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ABSTRACT 

 

CLUSTERING OF TIME-COURSE GENE EXPRESSION DATA WITH 

DISSIMLAR REPLICATIONS 

 

Çınar, Ozan 

M.Sc., Department of Statistics 

Supervisor: Assoc. Prof. Dr. Özlem İlk 

Co-Supervisor: Assist. Prof. Dr. Cem İyigün 

June 2013, 118 pages 

 

 

Clustering the genes with respect to their profile similarity leads to important results in 

bioinformatics. There are numerous model-based methods to cluster time-series. However, 

those methods may not be applicable to microarray gene expression data, since they provide 

short time-series which are not long enough for modeling. Moreover, distance measures 

used in clustering methods consider the dissimilarities based on only one characteristic and 

ignore the time-dependencies. Furthermore, genes may show differences among the 

replications which carry important information. Detecting interesting genes might involve 

heavy computational burden. In this study, a clustering method is proposed where every 

gene is accepted as a short time-series with several replications. The distance between the 

short time-series of replications is measured with the information coming from both the 

Euclidean distance and the slope distance. The numerical experiments show that the 

proposed approach can find the clusters very fast with a low percentage of misclassification. 

Several tests show that the method is also successive in detecting the genes with dissimilar 

replicates or constant shapes. Finally, different approaches are proposed for determining the 

number of clusters in a given data set. Simulation studies show that these methods are 

helpful to detect the number of clusters when it is not known a priori.  

 

Keywords: Microarray Data; Short Time-Series; Clustering; Replication; Cluster Validity 
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ÖZ 

 

 

FARKLI TEKRARLI ZAMAN AKIŞLI GEN İFADE VERİLERİNİN 

KÜMELENMESİ 

 

Çınar, Ozan 

Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Doç. Dr. Özlem İlk 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Cem İyigün 

Haziran 2013, 118 sayfa 

 

 

Genlerin zaman serisi portrelerinin benzerliklerine göre kümelenmesi biyoenformatik 

alanında önemli sonuçlara ulaştırmaktadır. Zaman serilerini kümelemek için geliştirilmiş 

modellemeye dayalı bir çok yöntem bulunmaktadır. Fakat, mikrodizin gen ifade verileri 

modellemeye yetecek kadar uzun zaman serileri sağlamadığından bu yöntemler elde edilen 

verilere uygun olmamaktadır. Dahası, kümeleme yöntemlerinde kullanılan uzaklık ölçümleri 

uzaklığı tek bir nitelikle belirtmekte ve zaman bağımlılığını gözardı etmektedir. Ayrıca, 

genler farklı tekrarlarda farklı portreler göstererek önemli bilgiler sunabilir. İlginç genleri 

belirlemek oldukça ağır bilgisayar işlemleri gerektirebilir. Bu çalışmada, her bir geni bir çok 

tekrardan oluşan kısa zaman serileri olarak kabul eden bir kümeleme yöntemi sunulmuştur. 

Tekrarlı kısa zaman serileri arasındaki uzaklıklar hem Öklit hem de eğim farklılıklarından 

gelen bilgilerle ölçülmektedir. Sunulan yaklaşımın portreleri oldukça kısa zamanda ve 

küçük hatalarla bulduğu sayısal örneklerle gösterilmiştir. Ayrıca, bir çok test yöntemin, 

farklı tekrarlı veya sabit portreli genleri de ayırt edilebildiğini göstermiştir. Son olarak, 

küme sayısını tespit edebilmek için farklı yaklaşımlar sunulmuştur. Simulasyon çalışmaları 

önsel olarak bilinmediğinde küme sayısını bulmada bu yöntemlerin faydalı olduğunu 

göstermiştir.  

 

Anahtar Kelimeler: Mikrodizin verileri; Kısa zaman serileri; Kümeleme; Tekrar; Kümeleme 

geçerliliği. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 
Discovery of DNA and genetics improved the abilities of the mankind to understand the 

livings and their environments beyond the imagination. With the help of such abilities, 

studies have been hold to examine the evolution and the developments of the organisms. As 

the structures of the bodies are understood with those studies, human beings have been able 

to resolve their curiosities and create solutions to the problems.  Studies on the human 

genetics and their relationship with the bacterial organisms, for example, helped to reveal 

the symptoms and treatments of many diseases.  

 

1.1. Microarrays and Analysis of Microarrays 
 

Advanced studies have become necessary in genetics in order to find more effective 

solutions for the problems. Improvements in technology played an important role to hold the 

advanced studies. Many instruments have been designed to examine the biological situations 

in a more detailed way. One of those instruments has been coined in the mid-nineties and 

called as DNA arrays, a.k.a. microarrays. Microarrays provide the ability to scope the 

behaviors of thousands of genes in a metabolism with a single experiment, which is a huge 

contribution to science. Baldi and Hatfield (2002) stated, on this manner, that microarrays 

had a similar impact in science as the microscopes have had in the last centuries.  

 

Microarrays display the activity level of each gene in an individual. The experiments can be 

hold at different conditions such as in the presence of a disease in interest. Moreover, a 

comparison can be made to detect the genes which change their activity levels throughout 

different conditions to find the effective genes in the formation of the disease in interest. 

With the help of such studies, the target genes for a treatment can be found to make that 

treatment more effective and to reduce its side effects. Besides, the relationships and 

dependencies between the genes can be discovered by examining their activity levels. Those 

discoveries would be helpful to build the biological pathways of the organisms. In respect to 

all these studies, the analysis of microarray experiment products may play important roles in 

finding solutions to a variety of issues.  However, microarrays provide data sets with tens of 

thousands of rows which are challenging to analyze. Those big data sets create difficulties in 

different steps of an analysis such as interpretation and computation.  

Furthermore, the analysis of the results of microarray experiments got more challenging 

with the introduction of time-series studies into microarrays. In such studies, the activity 

levels of the genes are followed through time and a time-series of expression levels is 
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obtained for every gene. Bar-Joseph (2004) cited that collecting the information from the 

genes by following them in time provides more information than the stable expression levels 

especially for determining all genes expressed in a condition and catching the interactions 

between the genes.  Those time-series gene expression studies help to discover the 

developments of biological processes such as cancer, to detect the genes which take role in 

an infection or a disease and to see the interactions between the genes. A methodical 

approach for the analysis would be helpful in the hard-challenging nature of the time-series. 

In this requirement, Bar-Joseph (2004) put forward a systematic approach to gather proper 

information from time course microarray gene expression levels. According to this approach 

the process of a time course microarray analysis can be divided into four parts which can be 

seen in Figure 1.1. 

 

 

 

 
 

Figure 1.1. Flowchart of microarray analysis 

 

 

 

In the first step, the experimenter sets up the design of the experiment. The features such as 

the number of replicates, conditions and the number of arrays in the experiment are decided 

in this step. Further, the number of time points and the time lengths between those time 

points are determined here. Those selections are very important in a time-series studies since 

they determine the number of observations in time-series and sample rate of the 

measurements. Also, synchronization of the genes is an important problem on cell cycle 

experiments. All the genes in the experiment should be set to the same phase of the cell 

cycle at the beginning of the experiment by synchronization. The second step in the 

flowchart includes the techniques to make the data set collected from the experiments more 

practical. One drawback of the microarrays is that they may provide a very noisy data. 

Therefore, in this step, the experimenter works on the individual genes to reduce the noise 

level of the signals. Normalization of the genes is also held in this step. Last but not least, 

the significances of the reactions of the genes are studied in this part. Most of the genes do 

not show a significant reaction in their expression levels throughout the conditions or time 

in a microarray experiment. However, the genes which change their activity levels with 

respect to the condition changes are examined in order to get important results. Thus, the 

uninteresting genes are filtered in this step in order to lower the complexity of the analysis. 

The third step considers grouping the genes with similar profiles together. After the 

separation of the genes, the analyst has the chance to work on small number of groups 

including similar genes instead of all the genes individually. For this grouping purpose, 

clustering methods are widely used in the literature. Grouping the genes with similar profiles 

through time may help to see the genes with similar functions in the organism. Hence, the 

clustered display of the genes also assists to interpret the function of an unknown gene and 

Experimental 
Design 

Data Analysis 
Level 

Pattern 
Recognition 

Level 
Networks 
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identify the genes specific for a disease. In the fourth step, interactions and dependencies 

between the genes are investigated. With the help of these investigations, scientists can build 

the descriptive and predictive models to examine the biological pathways of different 

organisms. These biological networks aid several cases such as determining the target genes 

for a treatment or determining the side effects of the treatments. To conclude, these four 

steps are the main divisions of a microarray analysis procedure. Furthermore, each step 

serves as a pre-analysis for the further steps, eventually. 

 

1.2. Problem Definition 
 

This thesis looks into the third step of the microarray analysis, the pattern recognition. A 

clustering algorithm is presented throughout the thesis. Clustering similar genes together has 

been a useful method to obtain biologically meaningful results from a gene expression data 

set. Several well-known clustering methods such as hierarchical and k-means clustering 

have been applied for achieving that goal. Each of those clustering algorithms basically 

groups the genes with respect to the similarities between the genes by defining the 

dissimilarities between them with a distance metric such as Euclidean distance on the 

activity levels of the genes.  

 

However, the occurrence of time-series in microarrays brought several challenges to the 

clustering studies. The first challenge arose with the nature of the time-series. In such 

studies, it is known that every observation on a time-series is dependent on the previous 

measurements. As a result of this, a clustering algorithm should take this dependence into 

consideration. The default distance metrics, on the contrary, use each measurement 

separately in a time-series. In consequence, they accept every measurement independent of 

each other. Moreover, by accepting each measurement separate then the others, the 

clustering methods ignore not just the time dependency but they also neglect the time 

lengths between those time points. Changes in time lengths in different time intervals are 

very occasional in time course microarray experiments. Therefore, considering the time 

lengths is an important aim for a clustering algorithm, too. Accordingly, the distance 

measures used in those clustering algorithms should be modified to be aware of the time 

dependencies and time lengths between the intervals of a time-series.  

 

In order to solve problems about time-series, other methodologies have been proposed by 

many authors. Some of these methodologies were based on clustering the genes by using 

mathematical and statistical models. There are, nevertheless, several drawbacks for these 

model based clustering algorithms. The main drawback for them is their dependencies on 

the number of time points. In order to build model on the time-series, these methods need a 

sufficient number of time-points. Ernst et al. (2005) showed that more than 80 % of the 

microarray experiments had used less than or equal to 8 time points. The “short time-series” 

can not provide sufficient data for the model based clustering algorithms. Based on this fact, 

the model based methods may not be useful for clustering the microarray short time-series. 

Therefore, a clustering algorithm would be more useful and appropriate if it does not have 

any limitations on the number of time points. 
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The third challenge about the clustering studies on microarrays emerges as a result of the 

use of replications. Usage of replications is a technique that is commonly applied in 

microarray experiments. Different types of replication techniques might be used in 

microarrays, such as technical and biological replications. For technical replications, the 

same experimental unit is used for each replication while a different experimental unit is 

used for each replication in biological replications. Most of the time, the same number of 

replications is held for each gene in an experiment. The most important problem about the 

replications is that some genes may show variations among their replications. Such 

variations may carry valuable information especially when biological replications were 

chosen for the experiment because of that the variations might be the result of a difference in 

the unique biological pathway to that experimental unit. Thus, being aware of such genes 

may provide a very useful ability to examine such experimental units. On this purpose, a 

clustering algorithm would be very beneficial if it can detect the genes which show 

variations among their replicates. 

 

Another challenge about the clustering studies is determining the number of clusters. In a 

real data set, the number of different patterns is unknown as prior information. This prevents 

the user from being certain about the correct number of clusters. Choosing a small number 

of clusters may result in clusters with more than one significantly different pattern within 

each cluster which make the user unable to see all profiles. On the other hand, selecting a 

high number of clusters can end up with more than one cluster with a similar pattern with 

too much detailed differences. Both cases would make the interpretations harder. Therefore, 

offering possible number of clusters without any prior information is a great advantage for a 

clustering algorithm. With the optimum number of clusters the user would obtain as many 

clusters as to show the significant patterns of the genes but not too many clusters to avoid 

the redundancy. Cluster validation techniques can be used to propose methodologies to 

detect the number of clusters when it is unknown.  

 

Finally, the constant genes will be studied in this thesis, even though it is not one of the aims 

of the third step in the microarray analysis procedure. As mentioned before, most of the 

genes in a microarray experiment do not show a reaction through time and keep their 

baseline levels. The genes which show a reaction and change their activity levels during the 

experiments are yearned to be in the analysis, though. Based on this fact, the genes which do 

not show a significant change in their activity levels throughout the experiment are filtered 

out in order to reduce the complexity of the analysis and computational burden. However, 

discovering constant genes is also possible by assigning them into specific clusters within 

the clustering studies. 

 

In this thesis, an algorithm is proposed to attack these problems. The remainder of this thesis 

is as follows. The literature review is held about the clustering methods on microarrays in 

the second chapter. The main methodologies and background information for time course 

microarray gene expression experiments are presented in the next chapter. Next, the 

approach proposed in this thesis is put forward in Chapter 4 and it is followed with Chapter 

5 where numerical examples on several simulated and a real data set are demonstrated. 

Finally, the thesis is concluded with discussions and future works in Chapter 6.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 
The behaviors of genes are identified with their expression levels. Specific profiles that 

emerge on the expression levels of genes might be the reasons for the developments of 

conditions such as diseases. Microarray gene expression experiments give the simultaneous 

expression levels of tens of thousands of genes at a specific condition as products. 

Therefore, examinations on the expression levels of the genes and their profiles through time 

may lead to crucial knowledge on such phenomena. With the help of these analyses, the 

effective genes on the generation of a specific condition can be detected.  

 

One way to find those genes is to comparing the expression levels or profiles of genes with 

condition in interest against those of the genes at a control case. This comparison would help 

to find the target genes in a treatment. However, since there are too many genes used in 

those experiments, working on all of those genes individually is very challenging. Several 

methods have been proposed to lower the complexity of such data sets and clustering is one 

of those methods. With the clustered form of these data sets, the analyst can work on fairly 

small number of groups of genes compared to the number of all individual genes. Moreover, 

cluster analyses help to find the genes which show similar responses through time which, in 

turn, may be functionally related with disease. Furthermore, examining the different profiles 

in separate clusters may provide valuable knowledge about the relationships between the 

profiles. As a result of the related genes, the biological pathways of the organisms can be 

resolved more accurately. The clusters of profiles may also be helpful to assign presumed 

functions to novel genes whose functions are unknown since the genes with similar profiles 

are more likely to be functionally related. Therefore, classifying the genes with respect to 

the similarities in their profiles is important in biological analysis.  

 

Clustering have been applied and studied on microarrays over several years. The aim of 

these clustering studies was to catch the fundamental patterns in expression levels of genes 

in a data set (Tamayo et al., 1999). One of the earliest clustering studies on gene expression 

data set has been hold by Khan et al. (1998). By using hierarchical clustering method on the 

stable expression levels, their algorithm detected the genes which are effective on the 

development of alveolar cancer. This study was a healthful example to show the importance 

of clustering of genes with respect to their gene expression profiles. Moreover, its results 

can be used as prior knowledge for deciding if an unknown gene might be effective on 

alveolar cancer since it defines the effective profiles.  
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Such studies showed the importance of microarrays and increased the tenancy of 

microarrays in genomic researches. As the usage of microarrays increases, new data 

collection methods have also been introduced. A milestone in microarray studies was 

starting to collect the gene expression levels of genes through time. Two of the pioneer 

studies were held by Cho et al. (1998) and Spellman et al. (1998). In the former study, it was 

mentioned that the unexpected biological events may be the consequences of the 

physiological changes at the genes during the cell cycle periods. Both studies observed the 

expression levels of the genes of yeast through cell cycle periods during the mRNA 

transcription. Those researches introduced the time-series studies into microarrays. 

Collecting the information of microarrays as time-series made the interpretation of the 

results more challenging. However, Bar-Joseph (2004) mentioned that collecting time 

course data set instead of stable expression levels is worthwhile to get significant biological 

results.  

 

Next, studies on the clustering of these time-series gene expression levels started. There 

were several very well-known clustering studies in the literature at that time, such as 

hierarchical and k-means clustering. Those clustering methods have been applied to time 

course gene expression data sets. Eisen et al. (1998) used a hierarchical clustering approach 

to cluster the time course gene expression level obtained from the genes of yeasts. In order 

to define the similarity between the time-series of genes, they used a metric similar to the 

Pearson correlation metric which defines the distance with respect to the correlation between 

the measurements through time. With this approach they clustered the genes which show 

similar patterns through time. However, this technique could only catch their similarity with 

respect to their shapes. Therefore, it ended up with the clusters which include genes with 

similar patterns at different magnitude levels. In another study (Tamayo et al., 1999), the 

authors used Self–Organizing Maps (SOM) to see the groups of profiles in a time course 

gene expression data set. The study displayed a practice of SOM on time-series by using 

only Euclidean distance metric. The algorithm was eventually tested on a real data set of 

which results were known from a previous study and was shown to be successful on 

dividing the genes into meaningful clusters. 

 

These methods, however, may not be suitable for clustering the time-series data sets. As 

mentioned before, all clustering methods need a distance metric in order to define the 

similar objects. Most of the metrics catch the similarity based on a single characteristic. For 

example, the study of Eisen et al. (1998) defined the similar genes which had a similar shape 

regardless of their magnitude levels. More importantly, most of the clustering methods use 

Euclidean distance. This metric finds the difference between the expression levels at each 

time point and takes their summation as the distance between two time-series. This 

approach, nevertheless, is not a proper method for defining the dissimilarity between the 

time-series. That is because, in such studies, it is known that each measurement is dependent 

on the observations at previous time points. Since Euclidean distance, nonetheless, accepts 

each measurement at each time point separately, it ignores the time dependencies. 

Furthermore, using only the Euclidean distance fails to handle another feature of the time 

course gene expression experiments. In time-series gene expression experiments unequal 

time spaces are used occasionally. In those studies, the time lengths vary at different time 
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intervals. However, Euclidean distance ignores the time lengths between the time points. As 

a result, the well-known clustering methods mentioned before could not handle these 

problems with their default settings. 

 

Later, new methods have been proposed to overcome such problems during the clustering. 

Most of these methods depend on modeling the time-series statistically. With this approach, 

several model based clustering methods have been introduced to the literature. One of the 

first of those approaches is coined by Yeung et al. (2001). The model based clustering 

studies assumed that the expression levels are generated by a finite mixture probability 

distribution. By reciting that the Gaussian mixture model was a powerful tool for this aim, 

the authors assumed that each group with a specific profile in a data set was distributed with 

a multivariate normal distribution. The geometric aspects of the profiles for these groups 

were determined by the covariance parameter of the multivariate normal distributions. 

Therefore, the covariance parameter was parameterized by using eigenvalue decomposition 

method. This provided five different models which had different features for the parameters 

of the covariance. An EM algorithm was held to assign the genes to the clusters. After 

creating clusters by using five different models, the best model was chosen with respect to 

the results from Bayesian Information Criteria (BIC) for each model. This provided a great 

advantage to their algorithm which was the ability of deciding the number of clusters with 

model adequacy checking. Rand indexes (Rand, 1971) of different number of cluster sets 

were examined to decide the number of clusters. However, it was declared in the study that 

the number of parameters to be estimated might be inflated especially when the numbers of 

genes in clusters are small. In such cases, the number of parameters to be estimated might be 

problematic and may exceed even the number of objects to be clustered. Furthermore, the 

algorithm depended on the assumption that the expression levels were distributed with a 

multivariate normal distribution. In the case of the dispersions from multivariate normal 

distribution, a suitable transformation would be needed. Following that, some of the real 

data sets were stated which did not hold this assumption. In the case of dispersions from this 

assumption, the algorithm yielded an overestimation for the number of clusters.  

 

In another study, Ramoni et al. (2002) used a Bayesian autoregressive approach. They 

assumed that the profiles of a pair of time-series can be similar when they are originated 

from the same stochastic process. Therefore, they tried to find out a representative stochastic 

process for each cluster and assign the genes which might be coming from a specific 

stochastic process to the same cluster. After that, a Bayesian approach was used to find out 

the number of significant representative stochastic processes which also declares the number 

of clusters. They compared the likelihood probabilities of the set with m number of clusters 

with the set of m+1 clusters in order to create a new cluster.   

 

Time-series microarray experiments follow the expression levels of the genes in discrete 

time points. Bar-Joseph et al. (2003) tried to present them as continuous series and applied a 

clustering algorithm. The main purpose in this study was imputing the missing values in a 

microarray experiment and clustered status of genes was used with this goal. In order to 

present the time-series as continuous, polynomial splines were used. It was mentioned that 

the low degree of polynomials were better for creating smooth lines and did not have the 
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over fitting problem. Thus, cubic B splines were applied to interpolate the discrete time-

series. After fitting a spline for each gene, imputing the missing expression values was 

aimed. However, the authors also wanted to use background information while imputing the 

missing cases in order to make the application more robust. Hence, other functionally 

similar genes were used to guess the missing expression values of a gene. However, those 

functionally similar genes may be unknown as prior information and clustering took into 

part in such cases to define the functionally similar genes. The clustering algorithm in this 

work required the number of clusters given in advance. Then, the algorithm worked 

iteratively with a modified EM algorithm by assigning a random gene to a cluster and 

calculating the probability of that gene belonging to that cluster. This process was 

terminated when the convergence was obtained. Although, the algorithm worked well on a 

real data set, the authors stated a disadvantage. In order to fit splines to genes, their 

algorithm needed data sets with large number of time points. Consequently, this 

disadvantage made their algorithm inappropriate for short time-series gene expression data 

sets.   

