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This study presents static and free vibration analyses of functionally graded (FG) micro - 

beams on the basis of higher order continuum mechanics used in conjunction with 

classical and higher order shear deformation beam theories. Unlike conventional ones, 

higher order elastic theories consider the size effect for the beam. Strain gradient theory 

(SGT) and modified couple stress theory (MCST) are the two common non-classical 

continuum approaches capable of capturing the size effect. Shear deformation beam 

theories consider the effects of shear strain across the thickness. In the base of SGT and 

generalized beam theories and taking the thermal effects into account, the governing 

equations and boundary conditions are derived using a variational formulation based on 

Hamilton’s principle. This new model may be reduced to the non-classical Bernoulli-

Euler beam model based on the modified couple stress theory (MCST) when two of the 

material length scale parameters and extra terms of higher order beam theories are taken 

to be zero. Numerical analyses using differential quadrature method (DQM) are 

conducted by considering static bending and free vibration problems of a simply 

supported FG beam. 

Keywords: Modified couple stress theory, Strain gradient theory, Higher order shear 

deformation beam theory, Functionally graded material, Differential quadrature method. 
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Bu çalışma, yüksek mertebe sürekli ortam mekaniği ve klasik ve yüksek mertebe kiriş 

kesme deformasyon teorileri temelinde fonksiyonel derecelendirilmiş (FD) kirişlerin 

statik ve serbest titreşim analizlerini sunmaktadır. Klasik teorilerin aksine, yüksek 

mertebe elastisite teorileri kiriş için boyut etkisini göz önünde bulundurmaktalar. Gerinim 

gradyanı teorisi  ve modifiye edilmiş kuvvet çifti gerilmesi teorisi boyut etkisini 

yakalama kapasitesine sahip iki yaygın klasik olmayan sürekli ortam mekaniği 

yaklaşımlarıdır. Kiriş kesme deformasyon teorileri kalınlık boyunca kesme gerinimi 

etkilerini dikkate almaktadırlar. Gerinim gradyanı teorisi ve genel kiriş teorisi temelinde 

ve ısı etkisi göz önünde bulundurularak denklemler ve sınır koşulları Hamilton prensibine 

dayanarak bir varyasyon yöntemiyle elde edilmiştir. Yüksek mertebe kiriş teorisindeki 

ekstra terimler ve malzemenin boyut ölçek parametrelerinden ikisi sıfır alınarak modifiye 

edilmiş kuvvet çifti gerilmesine dayalı klasik olmayan Bernoulli-Euler kiriş modelini elde 

etmek mümkün olmaktadır. Basit mesnetli bir FD kirişin statik eğilme ve serbest 

titreşimini göz önünde bulundurularak diferansiyel kare yapma  metodu ile sayısal 

analizler yapılmıştır. 

Anahtar kelimeler: Modifiye edilmiş kuvvet çifti gerilmesi teorisi, Gerinim gradyanı 

teorisi, Yüksek mertebe kiriş kesme deformasyon teorisi, Fonksiyonel derecelendirilmiş 

malzemeler (FDM), Diferansiyel kare yapma metodu. 
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CHAPTER 1 
 

 

1INTRODUCTION 

 

 

 

1.1 Introduction 

Micro - electromechanical systems (MEMS) have attracted researchers’ attention because 

of their growing applications. Micro - beams are important micro - scale structures that 

have been widely used in micro - and nano - technology industries. The design and 

optimization of micro - beams are extensively investigated in the literature. 

Since classical theories can not predict the size effect for small - scale beams, some 

researchers have made effort to examine the behavior of small - scale beams using non 

classical theories. Strain gradient theory (SGT) and modified couple stress theory 

(MCST) are two prevalent higher order elastic theories that take the small - scale 

parameters into account. In most of the studies these theories have been combined with a 

beam deformation theory and governing equations and boundary conditions are obtained. 

The main objective in this study on one hand, is to consider the small - scale effect on the 

static and dynamic behaviors of functionally graded micro - beam; on the other hand, is to 

investigate thermal effects on deflections and natural frequencies of a beam. Micro - 

beam is supposed to be made of a functionally graded material (FGM) because in the 

recent years there has been considerable interest on FGMs. Further, results for 

homogeneous beams can also be obtained by considering the formulation valid for 

functionally graded beams. 

 

1.2 Previous Works on Micro - beams: Applications, Higher Order Elasticity and 

Beam Theories 

Since their extensive use in micro - structures and micro - electromechanical systems 

(MEMS) such as sensors, actuators and atomic force microscopy (AFM) there is need for 

the methods capable of evaluating mechanical behavior of micro - beams. Further, 

modeling these systems makes it possible to estimate the size effect. 

To make initial predictions about the performance of the micro - switches and design 

before fabrication, it is necessary to use analytic equations. In a micro - switch, an elastic 

beam suspends on a rigid substrate and is actuated by electrostatic forces. In a critical 

voltage which is called pull in voltage the beam deflects toward the substrate and leads to 

pull in instability. Pull in voltage and static and dynamic behaviors of micro - systems 

determine the sensitivity and instability of these systems. Coutu et al. [1] modeled a 



 

2 

typical micro - switch by a cantilever beam to estimate the pull in voltage, contact force 

and contact resistance, which are useful to achieve desired performance. In another work, 

Mojahedi et al. [2] studied the effects of midplane stretching, electrostatic actuation and 

axial loading on the pull in instability of micro - systems. 

Atomic force microscopy (AFM) is another powerful tool in micro - and nano - scale 

technology. In recent years it has been used in different branches of science from surface 

characterization in material science to the study of living biological systems and to 

nanolithography. AFM consists of a micro - cantilever beam and tip interacting with the 

sample. The deflection of the cantilever is plotted as a function of surface location to give 

a high resolution image of surfaces. To capture the surface properties of the sample, 

analytical and numerical models are indispensable to simulate the coupled dynamics of 

AFM and the sample. Mahdavi et al. [3] presented a micro - cantilever model for AFM 

considering four major factors which are: rotary inertia and shear deformation of the 

beam and mass and rotary inertia of the tip. They studied several commercial micro - 

cantilevers to investigate the effects of these factors on the frequency response of the 

beam and verified their model. Stan et al. [4] investigated the size dependent elastic 

properties of zinc oxide nanowires (ZnO NWs). To measure indentation and Young’s 

modulus, they used this fact that when the probe tip of AFM is brought from air into 

contact with the wire, resonance frequency changes. Using AFM, they also measured the 

friction which is proportional to the lateral force to determine the tangential shear 

modulus of the ZnO NW. Non - contact AFM (NC AFM) is a force sensing cantilever 

which is used to produce atomic resolution images on various surfaces. Wang and Hu [5] 

carried out a modal response analysis to study the origins and impacts of higher 

eigenmodes. Fang and Chang [6] improved the surface roughness by AFM based 

lithography. Their tests are conducted on an aluminum film deposited on a silicon 

substrate. In AFM lithography method, an AFM tip is used to draw a pattern on a solid 

surface. Following the work to determine the mechanical and electrical properties of 

AFM, Cook et al. [7] investigated the two common methods to measure the spring 

constant of AFM: thermal noise method and Sader method. They compared the results 

with experimental ones and showed that there is a good agreement between these 

methods. The spring constant of AFM is essential for determining the force exerted by it. 

Micro - cantilever base sensors are capable of detecting extremely small forces and 

stresses. They can operate in either static or dynamic mode. To detect the blood glucose 

level, Pei et al. [8] measured mechanical bending induced by the enzyme reaction on the 

micro - cantilever surface in the presence of glucose. The bending is sensed by reflecting 

a laser beam from the cantilever surface to a position sensitive detector. 

During fabrication, deployment and operation, MEMS devices can be exposed to 

mechanical shock or impact which may lead to some damage such as cracks. Younis et al. 

[9] modeled and simulated MEMS devices under the shock loads and electrostatic 

actuation and showed that the combination of shock load and an electrostatic actuation 

makes the instability threshold much lower than threshold predicted just by one of them. 

In recent years, carbon nanotubes (CNTs) have found versatile applications in 

nanotechnology as gas storage and nano - pipes to convey fluids. It is a substantial issue 
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to determine the influence of the internal moving fluid on mechanical behavior of CNTs. 

The effect of fluid flow on structural instability and free vibration of CNTs is studied by 

Yoon et al. [10]. 

In most of the applications of micro - scale beams, which are discussed above, 

experimental results are used to evaluate the desired function. In some cases, an analytical 

model in the base of classical elastic theory is presented. Experimental results show the 

size dependency of the deformation behavior of materials and classical elastic theory is 

incapable of capturing size effect as the dimensions of the beam become smaller. To 

consider the effects of small - scale parameters, higher order continuum theories are 

presented. 

Yang et al. [11] introduced the moment of couples as an additional equation into the 

equilibrium equations and presented the modified couple stress theory (MCST). They 

investigated new modification by analyzing the torsion of a cylindrical bar and bending of 

a flat plate of infinite width. 

