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ABSTRACT

REFINEMENTS, EXTENSIONS AND MODERN APPLICATIONS OF
CONIC MULTIVARIATE ADAPTIVE REGRESSION SPLINES

Yerlikaya-Özkurt, Fatma

Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

December 2013, 90 pages

Conic Multivariate Adaptive Regression Splines (CMARS) which has been developed
at the Institute of Applied Mathematics, METU, as an alternative approach to the well-
known data mining tool Multivariate Adaptive Regression Splines (MARS). CMARS
is based on given data and a penalized residual sum of squares for MARS, interpreted
as a Tikhonov Regularization problem. CMARS treats this problem by a continuous
optimization technique called Conic Quadratic Programming (CQP).

This doctoral thesis adapts the CMARS model into a wide frame of advanced methods
of statistics and applied mathematics. The first application is using CMARS in Gener-
alized Partial Linear Models (GPLMs), a particular form of a semiparametric model,
which extends the Generalized Linear Models (GLMs) in that the usual parametric
terms are augmented by a single nonparametric component. We prefer GLMs because
of their flexibility to the variety of statistical problems and the availability of software
to fit the models. There are different kinds of estimation methods for GPLMs. One
of the great advantages of semiparametric models consists of some grouping (linear
and nonlinear or parametric and nonparametric) which could be done for the input
dimensions (or features) in order to assign appropriate submodels to the groups specif-
ically. In this thesis, for the estimation of the parametric model part, we apply the
least-squares estimation. On the other hand, we consider CMARS for the nonparamet-
ric part to estimate the smooth function. This new algorithm, called CGPLM, has the
advantage of higher speed and less complexity, as it accesses the use of interior point
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methods.

The other extension is the use of CMARS method for the outlier identification problem.
For this purposes, we provide a new solution by using regularization and CQP tech-
niques to the mean-shift outlier model, which is considered as a parametric method.
After that the proposed method is improved by using CMARS to represent the nonlin-
ear structure in the data.

The second track of this doctorate study is the use of CMARS method for the pa-
rameter identification of Stochastic Differential Equations (SDEs) driven by Brownian
motions and fractional Brownian motions (fBms). Both systems of SDEs with standard
multi-dimensional Brownian motions and systems of SDEs having correlated Brown-
ian motions are covered in this thesis. Moreover, we introduce the CMARS method to
estimate both the spline coefficients and, especially, the Hurst parameter of the SDEs
driven by fBms. The theoretical results of this study may lead new implementations
and applications in science, technology and finance.

This PhD thesis ends with a conclusion and an outlook to future studies.

Keywords : Conic multivariate adaptive regression splines, stochastic differential equa-
tions, fractional Brownian motion, conic generalized partial linear model, outlier iden-
tification
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ÖZ

KONİK ÇOK DEĞİŞKENLİ UYARLANABİLİR REGRESYON EĞRİLERİNİN
GELİŞTİRİLMESİ, UZANTILARI VE MODERN UYGULAMALARI

Yerlikaya-Özkurt, Fatma

Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Aralık 2013, 90 sayfa

Konik Çok Değişkenli Uyarlanabilir Regresyon Eğrileri (CMARS) iyi bilinen veri
madenciliği tekniklerinden biri olan Çok Değişkenli Uyarlanabilir Regresyon Eğrileri-
ne (MARS) alternatif olarak ODTÜ Uygulamalı Matematik Enstitüsünde geliştirilmiş-
tir. CMARS belirlenmiş veriye ve bir Tikhonov düzenleme problemi olarak yorumlan-
mış MARS için cezalandırılmış hata kareler toplamına dayanmaktadır. CMARS bu
problemi konik karesel programlama (CQP) olarak adlandırılan sürekli optimizasyon
tekniği ile ele almaktadır.

Bu doktora tezi CMARS modelini istatistik ve uygulamalı matematiğin ileri metod-
larının geniş bir çerçevesi içerisinde uyarlamaktadır. İlk uygulama yarı parametrik bir
modelin özel bir formu olan Genelleştirilmiş Kısmi Doğrusal Modellerde (GPLMs)
CMARS’ın kullanılmasıdır. GPLMs genel parametrik terimlerin parametrik olmayan
bir parça ile birleştirildiği Genelleştirilmiş Doğrusal Modellerin (GLMs) farklı bir
şeklidir. Burada GLMs’in tercih edilmesinin nedeni çeşitli istatistiksel problemlere
olan esnekliği ve model uyumu için gerekli olan hazır yazılımların varlığıdır. GPLMs
için çeşitli tahmin yöntemleri bulunmaktadır. Yarı parametrik modellerin en büyük
avantaj-larından biri bazı grupların (doğrusal ve doğrusal olmayan veya parametrik ve
paramet-rik olmayan) girdi boyutlarına veya değişkenlerine göre uygun olan alt mod-
eller belirleyebilmeyi içermesidir. Bu tezde, parametrik model kısmının tahmini için
en küçük kareler tahmin yöntemini kullandık. Diğer taraftan, CMARS’ı parametrik
olmayan kısımdaki pürüzsüz fonksiyon tahmini için düşündük. CGPLM olarak isim-
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lendirilen bu yeni algoritma iç nokta metodunu kullandığı için yüksek hız ve düşük
karmaşıklık avantajına sahiptir.

Diğer bir uygulama CMARS yönteminin aykırı gözlem belirlemesi probleminin çözü-
mü için kullanılmasıdır. Bu amaç ile biz düzenleme ve CQP tekniklerini kullanarak
parametrik bir yöntem olan ortalama-kaydırma aykırı gözlem modeli için yeni bir
çözüm ürettik. Sonrasında önerilen yöntem veri içindeki doğrusal olmayan yapının
gösterilmesi için CMARS’ın kullanılması ile daha da geliştirildi.

Bu doktora tezinin ikinci kolu Brown hareketleri ve/ya kademeli Brown hareketleri
(fBms) ile elde edilmiş Stokastik Diferansiyel Denklemlerin (SDEs) parametrelerinin
belirlenmesi için CMARS yönteminin kullanılmasıdır. Bu tez hem standart çok boyutlu
Brown hareketleri ile SDEs sistemlerini hem de ilintili Brown haraketleri ile SDEs sis-
temlerini kapsamaktadır. Ayrıca, burada CMARS yönteminin eğri katsayısı ve özellikle
fBms ile elde edilmiş SDEs’in Hurst parametresi tahmini için kullandık. Bu çalışmanın
teorik sonuçlarının bilim, teknoloji ve finansta yeni yorumlama ve uygulamalara öncülük
edebileceği düşünülmektedir.

Bu doktora tezi sonuç ve gelecekte yapılacak çalışmalara bir bakış ile sona ermektedir.

Anahtar Kelimeler : Konik çok değişkenli uyarlanabilir regresyon eğrileri, stokastik
diferansiyel denklemler, kademeli Brown hareketi, konik genelleştirilmiş kısmi doğrusal
model, aykırı gözlem belirleme

x



In memory of my parents, Dilber and Nadir Yerlikaya

xi



xii



ACKNOWLEDGMENTS

I would like to gratefully and sincerely thank my advisor, Prof. Dr. Gerhard Wilhelm
Weber, for his guidance, understanding, and most importantly, his friendship during
my graduate studies at Middle East Technical University (METU). He provides a well
rounded experience consistent my long-term career goals. For everything you have
done for me, Prof. Dr. Weber, I thank you.

I would like to thank the members of my doctoral committee for their input, valuable
discussions and accessibility.

I would like to sincerely thank Assoc. Prof. Dr. Pakize Taylan for helpful discussions
on my PhD studies.

I am very thankful to Assist. Prof. Dr. Yeliz Yolcu-Okur and Assist. Prof. Dr. Ceren
Vardar-Acar for their friendship and discussions on fractional Brownian motion.

I would like to express my deepest appreciation and thanks to Prof. Dr. İnci Batmaz
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suggestions and supports to my academic life.

I also gratefully acknowledge the financial support of Turkish Scientific and Technical
Research Council (TUBİTAK).
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CHAPTER 1

INTRODUCTION

Data mining is an important tool in many areas such as science, engineering, health-
care, medicine, business, economics and finance. The data sets, generated in big
laboratories and institutions, and processed by powerful computing systems, and the
increasingly complex applications in those areas, are large, complex, and generally
“noisy.” Extracting information from the massive amounts of data requires the use
of sophisticated and high performance techniques and algorithms, based on statistics
and optimization. These techniques have to be usable by scientists, engineers and re-
searchers.

Data mining methods enable us to analyze the data stored in various data reposi-
tories gathered for different purposes such as quality improvement in industry [30]
or developing early warning systems [5] in various fields such as finance, environ-
ment, energy, etc. There is a number of predictive data mining tools useful for es-
tablishing mathematical or statistical relationships between several factors of inter-
est. Some widely used ones are Classification and Regression Trees (CART), Artificial
Neural Network (ANN), Multiple Linear Regression (MLR), and Support Vector Ma-
chine (SVM). Among these tools, Multivariate Adaptive Regression Splines (MARS) is
a well-known predictive data mining method capable of modeling high-dimensional
data with nonlinear structure [14]. The flexible nature of MARS modeling leads to a
successful implementation of the method in various application areas [14]. Reported
success of the method attracted the attention of many researchers to tackle with the
problems of MARS method or, alternatively, to extend it further and to improve its
capability. In one of these studies, Conic Multivariate Adaptive Regression Splines
(CMARS) has been developed as an alternative to the backward stepwise part of the
MARS algorithm [70].

1.1 The Conic Multivariate Adaptive Regression Splines Method

CMARS does not make any specific assumption about the underlying functional rela-
tionship between the dependent and independent variables to estimate a general model
function [59, 65, 70]. CMARS is introduced by linear combinations of the basis func-
tions that are used in MARS. The selection of basis functions is data-based and spe-
cific to the problem at hand. CMARS uses one-dimensional basis functions of the
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form c+(x, τ) = [+(x− τ)]+ and c−(x, τ) = [−(x− τ)]+, where [q]+ := max {0, q}
[65, 70]. Each function is piecewise linear, with a knot at the value τ , and the corre-
sponding couple of functions is called a reflected pair. The visualization of these basis
functions is demonstrated in Figure 1.1.

Figure 1.1: An illustration of the basis functions [70].

A set of basis functions is given as follows:

℘ := {(xj − τ)+, (τ − xj)+ | τ ∈ {x1,j, x2,j, ..., xN,j} , j ∈ {1, 2, ..., p}} . (1.1)

A CMARS model function f is represented by a linear combination of basis functions
which is successively built up by the set ℘, as described below:

Y = f(x) + ε = θ0 +
M∑
m=1

θmψm(xm) + ε. (1.2)

Here, Y is a response variable, xm = (x1, x2, ..., xp)
T a vector of predictors for the

corresponding mth multivariate basis function. Furthermore, θm are the unknown co-
efficients for the mth basis function (m = 1, 2, ...,M) or for the constant 1 (m = 0),
and ε is an additive stochastic component, often called noise, which is assumed to have
zero mean and finite variance. In Eqn. (1.2), ψm (m = 1, 2, ...,M) are basis functions
as products of two or more one-dimensional basis functions. The form of themth basis
function can be written as follows:

ψm(xm) :=
Km∏
j=1

[sκmj · (xκmj − τκmj )]+; (1.3)

these are nonsmooth spline functions. Here, xm is the vector of variable contributed to
the mth basis function, Km is the number of truncated linear functions multiplied in
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the mth basis function, xκmj is the predictor variable corresponding to the jth truncated
linear function in the mth basis function, τκmj is the knot value corresponding to the
variable xκmj , and sκmj is the selected sign +1 or −1 [14, 59].

Determination of all elements in the set of basis functions given in Eqn. (1.1) is an
important issue. For this purpose, the starting function is taken as ψ0(x0) = 1. Then,
the basis function that causes the most amount of reduction in the Residual Sums of
Squares (RSS) is included in the model. The new basis functions can be restricted to
interactions of a maximum order. An advantage of the form given in Eqn. (1.3) lies in
its ability to estimate the contributions of the basis functions so that both the additive
and the interactive effects of the predictors are allowed to determine the dependent
variable. Interaction basis functions are created recursively by multiplying an existing
basis function with a truncated linear function involving a new variable. In a CMARS
approximation, both the existing basis function and the newly created interaction basis
function are used. In order to demonstrate the interaction basis function form, the
basis function in Figure 1.2 is defined as the multiplication of two basis functions
ψ1 = max {0,Mw − 5.7} and ψ2 = max {0, Rjb − 37.34} from the application of
CMARS for ground motion prediction [71].

Figure 1.2: An illustration of the interaction basis function [71].

The MARS algorithm consists of two main parts [14]. In the first part (forward algo-
rithm), the basis functions are selected to minimize the lack-of-fit until a user-specified
maximum number of basis functions, Mmax, is attained. This process results in a large
model which overfits the data. In the second part (backward algorithm), to overcome
this disadvantage, the basis functions contributing least to the residual squared errors
are removed, thus causing less complex model. In both parts, MARS algorithm uses
Generalized Cross-Validation (GCV) as a variable selection criterion. GCV is defined
as follows:

GCV :=
1

N

∑N
i=1(yi − f̂α(xi))2

(1− C̃(α)/N)2
, (1.4)

where C̃(α) := u + dK [14]. Here, N is the number of sample observations, u is
the number of linearly independent basis functions, K is the number of knots selected
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in the forward process, and d is a cost for basis function optimization as well as a
smoothing parameter for the procedure [14, 20].

CMARS is developed as an alternative to the backward part of the MARS algorithm.
CMARS uses up to all basis functions generated by the forward algorithm of MARS
[65, 70]. CMARS is constructed by a Penalized Residual Sum of Squares (PRSS)
parameter estimation problem, instead of an ordinary least-squares estimation problem
as it occurs in MARS method. In the sense of a trade-off, the PRSS problem aims at a
highest possible accuracy and a smallest possible complexity of the model. PRSS with
penalty parameters λm and with Mmax basis functions which are accumulated in the
first part of the MARS algorithm, has the following form:

PRSS :=
N∑
i=1

(yi − f(x̃i))2 +
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
Qm

θ2
m

[
Dα

r,sψm(tm)
]2
dtm,

(1.5)

where Vm :=
{
κmj |j = 1, 2, ..., Km

}
is the variable set associated with the mth basis

function, tm =
(
tm1

, tm2
, ..., tm

Km

)T
represents the vector of variables which con-

tribute to the mth basis function. Our integral for the mth basis function is defined
over Qm. The subdivision of Qm is determined with the special coordinates of tm.
Moreover, Dα

r,sψm(tm) := ∂|α|ψm
∂α1 tmr ∂α2 tms

(tm) for α = (α1, α2)T , |α| := α1 + α2, where
α1, α2 ∈ {0, 1} [65, 70]. As can be seen from Eqn. (1.5), PRSS is composed of two
parts representing accuracy and complexity, respectively [20]. They are tried to be
compromised by using the penalty parameters λm [65].

In Eqn. (1.5), the integral symbol, “
∫

”, is used as dummy in the sense of
∫
Qm

, where
Qm is some appropriately large Km-dimensional parallel-pipe where the integration
takes place. Since the multi-dimensional integrals in Eqn. (1.5) are difficult to evaluate,
we discretize these integrals and rearrange PRSS in the following form [70]:

PRSS ≈
N∑
i=1

(
yi −ψ(d̃i)θ

)2

+
Mmax∑
m=1

λmθ
2
m

(N+1)Km∑
i=1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

[
Dα

r,sψm(x̂mi )
]2
∆x̂mi , (1.6)

where ψ(d̃i) :=
(
1, ψ1(x̃1

i ), ..., ψM(x̃Mi ), ψM+1(x̃M+1
i ), ..., ψMmax(x̃Mmax

i )
)T

, and

θ := (θ0, θ1, ..., θMmax)
T with the point d̃i :=

(
x̃1
i , x̃

2
i , ..., x̃

M
i , x̃

M+1
i , ..., x̃Mmax

i

)T
in the

argument, and with (σκj)j∈{1,2,...,p} ∈ {0, 1, 2, ..., N + 1}Km and

x̂mi =

(
x̃
l
κm1

σ
κm1

,κm1
, ..., x̃

l
κm
Km

σ
κm
Km

,κmKm

)
, ∆x̂mi :=

Km∏
j=1

(
x̃
l
κm
j

σ
κj

+1,κmj

− x̃
l
κm
j

σ
κj
,κmj

)
. (1.7)
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To put the PRSS in Eqn. (1.6) a simpler form in order to be able to handle the problem
easily, we use a uniform penalization, λ = λm, for each derivative term. Then, PRSS
turns into a Tikhonov Regularization (TR) problem as described below [3]:

PRSS ≈
∥∥∥y−ψ(d̃)θ

∥∥∥2

2
+ λ ‖Lθ‖2

2 , (1.8)

whereL is constructed by the discretizations of the high-dimensional integrals given in
Eqn. (1.5). The model approximations as presented in Eqn. (1.8) are carefully prepared
[3, 70]. They play an important role in order to raise a final model approximation which
is linear in the unknown spline parameters. After unifying some discretized complexity
terms and including them into inequality constraints, a Conic Quadratic Programming
(CQP) problem is obtained which uses the powerful Interior Point Methods (IPMs)
[41, 49]. The formulation of a CQP is given as follows:

minimize
θ

t,

subject to
∥∥∥y−ψ(d̃)θ

∥∥∥
2
≤ t, ‖Lθ‖2 ≤

√
M̃, (1.9)

Here, the optimization problem given in Eqn. (1.9) is solved by IPMs via the opti-
mization software MOSEK [37, 41]. There can be many solutions to this problem for
some chosen complexity bound values, M̃ , which are determined by trial and error
[20]. As a representative solution, however, we have plotted on a log-log scale. The
curve of the optimal values of ‖Lθ‖2 and

∥∥∥y−ψ(d̃)θ
∥∥∥

2
often take on an efficiency

(or L) curve [65, 70]. An illustration of this L-curve is given in Figure 1.3. In this
figure, the optimal value configuration point at the L-curve is the corner point, which
is marked by a bold point. The selected value gives the best solution for both accuracy
and complexity in terms of PRSS in Eqn. (1.8). The L-curve, which is an efficiency
frontier, can be regarded as an implicit function of a parameter that is in the role of an
upper bound; in case of several such parameters, we obtain an efficiency surface.

In addition to the discrepancy principle, another popular criterion for picking the value
of λ is the L-curve criterion in which the value of λ is selected that gives the solution at
or closest to the corner of the L-curve [70]. In fact, the use of these IPMs is one of the
main advantages that is prepared by our model-based mathematical approach. For this
reason, problem formulation in Eqn. (1.8) is our preferred realization of the Tikhonov
regularization.

CMARS method is based on the CQP approach. This approach, supported by mathe-
matical programming, is elegant and powerful. Just as linear programming, semidefi-
nite programming, and robust optimization, CQP uses the theory of IPMs (also known
to be a class of barrier methods) which guarantees feasibility throughout the entire it-
eration procedures. On the other hand, penalty methods and Tikhonov Regularization
can be considered as exterior point methods with possible infeasibility [41].

Moreover, CMARS is one of the nonparametric approaches that make no specific as-
sumptions to estimate model parameters based on given data sets. Real-world pro-
cesses from the financial sector or from nature are often characterized by their huge
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Figure 1.3: Demonstration of L-curve.

quantity and variation [13]. CMARS is able to model such data by using the advan-
tages of recent developments in optimization theory, computer hardware and software.
The flexible, adaptive nature of CMARS modeling has led to a successful implemen-
tation on various processes with nonlinear structure, e.g., in industrial engineering,
image processing and earthquake engineering [32, 65, 71].

1.2 Applications of Conic Multivariate Adaptive Regression Splines and Com-
parison with Other Data Mining Methods

In order to assess the power of the CMARS method, several real-life data obtained
from well-known data repositories [65] as well as simulation data applications are
implemented. These data sets used in CMARS applications are gathered from various
study areas such as life, finance, industry, social and business, etc. Also, CMARS is
rigorously evaluated and compared with some other predictive data mining methods
such as MARS, CART and Generalized Additive Models with CQP (GAMs & CQP)
for classification and MLR and MARS for prediction [72].

In one of the CMARS related studies [53], CMARS and CART are applied to the area
of finance to model sovereign default. In this application, since the dependent variable
is type of categorical, particularly binary, classification trees are utilized to construct
the CART model. In that study, the classification capabilities of the models developed
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are determined by the scoring results of training and test samples. Results indicate that,
in the training sample, CART has a better classification capability than CMARS with
respect to the classification accuracy. In the test sample, however, CMARS gives more
accurate results than CART with respect to the same measure. As a result of CART
algorithm, modeling an additive structure with CART is not easy, and the estimation
variance of a CART model increases with continuous explanatory variables. On the
contrary, CMARS captures such a structure easily and, thus, it seems more suitable for
future predictions than CART.

In the comparison study, the data sets used for CART are also applied to GAMs & CQP
[53]; that approach can also be called Conic Generalized Additive Models (CGAMs).
Results indicate that the classification capabilities of CGAMs and CMARS in the test
sample are accurate. CMARS performs better than CGAMs and it discovers the main
structure of the data set better.

