
 

 

 

 
MULTI RESOLUTION SPATIAL DATABASE FOR MOBILE APPLICATIONS 

 

 

 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

 

 

BY 

 

 

 

KAMİL İNAL 

 

 

 

 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

GEODETIC AND GEOGRAPHIC INFORMATION TECHNOLOGIES 

 

 

 

 

 

 

JULY 2013 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Approval of the thesis; 

 

 

MULTI RESOLUTION SPATIAL DATABASE FOR MOBILE APPLICATIONS 

 

submitted by KAMIL INAL in partial fulfillment of the requirements for the degree of 

Master of Science in Geodetic and Geographic Information Technologies Department, 

Middle East Technical University by, 

 

  

Prof. Dr. Canan Özgen 

Dean, Graduate School of Natural And Applied Sciences    

 

Assoc. Dr. Ahmet Coşar   

Head of Department, Geodetic and Geographic Information Technologies  

   

Prof. Dr. Zuhal Akyürek 

Supervisor, Civil Engineering Dept., METU     

   

 

 

Examining Committee Members: 

 

Assoc. Dr. Ahmet Coşar  

Computer Engineering Dept., METU 

 

Prof. Dr. Zuhal Akyürek  

Civil Engineering Dept., METU 

 

Prof. Dr. Mahmut Onur Karslıoğlu  

Civil Engineering Dept., METU 

 

Tuncay Küçükpehlivan, M.Sc.  

General Manager Assistant, Başarsoft Ltd.  

 

Dr. Tahsin Alp Yanar  

Senior Software Engineer, STM A.Ş.   

 

 

 

Date:    
 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare that, 

as required by these rules and conduct, I have fully cited and referenced all material 

and results that are not original to this work. 

 

Name, Last Name  : Kamil İNAL 

Signature   :    



v 

 

ABSTRACT 

MULTI RESOLUTION SPATIAL DATABASE FOR MOBILE APPLICATIONS 

 
İnal, Kamil 

                      M.Sc., Department of Geodetic and Geographic InformationTechnologies 

Supervisor: Prof. Dr. Zuhal Akyürek 

 

July 2013, 65 Pages 

 

Nowadays, in Geographical Information Systems (GIS), usage of Location Based Services 

(LBS) has been exploded and map based web/mobile applications have been rapidly 

increased. With the occurrence of this event, spatial data accessing, storing and querying 

operations have become more important than before.  

There is a new challenge, which is about the efficient access to geographical map data at 

multiple detail of level. Multiple detail of level is a process of derivation of a map at a 

particular resolution. This process is called as Multi Resolution Database (MRDB). It is an 

expensive job and needs advance knowledge about map generalization techniques such as 

simplification, amalgamation tasks. Existing spatial databases currently do not support this 

innovation. Current spatial databases only support some basic geometry types to model 

features and spatial operators/operands for determining geospatial measurements like 

distance, area, and length. MRDB has another usage domain called information drilling. 

Information drilling provides linking between spatial objects at different spatial databases. 

Unfortunately, there is no support for data drilling in current spatial databases.  

In this study, a multi resolution database concept is modeled and prototype applications are 

developed. Information drilling methodology between multiple spatial databases is 

constructed. This drilling scenario contains a scale based linked data retrieval features. 

Sample location is selected as Ankara, which is the capital city of Turkey. Schools, roads, 

districts and power transformers data have been used as example of different data layers. 

Server side application is created to serve services to clients by using Java Enterprise 

Edition (J2EE) technologies. Also a native mobile application is implemented for Android 

platform to demonstrate information drilling in MRDB concept in mobile domain.  

 

Keywords: Geographical Information Systems, Location Based Services, Multiple 

Resolution Spatial Database, Information Drilling. 



vi 

 

 

ÖZ 

ÇOK ÇÖZÜNÜRLÜKLÜ KONUMSAL VERİTABANLARI VE MOBİL 

UYGULAMALARI 

 

İnal, Kamil 

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü 

             Tez Yöneticisi: Prof. Zuhal Akyürek 

 

Temmuz 2013, 65 Sayfa 

 

Günümüzde, Coğrafi Bilgi Teknolojileri (CBS) destekli mobil ve web uygulamalarının 

çoğalması ile konum tabanlı servislerin kullanımı yaygın bir hale gelmiştir. Bu değişim 

süreci ile birlikte konumsal verinin erişilebilir olması, sorgulanması ve saklanması eskiye 

nazaran daha bir önem kazanmıştır.  

Coğrafi Bilgi Teknolojileri’nde, farklı detay seviyelerindeki coğrafi verinin en etkili ve 

hızlı bir biçimde son kullanıcıya sunulması için yeni bir ilgi alanı doğmuştur. Bu alan Çok 

Çözünürlüklü Konumsal Veritabanı  konsepti adı ile anılmaktadır. Bu konsept temel olarak 

istenen bir harita çözünürlüğü için harita oluşturma süreçlerini içermektedir. Harita 

oluşturma süreçleri literatürde kapsamlı bir işlem sürecine sahiptir. Bu işlemin 

gerçekleştirimi için harita genelleştirme tekniklerinin iyi derecede bilinmesi ve pratikte 

kullanımı gereklidir. Mevcut konumsal veritabanı yazılımları Çok Çözünürlüklü Konumsal 

Veritabanı konseptini desteklememektedir. Mevcut konumsal veritabanları, modelleme 

özellikleri, mesafe ölçme, alan ölçme, uzunluk bulma gibi mekansal ölçümler belirlenmesi 

için mekansal operatörler ve bazı temel geometri türlerini desteklemektedir. Çok 

Çözünürlüklü Konumsal Veritabanı konsepti, diğer bir kullanım alanı olarak  bilgi 

derinleştirme veya zenginleştirme alanında kullanılmaktadır. Bilgi derinleştirme farklı 

konumsal veritabanlarındaki farklı coğrafi özniteliklerin birbirleri arasında 

ilişkilendirilebilmesini sağlayabilmektedir. Malesef, mevcut konumsal veritabanları 

arasında farklı coğrafi özniteliklerin ilişkilendirilmesi ile igili bir alt yapı bulunmamaktadır. 

Bu çalışmada, Çok Çözünürlüklü Konumsal Veritabanı konsepti modellenerek, sunucu ve 

istemci olarak prototip uygulamalar geliştirilmiştir. Farklı konumsal veritabanları birbirleri 

arasında ilişkilendirilerek veri derinleştirme metodolojisi oluşturulmuştur. Veri 

derinleştirme işlemi harita çözünürlüğüne bağımlı olarak coğrafi özniteliklerin 

ilişkilendirilmesi üzerine kurulmuştur. Örnek veri seti olarak, Türkiye’nin başkenti olan 

Ankara ili seçilmiştir. Coğrafi veri kümesi olarak; Ankara iline özgü, okullar, yollar, 

mahalleler, ilçeler ve elektrik trafo gibi farklı veri katmanları kullanılmıştır. Sunucu tarafı 

uygulamasında istemcilere çevirim içi servis desteği vermek ve web platformunda kullanım 



vii 

 

için Java Enterprise (J2EE) teknolojilerinden faydalanılmıştır. Mobil platformlarda, Çok 

Çözünürlüklü Konumsal Veritabanında bilgi derinleştirme işlevi gösterimi için Android 

platformuna özgü bir mobil uygulama geliştirilmiştir. 

 

Anahtar Kelimeler: Coğrafi Bilgi Sistemleri, Konum Tabanlı Servisler, Çok Çözünürlüklü 

Konumsal Veritabanı, Bilgi Derinleştirme.



viii 

 

ACKNOWLEDGEMENTS 

First of all, I would like to extend my deepest gratitude to Prof. Dr. Zuhal AKYÜREK for 

her guidance and insight throughout this study.  

I would like to thank all jury members for their criticism in a positive way and also thanks 

for M.Sc. Tuncay Küçükpehlivan for providing power transformers data. 

I would also like to thank all of my friends who kept me motivated. 

Finally, i would like to thank my family who gave me the endless support and love, which 

made this thesis possible. 

 

 

 



ix 

 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................... v 

ÖZ…………................................................................................................................... vi 

ACKNOWLEDGEMENTS ......................................................................................... viii 

TABLE OF CONTENTS ............................................................................................... ix 

LIST OF TABLES ........................................................................................................ xii 

LIST OF FIGURES ...................................................................................................... xiii 

CHAPTERS 

1.  INTRODUCTION ...................................................................................................... 1 

1.1 GIS And Spatial Databases ............................................................................. 1 

1.2 Multi-Resolution Spatial Databases ................................................................ 2 

1.3 General Approaches ........................................................................................ 3 

1.4 Multi Representation ....................................................................................... 3 

1.5 Multi Resolution .............................................................................................. 4 

1.6 Motivation and Scope of Research .................................................................. 4 

1.7 Organization of Thesis .................................................................................... 5 

2.  MRDB TECHNIQUES IN GIS ................................................................................. 7 

2.1 MRDB Data Structures and Modeling ............................................................ 8 

2.2 Derivation of Maps .......................................................................................... 8 

2.2.1 Simplification .......................................................................................... 9 

2.2.2 Smoothing ............................................................................................... 9 

2.2.3 Aggregation ............................................................................................. 9 

2.2.4 Amalgamation ....................................................................................... 10 



x 

 

2.2.5 Merging .................................................................................................. 10 

2.2.6 Collapse ................................................................................................. 10 

2.2.7 Refinement ............................................................................................. 10 

2.2.8 Typification ............................................................................................ 11 

2.2.9 Exaggeration .......................................................................................... 11 

2.2.10 Enhancement .......................................................................................... 11 

2.2.11 Displacement.......................................................................................... 11 

2.2.12 Classification.......................................................................................... 12 

2.3 Reference Projects ......................................................................................... 13 

2.3.1 GiMoDig Project .................................................................................... 13 

2.3.2 Murmur Project ...................................................................................... 20 

2.3.3 Information Drilling ............................................................................... 21 

2.3.4 Geometry Drilling .................................................................................. 21 

2.3.5 Attribute Drilling ................................................................................... 22 

3.  SYSTEM ARCHITECTURE ................................................................................... 23 

3.1 Overall Design ............................................................................................... 23 

3.2 Database Design ............................................................................................ 26 

3.3 MRDB Approach ........................................................................................... 27 

3.4 Dataset Linking Procedure ............................................................................. 28 

3.5 System Flow Design ...................................................................................... 29 

4.  IMPLEMENTATION DETAILS ............................................................................. 31 

4.1 Pre-requirements ............................................................................................ 31 

4.2 Database Setup ............................................................................................... 31 

4.3 Map Server Setup ........................................................................................... 31 



xi 

 

4.3.1 Data Preparation and Transmission ....................................................... 32 

4.4 Web Application ........................................................................................... 32 

4.4.1 Overview ............................................................................................... 32 

4.4.2 Used Technologies ................................................................................ 33 

4.4.3 User Interface ........................................................................................ 37 

4.4.4 Application Work Flow ......................................................................... 42 

4.5 Service Infrastructure .................................................................................... 43 

4.5.1 Data Contracts ....................................................................................... 43 

4.5.2 Service Contracts ................................................................................... 44 

4.6 Mobile Application ....................................................................................... 49 

4.6.1 Used Technologies ................................................................................ 49 

4.6.2 User Interface ........................................................................................ 50 

4.6.3 Application Work Flow ......................................................................... 54 

4.7 Summary of Implementation ......................................................................... 55 

4.8 Case Study ..................................................................................................... 57 

4.9 Areas of Use .................................................................................................. 59 

5.  CONCLUSIONS AND RECOMMENDATIONS ................................................... 61 

REFERENCES .............................................................................................................. 63 

WEB REFERENCES .................................................................................................... 63 

OFFLINE REFERENCES ............................................................................................ 64 



xii 

 

LIST OF TABLES 

TABLES 

Table 1 Map generalization operators, both in an original map and generalized map. (Shea 

and McMaster, 1989) ........................................................................................................... 12 

Table 2 Layer get service method ........................................................................................ 45 

Table 3 Feature get service method ...................................................................................... 46 

