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ABSTRACT 

 

 

 

EVALUATION OF ROTORCRAFT SYSTEM IDENTIFICATION APPROACHES 

 

Kaymak, Serkan 

    M. Sc., Department of Aerospace Engineering 

    Supervisor                 : Prof. Dr. Ozan Tekinalp 

      Co-Supervisor           : Asst. Prof. Dr. Ali Türker Kutay 

     

February 2013, 90 pages  

  

This thesis addresses rotorcraft system identification approaches and estimating the stability and 

control parameters for linear system identification of a helicopter in hover. Output error and least 

square methods are used for the system identification. Inputs of the system identification analysis are 

obtained from the nonlinear helicopter model written in FLIGHTLAB commercial software 

environment. A linear helicopter model is used for identification. For validation, results obtained from 

identified helicopter model are compared with FLIGHTLAB’s nonlinear simulation results by 

employing different inputs which are not used in the identification procedure. 

 

Keywords: Helicopter, UH-60, simulation, system identification, output error method, least square 

method, mathematical modeling, FLIGHTLAB, standard deviation, coefficient of determination 
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ÖZ 

 

 

 

HELİKOPTER SİSTEM TANIMLAMA YAKLAŞIMLARININ 

DEĞERLENDİRİLMESİ 

 

Kaymak, Serkan 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

           Tez Yöneticisi                  : Prof. Dr. Ozan Tekinalp 

     Ortak Tez Yöneticisi     : Asst. Prof. Dr. Ali Türker Kutay  

 

Şubat 2013, 90 sayfa  

 

Bu tez helikopter sistem tanımlama yaklaşımlarının kullanılarak hover koşulunda helikopterin 

doğrusal sistem tanımlama modelindeki kararlılık ve kontrol parametrelerinin elde edilmesini 

içermektedir. Sistem tanımlaması zaman düzleminde Çıkış Hatası ve En Küçük Kareler yöntemleri 

kullanılarak gerçekleştirilmiştir. Sistem tanımlama analizi girdileri, ticari bir yazılım olan 

FLIGHTLAB ortamında doğrusal olmayan helikopter modeli kullanılarak elde edilmiştir. Bulunan 

sistem parametreleri ile oluşturulan doğrusal helikopter modelinden elde edilen sonuçların 

FLIGHTLAB yazılımından elde edilen sonuçlar ile karşılaştırılması ile doğrusal helikopter tanımlama 

modelinin doğrulaması yapılmıştır.  

 

 

Anahtar kelimeler: Helikopter, UH-60, simülasyon, sistem tanımlama, çıkış hatası yöntemi, en küçük 

kareler yöntemi, matematiksel modelleme, FLIGHTLAB, Standard sapma, tespit katsayıları 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 BACKGROUND 

 
System identification is a multidisciplinary and iterative process to determine the mathematical 

model of a system by using the input and output data of the system. System can be defined in 

different areas, such as biology, chemistry, economics, civil, electrical and mechanical engineering, 

automobiles, ships and flight vehicles. In this thesis flight vehicle, specifically helicopter, system 

identification, is addressed. Proper identification methods are examined, and identification of 

helicopter using simulation results is carried out. 

 
What is System Identification? 
 

Zadeh [1] defined the system identification technically in 1962 as: “the determination, on the basis 

of observation of input and output, of a system within a specified class of system to which the 

system under test is equivalent.” According to this definition, it can be said that system identification 

process is basically composed of data gathering, appropriate system mathematical model and test. 

While the system is being tested, input and output data are collected and by using these data system 

mathematical model can be determined.  

  

A simple definition was made by Iliff [2] in 1994 as: “Given the answer, what are the questions, i.e., 

look at the results and try to figure out what situation caused those results.”  Moreover Ljung [3] 

described the system identification in 1997 as: “The process of going from observed data to a 

mathematical model is fundamental in science and engineering. In the control area this process has 

been termed System Identification and objective is then to find dynamical models (difference or 

differential equations) from observed input and output signals.”  

 

System identification is multi-disciplinary. It is also an inverse problem of obtaining a description of 

a system. Figure 1- 1 shows the basic description of the system identification. Inputs and outputs are 

known. They are obtained from simulation data. However system and/or parameters of the system 

are not known. Aim of the system identification is to find the parameters of the system by using 

known inputs and outputs. In this thesis, unknown system is the helicopter. 
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Figure 1- 1 : System Identification 

 
 
 
Process 
 
The general approach of the system identification process can be described as in Figure 1- 2. To 

excite the desired rotorcraft modes during the flight test, specific control inputs are designed. 

Responses of the rotorcraft to these inputs are measured and recorded. By comparing the model 

predicted response and the flight measured response, desired model parameters are estimated. 

 

A coordinated approach to flight vehicle system identification can be divided into three major parts 

[4]: 

 

 Instrumentation and Filters: For the flight testing, data gathering is very important. Flight 

data is gathered by using the flight data acquisition system. Flight data acquisition system 

can be composed of the ground and/or airvehicle based recording equipment. 

Instrumentation and filters are part of the data gathering process. In order to obtain the high 

data quality, instrumentation and filters are properly used. 

 Flight Test Technique:  Flight test maneuvers should be determined according to dynamic 

response of the airvehicle. In order to excite the airvehicle dynamic modes, suitable inputs 

should be cover the frequency range of interest. Hence, the case of optimal input design of 

the airvehicle may be required.  

 Analysis of Flight Data: In order to analyze the flight data, mathematical model of the 

airvehicle and system identification method should be properly chosen. Unknown 

parameters are estimated by minimizing the response error. Initial unknown parameter 

values can be used to obtain the best solution for the identification process. 

 

Jatagoankar [4] explained the most important aspects of system identification, namely “Quad-M” 

basics. Quad-M consists of the maneuvers, measurements, models and methods. Each of that is the 

requirement for the system identification procedure. Figure 1- 2 shows the Quad-M requirements to 

identify the unknown system or unknown parameters. 

 

Maneuvers: Design of the control input in order to excite all modes of the airvehicle dynamic 

system that will be identified.  
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Measurements: Selection of instrumentation and filters for high accuracy data acquisition. 

 

Models: Mathematical model of the unknown system should be selected.  

 
Methods: Time domain or frequency domain system identification methods are used to identify the 

system. In this part, more suitable estimation method is selected. A priori parameter values and/or 

constraints of the parameters are also used for obtaining the best estimation results.   

 

 
 

 
Figure 1- 2 : Quad-M Basics of Flight Vehicle System Identification [4] 

 

 

 

Test Inputs 

 
Proper control input design is important, because the accuracy and reliability of parameter 

estimation depends on the amount of the information available in the flight vehicle response. In 

general, optimal control input means best excitation of the frequency range of interest. Optimal 

control inputs should be the ones which maximize the information content for minimum 

maneuver time and minimum peak response. There are some limitations to design optimal input 

because input design process is based on a prior knowledge of the model structure and dynamic 

response characteristics. If the system model structure and dynamic mode characteristics are not 

known, rough guesses can be used for a good initial estimate to design the optimal inputs. [4, 5] 

 

Based on these practical considerations, several signals can be found in literature, e.g. step, 

doublet, multistep 3-2-1-1, Mehra, Schulz, Delft University of Technology (DUT) and Langley 

inputs. Although the 3-2-1-1, Mehra, Langley and DUT inputs are more efficient, the doublet 

input is often used due to its simplicity. Since the multistep 3-2-1-1 signal is easily realizable 

and relatively easy to fly manually by pilots, this signal remains as the one most accepted by the 
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flight test community. Moreover the 3-2-1-1 signal and its variants have been highly successful 

in time-domain system identification applications such as Maximum Likelihood method. [4] 

Figure 1- 3 shows the spectral density of the step, doublet, 3-2-1-1 and improved 3-2-1-1 inputs 

with respect to normalized frequency,    . It can be seen that 3-2-1-1 input has wider 

frequency range according to other signals at the Figure 1- 3.  

 

Another optimal input well suited for identification of transfer function models and frequency 

domain identification methods is the "Schroder-phase signal". This signal composed of multi 

frequency wave form. It has large number of harmonics at equal frequency spacing. Schroder-

phase signal has also a very flat power spectral density. Hence this signal is used for especially 

frequency domain identification methods. This signal is also called "frequency sweep input 

signal". However relatively long maneuver times can be required for applying this input. It is 

has also restriction with single axis excitation. Moreover, airvehicle can be easily departed from 

the trim condition by applying this input to airvehicle. In addition, during the sweep testing, 

critical flight incidence resulting from aero-servo-elastic interactions and exceeding the 

permissible loads should be avoided [4, 5]. At the Figure 1- 4, example of the frequency sweep 

input can be seen. From Figure 1- 3 and Figure 1- 4, it can be seen that frequency sweep input is 

applied to longer time than 3-2-1-1 input.  

 
 
 

 
Figure 1- 3 : Comparison of the different input signals [4] 
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Figure 1- 4 :  Frequency sweep input 

 

 

 

In this thesis, time domain system identification methods, output error and least square methods, are 

used. Multistep 3-2-1-1 and sine sweep inputs are employed to excite the rotorcraft. Detailed 

explanations are done in the related parts.  

 

 

Applications and Examples 

 

In the literature, a lot of examples for system identification of different kinds of systems could be 

found, but the examples presented in this thesis are related to air vehicles. System identification 

results are used for validation and update of simulation models, handling quality analyses and 

automatic flight control design applications.  

 

In 1972 Taylor and Iliff [6] tried to obtain a generic algorithm and develop a code for linear and 

constant coefficient systems and also to give an example of the determination of the lateral-

directional aerodynamic derivatives of the aircraft. They claimed that linear regression methods such 

as least square and Shinbrot’s method, are good to match the measured response well, however there 

is a convergence problem, making it difficult to solve the equations because they are nonlinear. They 

showed that by using the modified Newton Raphson method (quasilinearization) this problem may 

be eliminated. In the same year they explained this phenomenon in another article [7]. In this study 

five different methods, namely simplified equations, analog matching, least square, Shinbrot’s 

method and modified Newton-Raphson method, were used to determine the stability derivatives of 

the state equations of three different aircrafts, which are a light general aviation airplane, a large 

supersonic airplane and a lifting body vehicle.  They encountered convergence difficulties when 

there were more than a few unknowns, but modified Newton-Raphson method was used to succeed 

in solving the convergence problem. Another important advantage of this method is that it does not 

necessarily measure all components of the state variables and their time derivatives. [7] 

 

Another application of the system identification on air vehicle systems is simulation development 

and validation. In 2001 Cicolani, Sahai, Tischler and et al. published an article related to flight test 

methods and results, and the simulation model and validation results for UH-60A and UH-60A with 

slung load [8].  In this article, identification computations are done by using the CIFER software for 

interactive frequency domain analysis and frequency sweep input is used. By using the system 

identification technique, bandwidth and phase delay parameters are obtained. These parameters are 

important for modern specification of the handling quality.   

 

 Rotorcraft System Identification 
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The identification of flight vehicle dynamic models from test data has some difficulties, namely 

limitations of the flight-data measurement systems, test inputs, signal to noise ratio, and test record 

length. Identification of rotorcraft is perhaps more challenging than other system identification 

processes. Because these vehicles have a wide range of possible configurations, from small ducted 

fun to tilt-rotor aircraft, single and tandem helicopters, and helicopter slung-load configurations. [4, 

5, 8] Many rotorcrafts exhibit a high-order dynamic response because of the tightly coupled 

dynamics of the fuselage, rotors, inflow, engine, etc. so that typical low order approximations of 

fixed-wing aircraft responses do not apply. Inputs in one axis generally produce responses of 

comparable magnitude in all axes, referred to cross coupling. Therefore decoupled longitudinal and 

lateral responses, as in fixed wing, are not valid. Other difficulties are due to high signal to noise 

ratio for near hovering maneuvers, unstable pitch and roll dynamics, and high levels of noise in the 

measurements caused by vibration and atmospheric disturbances [5].  

 

1.2 FLIGHTLAB 
 

FLIGHTLAB is a commercial software program developed by ART for modeling and simulation of 

dynamic air vehicle systems. It supports modeling of dynamic systems from a predefined library of 

modeling components. Each component is an independent dynamic element such as a spring, a 

damper, an airfoil section etc. These components can be interconnected in arbitrary architectures to 

model any desired dynamic system. Vehicle specific values can be assigned as the parameters of the 

components, allowing a wide range of complex models to be built from a common library of 

modeling components that have been pre-defined, programmed and tested for reliability. 

FLIGHTLAB also provides the possibility of modifying the basic modeling components and model 

templates and building new components by using SCOPE which is a high level module of the 

FLIGHTLAB. [9] 

 

FLIGHTLAB simulations consist of two procedures, building a model by using FLME (Flightlab 

Model Editor) and CSGE (Control System Graphical Editor) and performing analysis and simulation 

of the model by using XANALYSIS (Analysis and Simulation Model). FLME is a data entry tool for 

entering rotorcraft simulation data. CSGE is an Icon-based two dimensional graphical editor like 

MATLAB SIMULINK that provides the user with the ability to design and build control system 

schematics in block diagrams. XANALYSIS is an X-windows based graphical user interface for the 

analysis of dynamic system models built under the FLIGHTLAB environment [9].  

 

In 2011 Vitale, Genito, Federico and Corraro [10] from Italian Aerospace Research Center, CIRA, 

published an article which is related to rotorcraft identification using the hybrid approach from flight 

data. In this study case the flight vehicle is UH-60 Black Hawk helicopter. To apply the system 

identification procedure, instead of flight data, simulated data generated by FLIGHTLAB was used. 

Similarly, in this thesis FLIGHTLAB software environment is used for flight data generation. 

FLIGHTLAB nonlinear simulation results are used to compare the system identification analyses 

results; moreover, these results are also used to evaluate the system identification approaches.  
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Figure 1- 5 : FLIGHTLAB FLME Editor 

 

 

 

1.3 UH-60 HELICOPTER 

 

The word helicopter is adapted from the French hélicoptère, coined by Gustave de Ponton 

d'Amecourt in 1861, which originates from the Greek helix/helik- (ἕλιξ) = "twisted, curved" and 

pteron (πτερόν) = "wing" [11]. 

