
1

STEREOSCOPIC RAY TRACING ON GRAPHICS PROCESSORS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALPER DAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

NOVEMBER 2012

Approval of the thesis:

STEREOSCOPIC RAY TRACING ON GRAPHICS PROCESSORS

submitted by ALPER DAŞ in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Veysi İşler
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Ahmet Coşar
Computer Engineering Dept., METU

Assoc. Prof. Dr. Veysi İşler
Computer Engineering Dept., METU

Asst. Prof. Dr. Tolga Çapın
Computer Engineering Dept., Bilkent University

Asst. Prof. Dr. Murat Manguoğlu
Computer Engineering Dept., METU

Asst. Prof. Dr. Sinan Kalkan
Computer Engineering Dept., METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ALPER DAŞ

Signature :

iii

ABSTRACT

STEREOSCOPIC RAY TRACING ON GRAPHICS PROCESSORS

Daş, Alper

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Veysi İşler

November 2012, 56 pages

Stereoscopic rendering methods generate two images for binocular viewing. Exploit-

ing the spatial coherence present in the surfaces rendered, it is possible to reduce the

rendering time of a stereoscopic image pair significantly. Ray tracing is a frequently

used rendering method for realistic image synthesis applications. With the tremen-

dous increase in computational power of Graphics Processing Units and their avail-

ability for general purpose programming, ray tracing methods suitable for Graphics

Processing Units have been developed.

In this thesis, a parallel stereoscopic ray tracing method that reuses view independent

information in one of the stereoscopic image pairs for generating the other image is

presented. The results of the method are analyzed using a perception based error

detection mechanism. The main contribution lies in the new parallel algorithm that

takes advantage of the massive parallel processing power of the modern Graphics Pro-

cessing Units efficiently. Results show that about 20 times speed-up is achieved over

iv

a previous work which is based on a sequential algorithm in the worst case among

the experiments carried out. According to the perception based quality analysis per-

formed, lower than only 2% of the pixels in high resolution images is expected to be

perceived to be in error.

Keywords: graphics processing units, ray tracing, CUDA, stereoscopic rendering

v

ÖZ

GRAFİK İŞLEMCİLERİ ÜZERİNDE STEREOSKOPİK IŞIN İZLEME

Daş, Alper

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Veysi İşler

Kasım 2012, 56 sayfa

Stereoskopik görüntü oluşturma sistemlerinde binoküler izlemeye uygun iki adet re-

sim oluşturulmaktadır. Çizilen yüzeylerin uzaysal tutarlılığından faydalanarak bir

stereoskopik görüntü ikilisinin oluşturulma süresinin önemli ölçüde azaltılması müm-

kündür. Işın izleme gerçekçi görüntü üretme uygulamalarında yaygın olarak kul-

lanılan bir yöntemdir. Grafik İşlem Birimleri’nin işlem gücündeki muazzam artış ve

bunların genel amaçlı programlamaya açılması ile birlikte Grafik İşlem Birimleri’nde

çalışmaya uygun ışın izleme yöntemleri geliştirilmistir.

Bu çalışmada stereoskopik resim eşlerinin birindeki bakış açısından bağımsız bilgiyi

ikincisinin oluşturulmasında kullanan bir paralel stereoskopik ışın izleme yöntemi

sunulmaktadır. Sunulan yöntemin sonuçları algı bazlı bir hata denetleme mekaniz-

ması ile analiz edilmektedir. Çalışmadaki asıl katkı Grafik İşlem Birimleri’nin par-

alel işlem gücünü verimli olarak kullanan yeni bir paralel algoritma geliştirmede yat-

maktadır. Sonuçlar, paralel olmayan bir algoritma üzerine kurulu olan önceki bir

vi

çalışmaya kıyasla, yapılan deneyler arasında en kötü 20 kat hızlanma sağlandığını

göstermektedir. Gerçekleştirilen algı bazlı kalite analizine göre, yüksek çözünürlüklü

görüntülerde piksellerin sadece yüzde 2’sinden azının hatalı olarak algılanması bek-

lenmektedir.

Anahtar Kelimeler: grafik işlem birimi, ışın izleme, CUDA, stereoskopik görüntü

oluşturma

vii

To Those Who Make This Possible

viii

ACKNOWLEDGMENTS

The author wishes to express his deepest gratitude to his supervisor Assoc. Prof. Dr.

Veysi İşler and Asst. Prof. Dr. Ahmet Oğuz Akyüz for their guidance, advice and

encouragements.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xii

LIST OF FIGURES . xiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Stereoscopy . 3

1.2 Ray Tracing . 4

1.3 GPU Computation . 6

1.4 Motivation . 8

1.5 Contribution . 8

1.6 Outline . 8

2 PREVIOUS WORK . 9

2.1 Ray Tracing . 9

2.2 Stereoscopic Reprojection 10

3 GPU-BASED STEREOSCOPIC REPROJECTION 15

3.1 Stereoscopic Reprojection 15

3.2 Reprojection Validation . 19

x

3.2.1 Parallel Scan Algorithm 22

3.3 Error in Reprojection . 24

3.4 Implementation . 27

4 RESULTS AND DISCUSSION . 32

4.1 Performance Tests . 33

4.1.1 Reprojection Speed-up 35

4.1.2 Overall Performance Gain 37

4.2 Quality Tests . 44

5 CONCLUSION AND FUTURE WORK 51

5.1 Conclusion . 51

5.2 Future Work . 52

REFERENCES . 54

xi

LIST OF TABLES

TABLES

Table 4.1 CPU vs GPU Reprojection Performance 36

Table 4.2 Performance Gain . 38

Table 4.3 Successful Reprojection Rate . 43

xii

LIST OF FIGURES

FIGURES

Figure 1.1 Illustration of the anaglyph method. 5

Figure 1.2 From left to right, off-axis, parallel and toe-in camera configura-

tions is illustrated. 6

Figure 1.3 Illustration of ray tracing method. B, C, D are diffuse surfaces. A

is transparent and E is reflective. Arrows symbolize the rays used in ray

tracing. 7

Figure 3.1 Camera configuration. Top view on the left and the side view on

the right . 16

Figure 3.2 Depiction of reprojection of point P resulting in positive and neg-

ative parallax . 18

Figure 3.3 Left image has no information about the region behind B, leading

to uncertainty about the visibility of A 20

Figure 3.4 A and B reprojecting to the same pixel location. 21

Figure 3.5 B reprojects to the right of A . 22

Figure 3.6 Illustration of up-sweep phase of the exclusive scan operation for

’+’ function for input list x with 8 elements. xk...xl represents application

of ’+’ operation for element xk + xk+1 + · · · + xl 24

Figure 3.7 Illustration of down-sweep phase of the exclusive scan operation

for ’+’ function for input list x with 8 elements. xk...xl represents applica-

tion of ’+’ operation for element xk + xk+1 + · · · + xl 25

xiii

Figure 3.8 Deviation from uniform sampling points(pixels center in this case)

with respect to depth for e=1 and e=2 . 26

Figure 3.9 Reprojection of surfaces projected on sampling points may deviate

from the sampling points of the target image. On the right of the figure a

close-up portion of the image plane is presented to emphasize deviations.

