
i

ARCHITECTURAL ENERGY-DELAY ASSESSMENT OF ABACUS MULTIPLIER WITH

RESPECT TO OTHER MULTIPLIERS

A THESIS SUBMITTED TO

THE BOARD OF GRADUATE PROGRAMS OF

MIDDLE EAST TECHNICAL UNIVERSITY,

NORTHERN CYPRUS CAMPUS

BY

DİDEM GÜRDÜR

 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

SUSTAINABLE ENVIRONMENT AND ENERGY SYSTEMS PROGRAMME

JULY 2013

ii

Approval of the Board of Graduate Programs

Prof. Dr. Erol Taymaz

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master

of Science.

 Assist. Prof. Dr. Ali Muhtaroğlu

 Head of Department

This is to certify that we have read this thesis and that, in our opinion, it is fully adequate,

in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Ali Muhtaroğlu

 Supervisor

Examining Committee Members

Assist. Prof. Dr. Ali Muhtaroğlu (METU NCC, EE) _________________

Assoc. Prof. Dr. Cüneyt Bazlamaçcı (METU, EE) _________________

Assist. Prof. Dr. Yeliz Yeşilada (METU, CNG) _________________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Didem GÜRDÜR

iv

ABSTRACT

ARCHITECTURAL ENERGY-DELAY ASSESSMENT OF ABACUS MULTIPLIER WITH

RESPECT TO OTHER MULTIPLIERS

Gürdür, Didem

M.Sc., Sustainable Environment and Energy Systems

Supervisor : Assist. Prof. Dr. Ali Muhtaroğlu

July 2013, 82 pages

This study presents a logic implementation for the recently proposed ABACUS integer

multiplier architecture and compares it with other fundamental multipliers. The ABACUS

m x n implementation was modeled, simulated, and evaluated using the PETAM (Power

Estimation Tool for Array Multipliers) tool developed during this study, against Carry

Save Array Multiplier (CSAM), Ripple Carry Array Multiplier (RCAM) and Wallace Tree

Multiplier (WTM) for energy-delay performance. The resulting implementation models did

not provide as much value in energy-delay as the originally reported crude architectural

analysis predicted, especially when the multiplier size is smaller than 32x32. This is due

to the fact that threshold detection required by ABACUS “column compression” is not

trivial to implement at low cost using standard logic approaches. On the other hand, the

proposed logic implementation of ABACUS in this thesis is scalable to any m x n integer

multiplier, and demonstrates close to 2x energy-delay product improvement potential

compared to scalable RCAM and CSAM logic implementations for 64x64 bits

multiplication, and more for larger multipliers.

v

ÖZ

ABACUS ÇARPICININ MİMARİ AÇIDAN DİĞER ÇARPICILARLA ENERJİ-GECİKME

KARŞILAŞTIRMASI

Gürdür, Didem

Fen Bilimleri Yüksek Lisansı., Sürdürülebilir Çevre ve Enerji Sistemleri,

Tez Yöneticisi : Yrd. Doç. Dr. Ali Muhtaroğlu

Temmuz 2013, 82 sayfa

Bu tez yakın zamanda önerilmiş ABAKUS tamsayı çarpım mimarisinin mantıksal

uygulamasını sunar. ABAKUS m x n uygulaması, Elde Öngörülü Dizi Çarpıcı (CSAM),

Dalgalı Elde Dizi Çarpıcı (RCAM) ve Wallace Ağaç Çarpıcı (WTM) ile araştırma

kapsamında geliştirilmiş Tahmini Güç Hesaplama Aracı (PETAM) kullanılarak

modellenmiş, doğruluğu ve enerji-gecikme performansı değerlendirilmiştir. Sonuç olarak

elde edilen uygulama modeli orjinal yayında kullanılan ham mimariden beklenilen enerji-

gecikme performansını özellikle 32x32 uzunluğunun altındaki çarpma işleminde

gösterememiştir. Kolon sıkıştırma için kullanılan eşik tesbit etme işleminin standart

mantıksal yaklaşımlarla yaratılamaması, bu sonuca başlıca sebep olarak gösterilebilir.

Diğer taraftan bu tezde sunulan m x n boyutlarında ölçeklenebilir ABAKUS mantıksal

uygulaması, 64x64 ve daha büyük çarpma işlemlerinde CSAM ile RCAM

uygulamalarının enerji-gecikme performansinda 2 kat ilerleme göstermektedir.

vi

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my mother Zalihe Yazgın; without her

love and support I would not be able to accomplish this work.

I show my sincerest thanks to my supervisor Ali Muhtaroğlu, for his guidance, support

and valuable contributions throughout my work.

I would also like to thank Tegiye Birey for her understanding, constructive comments and

encouragement.

vii

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ..v

ACKNOWLEDGEMENTS .. vi

LIST OF FIGURES ...x

LIST OF TABLES .. xi

GLOSSARY .. xii

CHAPTER 1... 1

INTRODUCTION ... 1

1.1 Objective .. 2

1.2 Background Research ... 3

CHAPTER 2... 7

EVALUATION METHODS & TOOLS .. 7

2.1 Big O Notation ... 7

2.2 Metrics ... 7

2.2.1. Static Power Consumption .. 7

2.2.2. Dynamic Power Consumption ... 8

2.3 Tools .. 10

2.4 Verification ... 12

CHAPTER 3... 14

MULTIPLIER IMPLEMENTATIONS .. 14

3.1 Carry Save Array Multiplier .. 16

3.1.1 Pseudocode to Simulate CSAM .. 17

3.2 Ripple Carry Array Multiplier .. 19

3.2.1 Pseudocode to Simulate RCAM .. 20

3.3 Wallace Tree Multiplier .. 22

viii

3.3.1 Pseudocode to Simulate WTM .. 24

CHAPTER 4... 27

ABACUS MULTIPLIER .. 27

4.1 Partial Products ... 29

4.2 Parallel Counters and Compression .. 30

4.3 Final Adder .. 36

4.4 Pseudocode to Simulate ABACUS .. 37

CHAPTER 5... 40

RESULTS .. 40

5.1 Comparison of Multiplier Architectures .. 42

5.1.1 Delay and Power Comparison ... 42

5.1.2 Energy Delay Product Comparison ... 43

CHAPTER 6... 45

CONCLUSION ... 45

6.1 Future Work ... 46

REFERENCES .. 47

APPENDICES.. 51

APPENDIX A ... 51

A. QUARTUS DESIGNS .. 51

a. CSAM .. 51

b. RCAM .. 52

c. ABACUS .. 53

APPENDIX B ... 54

B. C# CODES .. 54

APPENDIX C ... 69

C. EXPERIMENT CIRCUIT .. 69

APPENDIX D ... 73

ix

D. MULT.TXT FILES .. 73

1. Chess Board .. 73

2. ALL 1’s ... 75

3. 2
nd

 Type Chessboard ... 76

4. Random ... 78

APPENDIX E ... 81

E. OUTPUT.TXT FILE.. 81

x

LIST OF FIGURES

Figure 1. Basic array multiplier. ... 3

Figure 2. Booth multiplier design and algorithm. ... 4

Figure 3. Inputs and outputs of PETAM. ... 10

Figure 4. Result screen of PETAM. ... 11

Figure 5. Addition of partial products. .. 15

Figure 6. Full Adder design with NAND gates. .. 15

Figure 7. 4-bit Carry Save Array multiplier. ... 17

Figure 8. 4-bit Ripple Carry Array multiplier. ... 20

Figure 9. Full adder and half adder bit reduction... 22

Figure 10. 4-bit Wallace Tree multiplier [35]. ... 24

Figure 11. ABACUS partial product alignment. ... 27

Figure 12. 4-bit ABACUS Multiplier design. .. 29

Figure 13. Basic bit level multiplication. .. 30

Figure 14. Partial product generation of 4x4 multiplication. .. 30

Figure 15. Parallel counter designs (a)(4,3), (b)(5,3), (c)(6,3), (d)(7,3). ... 31

Figure 16. Delay of parallel counters. .. 33

Figure 17. Hardware size of parallel counters. .. 34

Figure 18. mxm and (m+1)x(m+1) multiplications with ABACUS extra hardware same hardware

 ... 35

Figure 19. Architectural delay comparison of CSAM, RCAM, WT and ABACUS. 42

Figure 20. Architectural power comparison of CSAM, RCAM, WT and ABACUS. 43

Figure 21. Architectural EDP comparison of CSAM, RCAM, WT and ABACUS. 44

file:///C:/Users/user/Documents/MS/METU%20Thesis/Didem%20GURDUR%20-%20Architectural%20Assessment%20of%20ABACUS%20Multiplier%20with%20Respect%20to%20Other%20Array%20Multipliers%20v3.docx%23_Toc365361345
file:///C:/Users/user/Documents/MS/METU%20Thesis/Didem%20GURDUR%20-%20Architectural%20Assessment%20of%20ABACUS%20Multiplier%20with%20Respect%20to%20Other%20Array%20Multipliers%20v3.docx%23_Toc365361357

xi

LIST OF TABLES

Table 1 Hardware Size and Delay for 4 bits to 64 bits parallel counters. ... 32

Table 2 DELAY, POWER, AND EDP COMPARED ACROSS CSAM, RCAM, WTM and ABACUS 41

xii

GLOSSARY

CLA: Carry Look-ahead Adder

CMOS: Complementary Metal Oxide Semiconductors

CSLA: Carry Select Adder

CSMA: Conditional Sum Adder

CSAM: Carry Save Array Multiplier

DSP: Digital Signal Processing

FA: Full Adder

FFT: Fast Fourier Transform

HA: Half Adder

NMOS: N-type Metal Oxide Semiconductor

PETAM: Power Estimation Tool for Array Multipliers

PC: Parallel Counter

PP: Partial Product

PMOS: P-type Metal Oxide Semiconductor

RCA: Ripple Carry Adder

RCAM: Ripple Carry Array Multiplier

VHDL: Very High Speed Integrated Circuit Hardware Description Language

WTM: Wallace Tree Multiplier

1

CHAPTER 1

INTRODUCTION

Technological improvements like CMOS that replace bipolar devices have succeeded in reducing

power dissipation. However, these improvements had the primary goals of high integration and

increased speed. In recent years, low energy computation has been given equal attention as high

performance in architectural design of the embedded systems. Many factors have contributed to this

trend. One of the most prominent driving factors has been the increasing demand and growth of

embedded systems. Laptop computers, personal digital assistants, remote sensors, mobile phones,

and hearing aids have enjoyed significant success among consumers, and the market for these

devices is expected to increase in the future [1].

Power dissipation is one of the most critical parameters amongst the modern embedded systems. In

the implementation of system architecture, low power design is essential to ensure the sustainability

of feature scaling with Moore’s law, and to produce consumer electronics with more battery life and

less weight. In some applications, embedded systems operate without batteries by scavenging energy

from the environment. Some applications still work with batteries, for which battery life is determined

by average power consumption. To extend battery life or to enable self-powered systems, it is

necessary to use low power operations in these integrated circuits. Furthermore, managing maximum

power dissipation is now a key factor in integrated circuit packaging and cooling. Due to large amount

of power dissipation of high speed circuits, vast amount of heat generation occurs as a by-product.

Consequently, the price, size, weight, battery life, and reliability of these embedded systems are all

strongly dependent on power dissipation [2].

Integer multiplication is a vital arithmetic operation for common Digital Signal Processing (DSP) that is

used in embedded systems, namely filtering and Fast Fourier Transform (FFT). To achieve high

execution speed, parallel array multipliers are widely used but these multipliers can consume more

power than other multiplier topologies. Power consumption has become a critical concern in today’s

2

VLSI system design. Hence, power efficient multipliers are needed for the design of low-power DSP

systems [3]. Due to signal transitions, in many processors, most of the power dissipation is dynamic

power dissipation. However, as transistors become smaller and faster, leakage power known as static

power dissipation becomes significant. It is required to reduce both dynamic and static power

dissipation to save significant power consumption of embedded systems.

This work presents architectural energy delay assessment of the recently proposed ABACUS integer

multiplier architecture with respect to other array multipliers. The ABACUS m x n implementation was

modeled and evaluated using the PETAM tool [4], against Carry Save Array Multiplier (CSAM), Ripple

Carry Array Multiplier (RCAM) and Wallace Tree Multiplier (WTM) for energy-delay performance. This

chapter will discuss the objective of this research and provide information about background research.

1.1 Objective

The objective of this research is an attempt to compare ABACUS multiplier architecture with CSAM,

RCAM and WTM architectures and to find the place of ABACUS multiplier on the trade-off line. The

approach recognizes that power consumption in digital circuits has strong links with activity and

physical capacitance. A logic implementation method for the recently proposed ABACUS multiplier

architecture [3] is developed in this thesis research, and evaluated for speed, power, and energy-

delay product. Specifically, the challenging operation of column threshold detection in the high level

architecture described by the author is addressed through variable size parallel counters in this work.

The implementation minimizes switching activity for dynamic power reduction. This logic-based study

tracks, but does not effectively tackle the multiplier static power dissipation. However, there are

opportunities for static power optimization, including partitioning design for supply voltage domains,

power gating, using low leakage transistors in circuit design [5], etc. Details about ABACUS multiplier

will follow in Chapter 4.

Power estimation is an important issue in the early determination of energy-delay performance in

embedded systems. High-level power estimation methods have not yet achieved the maturity

necessary to enable rapid evaluation of logic designs [5]. This study, therefore, uses a Power

3

Estimation Tool for Array Multipliers (PETAM) [4] to calculate the comparative performance of

ABACUS against other common implementations.

1.2 Background Research

Digital multipliers are major sources of power dissipation in digital systems. Furthermore, array

architecture is a popular typology. An array multiplier is composed of rows of full or half adders for

recursive shift and addition operations. As Figure 1 shows, there are two signals, sum and carry,

which are generated in the previous rows. These signals are transferred to the next rows as extra

inputs. By turning off power to the array elements or by padding the shifted operands with leading

zeros, it is possible to reduce switching activity in the unused array elements. Having bypass lines in

the partial product array that bypasses nonessential array elements and by feeding partial sum and

carry directly to the final carry propagate adder may reduce power. Additional power reduction may be

achieved by bypassing the elements of the carry propagate adder.

Figure 1. Basic array multiplier.

In 1950, Booth proposed an algorithm to increase the performance of multipliers. Basically the Booth

multiplier follows the usual method of summing partial products but it also uses a trick that can reduce

the number of operations for multiplication on the average compared to shift add multipliers. Algorithm

examines each pair of digits in the multiplier, creates the first pair by appending a dummy 0 at the

least significant end. Then,

 i. If the pair is 01, add the multiplicand

4

ii. If the pair is 10, subtract the multiplicand

iii. Otherwise, do nothing

It shifts both the partial product and multiplier to right and examines the next pair of digits. This

algorithm repeats as many times as there are digits in multiplier. Booth multipliers are also called

radix-2 multiplier. Their main advantage is that they involve no correction cycles for signed terms. One

downside of these multipliers is that they become inefficient for alternate zeros and ones as they

involve large numbers of adders and subtractors [6].

Figure 2. Booth multiplier design and algorithm.

Wallace proposes a tree multiplier architecture, which performs high speed multiplication. This

efficient hardware implementation uses full adders and half adders to reduce the partial products

matrix. The disadvantage of this multiplier is that it has a high structural irregularity and is not well

suited for VLSI implementations which often demand regularity [7]. Section 2.3 will give more

information about the implementation of Wallace Tree multiplier and its abstract comparison with

proposed ABACUS multiplier.