Table 4 Multiple feature get service method ........................................................................ 46 

Table 5 Features get with bounds service method ................................................................ 47 

Table 6 Linked feature get service method .......................................................................... 47 

Table 7 Multiple linked features get service method ........................................................... 48 

 

 



xiii 

 

LIST OF FIGURES 

FIGURES 

Figure 1 OGC Feature Geometry Types, (URL 27) .............................................................. 2 

Figure 2 a) MRDB with different level of detail b) MRDB with linked objects (after Hampe 

et al., 2003) ............................................................................................................................ 3 

Figure 3 Cartographical generalizations, (URL 22)............................................................... 4 

Figure 4 Multiple geometric representations for a single geographical phenomenon, (after 

Zour and Jones, 2003) ............................................................................................................ 7 

Figure 5 Digital Generalisation Components, (after Shea and McMaster, 1989) .................. 9 

Figure 6 Example aggregation process at scales 1:25000 and 1:50000, (URL 5) ............... 10 

Figure 7 Example of displacement process on roads, (URL 28) ......................................... 11 

Figure 8 A federated database system and its components, (after Sheth and Larson, 1990) 15 

Figure 9 Presentation of a line in attribute-variant approach, (after Hampe et al., 2003) .... 15 

Figure 10 Bottom up linking, (after Hampe et al., 2003)..................................................... 16 

Figure 11 Bottom up variant as an attribute in object table, (after Hampe et al., 2003) ...... 16 

Figure 12 GiMoDig sample database schema and linking, (after Hampe et al., 2003) ....... 16 

Figure 13 Cases for building simplification, left case (offset), middle case (bulge), right 

case (edge), (after Hampe and Sester, 2004) ....................................................................... 17 

Figure 14 Before the building simplification (Left), result of simplification process (right), 

(after Hampe and Sester, 2004) ........................................................................................... 18 

Figure 15 Amalgamation Process; original case (left), enlarging case (middle), combined 

and downsized case (right), (after Hampe and Sester, 2004). .............................................. 19 

Figure 16 Original data (left), after the typification and displacement (right), (after Hampe 

and Sester, 2004).................................................................................................................. 19 

Figure 17 GiMoDig linking in the MRDB, (after Hampe and Sester, 2004)....................... 20 

Figure 18 A typical client-server model, (URL 19) ............................................................. 24 



xiv 

 

Figure 19 Demonstration of client-server model types. One-tier architecture (left), Two-tier 

architecture (middle), three-tier architecture (right), (URL 29) ........................................... 24 

Figure 20 Main architecture ................................................................................................. 26 

Figure 21 Link database entity relational (ER) diagram ...................................................... 27 

Figure 22 Sample dataset for link database .......................................................................... 28 

Figure 23 Example feature linking in the system, original feature at zoom level 15 (left), 

detailed feature at zoom level 17 (right) ............................................................................... 29 

Figure 24 General flow of the system .................................................................................. 30 

Figure 25 Basic J2EE server, (URL 23) ............................................................................... 33 

Figure 26 Creating basic map view with OpenLayers ......................................................... 34 

Figure 27 Spring framework architecture, (URL 24) ........................................................... 35 

Figure 28 Restful web services, (URL 25) ........................................................................... 36 

Figure 29 Web Application Main View ............................................................................... 37 

Figure 30 Web application layer selection view .................................................................. 38 

Figure 31 Active layers data preview ................................................................................... 39 

Figure 32 Selected feature’s detail ....................................................................................... 39 

Figure 33 Multi resolution detail information about a feature ............................................. 40 

Figure 34 Web application preview on android mobile browser ......................................... 41 

Figure 35 Active layers preview on android mobile browser .............................................. 41 

Figure 36 Application flow chart ......................................................................................... 42 

Figure 37 Service Data Contracts ......................................................................................... 44 

Figure 38 WFS flow chart on GeoServer ............................................................................. 48 

Figure 39 Architecture for android application development, (URL 26) ............................. 49 

Figure 40 Application main view, (left) Main menu items (right) ....................................... 51 

Figure 41 Layer selection dialog (left), A popup panel for a feature (right) ........................ 52 

Figure 42 Left side image contains a map view with school layer, right image contains a 

map view with both school road and transformer layers. ..................................................... 53 



xv 

 

Figure 43 Example for a multi scale link data at zoom scale 18, for a feature, which belongs 

to the school layer (left), A detail panel is shown about link data (right) ............................ 54 

Figure 44 Different representations of a geographical feature ............................................ 56 

Figure 45 Storing different representations in different schemas ........................................ 56 

Figure 46 A demonstration of original feature (left) and different representations at 

different scale (right) ........................................................................................................... 57 

Figure 47 Original View of a feature at zoom level 15 ....................................................... 58 

Figure 48 Detail view of feature at zoom level 18 ............................................................... 59 





1 

 

CHAPTER 1  

INTRODUCTION 

1.1 GIS And Spatial Databases 

A Geographic Information System (GIS) is a system that uses spatial and non-spatial data 

to make some analyses and decisions. Nowadays, GIS are widely used in many areas. Since 

the invention of GIS, database usage in GIS systems has become more important. 

Typically, a GIS system contains at least one database structure. This structure is called 

Spatial Database. A spatial database actually is a kind of relational database.  It is 

optimized and extended to store and query for spatial data.   

The Open Geospatial Consortium (OGC) is an international consortium, which has 478 

companies, government agencies and universities. This consortium develops interface 

standards for GIS infrastructure. OGC created the Simple Features specification and 

standards to make spatial extension for relational databases. The simple features 

specification contains some two-dimensional geographical data models, which are point, 

line, polygon, multi-point, multi-line etc. Almost all spatial databases provide these features 

to create and run spatial queries. OGC feature geometry types are shown in Figure 1. 



2 

 

 

Figure 1 OGC Feature Geometry Types, (URL 27) 

1.2 Multi-Resolution Spatial Databases 

A Multi-Resolution Spatial Database (MRDB) can be described as a spatial database, 

which can be used to store the real world phenomena at different levels of precision, 

accuracy and resolution (Devogele et al., 1996).  MRDB provides to link features in each 

other and stores them with different representations in database. In addition, each stored 

feature representation can hold different geographical types and attributes.  

There are two important features that describe an MRDB: 

a. Different levels of details (LoD’s) are stored in one database 

b. The features in the different scales are linked 

For the first feature, we can say that different scales of map exist separately and a common 

geometry object linked to these maps. In the second case, every object is linked with each 

other and each object knows its other scale version objects. Two important features of 

MRDB can be seen in Figure 2. 



3 

 

 

Figure 2 a) MRDB with different level of detail b) MRDB with linked objects (after Hampe 

et al., 2003) 

There are several reasons for using multi resolution concept: in the first instance, it allows a 

multi scale analysis of data. This means any information in one resolution can be compared 

with respect to information given in another resolution. Gabay and Sester (2002) present an 

example for this feature where topographic data is linked to cadastral data. A topographic 

data contains only lower resolution settlement areas whereas cadastral data includes more 

detail according to topographic data. Example shows that topographic data can be derived 

from cadastral data on demand. After the creation of topographic data, data analyses can be 

done. Other reason for using multi resolution concept is investment in National Mapping 

Agency. National Mapping Agency is an organization that produces topographic maps and 

geographic information of a country. In Turkey General Command of Mapping is 

responsible from these activities.  

1.3 General Approaches 

For Multi Resolution Spatial Database system, there are two basic approaches to support 

applications that require variable level of resolution. First of them is called “Multi 

Representation” approach. In this approach, data are pre-generated and stored at different 

resolution levels. Second is called as “Multi Resolution” approach. In this approach, as 

different from the other, only the highest level of resolution is stored and data can be 

simplified dynamically by using generalization. 

1.4 Multi Representation 

Multi representation approach stores data physically at different scales in a database (Zhou 

et al., 2004). Before being stored, spatial data are generated for different scales. This 

concept is similar having multiple paper-based maps at different scales for different 

purposes. Disadvantages of this approach are a higher storage overhead and difficulties 

arising from object updates. 



4 

 

1.5 Multi Resolution 

Multi resolution approach works on demand. It provides on demand map derivation (Zhou 

et al., 2004). On demand map derivation is known as “Cartographical Generalization”.  In 

this approach, finest level of detail data at stored in database. Approach has capable to 

reduce resolution dynamically. Goal of approach is that finding the best way for making 

spatial generalization. Also advantages of this approach, it can use less amount space than 

multi representation and it can speed up operations in data retrieval by using generalization 

via minimizing the amount of spatial data. 

 

 

Figure 3 Cartographical generalizations, (URL 22) 

1.6 Motivation and Scope of Research 

Nowadays in GIS, usage of Location Based Services (LBS) has been exploded and map 

based web/mobile applications are rapidly increased. With the occurrence of this event, 

spatial data accessing, storing and querying operations have become more important than 

before.  

Almost every GIS application has the spatial data sets and controls these data in own logic. 

These data sets can be different from each other due to application’s size or type. There is a 

new challenge, which is about the efficient access to geographical map data at multiple 

detail level. Multiple detail level is a process of derivation of a map at a particular 

resolution. This process is a difficult job and needs advance map generalization techniques 

such as simplification and amalgamation tasks. Existing spatial databases currently do not 

support this innovation. Current databases support some basic geometry types to model 



5 

 

features and spatial operators/operands for determining geospatial measurements like 

distance, area, and length.  

In this study, rather than generalization on spatial features, methodology of drilling in the 

attribute level of multi resolution spatial database system is presented. The sample location 

is identified as Ankara, which is a capital city of Turkey. Schools, roads and power 

transformers data have been used in developed MRDB system. A mobile application is 

implemented to demonstrate methodology of drilling in multi resolution concept in mobile 

domain. 

Applications of multi resolution spatial database concepts include feature generalization 

process in their workflows. Feature generalization techniques are not used in this study. 

Aim of this study is to retrieve detailed information about a feature presented on a coarse 

scale from the detailed information stored in a larger scale. In order to do this, data 

mapping procedure between different databases and querying infrastructure are 

implemented.    

1.7 Organization of Thesis 

The current study includes five chapters. In the first chapter, introduction of the GIS and 

databases have been discussed. In addition, basic knowledge about the multi resolution 

databases is referred. Finally, the motivation behind the thesis and scope of the thesis are 

explained. 

In the second chapter, detailed information about the multi resolution concept is presented. 

The solution and techniques provided in the literature are discussed.  

In the third chapter, the system architecture is discussed. Firstly, our approach and model 

structure are introduced. Secondly, database design of system is shown.  Finally, system 

flow is discussed briefly. 

In the fourth chapter, the details of the implementation of the study are demonstrated. 

Software technologies, which are used in this study, are introduced. Developed web 

application and Web Feature Service (WFS) infrastructure are discussed. Mobile 

application and implementation details are introduced in this section. 

Lastly, in the fifth chapter, the results of the current study are discussed. The gain from the 

development of a drilling of multi scale spatial database system is evaluated. 

 

 

 



6 

 

 

 



7 

 

CHAPTER 2  

MRDB TECHNIQUES IN GIS 

Any geometric objects in spatial databases and GIS domain represent the real world 

geographical phenomena. A single phenomenon may have multiple representations 

according to different criteria such as application, classification, level of detail, viewpoint. 

Sheng and Jones (2003) indicate an example about a single geographical phenomenon 

representation at different scales.  

 

Figure 4 Multiple geometric representations for a single geographical phenomenon, (after 

Zour and Jones, 2003) 

Figure 4 presents an example of multiple geometric representation of single geographical 

phenomenon at location Isla of Wight, United Kingdom. Representation A has maximum 

level of detail, as may be found in a topographical map. B and C are the two representations 

at the same scale/resolution in under different generalization criteria. B is generalized from 

A so small details are removed. C is further generalized from B with only large details are 

retained. The other series D, E demonstrate the impact of scale/resolution change while the 

same generalization criteria remain in effect. While scale decreases, maximum information 

at a certain scale is preserved, in the corresponding representations only redundant data 

were removed. 

Spaccapietra et al., (2000) emphasize that data about the same geographical space may be 

collected at various resolution levels to serve different applications within an organization.  

