AtT-20 cell line

In sub-culturing AtT-20 clumps are transferred to another flask filled with growth media. Therefore, there is no cultivation ratio. Cells live sustainably in clusters.

Atmospheric environment composed of 5 % CO_2 and 95 % air is required for AtT-20 cell growth in 37 °C.

2.3. RNA Extraction

In order to obtain RNAs from cell lines, iNtRON Biotechnology RNAspinTM Total RNA Extraction Kit [for Cell/Tissue] is used (Cat. No: 17211). For the N2a cell line, from over-cultured T-75 flask 4 tubes of 0.5 mL cells are obtained. On the other hand, for the AtT-20 cell line RNA extraction, cells are collected to one tube only. Then, the protocol within the kit is strictly followed.

2.4. DNase treatment

In order to remove genomic DNA from RNAs, DNAse treatment is applied to total RNAs obtained previously by Invitrogen's Ambion DNA-freeTM Kit (Cat. No: AM1906). The protocol within the kit is strictly followed.

2.5. Agarose Gel Electrophoresis for total RNA

After DNase treatment of total RNAs, products are run in 1% agarose gel.

2.6. cDNA Synthesis

As the crucial step of q-RT-PCR, cDNA synthesis is carried out by Thermo Scientifics' RevertAid First Strand cDNA Synthesis Kit (Cat. No: K1622). Since random hexamer multiplies every RNA molecules found in the sample, random hexamer primed reverse transcription is preferred. Therefore, by obtaining a random hexamer primed cDNA sample can be used as a source for every desired gene. The protocol within the kit of "RevertAid First Strand cDNA Synthesis" is strictly followed.

2.7. Primer Design

Because both cell lines are derived from mouse species, primers are designed in reference to *Mus musculus* genome. Genes selected using the microarray data are: *Crhr1, Glp1r, Glp2r, Sctr, Bai1, Bai3, Gpr113, Gpr116, Gpr133, Casr, Grm1, and Fzd10.*

Here as an example primer design for *Crhr1* gene will be examined. First, gene sequence is obtained from NCBI.

"Mus musculus corticotropin releasing hormone receptor 1 (Crhr1), mRNA

NCBI Reference Sequence: NM_007762.4

>gi|145966876|ref|NM_007762.4| Mus musculus corticotropin releasing hormone receptor 1 (Crhr1), mRNA

AGACTTGCTCGCGCAGGGCGAGCCAGAGCCTGCCGGTGGGGC GGGGCGGGAGGGTGCGAAGCCGGGCGCCTGGGAGCAGCTCAG CGACCCGGGAGACTGGCCGCCCAACGGAGACCGCAGCCGCCC GCTCTTCGCTCTGGGATGTCGGAGCGATCCTGGCATCCAGGAC GCTGACAGAGCGAGCCCGAGGATGGGACAGCGCCCGCAGCTC

CGGCTCGTGAAGGCCCTTCTCCTTCTGGGGCTGAACCCCGTCTC CACCTCCCAGGATCAGCAGTGTGAGAGCCTGTCCCTGGCC AGCAATGTCTCTGGCCTGCAGTGCAATGCCTCCGTGGACCTCA TTGGCACCTGCTGGCCCAGGAGCCCTGCAGGGCAGTTGGTGGT TCGGCCCTGCCTGCCTTTTTCTACGGTGTCCGCTACAACACCA CAAACAATGGCTACCGGGAATGCCTGGCCAACGGCAGCTGGG CAGCCCGTGTGAATTATTCTGAGTGCCAGGAGATTCTCAACGA AGAGAAGAAGAGCAAAGTGCACTACCACATTGCCGTCATCATC AACTACCTGGGCCACTGCATCTCCCTGGTGGCCCTCCTGGTGGC CTTTGTCCTCTTCCTGCGGCTCAGGAGCATCCGGTGCCTGAGGA ACATCATCCACTGGAACCTCATCTCGGCTTTCATCCTGCGCAAC GCCACGTGGTTTGTGGTCCAGCTCACCGTGAGCCCCGAGGTCC ACCAGAGCAACGTGGCCTGGTGCAGGCTGGTGACAGCCGCCTA CAACTACTTCCACGTAACCAACTTCTTCTGGATGTTCGGTGAGG GCTGCTACCTGCACACAGCCATCGTACTCACGTACTCCACCGA CCGTCTGCGCAAGTGGATGTTCGTCTGCATCGGCTGGGGTGTG CCTTTCCCCATCATTGTGGCCTTGGGCCATTGGGAAACTTTACTA CGACAATGAAAAGTGCTGGTTTGGCAAACGTCCTGGAGTATAT ACTGACTACATCTACCAGGGCCCCATGATCCTGGTCCTGCTGAT CAACTTTATCTTTCTCTTCAACATTGTCCGCATCCTCATGACCA AACTCCGAGCATCCACCACATCTGAGACTATTCAGTACAGGAA GGCTGTGAAGGCCACTCTGGTGCTCTTGCCCCTCCTGGGCATCA AGGGTTGTCTTCATCTACTTCAACTCTTTCCTGGAGTCCTTTCA GGGCTTCTTCGTGTCTGTGTTCTATTGTTTCTGAACAGTGAGG TCCGCTCTGCCATCCGGAAGAGGTGGCGGCGATGGCAGGACAA GCACTCCATCAGAGCCCGAGTGGCCCGCGCCATGTCCATCCCC ACCTCCCCACCAGAGTCAGCTTCCACAGCATCAAGCAGTCCA CAGCAGTGTGAACCTCAGGCCACAGAGCAGCCCCCAAGACCC GAGGCTGGGGAAATGATGCAAGCTCACTAGCGAGCCTGTCTGC

AGAGGCAGGCAGCCTTCCCATCCCTGCCCCTGGGATGCAGACC TGTAAGCCTGCCCAGCCGTGGACAAAGCCCATAGCACTGGGGT GGGCCCTTGGCATCTAGCTCCCTGCTGCCCATTCTCCCTGGGAA GTTGAAATGGGCATTGGGGGGCTGGAAACCCTGCAGCAGTTTGA TGGGCCTGTGAGCGCTGTCTTCTCCCAGAGCAGCTTACTGAAG ATCTGTCGTCTTCAGGAGCTGTTGGGGGAGGCCAACTGTTACCCT GGGGCATCATGGAAAACTCCCTTCTGAGACTGTAAAGTCTCTG AGTGTTAGCGATGCCTTGGGATGCTACCGAGGACCAACATGGT CCAGTCAGGAGACCGGGAGATAGCGGTAGAAATCTGGGAACG TCATCAGATGGCACTCCACCTCCCTACAAGTCACTCCTGAGCC ACCAGGATTTCATCAGCACTGTGGCACTGCCACTGGAAAGCCC TGCCTTGCTGCTTGCTGCCCTGCACCTTTAGACATTTACTATTC TGCAGGCCAAGCCAGCTTTCTGTCACTTATCCACTGACAGCAA CGGTCCCCTCGCCCCAAATCCTCCCACCTCTGGGTATCTTCTA ACCTGTGAGAAGATGGGGGGTCGGGAAGGGGACTTGAGTTGCC AGGAACCAGAGTGGGCCCAGTCTATGAGGAAGGAGTGGCCCC TGGGTACCCAGGCCACTGGCTTCAGTGGCTGGCCTCTTGAACA CAGTCACAAGCTGGGGGGAAGGATCTATTCAAGTGCCCTGACCA GCGACAGGTGGCTCCTGGGACAACTAACTAACTAAGCCCTTGC TCCCAGGCTTGGAATGGCCCAGTCCTCAGTGGGTAGGAGAGCT ATTTATCTTTTC"