In the study where CMARS and MLR are compared, the models are developed for two
simulation data sets. When the structure of data is linear, CMARS performs as good
as MLR does; when there is nonlinearity, however, CMARS outperforms MLR. There
are two main disadvantages of MLR over CMARS. First, human expertise is usually
needed, and as a result, it may take a long time to develop MLR models. Secondly, the
white-noise assumptions should be satisfied to obtain statistically valid inferences but
these assumptions may not be realistic in most real-life applications [39, 73].

The prediction performances of CMARS and MARS are evaluated both on real-life and
simulated data sets. In one of the simulation applications, both MARS and CMARS
models are developed involving lower- as well as higher-order interactions [6]. Ac-
cording to the results of the real-life applications, for all training data sets, CMARS
performs better and it is more robust than MARS with respect to all prediction per-
formance measures considered. In addition, although CMARS is more stable than
MARS, MARS is more robust than CMARS in stability with respect to most of the
prediction performance measures. While stability is measured by the proportion of the
performance measure values on training and test data sets, robustness is assessed by
standard deviation of the performance measures under different data features. Further-
more, an effect of sample size on the performance of methods is also detected. For
example, CMARS performs better than MARS mostly on medium to large training
samples. If we consider the performance with respect to scale, almost for all measures,
MARS and CMARS perform better (or the same) as the scale changes from small to
large. To compare the efficiencies of methods, computational run times (in seconds)
for each training sample is recorded on the same computer. Run times seem to be re-
lated to the sample size but not to the problem scale. MARS may provide solutions
very fast compared to CMARS since its applications are run on professional software,
Salford MARS. The run times of CMARS method increase almost up to 3 to 5 times
as much to that of MARS as the sample size increases. Moreover, in the same study, a
simulation study conducted shows that CMARS method has a better performance than
MARS on the noisy data [65, 70].

Two studies have been conducted for comparison of MARS and CMARS for classi-
fication. In one of them, both methods are applied to Pima Indians Diabete data to
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determine if a person has diabetes or not [59, 62]. According to the results, both meth-
ods perform almost the same. However, in term of the true diagnose of the disease,
CMARS performs better than MARS. In both training and test samples, MARS and
CMARS scoring models are almost the same; on the other side, CMARS discovers the
main structure of data better. Depending on these findings, the study in [59] concludes
that CMARS gives a superior estimate compared to MARS.

The comparison of MARS and CMARS models for the data to predict the countries’
credit default possibilities show variations in training and tests samples [53]. CMARS
outperforms MARS according to the default country assignation. Also, its perfor-
mance measures reveal higher stabilities than MARS.

1.3 Extensions and Advances on Conic Multivariate Adaptive Regression Splines

The mentioned success of the applications using CMARS attracted the attention of
us to refine and extend the modern applications of CMARS by advanced methods of
applied mathematics and statistics. The main purpose of this thesis is to benefit from
the advances in the mathematics of data mining with optimization methods, and to
address the importance of the application of special data mining method on different
data sets, and to identify and explore the connections between data mining and other
applied sciences.

As an extension and modern application of CMARS method, Generalized Partial Lin-
ear Models (GPLMs) have been combined with CMARS. Here, a GPLM utilizes semi-
parametric methods and augments the usual parametric terms by a single nonparamet-
ric component of a continuous covariate. In recent years, the class of Generalized
Linear Models (GLMs) has gained popularity as a statistical modeling tool. This pop-
ularity is due in part to the flexibility of GLMs in addressing a variety of statistical
problems and to the availability of software to fit the models. In this thesis, GPLMs
- an extensions of GLMs - are motivated, introduced, and formally presented with
CMARS model and CQP-based optimization techniques. We call this new technique
as Conic Generalized Partial Linear Models (CGPLMs).

Another extension and a modern use of CMARS method have been made for the out-
lier identification problem. In statistical applications, regression models based on data
may give misleading results when data contain outliers. We deal with the outliers prob-
lem in linear regression in two stages. Firstly, we use the Mean-Shift Outlier Model
(MSOM) as a parametric method and providing a new solution by using regularization
and convex optimization techniques, CQP. Then, the power of CMARS method is used
and the proposed method is improved.

As an advance, we employ CMARS method for the parameter identification of Stochas-
tic Differential Equations (SDEs) in a simplified manner. SDEs are widely used to
represent noisy and dynamical real-world problems and they play an important role
in many field of applied science, especially, in finance [43]. Since CMARS provides
a functional form of the model by using basis functions which is a special form of
splines, in our case, the parameters of SDEs are constructed by these “discretely” non-
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smooth functions. Then, coefficients of basis functions are found by using CQP. Both
systems of SDEs with standard multi-dimensional Brownian motions and systems of
SDEs having correlated Brownian motions are considered and identified in this thesis.
Moreover, various parameters of SDEs driven by fractional Brownian motions (fBms)
are identified by the mentioned approach. Here, we introduce the CMARS method to
estimate both the spline coefficients and, especially, the Hurst parameter of the SDEs
driven by fBms, too.

This thesis is organized as follows: In Chapter 2, we begin with CGPLMs, including
CMARS for the nonlinear model part. We introduce CMARS and CQP which is not
just method but a wide field of optimization, for the outlier identification problem
in Chapter 3. In Chapter 4, we give a new methodology based on CMARS for the
parameter estimation of SDEs. We analyze and focus on a numerical approximation
of multi-dimensional SDEs and correlated systems of SDEs in the same chapter. In
Chapter 5, we introduce the method CMARS, especially, for the estimation of the
Hurst parameter of SDEs driven by fBms. Finally, a conclusion of the thesis and an
outlook to future research are presented in Chapter 6.
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CHAPTER 2

CONIC GENERALIZED PARTIAL LINEAR MODELS WITH
CONIC MULTIVARIATE ADAPTIVE REGRESSION SPLINES

2.1 Introduction

Analysis of large and complex data sets is very important to describe social, physical
and biological systems, but is not easy. In order to comprise the best possible model for
the data on hand, most applied researchers use regression models [42]. The following
subsections provide information about extensions and improvements on well-known
regression models.

2.1.1 Generalized Linear Models

Almost in every field of science such as engineering, applied science, social science
or economics, scientists and engineers use regression models for analyzing and de-
scribing data sets to understand the underlying patterns and to disclose the relationship
between the predictors and response variable [42]. The most popular one is the class
of Generalized Linear Models (GLMs) which is an extension of traditional linear re-
gression models. This class will be our preparatory set of models based on which we
shall introduce Generalized Partial Linear Models (GPLMs) soon. This popularity of
GLMs is due in part to the flexibility of GLMs in addressing a variety of statistical
problems and to the availability of software to fit the models [40]. The class of GLMs
allows the mean of a dependent variable to depend on a linear predictor through a non-
linear link function, and it permits the probability distribution of the response to be
any member of an exponential family of distributions. Many widely used statistical
models belong to GLMs, since both linear and nonlinear regression models are unified
under the framework of GLMs. GLMs include traditional linear models with normal
errors, logistic and probit models for binary data, log-linear models for multinomial
data. Many other useful statistical models such as the Poisson, binomial, Gamma, and
normal distribution can be formulated as GLMs by the selection of an appropriate link
function and response probability distribution [40, 58].

A GLM has the following basic structure:

η = H (µ) = xTβ,
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where H is a smooth monotonic link function, x is a vector of the observed values
of explanatory variables and β is a vector of unknown parameters. In addition, a
GLM usually makes the distributional assumptions that the response variables, Yi, are
independent and can have any distribution from exponential family density

Y ∼ fY (y, θ, φ) = exp

{
yθ − b (θ)

a (φ)
+ c (y, φ)

}
,

where a, b and c are arbitrary “scale” parameters, and θ is called a natural parame-
ter. We can also obtain a general expression for the mean and variance of dependent
variable Y using log likelihood of θ, µ = E (Y ) = b

′
(θ) and Var (Y ) = b

′′
(θ) a (φ).

Here, (·)′ and (·)′′ represent the first-order and second-order derivative of b in terms of
θ, respectively. Generally, a (φ) is defined as a (θ) := φ/w and Var (Y ) = V (µ)φ,
where V (µ) := b

′′
(θ) /w [58, 69]. Some commonly used exponential family density

functions are listed in Table 2.1.

2.1.2 Generalized Partial Linear Models

A particular semiparametric model of interest is the Generalized Partial Linear Model
(GPLM) which extends the GLMs in away that the usual parametric terms are aug-
mented by a single nonparametric component. As a result, a GPLM separates the set
of independent variables into two subsets and combines a linear model with a nonlinear
model by addition. For example, in biological or financial sectors, many processes ex-
pressed by stochastic differential equations can be stated by a linear submodel for the
deterministic drift term and by a nonlinear submodel for the stochastic diffusion term.
Such combinations of submodels provide better accuracy and stability for complex and
large data sets [38]. Moreover, GPLM approach demonstrates the capability of han-
dling both classification and prediction problems, e.g., prediction of credit default [66],
image processing and speech processing [60]. In this chapter, we consider GPLM as a
prediction tool. The general GPLM model is given by the following function

f (X,T) = XTβ + γ (T) + ε (2.1)

or, after modeling the response variable Y by Eqn. (2.1) and an additional noise com-
ponent ε, and applying the expectation value, by

E (Y |X,T) = G
{

XTβ + γ (T)
}
. (2.2)

Here, β = (β1, β2, . . . , βp)
T is a finite-dimensional parameter and γ (·) is a smooth

function which is introduced to estimate the nonlinear part of GPLM. In this chapter,
to represent the smooth function, nonparametric models are preferred because they
are more flexible than nonlinear models. Here, we also assume that vectors X and
T come from a decomposition of the set of explanatory variables. While X denotes
an m-dimensional random vector which typically represents discrete covariates, T is
a q-dimensional random vector of continuous covariates which is to be modeled in
a nonparametric way [38]. The variable T can be seen as an extraneous or nuisance
variable.
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There are different kinds of estimation methods for GPLM. Generally, the estimation
methods for the model of Eqn. (2.2) are based on the idea that an estimate β̂ can be
found for a known γ (·) and an estimate γ̂ (·) can be found for a known β, especially,
for β̂. Now, we will concentrate on special estimation types of γ (·) and β based on
CMARS and with the help of CQP [60, 74].

The rest of this chapter is organized as follows. Section 2.2 includes Conic Generalized
Partial Linear Models (CGPLMs) and our estimation approach with CMARS. Finally,
Section 2.3 presents applications and results of the methodology.

2.2 Conic Generalized Partial Linear Models

Let us consider the model in Eqn. (2.2), where we assume that G = H−1 is a known
link function which links the mean of the dependent variable, µ = E (Y |X,T), to the
predictors. In this case, Eqn. (2.2) can be considered as a semiparametric generalized
linear model, because all terms are linear; i.e.,

H (µ) = η (X,T) = XTβ + γ (T) =

p∑
j=1

Xjβj + γ (T) . (2.3)

Now, to obtain the GPLM, we consider data values and data vectors: ȳi, x̄i, t̄i for
(i = 1, 2, . . . , N). Then, µi = G (ηi) and ηi = H (µi) = x̄Ti β + γ (̄ti), and γ (·) is a
smooth function [58].

In many studies, the theory does not put any restrictions on the form of γ (·), i.e., it does
not say whether γ (·) is linear, quadratic, increasing in T or its components, etc. [38].
Hence, it is up to the empirical analysis uses data to find out more about γ (·). When
we take β = 0 in Eqn. (2.3), then the estimate of γ (·) is based on a nonparametric
regression technique that contains a smoother, i.e., a “mollifying” operation, such as a
regularization.

A smoother can be described as a tool for briefly expressing the form of response
variable as a function of one or more predictor variables. The name smoother is coming
from the form of the estimation that includes less variables than the response itself.
Since a smoother does not suppose a rigid form for the relationship between response
and predictors, it has a nonparametric nature. Because of this important property, a
smoother is often preferred to be used for nonparametric regression [19].

One of the main uses of the smoother is to estimate the relationship between the re-
sponse and the predictors and, hence, to provide an important structure for the estima-
tion of additive models [16]. There are many useful smoothers such as polynomial,
bin, running mean, running line, loess, Gaussian kernel, smoothing spline, regression
spline and natural spline. If we have more than one predictor, then an estimation of a p-
dimensional surface can be done easily by a generalization of the running mean, locally
weighted running line, and kernel smoothers. On the other hand, multivariate tensor
product splines are known as an another generalization [64]. These are functional to
generalize univariate regression splines. The process is based on the construction of
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multi-dimensional basis functions by multiplying one-dimensional basis function with
two or more than two one-dimensional basis functions. MARS basis function is an
example for this kind of a smoother [19, 20]. In this chapter, we prefer to present
smoothers by CMARS model and its algorithm.

CMARS uses expansions in piecewise linear basis functions; thus, γ (t) can be rep-
resented by a linear combination of these successively built basis functions and the
intercept, θ0 , such that Eqn. (2.3) becomes

η = H (µ) = xTβ + θ0 +
Mmax∑
m=1

θmψm(xm) + ε. (2.4)

Here, ψm (m = 1, 2, ...,Mmax) are basis functions from ℘ or products of two or more
such functions, ψm is taken from a set of Mmax linearly independent basis elements,
and θm are the unknown coefficients for the mth basis function (m = 1, 2, ...,Mmax)
or for the constant 1 (m = 0). A set of eligible knots is assigned separately for
each variable dimension and is chosen to approximately coincide with the input levels
represented in the data.

Let us consider Eqn. (2.3). Here, we can write the equation as

η = H (µ) = xTβ +ψ (t)T θ, (2.5)

where θ = (θ0, θ1, . . . , θMmax)
T and ψT (t) =

(
1, ψ1 (t1) , . . . , ψMmax

(
tMmax

))T . Fur-
thermore, let us refer to PRSS with Mmax basis functions having been accumulated for
the CMARS model. Now, PRSS has the following form [60]:

PRSS :=
N∑
i=1

(
ηi − xTi β −ψ (ti)T θ

)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
Qm

θ2
m

[
Dα

r,sψm(tm)
]2
dtm, (2.6)

where Vm :=
{
κmj | j = 1, 2, ..., Km

}
is the variable set associated with the mth ba-

sis function and tm =
(
tm1

, tm2
, ..., tm

Km

)T
represents the vector of variables which

contribute to the mth basis function. Moreover,

Dα

r,sψm(tm) :=
∂|α|ψm

∂α1tmr ∂α2tms
(tm) (2.7)

for α = (α1, α2)T , |α| := α1 + α2, where α1, α2 ∈ {0, 1}. Our optimization problem
bases on a trade-off between both accuracy, i.e., a small RSS, and not too high com-
plexity. This trade-off is established through the penalty parameters. In this chapter,
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we firstly represent that trade-off by penalty methods, such as regularization techniques
and by CQP [59, 70].

If we take into account the Eqn. (2.4) in Eqn. (2.6), then the objective function in Eqn.
(2.4) will be of the following form:

PRSS =
N∑
i=1

(
ηi − xTi β − θ0 −

Mmax∑
m=1

θmψm(tmi )

)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
Qm

θ2
m

[
Dα

r,sψm(tm)
]2
dtm, (2.8)

where the vector t̄mi =
(
t̄mi,1, t̄

m
i,2, . . . , t̄

m
i,dm

)T denotes any of the input vectors and

t̄mi =
(
t̄mi,κ1 , t̄

m
i,κ2
, . . . , t̄mi,κdm

)T
(κ = 1, 2, . . . , pm) stands for the corresponding projec-

tion vectors of t̄mi onto those coordinates which contribute to the mth basis function,
ψm, they are related with the ith link function ηi. We recall that those coordinates are
collected in the set Vm. Let us note that the second-order derivatives of the piecewise
linear functions ψm (m = 1, 2, . . . ,Mmax) and, hence, the penalty terms related, are
vanishing. Now, we can rearrange the representation of PRSS as follows:

PRSS =
N∑
i=1

(
ηi − xTi β −ψ

(
d̄i
)T
θ
)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
Qm

θ2
m

[
Dα

r,sψm(tm)
]2
dtm, (2.9)

where ψ
(
d̄i
)

=
(
1, ψ1(t1i ), . . . , ψMmax(tMmax

i )
)T

, θ = (θ0, θ1, . . . , θMmax)
T with the

matrix d̄i =
(
t1i , t2i , . . . , t

Mmax
i

)T
in the argument. To approximate the multi-dimensional

integrals ∫
Qm

θ2
m

[
Dα

r,sψm(tm)
]2
dtm, (2.10)

a suitable discretization and model approximation are used. In fact, we approximate
the discretized form of the integrals by Riemann sums as follows [70]:∫

Qm
θ2
m

[
Dα

r,sψm(tm)
]2
dtm ≈

∑
(σκ)κ∈{1,2,...,pm}∈{0,1,2,...,N+1}pm

θ2
m

[
Dα

r,sψm(t̄miσκ ,κ, ..., t̄
m
iσκ ,κ

)
]2 pm∏

κ=1

(
t̄miσκ+1,κ

− t̄miσκ ,κ
)
.

(2.11)
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We can rearrange PRSS in this form:

PRSS ≈
N∑
i=1

(
ηi − xTi β −ψ

(
d̄i
)T
θ
)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∑
(σκ)

θ2
m

[
Dα

r,sψm(t̄miσκ ,κ, ..., t̄
m
iσκ ,κ

)
]2 pm∏

κ=1

(
t̄miσκ+1,κ

− t̄miσκ ,κ
)
,

where (σκ)κ∈{1,2,...,pm} ∈ {0, 1, 2, ..., N + 1}p
m

. Let us introduce some more notation
related with the sequence (σκ):

t̂mi =
(
t̄miσκ ,κ, ..., t̄

m
iσκ ,κ

)
, ∆t̂mi =

pm∏
κ=1

(
t̄miσκ+1,κ

− t̄miσκ ,κ
)
. (2.12)

By Eqn. (2.12), we can approximate PRSS as

PRSS ≈
N∑
i=1

(
ηi − xTi β −ψ

(
d̄i
)T
θ
)2

+
Mmax∑
m=1

λmθ
2
m

(N+1)p
m∑

i=1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

[
Dα

r,sψm(̂tmi )
]2
∆t̂mi . (2.13)

For a short representation, we can rewrite the approximate relation in Eqn. (2.13) as

PRSS ≈
∥∥η − Xβ −ψ

(
d̄
)
θ
∥∥2

2
+

Mmax∑
m=1

λm

(N+1)p
m∑

i=1

L2
imθ

2
m, (2.14)

whereψ
(
d̄
)

=
(
1,ψ

(
d̄1

)
,ψ
(
d̄2

)
, . . . ,ψ

(
d̄N
))T and X are (N × (Mmax + 1))- and

(N × p)-matrices, respectively, ‖·‖2 denotes the Euclidean norm and the numbers L2
im

are defined by their roots:

Lim :=


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

[
Dα

r,sψm(̂tmi )
]2
∆t̂mi


1/2

. (2.15)

If we consider Eqn. (2.14), we can write PRSS as

PRSS ≈ ‖η − X∗β∗‖2
2 +

Mmax∑
m=1

λm

(N+1)p
m∑

i=1

L2
imθ

2
m, (2.16)
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where X∗ =
(
X | ψ

(
d̄
))

is a block matrix constructed by (N × p)-matrix X and

(N × (Mmax + 1))-matrix ψ
(
d̄
)
, and β∗ =

(
βT ,θT

)T
is a vector composed of β

and θ vectors. Then, we deal with the linear systems of equations, X∗β∗ = η, ap-
proximately. This problem may be ill-posed (irregular or unstable). For this reason,
we firstly approach our problem, PRSS, as a TR problem [3, 9]; because this regu-
larization belongs to the most commonly used methods of making ill-posed problems
well-posed (regular or stable). A Tikhonov solution can be expressed quite easily in
terms of Singular Value Decomposition (SVD) of the coefficient matrix X∗ of a re-
garded linear system of equations, X∗β∗ = η.

For this purpose we consider the formula in Eqn. (2.16) again, arranging it as follows:

PRSS ≈ ‖η − X∗β∗‖2
2

+
Mmax∑
m=1

λm

[
(L1mθm)2 + (L2mθm)2 + . . .+

(
L(N+1)p

m
mθm

)2
]
,

PRSS = ‖η − X∗β∗‖2
2 +

Mmax∑
m=1

λm ‖Lmθm‖2
2 , (2.17)

where Lm =
(
L1m, L2m, . . . , L(N+1)p

m
m

)T
(m = 1, 2, . . . ,Mmax). However, rather

than a singleton, there is a finite sequence of the trade-off or penalty parameters, λ =
(λ1, λ2, . . . , λMmax)

T , such that this equation is not yet a Tikhonov Regularization with
a single such parameter. For this reason, let us make a uniform penalization by taking
the same λ for each derivative term. Then, our approximation for the PRSS can be
rearranged as

PRSS ≈ ‖η − X∗β∗‖2
2 + λ ‖L∗β∗‖2

2 , (2.18)

where L is a diagonal ((Mmax + 1)× (Mmax + 1))-matrix with first column L0 =
0(N+1)p

m and the other columns being the vectors Lm introduced above. Moreover,
θ is an ((Mmax + 1)× 1)-parameter vector to be estimated through the data points.
Furthermore, we consider the high-dimensional matrix L∗ = (R | L), where R is an
(p× p)-matrix formed by the zeroth-, first- or second-order derivatives of β. These
derivatives are given by zeroth-, first- or second-order difference quotients of β, re-
garded as a function that is evaluated at the points i, or i and i+ 1, or i− 1, i and i+ 1,
respectively. Those later difference quotients approximate the first- and second-order
derivatives, whereas the zeroth-order derivative of the vector m is m itself. Altogether,
these terms are comprised by products Rβ ofβ with matrices that represent the discrete
differential operators of zeroth-, first- and second-order, respectively. These matrices
are in the form of a band-structure with values 1 or -1, 1, or 1, -2, 1, on the band. To
achieve Mmax + 1 row vectors, we can fill up the matrices R on 0th-, 1th- and 2nd-
order discrete derivatives, which have less many rows if Mmax + 1 > p, by rows 0T ,
respectively. Now, our PRRS problem looks like a classical Tikhonov Regularization
problem with φ > 0, i.e., λ = φ2 for some φ ∈ R\ {0}, as follows [59, 70]:

PRSS ≈ ‖η − X∗β∗‖2
2 + λ ‖L∗β∗‖2

2 . (2.19)
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We easily note that our Tikhonov Regularization problem has multiple objective func-
tions through a linear combination of ‖η − X∗β∗‖2

2 and ‖L∗θ∗‖2
2. In fact, we select the

solution such that it minimizes both the first objective ‖η − X∗β∗‖2
2 and the second

objective ‖L∗θ∗‖2
2 in the sense of a compromise (trade-off) solution. For a contribu-

tion to the dependence of locally linear embedding on regularization parameter(s), we
refer to [65].