Multi resolution data may also be needed for one single application like navigation systems. 

Some parts of the navigation systems needs more detailed information (e.g. departure and 

arrival areas) while for other parts of the navigation systems, only coarse level of detail is 



8 

 

needed (e.g., travelling on highway). These multi resolution data sources, which are 

independently formed, bring a new challenge on data integration in GIS applications. 

Unfortunately, current data management systems (DBMS, GIS) do not provide enough 

functionality to manage multiple representations of geographical phenomena.  

2.1 MRDB Data Structures and Modeling 

There are two principals for data linking in multi resolution spatial databases: Single-

Resolution Management that one real world object is associated with one instance in the 

database, Multiple-Resolution that one real world object has several connections in the 

database. 

2.2 Derivation of Maps 

Derivation of a map at a particular space is referred as map generalization. In order to make 

a map generalization, we should know the answers such as why do we need the 

generalization, when to use and how to make this generalization.  

Map generalization techniques composite of some process on map elements; selection, 

elimination, shape simplification caricature, amalgamation and displacement. Shea and 

McMaster (1989) mention these questions as digital generalization components.  The 

answer of question: “why we generalize?” can be explained as: map generalization is 

designed to reduce complexities of the real world by strategically reducing unnecessary 

details at a particular scale on a map. For the “when to generalize?” question, six conditions 

occurring under scale reduction are used to determine a need for generalization. These 

conditions are  

 Congestion: it refers that feature density is too high. 

 Coalescence: it refers that the distance between features is smaller than the 

resolution of output device. 

 Conflict: it refers that a condition about spatial representation of feature is in 

conflict with its background. 

 Complication:  it is related with the complexity of spatial data. 

 Inconsistency: it is described as applying a set of generalization decisions non-

uniformly on map. 

 Imperceptibility: it is described as a case result when a feature size or length falls 

below minimum determined threshold size on map. 

Lastly for “How to generalize” question, there exist twelve categories of generalization 

operators to make generalization operation (Figure 5). These operators are simplification, 

smoothing, aggregation, amalgamation, merging, collapse, refinement, typification, 

exaggeration, enhancement, displacement, and classification. These operators are listed 

below with their detailed information. 



9 

 

 

 

Figure 5 Digital Generalisation Components, (after Shea and McMaster, 1989) 

2.2.1 Simplification 

A generalized version of a map feature should be accurate in its representation of the 

feature as shape, location and character. Simplification operators will find and select the 

most important characteristic and shape-describing points.  Redundant points will be found 

and considered to be unnecessary to display the line’s character. Simplification operators 

do not change the original position of points (Jenks, 1981). It creates only the subset for 

generalized version of map.  

2.2.2 Smoothing 

Smoothing operators act on a line by relocating or shifting coordinate pairs to plane away 

small perturbations and capture only the most significant trend of the line. Smoothing 

operators are used to reduce the sharp angularity imposed by digitizers (Töpfer and 

Pillewizer, 1966).  

2.2.3 Aggregation 

Aggregation is the process, which gathers the information and expresses it in a summary 

form. Aggregation operators are used when the features to be aggregated into the same 

symbolization (URL 5). For instance, a block of house, which is a polygon type of features 

on a 1/25000 scale, when aggregated, a single house polygon feature is created on a 

1:50000 scale value (Figure 6). 



10 

 

 

Figure 6 Example aggregation process at scales 1:25000 and 1:50000, (URL 5) 

2.2.4 Amalgamation 

Amalgamation involves the fusing together of polygonal features such as series of lakes, 

islands, forest due to scale reduction (McMaster and Veregin, 2010). By fusing the features 

together, intervening feature space is lost. As a result individual map features become a 

larger element but original map characteristic retains the same. 

2.2.5 Merging 

Shea and McMaster (1989) demonstrate a good instance of merging operation. Divided 

highways are normally represented by two or more adjacent lines with some distance 

between them normally. Due to scale reduction, these separate lines must be merged into a 

single line, which represents both lines.  

2.2.6 Collapse 

By changing map scale, features on the map must be converted in. Typical example of this 

conversion is that line and area type of features are converted into point features. Nickerson 

et al. (1986) describe that settlements, airports, buildings etc. can become point or line 

feature at smaller scales and areal tolerances often guide this transformation. 

2.2.7 Refinement 

Refinement process is used to reduce complexity of map feature distribution when features 

are too numerous or too small to display at a particular scale. Features that have least 

influence to the distribution are determined and removed as the result of this process. 

Pattern of feature’s characteristic is maintained and features are represented at correct 

location on the map.  



11 

 

2.2.8 Typification 

Typification uses the same approach as refinement process. The difference between 

typification and refinement is that typification process uses a representative pattern of 

symbols and features are located in approximate locations on map. Feature density on a 

map is reduced after the process. 

2.2.9 Exaggeration 

Exaggeration is the process that you make elements seem larger, more important than they 

really are (Stern et al., 2012). It enhances or emphasizes important characteristic of the 

attributes. Also exaggeration is usually closely related with displacement.  

2.2.10 Enhancement 

Enhancement is a process, which is used by cartographers to make a better visualization 

and highlight the specific details of features on a map. Generalization methods usually 

concentrate on reducing the level of detail, on the contrary enhancement method aims the 

addition of detail (Shea and McMaster, 1989). 

2.2.11 Displacement 

Scale process may come close to map elements on the map. In this situation, displacement 

operator is used to provide avoiding visual confliction of elements by increasing distance 

between each map elements on the map.  Basic example of displacement is shown in Figure 

7. 

 

Figure 7 Example of displacement process on roads, (URL 28) 



12 

 

2.2.12 Classification 

Classification is a process, which gathers and categorizes the objects that have similar 

attributes or properties. In Table 1, map generalization operators are presented.  

 
Table 1 Map generalization operators, both in an original map and generalized map. (Shea 

and McMaster, 1989) 

Generalization 

Operators) 

Representation in 

the Original Map 

Representation in 

the Generalized Map 

At Scale of the Original Map At 50% Scale 

Simplification 

   
Smoothing 

   
Aggregation 

   
Amalgamation 

   

Merge 

   

Collapse 

   

Refinement 

   

Typification 

   

  



13 

 

Table 1 Continued 

 

Exaggeration 

   

Enhancement 

   

Displacement 

   

Classification 1,2,3,4,5,6,7,8,9,10,1

1,12,13,14,15,16,17,1

8,19,20 

1-5,6-10,11-15,16-20 Not Applicable 

 

2.3 Reference Projects 

In this part, sample projects, which were created to demonstrate real systems for multi scale 

spatial databases are examined. Our sample projects are called GiMoDig, which is 

described in section 2.3.1 and Murmur, which is described in section 2.3.2.  

2.3.1 GiMoDig Project 

GiMoDig word stands “Geospatial Info-Mobility Service by Real-Time Data-Integration 

and Generalization” (URL 8). This project is supported by European Union via the 

Information Society Technologies program. GiMoDig project started on the November 1, 

2001 and finalized after 3 years. There are several partners involved in this project; 

National Survey and Cadastral Denmark, National Land Survey of Sweden and Finland, 

Finnish Geodetic Institute, University of Hannover and lastly Federal Agency for 

Cartography and Geodesy. 

2.3.1.1 Objectives of GiMoDig Project 

The objective of the project is creating dynamic generalization and data integration 

methods in real-time to serve spatial data for mobile users. Main objective is emphasized at 

project web page (URL 8) exactly like that “The project aims to seamless data service 

infrastructure providing access, through a common interface to topographic geo databases 

maintained by the national mapping agencies”. Sub objectives of the project are specified 

as follows, 



14 

 

 Investigating problems between national primary geospatial databases and to 

develop a system for real-time harmonization of data.  

 Generating some methods for real-time transformation of spatial data from 

different national geo-databases and to create common EUREF-based co-ordinate 

system. 

 Investigating and developing methods for transferring vector-formatted spatial data 

to a mobile user using XML data exchange type. 

 Construction of prototype system that can be used as a test-bed for the developed 

methods. 

The project main vision is indicated in Hampe et al. (2003) like that a mobile user when 

travelling within an European country, can receive online information of his/her 

environment on the mobile device.   

2.3.1.2 Problems 

Data integration and real-time generalization process is huge part of this project. The main 

problem is the harmonization of data sets from different countries map providers. To 

achieve this problem, GiMoDig developer team analyzed data sets of different countries. 

Also data sets were linked in each other (Hampe et al., 2003). 

2.3.1.3 Design of MRDB 

In GiMoDig project, MRDB concept is based on Federated Database System (FDBS) 

(Sheth and Larson, 1990). To summarize simply, a Federated Database System is a 

collection of several working Database Management Systems (DBMS). In Figure 8, a 

sample of a several working database management systems is depicted. FDBS has some 

characteristics to classify type of system. These characteristics are Distribution, 

Heterogeneity and Autonomy. Distribution means that data, which is used in the system, 

may be distributed among multiple databases. These databases again may be located in a 

single computer environment or multiple computer environments. In terms of 

heterogeneity, it is aimed to represent several commercial DBMS, which are available to 

use. Last one, Autonomy refers to each database system, which is designed and run 

independently from each other.  



15 

 

 

Figure 8 A federated database system and its components, (after Sheth and Larson, 1990) 

For the linking data at different scales, there are some approaches, which are described in 

Hampe et al., (2003). The first one is called as “attribute-variant”. This variant presents that 

the whole MRDB will be stored in only one dataset.  It uses extra attributes to describe 

different form of feature appearance. The dataset indicates that a feature will appear or not 

appear at a particular scale. Presentation of a line in attribute-variant approach is depicted in 

Figure 9.  

 

Figure 9 Presentation of a line in attribute-variant approach, (after Hampe et al., 2003) 

Second approach is called as “bottom-up variant”.  This variant lets to create two or more 

datasets of the same spatial phenomena. These datasets are linked to each other by using 

additional attribute, which refers to the corresponding objects in the following scale.  

Disadvantage of this variant is that only one link per object is permitted. In Figure 10, 

bottom up linking and in Figure 11, bottom up variant as an attribute in object table are 

presented. 



16 

 

 

Figure 10 Bottom up linking, (after Hampe et al., 2003) 

 

Figure 11 Bottom up variant as an attribute in object table, (after Hampe et al., 2003) 

Last variant is called as “top down variant”. This variant uses the opposite linkage direction 

according to bottom up variant. Top down variant often has one to many relations. Because 

that an area consists of several buildings, roads etc. This causes possible empty columns in 

database. To avoid this situation, an extra table, which stores link information, is 

recommended.  

PostgreSQL product is used in GiMoDig project for database management system software. 

In addition, bottom-up approach is selected to construct for the design. Every feature object 

is stored in its database table. Sample view for data structure of table and linking is shown 

in Figure 12. 

 

Figure 12 GiMoDig sample database schema and linking, (after Hampe et al., 2003)  



17 

 

2.3.1.4 Generalization Methodology 

GiMoDig project developer team implemented offline and online generalization process. 

Offline processes are time consuming operations, for that reason the data were processed 

and stored in database before the submission of online generalization service. Online or 

real-time generalization, is called when users requesting a map for a certain scale and 

region. This process uses pre-calculated offline data, which is created during the offline 

generalization. Data are generalized in a few times for requesting scale. They integrated 

generalization methods for building simplification, amalgamation, enhancement, 

typification and displacement. Algorithms, which were integrated in GiMoDig are detailed 

in below sections.  

2.3.1.5 Simplification for Buildings 

There are several algorithms available for simplification process. In this part, a process 

called building simplification, which was developed in GiMoDig project is demonstrated. 

The idea behind the algorithm is finding the extreme cases and then, elimination of these 

finding cases. There are three cases “Offset”, ”Bulge”, “Edge” on building selection 

according to the implementation detail in Hampe and Sester, (2004).  These cases are 

demonstrated in Figure 13. 