Following the studies about the size dependent behavior of small - scale structures, Lam 

et al. [12] considered the second order deformation gradient in addition to the 

conventional first order symmetric strain tensor and introduced the strain gradient theory 

(SGT). They used simple cantilever beam bending to investigate the difference between 

classical and strain gradient elastic theories and experimentally showed that the higher 

order theory clearly demonstrates behavior of micro - sized epoxy beams. 

Combination of the new continuum theories with appropriate beam theories can give a 

useful picture of the static and dynamic properties of micro - beams. This issue has been 

studied by many researchers. In some work, classical Euler Bernoulli beam theory along 

with MCST approach are used to study homogeneous micro - beams (Şimşek [13], Kong 

et al. [14], Rafiee et al. [15], Xia [16], Kahrobaiyan et al. [17], Wang [18], Akgöz and 

Civalek [19], Park and Gao [20]). Buckling, bending and free vibration analyses of micro 

- beams considering different boundary conditions are investigated in these studies. Ma et 

al. [21] combined MCST and third - order beam theory (TOBT) and showed the 

differences between the resulting static bending and natural frequencies of TOBT and 

Timoshenko beam theory (TBT). Timoshenko beam is also studied in the works related to 

MCST (Ma et al. [22], Asghari et al. [23], Ke et al. [24], Fu and Zhang[25]). Asghari et 

al. [23] considered Von Karman nonlinearity for micro - beams and Ke et al. [24] 

introduced thermal effects into equations. 

Kahrobaiyan et al. [26], Kong et al. [27], Zhao et al. [28], Yin et al. [29] and Akgöz and 

Civalek [30] studied the Euler Bernoulli beam based on SGT and obtained static 

deflection, post buckling behavior and natural frequencies of the micro - beams. 

Kahrobaiyan et al. [26] studied the nonlinear effects of the beam and Zhao et al. [28] 

considered the nonlinearities due to mean axial extension. Timoshenko beam relations in 

conjunction with SGT were used to depict dynamic behavior of micro - scale beams in 

the work conducted by Wang et al. [31]. 
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Similar investigations are carried out for the micro - beams made of functionally graded 

materials (FGMs). FGMs are inhomogeneous composites which are processed by 

combining the best properties of two distinct phases such as high strength, and high 

temperature resistance in order to put forward an ideal material. Nowadays FGMs are 

used extensively in automotive, electronics, biomechanics and aerospace industries. 

Asghari et al. [32] used Euler Bernoulli beam theory and Ke and Wang [33] and Asghari 

et al. [34] used TBT to obtain MCST based formulation for FGMs. Reddy [35] and Ke et 

al. [36] also considered Von Karman nonlinearities. Ansari et al. [37] formulated 

Timoshenko functionally graded beam based on SGT. In most of the studies the length 

scale parameter is considered to be constant which is a simplifying assumption. 

Kahrobaiyan et al. [38] derived the equation of motion and boundary conditions of a 

micro - beam using strain gradient approach and functionally graded Euler – Bernoulli 

beam model considering the variation of material length scale parameter through the 

thickness. 

In the studies mentioned above the higher order continuum theories along with a beam 

theory is used to obtain static deflection, buckling analysis and natural frequencies of 

micro - beams. The comparisons made in these studies show significant differences 

between classical and higher order theories of elasticity. Further, different kinds of 

boundary conditions are studied in the scope of these works. In some cases a comparison 

is made for different beam theories. 

 

1.3 Motivation and Scope of the Study 

In all studies on small - scale functionally graded beams mentioned in the previous 

section, the length scale parameters used in the formulation are taken as constants. Note 

that a single length scale parameter is needed in the modified couple stress theory 

whereas strain gradient elasticity requires the use of three different length scale 

parameters. In a functionally graded medium, due to the variations in the volume 

fractions of the constituents, the length scale parameters are also expected to be functions 

of the spatial coordinates. Thus, a general formulation should take into account the 

variations in the length scale parameters as well. The only study in the literature that 

considers the variations in the length scale parameters seems to be that by Kahrobaiyan et 

al. [38]. In this article, the authors develop analysis methods by using strain gradient 

elasticity in conjunction with the Euler - Bernoulli beam theory. However, Euler - 

Bernoulli theory is built on certain restrictive assumptions such as the assumption of zero 

shear strain; and also as will be shown in this paper, in a number of problems this theory 

has a tendency to overestimate the normal stresses in small - scale beams. TBT considers 

shear strain as a constant along beam thickness. Higher order shear deformation beam 

theories such as TOBT satisfy the shear conditions on the boundaries in the scope of 

classical continuum theory, so that using them along with higher order elastic theories 

leads to more proper results. 

In Chapter 2, by using the general beam model and strain gradient theory, the governing 

equations and boundary conditions are obtained for FGM micro - beam using Hamilton’s 
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principle. The relations can be reduced to MCST or classical also to different beam 

theories for both homogeneous and FGM. Thermal effects have been considered to derive 

the formulation and the static and dynamic behavior of the micro - beam related to the 

temperature change is investigated. In chapter 3, differential quadrature method (DQM) is 

introduced as a means to solve the system of differential equations. The explanation as to 

how DQM may be used to solve the problem and how boundary conditions are 

implemented is presented in this chapter. A computer program is developed using 

MATLAB to implement the developed numerical solution technique. A simply supported 

micro - beam is considered and static deflections and natural frequencies are obtained for 

this problem. The results and comparisons are presented in Chapter 4. The discussion of 

the results and the suggestions for future work are given in Chapter 5. 
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CHAPTER 2 
 

 

2FORMULATION 

 

 

 

2.1 Problem Definition 

To investigate the small - scale and shear deformation effects on micro – beams, a beam 

made of an FGM is considered. Functionally graded materials (FGMs) are 

inhomogeneous composites which are processed by combining the best properties of two 

distinct phases such as high strength, and high temperature resistance in order to put 

forward an ideal material. Nowadays FGMs are used extensively in automotive, 

electronics, biomechanics and aerospace industries. 

Fig. 1 illustrates a small - scale functionally graded (FG) beam with length L and 

thickness h made from a mixture of ceramics and metals. The bottom surface (x3 = -h/2) 

is metal rich and the top surface (x3 = h/2) is ceramic rich. The material properties of the 

FG beam vary continuously in the thickness direction. The effective bulk modulus Ke and 

shear modulus μe are calculated by Mori - Tanaka homogenization method [37]: 

4
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 (2) 

where V denotes volume fraction of the phase materials. The subscripts m and c denote 

metal and ceramic phases, respectively. Vc and Vm are defined by using a power law 

function: 

1C mV V    (3) 

   0.5 /
n

cV z z h    (4) 

where n is the volume fraction exponent. The effective material properties of the FG 

micro - beam such as Young’s modulus E and Poisson’s ratio υ related to Ke and μe are 

expressed as: 
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  (6) 

Using the rule of mixtures the effective mass density ρ and the thermal expansion 

coefficient   can be given as 

  c c m mρ z ρ V ρ V    (7) 

  c c m mz V V      (8) 

 

2.2 Shear Deformation Beam Theories 

Higher order shear deformation beam theories consider the effects of transverse shear 

deformation. Assuming that the deformations of the beam are in the x1 – x3 plane and 

denoting the displacement components along the x1, x2 and x3 directions by u1, u2 and u3, 

based on the general higher - order shear deformation beam theory, the following 

displacement field is assumed: 

     
11 1 3 1 3 3 1,xu x ,x ,t u x ,t x w f x ( x ,t )     (9.a) 

 2 1 3 0u x ,x ,t    (9.b) 

   3 1 3 1u x ,x ,t w x ,t   (9.c) 

u and w represent middle surface displacement components along the x1 and x3 directions, 

respectively, t is the time, “(),x” denotes partial derivative with respect to x1, γ is the 

transverse shear strain of any point on the neutral axis: 

     
11 1 1,xx ,t w x ,t x ,t ,     (10) 

where ϕ
 
is the total bending rotation of the cross - section at any point on the neutral axis 

(Fig. 1) 

Shape function f determines the distribution of the transverse shear strain and stress 

through the thickness. By taking the shape function as zero the Euler – Bernoulli beam 

theory (EBBT) or classical beam theory is obtained as a particular case. To consider shear 

effects higher order shear deformation beam theories have been already introduced by 

researchers. Among these theories third - order beam theory (TOBT) [40, 41], 

trigonometric shear deformation beam theory [42] and hyperbolic shear deformation 

beam theory (HSDBT) [43] are mostly used in the literature. Although different shape 

functions are applicable, only the ones which convert the present theory to the 

corresponding Euler - Bernoulli beam theory (EBBT), first order shear deformation beam 
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theory or Timoshenko beam theory (TBT) and TOBT are employed in the present study. 

In more detail, the shape function employed for EBBT, TBT and TOBT are as follows: 

 3EBBT:     0f x    (11.a) 

 3 3TBT:     f x x   (11.b) 

 
2
3

3 23

4
TOBT:     1

3h

x
xf x
 

   
 

  (11.c) 

 

 
Fig. 1. Functionally graded beam configuration and the shape function schematic sketch for 

higher order shear deformation beam theories. 