The penalty parameter λ in the PRSS and the parametrical upper bound M̃ in a con-
straint of the CQP can be chosen in a related way, determined via Tikhonov Regu-
larization. This regularization method utilities an efficiency curve that comes from a
plot of the optimal solutions to the problem in Eqn. (2.13) according to a large (finite)
number of parameter values, as points in a coordinate scheme with two axes. At one
axis, the complexity is denoted, whereas the other axis stands for the length of the
residual vector (or goodness-of-fit). In this regularization method, logarithmical scales
are employed such that some “kink” (corner) kind of a point on the efficiency bound-
ary, called the L-curve according to its more pronounced shape, is obtained. This point
is regarded to be the closest to the origin and therefore it is often chosen, together
with the corresponding penalty parameter [3]. For our approach with CQP, in [70], a
lot of numerical experience is presented, related with varying upper bounds

√
M̃ by

using the software package of MOSEK. The solutions obtained at the upper bounds
are expected to be the same non-dominated solutions as obtained in Eqn. (2.19), to
the multi-objective problem of minimizing complexity and maximizing goodness-of-
fit [70].

Let us tackle the Tikhonov Regularization problem in Eqn. (2.19) with the CQP, which
is a continuous optimization technique. Indeed, based on an appropriate choice of a
bound M̃ , we can state the following optimization problem:

minimize
β∗

‖η − X∗β∗‖2
2

subject to ‖L∗β∗‖2
2 ≤ M̃. (2.20)

Let us underline that this choice of M̃ is the outcome of the careful learning process
as explained in Chapter 1 [20]. In Eqn. (2.19), we have the least-squares objective
function ‖η − X∗β∗‖2

2 and the inequality constraint function −‖L∗β∗‖2
2 + M̃ , which

is requested to be nonnegative for feasibility. Now, we equivalently write our optimiza-
tion problem as follows:

minimize
t,β∗

t,

subject to ‖η − X∗β∗‖2 ≤ t,

‖L∗β∗‖2 ≤
√
M̃. (2.21)

Let us use modern methods of continuous optimization techniques, especially, from
CQP where we employ the subsequent basic notation [41]:

minimize
x

cTx, subject to ‖Dix− di‖2 ≤ pTi x− qi (i = 1, 2, ..., k). (2.22)
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In fact, we see that our optimization problem is such a CQP program with

c = (1, 0TMmax+p+1)T , x = (t,β∗T )T , D1 = (0N ,X∗), d1 = η, p1 = (1, 0, ..., 0)T ,

q1 = 0, D2 = (0Mmax+p+1,L∗), d2 = 0Mmax+p+1, p2 = 0Mmax+p+2 and q2 = −
√
M̃.

Now, having written the Tikhonov Regularization task for GPLMs by evaluating the
CMARS with CQP problem, we call it Conic Generalized Partial Linear Models (CG-
PLM). In fact, CGPLM provides a solution by applying the developed CQP techniques.
These kinds of well-structured convex optimization problems have also been studied
by Weber et al. for new approaches to regression and classification. In this respect,
CGPLM has the advantage of higher speed and less complexity [65], and it permits the
use of IPMs [41]. In order to write the optimality condition for this problem, we firstly
reformulate the problem in Eqn. (2.21) as follows:

minimize
t,β∗

t,

such that χ :=

(
0N X∗

1 0TMmax+p+1

)
+

(
t
β∗

)
+

(
−η
0

)
,

η :=

(
0Mmax+p+1 L∗

0 0TMmax+p+1

)(
t
β∗

)
+

(0Mmax+p+1√
M̃

)
,

χ ∈ LN+1, η ∈ LMmax+p+2, (2.23)

where LN+1, LMmax+p+2 are the (N + 1)- and (Mmax + p+ 2)-dimensional ice-cream
(or second-order, or Lorentz) cones, defined by:

LN+1 :=

{
x = (x1, x2, ..., xN+1)T ∈ RN+1 | xN+1 ≥

√
x2

1 + x2
2 + ...+ x2

N

}
(N ≥ 1).

The dual problem to the latter primal one is given by

maximize (ηT , 0)ω1 +
(

0TMmax+p+1,−
√
M̃
)
ω2

such that
(

0TN 1
X∗ 0TMmax+p+1

)
ω1 +

(
0TMmax+p+1 0

(L∗)T 0Mmax+p+1

)
ω2 =

(
1

0Mmax+p+1

)
,

ω1 ∈ LN+1, ω2 ∈ LMmax+p+2. (2.24)
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Moreover, (t,θ,χ,η,ω1,ω2) is a primal dual optimal solution if and only if

χ :=

(
0N X∗

1 0TMmax+p+1

)
+

(
t
β∗

)
+

(
−η
0

)
,

η :=

(
0Mmax+p+1 L∗

0 0TMmax+p+1

)(
t
β∗

)
+

(0Mmax+p+1√
M̃

)
,(

0TN 1
X∗ 0TMmax+p+1

)
ω1 +

(
0TMmax+p+1 0

(L∗)T 0Mmax+p+1

)
ω2 =

(
1

0Mmax+p+1

)
,

ωT1χ = 0, ωT2 η = 0,

ω1 ∈ LN+1, ω2 ∈ LMmax+p+2,

χ ∈ LN+1, η ∈ LMmax+p+2. (2.25)

2.2.1 Estimation Procedure for Conic Generalized Partial Linear Models

After the unified theoretical treatment of our CGPLM in Section 2.2, we now come to a
practical treatment. Here, the basic idea will be that we first represent the given data by
the linear model. Then, we will subtract that model, along the different observations,
from the data, in order, finally to approximate the residual data vector by the nonlinear
model. In this bi-level approach, we call the first step a preprocessing, namely, for
our CMARS technique of the second step. Here, CMARS can be considered as a
refinement and fine-tuning step with respect to the linear model [60].

For the estimation of the linear parametric part of the CGPLM, a regularized least-
squares aproximation is applied [66]. As a result, the following form is obtained:

Y preproc = XTβ + ε = β0 +

p∑
j=1

Xjβj + ε. (2.26)

Now, we get the linear model coefficients’ vector βpreproc after solving the Eqn. (2.26).
We apply our regularization technique with CQP for this purpose. Then, for each data
point, a value X̄T

i β̄
preproc is subtracted (without intercept, β0) from the corresponding

response, and ŷ is obtained by

(η =) ŷ := y− X̄β̄preproc.

In fact, y is the given response data vector, X̄ is the given input data matrix except its
first column (of entries 1) which is multiplied by the intercept β0, and β̄preproc is the
vector of the further unknown parameters. Thus, the residual vector, ŷ, is used as the
new response vector to construct our nonlinear CMARS model, based on the given
input data also, for an estimation of nonparametric part of CGPLM. Then, the entire
CGPLM is identified, constituted of two parts [60].
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2.3 Application and Results

In this section, the implementation of CGPLM algorithm (with CMARS) and the com-
parison study of the Linear Model (LM), CMARS and CGPLM (with CMARS) will
be presented. To solve the CQP problem, MOSEK software is preferred by us. Two
different data sets with different sample sizes and numbers of independent variables
are selected from regression test problems from the UCI Machine Learning Reposi-
tory [62]. The first data set is the Concrete Compressive Strength test data [62]. Based
on its sample size, this data set is the largest data set used in this chapter. It includes
1030 observations and 8 input variables, which are cement, blast furnace slag, fly ash,
water, super plasticizer, coarse aggregate, age, and fine aggregate. The second data set
for the application part of this chapter is the Concrete Slump test data [62]. This data
set includes 103 observations. There are seven input variables, which are cement, slag,
fly ash, water, SP, coarse aggregate, as well as fine aggregate, and an output variable
known as 28-day compressive strength (MPa). All input variables for each data sets
are quantitative.

For our approaches with CQP, many different upper bounds are tested by using the
software package of MOSEK to find non-dominated solutions as explained in Chapter
1. The M̃ values used in our CQP problem between 1 and 200 are: 1, 1.5, 2, 2.5, 3,
3.5, ..., 199, 199.5, 200. For Concrete Compressive Strength test data, the selected M̃
values for CMARS and CGPLM (with CMARS) are 102 and 100, respectively. On the
other hand, for Concrete Slump test data, 87 is the M̃ value for CMARS and 99 the M̃
value for CGPLM (with CMARS).

The formulation and evaluation of the well-known performance measures used in this
thesis are given in Table 2.2 [72].

Table 2.2: Prediction Performance Measures.

Name of Measure Evaluation Formula

Coefficient of Determination (R2) Higher values are R2 := 1−
∑N

i=1(ȳi−ˆ̄yi)
2∑N

i=1(ȳi−¯̄y)2

the better.
Adjusted R2 (Adj-R2) Higher values are Adj −R2 := 1− (1−R2) N−1

N−p−1

the better.
Mean Absolute Error (MAE) Smaller values are MAE := 1

N

∑N
i=1

∣∣ȳi − ˆ̄yi
∣∣

the better.
Mean Squared Error (MSE) Smaller values are MSE := 1

N−p

∑N
i=1(ȳi − ˆ̄yi)

2

the better
Proportion of Residuals within Higer values are PWI := a

N

Three Sigma (PWI) the better.

Here, ȳi is ith observed response value; ˆ̄yi is ith fitted response; ¯̄y is the mean response;
N is the number of observations; p is the number of terms in the model; ei = ȳi− ˆ̄yi is
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ith ordinary residual; ē is the mean of ordinary residual; σ =

√(∑N
i=1(ei − ē)2

)
/N

is the standard deviation of ordinary residual; T = 3 · σ denotes 3σ as a threshold; a is
the sum of the indicator variables where the condition |ei| < T is satisfied [72].

For the application of CGPLM, the independent variables for each data set are sepa-
rated according to their linear and nonlinear patterns by the help of statistical software
MINITAB [35]. After the construction of LM as a parametric approach, CMARS as a
nonparametric approach and CGPLM as a semiparametric approach for both data sets,
the performance measures that are described in Appendix A are computed. The results
are presented in Table 2.3.

As it can be seen from Table 2.3, CMARS performs better than LM with respect to
all measures for both data sets. On the other hand, CGPLM performs better than
both LM and CMARS according to all performance measures. As a result, we can
say that nonparametric models, as represented here by CMARS give more accurate
results than parametric models (namely, LM), since nonparametric models are more
flexible and efficient to express the nonlinearities. On the other hand, semiparametric
models CGPLM give more reliable results than both parametric and nonparametric
models because they reveal not only the linear structures but also nonlinearities and
nonconvexities in the high-dimensional and complex data sets.

Table 2.3: Performance results of LM, CMARS and CGPLM for the given data sets.

Data Sets Performance Parametric Nonparametric Semiparametric
Measures LM CMARS CGPLM

Concrete MAE 8.2133 3.9924 *3.6797
Compressive RMSE 10.3991 5.4516 *4.9373
Strength R2 0.6155 0.8992 *0.9252
Data Set Adj-R2 0.6125 0.8935 *0.9202

PWI *0.9980 0.9932 0.9902
Concrete MAE 10.2559 7.6841 *7.2680
Slump RMSE 12.8583 11.4831 *10.4763
Test Data Set R2 0.5010 0.6607 *0.7168

Adj-R2 0.4643 0.5444 *0.6519
PWI 1.0000 1.0000 1.0000

* indicates better performance
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CHAPTER 3

OUTLIER IDENTIFICATION WITH CONIC MULTIVARIATE
ADAPTIVE REGRESSION SPLINES

3.1 Introduction

Data sets are very important for statistical analysis and data mining. Some of the ob-
servations in a data set deviate from other observations to a great extent, arousing sus-
picion that they were generated by some different mechanism. These observations are
generally considered as an error but they might carry important information. Hawkins
(1980) called such an observation an outlier. However, Barnet and Lewis (1994) simi-
larly defined an outlier as an observation that appears to deviate noticeably from other
observations in the data set [4]. A geometrical representation of some outliers is shown
in Figure 3.1.

Figure 3.1: An illustration of some outliers in a two-dimensional space; the three
outliers are marked by ., +, x.

If the data set contains a single or few outliers, the identification of such observations
is not difficult. However, in most cases, data sets contain many outlier observations;
therefore, identifying such observations becomes rather difficult because of the effects
of masking and swamping [18]. Masking occurs when one outlier is not detected
because of the presence of others, while swamping occurs whenever a non-outlier is
wrongly identified, caused by the effect of some hidden outliers [44].

In such cases, these observations will cause biased parameter estimations; then, a sta-
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tistical study can yield a misleading interpretation of a model via the estimates of the
individual model coefficients. Therefore, it is very important to identify these observa-
tions and bound their influence through methods that are less sensitive against outliers
in the data, i.e., robust methods, or via the elimination of the outliers from the data set.
In this chapter, a mathematical alternative to robust statistical methods is provided by
constructing a CQP with its very efficient IPMs and CMARS [61].

In Section 3.2, outlier identification method for linear models are reviewed. In Section
3.3, an alternative approach with Tikhonov Regularization and CQP is presented for
mean-shift outlier model which is introduced in Section 3.2. In Section 3.4, by using
the power of CMARS, the proposed method is improved. Finally, in Section 3.5,
applications and comparisons of the presented methods are provided by using four
data sets with different characteristics.

3.2 Outlier Identification Methods for Linear Models

In this chapter, outlier identification methods are considered for parametric and non-
parametric methods. Parametric methods are not appropriate for high-dimensional and
nonlinear data sets since they require certain distributional assumptions to be validated
as well as a fixed structure for the parametric form.

Shortly recalling Chapter 2, as a parametric modeling, the LM [48], with p independent
variables, is given by

Y = β0 +

p∑
j=1

βjXj + ε,

where Y is the response variable and Xj (j = 1, 2, ..., p) are the random input vari-
ables and X = (X1, X2, ..., Xp)

T represents the vector of predictors. The coefficient
(or unknown parameter) β0 is the intercept, the parameters βj are the regression coef-
ficients related with the independent variables Xj (j = 1, 2, ..., p), and ε is the random
error term, called noise. In other words, Y = f (X) + ε with f (x) = β0 +

∑p
j=1 βjxj

(x ∈ Rp). The data response values and data input vectors are yi, xi (i = 1, 2, . . . , N),
repectively. When these data values and points are inserted into the model, then the
LM turns into the following linear system:

y = Xβ + ε. (3.1)

Here, y is an (N × 1)-vector of the response data, yi, X is an (N × (p+ 1))-matrix of
independent variables with the (1× (p+ 1))-vectors xTi (i = 1, 2, ..., N) of input data
as the rows, β is a ((p+ 1)× 1)-vector of unknown parameters. Sometimes, we call X
as the design matrix. Furthermore, ε is an (N × 1)-vector of residuals, identically dis-
tributed random errors whose conditional mean and variance are given byE (ε | x) = 0
and Var (ε | x) = σ2IN , respectively. Here, σ2 is an unknown parameter, and IN is the
identity matrix of orderN . Assuming that we have at least as many observations as un-
knowns, i.e., N ≥ p+1, and that the matrix X has full rank, the least-squares estimates
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of β and σ2 are given by β̂ =
(
XTX

)−1 XT y and yT (I −H) y/ (N − p− 1), where
H := XT

(
XTX

)−1 XT is the so-called hat operator matrix, yielding the estimated
response ŷ = Hβ̂ [48].

For LM, there are different approaches for outlier identification. These approaches
are separated into two categories: (i) direct approaches and (ii) indirect approaches.
Indirect approaches are using residuals from a robust fit.

Direct approaches: Hadi and Simonoff [18] presented two methods for direct ap-
proaches. In their first method, they initially separate the data set into a clean subset
without outliers and a complementary subset that contains all potential outliers. They
assume that the data set contains K outliers. The most likely outliers are defined as
the subset of K observations, which produce the largest reduction in the RSS when
deleted [18]. Then, they test the outlyingness of the remaining points relative to the
clean subset. Let U be the set of indexes of the observations in the clean subset with
initial size h = b(N + k − 1) /2c, which means the integer part of (N + k − 1) /2.
Here, k is the number of possible outliers. Then, they compute the scale di based on
the clean subset U as follows:

di :=


yi−xTi β̂U

σ̂U

√
1−xTi (XTUXU)

−1 , if i ∈ U,

yi−xTi β̂U
σ̂U

√
1+xTi (XTUXU)

−1 , if i /∈ U,

where di is the scale Studentized residual if i ∈ U or the prediction error if i /∈ U . Here,
yU and XU together are the subset of observations, and β̂U and σ̂U are the estimated
regression coefficients and the MSE, respectively, indexed by U . As a third step, Hadi
and Simonoff arrange the observations in ascending order according to the |di| and
they compare ds+1 by t(α/2(s+1),s−k). Here, ds+1 is the (s+ 1)th-order statistic of |di|,
and t(α/2(s+1),s−k) is the upper critical value of the t distribution with s− k degrees of
freedom. If ds+1 ≥ t(α/2(s+1),s−k), then Hadi and Simonoff declare all observations
satisfying |di| ≥ t(α/2(s+1),s−k) as outliers, and they stop the computation. Otherwise,
they construct a new subset, U , taking the first s + 1 ordered observations. If N =
s+ 1, then they declare “no outliers” in the data and stop computation; otherwise, they
continue to the second step. Their second approach is similar to the first one; however,
it just differs in step 1. For more details, one may refer to [18]. According to Pena and
Yohai [44], the success of the procedure is based on the initial clean subset of the data.
This procedure works well for low-leverage outliers, i.e., for values that are outliers
with respect to an independent variable. Deletion of this type of outlier shows a low
influence on the regression fit. However, this procedure may fail when the sample
contains a set of several high-leverage outliers. This type of deletion technique reveals
a strong leverage and influence on the regression coefficients.

Indirect approaches: An indirect approach to outlier identification can be achieved
through a robust regression estimate. The aim of robust regression is to provide resis-
tant (stable) results in the presence of outliers. To achieve this stability, robust regres-
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sion limits the influence of outliers on the parameter estimates. Three classes of prob-
lems have been addressed with robust regression techniques: problems with outliers in
the y-direction (response direction), problems with multivariate outliers in the covari-
ate space (i.e., outliers in the x-space, which are also referred to as leverage points)
and problems with outliers in both the y-direction and the x-space. Many methods
have been developed for these problems. In statistical applications of outlier detection
and robust regression, however, the methods that are most commonly used today are M
estimation (this class of estimators can be regarded as a generalization of Maximum-
Likelihood Estimation (MLE)) [23] and Least Trimmed Square (LTS) estimation [51].
However, in this chapter, an outlier identification method called Mean-Shift Outlier
Model (MSOM) [11, 28] (see Subsection 3.2.1) is considered, which is different from
both M estimation and LTS estimation [61].

