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ABSTRACT 

NONLINEAR ANALYSIS 
OF 

REINFORCED CONCRETE FRAME STRUCTURES 

 

Çiftci, Güçlü Koray 
M.Sc. in Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Mustafa Uğur Polat 

 
January 2013; 57 Pages 

 

Reinforced concrete frames display nonlinear behavior both due to its composite nature and 
the material properties of concrete itself. The yielding of the reinforcement, the non-uniform 
distribution of aggregates and the development of cracks under loading are the main 
reasons of nonlinearity. The stiffness of a frame element depends on the combination of the 
modulus of elasticity and the geometric properties of its section - area and the moment of 
inertia. In practice, the elastic modulus is assumed to be constant throughout the element 
and the sectional properties are assumed to remain constant under loading. 

In this study, it is assumed that the material elasticity depends on the reinforcement ratio and 
its distribution over the section. Also, the cracks developing in the frame element reduces the 
sectional properties. In case of linear analysis, the material and sectional parameters are 

assumed to be constant. In practice, the modulus of elasticity E is a predefined value based 

on previous experiments and the moment of inertia I  is assumed to be constant throughout 

the analysis. However, in this study, E and I are assumed to be combined. In other words, 
they cannot be separated from each other throughout the analysis.  These two parameters 

are handled as a single parameter as EI . This parameter is controlled by the reinforcement 
ratio and its configuration, sectional properties and deformation of the member. 

Two types of analysis, namely a sectional and a finite element analyses, are used in this 

study. From the sectional analysis, the parameter EI  is calculated based on the sectional 

geometry, material properties and the axial load applied on the section. The parameter EI  is 
then used in the finite element analysis to calculate the sectional forces and the nodal 
displacements. For the nonlinear analysis, the Newton-Raphson iterative approach is 
followed until convergence is obtained. 

 

Keywords: Reinforced concrete frame, nonlinear analysis, sectional analysis, Finite Element 
Method, Newton Raphson Method. 
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ÖZ 

BETONARME ÇERÇEVELİ 
YAPILARIN LİNEER OLMAYAN ANALİZİ 

 

Çiftci, Güçlü Koray 
Yüksek Lisans, İnşaat Mühendisliği Bölümü 
Tez Yöneticisi: Doç.Dr. Mustafa Uğur Polat 

 
Ocak 2013; 57 Sayfa 

 

Betonarme çerçeveler kompozit yapısından ve betonun malzeme özelliklerinden dolayı 
doğrusal olmayan bir davranış gösterirler. Agregaların düzensiz dağılımı ve yükleme altında 
çatlakların gelişimi doğrusal olmayan davranışın başlıca nedenleridir. Bir çerçevenin rijitliği, 
elastisite modülüne ve eleman kesitlerinin geometrik özelliklerine bağlıdır. Uygulamada, 
elastisite modülünün eleman boyunca sabit olduğu, kesit özelliklerinin de yükler altında 
değişmediği kabul edilir. 

Elastisite modülü  demir donatılarının eleman boyunca dağılımına  ve kesit içindeki 
yerleşimine bağlıdır. Yükleme nedeniyle eleman üzerinde oluşan çatlaklar kesit özelliklerini 

azaltır. Bu çalışmada elastisite modülü ( E ) ve atalet momenti ( I ) parametreleri analiz 
boyunca tek bir parametre olarak düşünülmüştür.  Doğrusal analiz için malzeme ve kesit 

parametreleri sabit olarak düşünülür. Genellikle E parametresi deneyler sonucunda 

hesaplanmış ortalama bir değer olup, I parametresi ise analiz boyunca sabit olarak kabul 
edilen teorik bir değerdir. Fakat bu çalışmada elastisite modülü ve atalet momenti tek bir 

parametre, yani EI  olarak ele alınmıştır. Bu parametre donatının eleman içindeki 
yerleşimine, miktarına ve elemanın maruz kaldığı eksenel yüke göre değişir. 

Hesaplamalarda kesit analizi ve sonlu elemanlar yöntemi kullanılmıştır. Kesit analizinde 

eksenel yük, donatı dağılımı ve kesitin geometrik özellikleri kullanılarak EI parametresi 
hesaplanmıştır.Hesaplanan bu parametreler kullanılarak sonlu elemanlar yöntemi ile eleman 
kuvvetleri ve sehim miktarları hesaplanmıştır. Doğrusal olmayan analizi, Newton Raphson 
yöntemi kullanılarak gerçekleştirilmiştir. 

Anahtar Kelimeler: Betonarme çerçeve, lineer olmayan analiz, kesit analizi, Sonlu Elemanlar 
Yöntemi, Newton-Raphson yöntemi. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

A linear analysis is suitable when a structure is expected to behave in a linearly manner, i.e., 
obeys Hooke’s Law. Linearly proportioned stress-strain relationship and returning to its 
original shape once the load is removed are the assumptions. Linear analysis is accepted 
sufficient in design of standard buildings. Also, it has advantages in terms of number of 
parameters used, idealized material behavior and straight forward solution within a 
reasonable time.  

On the other hand, a nonlinear analysis is essential when a structure is expected to be 
loaded beyond the elastic limits of the materials. In this type of analysis, the material 
experiences plastic deformation and there is no possibility of returning to its original shape. It 
requires more detailed material models and more time for analysis, due to its iterative 
approach. 

Nonlinear structural behavior arises from 3 causes: boundary condition nonlinearity, 
geometric nonlinearity and material nonlinearity.  

Reinforced concrete is a very complex composite material resulting from a combination of 
two materials, concrete and steel, both of which have entirely different mechanical 
properties. Although the literature on concrete and reinforced concrete is mainly based on 
elastic parameters such as proportional limit and modulus of elasticity, the behavior of 
reinforced concrete cannot be modeled properly by linear elastic behavior assumptions. 
Actually, the resulting composite material behaves in an elasto-plastic manner responding 
differently to tensile and compressive stresses. Concrete has a small capacity in tension, but 
usually, for the sake of simplicity, the tension capacity of the concrete is neglected. 

In a frame structure flexural members are subjected to transverse loads, causing bending 
moment and shear force. For instance, in a fixed end beam element, tension develops both 
in the fix end zone and in the span, at the top and at the bottom of the section, respectively. 
In the design step of a concrete beam, the tension zones are provided by reinforcing bars to 
resist the tensile forces. For example standard beam design is shown in Figure 1.1. The EI  
parameter is calculated at each section (s1, s2, s3 …) and combined to obtain overall EI  of 
the beam.  

 

Figure 1.1 Change of reinforcement layout throughout the beam 
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At each section, the curvature of the frame is approximated by shape functions, i.e., the 
Hermitian shape functions. Then, the rate of change of sectional moments with respect to 

section curvature under axial load is calculated, in other words, the EI parameter. Numerical 

integration of the EI parameters throughout the section equals to the reinforced concrete 

elements’ EI . 

In linear analysis, it is assumed that the displacements fall within the linear range. Thus, no 
yielding is expected at steel members. Also, the concrete can encounter some minor 
cracking, but not crushing of the concrete. On the other hand, in nonlinear analysis 
reinforcing bars can yield or some portion of the concrete may be crushed. The section may 
undergo fiber to fiber redistribution. Under bending moments, the top fiber of the beam 
reaches the peak stress level for concrete. The top fiber cannot carry more loading, thus it 
reduces its stress and peak stress is carried by lower fibers. This allows to compression 
section carry more load.  