 

2.3 Strain Gradient Theory (SGT) 

In the strain gradient theory strain energy density, v, depends on both the conventional 

strain (the symmetric part of the first order deformation gradient) and on the second order 

deformation gradient [12] 

x3, u3
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w
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w,x1

ϕ
γ
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h
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 ij ijv v ,     (12) 

where εij and ηijk are the strain tensor (first order deformation gradient) and second order 

deformation gradient tensor, respectively 

 
1

2
ij i j ,i, ju u    (13.a) 

ijk k ,iju    (13.b) 

where ui is the displacement vector. 

The Cauchy stress tensor, σij, and double stress tensor, τijk can be defined as: 

ij

ij

v






  (14.a) 

ijk

ijk

v






  (14.b) 

The second order deformation gradient, ηijk, can be decomposed into symmetric and anti - 

symmetric parts, 
s
ijk , and 

a
ijk , giving, 

 
1

3

s
ijk ijk jki kij       (15.a) 

 
2

3

a
ijk ikl lj jkl lie e      (15.b) 

where eijk is the alternating tensor and χij = 1/2eipqηjpq is the curvature tensor. By splitting 

the symmetric second order deformation gradient, 
s
ijk , a trace part, 

 0

ijk , and a traceless 

part, 
 1

ijk , are obtained 

   0 1s
ijk ijk ijk   

 
 (16) 

where 

   0 1

5

s s s
ijk ij mmk jk mmi ki mmj       

 
 (17.a) 

   1 0s
ijk ijk ijk   

 
 (17.b) 
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1

2
3

s
mmk mmk kmm      (17.c) 

The curvature tensor is decomposed into symmetric and anti - symmetric parts as 

s
ij ij i

a
j      (18) 

where 

 
1

2

s
ij ij ji     (19.a) 

 
1

2

a
ij ij ji      (19.b) 

The trace part of the symmetric second order deformation gradient is a function of the 

dilatation gradient and the anti - symmetric part of the curvature, 

2 2

3 3

s a
ipp ,i imn mn ,i imn mne e          (20) 

where ε is the dilatation strain, 

mm    (21) 

For easy reference, ε,i, 
 1

ijk  and χij are named as the dilatation gradient, the deviatoric 

stretch gradient and the rotational gradient, respectively. The second order virtual work 

density in terms of the new strain metrics is 

       0 0 1 1 a a
ijk ijk ijk ijk ijk ijkv



          (22) 

where     
   

 and     
   

 are the trace and traceless parts of the symmetric part the double 

stress tensor (    
 ), respectively, and are orthogonal to each other: 

   0 1

5

s s s
ijk ij mmk jk mmi ki mmj          (23.a) 

   1 0s
ijk ijk ijk      (23.b) 

Using ε,i,     
   

, χij as the second order metrics, equation (22) can be written as 

   1 1 '
i ,i ijk ijk ij ijv p m



        (24) 

where 
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3

5

s
i mmip    (25) 

4 2

3 5

' a s
ij ipq jpq ijk mmkm e e     (26) 

By neglecting the effects of the dilatation gradient and the deviatoric stretch gradient the 

modified couple stress theory (MCST) is obtained: 

ij ij ij ijv m       (27) 

In this theory in addition to the classical equations of forces and moments of forces, the 

equilibrium of moments of couples must be satisfied. To satisfy the higher order 

equilibrium equation mij must be symmetric. Finally, considering the effects of 

conventional strain tensor and using symmetric part of mij, the total strain energy density 

for strain gradient theory becomes: 

  1 s
ij ,i ijk ijv v , , ,       (28) 

For a deformed linear elastic isotropic material, the strain energy U, occupying region Ω 

based on the modified strain gradient elasticity theory can be then written as 

    1 11

2

s s
ij ij i i ijk ijk ij ijU p m dv        

Ω

  (29) 

 
1

2
ij i , j j ,iu u     (30) 

i mm,i    (31) 

       

 

1 1 1 1
2 2

3 15 15

2

ijk jk ,i ki , j ij ,k ij mm,k mk ,m jk mm,i mi ,m

ki mm, j mj ,m

         

  

     

 


 (32) 

 
1

2

s
ij ipq qj ,p jpq qi ,pe e      (33) 

Since the different second order strain metrics are orthogonal to each other and there is no 

coupling amongst them three different parameters are used to define the constitutive 

relations which are given by [12]: 

  2ij ij ijtr        (34) 

2
02i ip l    (35) 
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   1 12
12ijk ijkl     (36) 

2
22s s

ij ijm l    (37) 

where 

  1 1 2

E
,

 




 
  (38) 

 2 1

E
,





  (39) 

and l0, l1, l2 are material length - scale parameters which for the FGM micro – beam are 

taken as follows: 

 0 3 0 0c c m ml x l V l V    (40.a) 

 1 3 1 1c c m ml x l V l V    (40.b) 

 2 3 2 2c c m ml x l V l V    (40.c) 

By inserting equations (9.a) - (9.c) into equation (30), the non-vanishing strains are 
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  (41) 

where a prime denotes the derivative with respect to x3. 

Substitution of equations (41) into equations (31) - (33) yields the nonzero components of 

 1 s
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Consequently, by placing equations (41) - (44) into equations (34) - (37), the nonzero 

components of the symmetric section of the stress tensor and the higher order stresses in 

the thermal environment are obtained as follows 
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Note that ks is the shear correction factor, which is taken as unity in EBBT and TOBT; 

and specified as 65  in Timoshenko beam theory for rectangular cross - sections. T  is 

the temperature change from a stress free state. Note that the deformed shape of the beam 

is governed by the total strain while the stress state depends only on the mechanical 

strains. Although the material properties such as elastic modulus E, Poisson’s ration ν, 

density ρ and coefficient of thermal expansion α are temperature dependent, the influence 

of temperature change on material properties is not considered in this study. Then the 

strain energy based on modified strain gradient theory (equation (29)) may be rewritten as 
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The work done by external forces is 
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where q is the distributed transverse loading and the second expression is the work done 

by axial force due to the influence of the temperature change which can be determined 

from a static thermal bending analysis [24]. The kinetic energy of the micro - beam is 

given by 
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 (51) 

where ρ and A are density and the cross - sectional area of the beam. The terms related to 

inertia in equation (51) can be defined as 

   2 22
1 2 3 4 5 6 3 3 3 3 3

2

1

h

hI ,I ,I ,I ,I ,I ( x ) ,x ,x , f ,x f , f dxb


   (52) 

To determine the dynamic governing equations of the beam and all possible boundary 

conditions the Hamilton’s principle is employed which is 

  
2

1

0
t

t
K U W dt      (53) 

Substituting equations (49) - (51) into equation (53), taking the variation of u, w and γ and 

integrating by parts the higher order equations of motion (54.a) - (54.c) and the boundary 

conditions (55.a) - (55.g) can be obtained by setting the coefficients of δu, δw and δγ 

equal to zero. The equations are given as follows: 
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And, the boundary conditions are: 
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The stiffness components in equations (54.a) - (54.c) and (55.a) - (55.g) are defined as 
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Equation (10) is used to get the governing equations and boundary conditions in terms of 

ϕ instead of γ. Thus, the following equations are obtained: 
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The boundary conditions are obtained as: 
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Equations (58.a), (58.c), (58.d) and (58.f) represent the classical boundary conditions 

while the non – classical boundary conditions are expressed in equations (58.b), (58.e) 

and (58.g). In each of the boundary conditions given in equations (58.a) - (58.g), the first 

expression is a natural type boundary condition while the second is an essential type. 

To obtain the normalized governing equations of motion and boundary conditions the 

following dimensionless quantities are defined 
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 (59) 

110A  and 10I  in these equations are respectively reference values of 11A  and 1I  

evaluated by considering a homogeneous beam, whose properties are the same as those of 

the graded beam computed at x3 = -h/2. By substituting the above relations into equations 

(57.a) - (57.c) the following normalized equations are obtained 
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The boundary conditions are derived by placing relations (59) into equations (58.a) - 

(58.g) 
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By using the normalized equations obtained above, dimensionless frequency,

10 110L I / A  , will be obtained, where   denotes the vibration frequency of the 

FGM micro - beam. In the case of static analysis, inertia related terms are not taken into 

account whereas in free vibration analysis the external loading q  is equated to zero. 

 

2.4 Modified Couple Stress Theory (MCST) 

By neglecting the effects of the dilatation gradient and the deviatoric stretch gradient, 

equation (29) reduces to the strain energy based on the modified couple stress theory: 

 
1

2
ij ij ij ijU m dv   

Ω

  (62) 

By letting l0 and l1 to be equal to zero in equations (60.a) - (60.c)and (61.a) - (61.g), the 

micro - beam formulation for MCST is obtained. Unlike the conventional theories of 

continuum mechanics, in general higher order theories the material particle is encased 

with a representative volume element. In conventional theories the material particle is 

considered as a geometrical point thus only possesses the characteristic translation, but in 

higher order theories it can undergo rotations and deformations. The equilibrium relations 

in higher order continuum theories not only involve the conventional force and moment 

equilibriums but also the equilibrium of moment of couple is considered. In the other 

words, the couple vector is not a free vector. Fig. 2 shows the equivalence of couple and 

the moment of couple [11]. The couple vector LA at point A can be represented by a 

couple '
AL  and a couple of couples '

AM  applied to point B. 

