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ABSTRACT 

 

MODELING THE CURRENT AND FUTURE RANGES OF TURKISH 
PINE (PINUS BRUTIA) AND ORIENTAL BEECH (FAGUS ORIENTALIS) 

IN TURKEY IN THE FACE OF CLIMATE CHANGE 
 

Yalçın, Semra 

M.Sc., Department of Geodetic and Geographic Info. Technologies 

Supervisor: Assoc. Prof. C. Can Bilgin 

Co-Supervisor: Prof. Dr. H. Şebnem Düzgün 

 
December 2012, 98 pages 

 

Climate change is widely recognized to have potential impacts on global biotic 

and abiotic systems. One of the major impacts is expected on species 

distributions. Species distribution models (SDMs) are used for estimating the 

relationship between species occurrences at sites and environmental and/or 

spatial characteristics of those sites. SDMs can be used to understand possible 

responses of species to climate change. Despite some sources of uncertainty, 

projections onto future climate are useful and cost-effective tools for managers, 

especially given the increasing urgency to inform management authorities 

under the pressure of climate change. This thesis aims to model current and 

potential future distributions of two economically and ecologically important 

tree species, Turkish pine and oriental beech, in the face of climate change, and 

to assess the effect of using different data sets and modeling methods in model 

setups on SDM accuracy. 

 

The BIOMOD 2 framework, implemented in the open source software R (version 

2.15.1) was used to build the distribution models. In model calibrations, 

different data sets of response variables were used with eight different modeling 

methods. Moreover, ensemble forecasting was carried out by using a 

proportional weighted average of each model's predictions (trained models) 

based on the AUC scores.  Performances of the current predictions were 

compared to 1/25.000 scale forest stand maps and evaluated using various 
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metrics. Future distributions for each species were projected according to IPCC 

SRES emission scenarios A2 and B2 of the HadCM3 global circulation model.  

Based on the results of the ensemble models, climatically suitable areas of 

Turkish pine trees were predicted to shift to higher altitudes and toward the 

north and northeastern regions of Turkey. Potentially suitable areas for oriental 

beech were expected mainly to be lost and its overall distribution was predicted 

to be narrower in the future. While Turkish pine was likely to gain large 

climatically suitable areas by 2080, expansion into suitable areas by oriental 

beech in the future was predicted to be very limited. An important proportion of 

habitats where Turkish pine and oriental beech currently occur were predicted 

to become unsuitable in the future. 

 

Overall, climate change is expected to have significant impacts on the 

distributions of Turkish pine and oriental beech forests in Turkey. Depending 

on whether fast dispersal to newly occurred suitable habitats will be possible or 

not, it can be stated that serious ecological, economic and social consequences 

will probably come out. 

 

Keywords: Climate Change, Species Distribution Models, BIOMOD, MAXENT, 

Turkish Pine, Oriental Beech 
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ÖZ 

 
TÜRKİYE’DEKİ KIZILÇAM (PINUS BRUTIA) VE KAYIN (FAGUS 

ORIENTALIS) ORMANLARININ MEVCUT VE GELECEKTEKİ 
YAYILIŞLARININ İKLİM DEĞİŞİKLİĞİNE GÖRE MODELLENMESİ 

 

Yalçın, Semra 

Yüsek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri 

Tez Yöneticisi: Assoc. Prof. C. Can Bilgin 

Ortak Tez Yöneticisi: Prof. Dr. H. Şebnem Düzgün 

 

Aralık 2012, 98 sayfa 

 

Küresel iklim değişikliğinin biyotik ve abiyotik sistemler üzerindeki potansiyel 

etkileri genişçe kabul görmektedir. Bu etkilerden başlıcalarından birisinin de 

tür dağılımları üzerinde olduğu beklenmektedir. Tür dağılım modelleri (TDM) 

türlerin alanlarda var oluşları arasındaki ilişkileri ve bu alanların çevresel 

uzamsal karakteristiklerini tahmin etmek için kullanılmaktadır. Ayrıca TDM’ler 

türlerin küresel iklim değişikliğine karşı olası tepkilerini anlamak için de 

kullanılabilmektedir. Özellikle, küresel iklim değişikliğinin oluşturduğu 

baskıdan dolayı artan yönetici mercilerin bilgilendirilmesi ihtiyacının 

zorunluluğu düşünüldüğünde, bazı belirsizlik kaynaklarına rağmen, TDM’ler 

gelecekteki iklim durumları üzerinde yapılabilecek tahminler açısından yararlı 

ve yöneticiler için uygun maliyetli araçlar haline gelebilmiştir. Bu tez, ekonomik 

ve ekolojik olarak önemli değerlere sahip iki ağaç türünün, kızılçam ve kayının, 

şimdiki ve gelecekteki olası dağılımlarının küresel iklim değişikliği karşısında 

nasıl değişeceğini modellemeyi ve model kurulumlarında değişik veri setlerini ve 

modelleme yöntemleri kullanmanın TDM doğruluğunun üzerine etkilerini 

incelemeyi hedeflemektedir. 

 

Tür dağılım modelleri çalıştırılmasında bir açık yazılım olan R (versiyon 2.15.1) 

üzerinde çalışan BIOMOD 2 uygulaması kullanılmıştır. Model 

kalibrasasyonlarında, farklı yanıt değişken setleri sekiz farklı modelleme 

yöntemiyele kullanılmıştır. Ayrıca, topluluk tahminini AUC (ROC eğrisi altında 

kalan alan büyüklüğü) değerlerine orantılı ağırlıklı ortalama (eğitimli modeller) 
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kullanılarak gerçekleştirilmiştir. Güncel model değerlendirmeleri 1/25.000 

ölçekli sayısal meşçere haritaları ile karşılaştırılmış ve farklı ölçültlerle 

sınanmıştır. Türlerin gelecek yayılışları IPCC SRES A2 ve B2 emisyon 

senaryoları ile üretilmiş HadCM3 küresel iklim modelleri kullanılarak 

projeksiyonları üretilmiştir. Topluluk tahmin modellerine göre,  2050 ve 2080 

yıllarında öngörülen kazanç/kayıp habitat büyüklükleri haritalandırılmış ve 

değeşen alan büyüklükleri her veri seti ve emisyon senaryolarına göre 

hesaplanmıştır. 

 

Topluluk modellerinin sonucuna gore, kızılçam ağaçlarına iklimsel olarak 

uygun alanların daha yüksek irtifalara, Türkiye’nin kuzey ve kuzeydoğu 

bölgelerine, kayacağı tahmin edilmiştir. Kayın ağaçları içinse potansiyel olarak 

uygun alanların çoğunlukla yok olacağı ve toplam dağılımlarının gelecekte 

daralacağı/küçüleceği tahmin edilmiştir. 2080’de kızılçam ağaçlarının iklimsel 

olarak uygun alanlara sahip olabileceği öngörülürken, kayın ağaçlarının 

gelecekte bulabileceği uygun alanların çok sınırlı olacağı ön görüldümüştür. İki 

ağaç türünün de günümüzdeki habitatlarının gelecekte önemli bir kısmının 

uygun olmayan hale geleceği tahmin edilmiştir. 

 

Genel olarak, küresel iklim değişikliğinin Türkiye’deki kızılçam ve kayın 

ormanları üzerinde önemli derecede etkili olacağı düşünülmüştür. Gelecekte, 

yeni oluşabilecek uygun habitatlara bu türlerin yayılımlarının hızlı olup 

olamayacağına dayanarak, ciddi ekolojik, ekonomik ve sosyal sonuçlar 

doğabileceği belirtilmiştir. 

 

 

Anahtar Kelimeler: İklim Değişikliği, Tür Dağılım Modellenmesi, BIOMOD, 

MAXENT, Kızılçam, Kayın  
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To my parents 

 

 

 

 

Essentially, all models are wrong, but some are useful. 

George E. P. Box 
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CHAPTER I 

 

INTRODUCTION 

 

1.1. Climate change in Turkey 

The whole Mediterranean Basin, including the Anatolian Peninsula, is 

considered as one of the most vulnerable zones to climate change (IPCC, 2007). 

Climate change will affect Turkey through diminishing water resources and 

increasing rates of climate-related natural disasters and ecological degradation, 

such as frequent forest fires, drought, floods, desertification, and erosion (Talu 

et al., 2011). Therefore, many sectors, including forestry, energy, tourism and 

agriculture, will likely experience the impacts of climate change. 

 

1.1.1. Observed Changes in Climatic Variables  

Advances in weather and climate observation systems, and the availability of 

long-term climate data sets provide information to understand the climate 

change. With this aim, Tayanç et al. (2009) conducted a study using 

temperature and precipitation data of Turkish stations in the period of 1950–

2004. They found that Turkey experienced a general cooling trend in mean 

annual and seasonal surface air temperatures from early 1960s until the mid-

1990s, generally with the lowest temperature values on 1992–1993 owing to the 

eruption of Mount Pinatubo. A significant warming trend has been observed 

since 1993, whereas maximums of temperature in the recorded history were 

observed in recent years (Tayanç, 2009) (Figure 1).  
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Figure 1 Mean temperature in the period of 1950–2004 (S1 = rural and 
suburban stations, S2 = large urban stations; LPF = low pass filter; 365-day MA= 
moving average signals, 365-day) (Tayanç, 2009) 

 

Toros (2012) showed that a higher increase has been observed in temperatures 

of the warm period compared to the temperatures of the annual and cold 

periods (Figure 2). Moreover, since the sixties, the intensity and frequency of 

heat waves have increased six to sevenfold than previously known for the 

eastern Mediterranean region (Kuglitsch et al., 2010).   
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Figure 2 Statistically significant trends in average maximum temperature for 
warm period (top) and average maximum temperature for cold period (down) over 
Turkey in the period 1961–2008 (Toros, 2012) 
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A recent study also demonstrated a general decrease in the annual number of 

frost days at most stations over Turkey in the 1950–2010 periods (Erlat et al., 

2012). A significant decrease particularly between 2000 and 2010 indicates a 

stronger warming during the first decade of the 21th century (Figure 3).  

 

 

Figure 3 Inter-annual and inter-decadal variations in numbers of frost days over 
Turkey during the period 1950-2010 relative to the long-term average (Erlat et al., 
2012) 

 

In the period of 1951–2004, winter precipitation in the western provinces of 

Turkey has declined significantly, whereas fall precipitation has increased at 

stations that mostly lie in the northern parts of central Anatolia (Dalfes et al., 

2007). Consistent with local studies, according to García-Ruiz et al. (2011), 

precipitation has decreased in the western coastline of Turkey, despite an 

observed positive trend in northern Turkey between 1950 and 2002 (Figure 4). 
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Additionally, in the period of 1989-2009, the amount of water potential of 

Turkey was reduced from 178.15 billion to 163.79 billion m3 due to a decrease 

in surface flows (Yıldız, 2010). Besides, 30% of glaciers of Mount Ağrı have been 

lost since 1976 (Sarıkaya & Bishop, 2010). 

 

1.2.2. Climate Change Projections in Turkey 

In Turkey’s National Climate Change Adaptation Strategy and Action Plan 

(2010), projected seasonal precipitation change (%) and seasonal temperature 

change (ºC) were examined according to regional climate models based on A2 

simulations of ECHAM5, HadCM3 and CCSM3, the A1FI simulation of CCSM3 

and the B1 simulation of CCSM3 in the 2071-2100 period compared to the 

1961-1990 period (Talu et al., 2010).  

The increases in temperature estimated by three GCMs for the same scenario 

(A2) are relatively close to each other for all seasons (Table 1). Simulations 

mostly indicate larger increases in temperature in eastern Turkey than in 

western Turkey.  

Figure 4 Annual precipitation changes in the Mediterranean region between 
1950 and 2002. Colors show the magnitude of changes in precipitation, in mm. 
Black isolines: areas with significant trends (p < 0.05) (García-Ruiz et al., 2011) 
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Increases of 5.2- 6.8 °C in mean summer temperatures are expected by three 

GCMs for A2 scenarios in eastern Turkey. The predictions of the CCSM model 

by different scenarios show an increase of 3.4 °C in average summer 

temperature by the B1 scenario, whereas A2 and A1FI simulations indicates 

even higher increases in summer temperatures. 