3.2.1 Mean-Shift Outlier Model

In evaluating the given outliers detection methods, the MSOM has to be mentioned; it
is an indirect method. In fact, since MSOM gives the same RSS as the model fitted
after omitting the relevant observations, it is convenient for studying the regression
model in the presence of outliers. This model is given by

Y = XTβ + ∆δ + ε, (3.2)

where ∆ ∈ {0, 1} is a constant “switching” or selection term, and δ is the unknown
parameter for outlier observation. In the presence of an outlier, ∆ = 1, and the impor-
tance of an outlier are represented by the value 1 · δ. The system after all data inserted
into the model is as follows:

y = Xβ + eiδ + ε, (3.3)

where ei is the ith standard unit vector, i.e., ei = (0, ..., 1, 0, ..., 0)T (i = 1, 2, ..., N).
In this model, it is assumed that either yi or xTi β deviates systematically by some value
δ from the equation yi = xTi β + εi. Then, according to the ith observation,

(
yi, xTi β

)
would have a different intercept than the remaining observations, and

(
yi, xTi β

)
would

hence represent an outlier. To check this fact, we test the hypothesis

H0 : δ = 0 (i.e., E(Y ) = Xβ)

against the alternative

H1 : δ 6= 0 (i.e., E(Y ) = Xβ + eiδ) ,

using the likelihood-ratio test statistic [46]

Fi =
(RSS(H0)−RSS(H1)) /1

RSS(H1)/ (N − p− 1)
. (3.4)
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Here, RSS(H0) is the residual sum of the squares in the model y = Xβ+ε, containing
all N of the observations, and RSS(H1) is the residual sum of squares in the model
y = Xβ + eiδ + ε, i.e.,

RSS(H0) =
N∑
i=1

(
yi − xTi β

)2
= yT (I −H) y (N − p) σ̂2,

RSS(H1) =
N∑
i=1

(
yi − xTi β − δi

)2
,

where δi will be δ or 0 according to the outlier variable. Additionally, the relationship
between RSS(H0) and RSS(H1) can be written as

RSS(H1) = RSS(H0)− ε̂2i
1− hii

, (3.5)

where ε̂ = (I −H) y, ε̂i = eTi ε̂, and eTi Hei = hii. When the ith observation (yi, xi) is
omitted, then the estimator of σ2

i is defined by

s2
−i =

yTi (I −Hi) yi
N − p− 1

, (3.6)

where Hi and yi represent the hat matrix and the response vector after omission of the
ith observation, respectively; σi is the standard deviation of the ith residual. If σi is
taken as its estimation, σ̂i = s−i

√
1− hii, then the test statistic in Eqn. (3.4) may be

written as

Fi =
ε̂2i

s2
−i (1− hii)

= (r∗i )
2 (i = 1, 2, ..., N) , (3.7)

where r∗i is called the ith externally Studentized residuals [46]. Furthermore, the non-
centrality parameter approaches zero as hii increases. Therefore, the detection of out-
liers becomes difficult if the ith leverage hii is large [46].

3.3 Alternative Approach for Mean-Shift Outlier Model with Tikhonov Regu-
larization and Conic Quadratic Programming

As we mentioned, the goal of robust regression is to provide resistant (stable) results in
the presence of outliers, limiting the influence of outliers on the parameter estimates.
For this reason, the Tikhonov Regularization [3] method is considered and applied by
us for MSOM. Tikhonov Regularization belongs to the most commonly used methods
for making ill-posed problems well-posed (regular or stable) as we mentioned before
in Section 2.2 [3, 9]. There are different types of basic formulation for the Tikhonov
Regularization problems, all of which are represented as minimization problems. In
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this section, a Tikhonov Regularization problem is constructed for the MSOM, and it is
solved by using CQP [7]; this problem will be called Conic Mean-Shift Outlier Model
(CMSOM).

For CMSOM, we try to construct minimization problems mentioned by the Tikhonov
Regularization for the MSOM. Let us assume that m observations yi, where m <
N , deviate systematically from the corresponding model yi = xTi β + εi by δi, as
detected by one of the direct methods such as the Hadi and Simonoff [18] test statistic
Fi given by Eqn. (3.4), Cook’s distance [11] or Studentized residuals [11]. That is, m
observations are outliers. Then, MSOM takes the form of the fallowing linear system

y = Xβ + Eδ + ε, (3.8)

where X is a full rank (N × (p+ 1))-matrix of independent (or explanatory) variables,
E is an (N ×m)-matrix with m indicator vectors, and δ is an (m× 1)-vector of the
regression coefficients of the indicator vector. In fact, MSOM can be stated as

y = X∗β∗ + ε, (3.9)

where X∗ = (X | E) is a block-structured (N × (p+ 1 +m))-matrix constructed by
the matrices X and E, and β∗ =

(
βT , δT

)T
is an ((p+ 1 +m)× 1)-vector, con-

structed by the vectors β and δ. Under the discrepancy principle [9], the Tikhonov
Regularization problems for the regression model (3.8) can be written as

minimize
β∗

‖y− X∗β∗‖2
2 + λ ‖Lβ∗‖2

2 . (3.10)

Here, λ can be considered as a penalty parameter. This parameter establishes the trade-
off between both accuracy, i.e., a small RSS, and not too high complexity. The reg-
ularization matrix, L, is a diagonal ((p+m+ 1)× (p+m+ 1))-matrix to represent
the discrete differential operators of zeroth-, first- and second- order derivatives, filling
up with rows 0T if needed. In this section, L is specified as an identity matrix.

The Tikhonov Regularization problem in Eqn. (3.10) can be addressed through CQP.
Based on an appropriate choice of a bound M̃ , the following optimization problem can
be stated:

minimize
t,β∗

t,

subject to ‖y− X∗β∗‖2 ≤ t,

‖Lβ∗‖2 ≤
√
M̃. (3.11)

Note that through the thesis, M̃ , the bound of the our optimization problem, is selected
by a trial and error approach.
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3.4 Improvements on Conic Mean-Shift Outlier Model with Conic Multivariate
Adaptive Regression Splines

There are several well-known advantages of CMARS over traditional LM. One major
drawback of LM is that in spite of all corrective measures applied, in some cases the
constant error variance assumption may not be validated. In such a case, the theory
underlying LM fails, and it does not provide the best linear and unbiased estimators
for the model parameters anymore. For such data sets, CMARS is known to provide
better predictions powerfully and clearly, according to the different comparison criteria
[65].

If there are linear relationships between the variables of the given data set, CMARS
method performs as good as LM does [72]. However, for high-dimensional data sets
with a large number of predictors which exhibit nonlinear (complex) relationships, the
complex structure of the data may prevent LM from developing valid and adequate
statistical models. For these kind of prediction problems, there is numerical evidence
that CMARS method provides even a better fit than traditional LM [72].

Finally, traditional regression models require certain distributional assumptions to be
validated as well as a fixed structure for the parametric form. Thus these models need
human expertise in their use and it may take a longer time to construct parametric
models. In certain cases, we may even fail to develop LM models. On the other
hand, CMARS models are developed “automatically,” especially, adaptively requiring
less human intervention. In addition, for complex data sets, the prediction algorithm
should not adapt a parametric form prior to modeling but rather should explore the
inherent structure of the data set to propose a nonparametric form. Thus, for the outlier
detection problem, CMARS is employed as a novel and an effective tool.

The following model is constructed to remove the deficiency of CMSOM:

Y = θ0 +
Mmax∑
m=1

θmψm(Xm) + ∆δ + ε. (3.12)

Here, ψm (m = 1, 2, ...,Mmax) are basis functions taken from a set of Mmax linearly
independent basis elements, θm are the unknown coefficients for themth basis function
(m = 1, 2, ...,Mmax) or for the constant 1 (m = 0). A special advantage of the basis
function is lying in its ability to estimate the contributions of the basis functions so that
both the additive and the interactive effects of the predictors are allowed to determine
the dependent response variable. It should be noted that from now on we use the bar,
(̄·), on top of the data in order to distinguish them from both estimations and generic
variables. Thus, the model with data inserted is leading to the following linear system:

y = ψ
(
d̄i
)
θ + Eδ + ε, (3.13)

where ψ
(
d̄i
)

:=
(
1, ψ1(x̄1

i ), ..., ψM(x̄Mi ), ψM+1(x̄M+1
i ), ..., ψMmax(x̄Mmax

i )
)T

, θ :=

(θ0, θ1, ..., θMmax)
T with the point d̄i :=

(
x̄1
i , x̄2

i , ..., x̄Mi , x̄
M+1
i , ..., x̄Mmax

i

)T
in the ar-

gument.
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Now, our MSOM with CMARS (CMARS-MSOM) can be stated as

y = X∗β∗ + ε, (3.14)

where X∗ =
(
ψ
(
d̄i
)
|E
)

is a block-structured (N × (Mmax +m+ 1))-matrix formed

by the matrices X and E, and β∗ =
(
θT , δT

)T
is an ((Mmax +m+ 1)× 1)-vector

constructed by the vectors β and δ.

Moreover, θ is an ((Mmax + 1)× 1)-parameter vector to be estimated through the
data points. One of the components of the high-dimensional matrix, L∗ = (R | L),
is R which is an ((Mmax + 1)× (Mmax + 1))-matrix formed by integrals of squared
first- or second-order derivatives of the basis functions of CMARS. Now, our PRRS
problem turns to a classical Tikhonov Regularization problem with penalty parameter,
λ, as follows [59, 70]:

minimize
β∗

‖y− X∗β∗‖2 + λ ‖L∗β∗‖2 . (3.15)

Now, we equivalently write our optimization problem as follows:

minimize
t,β∗

t,

subject to ‖y− X∗β∗‖2 ≤ t,

‖L∗β∗‖2 ≤
√
M̃. (3.16)

To write the optimality conditions for this problem, we first reformulate the problem
of Eqn. (3.16) as follows:

minimize
t,β∗

t,

such that

χ :=

(
0N×1 X∗

1 0T(Mmax+m+1)×1

)
+

(
t
β∗

)
+

(
−y
0

)
,

η :=

(
0(Mmax+m+1)×1 L∗

0 0T(Mmax+m+1)×1

)(
t
β∗

)
+

(0(Mmax+m+1)×1√
M̃

)
,

χ ∈ LN+1, η ∈ LMmax+m+2,

where LN+1, LMmax+m+2 are the (N + 1)- and (Mmax +m+ 2)-dimensional Lorentz
cones. A primal-dual optimal solution is (t,θ,χ,η,ω1,ω2).

In this chapter, we are addressing a need for regularization and perform it in two ways
and different respects:

1. We take possible outliers into account at all by mathematically modeling and
then determining to what an amount we let any such data having an impact on
our model, herewith also “identifying” them. This is a first way to make the
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model “regular” with respect to the existence of outliers. We may say that by
the basic settings of our model, we “reach out” to possible outliers and represent
their possible character and contribution to the model by a parameter δ, which
has to be assessed numerically.

2. As always in this thesis, whether we are in a standard LM or in our nonlinear
CMARS model, we do a regularization with the help of CQP programs which
represent a Tikhonov Regularization problem that, besides of model accuracy,
addresses its complexity, too. Besides through the linear system, which bases
on model and data, the parameter vector of the outlier detection and assessment
of item 1 is included. Now, that item of our efforts has become subordinate to
the regularization of item 2 also. One may say that we even assess the basic
problematic of outliers and to what an extent to take it into account via this
second respect of item 2.

3.5 Numerical Performance Comparisons of LM, MSOM, CMSOM and CMARS-
MSOM

In this section, the performances of four approaches (LM, MSOM, CMSOM and
CMARS-MSOM) are compared according to some general measures. Firstly, the data
sets and the performance measures are described. Then, the outcomes of the compari-
son studies are presented.

3.5.1 Data Sets

To compare the performance of the LM, MSOM, CMSOM and CMARS-CMSOM,
four data sets, with different sample sizes (N ) and numbers of independent variables
(p), are selected from regression test problems. These test problems are application
taken from the industry, chemistry and computer science areas.

Data Set 1: The first data set is the delivery time data taken from Rousseeuw and Leroy
[50], page 155, Table 23. In this data set, which contains 25 observations collected
from the service of a vending machine, y is the delivery time, X1 is the number of
cases that the product stocked, and X2 is the distance walked by the route driver.

Data Set 2: As the second data set for comparison, the stack data set is considered.
This data set is a well-known stack-loss data set presented by Brownlee [52] and was
taken from SAS Customer Support. The data describe the operation of a plant for the
oxidation of ammonia to nitric acid and consist of 21 4-dimensional observations. The
explanatory variables for the response stack-loss (y) are the rate of operation (X1), the
cooling water inlet temperature (X2), and the acid concentration (X3).

Data Set 3: The third data set, a simulation data generated by using MATLAB [34],
has 100 observations. To determine which methods perform better, a test problem is
taken from [22]. In this problem, data are artificially created from the following model
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function:

f(X) = 24.55X1 + 26.75X2 + 39X3 + 40.50X4,

where the regressors X1, X2, X3, and X4 are assumed to have a uniform (-10, 10)
distribution. To obtain the response, normally distributed noise with 0 mean is added
to the model function f(X).

Data Set 4: The fourth data set of this chapter is the Concrete slump test data [62]. The
data set includes 103 observations. There are seven input variables, which are cement,
slag, fly ash, water, SP, coarse aggregate, and fine aggregate, and an output variable
known as 28-day compressive strength (MPa).

3.5.2 Applications and Results

For these applications, a special code has been written using MATLAB for CMSOM
and CMARS-MSOM. Besides, we use MATLAB while implementing LM, MSOM,
CMSOM and CMARS-MSOM.

To find the potential outliers for each data set, we apply the following outlier detection
procedure:

1. LM is constructed to fit the data.

2. The fit values and ordinary residuals are computed from Step 1.

3. Studentized residual and Cook’s distance values are calculated.

4. The potential outlier specified after Step 3 is removed from the data set, and
Steps 1 and 2 are repeated to check for a better fit. (An observation is a potential
outlier if it has larger Cook’s distance and Studentized residual values.)

5. To find and remove the other potential outlier observations, Step 1 is repeated
until all of the outlier observations are eliminated.

After applying above procedure to all data sets, The number of potential outliers is
presented in Table 3.1.

In our applications, to solve the CQP problem, MOSEK software is preferred [37]. As
an upper bound of the CQP problem for CMSOM and CMARS-MSOM methods, the
selected M̃ values are listed in Table 3.2.

The performance of the methods LM, MSOM, CMSOM and CMARS-MSOM are cal-
culated for all data sets, and the results are given in Table 3.3. The values of some
measures such as MAE and RMSE vary with the data set studied, i.e., there are no
well-defined bounds on these values of the performance measures. For others, the
values close to one are the better. For Data Sets 1 and 3, CMSOM gives a slightly
better performance than LM and MSOM, according to all the chosen measures. For
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Table 3.1: The number of potential outliers for the given data sets.

Data Sets Data Features # Potential Outliers
Number Name N p k
1 Delivery time data 25 2 2
2 Stack data 21 3 5
3 Artificial data 100 4 3
4 Concrete slump test data 103 7 5

Table 3.2: The selected M̃ values for the applications of CMSOM and CMARS-
MSOM methods on the given data sets.

Data Sets 1 2 3 4
M̃ for CMSOM 35 69 101 98
M̃ for CMARS-MSOM 84 76 112 100

the other data sets, CMSOM and MSOM produce the same performance with respect
to all the performance measures. When considering outliers, the results for LM show
a weak or inferior performance compared to CMSOM and MSOM. Besides, with the
advantages of CMARS method, CMARS-MSOM performs better than the other mod-
els. Since CMARS works effectively for high-dimensional and nonlinear data sets,
CMARS-MSOM is successfully applied to more complex data sets containing outlier
observations.

3.6 Concluding Remarks

This chapter provides a new contribution to the challenges of the mean-shift outlier
regression problem by enabling the accessibility and usability of modern methods of
continuous optimization and data mining. Herewith, a bridge has been offered between
statistical learning, inverse problems and the strong tools prepared for well-structured
convex optimization problems [61].

This chapter on the detection and following treatment of outliers benefits from prior
data and, hence, model regularization, which we achieve with the help of CQP. Fur-
thermore, the handling of outliers itself can be regarded as an extension of this process
of regularization. Both are measurements oriented in the same direction of “smoothen-
ing” the data via a model that represents core information and they are orchestrated in
this chapter.

In the field of the stochastic process of financial mathematics, there is a particular case
of an outlier, which is called a spike [25]. As time proceeds, it can be regarded as a
double jump, i.e., a jump up or down followed by a jump down or up, respectively.
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Table 3.3: Performance results of the methods LM, MSOM, CMSOM and CMARS-
MSOM for the data sets studied.

Data Set Models MAE RMSE R2 Adj-R2 PWI
1 LM 2.2867 3.3367 0.9596 0.9538 1.0000

MSOM 1.6654 2.5473 0.9787 0.9743 1.0000
CMSOM 1.6589 2.4826 0.9787 0.9755 1.0000
CMARS-MSOM *1.2634 *2.2048 *0.9890 *0.9798 1.0000

2 LM 2.3974 3.2846 0.9114 0.8957 1.0000
MSOM 0.7383 1.2735 0.9898 0.9843 1.0000
CMSOM 0.7383 1.2735 0.9898 0.9843 1.0000
CMARS-MSOM *0.5603 *1.2722 *0.9929 *0.9843 1.0000

3 LM 30.8827 39.6762 0.9901 0.9897 1.0000
MSOM 29.8022 37.7668 0.9914 0.9907 1.0000
CMSOM 27.6567 *35.5002 0.9924 0.9920 1.0000
CMARS-MSOM *27.3291 35.6751 *0.9926 *0.9916 1.0000

4 LM 1.8938 2.6087 0.8969 0.8892 0.9903
MSOM 1.5020 2.1310 0.9348 0.9261 1.0000
CMSOM 1.5020 2.1310 0.9348 0.9261 1.0000
CMARS-MSOM *0.6906 *0.91818 *0.9882 *0.9868 1.0000

* indicates better performance

Here, the second jump can be regarded as a type of (maybe partial) “withdrawal” of
the first jump, which explains the outlier property of the spike. On the other hand, in
different areas of technology, such as electrical engineering and mechanical engineer-
ing, an outlier can have an infinite response value as a Dirac delta (impulse) function.
Then, it is an “infinite outlier” or “infinite (double) jump,” and through infiniteness, it
becomes very essential and can be employed systematically [3].
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CHAPTER 4

PARAMETER IDENTIFICATION OF STOCHASTIC
DIFFERENTIAL EQUATIONS BY CONIC MULTIVARIATE

ADAPTIVE REGRESSION SPLINES

4.1 Introduction

Financial processes as well as processes in nature and technology are subject to ran-
dom effects and noise. Generally, these time-dependent processes are characterized
by their large number and by a high frequency. Describing high-frequency financial
observations is a challenging issue because of the discretely discontinuous piecewise
constant structures of their large data sets [26]. Thus, any related mathematical model
for such given observations has to be constructed with a careful learning process since
it faces a high sensitivity with respect to the slightest perturbations, as well as non-
smoothness of the data. Such a mathematical model serves as the basis of prediction
for the future [57].

Stochastic Differential Equations (SDEs) turn out to be an increasingly common tool
for the representation of natural processes, and they play an important role to model
the physical phenomena whose dynamics are affected by random noise [31]. In fact,
these equations find application in many fields such as physics, biology, engineering,
medicine, telecommunication and, in particular, finance. SDEs, however, are often
hard to represent and to resolve because they involve unknown parameters or model
functions nonlinearly, which need to be estimated from observations of the process
[43].

Several approaches have been developed for parameter estimation of SDEs. Gener-
ally, these are difficult and sometimes impossible to apply because of the assumptions
that have to be provided [8]. Therefore, we deal with this challenge by expressing
SDEs with their parameters in a simplified manner of approximation with our CMARS
method.

As already stated in Chapter 1, CMARS is one of the nonparametric approaches that
make no specific assumptions to estimate the components of SDEs on some given
stochastic process. Real-world processes from the financial sector or from nature are
often characterized by their huge quantity and variations [13]. CMARS is able to
model such data by using the advantages of recent developments in optimization the-
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ory, numerical mathematics, computer software and hardware. The fundamental ob-
jective of our study is to propose CMARS as an identification tool for SDEs and to
test this method on different kinds of stochastic processes without any assumptions
[65, 70]. In this chapter, the stochastic processes could be price, logarithmic price,
volatility, interest rate, wealth processes, etc. For studies in financial mathematics
where our work could contribute as a tool or module, the references can be given as
examples [13, 26, 31].

This chapter is organized as follows. In Section 4.2, a brief introduction to one-
dimensional SDEs is given. Section 4.3 represents the proposed methodology for the
parameter estimation of one-dimensional SDEs. In Section 4.4, some information on
the problem of parameter estimation of multi-dimensional SDEs is presented. An in-
troduction to multi-dimensional SDEs and the proposed methodology for parameter
estimation of multi-dimensional SDEs are given in Section 4.5. In Section 4.6, corre-
lated systems of SDEs are considered and analyzed.

4.2 One-dimensional Stochastic Differential Equations

Dynamical processes in nature, technology and economy are usually modeled by means
of a deterministic differential equation such as ordinal differential equation (ODE),
partial differential equation (PDE), impulsive differential equation (IDE), or delay dif-
ferential equation (DDE). Consider an ODE with initial vector x0 ∈ R:

ẋ(t) =

(
:=

d

dt
x(t)

)
= a(x, t), x(t0) = x0.

where x(·) : [0,∞) → R is a solution satisfying the initial condition x(t0) = x0 and
a : R × R+ → R is a smooth function. In general, x(t) is not known explicitly, but
it can be approximated by a(x, t). We note that, rather than the initial value, we may
also refer to a terminal value x (tT ) = xT at some “maturity time” T > 0.

On the other hand, in many applications, the process contains random effects and de-
pendencies, and it cannot be modeled by the ODE. If the coefficients of the differential
equation contain random effects, we cannot obtain a realistic mathematical model.
Therefore, in order to describe the behaviour of the noise in differential equations, the
SDEs are used. We call this real-valued special case among the system of SDEs stud-
ied in Section 4.5-4.6, a one-dimensional SDE. In this section, we briefly recall some
concepts of SDEs and, especially, of a Wiener process, which is also called a standard
Brownian motion.

Suppose we have a stochastic process X = (Xt : t ≥ 0), also written as (Xt)t≥0,
defined on a probability space (Ω,F ,P) and presented by the following mathematical
model [43]:

dXt = a(t,Xt)dt+ b(t,Xt)dWt, (4.1)

where a(t,Xt) and b(t,Xt) characterize the drift and diffusion terms, respectively.
These terms satisfy the conditions to guarantee existence and uniqueness of unknown
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process (Xt)t≥0 on a certain interval, given values X0 and XT , respectively. Finally,
(Wt)t≥0 denotes a Wiener process at time t.

