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ABSTRACT

STATIC AND FREE VIBRATION ANALYSES OF SMALL - SCALE
FUNCTIONALLY GRADED BEAMS POSSESSING A VARIABLE LENGTH
SCALE PARAMETER USING DIFFERENT BEAM THEORIES

AGHAZADEH, Reza
M.Sc., Department of Mechanical Engineering
Supervisor: Assoc. Prof. Dr. Serkan DAG
Co-Supervisor: Assist. Prof. Dr. Ender CIGEROGLU

September 2013, 74 pages

This study presents static and free vibration analyses of functionally graded (FG) micro -
beams on the basis of higher order continuum mechanics used in conjunction with
classical and higher order shear deformation beam theories. Unlike conventional ones,
higher order elastic theories consider the size effect for the beam. Strain gradient theory
(SGT) and modified couple stress theory (MCST) are the two common non-classical
continuum approaches capable of capturing the size effect. Shear deformation beam
theories consider the effects of shear strain across the thickness. In the base of SGT and
generalized beam theories and taking the thermal effects into account, the governing
equations and boundary conditions are derived using a variational formulation based on
Hamilton’s principle. This new model may be reduced to the non-classical Bernoulli-
Euler beam model based on the modified couple stress theory (MCST) when two of the
material length scale parameters and extra terms of higher order beam theories are taken
to be zero. Numerical analyses using differential quadrature method (DQM) are
conducted by considering static bending and free vibration problems of a simply
supported FG beam.

Keywords: Modified couple stress theory, Strain gradient theory, Higher order shear
deformation beam theory, Functionally graded material, Differential quadrature method.



0z

DEGISKEN BOYUT OLCEGi PARAMETRESINE SAHiP FONKSiYONEL
DERECELENDIRILMIS KUCUK OLCEKLI KIRISLERIN FARKLI KiRIS
TEORILERI ILE STATIK VE SERBEST TiTRESIM ANALIZLERI

AGHAZADEH, Reza
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr Serkan DAG
Es Tez Yoneticisi: Y. Dog. Dr. Ender CIGEROGLU

Eylul 2013, 74 sayfa

Bu calisma, yiiksek mertebe siirekli ortam mekanigi ve klasik ve yiliksek mertebe kiris
kesme deformasyon teorileri temelinde fonksiyonel derecelendirilmis (FD) kirislerin
statik ve serbest titresim analizlerini sunmaktadir. Klasik teorilerin aksine, yiiksek
mertebe elastisite teorileri kiris i¢cin boyut etkisini g6z 6niinde bulundurmaktalar. Gerinim
gradyan1 teorisi ve modifiye edilmis kuvvet c¢ifti gerilmesi teorisi boyut etkisini
yakalama kapasitesine sahip iki yaygin klasik olmayan siirekli ortam mekanigi
yaklagimlaridir. Kiris kesme deformasyon teorileri kalinlik boyunca kesme gerinimi
etkilerini dikkate almaktadirlar. Gerinim gradyan teorisi ve genel kiris teorisi temelinde
ve 1s1 etkisi g6z oniinde bulundurularak denklemler ve sinir kosullar1t Hamilton prensibine
dayanarak bir varyasyon yontemiyle elde edilmistir. Yiiksek mertebe kiris teorisindeki
ekstra terimler ve malzemenin boyut dlcek parametrelerinden ikisi sifir aliarak modifiye
edilmis kuvvet ¢ifti gerilmesine dayali klasik olmayan Bernoulli-Euler kiris modelini elde
etmek miimkiin olmaktadir. Basit mesnetli bir FD kirigin statik egilme ve serbest
titresimini g6z Oniinde bulundurularak diferansiyel kare yapma metodu ile sayisal
analizler yapilmustir.

Anahtar kelimeler: Modifiye edilmis kuvvet ¢ifti gerilmesi teorisi, Gerinim gradyani
teorisi, Yiiksek mertebe kiris kesme deformasyon teorisi, Fonksiyonel derecelendirilmis
malzemeler (FDM), Diferansiyel kare yapma metodu.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Micro - electromechanical systems (MEMS) have attracted researchers’ attention because
of their growing applications. Micro - beams are important micro - scale structures that
have been widely used in micro - and nano - technology industries. The design and
optimization of micro - beams are extensively investigated in the literature.

Since classical theories can not predict the size effect for small - scale beams, some
researchers have made effort to examine the behavior of small - scale beams using non
classical theories. Strain gradient theory (SGT) and modified couple stress theory
(MCST) are two prevalent higher order elastic theories that take the small - scale
parameters into account. In most of the studies these theories have been combined with a
beam deformation theory and governing equations and boundary conditions are obtained.

The main objective in this study on one hand, is to consider the small - scale effect on the
static and dynamic behaviors of functionally graded micro - beam; on the other hand, is to
investigate thermal effects on deflections and natural frequencies of a beam. Micro -
beam is supposed to be made of a functionally graded material (FGM) because in the
recent years there has been considerable interest on FGMs. Further, results for
homogeneous beams can also be obtained by considering the formulation valid for
functionally graded beams.

1.2 Previous Works on Micro - beams: Applications, Higher Order Elasticity and
Beam Theories

Since their extensive use in micro - structures and micro - electromechanical systems
(MEMS) such as sensors, actuators and atomic force microscopy (AFM) there is need for
the methods capable of evaluating mechanical behavior of micro - beams. Further,
modeling these systems makes it possible to estimate the size effect.

To make initial predictions about the performance of the micro - switches and design
before fabrication, it is necessary to use analytic equations. In a micro - switch, an elastic
beam suspends on a rigid substrate and is actuated by electrostatic forces. In a critical
voltage which is called pull in voltage the beam deflects toward the substrate and leads to
pull in instability. Pull in voltage and static and dynamic behaviors of micro - systems
determine the sensitivity and instability of these systems. Coutu et al. [1] modeled a



typical micro - switch by a cantilever beam to estimate the pull in voltage, contact force
and contact resistance, which are useful to achieve desired performance. In another work,
Mojahedi et al. [2] studied the effects of midplane stretching, electrostatic actuation and
axial loading on the pull in instability of micro - systems.

Atomic force microscopy (AFM) is another powerful tool in micro - and nano - scale
technology. In recent years it has been used in different branches of science from surface
characterization in material science to the study of living biological systems and to
nanolithography. AFM consists of a micro - cantilever beam and tip interacting with the
sample. The deflection of the cantilever is plotted as a function of surface location to give
a high resolution image of surfaces. To capture the surface properties of the sample,
analytical and numerical models are indispensable to simulate the coupled dynamics of
AFM and the sample. Mahdavi et al. [3] presented a micro - cantilever model for AFM
considering four major factors which are: rotary inertia and shear deformation of the
beam and mass and rotary inertia of the tip. They studied several commercial micro -
cantilevers to investigate the effects of these factors on the frequency response of the
beam and verified their model. Stan et al. [4] investigated the size dependent elastic
properties of zinc oxide nanowires (ZnO NWSs). To measure indentation and Young’s
modulus, they used this fact that when the probe tip of AFM is brought from air into
contact with the wire, resonance frequency changes. Using AFM, they also measured the
friction which is proportional to the lateral force to determine the tangential shear
modulus of the ZnO NW. Non - contact AFM (NC AFM) is a force sensing cantilever
which is used to produce atomic resolution images on various surfaces. Wang and Hu [5]
carried out a modal response analysis to study the origins and impacts of higher
eigenmodes. Fang and Chang [6] improved the surface roughness by AFM based
lithography. Their tests are conducted on an aluminum film deposited on a silicon
substrate. In AFM lithography method, an AFM tip is used to draw a pattern on a solid
surface. Following the work to determine the mechanical and electrical properties of
AFM, Cook et al. [7] investigated the two common methods to measure the spring
constant of AFM: thermal noise method and Sader method. They compared the results
with experimental ones and showed that there is a good agreement between these
methods. The spring constant of AFM is essential for determining the force exerted by it.

Micro - cantilever base sensors are capable of detecting extremely small forces and
stresses. They can operate in either static or dynamic mode. To detect the blood glucose
level, Pei et al. [8] measured mechanical bending induced by the enzyme reaction on the
micro - cantilever surface in the presence of glucose. The bending is sensed by reflecting
a laser beam from the cantilever surface to a position sensitive detector.

During fabrication, deployment and operation, MEMS devices can be exposed to
mechanical shock or impact which may lead to some damage such as cracks. Younis et al.
[9] modeled and simulated MEMS devices under the shock loads and electrostatic
actuation and showed that the combination of shock load and an electrostatic actuation
makes the instability threshold much lower than threshold predicted just by one of them.

In recent years, carbon nanotubes (CNTs) have found versatile applications in
nanotechnology as gas storage and nano - pipes to convey fluids. It is a substantial issue



to determine the influence of the internal moving fluid on mechanical behavior of CNTs.
The effect of fluid flow on structural instability and free vibration of CNTSs is studied by
Yoon et al. [10].

In most of the applications of micro - scale beams, which are discussed above,
experimental results are used to evaluate the desired function. In some cases, an analytical
model in the base of classical elastic theory is presented. Experimental results show the
size dependency of the deformation behavior of materials and classical elastic theory is
incapable of capturing size effect as the dimensions of the beam become smaller. To
consider the effects of small - scale parameters, higher order continuum theories are
presented.

Yang et al. [11] introduced the moment of couples as an additional equation into the
equilibrium equations and presented the modified couple stress theory (MCST). They
investigated new modification by analyzing the torsion of a cylindrical bar and bending of
a flat plate of infinite width.

Following the studies about the size dependent behavior of small - scale structures, Lam
et al. [12] considered the second order deformation gradient in addition to the
conventional first order symmetric strain tensor and introduced the strain gradient theory
(SGT). They used simple cantilever beam bending to investigate the difference between
classical and strain gradient elastic theories and experimentally showed that the higher
order theory clearly demonstrates behavior of micro - sized epoxy beams.