5

Dadda presents a similar approach to Wallace. The approach reduces the number of half adders and

at smaller scale full adders used in the tree at the expense of a larger adder at the end. Dada tree is

optimum in providing the minimum number of full adders. Dadda’s work shows that the approach can

also work for larger adders. It is also more flexible to manipulate different types of counters and used

as the basis of comparisons by a variety of research projects targeting to improve the performance of

multiplier [9].

The power comparison between arrays and trees has been examined thoroughly and it is stated that

the significant amount of spurious transitions in array multiplier results in higher power dissipation

than Wallace tree multiplier. Arrays have almost doubled the amount of transitions for an n-bit

multiplier. The high numbers of intermediate, unwanted glitches in array multipliers draw power for

charging and discharging intrinsic capacitances for a significant number of times before the circuit

settles [10].

Baugh-Wooley multiplier is also an array multiplier, but can perform both unsigned and signed

multiplication. Partial products are adjusted in a way that negative sign moves to last step, which in

turn maximizes the regularity of the multiplication array. Baugh-Wooley multiplier operates on signed

operands with 2’s complement representation to make sure that the signs of all partial products are

positive. But, it is not suitable for large size operands [11].

The essential principle used for multiplication is to evaluate partial products and add-shifted partial

products. To perform this operation, a number of consecutive addition operations are required. Hence,

adder is one of the major components required to design an array multiplier. There are adder

architectures such as Ripple Carry, Carry Look Ahead, Carry Select, Carry Skip and Carry Save [11,

12, 13]. To analyze the performances of different fast adders, a lot of research work has been done.

In 1996, Nagendra et al. performed a study on different parallel and synchronous adders based on

their power, delay and area characteristics [14]. This study concentrates on different parallel adders

like ripple carry adder, Manchester carry chain adder, carry select adder, carry look-ahead adder, and

carry save adder, comparing several types of them and concluding that the ripple carry adder

provides reasonable speed for small precisions only.

6

In 2004, Sertbas and Özbey analyzed the performance for classified binary adder architectures on the

basis of VHDL simulations [15]. The results of the study show that CSAM gives better performance in

terms of speed and power consumption when compared to the RCAM. Fonseca et al. [16] presented

a design of a Radix 2m hybrid array multiplier to handle operands in 2’s-complement form by using

CSA on partial product lines in 2005. The results also indicate that the multiplier architecture with CSA

gives better performance in terms of speed, area and power consumption in comparison with the

architecture of RCA [16]. In addition to this, in 2008, Krad and Al-Taie worked on performance

analysis of a 32-bit unsigned data multiplier with CLA logic against one with RCA logic, using VHDL.

The analysis was done on the basis of speed only, and showed that multiplier architecture using CLA

gives better results than does RCA [17]. These studies were mostly based on performance in terms of

delay. However, they provide this study with significant base as they have been used to validate the

simulation results from the PETAM tool. EDP (of CSAM and RCAM) was calculated by PETAM tool

and then compared with Sertbas and Özbey’s results. Section 2.4 has more information about the

verification of PETAM tool.

Muhtaroğlu [3] proposed crude architectural analysis of ABACUS multiplier, where the energy-delay

advantages were analyzed architecturally over the CSAM. The architecture in this study required a

special threshold detection block for column compression which was not available for the purposes of

analysis in this particular research, which is at a more detailed (lower) abstraction level than what

Muhtaroğlu assumed. Chapter 4 includes more details on our implementation of the new ABACUS

multiplier architecture.

7

CHAPTER 2

EVALUATION METHODS & TOOLS

This chapter is dedicated to the evaluation methods, tool descriptions and metrics that are used in the

study. In the first section, mathematical proof of the upper limit is described and is followed by an

explanation of metrics. Details about the power estimation tool and the verification of the tool are

investigated in last two sections.

2.1 Big O Notation

The notations that are used for describing the asymptotic running time of an algorithm are called

asymptotic notations. The result of the analysis of an algorithm is usually an equation that gives the

amount of time, number of memory access, number of comparisons or the other metric. In this

particular case, these formulas are functions of hardware size and delay. This formula is the way of

expressing the cost of CSAM, RCAM, WTM and ABACUS multiplier.

One way to express the cost is the Big O notation. The big O notation is used to describe the limiting

behavior of a function in mathematics. The argument tendency is headed for a particular value or

infinity, usually in terms of a simpler function. The big O notation is a member of Landau notation,

which was proposed by Landau and Bachmann. It is an asymptotic notation [18], which expresses the

upper bound of an algorithm.. This study uses big O notation to compare different multiplier

architectures for the upper limit of the hardware size and the worst case delay.

2.2 Metrics

2.2.1. Static Power Consumption

Static power consumption describes the minimum power used even when there is no activity in the

circuit. It is expected that the CMOS components do not have any static power consumption due to no

direct paths from the power supply to the ground. Unfortunately, metal oxide semiconductor

8

transistors in these systems are not perfect switches and in many applications, static power

consumption is not zero. The gate of the transistor is closed to the threshold voltage, and some

currents still flow through it; this is why there will always be leakage currents in MOS transistors [19].

This current can be negligible. However as transistors get smaller; their effect on power becomes

critical. In this study, the static power consumption is taken into account in calculations to get closer

EDP estimations.

2.2.2. Dynamic Power Consumption

The dynamic power consumption in CMOS has two sources,

Pdynamic = Pshort−circuit + Pswitching

When both P-type metal-oxide-semiconductor (PMOS) and N-type metal-oxide-semiconductor

(NMOS) transistors are open at the same time, short circuit happens. Switching delay occurs due to

PMOS and NMOS transistor switching. This makes a short circuit between Vcc and ground. This

research does not concentrate on short circuit power consumption since it can be adjusted by

properly balancing the inputs of the NMOS and PMOS transistors [20].

The other dynamic power source, switching power is used to charge parasitic capacitance in lines

between the CMOS cells [19]. When the output of a gate changes from 0 to 1 or 1 to 0 the energy

transition occurs, and this is equal to:

Eswitching=

cAV

2

where V is the power source, A is the activity factor and c is the capacitance per gate.

Since an equal amount of energy is used to charge the circuit for each 0 to 1 or 1 to 0 transitions, it is

possible to get an equation for power used in switching. Considering the frequency f of the circuit, and

the probability for a 0 to 1 or 1 to 0 switches at the gate, we get the equation:

Pswitching = fcAV
2

There are three elements to improve power usage, voltage, physical capacitance and activity.

9

Although the other sources of power dissipation have increased their share, switching power

consumption is still the largest power dissipation source in CMOS today [19]. Therefore, there is a

vast body of research for the optimization of switching power. Wei and Horowitz conducted a study

about digital power supply controller for variable voltage and frequency circuits. This study shows that

the controller has advantages on power efficiency [21].

Power estimation tools are quicker than low level simulation. Moreover, architecturally scalable

estimation allows predictions on large systems, which may be very time consuming to design and

simulate at circuit level.

The formulas to calculate dynamic energy (Edyn), static energy (Estat) are:

 (1)

 (2)

 (3)

where is dynamic gate capacitance, is defined in this model as the probability of a

gate experiencing an output low-to-high or high to low transition, Ileakage is leakage current and V is

supply voltage.

This study uses Energy Delay Product (EDP) as a metric to compare each type of multiplier for their

ability to give equal importance to energy consumption and delay. Proposed software is designed in a

way to accept user defined variables like C, Ileakage, Vcc to calculate power consumption and EDP of

different technologies.

10

2.3 Tools

In this work, the PETAM (Power Estimation Tool for Array Multipliers) tool [4] was developed for

relative comparison, and not for absolute prediction of power and performance.

Figure 3. Inputs and outputs of PETAM.

Physical implementation, especially of large systems, is very time consuming and is not scalable.

Spreadsheets, which provide means to calculate power dissipation, can be slow when parameterized,

and were not preferred for this particular case. It is preferred to use C# environment due to the

author’s experience on coding. Industrial CAD tools may offer more accuracy, and are widely used in

the implementation phase. However, they have some significant limitations: They can in general only

be applied to some of the available device technologies, are very hard to configure to quickly report

energy-delay performance across a variety of activity assumptions, and are very expensive.

11

PETAM [4] is developed with C# .Net Framework to calculate EDP of RCAM, CSAM and ABACUS

multipliers. It was later enhanced to support WTM as well, as will be elaborated in later sections. The

tool simulates the architecture of all multiplier topologies implemented using Full-Adders as building

blocks, and calculates multiplication result, delay, power, activity factor and EDP. Figure 3 and Figure

4 show inputs and outputs, and screenshot of the tool respectively.

PETAM could make single multiplication calculation using data entered in text boxes, or read an input

text file to process a large set of multiplications in batch mode. PETAM first reads the bit length of

multiplication; it checks the multiplier and multiplicand size and finds out the bit length of them by

cancelling any zeros at the higher bits. Then PETAM creates necessary number of full adders, and

connects inputs and outputs properly as algorithm dictates. The tool simulates the propagation of bits

from inputs to outputs for each multiplication, and calculates activity factor at each internal node.

Figure 4. Result screen of PETAM.

12

PETAM works in a scalable manner, and there is no limitation on the input or output size. Delay,

capacitance, leakage current and supply voltage are input variables, not constants, because

integrated circuit (IC) technologies vary, and PETAM has the ability to calculate results for different IC

technologies. PETAM generates a table that shows the multiplication results, bit sizes, and EDPs for

all multiplier topologies. The tool also has the ability to produce plots of EDP against multiplier size to

compare multipliers easily across a variety of sizes [4].

Four different types of input vectors have been used during research: Checkerboard pattern, all 1’s

pattern, 2
nd

 type checkerboard pattern and random pattern. Checkerboard pattern is repetition of “01”

or “10”, all 1’s pattern is repetition of 1’s, 2
nd

 type checkerboard pattern is repetition of “0011”or

“1100”, and random is randomly generated vectors by the tool. Appendix D contains these input files.

Different types of multiplier and multiplicand patterns were utilized to investigate the impact on EDP

for each multiplier architecture.

2.4 Verification

All multiplier architectures were modeled in ALTERA Quartus II 9.0 for the basic verification of the

implemented logic in PETAM with the help of waveform files. The design verification methodology

consist of 3 steps; design creation, correctness verification, delay verification. Verification of the power

consumption was not possible with available software resources.

Appendix A contains the design files of multiplier architectures. These files were used to simulate the

multipliers to acquire the delay information through the waveform files. Even though the delay results

were not the same as PETAM due to differing circuit technology assumptions, the relative trends

across different architectures were the same. The relative delay performance of CSAM and RCAM as

predicted by PETAM simulations and ALTERA Quartus II simulations were consistent when compared

with the results from the study of Sertbas and Özbey [15].

The vector dependent power and delay parameters associated with the NAND gate can easily be

characterized in the lab environment, as the building block for all multipliers. To establish this

characterization method, this experiment was done with selected HD74HC00 IC components, and

13

gate level delay, capacitance, and current were measured. Appendix C contains the measurement

details of that experiment.

14

 CHAPTER 3

MULTIPLIER IMPLEMENTATIONS

This chapter provides an overview of the array and tree multipliers. The implementation of selected

multiplier topologies is described, and each multiplier’s architecture is studied. In addition, the

algorithm used to model each multiplier topology in a scaleable manner in PETAM tool is discussed.

Binary multiplication operation can be realised using repeated binary addition, once partial products

are generated. If we define two binary numbers called X and Y that are m and n bits wide, their binary

representation with Xi, Yj Є {0.1}|:

The multiplication of X and Y is called Z and is defined as:

) * (

)

Multiplication operation has two main stages; one is partial product generation, and the other one is

addition of those partial products. Figure 5 shows the partial products and their addition. Each dot

represents one partial product. Chapter 4 has a more detailed explanation about the implementation

of partial product generation.

15

Figure 5. Addition of partial products.

The multiplication topologies differ from each other because of the way partial products are added.

Kumar and Saravanan [22] suggested using full adders as building blocks to compare various types of

adders in 2012. Their study shows that the use of full adders instead of half adders reduces the

critical path, and the usage of energy efficient adder designs increases the performance [22]. Thus full

adder is used as the building block of all selected multiplier implementations in this study. There are

different implementation methods for full adders. Shanthala and Kulkarni [23] compared different ways

of realizing the full adder in their research. Their research shows that only NAND gate implementation

of full adder has less delay and lower power when compared with XOR, AND, OR implementations.

Figure 6 shows the implementation of NAND based full adder that has been extensively used in this

research.

Figure 6. Full Adder design with NAND gates.

16

An array multiplier is composed of rows of full or half adders for recursive shift and addition

operations. There are two signals, sum and carry, which are generated in the previous rows. These

signals are transferred to the next rows as extra inputs. Array multiplier has the advantage of a regular

structure. This reduces the design time of an array multiplier when compared with a tree multiplier.

Another advantage of the array multiplier is its ease of design for a pipelined architecture. On the

other hand, the main disadvantage of the array multiplier is the worst case delay. The speed will be

low for a very wide multiplier. Adder is one of the major components required to design an array

multiplier. Many researchers carried out analyses of array multipliers based on their power, delay and

area characteristics. Next two sections will give details about two selected array multiplier topologies;

carry save array multiplier and ripple carry array multiplier.

3.1 Carry Save Array Multiplier

CSAM is one of the simplest of all multipliers. The basic idea behind it is doing paper and pencil style

multiplication, which means addition of partial products. CSAM is usually designed as a square-

shaped array to minimize capacitance and sustain regularity for ease of design. Figure 7 shows the

CSAM architecture modeled in PETAM, in 4x4 size as an example. The modeling algorithm is based

on the principle that carry outputs are sent diagonally to the next stage of addition. The last stage has

a vector merging adder to merge the carry and sum outputs. As it is seen from the figure, the carry

output of a full adder is fed back to the carry input of the neighbor full adder. Almost all fast multipliers

make use of a Carry Save Adder technique [7, 8, 9].

An n x m bit CSA multiplier has n x m AND gates, m half adders, and ((n-1).(m-1))-1=n.m-n-m full

adders. Depending on the design of the full adders, there could be 22-32 transistors inside.

17

Figure 7. 4-bit Carry Save Array multiplier.

CSAM has hardware size O(n
2
) and delay O(n) as an order of growth property where n is the size of

each of multiplicand and multiplier. The detailed description of the order of growth can be found in in

Chapter 2.

3.1.1 Pseudocode to Simulate CSAM

This is the pseudocode to simulate the signal propagation in the PETAM model for the CSAM.

Initialize; ;Initialization Section.

m=get_multiplier_size ;read multiplier from textbox and save size of it to m.

n=get_multiplicand_size ;read multiplicand from textbox and save size of it to n.

c= get_capacitance ;read capacitance of a NAND gate from textbox and save it to c.

18

v= get_voltage ;read voltage of a NAND gate from textbox and save it to v.

I= get_leakage_current ;read leakage of a NAND gate current from textbox and save it to I.

d= get_delay; ;read delay of a NAND gate from textbox and save it to d.