 

Figure 13 Cases for building simplification, left case (offset), middle case (bulge), right 

case (edge), (after Hampe and Sester, 2004) 

Firstly, a threshold value is determined. Then, this value is compared with every feature’s 

edge length. If compared edge has smaller length from threshold, this edge is marked. This 

edge is called as (Sn). After that, the algorithm looks the angle between (Sn) – (Sn-1) and 

(Sn) – (Sn+1). The algorithm classifies the marked edge into offset, bulge or edge. Finally 

these marked edges are eliminated. Result of this process is shown in Figure 14. They 

mentioned in report that implemented simplification process is quite fast and used in real 



18 

 

time generalization processes. Also they gave an example on description of process speed 

that two thousand buildings have been processed in approximately less than one second.  

 

Figure 14 Before the building simplification (Left), result of simplification process (right), 

(after Hampe and Sester, 2004) 

After the simplification process, some gaps are occurred. These gaps can be seen in the 

right side of Figure 14. GiMoDig developer team mentioned that these gaps could be 

removed by processing additional operation called amalgamation.     

2.3.1.6 Amalgamation for Buildings 

Amalgamation provides to combine two neighboring features into single object and 

removes the small gaps between them if available. Their approach for building 

amalgamation process consists of three steps. First step is enlarging objects’ current size to 

larger size. After the first step, second step is to find overlapped objects. When overlapped 

objects are found, these overlapped objects are merged into a combined object. Last step is 

to downsize the enlarge objects into original size.  Result of amalgamation process is 

presented in Figure 15. Looking at the state of the process performance, this process is 

time-consuming operation. Because each object is compared with all other objects to find 

overlap situation. They thought different methods to speed up performance on this 

procedure. For instance, spatial index is used for increasing performance. Index is a 

database element, which provides to fetch data from database. They specify that duration 

time of amalgamation process is much longer than simplification. For instance, 

amalgamation process for one thousand and two hundred buildings and fifty settlements’ 

polygons takes more than thirty seconds. This consuming time is a big problem for mobile 

clients and it is not used for online generalization (Hampe and Sester, 2004).  



19 

 

 

Figure 15 Amalgamation Process; original case (left), enlarging case (middle), combined 

and downsized case (right), (after Hampe and Sester, 2004). 

2.3.1.7 Typification and Displacement for Buildings 

Typification is needed in GiMoDig when smaller scales (smaller from 1:30k scale) have to 

be generated. They used a neural network approach, which has effect on preserving the 

spatial distribution and density of original buildings. Details are explained in Sester (2004) 

study. Other generalization methods may lead spatial conflicts. Using displacement process 

cleans these conflicts. GiMoDig developer team implemented the displacement method. 

Least square adjustment approach is used to solve the spatial conflicts by displacing objects 

Sester, (2000). They implemented the algorithms in C++. Then algorithms integrated in 

java environment by using Java Native Interface (JNI) (URL 21). Figure 16 shows the 

result of typification and displacement process. The used parameters are destination scale, 

percentage of reduction and original dataset. 

 

Figure 16 Original data (left), after the typification and displacement (right), (after Hampe 

and Sester, 2004). 



20 

 

2.3.1.8 Derivation of Links Between Objects in MRDB 

In this section, linking process between objects, which located in GiMoDig database, is 

demonstrated. First of all, the linking procedure is based on a unique column as called 

object identifier “id”. Each object at different levels is linked with using this unique 

column.  

GiMoDig developer team designs linking procedure as one-way link. That means every 

object knows their corresponding objects in smaller scales. In other words, larger scale 

tables have links to all other representations in database. Demonstration of the linking 

procedure is presented in Figure 17. 

 

Figure 17 GiMoDig linking in the MRDB, (after Hampe and Sester, 2004) 

MRDB consists of different level of details such as 1:100k, 1:50k, 1:25k and 1:10k. Each 

level is stored in a database table named e.g.: “Table: 1:10k”. Each table has a unique ID 

for identification of object, a geometry that represents the feature shape on map and link 

columns such as link_100k, link_50k.  

Although links are only stored in one way, data fetching are available for both directions.  

For example to get all objects inside the object having the id equals to 9858, creation of a 

query "Get all the objects where the column 'link_to_100k' has the value 9858", is 

sufficient. 

2.3.2 Murmur Project 

In this part, Murmur project, where multi resolution database context is used is examined. 

This project is supported by European Union. The aim of the project is to generate new data 

model to construct multi representation spatial database for European Union countries.   



21 

 

2.3.2.1 Objectives of Murmur Project 

The objective of Murmur project is to enhance Geographic Information System (GIS) and 

Database Managements System (DBMS) functionality to provide flexible representation of 

data schemas and provide possibility in managing multiple represented data easily 

Spaccapietra et al., (2000). 

Providing multiple representations means that two or more representations are linked to the 

same real world phenomena. For instance in a relational database, a person instance can be 

stored as an instance in employee table and staff table where two tables may not have a 

common attribute. In a geographical multi-scale database, the same building can be stored 

as precise representation at 1/10000 scale and less precise representation format stored at 

1/100000 scale.  

Although object oriented or object relational database management systems provide extra 

support using generalization/specialization hierarchies, current database management 

systems support very limited functionality for multiple representations. 

2.3.2.2 Design of MRDB 

Murmur project aims to develop multi representation data models and framework. 

According to the aim, their development team takes into account three different 

perspectives, 

 Multi scale databases, where representations at different levels are stored in a single 

database.  

 Integrated databases, where representations connected from different existing 

databases correlated and virtually integrated in a federated framework.  

 Finally temporal databases, where multiple representations correspond to 

representations taken at different points in time.  

2.3.3 Information Drilling 

Another methodology of MRDB is called “Information Drilling”. Users may be interested 

in a certain object at any resolution level in a map. If a user requests detailed information 

about a feature, then detailed information can be retrieved from its linked objects (Hampe 

and Sester, 2004). MRDB structure allows getting related data, which are connected to 

directly to the objects in the actual map. There are two kinds of drilling operation about a 

feature. These are listed below as geometry and attribute. 

2.3.4 Geometry Drilling 

In the case of geometry drilling, users can request buildings or roads, which are located in 

specific location on the world. For users, it is needed only a click for selected area to drill 



22 

 

more information about it. After making selection of area, a request with bundle of selected 

feature’s identifier is sent to server by a typical web service or another infrastructure. 

Server can get request then starts data drilling from different databases. After getting the 

response from server, users can determine or analyze the drilling data, for example this 

drilling information can be a building plan about a building. 

2.3.5 Attribute Drilling 

The MRDB structure can allow retrieving information that is not linked directly in 

database. There is a good example usage of attribute drilling presented by Hampe and 

Sester, (2004). Maybe, an attribute does not exist in feature of a building within the map at 

a certain scale, but if map scale is configured much smaller, built-up area or cities can own 

the attribute “city name” and hence, buildings linked with this object can access this 

attribute data when it is requested.  

In the MRDB structure, if a user wants to learn city name information about a building, 

corresponding city feature is requested then the desired information can be returned to user. 

In MRDB, the number of attributes is not limited with stored feature. Because of the links 

between the objects in the database, indirect access can be done to retrieve linked 

information from database. 

 



23 

 

CHAPTER 3  

SYSTEM ARCHITECTURE 

In this chapter, overall structure of the system is described. Overall system mainly consists 

of three common components. These are listed as a server side application as we call 

middleware, a service infrastructure and clients. Details about these components will be 

described separately in chapter 4.    

Server side application is a kind of a web application. It includes service infrastructure and 

other important components such as data access module, scale control manager, link 

module etc. Service infrastructure is constructed to provide communication between server 

and client. Two clients are implemented in this research. These are called web client, and 

mobile client. These clients have a rich user interface and responsible to present developed 

MRDB prototype to end-users. These components will be explained briefly in the next 

chapter. 

System architecture can be introduced as follows; firstly general architecture and database 

architecture will be explained. After that implementation of MRDB approach and dataset 

linking procedure will be described. Finally data flow and communication between system 

components will be explained. 

3.1 Overall Design 

In this section, system architecture, which is developed in this study, is explained. For 

study, beginning with the most principal architecture, it can be said that system is adopted 

based on client-server model. Client-server model is an approach, which contains one or 

multiple servers and some clients. Architecture of client-server model is depicted in Figure 

18. 



24 

 

 

Figure 18 A typical client-server model, (URL 19) 

Each server is a computer system and it may share its resources. A client is a computer 

program that contacts with server to use its shared resource. There are two types of client-

server models, two-tier architecture and three-tier architecture.  With two-tier architecture, 

clients can directly interact with server. This leads the security vulnerability and 

performance problems.  Browsers are typical applications that use two-tier architecture.  In 

this architecture, for resolving security problems, a Secure Socket Layer (SSL) is used. 

With three-tier architecture, additional software called middleware is located between the 

client and server. Middleware is a middle layer on the system, it avoids to direct access to 

data layer. Thus three-tier architecture is more recommended approach to implement secure 

applications. The difference between two architectures can be seen in Figure 19. 

 

Figure 19 Demonstration of client-server model types. One-tier architecture (left), Two-tier 

architecture (middle), three-tier architecture (right), (URL 29) 

In our work, implementation design is based on three-tier architecture. On the client tier, 

there are two clients available. These clients can make requests and then get response at any 

time from middleware. In addition for client architecture, for each client there is a scale 

control manager to control zoom level of application. Because client application needs to 

know which zoom level is active and which feature to be shown on the screen.  



25 

 

Second tier of our three-tier architecture is the middleware. This is the location, which 

pursues business logic of system.  In our study, all requests pass through the middleware. 

Middleware is composed of several sub-components. Internal services are implemented to 

help functionality in middleware system. Data access modules are constructed to 

communicate between middleware and data tier. They include database connectivity 

functions. Remote Application Programmable Interface (API) is actually web service 

infrastructure. It manages the communication between client tier and middleware. Scale 

control manager is executed when a request is received from clients. It must parse the 

request and construct the response with desired scale. Link module provides that a feature 

can be linked with other features in different scale.  Finally there is a logging module, 

which is a function recording any event on middleware. All components will be detailed in 

chapter 4.  

On the Application layer, there are some external software programs, such as servlet 

container and geo server. Basically, a servlet container can execute java server side codes 

called servlet.  These applications are detailed in next chapter. 

Last tier of the architecture is called data tier. On this level, there are located many database 

servers. Each database server has own database management software and database 

schema. In our design, we have district, road, school, country, and link database system. 

Each system will be detailed in chapter four. Main architecture representing the general 

design of the system is depicted in Figure 20. 



26 

 

 

Figure 20 Main architecture 

3.2 Database Design 

In this part, database architecture design is pointed. Data tier consists of several individual 

database systems. In this study, data about the city of Ankara in Turkey is used. Existing 

data holds different fields such as roads, schools, districts etc. and all the data are imported 

successfully from separated databases. District database stores the counties in Ankara.  

Likewise, road database stores the path information in Ankara. In the same manner, school, 

country and power transformer databases contain meaningful datasets for city of Ankara.  

At this point, linking database system has a different manner from the other databases. 

Linking database is created to relate the datasets, which are located in different database. 

Linking database is depicted in Figure 21.  An inheritance can be seen from the figure. 

Inheritance is a programming approach and it provides to re-usability of objects in Object-

Oriented Programming (OOP) (URL 20). Base entity class of our inheritance architecture is 

called domain object base. It has a unique id as integer number and a store date field, which 

is a kind of date type. The design below shows that each entity is inherited from domain 

object base.    



27 

 

Layer database entity keeps the specific information for different layers. As previously 

mentioned systems such as district, road, school databases are defined as layers in layer 

entity table. A layer entity has several fields for layer definition. Multi scale detail database 

entity provides to store the relationship information between features. In this entity table, 

basically layer id and feature id composition describes features layer and content. Zoom 

level field describes the feature description and content on that zoom level. Geometry field 

includes spatial information of feature. Basic geometry types could be point, polygon or 

multi polygon and line.   Poi entity is represented for Point of Interest. A Point of Interest 

holds some information about a location on the world. Poi address and detail entities are 

constructed for keeping different types of data in own structure.  