In a different study, Luan and Li (2004) tried to identify the genes with periodic expression 

profiles. It was stated that some genes show periodic biological processes, such as circadian 

rhythmic regulation or cell cycle regulation, along with the genes which do not show such 

processes and called as aperiodic. In this study, the periodic genes were aimed to be detected 

by assigning them into a specific cluster. In order to reach this goal, shape-invariant cubic 

B-Splines were used to model the expression levels as a function of time. Reference periodic 

gene profiles were used during the construction of the model. The authors stated that, 

although, their method was very useful in the noisy nature of microarray gene expression 

experiments, there were some disadvantages. First, their method needed guide genes; 

therefore, it could not build models without prior information. Second, all the periodic genes 

were assumed to have the same shape. This prevented the successful decomposition of the 

genes with different amplitudes or phases in their expression levels. Finally, their algorithm 

was stated to be inappropriate for a typical time course microarray experiment which has 

small number of time points.  

 

As mentioned before, comparing the expression levels of genes in different conditions leads 

to important biological results. In that purpose, clustering genes through conditions is also a 

valuable aim for clustering studies. Heard et al. (2005) digested on this purpose and 

proposed a method to cluster the genes through both profiles and the conditions. Because of 

the bi-dimensionality of the clustering, this procedure was called as co-clustering. A curve 

based Bayesian model was offered to cluster the genes by fitting a regression model to each 

gene. The regression models were fit with a two-stage EM type algorithm. At the first stage, 

the cross-condition variations were fixed and an optimal clustering set of the expression 

profiles were found with a Bayesian hierarchical clustering for each condition. At the second 

stage, their algorithm found the cross-condition covariance which showed the similarity of 

the profiles of genes through the conditions by using Markov chain Monte Carlo 

simulations. Finally, the algorithm divided the conditions into groups with the aid of cross-

validation scores. Their algorithm had several advantages as a clustering algorithm. First, 

using a Bayesian approach helped the user to decide some uncertain aspects in the nature of 

clustering studies such as the number of clusters. Next, their regression approach could 
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handle the unequal time spaces which are common in microarrays. Moreover, their 

algorithm could assign the constant genes, which do not show significant changes 

throughout the experiments, into a separate cluster. This provided reduced complexity while 

doing further analysis due to smaller number of genes once these constant genes were 

ignored. On the other hand, however, their algorithm clustered the genes with respect to 

their shapes, which might end up with the genes which showed similar patterns but in 

different magnitudes into the same cluster. Moreover, on a trial with a real data set which 

included 2392 genes, the authors stated that their algorithm ended up with 159 clusters 

which might create redundancy by showing the profiles in too much detail.  

 

Next, Hakamada et al. (2006) proposed a Mathematical Model Based Clustering (MMBC) 

method. The aim on this study was to classify the genes with respect to their functions in 

mRNA transcription. The best-fitted polynomials, which were stated to be one of the 

simplest methods to fit models to time-series, were adapted. However, it was impossible to 

extract the information on onset and cessation times which were related with their functions 

in mRNA transcription. As a result, mathematical kinetic models proposed by Maki et al. 

(2004) were used since those models included information about onset and cessation times. 

K-means clustering was applied on the parameters of these mathematical kinetic models 

with Euclidean distance metric. During the clustering, the parameters of onset and cessation 

times were inputted. Furthermore, the clustering study was held separately in three ways 

where both of the parameters or only one of them was used as the input. The algorithm was 

tested on a real data set from Chu et al. (1998) which was known to include 7 clusters. The 

success of the algorithm was measured with Silhouette and Rand values. However, their 

methodology used the prior knowledge on the number of clusters since the algorithm could 

not decide this. Next, the authors stated that using such a dimension reduction when using at 

most two parameters of the models may create loss of information problem.  

 

It can be seen that model based methods have serious disadvantages for clustering the time 

course gene expression profiles. The most important problem with them is their need in 

sufficient time points in time-series.  Ernst et al. (2005) showed that more than 80 percent of 

microarray time-series experiments included less than 8 time points. This arose the need of 

non-model based clustering algorithms on time course microarray experiments. In the 

direction of this need, Ernst et al. (2005) developed a non-model based clustering method, 

Short Time-series Expression Miner (STEM). This algorithm used the logarithms of the 

ratios of the expression values to the baseline expression value in time-series for each gene. 

This led to 0 values at the first time point. Later, this algorithm required the entry of two 

user defined parameters. First of these parameters, c, notified the greatest possible unit 

change during the intervals. For example, when c is inputted as 1, there were three 

possibilities for the expression change for each interval: one unit increase, one unit decrease 

or keeping the expression level same. Considering all the combinations of the possible 

changes on every time interval, the algorithm found all the possible profiles. The second 

parameter maintained the number of clusters in the data set. Finally, this algorithm assigned 

each gene to the most similar profile to create the clusters.  
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Similar to the previous method, Peddada et al. (2005) suggested a different non-model based 

clustering algorithm, Order Restricted Inference for Ordered Gene Expression (ORIOGEN). 

This methodology demanded the candidate profiles, such as increasing, cyclical or umbrella 

shapes, to cluster the profiles of gene expressions. ORIOGEN clustered the time-series of 

the genes to the candidate profile with the most appropriate magnitude of the correlation 

coefficient. Using the correlation coefficient, nevertheless, ignored the magnitude difference 

between the profiles and clustered the genes only with respect to the shapes of the time-

series. 

 

Finally, Irigoien et al. (2011) paid attention to another important problem in microarrays. As 

mentioned in the introduction, replications have a wide usage in microarray experiments. 

The variations among the replications may reveal the uncertainties in the differences among 

the biological pathways of the patients. Considering such possible variations, they proposed 

a methodology to cluster the time course gene expressions. In Irigoien et al. (2011), the 

dissimilarities between the profiles were defined with procrustes analysis which considers 

both the magnitude and shape differences. Using this distance metric, the algorithm 

followed four steps. In the first step, their algorithm detected the constant genes among the 

data set and filtered them out. In the next step, each gene was examined within their 

replicates, and the genes with high distances between the replicates were accepted as the 

genes with differences among the replications. Those genes were also filtered in order to be 

analyzed later. The third step clustered the genes left, which were not constant and did not 

have variations among the replications. During the clustering, an agglomerative clustering 

approach was used with the distance calculated from procrustes analysis. This clustering 

step also defined the significant profiles among the data set. Finally, in the last step, the 

genes filtered in the second step were assigned to the most similar profiles emerged in the 

third step. However, if a gene with differences among the replications was similar to none of 

the profiles, a new cluster was created for that gene. This algorithm was tested on a 

simulated and a real data set and evaluated to be successful. However, according to their 

statements, all the four steps may lead to long computational times for big data sets.  

 

Each study mentioned in this section showed the advantages and disadvantages of both 

model and non-model based clustering algorithms. In the light of this information, a 

clustering algorithm is proposed in this thesis with several contributions. This clustering 

algorithm is aimed to be used on time source gene expression data sets; therefore, it 

considers the natural features of time-series such as time dependency and varying lengths of 

time intervals. Furthermore, the algorithm uses distance metrics which considers both the 

shape and magnitude distances between the time-series. Third, it is able to detect the genes 

which show variations among their replicates. An important feature of the algorithm is that 

it is a non-model based algorithm. Thus, the algorithm does not depend on any assumptions 

or the number of time points in a data set. Finally, some techniques are added to the 

methodology to detect the number of clusters when it is unknown a priori.  
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CHAPTER 3 

 

 

BACKGROUND 

 

 

 
Microarray and clustering in time course microarray studies have several features need to be 

considered. This chapter will give information on these features. In the first section, the 

constant genes are illustrated. This is followed by the section where the replications are 

introduced. Further, different components of clustering studies, which are clustering 

algorithms, distance measures and cluster validation techniques, are explained in the next 

three sections.    

 

3.1. Differentially Expressed Genes 
 

One of the main aims of microarray studies is to detect the responsible genes in the 

development of a condition in interest such as cancer by analyzing the reactions of genes to 

condition changes. Hence, the analysis should be taken on the genes which show reactions. 

Such genes are mentioned to be as differentially expressed (DE) genes. The basic approach 

in detecting the responsible genes would be comparing the expression profiles of genes by 

taking a case/control study. The genes which show a profile at the condition in interest 

different than its profile at the control study might be considered as the susceptive ones. A 

hypothesis test can be hold for each gene to see if it shows different profiles with respect to 

the purpose of finding the responsible genes. Naturally, a multiple test adjustment is needed 

while holding hypotheses tests to every gene. However, the number of genes in a microarray 

study is about tens of thousands most of which are non-DE genes. It can be deduced that, the 

adjustment might be too conservative, since the number of genes is too high. Furthermore, 

the existence of too many non-DE genes may lead to other problems for the analyst. Such 

genes may create measurement bias, increase the false discovery rate (FDR) or reduce the 

sensitivity of the analysis (Calza et al., 2007). Moreover, higher number of constant genes 

requires longer computational times. In order to overcome these problems, the number of 

genes is desired to be decreased by filtering the non-DE genes. The genes to be filtered 

should be chosen with caution, though, in order to prevent the loss of information.  

 

There are several methods to filter those constant genes. The most basic one of them is 

applying a threshold to the expression levels to the genes. For example, Heard et al. (2005) 

advised that the genes whose expression level changes are lower than 2-fold change 

throughout the experiment may be filtered out of the data set. Different thresholds might be 

chosen to define the DE genes. However, this type of filtering is not accepted as reliable 
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anymore, since there is not a rational reason while choosing the level of fold change to be 

used as threshold value. Furthermore, fold change works with means of the replications and 

it does not take the variability into account. For the methodology proposed in this thesis, 

filtering is integrated into the clustering algorithm by assigning the constant genes in 

separate clusters from the DE genes.  

 

3.2. Replications 
 

Replications have a common usage in statistical analyses. The main purpose of using the 

replications is estimating the variability between the typical experimental units during the 

data collection. Replications are also considered to be useful in microarray studies. 

Replications are used in microarrays by reproducing the data collection methods several 

times on each gene. On the behalf of gathering a balanced data set, usually, the same 

number of replications is used for each gene. Moreover, in time course microarray 

experiments, time points are also kept the same in time-series of all replications and genes.   

 

As mentioned earlier, microarrays may produce very noisy data which may create high 

variances between the replications. Moreover, there might also be problems with the data 

collection technique that arise from the instruments used to observe the expression levels. 

Both of these situations lead to measurement errors and replications are useful to recognize 

them. Furthermore, there are several methods to reduce the bias coming from the noisy 

nature of microarrays and data collection technique failures. Most of these methods are held 

in the second step of the microarray analysis flowchart mentioned in the introduction in 

order to get a data set as unbiased as possible. However, the variations may also carry 

important biological information. Sometimes, the genes may show reasonable different 

profiles in different replications depending on the biological history or pathway of the 

experimental units. Therefore, such differences among the replications may be very 

beneficial to enlighten the causes or effects of biological contrasts between the experimental 

units. This leads the use of several replications even though the cost of experiments 

increases as the number of arrays increases through the replications (Nguyen et al. 2010).  

 

There are three techniques for replications and different emphases on the variability among 

the replications are given with those replication techniques (Yang and Speed, 2003). The 

first technique, Within-Slide Replication, collects replicates from the same experimental unit 

and hybridizes them in the same DNA array. This method gives the least variation between 

the replicates since the same experimental unit is used on the same array. With this 

approach, nonetheless, the analyst obtains the dependent and unique observations. Thus, the 

most secure information about the noise level can be derived with this replication technique. 

Technical Replication, which is the second replication technique, again uses the genes of the 

same experimental unit at each replication. However, another DNA array is used for each 

replication. Since a different array is used for each replication less dependence is obtained 

than the first replication technique. In this technique, the only variability between 

replications comes from the different arrays. Hence, this replication method is very useful to 

estimate the measurement error. The last replication method is called as Biological 

Replicates and has two different ways to apply, type I and type II. With type I biological 
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replication, a gene from a different cell or tissue in a single experimental unit is used for 

each replication. On the other hand, for the type II biological replication, genes from the 

same cell or tissue are replicated from different experimental units. For both types, different 

DNA arrays are used for the replications. These techniques provide the least dependent 

expression levels among the replications. Furthermore, it helps to see the differences 

between the expression levels of different tissues or experimental units which may lead to 

important biological results mentioned before. Type II biological replication is commonly 

used in microarrays. With the help of this approach, the analyst can have the chance to 

analyze the changes in the profiles of gene expressions from patients with different 

biological backgrounds.  

 

3. 3. Clustering Algorithms 
 

Clustering is the analysis of dividing subjects into several meaningful groups. It is very 

useful to understand and analyze high-dimensional data sets. The product of a clustering 

analysis is the division of the objects into different groups. The objects within a cluster are 

similar to each other while dissimilar to the objects in other clusters. Therefore, 

homogeneity within the clusters and heterogeneity between the clusters are desired at the 

end of a cluster analysis. This results in time course microarray studies with similar pattern 

genes being grouped in a specific cluster. Thus, each cluster includes genes with a unique 

profile. Clustered form of the genes is very helpful for the analysts since it reduces the 

number of objects to be analyzed. Moreover, the clusters may be useful to detect the genes 

which have similar functions in the biological pathway. That is why the genes with similar 

profiles can be assumed to have similar functions. Furthermore, by comparing and analyzing 

different profiles, the dependent genes can be discovered in an organism which would be 

helpful to build the biological pathways. Finally, with the assumption of genes with similar 

profiles would have similar functions, the clustering studies would be beneficial to presume 

the functions of unknown genes.   

 

As it can be seen, clustering studies are very beneficial to use on time course gene 

expression data sets. There are several well-known and useful clustering algorithms in the 

literature. K-means, hierarchical clustering and Self-Organizing Maps (SOM) are the most 

common ones of these algorithms and have been used to cluster the genes in microarray data 

sets (Baldi and Hatfield, 2002). A review of these methods will be presented in the 

following subsections. 

 

3. 3. 1. K-means Clustering 

 

K-means algorithm aims to divide the objects into a pre-selected number of clusters. 

Therefore, the desired number of clusters is inputted by the user before starting the 

clustering process. Suppose that k shows the number of clusters desired. After adjusting k, k-

means algorithm starts with defining k of the individuals in the data set as the initial cluster 

centers (centroids). Then it works iteratively where the distances from each object to every 

centroid are measured. With respect to these distances, each object is assigned to the closest 

centroid. After assigning every object to a cluster, the centroid coordinates are recalculated 
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as the average of the coordinates of the members in that cluster at the end of the iteration. 

This procedure is run until none of the objects changes its cluster within an iteration. The 

resulting centroids present the clusters and the objects become assigned to the cluster with 

the closest centroid (Tan, 2006). A pseudo algorithm for k-means is given below.  

 

1. Set the number of clusters, k.  

2. Choose k points as the initial centroids randomly 

Repeat 

3. Assign every point to the closest centroid 

4. Recalculate the centroid coordinates with the new members 

Until None of the objects change the cluster 

 

K-means is one of the most basic clustering algorithms and has a low complexity. Although 

it seems a very useful clustering method, it has two important drawbacks. First disadvantage 

is the need for setting the number of clusters in advance. This constraints the vision of the 

user on the data set. The second and more important drawback is the hindrance on 

reproducing the same result. Since k-means starts by setting initial centroid randomly, 

replicating the same result in different trials is not guaranteed.   

 

 3. 3. 2. Hierarchical Clustering 

 

Hierarchical clustering is another widespread clustering algorithm. It aims to build a 

dendrogram of the objects which shows the dissimilarities between them in a hierarchical 

way. This hierarchy between the objects can be built in two directions where these 

directions also give the names of two approaches. In the first approach, the hierarchy is built 

by starting from the top and goes to the bottom which is called divisive approach (top-down 

approach). This approach accepts the whole data set as a cluster at the beginning of the 

algorithm and divides the data set into two most separated divisions. At each step, the most 

distant set of objects are separated from the others. This procedure continues until every 

individual object is left alone. A pseudo code for divisive hierarchical clustering is given 

below. 

 

 Group the whole data set in a cluster (m = 1) 

 Repeat 

 1. Divide the data set into the most separated m + 1 clusters 

 2. Calculate the distances between the clusters 

 3. Increase m by one unit 

 Until Every individual object constitutes a cluster 

 

On the other hand, the second and more common approach starts to cluster the objects from 

the bottom and continues to the top which is known as agglomerative approach (bottom-up 

approach). Unlike the divisive approach, agglomerative approach takes each individual 

object as a cluster at the beginning of the clustering and continues to group the most similar 

objects at each step until all objects are clustered into one. The pseudo code for 

agglomerative hierarchical clustering is given below. 
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Compute the distances between each pair of objects in the data set 

Repeat 

 1. Find and bind two closest clusters together 

 2. Recalculate the distances between the clusters 

 Until All elements are grouped in one cluster 

 

Both approaches create the dendrogram which gathers all of the objects in a single tree. 

Branches of this tree show the most similar objects side by side under the same branch of 

that dendrogram (see Figure 1). When the dendrogram is finished, the user can cut this tree 

at any level in order to reach the desired number of clusters. Therefore, hierarchical 

clustering does not need any pre-defined number of cluster to function because the 

dendrogram tree can show any number of cluster sets. 

 

Figure 3.1 shows an example of hierarchical clustering process on five objects. Five objects 

are placed in 2-dimensional space in Figure 3.1(b) and notations from O1 to O5 present the 

objects. The dendrogram on these five objects in Figure 3.1.a shows that there are two 

groups with two most similar objects. The first group contains O4 and O5 while the second 

group contains O2 and O3. Furthermore, the last object left out, O1, is closer to the second 

group than the first group. Thus, O1 gets bounded to the second group which contains O2 

and O3, later. Finally, hierarchical clustering groups all objects in one last and biggest 

cluster.  As explained earlier, the user can cut the dendrogram at any level due to the desired 

number of clusters. For example, if three clusters are needed for the example set in Figure 

3.1.b, the dendrogram in Figure 3.1.a should be cut from the level of 4 for the distance in the 

y-axis. This would be ended with three clusters where the first cluster contains O4 and O5, 

the second cluster contains just O1 and the third cluster contains O2 and O3. As a second 

example, if two clusters are wanted for this data set, then the dendrogram can be cut from 

the level of 6 for the distance shown in the y-axis which creates two clusters where O4 and 

O5 are in one cluster and, O1, O2 and O3 are in the other cluster. 

 

As aforementioned, hierarchical clustering builds the dendrogram of the objects within the 

data set which shows the closeness of the objects in a hierarchical way by using the 

dissimilarities between them. This provides a great advantage to hierarchical clustering, that 

is, the dendrogram can be built without the need of pre-defined number of clusters. 

Furthermore, hierarchical clustering uses a deterministic approach which provides the 

reproducible results. Such advantages bring reliability on using hierarchical clustering 

algorithm for clustering studies. 
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                           a. Dendrogram                                                    b. Two-dimensional presentation 

 

Figure 3.1. A hypothetical data set 

 

 

 

As it can be understood from the pseudo codes of two approaches, hierarchical clustering 

separates or binds the groups of objects during the process of creating the dendrogram. 

Therefore, the algorithm needs definitions to measure the distances between the groups of 

objects. These distances are measured with linkage methods. Hierarchical clustering uses 

four linkage methods mainly to measure the distances between clusters. The first linkage 

method, single linkage, accepts the distance between two clusters as the distance between 

the two closest objects in these two groups. Next, complete linkage takes the farthest two 

points, contrary to the single linkage, and assigns it as the distance between the two clusters. 

The third method calculates the average of all distances between each pair between the 

clusters and defines it as the distance between the clusters which is called as average linkage 

(Figure 3.2). These three methods will be defined in the Subsection 3.5.2 in more details.   

 

The last linkage method, Ward’s method, is different from the other methods since it does 

not compute the distances between the clusters. With the Ward’s method, the groups of 

objects are bounded or separated while keeping the sum of square errors as small as 

possible. Therefore, this linkage method tries to minimize the within-cluster variance during 

the building process of dendrogram (Szekely and Rizzo, 2005). 
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                            a.                                                   b.                                                        c. 

 

Figure 3.2. Pictorial representation of a. Single Linkage; b. Complete Linkage; c. Average Linkage 

 

 

 

 3. 3. 3. Self-Organizing Maps (SOM) 

 

Self-Organizing Map is a dimension reduction method developed by Kohonen (1982). SOM 

are used to present a data set where the objects more than two characteristics are projected 

on to single or more commonly 2-dimensional spaces. Since, the objects with similar 

characteristics are projected on the new space closer to each other, SOM can also be used as 

a clustering algorithm.  