1.2 Purpose 

The goal of this thesis is to focus on nonlinear analysis of reinforced concrete frame by a 
computer program that updates stiffness of the elements according to their deformations. In 
this study, material nonlinearity is assumed to be the main reason of the nonlinear behavior. 
The program uses finite element method to analyze the given reinforced concrete frame. 
Finite element method is a commonly used method for structural analysis. Two node beam 
element is selected as a finite element model and the moment curvature analysis is used to 
obtain the sectional behavior of the reinforced concrete beam. The two node beam element 
is formulated for linear behavior, thus nonlinear solution is implemented by iterative 
approach and using a high density mesh.   

Under various loadings the element yields and the yielding of an element results in the 
formation of plastic hinges. The formation of plastic hinges causes redistribution of forces 
among the members. The goal of this study is to model the yielding and the redistribution 
behavior of the elements.   

1.3 Previous Studies 

Reinforced concrete is one of the most preferred materials in construction industry, so 
understanding of the behavior is rather important. There are a lot of material models 
available in the literature for both concrete and steel. However, in order to get the accurate 
perception, selection of appropriate model is crucial.  

To start with, steel can be modeled either hardening or no hardening material. Bilinear 
models are accurate enough to model steel behavior (Figure 1.2).  

 

Figure 1.2 Steel models with and without hardening 

On the other hand, behavior of concrete is complex when compared to steel’s behavior. 
Unlike steel, concrete has a very low capacity of carrying tension. Most of the time, it is 
assumed that it cannot carry tension at all. The behavior under compression is modeled by 
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combination of curves with different orders. Early assumptions are shown in figure 1.3 for 
flexural analysis and in 1951 E. Hognestad [1] generates a formula (1.1) that covers the 
behavior of concrete (Figure 1.4).  

 

Figure 1.3 Early assumptions for flexural analysis 
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Figure 1.4 Hognestad Parabola 
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Ngo and Scordelis [2] are the pioneers in the usage of finite element method on reinforced 
concrete structures. They analyzed simple beams by using constant strain triangular 
elements. Both concrete and reinforcements are modeled by constant strain triangular 
elements. The concrete and the steel elements are connected to each other with zero length 
bond elements at discrete points. The material models used in this study are assumed to be 
linear. The cracks on the concrete are modeled by separating the elements connections on 
the crack line. Two overlapping nodes are assigned on the cracked elements, allows moving 
individually. They have concluded that the bond stresses at cracked node is zero. 

Cracking of concrete is one of the most important reasons of nonlinearity. Nilson [3] uses an 
incremental load method to analyze nonlinearity of concrete and reinforcement. Instead of 
Ngo and Scordelis, Nilson uses nonlinear element models. Four constant strain triangle 
elements are combined to form a quadrilateral element and the central node is condensed 
out. To implement cracking behavior, when a quadrilateral element is cracked the solution is 
broken and forces on that element is omitted and then iterations continue. 

In 1983, Gupta A.K. and Akbar H. [4] studied this subject by using quadrilateral 
isoparametric element and developed a formulation suitable for modeling cracks in 
reinforced concrete structures. Cracking of concrete is the main source of the material 
nonlinearity. They proposed one point Gaussian quadrature for concrete instead of two, and 

  the principal strain directions are defined by one point instead of four. Also, in that study, 

the crack direction was redefined as perpendicular to the principal direction, which changes 
as the stiffness of the concrete changes. They showed that the proposed formulation gives 
superior results as compared to both the standard isoparametric element and the 
conventional selectively integrated element. 

 

Figure 1.5 Rectangular Isoparametric Element 

In 1990, H. G. Kwak and F. C. Filippou [5] dealt with the finite element analysis of RC 
structures under monotonic and cyclic loads. The concrete and the reinforcing bars modeled 
separately and combined with a bond-slip element. The smeared crack model is selected for 
the behavior of concrete. Also, the cracks on the concrete are modeled with rotating crack 
model, allowing to changing of crack direction with load history. 
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Figure 1.6 Strength Failure Envelope of Concrete 

 
 

The bond-link element is selected because of its simplicity. To apply this model; firstly, the 
reinforcing bars should be located along the edge of a concrete element and secondly, a 

double node is required to measure the relative slip between concrete and reinforcing bars.  

 
Figure 1.7 Reinforcing steel element with bond-slip 

 
 H. G. Kwak and Filip C. Filippou has concluded that, the proposed reinforced concrete 
model gives successive results with the experiments and the tension stiffening plays an 
important role in the analysis of RC beams under monotonic loads. 
 
In 2000, H. G. Kwak and Sun-Pil Kim [6] studied on the nonlinear analysis of RC beams, 
based on moment curvature relation. Their aim is to describe the behavior of the reinforced 
concrete structures under overload conditions and to estimate RC beams’ ultimate strength 
accurately. Their study tries to describe the bond slip behavior of the reinforcements. Bond 
slip effect can be described as the loosing contact of reinforcing bars with the concrete at the 
cracking path. The concrete cannot bear tension and cracks, whereas, the reinforcement 
keeps to elongate. The bond-link element requires a double node; however beam element 
has single degree of freedom at each end, so makes it impossible to use. To overcome this 
problem, the bond slip behavior is introduced by a numerical algorithm. After several 
analyses, they conclude that for over reinforced beams, the bond slip effect is negligible. On 
the other hand, the under reinforced beams, tension softening and bond slip effect have 
dominant effects on cracked zone. 
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In 2003, K. Phuvoravan [7] introduced a new finite element for the nonlinear analysis of RC 
slabs in his doctor of philosophy thesis. For concrete model a four-node Kirchhoff shell 
element is selected. The steel reinforcement bars are modeled by two-node Euler beam 
elements. In this new element, the location of the reinforcement bars were taken into 
account, so considered the effect of each individual bar. His approach allowed the modeling 
of progressive concrete cracking and he assumed perfect bond between concrete and steel 
during all loading stages. He included material nonlinearities in his model. Although his new 
finite element was applied to the finite element analysis of RC buildings, scope of his 
research was limited to flat slabs. 
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CHAPTER 2 

ANALYSIS METHODS 

2.1 Sectional Analysis 

The deformed shape of a beam under bending moment M is shown in Figure 2.1. The curve 
AmB is called the deflection curve and    is the curvature and r  is the radius of curvature. 

 

Figure2.1 Deflection curve of the beam 

Relation between the curvature and the bending moment is 

1 M

r EI
            (2.1) 

Rearranging the terms we obtain; 

M
EI


           (2.2) 

Equation 2.2 shows that if the moment capacity of a section is known for a given curvature, 
then EI  of a section can be calculated.  

 

Figure 2.2 Change of depth of neutral axis 
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The stress distribution of a beam under bending moments is explained in U. Ersoy, G. 
Ozcebe and T. Tankut, “Reinforced Concrete”, Ankara, 2003(pp. 197-198)[8].In Figure 2.2.a, 
the loading is very small and concrete in tension zone is still not cracked. Also, the behavior 
is in the linear range. In Figure 2.2.b, the bottom fiber reached its tensile capacity and 
cracked. After this limit, the concrete cannot carry tension. On the other hand, at the 
compression zone the behavior is still linear. If more flexural forces applied, the stress 
distribution becomes nonlinear (Figure 2.2.c).  At further loading the reinforcing steel yields 
(Figure 2.2.d). Until this point, the neutral axis depth ( c ) stay stable. If the loading continues, 

the top fiber of the concrete reaches to its peak value ckf (Figure 2.2.e). The reinforcing steel 

shows large deformations but, due to the strain distribution of the concrete section, the steel 
strains cannot be compensated. This cause to rise of neutral axis, in other words, c  

decreases to a certain amount. If the loading increases furthermore, the top fiber carries less 

stress but reaches its ultimate strain cu (Figure 2.2.f). The section has reached its capacity 

and cannot carry more loading.  