 

Helicopters are categorized as rotary wing type aircraft, because their lifting and controlling means 

are their rotor systems. Helicopters can go forward, sideward, up and down like aircrafts, in addition 

to these, they can do some extra special maneuvers namely hover, backward flight, vertical take-off 

and landing. However, helicopters have some limitations on speed and altitude.  

 

In this thesis, for the system identification analysis, flight data are generated from the nonlinear UH-

60 Black Hawk helicopter model in the FLIGHTLAB software environment. Model consists of a 

main rotor, tail rotor, airframe, aerodynamic surfaces and tail propulsion components.  

 

Main rotor of the UH-60 is modeled as articulated rotor system including flapping and lead-lag 

motions and blade element method (BEM) is used for modeling. Rotor inflow is modeled with 

Peters-He Six State inflow. Tail rotor is a disk rotor model with collective control only. Airframe 

and aerodynamic surface modeling is modeled with parametric tables of force and moments. UH-60 

has two General Electric turboshaft engines, T700-GE-700. Engines have Digital Electronic Control 

Unit (DECU) and Hydro Mechanical Unit (HMU). [12]  
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Figure 1- 6 : UH-60 Helicopter 

 
 
 
The simple control system is composed of longitudinal and lateral cyclic, collective and pedal 

controls. Control inputs are transferred to rotor swashplate mechanism by mechanical linkages and 

hydraulic servos. Outputs of the cockpit pilot controls are transmitted by mechanical linkage to pilot 

assist servos to mixing unit. Then these inputs are summed and coupled by mixing unit and outputs 

of the mixing unit are carried by mechanical linkage to main and tail rotor controls. 

  

The UH-60 helicopter has also an Automatic Flight Control System which is composed of Stability 

Augmentation System (SAS), Trim, Flight Path Stabilization System (FPS) and Stabilator System. 

The UH-60 incorporates two SAS systems to help maintain a stable platform in flight. SAS 1 is an 

analog system and SAS 2 is a digital system. Both provide short term rate dampening in the pitch, 

roll, and yaw axes. Operation of the two SAS is essentially the same. SAS 2 has self-diagnostic 

capabilities where SAS 1 does not. The FPS system provides long term rate dampening in the pitch, 

roll, and yaw axes. FPS provides basic autopilot functions using the trim actuators to maintain 

attitude in the pitch and roll axes, and heading hold/turn coordination in the yaw axis. The trim 

system is comprised of three trim actuators. The roll and yaw trim actuators are electro-mechanical, 

and the pitch trim assembly is electro-hydromechanical. The trim system by itself provides a force 

gradient in the pitch, roll, and yaw axes. The stabilator is a variable angle of incidence airfoil that 

enhances the handling qualities and longitudinal control of the aircraft. The automatic mode of 

operation positions the stabilator to the best angle of attack for existing flight conditions [12]. 

 

1.4 OBJECTIVE OF THE THESIS 
 

One of the goals of this thesis is to generate a linear helicopter system identification model at hover 

condition. This model has some simplifications and assumptions, which are explained in Chapter 2. 

Beside of that, main goal of this thesis is to identify helicopter stability derivatives and to evaluate 

and determine the system identification approach for helicopters and finally to compare the results 

with "nonlinear simulation data". As an outcome of this thesis, identified simulation model can be 

used for stability, control and handling quality analysis, designing control system and also updating 

the simulation models. 

 

1.5 SCOPE OF THE THESIS 
 

The following chapter is devoted to explain the development of a general system identification 

model for helicopters. In chapter 3, two time domain system identification methods which are output 

error and least square methods are presented. These methods are applied to the identification of a 
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helicopter based on data obtained from FLIGHTLAB software. The linear system identification 

model obtained is compared with the non-linear simulation, and discussions on the success of the 

approach are presented. The last chapter summarizes the finding of this thesis. Future work is also 

given.  
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CHAPTER 2 

 

 

MODELS FOR THE IDENTIFICATION OF HELICOPTER FLIGHT 

MECHANICS 

 
 
 
In this section, linear system identification models of different order and complexity are presented. 

Because the rotor provides the lift and controls the helicopter, rotor dynamics and rotor body coupling 

modeling are very important parts of the system identification model. For a classical fixed wing 

aircraft, longitudinal and lateral coupled dynamics can be ignored and uncoupled dynamics of these 

can be examined separately, since fixed wing aircrafts do not have highly coupled dynamics. 

However, helicopters have highly coupled dynamics and this is the most important point to obtain a 

high fidelity helicopter simulation model. Many studies in the literature [4, 5, 13, 14, 15, 16] about 

helicopter system identification modeling and simulations show that the low order system 

identification models have a good fit with the on-axis flight test data but do not have a very good 

correlation with the off-axes. Moreover, these models do not reflect high frequency responses as good 

as the higher order system identification models. This phenomenon is especially crucial for designing 

the high gain stability and control augmentation systems. Regarding these, low order models can also 

be used for simple simulation and stability analysis [16, 17]. Therefore, depending on helicopter rotor 

dynamics and aim of the work, different kind of higher order models were used by Jatagaonkar [4], 

Tischler [5], Fletchler [18, 8], Mettler [13], Zivan [19], Ivler [15] etc.  

 

In addition to the classical low order 6 degree of freedom (DoF) quasi-steady model, Jatagaonkar [4] 

also defined an extended model which includes the rotor body dynamics especially for time domain 

system identification applications. Figure 2- 1 shows the extended model structure. The state matrix 

consists of the fuselage, rotor and rotor-body coupling terms. Tischler [5] defined a hybrid model 

which also takes into account rotor body dynamics, coning inflow dynamics and yaw engine 

dynamics. In addition to these models, Fletchler [18] defined a 14 degree of freedom model which 

contains 6 rigid body degrees of freedom, main rotor longitudinal and lateral flapping and lead-lag 

dynamics, vertical dynamic inflow, main rotor engine angular rate, engine torque and engine fuel 

flow. These models have a good correlation on the off-axis flight data response and also provide the 

high frequency compatibility to design the stability and control system. In the sense of these the 

expectation is that the higher order model is better than the low order model. However, in 1982, 

Hansen [20] examined 3 different order models for CH-53A helicopter. First model included the 

conventional 6 degree of freedom rigid body dynamics and second order tip-path plane dynamics. The 

second model consisted of the amended 6 degree of rigid body dynamics, second order coning and 

first order tip-path plane dynamics. The third 8 degree of freedom model included 6 degree of 

freedom rigid body and a simplified tip-path plane tilt dynamics. As a result of this work, Hansen 

concluded that amended 9 degree of freedom model has better predictions of the helicopter off-axis 

response and usable bandwidth, whereas 8 degree of freedom model provides the better short-period 

eigenvalues and with many stability derivatives. 
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Figure 2- 1 :  Extended Helicopter Model Structure [4] 

 
 
 
2.1 FORCES AND MOMENTS ACTING ON A HELICOPTER IN 

FLIGHT  
 

There are many helicopter configurations with different sizes and shapes. Fuselage can be in different 

sizes and shapes depending on helicopter mission. Also the aerodynamic force and moments applied 

on the fuselage can be assumed as classical aircraft rigid body aerodynamic force and moments. The 

main rotor is the most important part of the helicopter and there may be either single or two as in 

tandem rotor and coaxial rotor. The main rotor provides the lift force and also controls the helicopter 

by the swashplate mechanism. Anti-torque system can be tail rotor, fan-in-tail, NOTAR, another main 

rotor. As a classic helicopter, UH-60 which is utilized in this thesis, has a tail rotor configuration. The 

horizontal stabilizer can be considered as a wing and it provides the lift to help the longitudinal 

stability of the helicopter especially in the forward flight regime. Moreover, the vertical tail may also 

be considered as a wing that helps the directional stability of the helicopter. Figure 2- 2 shows the 

forces and moments acting on the helicopter [17]. Forces are indicated in X, Y, Z directions and for 

each force component is denoted by subscript of the first letter of the component. For example, main 

rotor X force is denoted as    and horizontal stabilizer Z force is denoted as   . Moments are 

indicated as L, M and N according to X, Y and Z axes, respectively. Also their notation is the same as 

the forces. In addition to these force and moments, there are highly coupled interactions between the 

main rotor and other components, namely fuselage, tail rotor, horizontal stabilizer and vertical fin and 

also engine governor dynamics.  

 

Helicopter, has a varying mass and flies in the non-stationary air so that the force and moment 

components acting on its body are changing with aerodynamic, propulsive and gravitational forces. 

Because of these situations when aerospace vehicles are modeled, some simplifications are done to 

simplify the calculations. These assumptions, as listed by Morelli [21] are follows: 

 

 The vehcile is a rigid body  

 The air is at rest relative to the earth 

 The earth is fixed in inertial space 

 The earth surface is flat 

 Gravity is uniform; vehicle center of gravity is fixed.  
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Force equations are derived from the Newton’s Second Law and it is expressed in the inertial frame as 

follows, [21] 

 

    
     

  
 (2.1) 

 

where F is the total external force vector, m is the mass and the V is the translational velocity vector. 

Here superscript  represents the inertial frame. If this formula is converted to body axis coordinate 

system, it can be rewritten as, [5] 

 

 
        

 
  

     

 
  

   

  
        (2.2) 

 

where F is separated as gravity and aerodynamic forces and  is the body angular velocity. 

Superscript  represents body axis. 

 

The moment equations are also derived by using the Newton’s Second Law in the inertial frame as 

 

    
     

  
 (2.3) 

 

where M is the total external moment vector,  is the angular velocity  and   is the inertia tensor of the 

system. If this formula is converted to body axis coordinate system, it can be rewritten as 

 

        
    

  
          (2.4) 

 

      is the external aerodynamic moments vector. 

 

These expressions are converted to body axis coordinate system because measurements are made in 

the body axis system and inertia tensor  is constant in body axes, but it is a function of a time in 

inertial axes. Thus body axis components of these vectors can be expressed as 
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Figure 2- 2 : Forces and Moments Acting on Helicopter [17] 
 

 

 

2.2 EQUATIONS OF MOTION FOR HELICOPTER 
 

Forces and moments corresponding to inertia effect associated with accelerations (linear or angular) 

and combinations of velocities, three force and three moment equations may be written as, [17] 

 

 

                       
 

 
               (2.5) 

 

                        
 

 
               (2.6) 

 

                        
 

 
               (2.7) 
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                                                         (2.8) 

 

                                              

                                   
(2.9) 

 

                                                      (2.10) 

 

These nonlinear equations do not directly include rotor dynamics such as coning, flapping, inflow. By 

using a “quasi-steady” assumption, number of degrees of freedom is eliminated and forces and 

moments of the rotor produce instantaneous response to control inputs. This means that time constant 

for flapping of rotor blades is neglected [17]. This issue is examined in the rotor-body coupling 

section. 

 

 Figure 2- 3 shows the sign convention for the forces, moments, angular displacements, velocities and 

accelerations according to the body axes coordinate system. Origin of this system is the helicopter 

center of gravity (cg) and x-axis is pointing forward to nose of the helicopter, y-axis pointing the right 

when looking to the rear of the helicopter and z-axis down to earth. 

 

For the system identification 6 DoF (degree of freedom) quasi-steady linear models, nonlinear 

equations of motion are converted to linear equations of motion by using the small perturbation 

theory. According to this theory, this linear model is only valid for small changes around the trim 

conditions.  

 

For example, lateral nonlinear force equation can be linearized as follows by using the small angle 

assumption and also in terms of the stability derivatives. 

 

 

            
 

 
               (2.11) 

 

This equation can be rewritten by using the small angle assumption in order to linearize the products 

of the variables. 

 

         
 

 
               (2.12) 

 

         
 

 
                         (2.13) 

 

Initial conditions are the trim conditions so the following velocities are zero. 

 

             

 
Moreover, Y lateral force can be written in a Taylor series of the stability and control derivatives 

multiplying corresponding velocities and control inputs. Stability and control derivatives are partial 

derivatives of the specific aerodynamic forces and moments with respect to the variations in the states 

and controls. Stability and control derivatives related to forces can be non-dimensionalized by 

dividing to aircraft mass and the derivatives related to moments can be non-dimensionalized by 

dividing to inertias. For example    and    can be written as, 

 

       
 

 
 

  

  
 (2.14) 
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Figure 2- 3 : Parameters in Equations of Motion Sign convention [17] 

 
 
 

       
 

   

 
  

  
 (2.15) 

 

                                                
  

     
   

(2.16) 

 

Then linear Y lateral force equation can be written as follows, 

 

 

                                             
       

  

     
 

 
                  

(2.17) 
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Other forces and moments can be linearized by using the same procedure so that system identification 

6 DoF quasi-steady linear model is obtained.  

 

 
 

 
                              

 

 
          

 

 
        

                  
       

   

(2.18) 

 

 

    

 
 
 
 
 
 
 
 
 
                       

                      

                       

              

              

              

        
         

 
 
 
 
 
 
 
 

  

  

 
 
 
 
 
 
 
 
 
 
      

     
      

       

      
     

      
       

      
     

      
       

      
     

      
       

      
     

      
       

      
     

      
       

    
     

 
 
 
 
 
 
 
 
 

   

(2.19) 

 

where state vector and input vector are respectively as, 

 

 

               
 

                          
 

And the output vector is,  

 

               
 

Here, subscript 0 represents the trim values of the parameters. Hence, total number of the unknown 

system parameters is 60. 

 

2.3 ROTOR-BODY COUPLING 
 

In order to obtain a linearized 6 DoF helicopter model, quasi steady assumption is used to ignore the 

rotor lag dynamics for helicopters which have small hinge offset. For helicopters which have large 

hinge offset, this assumption is not practical and the results of the linearized system may not be good. 

For this reason, rotor-body coupling dynamics is added to the classical 6 DoF linearized model. In the 

literature, there are two main modeling approaches of the rotor-body coupling in the literature, namely 

hybrid modeling and extended rigid-body and rotor modeling [4,5].  