  

Table 1 Projected seasonal surface temperature changes (ºC) in 2017-2099 
period over 1961-1990 period based on different scenario simulations. W 
indicates the western half of Turkey and E indicates the eastern half of Turkey 
(Talu et al., 2010)  

  Winter Spring Summer Autumn 

Scenario GCM W E W E W E W E 

A2 ECHAM5 2.9 3.4 3.1 4.1 4.7 5.2 4.0 4.4 

 HadCM3 3.4 3.8 3.7 4.1 6.9 6.1 4.0 4.3 

 CCSM3 2.5 2.9 3.6 3.5 6.4 6.8 4.9 5.9 

A1FI CCSM3 3.5 4.0 4.8 4.9 6.9 7.3 5.5 6.8 

B1 CCSM3 1.3 1.5 1.7 1.7 3.3 3.4 2.5 3.0 

 

 

According to SRES A2 simulation, for the period of 2000-2100 with a reference 

period of 1961-1990, regional climate models show that while winter 

temperatures will show a linear increasing trend after 2030, reaching up to 

3°C, the trend in summer temperatures is much more significant and reaches 

up to 5°C at the end of the century (Özdemir et al., 2011) (Figure 5).  
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Figure 5 Mean temperature anomaly of the Anatolian Peninsula in the period of 
the period of 2000-2100 (Özdemir et al., 2011) 

 

In the face of climate change, precipitation can be subject to high inter annual 

and seasonal variability, with long and intense dry periods, or extreme rainfall 

and floods (IPCC, 2007). Table 2 shows the projected seasonal precipitation 

change (%) according to the five different simulations in 2071-2100 period 

compared with the 1961-1990 period (Talu et al., 2010). Simulations mainly 

agree that there will be less annual precipitation in future compared to the 

present day. Northern half of Turkey is expected to experience a much bigger 

decrease in summer precipitation than the southern half.  
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Table 2 Projected seasonal precipitation changes (%) in 2071-2099 period over 
1961-1990 period based on different scenario simulations. N indicates the 
northern half of Turkey and S indicates the southern half of Turkey (Talu et al., 
2010)  

 

 

Future simulations with RegCM3, forced by the general circulation model 

fvGCM and based on the SRES A2 emission scenario (Dalfes, 2007), showed 

that in the period 2071-2100 precipitation will likely decrease along the Aegean 

and Mediterranean coasts and increase along the Black Sea coast of Turkey 

whereas Central Anatolia shows little or no change (Figure 6-a, and 6-b). Most 

significant decline in precipitation will be observed on the southwestern coast 

while the Caucasian coastal region is expected to receive substantially more 

precipitation. Winter precipitation is projected to decrease along the 

Mediterranean coast.  

The annual temperature of Turkey in the period 2071-2100 will increase over 

the whole country; especially the Aegean Region is expected to experience 

temperature increases up to 6 ºC. Additionally, winter temperature increase 

was estimated to be higher in the eastern half of the country during this period 

(Dalfes et al., 2007) (Figure 6-c and 6-d). 

 

 

  
Winter Spring Summer Autumn 

Scenario GCM N S N S N S N S 

A2 ECHAM5 13.0 -17.0 1.5 -23.0 -23.0 -30.0 -4.0 4.0 

 
HadCM3 -2.5 -26.0 -1.0 -28.0 -48.0 -61.0 3.0 21.0 

 
CCSM3 -6.0 -32.0 -21.0 -36.0 -33.0 -62.0 -6.0 -23.0 

A1F CCSM3 -0.6 -35.0 -30.0 -47.0 -57.0 -70.0 -1.5 -10.0 

B1 CCSM3 -0.6 -14.0 -10.0 -28.0 -19.0 -40.0 -7.0 -16.0 
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1.2. Climate Change Impacts on Forest Ecosystems 

Forests are significant terrestrial ecosystems globally, covering over 30 percent 

of the total land area of Earth, and providing habitat for many species and 

numerous goods, benefits and services to people (FAO, 2010).  

Climate plays an essential role in forest ecosystems. Observations, experiments 

and models strongly indicate that climate change will alter the functioning and 

structure of forest as well as forest location, composition, and productivity 

(Gunderson et al., 2012; Allen et al., 2010; Linder et al., 2010; Dawson et al., 

2011; Bellard et al., 2012). Forests are specifically sensitive to climate change 

because the long-life time of trees does not allow them to adapt for abrupt 

change (Lindner et al., 2010). Therefore, local extinctions and loss of important 

functions and services are predicted (Keene, 2012).  

Furthermore, threats to forest ecosystems such as pest outbreaks, fires, storm 

damage, and drought will likely become worse due to climate change (Seidl et 

al., 2011). Prieto et al. (2009) conducted an experiment about effects of 

droughts and warming on recovery process of a plant community after fire 

disturbances. They found that drought and warmer temperature in 

Mediterranean areas may affect recovery after a disturbance due to lower level 

of plant establishment and reduced growth rates. Moreover, it is expected that 

fire regimes will trigger more intense attacks of insects such as bark beetles 

(Hernandez, et al. 2012).  

As a result, climate change is expected to have negative consequences for 

organisms and people that depend on forest ecosystems. It is particularly 

urgent to develop adaptation strategies, since current forest stands will suffer 

from changes in climatic conditions that are projected to change extremely 

throughout their lifetime (Kolström et al., 2011). 

There have been few studies examined climate change effects on forests in 

Turkey. One of the research, which was conducted by Nature Conservation 

Centre, aimed to determine the impacts of climate change on forest areas in 

Seyhan Basin located in the south of Turkey and to designate the 

vulnerabilities of forest ecosystems where detrimental effects of climate change 
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are expected to occur (Zeydanlı et al., 2010). Other research based on dynamic 

vegetation models aimed to model possible effects of climate change major tree 

species of natural Turkish forests (Fer, 2011). Moreover,  Beton (2011) 

conducted a study about effects of climate change on distribution of four 

endemic plant species in Anatolia.  

 

1.3. Species Distribution Modeling  

One of major impacts of climate change is predicted to be on species 

distributions (IPCC, 2007). Climate is an important determinant of species 

distributions. It sets the limits to the distribution of species at the regional to 

global levels (Meier et al., 2012). Thus, changing climate has a profound 

influence on species ranges (Pearson & Dawson, 2003). Under changing 

climatic conditions, species may adapt to new conditions on site, shift their 

distributions, or go extinct (Parmesan 2006; Massot et al. 2008). 

Species distribution models (SDMs) estimate the relationship between species 

presence records at sites and the environmental and/or spatial characteristics 

of those sites (Franklin, 2009). They have become an important tool in ecology, 

biogeography, evolution, and conservation biology (Guisan & Thuiller 2005). 

SDMs have been used to project the potential effect of climate change on 

species distributions for more than a decade now (Eeley et al., 1999; Beaumont 

& Hughes, 2002; Neilson et al., 2005; Renwick et al., 2012).  

There are four steps followed in the modeling process for SDMs (Figure 6). The 

first step is to collect, process, error-check and format the data that are 

necessary as input. After preparation of occurrences and environmental 

variables, the next step is to use a modeling algorithm to describe the species’ 

ecological niche as a function of environmental variables. In this step, model 

calibration, including selecting suitable model parameters, evaluating trained 

models with statistical methods and setting threshold for binary prediction, 

takes place.  
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The next step is to project the prediction and to evaluate how well the model 

predicts independent data. The last step is to transfer modeled conditions to 

predict environmental suitability across a new region or for a different time 

period (e.g. under future climate simulations) (Peterson et al., 2011). 

Many habitat modeling methods are available to simulate spatial distribution of 

a species (Table 3). Deciding on which modeling method to use in any given 

situation should be based on the available biological and environmental data 

and the end use purpose of the model (Wintle et al., 2005).  

There are three main levels of biological data used in species distribution 

modeling: presence-only, presence–absence and presence-pseudo absence data. 

Presence-only data are the most common form of observation data, and are 

usually available from museums and herbaria, atlases, species lists, incidental 

observation databases and radio-tracking studies (Pearce & Boyce, 2006). The 

problem of the ‘presence-only’ data is that observations are unplanned and 

tend to be biased toward towns and roads and the variation in survey effort 

between different environments and geographical areas cannot be controlled or 

adjusted in model fitting (Wintle et al., 2005). Since reliable absence data often 

are not available, ‘pseudo-absences’ data are used instead. Pseudo-absence 

data is a set of localities chosen from the study area that are used in place of 

real absence data (Pearson, 2007).  
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Modeling algorithms used commonly in species distribution modeling are 

classified into three main groups: envelope, machine learning and regression 

based algorithms. Examples of climate envelope methods are BIOCLIM and 

surface range envelope (SRE). BIOCLIM is an envelope method that identifies 

all areas that exhibit similar climate profiles to the occurrence locations of the 

species (Pearson, 2007). SRE is similar to BIOCLIM. It produces a climatic 

envelope based on data within defined percentiles (e.g. 5-95 % percentile) of the 

maximum and minimum range for each predictor variable (Beaumont & 

Hughes 2002). In both BIOCLIM and SRE, variable interactions are not 

considered; thus they are primarily useful for estimation of ranges but not for 

more detailed maps of species distribution (Beaumont et al., 2005). Moreover, 

all envelope methods are sensitive to missing data and spatial error (Wintle et 

al., 2005). 

Examples of machine learning techniques are artificial neural networks (ANN), 

classification tree analysis (CTA), generalized boosting model (GBM), random 

forest ensemble classifier (RF), and maximum entropy (MAXENT). Artificial 

neural networks (ANN) is an advanced and powerful rule-based modeling 

technique, inspired from the structure, processing and learning ability of the 

brain (Manel et al., 1999). An ANN contains an input layer, predefined hidden 

layers (intermediate) and an output layer, composed of independent neurons 

and connected each other (Ripley, 1996). In a feed-forward neural network, 

each layer use previous layer as inputs of multivariate functions to generate the 

outputs (Marmion et al., 2009). To avoid overfitting in neural networks, a 

predefined cross-validation method is implemented. Once the complete network 

is built, different weighting factors of the multivariate linear functions are 

chosen by minimizing the quadratic error of the estimate (Marmion et al., 

2009). Their robustness to noisy data and their ability to represent linear and 

non-linear functions are some of the advantages of ANN. However, tuning the 

parameters requires great knowledge and effort that make ANNs difficult to use 

(Lorena et al., 2011). 

Classification tree analysis (CTA) is a rule-based method that generates a 

binary tree through a recursive data-splitting technique, iteratively creating 

homogenous subgroups (Breiman et al., 1984; Venables & Ripley, 2002).  
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Each split is based on a single variable, while the goal is to minimize variance 

within each group (Roberts & Hamann, 2012). Cross-validation is used to 

prune the tree by balancing the number of terminal nodes and the explained 

variance (Breiman et al., 1984; Miska & Jan, 2005). The advantage of CTA is 

that it allows capturing of non-additive behavior and complex interactions 

(Marmion et al., 2009). However, CTA has a tendency to produce overly complex 

models that lead to spurious interpretations (Breiman et al., 1984).  

Random forest (RF) (Breiman, 2001) is a machine learning method that 

generates multiple trees with bootstrapping technique using randomly selected 

subsets of the observation and predictor variables. Final predictions either 

average probabilities over multiple classification trees or tally them using a 

voting system (Prasad et al. 2006). A selective algorithm limits the number of 

implemented parameters in each tree. Despite the number of trees employed in 

the combination, RFs do not overfit (Breiman, 2001). RFs have been successful 

in a wide range of applications (Cutler et al., 2007).  

Generalized boosting method (GBM) is a non-parametric technique that is 

highly efficient in fitting the data (Ridgeway, 1999; Friedman, 2001). It used 

boosting technique that is a numerical optimization for minimizing a loss 

function (such as deviance) by adding at each step a new tree that best reduces 

the loss function (Ridgeway, 1999; Elith et al., 2008). Environmental variables 

are input into a first regression tree, which maximally reduces the loss 

function. For each following step, the focus is on the residuals. For example, at 

the second step a tree is fitted to the residuals of the first tree. The model is 

then updated to contain two trees, and the residuals from these two trees are 

calculated. The sequence is repeated as long as necessary (Elith et al., 2008).  