Then, "NCBI Primer-BLAST" under the website of "http://www.ncbi.nlm.nih.gov/tools/primer-blast/" and "Primer3" under the website of "http://bioinfo.ut.ee/primer3-0.4.0/primer3/" are used to pick primers.

🖢 NM_007	762.4: 12.4	К (2.4Кbp)• Find	l un Seque	ence.				$\langle \varphi \varphi \rangle$	1-0-		_	+ 🚮						X	uls•	Configure	ê ?•
emplate <mark>n</mark>	pm .	300	4 <u>00</u>	500	IRAA .	. 700 .	1970	900	1 K	1,100	1,200	1,300	1,400	1,500	1,811	1,700	1,810	1,900	р.к.	2,100	12,200	2,4
enes - Es	inn	_																				
inn 1	exm	13	extra m 4		6	om /	exco	8	exo	> 0.11	exan 1								_		>	
		6478		- Child			Critical I	exion 9	>		xon 12											
enes						Dibri							-									
NP 03170	8.1 🚃	-	-	•	-	>	-	•		>	-	>	=									
rimer pai	rs for N	4_00776	2.4								Primer A	A										
imer 2		4																				
imer J		Ą																				
river 5			Ą																			

Figure 24 NCBI Primer-BLAST results for Crhr1 gene

Since there is not any other variant of Crhr1 gene for *Mus musculus*, 4th primer may be appropriate due to its short product size which is 193 bp, and exon-exon junction fit. When examined by clicking the tab on fourth primer as in **Figure 24**, details are as shown below:

Primer pair 4										
	Sequence (5'->3')		Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	TTCTGAACAGTGAGG	TCCGC	Plus	20	1284	1303	59.97	55.00	5.00	3.00
Reverse primer	CAGCCTCGGGTCTTG	GG	Minus	17	1476	1460	59.34	70.59	4.00	0.00
Product length	193									
Exon junction	1297/1298 (forward prin	ner) on templa	te <u>NM_007762.4</u>							
Products on intend > <u>NM_007762.4</u> Mus	led target musculus corticotropin r	eleasing horm	one receptor 1 (Crhr1),	mRNA						
product length Forward primer Template	= 193 1 TTCTGAACAGI 1284	GAGGTCCGC	20 1303							
Reverse primer Template	1 CAGCCTCGGG7 1476	CTTGGG 17	60							

Figure 25 Primer details of Crhr1 gene

In order to see whether it hits another sequences in the genome, BLAST search is made as in **Figure 25**.

	S	equence (5'.>3')		Length	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	Т	TCTGAACAGTGAGGTCC	SC	20	59.97	55.00	5.00	3.00
Reverse primer	C	AGCCTCGGGTCTTGGG		17	59.34	70.59	4.00	0.00
Products on target	templa	tes						
> <u>NM_007762.4</u> Mus n	nusculu	es conticotropin releasing h	ormone recepto	r 1 (Crhr1), mR	NA			
product length =	193							
Forward primer	1	TTCTGAACAGTGAGGTCC	GC 20					
Template	1284		1303					
Reverse primer	1	CASCCTCSSSTCTTSSS	17					
Template	1476	•••••	1460					
> <u>NM_001197024_1</u> M	us mus	culus unkempt-like (Droso)	shila) (Unkl), tra	anscript variant	1, mRNA			
product length =	1921							
Reverse primer	1	CAGCCTCGGGTCTTGGG	17					
Template	2468	AAG	2452					
Reverse primer	1	CAGCCTCGGGTCTTGGG	17					
Template	548	C	564					
> <u>NM_001112703.1</u> M	us mus	culus c-abl oncogene 1, no	n-receptor tyro	sine kinase (Ab	il1), transi	cript varia	nt 1, mRNA	
product length =	1346							
Reverse primer	1	CAGCCTCGGGTCTTGGG	17					
Template	2912	GTTT	2896					
	1	CAGCCTCGGGTCTTGGG	17					
Reverse primer								

Figure 26 BLAST results of the picked primer

There are 10 hits elsewhere in the genome although not perfectly match with sequences. Therefore, "Primer3" search is made in order to make a comparison. Sequence is pasted to "Primer3" this time, and the results were:

Primer3Output

PRIME relea	R PICKING sing hormo	RESULTS Fone recept	FOR gi tor 1	1459668 (Crhr1),	76 ref mRNA	NM_00776	2.4 Mu	s muscul	us corticotropin.	
No mi Using OLIGO LEFT RIGHT SEQUE INCLU	spriming 1 1-based s PRIMER PRIMER NCE SIZE: DED REGION	library sp sequence p <u>start</u> 1666 1834 2428 N SIZE: 24	pecifi positi 20 20 20	ed ons <u>tm</u> 58.97 58.99	gc% 50.00 55.00	any th 27.77 0.00	3' th 0.00 0.00	<u>hairpin</u> 0.00 0.00	Seq GAAACCCTGCAGCAGTTTC CCAAGGCATCGCTAACAC	3A IC
PRODU	CT SIZE: 1	L69, PAIR	ANY_T	H COMPL:	0.00,	PAIR 3'_	тн сомр	L: 0.00		
1	AGACTTGCI	rcgcgcagg	GCGAGC	CAGAGCCT	GCCGGTG	GGGCGGGG	CGGGAGG	GTGCGAA		
61	GCCGGGCGG	CCTGGGAGC	AGCTCA	.GCGACCCG	GGAGACI	Gecceccc	AACGGAG	ACCGCAG		
121	CCGCCCGCI	ICTTCGCTCI	IGGGAT	GTCGGAGC	GATCCTG	GCATCCAG	GACGCTG	ACAGAGC		
181	GAGCCCGAG	GGATGGGACA	AGCGCC	CGCAGCTC	CGGCTCG	TGAAGGCC	CTTCTCC	TTCTGGG		
241	GCTGAACCO	CCGTCTCCAC	CCTCCC	TCCAGGAT	CAGCAGI	GTGAGAGC	CTGTCCC	TGGCCAG		
301	CAATGTCT	CTGGCCTGC	AGTGCA	ATGCCTCC	GTGGACC	TCATTGGC	ACCTGCT	GGCCCAG		