 

The algorithm of SOM starts with creating a grid on which the multidimensional data is 

projected. The dimensions of this grid are defined by the user. According to the dimensions 

given to the algorithm, SOM creates nodes with the number of multiplication of the 

dimensions. For example, suppose that the user wants to project an n-dimensional data on a 

2 dimensional space where the dimensions of the grid are 4 and 6. Therefore, there will be 4 

* 6 = 24 nodes in the grid (see Figure 3.3).  

 

At the initial phase of the process, the algorithm assigns n-dimensional characteristics to 

each node, randomly. After this, the number of iterations that is to be hold throughout the 

algorithm is set by the user. In an iteration, one observation from the data set is selected 

randomly. The distances between this object and each node are calculated and the 

observation hits to the closest node. This means that that observation’s coordinates affect 

and change the centroid of that node. However, the effect of the observation which hits gets 

smaller as the iterations past. For example, in the first iteration, the centroid of the node is 

replaced by the coordinates of the hitting object. At the last iteration, nonetheless, the 

characteristics of the node hit by the randomly selected observation in that iteration are 

affected very little.  
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Figure 3.3. Exemplary grid with dimensions 4 and 6 

 

 

 

Furthermore, when a node gets hit by an observation, the centroids of the neighbor nodes are 

also get affected. The closer neighbor nodes to the node which got hit, nevertheless, affected 

by the hitting observation more than the farther neighbor nodes. The levels of the affections 

for the neighbor nodes are determined by the Gaussian distribution.  

 

At the end of the process, each node gets a specific centroid. Thus, each node can be 

accepted as a cluster. In order to obtain the clustered set of the observations in the data set, 

each observation is assigned to the closest node. A pseudo code for the Self-Organizing 

Maps is given below. 

 

 1. Initialize the centroids of the nodes randomly 

 2. Set the number of iterations 

 Repeat 

 3. Select an object from the data set randomly 

 4. Assign the object selected in Step 3 to the closest node. 

 5. Recalculate the centroid of that node and the neighbor nodes. 

 Until the number of iterations reaches to the pre-defined value. 

 6. Assign each observation to the node with the closest centroid. 

 

Self-Organizing Maps is a very useful and strong algorithm for clustering. However, the two 

disadvantages for the k-means clustering also hold for SOM. Firstly, the number of nodes is 

selected before the algorithm starts. Furthermore, each node obtained at the end of the 

algorithm may not stand as a specific cluster. It would be very presumptive to obtain several 

nodes representing very similar characteristics. This would lead to group some of the nodes 

together which means another clustering analysis is needed. Secondly, randomness again 

plays an important role in the algorithm while assigning the initial centroids and selecting 

the observation at each iteration. This may leave the analyst unable to reproduce the results 

of the clustering.  
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The last three subsections provided the information on three of the most common non-model 

clustering algorithms in the literature. One common feature of these clustering algorithms is 

that they do not need any prior information. That means they do not need reference profiles 

to cluster the genes. The clustering methods in the literature may be divided into two parts 

as supervised and unsupervised methods. The supervised clustering methods need prior 

information or reference objects in order to cluster the objects. The unsupervised methods, 

on the other hand, hold the clustering process without such information. Since the reference 

profiles or prior information may not be gathered in microarray studies, the unsupervised 

clustering method may be accepted as more beneficial on these studies. This supports the 

use of the three unsupervised clustering algorithms in this section for time course microarray 

investigations. 

 

Finally, as it can be understood from the information of the clustering methods, every 

algorithm needs to define the dissimilarities between the objects to be clustered. In order to 

measure the dissimilarities, several distance metrics have been proposed in the literature. 

The next subsection will present the most common of these distance metrics. 

 

3. 4. Distance Measures 
 

The distance metrics measure the closeness of the objects based on different characteristics. 

These metrics are divided into two groups as similarity or dissimilarity (distance) metrics. 

Similarity metrics measure how similar any pair of individuals are and generally take values 

between 0 and 1. The value 0 means “no similarity” while 1 means a “complete similarity”. 

On the other hand, dissimilarity metrics measure how far the objects are. Therefore, the 

dissimilarity metrics can be taken as the distance between pairs. Objects with dissimilarity 

score close to 0 are considered to be similar. The similarity between the objects gets lower 

as the dissimilarity score increases (Tan, 2006).  

 

The most well-known distance metric is the Euclidean distance (L2 norm) which gives the 

absolute distance between any two points in the space. It uses the following formula: 

 

                                (       )   (   )  √∑(     )
 

 

   

                           (   ) 

 

where x and y are n-dimensional points as x = (x1,x2,…,xn) and y = (y1,y2,…,yn). Euclidean 

distance is a member of a group known as L norm distance. Since Euclidean distance is also 

known as L2 norm it takes sum of the squares of the distances between two points under 

each dimension, and takes the square root of that summation. Another member of that 

family, for example, is the L1 norm which is also known as Manhattan distance. As it can be 

deduced from its name, it takes the distances between two points under each dimension with 

their absolute values, and sums them up (Eq. 3.2). 
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An important modification can be done on the L2 distance by leaving the distance without 

taking the square root. This leads to a different metric known as squared Euclidean distance, 

as 
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With the squared forms of the distances the dissimilarities between the objects increases 

exponentially as the distance between them increases. Therefore, less emphasis is given to 

the larger distances (Tan, 2006). The three metrics obtained from the Equations 3.1, 3.2 and 

3.3, defines the dissimilarities between the objects based on their absolute differences. In 

time-series studies, therefore, these metrics will measure the magnitude differences between 

the observations at follow-up points.  

 

Another metric is known as the cosine-angle distance. It basically measures the cosine value 

between the two vectors. As the angle between two vectors gets closer to 0, the metric will 

be closer to 1, which indicates that two vectors get similar to each other. Thus, it can be 

classified as a similarity metric. The cosine-angle distance between two series can be found 

as follows: 
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where x and y are two n-dimensional objects. Moreover, Pearson correlation distance 

measures the correlation between the two objects. It can be measured by using the dot 

product of two normalized vectors, and gives a result between -1 and 1 (Baldi and Hatfield, 

2002). A Pearson correlation measure close to 1 means that the vectors have similar shape, 

whereas they are directly opposite as the Pearson correlation value gets closer to -1. Pearson 

correlation value of 0 means that the vectors are independent from each other (Do and Choi, 

2007). Eq. 3.5 shows the formula for Pearson correlation distance between two objects. 
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where x and y are two n-dimensional objects;  ̅  
∑   
 
   

 
 and  ̅  

∑   
 
   

 
. Finally, another 

metric was proposed by Möller-Levet et al. (2005) and called as Short Time Series Distance. 

It was defined to measure the shape dissimilarities between the short time-series. This 

metric, basically, measures the distance between the slopes of the time-series at each time 
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interval, and uses their sums over different time points. STS distance can be measured as 

follows: 
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where x and y are two time-series with n time points; and ti shows the follow-up time of the 

i
th
 observation. Contrary to the first three metrics defined in this section, the metrics 

obtained from Eq 3.4, 3.5, and 3.6 catch the dissimilarities between the objects based on 

their shapes. In conclusion, each distance metric defines the dissimilarity between the 

objects by using one of the characteristics which are, generally, the magnitude and slope 

differences. 

 

3. 5. Cluster Validation 
 

An important challenge about the clustering studies is deciding on the number of clusters. In 

a clustering study, the number of clusters is not known. In microarrays this problem arises 

too, since the number of different profiles is not known as prior information. Therefore, a 

cluster algorithm should also be helpful to decide on the number of clusters. This challenge 

can be solved by measuring the cluster qualities at the end of the clustering algorithm. A 

high quality of a set of clusters is obtained when homogeneity within clusters and 

heterogeneity between clusters are obtained. This means that the within cluster distances 

should be small while the between cluster distances should be large. When both of these are 

optimized, one could reach the number of clusters as much as needed to show different 

profiles without the redundancies. There are mainly three different validation techniques in 

the literature which are Silhouette method, Dunn’s based index and Davies–Bouldin index 

(Bolshakova and Azuaje, 2003). These three methods are reviewed in the following 

subsections. 

 

3.5.1. Silhouette Index 

 

Silhouette index gives a quality measure to each observation after the clustering. Suppose 

that, a set of observations are grouped in u (u = 1, 2, …, U) clusters and Cu show the u
th 

cluster and iu shows the i
th 

observation in the u
th 

cluster. A silhouette index for that 

observation is obtained as: 

 

                                                         (  )   
 (  )   (  )

    * (  )  (  )+
                                                  (   ) 

 

where a(  ) shows the average distance between the i
th 

object in the u
th 

cluster with the other 

objects in the u
th 

cluster; b(  ) shows the minimum average distance between the i
th 

observation in the u
th 

cluster to all observations in another cluster Cm (m = 1, 2, …, U; u ≠ 

m). With this equation the silhouette index, s(  ), can only take the values between -1 and 1 
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for each object. A silhouette index closer to 1 means that object is clustered in a correct one. 

A silhouette index closer to -1 shows the otherwise.  

 

By using this silhouette index, an average quality can be assigned for each cluster by taking 

the average of the silhouette indexes of all of the observations in that cluster. Suppose that 

Su shows the average silhouette index for cluster u, and it can be found as follows: 
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where, nu shows the number of observations in the u
th 

cluster.  

 

Moreover, a global silhouette index score can be found for the set of U clusters where U can 

take values from 1, where all observations are grouped in one cluster, to the number of all 

observations, where all individual observations are accepted as a specific cluster. A global 

silhouette score for U number of clusters, GSU, can be measured as follows: 
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With this approach, the number of clusters with maximum silhouette score can be chosen as 

the set of clusters. 

 

 3.5.2. Dunn’s and Davies-Bouldin Indices 

 

Dunn’s and Davies-Bouldin indexes are other two validation measures to show the quality 

of the cluster sets. Both indexes give a global validation score by considering within and 

between cluster distances. Aim of these indexes is to find the optimal cluster sets by using 

the maximum between cluster and the minimum within cluster distances. Suppose that a 

data set is divided into U clusters and Cu shows the u
th
 cluster. The Dunn’s index value for 

this set of clusters can be found as follows: 

 

                              ( )           {        ,
 (     )

         (  )
-}                            (    ) 

 

where   ,    and    show i
th
,
 
j
th
 and m

th
 clusters, respectively (i ≠ j);  (     ) shows the 

distance between the     and   ; and  (  ) shows within distance for   . By using this 

formula, Dunn’s index finds the ratio of the minimum between cluster distances to the 

maximum within cluster distance. Therefore, it aims to maximize the between cluster 

distance while keeping the within cluster distance minimum. Consequently, the cluster sets 

with larger Dunn’s index values should be selected.  
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The Davies-Bouldin index for a set of U clusters, on the other hand, can be found with the 

following formula: 
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where, again, u shows the number of clusters;  (  ) shows within distance for   ; and 

 (     ) shows the distance between the     and   . Unlikely to the Dunn’s index, Davies-

Bouldin index finds the maximum ratio of within to between cluster distances. Therefore, 

cluster sets with small number of Davies-Bouldin indexes are preferred to be the optimal set 

of clusters.  

 

Both of the Dunn’s and Davies-Bouldin indexes use two different distance measures as 

within and between cluster distances. In order to find these distances, there are several ways 

which depend on the distances between the objects in those clusters. The distance measures 

defined in Section 3.4. can be used to define the distances between the objects. The 

following two subsections will give information about the within and between cluster 

distances.  

 

 3.5.2.1. Between cluster distances 

 

Between cluster distances define the separation of different clusters. A well set of clusters 

should include clusters which are clearly separated from each other. When this separation is 

obtained, it shows that every cluster represent a unique profile. There are five main distance 

measures to define the between cluster distances, which are single linkage, complete 

linkage, average linkage, centroid linkage and average of centroids linkage.  

 

Single linkage: Single linkage is defined by the minimum distance between the two objects 

from different clusters. It can be found as follows: 

 

                                          (     )     { (   )          }                                               (    ) 

 

where    and    are i
th
 and j

th 
clusters, respectively; x and y are n-dimensional vector 

observations from the i
th
 and j

th
 cluster, respectively; and  (   ) defines the distance 

between observations x and y.  

 

Complete linkage: Contrary to the single linkage, complete linkage is defined by the 

maximum distance between two observations in different clusters and can be found as 

follows: 
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where    and    are i
th
 and j

th 
clusters, respectively; x and y are n-dimensional vector 

observations from the i
th
 and j

th
 cluster, respectively; and  (   ) defines the distance 

between observations x and y. 

 

Average linkage: Average linkage calculates the average distance between the pair of 

objects where the objects are from the different two clusters. Eq 3.14. shows the procedure 

to calculate the distance between two clusters by using the average linkage method. 
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where ni shows the number of objects in the i
th
 cluster; nj shows the number of objects in the 

j
th
 cluster; x and y are n-dimensional vector observations from the i

th
 and j

th
 cluster, 

respectively; and  (   ) defines the distance between observations x and y. 

 

Centroid linkage: Centroid linkage defines the distance between the centroids of two 

clusters. Centroid of a cluster can be found as the average of the measurements of the 

objects in that cluster:  

 

                                                                       
 

  
∑ 

  

   

                                                             (    ) 

 

where vi shows the n-dimensional centroid of the i
th
 cluster; ni shows the number of objects 

in the i
th
 cluster; x shows the n-dimensional vector objects from the i

th
 cluster. By using the 

centroids obtained by Eq. 3.15 the centroid linkage between two clusters can be found as: 
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where  (     ) shows the distance between the centroids of i
th
 and j

th 
clusters. 

 

Average to centroids linkage: Similar to the centroid linkage, average to centroids linkage 

also calculates the distance between two clusters by using their centroids. The centroids of 

the clusters are again found as in Eq. 3.15. Average to centroids linkage measures the 

average distance between the centroid of one of the clusters to the all objects in the other 

cluster, mutually for both clusters (Eq. 3.17). 

 

                        (     )  
 

     
.∑ (    

  

   

)  ∑ (    

  

   

)/                                     (    ) 

 

where ni shows the number of objects in the i
th
 cluster; nj shows the number of objects in the 

j
th
 cluster; d(x, vj) shows the distance between an object in the i

th
 cluster to the j

th
 cluster’s 
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centroid; and d(y, vi) shows the distance between an object in the j
th
 cluster to the i

th
 cluster’s 

centroid.  

 

 

 

 
                                              a.                                                                                  b. 

 

Figure 3.4. Pictorial representation of some linkages a. Centroid linkage; b. Average to centroids 

linkage 

 

 

 

 3.5.2.2. Within Cluster Distances 

 

Within cluster distances measure the compactness of the clusters. A good set of clusters 

should contain compact clusters, that is, each cluster should contain a specific group of 

objects. In time course microarray studies, this means that each cluster represents a specific 

pattern through time. The compact clusters can be obtained when the within cluster 

distances are as small as possible. There are three methods to measure the within cluster 

distances: Complete diameter, Average diameter and Centroid diameter. The next titles will 

introduce these three measures. 

 

Complete diameter: Complete diameter finds the farthest objects in the clusters and assigns 

the distance between them as the within cluster distance for that cluster. It can be found as: 

 

                                               (  )            * (   )+                                                     (    ) 

 

where x and y are n-dimensional vector objects in the i
th 

cluster; and d(x,y) shows the 

distance between the objects x and y. 
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Average diameter: This method calculates the average distances between each pair of 

objects in a cluster and assign it as the within cluster distance (see Eq. 3.19) 
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where ni shows the number of objects in the cluster i; x and y are n-dimensional vector 

objects in the cluster i (x ≠ y); d(x, y) shows the distance between the objects x and y. 

 

Centroid diameter: Centroid diameter uses the centroids of the clusters. The centroids of the 

clusters are defined as similar to the centroid and average to centroid linkage methods and as 

in Eq. 3.15. This measure calculates the twice of the average distances between the objects 

in a cluster to the centroid of that cluster. Eq. 3.20 shows the formula for the centroid 

diameter. 
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where x is a n-dimensional vector object in cluster i; ni shows the number of objects in the 

cluster i; vi is the centroid of the i
th
 cluster; and d(x, vi) shows the distance between the 

object x and the cluster centroid.  

 

 

 

 
              a. Complete diameter                     b. Average diameter                       c. Centroid diameter 

 

Figure 3.5. Pictorial presentation of within cluster distances 
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CHAPTER 4 

 

 

METHODOLOGY 

 

 

 
As a conclusion of the problem definition section of the first chapter, clustering on time 

course gene expression data sets is an important challenge for the analysts. The second 

chapter gave information on some approaches to solve this problem and it implied that a 

non-model based clustering methodology would be very beneficial. The next chapter, 

Background, reviewed the useful tools for clustering studies and an important challenge in 

these studies, replications.  

 

In consequence, a clustering methodology is proposed in this chapter. There are several 

features considered with this methodology in order to be appropriate for the problem 

defined. First of all, the methodology takes the time dependencies and the length of time 

intervals into consideration; therefore, it is safe to use this methodology on time-series. 

Next, it uses a well-known non-model based and unsupervised clustering algorithm, which 

lets the user to hold the analysis without any prior or reference information. Moreover, this 

is also very beneficial to obtain the clustering results in a computationally short time. 

Thirdly, the methodology handles the replication to detect the genes with varying profiles 

among their replications. Finally, by using cluster validation techniques, the methodology 

helps the user to detect the number of clusters in a data set.  

 

Before starting to explain the methodology, the notations used in this approach are to be 

instructed first. As explained before, the time course microarray experiments provide a short 

time-series for each gene used in the experiment. Suppose that   (     ) denotes a row 

vector of the time course expression values of the r
th
 replication (       ̅̅ ̅̅ ̅) of gene i 

(       ̅̅ ̅̅ ̅). For simplicity,   
  will be used instead of   (     ). It should be noted that, 

the same number of time points and the same successful time values are used for all genes 

and for all replications. This is consistent with a general microarray experiment and provides 

the same length for all   
  for every value of i and r. Another notation,     ( )

 , will be used to 

show a single expression value of the r
th 

replication of gene i at the k
th 

time point (   

    ̅̅ ̅̅ ̅). Based on these notations,   
  becomes equal to the row vector of [    ( )

 ,     ( )
 ,..., 

    ( )
 ]. As aforementioned, either equally or unequally spaced time points may be used in 

microarray experiments. In the first case, the lengths of time between the time points do not 

change throughout the experiment. On the other hand, in the second case, the lengths of time 

vary between different successful time points. However, the same successful time points are 

used for all genes and for all replicates. The T function, therefore, is used to show the 
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successful times of each time point. Table 1 shows two examples, one for each case, and the 

use of the T function on these cases.  

 

 

 

Table 4.1. Examples for equally and unequally spaced time points 

 

 

Equally Spaced Unequally Spaced 

k T(k) T(k) 

1 1
st
 hour 1

st
 hour 

2 2
nd

 hour 2
nd

 hour 

3 3
rd

 hour 4
th
 hour 

4 4
th
 hour 8

th
 hour 

5 5
th
 hour 16

th
 hour 

6 6
th
 hour 48

th
 hour 

 

 

 

The first column in Table 4.1 shows that six time points are used in both of the experiments. 

The second column shows an example for an equally spaced time point experiment. The 

time points in this case are adjacent to each other with the same time interval, i.e., 1 hour. 

Finally, the last column shows an illustration for an unequally spaced time points. The time 

lengths between each time interval get longer as the experiment continues in this case. 

Although the same k values are used for both cases, T(k) takes different values in two cases. 

 

Note that discrete time points are used in these experiments. These discrete time points can 

not supply the information about the behaviours of the genes between follow-ups. This 

prevents the user to catch the possible non-linear behaviours. However, those time points are 

determined by the experts to show the expression levels at the important follow-ups. 

Therefore, we are only interested in the expression levels at the discrete follow-up points 

and assume that there are linear expression level changes between successive time points.  

 

The following sections explain the approaches used in our clustering methodology, starting 

with the approach which handles the possible differences among the replications of genes. 

 

4. 1. Handling the Replications 

 

In replicated microarray experiments, usually type II Biological Replicates are used. That is, 

a different patient is used for each replication. Possibly, each patient may have a different 

biological background and pathway. For example, a patient with a specific exposure in 

his/her past may have a different pathway than the other patients in the experiment. As a 

consequence of such specificities, some genes may show changes in expression profiles in 

different replications even though its function stays the same from patient to patient. Those 

genes may show the effects of these specific conditions to the patients such as the effects of 
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an exposure. Therefore, examining the experimental units with different patterns may lead 

very important biological results.  

 

Consequently, detecting such genes carries vital importance for further analysis. Detection 

of these genes can be possible in clustering studies by assigning such genes into a specific 

cluster. Note that, there might be several genes which show the same difference at the same 

experimental unit, hence it is possible to group these genes in a unique cluster. The 

variations among the genes can be observed in two types. Figure 4.1 shows three genes 

where two of them show the two types of differences among the replications. 

 

 

 

 
Figure 4.1. Three example genes with three replications and three time points 

 

 

 

Each gene in Figure 4.1 has three replications, and each time-series for these genes includes 

three time points. Gene 1 in this figure keeps its profile at all of the replicates. Each 

replication of Gene 1 shows a constant pattern at the first time interval and increases its 

expression level at the second time interval. Gene 2 also shows this pattern with its first and 

third replicates. However, its second replicate has a different profile. Its expression level 

increases in the first interval while decreases to the baseline in the second interval. 