MAXENT uses the principle of maximum entropy on presence-only data to 

estimate a set of functions that relate environmental variables and habitat 

suitability in order to approximate the species’ niche and potential geographic 

distribution (Phillips et al. 2006). It is a discriminative modeling technique, 

meaning it fits species occurrences relative to available habitat in a model as 

uniform as possible between two probability densities (the single constraint 

that the mean of the function for each variable and the mean of the observed 
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data defined in feature space (Elith et al. 2011). Although MAXENT was 

designed to use presence-only data, it also performs well when compared to 

presence–absence procedures that utilize both real and pseudo-absence data 

(Elith et al. 2006).  

Examples of regression based techniques are flexible discrimination analysis 

(FDA), generalized linear model (GLM) and generalized additive model (GAM). 

FDA is a supervised discriminant analysis and an extension of the well-known 

linear discriminant analysis (Hastie et al., 1994). It uses a nonparametric 

regression method for classification of predictors and a mixture of normals for 

obtaining a density of estimation for each class. In contrast to linear 

discriminant analysis, it uses a mixture of Gaussians to model a class rather 

than a single Gaussian (Hastie et al., 1994). 

Generalized linear models (GLM) are mathematical extensions of linear models 

which are capable of capturing nonlinear relationships via a link function 

(Guisan & Zimmermann, 2000).  They provide a less restrictive form than 

classic multiple regressions by providing error distributions for the dependent 

variable. In the case of nonlinearity of the response with a predictor variable, a 

transformation takes place where polynomial terms allow for the simulation of 

skewed and bimodal responses, functions or hierarchical sets of models. An 

automatic forward stepwise procedure is used to compute the best model by 

minimizing the Akaike information criterion (AIC) value or the Bayesian 

information criteria (BIC) to reduce redundancy in variables and (most of time) 

multicollinearity (Thuiller, 2003). 

Generalized additive models (GAM) are nonparametric extensions of GLM, using 

smoothing equations to generalize the data and fit to local data subsets (Guisan 

& Zimmermann, 2000). The smooth functions are computed independently for 

each explanatory variable and added to construct the final model. The step 

forward variable selection of GAM is generally based on AIC (Thuiller, 2003).   
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1.3.1. Ensemble Modeling 

One difficulty with the use of species distribution models is that the number of 

techniques available is large and is increasing steadily, making it difficult to 

select the most appropriate methodology for research needs (Elith et al., 2006; 

Heikkinen et al., 2006; Marmion et al. 2009). The performance of individual 

SDMs varies widely among methods and species (Elith et al. 2006). For those 

reasons, when models are used to project distributions of species into 

independent situations, which is the case for projections of species 

distributions under future climate change scenarios, making the choice of an 

appropriate model is even more difficult (Pearson et al., 2006; Thuiller, 2004, 

Araújo et al., 2005). 

A solution for this inter-model variability is to use ensembles of forecasts by 

simulating across more than one set of initial conditions, model classes, model 

parameters, and boundary conditions (Araújo & New, 2007) and analyze the 

resulting range of uncertainties with bounding box, consensus and 

probabilistic methodologies rather than lining up with a single modeling 

outcome (Araújo & New, 2007). Consensus methods that integrate results of 

different methods, alternative parameterizations of the same method, or 

multiple iterations of stochastic methods provide a composite robust estimate 

of potential species’ distributions (Araújo & New 2007; Marmion et al. 2009).  

 

1.3.2. Evaluation of Models 

One fundamental issue in the development of distribution models is the 

assessment of predictive accuracy (Guisan & Thuiller 2005; Barry & Elith 

2006). An assessment of model performance can also provide a basis for 

comparing alternative modeling techniques (Loiselle et al. 2003; Segurado & 

Araujo 2004; Pearson et al. 2006) and enables the user to investigate how 

different properties of the data and/or the species affect the accuracy of 

predictive maps generated by the model (Kadmon et al., 2003; Segurado & 

Araujo 2004; Reese et al. 2005). There are different evaluation methods of 

SDMs which are currently used in SDMs studies.  
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Confusion Matrix: Models generating presence–absence are usually evaluated 

by comparing the predictions with a set of validation sites and constructing a 

confusion matrix that records the number of (a) true positive, (b) false positive, 

(c) false negative and (d) true negative cases predicted by the model (Table 4).  

Table 4 Confusion matrix (n is the overall number of cases).  

Tab le 5  

  Validation data set 

  Presence Absence 

Model Presence a b 

Absence c d 

 

Overall accuracy: One simple measure of accuracy that can be derived from the 

confusion matrix is the proportion of correctly predicted sites (eqn. 1).  

 

 

 

 

Sensitivity & Specificity: Two alternative measures that are often derived from 

the confusion matrix are sensitivity and specificity. Specificity is calculated as 

the ratio of correctly predicted absences to the total number of absences (eqn. 

2), and sensitivity as the ratio of correctly predicted presences to their total 

number (eqn. 3).  

 

 

 

 

 (1) 

 

 (2) 

(3) 
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False Positive Rate (Type I Error): False positive rate is calculated as the 

proportion of false positive predictions versus the number of actual negative 

sites, which equals to 1- specificity (eqn. 4).  

 

 

Receiver Operating Characteristic Curve: The area under the ROC curve (AUC) 

is often used as a single threshold-independent measure for model performance 

(Fielding & Bell 1997). ROC curves are constructed by using all possible 

thresholds to classify the scores into confusion matrices, obtaining sensitivity 

and specificity for each matrix, and then plotting sensitivity against the 

corresponding proportion of false positives (equal to 1 − specificity) . The AUC 

value is independent from prevalence and considered a highly effective measure 

for the performance of ordinal score models (Allouche et al., 2006). The range of 

AUC is from 0 to 1. A model providing excellent prediction has an AUC higher 

than 0.9, a fair model has an AUC between 0.7 and 0.9, and a model is 

considered poor if its AUC is below 0.7 (Swets, 1988).  

 

True Skill Statistic: The true skill statistic (TSS), an established approach for 

assessing the accuracy of weather forecasts, compares the number of correct 

forecasts, minus those attributable to random guessing, to that of a 

hypothetical set of perfect forecasts (eqn.5).  

 

 

It takes into account both omission and commission errors and success as a 

result of random guessing, and ranges from -1 to +1, where +1 indicates perfect 

agreement and values of zero or less indicate a performance no better than 

random.  

 (5) 

 (4) 
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1.4. Aim of the Study 

Forest ecosystems are one of the most important terrestrial ecosystems. 

However, climate change is anticipated to affect forests by altering both forest 

processes and biodiversity and in doing so change forest location, composition, 

and productivity. It is urgent to integrate possible effects of climate change on 

forest ecosystems into conservation plans/strategies. In order for this 

integration to occur, reliable information on how species will be affected from 

climate change is required.  

This study aims to model current and potential future distributions of two 

economically and ecologically important tree species, Turkish pine (Pinus 

brutia, in Turkish Kızılçam) and Oriental beech (Fagus orientalis, in Turkish 

Kayın), in the face of climate change, and to assess the effect of using different 

data sets and modeling methods in model setups on species distribution 

models accuracy.  
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CHAPTER II 

 

MATERIAL AND METHODS 

 

2.1. Studied Species 

2.1.1. Turkish Pine (Pinus brutia) 

Turkish Pine, Pinus brutia, is a fast growing tree species found especially in 

Eastern Mediterranean region: Turkey, Greece, Cyprus, Syria and Lebanon. A 

few small populations can be found in Iran and Iraq and around the Black Sea: 

Georgia, Russia and Ukraine (Figure 7). Moreover, one of the variety (var. 

eldarica) is found in Afganistan. Most of its distribution is found in Turkey 

(Boydak et al., 2006).  

 

Figure 8 Current distribution of Turkish pine (source: EUFORGEN 2009, 
www.euforgen.org.) 
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In Turkey, Turkish pine forms extensive forests, especially in regions where the 

Mediterranean climate prevails. Main distribution of Turkish pine lays out the 

areas where hot/very hot summers and mild winters, year-round temperate 

effect of the sea air and moderate rainfall concentrated in the winter months 

are. Moreover, it is commonly found in fire-related ecosystems of the eastern 

Mediterranean region. It has not any soil type preferences; it can grow all on all 

types of soil. Generally it is found in pure stands, besides some regions it is 

also found in mixed stand with cedar, black pine and juniper (Boydak et al., 

2006; Atalay et al., 1998). 

In Mediterranean region of Turkey, it is distributed from Muğla to Antakya 

where it is generally found below 1300 m a.s.l. with some exceptions; for 

example in Anamur-Sarıdana region, it is found up to 1500-1650 m. In 

southern aspects of Taurus Mountains, it can be found in areas where the sea 

maritime influences reach through valleys; for example through Seyhan Valley 

to north Feke, or through Göksu River to Mut. Furthermore, it spreads locally 

in parts of Southeastern Anatolia, for instance in Kahramanmaraş, Gaziantep, 

and Adıyaman (Boydak et al., 2006, Atalay et al. 1998). In the Aegean region, it 

shows a wide distribution from sea level up to 800-1000 m. Following Gediz, 

Büyük Menderes, and Küçük Menderes valleys, the species reaches inner west 

Anatolia. In Thrace, it is found along the northern coast of the Marmara Sea 

(Keşan and Gelibolu) where it grows up to 400 m (Boydak et al., 2006, Atalay et 

al. 1998). Along the coasts and valleys of the Black Sea region, it is found up to 

800-1000 m altitude. Especially it occurs along the Kelkit, Yenice and Sakarya 

valleys. In Kelkit valley, it is found as pure stands up to 600 m altitude and as 

mixed stands between 600-800 m altitudes (Boydak et al., 2006). Overall, the 

elevation range of Turkish pine varies according to the region: in the 

Mediterranean region, 0–1500 m; in the Aegean region, 0–1000 m; and in the 

Black Sea region, 0–600 m (Boydak et al., 2006, Atalay et al. 1998).  

Turkish pine is the most widely distributed coniferous species in Turkey, 

covering 5.4 million hectares (OGM, 2006). It is an important forest tree species 

in Turkey for both economic and ecological reasons. It is valuable for its timber 

products as well as for soil stabilization and as wildlife habitat.  
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The wood of these Mediterranean pines is used for many purposes: 

construction, industry, carpentry, firewood and pulp.  

There are different common names used for Pinus brutia such as Turkish red 

pine, Turkish pine and Calabrian pine. Throughout this study, Turkish pine is 

used for refering Pinus brutia.  

 

2.1.2. Oriental Beech (Fagus orientalis) 

The oriental beech, Fagus orientalis, is a temperate deciduous tree in the beech 

family Fagaceae.  It is a shade tolerant climax species that occur in Turkey, the 

Caucasus, northern Iran and the parts of south-eastern Europe (Figure 8).  Its 

core distribution starts near the Bulgarian-Turkish border, expands eastward 

through the Northern Anatolian Mountains and extends north along the 

coastline of the Black Sea until the Crimean Peninsula (Atalay, 1992).  

                                               

Figure 9 Distribution of Oriental beech (Source: EUFORGEN 2009, 

www.euforgen.org.)  
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In Turkey, the species is distributed in northern Thrace and south of the 

Marmara Sea, and throughout the Black Sea Region, where it is possible to find 

oriental beech both in pure and mixed stands with conifers and other 

deciduous broadleaved trees.  

There are also isolated natural populations on the northern aspects of the 

Murat Mountains in the inner Aegean Region as well as in the Amanos 

Mountains in the eastern Mediterranean Region (Atalay, 1992).   