•

1441 CTCAGGCCACAGAGCAGCCCCCAAGACCCGAGGCTGGGGAAATGATGCAAGCTCACTAGC

•

1501 GAGCCTGTCTGCAGAGGCAGGCAGCCTTCCCATCCCTGCCCCTGGGATGCAGACCTGTAA

1561 GCCTGCCCAGCCGTGGACAAAGCCCATAGCACTGGGGTGGGCCCTTGGCATCTAGCTCCC

1621 TGCTGCCCATTCTCCCTGGGAAGTTGAAATGGGCATTGGGGGCTGGAAACCCTGCAGCAG

- 1681 TTTGATGGGCCTGTGAGCGCTGTCTTCTCCCCAGAGCAGCTTACTGAAGATCTGTCGTCTT >>>>>
- 1741 CAGGAGCTGTTGGGGAGGCCAACTGTTACCCTGGGGCATCATGGAAAACTCCCTTCTGAG

1801 ACTGTAAAGTCTCTGAGTGTTAGCGATGCCTTGGGATGCTACCGAGGACCAACATGGTCC <<<<<

1861 AGTCAGGAGACCGGGAGATAGCGGTAGAAATCTGGGAACGTCATCAGATGGCACTCCACC

1921 TCCCTACAAGTCACTCCTGAGCCACCAGGATTTCATCAGCACTGTGGCACTGCCACTGGA

1981 AAGCCCTGCCTTGCTGCTGCTGCCCTGCACCTTTAGACATTTACTATTCTGCAGGCCA

KEYS (in order of precedence): >>>>> Left primer <<<<< Right primer

ADDITIONAL OLIGOS

ADDITIONAL OLIGOS							
	<u>start</u>	len	tm	gc%	any th 3'	<u>th hairpin s</u>	seq
1 LEFT PRIMER	764	20	59.03	50.00	0.00 0.	00 0.00	
RIGHT PRIMER	989 989	20	59.02	50.00	0.00 0.	00 0.00	
PRODUCT SIZE: 22	A 6, PAIR	ANY_	TH COMPL:	0.00,	PAIR 3'_TH C	OMPL: 0.00	
2 LEFT PRIMER	1815	20	58.99	55.00	0.00 0.	00 0.00	
RIGHT PRIMER	1970	20	59.05	50.00	0.00 0.	00 0.00	
GTGCCACAGTGCTGATGAA PRODUCT SIZE: 15	A 6, PAIR	ANY_	TH COMPL:	0.00,	PAIR 3'_TH C	OMPL: 0.00	
3 LEFT PRIMER	2059	20	59.03	50.00	0.00 0.	00 0.00	
RIGHT PRIMER	2260	20	59.05	55.00	0.00 0.	00 0.00	
PRODUCT SIZE: 20	C 2, PAIR	ANY_	TH COMPL:	6.31,	PAIR 3'_TH C	OMPL: 1.38	
4 LEFT PRIMER	995	20	58.95	60.00	16.46 16.	46 0.00	
GACTACATCTACCAGGGCC RIGHT PRIMER	1223	20	58.94	55.00	0.00 0.	00 0.00	
TGAAGACAACCCTGGAGAC PRODUCT SIZE: 22	C 9. PATR	ANY	TH COMPL.	0.08.	PATE 3' TH C	OMPT. 0.00	
	-,						

Figure 27 Primer 3 Output of crhr1 gene

Primer3 output results give more stable primers due to GC content and secondary structure that can occur. In order to get a successful q-RT-PCR result, short products should be targeted. Smaller than 300bp products would be synthesized ideally. Since 2nd pair is the shortest one here, it is checked in BLAST once more to see where it hits in the genome. As

shown in **Figure 27**, there are two hits in the mouse genome, first is the targeted gene, and second one is a bad match with a cDNA clone.

	Sequence (5'->3')		Length	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	GAGTGTTAGCGATG	CTTGG	20	58.99	55.00	2.00	2.00
Reverse primer	GTGCCACAGTGCTG	ATGAAA	20	59.05	50.00	5.00	2.00
Products on target	templates						
<u>NM_007762.4</u> Mus r	musculus corticotropin releas	ing hormone receptor	r 1 (Crhr1), mRN	A			
product length = Forward primer Template	= 156 1 GAGTGTTAGCGATG 1815	CCTTGG 20 1834					
Reverse primer Template	1 GTGCCACAGTGCTG 1970	ATGAAA 20 1951					
> <u>NM_026502.2</u> Mus r	musculus RIKEN cDNA 1110	004E09 gene (11100	04E09Rik), mRN	A			
product length = Porward primer Template	= 305 1 GAGTGTTAGCGATGC 540TGG.AA	CTTGG 20 559					
Reverse primer Template	1 GTGCCACAGTGCTGA 844T.TTC	rgaaa 20 C. 825					

Figure 28 BLAST result of the 2nd primer from Primer3 output

In order to check secondary structures, oligo analyzer under the website of IDT, Integrated DNA Technologies, is used to see a detailed probable hairpin structures, internal and hetero dimers as shown in the **Figure 29**.

GAG TGT TAG CGA	formation 2/5/2013 9:52 РМ тес стт ее			Nucleotide Type: DNA v Temperature 25 °C Na Concentration 50 mM Mg Concentration 0 mM Suboptimalty 50 %	Sequence Type: Max Foldings 20 Start Position Stop Position	Linear 💌
Structures					Update	Add To Order
Structure Name	Image	∆G (kcal.mole ⁻¹)	Tm (°C)	∆H (kcal.mole ⁻¹)	ΔS (cal.K ⁻¹ mole ⁻¹)	Output
1	Ŝ.	0.39	18	-16.1	-55.31	Ct Det
2	<u>ڳ</u>	0.55	9.5	-10.1	-35.73	Ct Det
3	R.	1.31	-4.2	-12.1	-44.99	Ct Det