Partial product generation ;Partial Product Generation Section.

for each bit of multiplier

 for each bit of multiplicand

 PP=m AND n ;create partial products array with using AND gates.

 end

end

for each full adder

 create_FA_inputs_A=PP[..] ;connect first input of full adder with suitable partial product.

 create_FA_inputs_B=PP[..] ;connect second input of full adder with suitable partial
product.

 create_FA_inputs_Cin=PP[..] ;connect third input of full adder with suitable partial product.

 calculate_Cout ;Cout=A*Cin+B*Cin+A*B

 calculate_S ;S=Cin XOR A XOR B

compare Cout with earlier Cout ;compare signals with earlier ones and calculate activity factor

compare Sum with earlier Sum ;if only sum or Cout changed switching=0.5,

calculate_switching ;if both changed switching=1, if none changed switching=0

;switching activity calculated with the comparison of each full adders earlier sum and Cout
with current ones. If only one of them changes then the activity factor is 0.5, if both changes it
is 1 and if there is no change on both of them then the activity factor is 0.

end

 product=selected_Couts_Sums ;final product is equal to Cout or Sum of some full adders.

Activity_Factor=total_switching /m*n ;calculate activity factor of multiplication.

Hardware_Size=n*m*9 ;total number of gates, each FA has 9 gates

Delay=(m+n-1)*3*d; ;worst case delay for each gate

Edyn=0.5*c* Hardware_Size*Activity_Factor*v^2 ;calculate dynamic energy

19

Estat=I*V* Hardware_Size*(1- Activity_Factor)*Delay ;calculate static energy

E=Edyn+Estat ;calculate total energy

EDP=E*Delay ;calculate EDP

The following formulas are used to calculate upper bound of hardware size and worst case delay for n

x n multiplication.

Hardware Size = n*(n-1) Full Adders

 = n*(n-1)*9 NAND gates

Worst Case Delay = 2*(n-1)* tdelay_of_one_FA Full Adders

 = 2*(n-1)*3* tdelay_of_one_NAND NAND gates

CSAM complexity is O(n
2
) for hardware size and O(n) for worst case delay.

3.2 Ripple Carry Array Multiplier

RCA multiplier accepts an n x m bit multiplication and uses an array of cells to calculate the bit

products. As Figure 8 shows for 4x4 case, after the parallel calculation of bit products, architecture

adds them together in a proper way to yield the final product. Meier et. al.’s [24] study shows that

RCAs are always smaller than other array multipliers due to emphasis on local wiring. RCA multipliers

are thus the slowest, but use the least energy compared to other multipliers. This multiplier

implementation forces each full adder to wait until the previous carry output is calculated in order to

start calculation of its carry and sum outputs. Since the carry has to propagate through every row in

the column, the critical path is very long [24].

20

Figure 8. 4-bit Ripple Carry Array multiplier.

As described in Chapter 1, ripple adder is the slowest but also lowest power adder implementation. A

vast body of research has been done about adder designs and most of them go beyond RCA. These

architectures focused on cutting down the carry propagation delay. Nevertheless, while the speed of

the adder is increased, the area of the implementation often increased undesirably.

3.2.1 Pseudocode to Simulate RCAM

The following is the pseudocode to simulate the signal propagation in the PETAM model of the

RCAM:

Initialize; ;Initialization Section.

m=get_multiplier_size ;read multiplier from textbox and save size of it to m.

n=get_multiplicand_size ;read multiplicand from textbox and save size of it to n.

c= get_capacitance ;read capacitance of a NAND gate from textbox and save it to c.

v= get_voltage ;read voltage of a NAND gate from textbox and save it to v.

I= get_leakage_current ;read leakage of a NAND gate current from textbox and save it to I.

d= get_delay; ;read delay of a NAND gate from textbox and save it to d.

21

Partial product generation ;Partial Product Generation Section.

for each bits of multiplier

 for each bits of multiplicand

 PP=m AND n ;create partial products array with using AND gates.

 end

end

for each full adder

 create_FA_inputs_A=PP[..] ;connect first input of full adder with suitable partial product.

 create_FA_inputs_B=PP[..] ;connect second input of full adder with suitable partial
product.

 create_FA_inputs_Cin=PP[..] ;connect third input of full adder with suitable partial product.

 calculate_Cout ;Cout=A*Cin+B*Cin+A*B

 calculate_S ;S=Cin XOR A XOR B

compare Cout with earlier Cout ;compare signals with earlier ones and calculate activity factor

compare Sum with earlier Sum ;if only sum or Cout changed switching=0.5,

calculate_switching ;if both changed switching=1, if none changed switching=0

;switching activity calculated with the comparison of each full adders earlier sum and Cout
with current ones. If only one of them changes then the activity factor is 0.5, if both changes it
is 1 and if there is no change on both of them then the activity factor is 0.

end

 product=selected_ Couts_Sums ;final product is equal to Cout or Sum of some full
adders.

Activity_Factor=total_switching /m*n ;calculate activity factor of multiplication.

Hardware_Size=n*m*9 ;total number of gates, each FA has 9 gates

Delay=(m+n)*3*d; ;worst case delay for each gate

Edyn=0.5*c* Hardware_Size*Activity_Factor*v^2 ;calculate dynamic energy

Estat=I*V* Hardware_Size*(1- Activity_Factor)*Delay ;calculate static energy

E=Edyn+Estat ;calculate total energy

EDP=E*Delay ;calculate EDP

Formulas below are used to calculate the upper bound of hardware size and worst case delay for n x

n multiplication.

22

Hardware Size = n*(n+1) Full Adders

 = n*(n+1)*9 NAND gates

Worst Case Delay = 2*n*tdelay_of_one_FA Full Adders

 = 2*n*3*tdelay_of_one_NAND NAND gate

RCAM complexity is O(n
2
) for hardware size and O(n) for worst case delay.

3.3 Wallace Tree Multiplier

The most time consuming operation in multiplication is the carry propagation. In 1964 Wallace

proposed a method to avoid using carry propagate addition. This method uses an adder tree, which is

constructed by full adders and half adders. In this technique it is possible to decrease any numbers of

partial products to two numbers without carry propagate addition. These two numbers can be added

in the last stage [10]. It is shown in Figure 9 how full adders and half adders reduce the bits. The carry

output is shifted to the left by one bit so its weight is doubled.

Figure 9. Full adder and half adder bit reduction.

23

Wallace tree creates a structure for parallel addition, which removes the need to wait for all the earlier

stages to complete, and therefore, has less delay. It parallelizes the carry save operations and makes

the delay time shorter than the array’s sequential series of operations.

Addition of partial products occurs as follows [10]:

1) Split partial products into groups of three and input each group into individual sets of (3,2) counters.

2) Split the resulting bits from step (1) into groups of three and input each group into sets of (3,2)

counters or FAs.

3) Repeat by combining into groups of three, and adding with sets of (3,2) counters until two numbers

remain.

4) Add the final two numbers using a carry propagation adder to get the final product.

The difference between carry save procedure and proposed procedure is that the carry save

procedure takes three inputs and reduces the number of bit vectors to two at each stage but parallel

methods takes sets of 3 vectors and reduce them to sets of 2 vectors. Hence the delay of the parallel

method will be O(log3/2 n), whereas the delay of sequential carry cave procedure is O(n) [10]. This

parallel method is called WTM and it reduces the delay of partial products addition stage substantially.

The downside of WTMs is their irregular layout, which results in potentially greater wire loads.

24

Figure 10. 4-bit Wallace Tree multiplier [35].

3.3.1 Pseudocode to Simulate WTM

The following is the pseudocode to simulate the signal propagation in the PETAM model of the

corresponding RCAM.

Initialize; ;Initialization Section.

m=get_multiplier_size ;read multiplier from textbox and save size of it to m.

n=get_multiplicand_size ;read multiplicand from textbox and save size of it to n.

c= get_capacitance ;read capacitance of a NAND gate from textbox and save it to c.

v= get_voltage ;read voltage of a NAND gate from textbox and save it to v.

I= get_leakage_current ;read leakage of a NAND gate current from textbox and save it to I.

d= get_delay; ;read delay of a NAND gate from textbox and save it to d.

Partial product generation ;Partial Product Generation Section.

for each bits of multiplier

 for each bits of multiplicand

 PP=m AND n ;create partial products array with using AND gates.

25

 end

end

stage_number= log(m/2)/log(4/3) ;calculate number of stages needed to complete
multiplication

Form (3,2) compressors with full adders;

 for y=1 to y=stage_number

 while (maximum_column_size>2)

if column_size==1 ;the first column where there is only one element

 propogate_to_next_stage

 if column_size==2 || column_size==3 ;next columns

 create_FA_inputs_A=PP[..] ;connect first input of full adder with suitable partial product.

 create_FA_inputs_B=PP[..] ;connect second input of full adder with suitable partial
product.

 create_FA_inputs_Cin=PP[..] ;connect third input of full adder with suitable partial product.

 calculate_Cout and propogate_to_next_column ;Cout=A*Cin+B*Cin+A*B

 calculate_Sum and propogate_to_next_stage ;S=Cin XOR A XOR B

compare Cout with earlier Cout ;compare signals with earlier ones and calculate activity factor

compare Sum with earlier Sum ;if only sum or Cout changed switching=0.5,

calculate_switching ;if both changed switching=1, if none changed switching=0

;switching activity calculated with the comparison of each full adders earlier sum and Cout
with current ones. If only one of them changes then the activity factor is 0.5, if both changes it
is 1 and if there is no change on both of them then the activity factor is 0.

else

divide column size to 2 or 3 ; divide column to smaller 2 or 3 inputs and check again.

end

 product=selected_Couts_Sums ;final product is equal to Cout or Sums of some full adders.

Activity_Factor=total_switching /m*n ;calculate activity factor of multiplication.

Hardware_Size=n*m*9 ;total number of gates, each FA has 9 gates

Delay=(m+n-1)*3*d; ;worst case delay for each gate

26

Edyn=0.5*c* Hardware_Size*Activity_Factor*v^2 ;calculate dynamic energy

Estat=I*V* Hardware_Size*(1- Activity_Factor)*Delay ;calculate static energy

E=Edyn+Estat ;calculate total energy

EDP=E*Delay ;calculate EDP

WT architecture decreases the order of growth of delay to O(lg(n)), and the complexity of hardware

size remains O(n
2
).

27

CHAPTER 4

ABACUS MULTIPLIER

In this chapter, the new ABACUS multiplier architecture is presented, and an algorithm is reviewed for

modeling it in PETAM. This study introduces a logic design and verification of the ABACUS multiplier.

Energy dissipation is the first concern of the proposed multiplier architecture. After calculation of the

partial products with the use of standard AND gates, partial products require to be aligned such that

all digits with the same binary weight has to be in the same vertical column. As Figure 11 shows, the

ABCUS multiplier will have an isosceles triangle shape that has a long side at the bottom [3].

Figure 11. ABACUS partial product alignment.

Muhtaroğlu proposes a threshold function for the implementation of many parallel carry operations in

ABACUS multiplier in addition to a set of rules for carry operations [3]. This approach requires

consecutive compression and carry cycles, after which a result is obtained in the bottom row. The

initial analysis by the author, which was done using some general assumptions about the ‘cost’ of a

28

carry and compression cycle as compared to add and carry cycles in a CSA based architecture,

indicates up to an order of magnitude better opportunity in energy-delay product. However, it is

quickly observed that the described high level architecture is untrivial to implement in a scalable

manner. Logic implementations need to be completed before the actual advantage can be evaluated.

In this work, CSAM, RCAM and ABACUS have all been implemented with full adders (FA) as building

blocks, for scalability and ease of comparison across architectures without indulging in the circuit

design details. All FAs were implemented with NAND gates for the same reasons. In addition to FAs,

the ABACUS multiplier implementation has parallel counters that decide on the position of carry.

Since parallel counter approach does not require a separate column-wise compression, the

implementation combines the compression and carry cycles reported in [3].

Parallel counters are categorized as (3, 2), (7, 3), (15, 4), (31, 5) and (63, 6). The architectural design

of ABACUS multiplier principally uses FAs to calculate addition of 2 and 3 bits. As a result, the first,

second and third columns do not need any parallel counters for addition. Other columns with more

than 3 elements need parallel counters to propagate carries to the next stage. A multiplier in this

framework thus consists of various stages of full adders, either stand-alone or within parallel counters,

each stage adding up to the total delay. The scaleable ABACUS logic was thus modeled in PETAM,

based on the developed rules for implementation and scaling. After reading the provided multiplier

and multiplicand, the algorithm develops the columns for m x n multiplication. The sizes and the

numbers of the parallel counters per column are determined next. Figure 12 shows the 4 bit ABACUS

multiplier design. In the first stage of architecture, 7 FAs are used, 3 of which are for the (4,3) parallel

counter. The second stage uses 5 FAs, and finally last stage requires only 2 FAs to generate the

result. This approach minimizes carry operations and results in decreased delay. Scalability of

ABACUS multiplier comes from the repeated structure for larger multiplications. For instance, the

multiplication (m+1) x (m+1) has m+1 height column in the middle and two extra parallel counters

(m, round(lg(m)+1)) and (m+1, round(lg(m+1)+1) in addition to the hardware of m x m multiplication.

29

Figure 12. 4-bit ABACUS Multiplier design.

PETAM was used to design and verify correct functionality of any m x n multiplication. The main delay

path is the propagation of the carry out from the previous stage to the next stage. ABACUS multiplier

has the advantage of logarithmic delay where both in CSAM and RCAM the delay is linear. ABACUS

multiplier architecture with hardware size O(n
2
) and delay=O(log(n)

2
) has advantage when compared

with CSAM and RCAM. Because CSAM has hardware size O(n
2
), delay=O(n), and RCAM hardware

size O(n
2
), delay=O(n). The circuit layout is predicted to have complexities even though the speed of

the operation is high, since the routing resource requirement is expected to be high, and this will result

in increase in both energy and delay. Such physical layout disadvantages of ABACUS are outside the

scope of this architectural study, and left out for future work.

4.1 Partial Products

Dividing the multiplication into smaller parts and addition of the results of the smaller multiplications is

a method that is used often. This method is used in hardware as dividing multiplication down to one

bit, and multiplying one bit with another, which can be done with a regular AND gate. These one bit

multiplications are called a Partial Product (PP). The addition of all PPs yields the multiplication result.

30

Figure 13 shows the partial product generation process of 4x4 multiplication. Each bit from X is

multiplied with each bit of Y. Additionally Figure 14 shows the hardware implementation for the same

process.

Figure 13. Basic bit level multiplication.

Figure 14. Partial product generation of 4x4 multiplication.

4.2 Parallel Counters and Compression

The hardware that counts the number of logic ones of m-bit inputs is called Parallel Counter (PC). The

PCs are different from compressors. PCs do not have carry inputs and outputs where compressors

have these in addition to regular inputs and outputs. Full adders are the most widely used parallel

counters. FAs are (3,2) counters and HAs are (2,2) counters. Larger parallel counters are useful in the

implementation of signal processing elements such as multipliers [7].

31

Figure 15. Parallel counter designs (a)(4,3), (b)(5,3), (c)(6,3), (d)(7,3).

A parallel i-to-o counter is denoted as (i, o), where i is the number of inputs, o is the number of outputs

and o= ⌈log2i⌉. It is also called population counter. Parallel counters are extensively used in many

different areas such as digital neural networks [25], triggering in multichannel high energy

spectrometers [26], multiple input adders, parallel multipliers and various arithmetic multipliers [8].