 

These system identification models are suitable for the high frequency response range and also for 

hover and forward flight regimes. Hybrid model is claimed to lead to an accurate identification in the 

0.2 to 30 rad/sec frequency range with good accuracy depending on the achievement of the test. [5]  
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Hence, if a high bandwidth model is required, the system identification model should be extended. 

High bandwidth models can be used for the applications of flight mechanics, simulation, autopilot 

design and handling quality analysis. Hence, system identification model should be determined 

depending on the purpose of the identification. 

 

Hybrid model structure has the 13 DoF and it can be obtained by extending the classical linear 6 DoF 

model with [5] 

 

 coupled fuselage/regressive-flap dynamics which has 2 DoF  

 coupled inflow-coning dynamics which has 2 DoF 

 lead-lag dynamics which has 2 DoF 

 engine torque response which has 1 DoF 

 

On the other hand, Jatagaonkar [4] used extended rigid body-rotor and rotor dynamics models with 9 

DoF. Moreover depending on the purpose wake, turbulence or any requiring model may be added to 

this extended model to improve the accuracy. 

 

In this study, 8 DoF linear model, obtained by using the coupled fuselage /regressive-flap dynamics 

adding to classical 6 DoF, is used to identify UH-60 helicopter in hover case.  
 

2.4 FLAPPING MODEL 
 

Rotor blades have mainly three motions: Flapping, lead-lag and feathering (pitching motion). As 

shown in Figure 2- 4, flapping motion is the up and down motion of the blade around flapping hinge 

at the root of the blade. Lead-lag motion is the forward and backward motion of the blade around the 

lead lag hinge and finally feathering motion can be described as the pitching motion around the 

feathering hinge. 

 

 

 

 

Figure 2- 4 : Hinges of the Articulated Rotor [25] 
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For high fidelity model applications, especially for designing high bandwidth control systems, effects 

of the rotor time delay may be added to the classical 6 DoF helicopter model. In the literature, there 

are many studies about these helicopter flight mechanics models with flapping effects. They are 

capable of predicting high frequency responses more accurately than the classical 6 DoF models [4, 5, 

18, 8, 15, 22].  

 
Rotor motion of the helicopter is modeled as disc or tip-path plane where coupled tip-path plane 

dynamic equations are derived by Chen [24]. Tip-path plane of motion is described by the conning 

angle (  ), longitudinal flapping angle (   ) and lateral flapping angle (   ). Figure 2- 5 shows the 

sign convention of these tip-path plane motions. 

 
 
 

 
 

Figure 2- 5 : Rotor Disc Motion [26] 
 

 

 

There are two approaches for modeling the flapping dynamics: implicit first order flapping model and 

explicit second order flapping model [4].  

 

According to implicit first order model, there is a high correlation between the flapping motion of the 

tip-path plane and the body angular accelerations. For example, for helicopters with rigid rotors and 

high hinge offsets, roll acceleration and lateral flapping can be expressed as,  

 

              
 (2.20) 

 

              
  (2.21) 
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       (2.24) 

 

where    represents the new lateral system parameter, τ  is the flapping time constant and      is the 

control input at the root of the blade. These equations mean that step control input leads to a first order 

response of the rotor itself. Moreover, control input couples with the body response driven by the 

rotor flapping [4]. Similarly, these equations can be changed for the longitudinal flapping motion. 

After these implementations, the new state terms are appeared as    and    hence, tip-path-plane 

dynamics is modeled implicitly.  

 

Tip-path plane dynamics can also be modeled explicitly. Actually these dynamics have three second 

order flapping modes. Two of them are the lower frequency mode and the higher frequency mode 

which are related to longitudinal and lateral flap angle, respectively. Third mode comes from the 

coning flap response. However second mode, which is the higher frequency mode about    
    , 

for UH-60    
           , is much higher than flight dynamics and control mode frequencies. 

Third mode is the important mode for the flight dynamics and controls especially the vertical degree 

of freedom. [5]. However first order zero flap response gives the nearly same results as the second 

order flapping mode in the on–axis. Hence flapping response can be accurately modeled as two 

coupled first order equations [5, 26, 27]. According to this result, tip-path plane equations can be 

rewritten by dropping the flap and fuselage angular accelerations. 
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Here       ,        ,          and         
are coupling terms.  

Rotor time constant, τ , can be calculated theoretically. Time constant is a function of the hinge offset 

and effective Lock number and it can be expressed as in [27], 

 

 

 

 

τ 
  

  

  
   

  

  
  (2.27) 

 

where e is the hinge offset, R is radius of the rotor,   is the angular velocity of the rotor and   is the 

Lock number. Unit of the time constant is second. Lock number is a nondimensional parameter which 

represents the ratio of the aerodynamic forces to centrifugal forces. 

 

    
     

  
 (2.28) 

 

 



 

21 

where 

 

                      

                   

              

                                                              

 

However time constant should be corrected for the influence of dynamic inflow. [5] Curtiss [28] 

replaces the geometric Lock number to an effective or reduced Lock number for taking into 

consideration of the dynamic inflow. Effective Lock number denoted as   . 

 

 
     

 

   
  

       

 
(2.29) 

 

where    is the rotor solidity and       is the nondimensional inflow ratio. 

 

Solidity can be calculated as, 

 

    
   

  
 (2.30) 

 

Here    is the number of the blades. Trim inflow ratio is obtained from momentum theory and it can 

be expressed as, [25] 

 

      
     

   
   

 
 (2.31) 

 

where     
 is the trim thrust coefficient. 

 

In hover case, effects of the correction on the time constant are important. In hover with correction, 

the rotor time constant is increasing about %50. Moreover most hovering helicopters have the time 

constant between 0.10 and 0.15 depending on the hinge offset. If the time constant is closer to 0.10 

helicopter can be classified as a small hinge offset helicopter and if the time constant is closer to 0.15, 

helicopter can be classified as a large hinge offset helicopter [5]. 

 

UH-60 helicopter has the 0.1265 time constant for hover condition. So it can be classified as small 

hinge offset helicopter. 

 

In the identification process rotor time constant is a free parameter to estimate. Rotor time constant 

has a single value for the longitudinal and lateral flapping equations, so the constraint for the time 

constant can be used in the identification process. Moreover at the beginning of the identification, 

time constant which is calculated from previous formulations can be used as initial value of the 

identified time constant. [29] 

 

The rotor fuselage coupling terms are the rotor force and moment stiffness which are       and        for 

the roll and lateral degrees of freedom and       and       for the pitch and longitudinal degrees of 

freedom. There is a relation between the longitudinal and lateral force springs terms as, 

 

                 (2.32) 
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Moreover, these force stiffness terms theoretically equal to gravity constant. However these terms can 

be free to identify because of the uncertainty of the vertical center of gravity location [5]. In this study, 

the vertical center of gravity location is assumed to be known. 

 

In this explicit flapping model, there are important points. First, the quasi-steady derivatives and 

lateral and longitudinal inputs in the state equations are omitted. These derivatives are quasi-steady 

rotor moment derivatives which are                 , quasi-steady rotor force and moment 

derivatives which are       
       

        
      

        
       

       
          

. As mentioned before, 

omitting classical quasi-steady terms are a result of the 6 DoF assumptions that models the rotor with 

a simple time delay. Hence by using the explicit flapping model, these quasi-steady derivatives are not 

necessary in the 8 DoF model.  Moreover, there is no need for using the longitudinal and lateral cyclic 

input terms because they are modeled as longitudinal flapping angle,  
  

, and lateral flapping angle, 

 
  

. Forces and moments are transmitted by these longitudinal and lateral flapping responses to the 

fuselage with associated flap spring terms which are       and       , respectively. However there is a 

quasi-steady force angular derivative    which is retained to account for the tail-rotor effects even 

though the explicit flapping model is used. [5, 8, 17, 18, 19] 

 

Second, in the explicit flapping model, instead of the all rotor equations, only angular shaft motions 

are taken into account. Hence, flapping response to translational velocities and effects of the rotor 

force and moments resulting from translational dynamics on the fuselage are remaining in the 8 DoF 

model.  These speed derivatives, such as             etc., are related to low frequency responses, so 

that rotor time lag is not important here. [5, 8, 17, 18, 19] 

 

Finally, if explicit flapping model is added to the quasi-steady 6 DoF model, 8 DoF model is obtained 

as, 
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where state vector and input vector are, 

 

 

              
  

 
    

 

                          
 

And the output vector is, 

 

              
  

 
    

 

Here subscript 0 represents the trim values of the parameters. 

 

In this thesis final model, which is 8 DoF with flapping dynamics, the unknown system parameters are 

56. The number of the unknown parameters can be much higher to identify the parameters correctly. 

In addition to identifying these parameters with output-error method their initial values are very 

important for identifying the best values of the parameter. Hence, in the identification procedure, 

proper constraints may be applied to some unknown parameters. Moreover, known system parameters 

are taken as fixed parameters to reduce the number of the unknown parameters.    
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CHAPTER 3 

 

 

IDENTIFICATION METHODS 
 
 
 
There are two main system identification methods in the literature: Frequency domain method and 

time domain method. In time domain, system identification methods can be classified under two main 

headings. They are filter output error and output error methods. In this study, output error method is 

used for system identification. Furthermore, classical least square method is used to find the initial 

values of the parameters which are subsequently used in the output error method. In this section, the 

general structure of output error method, cost function calculation and optimization, statistical 

accuracy approaches and the least square method are explained. 

 

3.1 OUTPUT ERROR METHOD 
 
Output error method often used in system identification methods. In the 1970s, Taylor and Iliff [6, 7] 

used this method and has been successful in identification of the parameters of an aircraft. Later, 

Jatagoankar [4] and Morelli [21] used the Output error method in their studies for the identification of 

linear and nonlinear systems. In the literature, although most of the studies are done in the time 

domain identification for the fixed wing aircraft identification, in the time domain output error method 

is also used for the helicopter identification proccess. 

 

In this part, output error algorithm and the formulation are described. In addition to these, 

optimization of the cost function used for Gauss-Newton method is also explained here. Finally 

statistical measurements of the accuracy of the parameters and least square method are presented. 

 
Figure 3- 1 shows the output error method. System identification inputs are applied to the 

FLIGHTLAB non-linear model and then non-linear responses are gathered. Moreover, identification 

inputs are applied to 8 DoF linear model in hover flight condition. These responses are compared with 

the non-linear simulation responses to calculate the errors. By using these output errors and 

optimization algorithm, parameter values are calculated. Unknown parameters are updated and these 

updated parameters are used identification model so that identification model responses are updated. 

Output errors are again calculated and cost function is optimized. This cycle is continued up to 

obtaining minimum cost function.  
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Figure 3- 1 : Output Error Method Diagram [4] 

 

 

 

3.1.1 THE MAXIMUM LIKELIHOOD FUNCTION FOR ESTIMATION OF 

PARAMETERS IN DYNAMIC SYSTEM 

System identification is a statistical method and it depends on the estimation theory. The probability 

density function of a   which has a Gaussian distribution and a real random variable is written as, 

 

       
 

    
 

   
      

    
 (3.1) 

 

Here,      represents the probability of  .   and    are represent the mean and variance respectively. 

Mean and variance can be also expressed as [4, 21, 30], 

 

       
 

   = E         
where E is the expected value. 

 

If the variables are more than one, joint probability distribution function is used and these variables 

are independent variables. The joint probability distribution function for n variable can be written as, 

 

 p(          
 

         
     

 

 
                (3.2) 

 

where  (            represents the variables and (             represents the mean values 

of the variables. Moreover,   is the covariance matrix and its elements are calculated as [4, 21], 
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    are called as correlation coefficients.  

For nonparametric system identification, maximum likelihood function which is based on the Fisher 

Estimation Model is widely used. According to this model likelihood function can be defined as the 

conditional probability density function and it can be written as follows [4], 

 

                                         (3.3) 

 

Here z represents the given N samples of random observations and   is the unknown value of the 

parameter vector.          is the probability of z given . According to The Maximum Likelihood 

Method which is also known as Fisher Model Estimator, optimal solution for the unknown parameters 

vector  probability of z given  should be maximized. Thus the solution can be estimated as following 

expression [4, 21]. 

 

            
 

            (3.4) 

 

Assuming that probability density function of z given  is twice differentiable function and according 

to estimation method its first differential function should be equal to zero. Then the linear Taylor 

series expansion can be applied around    to first differential function of the probability density 

function of z given . These expressions can be written as, 
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    (3.6) 

 

where            is the improved approximation of the . These two expressions can be combined 

and then written as follows, 

 

 
            

   
    

             

    
    (3.7) 

 

This system of equation can be solved by using any optimization technique to find the improvement 

vector   . Expected value of the coefficient of    is called as the Fisher Information Matrix. [4, 21] 

 

Assuming that parameter vector  and error which is expressed as      , has a Gaussian 

distribution so that the mean and covariance matrix can completely determined. Moreover assuming 

the error is independent at different time points. Then mean and variance of the error are,  

 

        

 

           
 

 For the Gaussian distribution of the parameter vector and error, the conditional probability density 

function takes the form as [4], 
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  (3.8) 

 

where    is the dimension of measurement vector and  is the number of measurements. 

 

Jatagaonkar [4] and Morelli [21] suggest that when doing minimization to find the optimal solution 

negative logarithm of the likelihood function,            , can be used. Because the negative logarithm 

of the likelihood function is simpler than the density function itself. Moreover the differential of these 
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density functions are equal. So that when constructing the output error algorithm negative logarithm 

of the likelihood function is used. It can be written as, 

 

                       

  
 

 
                           

 

   

  
 

 
           

  
   

 
     π  

(3.9) 

 

Application Maximum Likelihood Function to Output-Error Method: 

 

As discussed before, the mathematical system identification model of the helicopter can be expressed 

as linear state space dynamic system. In this case there is no process noise and the system can be 

described as following expressions. 

 

                    (3.10) 

 

                    (3.11) 

 

                  (3.12) 

 

where  is the measurement outputs,            is the initial condition and  is the error which as 

zero mean with covariance matrix , that is [4], 

 

         0 and                     

 

where      is the Kronecker delta which means that       for     and       for    .  