A Wiener process is a continuous-time stochastic process that fulfills the following
three properties [2]:

• W0 = 0 and E[Wt] = 0 for all t ≥ 0.

• Wt −Ws is N(0, t− s) for all 0 ≤ s ≤ t.

• Given any finitely many times 0 < t1 < t2 < ... < tN , the random variables
(increments) Wt1 , Wt2 −Wt1 , ..., WtN −WtN−1

are independent.

From the Central Limit Theorem we learn that a Wiener process is a continuous and
centered Gaussian process with the following conditions [43]:

E(Wt) = 0, E(W 2
t ) = Var(Wt) = t for any time t ≥ 0.

Even over a small time interval, a Wiener process has an oscillating behavior of so-
called infinite variation. Therefore, it is not differentiable for any time t ≥ 0. To
obtain our approximate and, then, smoothened model, we symbolically treat the real-
valued stochastic process (Wt)t≥0 as if it was differentiable; this is the first approach
and a widespread notation in literature. We emphasize that this notation and SDEs, in
general, can be exactly defined by integral equations which are based on Itô calculus
[2, 29].

4.3 Parameter Identification of One-dimensional Stochastic Differential Equa-
tions with Conic Multivariate Adaptive Regression Splines

Estimation of the parameters of SDEs is very important in practice because in many
applications, such as modeling the behavior of stock prices, the deterministic compo-
nents in the dynamics is hard to represent [8]. The method which we adopt to estimate
the drift and diffusion terms of SDEs is based on both discretization of the SDEs and
our CMARS method. Since the realizations of the unknown xt = Xt(ω) (ω ∈ Ω) are
not known exactly, we want to numerically approximate the time-discretized version
of it and, hence, the time-continuous version, by this approach. In the following, we
may suppress ω often for the sake of convenience.

4.3.1 Discretization of One-dimensional Stochastic Differential Equations

Simulation methods for SDEs are usually based on discrete approximations of the
continuous-time solution curves. There are many discretization schemes for SDEs
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such as Euler and Runge-Kutta discretization. Some of the discretization methods
have a strong-order convergence. Although one of the most widely applied schemes of
approximation is the Euler method which is also used to generate solutions to ordinary
differential equations, we choose the Milstein scheme which employs Itô’s Lemma to
increase the accuracy of the approximation by adding a second-order term [29].

In this section, we consider one-dimensional real valued stochastic process, Xt. In the
one-dimensional case, we represent the Milstein approximation of the unknown values
xi := Xti at any increasing times ti ≥ 0, in short: x̂i (i = 1, 2, ..., N), as follows [77]:

x̂i+1 = x̂i + a(x̂i, ti)(ti+1 − ti) + b(x̂i, ti)(ŵi+1 − ŵi)

+
1

2
b(x̂i, ti)bx(x̂i, ti)

(
(ŵi+1 − ŵi)2 − (ti+1 − ti)

)
.

Here, bx is the partial derivative of b(x̂i, ti) with respect to x and ŵi stands for an
estimation of Wti . As soon as we refer to sometimes ti, we may denote Wti by Wi.
We write W̄i in order to denote real-valued specifications in the context of random
numbers drawn and data referred to. If we particularly address the finitely many given
data points (x̄i, t̄i), where 0 ≤ t̄1 < t̄2 < ... < t̄i < t̄i+1 < ... < t̄N are sampling
times, we obtain a more symbolic form:

ȳi = a(x̄i, t̄i) + b(x̄i, t̄i)
∆w̄i
h̄i

+
1

2
b(x̄i, t̄i)bx(x̄i, t̄i)

(
(∆w̄i)

2

h̄i
− 1

)
(i = 1, 2, ..., N) , (4.2)

where the value ȳi represents the difference quotients raised on the ith data values x̄i
(i = 1, 2, ..., N) and on step lengths ∆t̄i := h̄i = t̄i+1 − t̄i between neighbouring
sampling times:

ȳi =

 (1/h̄i) · (x̄i+1 − x̄i) , if i = 1, 2, ..., N − 1,

(1/h̄N) · (x̄N − x̄N−1) , if i = N.

However, Eqn. (4.2) cannot be expected to hold in an exact sense, since it includes real
data, affected by uncertainity; therefore, we satisfy them best in an approximate sense
that refers to a minimal value of RSS, which is also called Least Squares of Errors. For
the ease of exposition, the symbol, “=,” is used instead of the approximation symbol
“≈.”

Since Wti ∼ N(0, t), the increments ∆Wti are independent on non-overlapping inter-
vals and, moreover, Var(∆Wti) = ∆t̄i. Therefore, the increments having normal distri-
bution can be simulated with the help of standard normal distributed random numbers
Zi. Herewith, we obtain a discrete model for a Wiener process [29]:

∆Wi = Zi
√

∆t̄i, Zi ∼ N(0, 1). (4.3)
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If we insert Eqn. (4.3) into our Milstein approximation and draw random numbers z̄i
of Zi (by a pseudo random number generator) [56, 77], we receive the following form:

ȳi = a(x̄i, t̄i) + b(x̄i, t̄i)
z̄i√
h̄i

+
1

2
b(x̄i, t̄i)bx(x̄i, t̄i)

(
z̄2
i − 1

)
, (4.4)

which we abbreviate by

ȳi = Ḡi + H̄ici +
(
H̄
′

iH̄i

)
di. (4.5)

Here, ci := z̄i/
√
h̄i, di := (1/2) · (z̄2

i − 1), Ḡi := a(x̄i, t̄i) and H̄i := b(x̄i, t̄i)
(i = 1, 2, ..., N). In view of the large number of functions, parameters and variables
implied by us, as a small abuse of notation, here we exceptionally use capital letters
for real-valued functions and for real numbers. For simplicity, we use prime “(·)

′
” to

denote the partial derivative with respect to the variable x [56].

4.3.2 Construction of the Minimization Problem for the Parameter Estimation
of One-dimensional Stochastic Differential Equations

To determine the unknown values of Ḡi and H̄i, we consider the following minimiza-
tion problem:

minimize
θ

N∑
i=1

(
ȳi −

(
Ḡi + H̄ici +

(
H̄
′

iH̄i

)
di

))2

,

where the vector θ comprises all the parameters in the Milstein approximation. We
point out that also vector-valued processes can be studied, referring to sums of terms
in the squared Euclidean norm ‖·‖2

2.

This optimization problem could be solved with classical Gaussian least-squares esti-
mation. However, the data underlying our stochastic process, especially, in the finan-
cial sector, have a high variation and oscillation. Therefore, a parameter estimation
method has to be used which will take into account this high variation and will give a
smoother approximation of the data [56].

4.3.3 Parameter Estimation of One-dimensional Stochastic Differential Equa-
tions using Conic Multivariate Adaptive Regression Splines

Spline approximation is very flexible, because it is adaptive, as it is explained below.
It can be regularized in order to avoid too large an oscillation of the solutions; such
an oscillation might be permitted by a high-degree polynomial approximation and be
based on strongly varying data, by outliers or “spikes” existing. Splines can be de-
scribed as linear combinations of basis splines which are usually low-dimensional. We
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will approximate the data (x̄i, t̄i) “smoothly,” but we will compromise smoothness by
the simplicity of certain discrete nondifferentiabilities [20]. In this chapter, we use
CMARS’ basis functions as our splines. The nondifferentiability at the knot points is
a compromise for having “easy,” in fact, piecewise linear one-dimensional basis func-
tions.

CMARS is a powerful estimation method and it approximates the data in a “smoothen-
ing” way. In this section, a special CMARS application is done in the dimension p = 2.
For this reason we approximate each function underlying the numbers Ḡi := a(x̄i, t̄i),
H̄i := b(x̄i, t̄i) and F̄i := H̄

′
iH̄i by using the basis functions of CMARS and then

introducing a regularization of the basic model. This treatment is very useful for the
stability of our model in the presence of many and highly varying data [77].

The basis functions can be established in an additive way with respect to some subsets
variables (coordinates), i.e., of subvectors, rather than separated variables known from
Generalized Additive Models (GAMs) [57]. Referring to each such a subvector, the
basis functions are multiplicative, as we shall state below. Here, it is also possible to
construct Ḡi, H̄ici and F̄idi as products of two basis functions, respectively. These
are taken from a set of linearly independent one-dimensional basis elements. The
construction of Ḡi, H̄ici and F̄idi with CMARS’ basis functions are represented as
follows:

Ḡi = β0 +
dg∑
l=1

βlbl(ūli,b),

H̄ici = γ0 +
dh∑
m=1

γmcm(ūmi,c),

F̄idi = δ0 +
df∑
n=1

δndn(ūni,d), (4.6)

where we use the unifying notation ūli,b, ūmi,c, ūni,d = (x̄i, t̄i) (i = 1, 2, ..., N), and
dg, dh, df ∈ N0 are suitable integers. The forms of bl, cm and dn in Eqn. (4.6) given
by CMARS basis functions are constructed subsequently:

bl(ūlb) =
2∏

k=1

[sκlk · (ūκlk − τκlk)]+,

cm(ūmc ) =
2∏

k=1

[sκmk · (ūκmk − τκmk )]+,

dn(ūnd ) =
2∏

k=1

[sκnk · (ūκnk − τκnk )]+. (4.7)

Here, [q]+ = max {0, q} (q ∈ R), ūκlk , ūκmk and ūκnk are the input variables correspond-
ing to the kth truncated linear function in the lth, mth and nth basis functions, τκlk ,
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τκmk and τκnk are the knots value corresponding to the variables ūκlk , ūκmk and ūκnk , and
sκlk , sκmk and sκnk are the selected signs +1 or −1, respectively. For this case, permitted
interaction is only up to two factors [14, 65, 70].

4.3.3.1 Construction of the Penalized Residual Sum of Squares Problem

We construct the PRSS as a regularization procedure for Eqn. (4.5) in the following
form [20]:

PRSS :=
N∑
i=1

(ȳi −
(
Ḡi + H̄ici + F̄idi

)
)2

+
dg∑
l=1

λl

2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈Vl

∫
Ql
β2
l

[
Dα

r,sbl(ūlb)
]2
dulb

+
dh∑
m=1

µm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
Qm
γ2
m

[
Dα

r,scm(ūmc )
]2
dumc

+
df∑
n=1

νn

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vn

∫
Qn
δ2
n

[
Dα

r,sdn(ūnd )
]2
dund , (4.8)

where Vl :=
{
κlk| k = 1, 2

}
, Vm := {κmk | k = 1, 2} and Vn := {κnk | k = 1, 2} are the

variable sets associated with the lth, mth and nth basis functions bl, cm and dn, and ūlb,
ūmc and ūnd represent the vectors of variables which contribute to the lth, mth and nth
basis functions, respectively. Furthermore, we refer to the derivative terms

Dα

r,sbl(ūlb) :=
∂|α|bl

∂α1ulr ∂
α2uls

(ūlb),

Dα

r,scm(ūmc ) :=
∂|α|cm

∂α1umr ∂α2ums
(ūmc ),

Dα

r,sdn(ūnd ) :=
∂|α|dn

∂α1unr ∂
α2uns

(ūnd ), (4.9)

where α = (α1, α2)T , |α| := α1 + α2, and α1, α2 ∈ {0, 1}. Indeed, we note that in
any case where αi = 2, the derivatives Dα

r,sbl(ūlb), Dα
r,scm(ūmc ) and Dα

r,sdn(ūnd ) vanish,
and by referring to r < s, we have applied Schwarz’s Theorem [70].

Our optimization problem in Eqn. (4.8) is based on the trade-off between accuracy,
i.e., a small RSS, and a reduced complexity. This trade-off is established via penalty
parameters λl, µm, νn ≥ 0. Large values of λl, µm and νn yield smoother curves and
smaller ones result in more fluctuation. In this section, we approach that trade-off by a
penalty approach, such as regularization techniques, and we conduct it through CQP.
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When we use our multiplicative-additive form based on our multiplicative-basis splines
for each model function, then the first part of the PRSS becomes

N∑
i=1

(ȳi −
(
Ḡi + H̄ici + F̄idi

)
)2 =

N∑
i=1

ȳi −
β0 +

dg∑
l=1

βlbl(ūli,b) + γ0 +
dh∑
m=1

γmcm(ūmi,c) + δ0 +
df∑
n=1

δndn(ūni,d)

2

.

For the sake of convenience, we introduce the following matrix notation:

β0 +
dg∑
l=1

βlbl(ūli,b) + γ0 +
dh∑
m=1

γmcm(ūmi,c) + δ0 +
df∑
n=1

δndn(ūni,d) = Āiθ,

with Āi := (bi, ci, di), where bi :=
(
1, b1

(
ūli,b
)
, b2

(
ūli,b
)
, ..., bdg

(
ūli,b
))

,
ci :=

(
1, c1

(
ūmi,c
)
, c2

(
ūmi,c
)
, ..., cdh

(
ūmi,c
))

,

di :=
(
1, d1

(
ūni,d
)
, d2

(
ūni,d
)
, ..., ddf

(
ūni,d
))

, and θ :=
(
βT ,γT , δT

)T
, where

β := (β0, β1, β2, ..., βdh)T , γ := (γ0, γ1, γ2, ..., γdf )
T , δ := (δ0, δ1, δ2, ..., δdg)

T .

Then, firstly, we obtain the residual sum of squares as the squared length of the differ-

ence vector between ȳ and Āθ, where the matrix Ā =
(

ĀT
1 , Ā

T
2 , ..., Ā

T
N

)T
contains the

row vectors Āi, and the vector of difference quotients, ȳ = (ȳ1, ȳ2, ..., ȳN)T , represents
the change rates of the given data [65, 77]:

N∑
i=1

(ȳi − Āiθ)2 =
∥∥ȳ− Āθ

∥∥2

2
.

Secondly, we obtain a discretized form of each integration term in Eqn. (4.8) by us-
ing Riemann sums. To approximate the multi-dimensional integrals, subsequently,
the discretizations and model approximations are carefully prepared and refined. In
a canonical way, the input data generate a subdivision of any sufficiently large paral-
lelpipe Ql, Qm, Qn which contain all data points as elements. Let Ql, Qm and Qn be
a parallepipes which encompass all our input data; we represent them by

Ql =
2∏

k=1

Ql
k, Qm =

2∏
k=1

Qm
k , Qn =

2∏
k=1

Qn
k ,

where Qχ
k = [aχk , b

χ
k ] and aχk ≤ ūi,k ≤ bχk (k = 1, 2; i = 1, 2, ..., N ; χ = l,m, n).

Without loss of generality, for all k we may reorder the coordinates of the input data
points: ūlk1 ,k ≤ ūlk2 ,k ≤ ... ≤ ūlkN ,k, where ljσ = 1, 2, ..., N (k = 1, 2; σ = 1, 2, ..., N),
and ūlkσ ,k, the kth component of ūlkσ is the lkσth input vector after reordering. Without
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loss of generality we can assume ūlkσ ,k 6= ūlkϕ,k for all σ, ϕ = 1, 2, ..., N , with σ 6= ϕ;
i.e., ūlk1 ,k < ūlk2 ,k < ... < ūlkN ,k. Indeed, whenever “=” is attained for some coordinate,
we obtained subparallelpipes of a lower dimension and its approximation, i.e., zero
sets within the following integration process. Now, let us denote

ūlk0 ,k = aχk , l
k
0 = 0, and ūlkN+1,k

= bχk , l
k
N+1 = N + 1.

In order to increase the readability of the following formulas, we make a small simpli-
fication without loss of generality. Therefore, we assume lkσ = lσ (k = 1, 2). Other-
wise, we could just replace the index (or discrete parameter) lσ by a k-depending, i.e.,
feature-depending, one called lkσ. Now, we can represent Qχ

k as

Qχ
k =

N⋃
σk=0

2∏
k=1

[
ūl
σk
,k, ūl

σk+1 ,k

]
(k = 1, 2; χ = l,m, n).

The notation, the subdivision and the approximation presented above are done for
all functions

[
Dα
r,sbl(ūlb)

]2,
[
Dα
r,scm(ūmc )

]2 and
[
Dα
r,sdn(ūnd )

]2, with the correspond-
ing variables and lower dimensions of ūlb, ūmc and ūnd also. Then, if we apply this idea
to our case, we discretize and represent each integration by the squared length of a
vector after Riemann sum discretization as follows [65, 70]:

∫
Ql
β2
l

[
Dα

r,sbl(ūlb)
]2
dulb ≈

(N+1)2∑
i=1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

β2
l

[
Dα

r,sbl(ûli,b)
]2

∆ûli,b

=

(N+1)2∑
i=1

(
L̄b
il

)2
β2
l =

∥∥∥L̄b
lβl

∥∥∥2

2
, where

L̄b
il =


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

β2
l

[
Dα

r,sbl(ûli,b)
]2

∆ûli,b


1/2

with ûli,b =

(
ūl
σ
κl
k
,κlk
, ..., ūl

σ
κl
k
,κlk

)
, ∆ûli,b =

∏2
k=1

[
ūl
σ
κl
k+1

,κlk
− ūl

σ
κl
k
,κlk

]
and with the

sequence (σκj)j∈{1,2} ∈ {0, 1, 2, ..., N + 1}2.

The same process is applied for the following multi-dimensional integrals:∫
Qm
γ2
l

[
Dα

r,scm(ūmc )
]2
dumc ≈

(N+1)2∑
i=1

(
L̄c
im

)2
γ2
m =

∥∥L̄c
mγm

∥∥2

2
,

∫
Qn
δ2
n

[
Dα

r,sdn(ūnd )
]2
dund ≈

(N+1)2∑
i=1

(
L̄d
in

)2
δ2
n =

∥∥∥L̄d
nϕn

∥∥∥2

2
.
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Here, we refer to

L̄c
im =


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

γ2
m

[
Dα

r,scm(ûmi,c)
]2
∆ûmi,c


1/2

,

L̄d
in =


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

δ2
n

[
Dα

r,sdn(ûni,d)
]2
∆ûni,d


1/2

,

where ûmi,c =
(

ūl
σ
κm
k
,κmk
, ..., ūl

σ
κm
k
,κmk

)
and ∆ûmi,c =

∏2
k=1

[
ūl
σ
κm
k+1

,κmk
− ūl

σ
κm
k
,κmk

]
;

ûni,d =
(

ūl
σ
κn
k
,κnk
, ..., ūl

σ
κn
k
,κnk

)
and ∆ûni,d =

∏2
k=1

[
ūl
σ
κn
k+1

,κnk
− ūl

σ
κn
k
,κnk

]
[65, 70].

For a short representation, we can rewrite the approximate relation in Eqn. (4.8) as

PRSS ≈
∥∥ȳ− Āθ

∥∥2

2
+

dg∑
l=1

λl

∥∥∥L̄b
lβl

∥∥∥2

2
+

dh∑
m=1

µm
∥∥L̄c

mγm
∥∥2

2
+

df∑
n=1

νn

∥∥∥L̄d
nδn

∥∥∥2

2
, (4.10)

for L̄b
l :=

(
L̄b

1l, L̄
b
2l, ..., L̄

b
(N+1)2l

)T
(l = 1, 2, ..., dg), L̄c

m :=
(
L̄c

1m, L̄
c
2m, ..., L̄

c
(N+1)2m

)T
(
l = 1, 2, ..., dh

)
, and L̄d

n :=
(
L̄d

1n, L̄
d
2n, ..., L̄

d
(N+1)2n

)T (
l = 1, 2, ..., df

)
. However,

there is not a singleton, but an Mmax =
(
dg + dh + df

)
-tuple of penalty (or trade-

off, or smoothing) parameters: (λ1, λ2, ..., λdg , µ1, µ2, ..., µdh , τ1, τ2, ..., τdf ). There-
fore, the minimization of PRSS is not a Tikhonov Regularization problem already as
that need to have a single such multiplier. Therefore, let us make a uniform penaliza-
tion by taking the same λ for each derivative term. Then, our approximation of PRSS
can be rearranged as

PRSS ≈
∥∥ȳ− Āθ

∥∥2

2
+ λ ‖L̄θ‖2

2 ,

where L̄ is a diagonal (Mmax + 1)×(Mmax + 1)-matrix with first column L̄0 = 0(N+1)2

and the further columns L̄b
l , L̄c

m and L̄d
n, which we presented above. Moreover, θ is an

((Mmax + 1)× 1)-parameter vector to be estimated through the data points. Now,
finally, our PRSS problem looks as a standard Tikhonov Regularization problem [3],
however with a particular regularization matrix L̄.

4.3.3.2 Construction of the Conic Quadratic Programming Problem

Not solving the Tikhonov Regularization problem, but explaining how to treat this
problem by using convex optimization techniques which we suppose to become a com-
plementary and alternative technology to the concept of Tikhonov Regularization on

46



inverse problems we apply the elegant framework of CQP. With the statistical learning-
based choice of the bound M̃ as we explained in Chapter 1, we represent the Tikhonov
Regularization problem, as the following optimization program [65, 70]:

minimize
t,θ

t,

such that χ :=

 0N Ā

1 0TMmax+1

 t

θ

+

 −ȳ

0

 ,
η :=

 0Mmax+1 L̄

0 0TMmax+1

 t

θ

+

 0Mmax+1√
M̃

 ,
χ ∈ LN+1, η ∈ LMmax+2. (4.11)

In order to state the optimality conditions, we firstly write the dual problem to the latter
problem as

maximize (ȳT , 0)ω1 +
(

0TMmax+1,−
√
M̃
)
ω2,

such that

 0TN 1

ĀT 0TMmax+1

ω1 +

 0TMmax+1 0

L̄T 0Mmax+1

ω2 =

 1

0Mmax+1

 ,
ω1 ∈ LN+1, ω2 ∈ LMmax+2.