 

 
Fig. 2. Equivalence of couple: a couple at point A is equivalent to a couple at point B and a 

moment of the couple [11]. 

 

Yang et al. [11] used the above hypothesizes to obtain the relations in modified couple 

stress theory. They experimentally showed the importance of small - scale parameter as 

the sizes become smaller. They also showed how to obtain the value of length scale 

parameter for a linear isotropic material by twisting slim cylinders of different diameters. 
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By adding the moment of couple to the equilibrium relations it is observed that the couple 

stress tensor becomes symmetric and the deformation energy becomes independent of 

antisymmetric part of the curvature tensor. 

In the following chapters a numerical method will be used to solve the equations of 

higher order continuum in conjunction with newly developed micro - beam theory and 

classical beam theories. The mechanical characteristics of the micro - beam will be 

investigated using these theories. 
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CHAPTER 3 
 

 

3NUMERICAL SOLUTION 

 

 

 

In this chapter numerical solution method is described. Differential quadrature method is 

used to solve the governing differential equations and boundary conditions. A computer 

program is developed using MATLAB to implement the numerical solution technique. 

 

3.1 Differential Quadrature Method (DQM) 

Since analytical solutions are unavailable for complex problems, use of a suitable 

numerical method in the solution of the system of equations is indispensable. Differential 

quadrature method (DQM) is a powerful means to solve such problems. This technique is 

an easy, fast, accurate and applicable method and has some advantages upon other 

numerical methods. Finite element method (FEM) requires large number of grid points 

and thus needs more time and memory to solve the problem. In some of the work related 

to micro - and nano - beams Navier solution is used to solve the simply supported beam 

problems. The drawback of this technique is that it is restricted to simply supported 

beams and can not be used for other types of boundary conditions. 

Bellman and Casti [44] in 1971 proposed DQM to evaluate the derivatives of a 

sufficiently smooth function. In this method, weighted sum of function values at nodes 

are used to approximate the derivatives of the function, i.e. a derivative is written as: 

       
1

,   for  = 1, 2, ..., 
N

m m

x i ij j

j

u x ,t c u x ,t i N


  (63) 

where  ju x ,t  or ju  is the function value at jth node,  m

xu  is the mth derivative of 

function u with respect to x, 
 m

ijc  are the weighting coefficients for mth derivative and N 

is the number of grid points or nodes. To determine the weighting coefficients with no 

limitation on the choice of grid points, Shu [45] chose Lagrange interpolated polynomial 

as the set of test functions and obtained the following recursive formula 
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3.2 Numerical Solution for Simply Supported Micro - beam 

In this section DQM is used to examine static response and free vibration behavior of 

simply supported functionally graded micro – beams. The beam geometry is shown in 

Fig. 1. The bottom surface (x3 = -h/2) is pure metal and the top surface (x3 = h/2) is pure 

ceramic. In free vibration analysis q is taken as zero. 

The Chebyshev nodes which are more stable in comparison with uniform grids [46] are 

used as the sampling points of DQM as follows 

 11
1 , for   = 1, 2, ..., 

2 1
j

j
x cos j N

N

   
        

 (65) 

For a simply supported micro - beam the boundary conditions of (61.a) - (61.g) can be 

written as 
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By dropping the inertia terms and denoting the static displacements by ,  and b b bu w   the 

nondimensional displacements of the beam under steady state temperature field and static 

loading are obtained by solving the following static bending problem 
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The boundary conditions in the static analysis remain the same as in equations (66.a) - 

(66.g). The total displacements are the sum of static displacements and the additional 

dynamic displacements which are denoted by ,  and d d du w  , that is [47] 

+ , + , =b d b d b du u u w w w         (68) 

By substituting equation (68) into equations (60.a) - (60.c) and boundary conditions in 

equations (66.a) - (66.g) and noting that ,  and b b bu w   satisfy the static problem 

expressed in equations (67.a) - (67.c), the governing equations and boundary conditions 

in terms of the dynamic displacements ,  and d d du w   are obtained. The governing 

equations are the same as in equations (60.a) - (60.c) and the boundary conditions now 

become homogeneous for free vibration analysis as follows 
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By substituting finite series representation of the differential operators in equation (64) 

into equations (60.a) - (60.c) the governing equations of motion of simply supported 

FGM micro - beam are recast into the following form: 
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where i = 1, 2, …, N and the over dot denotes partial derivative with respect to 

dimensionless time τ. 

By substituting equation (64) into equations (61.a) - (61.g) boundary conditions of simply 

supported micro - beam can be rewritten as 
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The governing equations and boundary conditions given above can be used to solve both 

static and free vibration problems. In the case of static analysis, inertia related terms are 

not taken into account whereas in free vibration analysis the external loading q  and the 

terms in the boundary conditions resulted from steady state temperature field which effect 

the static behavior of the beam are equated to zero. In what follows below, we provide the 

matrix forms of the governing equations and boundary conditions for small - scale beams 

subjected to static loading and for those undergoing free vibrations. 

 

3.2.1 Small - scale beams subjected to static loading 

For a beam subjected to static loading, we define an unknown generalized displacement 

vector d, an unknown static displacement vector db and a dynamic displacement vector dd 

as follows: 

      
T

T T T
     for 1  2   i i iu , w , , i , , ..., N d  (72.a) 

      
T

T T T

     for 1  2   
i i ib b bu , w , , i , , ..., N bd  (72.b) 
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T

T T T

     for 1  2   
i i id d du , w , , i , , ..., N dd  (72.c) 

where d = db + dd. Eliminating the inertia related terms and substituting equation (72.b) 

into equations (70.a) - (70.c), we obtain the following matrix form of the governing 

equations: 

e i  b b d bD d D d Q 0,    (73) 

where e
bd  and i

bd  are static displacement vectors for end points and internal points, 

respectively; bD  and dD  are coefficient matrices associated with end and internal 

points; and Q  is the distributed force matrix. Substitution of equation (72.b) into the 

boundary conditions expressed by equations (71.a) - (71.g) leads to 

  e i

b b d b tB d B d Q 0,    (74) 

In the last mentioned relation, bB  and dB  are coefficient matrices associated with end 

and internal points and tQ  is the thermal load vector. The final matrix form of the 

equations is obtained by substituting equation (74) into equation (73) and is written as 

  i

b t tKd K Q Q 0,    (75) 

where   1

t b bK D B  and the stiffness matrix is given by 

1 .  b b d dK D B B D    (76) 

 

3.2.2 Small - scale beams undergoing free vibrations 

No external forces act on a beam undergoing free vibrations, thus q is taken as zero in the 

numerical solution of the free vibration problem. In this case, the dynamic displacement 

vector dd is defined in the following form: 

* ie d dd d   (77) 

where 10 110L I / A   is the dimensionless frequency,   denotes the vibration 

frequency of the FGM micro - beam,       i i i

T
* * * *

d d du , w , 
T

T T

dd    is the vibration 

mode shape vector. By substituting the equation (77) into equations (70.a) - (70.c), one 

can derive the governing equations as given below 

2 0  *e *i *i
db d d dD d D d Md   (78) 
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where bD  and dD  are coefficient matrices associated with end and internal points, 

respectively; *e
dd  and *i

dd  are mode shape vectors for end and internal points; and M  is 

the mass matrix. Substituting equation (77) into equations (71.a) - (71.g) and eliminating 

the nonhomogeneous thermal terms one can obtain 

 *e *i
b b d dB d B d 0,   (79) 

bB  and dB  are coefficient matrices associated with end and internal points, respectively. 

Combining equations (78) and (79), the eigenvalue problem regarding free vibrations of 

small - scale functionally graded beams is expressed as 

  2 *i
dK - M  d 0,   (80) 

where 1  b b d dD B B DK  is the stiffness matrix. 

Equation (80) is solved to determine the dimensionless frequencies and the corresponding 

mode shape vectors. A particular frequency obtained via Equation (80) may correspond to 

any of the three deformation modes, which we identify as transverse deformation, axial 

deformation, and rotational deformation. These three deformation modes are respectively 

quantified by the functions w, u and ϕ. The deformation mode corresponding to a given 

frequency is determined by examining the mode shape vector. 

In order to implement the numerical method developed in this chapter, a computer 

program is developed using MATLAB [48]. In the following chapter, we give 

detailed results of simply supported micro - beam. 
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CHAPTER 4 
 

 

4RESULTS 

 

 

 

In the previous chapter the general beam theory in conjunction with SGT is formulated. 