Now negative logarithm of the maximum likelihood function,           , can be used to find the 

unknown parameters of the system identification system. For general convenience negative logarithm 

of the maximum likelihood function,             renamed as the cost function as  . To obtain the 

optimal unknown parameters solution, cost function can be minimized like mentioned before as 

Maximum Likelihood function by differentiated twice. The likelihood cost function or negative 

logarithm of the likelihood function is [4, 21], 
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(3.13) 

 

3.1.2 COST FUNCTION OPTIMIZATION 

Cost function optimization is based on the known measurement noise covariance and unknown 

measurement covariance matrix. In this thesis measurement covariance matrix is unknown and the 

optimization is done according to this case.  

 

First, likelihood cost function, equation 3.13, is differentiated with respect to R and setting the result 

to zero and then the following equation is obtained. 

 

    
 

 
                        
 

   

 (3.14) 
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For obtaining the measurement covariance matrix, likelihood cost function can be expressed again as 

[4], 

 

       
 

 
     

 

 
             

   

 
     π  (3.15) 

 

There will be applied as assumption that the measurement noise sequences for the    measured 

outputs are uncorrelated with one another. [21] With this assumption the calculation efficiency is 

higher than before. Hence the first and last terms become a constant and they can be neglected without 

affecting the minimization results. Final likelihood cost function becomes as, 

 

               (3.16) 

 

When this cost function minimized with respect to  by using the optimization algorithm the unknown 

parameter vector    can be determined. In this thesis optimization method is chosen as Modified 

Newton-Raphson Method. It is detailed explained next topic.   

 

3.1.3 MODIFIED NEWTON-RAPHSON METHOD 

Modified Newton-Raphson method is an iterative optimization technique to find the zero points of the 

nonlinear function. In this case this method can be used to minimize the cost function.  

 

Partial differential equation of the cost function with respect to parameter vector is, 

 

 
  

  
     

     

  
 

 

              

 

   

   (3.17) 

 

The system response y can be expand by using the two term Taylor’s series expansions like, 

 

               
  

  
    (3.18) 

 

where 

 

             (3.19) 

 

This quasi-linearized (first order approximation) equation is substituted to the first partial differential 

cost function equation and then the equation becomes, 

 

  
     

  
 

 

              

 

   

    
     

  
 

 

    
     

  
   

 

   

   (3.20) 

 

After these manipulations system consists of the linear equations and they can be solved easier than 

before. The first term of the left hand side is the gradient vector and the coefficient of the parameter 

change vector,   , is the Fisher information matrix. Hence to find the updated parameter, firstly 

gradient and then information matrices are calculated and then parameter change vector can be solved 

by using these matrices [4, 5, 21]. 
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3.1.4 STATISTICAL ACCURACY OF PARAMETER ESTIMATES 

After the all unknown parameters are calculated, accuracy of the parameters should be checked by 

using the statistical properties. These properties can also be used for the validation of the system 

identification model results. Cramer–Rao bound, or standard deviation and also correlation 

coefficients are usually used for determining the parameter accuracy in the system identification 

procedure.  

 

Cramer-Rao bound shows the maximum achievable statistical accuracy of the estimated parameters 

[5]. In the time domain, maximum likelihood estimator is used the available data very efficiently, so 

that maximum likelihood estimator has the asymptotic efficiency which means that the maximum 

likelihood estimates converge in probability to the true values of the parameters. [4] The standard 

deviations and correlation coefficients are calculated by using the parameter error covariance matrix. 

It is calculated by taken the inverse of the Fisher information matrix. It can be represented as follows 

[4], 

 

         
     

  
 

 

    
     

  
 

 

   

 

  

 (3.21)  

 

In statistics and probability theory standard deviation is the measure of the variation from the mean or 

expected value. If the standard deviation is low, estimated parameters are close to the expected value 

and if it is high, estimated parameters are spread out over a large range of expected values. The 

diagonal elements of the square root of the parameter error covariance matrix show the standard 

deviation of the estimated parameters. In statistics, it is showed by , sigma notation and can be 

represented as [4], 

 

             (3.22)  

 

 

Correlation coefficient is widely used to show the linear dependence between two variables. It has the 

value between -1 and 1. If the correlation coefficient closes the 1 means the estimated output fit 

measurement output very good. For different correlation coefficient examples of different scatter 

diagrams are shown at Figure 3- 2. It is unitless parameter [4, 21]. 

 

      
      

             

 (3.23)  

 
In addition to these statistical accuracy parameters, t statistics is used for determining the significance 

of the parameter. It has a simple calculation as [21], 

 

     
  

     
 (3.24) 

 

where      indicates the estimated parameter and       represents the standard error of the estimated 

parameter. In regression analysis, standard error of the mean is the standard deviation and it is unitless 

parameter.  
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Figure 3- 2 : Examples of scatter diagrams with different values of correlation coefficient [22] 

 
 
 

3.2 LEAST SQUARE METHOD 
 

In this thesis, parameter estimation is done by using the output-error method however the initial 

values of the parameters are required to estimate the parameters correctly and also prevent the any 

singular value error. At the beginning of the system identification with output error method, to find 

the initial parameter values least square method is used at the translational and angular dynamics. 

Least square method is also known as the one of the equation error method. 

 

General least square model can be written as, 

 

      (3.25) 

 

         (3.26) 

 

Here again y is the estimated output and  is the unknown parameter vector.  is the measurement 

vector,  is the regression vector and  is the measurement error vector. Assume that measurement 

error has the zero mean and constant uncorrelated variance. Least square model may be constructed by 

using the measured states and their derivatives. Hence, measurement output vector may consist of the 

state vector and derivative of the state vector. 

 

To find the unknown parameter vector, sum of the squares of the residuals (errors) should be 

minimized. In this case the cost function can be written as follows, [4, 21] 

 

     
 

 
                        

 

   

  
 

 
               (3.27) 

 

The derivative of the cost function with respect to the parameters which minimizes the cost function is 

given by, 

 

 
  

  
                (3.28) 
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where     best parameter solution to minimize the cost function. So that the least square estimation 

solution can be expressed as follows,  

 

                (3.29) 

 

If the     matrix becomes a singular, there will be multiple solutions. For aircraft system 

identification applications, this matrix is generally nonsingular. For the least square estimation, 

information matrix is the     matrix, since this matrix is the measure of the information content of 

the measurement. [4] 

 

In addition to the statistical accuracy parameters which are explained before part, coefficient of 

determination,   , is used for the determine the matching of the model to measurement data for least 

square estimation. The coefficient of determination defines as the ratio of the regression sum of 

squares      to total sum of squares,     . These parameters are defining according to mean value of 

the measured output data. It is expressed as [21], 

 

     
 

 
     

 

   
 (3.30) 

 

where N is the number of data and I is the sampling number of the data. Then the regression sum of 

squares and total sum of squares are calculated as [21], 

 

                   
     and                    

    (3.31) 

 

Hence coefficient of determination is, 

 

     
   

   

 (3.32)  

 

Another statistical parameter is the fit error. It indicates how close the estimated outputs are to the 

measured values. It is the square root of the measurement error variance,       Fit error is calculated as, 

[21] 

 

           
 

    

              
 

   

   (3.33)  

where    is the number of the parameter.  

 

Parameter covariance matrix is estimated by using the fit error and information matrix for least square 

estimation. Then, it is obtained as follows, 

 

                   (3.34)  
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CHAPTER 4 

 

 

SYSTEM IDENTIFICATION APPROACH AND IDENTIFIED MODEL 

VALIDATION 

 
 
 
In this part, system identification approach used to identify a linear model of the UH-60 Black Hawk 

helicopter using FLIGHTLAB simulation data is examined. As mentioned in chapter one, system 

identification procedure have same basics namely, maneuver, measurements, methods, models and 

validation. In this chapter, first which maneuver is done and data compatibility of the gathering data 

from simulation are explained. Identification models and methods was explained the before chapters. 

In chapter two linear system identification model is explained and in chapter three the output error and 

least square methods in time domain are introduced. Hence after data compatibility analysis, system 

identification approach is explained. Finally, model validation is carried out by comparing simulation 

data with system identification model results.  

 

 
4.1 EXPERIMENT AND DATA GATHERING 
 
In this thesis, FLIGHTLAB UH-60 Black Hawk helicopter model is used to generate flight data 

instead of actual flight test data. Open loop system identification is carried out. Thus Stability 

Augmentation System was turned off. UH-60 helicopter has the mixer unit which mixes the inputs 

before the swashplate mechanism. Therefore swashplate angles are used instead of the pilot inputs to 

represents the system characteristic more accurately. In the literature, when Fetcher [18] were 

modeling the UH-60 helicopter for system identification purpose, he used to mixer control matrix to 

convert to pilot inputs to the swashplate angles. However, in FLIGHTLAB environment these angles 

can be selected as outputs and there is no need to convert the pilot inputs to swashplate angles. 

 

For the successful system identification, inputs should excite the helicopter stability and control 

modes and to yield good data compatibility. For this reasons the input design is the important part of 

the system identification procedure. In the literature optimal input design is the subject of the many 

research. Jategaonkar [4], studied the maximum likelihood parameter estimation with using the 3-2-1-

1, modified 3-2-1-1, doublet and step inputs in the time domain analysis. Moreover, Morelli [21] also 

investigated on the time domain system identification with optimal input designs. On the other hand, 

Tischler [5] investigated the frequency domain system identification with the sine sweep inputs. 

Tischler [5], Jategaonkar [4] and Morelli [21] suggests that for the time domain system identification 

3-2-1-1 multistep input or the modified 3-2-1-1 step input may be used for frequency domain system 

identification sine sweep or Schroerder-phased signal are reported to be most effective.  

 

At the beginning of this study, although the time domain method is selected to identify the helicopter, 

sine sweep input was also employed. However in this case data collinearity was not as good as 

expected. In addition, the analysis time was long compared to the 3-2-1-1 input. Tischler [5] also 

mentioned that the simulation sine sweep input does not have sufficient spectral richness because it 

did not have any irregularities in the input shape. Some noise components are also added to the sine 

sweep input and the other off-axis inputs. However in this case, some problems were observed related 

to the simulation convergence, since the system is open loop and helicopter is an unstable system. To 

obtain convergence results of the nonlinear simulation, input amplitude and  the frequency range were 
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reduced. However this resulted in lower coherence values than required. For example, coherence 

values of the swashplate controls with longitudinal sine sweep and 3-2-1-1 inputs are shown at Figure 

4- 1. As a result of these situations, 3-2-1-1 multistep input is used for identification in this study 

instead of sine sweep input.  

 

 

 

 
Figure 4- 1 : Comparison of the coherence value of the swasplate controls with longitudinal 

input (Hover, SAS off (soff) ) 
 
 

 
4.2 DATA COLLINEARITY 
 
When doing the simulation, 3-2-1-1 input is applied to each of the controls of the helicopter, namely, 

longitudinal, lateral, collective and pedal controls. These identification inputs are shown at Figure 4- 

2. After gathering the output data corresponding to the each controls, data collinearity can be checked 

between variables before doing system identification. 

 

As shown Figure 4- 2, lateral 3-2-1-1 input has the smaller step time than other inputs. Step time of 

the longitudinal, collective and pedal inputs is chosen as 1 second. However, step time of the lateral 

input is 0.3 seconds, since data collinearity problem is observed when using the 3-2-1-1 lateral input 

with 1 second step time. Moreover input which has smaller step time covers the wider frequency 

range. Hence lateral 3-2-1-1 input with 0.3 second step time is decided to be appropriate for system 

identification. All of the inputs have 0.2 second rise time and fall time to approximate the pilot input 

except for lateral input. Since, 3-2-1-1 lateral input has 0.3 second step time, its rise time and fall time 

are taken as zero. 
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Figure 4- 2 : Identification Inputs 

 

 

 

For successful system identification, correlation between the output data should be minimum, since 

the fundamental assumption of the maximum likelihood function is that input is independent of the 

system output. Thus after doing the experiment, data collinearity should be checked for linearity 

between variables. Correlation between data can be measured by using different statistical techniques. 

One of them is looking at the correlation matrix of the data. Obtaining the correlation matrix was 

explained in chapter two.  Correlation matrix gives the information about the linearity between two 

variables. For the air vehicle system identification, absolute value of the correlation matrix should be 

less than the 0.9. Data collinearity is also used for determining the system identification model 

parameters [4,21]. Linearity of the data may also be determined by using graphical method. For 

example, Figure 4- 3 shows the uncorrelated relation with angular pitch and roll rates for lateral input. 

 

For longitudinal, lateral, collective and pedal inputs, the correlation matrices for the states are 

calculated as Table 4- 1, Table 4- 2, Table 4- 3 and Table 4- 4 respectively. Elements of correlation 

matrix are unitless. These matrices are the symmetric matrices according to diagonal elements. 

Correlations between states are generally low and suitable for the identification. Some correlations are 

greater than 0.9 but these parameters are eliminated in the identification procedure. For example, for 

collective input, correlation coefficient of the pitch ( ) and roll ( ) attitudes is greater than 0.9. 