32

Table 1. Hardware Size and Delay for 4-to-64 bit parallel counters.

Bits Number of FA Delay

4 3 3
5 4 4
6 4 4
7 5 5
8 6 5
9 7 5

10 8 6
11 9 6
12 9 6
13 10 6
14 11 7
15 12 7
16 13 7
17 14 7
18 15 7
19 16 7
20 17 8
21 18 8
22 19 8
23 19 8
24 20 8
25 21 8
26 22 8
27 23 9
28 24 9
29 25 9
30 26 9
31 27 9
32 28 9
33 29 9
34 30 9
35 31 9
36 32 9
37 33 9
38 34 9
39 35 10
40 36 10
41 37 10
42 38 10
43 39 10
44 40 10
45 41 10
46 41 10
47 42 10
48 43 10
49 44 10
50 45 10
51 46 10
52 47 10
53 48 10
54 49 11
55 50 11
56 51 11

33

57 52 11
58 53 11
59 54 11
60 55 11
61 56 11
62 57 11
63 58 11
64 59 11

The traditional approach for the architecture of parallel counters consists of a tree of HAs and FAs.

Figure 15 shows the schematics of (4, 3), (5, 3), (6, 3) and (7, 3) PCs. In this research FAs are used

as the building blocks, including the implementation of parallel counters. This approach does not yield

the most efficient method and affects the total efficiency of ABACUS multiplier; however, the aim of

the study is to implement ABACUS multiplier in a way that allows a fair comparison with other

multiplier topologies. The counter level improvements have a big impact on the performance of larger

arithmetic circuits [8].

The total cost of a (i, o) PC with this approach is i-o FAs. On the other hand, the delay is expected to

be d=2*⌈log2i⌉-1. The delay and hardware size graphs of PCs are shown in Figure 16 and Figure 17

respectively. It is shown in Figure 16 that the rate of delay change decreases as the size of PCs

increases. On the other hand the hardware size increases linearly. This in turn affects the efficiency of

ABACUS multiplier for small and large size multiplications.

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

fu
ll

ad
d

e
rs

bits

Figure 16. Delay of parallel counters.

34

Figure 17. Hardware size of parallel counters.

There are other approaches for the implementation of parallel counters where the switching activity of

each intermediate output is lower. One of these methods called 1-out-of-n is proposed by McIlhenny

and Ercegovac in 1996 and results shows that this new approach reduces the delay and switching

activity, and produces less glitching at the outputs, which significantly reduces the average power

consumption [27].

Column compression multipliers are mostly designed for performance improvements. Research done

by Callaway in 1993 shows that the column compression multipliers are more power efficient than

array multipliers [28]. On the other hand, the delay and power characteristic of these multipliers need

to be well understood, and overall improvements need to be clear before the implementation.

As described earlier, Wallace proposed a method for column compression tree multipliers for

reduction of propagation delay. Afterwards, Dada worked on Wallace’s method and defined a counter

placement strategy that reduces the counters in partial production stage [8]. There are other partial

product reduction methods like a new technique for column compression multipliers [29] and the

Windsor [30] methods focused on the utilization of FAs and HAs. These techniques are more area

efficient and have shorter interconnections. Oklobdzija, et al. proposed an algorithm for partial product

reduction based on understanding the unequal delay paths through counters and compressors.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

fu
ll

ad
d

e
rs

bits

35

Oklobdzija’s method sorts inputs and outputs then connects these inputs and outputs for signal paths

and critical paths to tolerate the increase in delay. This technique connects fast inputs and outputs in

the critical delay paths and assigns slow inputs and outputs to signal [31].

The study in this thesis uses gate level implementation models to identify the EDP performance of the

ABACUS multiplier. Column compression part of the ABACUS multiplier is implemented with parallel

counters, and is modeled by PETAM. The compression cycles of each multiplication depends on the

carry propagation from parallel counters. PETAM algorithm for ABACUS implementation checks

column width in an infinite loop until it reaches two.

Figure 18. mxm and (m+1)x(m+1) multiplications with ABACUS

 extra hardware same hardware

Figure 18 shows the hardware difference of two differently sized multiplications. This study uses

higher order parallel counters for the column compression. ABACUS multiplier hardware size

increases by the multiplicand and multiplier size increase. The difference between the m x m multiplier

and m+1 x m+1 multiplier consists of two parallel counters in size (m+1, ⌈log2(m+1)⌉) and (m,

36

⌈log2m⌉). This difference between two different size multiplications linearly increases in number of

FAs. However, ABACUS multiplier uses PCs. This decreases total hardware size and also carry

cycles.

4.3 Final Adder

The final stage in ABACUS multiplier architecture takes place when only two rows remain. There are

different adder implementation options for this purpose. Since the final addition time adds directly to

the critical path of the multiplier it is important to choose fastest implementation. On the other hand, it

is necessary to use an easy to implement and scalable method for PETAM to work efficiently across

multiplier sizes.

The choices for the adder consist of conditional sum adder (CSMA), carry select adder (CSLA) carry-

look-ahead adder (CLA) and ripple carry adder (RCA). The CSLA uses less hardware than the CSMA

and can be considered as a subset of it. In 1989 Yeung and Yu suggested that the difference in speed

between these adders are strongly dependent on the profile of input as it changes from uniform to

non-uniform [32]. Even though CSLA is slower than CSMA, it is still more popular than CSMA due to

its simplicity when compared with CSMA. Smaller size and uncomplicated implementation of CSLA

reduces the speed advantage of CSMA. On the other hand, CLA has become popular due to its

speed and modularity. There are different variations of CLA for especially larger addition operations,

which have significant delay decrease [14].

For most parallel multiplier implementations, simple ripple carry adder is used as a choice of final

adder. The study by Negandra examined several parallel adder implementations. This study showed

that RCA is suitable for small width summation [14]. The early research on ABACUS multiplier

suggested that the EDP of the architecture was mostly dominated by the power dissipation due to

hardware size instead of delay. Using unnecessarily powerful and complex architectures for the final

adder stage was therefore not deemed necessary in ABACUS implementation. Ripple carry adder

was used for final addition stage to balance the delay and power. A small width multiplication

operation has larger delay in ABACUS implementation and RCA has advantages on small size

operations so it is the appropriate choice for the final addition stage. On the other hand, there is still

37

room for further research on different parallel adders and their effect on total EDP of multiplication. In

this particular research the main idea was implementing ABACUS multiplier and comparing it with

selected multipliers so the final addition stage is common, just like partial production stage for all

multiplier implementations and the real comparison across selected multipliers is about the

compression part. Next chapter discusses results and gives more detail about comparison of

multipliers. The difference on EDP mentioned here is not about partial products generation or final

addition stages.

4.4 Pseudocode to Simulate ABACUS

The following is the pseudocode for the model in PETAM to simulate the signal propagation in the

ABACUS architecture.

Initialize; ;Initialization Section.

m=get_multiplier_size ;read multiplier from textbox and save size of it to m.

n=get_multiplicand_size ;read multiplicand from textbox and save size of it to n.

c= get_capacitance ;read capacitance of a NAND gate from textbox and save it to c.

v= get_voltage ;read voltage of a NAND gate from textbox and save it to v.

I= get_leakage_current ;read leakage of a NAND gate current from textbox and save it to I.

d= get_delay; ;read delay of a NAND gate from textbox and save it to d.

first_stage(n)=first_stage(n-1)+(n-lg(n)+1)+(n-1-lg(n-1)+1) ;calculate hardware size of first stage

stage_number= log(m)+1 ;calculate number of stages needed to complete multiplication

Partial product generation ;Partial Product Generation Section.

for each bits of multiplier

 for each bits of multiplicand

 PP=m AND n ;create partial products array with using AND gates.

 end

end

38

Form Parallel Counters for each column with full adders;

 for y=1 to y=stage_number

 while (maximum_column_size>2)

if column_size==1 ;the first column where there is only one element

 propogate_to_next_stage

 if column_size==2 || column_size==3 ;next columns

 create_FA_inputs_A=PP[..] ;connect first input of full adder with suitable partial product.

 create_FA_inputs_B=PP[..] ;connect second input of full adder with suitable partial

product.

 create_FA_inputs_Cin=PP[..] ;connect third input of full adder with suitable partial product.

 calculate_Cout and propogate_to_next_column ;Cout=A*Cin+B*Cin+A*B

 calculate_Sum and propogate_to_next_stage ;S=Cin XOR A XOR B

compare Cout with earlier Cout ;compare signals with earlier ones and calculate activity factor

compare Sum with earlier Sum ;if only Sum or Cout changed switching=1/2=0.5,

calculate_switching ;if both changed switching=1, if none changed switching=0

;switching activity calculated with the comparison of each full adders earlier sum and Cout
with current ones. If only one of them changes then the activity factor is 0.5, if both changes it
is 1 and if there is no change on both of them then the activity factor is 0.

 else

while (column_size>=n)

 create_PC_nlg(n)_inputs[n] ;connect inputs of parallel counters with suitable
partial product.

 create_PC_ nlg(n)_outputs[lg(n)] ;connect outputs of full adder with suitable full adders

 result=sum ;output which is saved for next stage

 connect_each_output_ as_carry_to_next_columns ;outputs which are propagated for
next stage.

compare Cout with earlier Cout ;compare signals with earlier ones and calculate activity factor

compare Sum with earlier Sum ;if only sum or Cout changed switching=0.5,

calculate_switching ;if both changed switching=1, if none changed switching=0

product=selected_Couts_Sums ;final product is equal to Cout or Sum of some full adders.

39

Activity_Factor=total_switching /m*n ;calculate activity factor of multiplication.

Hardware_Size= first_stage(n)+((lg(n)+1)*(n-2))*9 ;total number of gates, each FA has 9 gates

Delay=2*lg(n)*(lg(n+1))*3*d; ;worst case delay for each gate

Edyn=0.5*c* Hardware_Size*Activity_Factor*v^2 ;calculate dynamic energy

Estat=I*V* Hardware_Size*(1- Activity_Factor)*Delay ;calculate static energy

E=Edyn+Estat ;calculate total energy

EDP=E*Delay ;calculate EDP

The algorithm of ABACUS starts with initialization of multiplier size, multiplicand size, capacitance,

voltage, leakage current and delay variables like other algorithms. Total stage number in ABACUS is

important to use in loops as stop criteria. Afterwards, algorithm calculates the partial products and

creates FAs and parallel counters. For more than 3 inputs instead of FAs PCs are used. Each FA has

A, B, Cin as inputs and, Cout and S as outputs. And each parallel counter has (n, lg(n)) inputs and

outputs. The calculation of each FA’s and PC’s output occurs in loops and at the end of this process

product variable has the result. For each low to high or high to low transition, switching variable is

increased and activity factor is calculated as a probability. Total energy is calculated by the

summation of dynamic and static energy; the explanation and details of each formula could be seen in

Chapter 2.

40

CHAPTER 5

RESULTS

In this chapter, the new ABACUS multiplier architecture is compared with CSAM, RCAM and WTM

architectures. The comparisons are made in terms of delay, power and EDP for different multiplication

bit lengths. Also analysis of new ABACUS architecture is shown in this chapter.

The performance of multipliers has been studied extensively, still in an empirical block based design.

Some factors need to be taken into consideration: One of these factors is wiring effect. Earlier

research focused on and tried to reduce the arrival times to make zero wire delays [30]. The delays

from input pins to output pins of the gates are not equal. The gate delays are also functions of loading

capacitance and input signal slopes, which cannot be estimated well without detailed physical

information. Due to these difficulties, full adders are used in this research.

Table 2 is the average of output files from PETAM. It shows the results of 2x2 to 64x64 bits

multiplications for 4 different pattern input files which are read from text file for CSAM, RCAM, WTM

and ABACUS multipliers where Vcc=5V, C=50pF, Ileakage=1000nA and delay=20ns for each NAND

gate. It is assumed that HD74HC00 Hitachi Integrated Circuit CMOS – Quad 2 Input NAND

Buffer/Driver chip is used at 25 °C [33].

41

Table 2. DELAY, POWER, AND EDP COMPARED ACROSS CSAM, RCAM, ABACUS

Multiplier Topologies

SIZE CSAM RCAM WT ABACUS

m x n Delay(ns) Power(uW) EDP(uJs) Delay(ns) Power(uW) EDP(uJs) Delay(ns) Power(uW) EDP(uJs) Delay(ns) Power(uW) EDP(uJs)

4 x 4 360.00 0.01 3.18 480.00 0.02 7.54 360.00 0.01 2.08 540.00 0.03 17.43

8 x 8 840.00 0.08 66.54 960.00 0.08 80.41 960.00 0.10 98.85 1200.00 0.14 170.15

12 x 12 1320.00 0.27 352.34 1440.00 0.22 318.68 1422.00 0.31 436.00 1697.00 0.36 612.68

16 x 16 1800.00 0.58 1040.72 1920.00 0.44 836.56 1800.00 0.61 1100.00 2100.00 0.67 1414.19

20 x 20 2280.00 1.02 2315.38 2400.00 0.75 1810.29 2121.00 1.00 2142.00 2440.00 1.08 2642.07

24 x 24 2760.00 1.61 4433.93 2880.00 1.19 3438.37 2402.00 1.50 3818.65 2737.00 1.69 4618.04

28 x 28 3240.00 2.35 7623.81 3360.00 1.76 5923.99 2653.00 2.24 5952.48 3001.00 2.36 7077.49

32 x 32 3720.00 3.26 12120.08 3840.00 2.49 9553.48 2880.00 3.02 8710.00 3240.00 3.16 10235.22

36 x 36 4200.00 4.35 18258.59 4320.00 3.39 14623.64 3087.00 3.90 12073.00 3458.00 4.07 14065.00

40 x 40 4680.00 5.62 26316.72 4800.00 4.46 21430.33 3278.00 4.90 16145.00 3658.00 5.11 18685.29

44 x 44 5160.00 7.09 36584.30 5280.00 5.75 30366.27 3456.00 6.07 20985.00 3844.00 6.28 24159.95

48 x 48 5640.00 8.77 49468.05 5760.00 7.26 41826.00 3623.00 7.16 27206.00 4018.00 7.77 31226.21

52 x 52 6120.00 10.67 65298.87 6240.00 9.01 56203.42 3779.40 8.94 33805.68 4181.00 9.24 38654.92

56 x 56 6600.00 12.97 84425.09 6720.00 11.01 73992.28 3927.00 10.52 41308.00 4335.00 10.86 47084.03

60 x 60 7080.00 15.16 107316.87 7200.00 13.29 95686.50 4066.00 12.23 49754.00 4481.00 12.62 56555.57

64 x 64 7560.00 17.77 134362.34 7680.00 15.86 121778.49 4200.00 14.09 59180.00 4620.00 14.53 67109.62

42

Table 2 is shorter version of detailed breakdown file where only multitude of 4 is listed. Appendix E

has whole breakdown file where all size of multiplications are listed for chessboard pattern. On the

other hand Table 2 has the average results of all patterns. The data used to draw the comparison

graphics is derived from this table.

5.1 Comparison of Multiplier Architectures

This research compares the energy and performance metrics of fundamental array multipliers with

ABACUS multiplier. For EDP estimations mainly PETAM was used and comparisons were made for

each multiplication. These comparisons have 3 different matrices as power, delay and EDP. Each

metric shows different properties, and indicate the similarities and dissimilarities across the multiplier

architectures under analysis.