To calculate moment capacity of a RC section, the first step is to calculate neutral axis 
depth. It is assumed that the cross-section of the beam remain plane during bending. The 
sectional forces, which are concrete forces, steel forces and the axial force; should be in 
equilibrium, in other words, summation of them should be zero. In order to calculate concrete 
forces Hognestad concrete model is used. Usually concrete section is divided into several 
layers and for each layer the strains are calculated. The concrete model transforms the 
stresses to the strains. For each layer the stresses are multiplied by the area of each layer to 
obtain forces. This method has two drawbacks; firstly, the solution gives approximate results 
and secondly, the number of layers should be enough to obtain right behavior. In this study 
the section analysis is performed by using several integration points. The concrete model is 
Hognestad concrete model. The ascending part is a 2nd order polynomial and the 
descending part is a straight line. This means for the ascending part 3 points are enough to 
calculate if Simpsons’ rule is used. And for the descending part two points are enough for 
exact integration. This method consumes less time compared to layering the section; 
however, the geometry of the section must be rectangular. Another drawback of this method 
is that it is optimized for Hognestad concrete model. Since in this study only rectangular 
sections are considered and the concrete model is selected as Hognestad concrete model, 
these drawbacks do not affect the analysis. 

Two natural axis depth guesses, c1 and c2 are made. The first guess assumes the neutral 
axis depth is at top face, where c1 equals to 0. And the second guess assumes the neutral 
axis depth at the bottom face, where c2 equals to h. Since the total force versus neutral axis 
depth is a continuous function, the exact neutral axis depth can be calculating by bisection 
method. By interpolating between these two guesses, a new estimate is calculated. After 
several iterations the neutral axis depth is approximated. 

After the calculation of the neutral axis depth, the section moment is calculated with respect 
to mid depth of section. It is assumed that the axial force applied to the section acted in the 
geometrical center of the section (Figure2.3). 

 

Figure 2.3 Calculation of sectional forces 

 

Curvatures are calculated by nodal displacements and they will be examined in sec 2.2. The 
rate of change of moment capacity of a section with respect to curvature equals to EI  as 
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described in equation 2.2. In other words, it is the slope of moment curvature diagram at a 
given curvature. 

 

Figure 2.4 Moment curvature diagram of an arbitrary section 

In the structural analysis, the EI of the member should always be positive. However, the 
slope of the moment curvature sometimes may be negative. To overcome this problem, the 
slope of the moment curvature diagram is assumed to be a small non-negative value. If the 

EI  gets zero or negative values, the solution does not converge. 

2.2 Finite Element Method 

Two-node beam element is selected as the finite element model in this study, having four 
degrees of freedom; one lateral and one rotational at each node. Two-node bar element is 
added to this model to have six degree of freedom system (Figure2.5).  

 

Figure 2.5 Degrees of freedom of the beam element 

 

Hermitian shape functions are used for the two-node beam element (Equation2.3). 
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Figure 2.6 Hermitian Function 
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The second derivative of the shape functions is called the strain-displacement matrix and 
calculated as shown in equation 2.4: 

   
2

2

d
B N

dx
  

 
1 3

2
6

L x
B

L


     
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L x
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2
6

L x
B

L


    

 
4 2

3
2

L x
B

L


                              (2.4) 

For the straight beam the stiffness is calculated as: 

     
0

L
T

k B EI B dx                        (2.5) 

The element stiffness matrix  k  is 4 by 4 matrix and EI  parameter is obtained from the 

slope of the moment curvature diagram. Integration over the length of the element is 
converted to a numerical integration. Gaussian Quadrature is selected as the integration 
method. At each integration point, the EI  parameter is calculated and element stiffness’s 
are summed up by multiplying their weights.  

Curvature ( ) is the second derivative of the displacements ( u ), as seen in Equation 2.6. 

 
2

2

d u

dx
                        (2.6) 

1 4 4 1 11 11 12 21 13 31 14 41( ) [ ] [ ]u x u N u N u N u N u N                       (2.7) 

1 4 4 1 11 11 12 21 13 31 14 41( ) [ ] [ ]x u B u B u B u B u B                         (2.8) 
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At each integration point ( ix ) the curvatures ( i ) and the corresponding iEI  are calculated. 

The stiffness matrix at corresponding integration point is: 

     
T

i ik B EI B                      (2.9) 

And the overall element stiffness is: 

   

11 12 13 14

21 22 23 24

1 31 32 33 34

41 42 43 44

n

i i

i

k k k k

k k k k
k k w

k k k k

k k k k



 
 
  
 
 
 

                  (2.10) 

In equation 2.10, iw  represents the weight of the integration point. 

At this step a 4x4 stiffness matrix is constructed. The axial degrees of freedom are added to 
the system. The axial stiffness is calculated from the EI  parameter assuming the moment of 
inertia of a rectangular section does not change. As the flexural stiffness softens via the 
displacements, also the axial stiffness decreases. 

31

12
I bh                     (2.11) 

2

12
A I

h
                     (2.12) 

2
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h
                     (2.13) 
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L
                     (2.14) 
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                        (2.15) 

2.3 Nonlinear Solution 

In order to approach the real behavior of the reinforced concrete, rather than the 
approximate solutions with linear analysis, nonlinear analysis is preferred. Nonlinearity is 
achieved by updating element stiffness matrices with respect to nodal displacements.  
Newton Raphson Method is used for nonlinear analysis. The force is applied in several 
increments and these increments are equally divided. At each increment the iterations are 
performed until the convergence is achieved.  If the iterations cannot converge, the applied 
load is divided into two. The reasons for non-convergence are either the element fails or the 
iterations are not enough. Decreasing load increments solves both of these problems. By 
this approach the failure load is determined. 

In Figure 2.7, the Newton Raphson method is summarized. When the applied load is solved 
with initial tangent stiffness (K0), the applied force and the internal force are not equal to 
each other. The difference is called unbalanced load and at each iteration the unbalanced 
load decreases. When the unbalanced loads are smaller than a tolerance, the solution is 
converged.  
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Figure 2.7 Newton Raphson Method for single increment 

The Newton Raphson method calculates stiffness of the system for every iteration. To speed 
up this algorithm, Modified Newton Raphson method is generated. Instead of calculating 
stiffness at each iteration, the initial stiffness is used for the calculations. This causes to 
perform more iteration to reach convergence, but total time usually decreases. 

Figure 2.8 Modified Newton Raphson Method for single increment 

As it can be seen in Figure 2.8, if the slope of the curve decreases very much, the iteration 
number increases significantly. The applied load can be divided into increments to further 
decrease computational time. At each increment the stiffness of the system calculated once. 
This will decrease the number of iterations. 
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Figure 2.9 Modified Newton Raphson Method for multiple increments 
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CHAPTER 3 

COMPUTER PROGRAM 

3.1 Material Models 

To define a reinforced concrete frame, firstly concrete and steel materials should be defined. 
Concrete is a non-homogenous material due to its ingredients, which is a mixture of cement, 
aggregate and water. The plain concrete has a negligible tensile strength and low ductility. 
Steel is a homogenous material and displays similar behavior under tension and 
compression. Reinforced concrete is a material which combines the positive characteristics 
of both concrete and steel, forming strong, ductile and durable material. In practice, linear 
analysis is preferred for reinforced concrete structures, assuming both the strains and 
displacements are small. However, in linear analysis case, neither the material nor the 
geometrical nonlinearities are considered.  