However pitch and roll attitudes are not related parameters in the system identification model. Their 

coefficients are not identified in system identification procedure. Hence collinearity of the simulation 

data is suitable for system identification. 
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Figure 4- 3 : Uncorrelated Relation with Angular Pitch Rate and Roll Rate for Lateral Input 
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Table 4- 1 : Correlation Matrix of the States for the Longitudinal 3-2-1-1 Input 

 
p q r     u V w         

p 1,00 -0,62 -0,26 0,46 -0,52 0,12 -0,48 -0,03 0,26 -0,70 

q -0,62 1,00 -0,19 0,17 0,06 0,60 0,82 -0,39 -0,11 0,78 

r -0,26 -0,19 1,00 -0,10 -0,25 -0,23 -0,28 0,55 0,28 0,05 

  0,46 0,17 -0,10 1,00 -0,91 0,83 0,37 0,14 0,56 -0,06 

  -0,52 0,06 -0,25 -0,91 1,00 -0,65 -0,07 -0,28 -0,63 0,18 

u 0,12 0,60 -0,23 0,83 -0,65 1,00 0,72 -0,30 0,27 0,41 

v -0,48 0,82 -0,28 0,37 -0,07 0,72 1,00 -0,26 -0,01 0,73 

w -0,03 -0,39 0,55 0,14 -0,28 -0,30 -0,26 1,00 0,60 -0,45 

    0,26 -0,11 0,28 0,56 -0,63 0,27 -0,01 0,60 1,00 -0,44 

    -0,70 0,78 0,05 -0,06 0,18 0,41 0,73 -0,45 -0,44 1,00 

 
Table 4- 2 : Correlation Matrix of the States for the Lateral 3-2-1-1 Input 

 
p q r     u V w         

p 1,00 0,21 -0,18 0,09 -0,40 0,36 -0,51 0,28 0,55 -0,25 

q 0,21 1,00 0,02 0,90 0,30 0,92 -0,02 0,93 -0,49 -0,11 

r -0,18 0,02 1,00 0,14 0,89 -0,20 0,87 0,08 -0,22 0,13 

  0,09 0,90 0,14 1,00 0,45 0,72 0,23 0,73 -0,55 -0,26 

  -0,40 0,30 0,89 0,45 1,00 0,03 0,92 0,30 -0,56 0,17 

u 0,36 0,92 -0,20 0,72 0,03 1,00 -0,33 0,94 -0,34 -0,14 

v -0,51 -0,02 0,87 0,23 0,92 -0,33 1,00 -0,07 -0,43 0,19 

w 0,28 0,93 0,08 0,73 0,30 0,94 -0,07 1,00 -0,42 0,05 

    0,55 -0,49 -0,22 -0,55 -0,56 -0,34 -0,43 -0,42 1,00 -0,09 

    -0,25 -0,11 0,13 -0,26 0,17 -0,14 0,19 0,05 -0,09 1,00 
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Table 4- 3 : Correlation Matrix of the States for the Collective 3-2-1-1 Input 

 
p q r     u V w         

p 1,00 0,54 0,03 0,37 0,27 -0,27 -0,51 0,09 0,80 -0,81 

q 0,54 1,00 -0,46 0,58 0,42 -0,28 -0,15 0,50 0,06 -0,55 

r 0,03 -0,46 1,00 -0,77 -0,67 0,71 -0,60 -0,96 0,36 -0,18 

  0,37 0,58 -0,77 1,00 0,94 -0,83 0,10 0,73 -0,02 -0,26 

  0,27 0,42 -0,67 0,94 1,00 -0,84 -0,04 0,56 -0,10 -0,18 

u -0,27 -0,28 0,71 -0,83 -0,84 1,00 -0,12 -0,62 -0,07 0,20 

v -0,51 -0,15 -0,60 0,10 -0,04 -0,12 1,00 0,65 -0,42 0,68 

w 0,09 0,50 -0,96 0,73 0,56 -0,62 0,65 1,00 -0,20 0,13 

    0,80 0,06 0,36 -0,02 -0,10 -0,07 -0,42 -0,20 1,00 -0,61 

    -0,81 -0,55 -0,18 -0,26 -0,18 0,20 0,68 0,13 -0,61 1,00 

 
Table 4- 4 : Correlation Matrix of the States for the Pedal 3-2-1-1 Input 

 
p q r     u V w         

p 1,00 -0,10 -0,34 0,35 0,01 -0,38 -0,10 -0,25 0,88 -0,89 

q -0,10 1,00 -0,74 0,70 0,08 -0,22 0,38 -0,06 -0,14 -0,03 

r -0,34 -0,74 1,00 -0,54 -0,16 0,51 -0,14 0,52 -0,17 0,35 

  0,35 0,70 -0,54 1,00 0,19 -0,27 0,59 0,30 0,51 -0,59 

  0,01 0,08 -0,16 0,19 1,00 -0,79 0,04 -0,09 0,19 -0,22 

u -0,38 -0,22 0,51 -0,27 -0,79 1,00 0,30 0,53 -0,39 0,50 

v -0,10 0,38 -0,14 0,59 0,04 0,30 1,00 0,71 0,14 -0,08 

w -0,25 -0,06 0,52 0,30 -0,09 0,53 0,71 1,00 0,10 0,04 

    0,88 -0,14 -0,17 0,51 0,19 -0,39 0,14 0,10 1,00 -0,96 

    -0,89 -0,03 0,35 -0,59 -0,22 0,50 -0,08 0,04 -0,96 1,00 
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In addition to the 3-2-1-1 input, when obtaining the initial parameter values by using the least square 

method sine sweep inputs are also used for the identification. Figure 4- 4 shows the sine sweep inputs 

are used for the longitudinal and lateral translational dynamics. They are generated in FLIGHTLAB. 

They have small amplitude to avoid instability, since SAS is turned off. To obtain the simulation data 

amplitudes are taken small with compared to the 3-2-1-1 inputs. Lateral sine sweep input is taken 

shorter than longitudinal input. Low frequencies are very important to estimate the dominant 

parameters in translational dynamics. To observe this phenomenon, longitudinal sine sweep input is 

selected to have a wider frequency, 0.05 to 2 Hz than lateral sine sweep input which runs from 0.05 to 

0.2 Hz.    

 

 

 

 
Figure 4- 4 : Identification Inputs for Longitudinal and Lateral Translational Dynamics  

 

 

 

Correlation matrices for longitudinal and lateral sine sweep inputs are shown Table 4- 5 and Table 4- 

6, respectively. It can be seen that correlation values are lower than 0.9 so that these inputs may be 

used for identification of translational parameters. 
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Table 4- 5 : Correlation Matrix for the Longitudinal Sine Sweep Input 

 

    u     

  1,00 -0,72 -0,52 

u -0,72 1,00 0,37 

    -0,52 0,37 1,00 

 

 

Table 4- 6 : Correlation Matrix for the Lateral Sine Sweep Input 

 

    v     

  1,00 -0,18 -0,31 

v -0,18 1,00 0,42 

    -0,31 0,42 1,00 

 
 
 

4.3 SYSTEM IDENTIFICATION APPROACH 
 

As presented before, 8 DoF linear helicopter system identification model, which consists of 6 DoF 

fuselage and 2 DoF flapping dynamics, is used to identify the UH-60 helicopter at hover condition. 

Good starting values are needed to successfully identify unknown parameters. Another challenge of 

the identification is the number of parameters to be identified. As the number of the parameters is 

increased, accuracy of the estimation may decrease and in some cases there is no solution is found. If 

it is needed to identify the more parameters, more informative data are required. [21] 

 

In the 8 DoF linear system identification model, there are 36 unknown system parameters with no 

initial condition information for these unknown parameters. However initial parameter values may be 

determined to start the identification. Yuan [29] and Mettler [31] suggested to use partition system 

identification procedure to find the initial parameter values and to identify the complex systems. 

According to this approach systems can be divided to some meaningful dynamical parts, and then 

these parts are solved. After that each part of the system is solved, build up process is begun and 

finally full system is identified with initial parameter values which are computed in the previous step. 

In this way, especially coupled parameters can be found after obtaining the dominant parameters of 

the system.  

 

Yuan [29] identified the full model of the miniature rotorcraft at the nine steps as shown Figure 4- 5. 

This procedure is called partitioned system identification procedure. It may be divided three main 

steps. First, the parameters of the translational and angular dynamics are identified. In the first part of 

this procedure, least square method is used, since this method does not require the initial conditions to 

estimate the parameters. Hence, the dominant parameters are obtained without any initial parameter 

values, and then these parameters are used as the initial parameter values for identification of the 

uncoupled and coupled dynamics. Second, the uncoupled pitch and roll dynamics are acquired by 

using the output error method. Third, coupled dynamics and complete model dynamics were solved 

after obtaining the uncoupled dynamics. The complete dynamic model is obtained by combining the 

coupled pitch and roll dynamics and the coupled heave and yaw dynamics. Output error method is 

used to identify the coupled dynamics and the complete dynamic models. Estimated parameters of the 

coupled dynamics are used as the initial parameter values of the complete dynamic model. The 

complete dynamic model is solved for finding the remaining coupled parameters. In addition, 

complete dynamic model is again identified to refine all the unknown parameters. 
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Figure 4- 5 : Partitioned System Identification Procedure 

 

 

 

Similar to the study described above, in this study, 8 DoF UH-60 linear identification hover model is 

identified at the three main steps. These steps are translational and angular dynamics, uncoupled 

dynamics and coupled dynamics. In order to find the initial conditions of the dominant parameters, 

least square method is used. By taking results of the previous steps, output error method is used to 

identify the uncoupled and coupled dynamics. As shown Figure 4- 5, at the partition method, coupled 

heave and yaw dynamics is identified separately. However, in this study this coupled dynamics is 

estimated in the complete dynamic model as shown Figure 4- 6. The estimated parameters of the 

heave and yaw dynamics are used as initial parameter values for further identification step. 

Afterwards, parameters of the coupled heave and yaw dynamics and the coupled pitch and roll 

dynamics are estimated at the estimation of the complete 8 DoF model step. At the final step, all of the 

unknown 36 parameters are refined again to take effects of the complete system dynamics into 

account.  

 



 

42 

 
Figure 4- 6 : System Identification Procedure Used In This Study 

 

 

 

Translational and angular dynamic steps consist of the longitudinal, lateral, heave and yaw dynamics 

with some simplifications, which is explained at the related parts. After that, by using the 

identification solution of the translational and angular dynamics, the uncoupled pitch and roll 

dynamics are identified. The uncoupled pitch dynamics has four states namely,            
  

. The 

uncoupled roll dynamics has also four states namely,             
  

. Identified parameters of the 

uncoupled pitch and roll dynamics are used as the initial parameter, when identifying the coupled 

pitch and roll dynamics, which has the eight states,              
  

      
  

. Finally, parameters of 

the complete 8 DoF linear identification model are estimated by using the previous identified 

parameter values by making use of the output error method. 

 

 

4.3.1 TRANSLATIONAL AND ANGULAR DYNAMICS 

In order to begin the identification process with output error method, initial parameter values of the 

unknown parameters should be meaningful and close to their real values to obtain successful results. 

Hence, identification process begins with the simple translational and angular equations with least 

square method. As discussed before, least square method is independent of the initial conditions of 

parameters, in other words initial parameter values are not necessary to obtain results. The drawback 

of the least squares method, however is that the translational and rotational accelerations must be 

available. 

 

After extending the 6 DoF rigid body dynamics to 8 DoF with the addition of the flapping dynamics, 

longitudinal translational equations can be written as, 
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       (4.1) 

  

However, this equation involves the coupled terms. To simplify this equation, coupled terms can be 

ignored, so that the dominant parameters remain on the on-axis. After this simplification, (4.1 can be 

rewritten as,  

 

                      
 (4.2) 

 

Then, it remained the only dominant parameters,    and      .      has been constrained as explained 

in the flapping model section.      has the value of the negative gravity constant theoretically. That is, 

if the vertical center of gravity is known, its exact value can be calculated. Because of that, all data 

obtained from the non-linear simulation are defined in the body axes. Therefore it can be said that 

     has the value of the negative gravity constant and in the calculations, its value is fixed. Finally, 

the only remaining parameters,    and the bias term,   are identified.     is the speed force derivative 

and it should be physically negative.  

 

After the least square method is applied to this simple equation, obtained results are shown at the 

Table 4- 7. It may be concluded that    has the small standard error and its coefficient of 

determination is close to 0.9. Furthermore, it has the relatively small   , inverse of the relative 

parameter standard error. Hence, it is justifiable to use it as initial parameter value for output error 

method. Figure 4- 7 shows the result of the longitudinal translational dynamics. Straight line shows 

non-linear simulation result and dashed line shows identified result. As shown in the Figure 4- 7, 

model fit is better at the low frequency region than high frequency region. Main aim of this step is 

fitting the low frequency content of the non-linear simulation response. It is enough for the beginning 

of the system identification procedure. 

 

 

 

Table 4- 7 : Longitudinal Translational Dynamics, Least Square Estimation Results 

 

Parameters    
Standard Error,  

      
% Error      

   -3,13E-02 1,44E-03 4,60E+00 2,17E+01 

   3,32E+00 1,97E-02 5,95E-01 1,68E+02 

 s (fit error) 1,72E+00       

    (coeficient of determination, %) 8,38E-01       

 

 

 

Lateral translational dynamic equation is also obtained as longitudinal dynamic case. After using the 

same simplifications, lateral translational equation becomes, 

 

                          
 (4.3) 

 

In this equation    is coupled parameter, since it represents the tail rotor contribution. Hence, it can be 

ignored at this step. Then equation rewritten as, 

 

                     
 (4.4) 
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Figure 4- 7 : Body Acceleration in x-direction result with Least Square Method 

 
 
Finally, lateral translational dynamic has one unknown parameter,    at this step. Again the unknown 

parameters are estimated using the least square method. Estimated parameters are tabulated in Table 4 

- 8. Like longitudinal case,    has small standard error and its coefficient of determination is close to 

1. Hence, identified model response shows good agreement with non-linear simulation model result. It 

has relatively high percentage error, but it is accepted for simplified lateral translational dynamic 

equation.      is the speed force damping derivative. It should have the negative value physically. 

Estimated result is negative. Hence it may be used as initial parameter value for the further 

estimations.    is the bias parameter to take the effects of the non-linearity into account. Comparison 

of the non-linear simulation model and identified body acceleration in y-direction are shown at the 

Figure 4 - 8. In this figure, solid line shows non-linear simulation response and dashed line shows 

identified model response. 