 

Figure 21 Link database entity relational (ER) diagram 

3.3 MRDB Approach 

In the previous chapter, we described MRDB approaches in the literature. GiMoDig 

approach, which we introduced in previous chapter, holds the data at maximum level of 

detail in the database. Then generalization methods uses this data to obtain lower scale data. 



28 

 

After the generalization process the new data and original data are linked to each other to 

be accessed. This flow of process is worked in real time when the users request map for a 

particular scale.  

In this study, Multi representation approached is used. Integration of generalization 

methods is not focused for this study. We have focused on creating a separated database 

environment and generating linking procedure to support MRDB. Also information drilling 

methodology developed for multiple spatial databases to drill data on demand. 

3.4 Dataset Linking Procedure 

For MRDB linking procedure, a database mentioned as Link database is constructed. 

Sample dataset for link database is figured out in Figure 22. 

 

Figure 22 Sample dataset for link database 

System is based on zoom level field. Zoom levels are defined between zero and twenty in 

database and level twenty is the most detailed and level zero is the least detailed level. 

Feature linking procedure can be explained by giving an example.  For instance, a feature, 

which has feature id equals to 296, is selected from school layer. This feature is persisted in 

school database. By using linking generator service, a detail feature can be generated. 

Detail feature keeps feature specific properties. These are feature representation geometry, 

zoom level etc. Also detail feature is stored in linking database (Figure 22). Each client 

application has a component called scale control manager. This manager controls the scale 

change event on client application and if any change is detected on scale, request is 

demanded from middleware to fetch and display linking detail information on the 

application. Motivation is to create detail features for existing features. These detail 

features can be represented in client applications at proper zoom level. Figure 23 represents 

the linking process flow on client application.  



29 

 

 

Figure 23 Example feature linking in the system, original feature at zoom level 15 (left), 

detailed feature at zoom level 17 (right) 

In Figure 23, feature is originally shown as point in red circle. When user increases the 

scale level in the application, linked data about feature is queried. If any data are available 

then this data are fetched from server. Finally, fetched data are displayed on the application 

screen. In our example, fetched data feature type is presented as polygon indicated by blue 

color.  

3.5 System Flow Design 

In this section, general system flow and communication between components in the system 

are described. Figure 24 presents the general flow of the system. Initially, users access the 

system by using mobile or desktop client application. The request, which was made from 

client applications, is received by middleware system on the Internet. Middleware can 

manage the database connections and transactions. A desired data can be fetched by 

middleware and response is created and transmitted to client application on the Internet. 

 



30 

 

 

Figure 24 General flow of the system



31 

 

CHAPTER 4  

IMPLEMENTATION DETAILS 

In this chapter, implementation details of applications used to present the performance of 

the developed system are briefly described. In the previous chapter, main architecture that 

is based on client/server model was mentioned. All client and server implementations are 

based on java technologies and in addition, open source libraries and frameworks are 

chosen for the study. In this chapter, initially four sub parts are given. Firstly, pre-

requirements’ section is described, then developed web application is described deeply, 

then service infrastructure and finally developed mobile application are demonstrated. After 

all, summary of implementation, case study and areas of use are given for last parts in this 

chapter. 

4.1 Pre-requirements 

There are some prerequisites to run the system without any error. In this part, these 

prerequisites are examined.  

4.2 Database Setup 

A database is required to store the data in the system. In our work PostgreSQL product is 

used.  PostgreSQL is an open source object relational database management system (URL 

16). For management of geospatial data a product called PostGIS that is the extension of 

PostgreSQL is also used.  

4.3 Map Server Setup 

Map server is a critical tool in our work. Because that map server product can be 

considered as a gateway between middleware and database. In our work, GeoServer is used 

as a map server. GeoServer is an open source map server product written by java and it 

provides to share and edit geospatial data confirming the OGC. For more information about 

the product, site link can give extra information (URL 6). 

GeoServer supports to define data store objects. A Data store is a typical connection 

provider to make connection between GeoServer and Database. Actually a data store stands 

database access information about a layer. These data stores can be customized using 

GeoServer application user interface. In our work, we define the data stores about city of 

Ankara layer data. Then, these data stores are used in the system. 



32 

 

4.3.1 Data Preparation and Transmission 

Data preparation and transmission tasks are important part of our work. Data, which 

contain geographical features about city of Ankara, are used. The data set contains different 

feature categories such as Roads, Schools and Districts and Power Transformers for city of 

Ankara. We have encountered some problems about feature data. Most important problem 

faced with is having different map projection and datum for each data. To solve this 

problem, we used some GIS tools. By using MapInfo application, we generated new data 

sets, which have the same projections.  World Geodetic System latest revision WGS84 is 

used as datum and Google Mercator map projection is used in our data preparation task.   

Another issue is transmission of data from shape files into the database. We have data sets 

of city of Ankara as shape format. These shape files must be transferred into a spatial 

database. To transfer data from shape file to database, we used a tool called “PostGIS 

Shape File and DBF Loader”. This tool provides a flexible user interface to import shape 

file content into the PostgreSQL database. 

4.4 Web Application 

In this section, a web application stands middleware is explained. Web application 

components and workflow are detailed. Also frameworks and libraries, which are used in 

application, are discussed in this part. 

4.4.1 Overview 

Our web application is developed on J2EE platform. J2EE platform provides an 

Application Programmable Interface (API) and runtime environment for developing and 

running java based web applications. Typical J2EE web application schema is illustrated in 

Figure 25. 



33 

 

 

Figure 25 Basic J2EE server, (URL 23) 

On the client machine, JavaScript technologies are used to create an application container 

with rich user interface. Application container is installed and executed on the client side. 

J2EE server is called a runtime portion of J2EE application. Tomcat web container is 

selected and used to deploy web application files into web container. Enterprise Java Beans 

(EJB) container is not used in this work. For database product, PostgreSQL open source 

database is used.  

For the communication between J2EE server and client machine web services are 

implemented. These services use Hyper Text Transfer Protocol (HTTP) to communicate 

between start and end points. This service infrastructure is detailed in service infrastructure 

chapter.   

4.4.2 Used Technologies 

There are so many tools, frameworks and technologies used in this study. These are 

categorized as client or server according to their usage. Next parts contain the description 

about these technologies.  

4.4.2.1 Client Side Technologies 

In this section technologies used on client side are discussed. Firstly, OpenLayers library 

usage on this project is discussed. Then detail information about JQuery Mobile library is 

given.  



34 

 

OpenLayers is an open source JavaScript library. It provides users an API for generating 

web based rich user interface for geographical information systems applications. 

OpenLayers support formats that GeoRSS, KML, GeoJSON or map data from any data 

source, which are using OGC standard as Web Map Service (WMS) and Web Feature 

Service (WFS). Detailed OpenLayers API documentation can be obtained from official 

OpenLayers web site (URL 15).  

Using OpenLayers API, a map based geographical application can be implemented quickly. 

Figure 26 shows the basic implementation of map view. Just a few lines code is needed to 

generate a simple map application by using OpenLayers Library. 

 

Figure 26 Creating basic map view with OpenLayers 

In our study, OpenLayers are used to show base map layer and additional layer data on the 

map. Additionally, WFS is supported by OpenLayers to get feature data from server side. 

JQuery Mobile is a JavaScript web framework for desktop and mobile platforms. It is open 

source and free to use on development likewise OpenLayers. JQuery is designed for 

running on cross platforms. The basic idea underlying the JQuery is to design a single web 

site or application that can run on all platforms. JQuery API information can be obtained 

from official JQuery web site (URL 13). 

JQuery library has several widgets and components with rich user interfaces. In this study, 

JQuery provides two important functions. Firstly, JQuery components are used to create 

web site pages in user interface design. Secondly, Ajax technology provided by JQuery 

frameworks is used to make communication between client and server side. Ajax keyword 

stands for Asynchronous JavaScript and Xml. Basic feature about Ajax technology is that it 

provides to exchanging data with a server without reloading whole page.  

4.4.2.2 Server Side Technologies 

In this part, technologies used on server side implementation are discussed. First 

technology, Geotools API is introduced (URL 7). Then Spring Framework and Hibernate 

Framework are detailed. Finally Web Service Framework and logging tools are explained. 

In this study, a spatial querying function is needed to make spatial search operation on 

features. Geotools API can meet our needs in this regard. It provides developers an open 



35 

 

source development kit. In addition, Geotools library conform the Open Geospatial 

Consortium standards. By using Geotools functions, we generated spatial filtering methods 

to filter feature data according to the spatial parameters latitude, longitude, bounds etc. 

For the server side development process, a comprehensive web framework is needed. At 

this stage, a framework called as Spring is selected. Spring web framework is the most 

popular application development framework for java enterprise world (URL 18). Spring 

framework includes several modules. Most important modules are as follows; Inversion of 

control container, Data access framework, Transaction management framework, Modal-

view-controller framework, and Aspect-oriented programming framework. These modules 

can be seen in Figure 27. 

Inversion of control container is central of spring framework. This container provides 

configuring and creating java objects using Java Reflection API. Another module available 

in spring is called as data access framework. This module controls and serves data access 

interface templates. The same as Transaction management framework in spring 

infrastructure, it enables database transaction management.  We did not use deeply the 

remaining frameworks; aspect oriented framework and modal view controller framework of 

spring.  

 

Figure 27 Spring framework architecture, (URL 24) 

Spring data access framework provides to support different kind of data access frameworks 

in java. Hibernate object relational data mapping tool as data access framework is used. 

Hibernate is Object Relational Mapping (ORM) library for java platforms and relational 

databases (URL 12). In addition, Hibernate is an open source free tool to use on 

development. Its primary feature is mapping from Plain Old Java Objects (POJO) to 

database tables. It provides an exhaustive data access method as packet product library. 



36 

 

In this work, Hibernate spatial edition is also used. It is generic extension of Hibernate for 

handling geographic data (URL 11). Hibernate spatial is open source as the same as 

Hibernate framework. By using Hibernate spatial, it provides a standardized cross-database 

interface to geographic data storage and query functions. Also Hibernate spatial conforms 

the OGC specifications and supports PostgreSQL/PostGIS database. 

Another important technology used in our study is web service technologies. We used a 

type of web service called Representational State Transfer (REST) (URL 17). REST style 

web services consist of clients and servers.  Clients initiate requests to servers; servers 

process requests and return appropriate responses as format XML or JSON. Client and 

servers communicate each other by using the HTTP protocol. Typical REST architecture is 

shown in Figure 28. 

 

Figure 28 Restful web services, (URL 25) 

Other framework used on server side implementation is a logging framework called Apache 

Log4j. Log4j is a java-logging library (URL 3). It enables to record errors, info, warning 

etc. to improve code implementation and help the bug free codes on several web projects. 

Also it indicates that it is possible to enable logging at runtime without modifying the 

application binary. In this work, some log tags are put on code to analyze running web 

project process. 

Some helper tools during the development are used. Maven and eclipse are important two 

of them. Maven is a software project management tool (URL 14). Primary goal of Maven is 

that making the build process easy and providing a uniform build system. In our project we 

configured Maven tool for our build process. It helped so much to generate server side Web 



37 

 

Application Resource (WAR) file easily. Another helper tool is an Eclipse tool. Eclipse is a 

kind of software development environment (URL 4). It is open source and having an 

extensible plugin based system to customize environment. There’re so many Integrated 

Development Environment (IDE) on java platforms. Eclipse is a powerful tool used more 

than the other IDE’s. In our study, development workspace is constructed by using eclipse. 

4.4.3 User Interface 

In this part, web application user interface will be described briefly. User interface screens 

are created using JQuery Mobile JavaScript library. The best advantage of using JQuery 

Mobile is that it supports running multi platforms such as mobile, desktop browsers. To say 

it clearly, if we develop a web application by using JQuery, then it can run on iPhone safari 

browser, Android mobile browser, desktop computer browsers such as internet explorer.     

Our web application initial user interface begins with the main page. Figure 29 shows the 

appearance of user interface. Main page consist of three panels. These are map pan control 

panel, map view content and lastly footer bar. Map pan control panel includes direction 

buttons, which are west, north, south, and east. These buttons provide the movement in the 

direction indicated by the user. For example, if the user clicks the west button, map view 

can be panned to west direction on the map. By the way, users can also control the map by 

pressing the right button of mouse. The second panel is the map view. This map view has a 

base layer overview data. JQuery mobile currently supports Google maps, Bing maps and 

Open Street map layers as a base map layer. In our work Open Street map is selected as the 

default base map layer. 