3.1.1 Concrete Model  

In this study, Hognestad concrete model is utilized. This model consists of two sections, the 

parabolic part and the linear part. 
coε is the strain level where the concrete reaches to its 

peak strength. 
cuε  is the ultimate strain level of concrete where failure begins. Hognestad 

defines stress strain relationship of concrete by a second order parabola in 0 -  
coε  range 

and by a linear descending part between 
coε  and

cuε  (Figure3.1).  

 

Figure 3.1 Hognestad Parabola 

The equation of these parabola and line is given in equation 3.1a and3.1b 

  

                        (3.1a) 

 

           (3.1b) 
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coε  is assumed as a function of cf  and 
cuε is assumed to be 0.0038. 

3.1.2 Steel Model 

Steel is modeled in three different behaviors. The first one is modeled as a linearly elastic 
and perfectly plastic material in this study. Behavior of steel is modeled as a bilinear steel 
model without hardening (Figure3.2).  

 

Figure 3.2 Bi-linear Steel Model 

0
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E if
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 

 

 

and sy                                     (3.2) 

Second steel model is the tri-linear steel model with hardening (Figure 3.3). After a limited 
yielding plateau, the steel hardens until failure. There are three stages in this model. The 

elastic stage is between 0 and sy . At sy , the steel starts to yield until strain reaches to sh . 

This region is called the yielding zone. The last stage is the hardening stage. It continues 
until failure. 

 

Figure 3.3 Steel Model for Tri-Linear Steel Model 
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The last steel model available in this program is the reinforcing steel model in Stress-Strain 
Model for Grade 275 Reinforcing Steel paper by K. J. Thompson and R. Park[9]. It has the 
same stages as the tri-linear steel model but instead of a straight line, a parabola is 
implemented for the hardening part.  

 

Figure 3.4 Steel Model for Reinforcing Steel 
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3.2 Structure of the Program 

To simulate a reinforced concrete frame behavior the model of the frame should be flexible 
and easy to use. The structures used in the program are: 

 Joint 

 Concrete Material 

 Steel Material 

 Reinforcement 

 RC Section 

 RC Member 

 RC Frame 
 

Joint 

Joint defines the x-y coordinates of the degrees of freedom and the restraint information 
whether they are free to move or not. 

 

Concrete Material 

Concrete material stands for the strength of concrete (
cf ), peak strain (

co ) and ultimate 

strain (
cu ). These parameters define the Hognestad parabola and used in the calculation of 

strength of a concrete at a given strain. 

Steel Material 

It holds the elasticity (
sE ) and the yield strength (

sf ) of the steel. With these two parameters 

a bilinear steel model is constructed and according to a given strain a stress value is 
calculated. 

Reinforcement  

It defines the properties of the reinforcement in concrete. It holds the steel type (
sf ), 

diameter of a single bar ( ), depth of the steel bars ( d ) and the number of the bars ( n ) as 

seen in Figure 3.5. 

 

 

Figure 3.5 Definition of reinforcement structure 
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RC Section 

The cross section of the element is defined in Figure 3.6. It holds the geometry of the section 

( ,b h ), the reinforcing bar groups inside the section (Rb1, Rb2, Rb3), properties of concrete 

material. Every reinforcing bar group may have different steel strengths. 

 

Figure 3.6 Definition of reinforced concrete section structure 

RC Member 

The reinforced concrete member is defined as a summation of several cross sections. Also a 
member should have start and end joints to assemble the system stiffness. For the finite 
element analysis it has six degrees of freedom, first three at start joint and last three at end 
joint. Cross section information is registered in this class of the program, in other words it 
defines which parts of the element has what kind of a section. The orientation and the length 
of the member are calculated from the start and end joints. The anchorage length should be 
taken into account during the modeling phase. In Figure 3.7 the properties of the RC 
member structure is defined. The dotted lines represent the anchorage length and these 
sections are not considered as reinforcement. 

 

Figure 3.7 Properties of RC member 

RC Frame 

RC members combine and forms RC frame system. The frame structure holds the member’s 
information and forces applied to degrees of freedom.  
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3.3 Outline of Solution Algorithm 

 

Figure 3.8 Outline of the solution algorithm 

 

The solution algorithm is presented in Figure 3.8. A moment – curvature database is 
constructed for each section, with varying axial forces. During the analysis the EI parameter 
is calculated by interpolating the results stored in the database. With this approach the EI 
parameters calculated once, thus the computation time decreases. The element stiffness is 
calculated by using the element EI, which is determined by the approximated moment 
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curvature response at each integration point. The system stiffness is assembled by using 
connectivity information. Then the system is solved for given load increment. If the solution 
does not converge, the applied load increment divided into two and the iterations continue 
until convergence. At every increment, the additional displacements are calculated and the 
system displacements are updated. The stiffness is calculated according to the new 
displacement field for the next load increment.  
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CHAPTER 4 

VERIFICATION OF ANALYSIS RESULTS 

4.1 General 

In this chapter, several analysis cases are examined. The purpose of this analysis is to 
display the different results by changing load conditions, sectional properties and mesh 
sizes. The load is applied in increasing steps due to the Newton Raphson solution 
procedure. The results are plotted at each load increment, thus the change of behavior of the 
element can be seen. If the new increment causes failure, the load increment reduced to its 
half value until the convergence is obtained. 

4.2 Cantilever RC Beam With Point Load (CPL) 
 

4.2.1 Description of the problem 

 In Figure 4.1, a RC cantilever beam is loaded with a point load at free end. It is modeled 
with different mesh sizes as 16, 32, 64 and 128. 

 

Figure 4.1 Dimensions and section geometry for CPL test case 

Concrete and steel material properties: 

cf  = 50 MPa 

co  = 0.0028 

cu  = 0.0038 

yf  = 420 MPa 

uf = 630 MPa 

sy = 0.0021 

sh = 0.0105 

sE  = 200 GP

 

The concrete model is selected as Hognestad concrete model and the steel model is 
selected as Kent & Park’s steel model.  
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4.2.2 Analysis Results 

 

 

Figure 4.2 Moment curvature diagram of the CPL test case’s section 

In Figure 4.2, moment curvature diagram of the section is given. The section cannot carry 
more moment than approximately 200kNm in positive curvature and 100kNm in negative 
curvature. A section undergoes fiber to fiber redistribution when these moment values are 
reached. If the curvature of the element is greater than approximately 0.05 m

-1
, the section 

capacity reduces to approximately 75kNm, in other words, plastic hinges are formed. 

 

 

Figure 4.3 Load-Displacement curve for CPL test case for mesh size 128 

In Figure 4.3 the load displacement curve is given. Up to 45kN loading the cantilever 
deformations are in linear range. After 45kN the beam deformation shows nonlinear behavior 
and plastic hinges are formed. In Figure 4.4, the change of curvatures at integration points is 
displayed.   
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Figure 4.4 Curvature diagram along the member for CPL test case for 128 element mesh 

 

Figure 4.4.a Curvature diagram between 0-0.6 m for CPL test case for 128 element mesh 

After 40kN loading, the curvatures at the support zone began to increase. There is a 
dramatic increase after 50kN loading, followed by a rapid failure. A cantilever beam is a 
structural element which does not allow formation of mechanisms; thus formation of a plastic 
hinge results in failure. This is the reason why the moment diagram in Figure 4.5 does not 
yield before failure. Triangular moment diagram keeps its shape until the failure. The 
maximum moment in the diagram is approximately 200kNm which is equals to the maximum 
moment capacity in Figure 4.2. 
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Figure 4.5 Moment diagram of for CPL test case 

Table 4.1 Analysis results of CPL test case for different mesh sizes 

Mesh 
Size 

Tip Displacement(m) Allowable 
Load(kN) 

Support Moments(kNm) 

16 0.085 51.10 -204.31 

32 0.082 51.09 -203.47 

64 0.084 51.01 -203.87 

128 0.084 51.00 -203.55 

 

In Table 4.1, the tip displacements, support moments and allowable loads are listed 
according to the varying mesh sizes. As the mesh size increases the support moments are 
getting closer to the section moment capacity which is 203.1 kNm. 