By substituting the shape function, f, the formulation for desired beam theory can be 

obtained. Letting the small - scale parameters l0, l1 and l2 equal to zero leads to equations 

of motion and boundary conditions of classical theory of elasticity and by l0=l1=0 the 

relations are reduced to MCST. The formulation is obtained for FGM and the power 

index n determines the type of the variation of the properties along the thickness and by 

letting n=0 homogeneous material formulation is obtained. Setting 0T   leads to the 

deflection and natural frequencies of small - scale beam with no thermal effects. 

In this chapter the numerical results are presented. To check the accuracy and validity of 

the computer program, some comparisons with the results already presented in the 

literature are given. To investigate homogeneous micro - beam it is assumed that the 

beam is made of epoxy with the material properties E=1.44 GPa, υ=0.38 (or μ=521.7 

MPa), ρ=1220 kg/m
3
 and 

654 10 /°C  . The FGM micro - beam consists of 

aluminum (Al) and ceramic (SiC) with the following material properties: 5 6sk / , 

0 3m .   and 0 17c .  , 
32702 kg/mm  and 

33100 kg/mc , 70 GPamE  and 

427 GPacE , 
623 10 /°C m  and 

64 76 10 /°C c .  [49]. In classical beam 

theory it is supposed that the beam is slender and the Poisson effect is neglected ( 0  ). 

For homogeneous epoxy micro - beam the length scale parameter has been 

experimentally obtained as 2 17 6 μm l l .  and assuming the three length scale 

parameters in SGT to be equal, they are obtained as 0 1 2 17 6 μm   l l l l .  [12]. There 

is no available experimental data relevant to the FGM micro - beams in literature. In 

order to analyze the size effect of the FGM micro - beams, the values of length scale 

parameters for the metal are approximately assumed to be equal to 15μm  ( 0 1 2m m ml l l 

=15 μm ) in the following numerical evaluations. To investigate the non – constant value 

of the length scale parameters through the thickness of the FGM micro - beam, distinct 

sets of length scale parameters of the ceramic ( 0 1 2c c cl l l  ) are used. For simplicity, in 

the following analysis material length scale parameter used in MCST is shown by l 

instead of l2 for both metal and ceramic. 

By setting the inertia terms of the governing equations and boundary conditions, the right 

hand side of the equations (60.a) - (60.c) and (61.a) - (61.g), equal to zero the static 

formulation is obtained. For static analysis, distributed force of constant value q = 1 N/m, 

is considered to be applied on the upper surface of the micro - beam. The dimensionless 
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deflection (w/h) are obtained for the FGM micro - beam with 10L / h   and 20 

0 2mh / l  . 

In this work the free vibration equations of simply supported beam is derived and 

numerical solution is used to obtain the natural frequencies. To check the validity of the 

numerical solution and accuracy of the results, a comparison is made with the results 

given in previous works. 

 

4.1 Comparisons 

In order to check the accuracy of the results obtained using the differential quadrature 

method and developed computer program, some comparisons are given in section  4.1. 

Table 1 gives the comparisons between the maximum deflections for both EBBT and 

TBT which are obtained using MCST. As it is seen, there is a good agreement between 

the results obtained in this work and those of Reddy [35]. There are small differences 

between the maximum deflections obtained by TBT because Reddy [35] also considered 

the Poisson’s ratio to be zero for TBT. 

Comparisons of natural frequencies for homogeneous and FGM micro - beams predicted 

by MCST are presented in Table 2 and Table 3. The results generated by our computer 

program are very close to the results of other researchers. For homogeneous micro - 

beam, the best agreement is observed between our results and the results obtained using 

closed form solution by Ma et al. [22] which indicates the accuracy of numerical method 

used in this work with respect to other methods. In Table 4 the natural frequencies which 

are obtained using SGT for different FGM power index values are compared. Our results 

are very close to the results obtained by Navier solution. Although for higher modes small 

differences are observed, the results are still in good agreement. In the case of taking the 

thermal effects into account to validate the results of our program, a comparison is made 

with the natural frequencies obtained by Ke et al. [24] using MCST for different values of 

T  in Table 5. It is observed that the results are also very close in this case. 

 

Table 1. Comparisons of normalized maximum deflection  4 2
10

max
w w EI / qL    for 

isotropic homogeneous micro - beams, MCST, 20L / h  , 17 6 μml . , 2b / h  , 

1 0 N/mq . . 

l/h 
EBBT  TBT 

Present Reddy [35]  Present Reddy [35] 

0.0 1.3021 1.3021  1.3056 1.3103 

0.2 1.1092 1.1092  1.1125 1.1162 

0.4 0.7679 0.7679  0.7708 0.7731 

0.6 0.5076 0.5076  0.5102 0.5116 

0.8 0.3442 0.3442  0.3467 0.3475 

1.0 0.2435 0.2435  0.2458 0.2464 
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Table 2. Comparisons of first five natural frequencies (MHz) for isotropic homogeneous 

micro - beams, MCST, TBT, 10L / h  , 17 6 ml .  . 

Mode 

h/l = 10  h/l = 5  h/l = 3.33 

Present 
Ma et al. 

[22] 

 
Present 

Ma et al. 

[22] 

 
Present 

Ma et al. 

[22] 

1 0.03765 0.03765  0.07782 0.07782  0.12290 0.12290 

2 0.13966 0.13966  0.28874 0.28874  0.45609 0.45609 

3 0.28384 0.28384  0.58743 0.58743  0.92894 0.92894 

4 0.45136 0.45136  0.93594 0.93594  1.48370 1.48370 

5 0.63062 0.63062  1.31143 1.31143  2.08671 2.08671 

 

Table 3. Comparisons of dimensionless natural frequencies of FGM micro - beam for 

different values of n, MCST, TBT, 10L / h  , 15 μmm cl l  , 2mh / l  . 

Mode Method 
FGM volume fraction exponent, n 

Ceramic n=0.6 n=1.2 n=2 metal 

1 

Ke et al. [33] 0.8336 0.5944 0.5376 0.5048 0.3393 

Ma et al. [22] 0.8538 - - - 0.3797 

Ansari et al. [37] 0.8538 0.6084 0.5470 0.5100 0.3863 

Present 0.8538 0.6084 0.5469 0.5099 0.3797 

 

2 

Ke et al. [33] 3.2081 2.2805 2.0550 1.9230 1.2914 

Ma et al. [22] 3.2551 - - - 1.4323 

Present 3.2550 2.3167 2.0772 1.9306 1.4323 

 

3 

Ke et al. [33] 6.8417 4.8649 4.3725 4.0762 2.7165 

Ma et al. [22] 6.8575 - - - 2.9789 

Present 6.8575 4.8744 4.3570 4.0344 2.9789 

 

5 

Ma et al. [22] 16.4671 - - - 6.9886 

Ansari et al. [37] 16.4672 11.6879 10.3919 9.5590 7.0831 

Present 16.4671 11.6880 10.3916 9.5585 6.9886 

 

Table 4. Comparisons of dimensionless natural frequencies of FGM micro - beam for 

different values of n, SGT, TBT, 10L / h  , 0 0 15 μmm cl l  , 0 2mh / l  . 

Mode Method 
FGM volume fraction exponent, n 

Ceramic n=0.6 n=1.2 n=2 metal 

1 
Ansari et al. [37] 1.2608 0.8976 0.7986 0.7346 0.5430 

Present 1.2608 0.8976 0.7986 0.7346 0.5355 

 

5 
Ansari et al. [37] 19.2899 13.6798 12.1164 11.0892 8.1240 

Present 19.2938 13.6824 12.1183 11.0908 8.0217 
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Table 5. Comparisons of dimensionless natural frequencies of homogeneous micro - beam 

for different values of T , MCST, TBT, 10L / h  , 17 6 μml . , 2h / l  . 

Mode Method 
 T C   

0 20 40 60 80 100 

1 
Ke et al. [24] 0.3478 0.3322 0.3159 0.2986 0.2804 0.2608 

Present 0.3477 0.3322 0.3158 0.2986 0.2803 0.2608 

        

5 
Ke et al. [24] 5.9628 5.9410 5.9191 5.8971 5.8751 5.8529 

Present 5.9617 5.9399 5.9180 5.8960 5.8740 5.8518 

 

4.2 Static Results 

4.2.1 Deflection of the micro - beam under distributed transverse load 

To study the static behavior of micro - scale beams, the deflection of the FG beam and its 

maximum value are obtained for different values of FGM power index, ceramic length 

scale parameter, temperature change and geometrical parameters of micro - beam, using 

different higher order continuum approaches and beam deformation theories discussed in 

this work. Dimensionless deflections of the micro - beam under uniformly distributed 

load obtained by using MCST and SGT and evaluated by using three different beam 

theories are depicted in Fig. 3 and Fig. 4, respectively. Fig. 5 is generated by 

implementing the same parameters of Fig. 4 and letting 0 10mh / l . By investigating the 

results one can conclude that the TOBT predicts the smallest midspan deflection 

compared to other classical beam theories. Although EBBT is seen to result in the largest 

midspan deflection, once SGT with small values of 0mh / l  is used the effect of small - 

scale parameters become more significant than shear considerations which make EBBT 

predict stiffer beam than TBT. 