Cyan circles indicate the actual sampling points and magenta circles indi-

cate the reprojection positions. 27

Figure 3.10 Major data and execution components of the system that reside on

the GPU memory . 29

Figure 4.1 Two scenes with the same Stanford Bunny model with different

materials . 34

Figure 4.2 Two scenes with the same Dragon model with different materials . 34

Figure 4.3 Textured Primitives Scene . 35

Figure 4.4 GPU vs CPU Speed-up . 36

Figure 4.5 Performance Gain when GPU-based Reprojection is used 38

Figure 4.6 Ray Tracing from Scratch vs Ray Tracing with GPU-based Repro-

jection in Bunny Scene . 39

Figure 4.7 Ray Tracing from Scratch vs Ray Tracing with GPU-based Repro-

jection in Reflective Bunny Scene . 39

Figure 4.8 Ray Tracing from Scratch vs Ray Tracing with GPU-based Repro-

jection in Four Dragons Scene . 40

Figure 4.9 Ray Tracing from Scratch vs Ray Tracing with GPU-based Repro-

jection in Reflective Four Dragons Scene 40

Figure 4.10 Ray depth visualization for Reflective Bunny and Reflective Four

Dragons Scenes. The number of rays(excluding shadow rays) shot for

each pixel are indicated by color coding which is provided in the lower

right corner. 41

xiv

Figure 4.11 Reprojection validity images for Bunny and Four Dragons Scenes.

Red pixels represent invalid or missing reprojections whereas green pixels

represent successful reprojections. 42

Figure 4.12 Successful Reprojection Rates for test scenes 43

Figure 4.13 Distribution of Time Spent in Ray Tracing with GPU-based Re-

projection . 45

Figure 4.14 RGB error introduced by reprojection for all scenes 46

Figure 4.15 Percentage of pixels which are perceptible as being in error by

reprojection for all scenes . 46

Figure 4.16 RGB error and perceptible error visualization of Bunny Scene . . . 48

Figure 4.17 RGB error and perceptible error visualization of Reflective Bunny

Scene . 48

Figure 4.18 RGB error and perceptible error visualization of Four Dragons Scene 49

Figure 4.19 RGB error and perceptible error visualization of Reflective Four

Dragons Scene . 49

Figure 4.20 RGB error and perceptible error visualization of Texture Primitives

Scene . 50

xv

CHAPTER 1

INTRODUCTION

Stereoscopic visualization systems exploit the depth perception mechanism of human

visual system by providing stereoscopic image pairs for binocular vision. Perceived

depth presented via stereoscopic viewing leads to more immersive visual experience.

Although the idea dates back to early nineteenth century [18], recent technologi-

cal advancements, mostly in the availability of the presentation medium, has made

stereoscopic content popular again.

Along with the great acceptance gained by stereoscopic viewing equipments, 3D con-

tent generation in multimedia platforms has increased tremendously in the recent

years. In addition to being a rising trend in motion picture industry, many major

computer game titles support 3D vision natively. Even limited automatic stereo-

scopic support can be added with minimal effort using underlying graphics system

built-in functionality [3]. It should be mentioned that due to extra immersion created

by stereoscopy, it is a frequently used method in virtual reality applications. Leav-

ing the details of stereoscopic rendering to its own section in this chapter, it needs

to be mentioned that the application of stereoscopic rendering with a naive approach

brings along the cost of rendering a second image from scratch, which amounts to

nearly twice the cost of monocular rendering in practical cases. However, due to

strong spatial coherence between the stereo image pairs, it is possible to reduce the

computational requirements greatly [9].

1

Stereoscopic image synthesis methods differ from their monocular counter-parts in

the adoption of optimization methods to increase rendering performance. Therefore,

a brief overview of rendering techniques seems to beneficial. Rendering algorithms

can be broadly classified into two distinct groups based on their adoption of either

local or global illumination models. An overview of global illumination can be found

in the work by Möller[21, Ch. 9] and Shirley[27, Ch. 8] gives information about the

local illumination based rendering of the mainstream graphics pipeline .

Renderers that use local illumination model consider each object independent of the

others in the scene. OpenGL and DirectX are two popular rasterizer implementations

that adopt this model. The advantage of this model is its ability to render higher num-

ber of polygons in the same time period compared to global illumination models. Due

to its speed advantage, this model is dominantly used in real-time applications. How-

ever, the features of images generated by this method lack some visually significant

phenomena present in real-life, which are desirable in realistic rendering applica-

tions. Some of these are reflection, refraction and subsurface scattering. Although

these mentioned phenomena are not present in the core of the model, there are meth-

ods to approximate them to some degree. Generally these approaches are far from

being realistic and efficient when practical cases are considered.

Contrary to local illumination methods, global illumination algorithms take light in-

teraction between surfaces into consideration and produce more realistic results at

higher computational costs. Global illumination algorithms more closely simulate the

underlying physical phenomena. In an attempt to create a computationally tractable

model, a rendering equation (which has later become the rendering equation) that

captures most of the features required for realistic image synthesis is proposed by

Kajiya [19]. Although it is a simplified model of reality, it is still computationally

quite complex for most applications. Therefore, nearly all practical methods try to

approximate a solution for this equation in some way, leading to distinct sets of global

illumination algorithms.

2

What type of interaction is modeled gives us a group of rendering methods that ex-

cel in its own ways and fall short in others. Radiosity, for instance, is a rendering

method that is based on calculation of radiance energy transfer in the scene among

diffuse surfaces [15]. Soft shadows, color bleeding are the phenomena that are nat-

urally provided by this method. However, non-diffuse surfaces are not modeled in

this method. Although methods exist to incorporate specular properties to surfaces,

they provide solutions up to a certain degree [25]. Another frequently used rendering

method that provides global illumination is ray tracing, in which light ray traversal

paths are simulated and surface radiance values are calculated [29]. The advantage

of this method is its ability to provide shadow, reflection and refraction effects easily.

Color bleeding, caustics phenomenon are beyond what is provided by this method.

1.1 Stereoscopy

Depth cues perceivable by human visual system can be divided into two groups based

on the number of image sources. Visual perception from a single image source is

called monocular vision and using two images for viewing is called stereoscopic vi-

sion. Although there is no depth information in monocular vision, various cues are

used by the visual system. Lipton [20, Ch. 2] gives detailed description about the

following seven major monocular depth cues: light and shade, relative size, interpo-

sition, textural gradient, aerial perspective, motion parallax and linear perspective.