Therefore, Gene 2 shows completely a different pattern within its second replicate which is 

the first type of the differences among the replications. Moreover, Gene 3 again shows the 

same pattern with Gene 1, within its first and third replicates. The second replicate of Gene 

3 also shows the same shape with the first and third replicates except for a change in the 
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magnitude level. Such situations can be acknowledged as the second type of differences 

among the replications, and they may carry as beneficial information as the first type. As a 

consequence each gene in Figure 4.1 is important to be detected by a clustering algorithm 

and should be assigned into different clusters no matter how similar their first and third 

replicates are. 

 

For the methodology in this thesis, an approach is proposed to handle the replications of the 

genes.  This approach joins all replicates of each gene consecutively before starting the 

clustering. Therefore, each gene is represented as a whole time-series which includes all of 

the replicates (see Eq. 4.1) 

                                                                         ⋃  
 

 

   

                                                                (   ) 

 

Eq. 4.1 shows that the same order of replications is used while joining the replicates. This 

approach can be visualized with Figure 4.2 which shows the joined form of the three genes 

represented in Figure 4.1.  

 

 

 

 
 

Figure 4.2. Joined form of the three genes in Figure 4.1 
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As it can be seen from Figure 4.2, the edges which show the replications in Figure 4.1 were 

disappeared after the joining process. This time each row shows a representation of a gene 

which includes all of its replicates. It should be noted that, during the joining process, no 

artificial profiles were created. For instance, the last follow-ups of the first replications are 

not linked to the first follow-ups of the second replications to prevent any artificial time 

interval between the replications. The genes with replications will be shown with this 

approach in all of the graphical representations throughout this thesis. 

 

The motivation behind this approach is to project the possible differences among the 

replications of  a gene. It is expected that such differences between the replications will be 

caught when the distances are measured between the pair of genes. Such differences are 

going to increase the distance between the genes.  

 

After combining the replications, the genes in the data set get ready to be clustered. 

However, as aforementioned, in order to cluster the objects in a data set, the dissimilarities 

between them should be calculated first. Therefore, the next section will state the distance 

metrics used in the clustering algorithm proposed in this thesis. 

 

 4. 2. Distance Metrics 
 

Calculating the dissimilarities between the objects to be clustered is a must for clustering 

studies. Since clustering means grouping the similar objects, a definition must be stated to 

assess the similar objects. The dissimilarities can be calculated with the help of the distance 

measures. Section 3.4. in the previous chapter reviewed several distance measures used in 

the literature. For the clustering algorithm proposed in this thesis, two of those distance 

measures are used.  

 

Squared Euclidean distance is a powerful tool to see the similar objects. When it is applied 

to the time-series microarray data sets, it can measure the distances between the times-series 

based on the closeness of the expression levels at each time point. The squared Euclidean 

distance can be measured on the time-series with the notations introduced in the beginning 

of this chapter as follows: 
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                                         (   ) 

 

As mentioned before, squared Euclidean distance will take squares of the expression level 

differences at each time point in the pair of time-series and sums them up to find the total 

difference between the pairs. Note that, two summation operators are used in Eq. 4.2. The 

second summation operator takes the summation of the squared expression level differences 

at each time point. The first summation operator, on the other hand, sums the total 

differences through the replications used in the study which intuitively provides handling the 

replications presented in Section 4.1. Moreover, summing the total differences at each 

replication separately prevents creating an artificial time interval between the replicates 

mentioned in, again, Section 4.1.  
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However, there are several drawbacks of using only the squared Euclidean distance. First, it 

does not consider the shape similarities of the expression profiles of the genes in the first 

place. Therefore, squared Euclidean distance may fail to separate the dissimilar genes with 

respect to their shapes when their magnitudes are close. Furthermore, squared Euclidean 

distance fails to catch the important features of the time-series which leads to the next two 

drawbacks. First, it ignores the time dependencies. Since it measures the expression level 

differences at each time point separately, squared Euclidean distance con not take the 

dependencies between the measurements into consideration. Finally, again due to 

considering each time point separately, this distance does not include the information on the 

lengths of time intervals between the time points. All of these drawbacks make using only 

this distance metric to cluster the time course data sets inappropriate. 

 

Due to the drawbacks of using the distance metric, d(x, y), alone, a second metric is used 

along with it. As explained before, Short Time Series (STS) distance measures the slope 

distance between the pair of time-series at each time interval and sums them up. Since it 

takes the differences between the slope of the time-series, STS distance can catch the 

similarities between the genes with respect to their shape characteristics. The STS distance 

can be measured with the notations used in this thesis as follows: 
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Similar to Eq. 4.2, two summation operators are used in STS distance, as well. The second 

summation operator in Eq. 4.3 sums the slope differences through the time intervals among 

the time-series. Note that, the upper limit of that summation operator is K-1, since the 

number of time intervals should be one less than the number of time points in a time-series. 

However, the first summation operator in Eq. 4.3, again sums up the slope distances through 

the replications of genes in order to achieve handling the replications. Identical to the 

squared Euclidean distance metric in Eq. 4.2, summing slope distances from each replication 

do not create any artificial time interval between the replications. Furthermore, since STS 

distance uses the information between the time points, it takes the time dependencies into 

consideration. Moreover, this distance metric also includes the time lengths between the 

time points. Therefore, it can be used with both types of data collection methods in time-

series, equal and unequally time spaces.  

 

Two distance metrics are shown to be used on measuring the dissimilarities between the 

time-series so far. Each of these metrics measures the dissimilarities from different 

perspectives. The distance metric, d(x, y), defines the dissimilarity based on the magnitudes 

of the expression profiles whereas shape metric, s(x, y), defines that based on the shapes of 

the profiles.  

 

For the clustering algorithm in this thesis, both of these metrics are used to define the 

dissimilarities. Two distance matrices are obtained by using these two distance metrics. The 

first distance matrix, D, is a G x G symmetric matrix and includes the magnitude differences 
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between each pair of genes in the data set by using the squared Euclidean distance. The 

second distance matrix, S, which is also a G x G symmetric matrix, defines the shape 

dissimilarities between the expression profiles of genes by using the Short Time Distance 

metric. In order to find the dissimilarities between the genes in the clustering algorithm, a 

convex combination of these two matrices is obtained. However, before the combination of 

the metrics, standardization is applied to both matrices. It is observed that the ranges of the 

matrices can have great amount of differences, and this creates a dominance of the matrix 

with wider range on the other one. To prevent such dominations, the values in both matrices 

are divided to the range of the related matrix. Furthermore, this standardization scales the 

values in both matrices between 0 and 1. After this standardization, the combination matrix, 

denoted by  ̅, which is also a G x G symmetrical matrix is obtained as follows (Eq. 4.4): 

 

                                                        ̅      (   )                                                         (   )  

 

where   ,   - and 1 – w are weights for each metrics. By adjusting different values for w 

in Eq. 4.4, the user can give different emphasis on the distance metrics. For example, if an 

analyst wants to give more emphasis on the magnitude similarities, that analyst may give 

values close to 1 for w. On the other hand, w can be set close to 0 in order to catch the shape 

similarities with more emphasis. 

 

 4. 3. Clustering Algorithm 

 
Previous section presented the methodologies used for obtaining the distance matrix which 

shows the dissimilarities between each pair of genes. A hierarchical clustering algorithm by 

using this distance matrix is proposed in this section. As explained earlier, hierarchical 

clustering builds the dendrogram of the objects to be clustered. This dendrogram can be cut 

at any level depending on the desired number of clusters. In a time-series microarray study, 

this dendrogram would show the similarities between expression profiles of genes in a 

hierarchical way. Therefore, the clusters obtained from this algorithm would show the 

specific profile patterns and the genes which show these patterns. As aforementioned, 

hierarchical clustering needs a linkage method in order to define the distances between the 

groups of objects while constructing the dendrogram. The methodology proposed in this 

thesis uses the Ward’s method for the linkage method as default. However, the user is free to 

choose any linkage method while using this algorithm. Figure 4.3 gives the pseudo code for 

the algorithm proposed in this thesis, Algorithm CGR. 

 

Another important challenge in clustering studies is detecting the number of clusters when it 

is not known a priori. In order to decide on the number of clusters, cluster validation 

techniques can be used and numerous validation techniques were presented in Section 3.5. A 

cluster validation methodology modified from these previously mentioned techniques will 

be used. The following section presents these techniques.  
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Algorithm Clustering Genes with Replications (CGR): 

 

STEP 0: Initialization 

 

G: the number of genes 

K: the number of time points 

R: the number of replications 

w: Weight for the Squared Euclidean distance while combining the metrics 

Input G x m matrix (where m = K*R) of preprocessed gene expression data 

 

STEP 1: Handling the Replications 

 

Converting the input data into a 3-dimensional (G x K x R) data where the new dimension 

represents the replicates 

 

STEP 2: Distance measure 

 

1. For i = 1 to G 

            For j = 1 to G  
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STEP 3: Clustering 

 

Hierarchical clustering by using  ̅ 

 

Figure 4.3. A pseudo code of the algorithm 

 

 

 

 4. 4. Cluster Validation 
 

A clustering algorithm should result in clusters where objects within each cluster are as 

compact as possible, whereas each cluster is as dissimilar as possible to the other clusters. 

Consequently, when such a clustering algorithm is used with the time course microarray 

studies, each cluster presents a specific expression profile while none of the two clusters 

show the same profile. However, the number of specific profiles is not known for most of 
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the microarray clustering studies. This leads to the uncertainty of choosing the number of 

clusters, especially when unsupervised clustering algorithms are used.  

 

In order to decide on the number of clusters, which is the number of profiles in time-series 

gene expression data sets, one approach is to measure the qualities of the clusters. Two 

quality measures can be deduced from the previous explanations. First, since each cluster 

should contain only one specific profile, the variance within a cluster should be as small as 

possible. Furthermore, on the account that a specific profile should not be presented in more 

than one cluster, the variances between clusters should as much as possible in a set of 

clusters. Therefore, the two variance measures can be used to obtain the optimum number of 

clusters which provides the best set of clusters. 

 

Since the variances within and between the clusters are directly related to the distances 

between the objects in these clusters, distances measured in Algorithm CGR are used for 

cluster validations. A distance measure for the within cluster variance and two distance 

measures for between cluster variances are proposed in this section. 

 

A small within cluster variance, which implies a compact cluster, can be obtained when the 

distances between the objects in that cluster are as small as possible. Our algorithm sums up 

the distances between each pair of genes within a cluster to present the within cluster 

variance. This measure is named as sum(within) distance and can be calculated as: 
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where    is the number of clusters; n is the given cluster;    and    ϵ  n (i ≠ j); |  | is the 

number of genes in cluster n.  The sum(within) distance, presented in Eq. 4.5, calculates the 

total distances between each pair of genes within all clusters and assigns the highest of them 

as the within cluster variance for a set of clusters. For compact clusters, a small sum(within) 

value is preffered.  

 

To assess the cluster quality, the between cluster variances should also be included in the 

analysis. Two different distance measures are used to measure the between cluster distances. 

The first one finds the distance between the closest pair of genes from different clusters and 

assigns minimum of them as the between cluster variance for that set of clusters. The second 

distance measure, however, calculates the average distances between each pair of genes 

from two clusters and accepts the smallest average distance as the between cluster variance. 

These two distances are called as min(between) and mean(between) distances and can be 

calculated as Eq. 4.6 and Eq. 4.7, respectively 
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where    is the number of clusters;    and    are the given clusters (   ≠   );    ϵ     and 

   ϵ    . 
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where    is the number of clusters;    and    are the given clusters (   ≠   );    ϵ     and 

   ϵ    ; |   | is the number of genes in cluster    and |   | is the number of genes in 

cluster   . 

 

As a result, the user can obtain estimations for the within cluster variation by using Eq. 4.5 

and between cluster variation by using Eq. 4.6 and 4.7 for a set of clusters. However, joint 

use of these measures is necessary to reach to the correct cluster sets. We propose a cluster 

validation score which finds the ratio of the within cluster variance to the between cluster 

variance in order to find the optimum set of clusters. We can obtain two validation scores, 

given in Equations 4.8 and 4.9, by using either one of the between cluster variance 

measures. 
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Since, small within cluster variances and high between clusters variances are desired, small 

validation scores would show better sets of clusters. In a cluster study, the number of 

clusters can be chosen from 1 to the number of objects in the data set. Therefore, the analyst 

can find validation scores for each set of clusters from 1 to the number of objects, and 

choose the number of clusters with respect to those values. We propose that, on the graph of 

the validation scores, the number of clusters which has small validation score and that leads 

to significant decrease in the score can be selected as the optimum set of clusters.  

 

As consequently, this chapter presents the methodology proposed for clustering the time 

course gene expression data sets. The next chapter demonstrates the applications of these 

methodologies on simulation and real data sets in order to display the usage of the 

methodology. 
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CHAPTER 5 

 

 

NUMERICAL EXAMPLES 

 

 

 
Previous chapter presented the methodology proposed in this thesis. In this chapter, the 

applications of this methodology on several data sets are exhibited. There are two main 

sections in this chapter. The first section displays the applications of Algorithm CGR on 

three simulated and a real data set. Cluster validation techniques are demonstrated on two 

simulated and a real data set in the second section.  

 

 5. 1. Clustering the Genes 
 

As mentioned in the prologue of this chapter, this section illustrates the Algorithm CGR on 

three simulation studies and one real life study. In the first simulation study, a simple data 

set is generated mainly to show the importance of the metrics. Next, the algorithm is tested 

on a similar simulation study on Irigoien et al. (2011) to compare the success of our 

algorithm with different algorithms. Third, different scenarios will be generated on a 

different simulation study in order to show the advantages and disadvantages of Algorithm 

CGR under different situations. Finally, the algorithm is examined on a real data set which 

was also studied by Irigoien et al. (2011).  

  

 5. 1. 1. Simulation Study 1 

 

The first simulated data set contained 90 time-series with three follow-up points. 

Replications were not used in this simulation study. The hypothetical time-series generated 

for this simulation study can be seen in Figure 5.1. 

 

There were several patterns in this data set. Firstly, the genes were grouped in three 

magnitude levels. The time-series were generated around the expression levels of 4, 10 and 

16. This led to the three groups based on the magnitude levels as low, medium and high 

levels. Furthermore, the time-series experienced different shapes in each of those magnitude 

levels. There were also three groups with respect to the shapes of the time-series as 

decreasing, increasing or constant shapes. Each of the shape groups were seen in each 

magnitude levels, hence there were 9 different patterns in this simulated data set. Ten time-

series were generated for each of these patterns (Figure 5.2).  
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Figure 5.1. First hypothetical data set with 90 time-series 

 

 
 

Figure 5.2. Nine different patterns in the hypothetical data set in Figure 5.1 
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Algorithm CGR was used to see if we can detect these 9 profiles with using 9 clusters. 

Before using both metrics together, however, each metric was used alone to illustrate their 

abilities. In the first case, only the squared Euclidean distance was used (w = 1) and 9 

clusters were searched. The outcome as 9 clusters were displayed in Figure 5.3. 

 

 

 

 
 

Figure 5.3. Clustering results on the simulation set 1 with  w = 1 

 

 

 

The results showed that, the algorithm was able to detect the 9 profiles. However, there was 

a mistake within the results. In the fourth cluster (left column of the middle panel) one gene 

showed a decrease (thick black line), whereas the other ones were constant genes (thin gray 

lines). The constant genes at the medium expression level constituted the majority of this 

cluster; thus, the decreasing gene in that cluster was a strange one for C4. Moreover, there 

was another cluster, C6, which included the decreasing genes at the medium expression 

level, hence the strange gene in C4 should have been in C6. However, since the magnitude 

difference between them was not large enough, that gene which should be in C6 was 

clustered in C4. That was an example for the drawback of using only the squared Euclidean 

distance metric: It may fail to divide the close groups into different ones even when their 

slopes are different.  

  

In the next study, the same data set was tried to be partitioned into 9 clusters by using only 

the Short Time Series distance. For this reason, w was set to be 0. The clusters obtained 

from this approach were displayed in Figure 5.4.  
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The results showed that when only the shape metric was used, the algorithm could divide the 

different shapes into different clusters. However, the results were incorrect. Excluding the 

squared Euclidean distance resulted in groups of genes with similar shapes but from 

different levels. The panels in Figure 5.4 showed that, each cluster presented only one shape, 

however, there was not a clear magnitude level in the clusters.  For example, C1, C2 and C3 

included the constant shape genes. C1 and C2, nevertheless, contained the constant shape 

genes from each magnitude level while C3 held the genes from middle and high levels. In a 

correct division, each cluster should contain only one of these magnitude levels.  

 

 

 

 
Figure 5.4. Nine clusters from the data set displayed in Figure 5.1 with w = 0 

 

 

 

Consequently, previous examples showed that the algorithm had difficulties when only one 

of the metrics was used. As the last example for that simulated data set, Algorithm CGR 

was applied on these 90 time-series by using both metrics with equal weights, i.e., 0.5.  

 

Figure 5.5 shows the results of clustering study on the first simulation data with equal 

weights to both distance and shape metrics. It can be clearly seen that each cluster contained 

the genes from only one shape and magnitude groups. Therefore, the panels in Figure 5.5 

showed that Algorithm CGR  was successful in dividing the profiles into different clusters 

when w was taken as 0.5. 

 



 

41 

   

 
Figure 5.5. Clustering results on the simulation set 1 with  w = 0.5 

 

 

 

The first simulation study showed that the algorithm was able to detect the patterns in the 

data set when both metrics were used. However, as it was mentioned before, replications are 

commonly used in microarray experiments. Moreover, the products of microarray 

experiments provides higher number of genes compared to 90 genes in this simulation set. 

Thus, further simulation sets were generated in order to challenge the algorithm in the 

following subsections. 

 

 5. 1. 2. Simulation Study 2 

 

The second simulated data set was generated based on the simulation study in Irigoien et al. 

(2011). As it was mentioned in the literature review, the purpose of this paper was also 

clustering the time-series gene expression profiles with possible differences among the 

replications. Since the data set in Irigoien et al. (2011) was not publicly available, a similar 

one was generated for this thesis. In this study there were 13 groups of patterns. Each pattern 

was seen in 20 genes, which resulted a total of 260 genes in the data set. Each time-series 

was followed on 6 time points and two replications were used for every gene under each 

time point. The average expression levels of the genes in all 13 groups can be seen in Figure 

5.6. There are two series within all panels of this Figure, each corresponding to one 

replication. 

 

The first group contained only the constant profile genes. The next three groups displayed 

an increasing pattern with different features. For example, G2 showed a faster increase than 

the genes in G3. The groups between G5 and G8 showed an up-down profile with peak 

points at different time points. Furthermore, the genes in G9, G10, G11 and G12 presented 
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up-down-constant, down-up, sinusoidal and down-up-constant patterns, respectively. The 

important and common feature about the first 12 groups is that both replications showed the 

same profile. However, G13, included the genes with different replications. The first 

replications of the genes in that group displayed a pattern similar to the genes in G2 while 

the second replicates demonstrated a profile similar to the genes in G7. As a result, a 

successful clustering study on this data set should be detecting the genes in G13 as a 

different group than the other ones besides dividing each pattern in the first 12 groups into 

different clusters.  

 

 

 

 
 

Figure 5.6. Groups in the simulated data set from Irigoien et al. (2011) 

 

 

 

Algorithm CGR was applied on this data set with giving equal weights to both metrics (w = 

0.5). The result are shown in Figure 5.7. It can be seen from that figure that none of the 

genes were shown with thick black lines. This meant that all the genes clustered in correct 

group when the data set was divided into thirteen clusters. The first 12 clusters displayed 

specific patterns from the first 12 groups. More importantly, the algorithm successfully 

assigned the genes with differences among the replications into a specific cluster, C13.  
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 Figure 5.7. Clustering results on the simulation set 2 with w = 0.5 

 

 

 

Next, different weights than 0.5 were tried for both metrics and the results were obtained. 

Four different weights (0, 0.25, 0.75 and 1) and their complements to 1 were used for the 

distance and shape metrics, respectively. Irigoien et al. (2011) provided a table which 

showed the number of genes which were clustered in wrong groups when several methods 

were applied on a similar data set. We extended their table by adding the results of 

Algorithm CGR. The “misclustered genes” in each group were calculated for each method. 

The number of misclustered genes were found as follows: First, the majority of the groups 

were detected in each cluster. This was found as the group with the most frequent genes in a 

cluster. Next, the genes which are not from that major group in that cluster were counted as 

misclustered genes to its original group. For example, in Figure 5.3, the majority of genes in 

C4 was from G4, since most frequent genes in that cluster were from G4. However, there 

was another gene, which was shown with thick black line, generated under G6. Since that 

gene was clustered in a cluster whose majority group was not the same with its original 

group, this gene was counted as a misclustered gene for G6. By using this approach, the 

misclustering numbers and percents were calculated for the data set in simulations study 2 

when different weights were used (Table 4.1) 

 

Table 4.1 shows the number of misclustered genes for each group and the percent of the 

total misclustered genes to the total number of genes. The first column in the table shows the 

method used to cluster the genes. The columns under G1 to G13 display the number of 

misclustered genes for each group while the percentage of the misclustered genes to the total 

number of genes are given in the last column. First five rows show the results of Algorithm 

CGR with five different weight selections. The remaining rows were directly taken from 

Iriogien et al. (2011) and displays the misclustering results of several approaches. Their 

approach, for example, grouped 2 genes from the 9
th
 group in different clusters. Further, 
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they tested k-means approach with three different distance measures: Euclidean, correlation 

and Procrustes distances. The next two rows were two different algorithms named as 

ORIOGEN and EMMIX. As explained in the literature review, ORIOGEN could not use the 

replications; therefore, G13 was not used with ORIOGEN. Finally, the remaining rows show 

the results of mixture models       with                   following the procedure 

presented in Celeux et al. (2005) where    describes the case for the random effect 

parameter and    describes different mixture parameter cases.  