Furthermore, (t,θ,χ,η,ω1,ω2) is a primal-dual optimal solution if and only if

χ =

 0N Ā

1 0TMmax+1

 t

θ

+

 −ȳ

0

 ,
η =

 0Mmax+1 L̄

0 0TMmax+1

 t

θ

+

 0Mmax+1√
M̃

 ,
 0TN 1

ĀT 0TMmax+1

ω1 +

 0TMmax+1 0

L̄T 0Mmax+1

ω2 =

 1

0Mmax+1

 ,
ωT1χ = 0, ωT2 η = 0,

ω1 ∈ LN+1, ω2 ∈ LMmax+2, χ ∈ LN+1, η ∈ LMmax+2.

For the application parts of Chapters 4 and 5, we do not give M̃ values. Let us refer
to Subsection 1.1 where we explain our choice of the parameter value M̃ , given a
concrete problem and particular data set. In the future, we aim at including M̃ into the
optimization problem as a further decision variable. Thus, our optimal solution will be
model-free, data set dependent and heuristic parts of our methodology turn to become
integrated, calculus supported approaches and techniques.
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4.3.4 Applications and Results of One-dimensional Stochastic Differential Equa-
tions

In order to test our approach and its theory presented in Section 4.3, two different
stochastic processes are selected from the field of finance. In applications, while
CMARS’ basis functions are built by using Salford MARS, the CMARS model is con-
structed by running a MATLAB code [34]. To solve the CQP problem, MOSEK [37]
software is preferred. At the beginning, we describe the data sets and the performance
measures. Then, we present the outcomes of the proposed approach.

Data Sets: As a numerical example, we choose a data set of simulating equity markets
of different countries. These data sets are obtained through default simulate method
in the Econometrics Toolbox in MATLAB. By using this method, a single path of
correlated equity index prices is simulated for Canada, France, Germany, Japan, United
Kingdom (UK) and United States (US) over one calendar year, respectively. In our
numerical example, we select two of these processes: the US and the UK prices. These
stochastic processes include prices of 250 trading days with the initial value of 100.

Firstly, we construct our CMARS model for the whole data set of the two countries
(US and UK) to show and analyze the approximation of the model. The representative
set of basis functions for the drift and the diffusion terms of the stochastic processes
are listed below:

℘
US

= {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6} ,

where

ψ1 = max {0, x
US
− 109.67} , ψ2 = max {0, 109.67− x

US
} ,

ψ3 = max {0, x
US
− 115.99} , ψ4 = max {0, x

US
− 107.59} ,

ψ5 = max {0, x
US
− 118.26} , ψ6 = max {0, x

US
− 119.56} .

And

℘
US

= {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8, ψ9} ,

where

ψ1 = max {0, x
UK
− 96.89} , ψ2 = max {0, 96.89− x

UK
} ,

ψ3 = max {0, x
UK
− 100.97} , ψ4 = max {0, x

UK
− 102.83} ,

ψ5 = max {0, x
UK
− 114.31} , ψ6 = max {0, x

UK
− 104.88} ,

ψ7 = max {0, x
UK
− 108.30} , ψ8 = max {0, x

UK
− 112.86} ,

ψ9 = max {0, x
UK
− 111.58} .

The CMARS algorithm constructs 6 basis functions for the US price; on the other
hand, for the UK price it produces 9 basis functions. For both processes, each basis
function is piecewise linear. Therefore, it provides convenience for interpretation and
demonstration.
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Figure 4.1 shows the path of the US price and the proposed approximation to this
stochastic process with CMARS. The same is done for the UK price also. Figure 4.2
shows the path of the UK price and the proposed approximation to it. The approxi-
mation gives a promising result and captures the structures of both US and UK prices.

Figure 4.1: Demonstration of proposed approximation with CMARS for US price.

Figure 4.2: Demonstration of proposed approximation with CMARS for UK price.

After the models are built, comparison measures listed in Table 2.2 are calculated
to show the estimation performance of CMARS method for each data set. For the
stochastic processes used in this study, our approximation reveals a good performance
according to these measures, as shown in Table 4.1. The smaller values of MAE and
MSE indicate a strong estimation of the process parameters. On the other hand, the
further measures (R2, Adj-R2, PWI) indicate a better performance if their values are
closer to 1.0.
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Table 4.1: Evaluation of proposed approximation with well-known statistical mea-
sures.

Performance Measures US Price UK Price
R2 0.9950 0.9623
Adj-R2 0.9946 0.9573
MAE 0.3012 0.9018
MSE 0.1836 2.0669
PWI 0.9800 0.9720

4.3.5 Conclusion and Outlook for of One-dimensional Stochastic Differential
Equations

Identification of SDEs plays an important role in many application areas, including
biology, chemistry, epidemiology, mechanics, microelectronics, economics and, es-
pecially, finance. A fundamental problem in estimating parameters in SDEs is the
structure of the stochastic processes that can be of any distributional characteristics
and any nonlinear and nonconvex form of the data set.

CMARS is a data mining methodology applied by us on a problem with dynamical
contents and properties: the evolvement of financial and economical characteristics
in time and under stochastic uncertainty. By this, the number of data grows at each
point in time (a discrete time, after the approximation that we do), where it could be
responded by another “constraint” or model compartment. By this, we could close
the gap in terms of degree of freedom. We really gain from the regarded data set in
terms of geometry and topology, do really “get into,” or adapt to, the data and their
spatial-temporal patterns, benefitting from structural characteristics of the data. In this
sense, CMARS is a very good choice as in each dimension of the two input variables,
we obtain a zig-zagging (piecewise linear) function, where the linear pieces mimic the
data along subintervals. This adaptive approach is learning-based and “smart,” and we
use modern optimization theory for this purpose.

SDEs, incorporating random effects, are computationally expensive, especially when
the processes are very complex, hence, when the number of parameters to be estimated
is high. Therefore, advanced regularization and optimization techniques are required.
In this chapter, using CQP programs gives us the opportunity to handle such problems.
In addition to benefiting from well-structured optimization, CMARS basis functions
yield a higher flexibility for the estimation of the stochastic process’ parameters.

Differently from the approach by GAMs, which we used for the identification of SDEs
in [67, 68], our approach by CMARS is a multiplicative one, herewith taking into
account “interactions,” e.g., any kind of dependence patterns between the input dimen-
sions of time and space, as much as it can be “learned” through our adaptive method
of CMARS. In fact, while the additivity of GAMs is understood in terms of sepa-
rated variables where each input dimension receives its own spline functions, in our
CMARS method, the additivity is understood in the multivariate terms of subvectors,
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where multiplication of one-dimensional splines goes along the indices of the subvec-
tors’ components.

Finally, our adaptive method with elementary basis splines is much more flexible than
classical models, from finance and other fields, with their few parameters at their fixed
places [32, 65, 71]. Applications of our proposed approach to simulate equity markets
are successfully demonstrated. We believe that the presented approach provides an
alternative tool for the modeling of SDEs.

The next section will concentrate an extension to the general case of parameter estima-
tion in the multi-dimensional systems’ case of SDEs based on our approximation with
CMARS, in theory, methods and applications.

4.4 Parameter Identification of Multi-dimensional Stochastic Differential Equa-
tions with Conic Multivariate Adaptive Regression Splines

While we have addressed one-dimensional SDEs in previous sections, from now on we
focus on a numerical approximation of multi-dimensional SDEs. If a finite number of
SDEs are in the model, the multi-dimensional case should be considered. In finance,
there are some examples which include this situation, such as modeling the price evo-
lution of multiple stocks. This arises if a decision maker wants to know the properties
of some portfolio strategy with multiple assets. Other examples are the modeling of
the evolution of interest rates, volatilities or variances. Often, these models occur in
short-rate models and in complied systems, respectively. Let us add consumption and
portfolio processes, together with wealth processes that imply both, they are addressed
in modern portfolio optimization as control and state variables, respectively [21, 47].

Although numerical approximations of multi-dimensional stochastic processes and
SDEs are computationally costly problems, they are an important methodology of cop-
ing with several sources of randomness and correlation. Both systems of SDEs with
standard m-dimensional Brownian motions and systems of SDEs having correlated
Brownian motions are considered in the following section.

4.5 Multi-dimensional Stochastic Differential Equations

A system of SDEs is the formulation of a d-dimensional stochastic process X =
(Xt : t ∈ [0,∞)), also denoted by (Xt)t≥0, in terms of d differential equations com-
prised:

dXt = a(Xt, t)dt+ b(Xt, t)dWt, (4.12)

where a(Xt, t) represents a deterministic part, b(Xt, t)dWt is a stochastic part, and Wt

denotes an m-dimensional Brownian motion (or a Wiener process) at time t. Here,
a : Rd × R+ → Rd and b : Rd × R+ → Rd×m are measurable vector and matrix
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functions, respectively. For the underlying probability space (Ω,P,F), e.g., equipped
with a filtration (Ft)t≥0, we refer to [43, 47].

Let us write the system of SDEs with its components (namely, d processes of state and
m-dimensional Brownian motions):

dX1
t = a1(Xt, t)dt+ b11(Xt, t)dW

1
t + . . .+ b1m(Xt, t)dW

m
t ,

dX2
t = a2(Xt, t)dt+ b21(Xt, t)dW

1
t + . . .+ b2m(Xt, t)dW

m
t ,

...
dXd

t = ad(Xt, t)dt+ bd1(Xt, t)dW
1
t + . . .+ bdm(Xt, t)dW

m
t . (4.13)

In Eqn. (4.13), we refer to

Xt =


X1
t

X2
t

...
Xd
t (t)

 , a(Xt, t) =


a1(Xt, t)
a2(Xt, t)

...
ad(Xt, t)

 , dWt =


dW 1

t

dW 2
t

...
dWm

t

 ,

b(Xt, t) =


b11(Xt, t) b12(Xt, t) . . . b1m(Xt, t)
b21(Xt, t) b22(Xt, t) . . . b2m(Xt, t)

...
... . . . ...

bd1(Xt, t) bd2(Xt, t) . . . bdm(Xt, t)

 .

For further details on multi-dimensional SDEs, we refer the reader to [21, 47].

One of the simplest ways to discretize a multi-dimensional process of SDE is the Eu-
ler method, which approximates the integrals by using the left-point rule. The Milstein
scheme, which has the order 1.0 of strong convergence, is stronger than Euler method.
The Milstein approximation is identical to the Euler approximation if there is no func-
tion of x in the diffusion term of the SDEs. Generally, Milstein method converges to
the correct stochastic solution process more quickly than Euler method when the step
size goes to zero [29].

Since the distribution of the process is not known, the simulated discretized version of
the SDE should be simulated [76]. For multi-dimensional case, the kth component of
Milstein Scheme, where k = 1, 2, ..., d, is given by

x̂ki+1 = x̂ki + ak(x̂i, ti)(ti+1 − ti)

+
m∑
j=1

bk,j(x̂i, ti)(ŵji+1 − ŵ
j
i ) +

m∑
j1,j2=1

Lk,j1bk,j2(x̂i, ti)Ij1,j2 . (4.14)

Here, for j1 = j2:

Ij1,j1 :=
1

2

(
(ŵj1i+1 − ŵ

j1
i )2 − (ti+1 − ti)

)
,
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and, for j1 6= j2:

Ij1,j2 :=
1

2

(
(ŵj1i+1 − ŵ

j1
i )− (ŵj2i+1 − ŵ

j2
i )
)
,

and we refer to the operator

Lk,j1 :=
d∑
l=1

bk,j1(x̂i, ti)
∂

∂xl
.

If we rearrange Eqn. (4.14) and insert the data values and also simulated values of the
Brownian motions for the equation, the approximation looks as follows [29]:

ȳki = ak(x̄i, t̄i) +
1

h̄i

m∑
j=1

bk,j(x̄i, t̄i)(w̄ji+1 − w̄
j
i )

+
1

h̄i

m∑
j1,j2=1

Lk,j1bk,j2(x̄i, t̄i)Ij1,j2 . (4.15)

Here, the value ȳki represents the difference quotient raised on the ith and (i+ 1)st data
values x̄ki and x̄ki+1, respectively, and on step lengths ∆t̄i := h̄i = t̄i+1 − t̄i between
neighbouring sampling times:

ȳki =


1
h̄i
·
(
x̄ki+1 − x̄ki

)
, if i = 1, 2, ..., N − 1,

1
h̄N
·
(
x̄kN − x̄kN−1

)
, if i = N.

Since W j
ti ∼ N(0, t) (j = 1, 2, ...,m), the increments ∆W j

ti are independent on non-
overlapping intervals which means that W j

t2 −W
j
t1 , ..., W j

tN
−W j

tN−1
are independent

with any times 0 < t1 < t2 < ... < tN . Moreover, Var(∆W j
ti) = ∆ti, where we refer

to increments ∆W j
ti := W j

ti+1
−W j

ti and ∆ti := ti+1 − ti. With respect to this setting,
the increments having normal distribution can be simulated with the help of standard
normal distributed random numbers Zti . In order to simplify the rest of the equations,
we prefer to writeW j

i and Zj
i instead ofW j

ti and Zj
ti , respectively. Herewith, we obtain

a discrete model for a Wiener process [29]:

∆W j
i = Zj

i

√
∆ti, Zj

i ∼ N(0, 1); (4.16)

the multivariate distributions and correlations will be referred to in next section. Based
on these preparations,

ȳki = ak(x̄i, t̄i) +
m∑
j=1

bk,j(x̄i, t̄i)
Z̄j
i√
h̄i

+
1

h̄i

m∑
j1,j2=1

Lk,j1bk,j2(x̄i, t̄i)Ij1,j2 . (4.17)
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For simplicity, if we choose m = d = 2, we obtain:

ȳki = ak(x̄i, t̄i) + bk,1(x̄i, t̄i)
∆w̄1

i

h̄i
+ bk,2(x̄i, t̄i)

∆w̄2
i

h̄i

+
1

2

(
(∆w̄1

i )
2

h̄i
− 1

)
bk,1(x̄i, t̄i)

(
2∑
l=1

bk,1(x̄i, t̄i)
∂

∂xl

)

+
1

2h̄i

(
∆w̄1

i ·∆w̄2
i

)
bk,2(x̄i, t̄i)

(
2∑
l=1

bk,1(x̄i, t̄i)
∂

∂xl

)

+
1

2h̄i

(
∆w̄2

i ·∆w̄1
i

)
bk,1(x̄i, t̄i)

(
2∑
l=1

bk,2(x̄i, t̄i)
∂

∂xl

)

+
1

2

(
(∆w̄2

i )
2

h̄i
− 1

)
bk,2(x̄i, t̄i)

(
2∑
l=1

bk,2(x̄i, t̄i)
∂

∂xl

)
. (4.18)

In a more compact form, this can be written as follows:

ȳki = Ḡk
i + H̄k

i + F̄ k
i . (4.19)

Here, Ḡk
i := ak(x̄i, t̄i), H̄k

i :=
(
1/h̄i

)
·
∑m

j=1 b
k,j(x̄i, t̄i)(w̄ji+1−w̄

j
i ) and F̄ k

i :=
(
1/h̄i

)
·∑m

j1,j2=1 L
k,j1bk,j2(x̄i, t̄i)Ij1,j2 .

In order to find the minimum of the difference of the right- and the left-hand side of
Eqn. (4.19), the following minimization problem is introduced [77]:

minimize
θ

N∑
i=1

(
ȳki −

(
Ḡk
i + H̄k

i + F̄ k
i

))2
, (4.20)

where the vector θ comprises all the parameters in the Milstein approximation.

In the previous sections, our computationally efficient estimation method called CMARS,
was proposed and used for the parameter identification of a one-dimensional SDE. In
this section, we aim to estimate multi-dimensional SDEs in a simplified manner by
using CMARS method. Therefore, for each function, we use additive form of the
CMARS’ basis function:

Ḡk
i = ak(x̄i, t̄i) = β0 +

dg∑
l=1

βlbl(ūli,b),

H̄k
i =

1

h̄i
·
m∑
j=1

bk,j(x̄i, ti)(w̄ji+1 − w̄
j
i ) = γ0 +

dh∑
m=1

γmcm(ūmi,c),

F̄ k
i =

1

h̄i
·

m∑
j1,j2=1

Lj1bk,j2(x̄i, ti)Ij1,j2 = δ0 +
df∑
n=1

δndn(ūni,d). (4.21)
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The summation of these three terms in Eqn. (4.21) gives the following expression:

Ḡk
i + H̄k

i + F̄ k
i = β0 +

dg∑
l=1

βlbl(ūli,b) + γ0 +
dh∑
m=1

γmcm(ūmi,c) + δ0 +
df∑
n=1

δndn(ūni,d)

= Āk
i θ, (4.22)

with Āk
i :=

(
bki , cki , dki

)
, where bki :=

(
1, b1

(
ūli,b
)
, b2

(
ūli,b
)
, ..., bdg

(
ūli,b
))

,
cki :=

(
1, c1

(
ūmi,c
)
, c2

(
ūmi,c
)
, ..., cdh

(
ūmi,c
))

,

dki :=
(
1, d1

(
ūni,d
)
, d2

(
ūni,d
)
, ..., ddf

(
ūni,d
))

, and θk :=
(
βT ,γT , δT

)T
, where

βk := (β0, β1, β2, ..., βdh)T , γk := (γ0, γ1, γ2, ..., γdf )
T , δk := (δ0, δ1, δ2, ..., δdg)

T .

Then, we can represent the summation term in Eqn. (4.20) as follows:

N∑
i=1

(ȳki − Āk
i θ

k)2 =
∥∥∥ȳk − Āk

θk
∥∥∥2

2
.

The matrix notation of two-dimensional case is given below:

ȳ1
1

ȳ1
2
...
ȳ1
N

ȳ2
N+1
...
ȳ2

2N


=

 A1
N×((1+3m)·Mmax) 02

N×((1+3m)·Mmax)

01
N×((1+3m)·Mmax) A2

N×((1+3m)·Mmax)

 θ1
((1+3m)·Mmax)×1

θ2
((1+3m)·Mmax)×1

 ,

where the dimensions of ȳ is 2N × 1, of Ā is 2N × ((2 + 6m) · 2Mmax), and of
θ is ((2 + 6m) · 2Mmax) × 1. To approximate the multi-dimensional integral, the
same procedure as described in Section 4.3 is followed for each dimensions of multi-
dimensional SDEs. Firstly, PRSS is constructed for a regularization as by Eqn. (4.10):

PRSS ≈
∥∥∥ȳk − Āk

θk
∥∥∥2

2
+

dg∑
l=1

λl

∥∥∥L̄b,k
l βl

∥∥∥2

2
+

dh∑
m=1

µm

∥∥∥L̄c,k
m γm

∥∥∥2

2
+

df∑
n=1

νn

∥∥∥L̄d,k
n δn

∥∥∥2

2
,

where (l = 1, 2, ..., dg) L̄b,k
l :=

(
L̄b,k

1l , L̄
b,k
2l , ..., L̄

b,k
(N+1)2l

)T
,
(
l = 1, 2, ..., dh

)
L̄c,k
m :=(

L̄c,k
1m, L̄

c,k
2m, ..., L̄

c,k
(N+1)2m

)T
and

(
l = 1, 2, ..., df

)
L̄d,k
n :=

(
L̄d,k

1n , L̄
d,k
2n , ..., L̄

d,k
(N+1)2n

)T
.

Here, Mmax = dg + dh + df is the number of penalty parameters. After turning to a
uniform penalization via a single factor λ for each derivative term, the approximation
of PRSS becomes a task of Tikhonov Regularization. Now, we refer to a minimization
of the following right-hand side:

PRSS ≈
∥∥∥ȳk − Āk

θk
∥∥∥2

2
+ λ

∥∥∥L̄kθk
∥∥∥2

2
,
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where L̄k is a diagonal ((Mmax + 1)× (Mmax + 1))-matrix with first column L̄k0 =
0(N+1)2 . Then, the Tikhonov Regularization problem is formulated as a CQP problem
as in Eqn. (4.11):

minimize
t,θ

t,

such that χ :=

 0N Āk

1 0TMmax+1

 t

θ

+

 −ȳk

0

 ,
η :=

 0Mmax+1 L̄k

0 0TMmax+1

 t

θ

+

 0Mmax+1√
M̃

 ,
χ ∈ LN+1, η ∈ LMmax+2. (4.23)

After these steps, the unknown parameters of the SDEs’ components are obtained by
solving the CQP problem.

4.5.1 Numerical Example of Multi-dimensional Stochastic Differential Equa-
tions

As a numerical example of the given procedure, the simulating equity markets de-
scribed in Section 4.3 are used. These data are preferred in order to examine the dif-
ferences between one- and multi-dimensional SDEs.

The data sets are demonstrated in Figure 4.3.