 

Figure 29 Web Application Main View 



38 

 

In Figure 29, a zoom control widget located at the left bottom side can be seen. This widget 

helps increasing and decreasing the map zoom level on map view. Lastly, a footer panel 

can be seen. “Search”, “My Location” and “Layer” buttons are located at center of this 

panel. Search and my location buttons are currently inactive. Only the layer button works 

and by clicking this button, a layer view page is opened. 

Layer control page appearance can be seen in Figure 30. On this page, a grouped list view 

widget is used. Two groups are hosted on the list as “Base layers”, “Overlay layers”. Users 

can change the base layers by selecting a new row from list item cell. In the same way, 

users can change the overlay layers status by clicking the row on the list. As additional 

information, inactive layers could not be seen on the map view.  

 

 

Figure 30 Web application layer selection view 

In our application, system gets the active layer data from server. After getting feature data, 

a sample screen shot can be seen in Figure 31. On this screen, each layer on the map is 

represented on the map according to the layer visualization characteristics such as layer 

symbol, layer item color, layer item shape, feature type etc.  

 



39 

 

 

Figure 31 Active layers data preview 

Each item on the map has a clickable interface. If a user clicks the feature on the map, a 

detail panel is opened. Detail panel represents the feature name, identifier and other 

attributes. Selected feature’s detail information is presented in Figure 32. A tooltip widget 

is presented as a detail panel in our user interface. 

 

Figure 32 Selected feature’s detail 



40 

 

We used the same tooltip for multi resolution data representation. In our application, 

feature, which is represented on the map, can have multiple linked data for different scales. 

These linked data can be seen in Figure 33, when the map zoom level is changed from 

fifteen to eighteen.  

 

Figure 33 Multi resolution detail information about a feature 

JQuery mobile supports working on cross platforms. Developed web application is run on 

the Android operating system supported mobile devices. Application appearance can be 

seen in Figure 34.  

 

 



41 

 

 

Figure 34 Web application preview on android mobile browser 

Active layers’ features can be seen in Figure 35. These items can be clicked and users can 

get extra information about them.  

 

Figure 35 Active layers preview on android mobile browser 



42 

 

4.4.4 Application Work Flow 

In this section, web application flow is described. Then, software modules used in 

application are indicated. Scale control manager and link module are explained. These 

modules manage the application flow entirely.  

Basically a web application starts with opening a browser and typing the web site Uniform 

Resource Locater (URL).  After opening and typing the URL, web client starts. Initially, 

web client requests layer data from web service defined in server.  After then, web service 

responds to web client with queried layer data. Application flow is entirely figured in 

Figure 36. 

 

Figure 36 Application flow chart 

There is a sub module called map user interaction engine in scale control manager. This 

module monitors the user events such as pan and zoom while the application runs. If any 

map pan event occurs, user interaction engine controls the layer bounds with current 



43 

 

bounds. If current map bounds cover any layer boundaries, a web feature service request is 

prepared according to the layer property and is sent to the server. Server responds the web 

client with feature list. After getting the data, features are displayed on map according to 

their type and symbol.  

Map user interaction engine controls the zoom level changes. User can change the zoom 

level by using zoom level widget located at left bottom of the view. Figure 28 shows the 

zoom control widget on the view. Also mouse can change the level of zoom in the 

application. After detection of zoom change, link module prepares an HTTP request, which 

demands multi resolution data from server. On the server side, request is received and 

processed. Then if any results are found, these found data are responded to the client. Link 

module gets the results and refreshes linked data features on the map. At every zoom level 

change on the client side, this process is performed. 

4.5 Service Infrastructure 

In this part, service layer on server side is deeply described. Service infrastructure is a heart 

component of the middleware. It provides the communication between client applications 

and middleware.  There are two types of service implementations in infrastructure, which 

are Restful Web Services (REST) and Web Feature Services (WFS).  

REST web services are created using Jersey library. Jersey is a reference implementation of 

REST services on java platform. There are two service classes implemented in our study. 

These are called layer and feature. In the service contract section, implementation details 

are given.  

4.5.1 Data Contracts 

Several data contracts are implemented. Data contracts are important for client side 

implementation. Because that signature of data contract is expected from the client side as 

the same as within the server side contract, if any update on the data contracts content can 

raise the error during data exchange between client and server. There are four data contract 

classes, which are constructed for services. These classes are showed in Figure 37. First 

class of them is Layer. Layer class keeps several properties such as database connection 

parameters which are needed to make connection between layer database, geographical 

features for instance; projection, bounds, feature type, feature representation symbol etc.  

Other contract is called feature item. This class keeps feature specific attributes examples of 

identifier, type, location and relational properties.  Geometry item data contract is dedicated 

for keeping location attributes. Each coordinate object consists of geographical latitude, 

longitude and height value.  Finally feature detail contract class keeps linked feature 

attributes. It includes feature item and geometry item attributes. In addition, there are 

several detail attributes such as address, phone, web site URL, email address.  



44 

 

 

Figure 37 Service Data Contracts 

Data contracts are kept as simple as possible and as understandable as possible. Hence, 

implementation is made easily and quickly. 

4.5.2 Service Contracts 

In this study, some web services are implemented. These service contracts will be 

explained in this section. Web services are categorized as layer services and feature 

services. 

4.5.2.1 Layer Web Services 

Layer web services are responsible from serving layer data to clients. Current system 

presents only one method to clients. When this method is called, it responds to caller with 

layer list data. Example signature of method can be seen in Table 2. Signature is composed 

of some properties. Method is the method name of the service and it can be any name that 

can be defined. Method type is a type of service. It is generally get or post. Aim property 



45 

 

defines the purpose of this service. Another property listed in table is address, which shows 

that relative path of service. Parameters property indicates that which parameters are 

needed to run service properly. These parameters can be get or post type parameters. It is 

identical to request method type. Sample link gives the Uniform Resource Locator (URL) 

of service to access service. Another property called output type shows response type of 

service method. Currently we served service response as Javascript Object Notation 

(JSON). JSON data exchange type is more popular and easy to understand and test. Also 

Extensible Markup Language (XML) format can be served for data exchange format. 

Finally response property indicates that which response can be retrieved from service. 

These data types are listed in data contracts section. 

Table 2 Layer get service method 

  Method getLayers 

Method Type Get 

Aim Returns the all defined layers on server side 

Address /layer/alllayers 

Parameters None 

Sample Link /mrdb/remote/layer/alllayers 

Output Type JSON 

Response List of Layers 



46 

 

4.5.2.2 Feature Web Services 

Feature services are constructed to serve feature items to the clients. Different versions of 

getting feature process are implemented. For examples, single feature offering, multiple 

features offering, multiple features offering according to the map bounds parameters are 

examples of them. Detail parameters of feature services are listed in Table 3, Table 4 and 

Table 5.  

Table 3 Feature get service method 

Method getFeature 

Method Type  Get 

Aim Return the feature object. 

Address /wfs/get/feature 

Parameters 
“layerId” (layer identifier) (integer) 

“featureId” (feature identifier) (integer) 

Sample Link layerId=1&featureId=102 

Output Type JSON 

Response Feature response 

 

Table 4 Multiple feature get service method 

Method getFeatures 

Method Type Post 

Aim 
Returns the feature list according to layer identifier 

zoom level and feature identifiers. 

Address /wfs/get/features 

Parameters 

“layerId” (layer identifier) (Integer) 

“zoomLevel” (zoom level information) (Integer) 

“featureIds” (feature identifiers) (List<Integer>) 

Sample Link layerId=1&zoomLevel=18&featureIds={1024,242} 

Output Type JSON 

Response Feature list response 

  



47 

 

Table 5 Features get with bounds service method 

Method getFeaturesInBound 

Method Type Post 

Aim 
Returns the features according to layer identifier, and 

bounding box parameters 

Address /wfs/get/featuresInBound 

Parameters 

“layerId” (layer identifier) (Integer) 

“x1” (minimum x coordinate value) (double) 

“y1” (minimum y coordinate value) (double) 

“x2” (maximum x coordinate value) (double)  

“y2” (maximum y coordinate value) (double)  

Sample Link x1=39.3414&x2=32.141451&y1=28.14124&y2=14.15 

Output Type JSON 

Response Feature list response 

 

Table 6 Linked feature get service method 

Method getLinkedFeature 

Method Type Get 

Aim 
Returns the linked feature according to given layer 

identifier, feature identifier and zoom level. 

Address /wfs/get/feature/detail 

Parameters 

“layerId” (layer identifier) (Integer) 

“featureId” (feature identifier)(Integer) 

“zoomLevel” (zoom level value) (Integer) 

Sample Link  layerId=1&featureId=121&zoomLevel=15 

Output Type JSON 

Response Linked feature response 

 

 

 

 

 

 



48 

 

Table 7 Multiple linked features get service method 

Method getLinkedFeatures 

Method Type Post 

Aim 
Returns the linked features according to given layer 

identifier, feature identifier and zoom level. 

Address /wfs/get/features/detail 

Parameters 

“layerId” (layer identifier) (Integer) 

“featureId” (feature identifier)(List<Integer>) 

“zoomLevel” (zoom level value) (Integer) 

Sample Link layerId=2&featureId=1091&zoomLevel=15 

Output Type JSON 

Response Linked feature list response is returned 

  

 
 

4.5.2.3 GeoServer WFS Infrastructure 

In addition to REST service infrastructure, Geoserver is configured to serve WFS to clients. 

Using GeoServer, several data stores are created. Data stores provide fetching features from 

database and serving fetched data to clients. In section 4.3.1 data preparation procedures are 

also mentioned. After data preparation on PostGIS, data store objects are created on 

GeoServer. Figure 38 presents the general flow between client and GeoServer. Initially, 

client prepares a WFS request and sends prepared request to GeoServer. Then, GeoServer 

receives the request and queries the requested data from PostGIS database. After getting the 

result data from database, GeoServer converts the data to Geography Markup Language 

(GML) format and sends it to the client.   

 

Figure 38 WFS flow chart on GeoServer 



49 

 

4.6 Mobile Application 

In this part, the developed mobile application is detailed. Android Software Development 

Kit (SDK) is mainly used to construct android native application. Android SDK is created 

by Google Company to create native applications for android platforms and SDK is an open 

source and it is free to use. 

4.6.1 Used Technologies 

Before the examining used libraries, firstly the basis of android application development is 

explained. Android is an open source touch screen operating system for optimized mobile 

devices. It has a Linux based kernel in own structure. Android uses special virtual machine 

to run java codes. This virtual machine is called “dalvik”. Dalvik virtual machine converts 

the java byte codes “.dex” format to run applications on android operating system. In 

Figure 39, typical android application design is showed. An android application consists of 

resources and java codes. Resources include application specific files such as images, 

sounds etc. Codes, which are written using java are the main files to run application. When 

an application is built, resources remain unchanged but java codes are compiled by virtual 

machine and extension as “.class” files are changed into “.dex” file. Finally within this 

process an Android Application Package (APK) is created.  

 

Figure 39 Architecture for android application development, (URL 26) 

Third party libraries can be used to develop application in android operating system. Used 

libraries in this study are examined below. 

http://i.stack.imgur.com/Vjx6y.png


50 

 

In this work, first used library is Acra. Acra library is a bug control framework (URL 1). It 

catches the exceptions thrown in developed android application then exceptions can be 

logged or sent on network. It is an open source and free library to use. We have used this 

framework to make bug free and stable android application during the development. 

Developed application depends on the Internet connection to run properly. Therefore there 

is a need for an http framework. An http management library called http handler is 

constructed during the development. This framework is based on Apache Http Client API. 

Http client API provides execution of http request, making authentication infrastructure, 

connection management etc.  