 

Table 5.1 shows that Algorithm CGR was successful on clustering this data set. The only 

misclustered genes were observed when only the distance metric was used ( ̅   ). In that 

case, 7 genes from G2 were assigned in the cluster whose majority was constituted by the 

genes from G4. Note that, those two groups included similar genes especially with respect to 

theşr esxpression levels, and therefore distinguishing them was challenging. Moreover, the 

algorithm clustered the genes perfectly, i.e., without any misclustered genes, when the shape 

metric was used.   

 

 

 

Table 5.1. Misclustered number of genes for several methods on the simulation data from Irigoien et 

al. (2011) 

 

Method G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 Percent 

  - 7 - - - - - - - - - - - 3.59 

              - - - - - - - - - - - - - 0 

              - - - - - - - - - - - - - 0 

              - - - - - - - - - - - - - 0 

  - - - - - - - - - - - - - 0 

               

Irigoien 

Procedure 

- - - - - - - - 2 - - - - 1.026 

k-means 

Euclidean 

15 - - 15 - - 2 - - - - - 15 24.10 

k-means 

correlation 

6 - 15 15 - - - - - - - - 15 26.15 

k-means-

Irigoien dist 

- - - - - 2 - - - - - - 15 8.72 

ORIOGEN 15 - - - 9 - - - 15 - 15 15 ? 35.38 

EMMIX - - - - - 7 2 - - - - - - 4.61 

      15 - - 15 - 7 4 - 2 - - - - 22.05 

      - - - 15 - - - - - - - - - 7.69 

      - - - - 1 2 - - 2 - - - 15 10.26 

      15 - - 15 - 2 - - 2 - - - - 17.43 

      - - - 15 - - - - 2 - - - 15 16.41 

      - - - - - - - - 2 - - - - 1.026 

      - - - 15 - 1 - - 2 - - - - 9.23 

      15 - - - - - - - 2 - - 2 - 9.74 

      15 - - - - - - - 2 - - 2 - 9.74 

      15 - - - - - - - 2 - - 2 - 9.74 

      15 - - - - - - - 2 - - 2 - 9.74 

      - - - 15 1 2 2 - 2 - - 4 - 13.33 
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An interesting result of Table 4.1  was that the correct clusters were also found by using 

only the shape metric ( ̅   ). This may lead to incorrect interpretation that only the shape 

metric would be sufficient to cluster the gene expression profiles. However, this could be the 

result since the groups in that data set was too artificial and easy to decompose with respect 

to their shapes. Therefore, this simulation data set was expanded with two new groups in 

order to make the clustering more challenging. Figure 5.8 shows the means of the genes in 

each group with the two new groups.  

 

 

 

 
Figure 5.8. Expanded simulated data with two new groups 

 

 

 

First 13 groups in Figure 5.8 are the same ones in Figure 5.6. G14 presented a very similar 

profile to G8. The genes in these groups showed a monotonic increase in the first 5 time 

points. However, at the last time interval, the genes in G14 kept their expression levels 

whereas the genes in G8 experienced a decrease. Thus, the only difference between these 

two groups were at their last time interval. Moreover, they were very close with respect to 

their magnitude levels. G14 was added to challenge the squared Euclidean distance metric. 

The second added group, G15, on the other hand, showed the same shape profile with the 

genes in G3. Their magnitude levels, however, was different. Since their shapes were same, 

these genes were expected to challenge the shape metric. 

 

With these two new groups, this simulation study was expanded to a data set with 15 groups 

each with 20 genes. In order to see the responses of Algorithm CGR to the added groups, it 

was run by using the metrics one-by-one. Figure 5.9 shows the results when only the 

distance metric was used, i.e. w = 1.  
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Figure 5.9. Fifteen clusters obtained from the expanded simulation study with w = 1 

 

 

 

Figure 5.9 shows that Algorithm CGR failed to divide the genes into correct clusters. It 

seemed that C2 included the whole genes from G2 and seven genes from G4. That means 

that 7 genes from G4 were misclustered in C2. Since the new genes in G14 were similar to 

those in G8, it might be expected that the algorithm would fail to separate these two groups. 

However, it should be noted that, in a clustering study every object depends on the other 

objects. Therefore, adding new genes similar to G8 led to failures in dividing other groups, 

G2 and G4, in this case.  

 

 

 

 
Figure 5.10. Results of Algorithm CGR on the expanded simulation data when with w = 0 
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Next, Algorithm CGR was used on this data set by using only the STS distance and 15 

clusters were drawn (Figure 5.10).  

 

Figure 5.10 shows that the algorithm could not separate the genes from G3 and G15. The 

genes from both groups were clustered in C3. Therefore, all genes from G15 were 

misclustered into G3. Moreover, since these two groups emerged in this case, algorithm 

divided a profile into two groups in order to obtain 15 clusters. It can be seen from Figure 

5.10 that the genes from G10 were unnecessarily divided into two clusters: C10 and C11.  

 

These two studies showed that Algorithm CGR failed to reach the correct clusters when 

only one of the metrics was used. Next, these two metrics were used with equal weights to 

evaluate the algorithm. Figure 5.11 shows the results of the clustering algorithm when both 

metrics are used with equal weights ( ̅             ). 

 

Algorithm CGR succeeded to divide the genes from different groups into different clusters 

when equal weights were given to the metrics. Contrary to the previous two results, 

algorithm could separate the genes from G15 than the genes from G3 and displayed them in 

C3 and C15, respectively. Moreover, none of profiles were combined with each other. 

Finally, the genes with different replications in G13 were assigned into a specific cluster, 

C13, successfully.  

 

 

 

 

Figure 5.11.Clustering results of Algorithm CGR on the expanded simulation data with w = 0.5 
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Next, in order to see general results, this expanded simulation data set was generated 1000 

times and the number of misclustered genes were calculated. The misclustered genes were 

found as the previous procedure. Suppose that     
  shows the number of genes from group 

k, misclustered in the cluster whose majority is constituted by the genes from group l, at the 

m
th
 iteration. Therefore the average misclustering rate, over 1000 iterations, for group k, 

which is shown as MCk, can be calculated as follows: 
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where,   
  shows the number of genes generated for group k at the m

th
 iteration. For 

example,   
  was 20 for this simulation study since 20 genes were generated for each group 

at each iteration. The results can be seen in Table 5.2. 

 

 

 

Table 5.2. Average misclustering rates over 1000 iterations under different weight selections 

 

  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 

Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.07 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.03 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

D*1 + S*0 0.00 0.06 0.00 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

 

 

 

The first column in Table 5.2 shows the weight selections for the clustering process. The 

columns between G1 and G15 displays the average number of misclustered genes, MCk, 

over 1000 iterations for each group, whereas the last column gives the average rate of 

misclustered genes to the total number of genes over all groups and iterations which is 

calculated as in Eq. 5.2. 

 

                                                        
∑ ∑ ∑     

   
       

    
   

  
   

∑ ∑   
     

   
  
   

                                             (   ) 

 

Remember that, Table 5.1 revealed that when only the distance metrics was used ( ̅   ), 

the algorithm only failed to separate G2 and G4. These two groups were similar with respect 

to their profiles: G2 had an exponential increase whereas G4 presented a monotonic increase 

with a constant pattern at the first two time intervals. In Table 5.2, this led to 0.06 * 100 = 6 

and 0.09 * 100 =9 percent of the genes misclustered from G2 and G4, respectively. 

However, the average misclustering rate of all groups was very small, 0.01, with w = 1. This 

rate remained similar with the selection of  ̅                . However, the 

misclustering rates in both G2 and G4 decreased when the shape metric was involved. 
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Moreover, the average misclustering rate decreased as more emphasis was given on the STS 

distance. The average misclustering rate were obtained smaller than 0.01 for both weight 

selections w = 0.50 and w = 0.25. Hence, the shape metric might be accepted as more useful 

to decompose the patterns, especially when the profiles are close to each other based on the 

magnitude levels. Shape metric, nevertheless, was not to be used alone on such experiments. 

Table 5.2 shows that when only the shape metric was used, the algorithm failed the most and 

gave the highest average misclustering rate. The reason for this result was G15 which had 

the same shape with G3 at a different magnitude level. Algorithm CGR failed to separate 

these two groups in all iterations and resulted with 100 percent misclustered genes in G15. 

With equal weights, nonetheless, the algorithm worked very well with a very low average 

misclustering rate smaller than 0.01. In that case, the algorithm failed to divide G2 and G4 

the most, again, with average misclustering rate smaller than 0.01 and 0.01, respectively. 

 

Finally, the expanded simulated data set was modified in several features in order to make it 

closer to the real life cases. Three features of this data set was categorized into two levels 

and 8 scenarios were created as the combinations of the levels of THESE three features. The 

first feature was the sample size. 300 genes as in this study may not be a suitable projection 

for real life cases. Therefore, the  levels of the first feature was declared as small and big 

data sets. The sample sizes were directly related to the second feature. The second feature 

defined the equality of the number of genes within each group. It is likely to have varying 

number of genes from each profile in real data sets. Hence, the second feature defined 

whether the number of genes from different profiles were equal to each other. In the first 

level of this feature, same number of genes were generated for each level. For the small data 

sets, 20 genes were generated for each group while 50 genes were used for every profiles for 

big data sets. Next, Discrete Uniform distribution was used to select the number of genes in 

each group. For small data sets, a random number was selected from 5 to 35 for each group. 

However, for big data sets a random number between 35 and 65 was generated to state the 

number of genes for each group. Note that,   
  defined the number of genes in group k at the 

m
th
 iteration in Eq. 5.1. Therefore,   

  was distributed with Discrete Uniform with 

parameters 5 and 35 or 35 and 65 depending on the level of this feature. Finally, the last 

feature defined the time spaces in time-series. First level stated the equal time points. Six 

consecutive successive time points, 1
st
, 2

nd
, 3

rd
, 4

th
, 5

th
 and 6

th 
units were used for this 

selection. However, the successive follow-up points were selected as 1
st
, 2

nd
, 4

th
, 8

th
, 16

th
 and 

32
nd

 units for the unequal time spaces which was the second level of this third feature.  

  

1000 data sets were generated from each of the 8 scenarios, and Algorithm CGR was tested 

on these data sets with five different weights, 0, 0.25, 0.50, 0.75 and 1. The simulation study 

resulted in Table 5.2 was the first scenario with a small data set where 20 genes generated 

for each profile and equal time spaces were used. The same misclustering rates were 

calculated for the remaining scenarios and the results are given in the Appendix A. The 

results showed that the algorithm failed to separate more with the big sample sizes than the 

small sample sizes. When big sample sizes were used, the algorithm especially had 

challenge to separate the genes in G3 from the constant genes. The second challenge for the 

algorithm was seen with the unequal time points. The longer time points disappeared the 

slope information between the time points and led to display them as constant shapes. 
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Therefore, these cases also became problem for the algorithm to separate the constant genes. 

Such problems occurred especially when only one of the metrics was used. However, 

Algorithm CGR was able to detect the most of the genes when both of the metrics were 

included in the algorithm and resulted in very small average misclustering rates. The highest 

misclustering rate was 0.03 among the simulations with w = 0.5. This rate was obtained with 

the experiments where small and unequal groups sizes were used with unequal time points. 

 

 5. 1. 3. Simulation Study 3 

 

As the third and final simulation study a new set of profiles were generated. For this 

simulation set, three replications were used for each gene. Furthermore, each time-series 

included 4 follow-ups. For this simulation study 23 different groups of genes were used. 

Figure 5.12 shows the profiles for the genes in these 23 groups. 

 

 

 

 
Figure 5.12. Twenty three groups simulated for simulation study 3 

 

 

 

The first 3 groups showed a different down-up profile with the lowest expression level at the 

second time points. Each of these groups had different features. G1 displayed a profile with 

close first and last expression levels. The genes in G2 expressed themselves at the end 

higher than the baseline and genes in G3 showed a similar profile as G1 but with a higher 

minimum value. The groups between 4 and 6 displayed a monotonic decrease pattern where 

G4 showed a faster decrease than the others. G5 and G6 demonstrated a similar shape with 

similar slope decreases. However, there were a magnitude difference between them. The 

next three groups showed monotonic increases and the differences between them were 
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similar to the dissimilarities between G4, G5 and G6. G10 again displayed a down-up 

pattern with a lower minimum expression level than G1 at the second time point. 

Furthermore, the genes in groups G11 to G13 showed down-up patterns with the minima at 

the second follow-up point. The difference between these three groups were similar to the 

groups between G1 and G3. The next four groups (from G14 to G17) showed sinusoidal 

patterns. G14 and G15 started to the profile with a decrease. However the change level in 

the expression levels were different even though their magnitude levels were very similar. 

The other sinusoidal groups, G16 and G17, displayed the similar patterns with G14 and G15 

except their profiles started with an increase. Next, the groups from 18 to 20 contained the 

genes with differences between the replicates. Finally, the last three groups included the 

constant genes. In real data sets, it is very unusual to have constant genes at a single 

magnitude level as in the previous simulation data set. Therefore, for this simulation study, 

constant genes were generated at three different magnitude levels.  

 

The simulated data set presented in Figure 5.12 was used to evaluate the success of 

Algorithm CGR. Similar to the previous simulation study, different scenarios were created 

from this simulated data set by changing five features of it. Those different features were 

equality of group sizes, number of genes per groups, rate of genes with variations among the 

replications, rate of constant genes, and lengths of the time spaces. A summary of the levels 

of these parameters and their abbreviations are seen in Table 5.3. 

 

 

 

Table 5.3. Different conditions for the simulation study 

 

Feature 
Levels Abbreviations 

group size 
equal ES 

unequal US 

number of genes per group 
~20 L 

~50 H 

rate of genes with different 

replications 

same  VS 

decreased VD 

rate of constant genes 
same  CS 

expanded CE 

time space 
equal ET 

unequal UT 

 

 

 

First one of these features states the equality of the number of genes in different profiles. To 

test the algorithm, equal number of genes for each profile was used in half of the 

simulations. On the other hand, random number of genes for each profile was used for the 

remaining simulations. The second feature showed the sizes of the profiles. The algorithm 
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proposed in this study was tested on both small and big data sets. For small data sets, 20 

time-series were generated for each profile in the equal group size case, while 50 time-series 

were used for the big data sets. With the simulations which have unequal group sizes, a 

random discrete number was generated between 10 and 30 for the small data sets. On the 

other side, a discrete random number was generated between 40 and 60 for the big data sets 

with unequal group sizes. Next, different scenarios were considered for the rate of genes 

with variations among the replicates. Such genes may exist in data sets rarely, which create 

a challenge to detect them. Due to this challenge, in half of the studies, the total number of 

genes with variations among the replicates was decreased to a value, specifically 10 % of the 

total number of genes without any differences among the replications. Furthermore, two 

different cases on the number of constant genes were tested during the simulations. As 

aforementioned, the number of constant genes might be high in a real data set. For half of 

the simulations, the same rules for the second feature were used to declare the number of 

genes in constant groups. However, the number of constant genes was expanded to the total 

number of genes in the non-constant groups which increases the data set sizes twice. Finally, 

two cases on the time spaces, equal and unequally spaced time points, were tested during 

simulations. Half of the studies were tested on equal time spaces with 1
st
, 2

nd
, 3

rd
 and 4

th 
unit 

time points, whereas others were tested by using unequal time spaces with 1
st
, 4

th
, 16

th
 and 

48
th 

unit time points.  

 

From the five two-level features, 32 different scenarios were created to measure the success 

of Algorithm CGR. These different scenarios were shortened by using the abbreviations of 

the features stated in Table 5.3. For example, “ES_L_VS_CS_ET” defines the simulation 

study where each group has exactly 20 time-series, including the genes with variations 

among the replications and constant genes, with equal time spaces. For simplicity, those 

scenarios were shown with another notation “S#”. The order of the scenarios and their 

explanations can be seen in Table 5.4. 

 

In this simulation study, Algorithm CGR was tested on these 32 scenarios. 1000 data sets 

generated for each of the 32 scenarios, and several accuracy measures and computational 

times were calculated for different situations. For each scenario, minimum, maximum, 

average and standard deviation of computational times were collected over 1000 iterations. 

Moreover, misclustering rates on each group and average of them over 1000 iterations were 

calculated. Finally, two accuracy measure studies were held on these simulations. The first 

accuracy measure study showed the accuracy of detecting the constant genes. This study 

was hold to see whether the algorithm could detect the constant genes among the data set. 

As noted before, if the algorithm is able to assign the constant genes into separate clusters, it 

would rule out the need for a filtering on the constant genes. The second accuracy measure 

study showed these accuracy values while exposing the genes with variations among the 

replicates. This study tested the ability of identifying the genes with different replicates. 
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Table 5.4. Scenario orders and explanations of abbreviations of the scenarios  

 

Scenario 

Number 

Scenarios with 

Abbreviations 

Group 

Size Number of Genes 

Rate of Genes 

with Variation 

in Replicates 

Rate of 

Constant 

Genes Time Spaces 

S1 ES_L_VS_CS_ET Equal 20 Same Same Equally Spaced 

S2 ES_L_VS_CE_ET Equal 20 Same Expanded Equally Spaced 

S3 ES_L_VD_CS_ET Equal 20 Decreased Same Equally Spaced 

S4 ES_L_VD_CE_ET Equal 20 Decreased Expanded Equally Spaced 

S5 US_L_VS_CS_ET Unequal Disc. Unif. (10, 30) Same Same Equally Spaced 

S6 US_L_VS_CE_ET Unequal Disc. Unif. (10, 30) Same Expanded Equally Spaced 

S7 US_L_VD_CS_ET Unequal Disc. Unif. (10, 30) Decreased Same Equally Spaced 

S8 US_L_VD_CE_ET Unequal Disc. Unif. (10, 30) Decreased Expanded Equally Spaced 

S9 ES_L_VS_CS_UT Equal 20 Same Same Unequally Spaced 

S10 ES_L_VS_CE_UT Equal 20 Same Expanded Unequally Spaced 

S11 ES_L_VD_CS_UT Equal 20 Decreased Same Unequally Spaced 

S12 ES_L_VD_CE_UT Equal 20 Decreased Expanded Unequally Spaced 

S13 US_L_VS_CS_UT Unequal Disc. Unif. (10, 30) Same Same Unequally Spaced 

S14 US_L_VS_CE_UT Unequal Disc. Unif. (10, 30) Same Expanded Unequally Spaced 

S15 US_L_VD_CS_UT Unequal Disc. Unif. (10, 30) Decreased Same Unequally Spaced 

S16 US_L_VD_CE_UT Unequal Disc. Unif. (10, 30) Decreased Expanded Unequally Spaced 

S17 ES_H_VS_CS_ET Equal 50 Same Same Equally Spaced 

S18 ES_H_VS_CE_ET Equal 50 Same Expanded Equally Spaced 

S19 ES_H_VD_CS_ET Equal 50 Decreased Same Equally Spaced 

S20 ES_H_VD_CE_ET Equal 50 Decreased Expanded Equally Spaced 

S21 US_H_VS_CS_ET Unequal Disc. Unif. (40, 60) Same Same Equally Spaced 

S22 US_H_VS_CE_ET Unequal Disc. Unif. (40, 60) Same Expanded Equally Spaced 

S23 US_H_VD_CS_ET Unequal Disc. Unif. (40, 60) Decreased Same Equally Spaced 

S24 US_H_VD_CE_ET Unequal Disc. Unif. (40, 60) Decreased Expanded Equally Spaced 

S25 ES_H_VS_CS_UT Equal 50 Same Same Unequally Spaced 

S26 ES_H_VS_CE_UT Equal 50 Same Expanded Unequally Spaced 

S27 ES_H_VD_CS_UT Equal 50 Decreased Same Unequally Spaced 

S28 ES_H_VD_CE_UT Equal 50 Decreased Expanded Unequally Spaced 

S29 US_H_VS_CS_UT Unequal Disc. Unif. (40, 60) Same Same Unequally Spaced 

S30 US_H_VS_CE_UT Unequal Disc. Unif. (40, 60) Same Expanded Unequally Spaced 

S31 US_H_VD_CS_UT Unequal Disc. Unif. (40, 60) Decreased Same Unequally Spaced 

S32 US_H_VD_CE_UT Unequal Disc. Unif. (40, 60) Decreased Expanded Unequally Spaced 

 

 

 

For all of these simulations, five different weight pairs were used for the two metrics used in 

the clustering algorithm. Those five weights were 0, 0.25, 0.50, 0.75 and 1 for the Euclidean 

distance and their complementary to 1 for the slope distance. In order to show these five 
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weight levels show in the tables, weights were added to the shortened scenario notations. 