5.1.1 Delay and Power Comparison

Architectural delay and power comparison of CSAM, RCAM, WTM and ABACUS multiplier are shown

in Figure 19 and Figure 20 respectively. It is observed that the maximum delay occurs for RCAM for

multiplications larger than 20x20. Less delay occurs in WTM and ABACUS multipliers when

compared with CSAM and RCAM for the same range.

Figure 19. Architectural delay comparison of CSAM, RCAM, WT and ABACUS.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70

D
e

la
y

(n
s)

Bit width

CSAM

RCAM

WT

ABACUS

43

Figure 20. Architectural power comparison of CSAM, RCAM, WT and ABACUS.

WTM and ABACUS multiplier need more power for multiplication less than 32x32 bits when compared

with array multipliers. Due to large hardware size of WTM and ABACUS multipliers, higher power

dissipation occurs for small size multiplications. However, WTM and ABACUS multipliers have lower

power for larger multiplications.

5.1.2 Energy Delay Product Comparison

Figure 21 shows the EDP vs. Bit width graph of m x n multiplications from Table 2. Due to the

logarithmic order of growth property, WT and ABACUS have slightly higher EDP for small size

multiplications, but are predicted to be far superior for larger multiplication designs. The resulting

implementation does not provide advantage in EDP when the multiplier size is smaller than 32x32.

The reason behind this is larger hardware size of ABACUS multiplier when compared with CSAM,

RCAM and WT. Parallel counter based multiple carry operations do not provide a significant

advantage for small size multiplications, but increase the total hardware size.

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70

P
o

w
e

r
(u

W
)

Bit width

CSAM

RCAM

WT

ABACUS

44

Figure 21. Architectural EDP comparison of CSAM, RCAM, WT and ABACUS.

It is observed that there is 5-40% difference between the EDP of selected 4 patterns. The highest

activity factor difference between selected 4 patterns is around 0.4 and it is between checkerboard

pattern and all1’s pattern. This pattern effect makes gaps smaller or larger between different multiplier

topologies and changes the threshold multiplication size. However the relative trend of EDP line for

each architecture does not significantly change. Reported results are averaged over the full input

vector set. If we compare architectures for each vector type the differences of EDP between

architectures are changing but it is very small and there is no change in relative trends.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 10 20 30 40 50 60 70

ED
P

 (
u

Js
)

Bit width

CSAM

RCAM

WT

ABACU
S

45

CHAPTER 6

CONCLUSION

In this study, a viable logic implementation is introduced for the ABACUS multiplier architecture for the

first time, and is compared with CSAM and RCAM, using input library component parameters. These

parameters may come from circuit simulations or measurements, but datasheet numbers were used

from discrete NAND components in this work, only for relative comparison purposes. Based on the

results, it was concluded that FA based ABACUS multiplier implementation gives better performance

for large size multiplications in terms of energy-delay product when compared to the FA based CSAM

and RCAM architectures. Although the ABACUS multiplier power consumption is more than CSAM

and RCAM due to hardware size (and no specific circuit optimization for static power), great decrease

on delay due to the parallel carry algorithm makes ABACUS multiplier attractive. The resulting

implementation models did not offer as much advantage in energy-delay as the originally reported

crude architectural analysis, especially when the multiplier size is smaller than 32x32. This is due to

the fact that threshold detection required by ABACUS architecture parallel carry operations is not

trivial to implement at low cost using standard logic approaches. On the other hand, the proposed

logic implementation of ABACUS in this paper is scalable to any m x n integer multiplier, and

demonstrates close to 2x EDP improvement potential compared to scalable RCAM and CSAM logic

implementations for 64x64 bits multiplication, and more for larger multipliers. The next steps involve

building of the simulated multiplier circuits using the discrete standard components in order to extract

any miscorrelation factors between predictions and measurements.

It was recognized after the completion of the design that the WTM architecture implementation has

similarities with the ABACUS multiplier logic implementation as described in this study. Compressors

in WTM are built from parallel counters that help the multiplier delay to scale logarithmically as in the

case of ABACUS, but these increase the irregularity of the topology [34]. It is predicted that the FA

based implementation would make ABACUS slower than WT. The main difference between ABACUS

multiplier and WT multiplier is the size of parallel counters. The bit width of multiplication determines

the biggest parallel counter size in ABACUS multiplier where in WTM architectures the compressor

46

size is typically constant (4, 3), and algorithm includes rules to divide column size to necessary

number of compressors. This algorithm of WT architecture decreases the order of growth of delay to

O(lg(n)) and WT has the ability to calculate multiplication faster than ABACUS with O(lg(n)
2
). Yet it

increases the irregularity of topology.

This study shows that the new ABACUS multiplier architecture has advantages in comparison with

array multipliers even without making any more optimization to the proposed architecture. On the

other hand, WTM has better EDP profile when compared with proposed logic implementation of

ABACUS multiplier. The optimization of ABACUS multiplier may be possible by using pipeline

architecture or different logic implementation of parallel counters or without FA based modeling. For

64x64 bits multiplication with ABACUS multiplier, largest PC consists of 59 FAs in the middle of the

first stage. Total hardware size for PCs in the middle is totally 175 FAs or 1575 NAND gates. The total

difference between WTAM and ABACUS multiplier hardware size is 189 NAND gates. It is possible

for ABACUS to reach WTM EDP with 15-20% less hardware for these 3 PCs. With 20% less

hardware size on only these 3 PCs ABACUS multiplier would have 126 NAND gates less than WTM

and reach same EDP. The results of this study prove that the ABACUS multiplier is promising in the

sense of low power multiplier architecture especially for multiplications for use in

encryption/decryption or similar areas where the operand width is greater than 64 bits.

6.1 Future Work

This study mainly focused on the comparison of ABACUS multiplier with other fundamental array and

tree type multipliers. It was necessary to use the same building block and PETAM software to be

consistent and fair for the comparison of other multipliers. On the other hand, assumptions like using

NAND gates only for FA implementation or the placement of wiring strategies have large impact on

power and weren’t considered in this research due to the primary aims of the research. Even though it

was very helpful to have PETAM especially for testing and controlling the effects of algorithm, it

performs first order estimate of design metrics. In the future, research including detailed analysis of

empirical model would be more compelling. In particular, choosing fewer bit widths and completing a

detailed design in lab environment would provide more trustworthy comparison results.

47

REFERENCES

[1] Landman, Paul E. Low-power architectural design methodologies. Diss. University of California,

1994.

[2] Zhu, Changyun, et al. "Towards an ultra-low-power architecture using single-electron tunneling

transistors." Design Automation Conference, 2007. DAC'07. 44th ACM/IEEE. IEEE, 2007.

[3] Muhtaroğlu, Ali. "ABACUS: A novel array multiplier-accumulator architecture for low energy

applications." IEEE International Conference on Energy Aware Computing (ICEAC). 2010.

[4] Gurdur, Didem, and Ali Muhtaroğlu. "PETAM: Power estimation tool for array multipliers. "IEEE

International Conference on Energy Aware Computing (ICEAC). 2012.

[5] Horowitz, Mark, Thomas Indermaur, and Ricardo Gonzalez. "Low-power digital design." Low

Power Electronics, 1994. Digest of Technical Papers., IEEE Symposium. 1994.

[6] Ravi, Nirlakalla, et al. "A New Design for Array Multiplier with Trade off in Power and Area." arXiv

preprint arXiv:1111.7258, 2011.

[7] Arechabala, J., et al. "Full systolic binary multiplier." Circuits, Devices and Systems, IEE

Proceedings G. Vol. 139. No. 2. IET, 1992.

[8] Booth, Andrew D. "A signed binary multiplication technique." The Quarterly Journal of Mechanics

and Applied Mathematics. 1951, pp 236-240.

[9] Dadda, Luigi. "On parallel digital multipliers" Alta FrequenzaVol. 45. 1976, pp 574-580.

[10] Wallace, Christopher S. "A suggestion for a fast multiplier." IEEE Transactions on Electronic

Computers. 1964, pp 14-17.

[11] Baugh, Charles R., and Bruce A. Wooley. "A two's complement parallel array multiplication

algorithm." IEEE Transactions on Computers. 1973, pp 1045-1047.

[12] Parhami, Behrooz. Computer Arithmetic: Algorithms and Hardware Designs. Oxford University

Press, Inc., 2009.

48

[13] Brown, Stephen D., and Zvonko G. Vranesic. Fundamentals of Digital Logic with VHDL Design.

Vol. 6. New York: McGraw-Hill, 2000.

[14] Nagendra, Chetana, Mary Jane Irwin, and Robert Michael Owens. "Area-time-power tradeoffs in

parallel adders." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing.1996, pp 689-702.

[15] Sertbaş, Ahmet., and R. Selami ÖZBEY "A performance analysis of classified binary adder

architectures and the VHDL simulations." IU-Journal of Electrical & Electronics Engineering. 2011.

[16] Fonseca, Marcelo, et al. "Design of a radix-2 m hybrid array multiplier using carry save adder

format." Proceedings of the 18th annual symposium on Integrated circuits and system design. ACM,

2005.

[17] Krad, Hasan, and Aws Y. Al-Taie. "Performance Analysis of a 32-bit Multiplier with a Carry-look-

ahead Adder and a 32-bit Multiplier with a Ripple Adder Using VHDL." Journal of Computer Science.

2008, pp 305.

[18] Cormen, Thomas H., et al. Introduction to algorithms. MIT press, 2001.

[19] Rabaey, Jan M., and Massoud Pedram, eds. Low power design methodologies. Kluwer academic

publishers, 1996.

[20] Veendrick, Harry JM. "Short-circuit dissipation of static CMOS circuitry and its impact on the

design of buffer circuits." IEEE Journal of Solid-State Circuits. 1984, pp 468-473.

[21] Wei, Gu-Yeon, and Mark Horowitz. "A low power switching power supply for self-clocked

systems." IEEE International Symposium on Low Power Electronics and Design. 1996.

[22] Kumar, Jaya C., and R. Saravanan. "VLSI Design for Low Power Multiplier using Full Adder."

European Journal of Scientific Research. 2012, pp 5-16.

[23] Shanthala, S., and S. Y. Kulkarni. "VLSI Design and Implementation of Low Power MAC Unit with

Block Enabling Technique." European Journal of Scientific Research. 2009, pp 620-630.

49

[24] Meier Pascal C.H., Rob A. Rutenbar, L. Richard Carley, “Exploring Multiplier Architecture and

Layout for Low Power” Proceedings of the IEEE 1996 Custom Integrated Circuits Conference.1996,

pp 513-516.

[25] D. Zhang, G. A. Jullien, W. C. Miller, and Earl E. Swartzlander. “Arithmetic for digital neural

networks.” 10th Symposium on Computer Arithmetic. 1991, pp 58-63.

[26] Nikityuk, N. M. "Use of parallel counters for triggering." Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

1992, pp 571-582.

[27] McIlhenny, Robert, and Miloš D. Ercegovac. "On Using 1-out-of-n Codes for (p, q) Counter

Implementations” IEEE Conference Record of the Thirtieth Asilomar Conference on Signals, Systems

and Computers Vol. 1. 1996.

[28] Callaway, Thomas K., and Earl E. Swartzlander Jr. "Optimizing multipliers for WSI."

Proceedings., Fifth Annual IEEE International Conference on Wafer Scale Integration. 1993.

[29] Bickerstaff, K’Andrea C., Michael J. Schulte, and Earl E. Swartzlander, Jr., “Reduced Area

Multipliers,” Proceedings of the 1993 International Conference on Application Specific Array

Processors, 1993, pp. 478-489.

[30] Wang, Zhongde, Graham A. Jullien, and William C. Miller. "A new design technique for column

compression multipliers." IEEE Transactions on Computers. 1995, pp 962-970.

[31] Oklobdzija, Vojin G., David Villeger, and Simon S. Liu. "A method for speed optimized partial

product reduction and generation of fast parallel multipliers using an algorithmic approach." IEEE

Transactions on Computers. 1996, pp 294-306.

[32] Yeung, A. K. W., and R. K. Yu. "A self-timed multiplier with optimized final adder." Final Report for

CS 2921. Univ. of California at Berkeley. 1989.

[33] HD74HC00, QUAD. 2 input NAND Gates Datasheet, Hitachi LTD. 1999.

[34] Flynn, Michael J., and Steven S. Oberman. Advanced computer arithmetic design. John Wiley &

Sons, Inc., 2001.

50

[35] Smith, Michael John Sebastian. Application-specific integrated circuits. Vol. 7. Reading: Addison-

Wesley, 1997.

51

APPENDICES

APPENDIX A

A. QUARTUS DESIGNS

a. CSAM

52

b. RCAM

53

c. ABACUS

54

APPENDIX B

B. C# CODES

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.IO;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;

namespace Multipliers
{

 public partial class Form1 : Form
 {
 int n1,n2,flag=0,count=0;

 public Form1()
 {
 InitializeComponent();
 }

 public void CSAM(int[] m,int[]q)
 {
 int[] cin = new int[n1 * (n1 + 1)];
 int[] cout = new int[n1 * (n1 + 1)];
 int[] s = new int[n1 * (n1 + 1)];
 int[] A = new int[n1 * (n1 + 1)];
 int[] B = new int[n1 * (n1 + 1)];
 int[] p = new int[n1 * 2];
 double propdel = 0;
 float static_carry = 0, switching_carry = 0, static_sum = 0, switching_sum = 0, AF_carry = 0,
AF_sum = 0;

 //
 B[n1 * (n1 + 1) - 1] = 0;

 for (int i = 0; i < n1 + 1; i++)
 {
 for (int j = 0; j < n1; j++)
 {
 if (i == n1 && j == 0)
 A[(n1 * i) + j] = 0; //s[(n1*i)+j-n1];
 else if (i == n1 && j > 0)
 A[(n1 * i) + j] = cout[(n1 * i) + j - 1];
 else
 A[(n1 * i) + j] = m[j] * q[i];
 if ((n1 * i) + j < n1)
 B[(n1 * i) + j] = 0;
 else if (((n1 * i) + j) % (((i + 1) * n1) - 1) != 0)

55

 B[(n1 * i) + j] = s[(n1 * i) + j - (n1 - 1)];
 if ((n1 * i) + j < n1)
 cin[(n1 * i) + j] = 0;
 else if ((n1 * i) + j > (n1 * i) + j - n1)
 cin[(n1 * i) + j] = cout[(n1 * i) + j - n1];
 else
 cin[(n1 * i) + j] = cin[i - 1];
 s[(n1 * i) + j] = A[(n1 * i) + j] ^ B[(n1 * i) + j] ^ cin[(n1 * i) + j];
 cout[(n1 * i) + j] = (A[(n1 * i) + j] * B[(n1 * i) + j]) + cin[(n1 * i) + j] * (A[(n1 * i) + j] ^ B[(n1 * i) + j]);
 }
 }

 for (int i = 1; i < n1 * (n1 + 1); i++)
 {
 if (cout[i] == cout[i - 1])
 static_carry++;
 else
 switching_carry++;
 if (s[i] == s[i - 1])
 static_sum++;
 else
 switching_sum++;
 }