Combination of the new continuum theories with appropriate beam theories can give a
useful picture of the static and dynamic properties of micro - beams. This issue has been
studied by many researchers. In some work, classical Euler Bernoulli beam theory along
with MCST approach are used to study homogeneous micro - beams (Simsek [13], Kong
et al. [14], Rafiee et al. [15], Xia [16], Kahrobaiyan et al. [17], Wang [18], Akg6z and
Civalek [19], Park and Gao [20]). Buckling, bending and free vibration analyses of micro
- beams considering different boundary conditions are investigated in these studies. Ma et
al. [21] combined MCST and third - order beam theory (TOBT) and showed the
differences between the resulting static bending and natural frequencies of TOBT and
Timoshenko beam theory (TBT). Timoshenko beam is also studied in the works related to
MCST (Ma et al. [22], Asghari et al. [23], Ke et al. [24], Fu and Zhang[25]). Asghari et
al. [23] considered Von Karman nonlinearity for micro - beams and Ke et al. [24]
introduced thermal effects into equations.

Kahrobaiyan et al. [26], Kong et al. [27], Zhao et al. [28], Yin et al. [29] and Akg6z and
Civalek [30] studied the Euler Bernoulli beam based on SGT and obtained static
deflection, post buckling behavior and natural frequencies of the micro - beams.
Kahrobaiyan et al. [26] studied the nonlinear effects of the beam and Zhao et al. [28]
considered the nonlinearities due to mean axial extension. Timoshenko beam relations in
conjunction with SGT were used to depict dynamic behavior of micro - scale beams in
the work conducted by Wang et al. [31].



Similar investigations are carried out for the micro - beams made of functionally graded
materials (FGMs). FGMs are inhomogeneous composites which are processed by
combining the best properties of two distinct phases such as high strength, and high
temperature resistance in order to put forward an ideal material. Nowadays FGMs are
used extensively in automotive, electronics, biomechanics and aerospace industries.
Asghari et al. [32] used Euler Bernoulli beam theory and Ke and Wang [33] and Asghari
et al. [34] used TBT to obtain MCST based formulation for FGMs. Reddy [35] and Ke et
al. [36] also considered Von Karman nonlinearities. Ansari et al. [37] formulated
Timoshenko functionally graded beam based on SGT. In most of the studies the length
scale parameter is considered to be constant which is a simplifying assumption.
Kahrobaiyan et al. [38] derived the equation of motion and boundary conditions of a
micro - beam using strain gradient approach and functionally graded Euler — Bernoulli
beam model considering the variation of material length scale parameter through the
thickness.

In the studies mentioned above the higher order continuum theories along with a beam
theory is used to obtain static deflection, buckling analysis and natural frequencies of
micro - beams. The comparisons made in these studies show significant differences
between classical and higher order theories of elasticity. Further, different kinds of
boundary conditions are studied in the scope of these works. In some cases a comparison
is made for different beam theories.

1.3 Motivation and Scope of the Study

In all studies on small - scale functionally graded beams mentioned in the previous
section, the length scale parameters used in the formulation are taken as constants. Note
that a single length scale parameter is needed in the modified couple stress theory
whereas strain gradient elasticity requires the use of three different length scale
parameters. In a functionally graded medium, due to the variations in the volume
fractions of the constituents, the length scale parameters are also expected to be functions
of the spatial coordinates. Thus, a general formulation should take into account the
variations in the length scale parameters as well. The only study in the literature that
considers the variations in the length scale parameters seems to be that by Kahrobaiyan et
al. [38]. In this article, the authors develop analysis methods by using strain gradient
elasticity in conjunction with the Euler - Bernoulli beam theory. However, Euler -
Bernoulli theory is built on certain restrictive assumptions such as the assumption of zero
shear strain; and also as will be shown in this paper, in a number of problems this theory
has a tendency to overestimate the normal stresses in small - scale beams. TBT considers
shear strain as a constant along beam thickness. Higher order shear deformation beam
theories such as TOBT satisfy the shear conditions on the boundaries in the scope of
classical continuum theory, so that using them along with higher order elastic theories
leads to more proper results.

In Chapter 2, by using the general beam model and strain gradient theory, the governing
equations and boundary conditions are obtained for FGM micro - beam using Hamilton’s



principle. The relations can be reduced to MCST or classical also to different beam
theories for both homogeneous and FGM. Thermal effects have been considered to derive
the formulation and the static and dynamic behavior of the micro - beam related to the
temperature change is investigated. In chapter 3, differential quadrature method (DQM) is
introduced as a means to solve the system of differential equations. The explanation as to
how DQM may be used to solve the problem and how boundary conditions are
implemented is presented in this chapter. A computer program is developed using
MATLAB to implement the developed numerical solution technique. A simply supported
micro - beam is considered and static deflections and natural frequencies are obtained for
this problem. The results and comparisons are presented in Chapter 4. The discussion of
the results and the suggestions for future work are given in Chapter 5.






CHAPTER 2

FORMULATION

2.1  Problem Definition

To investigate the small - scale and shear deformation effects on micro — beams, a beam
made of an FGM is considered. Functionally graded materials (FGMs) are
inhomogeneous composites which are processed by combining the best properties of two
distinct phases such as high strength, and high temperature resistance in order to put
forward an ideal material. Nowadays FGMs are used extensively in automotive,
electronics, biomechanics and aerospace industries.

Fig. 1 illustrates a small - scale functionally graded (FG) beam with length L and
thickness h made from a mixture of ceramics and metals. The bottom surface (x; = -h/2)
is metal rich and the top surface (xs = h/2) is ceramic rich. The material properties of the
FG beam vary continuously in the thickness direction. The effective bulk modulus K. and
shear modulus . are calculated by Mori - Tanaka homogenization method [37]:

V.
¢ m 1+vm(KC—Km)/(Km+%)

He — Hnm Ve )
Ho =ty 1V (e = i) | (e + 11y (9K +81, ) 1 6( Ky +211,))

where V denotes volume fraction of the phase materials. The subscripts m and ¢ denote
metal and ceramic phases, respectively. V. and V., are defined by using a power law
function:

Ve 4V, =1 3)
V,(z)=(05+z/h)" (4)

where n is the volume fraction exponent. The effective material properties of the FG
micro - beam such as Young’s modulus E and Poisson’s ratio » related to K, and . are
expressed as:

E(Z) _ Kt

- 5
3K + 4, ©



o(z) = e =2 6)
6K, +2u,

Using the rule of mixtures the effective mass density p and the thermal expansion
coefficient ¢ can be given as

p(z):pch + PV (7)

a(z)=aN, +a,V, 8

2.2  Shear Deformation Beam Theories

Higher order shear deformation beam theories consider the effects of transverse shear
deformation. Assuming that the deformations of the beam are in the x; — X3 plane and
denoting the displacement components along the x;, X, and Xz directions by u;, u, and us,
based on the general higher - order shear deformation beam theory, the following
displacement field is assumed:

Uy (%, %,t) =u(,t) = xgw, +f(x5)7(%,t) (9.2)
U, (X, %;,t) =0 (9.b)
Ug (X, %5,t) = W(x t) (9.0)

u and w represent middle surface displacement components along the x; and xs directions,
respectively, t is the time, “()x” denotes partial derivative with respect to x, y is the
transverse shear strain of any point on the neutral axis:

y () =w, (x.t)—4(% 1), (10)

where ¢ is the total bending rotation of the cross - section at any point on the neutral axis
(Fig. 1)

Shape function f determines the distribution of the transverse shear strain and stress
through the thickness. By taking the shape function as zero the Euler — Bernoulli beam
theory (EBBT) or classical beam theory is obtained as a particular case. To consider shear
effects higher order shear deformation beam theories have been already introduced by
researchers. Among these theories third - order beam theory (TOBT) [40, 41],
trigonometric shear deformation beam theory [42] and hyperbolic shear deformation
beam theory (HSDBT) [43] are mostly used in the literature. Although different shape
functions are applicable, only the ones which convert the present theory to the
corresponding Euler - Bernoulli beam theory (EBBT), first order shear deformation beam



theory or Timoshenko beam theory (TBT) and TOBT are employed in the present study.
In more detail, the shape function employed for EBBT, TBT and TOBT are as follows:

EBBT: f(x)=0 (11.a)

TBT: f(X)=X (11.b)
. %

TOBT: f(x)=x 132 (11.c)

X1 Up
Xy
X3
/ axy) 100% ceramic
N
<« Db S
Xy I
------------------------------- EESC
100% metal
L 77777

Fig. 1. Functionally graded beam configuration and the shape function schematic sketch for
higher order shear deformation beam theories.

2.3  Strain Gradient Theory (SGT)

In the strain gradient theory strain energy density, v, depends on both the conventional
strain (the symmetric part of the first order deformation gradient) and on the second order
deformation gradient [12]



v=v(.9ij ,77”-) (12)

where &; and #; are the strain tensor (first order deformation gradient) and second order
deformation gradient tensor, respectively

1
Tk = Uy jj (13.b)

where u; is the displacement vector.