Gson library is another useful library to be used in application (URL 10). All data exchange 

between server and client are JSON formatted data. Thus, Gson meets all the needs for data 

conversion in our study. Gson can capable to convert JSON string to Java objects and vice 

versa. In service contract section, we insisted service data contracts. These contracts are 

constructed both on client side and server side. By using Gson, data manipulation between 

server and client can be made quickly in proper format.  

Last technology used in this study is called Google maps android API. Google maps API 

provides adding Google maps into the own native android application.  Map view covers a 

large part of visual sense of the application. Therefore map framework is important for 

development. Google maps integration for Android is easy part of the development. 

Difficult part is the management of map items on Google map. Currently Google maps API 

supports marker adding, drawing line, multiline, polygons, circles. Before using API, an 

important thing to be known that an API key is needed to use maps API on your own 

application. API key can be obtained from official Google maps web site (URL 9).   

4.6.2 User Interface 

In this part, example user interfaces from developed Android application are given. 

Android software development kit includes several rich user interface widgets and tools 

(URL 2). Some widgets are designed such as dialog, popups and option menus by using 

this development kit. 

Developed native android application is a map-based application. It means a map view 

covers all view area and user can interact with items on the map.  Figure 40 shows the 

application main view. Google map is used as base map layer in our study. On this view, 

there is an overlay view. This view has a zoom control widget on the bottom and center of 

screen, a locate button at left top of the screen and finally a satellite icon at right top of the 

screen. Zoom control buttons can increase or decrease scale of map according to pressing 

zoom in and zoom out. Locate button makes map center position to user device position 

provided by Global Positioning System (GPS) sensor on device. Satellite icon can change 

the map type. Currently two map types as standard, satellite modes can be supported in our 

application.  



51 

 

In Figure 40, a blue dot point in the screen indicates location of user on the map. In 

addition, a menu can be seen when a user presses the android menu button. This menu is 

showed in Figure 40. Menu tooltip includes a layer button and a server settings button. 

 

Figure 40 Application main view, (left) Main menu items (right) 

When pressing the layer button a dialog, which lists layers info is shown.  In the layer list, 

items can be selected or unselected according to user interaction. Layer selection dialog is 

depicted in Figure 41. If user clicks the server settings button, a page with a text field is 

appeared. In this screen, server address should be set to make connection established 

between application and server.  



52 

 

 

Figure 41 Layer selection dialog (left), A popup panel for a feature (right) 

According to selection of layers, application refreshes the map view. This change can be 

seen in Figure 42. Each layer is displayed on the map according to their attribute type. For 

example, a layer holding several points is displayed with its symbol on the map. However a 

layer composite of lines are drawn on the map with its line drawing color.  

Each item on the map can be clickable. When user clicks on an item, a popup information 

dialog is opened. This dialog contains feature detail information about selected feature. 

Example popup is shown on the right hand side of Figure 41. 



53 

 

 

Figure 42 Left side image contains a map view with school layer, right image contains a 

map view with both school road and transformer layers. 

Developed application has several listeners on the map such as pan and zoom. Pan listener 

is registered to map move events and as a result of this, map features are instantly refreshed 

on map. Likewise, zoom listener is registered to map for catching scale change events. The 

most important feature of developed application is that a feature can be connected or linked 

to a relational data at a specific scale. This linked feature data can be any type of feature. It 

is predefined in the system before the act of showing. An example for multi scale link data 

at zoom scale 18 is shown in Figure 43. This linked data is shown automatically by system 

if only zoom level is proper and item is within the extent of current map view.  

 



54 

 

 

Figure 43 Example for a multi scale link data at zoom scale 18, for a feature, which belongs 

to the school layer (left), A detail panel is shown about link data (right) 

4.6.3 Application Work Flow 

In this part, developed mobile application and the working principles of the application are 

examined step by step. 

First step is called running the application stage. Android native applications are executed 

by pressing the application icon on the operating system menu. After starting the 

application, application main activity is shown. In Android, an activity can be compared 

with a blank page. In addition, activity can host multiple widgets or user interface tools. In 

developed application, main activity has a map view as full screen. This activity is 

demonstrated previously in figure 40. 

Second step is called layer synchronization. When application is started to run, on the 

background, request of layer is prepared and sent to the server.  Server responds layers as 

response for request. Synchronization of layers between server and client is completed 

when getting the request response.   



55 

 

Third step is about the event listening mechanism. Current event listening has capability of 

catching two different kinds of events. First of them is pan event. It is occurred when map 

moves. Second is called zoom change event. When any type of event occurs, application 

controls the current map bounds with each layer’s bounds. If any layer’s range is within the 

current map range, application prepares feature request for the layer that is in bound. 

Feature request with bound properties is shown in Table 5. After Server responds, 

application refreshes map view with received features. A map view with both school layer 

and road layer as an example are depicted in Figure 42. 

Feature request using map bound parameters can get a list that contains identifier of 

features. After getting the list of identifiers, for each feature a feature detail request is 

prepared to get detail of feature. Request properties for getting feature detail are shown in 

Table 3. 

Application refreshes map items when any event occurs on the map. Third step and fourth 

step are repeated according to refresh the process. In addition, there is an extraordinary 

task. This task observes any map scale changes. If change is observed, multi scale link data 

is requested from server for each feature in the current map bounds. Multi scale data 

request properties are shown in Table 7. After getting the multi scale link data, this data is 

represented on the map automatically.  Figure 43 can be given an example of this task. This 

figure demonstrates that a feature, which is element of school layer, is represented by layer 

symbol and zoom level at 18 on the map.  If map zoom level can be changed from eighteen 

to twenty, then application queries linked detail data for zoom level value twenty from 

server. If any linked data is found then application receives queried data and represents on 

the map. 

4.7 Summary of Implementation 

To sum up the system properties, a feature can have different geographical representations. 

These representations possibly have type of point, polygon, multi polygon, line or multi 

line etc. Implemented server side and mobile application support multiple representation of 

single feature.  In Figure 44, a crossroad can be seen as named “real representation” in the 

real world. Each representation can have its geometric type and representation type of 

feature depending on development requirements.  



56 

 

 

Figure 44 Different representations of a geographical feature 

Each feature representation, which is derived from original source, is stored in different 

database schemas. Figure 45 Storing different representations in different schemasFigure 

45 demonstrates to show different representations of original representation. At this point, 

original feature’s attribute of identifier is linked with its related representations data. Using 

this identifier, system can retrieve different representations from different databases when it 

is demanded. 

 

Figure 45 Storing different representations in different schemas 

In Figure 46, left hand side image indicates an original representation of a feature on the 

map. Original representation type is defined as a point type. For demonstration of feature 



57 

 

item, symbol of high school is used to indicate class of feature.  At this point, developed 

applications provide that different representation of original feature can be queried and 

retrieved from databases. Methodology of information drilling is used to retrieve related 

data from different databases. However to retrieve the linked data, different representations 

of feature must be prepared and stored in database. Also association between original 

representation and other representations must be made. As a result, developed mobile and 

web application can show multiple representations at defined zoom levels for some features 

on the map. 

 

Figure 46 A demonstration of original feature (left) and different representations at 

different scale (right) 

4.8 Case Study 

In this section, a case study to demonstrate the implementation of the developed system is 

presented. Since no multi resolution support for current database management system is 

available for spatial database domain, prototype applications have been developed for web 

and Android platform to demonstrate the study. Information drilling methodology is 

adopted to gather linked data from different spatial databases. A study area, which is named 

city of Ankara in Turkey, is selected and used in the development. The prototypes can show 

different layer information to users. For instance, school, road and power transformer data 

are available for city of Ankara. A typical application provided with GIS can show layers 

data on map. In many GIS applications, this characteristic is a common property. The 

difference between developed prototypes in this study with traditional GIS applications is 

that traditional applications only show feature of layers and their attributes on map, whereas 

developed prototype can cover traditional application capabilities and also can do 

information drilling for features. Information drilling means that pre linked data about the 

same feature can be retrieved from different databases and showed on map at particular 



58 

 

scale. More clearly, for example, if a school feature is requested on map, this data can be 

represented as a point or a polygon shape. At low resolution, school data is only 

represented as dot or point on map. When spatial resolution is increased, school data 

becomes more apparent and building which belongs to school can be seen clearly. At this 

point, traditional GIS application can only show its feature symbol as point. But developed 

prototypes can show school data and its building with different geographical shapes and 

augmented attributes. It is useful to see both school and building of school with drilling 

data. Current spatial databases do not provide to see related data about geographical 

features. They can show only defined layers with their style and symbols on map.  

Prototype usage can be described shortly with a basic example. Original view of a feature, 

which belongs to power transformer layer, can be seen in Figure 47. This feature is 

retrieved from server with spatial query like “select feature from trafolar where layerId=4 

and featureId=295 and zoomLevel=15”. In this zoom level feature is depicted as a point on 

the map.  

 

Figure 47 Original View of a feature at zoom level 15 

After zoom level is increased from 15 to 18, a detail feature is searched on the server. 

Search operation executes a search query. This search query is “select detailFeature from 



59 

 

multiResolutionDB where layerId=4 and featureId=295 and zoomLevel=18”. After getting 
the search result, detail feature is drawn on the map as in Figure 48. Also detail feature is 

presented as polygon shape on the map. This feature has some extra attributes about 

original feature. Extra attributes can be depicted in popup view in Figure 48. 
 

 

 

Figure 48 Detail view of feature at zoom level 18 

In the future, developed prototype can be enhanced with different data sources or providers. 

Current system only supports data for city of Ankara. Also optimization is needed for some 

situations for prototypes. For example at low resolution, map boundary of map view covers 

a wide area. This means that the number of features brought is quite crowd. This causes 

decreasing in render performance in the application and usability of the application is 

affected obviously.    

4.9 Areas of Use 

Navigation system is one of the most popular applications for small computers like mobile 

devices and tablets. However, the limitations of small displays enforce the development of 



60 

 

intelligent methods for efficiently communicating spatial information. In a navigation 

application, visualizing a map with several thousands of map items possibly leads a display 

problem in mobile devices. Because of that, mobile devices have limited capacity and 

display size.  

Having the possibility to access different levels of spatial objects using the MRDB can 

opens the way for new visualization alternatives. For example, in a low resolution, 

navigation applications show hundreds of spatial objects in map. This situation leads to 

confusion in the small screens. Using MRDB, These hundreds of spatial objects can be 

grouped into one spatial object. When higher resolution is demanded, grouped object is 

separated into different objects by gathering link information between low resolution and 

high-resolution data. 

 

 

 

 

 

 



61 

 

CHAPTER 5  

CONCLUSIONS AND RECOMMENDATIONS 

Multi resolution or multi representation database stores and links the same geographical 

object or phenomena at different levels of precision, accuracy and resolution. Unfortunately 

current spatial database management systems do not have multi resolution and multi 

representation support. MRDB concept still is an open problem in GIS domain. There are 

several approaches of creating multi scale databases. Research projects aim real-time 

generalization methodology and after the generalization process an automatic linking 

process is covered to support MRDB. Information drilling methodology is another 

demonstration in MRDB concept. Drilling provides linking different spatial databases and 

generates an augmented data for geographical objects in MRDB applications. 

All developed prototyped applications in this study are created using open source libraries. 

Open source libraries are used because, in open source development, everyone collaborates, 

information, which is used in development are shared with everyone who developed 

software and there is no additional cost needed during the development. These conditions 

have leaded us to develop prototype applications by using open source frameworks or 

libraries. 

City of Ankara is selected for test area. This area contains layer information such as roads, 

schools, districts and power transformers. In the future, the data used in prototype 

application can be expanded for different countries or areas. Developed prototype can be on 

different data.   

Resolution based feature linking is implemented for this study. This means that each feature 

can have multiple related features at specific resolution level in spatial database. Currently 

our system can give multiple links for a feature at some scale. We did not implement map 

generalization techniques. Because the map generalization is not our focusing task and map 

generating for specific scale is not within the scope of this study. Our motivation is to make 

information drilling for specific features on the map. After the drilling, feature content can 

be augmented with more detailed information.  