 AF_carry = switching_carry / ((n1 * (n1 + 1)) - 1);
 AF_sum = switching_sum / ((n1 * (n1 + 1)) - 1);
 int HS = n1 * (n1 - 1) * 9; //one fulladder has 9 nand gates
 propdel = Convert.ToDouble(textBox3.Text) * 2 * (n1 - 1) * 3;

 label11.Text = propdel.ToString("F2") + " ns";

 label12.Text = HS.ToString() + " nand gates";
 label13.Text = AF_carry.ToString("F2");
 float st = static_carry * 100 / (static_carry + switching_carry);
 label14.Text = st.ToString("F2");
 float sw = switching_carry * 100 / (static_carry + switching_carry);
 label15.Text = sw.ToString("F2");
 label19.Text = AF_sum.ToString("F2");

 float sts = static_sum * 100 / (static_sum + switching_sum);
 label18.Text = sts.ToString("F2");
 float sws = switching_sum * 100 / (static_sum + switching_sum);
 label20.Text = sws.ToString("F2");

 for (int i = 0; i < n1; i++)
 {
 p[i] = s[n1 * i];
 }

 for (int i = 0; i < n1 - 1; i++)
 {
 p[n1 + i] = s[n1 * n1 + i];
 }
 p[(2 * n1) - 1] = cout[(n1 * (n1 + 1)) - 1];

 int[] array = new int[(n1 * 2) - 1];
 label5.Text = "";

 for (int num = (n1 * 2) - 1; num >= 0; num--)
 {

56

 label5.Text += p[num].ToString();
 }

 double Edyn, Estat, EDP;

 Edyn = (Convert.ToDouble(textBox4.Text) *HS* AF_carry * Convert.ToDouble(textBox6.Text) *
Convert.ToDouble(textBox6.Text))/2;
 Estat = Convert.ToDouble(textBox5.Text) * Convert.ToDouble(textBox6.Text) * propdel * HS* (1 -
AF_carry);

 EDP = ((Edyn) + (Estat*0.00001)) * propdel*(0.000001);

 double Pow = EDP / propdel;

 label73.Text = Pow.ToString("F2") + " uW";
 label49.Text = EDP.ToString("F2") + " uJs";

 string z=label49.Text;
 if(z.Length >= 3)
 {
 z = z.Remove(z.Length - 4);
 }

 var builderm = new StringBuilder();
 Array.ForEach(m, x => builderm.Append(x));
 var resm = builderm.ToString();

 var builderq = new StringBuilder();
 Array.ForEach(q, x => builderq.Append(x));
 var resq = builderq.ToString();

 if (flag == 0)
 {
 DataGridViewRow row = (DataGridViewRow)dataGridView1.Rows[0].Clone();
 row.Cells[0].Value = resm + 'x' + resq;
 row.Cells[1].Value = n1.ToString();
 row.Cells[2].Value = z;
 dataGridView1.Rows.Add(row);
 }
 //dataGridView1.CurrentRow.Selected = true;

 }

 public void RCAM(int[] m, int[] q)
 {
 int[] cin = new int[n1 * (n1 - 1)];
 int[] cout = new int[n1 * (n1 - 1)];
 int[] s = new int[n1 * (n1 - 1)];
 int[] A = new int[n1 * (n1 - 1)];
 int[] B = new int[n1 * (n1 - 1)];
 int[] p = new int[n1 * 2];
 double propdel = 0;
 float static_carry = 0, switching_carry = 0, static_sum = 0, switching_sum = 0, AF_carry = 0,
AF_sum = 0;

 A[n1 - 1] = 0;
 cin[0] = 0;

 for (int i = 0; i < n1 - 1; i++)
 {
 for (int j = 0; j < n1; j++)

57

 {
 if (i == 0 && j != n1 - 1)

 A[(n1 * i) + j] = m[i] * q[j + 1];
 if (i == 0)
 B[(n1 * i) + j] = m[i + 1] * q[j];

 if (i > 0)
 {
 A[(n1 * i) + j] = s[((n1 * i) + j) - n1 + 1];
 B[(n1 * i) + j] = m[i + 1] * q[j];
 }
 if (i >= 0 && j != 0)
 cin[(n1 * i) + j] = cout[(n1 * i) + j - 1];

 if (i > 0 && j == n1 - 1)
 A[(n1 * i) + n1 - 1] = cout[(n1 * i) - 1];
 if (i >= 0 && j == 0)
 cin[(n1 * i) + j] = 0;

 s[(n1 * i) + j] = A[(n1 * i) + j] ^ B[(n1 * i) + j] ^ cin[(n1 * i) + j];
 cout[(n1 * i) + j] = (A[(n1 * i) + j] * B[(n1 * i) + j]) + cin[(n1 * i) + j] * (A[(n1 * i) + j] ^ B[(n1 * i) + j]);
 }
 }
 for (int i = 1; i < n1 * (n1 - 1); i++)
 {
 if (cout[i] == cout[i - 1])
 static_carry++;
 else
 switching_carry++;
 if (s[i] == s[i - 1])
 static_sum++;
 else
 switching_sum++;
 }

 AF_carry = switching_carry / ((n1 * (n1 + 1)) - 1);
 AF_sum = switching_sum / ((n1 * (n1 + 1)) - 1);
 int HS = n1 * (n1 + 1) * 9;
 propdel = Convert.ToDouble(textBox3.Text) * (2 * n1)* 3;

 label67.Text = propdel.ToString("F2") + " ns";
 label66.Text = HS.ToString() + " nand gates";
 label65.Text = AF_carry.ToString("F2");
 float st = static_carry * 100 / (static_carry + switching_carry);
 label64.Text = st.ToString("F2");
 float sw = switching_carry * 100 / (static_carry + switching_carry);
 label63.Text = sw.ToString("F2");
 label61.Text = AF_sum.ToString("F2");

 float sts = static_sum * 100 / (static_sum + switching_sum);
 label62.Text = sts.ToString("F2");
 float sws = switching_sum * 100 / (static_sum + switching_sum);
 label60.Text = sws.ToString("F2");

 p[0] = q[0] * m[0];

 for (int i = 1; i < n1; i++)
 {

58

 p[i] = s[(n1 * (i - 1))];
 }

 for (int i = 0; i < n1 - 1; i++)
 {
 p[n1 + i] = s[n1 * (n1 - 2) + 1 + i];
 }
 p[(2 * n1) - 1] = cout[(n1 * (n1 - 1)) - 1];

 int[] array = new int[(n1 * 2) - 1];
 label5.Text = "";

 for (int num = (n1 * 2) - 1; num >= 0; num--)
 {

 label5.Text += p[num].ToString();
 }

 double Edyn, Estat, EDP;

 Edyn = (Convert.ToDouble(textBox4.Text) * HS * AF_carry * Convert.ToDouble(textBox6.Text) *
Convert.ToDouble(textBox6.Text))/2;
 Estat = Convert.ToDouble(textBox5.Text) * Convert.ToDouble(textBox6.Text) * propdel * HS * (1-
AF_carry);

 EDP = ((Edyn) + (Estat * 0.00001)) * propdel * (0.000001);

 double Pow = EDP / propdel;

 label79.Text = Pow.ToString("F2") + " uW";
 label51.Text = EDP.ToString("F2") + " uJs";

 DataGridViewRow row1 = (DataGridViewRow)dataGridView1.Rows[0].Clone();
 row1.Cells[2].Value = label51.Text;
 dataGridView1.Rows.Add(row1);
 string y=label51.Text;
 if(y.Length >= 3)
 {
 y = y.Remove(y.Length - 4);
 }
 if (flag == 0)
 {
 dataGridView1.CurrentRow.Cells[3].Value = y;
 }
 }

 public void WTM(int[] m, int[] q)
 {

 int[] cin = new int[n1 * n1];
 int[] cout = new int[n1 * (n1 - 1)];
 int[] s = new int[n1 * (n1 - 1)];
 int[] A = new int[n1 * (n1 - 1)];
 int[] B = new int[n1 * (n1 - 1)];
 int[] p = new int[n1 * 2];
 double propdel = 0;
 float static_carry = 0, switching_carry = 0, static_sum = 0, switching_sum = 0, AF_carry = 0,
AF_sum = 0;
 double d = 2.0;
 double lg = Math.Log(n1, d);
 int loop_numb = (int)Math.Round(lg, MidpointRounding.AwayFromZero) + 1;

59

 int[] first_stage = new int[n1 + 1];
 first_stage[0] = 2;
 int[] numb_FA = new int[n1 + 1];
 numb_FA[0] = 2;
 int delay = (int)(Math.Log(n1, d));
 for (int i = 1; i < n1; i++)
 {
 numb_FA[i] = i + 1 - ((int)(Math.Log(i + 1, d)) + 1);
 first_stage[i] = first_stage[i - 1] + numb_FA[i] + numb_FA[i - 1];
 }

 A[n1 - 1] = 0;
 cin[0] = 0;

 for (int i = 0; i < n1 - 1; i++)
 {
 for (int j = 0; j < n1; j++)
 {
 if (i == 0 && j != n1 - 1)

 A[(n1 * i) + j] = m[i] * q[j + 1];
 if (i == 0)
 B[(n1 * i) + j] = m[i + 1] * q[j];

 if (i > 0)
 {
 A[(n1 * i) + j] = s[((n1 * i) + j) - n1 + 1];
 B[(n1 * i) + j] = m[i + 1] * q[j];
 }
 if (i >= 0 && j != 0)
 cin[(n1 * i) + j] = cout[(n1 * i) + j - 1];

 if (i > 0 && j == n1 - 1)
 A[(n1 * i) + n1 - 1] = cout[(n1 * i) - 1];
 if (i >= 0 && j == 0)
 cin[(n1 * i) + j] = 0;

 s[(n1 * i) + j] = A[(n1 * i) + j] ^ B[(n1 * i) + j] ^ cin[(n1 * i) + j];
 cout[(n1 * i) + j] = (A[(n1 * i) + j] * B[(n1 * i) + j]) + cin[(n1 * i) + j] * (A[(n1 * i) + j] ^ B[(n1 * i) + j]);
 }
 }
 for (int i = 1; i < n1 * (n1 - 1); i++)
 {
 if (cout[i] == cout[i - 1])
 switching+0.5;
 if (s[i] == s[i - 1])
 switching +0.5;
 }

 AF_carry = switching_carry / ((n1 * (n1 + 1)) - 1);
 AF_sum = switching_sum / ((n1 * (n1 + 1)) - 1);
 int HS = (int)(first_stage[n1 - 2] + ((Math.Round(lg, MidpointRounding.AwayFromZero) + 1) * (n1 -
5))) * 9;
 propdel = (int)Convert.ToDouble(textBox3.Text) * (Math.Log(n1, d) + 1) * (2 * Math.Log(n1, d) - 2) *
3;

 label90.Text = propdel.ToString("F2") + " ns";
 label89.Text = HS.ToString() + " nand gates";
 label88.Text = delay.ToString("F2");

60

 float st = static_carry * 100 / (static_carry + switching_carry);
 label87.Text = loop_numb.ToString("F2");
 float sw = switching_carry * 100 / (static_carry + switching_carry);
 label86.Text = sw.ToString("F2");
 label84.Text = AF_sum.ToString("F2");

 float sts = static_sum * 100 / (static_sum + switching_sum);
 label85.Text = sts.ToString("F2");
 float sws = switching_sum * 100 / (static_sum + switching_sum);
 label83.Text = sws.ToString("F2");

 p[0] = q[0] * m[0];

 for (int i = 1; i < stage_num; i++)
 {
 p[i] = s[(n1 * (i - 1))];
 }

 for (int i = 0; i < stage_num - 1; i++)
 {
 p[n1 + i] = s[n1 * (n1 - 2) + 1 + i];
 }
 p[(2 * n1) - 1] = cout[(n1 * (n1 - 1)) - 1];

 int[] array = new int[(n1 * 2) - 1];
 label5.Text = "";

 for (int num = (n1 * 2) - 1; num >= 0; num--)
 {

 label5.Text += p[num].ToString();
 }

 double Edyn, Estat, EDP;

 Edyn = (Convert.ToDouble(textBox4.Text) * HS * 0.5 * Convert.ToDouble(textBox6.Text) *
Convert.ToDouble(textBox6.Text)) / 2;
 Estat = Convert.ToDouble(textBox5.Text) * Convert.ToDouble(textBox6.Text) * propdel * HS * (1 -
0.5);

 EDP = ((Edyn) + (Estat * 0.00001)) * propdel * (0.000001);

 double Pow = EDP / propdel;

 label75.Text = Pow.ToString("F2") + " uW";
 label78.Text = EDP.ToString("F2") + " uJs";

 //DataGridViewRow row1 = (DataGridViewRow)dataGridView1.Rows[0].Clone();
 //row1.Cells[2].Value = label75.Text;
 //dataGridView1.Rows.Add(row1);
 string y = label78.Text;
 if (y.Length >= 3)
 {
 y = y.Remove(y.Length - 4);
 }
 if (flag == 0)
 {
 dataGridView1.CurrentRow.Cells[4].Value = y;
 }
 }

 public void ABACUS(int[] m, int[] q)

61

 {

 int[] cin = new int[n1 * n1];
 int[] cout = new int[n1 * (n1 - 1)];
 int[] s = new int[n1 * (n1 - 1)];
 int[] A = new int[n1 * (n1 - 1)];
 int[] B = new int[n1 * (n1 - 1)];
 int[] p = new int[n1 * 2];
 double propdel = 0;
 float static_carry = 0, switching_carry = 0, static_sum = 0, switching_sum = 0, AF_carry = 0,
AF_sum = 0;
 double d = 2.0;
 double lg = Math.Log(n1, d);
 int loop_numb = (int)Math.Round(lg, MidpointRounding.AwayFromZero) + 1;
 int[] first_stage = new int[n1 + 1];
 first_stage[0] = 2;
 int[] numb_FA = new int[n1 + 1];
 numb_FA[0] = 2;
 int delay = (int)(2 * Math.Log(n1, d) - 1);
 for (int i = 1; i < n1; i++)
 {
 numb_FA[i] = i + 1 - ((int)(Math.Log(i + 1, d)) + 1);
 first_stage[i] = first_stage[i - 1] + numb_FA[i] + numb_FA[i - 1];
 }

 A[n1 - 1] = 0;
 cin[0] = 0;

 for (int i = 0; i < n1 - 1; i++)
 {
 for (int j = 0; j < n1; j++)
 {
 if (i == 0 && j != n1 - 1)

 A[(n1 * i) + j] = m[i] * q[j + 1];
 if (i == 0)
 B[(n1 * i) + j] = m[i + 1] * q[j];

 if (i > 0)
 {
 A[(n1 * i) + j] = s[((n1 * i) + j) - n1 + 1];
 B[(n1 * i) + j] = m[i + 1] * q[j];
 }
 if (i >= 0 && j != 0)
 cin[(n1 * i) + j] = cout[(n1 * i) + j - 1];

 if (i > 0 && j == n1 - 1)
 A[(n1 * i) + n1 - 1] = cout[(n1 * i) - 1];
 if (i >= 0 && j == 0)
 cin[(n1 * i) + j] = 0;

 s[(n1 * i) + j] = A[(n1 * i) + j] ^ B[(n1 * i) + j] ^ cin[(n1 * i) + j];
 cout[(n1 * i) + j] = (A[(n1 * i) + j] * B[(n1 * i) + j]) + cin[(n1 * i) + j] * (A[(n1 * i) + j] ^ B[(n1 * i) + j]);
 }
 }
 for (int i = 1; i < n1 * (n1 - 1); i++)
 {
 if (cout[i] == cout[i - 1])
 switching+0.5;
 if (s[i] == s[i - 1])
 switching +0.5;