The Cauchy stress tensor, aj;, and double stress tensor, 7 can be defined as:

L= — 14.a
O-'J agij ( )
L (14.b)

a77ijk

The second order deformation gradient, #i, can be decomposed into symmetric and anti -
symmetric parts, ngk , and ni‘}‘k , giving,

1
ni?k zg(nijk + 17 ki +77kij) (15.a)
a 2
Tijk = g(eim)(lj + ejklﬂ(li) (15.b)

where ey is the alternating tensor and yi; = 1/2ei,477j0q IS the curvature tensor. By splitting
the symmetric second order deformation gradient, nijk, a trace part, ni(jﬁ), and a traceless

part, 77i(jt) , are obtained

M = ni(j(lz) + ni(jjl;) (16)
where

1
7752) = g(é‘ijn;mk + Mo + Oy ) (17.a)
Ui(jt) = Ui?k - Ui(ji) (17.b)

10



1
nr?lmk = é(nmmk + 277kmm ) (17C)

The curvature tensor is decomposed into symmetric and anti - symmetric parts as

Xi =Xt X (18)
where
s 1
Zij ZE(Zij +Zji) (19.a)
a 1
Xij ZE(lij _Zji) (19.b)

The trace part of the symmetric second order deformation gradient is a function of the
dilatation gradient and the anti - symmetric part of the curvature,

2 2
nispp =&t geimn)(r?m =&+ geimnlmn (20)

where ¢ is the dilatation strain,

c—s (21)

mm

For easy reference, ¢j, ni(jf() and y;; are named as the dilatation gradient, the deviatoric
stretch gradient and the rotational gradient, respectively. The second order virtual work
density in terms of the new strain metrics is

ov= Ti(ji)5ﬂi(jﬁ) + Ti(jt)é‘ﬂi(jt) + 2'i?k 677i?k (22)
where rg.),z and rl.(jl,z are the trace and traceless parts of the symmetric part the double

stress tensor (z7,), respectively, and are orthogonal to each other:

Ti(jﬁ) = %(5.] Tk + 5jkTrsnmi + 5kiT:1mj ) (23.8)
o) =15 i) (23.b)
Using ¢;, rl.(jl,z, ij as the second order metrics, equation (22) can be written as

5V =p,e, +tDen +m 5y, (24)
where

11



3 s
pl 5 Tmml ( )

.4 2
M =3 TipaCiog ~ ¢ Cik Tk (26)

By neglecting the effects of the dilatation gradient and the deviatoric stretch gradient the
modified couple stress theory (MCST) is obtained:

OV = 008, + M 5 (27)

In this theory in addition to the classical equations of forces and moments of forces, the
equilibrium of moments of couples must be satisfied. To satisfy the higher order
equilibrium equation m; must be symmetric. Finally, considering the effects of
conventional strain tensor and using symmetric part of m;;, the total strain energy density
for strain gradient theory becomes:

V:V(gij i€ ’ni(jt)’li?) (28)

For a deformed linear elastic isotropic material, the strain energy U, occupying region Q
based on the modified strain gradient elasticity theory can be then written as

1
U ZEI(Gijgij + B +Ti(jll<)77i(ji) + mijli?)dv (29)
)
1
Vi = Emmii (31)
1 1 1
Uigt) :g(‘gjk,i +&4 +gij,k)_Eé}j (‘gmm,k + 25mk,m)‘£{5jk (5mm,i + zgmi,m) 32)
+0,i (gmm'j + 25mj m )}
-S-=l(e- Ey o +E Eu ) (33)
Zij ipg®ai.p T “ipg©ai,p

2

Since the different second order strain metrics are orthogonal to each other and there is no
coupling amongst them three different parameters are used to define the constitutive
relations which are given by [12]:

o = Ar (&) 6; +2ue; (34)
P = 2#'5% (39)
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of) = 20 (30)

m =242 37)
where
Ev
je— v 38
(Lro)(1-20) G8)
E
_ 39
H720r0) (39)

and ly, 1, I, are material length - scale parameters which for the FGM micro — beam are
taken as follows:

lo (X5) =looVe + lomV. (40.a)

OcYc omYm

(%) = bV, + 1V, (40.b)

1c'c ImYm

1, (%) =looVe + 1V, (40.c)

2c’c 2mYm

By inserting equations (9.a) - (9.c) into equation (30), the non-vanishing strains are

du o°’w oy
Ep=— Xy + =
0%, OXq 0%, (41)

1 ..
5132531=Ef 4

where a prime denotes the derivative with respect to xs.

Substitution of equations (41) into equations (31) - (33) yields the nonzero components of

Vi vﬁi(jt) ’Zi?

n=—53"X%-z+1—5
o Cod o )
o'w ., oy

Va=——7 1"~
0%y 0%,
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11 = ¢ -
5

—+
ad Cad w2

1 6W . Oy

o’w ., 0
ﬁkﬁ%ﬁ%li% 2]

2 3 2
(1)_2[6u L o fa_y_lf,,yl

(43)

1(®w .. 0
=l == T-ar 2]
1 1 1 1( 6% w0 1.,
77£2)1:77]¥2)2:77£1)2:_g(£_ 38_)(13 fEJrgf /4

2 3 2

W _p) ) L) OU_, 0w fa__ﬂf--
331 = Thas = Ma13 5[ P o o 3 4

w0
)(18227(21—4[ 28_ f@%}

X 1 (44)

1 ..
l§3=}(§2=zf Y

Consequently, by placing equations (41) - (44) into equations (34) - (37), the nonzero
components of the symmetric section of the stress tensor and the higher order stresses in
the thermal environment are obtained as follows

ou o°'w oy

allz(/1+2,u)[——x3—+f——

o o 0%

2
Gzzzﬂ(ﬂ_xsa_w”a_y]

a(x3)AT]

o, x o ox (45)
2
O3 =4 u —x3a—\2/+fa—}/
X, OX; 0%
oy =0y =kuf'y
2 3 2
P =2u |2(‘;2 3(2—\2’+f27J
X12 X X (46)
Py = 2ul? 9 >+ f or
ox %
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=2
5
=2
o} =7l =
=14 =
T =15 =
el =iz =
mg, =m3,
m33 = m352

!

2 3 2
|2£a x, O fa—7—1f"yJ

—+

ox? o o 2
12 82_W_2 X4
ox; %

- 8 |2£6W 2f'5—7]

15 oxX? X%
2 o*w , 0
éz-—wv( : z-Jj
15 X X
2 ou w1
(1) _ 2 Y "
T ——ul — X + f +=f
2 =gt [axf Sox’ ox? 3 7/]
2 3 2
=2l S5 S 1S L2y
5 4 4 ox; 3

2 2
:& 28_\;v+f6_7/
2 O%; o%,

1 "
== ul?f
2#2 e

(47)

(48)

Note that k; is the shear correction factor, which is taken as unity in EBBT and TOBT,;
and specified as 5/6 in Timoshenko beam theory for rectangular cross - sections. AT is

the temperature change from a stress free state. Note that the deformed shape of the beam
is governed by the total strain while the stress state depends only on the mechanical
strains. Although the material properties such as elastic modulus E, Poisson’s ration v,
density p and coefficient of thermal expansion o are temperature dependent, the influence
of temperature change on material properties is not considered in this study. Then the
strain energy based on modified strain gradient theory (equation (29)) may be rewritten as

:_J J. (Gljglj + D7 +T|(jk)77|(1k) + muZu )dAdX

2
:%J'OLJA{GH(E?—:— aax?l+ f 2):}+013(f';/)

’u _ w %y ’w . Oy
P Xt [+ 5+
OX; Ox] Xy ox; X,
2 3 2
@ ou ow o0y 1., 4()6W , Oy
+o| — —X—+ F—=—-=f +—Togm| —5 —2f'—
l“(axf ‘o oxd 71735 0 X,
1 5 0ew2 L of J0PW 0y ) 1 (/.
+§,U|l]/ f +Em12(—2£+ & +Em23(f }/) dAdX

The work done by external forces is
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w :joL{q(xl)W+%JA(/l+2u)aAT [%“l’j dA}dx (50)

where g is the distributed transverse loading and the second expression is the work done
by axial force due to the influence of the temperature change which can be determined
from a static thermal bending analysis [24]. The kinetic energy of the micro - beam is
given by

1L ou 2w Lor) (ow)?
KZEIO jAp{[E_XS ox, ot +f§} +(Ej }dAdX
2 2 2
AT () 2]
200 )t at ot )| axet ox ot
26 R IS
at )\ at axat )\ at at

where p and A are density and the cross - sectional area of the beam. The terms related to
inertia in equation (51) can be defined as

h
{10 50 g 06k = [ 3 P06 ) L6 36 T3 T 2 by (52)
2

To determine the dynamic governing equations of the beam and all possible boundary
conditions the Hamilton’s principle is employed which is

5[ (K —(U-w))dt=0 (53)

4
Substituting equations (49) - (51) into equation (53), taking the variation of u, w and y and
integrating by parts the higher order equations of motion (54.a) - (54.c) and the boundary

conditions (55.a) - (55.g) can be obtained by setting the coefficients of ou, ow and dy
equal to zero. The equations are given as follows:

d°u 4 o°w
Ana_xlz_[zp‘sso As&uj 8x1 Bll 1 + BSS(ZBSSO += 5 Bsle 8X15

2 %y 4 oty . o o*w %y
(Fll t 5 F671) o (2F470 +§F471JM: |1¥_ IZW‘F |4¥

(54.a)
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&u 4. oo o*w 8 o'w
Blly _KZBsso + 5 Bs&ja? - HpAT r _(Dll +2As50 + 15 Agsy + Assz)

1 1 1
4 o°w 16 F, 2 %y
2D, +—D, Fp +2F0 + —Fopy + 2+ = Fgy |—= 54.b
( 550 5 551} 8X1 ( 22 570 15 571 2 5 681} 5 3 ( )
4 oy du o*w o'w %y
—| 2F gy +=Fyg | =5+ =1 +1 -1 +1
( w0t g 481]8)(15 q=1, axlatz 1502 36X126t2 56X16t2
2 du 4 o'u
_(F11+EF671J£+(2F470+EF471J8_X14+
16 Forp 2 o*w A o°w
Fp +2Fg0 + —Fypy +—2 + = F, 2F,50 + = Fgy |—¢
( 22 570 15 571 2 5 681) axf ( 480 5 481} axf
8 F 32 Fuy 4. )0 (549
Y
"'[ksts "'15 Foe1 + ifz JV‘(F&% + 2R+ 15 Fosy + 152 +EFAGIJ_6X12
4 oy d°u o*w %y
+ 2F + = F S Y TR L N 4
( 440 5 441) aXf 4 atz 5 8X18t2 6 atz

And, the boundary conditions are:

{_Ansxl (2A550+ A551j 8)(1\2/ (28550Jr Bslegxl\iv
1
2

(55.a)
2 oy 4 o Y,
_(Fn +— 5 Fzsnjax1 +(2F470 +— 5 F471] 6X13 11AT}|>< ~0,.=0 or 5u|x —0,L=
4 o%u 4 o*w
{(ZA\sso +— 5 A351j (28550 +58551j£
(55.h)
2 +(2F +— F )62 b —0,.=0 or 5 |x =0
5 Fery 470 471 axl -0,L =0,L
d°u 4 o'u ow
Bua_xlz_ 2By +58551 G_Xf_ H,AT &
8 a3 4 w
| D +2As50 + —Assi + Assp | —5 +| 2Dss0 + = Dss1 |—¢
15 5 o
16 Fo, 2 62 4 ot (5.)
/4 V4
‘{Fzz +2F5 +EF571 +%+ 5 F681j o’ : (2F480 5 F481]6_X14
d°u o*w %y
=l,——l,——+1.—3| ., =0 or owl| _,,=0
2 atz 3 axlatz 5 atz le—O,L le—O,L