Figure 4.3: Demonstration of the multi-dimensional market model data sets.
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For the numerical example, UK and US prices are selected again, as in Section 4.4.
The discretization and approximation approaches are built for each process. The com-
parison measures listed in Table 4.1 are calculated. For the stochastic processes used
in this study, our approximation reveals a good performance according to these mea-
sures, as shown in Table 4.2. The smaller values for MAE and MSE indicate a strong
estimation of the process parameters. On the other hand, the further measures (R2,
Adj-R2, PWI) indicate a better performance if their values are closer to 1.0. If we
compare these results with the previous results given in Table 4.1, the approximation
is improved for both processes.

Table 4.2: Evaluation of proposed approximation with well-known statistical mea-
sures.

Performance Measures US Price UK Price
R2 0.9921 0.9854
Adj-R2 0.9921 0.9853
MAE 0.3462 0.4692
MSE 0.2498 0.5341
PWI 0.9840 0.9800

Considering that there is not a correlation between these stochastic processes, the pro-
posed approximation gives a promising result and captures the structures of both US
and UK prices. In order to see the two processes in a single figure synoptically, Figure
4.4 is provided.

Figure 4.4: Demonstration of proposed approximation with CMARS for US price ver-
sus UK price.
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4.6 Multi-dimensional Stochastic Differential Equations for Correlated Brown-
ian Motions

One of the main concerns of this section is to transform the referred system of SDEs
with correlated Brownian motions to a one having uncorrelated Wiener processes and,
then, to apply our proposed approach given in Section 4.3 to the transformed systems.

Many practical situations and scientific configurations that depend on a variety of fac-
tors can be modeled as a stochastic process that is driven by a multi-dimensional
Wiener processes. These random factors may be independent, but in reality, there
is often correlation between them. Usually, the statistical correlation ρ of two random
variables X1 and X2 is defined as

ρ (X1, X2) =
cov (X1, X2)√

Var (X1)
√

Var (X2)
.

Note that if ρ (X1, X2) = 0, X1 and X2 are uncorrelated; otherwise, there is a correla-
tion between X1 and X2.

The correlation between W i
t and W j

t is represented by the (constant in time) corre-
lation coefficients ρij (i, j = 1, 2, ...,m), at any regarded time t [63]. For correlated
multi-dimensional Wiener processes, the following correlation matrix is introduced:

R :=


ρ11 ρ12 · · · ρ1d

ρ21 ρ22 · · · ρ2d
...

... . . . ...
ρd1 ρd2 · · · ρdd

 ,
where −1 < ρij < 1 for all i, j with i 6= j and ρii = 1. The matrix R is a symmetric
and positive definite d × d-matrix, e.g., ρij = ρji (i, j = 1, 2, ..., d) and xTRx > 0 for
all x ∈ Rm \ {0}. This implies det (R) 6= 0. To create noise processes with a specified
correlation, we can use Cholesky decomposition as a fast algorithm through an upper
(or lower) triangular matrix Γ = (Γij)1≤i,j≤m [63]. The Cholesky decomposition of R
is:

R = ΓΓT ,

where ΓT is the transposed matrix of Γ. We take Z = (Zt)t≥0, Zt = (Z1
t , Z

2
t , . . . , Z

m
t )

T ,
as a standard m-dimensional Brownian motion whose components are independent at
all times t and we define a correlated vector-valued process W = (Wt)t≥0, Wt =

(W 1
t ,W

2
t , . . . ,W

m
t )

T , as follows:

Wt := ΓZt,

or, in terms of the components:

W i
t =

m∑
j=1

ΓijZ
j
t (i = 1, 2, ...,m) .
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The multi-dimensional correlated Brownian motion, (Wt)t≥0 of dimension m, with its
correlation matrix R has the following properties:

• W0 = 0, the zero vector in Rm.

• If s < t, then the increment Wt − Ws is multivariate normal distributed, with
mean 0 and variance-covariance matrix (t− s) · R:

Wt −Ws ∼ N (0, (t− s) · R) .

• If 0 ≤ r < s < t, then the random variables Wt − Ws and Ws − Wr are
independent. This means that each component of the former is independent of
each component of later.

• The paths t 7−→ Wt are continuous with probability 1.

If R = I, the correlation matrix is an identity matrix, then (Wt)t≥0 is a standard Brow-
nian motion. Thus, for such a case, independence means having zero correlation.

Let us mention that it is possible to write the system of SDEs for correlated Brownian
motion [43]:

dX1
t = a1(Xt, t)dt+ b11(Xt, t)Γ11dZ

1
t + . . .+ b1m(Xt, t)Γ1mdZ

m
t ,

dX2
t = a2(Xt, t)dt+ b21(Xt, t)Γ21dZ

1
t + . . .+ b2m(Xt, t)Γ2mdZ

m
t ,

...
dXd

t = ad(Xt, t)dt+ bd1(Xt, t)Γd1dZ
1
t + . . .+ bdm(Xt, t)ΓdmdZ

m
t . (4.24)

For simplicity, we continue with the two-dimensional case. Then the system turns into
the following form:

dX1
t = a1(Xt, t)dt+ b11(Xt, t)Γ11dZ

1
t + b12(Xt, t)Γ12dZ

2
t ,

dX2
t = a2(Xt, t)dt+ b21(Xt, t)Γ21dZ

1
t + b22(Xt, t)Γ22dZ

2
t . (4.25)

Here, the correlation matrix R can be written as:

R =

[
1 ρ
ρ 1

]
,

since R is a symetric matrix, we take ρ12 = ρ21 = ρ. By Cholesky decomposition, the
matrix R can be written as follows:

R =

[
1 0

ρ
√

1− ρ2

] [
1 ρ

0
√

1− ρ2

]
.

Since

W = ΓZ =

[
1 0

ρ
√

1− ρ2

] [
Z1

Z2

]
,
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Eqn. (4.25) becomes

dX1
t = a1(Xt, t)dt+ b11(Xt, t)dZ

1
t ,

dX2
t = a2(Xt, t)dt+ b21(Xt, t)ρdZ

1
t + b22(Xt, t)

√
1− ρ2dZ2

t . (4.26)

For the two-dimensional system of SDEs given in Eqn. (4.26), the first component of
Milstein Scheme is as follows:

x̂1
i+1 = x̂1

i + a1(x̂i, ti)(ti+1 − ti)

+
2∑
j=1

b1,j(x̂i, ti)(ẑji+1 − ẑ
j
i ) +

2∑
j1,j2=1

L1,j1b1,j2(x̂i, ti)Ij1,j2 .

The first component of the system of SDEs has just the term b11(x̂i, ti), Milstein ap-
proximation gets the following form:

x̂1
i+1 = x̂1

i + a1(x̂i, ti)(ti+1 − ti)
+b1,1(x̂i, ti)(ẑ1

i+1 − ẑ1
i ) + L1,1b1,1(x̂i, ti)I1,1. (4.27)

After rearranging Eqn. (4.27), the approximation becomes

ȳ1
i = a1(x̄i, t̄i)

+
1

h̄i
b1,1(x̄i, t̄i)(z̄1

i+1 − z̄1
i ) +

1

h̄i
L1,1b1,1(x̄i, t̄i)I1,1.

If we replace L1,1 and I1,1 with their open forms, we get subsequent equation:

ȳ1
i = a1(x̄i, t̄i) + b1,1(x̄i, t̄i)

∆z̄1
i

h̄i
+

1

2

(
(∆z̄1

i )
2

h̄i
− 1

)
b1,1(x̄i, t̄i)

(
2∑
l=1

b1,1(x̄i, t̄i)
∂

∂x1

)
.

On the other hand, the second component of Milstein Scheme for the given SDEs is as
follows:

x̂2
i+1 = x̂2

i + a2(x̂i, ti)(ti+1 − ti)

+
2∑
j=1

b2,j(x̂i, ti)(ẑji+1 − ẑ
j
i ) +

2∑
j1,j2=1

L2,j1b2,j2(x̂i, ti)Ij1,j2 . (4.28)

Equivalently to Eqn. (4.28),

ȳ2
i = a2(x̄i, t̄i) + ρ

(
1/h̄i

)
b2,1(x̄i, t̄i)(z̄1

i+1 − z̄1
i )

+
(√

1− ρ2
) (

1/h̄i
)
b2,2(x̄i, t̄i)(z̄2

i+1 − z̄2
i )

+ρ
(
1/h̄i

)
L2,1b2,1(x̄i, t̄i)I1,1 +

(√
1− ρ2

) (
1/h̄i

)
L2,1b2,2(x̄i, t̄i)I1,2

+ρ
(
1/h̄i

)
L2,2b2,1(x̄i, t̄i)I2,1 +

(√
1− ρ2

) (
1/h̄i

)
L2,2b2,2(x̄i, t̄i)I2,2.
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If we replace L2,1, L2,2 and I1,1, I1,2, I2,1, I2,2 with their open forms, we get the equa-
tion below:

ȳ2
i = a2(x̄i, t̄i) + ρb2,1(x̄i, t̄i)

∆z̄1
i

h̄i
+
(√

1− ρ2
)
b2,2(x̄i, t̄i)

∆z̄2
i

h̄i

+ρ2

(
1

2

(
(∆z̄1

i )
2

h̄i
− 1

)
b2,1(x̄i, t̄i)

(
2∑
l=1

b2,1(x̄i, t̄i)
∂

∂xl

))

+ρ
(√

1− ρ2
)( 1

2h̄i

(
∆z̄1

i ·∆z̄2
i

)
b2,2(x̄i, t̄i)

(
2∑
l=1

b2,1(x̄i, t̄i)
∂

∂xl

))

+ρ
(√

1− ρ2
)( 1

2h̄i

(
∆z̄2

i ·∆z̄1
i

)
b2,1(x̄i, t̄i)

(
2∑
l=1

b2,2(x̄i, t̄i)
∂

∂xl

))

+
(√

1− ρ2
)2
(

1

2

(
(∆z̄2

i )
2

h̄i
− 1

)
b2,2(x̄i, t̄i)

(
2∑
l=1

b2,2(x̄i, t̄i)
∂

∂xl

))
.

Then, we apply the same procedure as presented in Section 4.3. In order to avoid
repetition, we continue with the numerical example of the multi-dimensional SDEs
with correlated Brownian motions.

4.6.1 Numerical Example of Multi-dimensional Stochastic Differential Equa-
tions for Correlated Brownian Motions

This subsection includes the implementation of the proposed methodology to multi-
dimensional stochastic processes inducing dependence and correlation. In order to
simulate the data set, the nested functions for simulating equity markets in MATLAB
are used. The simulated data set induces 1358 observations, i.e., roughly more than
four years of daily data.

The daily prices of six countries (Canada, France, Germany, Japan, UK and US) are
converted to returns. For simplicity, two simulated processes, France and UK, are
selected for the application of this part. The reason to select France and UK is having
a stronger relationship than the other equity index prices. Thus, we can predict one of
the process with the other process more accurately. The estimated correlation matrix
for France and UK is as follows:

RFrance, UK =

[
1 0.8575

0.8575 1

]
.

The value 0.8575 shows that there is a strong correlation between those two processes.
The lower and upper Cholesky factors of the given correlation matrix is:

RFrance, UK =

[
1 0

0.8575 0.5145

] [
1 0.8575
0 0.5145

]
.
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After this we construct CMARS basis functions for each generated process. For
France, the following basis functions are obtained:

ψ1 = max {0, XFrance − 0.0329} , ψ2 = max {0, 0.0329−XFrance} ,
ψ3 = max {0, XUK − 0.0355} , ψ4 = max {0, 0.0355−XUK} ,
ψ5 = max {0, XUK − 0.0190} , ψ6 = max {0, 0.0190−XUK} ,
ψ7 = max {0, XFrance − 0.0345} , ψ8 = max {0, 0.0345−XFrance} ,
ψ9 = max {0, XUK − 0.0250} , ψ10 = max {0, 0.0250−XUK} .

For UK, the basis functions are as follows:

ψ1 = max {0, XUK − 0.0280} , ψ2 = max {0, 0.0280−XUK} ,
ψ3 = max {0, XFrance + 0.0768} , ψ4 = max {0, XUK − 0.0109} ,
ψ5 = max {0, 0.0109−XUK} , ψ6 = max {0, XUK − 0.0318} ,
ψ7 = max {0, 0.0318−XUK} , ψ8 = max {0, XFrance − 0.0049} ,
ψ9 = max {0, 0.0049−XFrance} , ψ10 = max {0, XUK + 0.0559} .

There are 10 basis functions with main effects for each one of our processes. For this
two-dimensional SDE system, we generate parameters of the SDEs to find the best fit.

Finally, the performances of the proposed approximation with CMARS are calculated
according to well-known performance measures described in Appendix A. The results
of this application are summarized in Table 4.3.

Table 4.3: Evaluation of proposed approximation with well-known statistical mea-
sures.

Performance Measures France Return UK Return
R2 0.5324 0.5659
Adj-R2 0.5203 0.5398
MAE 0.0101 0.0077
MSE 0.0002 0.0001
PWI 0.9853 0.9801

By this numerical example, we are able to identify the parameters of the given corre-
lated stochastic processes with the help of our data mining method. This advance gives
knowledge and insight about stochastic processes.

The main concern of modeling stochastic processes is how to determine data values
and to forecast future values of the process based on available information in-between.
The special feature of stochastic processes such as stock prices or exchange rates are
changing over time. Furthermore, there may be several missing data or not available
data due to many reasons such as regular holidays for stock prices.

If already forecasted, anticipated, “ideal” or “desired” future data are presumed [1],
then our methodology can be applied over such a future horizon. However, in this
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regard, future research will need to contribute to stochastic foundations of it in terms
of martingales and related concepts [55].

Nonparametric methods are very promising to estimate the parameters of stochastic
processes, because the functional forms of the processes are obtained without any as-
sumptions. For this reason, CMARS model is suggested to explain volatility or vari-
ance in stochastic process, and it has been successfully applied to finance data. By
CMARS technique and its functional form, not only the structure of the stochastic pro-
cess is specified fully, but also future values of the process can be estimated from them,
in the aforementioned sense and in future research.
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CHAPTER 5

PARAMETER IDENTIFICATION AND ESTIMATION OF
HURST PARAMETER OF STOCHASTIC DIFFERENTIAL

EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN
MOTIONS USING CONIC MULTIVARIATE ADAPTIVE

REGRESSION SPLINES

5.1 Introduction

Fractional Brownian motions (fBm) is a widely used concept for modeling various
situations such as the level of water in a river, the temperature at a specific place, em-
pirical volatility of a stock, the price dynamics of electricity. That utilization appears
naturally in those phenomena because of its capability of explaining the dependence
structure in real-life observations. A main purpose of introducing the concept of an
fBm,

(
WH
t

)
t≥0

, lies in a notion of random fluctuation of a time-continuous stochastic
processes, (Xt)t≥0, which is wider than that given by a Brownian motion (Wt)t≥0. In
fact, the connection between (Xt)t≥0 and (Wt)t≥0 or, in our case,

(
WH
t

)
t≥0

, is implied
by our model which is a SDE, where the (fractional) Brownian motion is a key com-
ponent in the second, actually, random or diffusion term. Since the (fractional) Brow-
nian motion fulfills certain axioms, it can be regarded as a formatted or normalized
random fluctuation; moreover, fBm is a continuous zero-mean Gaussian process with
stationary increments. Therefore, in the SDE a factor occurs in front of the differential
(fractional) Brownian term; that factor plays the role of volatility. The fBm is charac-
terized by a parameter, the so-called Hurst parameter H . A fBm with Hurst parameter
H > 1/2 is called a persistent process, i.e., the increments of this process are posi-
tively correlated. On the other hand, the increments of fBm with H < 1/2 are called
an anti-persistent process with increments being negatively correlated. For H = 1/2,
fBm corresponds to a Brownian motion which has independent increments. The fol-
lowing references are for more information on fBm and its applications [36, 43, 45].
We will estimate the Hurst parameter together with the model coefficients that will be
linearly involved in the representation of the entire SDE, to be more precise: in the
time-discrete approximation which we will study. This estimation will be based on
given data and supported by modern optimization techniques [75]. In this chapter, the
aforementioned items will become represented more closely.
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It is highly important to identify the value of a Hurst parameter in order to understand
the structure of the process and its applications since the calculations dramatically dif-
fer according to the value of H . Therefore, some techniques have been developed
to estimate Hurst parameter which can be categorized into three groups; heuristics,
maximum-likelihood and wavelet-based estimators. In the group of heuristics estima-
tors, there is the so-called R/S estimator which was firstly proposed by Hurst [24],
followed by the methods of correlogram, variogram, variance plot, and partial corre-
lations plot. Due to lack of accuracy of heuristics estimators, Maximum-Likelihood
(ML) estimators were developed. Being weakly consistent is the main disadvantage of
ML estimators. In parallel to ML estimators, wavelet-based estimators were suggested
because of the popularity of wavelet decomposition of fBm [10, 54].

In search of faster and efficient ways to estimate the Hurst parameter H , we suggest a
new numerical and computational method [75].

This chapter is organized as follows: In Section 5.2, we start with explaining the prop-
erties of our madel given as SDEs driven by fBm. In Section 5.3, we introduce the
method CMARS relating it to the Hurst parameter estimation of our model. In Section
5.4, we give an application of our study, in order to test the theory which we have
developed. Finally, we present a brief conclusion and a general outlook based on our
study.

5.2 Stochastic Differential Equations with Fractional Brownian Motions

SDEs generated by fBm are widely used to represent noisy and real-world problems.
They play an important role in many fields of science such as finance, physics, biotech-
nology and engineering. In this section, we briefly recall some concepts of fBm and
stochastic differential equations driven by fBm.

5.2.1 Fractional Brownian Motions

Let H be a constant in the interval (0, 1). An fBm with Hurst parameter H , WH :=
(WH

t )t≥0, is a continuous and centered Gaussian process with covariance function

E[WH
t W

H
s ] =

1

2
(t2H + s2H − |t− s|2H).

We note that, for H = 1/2, fBm corresponds to a standard Brownian motion which
has independent increments. For a standard fBm, WH :

• WH
0 = 0 and E[WH

t ] = 0 for all t ≥ 0.

• WH has homogenous increments, i.e., WH
t+s−WH

s has the same law as WH
t , for

all s, t ≥ 0.

• WH is a Gaussian process and E[(WH
t )2] = t2H (t ≥ 0), for all H ∈ (0, 1).
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• WH has continuous trajectories.

The Hurst parameter H of fBm explains the dependency of data [12, 43, 45]. Indeed,
the correlation between increments for s, t ≥ 0 can be obtained by

E[(WH
t+h)−WH

t )(WH
s+h −WH

s )] = h2H

2
[(n+ 1)2H + (n− 1)2H − 2n2H ].

Figure 5.1: Sample paths of fBm with Hurst parameter values, H=0.3, 0.5, 0.8, simu-
lated by Cholesky method.

Observations with H > 1/2 have positively correlated increments and display long-
range dependence, while the observations with H < 1/2 have a negatively correlated
increments and display a short-range dependence structure. Figure 5.1 shows the paths
of fBm with different Hurst parameter values. While the Brownian motion case (i.e.,
H = 1/2) represents a “formatted” or normalized rondom fluctuation, with a conic
corridor of variance, given by time t itself, the cases H > 1/2 (H < 1/2) mean some
kind of self-supporting and self-sustaining (or self-degrading, respectively) of the fBm
process in time t. Therefore, it is crucial to find the Hurst parameter of a stochastic
process for understanding various phenomena in diverse fields from engineering to fi-
nance. For example, it is observed that the prices of electricity in a liberated electricity
market have spikes which can be regarded as negatively correlated increments. This
phenomenon can be modeled by a SDE driven by a fBm with H < 1/2. On the other
hand, in financial markets, the prices of stocks usually display a long-range depen-
dence which can be explained by an SDE driven by a fBm with H > 1/2. In this
chapter, we concentrate on finding H for the stochastic processes which are the strong
solutions of SDEs with fBm. Hence, we first recall some fundamental properties of
them.
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5.2.2 Stochastic Differential Equations Driven by Fractional Brownian Motions

Suppose we have a stochastic process X = (Xt : t ≥ 0), or (Xt)t≥0, defined on a fil-
tered probability space (Ω,F , (Ft)t≥0,P) which is the strong solution of the following
SDE:

dXt = a(t,Xt)dt+ b(t,Xt)dW
H
t . (5.1)

Here, a(t,Xt) and b(t,Xt) represent the drift and diffusion terms satisfying the condi-
tions of existence and uniqueness theorem for t ≥ 0. Furthermore, the distribution of
the variable X is unknown because it depends on the functional form of the drift and
diffusion terms. Later, in Section 5.3.1, this variable is estimated by discretization of
SDE. For some classes of such SDEs, where the functions a(t,Xt) and b(t,Xt) obey
a certain, mostly easy analytical or model representation, the distribution of (Xt)t≥0

is known, especially, by explicit solution formulas existing. In the possibly most fa-
mous cases of so-called geometric or arithmetic Brownian motion with H = 1/2,
standing for price or logarithmic price processes, solution formulas of initial value (or
terminal-value) problems of Eqn. (5.1) are well-know, together with the probability
distribution of the variable Xt. That distribution is usually expressed through its mean
and variance; in other cases, one knows moments (of some order) of the distribution
or data-based approximations of the moments [43]. We note that it is necessary to
have the integrator as a semi-martingale in the theory of stochastic integration. How-
ever, since fBm is not a semi-martingale, one should extend the usual settings as in the
definition of the Itô integral and define the integration with respect to fBm in a new
pathwise integration technique. Alos et al. [2] construct the theory of integration with
respect to general Gaussian proceses to overcome this obstacle [36, 45].