This approach is shown in Table 5.5.  

 

 

 

Table 5.5. Shortened scenario notations with weight selections 

 

Weight Scenario Notation 

w = 0 S#.1 

w = 0.25 S#.2 

w = 0.50 S#.3 

w = 0.75 S#.4 

w = 1 S#.5 

 

 

 

According to Table 5.5, for example, S1.1 shows the results of the clustering algorithm with 

0 weight assigned to Euclidean distance metric on “ES_L_VS_CS_ET” simulation set in the 

following tables. The first table (see Table 5.6) shows the results of the clustering times on 

the 32 scenarios over 1000 iterations separately for each weight selection. The results 

showed that computational times did not vary depending on different weight selections. 

Computations took the longest time with S22.1. It would be expected, since the number of 

sample size took the highest values in 22
nd

 scenario. Furthermore, clustering the genes with 

expanded number of constant genes and big data sets took more time to reach the 

dendrogram. On the other hand, the minimum computational time was seen on a trial with 

S15.3 which took 0.15 seconds to reach the dendrogram. Furthermore, the computational 

time did not vary between the experiments with equal or unequal time spaces. Figure 5.13 

displays the mean computational time for each of the 32 scenarios. It shows that after S17, 

which contained high sample sizes, the algorithm started to took more time. 

 

 

 

 
Figure 5.13. Mean computational times under 32 scenarios  



 

 

    

Table 5.6. Clustering times over 1000 iterations 

 

 

 

 

 

 

 

  * = 1 * = 2 * = 3 * = 4 * = 5 

Scenario min max mean std min max mean std min max mean std min max mean std min max mean std 

S1.* 0.33 0.55 0.39 0.04 0.31 0.57 0.39 0.05 0.31 0.57 0.38 0.05 0.31 0.62 0.39 0.05 0.30 0.59 0.40 0.04 

S2.* 1.05 1.32 1.12 0.03 1.03 1.32 1.12 0.03 1.07 1.37 1.11 0.03 1.06 1.37 1.11 0.04 1.07 1.45 1.12 0.04 

S3.* 0.29 0.51 0.37 0.03 0.26 0.48 0.36 0.03 0.28 0.51 0.36 0.03 0.28 0.51 0.36 0.03 0.28 0.53 0.37 0.03 

S4.* 0.90 1.51 1.03 0.12 0.90 1.50 1.03 0.12 0.87 1.49 1.03 0.12 0.90 1.67 1.03 0.12 0.90 2.86 1.03 0.13 

S5.* 0.20 0.66 0.38 0.07 0.21 0.61 0.38 0.06 0.22 0.65 0.37 0.06 0.21 0.54 0.37 0.06 0.22 0.56 0.38 0.06 

S6.* 0.48 2.50 1.17 0.27 0.53 2.29 1.16 0.26 0.52 2.91 1.16 0.26 0.50 2.23 1.16 0.25 0.52 1.99 1.16 0.25 

S7.* 0.18 0.56 0.34 0.07 0.19 0.52 0.34 0.07 0.19 0.87 0.35 0.07 0.18 0.53 0.34 0.06 0.19 0.50 0.35 0.06 

S8.* 0.50 2.06 1.06 0.25 0.48 1.93 1.04 0.24 0.49 2.12 1.04 0.24 0.50 1.92 1.04 0.23 0.51 7.56 1.05 0.31 

S9.* 0.31 0.84 0.39 0.03 0.30 0.86 0.38 0.04 0.31 0.77 0.38 0.03 0.31 0.67 0.38 0.03 0.31 0.73 0.39 0.03 

S10.* 1.00 1.63 1.05 0.04 0.98 1.61 1.05 0.04 1.00 1.62 1.04 0.04 1.00 1.64 1.04 0.04 0.98 1.60 1.05 0.04 

S11.* 0.27 0.49 0.33 0.02 0.27 0.59 0.32 0.02 0.26 0.73 0.31 0.03 0.27 0.66 0.32 0.03 0.26 0.67 0.34 0.02 

S12.* 0.87 0.97 0.92 0.02 0.87 0.97 0.92 0.01 0.86 0.96 0.92 0.01 0.88 0.96 0.92 0.01 0.88 1.02 0.91 0.01 

S13.* 0.19 0.53 0.36 0.06 0.19 0.53 0.36 0.06 0.20 0.55 0.36 0.06 0.20 0.54 0.36 0.06 0.21 0.53 0.36 0.05 

S14.* 0.47 3.02 1.11 0.25 0.50 1.91 1.10 0.23 0.51 2.60 1.10 0.23 0.53 1.80 1.09 0.22 0.53 1.81 1.10 0.22 

S15.* 0.17 0.47 0.30 0.05 0.17 0.46 0.30 0.05 0.15 0.47 0.30 0.05 0.18 0.46 0.30 0.05 0.17 0.44 0.30 0.05 

S16.* 0.45 1.78 0.99 0.22 0.45 1.67 0.98 0.21 0.46 2.14 0.98 0.21 0.45 3.65 0.99 0.22 0.45 2.41 0.99 0.21 

5
5

 



 

 

    

Table 5.6 (cont’d). Clustering times over 1000 iterations 

 

  * = 1 * = 2 * = 3 * = 4 * = 5 

Scenario min max mean std min max mean std min max mean std min max mean std min max mean std 

S17.* 2.15 3.37 2.22 0.12 2.15 3.65 2.22 0.12 2.15 3.18 2.22 0.11 2.12 4.01 2.24 0.12 2.14 3.18 2.19 0.11 

S18.* 6.41 10.83 6.61 0.45 6.39 10.90 6.61 0.46 6.39 10.76 6.58 0.44 6.39 10.33 6.59 0.45 6.42 10.84 6.61 0.45 

S19.* 1.92 2.10 1.99 0.03 1.91 2.09 1.99 0.03 1.93 2.08 1.98 0.04 1.93 2.11 1.98 0.04 1.91 2.08 1.98 0.04 

S20.* 5.67 9.03 6.06 0.38 5.65 8.68 6.06 0.37 5.66 10.88 6.06 0.40 5.68 11.45 6.08 0.46 5.69 10.69 6.04 0.39 

S21.* 1.89 2.62 2.24 0.13 1.89 2.64 2.23 0.12 1.89 2.59 2.23 0.11 1.87 2.61 2.23 0.12 1.84 2.62 2.23 0.12 

S22.* 5.29 22.31 6.88 0.75 5.44 10.66 6.85 0.56 5.35 10.59 6.84 0.55 5.37 10.59 6.84 0.55 5.43 10.58 6.84 0.55 

S23.* 1.52 2.23 1.87 0.12 1.52 2.20 1.87 0.12 1.52 2.25 1.86 0.11 1.56 2.21 1.87 0.11 1.53 2.21 1.86 0.11 

S24.* 4.95 10.52 6.14 0.54 4.96 10.55 6.13 0.53 4.96 10.55 6.12 0.53 4.96 10.58 6.12 0.53 5.01 10.50 6.11 0.52 

S25.* 2.15 3.88 2.37 0.35 2.15 4.62 2.37 0.36 2.15 4.86 2.37 0.36 2.14 4.59 2.40 0.38 2.14 3.74 2.33 0.34 

S26.* 6.34 9.27 6.78 0.44 6.37 9.75 6.74 0.46 6.37 9.51 6.77 0.46 6.33 9.47 6.76 0.45 6.34 9.86 6.76 0.46 

S27.* 1.92 3.11 2.01 0.10 1.90 2.92 2.00 0.09 1.88 3.54 1.98 0.11 1.88 2.84 1.97 0.11 1.87 2.98 1.97 0.10 

S28.* 5.72 8.46 6.08 0.39 5.70 9.90 6.08 0.39 5.71 8.52 6.08 0.39 5.71 8.40 6.08 0.39 5.71 8.47 6.07 0.39 

S29.* 1.89 2.72 2.25 0.13 1.87 2.68 2.24 0.12 1.82 2.72 2.24 0.12 1.88 2.70 2.24 0.12 1.89 2.64 2.24 0.12 

S30.* 5.26 10.52 6.79 0.57 5.29 10.44 6.78 0.55 5.30 10.43 6.78 0.55 5.35 10.53 6.78 0.55 5.29 10.48 6.77 0.55 

S31.* 1.52 2.41 1.87 0.13 1.54 2.33 1.86 0.13 1.54 2.49 1.86 0.13 1.54 2.25 1.86 0.12 1.54 2.24 1.86 0.12 

S32.* 4.94 11.42 6.39 0.66 4.90 10.81 6.39 0.66 4.97 10.64 6.39 0.66 4.96 10.61 6.38 0.65 4.97 11.31 6.37 0.65 

 

 

 

5
6
 



 

57 

  

Table 5.7 shows the overall misclustering rates for each scenario with five weight selections. 

The average number of misclustered genes were again calculated with Equations 5.1 and 

5.2.  

 

 

 

Table 5.7. Average rate of misclustering 

 

  * = 1 * = 2 * = 3 * = 4 * = 5 

S1.* 0.17 0.00 0.00 0.00 0.03 

S2.* 0.17 0.00 0.00 0.00 0.01 

S3.* 0.17 0.00 0.00 0.00 0.03 

S4.* 0.17 0.00 0.00 0.00 0.01 

S5.* 0.15 0.00 0.00 0.00 0.03 

S6.* 0.34 0.00 0.00 0.01 0.05 

S7.* 0.16 0.00 0.00 0.00 0.03 

S8.* 0.36 0.00 0.00 0.01 0.05 

S9.* 0.18 0.00 0.00 0.00 0.03 

S10.* 0.18 0.00 0.00 0.00 0.01 

S11.* 0.18 0.00 0.00 0.00 0.03 

S12.* 0.18 0.00 0.00 0.00 0.01 

S13.* 0.16 0.00 0.00 0.00 0.03 

S14.* 0.35 0.00 0.01 0.02 0.05 

S15.* 0.18 0.01 0.00 0.01 0.03 

S16.* 0.37 0.01 0.01 0.02 0.05 

S17.* 0.17 0.00 0.00 0.00 0.00 

S18.* 0.17 0.00 0.00 0.00 0.00 

S19.* 0.17 0.00 0.00 0.00 0.00 

S20.* 0.17 0.00 0.00 0.00 0.00 

S21.* 0.16 0.00 0.00 0.00 0.01 

S22.* 0.37 0.00 0.00 0.00 0.05 

S23.* 0.18 0.00 0.00 0.00 0.01 

S24.* 0.39 0.00 0.00 0.00 0.04 

S25.* 0.17 0.00 0.00 0.00 0.00 

S26.* 0.52 0.00 0.00 0.00 0.00 

S27.* 0.52 0.00 0.00 0.00 0.00 

S28.* 0.52 0.00 0.00 0.00 0.00 

S29.* 0.51 0.00 0.00 0.00 0.01 

S30.* 0.56 0.00 0.00 0.02 0.05 

S31.* 0.46 0.01 0.00 0.00 0.01 

S32.* 0.54 0.02 0.02 0.02 0.04 
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The detailed tables which also show the number of misclustered genes for each group 

separately are given in the Appendix C. Table 5.6 showed that the highest misclustering 

rates were seen when only the shape metric was used. However, the reason for this was the 

existence of constant genes in different levels. Since there was no difference in shape 

between those constant genes, they were grouped together in clusters no matter what their 

magnitude levels were which exaggerated the misclustering rate. Further, it was seen that, 

increasing the sample size slightly increased the misclustering rate. The average 

misclustering rate was 0.074 for big data sets while it was 0.051 for small data sets. 

Moreover, the unequal time spaces led to higher misclustering rates. This appeared 

especially with unequal group sizes. Previous simulation studies showed that using only one 

of the metrics may fail clustering the time-series. These results suggested that both metrics 

should be included in the algorithm. Among all the scenarios, when both metrics were 

included in the algorithm, the highest misclustering rate was calculated as 0.02. This 

concluded that using Algorithm CGR was a useful methodology to cluster the time-series 

when both metrics were included. Finally, increasing the rate of constant genes in unequally 

sized groups increased the misclustering rate for the cases where only the squared Euclidean 

distance was used. 

 

The ability of Algorithm CGR to separate the constant genes and the genes with differences 

among their replications from the rest of the genes were evaluated with two further analysis. 

In the first analysis, the data were accepted as two groups which contained the constant and 

non-constant genes. Therefore the first group included G21 to G23 whereas the second 

group had the remaining profiles presented in Figure 5.12. In order to test the accuracy of 

Algorithm CGR on dividing the constant genes from the others, several accuracy measures 

were also calculated on every 32 scenarios with 5 weight levels. The formulations of these 

accuracy measures are given in Appendix B. 

 

 

 

Table 5.8. Results of the accuracy measures for detecting the constant genes for the first scenario 

 

  

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S1.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.5 0.98 0.99 0.90 0.10 0.01 0.98 0.96 

 

 

 

The accuracy measures showed that Algorithm CGR was very successful on separating the 

constant genes. Most of the accuracy measures gave perfect results for all seven accuracy 

measures. The most failures were obtained when only the squared Euclidean distance was 
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used. In most of the scenarios, the accuracy measures showed that there were little 

departures from the perfect results with the selection of w = 1. For exemplary, the results of 

the first scenario iss given below (see Table 5.8), whereas the whole table is given in the 

Appendix B. The most dispersion was observed within S3.5 and S11.5. In both situations 

the rate of constant genes was not expanded and the rate of genes with dissimilar replicates 

was decreased. In those conditions, specificity was calculated as 0.89 which was smaller 

compared to the most of the other scenarios. Furthermore, both scenarios resulted with 

higher false negative rate than false positive rate. This means that the algorithm failed more 

by misclustering the constant genes into the non-constant genes when only the distance 

metrics was used than the otherwise. 

 

The second accuracy measure tests were hold to see the ability of the algorithm in detecting 

the genes with dissimilar replicates. Algorithm CGR seemed to be more successful on 

detecting such genes. Again, the whole table is given in the Appendix B. The results showed 

that, in most of the trials the algorithm perfectly separated the genes with dissimilar 

replicates. Algorithm failed to detect those genes the most when only one of the metrics was 

used. There were several cases when the algorithm could not catch such genes. S6 was one 

of the scenarios where the algorithm failed in separating the genes with dissimilar 

replications (see Table 5.9). It shows that, positive predictive power was very low with 

which means that the algorithm misclustered the genes with dissimilar replications into the 

groups of the genes without different replications when the rate of constant genes were 

expanded. 

 

 

 

Table 5.9. Results of the accuracy measures for detecting the genes with dissimilar replicates for the 

sixth scenario 

 

 

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S6.1 0.93 0.49 0.97 0.03 0.51 0.55 0.96 

S6.2 0.91 0.06 0.99 0.01 0.94 0.49 0.92 

S6.3 0.95 0.04 1.00 0.00 0.96 0.49 0.95 

S6.4 0.88 0.49 0.94 0.06 0.51 0.55 0.93 

S6.5 0.93 0.49 0.97 0.03 0.51 0.55 0.96 

 

 

 

5. 1. 4. Real Data Study  

 

A real data set from Tomancak et al. (2002) was used to test  the Algorithm CGR. The data 

set contains the expression levels of Drosophila Melanogaster. Thirty six Affymetrix Arrays 

were used in the experiment which included 14010 genes. The experiment was followed 

every hour for 12 consecutive hours. Therefore there were 12 time points for each time-
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series. Moreover, 3 replications were used for each gene. This data set was used in the study 

of Irigoien et al. (2011). Their aim was to find and cluster the gene expression profiles as 

well as detecting the genes which show differences among the replications.  

 

As explained before, the methodology proposed by Irigoien et al. (2011) filtered the 

constant shape genes in the first step. In the next step, 700 genes were found to be 

differentially expressed. Thus, they continued the analysis with these 700 genes. In the 

second step, among those DE genes, the ones with differences among the replications were 

filtered out to be analyzed later. Their study showed that 71 genes displayed variations 

among their replicates. Thus, the expression profiles were clustered by using the remaining 

629 genes.  

 

Algorithm CGR was tested on this data set in two parts. In the first part, it was tested on 

629 genes which did not have differences among the replications. The results of this 

clustering study were compared with the results in Irigoien et al. (2011). Then, in the second 

part, all the 700 genes were inputted in the clustering algorithm and the algorithm was tested 

if it can detect the genes with different replications. 

 

 

 

 
 

Figure 5.14. Clustering results on the real data for which the genes with different replications were 

put aside 

 

 

 

When Irigoien et al. (2011) studied the 629 genes, they found 15 clusters. These 15 clusters, 

later, classified in higher levels as “down-constant”, “constant-up”, “up-constant”, 
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“monotonic decrease”, “monotonic increase”, “down-up” and “up-down” profiles. 

Therefore, Algorithm CGR was tested on these 629 genes and 15 clusters were searched. 

While using the clustering to search for the patterns, equal weights were assigned to both 

distance and shape metrics. Figure 5.14 shows the profiles obtained from the 15 clusters. 

Each panel in Figure 5.14 shows the average expression levels of the genes in that cluster at 

each time point. Moreover, the three replications of the genes are represented consecutively, 

as explained before. 

 

Algorithm CGR detected most of the patterns found by Irigoien et al. (2011) with small 

differences. For example, when their algorithm found three “down-constant” patterns, 

Algorithm CGR found four such patterns. However, the patterns within those four clusters 

displayed slight differences. For example, Both of C2 and C3 showed the genes which 

decrease in their expression levels at the second time interval and kept their levels until the 

end of the experiment. Although their shape was very similar, there was a magnitude 

difference between these two profiles. Therefore, the algorithm divided this pattern into two 

clusters. On the other hand, C1 and C3 had a “down-constant” pattern with close magnitude 

levels. However, they were separated due to different time intervals that the genes 

experienced the decrease in the expression level. The genes in C1 decreased their expression 

levels right before the 4
th 

time point while the genes in C3 had this phenomena before the 

third time point.  

 

There were also slight differences for other patterns. One of the most significant differences 

between the two algorithms was observed with the “monotonic decrease” pattern. The 

algorithm proposed in Irigoien et al. (2011) found a pattern in which the genes experienced a 

decrease after the 2
nd 

time point. On the other hand, Algorithm CGR did not detect such a 

pattern. However, it detected a profile which displayed a monotonic decrease after the fourth 

time point and assigned them into C8. Moreover, the algorithm could detect a new pattern 

which was demonstrated in C15. The genes in that cluster decreased their expression levels 

until the third time point. Then their expression level increased between the third and sixth 

time points and then decreased monotonically until the end of the experiments. This pattern 

could not be detected in the previous study.  

 

It was shown that Algorithm CGR worked well and detected the profiles in the data set. 

Next, the algorithm was tested to evaluate its ability to catch the genes with dissimilar 

replicates. It was mentioned earlier that 71 genes had variations among their replications. 

Further, it was found that, some of these genes showed a specific variation. Some of the 

genes which form “up-constant” pattern experienced a dramatic decrease at the 10
th
 follow-

up and then returned back to their previous expression level at the next follow-up. Other 

than these ones, none of the genes with variations among the replications showed 

significantly different profiles than the previously found 15 profiles. Hence, each of these 

genes were assigned to the cluster with the most similar profile. 700 genes were inputted in 

Algorithm CGR to test if it can catch these genes. Again, equal weights were used for both 

metrics in this study (w = 0.5). However, the number of profiles was not known with the 

addition of 71 genes to the previous 15 clusters. Twenty clusters were used in order to see 

the profiles within all 700 genes. The results were displayed in Figure 5.15. 
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Algorithm CGR was successful in dividing the similar profiles with slight differences. For 

example, it divided two “down-constant” patterns with similar shape and dissimilar 

magnitude levels into different clusters, C2 and C5.  However, the most important result of 

this experiment was that Algorithm CGR was able to separate the genes with differences 

among the replications. The genes in C9 showed a “up-constant” pattern. Further, the genes 

in G10 also showed that pattern, however, their second replicates experienced a difference. 

Their second replicates displayed a variation which was compatible with findings of Irigoien 

et al. (2011). The second replicates experienced a dive at the 10
th 

 time point which returned 

back to its previous level at the next follow-up. These two clusters showed the success of the 

algorithm in separating the genes with dissimilar replicates. Furthermore, it could separate 

these genes without any need of pre-filtering which helps the user to reach to the results in a 

shorter time. As one of the strongest features of this algorithm, it took very short 

computational time to obtain the results. Reaching the 20 clusters from the 700 genes took 

0.09 seconds in terms of system time and 1.26 seconds in real time. 

 

 

 

 
 

Figure 5.15. Twenty clusters from 700 genes by using both metrics with w = 0.5 
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As consequent, the last two studies showed that Algorithm CGR was able to find the 

profiles among the genes. Furthermore, the second study showed that, it was also able to 

detect the genes with dissimilar replications and separate them from the others by assigning 

them into a different cluster. However, as mentioned before, one of the most important 

problems about clustering studies is deciding on the number of clusters when it is unknown. 