HETERO-DIMER ANALYSIS	HOMO-DIMER ANALYSIS
Primary Sequence	Dimer Sequence
5'- GAGIGITAGCGATGCCTIGG -3'	5'- GAGIGITAGCGAIGCCIIGG -3'
Secondary Sequence	Maximum Delta G -38.84 kcal/mole
5'- GIGCCRCAGIGCTGAIGAAA -3'	Delta G -3.61 kcal/mole Base Pairs 2
Maximum Delta G -38.84 kcal/mole Delta G -5.02 kcal/mole Base Pairs 3	5' GAGIGIIAGCGAIGCCIIGG 1 t t t 3' GGIICCGIAGCGAIIGIGAG
5' GAGIGTIAGCGAIGOCITGG ::::::::!!! 3' AAAGTASTOSTGACACCOSTS	Delta G -3.14 kcal/mole Base Pairs 2
Delta G -4,74 kcal/mole	5' GAGTGTTAGCGATGCCTTGG :: : : :: 3' GGTICCGTAGCGATIGIGAG
5' GAGIGITAGOGAIGOCITOG : ::) AAJATAGOTGIGACCOTG	Delta G -3.14 kcal/mole Base Pairs 2
Delta G -3.3 kcal/mole	5' GAGIGITAGCGAIGCCTIGG 3' GGTTCCGIAGCGAIGIGAG
5' GASTETTAGCGATGCCTTGG	Delta G -3.14 kcal/mole Base Pairs 2
3' AAAGTAGICGIGACACCGIG	5' GAGIGIIAGCGAIGCCTIGG :: :: 3' GGIICCGIAGCGAITGIGAG

Figure 29 Detailed report of the desired primer pair in "OligoAnalyzer 3.1"

Since showed hairpins are insignificant in terms of structures and Tm's, and also heterodimer and selfdimer check results seem insignificant, as a conclusion this primer pair is chosen for RT-PCR studies. Whole table of targeted gene primers are shown in the **Table 3**.

Gene Name	Direction	Primer Sequence	P. size
Dail	F 5' \rightarrow 3'	CCCAGCTCATGACCGACTTT	102
Ball	R 5' \rightarrow 3'	TGGACACATTAGCTGGCAGG	192
D :3	F 5' \rightarrow 3'	CTGCCTGGCCTTGATAACTC	164
Bais	R 5' \rightarrow 3'	TCGTGCAGATGCTCTTATTGTG	164
G	F 5' \rightarrow 3'	TTGCCTTGTGATCCTCTTTCCA	100
Casr	R 5' \rightarrow 3'	TCATGTAGAGACTGCCCGAGA	199
	F 5' \rightarrow 3'	GAGTGTTAGCGATGCCTTGG	150
Crnr1	R 5' \rightarrow 3'	GTGCCACAGTGCTGATGAAA	156
E 110	F 5' \rightarrow 3'	AAGAGAGTCACTTCCCCAGC	150
Fzd10	R 5' \rightarrow 3'	TGTTTTGCTAGGGAGAGGGG	159
	F 5' \rightarrow 3'	ATGTCAGCTGCCCTGGTA	220
Gip1r	R 5' \rightarrow 3'	AGGTGGATGTAGTTCCTGGT	329
CL 2	F 5' \rightarrow 3'	GCTGGTTTCCATCAAGCAAG	269
Glp2r	R 5' \rightarrow 3'	GTGTCTGTAGGCCCTTCCTG	268
C 112	F 5' \rightarrow 3'	ATTTGTCCCCACAGCCCAAT	07
Gpr113	R 5' \rightarrow 3'	GACCAGCACTGATTCCCCTT	97
C 116	F 5' \rightarrow 3'	CTCCCGATTGTCTGTGAGGT	262
Gpr110	R 5' \rightarrow 3'	TGGAGAATTGAAGGTTGAACAATGG	262
G 122	F 5' \rightarrow 3'	ACCTACTGCTTTCAGGCACC	222
Gpr133	R 5' \rightarrow 3'	TGAGTGCTACACACCTGGAC	232
C 1	F 5' \rightarrow 3'	TCACTACCTGCTTCGCAGTG	222
Grm1	R 5' \rightarrow 3'	GCCGTTAGAATTGGCGTTCC	233
G (F 5' \rightarrow 3'	CTTCGGATGGGGTTCTCCAG	100
Sctr	R 5' \rightarrow 3'	CCAGATGGAAGCGTTGGAGT	106
CADDU	F 5' \rightarrow 3'	CAAGGTCATCCATGACAACTTTG	100
GAPDH	R 5' \rightarrow 3'	GTCCACCACCCTGTTGCTGTAG	496

 Table 3 Primer Sequences designed for the targeted genes and the product size

2.8. q-RT-PCR

From obtained cDNAs 1:10, 1:100, and 1:1000 dilutions are prepared for both AtT-20 and N2a derived ones in order to calculate the concentration accurately as cDNA concentration cannot be measured due to RNA presence in the samples. It is known that nearly 20% of RNA is converted into cDNA during a reverse transcriptase reaction. Three replicates of samples are used with a no template control (NTC) as shown in **Figure 30**.

Figure 30 Experimental Design of cDNA dilutions for N2a samples

In order to prepare a master mix, Roche's FastStart Universal SYBR Green Master (Rox) (Cat. No: 04 913 850 001) is used. Components of the master mix are SYBR green mix, nuclease free water, forward primer and reverse primer according to **Table 4**.

COMPONENTS	Volume for One Tube
SYBR green mix	9.7 μL
Nuclease free water	11.3 µL
Forward primer	0.5 μL
Reverse primer	0.5 μL
Total	22 μL

Table 4 SYBR Green Mixture Components for q-RT-PCR

When 3 μ L cDNA is added to mix finally, 25 μ L reaction tubes are placed onto QIAGEN.

Two-step reaction is designed accordingly:

Table 5 2-step Reaction Conditions for q-RT-PCR experiment

95 °C	10 min		Hold
95 °C	15 sec	40 cycles	Annealing
60 °C	45 sec		······g
	50 °C – 99 °C		Melting

CHAPTER 3

RESULTS & DISCUSSION

3.1. Microarray Data Analysis Results

After first analysis made by GEO2R, N18 and At-T20 cell line samples are obtained as in **Figure 32**. High red bars show four samples genes that are expressed in At-T20 cell line. However, there are no bars on N18 representing these could be the candidate genes for our hypothesis. The detailed analysis revealed after BRB Array Tools analysis (**Figure 33**).

To scatter the plot of differentially expressed genes, the excel sheet obtained after the microarray analysis result (**Figure 31**) is used. Then by using the V-look-up function of Microsoft Excel, the genes are determined as in **Table 7** in the order of significance.