 

 

 

Table 4 - 8 : Lateral Translational Dynamics, Least Square Estimation Results 

 

Parameters    
Standard Error,  

      
% Error      

   -4,44E-02 2,76E-03 6,22E+00 1,61E+01 

   1,20E+00 6,54E-02 5,46E+00 1,83E+01 

s (fit error) 1,33E+00       

    (coeficient of determination, %) 9,89E-01       
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Figure 4 - 8 : Body Acceleration in y-direction result with Least Square Method 

 
 
 
Heave translational dynamic equation may be written as, 

 

                                 
 

  
      

 
  

        
     

         
       

(4.5) 

 

In this equation heave dynamic is directly affected from heave damping derivative    , and gain for 

the heave dynamics from collective input,        
. Other terms represent the coupling effects and they 

may be ignored at this step to examine the dominant parameters. Then this equation becomes as 

follows, 

 

                
      (4.6) 

 

There are two unknown system parameter to estimate at this step. Estimated values of these unknown 

parameters and their statistical parameters are seen in Table 4 - 9. Heave damping derivative must 

have a negative value. Estimated value is negative with small standard error. Moreover fit error is very 

small and coefficient of determination is also close to 1. Hence, fitting is acceptable. Figure 4 - 9 

shows non-linear simulation result and estimated body acceleration in z direction. It is seen that low 

frequency responses are matched better than high frequency responses. However estimated parameters 

are used as initial parameter values to identify the full 8 DoF linear hover identification model.  
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Table 4 - 9 : Heave Translational Dynamics, Least Square Estimation Results 

 

Parameters    
Standard Error,  

      
% Error      

   -2,41E-01 2,85E-03 1,18E+00 8,45E+01 

      
 -2,44E+02 7,15E-01 2,94E-01 3,40E+02 

   7,86E+01 2,31E-01 2,93E-01 3,41E+02 

s (fit error) 5,77E-01       

    (coeficient of determination, %) 9,83E-01       

  

 

 

 

Last step of the identification of the translational and angular dynamics is yaw angular dynamics. Yaw 

angular rate equation can be written as,  

 

                                    
 

  
      

 
  

        
              

       
(4.7) 

 

In this equation,    and        
 are directly related to yaw axis. Other parameters affect the yaw 

dynamic indirectly and they are coupled terms. Hence, in this step,    and        
 are estimated by 

using the least square method. Final equation is obtained as,  

 

                
       (4.8) 

 

 

 
Figure 4 - 9 : Body Acceleration in z-direction result with Least Square Method 
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Estimated parameter values and their errors are shown at the Table 4 - 10. The results are good 

enough, since error, namely fit error, standard errors and percentage errors are small. Furthermore, 

coefficient of determination and    values are sufficiently high values. Moreover, non-linear 

simulation response and estimated angular yaw acceleration are shown with respect to time at the 

Figure 4 - 10. Straight line shows the non-linear simulation model response and dashed line shows the 

identified model response. It seems a very good fitting. After ten seconds, error is growing up. 

However, estimated parameters are acceptable to take as initial parameter values for the complete 8 

DoF linear coupled identification model. Since, fitting of the low frequency region is important for 

this step.  

 

 

 

Table 4 - 10 : Angular Yaw Dynamics, Least Square Estimation Results 

 

Parameters    
Standard Error,  

      
% Error      

   -3,71E-01 2,31E-03 6,23E-01 1,60E+02 

       
 -4,04E+00 8,40E-03 2,08E-01 4,81E+02 

   1,65E+00 3,55E-03 2,15E-01 4,66E+02 

  s (fit error) 2,92E-02       

    (coeficient of determination, %) 9,92E-01       

 

 

 

 
Figure 4 - 10 : Angular Yaw Acceleration in z-direction result with Least Square Method 
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4.3.2 UNCOUPLED DYNAMICS 

 

After estimating dominant parameters of the translational and angular dynamics which are mentioned 

previous part of this chapter, remaining uncoupled parameters may be estimated by using the output 

error method. In this study, uncoupled dynamics means pitch and roll dynamics.  

 

Pitch dynamics may be obtained from the complete 8 DoF model by making use of the            
  

 

states without cross coupling terms. Coupled terms are ignored. Then, the following state space form 

of the pitch dynamics is obtained. 

 

 

 
 
 
 

  
  

  

 
  
  
 
 
 

  

 
 
 
 
 
 
          

         

    

    
 

τ  
 
 
 
 
 

    

 
 
 

     

       (4.9) 

 

In these equations, there are four unknown parameters which are           τ           .    

represents the effects of the changing helicopter longitudinal velocity to the pitching motion of the 

helicopter.      is relating to the flapping model and represents the rotor dynamics cross coupling. τ  

is the rotor time constant and its theoretical value is 0,127 second, which is calculated at the flapping 

model part.       is the gain from longitudinal input.    and       are taken as a fixed parameters with 

estimating values of the translational dynamic step. Here       represents the ratio of the rotor pitch 

moment derivative to the rotor time constant, 
         

τ 
. 

 

Estimated parameters and their statistical parameters are tabulated at the Table 4 - 13. In order to 

estimate these unknown parameters, output error method is used. Estimated parameters have the 

reasonable values with small errors. Rotor time constant is estimated as 0,144 second and its 

theoretical value is 0,127 second. It is also tabulated at the Table 4 - 12. Its estimated value is close to 

its theoretical value.  

 

 

 

Table 4 - 11 : Pitch Dynamics, Output Error Method Results 

 

Parameters    
Standard Error,  

      
% Error      

   6,91E-03 1,65E-05 2,39E-01 4,18E+02 

      9,05E+00 5,73E-02 6,33E-01 1,58E+02 

τ  1,44E-01 8,63E-03 6,01E+00 1,66E+01 

      -6,82E+00 9,63E-02 1,41E+00 7,08E+01 

 

 

 

Table 4 - 12 : Comparison of Theoretical and Estimated Rotor Time Constants at  Pitch 

Dynamics Step  

 

Parameter Estimated Value Theoretical Value 

τ  [sec] 0,144 0,127 
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Identified model responses and non-linear simulation model responses are shown at Figure 4 - 11. 
Solid line represents the non-linear simulation responses and dashed line represents the non-linear 

analysis results. In order to determine the linearity between the estimated and measured outputs, data 

correlation matrix is calculated. Its diagonal elements are tabulated at the Table 4 - 13. Diagonal 

elements of the correlation matrix represent the correlation of the identified model results and non-

linear simulation responses. All of them are greater than 0.9 thus their linearity is very good. Hence 

these estimated parameters may be used as initial parameter values at the identification of the coupled 

pitch and roll dynamics step.  

 

 

 

 
Figure 4 - 11 : Uncoupled Pitch Dynamics result with Output Error Method 

 
 

 

Table 4 - 13 : Correlation Coefficient Matrix for Pitch Dynamics 

 

Outputs 
Correlation 

Coefficients 

  0,99 

q 1,00 

  1,00 

 
  

 0,94 
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Roll dynamics equations may be obtained likewise. If cross coupling terms are ignored, state space 

form of the roll dynamics may be written as (4.10.  Roll dynamics has four states, which are 

           
  

. 

 

 

 
 
 
 

  
  
  

 
  
  
 
 
 

  

 
 
 
 
 
 
         

          

    

    
 

τ  
 
 
 
 
 

    

 
 
 

    

      (4.10) 

 

This state space form involves quasi-steady force angular derivative,    . However, this parameter is 

ignored in the identification procedure. Since, its contribution to results is much smaller than other 

parameters. Hence final roll dynamics equation can be expressed as following, 

 

 

 
 
 
 

  
  
  

 
  
  
 
 
 

  

 
 
 
 
 
 
         

         

    

    
 

τ  
 
 
 
 
 

    

 
 
 

    

      (4.11) 

 

   is estimated by using the least square method at the identification of the lateral translational 

dynamic step. Moreover,      has a fixed value. It is equal to gravity constant,  . Then four unknown 

parameters, namely           τ            , remain to estimate. Rotor time constant τ , has the same 

value for pitch and roll dynamics case theoretically. However, in this step, it is  also estimated.      

represents the ratio of the rotor roll moment derivative to the rotor time constant, 
        

τ 
. 

 

Estimation values of the four unknown parameters are tabulated as Table 4 - 14 with their statistical 

accuracy parameters. The results are useful. Standard errors are small and    statistics are sufficiently 

high to accept the parameter accuracy. In addition, rotor time constant is almost same with its 

theoretical value as seen at the Table 4 - 15.  

 

 

 

Table 4 - 14 : Roll Dynamics, Output Error Method Results 

 

Parameters    
Standard Error,  

      
% Error      

   -5,40E-02 5,00E-04 9,25E-01 1,08E+02 

       4,89E+01 2,49E-01 5,08E-01 1,97E+02 

τ  1,28E-01 9,29E-04 7,24E-01 1,38E+02 

     8,14E+00 3,06E-02 3,76E-01 2,66E+02 

 

 

 

 

Table 4 - 15 : Comparison of Theoretical and Estimated Rotor Time Constants at Roll 

Dynamics Step 

 

Parameter Estimated Value Theoretical Value 

τ  [sec] 0,128 0,127 
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Results of the roll dynamics are seen at the Figure 4 - 12. The non-linear simulation responses and 

identification results have good matching with each other. In addition, correlation of the non-linear 

simulation responses and identified model results are seen at the diagonal elements of the correlation 

coefficient matrix. Diagonal elements of the correlation coefficient matrix are tabulated at the Table 4 

- 16. All of the diagonal elements of the correlation coefficient matrix are greater than 0,9. That is to 

say, non-linear simulation responses and identified results are almost same. As a result, estimated 

parameters may be used for estimating the other unknown parameters at the further step which is 

coupled pitch and roll dynamics.  

 

 

 

 
Figure 4 - 12 : Uncoupled Roll Dynamics results with Output Error Method 

 
 
 

 
Table 4 - 16 : Correlation Coefficient Matrix for Roll Dynamics 

 

Outputs 
Correlation 

Coefficients 

  0,92 

p 0,99 

  1,00 

 
  

 0,95 
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4.3.3 COUPLED DYNAMICS 

At this part, first coupled pitch and roll dynamics is identified. Second, parameters of the complete 8 

DoF linear model are estimated. In order to estimate the unknown parameters of the coupled pitch and 

roll dynamics, estimated parameters of the translational dynamics, angular dynamics and uncoupled 

dynamics are used. Moreover, to identify the complete 8 DoF linear identification model, results of 

the coupled pitch and roll dynamics model is used. 

 

Coupled pitch and roll dynamics model with the four pitch dynamics states,        
  

      four roll 

dynamics states         
  

, may be obtained from full 8 DoF linear identification model as follows, 
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  (4.12) 

 

However, some parameters are also dropped in the iteration process because of their small 

contributions. These parameters are             . Finally coupled pitch and roll dynamics can be 

expressed at the state space form as follows, 
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  (4.13) 

 

First, estimated parameters of the translational dynamic, angular dynamic and uncoupled dynamics are 

taken as fixed values at the estimation of the coupled dynamics step. Hence, total six unknown 

coupled parameters namely,                           , are estimated at this step with longitudinal 

and lateral inputs. Cross-coupling parameter    represents the ratio of the pitch moment stiffness to 

the rotor time constant, 
       

τ 
.    is the ratio of the roll moment stiffness to the rotor time constant, 

       

τ 
.       and      are defined at the uncoupled dynamics section.      and       indicate the ratio of 

the moment control derivatives to rotor time constant. They can be expressed as 
        

τ 
     

         

τ 
, 

respectively. 
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Table 4 - 17 shows the estimated parameters of the coupled pitch and roll dynamics. Output error 

method is used to estimate the unknown parameters at this part. Standard errors of the estimated 

parameters are small and it is acceptable for successful fitting.  

 

Figure 4 - 13 and Figure 4 - 14 show the results of the coupled pitch and roll dynamics. Fitting of the 

FLIGHTLAB non-linear simulation responses and identification results are acceptable except for the 

lateral flapping angle,  
  

.  

 

 

 

Table 4 - 17 : Coupled Pitch and Roll Dynamics, Output Error Method Results 

 

Parameters    
Standard Error,  

      
% Error      

   2,52E-04 4,69E-05 1,86E+01 5,38E+00 

   3,21E-02 1,88E-04 5,87E-01 1,70E+02 

   4,36E-01 6,62E-02 1,52E+01 6,58E+00 

   -9,73E-01 3,86E-02 3,96E+00 2,52E+01 

     -1,13E+00 2,59E-02 2,28E+00 4,38E+01 

      1,51E+00 2,13E-02 1,42E+00 7,06E+01 

 

 

 

Diagonal elements of the correlation coefficient matrix are used to measure the linearity between non-

linear simulation responses and identified results. They are tabulated as Table 4 - 18. The results of 

identification of the pitch dynamics             
  

  have greater than 0,9 correlation with non-linear 

simulation model responses. In addition, results of the roll dynamics              have greater than 

0,7 correlation factor. Estimated lateral flapping angle,  
  

, does not have good agreement with the 

non-linear simulation model result. However, all estimated results are adequate to use at the complete 

8 DoF model. 

 
 
 

Table 4 - 18 : Correlation Coefficient Matrix for Coupled Pitch and Roll Dynamics 

 

Outputs 
Correlation 

Coefficients 

  0,98 

  0,98 

p 0,87 

q 0,97 

  0,72 

  0,97 

 
  

 0,84 

 
  

 0,26 

 
 



 

54 

 
Figure 4 - 13 : Coupled Pitch and Roll Dynamics results with Output Error Method 

 
 
 

 
Figure 4 - 14 : Coupled Pitch and Roll Dynamics results (Cont.) with Output Error Method 
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Finally, complete 8 DoF model is identified by using all of the estimated parameters of the previous 

steps. Final model is obtained by adding the heave and yaw dynamics to coupled pitch and roll 

dynamics model with their coupled parameters. State space model of this model can be expressed as, 
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(4.14) 

 

with the output vector,  

 

              
  

 
    

 

Quasi steady force angular derivative,   , is taken into account at this step. It represents the effect of 

the tail rotor. Longitudinal, lateral, pedal and collective inputs are used for identification of the model. 

             
            

                                                      are taken as zero. 

Since, their contributions are small according to others parameters. Thus, final complete 8 DoF linear 

hover identification model may be written as follows, 
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Complete 8 DoF identification model has 36 free unknown parameters and two fixed parameters as 

shown equation (4.15. Fixed parameters are                 . They are associated with gravity 

constant. Except for the new coupled parameters such as       
                   

etc., initial values 

of the parameters are taken as estimated values at the previous steps. Furthermore, all of them are 

refined in this step with bias terms. Initial parameter values for the new unknown coupled parameters 

are taken as zero.  

 

After estimating all unknown parameters, estimated parameter values are obtained as Table 4 - 19. 