62

 }

 AF_carry = switching_carry / ((n1 * (n1 + 1)) - 1);
 AF_sum = switching_sum / ((n1 * (n1 + 1)) - 1);
 int HS = (int)(first_stage[n1 - 2] + ((Math.Round(lg, MidpointRounding.AwayFromZero) + 1) * (n1 -
2))) * 9;
 propdel = (int)Convert.ToDouble(textBox3.Text) * (Math.Log(n1, d) + 1) * (2 * Math.Log(n1, d) - 1) *
3;

 label35.Text = propdel.ToString("F2") + " ns";
 label34.Text = HS.ToString() + " nand gates";
 label33.Text = delay.ToString("F2");
 float st = static_carry * 100 / (static_carry + switching_carry);
 label32.Text = loop_numb.ToString("F2");
 float sw = switching_carry * 100 / (static_carry + switching_carry);
 label32.Text = sw.ToString("F2");
 label29.Text = AF_sum.ToString("F2");

 float sts = static_sum * 100 / (static_sum + switching_sum);
 label30.Text = sts.ToString("F2");
 float sws = switching_sum * 100 / (static_sum + switching_sum);
 label28.Text = sws.ToString("F2");

 p[0] = q[0] * m[0];

 for (int i = 1; i < stage_num; i++)
 {
 p[i] = s[(n1 * (i - 1))];
 }

 for (int i = 0; i < stage_num - 1; i++)
 {
 p[n1 + i] = s[n1 * (n1 - 2) + 1 + i];
 }
 p[(2 * n1) - 1] = cout[(n1 * (n1 - 1)) - 1];

 int[] array = new int[(n1 * 2) - 1];
 label5.Text = "";

 for (int num = (n1 * 2) - 1; num >= 0; num--)
 {

 label5.Text += p[num].ToString();
 }

 double Edyn, Estat, EDP;

 Edyn = (Convert.ToDouble(textBox4.Text) * HS * 0.5 * Convert.ToDouble(textBox6.Text) *
Convert.ToDouble(textBox6.Text)) / 2;
 Estat = Convert.ToDouble(textBox5.Text) * Convert.ToDouble(textBox6.Text) * propdel * HS * (1 -
0.5);

 EDP = ((Edyn) + (Estat * 0.00001)) * propdel * (0.000001);

 double Pow = EDP / propdel;

 label55.Text = Pow.ToString("F2") + " uW";
 label53.Text = EDP.ToString("F2") + " uJs";

 //DataGridViewRow row1 = (DataGridViewRow)dataGridView1.Rows[0].Clone();
 //row1.Cells[2].Value = label51.Text;

63

 //dataGridView1.Rows.Add(row1);
 string y = label53.Text;
 if (y.Length >= 3)
 {
 y = y.Remove(y.Length - 4);
 }
 if (flag == 0)
 {
 dataGridView1.CurrentRow.Cells[5].Value = y;
 }
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 this.dataGridView1.Columns.Add("Multiplication", "Multiplication");
 this.dataGridView1.Columns.Add("Bits", "Bits");
 this.dataGridView1.Columns.Add("CSAM", "CSAM EnergyxDelay");
 this.dataGridView1.Columns.Add("RCAM", "RCAM EnergyxDelay");
 this.dataGridView1.Columns.Add("WTM", "WTM EnergyxDelay");
 this.dataGridView1.Columns.Add("ABACUS", "ABACUS EnergyxDelay");
 DataGridViewColumn column = dataGridView1.Columns[0];
 column.Width = 260;
 DataGridViewColumn column2 = dataGridView1.Columns[1];
 column2.Width = 45;
 }

 private void label2_Click(object sender, EventArgs e)
 {

 }

 private void textBox3_TextChanged(object sender, EventArgs e)
 {

 }

 private void label5_Click(object sender, EventArgs e)
 {

 }

 private void textBox1_TextChanged(object sender, EventArgs e)
 {
 n1 = textBox1.Text.Length;
 label16.Text = n1.ToString();
 }

 private void textBox2_TextChanged(object sender, EventArgs e)
 {
 n2 = textBox2.Text.Length;
 label16.Text = n1.ToString() + " x " + n2.ToString();
 }

 private void button1_Click(object sender, EventArgs e)
 {

 string mi = textBox1.Text;
 int[] m = new int[mi.Length];
 for (int i = mi.Length - 1; i >= 0; --i)
 {
 m[mi.Length - 1 - i] = Convert.ToInt32(mi[i].ToString());
 }

64

 string qi = textBox2.Text;
 int[] q = new int[qi.Length];
 for (int i = qi.Length - 1; i >= 0; --i)
 {
 q[qi.Length - 1 - i] = Convert.ToInt32(qi[i].ToString());
 }
 //MessageBox.Show(qi.ToString());
 int bm = Convert.ToInt32(mi, 2);
 int qm = Convert.ToInt32(qi, 2);

 if (comboBox1.SelectedItem.ToString() == "Carry-Save Multiplier")
 {

 CSAM(m,q);
 int ans = bm * qm;
 //string ansi = Convert.ToString(ans, 2).PadLeft(2 * n1);

 if (Convert.ToInt32(label5.Text,2) != ans)
 MessageBox.Show("WRONG ANSWER!!");
 comboBox1.SelectedItem = "Ripple Carry Multiplier";

 count++;

 }
 if (comboBox1.SelectedItem.ToString() == "Ripple Carry Multiplier")
 {
 dataGridView1.CurrentCell = dataGridView1.Rows[count-1].Cells[2];
 RCAM(m,q);

 int ans = bm * qm;
 //string ansi = Convert.ToString(ans, 2).PadLeft(2 * n1);

 if (Convert.ToInt32(label5.Text, 2) != ans)
 MessageBox.Show("WRONG ANSWER!!");

 }
 if (count > 1)
 {
 if (dataGridView1.Rows[count-1].Cells[2].Value == dataGridView1.Rows[count -
2].Cells[2].Value)
 {
 dataGridView1.Rows[count-1].Cells[3].Value =
(Convert.ToDouble(dataGridView1.Rows[count-1].Cells[3].Value) +
Convert.ToDouble(dataGridView1.Rows[count - 2].Cells[3].Value))/2;
 dataGridView1.Rows[count-1].Cells[4].Value =
(Convert.ToDouble(dataGridView1.Rows[count-1].Cells[4].Value) +
Convert.ToDouble(dataGridView1.Rows[count - 2].Cells[4].Value))/2;
 dataGridView1.Rows[count - 1].Cells[5].Value =
(Convert.ToDouble(dataGridView1.Rows[count - 1].Cells[4].Value) +
Convert.ToDouble(dataGridView1.Rows[count - 2].Cells[5].Value)) / 2;
 dataGridView1.Rows.Remove(dataGridView1.Rows[count - 2]);
 count--;
 }
 }
 }

 private void button2_Click(object sender, EventArgs e)
 {
 int irow;

65

 for (irow = 0; irow < dataGridView1.Rows.Count-1; irow++)
 {
 chart1.Series["CSAM"].Points.AddXY
 (dataGridView1.Rows[irow].Cells[1].Value,
System.Convert.ToDouble(dataGridView1.Rows[irow].Cells["CSAM"].Value));
 chart1.Series["RCAM"].Points.AddXY
 (dataGridView1.Rows[irow].Cells[2].Value,
System.Convert.ToDouble(dataGridView1.Rows[irow].Cells["RCAM"].Value));
 chart1.Series["WTM"].Points.AddXY
 (dataGridView1.Rows[irow].Cells[3].Value,
System.Convert.ToDouble(dataGridView1.Rows[irow].Cells["WTM"].Value));
 chart1.Series["ABACUS"].Points.AddXY
 (dataGridView1.Rows[irow].Cells[4].Value,
System.Convert.ToDouble(dataGridView1.Rows[irow].Cells["ABACUS"].Value));
 }

 chart1.Series["CSAM"].ChartType =
 SeriesChartType.FastLine;
 //chart1.Series["CSAM"].Color = Color.Chartreuse;
 chart1.Series["RCAM"].ChartType =
 SeriesChartType.FastLine;
 //chart1.Series["RCAM"].Color = Color.Blue;
 chart1.Series["WTM"].ChartType =
 SeriesChartType.FastLine;
 //chart1.Series["WTM"].Color = Color.Red;
 chart1.Series["ABACUS"].ChartType =
 SeriesChartType.FastLine;
 //chart1.Series["ABACUS"].Color = Color.DarkOrange;
 }

 private void button3_Click(object sender, EventArgs e)
 {

 /// <summary>
 /// Converts a given delimited file into a dataset.
 /// Assumes that the first line
 /// of the text file contains the column names.
 /// </summary>
 /// <param name="File">The name of the file to open</param>
 /// <param name="TableName">The name of the
 /// Table to be made within the DataSet returned</param>
 /// <param name="delimiter">The string to delimit by</param>
 /// <returns></returns>
 string File = "C:\\Users\\user\\Documents\\MS\\mult.txt"; string TableName = "MyNewTable"; string
delimiter = "\x2c";
 {

 //The DataSet to Return
 DataSet result = new DataSet();

 //Open the file in a stream reader.
 StreamReader s = new StreamReader(File);

 //Split the first line into the columns
 string[] columns = s.ReadLine().Split(delimiter.ToCharArray());

 //Add the new DataTable to the RecordSet
 result.Tables.Add(TableName);

 //Cycle the colums, adding those that don't exist yet
 //and sequencing the one that do.

66

 foreach (string col in columns)
 {
 bool added = false;
 string next = "";
 int i = 0;
 while (!added)
 {
 //Build the column name and remove any unwanted characters.
 string columnname = col + next;
 columnname = columnname.Replace("#", "");
 columnname = columnname.Replace("'", "");
 columnname = columnname.Replace("&", "");

 //See if the column already exists
 if (!result.Tables[TableName].Columns.Contains(columnname))
 {
 //if it doesn't then we add it here and mark it as added
 result.Tables[TableName].Columns.Add(columnname);
 added = true;
 }
 else
 {
 //if it did exist then we increment the sequencer and try again.
 i++;
 next = "_" + i.ToString();
 }
 }
 }

 //Read the rest of the data in the file.
 string AllData = s.ReadToEnd();

 //Split off each row at the Carriage Return/Line Feed
 //Default line ending in most windows exports.
 //You may have to edit this to match your particular file.
 //This will work for Excel, Access, etc. default exports.
 string[] rows = AllData.Split("\r\n".ToCharArray());

 //Now add each row to the DataSet
 foreach (string r in rows)
 {
 //Split the row at the delimiter.
 string[] items = r.Split(delimiter.ToCharArray());

 //Add the item
 if (items[0]!=""&&items[1]!="")
 result.Tables[TableName].Rows.Add(items);
 }

 //Return the imported data.
 DataSet ds = result;
 int p;
 for (p = 0; p < result.Tables[TableName].Rows.Count - 1; p++)
 {
 //dataGridView1.Rows.Add();
 string length = ds.Tables["MyNewTable"].Rows[p].ItemArray[0].ToString();
 n1 = length.Length;

 string mi = ds.Tables["MyNewTable"].Rows[p].ItemArray[0].ToString();
 int[] m = new int[mi.Length];
 for (int i = mi.Length - 1; i >= 0; --i)
 {
 m[mi.Length - 1 - i] = Convert.ToInt32(mi[i].ToString());

67

 }
 string qi = ds.Tables["MyNewTable"].Rows[p].ItemArray[1].ToString();
 int[] q = new int[qi.Length];
 for (int i = qi.Length - 1; i >= 0; --i)
 {
 q[qi.Length - 1 - i] = Convert.ToInt32(qi[i].ToString());
 }

 CSAM(m,q);
 dataGridView1.CurrentCell = dataGridView1.Rows[p].Cells[2];
 RCAM(m,q);
 dataGridView1.CurrentCell = dataGridView1.Rows[p].Cells[3];//bakmak lazim
 WTM(m, q);
 dataGridView1.CurrentCell = dataGridView1.Rows[p].Cells[4];//bakmak lazim
 ABACUS(m, q);
 dataGridView1.CurrentCell = dataGridView1.Rows[p].Cells[5];
 if (p != 0)
 {
 if (dataGridView1.Rows[p].Cells[2].Value == dataGridView1.Rows[p - 1].Cells[2].Value)
 {
 dataGridView1.Rows[p].Cells[3].Value =
(Convert.ToDouble(dataGridView1.Rows[p].Cells[3].Value) + Convert.ToDouble(dataGridView1.Rows[p -
1].Cells[3].Value))/2;
 dataGridView1.Rows[p].Cells[4].Value =
(Convert.ToDouble(dataGridView1.Rows[p].Cells[4].Value) + Convert.ToDouble(dataGridView1.Rows[p -
1].Cells[4].Value))/2;
 dataGridView1.Rows[p].Cells[5].Value =
(Convert.ToDouble(dataGridView1.Rows[p].Cells[5].Value) + Convert.ToDouble(dataGridView1.Rows[p -
1].Cells[5].Value)) / 2;
 dataGridView1.Rows.Remove(dataGridView1.Rows[p - 1]);
 }
 }

 /*dataGridView1.Rows[p].Cells[0].Value = ds.Tables["MyNewTable"].Rows[p].ItemArray[0] + "x" +
ds.Tables["MyNewTable"].Rows[p].ItemArray[1];
 string length = ds.Tables["MyNewTable"].Rows[p].ItemArray[0].ToString();
 dataGridView1.Rows[p].Cells[1].Value = length.Length;

 dataGridView1.DataSource = new BindingSource(result.Tables["MyNewTable"], null);*/
 }
 }
 }

 private void dataGridView1_CellContentClick(object sender, DataGridViewCellEventArgs e)
 {
 string mi1 = dataGridView1.SelectedRows[0].Cells[0].Value.ToString();

 string[] mi2 = mi1.Split('x');

 string mi = mi2[0];
 int[] m = new int[mi.Length];
 for (int i = mi.Length - 1; i >= 0; --i)
 {
 m[mi.Length - 1 - i] = Convert.ToInt32(mi[i].ToString());
 }
 string qi = mi2[1];
 int[] q = new int[qi.Length];
 for (int i = qi.Length - 1; i >= 0; --i)
 {
 q[qi.Length - 1 - i] = Convert.ToInt32(qi[i].ToString());
 }

68

 if (mi.Length != qi.Length)
 MessageBox.Show("SIZE PROBLEM");
 n1 = mi.Length;
 flag = 1;
 Array.Reverse(m);
 Array.Reverse(q);
 CSAM(m, q);
 RCAM(m, q);
 ABACUS(m, q);
 WTM(m, q);
 flag = 0;
 }

 }
}

69

APPENDIX C

C. EXPERIMENT CIRCUIT

The experimental circuit is shown in Figure C.1, 2 HD74HC00 chips used and 4 NAND gates

connected to each other for delay, static current, dynamic current and capacitance measurements.

Figure C. 1 Experimental Circuit.

70

Figure C. 2 Delay measurement.

71

Figure C. 3 Static current measurement.

72

Figure C. 4 Dynamic current measurement.