17



ou 4 dlu 0?
{Bll (ZBSSO+_8551J ol ( 1+2A550Jr A551+A552j_

4 S) )
4 o'w 16 F, 2 oy
+(2 550 + 5 D551j axl (Fzz +2F50 + — 15 Fs1 +%+g Femja (55.d)
4 %y 1
(2 480+5F481]8X13 2H22AT}L =0 or 5[ Jlx —o,L=

o%u 4 o*w
2Bggy +— IE"551 j ( 2Dg50 +— DSSlj ~3
{[ X’ 5 o

2 4_ % o*w (552)
_EF6817/+ 2F480+EF481 o hoL=00r 5| — o b -0,.=0
£ [ oF te ads au (F +2F, +8F +Ej82_w
1A axl 470 471 8 22 st st T, g X2
4 Fe, 2 oy
+(2F480 +§F48 j o ( RRART + I:551 +STSZ+E F461j8_x1 (55.1)
4 %y 1
— 2F440+—F441]——— }IX —0.=0 or 5;/|)q 0..=0
( 5 o 2
4 o%u 4 o*w
{ 2F70 +— 5 I:471j 8X1 [2F480 += 5 F481J8_X13
2 4_ \o%y %59
_§F4617+(2F440+EF441ja }Ix o=0 or 5{ JIX —o,L=

The stiffness components in equations (54.a) - (54.c) and (55.a) - (55.9) are defined as

h
{Ail’BuiDll’Fn,FzzaFas}:J_Z (1 {1,X3,X§, fox;f ,fz}bdx3

"1+ 0(x,))(1-20(x
nOE( 2)(1 UE 3;;( ! 3)) (56.2)
- X — U X
Hyp, Hyp, Hy ) = |2 : 2 1,%, f }bd
{ 110 M2 33} I—;(l+U(X3))(1—21)(x3))a(X3){ X3 } X3
{A557BSS’D55’F44’F46’F47’F48’F55’F57'FGG’F67’F68}
h 56.b
zjzh—E(’%) (13,08 £2, 6, £ F, 72 £ 2, 67 % £ fbdx (560)
**2(1+U(X3))
{ASSO’BSSO’DSSO'FMO’F460’F47O'F480’F550’F570’F660’F670’F680}
(56.c)

h 2
=I2h2E(¢{1,x3,x§, B2 f o L f02 6 £ £ £ b,

> (1+U(X3))
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{A551 ' 85517 D551 ' F441 ! I:461’ I:471’ l:481 ! l:551 ' I:571’ F661 ' I:671 ' F681}

h 2
=J2,12E(X—3)'Il{l,xs,xef,fz,ff",f,xaf,f'z,f',f”z,f",x3f"}bdx3

32(1+0(x))

{A552 ! B552 ' D552 ! l:442 ' F462 ! I:472 ' l:482 ! F552 ' l:572 ! I:662 ! F672 ' F682}

h 2
=J'2,12E(¢{1,x3,x§,f2,ff",f,xaf,f'2,f',f"2,f",x3f"}bdx3

32(1+0(x))

(56.d)

(56.e)

Equation (10) is used to get the governing equations and boundary conditions in terms of

¢ instead of y. Thus, the following equations are obtained:

o%u o*u o*w
Ay ( Asso + A551j_+(|:11+ Fore — B11j
EY o'
4 4 °w 2 % 4 o'
| 2B + 2By, —2F g — 2y SN R+ 2R, | S8 4| 2F, 4 2 F,, |22
( 550 5 551 470 5 471] axf ( 11 5 671] 8X12 [ 470 5 471] a)(14
d%u o*w %
g g e T
2 o%u 4 4 o°u
B, - Fll+5F67l B X13 2F47O+EF471_28550_EB551 8_)(15
8 F o*w
+(kSF55+15 Foer + 262 HMATJ o0

4 32
+(2F22 + 5 Fegr — Fss = Dy +4F50 + 5 Fs71 + Fspa

—2F5, — % Fos, — Foo _ 2A, — A551 Pesp — 2 461] Zj(\liv
J{ZF440 + g Fuq +2Dcg, + g Des; —4F,g0 — % F481j267\1:3v
_(kSF55 +%F661+ Zﬁzjaqj (FSS -F, +gF461_§F681
+2Fy50 + % Fosy + FZSZ 2R — ig For — %jgix?
+(2F480 + g Fis1 —2F,0 — g F441j257? +q
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) z+|1?+(2|5_|3_|6)

o*w %
PR S

——+
oxzot? Ox, Ot

=(|2_|4
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2 d°u 4 d*u
[Fll += 5 F67lj ol (2F47o +—= 5 F471j_

1 a)(14
8 F oW
+| K Fss +E Fos1 +%J&1
2 4 16 F 32 F., 0w
+ Fyp —Fy +§ Fos1 5 Faer +2Fs70 +E Fo, + 5272 2Fy50 — 15 —= Fos1 _ﬂjﬁ
4 4 ° 8 F (7€)
w
+| 2F Jr§F441 —2Fg 5 F481j8_xf_(k5|:55 +—= 15 Feer + 6462 j¢
32 F.., 4 0% 4 o*¢
+| P+ 2R+ —Foey +—22 4+ —F, |——| 2F0 + = Fuuy |—=
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Equations (58.a), (58.c), (58.d) and (58.f) represent the classical boundary conditions
while the non — classical boundary conditions are expressed in equations (58.b), (58.e)
and (58.9). In each of the boundary conditions given in equations (58.a) - (58.9), the first
expression is a natural type boundary condition while the second is an essential type.

To obtain the normalized governing equations of motion and boundary conditions the
following dimensionless quantities are defined

&=, f7=%, {U’W}ZW’ @=¢, 0 =0L.

______ I O P P VR P
- l l 2 ) 2 2 )
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fs7+ fsz0s sr1s fsras Tes s Toors Fooas fors Torns fogs Tesn |
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z-:l Ao
LY 1y,

A, and |, in these equations are respectively reference values of A, and I,

(59)

evaluated by considering a homogeneous beam, whose properties are the same as those of
the graded beam computed at x3 = -h/2. By substituting the above relations into equations
(57.a) - (57.c) the following normalized equations are obtained
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The boundary conditions are derived by placing relations (59) into equations (58.a) -
(58.9)
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By using the normalized equations obtained above, dimensionless frequency,
o=0Ll,,/ A, , will be obtained, where Q denotes the vibration frequency of the

FGM micro - beam. In the case of static analysis, inertia related terms are not taken into
account whereas in free vibration analysis the external loading q is equated to zero.

2.4  Modified Couple Stress Theory (MCST)

By neglecting the effects of the dilatation gradient and the deviatoric stretch gradient,
equation (29) reduces to the strain energy based on the modified couple stress theory:

U =% [ (o +my ;) ov (62)

K2

By letting I, and |, to be equal to zero in equations (60.a) - (60.c)and (61.a) - (61.9), the
micro - beam formulation for MCST is obtained. Unlike the conventional theories of
continuum mechanics, in general higher order theories the material particle is encased
with a representative volume element. In conventional theories the material particle is
considered as a geometrical point thus only possesses the characteristic translation, but in
higher order theories it can undergo rotations and deformations. The equilibrium relations
in higher order continuum theories not only involve the conventional force and moment
equilibriums but also the equilibrium of moment of couple is considered. In the other
words, the couple vector is not a free vector. Fig. 2 shows the equivalence of couple and
the moment of couple [11]. The couple vector L, at point A can be represented by a

couple L, and a couple of couples M, applied to point B.

(a) (b) (©)
Fig. 2. Equivalence of couple: a couple at point A is equivalent to a couple at point B and a
moment of the couple [11].

Yang et al. [11] used the above hypothesizes to obtain the relations in modified couple
stress theory. They experimentally showed the importance of small - scale parameter as
the sizes become smaller. They also showed how to obtain the value of length scale
parameter for a linear isotropic material by twisting slim cylinders of different diameters.
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By adding the moment of couple to the equilibrium relations it is observed that the couple
stress tensor becomes symmetric and the deformation energy becomes independent of
antisymmetric part of the curvature tensor.

In the following chapters a numerical method will be used to solve the equations of
higher order continuum in conjunction with newly developed micro - beam theory and
classical beam theories. The mechanical characteristics of the micro - beam will be
investigated using these theories.
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CHAPTER 3

NUMERICAL SOLUTION

In this chapter numerical solution method is described. Differential quadrature method is
used to solve the governing differential equations and boundary conditions. A computer
program is developed using MATLAB to implement the numerical solution technique.

3.1 Differential Quadrature Method (DQM)

Since analytical solutions are unavailable for complex problems, use of a suitable
numerical method in the solution of the system of equations is indispensable. Differential
quadrature method (DQM) is a powerful means to solve such problems. This technique is
an easy, fast, accurate and applicable method and has some advantages upon other
numerical methods. Finite element method (FEM) requires large number of grid points
and thus needs more time and memory to solve the problem. In some of the work related
to micro - and nano - beams Navier solution is used to solve the simply supported beam
problems. The drawback of this technique is that it is restricted to simply supported
beams and can not be used for other types of boundary conditions.