For example, for the clustering study on all of the 700 genes in this subsection, 20 clusters 

were used without any prior information. Therefore, some methods should be used to decide 

on the number of clusters. The second section in this chapter displays the applications of the 

cluster validation techniques proposed in Section 4. 4. 

 

 5. 2. Finding the Number of Clusters 
 

This section displays the results of the cluster validation techniques presented in this thesis. 

The next two subsections will use two of the simulation sets while the last subsection uses 

the real data from the previous section. 

 

 5. 2. 1. Simulation Study 1 

 

For the first simulation study, the data set generated in Subsection 5. 1. 1. was used. This 

data set contained 90 hypothetical time-series which should be divided into 9 clusters. There 

were genes at three different magnitude levels in three different shapes which created nine 

different patterns. Therefore, the validation score graphs were expected to highlight the 

validation scores with 9 cluster set. Validation scores could be calculated for different 

number of clusters. The number of clusters can be changed between one and the number of 

objects in the data set. The set of clusters with small validation scores or with significant 

decreases could be selected.  

 

The possible number of clusters for the first simulated data set may be between 1 and 90 

since there were 90 time-series totally. However, searching the cluster set in all possible 

numbers might be inefficient. For example, dividing the data set which contains 90 objects 

into 60 or 70 clusters may be inappropriate, since it would not reduce the complexity 

significantly. Therefore, the number of clusters may be searched within a smaller range. For 

this study, validation scores were calculated for the set of clusters where the number of 

clusters were between 2 and 40. Figure 5.16 shows the validation scores for all of these 

cluster sets. Furthermore, validation scores for the cluster sets between 5 and 14 were 

zoomed in.  

 

Figure 5.15 showed that both validation scores presented very small values at 9 clusters 

compared to the scores around 9 clusters. Further, there seemed a significant decrease in the 

validation scores between 8 and 9 clusters. As a consequence, the validation scores gave the 

hint to use 9 clusters for this data set. In the further cluster numbers, there were also very 

small validation scores. For example after 27 clusters, low validation scores were observed. 

However, separating a data set with 90 time-series into 27 clusters may create redundancy. 

Therefore, 9 clusters could be more useful against the number of clusters higher than 27 

clusters.  
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Figure 5.16. Two validation score graphs for the first simulation study 

 

 

 

 5. 2. 2. Simulation Study 2 

 

In this subsection, these validation scores were tested by using the simulation sets from 

Subsection 5. 1. 3. This data set contained 23 clusters, therefore, the validation scores were 

expected to highlight the use of 23 clusters. The genes were followed in four time points and 

three replications were used for each gene. There were 32 different scenarios generated from 

this data set. To test the success of the validation scores, the first scenario was used firstly. 

In this scenario, there were 20 genes generated for each of the 23 groups and equal time 

spaces were used.  

 

First, the dendrogram was built for the with using both metrics equally in hierarchical 

clustering. After this dendrogram was built, the validation scores for different set of clusters 

were calculated. For this simulated data, the correct number of clusters was searched 

between 7 and 35. The validation score graphs are displayed in Figure 5.17. 
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Figure 5.17. Two validation score graphs for the simulated data set 

 

 

 

Two validation scores generally showed very small validation scores after 16 clusters. 

Moreover, there were decreases after 21 cluster in both graphs. VD2 displayed a decrease 

between 22 and 23 clusters which was followed by convergence in the validation scores. 

Finally, the smallest validation score was obtained when the data set was divided into 25 

groups in the second graph. Therefore, 23 and 25 cluster sets were used for this data set. The 

results for 23 clusters are displayed in Figure 5.18.  

 

 

 

 

Figure 5.18. Twenty three clusters obtained from the simulated data set 
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Figure 5.18 showed that when the data set was divided into 23 clusters, the algorithm was 

able to detect all the profiles in separate groups. It can be seen that the first 17 clusters 

contained the genes which show different patterns. However, their replicates showed the 

similar profiles. Further, the clusters between 18 and 20 included the genes with dissimilar 

replicates. Finally, the last three clusters contained the constant genes at different magnitude 

levels. This showed that the algorithm successfully detected all the profiles in the data set.  

 

Moreover, VD2 highlighted that the data set might be divided into 25 clusters, since it gave 

the smallest validation score. The clusters are shown in Figure 5.19. 

 

When the data set was divided into 25 clusters, the algorithm was again able to show 

different profiles in different clusters. Each cluster presented a single profile. Two new 

clusters that were added to Figure 5.18 showed two profiles separately in two groups. The 

genes in C4 and C5 demonstrated the genes in G4 while the genes in C8 and C9 displayed 

the profile in G7 from Figure 5.12. However, none of the dissimilar profiles were grouped 

together into a cluster and all the profiles with dissimilar replicates were separated into 

different clusters. Finally, the constant genes were also divided into different clusters with 

respect to their magnitude levels. Although the last set with 25 clusters had redundancy it 

may not be chosen by the user, while 23 clusters did not have such problem. However, 23 

clusters was also highlighted, therefore, the algorithm can lead the user to the most 

appropriate result. 

 

 

 

 
 

Figure 5.19. Twenty five clusters obtained from the simulated data set 

 

 

Finally, another scenario was. In real life cases, the number of genes with different profiles 

would be expected to be different. Furthermore, as noted before, the number of genes with 

dissimilar replicates would be smaller compared to the number of genes with similar 
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replicates. Finally, the constant genes may appear at any magnitude level and their number 

would be very high compared to the other genes. Therefore, S8 explained in Table 5.4 was 

used with only one modification on the constant genes. Constant genes generated were 

scattered through all the range of data set. The profiles for this simulation study is shown in 

Figure 5.20. 

 

 

 
 

Figure 5.20. Genes generated for the new simulation data 

 

 
 

Figure 5.21. The validation score graphs for the data set shown in Figure 5.19 
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The validation scores from VD2 in Figure 5.21 displayed small validation scores at cluster 

numbers 25 and 26. Furthermore, there was a high difference between the validation scores 

for cluster numbers 24 and 25. According to these observations the data set was divided into 

25 clusters. The genes in a clustered form with 25 clusters are displayed in Figure 5.22. 

 

 

 

 
 

Figure 5.22. Twenty five clusters obtained from the data set in Figure 5.19 

 

 

 

Figure 5.22 showed that the genes with different profiles were separated into different 

clusters. There were only one exception which occurred in C1. When the data set was 

divided into 25 clusters, C1 contained the genes from G1 and G10 of Figure 5.20. The genes 

in both of these groups displayed a “down-up” profile with minima at the 2
nd

 time points. 

The only difference between them was that the minimum level of the genes in G10 was 

lower than the genes in G1. However, the other patterns were clustered successfully. 

Furthermore, the genes with different replicates were clustered in separate clusters even 

though their numbers were very small with respect to the other profiles. Finally, the constant 

genes were clustered into different clusters. It was mentioned that the constant genes were 

dispersed around all the range in this data set. Therefore, there was not a clear separation 

between them. However, the algorithm could assign these constant genes into 6 different 

clusters with respect to their magnitude levels. However, none of the constant genes were 

grouped with DE genes.  

 

Since, the validation score graphs also highlighted the 26 number of clusters, finally, the 

data set was divided into 26 clusters. The results are displayed in Figure 5.23. 
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Figure 5.23. Twenty six clusters obtained from the data set displayed in Figure 5.19 

 

 

 

When the data set was divided into 26 clusters, each group showed a unique pattern. On the 

contrary to the previous set, this time the genes from G1 and G10 were separated into 

different clusters, C1 and C10, respectively. Furthermore, there were not any problems with 

the genes with dissimilar replicates. They were again separated into different clusters. 

Finally, the constant genes were divided into 6 different clusters around different magnitude 

levels. 

 

As consequence, the simulation studies in the last two subsections showed that the 

validation techniques proposed in this thesis was successful to find the number of clusters in 

a data set. The last simulation data set showed that these validation scores together with 

Algorithm CGR were able to find the profiles in a data set even with the existence of many 

constant genes. The algorithm could detect the profiles by assigning the constant patterns 

into different clusters than the other ones and it could find the number of clusters which 

should be used for the constant genes. Finally, these cluster validation techniques are used 

on the real data set used in Subsection 5. 1. 4. The results are displayed in the next 

subsection. 

 

 5. 2. 3. Real Data Study 

 

The real data set in the Subsection 5. 1. 4. contained 700 genes none of which displayed a 

constant shape. In order to apply the validation techniques on this data set, Algorithm CGR 

was applied with equal weights for both metrics. After that, the correct number of clusters 
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was searched on sets which had clusters between 6 and 30 (see Figure 5.24). In real data 

sets, the profiles were not separated from each other as clearly as in the simulation sets. 

Therefore, in the real data sets, it is very hard to detect a unique number of cluster. Instead 

of specifying a single cluster number, the validation techniques may highlight several set of 

clusters on real data sets.  

 

 

 

 
 

Figure 5.24. Validation graphs on the real data set 

 

The two validation scores in Figure 5.24 experienced decreases at the same cluster numbers. 

Both graphs suggested 8, 14 and 23 clusters. Therefore, the data set was investigated with 

these three cases.  

 

Figure 5.25 shows the profiles obtained from 8 clusters by taking the averages of the 

expression levels of the genes in the clusters. It shows that when the data was divided into 8 

groups, all of the profiles could not be detected. For example, the “constant-up” profiles 

could not be displayed. More importantly, the algorithm failed to divide the genes with 

dissimilar replications from the others. It was shown before that some of the genes within 

“up-constant” groups experienced a variation among their second replicates. When the data 

set was divided into 8 clusters, the algorithm was able to show the “up-constant” profiles, 

however, it failed to divide the genes with different replicates from the genes with similar 

replicates. A slight difference, nevertheless, was shown within the second replicates of the 

genes in C3 which demonstrate “up-constant” pattern. We might suspect that the genes in 

that cluster may have dissimilar replications. This can be investigated with higher number of 

clusters. The next set of clusters suggested by the validation scores was 14 clusters. Thus, 

the data set was divided into 14 clusters in this step. The profiles are shown in Figure 5.26. 
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Figure 5.25. Eight clusters obtained from the real data set 

 

 

 

When the data set was divided into 14 groups, the clusters showed the different profiles 

which can not be seen with the 8 clusters. For example, C5 showed the “constant-up” profile 

which was not seen within the 8 cluster set. Furthermore, the algorithm was able to divide 

the genes with dissimilar replicates from the others this time. Both of C7 and C8 represented 

the “up-constant” patterns. However, the genes in C8 showed a variation among their 

second replicates. Algorithm CGR was successful in dividing these two groups of genes 

into different clusters. Moreover, it detected several profiles which was stated to be in the 

data set. Finally, the validation scores highlighted that the data set might be divided into 23 

groups. The profiles obtained from 23 groups are shown in Figure 5.27. 
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Figure 5.26. Fourteen clusters obtained from the real data set 

 

 

 

When the data set was divided into 23 groups, all of the profiles mentioned in Subsection 5. 

1. 4. were detected. Moreover, the algorithm was again able to separate the genes with 

dissimilar replicates from the others. C9 and C10 represents the “constant-up” profile genes 

with similar and dissimilar replicates, respectively. Next, the “monotonic decrease” genes 

which were not detected in the previous examples could be revealed with this set of clusters. 

Finally, some profiles were able to be investigated in more details. For example, there were 

slight differences between the “up-down” profiles shown between C18 and C20. The genes 

in C18 showed that pattern in a more curve shape whereas the genes in C20 had a clear peak 

at the 4
th 

time point.  

 

As a result, the cluster validation techniques suggests several possible set of clusters in a real 

data set. The algorithm can suggest some small number of clusters which provide a more 

general display of the profiles in the data set as in 8 cluster set in this subsection. However, 

this may result in not being able to see the genes with different replicates. On the other hand, 

the algorithm may also suggest some large number of clusters. With this case, the user had 

the chance to see the profiles in more details besides being able to see the profiles with 

differences among the replications. 

 

 

 

  



 

    

  

 
 

Figure 5.27. Twenty three clusters obtained from the real data set 

7
3
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CHAPTER 6 

 

 

CONCLUSION 

 

 

 
This thesis proposed a methodology to cluster the time-course gene expression profiles with 

dissimilar replicates. As mentioned in previous chapters, there are several model based 

clustering algorithms. However, there are several disadvantages of these methods such as 

their dependencies on sufficient time points or distributional assumptions. Therefore, the 

methodology proposed in this study is a non-model based clustering algorithm.  

 

An important problem on clustering methodologies on the time-series is that the distance 

measures they use calculates the dissimilarities based on only one characteristic. For 

example, the metrics such as Euclidean distance considers only the magnitude differences 

between the profiles. Furthermore, such metrics use every observation in different time 

points separately which ignores the time dependencies. On the other hand, the shape based 

metrics such as Short Time Series or Pearson correlation distances consider only the 

similarities between the shapes of the profiles. In this study, two metrics which measure 

dissimilarities based on two different characteristics were emerged together to define the 

distances between the time-series.  

 

The differences among the profiles of the replicates of the genes may carry important 

information for the biologists. Thus, detecting such genes is very beneficial for biological 

purposes. However, highlighting such genes may involve computational burden. A simple 

but novel method was proposed in this thesis to identify those genes. For this method, 

replications of each gene were joined consecutively in order to reflect possible 

dissimilarities among the replications of a gene. Next, a hierarchical clustering approach was 

applied to the genes by using information from both magnitude and shape characteristics of 

all replicates of the genes.  

 

Studies on several simulations and a real data set showed that the algorithm was able to 

detect the profiles in a time-course gene expression data set in a very short time. 

Furthermore, accuracy measures showed that the algorithm could detect the genes with 

different replicates successively. Moreover, it was shown by the simulation studies, the 

algorithm was also able to detect the constant shape genes. High number of constant shape 

genes are observed in real data sets, which make the analysis very challenging. However, 

Algorithm CGR was shown to detect these constant shape genes in separate clusters, and 

provides the user flexibility of filtering them easily.  
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The algorithm failed in some cases, nonetheless. The simulations exposed that the algorithm 

may fail to recognize the particular profiles with the unequal time spaces. It especially had 

problems when the time lengths were too big, since the slope information started to 

disappear in such cases. In those cases, specificity value decreased until 0.90 which was still 

an acceptable result. Further, it may take longer computational time with bigger sample 

sizes to reach the results. However, the longest computational time observed was 22.31 

seconds among the simulation studies.  

 

Finally, two approaches were proposed to detect the number of clusters in a data set when it 

is not known a priori. Two simulation studies showed that these approaches were useful to 

find the correct number of clusters in the data set. Moreover, the study on the real data set 

revealed that the approaches led to several set of clusters which might be useful. Different 

number of clusters suggested by our approaches might be evaluated to investigate the data 

set with several degrees of details.  

 

There are several features of the algorithm proposed in this study to be extended in future 

studies. First, a different approach can be proposed to handle the replications by keeping the 

replications as individuals. However, although, it may lead to more detailed results, new 

challenges may arise, such as over clustering, since the orders of the replications will be 

mixed with that way. Moreover, several methodologies can be proposed to filter numerous 

constant-shape genes before starting the clustering. This may result in reaching the clusters 

even in shorter time possibly with higher accuracy. However, this will increase the number 

of steps; hence it may be less practical. Next, since this clustering algorithm can be hold for 

any condition, such as cancer and control, this methodology can also be extended to be used 

in biclustering studies. Such studies cluster the genes in two directions, within and between 

conditions, and may produce more important information for the bioinformaticians. In the 

first direction, within clusters, the profiles are detected within each condition. In the second 

step, the profiles from different conditions can be clustered and the genes which show 

dissimilar profiles in different conditions can be detected with this way. Such genes can be 

considered to be associated with the disease in interest. Finally, several approaches can be 

added to our algorithm. First, the algorithm can be modified to handle the possible variations 

among the successive time points in different time-series. For this modification, the union of 

the distinct time points over all time-series should be identified. These joint time points can 

be adapted to every time-series. Expression levels for the non-observed time points can be 

imputed with interpolation depending on the linear changes assumption between the time 

points. Next, Short Time Series distance can be substituted with a distance metric based on 

autocorrelation to allow the shape metric consider all the previous time points instead of just 

the prior time point. Moreover, a third metric can be added to include a third characteristic 

besides the magnitude and shape dissimilarities into the general distance matrix. Finally, a 

posterior step can be added to the algorithm to build the network of the genes in the 

organisms. For this step, it can be assumed that the genes can activate the other genes which 

start to show reactions in later time intervals. Cross-correlation measures can be used for 

this analysis. All these modifications can be applied on Algorithm CGR and it can be 

evaluated on simulation studies if they make the algorithm a more powerful tool.  
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Table A.1. Average misclustering rates over 1000 iterations under different weight selections for  

the simulation study with 50 genes per group with equal time points 

 

                    C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.00 0.04 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A.2. Average misclustering rates over 1000 iterations under different weight selections for the 

simulation study with 20 genes per group with unequal time points 

 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

Mis. 

Rate 

D*0 + S*1 0.00 1.00 1.00 1.00 0.00 0.34 0.00 0.01 0.46 0.00 0.00 0.00 0.00 1.00 1.00 0.02 

D*0.25 + S*0.75 0.00 0.06 0.00 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.06 0.00 0.09 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.06 0.00 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.00 0.06 0.00 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

Table A.3. Average misclustering rates over 1000 iterations under different weight selections for the  

simulation study with 50 genes per group with unequal time points 

 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

Mis. 

Rate 

D*0 + S*1 0.00 0.16 1.00 0.93 0.00 0.40 0.00 0.00 0.45 0.00 0.00 0.00 0.00 1.00 1.00 0.01 

D*0.25 + S*0.75 0.00 0.03 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.04 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.04 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.00 0.04 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A.4. Average misclustering rates over 1000 iterations under different weight selections for the  

simulation study where the number of genes for each groups was generated from Disc. Unif (5, 35) with equal time points 

 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.07 

D*0.25 + S*0.75 0.00 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.07 0.05 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

D*0.75 + S*0.25 0.01 0.13 0.07 0.13 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

D*1 + S*0 0.01 0.19 0.08 0.17 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.03 

 

 

Table A.5. Average misclustering rates over 1000 iterations under different weight selections for the 

simulation study where the number of genes for each groups was generated from Disc. Unif (35, 65) with equal time points 

 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.07 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.00 0.05 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
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Table A.6. Average misclustering rates over 1000 iterations under different weight selections for the  

simulation study where the number of genes for each groups was generated from Disc. Unif (5, 35) with unequal time points 

 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

Mis. 

Rate 

D*0 + S*1 0.64 0.67 0.75 0.53 0.00 0.41 0.00 0.48 0.47 0.00 0.00 0.00 0.00 0.51 0.74 0.35 

D*0.25 + S*0.75 0.01 0.19 0.11 0.18 0.00 0.01 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.04 

D*0.5 + S*0.5 0.01 0.19 0.09 0.17 0.00 0.01 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.03 

D*0.75 + S*0.25 0.01 0.19 0.08 0.17 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.03 

D*1 + S*0 0.01 0.19 0.08 0.17 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.03 

 

 

 

Table A.7. Average misclustering rates over 1000 iterations under different weight selections for the  

simulation study where the number of genes for each groups was generated from Disc. Unif (35, 65) with unequal time points 

 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

Mis. 