With the inclusion of binocular vision, depth information becomes available. Two

stereoscopic cues, vergence and disparity, leads to depth perception. Vergence is

related to the direction of the line of sight of the eyes with respect to each other. This

cue loses its effectiveness as distance increases due to decreasing angle change per

unit of distance. Disparity is the distance between the projections of the same surface

point onto the retinas of the eyes. Disparity occurs in the horizontal axis, since both

eyes are separated horizontally.

3

In stereoscopic image generation systems, target scene is rendered from two cameras

which are configured to produce easily perceivable image pairs. Resultant image

pair is presented to the user via one of many presentation means. Time multiplexed,

polarized or color filtered solutions are some of the well known methods, each with

its own advantages and disadvantages. In the anaglyph method which is based on

color filtering, each of the stereoscopic images are encoded into a single image. The

viewer uses a color filtering equipment(e.g. red-cyan glasses) to extract the encoded

stereoscopic images from the displayed image. Figure 1.1 visualizes the anaglyph

method that uses color filtering to extract image pairs from color coded anaglyph

image.

There are three major geometric configurations in a stereoscopic camera system as

depicted in Figure 1.2, namely off-axis, parallel and toe-in camera systems. Off-axis

camera systems consist of two horizontally displaced cameras with parallel optical

axes and superimposed image planes. Due to interocular distance and superimposed

image planes, viewing volume of each camera forms a horizontally asymmetric frus-

tum. In parallel camera configuration, cameras are horizontally shifted from each

other similar to off-axis system but they preserve their symmetrical viewing frusta.

In toe-in camera system, similar to other two camera systems, horizontal offset be-

tween cameras is present but the optical axes of the cameras are not constrained to be

parallel to each other.

1.2 Ray Tracing

Ray tracing is a rendering technique that simulates the behavior of light rays as a

means of generating synthesized images [29]. As opposed to local illumination tech-

niques, which only capture local visibility information by projecting geometry onto

a specified plane, ray tracing offers a global illumination solution by using a sim-

plified light ray model. The main advantage of a ray tracer is its ability to simulate

reflection, refraction and shadow phenomena without special treatment. Ray tracing

4

Left Image Right Image

Anaglyph Image

Color Coding

Color Filtering

Left Image Right Image

Figure 1.1: Illustration of the anaglyph method.

5

ParallelOff-axis Toe-in

Figure 1.2: From left to right, off-axis, parallel and toe-in camera configurations is
illustrated.

achieves the global illumination effects by means of its recursive nature. Figure 1.3

illustrates the procedure. The independence of the computation for each ray makes

ray tracing a promising application area for the current graphics hardware where data

parallel operations are carried out efficiently. With the availability of high perfor-

mance graphics hardware computation platforms, namely Compute Unified Device

Architecture (CUDA) [1] and OpenCL [4], more efficient methods that exploit the

new possibilities are proposed.

1.3 GPU Computation

Graphics hardware performance has increased tremendously in the last two decades

to meet the demands of the industry. Current graphics hardware is designed to op-

erate efficiently on highly parallel arithmetic intensive problem domains, with less

die space for control logic structures and more on arithmetic operations. This de-

sign decision enables the Graphics Processing Unit (GPU) to outperform the Central

Processing Unit (CPU) with a great margin in certain application domains.

Early generations of GPUs were designed to provide a fast way of performing certain

6

Camera

B
A

C
D

E

Figure 1.3: Illustration of ray tracing method. B, C, D are diffuse surfaces. A is
transparent and E is reflective. Arrows symbolize the rays used in ray tracing.

calculations that appear in rasterization. The flexibility was limited to only changing

a small number of states of the machine that defines the fixed functionality pipeline.

In the subsequent generations some parts of the pipeline became programmable. This

advancement has lead to a way of exploiting this functionality in order to perform

general purpose arithmetic operations on the GPU with increased performance com-

pared to the CPUs. The main goal of this advancement was to provide flexibility

for the rasterization techniques. However, a high number of problems from distinct

domains could be solved with increased performance compared to their CPU coun-

terpart solutions. The main idea was to model the computational problem in terms

of the primitive structures provided by the graphics APIs. The inputs to the systems

were transformed to fit into the input mechanisms of the graphics APIs (textures and

per-vertex parameters) and the functional parts were provided as shading programs.

In the recent years , GPUs have turned into a general purpose parallel computation

unit with a general programming interface. CUDA provides a platform that enables

7

to develop applications that perform efficiently data parallel, compute-intensive oper-

ations by using a C-like programming language as the interface.

1.4 Motivation

As previously mentioned, stereoscopic rendering has become quite popular over the

last decade in parallel with the demand for stereoscopic content. The more computa-

tion is spent on rendering stereoscopic content, the more resources can be saved by

providing more efficient methods. With recent developments in the GPU computing

platforms, there is a need for a solution to stereoscopic rendering in the context of ray

tracing that utilizes the potential of modern GPUs.

1.5 Contribution

There are various methods that exploit the spatial coherence in radiance of surfaces

visible in both of the stereoscopic images. However, none of these works utilize the

full potential of the GPUs. In this work, a fully GPU-based reprojection method that

speeds up the stereoscopic ray tracing process is presented. Furthermore, quality im-

plications of the proposed method is analyzed using a perception based error detection

mechanism.

1.6 Outline

In Chapter 2, previous work related to stereoscopic rendering and how the method

proposed in this work differs from previous work are discussed. In Chapter 3, the

proposed method is explained in detail along with implementation implications and

limitations. In Chapter 4, experiments and results is presented. Finally, Chapter 5

summarizes the presented work and discusses possible future work areas.

8

CHAPTER 2

PREVIOUS WORK

In stereoscopic image synthesis, there is strong spatial coherence between generated

image pairs. This coherence is noticible in surfaces with diffuse reflectance properties

visible in both images. Various methods have been proposed to exploit this coherence

to speed up the image generation procedure. In this chapter, previous approaches

related to ray tracing and stereoscopic reprojection are presented.

2.1 Ray Tracing

As mentioned in the previous chapter, ray tracing is based on intersecting rays with

geometrical objects in order to simulate light rays. Therefore, most of the computa-

tional resources used in ray tracing is spent on ray-object intersection tests [29]. The

majority of ray tracing acceleration algorithms either reduce the number of ray-object

intersections or provide more efficient intersection tests. A comprehensive classifica-

tion of ray tracing acceleration techniques can be found in the work by Arvo and

Kirk [10].

Space partitioning and Bounding Volume Hierarchies (BVH) are two of the tech-

niques widely used in computer graphics applications to exploit the object coherence

in a scene to reduce the number of ray-object intersections [16]. In space partition-

ing method, the scene is divided into hierarchical volumes, whereas, in BVH, objects

9

in the scene are grouped hierarchically considering their spatial proximity. In both

approaches, the main goal is to form a spatial structure suitable for certain geomet-

ric queries. In the ray tracing case, space partitioning or BVH structures reduces the

asymptotic complexity of a single ray-object intersection from O(n) to O(log n) in

optimal cases. GPU-based methods are proposed to apply acceleration structures to

GPU-based ray tracers. Popov et. al [24] show the efficient application of KDTree

traversal structure on the GPU. Gunther et. al [17] propose a GPU based packet

traversal method with BVH. In this work, the GPU-based stereoscopic ray tracer uses

a BVH acceleration structure.