 

Figure 4.6 Comparison of nonlinear and linear analysis results for CPL test case 
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The deformed shapes of the linear and nonlinear analysis are shown in Figure 4.6. The tip 
displacement increases due to the nonlinear material behavior. The initial tangent stiffness is 
used throughout the linear analysis. On the other hand the stiffness of the system is updated 
at every load increment, thus, the nonlinear analysis results in more refined results in terms 
of displacements. 

4.3 Fixed Supported RC Beam With Point Load (FSPL) 
 

4.3.1 Description of the problem 

In Figure 4.7 a fixed supported RC beam is loaded with a point load at mid span. It is 
modeled with different mesh sizes as 16, 32, 64 and 128. 

 

Figure 4.7 Dimensions and section geometry for FSPL test case 

Concrete and steel material parameters: 

cf = 50 MPa 

co  = 0.0028 

cu  = 0.0038 

sy  = 0.0021 

sh  = 0.0105 

yf  = 420 MPa 

uf = 630 MPa 

sE  = 200 GPa

 

The concrete model is selected as Hognestad concrete model and the steel model is 
selected as Kent & Park’s steel model.  
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4.3.2 Analysis Results 

 

Figure 4.8 Moment curvature diagram of the FSPL test case’s section 

In Figure 4.8, moment curvature diagram of the section is given. The section cannot carry 
more moment than approximately 50kNm in positive curvature and 200kNm in negative 
curvature. A section undergoes fiber to fiber redistribution when these moment values are 
reached. If the curvature of the element is greater than approximately 0.05, then the 
section’s moment capacity reduces to approximately 45kNm, in other words, plastic hinges 
are formed. 

 

Figure 4.9 Load-Displacement curve for FSPL test case for mesh size 128 

 

In Figure 4.9 the load displacement curve is given for 128 element mesh. Up to 180kN the 
RC beam deformations are in linear range. After the loading exceeds 180kN the beam 
deformation shows nonlinear behavior and plastic hinges are formed. In Figure 4.10 the 
change of curvatures at integration points is displayed.   



 
29 

 

 

Figure 4.10 Curvature diagram along the member for FSPL test case for 128 element mesh 

 

 

 

Figure 4.10.a Curvature diagram between 0-0.2 m for FSPL test case for 128 element mesh 
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Figure 4.10.b Curvature diagram between 1.8-2.0 m for FSPL test case for 128 element 
mesh 

After 180kN of the applied load, the curvatures at the supports and span zones began to 
increase. There is a dramatic increase at 240kN loading followed by a rapid failure. Hinges 
are formed at support and mid span. In Figure 4.11, the change of moment diagram versus 
load increments is given. During an elastic analysis the inflection points of the moment 
diagram passes from 1 quarter length away from de supports. But due to the material 
nonlinearity the inflection points began to move towards to the supports as the load 
increases. 

 

Figure 4.11 Moment diagram of for FSPL test case 

In Table 4.2, the tip displacements, support and span moments and allowable loads are 
listed according to the varying mesh sizes. 
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Table 4.2 Analysis results of FSPL test case for different mesh sizes 

 

Mid Span 
Displacement(m) 

Allowable 
Load(kN) 

Support 
Moment(kNm) 

Span 
Moment(kNm) 

16 0.025 251.28 -50.60 200.45 

32 0.025 242.23 -43.26 198.78 

64 0.024 222.95 -44.89 177.79 

128 0.023 221.50 -44.18 176.72 

 

 

 

 

Figure 4.12 Comparison of nonlinear and linear analysis results for FSPL test case 

The deformed shapes of the linear and nonlinear analysis are shown in Figure 4.12. The mid 
span displacement increases due to the nonlinear material behavior. The initial tangent 
stiffness is used throughout the linear analysis. On the other hand, the stiffness of the 
system is updated at every load increment thus; the nonlinear analysis is resulted in more 
slender results in terms of displacements. 

Another important result is that the plastic hinges are formed at support and mid span points. 
The deformed shape resembles a simply supported beam with a hinge at the middle, rather 
than a fixed end supported beam deformation. 

4.4 Cantilever RC Beam With Uniformly Distributed Load (CDL) 
 

4.4.1 Description of the problem 

In Figure 4.13, a RC cantilever beam is loaded with a uniformly distributed load through its 
length. It is modeled with different mesh sizes as 16, 32, 64 and 128. 
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Figure 4.13 Dimensions and section geometry for CDL test case 

Concrete and steel material parameters:

cf = 50 MPa 

co  = 0.0028 

cu  = 0.0038 

sy = 0.0021 

sh  = 0.0105 

yf  = 420 MPa 

uf = 630 MPa 

sE  = 200 GPa 

 

The concrete model is selected as Hognestad concrete model and the steel model is 
selected as Kent & Park’s steel model.  

 

4.4.2 Analysis Results 

 

 

Figure 4.14 Moment curvature diagram of the CDL test case’s section 
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In Figure 4.14, moment curvature diagram of the section is given. The section cannot carry 
more moment than approximately 170kNm in positive curvature and 60kNm in negative 
curvature. A section undergoes fiber to fiber redistribution when these moment values are 
reached. If the curvature of the element is greater than approximately 0.06 m

-1
 then the 

section capacity reduces to approximately 33kNm, in other words, plastic hinges are formed. 

 

 

Figure 4.15 Load-Displacement curve for CDL test case for mesh size 128 

In Figure 4.15, the load displacement curve is given for the free end of the cantilever beam. 
Up to 18.75kN/m loading, the cantilever deformations are in linear range. After this limit the 
beam deformation shows nonlinear behavior and plastic hinges are formed. In Figure 4.16, 
the change of curvatures at integration points is displayed.   

 

Figure 4.16 Curvature diagram along the member for CDL test case for 128 element mesh 
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Figure 4.16.a Curvature diagram between 0-0.4 m for CDL test case for 128 element mesh 

After application of 15kN/m distributed load, the curvatures at the support zone began to 
increase. There is a dramatic increase and after 18.75kN/m loading, then followed by a rapid 
failure. The moment diagram in Figure 4.17 shows that the support moment cannot exceed 
approximately 170kNm. The moment curvature diagram in Figure 4.13, the maximum 
moment is approximately 170kNm which is equals to the maximum moment capacity in 
Figure 4.14. 

 

Figure 4.17 Moment diagram of for CDL test case 

In Table 4.3 the tip displacements, support moments and allowable loads are listed 
according to the varying mesh sizes. As the mesh size increases the support moments 
approaches to the section’s moment capacity which is 171.6 kNm. On the other hand the 
change of tip displacement can be ignored. 
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Table 4.3 Analysis results of CDL test case for different mesh sizes 

Mesh 
Size 

Tip Displacement(m) 
Allowable 

Load(kN/m) 
Support Moments(kNm) 

16 0.072 21.69 -173.44 

32 0.072 21.54 -172.21 

64 0.071 21.49 -171.79 

128 0.071 21.47 -171.61 

 

 

Figure 4.18 Comparison of nonlinear and linear analysis results for CDL test case 

The deformed shapes of the linear and nonlinear analysis are shown in Figure 4.18. The 
displacement of the free end increases due to the nonlinear material behavior. The initial 
tangent stiffness is used throughout the linear analysis. On the other hand, the stiffness of 
the system is updated at every load increment step, thus, the nonlinear analysis is resulted 
in more slender results in terms of displacements. Due to the plastic hinging at the supports, 
the displaced shape is closer to a straight beam rather than a deformed cantilever. 