	Display the data	GSM635464	GSM6354	GSM6354	GSM6354	GSM6354	Rank	Mean	T-test	Fold
	Display the data	_250443A01	65_25044	66_25044	67_25044	72_25044		_	_	Change
1	UniqueID	X/L LI01 💭	3702 8	3703 8	3704 8	5A01 X.		•		•
2	NM_175642.4	515733888	5.21E+08	-1.1E+09	4.96E+08	3.81E+08	1	4.55125	8.50250E-19	4.5513
3	XM_134865P01843	515643136	4.95E+08	4.45E+08	5.1E+08	2.49E+08	2	4.15125	8.50250E-19	4.1513
4	XM_138109P00228	515633536	5.06E+08	4.22E+08	4.92E+08	1.95E+08	3	3.234854	8.50250E-19	3.2349
5	NM_177218P01390	515515392	5.17E+08	-9.9E+08	4.91E+08	-1.2E+09	4	2.334854	8.12325E-19	2.3349
6	NM_030024P00173	515461248	4.87E+08	-9.9E+08	4.68E+08	2.66E+08	5	2.231258	4.40700E-19	2.2313
7	NM_001029837P03556	515438848	-9.2E+08	4.54E+08	5.13E+08	3.65E+08	6	2.134112	4.11820E-19	2.1341
8	NM_011475P00397	515366656	5.13E+08	-9.9E+08	5.16E+08	-1E+09	7	2.030975	6.41347E-19	2.0310
9	XM_901559P01106	515143808	4.91E+08	-9.9E+08	5.09E+08	-1.1E+09	8	1.994854	6.34789E-19	1.9949
10	NM_009026P00742	515123456	5.04E+08	4.25E+08	-1.1E+09	1.8E+08	9	1.994854	4.50250E-20	1.9949
11	NM_013654P00285	515075968	5.21E+08	4.49E+08	-9.2E+08	3.56E+08	10	1.936755	4.50250E-19	1.9368
12	NM_007812P01723	515038464	5.21E+08	4.54E+08	-9.2E+08	-1.1E+09	11	1.934854	7.50250E-19	1.9349
13	XM_129479P04733	514510336	4.99E+08	4.54E+08	5.02E+08	2.65E+08	12	1.932485	6.50250E-19	1.9325
14	NM_029849P02447	514276352	5.15E+08	4.54E+08	5.13E+08	-1.6E+08	13	1.916792	5.04570E-19	1.9168
15	XM_899399P00424	514115072	5.19E+08	4.39E+08	4.01E+08	-1.2E+08	14	1.911585	2.50250E-19	1.9116
16	XM_205276P04133	514074624	-9.2E+08	4.53E+08	-9.3E+08	2.71E+08	15	1.903877	2.50250E-19	1.9039
17	NM_053217P02356	514068224	5.21E+08	4.54E+08	5.19E+08	3.87E+08	16	1.900877	2.50250E-19	1.9009
18	NM_199422P00470	513745408	5.21E+08	4.54E+08	5.14E+08	3.89E+08	17	1.894854	2.50250E-19	1.8949
19	XM_488314P00296	513670784	5.17E+08	4.54E+08	5.19E+08	3.89E+08	18	1.890695	2.50250E-19	1.8907
20	NM_175485P06491	513590016	5.1E+08	4.23E+08	5.16E+08	3.26E+08	19	1.890129	2.50250E-19	1.8901
21	XM_486268P05198	513438976	5.03E+08	4.19E+08	4.61E+08	2.9E+08	20	1.884854	2.50250E-19	1.8849
22	NM_023814P01904	513396736	5.21E+08	4.54E+08	5.12E+08	-1.1E+09	21	1.881345	2.50250E-19	1.8813
23	NM_007988P09016	513310720	5.21E+08	4.54E+08	5.19E+08	3.54E+08	22	1.880347	2.50250E-19	1.8803
24	XM_148862P00054	513168384	5.02E+08	4.13E+08	5.07E+08	3.42E+08	23	1.880046	2.50250E-19	1.8800
25	NM_172454P01022	512394112	5.21E+08	4.51E+08	5.15E+08	-1.1E+09	24	1.879835	2.50250E-19	1.8798

Figure 31 Raw Data Result after BRB ArrayTool analysis

ID	adj.P.Val	P.Value	t	В	logFC	GB_ACC	SEQUENCE
NM_009022P01390	1.28e-184	1.78e-189	29.4	422	7.01	NM_009022	TGCAAGCTGGG
XM_973193P00843	7.74e-164	2.15e-168	27.7	374	6.61	XM_973193	TGATCATAAGAG
 NM_010910P01279 	9.86e-161	4.11e-165	27.4	366	6.54	NM_010910	GCTCAGTTTCA
	GSE25901/NM_0	10910P01279					
	15						
Sample values	12						
	GSM635472 GSM635473	GSM635474 GSM635464	GSM635465 GSM635466 GSM635467				
	N18		AtT20				
	 expression value 	e					
	1.16e-152		26.7	348	6.37	NM_145629	GATGACAAGCAC
NM_145629P01944	2.78e-141	6.46e-157	25.7	321	6.13	NM_133729	CTGTTTGTCTAT
 NM_145629P01944 NM_133729P01279 	1.12e-131	6.46e-157 1.93e-145		299	5.92	NM_026286	TATCAACCGCCA
 NM_145629P01944 NM_133729P01279 NM_026286P00304 		6.46e-157 1.93e-145 9.30e-136	24.8				

Figure 32 A sample from GE02R Top 250 genes selection

Figure 33 Scatter Plot of Data Analysis by BRB ArrayTools

It is seen that there are differentially expressed genes by AtT-20 cell line when compared to N18 cell line. In order to choose top genes whose expressions are nearly zero in N18, but having highest expression in AtT-20 cell line – also shown in **Figure 33** the analysis revealed by GEO2R - BRB ArrayTools scatter plot gave the detailed result.

Final list of the selected genes are listed in **Table 6**.

Bai3	ENSMUSG0000033569	Brain-specific angiogenesis inhibitor 3
Glp2r	ENSMUSG00000049928	Glucagon-like peptide 2 receptor
Fzd10	ENSMUSG0000081683	Frizzled homolog 10 (Drosophila)
Gpr116	ENSMUSG00000056492	G protein-coupled receptor 116
Bai1	ENSMUSG0000034730	Brain-specific angiogenesis inhibitor 1
Gpr133	ENSMUSG00000044017	G protein-coupled receptor 133
Gpr113	ENSMUSG0000067642	G protein-coupled receptor 113
Glp1r	ENSMUSG0000024027	Glucagon-like peptide 1 receptor
Sctr	ENSMUSG00000026387	Secretin receptor
Casr	ENSMUSG00000051980	Calcium-sensing receptor
Crhr1	ENSMUSG0000018634	Corticotropin releasing hormone receptor 1
Grm1	ENSMUSG0000019828	Glutamate receptor, metabotropic 1

Table 6 Genes Selected By Microarray Data Analysis

As the final step of microarray data analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway Analysis results revealed that genes of interest are related with two pathways (**Figure 34**):

- Neuroactive ligand-receptor interaction (Figure 35)
- Long-term depression (**Figure 36**)

6 -	1	hioinfo vanderhilt	adu/wahaastalt/htdocs/fin	al KEGG file 1376027252 html
	L	DIDITIONATUCIUN	CUU/ WEDUCSLALL/ HLUUCS/ HI	IAI NEUU IIIC 1370327232410111