OptiX [5] is a GPU based ray tracing engine developed by NVIDIA. Although it is

close to manually optimized ray tracing applications in performance, it allows wide

range of ray tracing algorithms to be implemented without delving into details that

are irrelevant to the problem at hand. Certain parts of the pipeline are provided to

the OptiX Engine via CUDA programs. To spawn first level rays a ray generation

program is provided. To define the behavior when rays hit or miss objects in the scene

nearest hit, any hit and miss programs are used. To introduce primitive geometry

to the engine intersection and bounding box programs are used. To take action on

exceptional cases exception programs can be provided. And finally, to gain control

over the traversal behavior on the scene nodes selector programs can be used. As

mentioned by Parker et. al [23], OptiX is designed to be used in any kind of ray

tracing application. As a result, there is no imposed dependency to concepts that are

specific to computer graphics applications. The stereoscopic ray tracer developed in

this work is based on OptiX.

2.2 Stereoscopic Reprojection

Badt [11] proposes a technique to exploit spatio-temporal coherence in ray traced an-

imation sequences to reuse visible surface information from previous frames. Due to

the possibility of occlusion by some unseen surfaces in the source image, direct trans-

10

formation of surface projections leads to problematic and missing regions that need

to be processed. A filtering method is used to find the problematic pixels. However,

some valid pixels are marked as problematic by this method and some problematic

cases are not revealed. In the tests presented by Badt, about 62% of pixels is reused

without any further calculation.

Ezell and Hodges [14] adapt the method presented by Badt [11] to stereoscopic ray

tracing by treating the rendering of stereoscopic image pairs as two consecutive ani-

mation frames where only the camera is moved along its horizontal axis. Since they

use the same method as proposed by Badt [11], it suffers from the same problems due

to the filter based error detection mechanism. They report that in their tests, 50-75%

of the second image is inferred from the first one.

Adelson and Hodges [9] propose a technique for stereoscopic rendering similar to that

of Ezell and Hodges [14] but with an improved error detection mechanism. Instead of

applying a filter on the reprojected pixels, they provide a pixel classification method

that reveals exact validity of reprojections. In this work, pixels are grouped into four

cases based on the analysis performed on their reprojection and original positions.

These cases are good, missing, overlapping and bad pixels.

The good pixel case is observed when the reprojection can be used without further

calculation. For the reprojections classified as good pixels, color values are directly

copied from the source image to the target image without further need for processing.

The missing pixel case is encountered when there is no reprojection onto a pixel lo-

cation, thus no information is available for that pixel. In this case, this pixel location

is ray traced from scratch. The overlapping pixel case occurs when there are more

than one pixel that reproject to a pixel location. Adelson and Hodges [9] show that if

two pixels reproject to the same location, the rightmost one occludes the other(when

calculating the right image from the left one). By imposing a processing order on the

pixels in a row, it is guaranteed that valid reprojections overwrite the occluded ones.

Bad pixel case occurs when two consecutive pixels reproject to locations with a gap

11

among them. The validity of reprojection of other pixels in this gap becomes ques-

tionable due to the possibility of projection of some surface in this region. Therefore,

the gap between these reprojections are marked as bad pixels and ray traced from

scratch.

In reprojection methods, due to the possibility that some pixels in the source image

do not reproject to exact sampling positions in the target image, aliasing problems

arise. Adelson and Hodges [7] report that for diffuse surfaces, this distortion is quite

insignificant. However with the introduction of reflection and refraction rays, situa-

tion becomes more problematic. In reflection and refraction ray calculations, surface

positions are also obtained from reprojection, hence any error in reprojection man-

ifests itself in surface normal values used in reflection and refraction calculations.

Considering that small changes in surface position may result in significant changes

in surface normal(depending on surface roughness frequency), for highly reflective or

refractive surfaces, aliasing problem becomes more problematic. In addition to that,

even small difference in color, contour or lightness information presented to the same

region on the retina can cause binocular rivalry and may break the illusion intended.

As a solution, using higher resolution images is proposed as this will decrease the

aliasing error.

Adelson and Hodges [7] also adapt their method for multisampled ray tracers where

9 uniform samples are used for each pixel (4 at the corners, 4 at the center of the

edges and 1 at the center). For reprojection, only the center ray is used. It is reported

that the cost was only 4 times the single sample case owing to the reuse of corner and

edge sampling points among neighbor rows.

The sequential order requirement for row processing makes this approach not suitable

(without modification) for parallel processing of pixels in a row. However since each

row is independent of each other, row-wise parallelization is viable.

Later Adelson and Hodges [8] propose a method for rendering animation sequences

by using reprojection techniques. The work is based on their previous work on stereo-

12

scopic ray tracing using reprojection [7]. In this work, animation sequences with

dynamic camera and objects are supported. Animation frames are calculated from

previous ones with reprojection calculations.

Es and İşler [13] provide a GPU adaptation of the method presented by Adelson

and Hodges [9] for calculating stereoscopic image pairs using shading programs of

the programmable graphics pipeline. Since shading programs can not perform write

operations to arbitrary number of memory locations but have no problem reading from

multiple memory locations via texture fetches, whole procedure is divided into two

consecutive phases. In the first phase, they calculate the reprojection coordinates by

rendering a screen sized quad to a scatter table using a shading program performing

the reprojection calculation. In the second phase, using the scatter table created in the

first phase, point or line primitives are sent to the GPU for each pixel and a gather

table is created as a result. Gather table stores for each pixel the source location in

the source image of the reprojection and the validity of reprojection. The primitives

involved in the second phase, are ordered respecting a fixed direction along a row by

the necessity of the algorithm. Three different methods are proposed based on the

utilization of the GPU. Among these, completely GPU based method is reported to

perform better than the others. Although the algorithm runs sequentially for a row, it

provides parallel execution among rows since their calculation is independent of each

other.

Nehab et al. [22] propose a method that reuses shading calculation result for anima-

tion sequences and stereoscopic rendering suitable for hardware rasterizers. Instead

of reprojecting the calculated pixels to the target image, they render the geometry of

the scene from the second camera using special fragment programs(instead of the ac-

tual expensive shading calculation) and apply a back reprojection transformation and

validation mechanism similar to shadow map comparison to find where these pixels

are in the first image. Assuming the cost of reprojection calculation is cheaper than

the actual per pixel shading operations, they show that this method provides signifi-

cant performance gains. Although the memory consumption is constant(proportional

13

to framebuffer dimensions); due to the rendering of the scene geometry from the sec-

ond camera, time performance is dependent on the geometric complexity(in terms of

primitive count). They mention an increase of about 57% in frame rate when this

technique is applied to stereoscopic rendering.