There have been comprehensive studies on statistical inferences for processes satisfy-
ing SDEs driven by Brownian motion. However, the recent interest is on SDEs driven
by fBm since there have not been adequate studies on this topic. The purpose of this
chapter is to estimate the Hurst parameter of the following SDE with initial value
x0 ∈ R:

dXt = a(t,Xt)dt+ b dWH
t , X(0) = x0, (5.2)

by CMARS methodology, together with the spline coefficients. Let us note that the
b(t,Xt) ≡ b term in Eqn. (5.1) is taken as a constant.

5.3 Estimation of Hurst Parameter Using Conic Multivariate Adaptive Regres-
sion Splines Method

In this section, as an alternative to the existing methods for estimation of the Hurst
parameter, CMARS and the proposed methodology on SDEs will be introduced [65,
77]. For that purpose, firstly, we present the methodology and show how to apply this
technique for finding the Hurst parameter of SDE defined in Eqn. (5.2).
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5.3.1 Discretization of Stochastic Differential Equations with Fractional Brow-
nian Motion

In general, the distribution of the stochastic process (Xt)t≥0 is not known. Therefore,
the discretized version of the SDEs, X̂i, should be simulated [29]. There are many
discretization schemes for the SDEs generated by fBm such as Euler and Milstein
scheme [15]. In this chapter, Euler approximation is used since Milstein approximation
contains the derivatives of the diffusion term in Eqn. (5.2) which is equal to 0. The
Euler approximation of the Eqn. (5.2) is:

x̂i+1 = x̂i + a(x̂i, ti)(ti+1 − ti) + b(x̂i, ti)(w
H
i+1 − wHi ). (5.3)

For finitely many given data points (x̄i, t̄i) (i = 1, 2, . . . , N), the symbolic form of the
approximation can be given as follows:

ȳi = a(x̄i, t̄i) + b(x̄i, t̄i)
∆w̄Hi
h̄i

, (5.4)

where ∆w̄Hi = w̄Hi+1 − w̄Hi is a centered Gaussian random variable, h̄i = t̄i+1 − t̄i :=
∆t̄i represents step lengths and

ȳi =


x̄i+1−x̄i

h̄i
if i = 1, 2, ..., N − 1,

x̄N−x̄N−1

h̄N
if i = N,

are the difference quotients raised on the ith data values (i = 1, 2, ..., N). A more
compact form of the Eqn. (5.4) is defined by

ȳi = Ḡi + F̄ici, (5.5)

where Ḡi := a(x̄i, t̄i), F̄i := b(x̄i, t̄i), and ci := ∆w̄Hi /h̄i. We note that Eqn. (5.5)
can be considered as an approximation of the problem. The expressions stated sub-
sequently until the end of Section 6.3 are described parametrically with respect to the
Hurst parameter H . In Section 6.4, we shall specify it by numeric values.

5.3.2 Parameter Estimation of Coefficients and Hurst Parameter

To determine the unknown values in Eqn. (5.5), the following minimization problem
is constructed using some abbreviated notation of the approximation [56]:

minimize
θ

N∑
i=1

∥∥ȳi − (Ḡi + F̄ici
)∥∥2

2
.

Here, θ comprises all unknown parameters in the Euler approximation. To solve this
optimization problem and to give a smoother, regularized approximation to the data,
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we employ CMARS method which controls any high “variation” in the data. CMARS’
basis functions are gradually constructed for the approximation of Ḡi and F̄i with data
Ūl
i,B, Ūm

i,C = (x̄i, t̄i) according to the following approaches [77]:

Ḡi = α0 +
dB∑
l=1

αlBl(Ūl
i,B), and F̄ici = β0 +

dC∑
m=1

βmCm(Ūm
i,C).

Here, the forms of the basis functions are Bl(Ūl
B) =

∏2
k=1[sB

κlk
· (xB

κlk
− τB

κlk
)]+ and

Cm(Ūm
C ) =

∏2
k=1[sCκmk · (x

C
κmk
− τCκmk )]+. Here, we choose the numbers KB

l and KC
m as

maximal, namely, as 2.

We construct the PRSS for our minimization problem in the following form:

PRSS :=
N∑
i=1

( ˙̄Xi −
(
Ḡi + F̄ici

)
)2 +

dB∑
l=1

λl

2∑
|α|=1

α=(α1,α2)T

∑
r<s
r,s∈Vl

∫
QBl

α2
l

[
Dα

r,sBl(Ūl
B)
]2

dUl
B +

dC∑
m=1

µm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
QCm

β2
m

[
Dα

r,sCm(Ūm
C )
]2
dUm

C . (5.6)

Here, the multipliers λl, µm ≥ 0 are smoothing parameters and they provide a trade-
off between both accuracy and complexity. To approximate two multi-dimensional
integrals in Eqn. (5.6), parallepipes QB

l =
[
al1,B, b

l
1,B

]
×
[
al2,B, b

l
2,B

]
=
∏2

k=1Q
l
k,B

and QC
m =

[
am1,C , b

m
1,C

]
×
[
am2,C , b

m
2,C

]
=
∏2

k=1Q
m
k,C which encompass all our input

data are constructed. Then, the following discretization is applied for the first multi-
dimensional integral:

∫
QBl

α2
l

[
Dα

r,sBl(Ūl
B)
]2

dUl
B ≈

(N+1)2∑
i=1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

α2
l

[
Dα

r,sBl(Û
l

i,B)
]2

∆Û
l

i,B

=

(N+1)2∑
i=1

(
L̄Bil
)2
α2
l =

∥∥∥L̄Bl αl
∥∥∥2

2
. (5.7)

The same discretization is also applied for the second multi-dimensional integral in
Eqn. (5.6). For simplicity, we introduce PRSS in the following matrix-norm notation:

PRSS ≈
∥∥∥ ˙̄X− Āθ

∥∥∥2

2
+

dB∑
l=1

λl

∥∥∥L̄Bl αl
∥∥∥2

2
+

dC∑
m=1

µm

∥∥∥L̄Cmβm
∥∥∥2

2
, (5.8)
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where ˙̄X =
(

˙̄X1,
˙̄X2, ...,

˙̄XN

)T
, Ā =

(
ĀT

1 , Ā
T
2 , ..., Ā

T
N

)T
, θ =

(
αT ,βT

)T
, α =

(α0, α1, α2, ..., αdB)T and β = (β0, β1, β2, ..., βdC )T . Moreover, Ḡi + F̄ici = Āiθ,

for l = 1, 2, ..., dB L̄Bl =
(
LB1l, L

B
2l, ..., L

B
(N+1)2l

)T
and for m = 1, 2, ..., dC L̄Cm =(

LC1m, L
C
2m, ..., L

C
(N+1)2m

)T
[77].

Using uniform penalization by taking the same λ for each derivative term, the regular-
ized approximation problem of PRSS turns into a Tikhonov Regularization problem:

PRSS ≈
∥∥∥ ˙̄X− Āθ

∥∥∥2

2
+ λ ‖L̄θ‖2

2 . (5.9)

Here, λ = λ1 = ... = λdB = µ1 = ... = µdC , and L̄ is an ((Mmax + 1)× (Mmax + 1))-
diagonal matrix with first column L0 = 0(N+1)2 and the other columns being the vec-
tors LBl , LCm, introduced above, where Mmax = dB + dC .

As we mentioned in previous chapters, Tikhonov Regularization problem can be solved
by a CQP program. In order to write the optimality condition for this problem, we
firstly reformulate our program as the subsequent primal problem [75, 77]:

minimize
t,θ

t,

such that χ :=

 0N Ā

1 0TMmax+1

 t

θ

+

 − ˙̄X

0

 ,
η :=

 0Mmax+1 L̄

0 0TMmax+1

 t

θ

+

 0Mmax+1√
M̃

 ,
χ ∈ LN+1, η ∈ LMmax+2. (5.10)

The dual problem to the latter problem is given by

maximize ( ˙̄XT , 0)ω1 +
(

0TMmax+1,−
√
M̃
)
ω2, 0TN 1

ĀT 0TMmax+1

ω1 +

 0TMmax+1 0

L̄T 0Mmax+1

ω2 =

 1

0Mmax+1

 ,
ω1 ∈ LN+1, ω2 ∈ LMmax+2. (5.11)

A primal-dual optimal solution (t,θ,χ,η,ω1,ω2) is obtained when the optimality
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conditions given in Eqn. (5.12) are satisfied:

χ :=

 0N Ā

1 0TMmax+1

 t

θ

+

 − ˙̄X

0

 ,
η :=

 0Mmax+1 L̄

0 0TMmax+1

 t

θ

+

 0Mmax+1√
M̃

 ,
 0TN 1

ĀT 0TMmax+1

ω1 +

 0TMmax+1 0

L̄T 0Mmax+1

ω2 =

 1

0Mmax+1

 ,
ωT1χ = 0, ωT2 η = 0,

ω1 ∈ LN+1, ω2 ∈ LMmax+2, χ ∈ LN+1, η ∈ LMmax+2. (5.12)

5.4 A Numerical Application

In order to test the theory developed in the previous section, we start with simulating
the stochastic process for a fixed Hurst parameter H using Cholesky method [12].
Now, our aim is to estimate the exact value of this Hurst parameter of the simulated
data. We generate various stochastic processes which are the strong solution of SDEs
driven by fBm with different Hurst parameters. Next, we construct CMARS model
for each generated process to find the best fit. For the implementation of CMARS
algorithm, basis functions are built using Salford MARS software program [33] as in
[34, 65]. The optimization problem given in Eqn. (5.10) is solved by using IPMs via
the optimization software MOSEK [37, 41]. Finally, we examine the performances
of CMARS fits according to well-known performance measures. The steps described
above are applied forH=0.2,H=0.3,H=0.7 andH=0.8. The results of the applications
are summarized in Table 5.1 [75].

In the case of anti-persistent processes, namely,H=0.2,H=0.3, the values of MAE and
MSE are lower and the values ofR2, Adj-R2 and PWI are higher than the values for the
other Hurst parameter values. Similar results are also obtained for the case of persistent
processes. Hence, this shows that according to performance measure criteria, the best
CMARS fit gives us the correct Hurst parameter value.
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Table 5.1: CMARS performances for fBm generated by H=0.2, H=0.3, H=0.7, and
H=0.8.

Performance Measures
Hurst index MAE MSE R2 Adj-R2 PWI
H = 0.1 0.8766 1.4827 0.0370 -0.1651 1.0000
H = 0.2 *0.7480 *0.9868 *0.9739 *0.9684 1.0000
H = 0.3 0.8861 1.5266 0.0098 -0.1979 1.0000
H = 0.4 0.8770 1.4733 0.0430 -0.1577 1.0000
H = 0.5 0.8839 1.5201 0.0164 -0.1900 1.0000
H = 0.1 0.7138 0.9776 0.0679 -0.1276 1.0000
H = 0.2 0.7162 0.9901 0.0576 -0.1401 1.0000
H = 0.3 *0.2516 *0.984 *0.9699 *0.9636 1.0000
H = 0.4 0.6926 0.9387 0.1055 -0.0821 1.0000
H = 0.5 0.7053 0.9763 0.0697 -0.1254 1.0000
H = 0.5 0.7031 0.9719 0.2250 0.0623 1.0000
H = 0.6 0.7048 0.9784 0.2198 0.0560 0.9898
H = 0.7 *0.2602 *0.9582 *0.9182 *0.9010 1.0000
H = 0.8 0.7041 0.9506 0.2419 0.0828 1.0000
H = 0.9 0.7081 0.9781 0.2200 0.0563 1.0000
H = 0.5 0.6068 0.7841 0.3498 0.2133 1.0000
H = 0.6 0.6359 0.8015 0.3345 0.1948 1.0000
H = 0.7 0.6053 0.7389 0.3815 0.2517 1.0000
H = 0.8 *0.0822 *0.9883 *0.9768 *0.9720 1.0000
H = 0.9 0.6006 0.7294 0.3894 0.2613 1.0000

* indicates better performance
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CHAPTER 6

CONCLUSION AND OUTLOOK

Recent developments in computer science provide environments in order to collect nu-
merous data from various sources. Data mining methods enable us to analyze data for
different purposes in many fields, such as science, economics, finance, environment,
engineering and energy. One of the modern methods of data mining, CMARS, has been
developed as an alternative to the backward stepwise part of the MARS algorithm [65].

CMARS is a parameter estimation method for regression and classification, which
simply involves regularization and employes continuous optimization. It constructs a
functional form of the model by using basis functions, which are a special form of
splines. In fact, our splines will be “discretely” nonsmooth, herewith reducing com-
plexity also. Then, it estimates coefficients of basis functions using CQP. The flexible,
adaptive nature of the CMARS modeling has led to a successful implementation on
various processes with nonlinear structure, e.g., in industrial engineering, image pro-
cessing and earthquake engineering [32, 65, 71].

The success of the CMARS applications led to adapting the CMARS model into a wide
frame of advanced methods of statistics and applied mathematics. In the following
paragraphs, we summarize the refinements and extensions of the CMARS method to
identify and explore the connections between data mining and other applied sciences.

CGPLM, the first extension of CMARS, is become a very popular tool and shown to
be effective in many areas such as finance, actuarial science, medicine, etc. Embed-
ding our data mining methodology and optimization approach to GPLM is more recent
and its popularity in the finance community is increasing. The main reason for using
CMARS method here is that it is computationally fast and also overcomes some well-
known deficiencies of traditional methods. In this thesis, we have aimed to present how
the advantages and strengths of GPLM can be effectively combined with the compu-
tational power of data mining methods by incorporating CMARS and estimating all
the related unknown coefficients of GPLM by the CQP. As a future work, CGPLM
(with CMARS) can be applied to large data sets, e.g., related with the dynamics in the
financial sector, with many potential predictors and various other emerging application
areas.

In this thesis, the mean-shift outlier regression problem is newly represented as a CQP
and it achieved excellent numerical results with CMARS, compared with a new regu-
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larized, CQP supported approach by a linear model. These new methods can be applied
to a wide range of application areas, such as medical signal processing, quality analy-
sis and control in manufacturing, early warning systems in meteorology, ecology and
the financial sector, especially for a new view at the analysis and control of financial
“bubbles.”

SDEs play an important role in the many field of science, especially, in finance. These
equations, however, are usually hard to represent and resolve by a computer. In order
to identify them in a simplified manner, we aim to use CMARS method. CMARS
provides the opportunity for statistical inference of stochastic process parameters with
the help of basis functions. Especially for large sample size, our estimation procedure
based on special discretization and optimization techniques captures the behavior of
the stochastic process very well.

In this thesis, a parameter estimation procedure for SDEs is presented and imple-
mented. This procedure is based on a discretization of the SDEs and on the CMARS
algorithm. CMARS holds for a reasonable approach to nonparametrically estimate the
complete functional form of the deterministic drift and the diffusion term of a SDE by
identifying unknown parameters of these functions based on discretization of Milstein
approximation.

Differently from ODEs, SDEs incorporate random effects and they are computationally
expensive. In the case of multi-dimensional stochastic processes, strong solvers are
necessary to explore characteristics of systems. As introduced before, a main problem
in estimating parameters of SDEs is the structure of the stochastic processes that can
be of any distributional characteristics and any nonlinear and nonconvex form of the
underlying data set.

In this thesis, a parameter estimation procedure for multi-dimensional SDEs has been
presented and implemented. This procedure is based on a discretization of the SDEs by
using Milstein approximation and CMARS. In addition to them, using CQP programs
gives us the opportunity to benefit from well-structured convex optimization.

In this thesis, we particularly deal with the system case of SDEs driven by correlated
Brownian motions which are experienced in real-life problems of finance such as in
stochastic volatility and credit risk with stochastic interest. Moreover, implementations
of the given approaches to financial data are successfully demonstrated.

Our future work will proceed on the generalization of parameter estimation for the
multi-dimensional systems’ case with vectors of fractional Brownian motions, in the-
ory, methods and applications.

This thesis gives a new contribution to Hurst parameter estimation theory for the strong
solution of SDEs driven by fBms using CMARS technique. The main superiority of
our approach to the others is that it does not only estimate the Hurst parameter but also
finds spline parameters of the stochastic process. Furthermore, our representation of
financial and other processes is empowered by all the modeling and numerical advan-
tages of the CMARS. By this, a bridge has been offered between convex optimization
and Hurst parameter estimation theory.
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In present thesis, we follow a two-level approach with the determination of the pa-
rameters at the lower level, except for the Hurst-parameter which was chosen at the
following upper level. This approach can be regarded as a parametric optimization
[17, 27]. In future research, we will deepen and extend this approach by both more
model-free strategies (e.g., from statistics and data mining), especially, more model-
based ones, and with a comparison of them. The model-based approaches will be of a
more integrated mathematical nature and in the analytical line that we initiated in this
thesis.

As a future investigation, the results and achievements on SDEs, presented in Chapter
4 and 5, can be applied to new research and application areas for them such as biology
and medicine. By using the advantages of our new methodology based on CMARS and
optimization theory, real-world processes from the nature are able to model. Thus, this
extension in view of interest and application will be useful. Furthermore, we want to
compare the performance of our methodologies to other parameter estimation methods
of SDEs based on different stochastic processes.

The choice of the upper bound, M̃ , in our CQP problems is based on an L-curve.
In future, the optimal value of M̃ can be determined by an appropriate optimization-
based approach where M̃ is included as a state or decision variable. Thus, our proposed
approaches based on a CQP problem can select a better model for us. For this purpose,
multi-objective approaches can be used.

One drawback of proposed methodologies is their computational speed. In our ap-
plications, preparation of the data sets, construction of the basis functions and dis-
cretizations of the given equations were made separately. This takes a lot of time. In
this respect, we are going to improve our coding and make a user-friendly tool for its
prospective users.
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[1] M. U. Akhmet, S. W. Öktem, H. Pickl, and G. W. Weber, An anticipatory exten-
sion of malthusian model, Computing Anticipatory Systems, 839, pp. 260–264,
2006, seventh International Conference on Computing Anticipatory Systems.

[2] B. E. Alos, O. Mazet, and D. Nualart, Stochastic calculus with respect to gaussian
process, The Annals of Probability, 29, pp. 766–801, 2001.

[3] R. C. Aster, B. Borchers, and C. Thurber, Parameter Estimation and Inverse
Problems, Academic Press, Burlington, 2012.

[4] V. Barnett and T. Lewis, Outliers in Statistical Data, Wiley, Great Britain, 1994.
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parameter estimation for generalized partial linear models with B-splines and
continuous optimization, Computers and Mathematics with Applications, 60, pp.
134–143, 2010.

[59] P. Taylan, G. W. Weber, and F. Yerlikaya-Özkurt, A new approach to multivariate
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[72] F. Yerlikaya-Özkurt, İ. Batmaz, and G. W. Weber, Springer Volume Modeling,
Optimization, Dynamics and Bioeconomy, Series Springer Proceedings in Math-
ematics, chapter A Review and New Contribution on Conic Multivariate Adap-
tive Regression Splines (CMARS): A Powerful Tool for Predictive Data Mining,
2013.
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APPENDIX A

Performance Measures Used in Comparisons

The performance measures with their general notations are presented as follows:

Mean Absolute Error (MAE): MAE is the average magnitude of the error; it is defined
by

MAE :=
1

N

N∑
i=1

∣∣ȳi − ˆ̄yi
∣∣ ,

where ȳi is ith observed response value and ˆ̄yi is ith fitted response value and N is the
number of observations. The smaller value for this measure gives the better model.

Mean Square Error (MSE): MSE is defined as

MSE :=
1

N − p

N∑
i=1

(ȳi − ˆ̄yi)
2,

where p is the number of terms in the model. The MSE represents an unbiased estimate
of the error variance, and it depends on both the residual and number of predictive
variables. Similar to the MAE, smaller values for the RMSE indicate a better model.

Multiple Coefficient of Determination (R2): R2 is a coefficient of determination. As
the R2 values become higher, a better fit is obtained for the model. The formulation of
R2 is as follows:

R2 := 1−
∑N

i=1(ȳi − ˆ̄yi)
2∑N

i=1(ȳi − ¯̄y)2
.

Adjusted R2 (Adj-R2): This value is used to compute the number of predictors in
the model. It is useful for comparing models with different numbers of independent
variables. The higher the Adj-R2 value is, the better the model fits the data. The
formula is:

Adj−R2 := 1− (1−R2)
N − 1

N − p− 1
,
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where N − p− 1 6= 0.

Percentage of Residuals within Three Standard Deviation of Mean (PWI): PWI is
obtained by the sum of indicator variables over all observations divided by the to-
tal number of observations. The indicator variables take the value of 1 if the abso-
lute value of the difference between the actual and predicted response is within some
user-specified thresholds. In this thesis, 3 standard deviations of mean are used as a
threshold.
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F. Yerlikaya-Özkurt, C. Vardar-Acar, Y. Yolcu-Okur, and G. W. Weber, Estimation of
Hurst Parameter of Fractional Brownian Motion Using CMARS Method, International
Conference on Applied and Computational Mathematics Ankara, Turkey, October 3-6,
2012.
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