Rate 

D*0 + S*1 0.63 0.60 0.75 0.51 0.00 0.41 0.00 0.50 0.47 0.00 0.00 0.00 0.00 0.50 0.70 0.34 

D*0.25 + S*0.75 0.00 0.04 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

D*0.5 + S*0.5 0.00 0.05 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

D*0.75 + S*0.25 0.00 0.05 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

D*1 + S*0 0.00 0.05 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
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APPENDIX B 

 

RESULTS OF ACCURACY MEASURES FOR THE 

SIMULATION STUDIES IN SUBSECTION 5.1.3. 
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Table B.1. Results of the accuracy measures for detecting the constant genes 

 

  

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S1.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.5 0.98 0.99 0.90 0.10 0.01 0.98 0.96 

S2.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S2.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S2.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S2.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S2.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S3.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S3.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S3.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S3.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S3.5 0.98 0.99 0.89 0.11 0.01 0.98 0.96 

S4.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S4.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S4.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S4.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S4.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S5.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S5.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S5.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S5.4 1.00 1.00 0.99 0.01 0.00 1.00 1.00 

S5.5 0.98 0.99 0.94 0.06 0.01 0.99 0.92 

S6.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S6.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S6.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S6.4 1.00 0.99 1.00 0.00 0.01 1.00 0.99 

S6.5 0.98 0.96 1.00 0.00 0.04 1.00 0.96 

S7.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S7.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S7.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S7.4 1.00 1.00 0.99 0.01 0.00 1.00 1.00 

S7.5 0.98 0.99 0.94 0.06 0.01 0.99 0.93 
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Table B.1 (cont’d). Results of the accuracy measures for detecting the constant genes 

 

  

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S8.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S8.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S8.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S8.4 1.00 0.99 1.00 0.00 0.01 1.00 0.99 

S8.5 0.98 0.96 1.00 0.00 0.04 1.00 0.97 

S9.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S9.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S9.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S9.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S9.5 0.98 0.99 0.90 0.10 0.01 0.98 0.96 

S10.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S10.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S10.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S10.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S10.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S11.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S11.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S11.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S11.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S11.5 0.98 0.99 0.89 0.11 0.01 0.98 0.96 

S12.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S12.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S12.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S12.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S12.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S13.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S13.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S13.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S13.4 1.00 1.00 0.99 0.01 0.00 1.00 0.99 

S13.5 0.98 0.99 0.94 0.06 0.01 0.99 0.92 

S14.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S14.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S14.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S14.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S14.5 0.98 0.96 1.00 0.00 0.04 1.00 0.96 
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Table B.1 (cont’d). Results of the accuracy measures for detecting the constant genes 

 

  

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S15.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S15.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S15.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S15.4 1.00 1.00 0.99 0.01 0.00 1.00 1.00 

S15.5 0.98 0.99 0.94 0.06 0.01 0.99 0.93 

S16.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S16.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S16.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S16.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S16.5 0.98 0.96 1.00 0.00 0.04 1.00 0.97 

S17.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S17.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S17.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S17.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S17.5 1.00 1.00 0.99 0.01 0.00 1.00 1.00 

S18.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S18.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S18.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S18.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S18.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S19.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S19.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S19.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S19.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S19.5 1.00 1.00 0.99 0.01 0.00 1.00 1.00 

S20.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S20.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S20.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S20.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S20.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S21.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S21.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S21.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S21.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S21.5 1.00 1.00 0.98 0.02 0.00 1.00 0.99 
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Table B.1. (cont’d). Results of the accuracy measures for detecting the constant genes 

 

  

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S22.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S22.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S22.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S22.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S22.5 0.99 0.98 1.00 0.00 0.02 1.00 0.98 

S23.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S23.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S23.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S23.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S23.5 1.00 1.00 0.98 0.02 0.00 1.00 0.99 

S24.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S24.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S24.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S24.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S24.5 0.99 0.98 1.00 0.00 0.02 1.00 0.99 

S25.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S25.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S25.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S25.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S25.5 1.00 1.00 0.99 0.01 0.00 1.00 1.00 

S26.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S26.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S26.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S26.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S26.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S27.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S27.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S27.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S27.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S27.5 1.00 1.00 0.99 0.01 0.00 1.00 1.00 

S28.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S28.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S28.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S28.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S28.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 
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Table B.1. (Cont’d). Results of the accuracy measures for detecting the constant genes 

 

  

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S29.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S29.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S29.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S29.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S29.5 1.00 1.00 0.98 0.02 0.00 1.00 0.99 

S30.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S30.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S30.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S30.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S30.5 0.99 0.98 1.00 0.00 0.02 1.00 0.98 

S31.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S31.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S31.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S31.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S31.5 1.00 1.00 0.98 0.02 0.00 1.00 0.99 

S32.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S32.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S32.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S32.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S32.5 0.99 0.98 1.00 0.00 0.02 1.00 0.99 
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Table B.2. Results of the accuracy measures for detecting the genes with variations among 

replications 

 

 

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S1.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S1.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S2.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S2.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S2.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S2.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S2.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S3.1 1.00 0.99 1.00 0.00 0.01 1.00 1.00 

S3.2 1.00 0.96 1.00 0.00 0.04 1.00 1.00 

S3.3 1.00 0.99 1.00 0.00 0.01 0.99 1.00 

S3.4 1.00 0.97 1.00 0.00 0.03 0.98 1.00 

S3.5 0.98 0.67 1.00 0.00 0.33 0.99 0.98 

S4.1 0.99 0.52 1.00 0.00 0.48 0.99 0.99 

S4.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S4.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S4.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S4.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S5.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S5.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S5.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S5.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S5.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S6.1 0.93 0.49 0.97 0.03 0.51 0.55 0.96 

S6.2 0.91 0.06 0.99 0.01 0.94 0.49 0.92 

S6.3 0.95 0.04 1.00 0.00 0.96 0.49 0.95 

S6.4 0.88 0.49 0.94 0.06 0.51 0.55 0.93 

S6.5 0.93 0.49 0.97 0.03 0.51 0.55 0.96 

S7.1 0.95 0.00 1.00 0.00 1.00 0.45 0.95 

S7.2 0.97 0.00 1.00 0.00 1.00 0.44 0.97 

S7.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S7.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S7.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 
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Table B.2 (cont’d). Results of the accuracy measures for detecting the genes with variations among 

replications 

 

  

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S8.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S8.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S8.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S8.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S8.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S9.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S9.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S9.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S9.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S9.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S10.1 1.00 0.97 1.00 0.00 0.03 0.98 1.00 

S10.2 0.99 0.81 1.00 0.00 0.19 1.00 0.99 

S10.3 0.99 0.60 1.00 0.00 0.40 1.00 0.99 

S10.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S10.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S11.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S11.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S11.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S11.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S11.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S12.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S12.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S12.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S12.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S12.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S13.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S13.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S13.3 0.99 0.82 1.00 0.00 0.18 1.00 0.99 

S13.4 0.98 0.41 1.00 0.00 0.59 1.00 0.98 

S13.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S14.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S14.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S14.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S14.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S14.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 
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Table B.2 (cont’d). Results of the accuracy measures for detecting the genes with variations among 

replications 

 

  

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S15.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S15.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S15.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S15.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S15.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S16.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S16.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S16.3 0.99 0.94 1.00 0.00 0.06 0.97 1.00 

S16.4 1.00 0.90 1.00 0.00 0.10 1.00 1.00 

S16.5 0.99 0.50 1.00 0.00 0.50 1.00 0.99 

S17.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S17.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S17.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S17.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S17.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S18.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S18.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S18.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S18.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S18.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S19.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S19.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S19.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S19.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S19.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S20.1 0.98 0.37 1.00 0.00 0.63 1.00 0.98 

S20.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S20.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S20.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S20.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S21.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S21.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S21.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S21.4 1.00 0.88 1.00 0.00 0.12 1.00 1.00 

S21.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 
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Table B.2 (cont’d). Results of the accuracy measures for detecting the genes with variations among 

replications 

 

  

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S22.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S22.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S22.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S22.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S22.5 0.99 0.95 1.00 0.00 0.05 0.98 1.00 

S23.1 1.00 0.92 1.00 0.00 0.08 1.00 1.00 

S23.2 0.99 0.50 1.00 0.00 0.50 1.00 0.99 

S23.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S23.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S23.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S24.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S24.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S24.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S24.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S24.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S25.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S25.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S25.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S25.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S25.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S26.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S26.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S26.3 0.98 0.40 1.00 0.00 0.60 1.00 0.98 

S26.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S26.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S27.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S27.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S27.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S27.4 1.00 0.99 1.00 0.00 0.01 1.00 1.00 

S27.5 1.00 0.95 1.00 0.00 0.05 1.00 1.00 

S28.1 0.99 0.63 1.00 0.00 0.37 1.00 0.99 

S28.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S28.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S28.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S28.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 
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Table B.2 (cont’d). Results of the accuracy measures for detecting the genes with variations among 

replications 

 

  

Correct 

Classification 

Rate 

Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Positive 

Predictive 

Power 

Negative 

Predictive 

Power 

S29.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S29.2 1.00 0.99 1.00 0.00 0.01 1.00 1.00 

S29.3 1.00 0.95 1.00 0.00 0.05 1.00 1.00 

S29.4 0.99 0.63 1.00 0.00 0.37 1.00 0.99 

S29.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S30.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S30.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S30.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S30.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S30.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S31.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S31.2 0.99 0.55 1.00 0.00 0.45 1.00 0.99 

S31.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S31.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S31.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S32.1 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S32.2 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S32.3 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S32.4 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

S32.5 0.99 0.55 1.00 0.00 0.45 1.00 0.99 
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Table C. Misclustering rates for 32 simulation studies where each study is denoted by using the notations stated in Table 5.4 

 

S1 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.17 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.03 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.03 

 

 

 

 

 

 

 

 

S2 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.17 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.03 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S3 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.17 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.03 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.03 

 

 

 

 

 

 

 

 

S4 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.17 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.03 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S5 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.49 0.51 0.00 0.49 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.70 0.71 0.15 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 

D*1 + S*0 0.03 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.36 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.27 0.00 0.03 

 

 

 

 

 

 

 

 

S6 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.49 0.51 0.00 0.49 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.68 0.69 0.34 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.07 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

D*1 + S*0 0.19 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.01 0.00 0.79 0.27 0.30 0.26 0.31 0.01 0.01 0.02 0.00 0.00 0.00 0.05 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S7 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.49 0.51 0.00 0.49 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.69 0.68 0.16 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 

D*1 + S*0 0.03 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.31 0.00 0.00 0.00 0.01 0.10 0.11 0.09 0.00 0.24 0.00 0.03 

 

 

 

 

 

 

 

 

S8 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.49 0.51 0.00 0.49 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.68 0.66 0.36 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.01 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.20 0.20 0.23 0.00 0.00 0.00 0.01 

D*1 + S*0 0.05 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.71 0.21 0.20 0.18 0.23 0.49 0.52 0.52 0.00 0.00 0.00 0.05 

 

 

1
0
1

 



 

 

   

 

 

Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S9 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.01 0.00 0.03 0.00 0.06 0.92 0.00 0.06 0.92 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.18 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.03 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.03 

 

 

 

 

 

 

 

 

S10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.01 0.00 0.02 0.00 0.01 0.99 0.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.60 0.66 0.66 0.18 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.03 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S11 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.01 0.00 0.03 0.00 0.07 0.91 0.00 0.06 0.92 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.01 0.01 0.01 0.00 1.00 1.00 0.18 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.03 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.03 

 

 

 

 

 

 

 

 

S12 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.01 0.00 0.02 0.00 0.01 0.99 0.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.04 0.04 0.05 0.59 0.66 0.67 0.18 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.03 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S13 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.04 0.00 0.13 0.00 0.48 0.50 0.00 0.47 0.52 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.02 0.02 0.01 0.60 0.70 0.71 0.16 

D*0.25 + S*0.75 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 

D*1 + S*0 0.03 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.36 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.27 0.00 0.03 

 

 

 

 

 

 

 

 

S14 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.08 0.00 0.22 0.00 0.49 0.51 0.00 0.48 0.51 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.05 0.05 0.05 0.63 0.67 0.67 0.35 

D*0.25 + S*0.75 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.12 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.07 0.00 0.00 0.00 0.00 0.10 0.11 0.11 0.00 0.00 0.00 0.01 

D*0.75 + S*0.25 0.12 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.39 0.01 0.01 0.01 0.01 0.08 0.09 0.08 0.00 0.00 0.00 0.02 

D*1 + S*0 0.19 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.01 0.00 0.79 0.27 0.30 0.26 0.31 0.01 0.01 0.02 0.00 0.00 0.00 0.05 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S15 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.01 0.00 0.08 0.00 0.47 0.51 0.00 0.46 0.51 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.45 0.46 0.48 0.63 0.69 0.68 0.18 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.31 0.31 0.00 0.00 0.00 0.01 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.19 0.18 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.13 0.15 0.15 0.00 0.04 0.00 0.01 

D*1 + S*0 0.03 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.31 0.00 0.00 0.00 0.01 0.10 0.11 0.09 0.00 0.24 0.00 0.03 

 

 

 

 

 

 

 

 

S16 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.15 0.00 0.48 0.51 0.00 0.47 0.52 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.60 0.59 0.63 0.64 0.67 0.65 0.37 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.55 0.55 0.00 0.00 0.00 0.01 

D*0.5 + S*0.5 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.60 0.63 0.64 0.00 0.00 0.00 0.01 

D*0.75 + S*0.25 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.61 0.63 0.65 0.00 0.00 0.00 0.02 

D*1 + S*0 0.05 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.71 0.21 0.20 0.18 0.23 0.49 0.52 0.52 0.00 0.00 0.00 0.05 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S17 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.17 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 

 

 

 

 

 

 

 

 

S18 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.17 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table C (Cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S19 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.17 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 

 

 

 

 

 

 

 

 

S20 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.17 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S21 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.49 0.51 0.00 0.49 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.70 0.69 0.16 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.01 

 

 

 

 

 

 

 

 

S22 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.49 0.51 0.00 0.49 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.68 0.67 0.37 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.04 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.66 0.27 0.28 0.24 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.05 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S23 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.49 0.51 0.00 0.49 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.71 0.68 0.18 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.01 

 

 

 

 

 

 

 

 

S24 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.00 0.00 0.49 0.51 0.00 0.49 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.68 0.66 0.39 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.08 0.11 0.09 0.11 0.50 0.49 0.51 0.00 0.00 0.00 0.04 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S25 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.00 0.00 0.01 0.00 0.03 0.96 0.00 0.04 0.95 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.17 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 

 

 

 

 

 

 

 

 

S26 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.69 0.80 0.66 0.19 0.80 0.78 0.00 0.54 0.73 0.00 0.69 0.02 0.00 0.73 0.65 0.00 0.38 0.79 0.80 0.79 0.61 0.67 0.65 0.52 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S27 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.56 0.63 0.63 0.19 0.78 0.77 0.00 0.54 0.64 0.00 0.67 0.02 0.00 0.55 0.64 0.00 0.32 0.97 0.97 0.98 0.00 1.00 1.00 0.52 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 

 

 

 

 

 

 

 

 

S28 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.57 0.63 0.65 0.19 0.80 0.79 0.00 0.54 0.71 0.00 0.68 0.02 0.00 0.56 0.65 0.00 0.37 0.98 0.98 0.98 0.62 0.66 0.65 0.52 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S29 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.69 0.79 0.63 0.19 0.78 0.77 0.00 0.58 0.63 0.00 0.69 0.02 0.00 0.73 0.67 0.00 0.36 0.79 0.79 0.79 0.62 0.70 0.69 0.51 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.01 

 

 

 

 

 

 

 

 

S30 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.70 0.80 0.64 0.20 0.79 0.78 0.00 0.59 0.66 0.00 0.72 0.02 0.00 0.74 0.69 0.00 0.42 0.80 0.80 0.80 0.64 0.66 0.66 0.56 

D*0.25 + S*0.75 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.5 + S*0.5 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

D*1 + S*0 0.04 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.66 0.27 0.28 0.24 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.05 
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Table C (cont’d). Misclustering results for 32 simulation studies where each study was denoted by using the notations stated in Table 5.4 

 

S31 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.57 0.62 0.62 0.19 0.78 0.77 0.00 0.56 0.61 0.00 0.68 0.02 0.00 0.55 0.66 0.00 0.34 1.00 1.00 1.00 0.62 0.71 0.68 0.46 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.22 0.21 0.00 0.00 0.00 0.01 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0.75 + S*0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*1 + S*0 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.01 

 

 

 

 

 

 

 

 

S32 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 
Mis. 

Rate 

D*0 + S*1 0.57 0.64 0.63 0.20 0.79 0.78 0.00 0.59 0.65 0.00 0.71 0.02 0.00 0.57 0.69 0.00 0.39 1.00 1.00 1.00 0.62 0.67 0.67 0.54 

D*0.25 + S*0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.63 0.65 0.00 0.00 0.00 0.02 

D*0.5 + S*0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.65 0.68 0.00 0.00 0.00 0.02 

D*0.75 + S*0.25 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.66 0.63 0.65 0.00 0.00 0.00 0.02 

D*1 + S*0 0.01 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.08 0.11 0.09 0.11 0.50 0.49 0.51 0.00 0.00 0.00 0.04 
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APPENDIX D 

 

R CODES FOR ALGORTIHM CGR AND CLUSTER 

VALIDATION TECHNIQUES FOR REAL DATA 

 
cgr <- function(d, tp, repl, w = 0.5, mincl = 2, maxcl = 50, ...) { 

 ptm <- proc.time() 

 

 ### Converting the data set into a 3D array where the dimensions are 

 ### n for the number of genes, t for the number of time points, r for the number of 

replications 

 

 data <- array(0, dim=c(dim(d)[1], (length(tp)/max(repl)), max(repl))) 

 data_temp <- mat.or.vec(dim(d)[1], (length(tp)/max(repl))) 

 for(i in 1:max(repl)) { 

  data_temp <- d[, which(repl==i)] 

  time <- tp[which(repl==i)] 

  for(j in seq_along(time)) { 

   data[, j, i] <- data_temp[, which(time==min(time))] 

   data_temp <- as.matrix(data_temp[, -which(time==min(time))]) 

   time <- time[-which(time==min(time))] 

  } 

 } 

 

 #print(data) 

 

 ### Sorting the time points into a vector named "time" 

 

 timepts <- mat.or.vec(1, (length(tp)/max(repl))) 

 timepoints <- tp 

 for(i in seq_along(timepts)) { 

  timepts[i] <- min(timepoints) 

  timepoints <- timepoints[-which(timepoints==min(timepoints))] 

 } 

 

 #print(time) 

 

 n <- dim(data)[1] 

 t <- dim(data)[2] 

 r <- dim(data)[3] 

 

 ### Calculating the squared Euclidean distances 

 

 Dist <- mat.or.vec(n, n) 



 

116 

 

 Slopesim <- mat.or.vec(n, n) 

 

 for(rep in 1:r) { 

  Dist <- Dist + (as.matrix(dist(data[, , rep])))^2 

 } 

 

 ### Calculating the slopes 

 

 slopes <- array(0, dim=c(n, (t-1), r)) 

 for(k in 1:r) { 

  for(i in 1:n) { 

   for(j in 1:(t-1)) { 

   slopes[i, j, k] <- data[i, (j+1), k] - data[i, j, k]/(timepts[j+1] - 

timepts[j]) 

   } 

  } 

 } 

 

 ### Calculating the squared STS distances 

 

 for(rep in 1:r) { 

  Slopesim <- Slopesim + (as.matrix(dist(slopes[, , rep])))^2 

 } 

 

 

 ### Standardizing the distance matrices 

 

 rd <- range(Dist) 

 if(rd[2]==0 & rd[1]==0) {Dist=Dist 

  } else if((rd[2] - rd[1])==0) {Dist = Dist / (rd[1]) 

  } else { 

  Dist <- Dist / (rd[2] - rd[1])  

 } 

 

 rc <- range(Slopesim) 

 if(rc[2]==0 & rc[1]==0) {Slopesim = Slopesim 

  } else if((rc[2]-rc[1])==0) {Slopesim = Slopesim / (rc[1]) 

  } else { 

  Slopesim <- Slopesim / (rc[2] - rc[1]) 

 } 

 

 

 ### Combining the distance matrices 

 

 sim <- (w * Dist) + ((1-w) * Slopesim) 
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 rownames(sim) <- rownames(d) 

 colnames(sim) <- rownames(d) 

 

 ### Clustering the genes with a hierarchical clustering 

 

 cluster <- hclust(as.dist(sim), method = "ward") 

 

 between1 <- mat.or.vec(1,(maxcl-mincl+1)) 

 within1 <- mat.or.vec(1,(maxcl-mincl+1)) 

 between2 <- mat.or.vec(1,(maxcl-mincl+1)) 

 

 for(cn in mincl:maxcl){ #for1 

  cl <- cutree(cluster, k=cn) 

  with1 <- mat.or.vec(1,cn) 

 

  btw1 <- mat.or.vec(1,cn) 

  btw2 <- mat.or.vec(1,cn) 

 

  for(i in 1:cn){ #for2 

   temp <- sim[which(cl==i), which(cl==i)] 

   with1[i] <- sum(temp)/2 

 

   b1 <- mat.or.vec(1,(cn-1)) 

   b2 <- mat.or.vec(1,(cn-1)) 

   v <- 1 

    for(j in 1:cn){#for3 

    if(i==j){v=v 

    }else{ 

    temp <- sim[which(cl==i),which(cl==j)] 

    b1[v]<-min(temp) 

    b2[v]<-mean(temp) 

    v<-v+1} 

   }#for3 

   btw1[i]<-min(b1) 

   btw2[i]<-min(b2) 

  }#for2 

 

 within1[(cn-mincl+1)]<-max(with1) 

 

 between1[(cn-mincl+1)]<-min(btw1) 

 between2[(cn-mincl+1)]<-min(btw2) 

 

 }#for1 

 

 ww<- within1 
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 bw<-rbind(between1,between2) 

 

 time <- proc.time() - ptm 

 result <- list(HClust = cluster, DistMat = sim, EuclideanDist = Dist, SlopeDist = 

Slopesim, expvals = data, within = ww, between = bw, mincl = mincl, maxcl = maxcl, 

pr.time = time, timepts = timepts)  

} 

 

### Drawing Cluster Validation graphs 

 

valid.graph <- function(val = valid, min = 7, max = 25) { 

 

ww <- val$within 

bw <- val$between 

par(mar = c(4, 7, 3, 2)) 

par(mfrow = c(1, 2)) 

plot(min:max, (ww[(min - val$min + 1):(max - val$min + 1)]/bw[1, (min - val$min + 

1):(max - val$min + 1)]), xlab = "Cluster Number",  

ylab = "VD1", type = "b", axes = FALSE, main = "")  

box() 

axis(1, seq(min, max, 2)) 

axis(2) 

plot(min:max, (ww[(min - val$min + 1):(max - val$min + 1)]/bw[2, (min - val$min + 

1):(max - val$min + 1)]), xlab = "Cluster Number",  

ylab = "VD2", type = "b", axes = FALSE, main = "")  

box() 

axis(1, seq(min, max, 2)) 

axis(2) 

} 