For stereoscopic rendering of voxel based terrain data, Wan et al. [28] propose a

method similar to the work of Adelson and Hodges [7] on stereoscopic ray tracing.

In this work, terrain data is represented in voxel entries with opaque color values.

They propose a four phase solution. First, one of the images in the stereoscopic pair

is calculated. In the second phase, reprojection coordinates are calculated for the

second image from the first one. Then problems are detected and finally missing

and problematic pixels are calculated from scratch. In addition to previous work,

an A-buffer [12] based error reduction mechanism is employed. To reduce the error

introduced by non-integer reprojection positions, all the reprojection and gap calcu-

lations are performed on an A-buffer that provides a 1x8 area mask for each pixel and

color values are summed over this extended buffer. Also a user defined gap threshold

is provided to adjust the speed-quality trade-off.

14

CHAPTER 3

GPU-BASED STEREOSCOPIC REPROJECTION

In this chapter, a GPU-based solution to stereoscopic reprojection is presented. The

method is based on forward reprojection procedure used by Adelson and Hodges [9]

and Es and İşler [13]. However, in contrast to previous works which require a se-

quential processing order in a row of pixels, a parallel algorithm suitable for modern

GPU architectures is proposed. Following the detailed explanation of the algorithm,

implementation performed in order to realize the technique presented is described.

3.1 Stereoscopic Reprojection

The method described in this work assumes an off-axis camera system. However, any

other horizontally displaced camera system can be used with minor modifications to

the procedure.

In camera configurations where the optical axes of the cameras are not parallel, the

reprojection transformation presented in this work becomes invalid as the optical axes

are assumed to be parallel to each other. However, the one-to-one correspondance

among the projections of a surface point on the image planes of the cameras still

remains. Therefore, using a transformation considering the convergence of the optical

axes, the proposed method can be adapted to camera configurations with varying

vergence angle.

15

O

z

xe/2

f

e/2
y Left Camera Right Camera

O

z

f

x

y

Left & Right
Camera

Figure 3.1: Camera configuration. Top view on the left and the side view on the right

In the following discussion about the derivation of reprojection transformation, a

scene consisting of geometrical entities and an off-axis camera is assumed. For sim-

plicity, all the spatial quantities are with respect to a left handed coordinate system,

the origin of which is at the midpoint of the line connecting the optical centers of

the cameras. The depiction of the configuration is shown in Figure 3.1. The distance

between the cameras is called the interocular distance and symbolized as e. The dis-

tance from the optical centers to the image planes is expressed as the focal distance, f

for short. In off-axis camera systems, parallax is zero at this distance, in other words,

projection of a surface falls on the same location for left and right image planes. As it

can be interpreted from the Figure 3.1, the z axis extends along the forward direction

and the y axis advances in the upper direction of the cameras. Hereafter, the direc-

tion along which x coordinate values are increasing is treated as the right direction.

Therefore, the camera the optical axis of which has smaller x coordinate is called the

left camera and the other is called the right camera. Although similar derivations of

the reprojection transformation used for stereoscopic rendering is available in [9] and

[14], for completeness, it is presented in this section.

For a point P in the scene configuration mentioned at the beginning of this section,

projection of P on the image plane is (Xl,Yl, f) and (Xr,Yr, f) when viewed from left

16

and right optical centers respectively. As illustrated in Figure 3.2, there is a geometric

relation between the projection coordinates of a surface for two optical centers. Using

the similarity property of triangles the difference between x coordinates of these two

projections of point P, symbolized as d, is shown to be satisfying Equation 3.1.

d =
e(Pz − f)

Pz
(3.1)

There is a one-to-one relationship between projections of a surface onto the image

plane when viewed from right and left cameras if that surface is visible from both

cameras. It is also noticed that the y coordinates and the z coordinates of the pro-

jections are the same, differing only in the x axis. Using this geometric relationship,

projection of a surface point can be used in calculating the position of projection of

that surface point in the other image, if that surface is visible in both images. How-

ever, not every surface visible in one image is necessarily visible in the other image

due to occlusion of other surfaces and difference in the view frusta of the cameras.

A surface can be visible in one camera but it can be blocked by some other surface

in the other camera or a visible surface point in one camera may fall out of the view

frustum of the other camera.

In stereoscopic rendering, this observation translates into the opportunity of reusing

the view independent information in one image to infer some portions of the other im-

age. This process of finding the projection position of a surface using the projection

of that surface in the other image is called reprojection. The information about a sur-

face point in one image should be independent of the changing parameters across the

cameras in the stereoscopic system. These parameters are view direction and center

of projection. Among these, view direction is frequently used in shading calculations.

In materials where the final color is a function of the view direction, changes in that

parameter should be not be ignored during the reprojection process. Despite the un-

limited possibilities of shading calculations defining surface materials, most shading

programs can be broken down into smaller subroutines so that parts that depend on

17

e

f

Left Camera Right Camera

P(Px,Py,Pz)

d

Pz

Xl Xr

P(Px,Py,Pz)

e

f

Left Camera Right Camera

d

Pz

XlXr

Figure 3.2: Depiction of reprojection of point P resulting in positive and negative
parallax

view direction can be recalculated while other parts are reused from the source image

used in reprojection.

In this work, surface materials has diffuse, reflective and refractive components the

linear combination of which gives the final surface color. This model is quite simi-

lar to the model proposed by Whitted and Turner [29] but does not include specular

highlights. In calculating the reflective and refractive components, view direction of

the active camera is used, whereas diffuse component is independent view direction.

Therefore, reflective and refractive components are calculated from scratch but the

diffuse component is reused from the source image. The need for the recalculation of

view dependent components makes the computation savings dependent on the prop-

erties of the surfaces. If the scene is composed of reflective and refractive surfaces,

rate of reuse will be less than the case where all the surfaces have only diffuse com-

ponents.

18

For brevity, from now on left image is treated as the source image and the right image

as the inferred image, implying a left-to-right rendering order between stereoscopic

image pairs. With trivial modifications, a right-to-left ordered version can be realized.

Although the reprojection transformation provides a means of information reuse, it is

not enough to just calculate the reprojection positions and copying color values from

one image to the other. Two distinct sources of error do exist. One is due to asymmet-

ric visibility of a surface for two cameras and the other stems from sampling errors

introduced by reprojection. While details of the issues concerning sampling error is

discussed in its own section later in this chapter, visibility problem is explained here

with the solution proposed in a separate section.

Some of the information encoded at the pixel values in the left image may be redun-

dant for the right image, therefore these pixels should be discarded. In addition to

redundant pixels, the left image may not contain information about some of the pix-

els of the right image, leading to the need for calculating these pixels from scratch.

These two cases are caused by the same reason, asymmetric visibility of a surface

point for two distinct viewpoints. Redundant information in the left image means that

the pixels in question are visible in the left image but not visible in the right image.