Fig. 6 and Fig. 7 show normalized normal stress distributions using MCST and SGT, 

respectively, generated by using the three different beam theories. The curves obtained by 

the Timoshenko and third - order beam theories are rather close to each other. However, 

the normal stress estimation by the Euler - Bernoulli is not in agreement with those by the 

other two beam theories. Since Euler - Bernoulli beam theory does not take into account 

the in - plane shear deformation, the results calculated by the Timoshenko and the third - 

order beam theories are deduced to be more reliable. This finding indicates that it may not 

be appropriate to use the Euler - Bernoulli beam theory in certain problems regarding 

small - scale FGM beams possessing a variable length scale parameter. 

Comparison of the results obtained by different elasticity theories using TOBT are 

illustrated in Fig. 8. MCST results in higher values of static deflection than SGT, 

however, it still predicts stiffer beam than the classical elasticity theory. 
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Fig. 3. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 15 μmml  , 

2mh / l  , 2b / h  ,  3 2c ml / l / , 2n  , 1 0 N/mq . , MCST, considering different beam 

theories. 
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Fig. 4. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

0 15 μmml  , 0 2mh / l  , 2b / h  , 0 0 3 2c ml / l / , 2n  , 1 0 N/mq . , SGT, considering 

different beam theories. 
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Fig. 5. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

0 15 μmml  , 0 10mh / l  , 2b / h  , 0 0 3 2c ml / l / , 2n  , 1 0 N/mq . , SGT, considering 

different beam theories. 
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Fig. 6. Normal stress distributions of the FGM micro - beam with 10L / h  , 15 μmml  , 

2mh / l  , 2b / h  ,  3 2c ml / l / , , 1 0 N/mq . , MCST, considering different beam 

theories. 

2n 
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Fig. 7. Normal stress distributions of the FGM micro - beam with 10L / h  , 0 15 μmml  , 

0 2mh / l  , 2b / h  , 0 0 3 2c ml / l / , 2n  , 1 0 N/mq . , SGT, considering different beam 

theories. 
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Fig. 8. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

0 15 μmm ml l  , 0 2m mh / l h / l  , 2b / h  , 0 0 3 2c m c ml / l l / l /  , 2n  , 

1 0 N/mq . , TOBT, considering different elasticity theories. 
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Fig. 9 and Fig. 10 depict the influence of the exponent n  on the static deflection of the 

small - scale functionally graded beam predicted by MCST and SGT, respectively. These 

results are computed by considering the TOBT. Note that distribution profiles of ceramic 

and metal volume fractions depend on the exponent n. When n is less than unity the beam 

is ceramic - rich while for an n value greater than one the beam possesses a metal - rich 

profile. The volume fraction variation is linear for .1n  The results provided in Fig. 9 

and Fig. 10 point out that, deflection becomes larger as n is increased from 0.5 to 5, i.e. 

static deflection computed for a ceramic - rich beam is smaller compared to the deflection 

evaluated for a metal - rich beam. 

Results regarding the impact of the variation of the length scale parameter l  upon the 

static deflection of a small - scale functionally graded beam are presented for MCST in 

Fig. 11 and for SGT in Fig. 12. These results are also evaluated through the use of the 

TOBT. Static deflection curves are generated for four different values of c ml / l . When 

this ratio is equal to unity, the beam has a constant length scale parameter. It can be seen 

that the influence of the variation of the length scale parameter on the static deflection is 

rather significant. Static deflection decreases as mc ll  is increased from 31  to 2. As the 

length scale parameter of the ceramic component gets larger compared to that of the 

metallic component, the deflection of the beam becomes smaller considerably. This 

observation is also a validation of the premise of this study that the variation of the length 

scale parameter needs to be taken into account in the analysis of small - scale functionally 

graded beams. 
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Fig. 9. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 15 μmml 

, 2mh / l  , 2b / h  , 3 2c ml / l / , 1 0 N/mq . , MCST, TOBT, considering different 

values of n. 
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Fig. 10. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

0 15 μmml  , 0 2mh / l  , 2b / h  , 0 0 3 2c ml / l / , 1 0 N/mq . , SGT, TOBT, considering 

different values of n. 
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Fig. 11. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

15 μmml  , 2mh / l  , 2b / h  , 2n  , 1 0 N/mq . , MCST, TOBT, considering different 

values of c ml / l . 
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Fig. 12. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

0 15 μmml  , 0 2mh / l  , 2b / h  , 2n  , 1 0 N/mq . , SGT, TOBT, considering different 

values of 0 0c ml / l . 

 

To have a clear understanding of static analysis, the results of different beam and 

elasticity theories for different values of n are given for micro - beam with 20L / h , 

0 0 15 μm   m c m cl l l l  in Table 6 and micro - beam with 10L / h , 

0 0 3 2 c m c ml / l l / l /   in Table 7. 

 

Table 6. Maximum deflection 3
10

max
w w   of FGM micro - beam with 20L / h  , 

0 0 15 μmm c m cl l l l    , 0 2m mh / l h / l  , 2b / h  , 1 0 N/mq . , considering 

different values of n  and different beam and elasticity theories. 

Elasticity 

theory 
Beam theory 

FGM volume fraction exponent, n 

Ceramic n=0.6 n=1.2 n=2 metal 

Classical 

EBBT 0.9758 2.2118 2.7700 3.1277 5.9524 

TBT 0.9133 1.8833 2.2837 2.5354 4.4589 

TOBT 0.9104 1.8778 2.2781 2.5305 4.4446 

 

MCST 

EBBT 0.4276 0.9204 1.1835 1.3991 2.7636 

TBT 0.4158 0.8594 1.0865 1.2689 2.3962 

TOBT 0.4146 0.8570 1.0831 1.2644 2.3875 

 

SGT 

EBBT 0.1749 0.3680 0.4786 0.5777 1.1620 

TBT 0.1784 0.3692 0.4767 0.5721 1.1273 

TOBT 0.1733 0.3586 0.4624 0.5544 1.0937 
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Table 7. Maximum deflection 5
10 

max
w w  of FGM micro - beam with 10L / h  , 

0 15 μmm ml l  , 0 2m mh / l h / l  , 2b / h  , 0 0 3 2c m c ml / l l / l /  , 1 0 N/mq . , 

considering different values of n  and different beam and elasticity theories. 

Elasticity 

theory 
Beam theory 

FGM volume fraction exponent, n 

Ceramic n=0.6 n=1.2 n=2 metal 

Classical 

EBBT 6.0987 13.8236 17.3123 19.5482 37.2023 

TBT 5.8110 11.9837 14.5523 16.1882 28.5646 

TOBT 5.7928 11.9596 14.5495 16.2169 28.4762 

 

MCST 

EBBT 1.5700 3.7936 5.2100 6.5470 10.3450 

TBT 1.5931 3.7288 5.0449 6.2631 9.8398 

TOBT 1.5569 3.6502 4.9327 6.1154 9.5702 

 

SGT 

EBBT 0.5389 1.3228 1.8606 2.4126 3.6169 

TBT 0.6695 1.5800 2.1852 2.7937 4.4070 

TOBT 0.5485 1.3262 1.8435 2.3672 3.5905 

 

4.2.2 Deflection of the micro - beam under thermal load 

To investigate the thermal effect on the static analysis, the deflection of micro - beam 

under thermal load is calculated in absence of other external forces. Thermal analysis of 

static deflection is carried out for different values of T  and n considering different 

beam and elasticity theories. The dimensionless static deflections under the load 

generated by 40 C  T  predicted by MCST and SGT are shown in Fig. 13 and Fig. 14 

respectively. Depicted in Fig. 15 and Fig. 16 are the static deflections for different T  

values which are calculated by implementing TOBT. As can be seen in these figures, 

higher T  values result in higher static deflections. Investigating the effect of the 

exponent n on the static behavior of the micro - beam undergoing thermal load leads to 

the conclusion that by increasing the value of n and hence increasing the ratio of metal to 

ceramic phase results in larger static deflection because the coefficient of thermal 

expansion of metal is large. This fact is illustrated for MCST in Fig. 17 and for SGT in 

Fig. 18. 
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Fig. 13. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

15 μmml  , 2mh / l  , 2b / h  , 3 2c ml / l / , 2n  , 40 CT   , MCST, considering 

different beam theories. 
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Fig. 14. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

0 15 μmml  , 0 2mh / l  , 2b / h  , 0 0 3 2c ml / l / , 2n  , 40 CT   , SGT, considering 

different beam theories. 
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Fig. 15. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

15 μmml  , 2mh / l  , 2b / h  , 3 2c ml / l / , 2n  , MCST, TOBT, considering 

different values of T . 
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Fig. 16. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

0 15 μmml  , 0 2mh / l  , 2b / h  , 0 0 3 2c ml / l / , 2n  , SGT, TOBT, considering 

different values of T . 
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Fig. 17. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

15 μmml  , 2mh / l  , 2b / h  , 3 2c ml / l / , 40 CT   , MCST, TOBT, considering 

different values of n . 
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Fig. 18. Dimensionless deflection (w/h) of the FGM micro - beam with 10L / h  , 

0 15 μmml  , 0 2mh / l  , 2b / h  , 0 0 3 2c ml / l / , 40 CT   , SGT, TOBT, considering 

different values of n . 
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4.3 Free Vibration Results 

4.3.1 Natural frequencies without thermal effects 

The free vibration analysis of the simply supported micro - beam is carried out using the 

numerical method and the natural frequencies are obtained for different values of material 

and geometrical parameters. 