Bellman and Casti [44] in 1971 proposed DQM to evaluate the derivatives of a
sufficiently smooth function. In this method, weighted sum of function values at nodes
are used to approximate the derivatives of the function, i.e. a derivative is written as:

N
u™ (x,£) =Y c™u(x; 1), fori=1,2,.,N (63)

j=1

where u(xj ,t) or u; is the function value at jth node, uim) is the mth derivative of

function u with respect to X, ci(jm) are the weighting coefficients for mth derivative and N

is the number of grid points or nodes. To determine the weighting coefficients with no
limitation on the choice of grid points, Shu [45] chose Lagrange interpolated polynomial
as the set of test functions and obtained the following recursive formula
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Gjj (X,—XJ—)M(I)(XJ)’ ori# |
(2

cly M '), fori=j

(64)

C_('m—l)
c() m c( Yo — 1 , forizj, m=2,3,.,N, i,j=12 .,N

N
=- > " fori=1,2,..,N

j=1, j#i

3.2 Numerical Solution for Simply Supported Micro - beam

In this section DQM is used to examine static response and free vibration behavior of
simply supported functionally graded micro — beams. The beam geometry is shown in
Fig. 1. The bottom surface (x3 = -h/2) is pure metal and the top surface (x3 = h/2) is pure
ceramic. In free vibration analysis q is taken as zero.

The Chebyshev nodes which are more stable in comparison with uniform grids [46] are
used as the sampling points of DQM as follows

X; Z%{l—COS(L_ll)j}, forj=1,2,..,N (65)

For a simply supported micro - beam the boundary conditions of (61.a) - (61.g) can be
written as

N a1 4 0%
Ul_o= _au_ + _2 2ag;, + _3551 ?

oMW 4 4 o'W
(bu fiy + fon j_ (2 faz0 + = Fa71 — 2bggo — bSSlj (66.a)
n’ 5 o&!

o’
1 3p 1
(fn*' 671)a§_7(2f470+ 471j C;P 77hnAT}|§ =0

(a“jlf 01=0 (66.b)

W|._o,=0 (66.c)
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By dropping the inertia terms and denoting the static displacements by U, W, and ¢, the

nondimensional displacements of the beam under steady state temperature field and static
loading are obtained by solving the following static bending problem

ok, 1 4 oo, 1
all_b_?(zaSSO aSSlj n(fll 671 bll]

o&? ot
1 4 4 O°W, 2 o?

+?(2b550 + Eb551 — 2140 - f471j Y ( f+— f671) a;b (67.a)
1 4 o,
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(67.b)

15 foes 4

16 f 32 fee, ) O°W
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The boundary conditions in the static analysis remain the same as in equations (66.a) -
(66.9). The total displacements are the sum of static displacements and the additional
dynamic displacements which are denoted by ,, W, and ¢, , that is [47]

U =0, +g, W=W, +Wy, o=@, + @y (68)
By substituting equation (68) into equations (60.a) - (60.c) and boundary conditions in
equations (66.a) - (66.9) and noting that U, W, and ¢, satisfy the static problem
expressed in equations (67.a) - (67.c), the governing equations and boundary conditions
in terms of the dynamic displacements 0,, W, and ¢, are obtained. The governing

equations are the same as in equations (60.a) - (60.c) and the boundary conditions now
become homogeneous for free vibration analysis as follows
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(69.9)

By substituting finite series representation of the differential operators in equation (64)
into equations (60.a) - (60.c) the governing equations of motion of simply supported

FGM micro - beam are recast into the following form:
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where i = 1, 2, ..., N and the over dot denotes partial derivative with respect to

dimensionless time z.

By substituting equation (64) into equations (61.a) - (61.g) boundary conditions of simply
supported micro - beam can be rewritten as
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The governing equations and boundary conditions given above can be used to solve both
static and free vibration problems. In the case of static analysis, inertia related terms are
not taken into account whereas in free vibration analysis the external loading q and the
terms in the boundary conditions resulted from steady state temperature field which effect
the static behavior of the beam are equated to zero. In what follows below, we provide the
matrix forms of the governing equations and boundary conditions for small - scale beams
subjected to static loading and for those undergoing free vibrations.

3.2.1 Small - scale beams subjected to static loading
For a beam subjected to static loading, we define an unknown generalized displacement

vector d, an unknown static displacement vector dy, and a dynamic displacement vector dqg
as follows:

d={{a}", {w}", {(pi}T}T, fori=1,2, ..,N (72.2)
(), {%}T} , fori=1,2, .., N (72.0)
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d={{y )" i} fo )T} foritz N (72.0

where d = dy, + dg. Eliminating the inertia related terms and substituting equation (72.b)
into equations (70.a) - (70.c), we obtain the following matrix form of the governing
equations:

D,d; +Dyd, +Q =0, (73)

where df and dj are static displacement vectors for end points and internal points,
respectively; D, and D, are coefficient matrices associated with end and internal

points; and Q is the distributed force matrix. Substitution of equation (72.b) into the
boundary conditions expressed by equations (71.a) - (71.g) leads to

B,df +B,d} +Q, =0, (74)

In the last mentioned relation, B, and B, are coefficient matrices associated with end

and internal points and Q, is the thermal load vector. The final matrix form of the
equations is obtained by substituting equation (74) into equation (73) and is written as

Kd} +K,Q, +Q=0, (75)
where K, =—D,B," and the stiffness matrix is given by

K =-D,B,'B4 +D,. (76)

3.2.2  Small - scale beams undergoing free vibrations

No external forces act on a beam undergoing free vibrations, thus q is taken as zero in the
numerical solution of the free vibration problem. In this case, the dynamic displacement
vector dq is defined in the following form:

dy =d;e™" (77)
where o=QL,/l,,/ A,, is the dimensionless frequency, Q denotes the vibration

frequency of the FGM micro - beam, dj z{{l]; }T, {W; }T, {(p:;i }T }T is the vibration

mode shape vector. By substituting the equation (77) into equations (70.a) - (70.c), one
can derive the governing equations as given below

D,d; +Dydy —w’Md; =0 (78)
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where D, and D, are coefficient matrices associated with end and internal points,

e

respectively; d and d;‘ are mode shape vectors for end and internal points; and M is

the mass matrix. Substituting equation (77) into equations (71.a) - (71.g) and eliminating
the nonhomogeneous thermal terms one can obtain

B,d; +B,d; =0, (79)

B, and B, are coefficient matrices associated with end and internal points, respectively.

Combining equations (78) and (79), the eigenvalue problem regarding free vibrations of
small - scale functionally graded beams is expressed as

(K-o’M} df =0, (80)
where K =-D,B, "B, + D, is the stiffness matrix.

Equation (80) is solved to determine the dimensionless frequencies and the corresponding
mode shape vectors. A particular frequency obtained via Equation (80) may correspond to
any of the three deformation modes, which we identify as transverse deformation, axial
deformation, and rotational deformation. These three deformation modes are respectively
quantified by the functions w, u and ¢. The deformation mode corresponding to a given
frequency is determined by examining the mode shape vector.

In order to implement the numerical method developed in this chapter, a computer
program is developed using MATLAB [48]. In the following chapter, we give
detailed results of simply supported micro - beam.
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CHAPTER 4

RESULTS

In the previous chapter the general beam theory in conjunction with SGT is formulated.
By substituting the shape function, f, the formulation for desired beam theory can be
obtained. Letting the small - scale parameters ly, |; and |, equal to zero leads to equations
of motion and boundary conditions of classical theory of elasticity and by lo=1,=0 the
relations are reduced to MCST. The formulation is obtained for FGM and the power
index n determines the type of the variation of the properties along the thickness and by
letting n=0 homogeneous material formulation is obtained. Setting AT =0 leads to the
deflection and natural frequencies of small - scale beam with no thermal effects.

In this chapter the numerical results are presented. To check the accuracy and validity of
the computer program, some comparisons with the results already presented in the
literature are given. To investigate homogeneous micro - beam it is assumed that the
beam is made of epoxy with the material properties E=1.44 GPa, v=0.38 (or u=521.7

MPa), p=1220 kg/m*® and o =54x10"°/°C. The FGM micro - beam consists of
aluminum (Al) and ceramic (SiC) with the following material properties: k,=5/6,

v, =03 and v,=0.17, p, =2702kg/m* and p, =3100 kg/m*, E, =70 GPa and
E, =427 GPa, a, =23x10°/°C and «,=4.76x10"°/°C [49]. In classical beam

theory it is supposed that the beam is slender and the Poisson effect is neglected (v =0).
For homogeneous epoxy micro - beam the length scale parameter has been
experimentally obtained as I, =1=17.6 um and assuming the three length scale
parameters in SGT to be equal, they are obtained as I, =1, =1, =1=17.6 um [12]. There

is no available experimental data relevant to the FGM micro - beams in literature. In
order to analyze the size effect of the FGM micro - beams, the values of length scale

parameters for the metal are approximately assumed to be equal to 15um (l,, =1, =1,
=15 um) in the following numerical evaluations. To investigate the non — constant value
of the length scale parameters through the thickness of the FGM micro - beam, distinct
sets of length scale parameters of the ceramic (l,, =1,. =1,.) are used. For simplicity, in

the following analysis material length scale parameter used in MCST is shown by |
instead of I, for both metal and ceramic.

By setting the inertia terms of the governing equations and boundary conditions, the right
hand side of the equations (60.a) - (60.c) and (61.a) - (61.9), equal to zero the static
formulation is obtained. For static analysis, distributed force of constant value g = 1 N/m,
is considered to be applied on the upper surface of the micro - beam. The dimensionless
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deflection (w/h) are obtained for the FGM micro - beam with L/h=10 and 20
hil,,=2.

In this work the free vibration equations of simply supported beam is derived and
numerical solution is used to obtain the natural frequencies. To check the validity of the
numerical solution and accuracy of the results, a comparison is made with the results
given in previous works.

4.1 Comparisons

In order to check the accuracy of the results obtained using the differential quadrature
method and developed computer program, some comparisons are given in section 4.1.
Table 1 gives the comparisons between the maximum deflections for both EBBT and
TBT which are obtained using MCST. As it is seen, there is a good agreement between
the results obtained in this work and those of Reddy [35]. There are small differences
between the maximum deflections obtained by TBT because Reddy [35] also considered
the Poisson’s ratio to be zero for TBT.