Similarly, the missing information in the left image for some pixels in the right image

means that some surface points are visible in the right image but not visible in the left

image. The variation in visibility can be due to occlusion observed in one view but

not in the other one or it can be caused by the difference between the viewing frusta of

the cameras. The asymmetric visibility of surfaces is observed in binocular viewing

systems, independent of the rendering method used.

3.2 Reprojection Validation

While the reprojection transformation does not affect the y coordinate of the source

projection positions, x coordinates differ between two corresponding surface projec-

tions. Therefore, visibility problems arise only along the x axis. Therefore each row

19

A

C

Right CameraLeft Camera

B

I

Figure 3.3: Left image has no information about the region behind B, leading to
uncertainty about the visibility of A

can be treated independent of the other rows, simplifying the procedure and allowing

row-wise parallelization.

The related work of Adelson and Hodges [7], as mentioned in Chapter 2, classify

pixels in the source image according to their relative reprojection positions in the

inferred image and by executing a sequential procedure on rows, they provide an

exact visibility determination mechanism. Although this approach allows parallel

execution on distinct rows, it imposes sequential processing in a single row, limiting

further parallelization. Attempting to directly apply this method on parallel platforms,

leads to synchronization problems among parallel execution units that need to write

to the same locations.

In this work, a similar but different validation mechanism that is suitable for parallel

execution(even in a row) is proposed. In the remaining of this chapter, uniform sam-

pling with one sample per pixel is assumed. The implications of stochastic sampling

with multiple samples on the quality of the method is discussed in a later section.

Given a pixel Pt in the left image, where t represents the x coordinate of the projection

and its reprojection position Rep(Pt); any two pixels Pt and Pt+m, where m > 0, can

be classified in three distinct cases as follows:

20

A

B

Right CameraLeft Camera

Figure 3.4: A and B reprojecting to the same pixel location.

In the first case, where Rep(Pt) > Rep(Pt+m), Rep(Pt) is to the left of Rep(Pt+m) in

the right image. As illustrated in Figure 3.3; in the left image, there is no information

about the region behind surface projected to Pt+m(indicated by shaded region). There-

fore, there may exist an object that project to pixel locations w, where w > Rep(Pt+m).

And if there is no occluder closer to the right camera than this object, it should be vis-

ible occluding other surfaces behind it.

In the second case, where Rep(Pt) = Rep(Pt+m), two pixels in the left image reproject

to the same pixel location as depicted in Figure 3.4. As shown in [9], since Pt+m is

to the right of Pt, the surface point projected to Pt+m is closer to the center of right

camera than the surface point projected to Pt. Therefore, reprojection of Pt+m should

be valid and the reprojection of Pt should be discarded.

The final case is observed when Rep(Pt) < Rep(Pt+m) as visualized in Figure 3.5.

Considering only these two pixels, both of the reprojections are valid. The conclu-

sion reached when these three cases are analyzed is that for a reprojection Rep(Pt+m)

of Pt+m, where m > 0, to be valid there should be no Pt, with reprojection Rep(Pt)

such that Rep(Pt+m) < Rep(Pt). This observation can be equally interpretted as fol-

lows: For a reprojection of a pixel to be valid, the reprojection of that pixel should be

minimum among reprojections of all the pixels to its right in a row.

21

A

B

Right CameraLeft Camera

Figure 3.5: B reprojects to the right of A

3.2.1 Parallel Scan Algorithm

An inclusive scan operation is defined to take a binary associative operator 4, a list of

n elements [a1, a2, . . . , an] and return a list of the form [a1, a14a2, . . . , a14a24· · ·4an].

The exclusive version, which is equivalent to the inclusive one in time and space

complexity, returns a slightly different list [I, a1, a1 4 a2, . . . , a1 4 a2 4 · · · 4 an], where

I is the identity element of 4.

As explained by Sengupta et. al [26], a parallel version of the scan operation is avail-

able in O(n), where n is the number of elements in the input list. This algorithm

is also suitable for GPU architectures. The algorithm is composed of two phases,

namely up-sweep and down-sweep, each of which takes log(n) steps. In each suc-

cessive step, the amount of work done is halved, leading to O(n) operations in total.

Algorithm 1 and Algorithm 2 present the pseudocode for up-sweep and down-sweep

phases of the scan algorithm respectively. The CUDA implementation of the GPU

based exclusive scan algorithm is explained briefly as follows:

In the up-sweep phase, a block of n/2 threads is run. Each thread performs a single

application of the binary associative operator. At each subsequent iteration the num-

ber of running threads are halved as well as the operation count. For a list of n = 2k

elements, 2k−1 + 2k−2 + . . .+ 20 = 2k − 1 = n− 1 operations are performed. Figure 3.6

illustrates the up-sweep phase of the exclusive scan operation.

22

In the down-sweep phase, a block of n/2 threads is run. 20 + 21 + . . .+ 2k−1 = 2k −1 =

n−1 operations and n−1 swaps are performed. Figure 3.7 illustrates the down-sweep

phase of the exclusive scan operation. For up-sweep and down-sweep phases 3(n−1)

operations are performed in total, leading to O(n) operations.

Algorithm 1 Exclusive Scan Up-sweep
for d = 0 to log2 n − 1 do

for k = 0 to n − 1 by 2d+1 in parallel do

x[k + 2d+1 − 1]← x[k + 2d+1 − 1] + x[k + 2d − 1]

end for

end for

Algorithm 2 Exclusive Scan Down-sweep
x[n − 1]← 0

for d = log2 n − 1 to 0 do

for k = 0 to n − 1 by 2d+1 in parallel do

tmp← x[k + 2d − 1]

x[k + 2d − 1]← x[k + 2d+1 − 1]

x[k + 2d+1 − 1]← tmp + x[k + 2d+1 − 1]

end for

end for

Since the minimum operation is binary associative, it can be used in a parallel scan

operation. Selection of a large enough value for I, the parallel exclusive minimum

scan operation can be used in calculating minimum of reprojection positions to the

right of each pixel. As the scan operation is required to run from right to left, the

algorithm is slightly modified to serve this need. After the application of the scan

operation, performing an equality check of each reprojection position with the corre-

sponding element in the result of the scan operation yields whether that reprojection

position is minimum among reprojections of all other pixels to the right of it in the

source image. Both the scan operation and the equality check steps run in parallel for

each pixel.

23

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0+x1 x2 x4 x6x2+x3 x4+x5 x6+x7

x0 x2 x4 x6x0+x1 x0...x3 x4+x5 x4...x7

x0 x2 x4 x6x0+x1 x0...x3 x4+x5 x0...x7

4 Threads

2 Threads

1 Thread

Figure 3.6: Illustration of up-sweep phase of the exclusive scan operation for ’+’
function for input list x with 8 elements. xk...xl represents application of ’+’ operation
for element xk + xk+1 + · · · + xl

3.3 Error in Reprojection

Discrete representation of images leads to information sampling at points that are

distributed according to a sampling method. Among deterministic sampling methods,

uniform sampling is frequently preferred due to its minimal computational demands.