Presented in Fig. 19 are the variations of the first nondimensional natural frequency 
1  

with respect to the ratio of height to length scale parameter of MCST, mh / l  which are 

generated by considering the three different beam theories. These results for SGT are 

shown with respect to 0mh / l  in Fig. 20. Note that in the examined problems the first 

natural frequency always corresponds to the transverse deformation mode. The results 

obtained by the use of Timoshenko beam theory and the third - order beam theory are 

again almost identical whereas Euler - Bernoulli beam theory leads to slightly smaller 

results especially for relatively larger values of mh / l  The sensitivity of the 

nondimensional frequency 
1  to the variations in mh / l  becomes rather pronounced as 

this ratio gets smaller. 
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Fig. 19. Variations of the first dimensionless natural frequency with respect to mh / l  for 

FGM micro - beam with 10L / h  , 15 μmml  , 2b / h  , 3 2c ml / l / , 2n  , MCST, 

considering different beam theories. 
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Fig. 20. Variations of the first dimensionless natural frequency with respect to 0mh / l  for 

FGM micro - beam with 10L / h  , 0 15 μmml  , 2b / h  , 0 0 3 2c ml / l / , 2n  , SGT, 

considering different beam theories. 

 

Fig. 21 illustrates the variation of dimensionless natural frequencies of FGM micro - 

beam with the height to metal length scale parameter ratio using three different elasticity 

theories. These results are obtained by using TOBT. Similar to the static case, SGT 

predicts the stiffest beam. In classical elasticity theory in which the small - scale effect is 

neglected, the smallest dimensionless natural frequencies are obtained. In this theory, by 

keeping the length to height ratio constant, the variation of the height to material length 

scale parameter has no effect on the value of dimensionless natural frequency. Increase in 

the value of height to length scale parameter ratio leads to smaller dimensionless natural 

frequencies. The effect of material length scale parameter change is more considerable for 

smaller values of h and it becomes ineffective as the height increases. 
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Fig. 21. Variations of the first dimensionless natural frequency with respect to 

0m mh / l h / l  for FGM micro - beam with 10L / h  , 0 15 μmm ml l  , 2b / h  , 

0 0 3 2c m c ml / l l / l /  , 2n  , TOBT, considering different elasticity theories. 

 

The results provided in Fig. 22 and Fig. 23 are calculated by using the third - order beam 

theory. Fig. 22 depicts 
1  as a function of the ratio mlh  and Fig. 23 presents 

1  as a 

function of the ratio 0mh / l  and the volume fraction exponent n, by utilizing MCST and 

SGT, respectively. The increase in the exponent n  is seen to result in a corresponding 

decrease in 
1 , which implies that metal - rich small - scale beams exhibit smaller 

nondimensional natural frequencies. By using MCST and SGT, respectively in Fig. 24 

and Fig. 25 variations of 
1  with respect to mlh  and 0mh / l  are shown for four 

different values of the length scale parameter ratio c ml / l  and 0 0c ml / l . Nondimensional 

frequency increases as the ratio mc ll  is increased from 31  to 2. The increase is much 

more significant when mlh  is relatively smaller. This observation is another verification 

of the fact that through - the - thickness variation of the length scale parameter l  has to 

be taken into account in the analysis of small - scale functionally graded beams. 
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Fig. 22. Variations of the first dimensionless natural frequency with respect to mh / l  and n  

for FGM micro - beam with 10L / h  , 15 μmml  , 2b / h  , 3 2c ml / l / , MCST, 

TOBT. 
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Fig. 23. Variations of the first dimensionless natural frequency with respect to 0mh / l  and n  

for FGM micro - beam with 10L / h  , 0 15 μmml  , 2b / h  , 0 0 3 2c ml / l / , SGT, 

TOBT. 
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Fig. 24. Variations of the first dimensionless natural frequency with respect to mh / l  and 

c ml / l  for FGM micro - beam with 10L / h  , 15 μmml  , 2b / h  , 2n  , MCST, 

TOBT. 

 

h / l
0m

2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

l
0c/l

0m=1/3

l
0c/l

0m=1.0

l
0c/l

0m=3/2

l
0c/l

0m=2.0

 
Fig. 25. Variations of the first dimensionless natural frequency with respect to 0mh / l  and 

0 0c ml / l  for FGM micro - beam with 10L / h  , 0 15 μmml  , 2b / h  , 2n  , SGT, 

TOBT. 
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The variations of dimensionless natural frequency of FGM micro - beam with the length 

to thickness ratio predicted by different beam and elasticity theories are depicted in Fig. 

26 - Fig. 28. In Fig. 26 and Fig. 27 it is observed that higher values of dimensionless 

natural frequency can be obtained for smaller values of slenderness ratio L / h. Also, it 

can be inferred that, like the static case, TOBT predicts stiffer beam than TBT and EBBT. 

In the free vibration problem, for all three elasticity theories considered in this study, 

similar trends are observed, where it is seen that the natural frequency predicted by 

MCST is higher than that by the classical elasticity theory and smaller than that of SGT. 

This behavior is observed in Fig. 28 which depicts the natural frequency versus 

slenderness ratio curve and obtained by using TOBT. 

Table 8 tabulates the first three dimensionless natural frequencies corresponding to the 

transverse deformation mode computed by implementing MCST for various values of the 

exponent n and the ratio c ml / l . Similar results for SGT are given in Table 9. The results 

are generated by utilizing the third - order beam theory. The effects of both n  and mc ll  

(or 0 0c ml / l ) are seen to be important. For each value of n, dimensionless frequency 

increases significantly as mc ll  (or 0 0c ml / l ) is increased. On the other hand, the increase 

in the exponent n leads to a drop in the dimensionless frequency .  
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Fig. 26. Variations of the first dimensionless natural frequency with respect to L / h  for 

FGM micro - beam with, 15 μmml  , 2mh / l  , 2b / h  , 3 2c ml / l / , 2n  , MCST, 

considering different beam theories. 
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Fig. 27. Variations of the first dimensionless natural frequency with respect to L / h  for 

FGM micro - beam with, 0 15 μmml  , 0 2mh / l  , 2b / h  , 0 0 3 2c ml / l / , 2n  , SGT, 

considering different beam theories. 
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Fig. 28. Variations of the first dimensionless natural frequency with respect to L / h  for 

FGM micro - beam with 0 15 μmm ml l  , 0 2m mh / l h / l  , 2b / h  , 

0 0 3 2c m c ml / l l / l /  , 2n  , TOBT, considering different elasticity theories. 
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Table 8. Dimensionless natural frequencies corresponding to the transverse deformation 

mode computed for various values of n  and c ml / l , for FGM micro - beam with 10L / h  , 

15 μmml  , 2mh / l  , 2b / h  , MCST, TOBT. 

Mode n 
c ml / l  

1 3/  1 0.  3 2/  2 0.  

First 

0.5 0.4847 0.6298 0.7730 0.9308 

1.0 0.4572 0.5660 0.6737 0.7937 

2.0 0.4403 0.5140 0.5881 0.6725 

5.0 0.4268 0.4652 0.5050 0.5519 

 

Second 

0.5 1.8618 2.4387 3.0055 3.6283 

1.0 1.7524 2.1901 2.6201 3.0968 

2.0 1.6822 1.9859 2.2867 2.6252 

5.0 1.6267 1.7928 1.9599 2.1525 

 

Third 

0.5 3.9540 5.2405 6.4954 7.8666 

1.0 3.7137 4.7023 5.6642 6.7214 

2.0 3.5517 4.2558 4.9415 5.7019 

5.0 3.4261 3.8302 4.2259 4.6716 

 

Table 9. Dimensionless natural frequencies corresponding to the transverse deformation 

mode computed for various values of n  and 0 0c ml / l , for FGM micro - beam with 

10L / h  , 0 15 μmml  , 0 2mh / l  , 2b / h  , SGT, TOBT. 

Mode n 
0 0c ml / l  

1 3/  1 0.  3 2/  2 0.  

First 

0.5 0.6130 0.9690 1.2804 1.6057 

1.0 0.5993 0.8651 1.1029 1.3546 

2.0 0.5928 0.7737 0.9415 1.1233 

5.0 0.5882 0.6839 0.7775 0.8832 

 

Second 

0.5 2.3531 3.7247 4.9260 6.1760 

1.0 2.2937 3.3353 4.2667 5.2457 

2.0 2.2602 2.9934 3.6654 4.3843 

5.0 2.2382 2.6529 3.0444 3.4760 

 

Third 

0.5 5.0030 7.9395 10.4969 13.1237 

1.0 4.8619 7.1331 9.1425 11.2120 

2.0 4.7717 6.4292 7.9132 9.4551 

5.0 4.7159 5.7190 6.6300 7.5968 

 

4.3.2 Natural frequencies with thermal effects 

The relationships between dimensionless natural frequency and height to material length 

scale parameter and length to height of the FG micro - beam for different values of 

temperature change T  are illustrated in Fig. 29 - Fig. 36 and Table 10 and Table 11. 