The optimum elevation for oriental beech is between 700 and 1200 m whereas 

it can be found between 0 and 2000 m a.s.l. Aspect is an important topographic 

factor for oriental beech as it usually occurs in northern and north-eastern 

aspects with a medium slope. It is vulnerable against extremes of low and high 

temperatures. Therefore, dry summer months and early/late frost are the main 

constraints for its distribution (Atalay, 1992). Furthermore, the other constraint 

for its distribution is Rhododendron, a competitive species in the Black Sea 

Region where human caused disturbances have enhanced its spreads, further 

constraints the occurrence of beech (Yıldız & Esen, 2006). Especially in its early 

years, oriental beech cannot compete with a layer of dense rhododendron.  

This species covers some 1.7 million ha in Turkey, and is an economically 

important tree species with more than 6 million m3 annual wood production 

increment (OGM, 2006).  As a one of the dominant forest species in Turkey, 

oriental beech has a wide range of uses in forest industry (Atalay, 1992).  

 

2.2. Spatial Scale: Extent and Resolution 

Spatial extent of this study encompasses the whole of Turkey, placed between 

26° – 45° E longitude and 36° – 42° N latitude. Turkey covers 783,562 km2 of 

land surface with highly diverse geographical and environmental features. The 

spatial resolution used was 1 km2, a value that is considered sufficiently fine to 

identify environmental differences and forest distributions at the regional scale 

(Pearson et al., 2003).  The cell (pixel) size for all GIS raster datasets was set as 

1×1 km. 
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2.3. Data Collection and Preparation 

Two types of data are required to build species distribution models: species 

occurrence/absence data and raster formatted GIS datasets summarizing 

environmental variables. This section outlines the steps for collecting and 

processing data used in the models. All data preparation was carried out with 

ArcGIS Desktop v: 10.1 (ESRI Inc., Redlands, CA). 

 

2.3.1 Species Occurrence Data 

Species occurrence data, also called response variables, are point localities 

defined by x and y coordinates that specify the geographical distribution of a 

species. It is used in the training and testing of the species distribution models 

that were sampled on the principle that selected samples should represent all 

environmental diversity of targeted species distribution and they should be far 

enough to one another to exclude possible auto-correlation between them. 

1:25.000 scale digital forest stand maps for Turkish pine and oriental beech 

were obtained from the General Directorate of Forestry, and used for extracting 

response variables. These maps are highly accurate and rely on 1:15,000 scale 

air photos and field observations by forestry personnel. They show a species as 

present when it has 10% or more crown closure (which approximates 

abundance) in a stand. 

The following working scheme was used for the both Turkish red pine and 

oriental beech (Figure 9). Polygons of stand maps were converted to raster data 

to avoid unequal sampling intensity of species occurrence. Firstly, all polygons 

of stand maps were aggregated for reducing processing time. After this, stand 

maps were intersected with a vector grid that was snapped with the raster data 

at a resolution of 1×1 km.  
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For each grid cell, areas occupied by each species were calculated and grids 

that were covered by a species on more than 50% of their area (≥ 50 ha) were 

selected. Those selected grids were assigned as presence of the respective 

species.  

 

Figure 10 Converting stand polygons into a raster layer 

 

Occurrence data were derived from the presence data as randomly selected 500 

points for each species. The selection of points was adjusted to be at least 5 km 

apart for eliminating the autocorrelation between points (Figure 10). 

 

Figure 11 Randomly selected presence data of both species 
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2.3.2. Species Pseudo-Absences Data 

If the true absence of a species is unknown, there are two approaches in 

species distribution modeling. They are generating either background or 

pseudo-absence data. Background data is a sample which characterizes the 

environmental conditions present across the study area. Whereas, pseudo-

absence data is a sample of points selected from areas or sites where the 

species has not been detected (Peterson et al., 2011). 

There are four reasons for a species to be absent at a particular site. First, the 

physiology and life history traits of a species may not allow it to get established 

and/or grow under the particular climate and soil conditions found at that site. 

Second, even though it may be able to survive the conditions, the species may 

never have been able to reach that site either since there has not been enough 

time for it to disperse from its source, or because barriers such as mountains 

or water bodies avoided such dispersal.  

Third, even though a few individuals are actually present, their occurrence at 

less than 10% crown closure would be reflected in stand maps as absence. 

Fourth, humans might have historically destroyed previous stands at a site and 

the current “absence” of the species may be a recent event. The first two 

reasons would lead to true absences, while the last two to false absences 

(within the temporal and spatial scales of this study). 

Therefore, even using accurate stand maps as input, it is not possible to safely 

determine true absences. As a result, generated background and pseudo-

absence datasets were used in this study. Background data was generated by 

selecting 10,000 points randomly from the whole study area; it is called 

“random pseudo-absence” data throughout this study. Two strategies were 

used for selecting the pseudo-absence data.  

First one was SRE strategy in which pseudo-absences were selected outside of 

the defined environmental conditions for the species found by surface range 

envelope (SRE) model within 2.5-97.5 % percentile range of these maximum 

and minimum limits of all environmental variables for each input species 

presence.  
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The second was disk strategy, which was defined by minimum and maximum 

distance to presence points for selecting the pseudo-absences. A distance of 20 

km from presence points was used to build a buffer zone; outside of this zone 

10,000 pseudo-absence points were selected. This buffer zone was used to omit 

probable presence areas for the species from the selection because it was 

assumed that areas adjoining the actual distribution of species are likely 

suitable for the species. All selections were replicated 5 times for eliminating 

bias in the selection.  

 

2.3.3. Environmental Variables 

2.3.3.1. Topographic Features 

Digital Elevation Model 

SRTM version 4 with a resolution of ~90 m was obtained from CGIAR-CSI 

GeoPortal. It was clipped by the study area extent, projected to WGS84 UTM 

zone 36 with a resampling of pixel size to 1×1 km resolution. Bilinear 

interpolation, which determines the new value of a cell based on the four 

nearest pixel values which are located in diagonal directions from a given pixel, 

was used as the resampling algorithm and causes some smoothing of the data. 

Aspect and Slope 

Aspect and slope data were derived from SRTM raster data by ArcGIS Desktop 

Spatial Analyst Tool. The inclination of slope was calculated in degrees. 

Topographic Wetness Index 

Topographic wetness index is a calculation of the ratio of the slope to the 

specific catchment area (Beven & Kirkby 1979), defined as TWI=ln(As/tan b), 

where As is the specific catchment area (the cumulative upslope area draining 

through a cell divided by the contour width) and b is the local slope (Beven & 

Kirkby 1979).  
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Specific catchment area is a grid that is calculated according the contributing 

area value for each cell taken as its own contribution plus the contribution 

from up-slope neighbors that drain into it. Topographic wetness index is used 

to describe spatial soil moisture patterns (Kopecky, 2010) and was calculated 

from SRTM raster data with ArcGIS Desktop v: 10.1 under Spatial Analyst 

Tools- Map Algebra.  

 

2.3.3.2. Climatic Features 

Raster grids of the global current (1960-1990 averaged) climate data with a 

spatial resolution of 30 Arc-seconds (~1 km2) were obtained from the WorldClim 

database. This database provides 19 layers of bioclimatic variables compiled 

from monthly data collected from 1950 to 2000 (Hijmans et al., 2005).   

Raster grids of the global future climate data were obtained from CIAT-GCM 

(Centro Internacional de Agricultura Tropical-Global Climate Model) database 

(Ramirez & Jarvis, 2010). The Hadley Centre Coupled Model version 3 

(HadCM3) GCM for IPCC SRES scenarios A2 and B2 for the years 2050 and 

2080 were used in this study. These two IPCC SRES scenarios differ mainly in 

the amount of carbon emission from energy and industrial sources by 2100. 

The A2 scenario involves a continuous increase in the human population, 

regionally oriented economic development and semi-intensive use of fossil fuels. 

On the other hand, B2 involves slower growth of the human population, local 

solutions on economic, social, and environmental sustainability, and lower CO2 

emissions (IPCC, 2007). Thus, one can state that the A2 SRES scenario is more 

pessimistic than the B2 scenario. Climatic data were clipped by study area and 

projected onto WGS-UTM Zone 36 system. 
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2.3.3.3. Selection of Environmental Variables for Modeling 

Quite a lot of different variables are available to use in species distribution 

modeling; however, many are also highly correlated to each other. It is better to 

only use one variable among many such correlated variables since using highly 

correlated variables causes multicollinearity between predictor variables, which 

can result in model overfitting (Peterson et al. 2007). 

Pearson correlations were calculated between all environmental variables that 

can potentially be used in the models. Selection was based on both ecological 

relevance to life history of the species and on the calculated correlation 

coefficients. Highly correlated variable pairs (correlation coefficient > 0.60) were 

omitted from the data set. In all the models, 8 environmental variables are used 

(Table 5). 

Table 6 Pearson’s correlation matrix of used variables in the models (Wetness: 

topographic wetness index, Aspect: aspect, Tsea: Temperature seasonality, 

MaTWM: max temperature of warmest month, MiTCM: min temperature of coldest 

month, AP: annual precipitation, PDM: precipitation of driest month)  

 Wetness Aspect Tsea MaTWM MiTCM AP PDM 

Wetness 1       

Aspect 0.02 1      

Tsea 0.00 - 0.02 1     

MaTWM 0.21 - 0.03 0.31 1    

MiTCM 0.14 - 0.01 - 0.52 0.6 1   

AP - 0.22 0.03 - 0.23 0 0.33 1  

PDM - 0.15 0.03 - 0.42 - 0.6 - 0.11 0.35 1 

 

Temperature seasonality is the coefficient of variation of temperature, i.e. the 

standard deviation of the monthly mean temperatures expressed as a 

percentage of the annual mean (Hijmans et al., 2005). 
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2.3.4. Summary of Model Inputs 

For each species and for each SRES scenario, 7 environmental and 500 

response variables were used in the model setups with background and 

pseudo-absence datasets (Figure 11). 

 

 

 

Figure 12 Inputs used in the models (Wetness: topographic wetness index, 
Aspect: aspect, Tsea: Temperature seasonality, MaTWM: max temperature of 
warmest month, MiTCM: min temperature of coldest month, AP: annual 
precipitation, PDM: precipitation of driest month) 

 

2.4. Model Calibration 

Modeling algorithms were used to characterize the species distribution as a 

function of environmental variables by using species occurrence data and 

environmental variables prepared as explained in the previous section. 
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The BIOMOD 2 framework (Thuiller, 2003), implemented in the open source R 

version 2.15.1 software (R Development Core Team), was used to build the 

distribution models. It offers multiple algorithms for modeling and provides an 

ensemble of spatial projections of the models obtained. 

For each species, the following modeling approaches were used to compute 

predictions: artificial neural networks (ANN), classification tree analysis (CTA), 

generalized additive models (GAM), generalized linear models (GLM), generalized 

boosted regression modeling (GBM), flexible discriminant analysis (FDA), 

maximum entropy (MAXENT),  and classification and regression with random 

forest (RF). 

The following arguments were set up for parameterization of the models: ANNs 

were fitted as 200 maximum iterations with 5 cross-validations. CTAs were 

fitted as class method with 5 cross-validations. GAMs were fitted as binomial 

family error distribution as an automatic stepwise procedure with a smoothing 

term of 2. GLMs were fitted as binomial (logit link) family error distribution type 

(i.e. logistic regression) with quadratic terms, and an automatic stepwise 

procedure with AIC. GBMs were fitted by using Bernoulli family error 

distribution with total number of trees at 500 and with performing 5 cross-

validation folds at the learning rate 0.01. FDAs were fitted with multi-response 

regression method used in optimal scaling. MAXENT were set up as 200 

maximum iterations with linear, quadratic, product, threshold, hinge features 

used. RFs were computed as classification random forest with 500 trees grown. 

There were a total 1440 model calibrations for 2 study species, 3 types of 

background/absence data with 5 randomizations, 8 different modeling 

approaches and 6 replications. For the background/absence data, random 

background points, “SRE” pseudo-absence points and “disk” pseudo-absence 

points were designated as Set 1, Set 2 and Set 3, respectively. 
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2.5. Model Validation 

For each species and for all models, the original data set was split randomly 

into two: 70% of the total data were used for calibration (training) and 30% to 

evaluate of the models (i.e. for validation). This procedure was repeated five 

times to make sure the model predictive accuracy was not influenced by the 

random-splitting procedure. For each replication, the area under curve (AUC) 

and the true skill statistic (TSS), sensitivity and specificity values were 

calculated using selected test data.  