In uniform sampling, sample points are uniform for each pixel. In stochastic sampling

methods, to better represent the population sampled, unbiased random distributions

are favored.

Careful inspection of the reprojection transformation reveals that reprojection offset

is a function of only depth in a camera configuration as the interocular and focal dis-

tances are constant for reprojection transformation during the generation of a single

stereoscopic image pair. Furthermore, as depth increases, reprojection offset grows

nonlinearly until it converges to e at infinity. Figure 3.8 shows the relationship of

deviations of reprojection offset from uniform sampling points with respect to depth

24

1 Thread

2 Threads

4 Threads

x0 x2 x4 x6x0+x1 x0...x3 x4+x5 0

x0 x2 x4 x6x0+x1 0 x4+x5 x0...x3

x0 x2 x4 x6 x0...x50 x0...x3x0+x1

x0...x6x0...x4x0...x2 x0...x5x0...x3x0+x1x00

x0 x2 x4 x6x0+x1 x0...x3 x4+x5 x0...x7 1 Thread

Identity

Figure 3.7: Illustration of down-sweep phase of the exclusive scan operation for ’+’
function for input list x with 8 elements. xk...xl represents application of ’+’ operation
for element xk + xk+1 + · · · + xl

25

20 30 40 50 60 70 80 90 100
0.0
0.2
0.4
0.6
0.8
1.0

20 30 40 50 60 70 80 90 100
0.0
0.2
0.4
0.6
0.8
1.0

e=1

e=2

px

Depth

Depth

px

Figure 3.8: Deviation from uniform sampling points(pixels center in this case) with
respect to depth for e=1 and e=2

for fixed values of e and f . The observed deviations are encountered due to the fact

that the reprojection transformation is independent of the underlying sampling pro-

cedure. The distribution of the deviations varies depending on the sampling method

employed by the renderer. For the uniform sampling case, deviation from a sam-

pling point is observed to be an oscillating function of depth. In stochastic cases, a

bias is expected to be introduced since the transformation function is deterministic in

contrast to the sampling function. Figure 3.9 illustrates the observed deviations from

uniform sampling points during the reprojection procedure.

Adelson and Hodges [7] report that even though sampling errors are insignificant

for diffuse surfaces, they are more problematic for reflective and refractive surfaces.

Inference of surface normals via reprojection introduces errors in normal vectors.

But on contrary to diffuse color values, normal values are used in further ray tracing

calculations where small changes in direction can dramatically change the surface

intersected. To reduce errors due to the deviation from sampling points Wan et. al [28]

propose a 8-by-1 A-buffer. By incorporating an eight times more resolution, values

reprojecting to the same pixel contribute with more chance to the final pixel color as

26

A

Right CameraLeft Camera

B
C

Figure 3.9: Reprojection of surfaces projected on sampling points may deviate from
the sampling points of the target image. On the right of the figure a close-up portion
of the image plane is presented to emphasize deviations. Cyan circles indicate the
actual sampling points and magenta circles indicate the reprojection positions.

they have less chance of being occluded by other surfaces that reproject to the same

pixel. However, in pixels that take only one reprojection, error due to sampling is still

in effect at the same magnitude.

In uniform sampling case where pixels centers are selected as the sampling points,

reprojection coordinates deviate from the sampling points only in the x axis as y axis

is not affected. However, in stochastic sampling cases, the sampling positions of

corresponding pixels(according to reprojection transformation) may be different de-

pending on the sampling distribution. Since the reprojection transformation assumes

the y coordinate does not change, deviations from the sampling points in the y axis

is expected, leading to degradations in the image quality. In this work, only uniform

sampling case is analyzed.

3.4 Implementation

To realize the method explained in this chapter, a GPU-based stereoscopic ray tracing

system is developed. To see the result integrated in a generic GPU-based ray tracer,

the OptiX is used in ray tracing calculations. In other parts of the algorithm, CUDA

27

is selected to perform GPU calculations. Remaining parts of the implementation that

run on the CPU is written in C++.

In the rendering system, every frame is independent of each other. In other words,

no information from previous frames are transferred to the current frame rendered.

Although that is possible via GPU adaptations of the method described in [8], it is

out of the scope of this work. In a single frame, two images from the stereoscopic

cameras are rendered. In this implementation, first the left image is rendered from

scratch and then parts of the right image is reprojected from the left image and finally

the missing parts in the right image are filled via ray tracing only the necessary parts.

In calculation of the left image, in addition to the final color information; diffuse

color, depth, normal values and material types for each surface projected on a pixel

are stored for later use. Diffuse color buffer is needed since final color and diffuse

components of surfaces may differ if the scene contains reflective or refractive sur-

faces. Considering the existence of view dependent surface properties; if diffuse color

is not stored separate from the final color buffer, there remains no way to extract the

diffuse component from the final color. For scenes without any view dependent sur-

face properties, the need for a separate buffer vanishes.

Depth values are used in reprojection transformation to determine which projections

reproject to which locations. Normal values are stored to be used in calculation of

view dependent components of surface materials. Material type values are used in

finding which material a projected surface has as surfaces may have different reflec-

tive and refractive properties. Depth values are also used in determination of the

positions of projected surface points in the scene which will be the origin of the rays

for secondary rays used in reflection and refraction calculations. To summarize, four

distinct 2D buffers, each with the same resolution as the color buffer is stored in the

GPU memory, so that information at an index (x, y) in each buffer corresponds to

the related information about the same pixel. Using the depth values and camera

parameters a CUDA kernel that performs reprojection transformation is run on the

28

Final Color
(Right)

Validation

Reuse
&

Ray Trace

Depth Buffer

Normal Buffer

Diffuse Color
Buffer

Validation Buffer

Material
Buffer

Final Color
(Left)

Minimum Scan

Scan Buffer

Optix Call

Cuda-Optix Transferred Buffer

Optix Internal Buffer

Cuda Call

CUDA Internal Buffer

Reprojection
Transformation

Reprojection Coordinate
Buffer

Ray tracing

Figure 3.10: Major data and execution components of the system that reside on the
GPU memory

29

depth buffer. Results of reprojection transformation are stored in reprojection posi-

tion buffer which is of the same resolution as the depth buffer. The entry at (x, y) index

of the reprojection position buffer stores how much pixel locations the projection of

the pixel at (x, y) should shift in the horizontal axis of the buffer. Figure 3.10 shows

the relationship among buffers and procedures performed throughout the whole pro-

cess from starting the left image to finishing the right image.

As previously mentioned, the values resulting from the reprojection transformation

may contain visibility errors, therefore validation step is performed on the reprojec-

tion position buffer. For each row of the buffer, a modified parallel minimum scan

operation is executed resulting in a separate buffer called scan result buffer. An en-

try at (x, y) contains the minimum values among all the values among (x + 1, y) and

(xmax, y), where xmax is the horizontal size of the buffer. In the case of x + 1 = xmax,

it holds the identity value, I, for the minimum scan operation, which is an arbitrarily

selected constant value greater than xmax.