User data and parameters: User data: textAreaUpload.txt, Organism: mmusculus, Id Type: gene_symbol, Ref Set: entrezgene, Significance Level: Top10, Statistics Test: Hypergeometric, I Minimum: 2

This table lists the enriched KEGG pathways, number of Entrez IDs in your user data set for the pathway, the corresponding Entrez IDs, and the statistics for the enrichment of the pathwa statistice column lists the number of reference genes in the category (C), number of genes in the gene set and also in the category (O), expected number in the category (E), Ratio of enric value from hypergeometric test (rawP), and p value adjusted by the multiple test adjustment (adjP). Finally, the pathway name is linked to KEGG where the user ids are highlighted, the nu gene ids is linked to a table with information about the user ids, and the Entrez IDs are linked to Entrez Gene

Neuroactive ligand-receptor interaction	5 14816 12921 14652 319229 93896	C=277;O=5;E=0.06;R=87.04;rawP=1.87e-09;adjP=3.74e-09
Long-term depression	2 14816 12921	C=72;O=2;E=0.01;R=133.94;rawP=1.00e-04;adjP=1.00e-04

Figure 35 Neuroactive ligand-receptor interactions

Figure 36 Long-Term Depression

3.2. q-RT-PCR Results

For determination of the efficiency of q-RT-PCR reactions, calculated efficiencies by Rotor-Gene Q Series Software on slope of standard curves are used.

 R^2 represented on the standard curves describes the proportion of the variability in a q-RT-PCR reaction. When R^2 value reaches to 1, variance of the reaction decreases means a better reaction.

The Ct value is the threshold cycle, the increase that can be detected in the amount of fluorescence. Starting template amount for reaching the expression can be calculated by Ct value. In the melt curves, T_m values depend on the length of DNA sample that is used. Different peaks in different temperatures show different DNA samples.

In order to calculate relative changes, $2^{-\Delta\Delta Ct}$ formula is used as described in the study of Livak & Schmittgen, in 2001.

3.2.1. Results for Bai 3 gene

Samples (**Figure 37**) are represented in colors in the quantitation graph and melting curve for *Bai3* gene.

С	ID	Name	Туре
	1	n2a-bai3	Standard
	2	n2a-bai3	Standard
	3	n2a-bai3	Standard
	4	n2a-bai3	Standard
	5	n2a-bai3	Standard
	6	n2a-bai3	Standard
	7	ntc	NTC
	8	n2a-gapdh	Standard
	9	n2a-gapdh	Standard
	10	n2a-gapdh	Standard
	11	n2a-gapdh	Standard
	12	n2a-gapdh	Standard
	13	n2a-gapdh	Standard
	14	ntc	NTC
	15	att20-bai3	Standard
	16	att20-bai3	Standard
	17	att20-bai3	Standard
	18	att20-bai3	Standard
	19	att20-bai3	Standard
	20	att20-bai3	Standard
	21	nto	NTC
	22	att20-gapdh	Standard
	23	att20-gapdh	Standard
	24	att20-gapdh	Standard
	25	att20-gapdh	Standard
	26	att20-gapdh	Standard
	27	att20-gapdh	Standard
	28	nto	NTC

Figure 37 Samples with color interpretations

Fluorescence levels of all N2a derived *Bai3* samples and no template controls (NTC) are depleted in 10 cycles due to lack of products as expected (**Figure 38**).

Figure 38 Quantitation of Bai3 concentrations

In the melt curve of *Bai3* gene, two peaks are observed. The first peak is around 78° which belongs to AtT-20 *Bai3* samples. This means all AtT-20 derived Bai3 samples have a single product because there is a single unique peak. All GAPDH samples obtained from both N2a and AtT-20 cell lines gave a second single peak around 87°. That means they have a single unique product for GAPDH gene.

Figure 39 Melt Curve of Bai3

Standard curve for Bai3 gene shows that sample duplicates are close each other by means of concentration. Moreover, concentration dilutions are

successfully made which can be seen from R value (Figure 40). It is, the Pearson Coefficient of Determination, the value indicating how well the data fits a line or curve. The closer the value is to 1, the better the data fits the curve. Here, R value is 0.9778290. That indicates dilutions were successfully made. In order to say effective to this q-RT-PCR run, the efficiency value should be between 90–100%, which means slope should be within the range of (-3.6, -3.3). If the efficiency is 100% in a perfect run, the CT values of the 10 fold dilution will be 3.3 cycles apart due to a 2-fold change for each change in CT. Therefore, if the slope is below -3.6, then the PCR has poor efficiency. Here, slope of standard curve is -6.35, which means that the efficiency is low for this q-RT-PCR run. It is also indicated as E value, which is 0.43. That means the efficiency of the run is 43%, which is low. This could be due to the replicates quality, which is pretty high in this case, indicating a good precision. There is one outlier in the bottom probably causing the deviation. If it is omitted, more efficient standard curve can be obtained.

Figure 40 Standard Curve of *Bai3*.

In **Figure 41**, agarose gel electrophoresis result is seen for Bai3 gene products. Loading information of the samples is found in **Table 8**. According to agarose gel electrophoresis result, we see two distinct bands. Lower product is around on the line of 150, and bigger product is

around 500bp. Bai3 gives 159bp-product and GAPDH should give 496bp-product based on primer design, which is held previously. They perfectly match with what is expected theoretically.

Figure 41 Gel view of *Bai3* and GAPDH q-RT-PCR products. Table 7 shows content of each lane.

Somela #	Sampla Nama	Product
Sample #	Sample Name	Length (bp)
1	1:10 dilution AtT-20 GAPDH product	~ 500
2	1:100 dilution AtT-20 GAPDH product	~ 500
3	1:1000 dilution AtT-20 GAPDH product	~ 500
4	NTC of AtT-20 GAPDH product	-
5	1:10 dilution AtT-20 Bai3 product	~150
6	1:100 dilution AtT-20 Bai3 product	~150
7	1:1000 dilution AtT-20 Bai3 product	~150
8	NTC of AtT-20 Bai3 product	-
1'	1:10 dilution N2a GAPDH product	~ 500
2'	1:100 dilution N2a GAPDH product	~ 500
3'	1:1000 dilution N2a GAPDH product	~ 500
4'	NTC of N2a GAPDH product	-
5'	1:10 dilution N2a Bai3 product	~150
6'	1:100 dilution N2a Bai3 product	~150
7'	1:1000 dilution N2a Bai3 product	~150
8'	NTC of N2a Bai3 product	-

 Table 7 Bai3 and GAPDH products loaded in agarose gel

Here, the standard curve and gel view of *Bai3* gene are examined in detail as an example. Rest of the genes that are examined for this thesis study can be found in **Appendix A**.