Comparisons of natural frequencies for homogeneous and FGM micro - beams predicted
by MCST are presented in Table 2 and Table 3. The results generated by our computer
program are very close to the results of other researchers. For homogeneous micro -
beam, the best agreement is observed between our results and the results obtained using
closed form solution by Ma et al. [22] which indicates the accuracy of numerical method
used in this work with respect to other methods. In Table 4 the natural frequencies which
are obtained using SGT for different FGM power index values are compared. Our results
are very close to the results obtained by Navier solution. Although for higher modes small
differences are observed, the results are still in good agreement. In the case of taking the
thermal effects into account to validate the results of our program, a comparison is made
with the natural frequencies obtained by Ke et al. [24] using MCST for different values of
AT in Table 5. It is observed that the results are also very close in this case.

Table 1. Comparisons of normalized maximum deflection w=w,,, x( El/ qL“)xlO2 for

isotropic homogeneous micro - beams, MCST, L/ h=20, =176 pm, b/ h=2,
g=1.0N/m.

Uh EBBT TBT
Present Reddy [35] Present Reddy [35]

0.0 1.3021 1.3021 1.3056 1.3103
0.2 1.1092 1.1092 1.1125 1.1162
0.4 0.7679 0.7679 0.7708 0.7731
0.6 0.5076 0.5076 0.5102 0.5116
0.8 0.3442 0.3442 0.3467 0.3475
1.0 0.2435 0.2435 0.2458 0.2464

42



Table 2. Comparisons of first five natural frequencies (MHz) for isotropic homogeneous
micro - beams, MCST, TBT, L/ h=10, | =17.6um.

h/l =10 h/l =5 h/l = 3.33
Mode Present M?Zezt]al. Present M?Zezt]al. Present M?zezt]al.
1 0.03765 0.03765 0.07782 0.07782 0.12290 0.12290
2 0.13966 0.13966 0.28874 0.28874 0.45609 0.45609
3 0.28384 0.28384 0.58743 0.58743 0.92894 0.92894
4 0.45136 0.45136 0.93594 0.93594 1.48370 1.48370
5 0.63062 0.63062 1.31143 1.31143 2.08671 2.08671

Table 3. Comparisons of dimensionless natural frequencies of FGM micro - beam for
different values of n, MCST, TBT, L/ h=10, I, =1, =15pm, h/Il,=2.

FGM volume fraction exponent, n

Mode Method Ceramic n=0.6 n=1.2 n=2 metal
Ke et al. [33] 0.8336 0.5944 0.5376 0.5048 0.3393

1 Ma et al. [22] 0.8538 - - - 0.3797
Ansari et al. [37] 0.8538 0.6084 0.5470 0.5100 0.3863
Present 0.8538 0.6084 0.5469 0.5099 0.3797

Ke et al. [33] 3.2081 2.2805 2.0550 1.9230 1.2914

2 Ma et al. [22] 3.2551 - - - 1.4323
Present 3.2550 2.3167 2.0772 1.9306 1.4323

Ke et al. [33] 6.8417 4.8649 4.3725 4.0762 2.7165

3 Ma et al. [22] 6.8575 - - - 2.9789
Present 6.8575 4.8744 4.3570 4.0344 2.9789

Ma et al. [22] 16.4671 - - - 6.9886

5 Ansarietal. [37] 16.4672 11.6879 10.3919 9.5590 7.0831
Present 16.4671 11.6880 10.3916 9.5585 6.9886

Table 4. Comparisons of dimensionless natural frequencies of FGM micro - beam for
different values of n, SGT, TBT, L/ h=10, Iy, =1, =15pm, h/l,, =2.

Mode Method

FGM volume fraction exponent, n

Ceramic n=0.6 n=1.2 n=2 metal

Ansari et al. [37]

1.2608 0.8976 0.7986 0.7346 0.5430

Present

1.2608 0.8976 0.7986 0.7346 0.5355

Ansari et al. [37]

19.2899 13.6798 12.1164 11.0892 8.1240

Present

19.2938 13.6824 12.1183 11.0908 8.0217
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Table 5. Comparisons of dimensionless natural frequencies of homogeneous micro - beam
for different values of AT , MCST, TBT, L/ h=10, | =176 pm, h/1=2.

AT (°C)
Mode Method
0 20 40 60 80 100
1 Ke et al. [24] 0.3478 0.3322 0.3159 0.2986 0.2804 0.2608
Present 0.3477 0.3322 0.3158 0.2986 0.2803 0.2608

Ke et al. [24] 59628 59410 59191 5.8971 58751  5.8529

Present 59617 59399 59180 5.8960 58740  5.8518

4.2 Static Results
4.2.1 Deflection of the micro - beam under distributed transverse load

To study the static behavior of micro - scale beams, the deflection of the FG beam and its
maximum value are obtained for different values of FGM power index, ceramic length
scale parameter, temperature change and geometrical parameters of micro - beam, using
different higher order continuum approaches and beam deformation theories discussed in
this work. Dimensionless deflections of the micro - beam under uniformly distributed
load obtained by using MCST and SGT and evaluated by using three different beam
theories are depicted in Fig. 3 and Fig. 4, respectively. Fig. 5 is generated by
implementing the same parameters of Fig. 4 and letting h/l,, =10. By investigating the

results one can conclude that the TOBT predicts the smallest midspan deflection
compared to other classical beam theories. Although EBBT is seen to result in the largest
midspan deflection, once SGT with small values of h/1,, is used the effect of small -

scale parameters become more significant than shear considerations which make EBBT
predict stiffer beam than TBT.

Fig. 6 and Fig. 7 show normalized normal stress distributions using MCST and SGT,
respectively, generated by using the three different beam theories. The curves obtained by
the Timoshenko and third - order beam theories are rather close to each other. However,
the normal stress estimation by the Euler - Bernoulli is not in agreement with those by the
other two beam theories. Since Euler - Bernoulli beam theory does not take into account
the in - plane shear deformation, the results calculated by the Timoshenko and the third -
order beam theories are deduced to be more reliable. This finding indicates that it may not
be appropriate to use the Euler - Bernoulli beam theory in certain problems regarding
small - scale FGM beams possessing a variable length scale parameter.

Comparison of the results obtained by different elasticity theories using TOBT are
illustrated in Fig. 8. MCST results in higher values of static deflection than SGT,
however, it still predicts stiffer beam than the classical elasticity theory.
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Fig. 3. Dimensionless deflection (w/h) of the FGM micro - beamwith L/ h=10, |, =15 pm,
h/il,=2,b/h=2,1,/1,=3/2, n=2, =10 N/m, MCST, considering different beam

theories.
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Fig. 4. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
lom =15pm, h/l,, =2, b/ h=2, 1), /Iy, =3/2, n=2, g=1.0 N/m, SGT, considering
different beam theories.
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Fig. 5. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
lom =15pm, h/ly, =10, b/ h=2, Iy, / l,,=3/2, n=2, g=1.0 N/m, SGT, considering
different beam theories.

o 11U2,x)1@/L)

Fig. 6. Normal stress distributions of the FGM micro - beam with L/ h=10, |, =15 pm,
hil,=2,b/h=2,1./1,=3/2,n=2, q=1.0 N/m, MCST, considering different beam
theories.
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Fig. 7. Normal stress distributions of the FGM micro - beam with L/ h=10, l,,, =15 pm,
h/ly,=2,b/h=2, 1y, /1, =3/2, n=2, g=1.0 N/m, SGT, considering different beam

theories.
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Fig. 8. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
=lgy=15pm, h/l,=h/ly,=2,b/h=2,1./1,=1y /g, =3/2,n=2,

g=1.0N/m, TOBT, considering different elasticity theories.
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Fig. 9 and Fig. 10 depict the influence of the exponent n on the static deflection of the
small - scale functionally graded beam predicted by MCST and SGT, respectively. These
results are computed by considering the TOBT. Note that distribution profiles of ceramic
and metal volume fractions depend on the exponent n. When n is less than unity the beam
is ceramic - rich while for an n value greater than one the beam possesses a metal - rich
profile. The volume fraction variation is linear for n =1. The results provided in Fig. 9
and Fig. 10 point out that, deflection becomes larger as n is increased from 0.5 to 5, i.e.
static deflection computed for a ceramic - rich beam is smaller compared to the deflection
evaluated for a metal - rich beam.

Results regarding the impact of the variation of the length scale parameter | upon the
static deflection of a small - scale functionally graded beam are presented for MCST in
Fig. 11 and for SGT in Fig. 12. These results are also evaluated through the use of the
TOBT. Static deflection curves are generated for four different values of I, /1. When

this ratio is equal to unity, the beam has a constant length scale parameter. It can be seen
that the influence of the variation of the length scale parameter on the static deflection is

rather significant. Static deflection decreases as I/l is increased from 1/3 to 2. As the

length scale parameter of the ceramic component gets larger compared to that of the
metallic component, the deflection of the beam becomes smaller considerably. This
observation is also a validation of the premise of this study that the variation of the length
scale parameter needs to be taken into account in the analysis of small - scale functionally
graded beams.
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Fig. 9. Dimensionless deflection (w/h) of the FGM micro - beamwith L/ h=10, |, =15 pm
,hil,=2,b/h=2,1,/1,=3/2, g=1.0N/m, MCST, TOBT, considering different
values of N.
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Fig. 10. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
lom =15pm, h/ly, =2, b/h=2, 1./ l,,=3/2, g=1.0N/m, SGT, TOBT, considering

different values of N.
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Fig. 11. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
l,=15pm, h/l,=2,b/h=2, n=2, q=1.0N/m, MCST, TOBT, considering different

valuesof I /1.
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Fig. 12. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
lom =15pm, h/l;, =2, b/ h=2, n=2, q=1.0 N/m, SGT, TOBT, considering different

values of 1y, / Iy, -

To have a clear understanding of static analysis, the results of different beam and
elasticity theories for different values of n are given for micro - beam with L/ h=20,
I, =l.=lyy =l =15um in Table 6 and micro - beam with L/h=10,
I/, =l /l,,=3/2 inTable7.

Table 6. Maximum deflection W =w,__ x10° of FGM micro - beam with L/ h=20,
ln=Il.=lgm =lpc =15pm, h/1l,=h/l;, =2, b/ h=2, g=1.0N/m, considering
different values of n and different beam and elasticity theories.