Similar to the static case, increasing the value of T  decreases the stiffness of the beam 

resulting in small values of dimensionless natural frequency. The thermal influence is 

more sensible in higher values of height to material length scale parameter and 
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slenderness ratio. The effect of temperature change on the first three dimensionless 

natural frequencies for different values of exponent n are numerically presented in Table 

10 for MCST and Table 11 for SGT. 
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Fig. 29. Variations of the first dimensionless natural frequency with respect to mh / l  and 

T  for FGM micro - beam with 10L / h  , 15 μmml  , 2b / h  , 3 2c ml / l / , 2n  , 

MCST, EBBT. 
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Fig. 30. Variations of the first dimensionless natural frequency with respect to 0mh / l  and 

T  for FGM micro - beam with 10L / h  , 0 15 μmml  , 2b / h  , 0 0 3 2c ml / l / , 2n  , 

SGT, EBBT. 
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Fig. 31. Variations of the first dimensionless natural frequency with respect to mh / l  and 

T  for FGM micro - beam with 10L / h  , 15 μmml  , 2b / h  , 3 2c ml / l / , 2n  , 

MCST, TBT. 

 

h / l
0m

2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

T = 0

T = 40

T = 100

 
Fig. 32. Variations of the first dimensionless natural frequency with respect to 0mh / l  and 

T  for FGM micro - beam with 10L / h  , 0 15 μmml  , 2b / h  , 0 0 3 2c ml / l / , 2n  , 

SGT, TBT. 
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Fig. 33. Variations of the first dimensionless natural frequency with respect to mh / l  and 

T  for FGM micro - beam with 10L / h  , 15 μmml  , 2b / h  , 3 2c ml / l / , 2n  , 

MCST, TOBT. 
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Fig. 34 Variations of the first dimensionless natural frequency with respect to 0mh / l  and 

T  for FGM micro - beam with 10L / h  , 0 15 μmml  , 2b / h  , 0 0 3 2c ml / l / , 2n  , 

SGT, TOBT. 
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Fig. 35. Variations of the first dimensionless natural frequency with respect to L / h  and 

T  for FGM micro - beam with, 15 μmml  , 2mh / l  , 2b / h  , 3 2c ml / l / , 2n  , 

MCST, TOBT. 
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Fig. 36. Variations of the first dimensionless natural frequency with respect to L / h  and 

T  for FGM micro - beam with, 0 15 μmml  , 0 2mh / l  , 2b / h  , 0 0 3 2c ml / l / , 

2n  , SGT, TOBT. 
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Table 10. Dimensionless natural frequencies corresponding to the transverse deformation 

mode computed for various values of n  and T , for FGM micro - beam with 10L / h  , 

15 μmml  , 2mh / l  , 2b / h  , 3 2c ml / l / , MCST, TOBT. 

Mode n 
 T C  

0  40  100  

First 

0.5 0.7730 0.7670 0.7579 

1.0 0.6737 0.6667 0.6561 

2.0 0.5881 0.5802 0.5680 

5.0 0.5050 0.4958 0.4818 

 

Second 

0.5 3.0055 2.9995 2.9904 

1.0 2.6201 2.6131 2.6027 

2.0 2.2867 2.2788 2.2668 

5.0 1.9599 1.9507 1.9369 

 

Third 

0.5 6.4954 6.4893 6.4802 

1.0 5.6642 5.6572 5.6467 

2.0 4.9415 4.9335 4.9215 

5.0 4.2259 4.2166 4.2026 

 

Table 11. Dimensionless natural frequencies corresponding to the transverse deformation 

mode computed for various values of n  and T , for FGM micro - beam with 10L / h  , 

0 15 μmml  , 0 2mh / l  , 2b / h  , 0 0 3 2c ml / l / , SGT, TOBT. 

Mode n 
 T C   

0  40  100  

First 

0.5 1.2804 1.2768 1.2714 

1.0 1.1029 1.0987 1.0923 

2.0 0.9415 0.9366 0.9291 

5.0 0.7775 0.7715 0.7626 

 

Second 

0.5 4.9260 4.9224 4.9169 

1.0 4.2667 4.2624 4.2560 

2.0 3.6654 3.6605 3.6531 

5.0 3.0444 3.0385 3.0296 

 

Third 

0.5 10.4969 10.4932 10.4875 

1.0 9.1425 9.1383 9.1318 

2.0 7.9132 7.9083 7.9009 

5.0 6.6300 6.6241 6.6154 

 

In most of the works on the free vibration analysis of micro - beams, only the transverse 

vibration is considered and the axial and rotational mode shapes are neglected. Unless 

very small values of length to scale ratio are used, the dominant mode shapes of first 

natural frequencies belong to transverse vibration. However, the axial natural frequencies 

may occur after the first one. Table 12 gives the first eight dimensionless natural 

frequencies predicted by TBT and SGT. For each mode, the mode shapes can be drawn 

for axial, transverse and rotational vibrations separately as shown in Fig. 37. By 

inspecting the order of the mode shapes, the dominant one is detected at that natural 
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frequency. As it can be seen in Table 12 in the first two natural frequencies the transverse 

vibration is dominant and the third natural frequency belongs to axial mode shape. 

 

Table 12. First eight dimensionless natural frequencies of FGM micro - beam with 

10L / h  , 0 2mh / l  , 0 0 1c ml / l , 2n  , SGT, TBT. 

Mode Dimensionless 

natural frequency 

Dominant mode 

shape 

1 0.7346 Transverse 

2 2.5532 Transverse 

3 4.1003 Axial 

4 4.9649 Transverse 

5 7.8083 Transverse 

6 8.4369 Axial 

7 11.0908 Transverse 

8 13.2346 Axial 

 

Mode u w ϕ 

1 
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8 

 x1 / L 
Fig. 37. Axial (u), transverse (w) and rotational (ϕ) mode shapes for first eight dimensionless 

natural frequencies of FGM micro - beam with 10L / h  , 0 2mh / l  , 0 0 1c ml / l , 2n  , 

SGT, TBT. 
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CHAPTER 5 
 

 

5CONCLUSION AND FUTURE WORK 

 

 

 

In this work a method of analysis based on the higher order continuum theories for small 

- scale functionally graded beams, that possess a variable length scale parameter, is 

presented. The formulation is carried out in such a way that, proposed procedures make it 

possible to generate results regarding three different beam theories, which are Euler - 

Bernoulli beam theory, Timoshenko beam theory, and third - order beam theory. Both, 

beams that are statically loaded and those undergoing free vibrations are considered in the 

developments. Governing partial differential equations are derived by employing 

Hamilton’s principle. These equations are solved numerically by means of the differential 

quadrature method.  

Detailed numerical analyses for the static deflection and free vibration of the FGM micro 

- beam are given in Chapter 4. Comparisons of our results to those of other researchers 

show the accuracy of numerical method used in this work. Further results presented 

illustrate the influences of geometric and material parameters upon the static and the free 

vibration responses of small - scale FGM beams. 

Two main findings of this study justify the development of a general approach for the 

analysis of small - scale functionally graded beams possessing a variable length scale 

parameter. It is seen that for such a small - scale beam normal stresses predicted by the 

use of the Euler - Bernoulli beam theory deviate significantly from those calculated by 

using either of the Timoshenko theory or the third - order theory. Hence, in the 

development of an analysis technique, the in - plane shear deformation needs to be 

incorporated into the formulation. Furthermore, the variation in the length scale parameter 

is shown to strongly influence both the static and the free vibration responses of a small - 

scale FGM beam. As a result, in the formulation of the small - scale beam problems, this 

variation needs to be taken into account. The method presented in this article is general in 

the sense that it allows the consideration of the in - plane shear deformation as well as the 

spatial variation of the length scale parameter. Thus, it could prove useful in the analysis, 

design, and optimization of small - scale functionally graded beams. 

The results of static deflection and free vibration analyses of FG micro - beam for 

different values of temperature change T  show that, increasing the value of T  leads 

to decrease the stiffness of the beam. 

In higher order elasticity approach traction boundary conditions are changed and to 

improve the results of analyses it is better to derive new beam model which satisfies these 

conditions. 
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Except for homogeneous epoxy beam, there are no experimental data on the small - scale 

parameters of other materials. To present more accurate static and dynamic characteristics 

of the micro - beam, it is essential to make efforts to find the value of small - scale 

parameters for other materials; consequently the small - scale parameter of FGM can be 

evaluated. 

The developed models in this study can be used accurately for static and free vibration 

analyses of sensors, actuators, atomic force microscopy (AFM) and other MEMS made of 

homogeneous material or FGM with different types of boundary conditions. The models 

can be used to validate and improve the approach to predict the static deflection and 

natural frequencies of the micro - beam. 
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