 

2.6. Model Projections  

After calibrating the models, results were projected onto the current, 2050 (A2, 

B2) and 2080 (A2, B2) time periods by using the same environmental variables 

used in the training model steps. There were a total of 7200 model projections 

(1440 model calibrations x 5 climate settings listed above). 

 

2.7. Model Outputs Analysis 

2.7.1. Ensemble Modeling 

Ensemble methods can pull out the correctly predicted areas from several 

models and indicate areas of uncertainty by averaging and measuring variation 

in the predictions of multiple modeling techniques (Thuiller et al. 2009).  

The ensemble process was carried out by using a proportional weighted average 

of each model's predictions (both different model algorithms and single model 

repetitions) based on the AUC in the BIOMOD 2 framework. Models with an 

AUC score lower than 0.75 were excluded from the ensemble process.  

After the model ensemble process, results were projected onto the current, 

2050 (A2, B2) and 2080 (A2, B2). The projected ensemble models were 

converted into binary presence-absence using a threshold maximizing the AUC.  
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2.7.2. Binary Maps 

Binary presence/absence maps are generated from the probability maps by 

using a threshold to by maximize the percentage of presence and absence 

correctly predicted for present conditions (Thuiller, 2003). This threshold 

reduces the risk of identifying areas not environmentally suitable for a species 

(Parker-Allie et al. 2009). These maps show a binary map of predicted “habitat” 

and “non habitat” for the current, 2050, and 2080 projections, and were used 

further in performance evaluation of model predictions. They were compared 

with the raster layers of species stand maps, and overall accuracy, sensitivity, 

specificity, precision, F-score and false positive rate were calculated. 

  

2.7.3. Gain/Loss of Habitats 

Grids that are suitable for the species both at current and future climates are 

called stable areas/habitat. Whereas if areas are suitable under current climate 

conditions and predicted be become unsuitable under future climate 

conditions, these are called loss areas/habitat. Conversely, gain areas/habitats 

are defined as habitat that is unsuitable in the present but predicted to become 

suitable under future scenarios. 

To define stable/gain/loss areas, two analyses were carried out under full 

dispersal and null dispersal hypotheses. Under the full dispersal hypothesis, 

we assumed species would be able to move through the landscape without 

physiological or environmental impediments (i.e. the species can occupy any 

habitat that is suitable, regardless of its location). Under the null dispersal 

hypothesis, we assumed species would not disperse at all. These two 

hypotheses are at two opposite extremes of predicted dispersal behavior of 

species in the future. Therefore, they are useful to estimate optimistic and 

pessimistic results of species distributions in the future. Analyses were made 

on ArcGIS Desktop v: 10.1 under Spatial Analyst Tools.  
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2.8. Testing Effects of Different Subsets of Response Variables on the 

Models of Turkish Pine 

Turkish pine is distributed widely where ecological conditions within that range 

are expected to be diverse. We assumed that populations at different parts of 

Turkey react differently to ecological conditions (i.e. they are different ecotypes). 

To test this hypothesis, different subsets of response variables were used for 

calibration the models. The localities in the north were reclassified as Set-a, 

and the rest as Set-b (Figure 12). We tested whether modeling of those two 

populations separately provides better prediction than a single model for the 

whole range. 

By using these two sets of occurrence data (Set-a and Set-b) as well as all 

points together, the MAXENT model was rerun with randomly selected 10,000 

background points. 5 replicate runs were used for cross-validation. After 

calibration of the models, the results were projected onto the current 

conditions. The projection results were converted to binary maps by using a 

threshold that maximizes the percentage of presence and absence correctly 

predicted. Afterwards, binary maps of Set-a and Set-b were overlaid and a 

single result was produced. 
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Figure 13 Classification of Turkish Pine's occurrence data 

 

The results of overlaid sets and models with all points were compared according 

to the correct classification rates. The actual stand maps were used in this 

comparison as the true distribution of the species. The correct classification 

rate was calculated by dividing total numbers of true positive and true negative 

pixels by the total number of all pixels. 
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CHAPTER III 

 

RESULTS 

 

3.1. Turkish Pine 

3.1.1 Modeled Current Distribution and Evaluation of Models 

3.1.1.1. Evaluation of Model Success by BIOMOD 

The mean and standard deviations of AUC, TSS, sensitivity, and specificity 

values for all model runs are presented in Table 6.  

Mean AUC values range between 0.85 and 0.98, and AUC values for the 

ensemble model for all three pseudo-selection (PA) strategies are higher than 

those for individual modeling algorithms. The AUC and TSS values are higher 

when SRE and disk PA selection strategies are used compared to random 

strategy results. The result of ensemble model for disk PA selection strategy 

shows the highest sensitivity and specificity. 
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Table 7 Mean and standard deviation of true skill statistic (TSS), area under 
curve value (AUC), sensitivity and specificity values of all repetition runs for 
random PA selection, SRE PA selection, disk PA selection strategy and  ensemble 
model (EM)  

 

 Model TSS AUC Sensitivity Specificity 

R
a
n
d
o
m

 

ANN 0.63 ± 0.15 0.85 ± 0.08 79.03 ± 18.80 80.93 ± 15.52 

CTA 0.69 ± 0.02 0.86 ± 0.02 87.15 ± 4.81 79.68 ± 3.58 

FDA 0.68 ± 0.02 0.90 ± 0.01 82.88 ± 0.99 82.84 ± 0.90 

GAM 0.69 ± 0.02 0.91 ± 0.01 83.31 ± 1.01 83.29 ± 10.90 

GBM 0.72 ± 0.02 0.91 ± 0.01 84.64 ± 0.85 84.83 ± 0.84 

GLM 0.63 ± 0.03 0.86 ± 0.02 78.77 ± 2.60 78.90 ± 2.50 

MAXENT 0.71 ± 0.02 0.92 ± 0.01 83.92 ± 1.09 84.15 ± 1.07 

RF 0.73 ± 0.01 0.91 ± 0.01 85.15 ± 1.47 87.84 ± 5.57 

EM 0.75 0.94 86.60 86.58 

S
R

E
 

ANN 0.82  ± 0.03 0.94 ± 0.01 90.57 ± 1.61 90.35 ± 1.42 

CTA 0.83 ± 0.02 0.92 ± 0.01 91.07 ± 1.69 91.06 ± 1.89 

FDA 0.83 ± 0.02 0.96 ± 0.01 90.85  ± 0.93 90.88 ± 0.78 

GAM 0.84 ± 0.01 0.97 ± 0.00 91.36 ± 0.95 91.34 ± 0.74 

GBM 0.85 ± 0.02 0.97 ± 0.00 92.13 ± 0.90 92.13 ± 0.88 

GLM 0.85 ± 0.01 0.97 ± 0.00 91.39 ± 0.81 91.48 ± 0.74 

MAXENT 0.86 ± 0.02 0.98 ± 0.00 92.59 ± 1.02 92.60 ± 0.98 

RF 0.87 ± 0.02 0.97 ± 0.01 93.23 ± 1.34 93.14 ± 0.87 

EM 0.89 0.99 94.4 94.30 

D
is

k
 

ANN 0.70 ± 0.24 0.89 ± 0.13 87.81 ± 18.61 80.06 ± 18.69 

CTA 0.81 ± 0.01 0.91 ± 0.01 95.65 ± 0.91 85.56 ± 1.50 

FDA 0.81 ± 0.02 0.96 ± 0.01 90.08 ± 1.22 90.10 ± 1.18 

GAM 0.84 ± 0.02 0.97 ± 0.00 91.20 ± 0.98 91.19 ± 0.99 

GBM 0.85 ± 0.02 0.97 ± 0.00 91.36 ± 0.87 91.45 ± 0.91 

GLM 0.84 ± 0.02 0.97 ± 0.00 90.61 ± 0.98 90.60 ± 0.88 

MAXENT 0.85 ± 0.02 0.98 ± 0.00 91.97 ± 0.78 91.99 ± 0.80 

RF 0.91 ± 0.01 0.98 ± 0.01 95.36 ± 0.91 95.31 ± 0.96 

EM 0.90 0.99 94.80 94.83 
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Within repetitions, most of the modeling methods show a consistent range in 

their AUC values. However, artificial neural network (ANN) shows high 

variations for each repetition. Similarly, the AUC values of classification tree 

analysis have a wide range for random and SRE PA selection strategies (Figure 

13). 

 

 

Figure 14 Boxplot of the area under curve values of each run based upon model 
method of each PA selection strategy 
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3.1.1.2. Evaluation of Model Success by Comparing Current Stand Map 

Since there were a large number of model results, model runs with the highest 

AUC values across all repetitions of a single modeling method were selected. 

They could also be called as the “best model” result of a modeling algorithm 

(Table 7). In some cases, the AUC values of the repetition runs of a single model 

were the same. In that case, TSS values were checked, and a model run with a 

higher TSS value was selected. 

 

Table 8 Highest area under curve values (AUC) of each model methods across all 
PA selection strategies 

  PA Strategy 

 Model Random SRE Disk 

A
U

C
 

ANN 0.91 0.96 0.95 

CTA 0.88 0.95 0.92 

FDA 0.92 0.97 0.98 

GAM 0.92 0.98 0.98 

GBM 0.92 0.98 0.98 

GLM 0.90 0.98 0.98 

MAXENT 0.93 0.99 0.98 

RF 0.92 0.98 0.99 

 

Table 3 shows the overall accuracy, sensitivity (recall), specificity, precision, F-

score, false positive rate (type I error) of best models and ensemble model 

predictions according to current stands for all three PA selection strategies.  
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It is found that the best individual model runs of the random forest models are 

as successful as the ensemble model results, especially with the SRE and disk 

PA selection strategies.  

The range of overall accuracy of ensemble model results is between 0.832 and 

0.896. The sensitivity measure, i.e. the proportion of correctly predicted area, is 

higher than 0.80 for all best model and ensemble model predictions, which 

means 80 % of the stand map extent, is found in all modeling methods at least 

once.  

The total area of predictions varies among modeling methods and depending on 

the pseudo-absence selection strategy used. The main reason for the observed 

variation is the varying proportion of false positive predictions. Table 9 shows 

that how much larger an area than the current distribution was found by the 

best and ensemble model predictions. For example, MAXENT modeling 

algorithm finds as suitable an area 1.8 times bigger than actual distribution of 

Turkish pine under a random PA selection strategy. 

 

Table 9 Rate of false positive predictions of best run of modeling methods and 
ensemble model for all PA selection strategies, with respect to the current stand 
map.  

 ANN CTA FDA GAM GBM GLM MAXENT RF EM 

Random 2.3 2.5 2.3 2.1 2.0 2.4 1.8 1.8 1.7 

SRE 3.2 3.0 3.3 3.2 3.0 3.3 3.2 2.7 3.0 

Disk 6.0 4.4 3.2 2.9 3.0 3.0 2.8 2.4 2.7 
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3.1.1.3. Spatial Success and Failure of Models 

The predictions of false positive, false negative, true positive locations were 

mapped for the best results of each modeling method, and also for the 

ensemble model, for all three PA selection strategies (Figure 14; 15; 16). In the 

figures, false positive areas represent areas predicted by the models outside the 

current stand map, false negative areas represent where models failed to find 

current stands, and true positive areas show where models correctly predicted 

occurrences of the studied species. 