Elasticity h FGM volume fraction exponent, n
theory Beam theory == omic . n=0.6 n=1.2 n=2 metal
EBBT 0.9758 2.2118 2.7700 3.1277 5.9524
Classical TBT 0.9133 1.8833 2.2837 2.5354 4.4589
TOBT 0.9104 1.8778 2.2781 2.5305 4.4446
EBBT 0.4276 0.9204 1.1835 1.3991 2.7636
MCST TBT 0.4158 0.8594 1.0865 1.2689 2.3962
TOBT 0.4146 0.8570 1.0831 1.2644 2.3875
EBBT 0.1749 0.3680 0.4786 0.5777 1.1620
SGT TBT 0.1784 0.3692 0.4767 0.5721 1.1273
TOBT 0.1733 0.3586 0.4624 0.5544 1.0937
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Table 7. Maximum deflection w=w,, x10° of FGM micro - beam with L/ h=10,
ln=lom=15pm, h/l ,=h/ly,=2,b/h=2,1./1,=1y/ly,=3/2, q=1.0N/m,
considering different values of n and different beam and elasticity theories.

Elasticity h FGM volume fraction exponent, n
theory Beam theory = e n=06 n=1.2 n=2 metal
EBBT 6.0987  13.8236  17.3123  19.5482  37.2023
Classical TBT 58110 11.9837 145523 16.1882  28.5646
TOBT 57928  11.9596 145495 16.2169 28.4762
EBBT 1.5700 3.7936 5.2100 6.5470  10.3450
MCST TBT 1.5931 3.7288 5.0449 6.2631 9.8398
TOBT 1.5569 3.6502 4.9327 6.1154 9.5702
EBBT 0.5389 1.3228 1.8606 2.4126 3.6169
SGT TBT 0.6695 1.5800 2.1852 2.7937 4.4070
TOBT 0.5485 1.3262 1.8435 2.3672 3.5905

4.2.2 Deflection of the micro - beam under thermal load

To investigate the thermal effect on the static analysis, the deflection of micro - beam
under thermal load is calculated in absence of other external forces. Thermal analysis of
static deflection is carried out for different values of AT and n considering different
beam and elasticity theories. The dimensionless static deflections under the load
generated by AT =40°C predicted by MCST and SGT are shown in Fig. 13 and Fig. 14
respectively. Depicted in Fig. 15 and Fig. 16 are the static deflections for different AT
values which are calculated by implementing TOBT. As can be seen in these figures,
higher AT wvalues result in higher static deflections. Investigating the effect of the
exponent n on the static behavior of the micro - beam undergoing thermal load leads to
the conclusion that by increasing the value of n and hence increasing the ratio of metal to
ceramic phase results in larger static deflection because the coefficient of thermal

expansion of metal is large. This fact is illustrated for MCST in Fig. 17 and for SGT in
Fig. 18.
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Fig. 13. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
l,=15pm, h/l,=2,b/h=2,1,/1,=3/2, n=2, AT =40°C, MCST, considering
different beam theories.
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Fig. 14. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
lom, =15pm, h/ly, =2, b/ h=2, 1, /1,,=3/2, n=2, AT =40°C, SGT, considering

different beam theories.
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Fig. 15. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
l,=15pm, h/l,=2,b/h=2,1./1,=3/2, n=2, MCST, TOBT, considering
different values of AT .
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Fig. 16. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
loy =15pmm, h/ly,=2,b/h=2, 1./ l,,=3/2, n=2,SGT, TOBT, considering
different values of AT .
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Fig. 17. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
l,=15pm, h/l,=2,b/h=2,1./1,=3/2, AT =40°C, MCST, TOBT, considering
different values of n.
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Fig. 18. Dimensionless deflection (w/h) of the FGM micro - beam with L/ h=10,
loy =15pm, h/ 1y, =2, b/ h=2, 1y, /1y, =3/2, AT =40°C, SGT, TOBT, considering
different values of n.
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4.3  Free Vibration Results
4.3.1 Natural frequencies without thermal effects

The free vibration analysis of the simply supported micro - beam is carried out using the
numerical method and the natural frequencies are obtained for different values of material
and geometrical parameters.

Presented in Fig. 19 are the variations of the first nondimensional natural frequency @,
with respect to the ratio of height to length scale parameter of MCST, h/ 1, which are
generated by considering the three different beam theories. These results for SGT are
shown with respect to h/ |y, in Fig. 20. Note that in the examined problems the first
natural frequency always corresponds to the transverse deformation mode. The results
obtained by the use of Timoshenko beam theory and the third - order beam theory are
again almost identical whereas Euler - Bernoulli beam theory leads to slightly smaller
results especially for relatively larger values of h/l, The sensitivity of the
nondimensional frequency «, to the variations in h/ 1, becomes rather pronounced as
this ratio gets smaller.
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Fig. 19. Variations of the first dimensionless natural frequency with respectto h/ 1 for
FGM micro - beamwith L/ h=10, |, =15pm, b/h=2,1,/1,=3/2, n=2, MCST,
considering different beam theories.
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Fig. 20. Variations of the first dimensionless natural frequency with respect to h/ I, for
FGM micro - beamwith L/ h=10, l,,,=15pm, b/ h=2, Iy, /1, =3/2, n=2, SGT,
considering different beam theories.

Fig. 21 illustrates the variation of dimensionless natural frequencies of FGM micro -
beam with the height to metal length scale parameter ratio using three different elasticity
theories. These results are obtained by using TOBT. Similar to the static case, SGT
predicts the stiffest beam. In classical elasticity theory in which the small - scale effect is
neglected, the smallest dimensionless natural frequencies are obtained. In this theory, by
keeping the length to height ratio constant, the variation of the height to material length
scale parameter has no effect on the value of dimensionless natural frequency. Increase in
the value of height to length scale parameter ratio leads to smaller dimensionless natural
frequencies. The effect of material length scale parameter change is more considerable for
smaller values of h and it becomes ineffective as the height increases.
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Fig. 21. Variations of the first dimensionless natural frequency with respect to
h/l,=h/ly, for FGM micro - beamwith L/ h=10, I, =1y, =15pm, b/ h=2,

I/, =l / oy =372, n=2, TOBT, considering different elasticity theories.

The results provided in Fig. 22 and Fig. 23 are calculated by using the third - order beam
theory. Fig. 22 depicts @, as a function of the ratio h/lm and Fig. 23 presents @, as a
function of the ratio h/1,, and the volume fraction exponent n, by utilizing MCST and
SGT, respectively. The increase in the exponent n is seen to result in a corresponding
decrease in @,, which implies that metal - rich small - scale beams exhibit smaller
nondimensional natural frequencies. By using MCST and SGT, respectively in Fig. 24
and Fig. 25 variations of @, with respect to h/l, and h/l,, are shown for four
different values of the length scale parameter ratio 1, /1, and I, / l,,, . Nondimensional
frequency increases as the ratio I/l is increased from 1/3 to 2. The increase is much

more significant when h/l . is relatively smaller. This observation is another verification

of the fact that through - the - thickness variation of the length scale parameter | has to
be taken into account in the analysis of small - scale functionally graded beams.
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Fig. 22. Variations of the first dimensionless natural frequency with respectto h/ 1, and n
for FGM micro - beamwith L/ h=10, |, =15pm, b/h=2,1,/1,=3/2, MCST,
TOBT.
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Fig. 23. Variations of the first dimensionless natural frequency with respect to h/ l,,, and n
for FGM micro - beamwith L/ h=10, |, =15pm, b/ h=2, 1. / l,, =3/ 2, SGT,
TOBT.
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Fig. 24. Variations of the first dimensionless natural frequency with respect to h/ 1, and
I, /1, for FGM micro - beamwith L/ h=10,
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Fig. 25. Variations of the first dimensionless natural frequency with respectto h/ l,, and
loe / lom for FGM micro - beam with L/ h=10, l,, =15pm, b/ h=2, n=2, SGT,
TOBT.
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The variations of dimensionless natural frequency of FGM micro - beam with the length
to thickness ratio predicted by different beam and elasticity theories are depicted in Fig.
26 - Fig. 28. In Fig. 26 and Fig. 27 it is observed that higher values of dimensionless
natural frequency can be obtained for smaller values of slenderness ratio L / h. Also, it
can be inferred that, like the static case, TOBT predicts stiffer beam than TBT and EBBT.
In the free vibration problem, for all three elasticity theories considered in this study,
similar trends are observed, where it is seen that the natural frequency predicted by
MCST is higher than that by the classical elasticity theory and smaller than that of SGT.
This behavior is observed in Fig. 28 which depicts the natural frequency versus
slenderness ratio curve and obtained by using TOBT.

Table 8 tabulates the first three dimensionless natural frequencies corresponding to the
transverse deformation mode computed by implementing MCST for various values of the
exponent n and the ratio I, / I,. Similar results for SGT are given in Table 9. The results

are generated by utilizing the third - order beam theory. The effects of both n and I_ /I,
(or 1, /1,,) are seen to be important. For each value of n, dimensionless frequency
increases significantly as 1. /I, (or Iy, /1, ) is increased. On the other hand, the increase
in the exponent n leads to a drop in the dimensionless frequency .
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Fig. 26. Variations of the first dimensionless natural frequency with respectto L/ h for
FGM micro - beam with, I, =15pm, h/1,=2,b/h=2,1./1,=3/2, n=2, MCST,
considering different beam theories.
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Fig. 27. Variations of the first dimensionless natural frequency with respect to L/ h for
FGM micro - beam with, |y, =15pm, h/l,, =2, b/h=2, 1. /1y, =3/2, n=2, SGT,
considering different beam theories.
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Fig. 28. Variations of the first dimensionless natural frequency with respectto L/ h for
FGM micro - beam with |, =1y, =15pm, h/l,=h/l;, =2, b/ h=2,
I/, =1y /oy =372, n=2, TOBT, considering different elasticity theories.
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Table 8. Dimensionless natural frequencies corresponding to the transverse deformation
mode computed for various values of n and I / I, , for FGM micro - beam with L/ h=10,

l,=15pm, h/1 =2, b/h=2, MCST, TOBT.