In GIS, navigation systems are widely used. A navigation system provides getting location 

and time information in the world. The most common problem in Navigation Systems is 

that sometimes necessity of rendering too many features at the same time on the map occur 

a performance problem. In lower resolutions, usually number of features rendered is too 

much. This problem may be solved with usage of MRDB concept. The data structure in 



62 

 

terms of MRDB can easily allow integrating different representations of the data in 

different resolutions. If MRDB is used in a navigation system at lower resolution, rather to 

have all data shown, only generalized version of data are shown. Generalized data are 

created by using links between multi representation objects in different resolutions in 

MRDB structure.  

The developed system can be also used for organizations dealing with similar data but 

storing them in different way and scale in their own databases. With the help of information 

drilling, it can be possible to retrieve detailed information, which is not available in a 

coarse representation without integrating databases. 

 A mobile client application is implemented in our study. This application is compatible 

with devices, which operates in Android operating systems. Android native application is a 

map-based application. Application is configured to consume REST services from 

middleware. Layer and feature synchronization can be made with using REST service 

infrastructure. We select the Android operating system because, the development of 

application is free and codes are open source in Android operating system. 

The difficulties encountered are as follows; firstly controlling of large data sets is hard. 

Also updating object status in MRDB structures is a non-trivial task. Association update 

operation requires much effort and it is very important to keep right link connection 

between features. Mismatch of map projection of different data sets is a problem also, 

which is encountered. To solve the problem, data sets are prepared on common map 

projection. Another problem is about the usage performance of prototype system. When 

huge amount of features are rendered on map, there is a bit slowness and hesitation on flow 

of system. To overcome this issue, feature-clustering algorithms should be analyzed and 

implemented. Finally, making connection between separated spatial databases is not an 

easy task. Manuel linking task for feature interconnection are used. However this 

methodology is difficult for large datasets. In the future, it should be changed from manual 

linking to automatic linking procedure.  

To see the extra information using information drilling methodology for features by the 

users can be considered as the main benefit of the study. With the developed system non-

limited feature attributes access can be made. That means information, which the user can 

get, is not limited to the attributes stored with a certain feature. Because of the links 

between the objects in the database, related information can be accessed directly from the 

feature information stored in different databases.  

To sum up, MRDB concept has not been adequately considered in the past to improve the 

performance of spatial data management and query processing. According to this 

deficiency, to make support of MRDB usage: Information drilling on spatial objects, 

association between multiple spatial databases and on demand linked data retrieval for 

features at the specific scale are developed. 



63 

 

REFERENCES 

WEB REFERENCES 

URL 1,  Acra official web site, from (http://acra.ch/) last accessed on 29/05/13 

 

URL 2,  Android developer site, from (http://developer.android.com/sdk/index.html) last 

accessed on 01/06/13 

  

URL 3, Apache Log4j site, from (http://logging.apache.org/log4j/1.2/) last accessed on 

25/05/13 

 

URL 4, Eclipse IDE site, from (http://www.eclipse.org/) last accessed on 15/05/13 

 

URL 5, from (http://gitta.info/Generalisati/en/html/GenProcedure_learningObject7.html) 

last accessed on 25/05/13 

 

URL 6, Geoserver official site, from (http://geoserver.org/display/GEOS/Welcome)  last 

accessed on 28/05/13 

 

URL 7, Geotools site, from (http://docs.geotools.org/) last accessed on 29/05/13 

 

URL 8, GiMoDig project site, from (http://gimodig.fgi.fi/summary.php.html) last accessed 

on 25/05/13 

 

URL 9, from (http://developer.android.com/google/play-services/maps.html) last accessed 

on 22/04/13 

 

URL 10, Gson library site, from (https://code.google.com/p/google-gson/) last accessed on 

01/06/13 

 

URL 11, Hibernate spatial site, from (http://www.hibernatespatial.org/) last accessed on 

29/05/13 

 

URL 12, Hibernate site, from (http://www.hibernate.org/) last accessed on 29/05/13 

 

URL 13, JQuery Official library site, from (https://jquery.org/) last accessed on 21/05/13 

 

URL 14, Maven site, from (http://maven.apache.org/index.html) last accessed on 19/03/13 

 

URL 15, Openlayers site, from (http://openlayers.org/) last accessed on 22/05/13 

 

URL 16, PostgreSQL site, from (http://www.postgresql.org/about/) last accessed on 

28/05/13 

http://acra/
http://developer.android.com/sdk/index.html
http://logging/
http://www/
http://gitta/
http://geoserver.org/display/GEOS/Welcome
http://docs/
http://gimodig/
http://developer/
https://code/


64 

 

 

URL 17, from (http://searchsoa.techtarget.com/definition/REST) last accessed on 14/05/13 

 

URL 18, Spring official site, from (http://www.springsource.org/) last accessed on 25/05/13 

 

URL 19, from (http://upload.wikimedia.org/wikipedia/commons/c/c9/Client-server-

model.svg) last accessed on 22/04/13 

 

URL 20, from (http://www.codeproject.com/Articles/22769/Introduction-to-Object-

Oriented-Programming-Concep) last accessed on 20/04/13 

 

URL 21, from (http://www3.ntu.edu.sg/home/programming/JavaNativeInterface.html) last 

accessed on 24/04/13 

 

URL 22, from (http://geoportal.icimod.org/TrainingandEducation/GISforBeginners/p1ch8/) 

last accessed on 17/07/13 

 

URL 23, from (http://docs.oracle.com/javaee/1.3/tutorial/doc/Overview4.html) last 

accessed on 10/07/13 

 

URL 24, from (http://www.developersbook.com/spring/spring-tutorials/spring-

tutorials.php) last accessed on 22/05/13 

 

URL 25, from (http://di-side.com/di-side/services/web-solutions/rest-webservice-symfony/) 

last accessed on 20/05/13 

 

URL 26, from (http://i.stack.imgur.com/Vjx6y.png) last accessed on 12/06/13 

 

URL 27, from (http://www.vividsolutions.com/jts/discussion.htm) last accessed on 

19/04/13 

 
URL 28, from (http://gitta.info/Generalisati/en/html/GenProcedure_learningObject5.html) 

last accessed on 21/07/13 

 
URL 29, from (http://blog.simcrest.com/what-is-3-tier-architecture-and-why-do-you-need-

it/)  last accessed on 01/08/13 

 

OFFLINE REFERENCES 

Devogele, T., Trevisan, J., and Raynal, L., Building a Multiscale Database with Scale-

Transition Relationships, Advances in GIS Resarch 2, Delft, 1996 

  

Gabay, Y., and Sester, M., Forming and utilizing communication between two spatial 

representations at different scales, Geoinformatica, 2002 

  

Hampe, M., Heinrich, K., and Sester, M., MRDB Applications for Data Revision and Real-

Time Generalisation, University of Hannover, Germany, 2003 

  

http://www3.ntu.edu.sg/home/programming/JavaNativeInterface.html
http://geoportal.icimod.org/TrainingandEducation/GISforBeginners/p1ch8/
http://di-side.com/di-side/services/web-solutions/rest-webservice-symfony/
http://i.stack.imgur.com/Vjx6y.png
http://www.vividsolutions.com/jts/discussion.htm
http://gitta.info/Generalisati/en/html/GenProcedure_learningObject5.html
http://blog.simcrest.com/what-is-3-tier-architecture-and-why-do-you-need-it/
http://blog.simcrest.com/what-is-3-tier-architecture-and-why-do-you-need-it/


65 

 

Hampe, M., and Sester, M., Generating and Using A Multi-Representation Database For 

Mobile Applications, ICA Workshop on Generalisation and Multiple Representation, 

Leicester, 2004 

  

Jenks, F., Lines, Computers and Human Frailties, Annals of the Association of American 

Geographers, Vol 71, 1981 

  

Shea, S., and McMaster, R., Cartographic Generalization In A Digital Environment When 

And How To Generalize, New York, 1989 

  

Nickerson, T., Bradford, G., Herbert, R., and Freeman, K., Development of a Rule-based 

System Automatic Map Generalization, Second International Symposium on Spatial Data 

Handling, Seattle, Washington, 1986 

   

McMaster, R., and Veregin, H., Visualizing cartographic generalization, University of 

Minnesota, Department of Geography, 2010 

  

Sester, M., Optimizing Approaches for Generalization and Data Abstraction, International 

Journal of Geographic Information Science, 2004 

  

Sester, M., Generalization Based on Least Squares Adjustment, Amsterdam: International 

Archives of Photogrammetry and Remote Sensing, 2000 

  

Zour, S., and Jones, C., A Multi-Representation Spatial Data Model, Cardiff, 2003. 

  

Sheth, A., and Larson, J., Federated Database Systems for Managing Distributed, 

Heterogenous, and Autonomous Databases, ACM Computing Surveys, 1990 

  

Spaccapietra, S., Parent, C., and Vangenot, C., GIS Databases: From Multiscale to 

MultiRepresentation, Swiss Federal Institute Of Technology Lausanne, Switzerland, 2000 

  

Stern, B., Hurni, L., Werner, M., and Wiesmann, S., Generalisation of Map Data, 

Geographic Information Technology Training Alliance, 2012 

  

Töpfer, F., and Pillewizer, W., The Principles of Selection, A Means of Cartographic 

Generalisation, Cartographic Journal, 1966 

 
Zhou, X., Prasher, S., Sun, S., and Xu, K., Multiresolution Spatial Databases: Making Web-

based Spatial Applications Faster, School of Information Technology and Electrical 

Engineering University of Queensland, 2004 


	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	1.1 GIS And Spatial Databases
	1.2 Multi-Resolution Spatial Databases
	1.3 General Approaches
	1.4 Multi Representation
	1.5 Multi Resolution
	1.6 Motivation and Scope of Research
	1.7 Organization of Thesis

	MRDB TECHNIQUES IN GIS
	2.1 MRDB Data Structures and Modeling
	2.2 Derivation of Maps
	2.2.1 Simplification
	2.2.2 Smoothing
	2.2.3 Aggregation
	2.2.4 Amalgamation
	2.2.5 Merging
	2.2.6 Collapse
	2.2.7 Refinement
	2.2.8 Typification
	2.2.9 Exaggeration
	2.2.10 Enhancement
	2.2.11 Displacement
	2.2.12 Classification

	2.3 Reference Projects
	2.3.1 GiMoDig Project
	2.3.1.1 Objectives of GiMoDig Project
	2.3.1.2 Problems
	2.3.1.3 Design of MRDB
	2.3.1.4 Generalization Methodology
	2.3.1.5 Simplification for Buildings
	2.3.1.6 Amalgamation for Buildings
	2.3.1.7 Typification and Displacement for Buildings
	2.3.1.8 Derivation of Links Between Objects in MRDB

	2.3.2 Murmur Project
	2.3.2.1 Objectives of Murmur Project
	2.3.2.2 Design of MRDB

	2.3.3 Information Drilling
	2.3.4 Geometry Drilling
	2.3.5 Attribute Drilling


	SYSTEM ARCHITECTURE
	3.1 Overall Design
	3.2 Database Design
	3.3 MRDB Approach
	3.4 Dataset Linking Procedure
	3.5 System Flow Design

	IMPLEMENTATION DETAILS
	4.1 Pre-requirements
	4.2 Database Setup
	4.3 Map Server Setup
	4.3.1 Data Preparation and Transmission

	4.4 Web Application
	4.4.1 Overview
	4.4.2 Used Technologies
	4.4.2.1 Client Side Technologies
	4.4.2.2 Server Side Technologies

	4.4.3 User Interface
	4.4.4 Application Work Flow

	4.5 Service Infrastructure
	4.5.1 Data Contracts
	4.5.2 Service Contracts
	4.5.2.1 Layer Web Services
	4.5.2.2 Feature Web Services
	4.5.2.3 GeoServer WFS Infrastructure


	4.6 Mobile Application
	4.6.1 Used Technologies
	4.6.2 User Interface
	4.6.3 Application Work Flow

	4.7 Summary of Implementation
	4.8 Case Study
	4.9 Areas of Use

	CONCLUSIONS AND RECOMMENDATIONS
	REFERENCES
	WEB REFERENCES
	OFFLINE REFERENCES