 
4.5 Fixed Supported RC Beam With Uniformly Distributed Load (FSDL) 

 
4.5.1 Description of the problem 

In Figure 4.19, a RC fixed supported beam is loaded with a uniformly distributed load 
through its length. It is modeled with different mesh sizes as 16, 32, 64 and 128. 
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Figure 4.19 Dimensions and section geometry for FSDL test case 

Concrete and steel material parameters: 

cf = 50 MPa 

co  = 0.0028 

cu  = 0.0038 

sy  = 0.0021 

sh  = 0.0105 

yf  = 420 MPa 

uf = 630 MPa 

sE  = 200 GPa 

 

The concrete model is selected as Hognestad concrete model and the steel model is 
selected as Kent & Park’s steel model.  

 

4.5.2 Analysis Results 

 

 

Figure 4.20 Moment curvature diagram of the FSDL test case’s section 
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In Figure 4.20, moment curvature diagram of the section is given. The section cannot carry 
more moment than approximately 200kNm in positive curvature and 100kNm in negative 
curvatures. This section undergoes fiber to fiber redistribution when these moment values 
are reached. If the curvature of the element is greater than approximately 0.05 m

-1
, then the 

section capacity reduces to approximately 70kNm, in other words, plastic hinges are formed. 

 

Figure 4.21 Load-Displacement curve for FSDL test case for mesh size 128 

In Figure 4.21, the load displacement curve is given for the mid span of the fixed supported 
beam. Up to 100kN/m loading, the beam deformations are in linear range. After this limit, the 
beam deformation shows nonlinear behavior and plastic hinges are formed. In Figure 4.22, 
the change of curvatures at integration points is displayed.   

 

Figure 4.22 Curvature diagram along the member for FSDL test case for 128 element mesh 
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Figure 4.22.a Curvature diagram between 0-0.6 m for FSDL test case for 128 element mesh 

After 100kN/m loading, the curvatures at the support zones began to increase. There is a 
dramatic increase and after 125kN/m loading, then followed by a rapid failure. The moment 
diagram in Figure 4.20 shows that the support moment cannot exceed approximately 
200kNm. The moment curvature diagram in Figure 4.22, the maximum moment in the 
diagram is approximately 200kNm. That is the same value as the maximum moment 
capacity in Figure 4.23. 

 

Figure 4.23 Moment diagram of for FSDL test case 

In Table 4.4, the tip displacements, support moments and allowable loads are listed 
according to the varying mesh sizes. The moment capacity of the section is 203.11 kNm. For 
low mesh sizes such as 16 and 32, the support moments are higher than the section 
capacity. As the mesh size increases the support moments approaches to 203.11 kNm. The 
64 element mesh element fails before the section capacity is reached. This may be caused 
because of a numerical error. The tip deflection is lower than the 128 element meshed 
model’s deflection meaning that it fails prematurely. 



 
39 

 

 

Table 4.4 Analysis results of FSDL test case for different mesh sizes 

Mesh Size 
Mid Span 

Displacement(m) 
Allowable 

Load(kN/m) 
Support 

Moments(kNm) 

16 0.0130 140.08 -217.07 

32 0.0092 135.74 -206.20 

64 0.0080 134.47 -201.76 

128 0.0082 136.43 -203.28 

 

 

Figure 4.24 Comparison of nonlinear and linear analysis results for FSDL test case 

The deformed shapes of the linear and nonlinear analysis are shown in Figure 4.24. The mid 
span displacement increases due to the nonlinear material behavior. The initial tangent slope 

of the moment curvature diagram is used throughout the linear analysis as EI of the 
section. On the other hand the stiffness of the system is updated at every load increment 
thus the nonlinear analysis is resulted in more slender results in terms of displacements. Due 
to the softening of the system stiffness the displacements increase nearly 60% with respect 
to the linear analysis. 

4.6 Fixed Supported RC Beam With Uniformly Distributed Load with Axial 
Compression (FSDLA) 
 

4.6.1 Description of the problem 

In Figure 4.19, a RC fixed supported beam, which is loaded with a uniformly distributed load 
through its length, is shown. It is modeled with different mesh sizes as 16, 32, 64 and 128. 
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Figure 4.25 Dimensions and section geometry for FSDLA test case 

Concrete and steel material parameters: 

cf = 50 MPa 

co  = 0.0028 

cu  = 0.0038 

sy  = 0.0021 

sh  = 0.0105 

yf  = 420 MPa 

uf = 630 MPa 

sE  = 200 GPa 

 

The concrete model is selected as Hognestad concrete model and the steel model is 
selected as Kent & Park’s steel model.  

4.6.2 Analysis Results 

. 

 

Figure 4.26 Moment curvature diagram of the FSDLA test case’s section 
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In Figure 4.26, moment curvature diagram of the section is given. The compressive axial 
load increases both positive and negative moment capacities however; it also decreases the 
ductility of the element. This section cannot carry more moment than approximately 280kNm 
in positive curvature and 180kNm in negative curvatures. This section undergoes fiber to 
fiber redistribution when these moment values are reached. If the curvature of the element is 
greater than approximately 0.03 m

-1
, the plastic hinges are formed. 

 

 

Figure 4.27 Load-Displacement curve for FSDLA test case for mesh size 128 

 

In Figure 4.27, the load displacement curve is given for the mid span of the fixed supported 
beam. Up to 75kN/m loading, the beam deformations are in linear range. After this limit, the 
beam deformation shows nonlinear behavior and plastic hinges are formed. In Figure 4.22, 
the change of curvatures at integration points is displayed.   

 

Figure 4.28 Curvature diagram along the member for FSDLA test case for 128 element 
mesh 
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Figure 4.28.a Curvature diagram between 0-0.1 m for FSDLA test case for 128 element 
mesh 

After 75kN/m loading, the curvatures at the support zone began to increase. There is a 
dramatic increase and after 209kN/m distributed loading and further loading causes failure. 
The curvatures at the support points increase by 200%. The moment diagram in Figure 4.29 
shows that the support moment cannot exceed approximately 300kNm. At the moment 
curvature diagram in Figure 4.29, the maximum moment is approximately 300kNm, which is 
equals to the maximum moment capacity in Figure 4.26. 

 

Figure 4.29 Moment diagram of for FSDLA test case 
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Figure 4.30 Effect of axial compression for FSDL test case 

In Figure 4.30 the load-displacement curves of the same beam, with and without 
compression, are compared. When axial force is applied the member can carry more loads. 
On the other hand it shows less displacement, in other words, it loses its ductility. 

In Table 4.5 the tip displacements, support moments and allowable loads are listed 
according to the varying mesh sizes. 

Table 4.5 Analysis results of FSDLA test case for different mesh sizes 

Mesh 
Size 

Mid Span Displacement(m) 
Allowable 
Load(kN/m) 

Support 
Moments(kNm) 

16 0.008 220.17 -309.83 

32 0.006 214.56 -294.16 

64 0.005 210.64 -286.44 

128 0.005 209.11 -283.11 

 

According to the Table 4.5, the mid span deflections are higher than the expected when a 
low density mesh is used. The section capacity of the element’s section is 281.20 kNm 
according to the moment curvature diagram. The 16 element mesh has higher internal forces 
than its capacity and also has higher span deflection. As the mesh density increases the 
internal forces converges to the section capacity. Also the span deflection converges to 5 
mm. 