3.2.2. Fold Changes of Selected Gene Expressions

Fold change graph is structured via "GraphPad Prism Version 6.02". GAPDH gene is used for relative gene expression calculations. When the fold changes of 12 genes are compared, it is seen that *Bai1, Casr, Fzd10, Glp1r, Glp2r, Gpr116, Gpr133, Grm1* and *Sctr* are significantly expressed in AtT-20 cell line as conforming microarray data analysis (Data are mean \pm SEM from 2 cell lines per gene group, p < 0.001).

However, *Bai3*, *Crhr1* and *Gpr113* are not as it is expected as highlighted with red asterisks (**Figure 42**). *Bai3* and *Crhr1* genes are expressed in both N2a and AtT-20 cell lines. On the other hand, Gpr113, interestingly, is expressed in N2a but not in AtT-20 cell line.

Figure 42 Fold Changes of Selected Genes (mean ± SEM from N2a cell line and AtT-20 cell line per gene group, p < 0.001)

In microarray data there were nearly 72000 GPCR and GPCR-related genes. Since the microarray data solely cannot be counted as solid evidence, these q-RT-PCRs are carried out.

In microarray study, the cell line that was used is N18. N18 is a cell line of mouse neuroblastoma and rat glioma hybrid. However, the study revealed by Kuhar *et al.* claimed that the cell line not responding to CART are N2a, HEK293 and not differentiated PC12 cell lines. In order to perform this study and make a comparison between cell lines, obtained mRNAs should be from the same organism, to make a conclusion. Therefore, due to derivation from *Mus musculus* N2a and AtT-20 cell lines are used. Moreover, although HEK293 cell line both takes part in western blot and microarray studies as CART nonresponsive cell line, it is derived from human. Therefore, a proper comparison was not possible in AtT-20 cell line. As a result, these three genes *Bai3*, *Crhr1* and *Gpr113* might have given such different expressions from the microarray data.

Nevertheless, in order to be a CART receptor candidate, selected genes should be expressed in AtT-20 cell line while not being expressed in N2a cell line. Thus, *Bai3*, *Crhr1* and *Gpr113* are eliminated for being the candidate of CART's receptor at the end of this analysis.

Also, it should not be forgotten to mention that lack of mRNAs doesn't indicate the lack of translated protein. mRNAs might have been degraded shortly after their synthesis. However, it is possible to say that present mRNAs indicate that a specified protein is translated from its mRNA. Therefore, presence of mRNAs that are showed in this study indicates the protein presence.

CHAPTER 4

CONCLUSION

In this study, for the determination of CART receptor candidates; 12 genes are selected via microarray data analysis. These genes are: *Bai1, Bai3, Casr, Crhr1, Fzd10, Glp1r, Glp2r, Gpr113, Gpr116, Gpr133, Grm1* and *Sctr. Bai1, Bai3, Crhr1, Glp1r, Glp2r, Gpr113, Gpr116, Gpr133* and *Sctr* are from B Class *o*GPCRs, *Casr* and *Grm1* from C Class *o*GPCRs, Fzd10 is from F/S Class *o*GPCRs.

Due to being a small peptide, CART's receptor might be one of *o*GPCRs except the A Class. A Class GPCRs are huge receptors in size. Nevertheless, this does not entirely eliminate the probability that CART peptide has an A Class GPCR.

In microarray study, the cell lines that were used are HEK293, N18, AtT-20, and BV2. As mentioned previously, CART responsive cell lines were AtT-20 and differentiated PC-12 cells. Non responsive cell lines for CART are N2a, undifferentiated PC12, GH3, CATII and HEK293 cells. As CART responsive cell line AtT-20, as nonresponsive cell line N2a are used.

After q-RT-PCR studies carried out, it is found out that *Bai1, Casr, Fzd10, Glp1r, Glp2r, Gpr116, Gpr133, Grm1* and *Sctr* genes are expressed in high amount in AtT-20 cell line, while *Bai3* and *Crhr1* show low expression in N2a cell line. Interestingly, *Gpr113* is expressed in N2a, but not expressed in AtT-20 cells.

To conclude, *Bai1, Casr, Fzd10, Glp1r, Glp2r, Gpr116, Gpr133, Grm1* and *Sctr* genes can be candidates for CART's receptor(s). It is also possible that there can be more than one receptor for the CART peptide.

For further studies, these genes that are determined can be tested. After cloning the candidates to N2a cell line, it is possible to investigate CART's response via western blotting. Likewise, if a modified version of CART peptide can be synthesized, it is possible to pull down the receptor-peptide complex and analyze it for further.

REFERENCES

Alexander-Thomas, H. &. (2011, July). Chemical probes: Sharpen your epigenetic tools. *Nat Chem Biol* 7, pp. 499-500.

Atwood, B., Lopez, J., Wager-Miller, J., Mackie, K., & Straiker, A. (2011). Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. *BMC Genomics*, pp. 1-14.

Bouvier, M. (2013, May 20). Unraveling the structural basis of GPCR activation and inactivation. *Nature Structure Moleculer Biology*, pp. 539-41.

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., et al. (2001). Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. *Nature Genetics* 29, pp. 365 - 371.

Bruno, A., Costantino, G., Fabritiis, G., Pastor, M., & Selent, J. (2012, August). Membrane-Sensitive Conformational States of Helix 8 in the Metabotropic Glu2 Receptor, a Class C GPCR. *PloS One, Volume 7, Issue 8*, pp. 1-9.

Chang, G. W. (2003). Proteolytic cleavage of the EMR2 receptor requires both the extracellular stalk and the GPS motif. *FEBS Lett* 547, pp. 145–150.

Dominguez, G., Lakatos, A., & Kuhar, M. (2002). Characterization of the cocaine- and amphetamine-regulated transcript (CART) peptide gene promoter and its activation by a cyclic AMP-dependent signaling pathway in GH3 cells. *Journal of Neurochemistry* (80), pp. 885-893.

Driessler, F., & Baldock, P. A. (2010, October 1). Hypothalamic Regulation of Bone. *Journal of Molecular Endocrinology* 45, pp. 175-181.

Elefteriou, F., Ahn JD, J., Takeda, S., Starbuck, M., Yang, X., Liu, X., et al. (2005). Leptin regulation of bone resorption by the sympathetic nervous system and CART. *Nature 434*, pp. 514–520.

Filipek, S. S. (2003). G protein-coupled receptor rhodopsin: a prospectus. *Annual Reviews Physiology*, 65, pp. 851–879.

Filmore, D. (2004). It's a GPCR world. *American chemical society modern drug discovery*, pp. 24-28.

Foord, S. M., Jupe, S., & Holbrook, J. (2002). Bioinformatics and type II G-protein-coupled receptors. *Biochemical Society Transactions Volume 30, part 4*, pp. 473-479.

Gether, U. (2000). Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. *Endocrinology Revision 2*, pp. 90–113.