Some current occurrences of the Turkish pine were not predicted within all PA 

selection strategies and by all modeling methods. 3091 km2 area occupied by 

Turkish pine today, in other words 7.17% of its current distribution, was not 

predicted in any best model or the ensemble model using any pseudo-absence 

selection strategy.  
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Figure 15 

Figure 15 Prediction accuary and error of best model runs of random PA 
selection strategy in the current models (top: 8 single best models, bottom: 
ensemble model) 
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Figure 16 

Figure 16 Prediction accuracy and error of best model runs of SRE PA 
selection strategy in the current models (top: 8 single best models, bottom: 
ensemble model) 
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Figure 17 

Figure 17 Prediction accuracy and error of best model runs of Disk PA 
selection strategy in the current models (top: 8 single best models, bottom: 
ensemble model) 
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3.1.2 Future Projections 

Current model predictions were projected to the 2050 and 2080 for two SRES 

scenarios: A2 and B2. The projection of all modeling methods were used to 

obtain consensus model outcomes; i.e. ensemble models with a particular 

pseudo-absence selection strategy. Binomial maps of the predictions created 

using the set threshold are given in Figures 17, 19, and 21.  In addition, the 

gain/loss areas in the future are mapped with regards to the current 

distribution of Turkish pine (Figures 18; 20; 22). 

Predicted suitable areas of Turkish pine in the 2050 and 2080 are given 

separately for SRES A2 and B2 scenarios under full migration hypotheses 

(Table 10). All but the 2080 A2 scenario with disk pseudo-selection strategies 

predict a decrease in total suitable area in the 2080 with respect to the current 

area of Turkish pine forests.  

 

Table 10 Predicted future areas of different PA selection strategy of SRES A2 

and B2 scenarios under full migration hypothesis; square kilometer 

 Current (modeled) 2050 A2 2080 A2 2050 B2 2080 B2 

PA strategy km2 km2 km2 

Random 107,963 75,425 58,256 83,504 33,816 

SRE 166,896 137,416 99,800 147,124 62,803 

Disk 156,295 206,053 192,359 210,933 133,540 
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Future suitable habitat and percentages of these areas with regard to current 

distribution under the null migration hypothesis are given in Table 11. B2 

scenario results are found to be more pessimistic than A2 scenario results. The 

percentage of the current distribution predicted suitable in the future ranges 

from 7% to more than 70 % of current distribution, depending on the pseudo-

absence selection strategy, climate change scenario and the predicted year. 

Again, the disk pseudo-absence selection strategy predicts much larger future 

suitable habitat than the other two selection strategies.  

 

Table 11 Predicted preserved areas in future with respect to current stand map; 

square kilometer and percentage of current distribution 

 

 2050 A2 2080 A2 2050 B2 2080 B2 

PA strategy km2 % km2 % km2 % km2 % 

Random 16102 37.36 3382 7.85 18918 43.89 10198 23.66 

SRE 20054 46.52 3020 7.01 22951 53.25 9325 21.63 

Disk 34955 81.09 20304 47.10 35710 82.85 30782 71.41 

 

Geographically, climatically suitable areas of Turkish pine are expected to shift 

to higher altitudes (or largely disappear) in the Mediterranean region, expand 

toward inner valleys in the Aegean region, and in parts of the Black Sea and 

Marmara regions, regardless of the various methods and parameters used in 

the models. 
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3.1.2. Testing Effects of Different Subsets of Response Variables  

Different subsets of response variables of Turkish pine were used to build 

models separately. Overlaid binary results of these sets were overlaid and are 

mapped in Figure 23 (upper). While Set-a (north) predicted the suitable areas 

more widely distributed, Set-b (south) model predicted a more compact area. 

When comparing the overlaid result with the current distribution of Turkish 

pine (Figure 10, lower), it is found that 16.5 % of current distribution of species 

was not predicted by any sets of response variable. 

  

Figure 24 

Figure 24 Consensus model results of north and south datasets of Turkish 
pine, upper: current distribution of model results, lower: intersection of model 
results with current stand map 
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3.2. Oriental Beech 

3.2.1 Modeled Current Distribution and Evaluation of Models 

3.2.1.1. Evaluation Tests of Model Success by BIOMOD 

The mean and standard deviation of the area under curve (AUC), true skill 

statistics (TSS), and sensitivity and specificity measurements for each repetition 

run of modeling algorithms are presented in Table 12. 

The mean AUC values of the single model algorithm range between 0.75 and 

0.94; 0.89 and 0.99; 0.82 and 0.98 for random, SRE and disk pseudo-absence 

selection strategies, respectively. Ensemble model shows higher AUC, TSS, 

sensitivity and specificity values than single model algorithms for every pseudo-

absence selection strategy. Sensitivity values for ensemble models are bigger 

than 90, which mean that 90% of test data is always found by models.  
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Table 12 Mean and standard deviation of true skill statistic (TSS), area under 

curve value (AUC), sensitivity and specificity values of all repetition runs for 

random PA selection, SRE PA selection, disk PA selection strategy and  ensemble 

model (EM) 

 Model TSS AUC Sensitivity Specificity 

R
a
n
d
m

 

ANN 0.45 ± 0.31 0.75 ± 0.17 88.30 ± 11.62 55.40 ± 35.76 

CTA 0.68 ± 0.01 0.84 ± 0.01 96.99 ± 1.58 71.34 ± 2.24 

FDA 0.75 ± 0.02 0.92 ± 0.01 86.19 ± 1.01 86.16 ± 1.00 

GAM 0.75 ± 0.02 0.93 ± 0.01 85.81 ± 0.95 85.79 ± 0.97 

GBM 0.74 ± 0.02 0.92 ± 0.01 85.23 ± 1.03 85.42 ± 1.00 

GLM 0.77 ± 0.02 0.93 ± 0.01 86.27 ± 0.88 86.36 ± 0.88 

MAXENT 0.77 ± 0.02 0.94 ± 0.01 87.15 ± 1.03 87.15 ± 0.97 

RF 0.77 ± 0.02 0.93 ± 0.01 87.71 ± 1.28 87.92 ± 0.86 

EM 0.83 0.97 91.00 90.99 

S
R

E
 

ANN 0.74 ± 0.23 0.89 ± 0.12 89.11 ± 8.97 82.61 ± 21.01 

CTA 0.84 ± 0.02 0.92 ± 0.01 95.25 ± 2.13 88.17 ± 1.88 

FDA 0.86 ± 0.02 0.96 ± 0.01 92.45 ± 1.08 92.43 ± 1.09 

GAM 0.88 ± 0.02 0.98 ± 0.00 93.68 ± 0.77 93.66 ± 0.71 

GBM 0.88 ± 0.02 0.98 ± 0.01 93.55 ± 0.92 93.51 ± 0.92 

GLM 0.89 ± 0.02 0.98 ± 0.00 93.92 ± 1.01 93.93 ± 0.92 

MAXENT 0.89 ± 0.02 0.99 ± 0.00 94.08 ± 0.68 94.10 ± 0.69 

RF 0.90 ± 0.02 0.98 ± 0.01 94.48 ± 1.01 94.60 ± 0.91 

EM 0.93 0.99 96.00 95.99 

D
is

k
 

ANN 0.59 ± 0.32 0.82 ± 0.17 77.70 ± 29.53 80.68 ± 22.81 

CTA 0.80 ± 0.02 0.91 ± 0.01 95.00 ± 3.48 84.72 ± 3.79 

FDA 0.85 ± 0.02 0.96 ± 0.01 92.27 ± 1.11 92.58 ± 0.99 

GAM 0.85 ± 0.01 0.98 ± 0.00 92.21 ± 0.88 92.24 ± 0.83 

GBM 0.85 ± 0.02 0.97 ± 0.01 91.97 ± 0.73 91.96 ± 0.74 

GLM 0.86 ± 0.01 0.97 ± 0.00 92.03 ± 0.68 92.03 ± 0.62 

MAXENT 0.88 ± 0.02 0.98 ± 0.00 93.79 ± 0.88 93.76 ± 0.84 

RF 0.91 ± 0.02 0.98 ± 0.00 95.25 ± 0.89 95.30 ± 1.00 

EM 0.92 0.99 96.00 95.99 
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Some model algorithms show higher deviations in their AUC values within 

repetitions. In all pseudo-absence selection strategies, artificial neural network 

(ANN) results show a much larger range of AUC values (Figure 24). 

 

 

 

 

Figure 25 Boxplot of the area under curve values of each run based upon model 

method of each PA selection strategy 
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3.1.1.2. Evaluation of Model Success by Comparing Current Stand Map 

The current stand map was used in comparing model success. Firstly, model 

runs with the highest AUC values across all repetitions of a model algorithm 

were selected (Table 13). In some cases, the AUC values of the repetition runs of 

a single model were the same. In that case, TSS values were checked, and a 

model run with a higher TSS value was selected. 

 

Table 13 Highest area under curve values (AUC) of each model methods across 

all PA selection strategies 

  PA Strategy 

  Model Random SRE Disk 

A
U

C
 

ANN 0.91 0.97 0.97 

CTA 0.87 0.95 0.95 

FDA 0.95 0.98 0.98 

GAM 0.94 0.99 0.98 

GBM 0.93 0.99 0.98 

GLM 0.94 0.99 0.98 

MAXENT 0.95 0.99 0.99 

RF 0.95 0.99 0.99 

 

Table 14 shows the overall accuracy, sensitivity (recall), specificity, precision, F-

score, false positive rate (type I error) of best models and ensemble model 

predictions according to current stands for all three PA selection strategies. 
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The best model runs of the random forest method are as successful as the 

ensemble model results. The range of overall accuracy of ensemble models is 

between 0.842 and 0.924 for all pseudo-absence selection strategies. Moreover, 

sensitivity measurement, i.e. the proportion of correctly predicted area, is 

higher than 0.87 for all best model and ensemble model predictions, which 

means 87 % of the stands, occur in all ensemble models. 

There false positive rates vary among modeling methods and depending on the 

PA selection strategy used. Table 15 shows that how much larger an area that 

the current distribution was found by the best and ensemble model predictions. 

Ensemble models predict least false positive predictions at the random strategy.  

 

Table 15 Rate of false positive predictions of best run of model and ensemble 

model (EM) method for all PA selection strategies.  

 ANN CTA FDA GAM GBM GLM MAXENT RF EM 

Random 8.5 9.4 4.7 5.2 5.0 5.1 4.7 3.9 3.4 

SRE 6.9 10.0 6.6 7.3 8.0 6.8 8.5 6.2 7.2 

Disk 7.5 7.6 7.4 7.0 7.2 6.5 6.4 5.7 5.7 
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3.1.1.3. Spatial Successes and Failures of Models 

For the best results of each modeling method, and also for the ensemble model, 

the predictions of false positive, false negative, true positive locations were 

mapped for all three PA selection strategy (Figure 25; 26; 27). In the figures, 

false positive areas represent areas where predicted by the models outside the 

current stand map, false negative areas represent where models failed to find 

current stands, and true positive areas represent where models correctly 

predicted occurrences of the studied species. 

Some current occurrences of the oriental beech were not predicted in any 

modeling methods. 583 km2 area occupied by oriental beech today, in other 

words 3.43% of its current distribution, was not predicted in any best model ot 

the ensemble model using any PA selection strategy.  
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Figure 26 
Figure 25 Prediction accuracy and error of best model runs of random PA 
selection strategy in the current models (top: 8 single best models, bottom: 
ensemble model) 
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Figure 27 

Figure 26 Prediction accuracy and error of best model runs of SRE PA 
selection strategy in the current models (top: 8 single best models, bottom: 
ensemble model) 
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Figure 28 

Figure 27 Prediction accuracy and error of best model runs of Disk PA 
selection strategy in the current models (top: 8 single best models, bottom: 
ensemble model) 
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3.1.2 Future Projections 

Current model predictions were projected to the 2050 and 2080 for two SRES: 

A2 and B2. The projection of all modeling methods were used to obtain 

consensus model outcomes; i.e. ensemble models with a particular PA selection 

strategy. Binomial maps of the predictions created using the set threshold are 

given in Figures 28, 30, 32. In addition, the gain/loss areas in the future are 

mapped with regards to the current distribution of oriental beech (Figures 29; 

31; 33).  

Under full migration hypothesis, predicted suitable areas of oriental beech in 

the 2050 and 2080 were given separately for SRES A2 and B2 scenarios (Table 

16). There are differences in predictions of suitable areas among PA selection 

strategy used. The SRE strategy predicts the largest current and future areas. 

Two SRES scenarios predict a sharp decline in suitable area of oriental beech 

by 2080 for all three PA selection strategies. 