73

APPENDIX D

D. MULT.TXT FILES

1. Chess Board

The chess board file contains multiplier and multiplicand of each multiplication. The left side of comma

symbol (,) is multiplicand and the right side of it is multiplier. The txt file contains 64 multiplications in 1

bit x 1 bit to 64 bit x 64 bit.

1,0

01,10

101,010

0101,1010

10101,01010

010101,101010

1010101,0101010

01010101,10101010

101010101,010101010

0101010101,1010101010

10101010101,01010101010

010101010101,101010101010

1010101010101,0101010101010

01010101010101,10101010101010

101010101010101,010101010101010

0101010101010101,1010101010101010

10101010101010101,01010101010101010

010101010101010101,101010101010101010

1010101010101010101,0101010101010101010

01010101010101010101,10101010101010101010

101010101010101010101,010101010101010101010

0101010101010101010101,1010101010101010101010

10101010101010101010101,01010101010101010101010

010101010101010101010101,101010101010101010101010

1010101010101010101010101,0101010101010101010101010

01010101010101010101010101,10101010101010101010101010

74

101010101010101010101010101,010101010101010101010101010

0101010101010101010101010101,1010101010101010101010101010

10101010101010101010101010101,01010101010101010101010101010

010101010101010101010101010101,101010101010101010101010101010

1010101010101010101010101010101,0101010101010101010101010101010

01010101010101010101010101010101,10101010101010101010101010101010

101010101010101010101010101010101,010101010101010101010101010101010

0101010101010101010101010101010101,1010101010101010101010101010101010

10101010101010101010101010101010101,01010101010101010101010101010101010

010101010101010101010101010101010101,101010101010101010101010101010101010

1010101010101010101010101010101010101,0101010101010101010101010101010101010

01010101010101010101010101010101010101,10101010101010101010101010101010101010

101010101010101010101010101010101010101,010101010101010101010101010101010101010

01,10

101,010

01,10

101,010

01,10

101,010

01,10

101,010

01,10

101,010

01,10

101,010
10

01,10
1010

101,010
101010

01,10
10101010

101,010
1010101010

01,10
101010101010

101,010
10101010101010

01,10
1010101010101010

75

2. ALL 1’s

1,1

11,11

111,111

1111,1111

11111,11111

111111,111111

1111111,1111111

11111111,11111111

111111111,111111111

1111111111,1111111111

11111111111,11111111111

111111111111,111111111111

1111111111111,1111111111111

11111111111111,11111111111111

111111111111111,111111111111111

1111111111111111,1111111111111111

11111111111111111,11111111111111111

111111111111111111,111111111111111111

1111111111111111111,1111111111111111111

11111111111111111111,11111111111111111111

111111111111111111111,111111111111111111111

1111111111111111111111,1111111111111111111111

11111111111111111111111,11111111111111111111111

111111111111111111111111,111111111111111111111111

1111111111111111111111111,1111111111111111111111111

11111111111111111111111111,11111111111111111111111111

111111111111111111111111111,111111111111111111111111111

1111111111111111111111111111,1111111111111111111111111111

11111111111111111111111111111,11111111111111111111111111111

111111111111111111111111111111,111111111111111111111111111111

1111111111111111111111111111111,1111111111111111111111111111111

11111111111111111111111111111111,11111111111111111111111111111111

111111111111111111111111111111111,111111111111111111111111111111111

1111111111111111111111111111111111,1111111111111111111111111111111111

11111111111111111111111111111111111,11111111111111111111111111111111111

76

111111111111111111111111111111111111,111111111111111111111111111111111111

1111111111111111111111111111111111111,1111111111111111111111111111111111111

11111111111111111111111111111111111111,11111111111111111111111111111111111111

111111111111111111111111111111111111111,111111111111111111111111111111111111111

11,11

111,111

11,11

111,111

11,11

111,111

11,11

111,111

11,11

111,111

11,11

111,111
11

11,11
1111

111,111
111111

11,11
11111111

111,111
1111111111

11,11
111111111111

111,111
11111111111111

11,11
1111111111111111

3. 2nd Type Chessboard

0,0

00,00

001,001

0011,0011

00110,00110

001100,001100

77

0011001,0011001

00110011,00110011

001100110,001100110

0011001100,0011001100

00110011001,00110011001

001100110011,001100110011

0011001100110,0011001100110

00110011001100,00110011001100

001100110011001,001100110011001

0011001100110011,0011001100110011

00110011001100110,00110011001100110

001100110011001100,001100110011001100

0011001100110011001,0011001100110011001

00110011001100110011,00110011001100110011

001100110011001100110,001100110011001100110

0011001100110011001100,0011001100110011001100

00110011001100110011001,00110011001100110011001

001100110011001100110011,001100110011001100110011

0011001100110011001100110,0011001100110011001100110

00110011001100110011001100,00110011001100110011001100

001100110011001100110011001,001100110011001100110011001

0011001100110011001100110011,0011001100110011001100110011

00110011001100110011001100110,00110011001100110011001100110

001100110011001100110011001100,001100110011001100110011001100

0011001100110011001100110011001,0011001100110011001100110011001

00110011001100110011001100110011,00110011001100110011001100110011

001100110011001100110011001100110,001100110011001100110011001100110

0011001100110011001100110011001100,0011001100110011001100110011001100

00110011001100110011001100110011001,00110011001100110011001100110011001

001100110011001100110011001100110011,001100110011001100110011001100110011

0011001100110011001100110011001100110,0011001100110011001100110011001100110

00110011001100110011001100110011001100,00110011001100110011001100110011001100

001100110011001100110011001100110011001,001100110011001100110011001100110011001

0011001100110011001100110011001100110011,0011001100110011001100110011001100110011

00110011001100110011001100110011001100110,00110011001100110011001100110011001100110

001100110011001100110011001100110011001100,001100110011001100110011001100110011001100

78

0011001100110011001100110011001100110011001,0011001100110011001100110011001100110011001

00110011001100110011001100110011001100110011,00110011001100110011001100110011001100110011

001100110011001100110011001100110011001100110,001100110011001100110011001100110011001100110

0011001100110011001100110011001100110011001100,0011001100110011001100110011001100110011001100

00110011001100110011001100110011001100110011001,00110011001100110011001100110011001100110011001

001100110011001100110011001100110011001100110011,001100110011001100110011001100110011001100110011

0011001100110011001100110011001100110011001100110,0011001100110011001100110011001100110011001100110

00110011001100110011001100110011001100110011001100,00110011001100110011001100110011001100110011001100

001100110011001100110011001100110011001100110011001,0011001100110011001100110011001100110011001100110
01

0011001100110011001100110011001100110011001100110011,001100110011001100110011001100110011001100110011
0011

00110011001100110011001100110011001100110011001100110,00110011001100110011001100110011001100110011001
100110

001100110011001100110011001100110011001100110011001100,0011001100110011001100110011001100110011001100
11001100

0011001100110011001100110011001100110011001100110011001,001100110011001100110011001100110011001100110
0110011001

00110011001100110011001100110011001100110011001100110011,00110011001100110011001100110011001100110011
001100110011

001100110011001100110011001100110011001100110011001100110,0011001100110011001100110011001100110011001
10011001100110

0011001100110011001100110011001100110011001100110011001100,001100110011001100110011001100110011001100
1100110011001100

00110011001100110011001100110011001100110011001100110011001,00110011001100110011001100110011001100110
011001100110011001

001100110011001100110011001100110011001100110011001100110011,0011001100110011001100110011001100110011
00110011001100110011

0011001100110011001100110011001100110011001100110011001100110,001100110011001100110011001100110011001
1001100110011001100110

00110011001100110011001100110011001100110011001100110011001100,00110011001100110011001100110011001100
110011001100110011001100

001100110011001100110011001100110011001100110011001100110011001,0011001100110011001100110011001100110
01100110011001100110011001

0011001100110011001100110011001100110011001100110011001100110011,001100110011001100110011001100110011
0011001100110011001100110011

4. Random

1,0

01,10

110,001

1110,1000

01010,01110

79

011000,101100

1010101,1011101

11010101,10010100

011010011,010101001

0101011101,0001101100

01000100100,10101001010

110101010100,100110101010

1101011111111,1011110101111

10011100101110,11111101110111

110100011111011,100101101110101

1011111001101000,1111111101111111

11010111011111111,11110101111011101

110101011101110111,111000010010110000

1101010101111101111,1111111011111011111

11001111100000101010,11001101010100001000

110101011111110101010,110111111011110101111

1111001010101001011111,1101010101010101111000

10110101000101000011110,10011010101010111100111

110011001011000111000011,110001110011111101100111

1001001100001111011001111,1111101110110001000111100

11111010101000101110001111,10101000101010101011110000

111001100101010101111101101,111100110011000100101110011

1111011111101100001110111011,1110111110111101110000011100

11010111011101010111011101101,10101011101010110101010101001

110101010101010101010101111011,111010101110110101110111100111

1100000111111110000000000001111,1111110000001111100000001111111

11111101111010101111110111011110,11111011110111101011110110101101

100000000111111111000000001111111,111000000000111111110000000000110

1101001010101010100010101110100101,1101011101111001111000011000100111

11110111111011110101010111111101011,11101010111011101011110001010111011

111101010111110101111110000011111110,111010111100000011010001111011110010

1000000111111101010111111110010111110,1001101101111111001111111000001110111

11010101011111010000011110011010100111,11011100111111101110011101101111101110

111010111010101110100111000111011011111,111100011110000110101000110100111110001

1000000001111111110000010001100001111111,1110000000001101111111100000001110000110

11010010101010101000101011100111110100101,11011000111011101111001111000011000100111

80

111101111110111101010101111110111110101011,111010101110111010110111011110001010111011

1111010101111101011111100000110001111111110,1110101111000100011100011010001111011110010

10000001111111010101111111100101111000001110,10011011011111000011111001111111000001110111

110100101010101010001010111001111101001001101,110110111000111011101111001111000011000100111

1111011111101111010101011111101111101010110101,1110101011101110101101010111101111000101011101

10100101010100101010101010101010101010100101010,11110101011100101010111101001010100010001100010

111101010111110101111110000011000111111110101110,111010111100010001110001101000101011111011110010

1000000111111101010111111110010111100000101011110,1001101011011011111000011111001111111000001110111

11010010101010101000101011100111110100101011010101,11101011010011000111011101111001111000011000100111

111101010111110101111110000011000111111011110101110,1101011111010001000111000110100010101111101111001
01

1000000111111101010111111110010111100000101010110111,100110110101101101111100001111100111111100000111
0111

11010010101010101000101011100111110100101011010101111,11101110011010011000111011101111001111000011000
100111

101110101011010101010111011010100111001101010111010101,1100011100011100101011111100011001010000010101
00001111

1001111111011010101010101010110111101010001110101111011,110101001011001110110111010111101111101111010
1111110000

11110111101110111111011110111110101010000111111110111101,11010101011111101111011011111101010101011111
010111010110

111011111011101111011011010111011100000100110110000011110,1011101111111010111110111011111110110101111
11101111111001

1101011101111001111000011111010111111000000011101011101011,111010111101100101011111010101010101101011
1101010101110011

10100101011010100101010101010101010101001000011110100101010,11110101001101110010100101101111010010101
000100010110100010

110100101010010111010101001010010101010101011111001010100100,1110101110101011111010101010110101010111
00101010111101101011

1011100111000000010101010111111110001110101000011111110000001,100111101010111111111010101110101010101
1101011110110101010011

10000110100111101010101110101111101010101010111010101111111000,11000011100011110101011110001011110011
101111101000111000111110

111111110001101010010101100001010101010110101011100101010001001,1010101111111111111111100000010101111
11110001010111111111000101

1111010101111101011111100000110001111000000001111110111110101110,111010111100010001110001101000101011
1110110101011111110000110010

10001111010011101010111110101111110000011000100111101101011111110,10001110111101000111010111100010001
110001101000101011111011110010

81

APPENDIX E

E. OUTPUT.TXT FILE

Output.txt file lists each multiplication and corresponding EDP for all multiplier architectures for

chessboard pattern.

Bits
CSAM

EnergyxDelay
RCAM

EnergyxDelay
WTM

EnergyxDelay
ABACUS

EnergyxDelay

2 0.01 0.12 0.18 0.45

3 0.10 0.42 0.89 5.21

4 2.57 6.26 1.75 14.53

5 7.69 15.15 8.92 29.01

6 15.14 27.94 23.78 59.05

7 27.80 45.09 47.83 94.52

8 55.83 67.54 83.03 142.93

9 99.27 96.26 128.25 202.63

10 147.13 142.64 182.03 274.23

11 222.70 199.36 254.32 362.54

12 295.97 267.69 363.75 514.65

13 402.46 349.05 476.37 649.14

14 526.85 444.97 607.05 805.31

15 706.87 557.12 753.99 984.49

16 872.97 702.71 928.33 1187.92

17 1103.28 869.79 1102.02 1410.74

18 1323.91 1060.37 1316.37 1653.25

19 1614.09 1276.57 1549.31 1922.42

20 1942.29 1520.64 1791.83 2219.34

21 2357.31 1794.96 2073.94 2545.12

22 2726.74 2121.78 2382.58 2900.76

23 3261.56 2485.30 2837.53 3447.84

24 3698.65 2888.23 3205.67 3879.15

25 4329.52 3333.42 3602.36 4343.63

26 4928.26 3823.84 4040.45 4842.19

27 5705.25 4362.59 4502.76 5375.72

28 6399.17 4976.15 5000.98 5945.09

29 7312.97 5645.67 5522.20 6551.14

30 8126.29 6374.58 6089.87 7194.71

31 9163.24 7166.43 6681.83 7876.60

32 10162.33 8024.92 7311.81 8597.58

33 11433.81 8953.87 7972.99 9348.61

34 12546.29 9983.22 8661.49 10129.85

82

35 14023.51 11091.84 9380.41 10951.69

36 15342.28 12283.86 10142.43 11814.89

37 16967.27 13563.56 10937.22 12720.16

38 18490.69 14935.35 11771.46 13662.24

39 20391.25 16403.78 12645.79 14657.84

40 22104.04 18001.48 13560.86 15695.64

41 24241.32 19705.78 14515.29 16772.33

42 26165.67 21521.56 15510.72 17900.57

43 28525.31 23453.81 16547.74 19071.03

44 30730.81 25507.67 17626.96 20293.36

45 33414.31 27688.37 18748.98 21560.20

46 35865.83 30030.48 20354.54 23411.56

47 38836.11 32510.59 21580.04 24795.98

48 41553.16 35134.29 22851.29 26230.02

49 44802.42 37907.30 24167.84 27711.26

50 47857.85 40835.47 25530.25 29246.30

51 51489.93 43924.78 26940.04 30830.74

52 54851.05 47210.87 28393.77 32470.13

53 58825.16 50670.42 29897.95 34161.05

54 62511.76 54309.73 31450.10 35901.07

55 66824.43 58135.24 33049.75 37698.73

56 70913.08 62153.52 34693.40 39549.59

57 75672.16 66371.24 36396.55 41456.18

58 80130.18 70824.42 38143.70 43417.04

59 85291.69 75490.54 39944.34 45433.69

60 90145.17 80376.66 41793.96 47506.68

61 95705.81 85489.91 43695.03 49636.50

62 101032.44 90837.57 45648.04 51823.67

63 107097.69 96427.06 47653.44 54068.70

64 112861.37 102293.93 49711.73 56372.08