Standard errors of the estimated parameters are small and except for the        
.    statistics have 

sufficiently big values and this is good for parameter accuracy.  

 

Identification of the complete 8 DoF linear hover identification model converged to a cost function 

      = 8,38E-24. It is a very small value, so that this is acceptable for identification. In the 

identification procedure, number of the unknown parameters is reduced as much as possible. Briefly, 

36 free parameters are estimated. All estimated parameters are shown at the Table 4 - 19. They are in 

terms of the English units. In addition to, all of them are taken as free parameter to identify the 

complete 8 DoF linear hover model, except for the         nd       . They have constant values as 

explained related part. 

 

Figure 4 - 15 shows the inputs which are used at the identification process. Inputs are applied to the 

FLIGHTLAB non-linear simulation model separately, and then all obtaining results are combined to 

use at the identification process. At the Figure 4 - 16, Figure 4 - 17 and Figure 4 - 18, twelve seconds 

of the responses correspond to response of the longitudinal input. Twelve to twenty seconds of the 

responses represent the lateral response. Twenty to thirty-three seconds of the responses represent the 

response of the collective input, and then last twelve seconds of the responses represent the pedal 

response.  

 

Comparison of the non-linear simulation model responses and identified model results are shown 

Figure 4 - 16, Figure 4 - 17 and Figure 4 - 18. Figure 4 - 16 shows the translational velocities. It is 

seen that vertical velocity does not have a good matching with non-linear simulation response between 

five to twelve seconds. This region corresponds to the longitudinal input response. Since, it is the off-

axis response and it may be required higher order modeling with inflow coning dynamics for perfect 

fitting. At the Figure 4 - 17, angular velocity responses of the identified model and non-linear 

simulation model responses are compared. Angular velocities have good matching with non-linear 

model responses. Responses of pitch and roll attitudes are shown at the Figure 4 - 18.  Attitudes are 

very close to the non-linear simulation model responses. Longitudinal and lateral flapping angles are 

also shown at Figure 4 - 18. Flapping angles, especially lateral flap angle, have large errors according 

to others responses. However, these errors are seen at the off-axis response part. Fitting of the off axis 

response is much more difficult than on-axis response. To identify the off axis responses, 
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identification model and/or identification inputs may be enhanced. [5, 18, 8, 13, 15, 22] On the other 

hand, off-axis responses of the identified model are acceptable for this study.  

 

 

 

 
Figure 4 - 15 : Identification Inputs 
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Table 4 - 19 : Complete 8 DoF Model, Output Error Method Results 

 

Parameters    
Standard Error,  

      
% Error      

   -1,37E-01 1,78E-03 1,30E+00 7,72E+01 

      -32,17 - - - 

   -1,44E-01 2,54E-03 1,76E+00 5,69E+01 

   5,99E+00 3,06E-01 5,10E+00 1,96E+01 

   3,41E+00 6,07E-02 1,78E+00 5,62E+01 

       32,17 - - - 

   -4,53E-01 8,88E-03 1,96E+00 5,10E+01 

   -1,01E+01 2,07E-01 2,05E+00 4,89E+01 

   2,35E+00 1,24E-01 5,30E+00 1,89E+01 

   1,98E-02 1,88E-04 9,49E-01 1,05E+02 

   -4,46E-02 4,24E-04 9,50E-01 1,05E+02 

       5,06E+01 4,55E-01 8,99E-01 1,11E+02 

   3,62E-03 5,12E-05 1,41E+00 7,07E+01 

   8,19E-03 1,06E-04 1,29E+00 7,74E+01 

   -4,25E-02 9,04E-04 2,13E+00 4,70E+01 

      9,65E+00 4,13E-02 4,28E-01 2,34E+02 

   1,00E-03 4,58E-05 4,55E+00 2,20E+01 

   -6,06E-03 1,47E-04 2,43E+00 4,11E+01 

   -2,13E-01 3,81E-03 1,79E+00 5,59E+01 

   -2,76E-01 2,22E-03 8,04E-01 1,24E+02 

       5,40E+00 7,96E-02 1,47E+00 6,78E+01 

τ  1,22E-01 5,21E-04 4,28E-01 2,34E+02 

   -5,93E+00 1,20E-01 2,02E+00 4,95E+01 

   1,12E+00 1,50E-02 1,34E+00 7,47E+01 

      
 5,43E+01 1,21E+00 2,24E+00 4,47E+01 

       
 2,30E+01 2,67E-01 1,16E+00 8,64E+01 

      
 -2,93E+02 3,93E+00 1,34E+00 7,47E+01 

       
 -4,85E+00 8,48E-01 1,75E+01 5,71E+00 

      
 -4,22E+00 1,01E-01 2,39E+00 4,18E+01 

       
 2,58E+00 3,28E-02 1,27E+00 7,87E+01 

      
 4,72E+00 2,92E-02 6,19E-01 1,61E+02 

       
 -2,34E+00 1,00E-02 0,428959 2,33E+02 

      
 8,54E+00 6,15E-02 7,21E-01 1,39E+02 

       
 -3,63E+00 1,34E-02 3,68E-01 2,72E+02 

      -6,80E+00 1,08E-02 1,58E-01 6,32E+02 

     3,84E+00 3,30E-02 8,58E-01 1,16E+02 

      1,54E+00 9,70E-03 0,630953 1,58E+02 

     7,50E+00 3,58E-02 4,78E-01 2,09E+02 
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Figure 4 - 16 : Complete Model Velocity results with Output Error Method 

 
 
 

 
Figure 4 - 17 : Complete Model Angular Velocity results with Output Error Method 
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Figure 4 - 18 : Complete Model Attitudes and Flap Angles results with Output Error Method 

  
 
 
 
As discussed before, in order to interpret the model fitting, correlation coefficient of determination 

matrix is used for complete 8 DoF linear hover identification model and FLIGHTLAB non-linear 

simulation model. Diagonal elements of the correlation matrix are shown at Table 4 - 20. Except of 

the vertical velocity and lateral swashplate angle, all of the outputs have greater than 0.9 correlation 

coefficient. This means that identification is successfully completed. For the vertical velocity and 

lateral swashplate angle, linearity of the responses are not very good because of the off-axis fitting 

results. However, these responses are acceptable for this study. Moreover at Table 4 - 21 shows the 

theoretical and identified values of the rotor time constant. Its theoretical value is the 0,127 second 

and its estimated value is 0,122 second. It shows agreeable prediction for time constant. The ratio of 

the pitch and roll stiffness terms,  
      

     
 , should be equal to the ratio of the pitch moment inertia to roll 

moment inertia. [5] Its comparison of the theoretical and estimated values also shown at the Table 4 - 

21. Its theoretical value is 4,47 and estimated value is 5,24. Hence it may be claimed that parameters 

are successfully estimated.  

 

In order to determine the helicopter static speed stability, the off axis controls should be fixed, so that 

the only control gradient parameter, 
      

  
 is remaining. For positive static speed stability this gradient 

should be negative. Simplified equation for the longitudinal speed stability derivative is [5], 

 

            
 
      

  
     

  

  

 (4.16) 
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Table 4 - 20 : Correlation Coefficient Matrix for Complete 8 DoF Hover Model 

 

Outputs 
Correlation 

Coefficients 

u 0,98 

v 0,96 

w 0,78 

p 0,92 

q 0,99 

r 0,98 

  0,96 

  1,00 

 
  

 0,94 

 
  

 0,60 

 

 

 

Table 4 - 21 : Comparison of Theoretical and Estimated Rotor Time Constants and The Ratio of 

The Pitch to Roll Flapping Stiffness for Complete 8 DoF  Hover Model 

 

Parameter Estimated Value Theoretical Value 

τ  [sec] 0,122 0,127 

 
      

     

  5,24 4,47 

 

 

 

A positive is expected for     according to first principles analyses of the steady state response of an 

isolated rotor to speed perturbations. [5, 17, 25] As a result of these,   should have a positive value 

and result is consistent with the estimated value of the               
 

Similarly lateral speed derivative   , may be expressed as follows, based on the non-linear simulation 

trim gradients, [5] 

 

            
 
     

  
          

 
       

  
   (4.17) 

 

Hence, for the positive lateral dihedral stability,    should be negative. Moreover identification result 

of    is negative with value of -4.46E-02. Hence, identification parameters have good agreement with 

their theoretical values. 

 

 
4.4 VERIFICATION 
 
After estimated all of the unknown parameters of the complete 8 DoF hover model, time domain 

verification is done to observe the predictive capability of the identified model with step and doublet 

inputs. They are not used at the identification process. Here FLIGHTLAB simulation data represent 
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the flight data. At the figures, solid line represents the non-linear simulation responses, dashed line 

represents the identified model responses. All inputs are applied after the hover trim condition.  

 

4.4.1 PILOT LONGITUDINAL CYCLIC RESPONSE VERIFICATION 

 

For identified 8 DoF Hover model, stability and control derivatives are fixed and then step and 

doublet input are applied four control sticks, longitudinal, lateral, collective and pedal, respectively.  

Figure 4 - 19 shows the verification pilot inputs. Same inputs are also applied FLIGHTLAB non-

linear simulation model to compare with identified model responses. These inputs have 0.2 second 

rise time and fall time.  

 

 

 

 
Figure 4 - 19 : Verification (Step and Doublet) Pilot Inputs for Longitudinal Responses 

 

 

 

In order to compare the identified 8 DoF model responses and non-linear simulation model responses, 

correlation coefficients are used. If the correlation coefficient is 1, identified model response and 

simulation responses have a perfect match.  Table 4 - 22 and Table 4 - 23 show the correlation 

coefficients for the step and doublet inputs, respectively.  
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Table 4 - 22 : Correlation Coefficients for Comparison of the Identified 8 DoF Model and Non-

Linear Simulation Model for Longitudinal Step Input 

 

Outputs 
Correlation 

Coefficients 

u 1,00 

v 0,98 

w 0,62 

p 0,76 

q 1,00 

r 0,63 

  0,93 

  1,00 

 
  

 0,99 

 
  

 0,22 

 

 

Table 4 - 23 : Correlation Coefficients for Comparison of the Identified 8 DoF Model and Non-

Linear Simulation Model for Longitudinal Doublet Input 

 

Outputs 
Correlation 

Coefficients 

u 0,89 

v 0,96 

w 0,83 

p 0,68 

q 1,00 

r 0,92 

  0,90 

  1,00 

 
  

 1,00 

 
  

 0,43 

 

 

 

Results of the longitudinal step response to identified model and nonlinear simulation model are 

compared. Correlation coefficients are calculated to compare identified 8 DoF model and non-linear 

simulation results. Longitudinal axis responses of the identified 8 DoF model which are u, q,   and 

 
  

  have greater than 0.9 correlations with non-linear simulation responses. These responses are the 

on-axis responses. The off-axis angular responses (p, r) and vertical velocity (w) responses have 

greater than 0.6 correlations with non-linear simulation results. Magnitudes of these off-axis responses 

are small. Figure 4 - 20, Figure 4 - 21 and Figure 4 - 22 show the responses of the longitudinal step 

input. It can be seen that non-linear simulation model and identified model responses are very close to 

each other.  
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Figure 4 - 20 : Time Response Verification of Identified 8 DoF Hover Model for Longitudinal 

Step Response, Velocities 

 

 
 

 
Figure 4 - 21 : Time Response Verification of Identified 8 DoF Hover Model for Longitudinal 

Step Response, Angular Velocities 
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Figure 4 - 22 : Time Response Verification of Identified 8 DoF Hover Model for Longitudinal 

Step Response, Attitudes and FlapAngles 
 
 
 
In addition to the step input, doublet input is also applied to the identified model. Comparison of the 

identified model response and non-linear simulation model response is done.  Similar to step input 

responses, the on-axis responses of the identified model match better to non-linear simulation 

responses for doublet input. Correlation coefficients of the on-axis response are greater than 0,85. 

Figure 4 - 23 shows the responses of the body velocities. All body velocity responses of identified 

model have good matching with non-linear simulation model responses. Vertical body velocity has 

some deficiency, however it is acceptable. Angular velocities are shown at Figure 4 - 24. Pitch angular 

velocity response has perfect matching with non-linear simulation model. Its correlation coefficient is 

also equal to 1. Similarly, pitch attitude has also perfect matching. It can be seen at Figure 4 - 25. 

Flapping angles and roll attitude have also acceptable fitting with non-linear simulation model. 
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Figure 4 - 23 : Time Response Verification of Identified 8 DoF Hover Model for Longitudinal 

Doublet Response, Velocities 

 

 
 

 
Figure 4 - 24 : Time Response Verification of Identified 8 DoF Hover Model for Longitudinal 

Doublet Response, Angular Velocities 
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Figure 4 - 25 : Time Response Verification of Identified 8 DoF Hover Model for Longitudinal 

Doublet Response, Attitudes and FlapAngles 
 
 

 

4.4.2 PILOT LATERAL CYCLIC RESPONSE VERIFICATION 

 

Like longitudinal response verification, step and doublet inputs are also applied to identified 8 DoF 

complete model and FLIGHTLAB non-linear simulation model. Verification inputs are shown at the 

Figure 4 - 26. These step and doublet inputs have 0.2 second rise time and fall time.  

 

Correlation coefficients of the identified 8 DoF model and non-linear simulation models responses are 

tabulated at the Table 4 - 24 and Table 4 - 25 for step and doublet inputs, respectively. For lateral step 

input responses, the on-axis responses are good matching with each other. Longitudinal body velocity 

response of the identified model has the lowest correlation with the non-linear simulation response. 