 

Table 16 Predicted future areas of different PA selection strategy of SRES A2 
and B2 scenarios; square kilometer 

 Current (modeled) 2050 A2 2080 A2 2050 B2 2080 B2 

PA strategy km2 km2 km2 

Random 72,431 4,376 303 3,569 1,281 

SRE 139,137 14,480 1,034 14,103 3,666 

Disk 113,720 9,235 853 8,639 3,217 
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Future suitable habitat and percentages of these areas with regard to current 

distribution under the null migration hypothesis are given in Table 17. Most of 

the current distributions of oriental beech are predicted to be loss by all PA 

selection strategy and climate change scenario.  

 

Table 17 Predicted preserved areas in future with respect to current stand map; 
square kilometer 

 2050 A2 2080 A2 2050 B2 2080 B2 

PA strategy km2 % km2 % km2 % km2 % 

Random 1857 10.92 187 1.10 1538 9.04 579 3.40 

SRE 3760 22.11 420 2.47 3601 21.17 1226 7.21 

Disk 3354 19.72 386 2.27 3006 17.68 1229 7.23 

 
 

 

Geographically, the current suitable areas for oriental beech are expected 

largely to be lost and its overall distribution is predicted to be much narrower 

in the future.  
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CHAPTER IV 

 

DISCUSSION 

 

4.1. Assumptions and Uncertainties  

In this study, we focused on the possible changes in the ranges of two tree 

species in Turkey in the face of climate change. Our methodology was based on 

species distribution modeling under some assumptions. Since models are just 

an image of the reality, they can have present uncertainties leading to 

variations in the outputs of SDMs. Quantification of uncertainties in 

projections is vital for integrating climate change considerations into 

conservation action plans.  

Our first assumption is that abiotic and biotic variables influence species 

distribution at different spatial and temporal scales, in line with the 

hierarchical theories of ecosystems. These theories suggest that abiotic factors 

influence species distributions at a global, continental or regional scale, 

whereas biotic factors such as intraspecific or interspecific interactions affect 

species ranges within a local or micro environment (i.e. they are at the bottom 

of the hierarchy) (Pearson & Dawson, 2003; Meier et al., 2010). Since our study 

covers the whole of Turkey, hence at the regional scale, we use only climatic 

and topographic variables to model ranges of Turkish pine and oriental beech. 

We used variables at 1 km resolution, which we assume a pixel size capable to 

capture variations of environmental factors affecting species distribution at the 

regional scale, but large enough to exclude biotic variables. Accordingly, it is 

adequate for our study aim, which is to model climatically suitable areas of 

species at the current time and future.  

Inaccurate species presence and/or absence data is another source of 

uncertainty in SDMs (Phillips et al., 2009). We used high resolution (1/25.000) 

forest stand maps for both species, so one claim that the presence points used 
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in this study are accurate. However, as mentioned previously, we generated 

pseudo-absences (PA) from under certain assumptions. We used three 

strategies to generate PA namely, random, SRE and disk. In the random 

strategy, it was possible to select real presence points as absence. In the SRE 

strategy, we excluded environmental space defined by used training presence 

data set. In the disk strategy, we put a distance limit around the training 

presence points. Therefore, in the SRE and disk strategies, we minimized the 

selection probability of a true presence as PA. The drawback of SRE or disk 

strategy is that their choice is directly linked to presence data set. To reduce 

the effect of an atypical presence data set, we repeated PA selection five times in 

all strategies.  

Another source of uncertainty is the model algorithms used. Each algorithm 

has strengths and weaknesses that can be difficult to interpret (Elith et al., 

2006). Variability in predictions from alternative modeling methods is observed; 

moreover, it is not possible to decide a “best” technique for predicting potential 

species ranges. Consequently, selection of an adequate modeling method from a 

diverse collection of techniques is a critical step. To circumvent this problem, 

we used eight different modeling techniques to compare each model’s ability to 

simulate observed presences and absences, and then built up a consensus (or 

ensemble) model using them. The main advantage of the ensemble approach is 

that the strength of each model is combined to create a new output. Moreover, 

the ensemble approach allows us to observe the variability within different 

model projections.  

A further source of uncertainty in SDMs is the selection of thresholds (cut-offs) 

to transform modeled probabilities of suitability into binary (present/absent) 

predictions. There are potentially as many rules for setting thresholds as 

modeling methods and the choice is often made arbitrarily since no guidelines 

for selection exist (Nenzén et al., 2011). We used a threshold that maximizes 

the prediction percentage of presence and absence correctly. It reduces the risk 

of excluding true occupied areas (omission errors) or including false presence 

areas (commission errors).  
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To project future species distribution in the face climate change, the most 

important input is the future climate models. However, inherently, an unknown 

fraction of the uncertainties in future conditions are introduced to SDMs. These 

uncertainties were sourced from the equations that formalize the global climate 

and circulation system, limitations of computing power and regarding climate 

sensitivity. Moreover, downscaling process of climate models used is another 

source of climate models. There is no single best climate model, they vary 

spatially and temporally in their ability to simulate current climate in one 

variable or region (Beaumont et al., 2008). We used only one climate model, 

Hadley Centre Coupled Model version 3 in this study. There are two reasons to 

use this climate model. First, this climate model results have been used in 

many previous SDM studies. The other reason is that the data of climate model 

is accessible in high resolution for any region and any time period. Therefore, 

we admit that some uncertainties in our study might stem from this particular 

climate model. The choice of future climate scenarios for species distribution 

modeling is important. On the other hand, by using two different SRES 

scenarios, it was possible to investigate the range of possible climate change 

uncertainties due to future GHG emissions.  

There is also some uncertainty about the reactions of forest ecosystems to 

climate change. The intensity of human disturbance, the frequency and 

intensity of extreme events, presence of possible invasive species, forestry 

applications, possible dispersal barriers and future biotic interactions in the 

future remain unclear today.  

 

4.2. Performance Measurement of Trained Models 

All trained models were compared in terms of discrimination to assess 

performance measures. Performance measures are informative for determining 

the suitability of the model results for specific applications and for identifying 

weaknesses of the models. We carried two performance measurements at the 

different modeling stage.  
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First, after training the models, BIOMOD calculated AUC, TSS, sensitivity and 

specificity values by using a set of test data (the first performance 

measurement). Secondly, after projection to current conditions, all probability 

maps of suitability were transformed to binary maps by using a set threshold. 

The success of model predictions was compared with the current distributions. 

In other words, binary maps of predictions were tested with all points of 

presence and absence gathered from the raster stand maps (the second 

performance measurement). Accordingly, sensitivity, specificity, AUC and TSS 

values were calculated by using test data, while overall accuracy, precision, F-

score, and false positive rate were calculated during performance 

measurements. Since these two types of measurements use different datasets 

for evaluation, their results may be different for the same modeling method. In 

both performance measurements, sensitivity and specificity were calculated 

and therefore constituted a link between the two measurements. 

 

4.2.1. Effects of Different Pseudo-absences Selection Strategy 

Based on the first performance measurement, ensemble model results of both 

Turkish pine and oriental beech show the highest AUC value in SRE and/or 

disk strategy, and the lowest in random strategy. The case same order was 

observed for TSS scores too. Sensitivity scores for Turkish pine models are 

ranked, from highest to lowest, as disk, SRE and random. The lowest sensitivity 

score for oriental beech is observed with random strategy too, while SRE and 

disk have the same sensitivity score. The specificity scores show the same 

pattern as sensitivity for both species. However, the second performance 

measurement indicates that the results of random strategy show the highest 

overall accuracy in both species. Moreover, sensitivity and specificity 

evaluations present different scores. The reason behind these conflicting 

observations might be because the sample size of test data (both assigned true 

presence and absence) used for evaluation was different in each type of 

performance measurement. In the second performance measurement, a larger 

dataset was used to test the performance of the models that led to sensitivity 

and specificity scores for ensemble models varying under different strategies. 
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These differences in performance measurements also revealed critical 

information on the effects of different PA selection strategies on model 

predictions. In contrast to first performance measurements, the random 

strategy results always showed the highest specificity score with the lowest 

false positive rate under the second performance measurements for both 

species. Therefore random strategy could be considered to be more 

“conservative” because it attempts to predict fewer suitable areas than SRE and 

disk strategies. Consequently, its sensitivity values were smaller but its 

specificity values were higher across all strategies. On the other hand, 

ensemble models with SRE and disk strategies cover larger areas as suitable for 

each species, which leads to higher sensitivity but also higher false positive 

rates. Consequently, the decision of which PA selection strategy to use in the 

training of models is directly linked to the aim of the study. For finding future 

ranges of species (like in our study), to find all suitable areas correctly is more 

important. Since prediction of suitability at a site where species has not been 

observed can be associated with non-climatic factors (e.g. human disturbance) 

that limit the actual distribution. On the other hand, failure to predict an 

existing (i.e. occupied) habitat as suitable leads to possible errors in future 

predictions. 

The possible reason why PA selection strategies behave differently is that there 

are differences among strategies in the aspect of bearing information to the 

models. In random PA selection strategy, there is a higher chance to select true 

presence as absence (i.e. false absence), which could lead to narrower 

predictions of suitable areas.  On the other hand, in both SRE and disk 

strategies selected PA are more accurately representative of absence. Therefore, 

their predictions are likely to find all suitable areas to minimize the percentage 

of false absences. 
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4.2.2. Single Modeling Methods and Ensemble Models 

Our results were examined as three classes according to which PA selection 

strategies had been used.  

(1) Random PA data selection strategy  

Turkish pine: Except ANN and CTA, other modeling methods had mean AUC 

values higher than 0.90 with small deviation, which means models provide 

excellent predictions of Turkish pine. CTA result showed highest mean 

sensitivity result. This is because CTA overestimated the presence of species; in 

other words it found more suitable area than other methods. Therefore its 

sensitivity score is not an indicator of its success as a method. According to the 

second performance measurements, the highest false positive rate was seen in 

the result of CTA. It should be noted that CTA behaves similarly in disk PA 

selection strategy too, possibly again due to overestimation of suitable areas. 

The highest overall accuracy, precision and F-score, and the lowest false 

positive rate were seen in the ensemble model. We conclude that for Turkish 

pine, when using pseudo-absence generated randomly, the ensemble model 

show highest best performance compared to using a single modeling algorithm.  

Oriental beech: All modeling methods have mean AUC values higher than 0.75. 

When ANN and CTA models are removed, this score rises to 0.91. The AUC 

value for ensemble model is 0.97, which means a perfect prediction. Similar to 

Turkish pine results, the highest sensitivity score was obtained with CTA. We 

assume that the explanation is similar to that of Turkish pine case, an 

overestimation of presence of the species. When comparing best models with 

respect to current stand map, the highest overall accuracy is found for the 

ensemble model.  

(2) SRE PA data selection strategy  

Turkish pine: The mean AUC values were higher than for random strategy for 

all modeling methods and ensemble models. The minimum mean AUC value 

was 0.92 for CTA and the highest mean AUC value was 0.98 for MAXENT, and 

the AUC value of ensemble model was 0.99.  
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Additionally, TSS scores for all modeling method increased accordingly. These 

increases in TSS are linked to increases in sensitivity and specificity scores 

under the SRE strategy. The highest sensitivity and specificity was found in the 

result of the ensemble model, which were higher than 94, which means 94% of 

test data were found correctly either as presence or absence. The first 

performance measurements show that the ensemble model approach is much 

more successful than single modeling methods. In contrast, best runs of single 

modeling methods show equal or better scores for the second performance test. 

For instance, the overall accuracy of the ensemble model is 0.83, whereas it is 

0.83 for CTA, 0.83 for GBM and 0.84 for RF best runs. Moreover, some 

modeling algorithms (such as GAM, GLM, MAXENT, RF) have similar sensitivity 

scores with the ensemble model. Although this situation appears that the 

second and first performance measurements disagree, we believe this a bias 

due to the fact that the best runs of methods (i.e. which has the highest AUC 

value) were used to calculate the evaluation metrics in the second evaluation 

step. Therefore, the first performance measures should be considered for 

comparing each modeling algorithm with one other and for analyzing the 

performance of the ensemble model over single modeling methods. Whereas, 

the second performance measurements could be used for comparing best runs 

of single modeling methods among themselves and for comparing effects of 

using different PA selection strategies on the ensemble models.  