C

/1

m

Mode
1/3 1.0 3/2 2.0
0.5 0.4847 0.6298 0.7730 0.9308
First 1.0 0.4572 0.5660 0.6737 0.7937
2.0 0.4403 0.5140 0.5881 0.6725
5.0 0.4268 0.4652 0.5050 0.5519
0.5 1.8618 2.4387 3.0055 3.6283
Second 1.0 1.7524 2.1901 2.6201 3.0968
2.0 1.6822 1.9859 2.2867 2.6252
5.0 1.6267 1.7928 1.9599 2.1525
0.5 3.9540 5.2405 6.4954 7.8666
Third 1.0 3.7137 4,7023 5.6642 6.7214
2.0 3.5517 4,2558 4,9415 5.7019
5.0 3.4261 3.8302 4.2259 4.6716

Table 9. Dimensionless natural frequencies corresponding to the transverse deformation
mode computed for various values of n and Iy / |y, , for FGM micro - beam with

L/h=10, ly, =15pm, h/ly, =2, b/ h=2,SGT, TOBT.

Mode IOc / IOm
1/3 1.0 3/2 2.0
0.5 0.6130 0.9690 1.2804 1.6057
First 1.0 0.5993 0.8651 1.1029 1.3546
2.0 0.5928 0.7737 0.9415 1.1233
5.0 0.5882 0.6839 0.7775 0.8832
0.5 2.3531 3.7247 4.9260 6.1760
Second 1.0 2.2937 3.3353 4.2667 5.2457
2.0 2.2602 2.9934 3.6654 4.3843
5.0 2.2382 2.6529 3.0444 3.4760
0.5 5.0030 7.9395 10.4969 13.1237
Third 1.0 4.8619 7.1331 9.1425 11.2120
2.0 4.7717 6.4292 7.9132 9.4551
5.0 4.7159 5.7190 6.6300 7.5968

4.3.2 Natural frequencies with thermal effects

The relationships between dimensionless natural frequency and height to material length
scale parameter and length to height of the FG micro - beam for different values of
temperature change AT are illustrated in Fig. 29 - Fig. 36 and Table 10 and Table 11.
Similar to the static case, increasing the value of AT decreases the stiffness of the beam
resulting in small values of dimensionless natural frequency. The thermal influence is
more sensible in higher values of height to material length scale parameter and
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slenderness ratio. The effect of temperature change on the first three dimensionless
natural frequencies for different values of exponent n are numerically presented in Table
10 for MCST and Table 11 for SGT.
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Fig. 29. Variations of the first dimensionless natural frequency with respect to h/ 1, and
AT for FGM micro - beamwith L/ h=10, |, =15pm, b/h=2,1,/1,=3/2, n=2,

MCST, EBBT.
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Fig. 30. Variations of the first dimensionless natural frequency with respectto h/ l,, and
AT for FGM micro - beam with L/ h=10, l,,, =15pm, b/ h=2, Iy, /1,,=3/2, n=2,
SGT, EBBT.
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Fig. 31. Variations of the first dimensionless natural frequency with respectto h/1_, and
AT for FGM micro - beamwith L/ h=10, |, =15pm, b/h=2,1./1,=3/2, n=2,

MCST, TBT.
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Fig. 32. Variations of the first dimensionless natural frequency with respectto h/ l,, and
AT for FGM micro - beam with L/ h=10, l,,, =15pum, b/ h=2,1,. /1,,=3/2, n=2,
SGT, TBT.
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Fig. 33. Variations of the first dimensionless natural frequency with respectto h/ 1, and
AT for FGM micro - beamwith L/ h=10, |, =15pm, b/ h=2,1./1,=3/2, n=2,
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Fig. 34 Variations of the first dimensionless natural frequency with respect to h/ 1, and
AT for FGM micro - beam with L/ h=10, l,,, =15pum, b/ h=2, 1, /1,,=3/2, n=2,

SGT, TOBT.
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Fig. 35. Variations of the first dimensionless natural frequency with respectto L/ h and
AT for FGM micro - beam with, 1, =15pm, h/1,=2,b/h=2,1./1,=3/2, n=2,
MCST, TOBT.
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Fig. 36. Variations of the first dimensionless natural frequency with respectto L/ h and
AT for FGM micro - beam with, |y, =15pm, h/l,, =2, b/ h=2, 1. / 1y, =3/ 2,
n=2,SGT, TOBT.
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Table 10. Dimensionless natural frequencies corresponding to the transverse deformation
mode computed for various values of n and AT , for FGM micro - beam with L/ h=10,

l,,=15pm, h/l_ =2,b/h=2,1 /1, =3/2, MCST, TOBT.

AT (°C)
Mode n
0 40 100
0.5 0.7730 0.7670 0.7579
First 1.0 0.6737 0.6667 0.6561
2.0 0.5881 0.5802 0.5680
5.0 0.5050 0.4958 0.4818
0.5 3.0055 2.9995 2.9904
Second 1.0 2.6201 2.6131 2.6027
2.0 2.2867 2.2788 2.2668
5.0 1.9599 1.9507 1.9369
0.5 6.4954 6.4893 6.4802
Third 1.0 5.6642 5.6572 5.6467
2.0 4.9415 4.9335 49215
5.0 4.2259 4.2166 4.2026

Table 11. Dimensionless natural frequencies corresponding to the transverse deformation
mode computed for various values of n and AT , for FGM micro - beam with L/ h=10,

lom =15um, h/ 1y, =2, b/h=2, Iy, / lp, =3/2,SGT, TOBT.

AT (°C)
Mode n
0 40 100
0.5 1.2804 1.2768 1.2714
First 1.0 1.1029 1.0987 1.0923
2.0 0.9415 0.9366 0.9291
5.0 0.7775 0.7715 0.7626
0.5 4.9260 49224 4.9169
Second 1.0 4.2667 4.2624 4.2560
2.0 3.6654 3.6605 3.6531
5.0 3.0444 3.0385 3.0296
0.5 10.4969 10.4932 10.4875
Third 1.0 9.1425 9.1383 9.1318
2.0 7.9132 7.9083 7.9009
5.0 6.6300 6.6241 6.6154

In most of the works on the free vibration analysis of micro - beams, only the transverse
vibration is considered and the axial and rotational mode shapes are neglected. Unless
very small values of length to scale ratio are used, the dominant mode shapes of first
natural frequencies belong to transverse vibration. However, the axial natural frequencies
may occur after the first one. Table 12 gives the first eight dimensionless natural
frequencies predicted by TBT and SGT. For each mode, the mode shapes can be drawn
for axial, transverse and rotational vibrations separately as shown in Fig. 37. By
inspecting the order of the mode shapes, the dominant one is detected at that natural
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frequency. As it can be seen in Table 12 in the first two natural frequencies the transverse
vibration is dominant and the third natural frequency belongs to axial mode shape.

Table 12. First eight dimensionless natural frequencies of FGM micro - beam with
L/h=10, h/ly, =2, lo. / Iy, =1, n=2,SGT, TBT.

Mode

02 :
NN\ ]
L P

Mode Dimensionless Dominant mode
natural frequency shape
1 0.7346 Transverse
2 2.5532 Transverse
3 4.,1003 Axial
4 4.9649 Transverse
5 7.8083 Transverse
6 8.4369 Axial
7 11.0908 Transverse
8 13.2346 Axial
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Fig. 37. Axial (u), transverse (w) and rotational (¢) mode shapes for first eight dimensionless

natural frequencies of FGM micro - beam with L/ h=10, h/ |, =2,

SGT, TBT.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this work a method of analysis based on the higher order continuum theories for small
- scale functionally graded beams, that possess a variable length scale parameter, is
presented. The formulation is carried out in such a way that, proposed procedures make it
possible to generate results regarding three different beam theories, which are Euler -
Bernoulli beam theory, Timoshenko beam theory, and third - order beam theory. Both,
beams that are statically loaded and those undergoing free vibrations are considered in the
developments. Governing partial differential equations are derived by employing
Hamilton’s principle. These equations are solved numerically by means of the differential
quadrature method.

Detailed numerical analyses for the static deflection and free vibration of the FGM micro
- beam are given in Chapter 4. Comparisons of our results to those of other researchers
show the accuracy of numerical method used in this work. Further results presented
illustrate the influences of geometric and material parameters upon the static and the free
vibration responses of small - scale FGM beams.

Two main findings of this study justify the development of a general approach for the
analysis of small - scale functionally graded beams possessing a variable length scale
parameter. It is seen that for such a small - scale beam normal stresses predicted by the
use of the Euler - Bernoulli beam theory deviate significantly from those calculated by
using either of the Timoshenko theory or the third - order theory. Hence, in the
development of an analysis technique, the in - plane shear deformation needs to be
incorporated into the formulation. Furthermore, the variation in the length scale parameter
is shown to strongly influence both the static and the free vibration responses of a small -
scale FGM beam. As a result, in the formulation of the small - scale beam problems, this
variation needs to be taken into account. The method presented in this article is general in
the sense that it allows the consideration of the in - plane shear deformation as well as the
spatial variation of the length scale parameter. Thus, it could prove useful in the analysis,
design, and optimization of small - scale functionally graded beams.

The results of static deflection and free vibration analyses of FG micro - beam for
different values of temperature change AT show that, increasing the value of AT leads
to decrease the stiffness of the beam.

In higher order elasticity approach traction boundary conditions are changed and to
improve the results of analyses it is better to derive new beam model which satisfies these
conditions.
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Except for homogeneous epoxy beam, there are no experimental data on the small - scale
parameters of other materials. To present more accurate static and dynamic characteristics
of the micro - beam, it is essential to make efforts to find the value of small - scale
parameters for other materials; consequently the small - scale parameter of FGM can be
evaluated.

The developed models in this study can be used accurately for static and free vibration
analyses of sensors, actuators, atomic force microscopy (AFM) and other MEMS made of
homogeneous material or FGM with different types of boundary conditions. The models
can be used to validate and improve the approach to predict the static deflection and
natural frequencies of the micro - beam.
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