 

4.7 Simply Supported Beam with Point Load (SSPL1) 
 

4.7.1 Description of the problem 

In Figure 4.31, a RC simply supported beam, which is loaded with two point loads at equal 
lengths from supports, is shown. It is the same beam configuration with the T1MA beam, 
tested in the article of Kwak, H.G and Kim, S,P. Nonlinear Analysis of RC Beams Based on 
Moment-Curvature Relation. 
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Figure 4.31 Dimensions and section geometry for SSPL1 test case 

Concrete and steel material parameters:

cf  = 31.7 MPa 

co  = 0.002 

cu  = 0.003   

sy  = 0.00163 

sh = 0.00817 

yf  = 317 MPa 

sE  = 194 GPa 

4.7.2 Analysis Results 

 

 

Figure 4.32 Span deflections of SSPL1 and T1MA 

T1MA and SSPL1 display similar behavior both in linear deformation range and yielding 
point. The T1MA beam fails before the calculated displacement in the SSPL1 analysis. The 
reinforcing bars are assumed to be perfectly bonded to the concrete during the analysis. But 
in the real life situation, as the concrete cracks, the bond between reinforcing bar and the 
concrete weakens. In major cracks, the tension steel slips inside the concrete allowing more 
displacements. Both T1MA and the SSPL1 beams yield at 45 kN loading and their initial 
stiffness are close to each other. 
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4.8 Simply Supported Beam with Point Load (SSPL2) 
 

4.8.1 Description of the problem 

In Figure 4.33, a RC simply supported beam, which is loaded with a single point loads at mid 
span, is shown. It is the same beam configuration with the J4 beam, tested in the article of 
Kwak, H.G and Kim, S,P. Nonlinear Analysis of RC Beams Based on Moment-Curvature 
Relation. 

 

Figure 4.33 Dimensions and section geometry for SSPL2 test case 

Concrete and steel material parameters:

cf  = 33.3MPa 

co  = 0.002 

cu  = 0.003  

sy  = 0.00153 

sh  = 0.00763 

yf  = 309.6 MPa 

sE  = 202.1 GPa 

4.8.2 Analysis Results 

 

Figure 4.34 Span deflections of SSPL2 and J4 
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SSPL2 beam displays similar behavior to the J4 beam, but the results are not as close as at 
the SSPL1 and T1MA. SSPL2 beam displays linear deformation up to 120 kN of loading. On 
the other hand, the J4 beam is stiffer than the SSPL2 up to 50 kN of loading and then it 
starts a gradual yielding. The SSPL2 beam experiences a sharp transition from linear region 
to yielding region. The calculated load carrying capacity of the beam is lower than the actual 
capacity. The J4 beam fails before SSPL2 beam. Due to the bond slip effect, the J4 beam 
fails at 0.015 m displacement whereas, the SSPL2 beam deforms more due to the perfect 
bonding between reinforcement and concrete assumption. 

 

4.9  Frame Analysis (FA) 
 

4.9.1 Description of the problem 

In Figure 4.35, a RC frame system is shown. It consists of two identical columns and a 
beam.  

 

Figure 4.35 Dimensions and section geometries for FA test case 
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Concrete and steel material parameters:

cf  = 20 MPa 

co  = 0.002 

cu  = 0.003 

sy  = 0.0021 

sh  = 0.0105 

yf  = 420 MPa 

sE  = 200 GPa 

Clear cover = 5 cm 

The analysis consists of two stages; the dead load stage and the lateral load stage. The first 
stage is the application of dead load. The unit weight of concrete is taken as 2.4 tons / m

3
. 

The columns carry only their weights as a uniformly distributed load. On the other hand, the 
beam carries both itself and the load transferred from the slab. This is why q2 is greater than 
q1. Due to the axial loading on columns, the ductility of the columns is reduced. In other 
words, they carry more loads, but become brittle. The gravitational loads are applied in 10 
increments. Due to the magnitude of the loading, the deformations are small and in the linear 
range. It is clear that under dead load, the structures should not display nonlinear behavior. 
The second part is the application of lateral load, P. The load is applied until the frame fails. 
In Figure 4.36 and Figure 4.37, the deformed shapes of first and second stages are 
displayed. 

 

4.9.2 Analysis Results 

 

Figure 4.36 Deformed shape under dead loads (magnified 100 times) 
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Figure 4.37 Deformed shape after lateral loading (magnified 5 times) 

 

 

Figure 4.38 Load displacement curve for FA test case. 

In Figure 4.38, the displacement of the node is given for each load increment. The frame 
displays linear behavior until 80 kN transverse load. After 80 kN loading, the plastic hinges 
are formed and the nonlinear behavior is displayed.   

As the later load is being applied, the axial loading in the columns change. At each load 
increment the axial forces are updated for every member in the frame. A new section 
response is calculated according to the updated axial loading. 

In Figure 4.39, the change of curvatures is plotted. The initial load increments do not cause 
any nonlinear behavior. Up to 87.6 kN lateral loading, the curvatures along the columns are 
small, in other words, the behavior of the frame is still linear. At 87.6 kN lateral load, at the 
support regions of the columns, the curvatures increases dramatically. It shows that the first 
and the second plastic hinges form simultaneously at support region. After the formation of 



 
49 

 

the first plastic hinge couples, the frame keeps carrying the load. At 98.6 kN lateral load, the 
curvatures at beam-column connection area increases. The third and fourth plastic hinges 
are formed at beam-column connection points. Due to the plastic hinges, the frame stiffness 
softens, thus the large displacements occur. Also, it is clear that the behavior of the left 
column is similar to the right column.  

 
Figure 4.39 Curvature diagrams at support and connection points for the FA test case.
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CHAPTER 5 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1 Summary 

Reinforced concrete is one of the most important building materials for the construction 
industry. It is composed of concrete and steel, and displays nonlinear behavior. The main 
reason of nonlinearity is the concrete itself and its composite nature. The concrete consists 
of non-homogenous compounds and has anisotropic behavior. Additional nonlinearity is 
introduced by reinforcing bars. Some of the bars are used as straight bars, but according to 
the moment diagram, some bars might be selected as bent bars. In other words, the steel 
configuration changes throughout the beam length, causing nonlinearity by changing 

element’s flexural rigidity EI . For the sake of simplicity, usually the linear analysis is 
conducted for design purposes. Nonlinear analysis consumes more time for the calculation 
and harder to model. Various studies and solution techniques are suggested by researchers 
by different material models and finite element types. Mainly, brick elements or quadrilateral 
elements are available in the literature. Two node Hermitian beam element is selected for 
this study, because it has fewer nodes than other finite element types and has a superior 
flexural behavior. 

In this study, the RC beams are modeled by using two node beam element. For the section 
analysis, it is assumed that the section does not change under loadings, in other words, a 
perfect bond is formed between concrete and reinforcing bars. The second assumption is 
that the plane sections remain plane. This assumption comes from the Euler-Bernoulli beam 
theory. According to this assumption, the shear deformations are neglected. The Hermitian 
functions are selected as shape functions. Due to the order of the shape functions, the 
change of curvature cannot be calculated exactly, that is why as the mesh size increases, 
the solution converges to the exact solution. The element stiffness is calculated by taking 
average of the stiffness contributions at each integration point along the element. For a given 
displacement, the curvatures are calculated at integration points and the stiffness matrix of 
the element is constructed. Then, a new deformed configuration is calculated by using this 
stiffness. This iterative procedure is continued until convergence is attained. 