Oriental beech: All model results show very high AUC values. Additionally, the 

ensemble model got a 0.99 AUC value, a near perfect outcome in the first 

performance measurements. On the other hand, similar to Turkish pine result, 

the evaluation metrics of second measurements did not indicate ensemble 

model as the best method. Instead, the random forest results show the highest 

scores in all metrics among single modeling methods.  

(3) Disk PA data selection strategy  

Turkish pine: The single modeling methods have very high AUC values, such 

that they could be accepted as perfect predictions. The ensemble model has the 

highest AUC values, 0.99, over all modeling methods.  
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The sensitivity and specificity scores of ensemble model were higher than 

random and SRE PA selection strategies. However random forest showed higher 

specificity score than the ensemble model, similar to other PA selection 

strategies.  Furthermore, in second performance test best run of random forest 

showed lowest false positive rate and the highest overall accuracy among all 

methods.  

Oriental beech: Again the mean AUC values of each modeling methods were 

high enough to consider model results excellent. The increases of TSS values 

are bigger than for AUC due to increased sensitivity and specificity values. 

Although the ensemble model showed highest evaluation scores in the first 

performance test, random forest achieved almost equal scores of evaluation 

metrics with the ensemble model, in terms of overall accuracy, specificity, 

precision, F-score and false positive rate.  

 

4.3. Current Projections: Failures and Successes 

The size of predicted suitable areas was differently in each PA selection 

strategy, but for both species they show same pattern in extent. The random PA 

selection strategy, as discussed previously, shows narrower distributions of 

suitable areas for both Turkish pine and oriental than SRE and disk strategies. 

Thus correct predictions of actual distribution were highest for the results of 

SRE and disk strategies. Random strategy could not predict 19.23 % of Turkish 

pine stands, whereas this value was reduced to 4.88 % and 4.13 % in SRE and 

disk strategies, respectively. This pattern also seemed in oriental beech results: 

SRE and disk strategies did not predict 4.88 % and 4.18 % of current beech 

distribution, while random strategy left out 12.89 % of current oriental beech 

stands. However, not only sensitivity but also specificity rates are important to 

assess the results of models. The level of discrimination should be considered 

carefully. If models overestimate the suitability of species, it yields high 

sensitivity but low specificity. Therefore the main goal should be getting a 

prediction which balances sensitivity and specificity. 
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Some of the current presences (7.17 % of Turkish pine stands and 3.43 % of 

oriental beech stands) were not predicted in any modeling methods. One reason 

might be that these stands are found in sites which deviate climatically from 

the general climate pattern but climate models we used are not of high enough 

resolution to detect those. For instance, models of Turkish pine did not predict 

areas at the outermost regions of its extent, such as the northern parts of Feke 

(Adana) or the Kelkit Valley (Tokat), a region known as a microclimatic enclave.  

The climatic profiles of these “left out” areas were analyzed with respect to 

climatic constraints of the species concerned. Minimum temperature of the 

coldest quarter and precipitation of the driest quarter were used as limiting 

factors for Turkish pine and oriental beech, respectively. The minimum 

temperature of areas not correctly predicted Turkish pine is 2.33 ± 1.44°C, 

whereas 6.88 ± 2.28 °C for the correctly predicted areas. Similarly, precipitation 

of the driest quarter of areas not correctly predicted for oriental beech is 50.86 

± 24.47 mm, whereas 108.19 ± 37.68 mm for the correctly predicted areas. 

Therefore, the current stands that the models could not predict appear to be in 

areas with suboptimal climatic character (colder for Turkish pine and drier for 

oriental beech).  

 

The forest structure of Turkish pine sites that were not predicted in any model, 

were classified as pure (48%), mixed (13%) and degraded (39%). For oriental 

beech, percentages were 21% pure stand, 48% mixed and 31% degraded. Both 

Turkish pine and oriental beech typically occur as pure, undegraded stands 

due to their dominant nature. The observed low proportions of such pure 

stands at “failed to predict” sites probably indicate they are at the edge of their 

environmental tolerances. Moreover, models of oriental beech failed to find the 

isolated populations in Amanos Mountain (Hatay). This may be either to the 

wetter than expected local climate there or due to the relict feature of these 

stands (i.e. they are the remnants of a historical period with more suitable 

climate than today). 
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4.4. Future Projections: Where and Why 

In this study, we examined two extreme cases of possible migration of species: 

full migration and no migration. This approach assumes that as climate 

changes species either migrate to all suitable areas without any obstacles or 

they cannot disperse at all and try to survive within their current extent; there 

is no intermediate scenario. This perspective is useful for understanding the 

emergency of climate change action. For instance, under the 2080 B2 

assumptions with no migration, oriental beech forests will cover only 7.23% of 

their current area; even under full migration they will cover 21.55% of their 

current range.   

The two species studied are expected to behave differently in the future. The 

main findings indicate that Turkish pine will expand its range northward and 

into higher elevations although it will lose most of its suitable habitat at the 

south. For example, in the south there will be a compact forest area (higher 

than 1200 m) around Anamur Uplands at the conjunction of West and Central 

Taurus Mountains, where they are expected to receive more precipitation than 

surrounding areas because of western winds. Similarly, Sandras Mountains/ 

Muğla (2294 m) will become suitable for Turkish pine growth. In the Aegean 

region, there will be also a shift to higher elevations but not much as in the 

Mediterranean region.  Aydın Mountains (1831 m), Bozdağlar (2159 m) and Spil 

Mountains (1517 m) will become largely suitable for Turkish pine. Moreover, 

the whole of Kazdağı (1174 m) will become suitable too. In the inner 

northwestern regions of Turkey, areas through Alaçam Mountains to along 

Köroğlu Mountains (Bolu) will become suitable for the first time. The northern 

slopes of Canik Mountains will become suitable along the coastline of Black 

Sea.  

However, the change in suitable areas of oriental beech is more dramatic than 

that of Turkish pine. Most of the current suitable area will be lost at the end of 

2050. According to optimistic predictions, only 3 – 7 % of current stands will 

remain suitable in 2080.  
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There will be distinct gain and preserved areas in Kastamonu, particularly 

along the Küre Mountains. For instance, most of the oriental beech forest found 

in Küre Mountains National Park will be preserved. Moreover, there will be 

some gain along Ilgaz Mountains. Another compact area will remain on the 

higher altitude areas (above 1000m) of Yenice Forests. However, most of the 

current distribution of beech around Uludağ Mountains will be lost, and areas 

at the higher altitude, where forest cover is not found today, will become 

suitable for beech in the future.  

The impact of climate change can change according to ecological and 

geographical characteristics of a species (Broennimann et al., 2006). Turkish 

pine is a generalist species which has a large niche breadth; it is also adapted 

to a relatively dry and warm climate. Therefore, it shows more range expansion 

than oriental Beech. In contrast, oriental beech is a specialist species whose 

environmental preferences are on the wetter end, especially depended 

dependent on summer precipitation. As a result, it shows large range 

contractions in its current distribution. 

 

4.5. Possible Improvements of Modeling 

Our models only focused on climatic and topographic variables, since our aim 

was to analyze possible changes in forest range at the regional scale. We used 

only 2050 and 2080 as time slices due to the lack of appropriate data for other 

dates, although to use in conservation assessments/ planning, shorter time 

periods such as ten years slices might be better.  

One improvement could be to model the change at local scales to better 

understand effects of climate change on species distribution. Such studies 

could focus on integration of important processes such as mortality, dispersal, 

regeneration, biotic interactions and disturbance, as well as other predictor 

variables such as future land use and fire regimes to be included in future 

projections. 
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4.6. Use of Model Outputs in the Conservation Management 

Climate change is expected to have significant impacts on the distributions of 

Turkish pine and oriental beech forests in Turkey. Depending on whether fast 

dispersal to newly available suitable habitats will be possible or not, serious 

ecological, economic and social consequences are probable. SDMs can be used 

to understand possible responses of species to climate change. Despite some 

sources of uncertainty, projections onto future climate are useful and cost-

effective tools for managers, especially given the increasing urgency to inform 

management decisions under pressure from climate change.  

SDMs can use to identify both vulnerable areas to climate change and possible 

refuge areas in future. Consequently, conservation plans and also forest 

management plans can be prepared to protect/strengthen these areas. The 

strategies to protect these areas against human disturbance should be 

developed to minimize habitat loss and fragmentation for improving species 

resilience to climate change. For example, Turkish pine will preserve its 

suitability in the upper regions on Marmaris Peninsula. Those areas should be 

protected from further threats caused by people such as fragmentation to 

ensure species occurrences in future.  

Moreover, SDMs can be used for evaluation of current protected areas in the 

manner of their areas, places, size, layout and design (Araujo et al. 2011). The 

outputs of modeling studies can be used for enhancing connectivity between 

suitable areas in different time frame for increasing a species’ chances for 

dispersal (Hannah et al. 2007). For instance, the current distribution of oriental 

beech in Kure Mountains National Parks will preserve suitability and around 

this core area new habitat will appear for the species. The size and layout of 

Kure Mountains National Park could be reviewed to cover all suitable areas or 

at least, the connectivity between national park and these newly emerged 

habitats could be established.  

Furthermore, maintaining genetic diversity of a species is crucial to adapt 

climate change. Range reductions are likely to lead to loss of genetic diversity 

(Alsos et al., 2012). Particularly oriental beech is going to lose some genetic 

diversity loss.  
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To conserve genetic diversity, seeds could be collected from distinct populations 

likely to become extinct in the future and used in forest regeneration efforts or 

new stands constituted with these seeds in different regions.  

Moreover, the current marginal populations are important to conserve genetic 

diversity in future. They have already adapted different climatic conditions than 

optimum which is defined with respect to main distribution of species. One of 

the examples of these sites is Turkish pine forests along northern border of 

Adıyaman Province. It is necessarily important to protect and manage this type 

sites for improving habitat quality and reducing other non-climate related 

threats such as human disturbance in order to enhance forest resilience 

against climate change. Furthermore, seeds collected from that type of sites 

could be used in the ex-situ conservation activities such as planting in seed 

orchards or using for transfer of species to newly emerging suitable areas. 

Another strategy should be to look for possible ways to control invasive and 

pest outbreaks. It is expected that pest outbreaks will occur more frequently 

and intensely in future. Therefore, improving and expanding risk assessments 

and protocols for screening and detection of pests and invasive species are 

emergency issues.  

Monitoring populations at the limits of their bioclimatic suitability will provide 

more information about species responses to climate change. A network of such 

monitoring stations should be immediately set up. Last but not least, not only 

mitigating and adapting to effects of climate change is important but also 

slowing down climate change itself should be a priority in conservation actions.  
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CHAPTER V 

 

CONCLUSION 

 

The study was set out to model the current and future potential distribution of 

Turkish pine and oriental beech by using single-based and ensemble modeling 

methods and has tested the effects of using different pseudo-absence data on 

the model predictions. 

This study demonstrated that ensemble models have more accurate model 

predictions than single-based models for both species according to accuracy 

measurements of models. Moreover, using different sets of pseudo-absence 

data have apparent effects on the model predictions. According to model 

evaluations, “disk” strategy showed the highest scores of evaluation metrics 

and predicted 92.01 % of current Turkish pine forest and 95.82 % of current 

oriental beech forest correctly.  

This study established that there will be might dramatic changes in climatically 

suitable habitats of both pine and beech in future due to climate change. 

Turkish pine habitats will expand northward and into higher elevations, 

whereas suitable areas of oriental beech will become narrower. According to the 

optimistic scenario, in 2080, only 3217 ha will be climatically suitable for 

beech, covering a mere 7% of its current distribution. 

These projections provide information on potential distribution of species in 

space and time. Therefore, they are very useful tools which can be integrated 

into conservation planning.  It is imperative to develop further research by 

coupling distributional models with other methods such as ecosystem modeling 

to conserve forests ecosystems in the face of climate change. 
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