Moreover, vertical velocity and angular yaw rate responses have less correlation coefficient than other 

responses, since identified model has the only coupled flapping dynamics. Coupled inflow and coning 

dynamics are not modeled. When coupled inflow and coning dynamics are added to the identified 

model, this deficiency may be remedied. For lateral doublet input, the on-axis responses have also 

good matching. The off-axis responses have similar deficiencies. Longitudinal and vertical body 

velocity responses of the identified model have negative correlation with non-linear simulation 

responses. When longitudinal and vertical velocity of the identified model responses are decreasing, 

longitudinal and vertical velocity of the non-linear simulation model responses are increasing as 

shown in Figure 4 - 27. However, these responses have small magnitudes and they are acceptable for 

identified 8 DoF model. Lateral body velocity has good matching with 0,98 correlation coefficient.  
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Table 4 - 24 : Correlation Coefficients for Comparison of the Identified 8 DoF Model and Non-

Linear Simulation Model for Lateral Step Input 

 

Outputs 
Correlation 

Coefficients 

u 0,11 

v 0,98 

w 0,39 

p 0,99 

q 0,85 

r 0,49 

  0,95 

  0,99 

 
  

 0,74 

 
  

 0,88 

 

 

 

Table 4 - 25 : Correlation Coefficients for Comparison of the Identified 8 DoF Model and Non-

Linear Simulation Model for Lateral Doublet Input 

 

Outputs 
Correlation 

Coefficients 

u -0,29 

v 0,79 

w -0,70 

p 0,99 

q 0,74 

r 0,35 

  1,00 

  0,55 

 
  

 0,77 

 
  

 0,93 
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Figure 4 - 26 : Verification (Step and Doublet) Pilot Inputs for Lateral Responses 

 
 
 
Figure 4 - 27, Figure 4 - 28 and Figure 4 - 29 show the responses of the lateral step input. It can be 

seen that non-linear simulation model and identified responses are close to each other. Correlation 

coefficients of the all responses are tabulated at Table 4 - 24. Longitudinal and vertical body velocities 

have some deficiencies and they are seen at Table 4 - 27. Angular velocities are shown at Figure 4 - 

28. They have good agreement with non-linear simulation model response. Roll and pitch angular 

velocities have greater than 0.85 correlations with non-linear simulation model angular velocity 

responses. Figure 4 - 29 shows roll and pitch attitudes and flapping angles. These responses have also 

acceptable matching with non-linear simulation models responses. Pitch and roll attitude responses of 

identified model have greater than 0.95 correlations with non-linear simulation model responses. 

Flapping angles responses have also high correlation coefficients. 
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Figure 4 - 27 : Time Response Verification of Identified 8 DoF Hover Model for Lateral Step 

Response, Velocities 

 

 

 

 
Figure 4 - 28 : Time Response Verification of Identified 8 DoF Hover Model for Lateral Step 

Response, Angular Velocities 
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Figure 4 - 29 : Time Response Verification of Identified 8 DoF Hover Model for Lateral Step 

Response, Attitudes and FlapAngles 

 

 
 

Doublet input is also applied to identified model and FLIGHTLAB non-linear simulation model. 

Comparison of the identified model response and non-linear simulation model response is done. 

Velocity responses are seen at Figure 4 - 30. Angular velocities are seen at Figure 4 - 31. Roll and yaw 

attitudes and also flapping angles are seen at Figure 4 - 32. Their correlation coefficients are tabulated 

at Table 4 - 25. Similar to lateral step input, longitudinal and vertical body velocity responses have 

some deficiencies for lateral doublet input.  However, lateral body velocity has good matching with 

non-linear simulation model response. The off-axis velocity responses may be required to improve. 

Roll angular velocity response of identified model has approximately perfect matching. The off-axis 

angular velocity responses are acceptable matching for identified 8 DoF model. At Figure 4 - 32, roll 

attitude response have perfect matching. Longitudinal flapping angle response has 0,77 correlation 

coefficient. Moreover lateral flapping angle response have 0,93 correlation with non-linear simulation 

model response. Hence, identified 8DoF model is acceptable especially the on-axis responses for 

lateral inputs. 
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Figure 4 - 30 : Time Response Verification of Identified 8 DoF Hover Model for Lateral Doublet 

Response, Velocities 

 

 

 

 
Figure 4 - 31 : Time Response Verification of Identified 8 DoF Hover Model for Lateral Doublet 

Response, Angular Velocities 
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Figure 4 - 32 : Time Response Verification of Identified 8 DoF Hover Model for Lateral Doublet 

Response, Attitudes and FlapAngles 

 

 

 

4.4.3 PILOT COLLECTIVE REPONSE VERIFICATION 

Step and doublet collective inputs are also applied to identified 8 DoF complete model and 

FLIGHTLAB non-linear model. These inputs are shown at Figure 4 - 33. Inputs are applied at the 1 

second with 0.2 second rise time and fall time.  

 

Table 4 - 26 shows the correlation coefficients of the identified 8 DoF model and non-linear 

simulation model responses for step input. All responses have good fitting with each other, except for 

longitudinal body velocity. Longitudinal body velocity response has negative correlation coefficient. 

However, its magnitude is small.  

 

Correlation coefficients of the identified model and non-linear simulation model responses for doublet 

input are shown at Table 4 - 27. Lateral, yaw and heave dynamics responses have greater than 0,8 

correlation coefficient. Except for the longitudinal body velocity (u), longitudinal dynamic responses 

of the identified model have also greater than 0,8 correlation with non-linear simulation responses. 
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Table 4 - 26 : Correlation Coefficients for Comparison of the Identified 8 DoF Model and Non-

Linear Simulation Model for Collective Step Input 

 

Outputs 
Correlation 

Coefficients 

u -0,40 

v 0,98 

w 0,93 

p 0,98 

q 0,90 

r 0,95 

  0,79 

  0,79 

 
  

 0,93 

 
  

 0,93 

 

 

 

Table 4 - 27 : Correlation Coefficients for Comparison of the Identified 8 DoF Model and Non-

Linear Simulation Model for Collective Doublet Input 

 

Outputs 
Correlation 

Coefficients 

u -0,27 

v 0,90 

w 0,97 

p 0,99 

q 0,81 

r 0,80 

  0,97 

  0,83 

 
  

 0,96 

 
  

 0,95 
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Figure 4 - 33 : Verification (Step and Doublet) Pilot Inputs for Collective Responses 

 

 

 

Figure 4 - 34, Figure 4 - 35 and Figure 4 - 36 show the responses of the collective step input. It can be 

seen that non-linear simulation and estimated responses are close to each other except for the 

longitudinal body velocity response. Longitudinal body velocity has negative and small correlation 

with non-linear simulation model response. However, lateral and vertical body velocity responses of 

identified model have greater than 0,9 correlation with non-linear simulation model responses. These 

responses are seen at Figure 4 - 34. Figure 4 - 35 shows the angular velocity responses. Angular 

velocity responses have approximately perfect matching with non-linear simulation model responses. 

Roll and pitch attitude responses of identified model have also good agreement as shown Figure 4 - 

36. Figure 4 - 36 shows also flapping angle responses to collective step input. Correlations of the 

flapping angles with non-linear simulation flapping angle responses are 0,93. Hence, identified 8 DoF 

model has good agreement with non-linear simulation model for collective step input.  
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Figure 4 - 34 : Time Response Verification of Identified 8 DoF Hover Model for Collective Step 

Response, Velocities 

 

 

 

 
Figure 4 - 35 : Time Response Verification of Identified 8 DoF Hover Model for Collective Step 

Response, Angular Velocities 
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Figure 4 - 36 : Time Response Verification of Identified 8 DoF Hover Model for Collective Step 

Response, Attitudes and Flap Angles 

 

 

 
Doublet input is also applied to identified model and then comparison of the identified model response 

and non-linear simulation model response is done. Agreement of the identified 8 DoF model 

responses with non-linear simulation model responses for collective step input is similar to responses 

for the collective doublet input. There is also some deficiency for longitudinal body velocity response. 

However, it is acceptable for this identified model. Body velocity responses are seen at Figure 4 - 37. 

The on-axis responses have good matching with non-linear simulation model responses. Vertical 

velocity response has 0,97 correlation coefficient. Angular velocities can be seen at Figure 4 - 38 and 

they have greater correlation coefficients. Roll and pitch attitudes have also good matching. They can 

be seen at Figure 4 - 39 with flapping angle responses. Flapping angles responses have greater than 

0.95 agreement with non-linear simulation model responses.  
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Figure 4 - 37 : Time Response Verification of Identified 8 DoF Hover Model for Collective 

Doublet Response, Velocities 

 

 

 

 
Figure 4 - 38 : Time Response Verification of Identified 8 DoF Hover Model for Collective 

Doublet Response, Angular Velocities 
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Figure 4 - 39 : Time Response Verification of Identified 8 DoF Hover Model for Collective 

Doublet Response, Attitudes and Flapping Angles 

 

 

 

4.4.4 PILOT PEDAL RESPONSE VERIFICATION 

In order to verify 8 DoF identification model, step and doublet inputs are applied to identified model 

and FLIGHTLAB non-linear simulation model. Inputs have 0.2 second rise time and fall time. 

Responses of these models are compared to each other. 

 

For the pedal step and doublet inputs, correlation coefficients of the identified model and non-linear 

simulation model responses are calculated as Table 4 - 28 and Table 4 - 29, respectively. Vertical 

body velocity response of identified model has negative relation with the non-linear simulation 

response for pedal step and doublet inputs. Longitudinal body velocity has also negative relation with 

non-linear simulation result. However these responses have small magnitude. Except for these 

responses, other responses have good fitting.  
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Table 4 - 28 : Correlation Coefficients for Comparison of the Identified 8 DoF Model and Non-

Linear Simulation Model for Pedal Step Input 

 

Outputs 
Correlation 

Coefficients 

u 0,88 

v 0,95 

w -0,71 

p 0,97 

q 0,80 

r 1,00 

  0,73 

  0,50 

 
  

 0,96 

 
  

 0,93 

 

 

 

Table 4 - 29 : Correlation Coefficients for Comparison of the Identified 8 DoF Model and Non-

Linear Simulation Model for Pedal Doublet Input 

 

Outputs 
Correlation 

Coefficients 

u -0,18 

v 0,46 

w -0,86 

p 0,98 

q 0,55 

r 0,99 

  0,93 

  0,49 

 
  

 0,98 

 
  

 0,92 
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Figure 4 - 40 : Verification (Step and Doublet) Pilot Inputs for  Pedal Responses 

 

 

 
Figure 4 - 41, Figure 4 - 42, Figure 4 - 43 show the responses of the pedal step input. It is seen that 

vertical velocity response of the identified model have mismatch with non-linear simulation model at 

Figure 4 - 41. However its magnitude is small and it may be ignored. At Figure 4 - 42 and Figure 4 - 

43, peaks of the angular rates and flapping angles do not have perfect match, but their response 

characteristics are similar with non-linear simulation responses. Direct response of the pedal input is 

angular yaw rate response. It is seen that at Figure 4 - 41 yaw rate response of the identified model 

have perfect match with non-linear simulation model response. Hence the on-axis response of the 

identified model is in good agreement with non-linear simulation model response. It has also largest 

correlation coefficient, as seen in Table 4 - 28. 
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Figure 4 - 41 : Time Response Verification of Identified 8 DoF Hover Model for Pedal Step 

Response, Velocities 

 

 

 

 
Figure 4 - 42 : Time Response Verification of Identified 8 DoF Hover Model for Pedal Step 

Response, Angular Velocities 
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Figure 4 - 43 : Time Response Verification of Identified 8 DoF Hover Model for Pedal Step 

Response, Attitudes and Flapping Angles 

 

 

 
Doublet input is also applied to identified model and then comparison of the identified model response 

and non-linear model response is done. Figure 4 - 44, Figure 4 - 45 and Figure 4 - 46 show the pedal 

doublet responses of the identified 8 DoF model and non-linear simulation model. At Figure 4 - 44, 

the longitudinal and vertical body velocities have different response characteristic from the non-linear 

simulation model response. These response characteristics may be improved by adding the coupled 

inflow-coning dynamics to identified model. Figure 4 - 45 show the angular velocities. Pitch and roll 

angular velocities have different peaks than non-linear simulation model responses. However these 

deficiencies are acceptable for this identified 8 DoF model. Yaw angular velocity has also perfect 

match with non-linear simulation model response. Attitudes and flapping angles are shown at Figure 4 

- 46. These responses have also acceptable matching with non-linear simulation model. 
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Figure 4 - 44 : Time Response Verification of Identified 8 DoF Hover Model for Pedal Doublet 

Response, Velocities 

 

 

 

 
Figure 4 - 45 : Time Response Verification of Identified 8 DoF Hover Model for Pedal Doublet 

Response, Angular Velocities 
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Figure 4 - 46 : Time Response Verification of Identified 8 DoF Hover Model for Pedal Doublet 

Response, Attitudes and Flapping Angles 
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CHAPTER 5 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 
In this thesis, identification of an 8 DoF  helicopter model in hover flight condition is carried out. 

Least square and output error methods are successfully applied in the time domain to determine the 

unknown stability and control derivatives of the 8 DoF linear identified hover model. In addition to, 

identification model results are compared with FLIGHTLAB non-linear simulation model responses.   

 

The 8 DoF system identification model is obtained by adding the linearized 6 DoF fuselage dynamics 

to 2 DoF explicit flapping dynamics. Least square method is used to obtain the initial parameter 

values for this study.  

 

The system identification is carried first starting from simple uncoupled models and successively 

including couplings and identifying these more complex models.  At each step, the identification is 

started using the previously identified parameters.  Finally, coupled linear model is identified.  The 

success of the approach is demonstrated through simulations.After obtaining the complete helicopter 

identification model specific to UH-60 helicopter for hover case, its verification is done with step and 

doublet inputs. Identification model responses are compared the non-linear simulation model results to 

verify the identification model.  Identified model responses successfully compare with the responses 

of FLIGHTLAB non-linear simulation model. Hence, partition system identification approach may be 

used to identify the helicopter dynamics. Moreover, identified model can be used for simulation of the 

hover condition to design the flight control system with limitations of the higher order responses.  

 

5.1 FUTURE WORK 
 
In the future 8 DoF linear model may be expanded to high fidelity such as, 9 to 14 DoF, model by 

adding and improving lead-lag, yaw-heave dynamics, coupled fuselage/coning-inflow dynamics, rotor 

wake modeling. Moreover, effects of the each additional complexity shall be be evaluated as well.  

 

To improve the realism of the estimation approach, measurement noise shall also be added to the 

system approach. Furthermore, instead of the using the simulation model data, actual flight test data 

may be used for identification.  
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