A program is developed for the analysis of reinforced concrete frames and it is coded in C++. 
For the analysis, several properties should be defined in the program. Firstly, the material 
properties should be defined. Then, the sections should be defined in terms of the 
dimensions of the section, the number of steel bars and their sizes and depths. Then, the 
connectivity of the elements should be defined. Start and end joints of elements and the type 
of section used throughout the element should also be defined. Lastly, the applied load is 
given and the analysis is started. 

The verification of the analysis results is done by comparing them with the test results. It is 
seen that the behavior of the beams under loading is similar to those in the experiments. The 
observed difference between the analytical and the test results is believed to be caused by 
the assumptions stated above. The resulting internal forces and the section capacities are 
consistent with each other. 

5.2 Conclusion 

The following conclusions are drawn based on experience gained and the analysis results 
obtained in this study. 

 The analytical procedure proposed in this study is effective in predicting the 
nonlinear behavior of RC frame structures under loads. This is verified by the close 
agreement between the analytical predictions and the test results.  
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 The analytical tool developed in this study makes it possible to observe the formation 
and location of plastic hinges as well as the shifting of the inflection points along the 
frame elements as the loading increases. When the internal moment reaches the 
section capacity at any point along the member, the curvature at the point increases 
very rapidly indicating the formation of a plastic hinge.  

 Higher mesh densities should be used for accurate internal forces. In this case, less 
integration points can be used. As the length of the element decreases, the change 
in the stiffness at each integration point also decreases. This, in turn, decreases the 
computation time. 

 

5.3 Recommendations for Future Studies 

Based on the experience gained in this study, it is seen that there are certain aspects of the 
approach suggested which needs to be improved for a more efficient and accurate analysis. 
Some of these improvements are in the theoretical and modeling approach and some of 
them are in the program itself. 

 The reinforcing bars are assumed to be perfectly bonded to concrete. The bond-slip 
behavior between these two materials can be taken into account for more accurate 
results. 

 The Newton Raphson solution algorithm can be complemented by an arc-length 
method to obtain the post yielding behavior of structures. 

 The section is modeled by using longitudinal bars only. The effect of stirrups must be 
included for a better accuracy. 

 Currently, the shear deformations are assumed to be negligible. This effect must be 
included.  

 The code can be optimized in terms of time and efficiency. 

 The program has no user interface. A graphical user interface would facilitate the 
description and the modeling of the RC structure. 

 The program has no save, load and restart mechanism. Considering the length of 
solution time, this is very useful especially in the case of uncontrolled interruption of 
the execution. 
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APPENDIX A 

PARAMETRIC STUDIES 

The structural analysis of a beam element can be performed in several ways. The mesh size 
is an important parameter for nonlinear analysis. To achive accurate results, the mesh size 
should be high enough to approximate the behaviour of the element. On the other hand, the 
usage of more mesh size means an increase in computational time. Thus, a proper mesh 
size should be selected. As well as the mesh size, the number of integration points effects 
the analysis results. Troughout the analysis, integrations are calculated numericaly, thus, the 
accuracy of the integrations depends on the integration points. Usage of more integration 
points also increases the computation time. 

 

Figure A.1 Dimensions and section geometry for CPL2 test case 

Concrete and steel material parameters:

cf = 50 MPa 

co  = 0.002 

cu  = 0.003 

sy = 0.0021 

sh  = 0.0105 

yf  = 420 MPa 

uf = 630 MPa 

sE  = 200 GPa

 

The concrete model is selected as Hognestad concrete model and the steel model is 
selected as Kent & Park’s steel model.  

To compare the effects of mesh size and integration point selection, a cantilever RC beam 
with a point load is analyzed. Three parameters are compared; tip deflection, support 
moments and the computation time. In Table A.1, A.2 and A.3 these parameters are listed 
respectively. 

Table A.1 Table of tip displacements 

Tip Displacement(m) 
n 

16 32 64 

Integration 
points 

2 0.127 0.121 0.119 

5 0.121 0.119 0.118 

10 0.122 0.119 0.117 
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Table A.2 Table of support moments 

Support 
Reaction(kNm) 

n 

16 32 64 

Integration 
points 

2 -198.47 -196.77 -196.13 

5 -197.93 -197.15 -196.42 

10 -197.99 -196.61 -196.79 

 

Table A.3 Table of computation times 

Time(t) 
n 

16 32 64 

Integration 
points 

2 1.0 2.1 4.7 

5 1.8 3.7 8.5 

10 3.4 6.7 14.7 

 

 

Figure A.2 Moment curvature diagram of the CPL2 test case’s section 

In Figure A.2, moment curvature diagram of the section is given. The moment capacity of the 
section is 197.8 kNm. In Table A.1, the tip displacements of the cantilever beam is listed. For 
16 element mesh, the diplacement changes dramatically as the integration point increases. 
For 32 and 64 element meshes, the displacement does not change as the integration point 
increases. On the other hand, the support moments give more information about the 
nonlinear behaviour of the member. All integration point combinations for the 16 element 
mesh size exceed the allowable moment capacity. For 32 element mesh size, all results are 
smaller than the moment capacity, but still the forces vary as the integration point changes. 
The 64 element mesh displays more stable changes; as the integration point increases, the 
forces converge.  

In Table A.3, the computation times of the analyses are listed. Increase of both integration 
points and mesh sizes  increases computation time. 32 and 64 mesh size gives similar 
results in terms of forces and displacements. On the other hand, using higher mesh size 
always gives better approximation. The results of 32 mesh size with 10 integration points 
and 64 mesh size with 2 integration points give very close results in terms of displacements 
and forces. Due to the increase of integration points, the computation time of 32 element 
mesh size is higher than the 64 element mesh size anaysis.To sum up, increasing the mesh 
size is more effective than increasing the integration points.  
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APPENDIX B 

GAUSS-LEGENDRE INTEGRATION CONSTANTS 

Table B.1 Gauss–Legendre quadrature table 

Number of 
Points, n 

Points, xi Weights, wi 
 

Number of 
Points, n 

Points, xi Weights, wi 

 1 0.000 2.000 

 

8 

-0.960 0.101 

  

 

-0.797 0.222 

2 
-0.577 1.000 

 

-0.526 0.314 

0.577 1.000 

 

-0.183 0.363 

  

 

0.183 0.363 

3 

-0.775 0.556 

 

0.526 0.314 

0.000 0.889 

 

0.797 0.222 

0.775 0.556 

 

0.960 0.101 

  

 

      

4 

-0.861 0.348 

 

9 

-0.968 0.081 

-0.340 0.652 

 

-0.836 0.181 

0.340 0.652 

 

-0.613 0.261 

0.861 0.348 

 

-0.324 0.312 

  

 

0.000 0.330 

5 

-0.906 0.237 

 

0.324 0.312 

-0.538 0.479 

 

0.613 0.261 

0.000 0.569 

 

0.836 0.181 

0.538 0.479 

 

0.968 0.081 

0.906 0.237 

 

      

  

 

10 

-0.974 0.067 

6 

-0.932 0.171 

 

-0.865 0.149 

-0.661 0.361 

 

-0.679 0.219 

-0.239 0.468 

 

-0.433 0.269 

0.239 0.468 

 

-0.149 0.296 

0.661 0.361 

 

0.149 0.296 

0.932 0.171 

 

0.433 0.269 

  

 

0.679 0.219 

7 

-0.949 0.129 

 

0.865 0.149 

-0.742 0.280 

 

0.974 0.067 

-0.406 0.382 

 
   

0.000 0.418 

 
   

0.406 0.382 

 

 
  

0.742 0.280 

 

 
  

0.949 0.129 
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