Goeders, N. E. (2003). The impact of stress on addiction. *Neuropsychopharmacol*, pp. 13:435–41.

International HapMap Project. (n.d.). *Bead Arrays*. Retrieved August 16, 2013, from NCBI:

http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/TechBeadArray. shtml

Jones, D., Lakatos, A., & Vicentic, A. (2006). The CART receptors: Background and recent advances. *P e p t i d e s 2 7*, pp. 1 9 34 – 1 93 7.

Kim, J. H. (1996). Glutamate residues in the second extracellular loop of the human A2a adenosine receptor are required for ligand recognition. *Molecular Pharmacology* 49, pp. 683–691.

Kobe, B. &. (2001, December). The leucine-rich repeat as a protein recognition motif. *Current Opinion in Structural Biology*, pp. 725–732.

Kolakowski, J. L. (1994). GCRDb: a G protein-coupled receptor database. *Recept Channel* 2, pp. 1–7.

Koylu, E. O., Balkan, B., Kuhar, M. J., & Pogun, S. (2006, July 5). Cocaine and amphetamine regulated transcript (CART) and the stress response. p e p t i d e s 27, pp. 1956 – 1969.

Koylu, E., Balkan, B., Kuhar, M., & Pogun, S. (2006). Cocaine and amphetamine regulated transcript (CART) and the stress response. *Peptides* (27), pp. 1956-1969.

Kristiansen, K. (2004). Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. *Science Direct - Pharmacology & Therapeutics*, *103*, pp. 21– 80.

Kroeze, W. K. (2002). Molecular biology of serotonin receptors structure and function at the molecular level. *Top Med Chem 2*, pp. 507–528.

Kuemmerle, J. F. (2001). Coupling of the insulin-like growth factor-I receptor tyrosine kinase to Gi2 in human intestinal smooth muscle: Gbetagamma-dependent mitogen-activated protein kinase activation and growth. *J Biol Chem*, pp. 276, 7187–7194.

Kuhar, M., Adams, G., Dominguez, J., Jaworski, J., & Balkan, B. (2002). CART peptides. *NEuropeptides* 36, pp. 1-8.

Kuhar, M., Lakatos, A., Prinster, S., Vicentic, A., & Hall, R. (2005). Cocaine- and amphetamine-regulated transcript (CART) peptide activates the extracellular signal-regulated kinase (ERK) pathway in AtT20 cells via putative G-protein coupled receptors. *Neuroscience Letters (384)*, pp. 198–202.

Kuhar, M., Lin, Y., & Hall, R. (2011, August 19). CART peptide stimulation of G protein-mediated signaling in differentiated PC12 cells: identification of PACAP 6-38 as a CART receptor antagonist. *Neuropeptides*, pp. 351-8.

Lane, J., & Canals, M. (2012, November). Sequential conformational rearrangements dictate the dynamics of class C GPCR activation. *Science Signalling*.

Langer, I. V. (2003). Lysine 195 and aspartate 196 in the first extracellular loop of the PAC1 receptor are essential for high affinity binding of agonists but not of antagonists. *Neuropharmacology* 44, pp. 125–131.

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 22DDCT Method. *METHODS 25*, pp. 402–408.

Macfarlane, S. R. (2001). Proteinase-activated receptors. *Pharmacology Review 53*, pp. 245–282.

Oikawa, M. S. (2013, March). Effects of protease-activated receptors (PARs) on intracellular calcium dynamics of acinar cells in rat lacrimal glands. *Histochemistry and Cell Biology*, pp. DOI 10.1007/s00418-013-1082-0.

Okada, T. F. (2002). Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. *Proc Natl Acad Sci USA 99*, pp. 5982–5987.

Pacak, K., & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. *Endocrinology Reviews*, pp. 22:502–48.

Pantages, E., & Dulac, C. (2000). A novel family of candidate pheromone receptors in mammals. *Neuron, Vol 28, Issue 3*, pp. 835–845.

Pfaffl, M. (2001). A new mathematical model for relative quantification in real-time RT–PCR. *Oxford Journals Nucleic Acids Research*, pp. Volume 29, Issue 9 45.

Piazza, P., & Le Moal, M. (1998). The role of stress in drug selfadministration. *Trends Pharmacological Sciences*, pp. 19:67–74.

Pierce, K. L. (2002). Seven-transmembrane Receptors. *Nat Rev Mol Cell Biol 3*, pp. 639–650.

Roth, C., & Yarmush, M. (1999). Nucleic acid biotechnology. *Annual Review of Biomedical Engineering 1*, pp. 265-297.

Sakmar, P. T. (2011, August). Clicking class B GPCR ligands. *Nature Chemical Biology Vol* 7, pp. 500-502.

Tang, X. W. (2012, Feb 27). Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets. *Acta Pharmacologica Sinica 33*, pp. 363–371.

Thim, L., Kristiensen, P., Wulff, B., & Clausen, J. (1999). Tissue Specific Processing of Cocaine and Amphetamine Regulated Transcript Peptides in Rat. *Proc Natl Acad Sci USA*, s. 2722-2727.

Vischer, H. F. (2003). Ligand selectivity of gonadotropin receptors. Role. *Biol Chem* 278, s. 15505–15513.

Wang, J., Duncan, D., Shi, Z., & Zhan, B. (2013). WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. *Nucleic Acids Research* 41(Web Server issue):W77.

Wierup N, K. M. (2004, Feb). Cocaine- and amphetamine-regulated transcript (CART) is expressed in several islet cell types during rat development. *J Histochem Cytochem.*, pp. 52(2):169-77.

Zhang, M., Han, L., & Xu, Y. (2012, Jun). Roles of cocaine- and amphetamine-regulated transcript in the central nervous system. *Clinical and Experimental Pharmacology Physiology* 39(6), pp. 586-592.

APPENDIX

Figure 43 Quantitation of *Casr* concentration

Figure 44 Melt Curve of Casr

Figure 45 Quantitation of *Crhr1* concentration

Figure 46 Melt Curve of Crhr1

Figure 47 Quantitation of *Fzd10* Concentration

Figure 48 Melt Curve of *Fzd10*

Figure 49 Quantitation of *Glp1r* Concentration

Figure 50 Melt Curve of *Glp1r*

Figure 51 Quantitation of *Glp2r* Concentration

Figure 52 Melt Curve of *Glp2r*

Figure 53 Quantitation of Gpr113 Concentration

Figure 54 Melt Curve of *Gpr113*

Figure 55 Quantitation of Gpr116 Concentration

Figure 56 Melt Curve of *Gpr116*

Figure 57 Quantitation of Gpr133 Concentration

Figure 58 Melt Curve of Gpr133

Figure 59 Quantitation of *Grm1* Concentration

Figure 60 Melt Curve of Grm1

Figure 61 Quantitation of Sctr Concentration

Figure 62 Melt Curve of Sctr