Subsequent to the scan operation, a separate CUDA kernel that compares values at

(x, y) index of reprojection positions with result of the scan operation at the same in-

dex is executed. If the reprojection position in question is less than the corresponding

result of the scan operation, that means that reprojection position value is the min-

imum among all the other reprojection position values to the right of it, hence it is

visible from the right camera. To store the result of this validation step, a separate

validity buffer is used, entries of which contain source x coordinates(−1 for invalid

reprojections) to indicate the validity of the corresponding reprojection transforma-

tion.

After determination of the validity of reprojections, a slighly different version of the

ray tracer used for calculating the left image is executed. First by consulting the

validity buffer calculated previously in CUDA, validity of the current pixel location is

decided. If reprojection is invalid then ray tracing is performed as if no reprojection is

performed. However, if the reprojection in question is valid, diffuse color information,

30

normal and depth values along with material type information are retrieved from the

diffuse color buffer, normal buffer, depth buffer and material type buffer respectively

and stored locally to be used by subsequent instructions. If the material identified

by the material type contains reflective or refractive properties, further ray tracing

is performed. However, surface position and normal are required for reflection and

refraction calculations. Even though normal is available, there is no explicit surface

position. Therefore using the depth value and current sampling point, the surface

position in the scene is reconstructed. Having all the required information for the

calculation of reflective and refractive components of the surface point, ray tracing

is performed for secondary rays and the resulting material components are combined

with the diffuse component reused from the left image. The final color result is stored

in a separate buffer for visualization. It should be noted that in this step no output

other than final color buffer is produced.

OpenGL buffer objects are used to map buffers among OptiX and CUDA. Only depth

and validity buffers are exchanged between OptiX and CUDA. Reprojection position

and scan buffers are internal to the CUDA context, similarly normal, material and

diffuse color buffers are internal to the OptiX context.

31

CHAPTER 4

RESULTS AND DISCUSSION

This chapter presents the results of the test procedures performed to analyze perfor-

mance and quality aspects of the method proposed in Chapter 3 .

All the tests are performed on the same hardware configuration. The CPU used is

an Intel Core i7-3930K with 6 cores each running at 3.20GHz. The GPU used is an

NVIDIA GeForce GTX 570 with 480 cores. All the CPU-based algorithms are run

on a single core of the CPU.

Five scene configurations with different characteristics related to the values measured

are used in the experiments. The first scene consists of a single Stanford Bunny [6]

polygonal mesh positioned on a quadrilateral. All the materials in this scene are per-

fectly diffuse surface with no texture. The second scene is the same as the first scene

but with reflective materials with no texture. The reflectivity of the surfaces is 30%.

The screenshots from the first and the second scenes are shown in Figure 4.1(a) and

Figure 4.1(b) respectively. The third scene consists of four Dragon models [6] and a

quadrilateral. Similar to the first scene, all the models in this scene have a perfectly

diffuse material with no texture. The fourth scene is the same as the third one but

instead of a diffuse material, a 30% reflective material is used. Figure 4.2(a) shows

a screenshot from the third scene and Figure 4.2(b) provides a screenshot from the

fourth scene. The final scene consists of a texture mapped diffuse sphere, a 30%

reflective cube model with no texture map and a diffuse ground mesh with a checker-

32

board texture. This scene is only used in quality analysis tests since reprojection

validation is independent of the surface color features. Figure 4.3 shows a view from

this last scene. In all the scenes except for the last one, all the polygonal models are

elevated from the ground. From now on, the scenes from the first to the last are called

Bunny Scene, Reflective Bunny Scene, Four Dragons Scene, Reflective Four Dragons

Scene and Textured Primitives Scene respectively. In all the scenes, the camera con-

figuration is fixed to have focal length of 5 units and interocular distance of 0.4833

units. The scenes with the same geometry are rendered from cameras with the same

coordinate frames to better compare the effect of the varying scene property among

scenes. All the scenes are populated with four point lights that are positioned at the

same height above the models and separated from each other , satisfying the contraint

of lying on a circle with a radius of 5 units.

Each scene is selected according to its certain properties. The Bunny Scene has little

variation in its depth compared to the Four Dragons Scene but has the same diffuse

materials. The Reflective Bunny Scene has reflective properties which Bunny Scene

does not have but has the same polygonal models. The same relation holds between

Reflective Four Dragons Scene and Four Dragons Scene. The Textured Primitives

Scene has texture mapped models.

4.1 Performance Tests

The runtime performance of the algorithm presented is compared with the CPU-based

reprojection algorithm of Adelson and Hodges [7] for different resolutions for every

scene mentioned previously. In both running of the algorithms, the same OptiX-based

ray tracer is used. Since the CPU-based algorithm is not suitable for the GPU archi-

tecture and the ray tracer is GPU-based, in contrast to the original method, which

reprojects while ray tracing, a three phased approach is adopted. First, the ray tracer

calculates the left image extracting the required information(depth, diffuse color, nor-

mal values), then the reprojection algorithm runs on the CPU producing a reprojection

33

(a) Bunny Scene (b) Reflective Bunny Scene

Figure 4.1: Two scenes with the same Stanford Bunny model with different materials

(a) Four Dragons Scene (b) Reflective Four Dragons Scene

Figure 4.2: Two scenes with the same Dragon model with different materials

34

Figure 4.3: Textured Primitives Scene

validity buffer and finally the ray tracer uses the reprojection buffer output of the re-

projection algorithm and calculates the right image. Transfering data between the

CPU and the GPU address spaces incurs an overhead which the original fully CPU-

based algorithm avoids. Therefore, during the comparison between the CPU method

and the proposed method, which runs fully on the GPU, only the reprojection and

validation calculations are compared.

4.1.1 Reprojection Speed-up

The amount of time reprojection transformation and validation calculations take is

measured for the previous CPU method and the GPU-based proposed method. The

measurement results are summarized in Table 4.1.

The test results show that, the CPU-based method is slightly affected by the scene

content as the number of memory write operations(when marking bad pixels) is de-

pendent on the depth of the left image. For the GPU-based reprojection method, scene

content affects the performance less since there is less divergence in the flow based

on the depth of the left image.

35

Table 4.1: CPU vs GPU Reprojection Performance

Scene Resolution CPU (ms) GPU (ms) Speed-up

Bunny
512x512 6.3333 0.1713 36.9823

1024x1024 26.0000 0.7540 34.4835
2048 x2048 103.3330 4.8603 21.2604

Reflective Bunny
512x512 6.0000 0.1716 34.9683

1024x1024 26.0000 0.7537 34.4952
2048 x2048 103.3330 4.8584 21.2690

Four Dragons
512x512 7.0000 0.1713 40.8573

1024x1024 27.0000 0.7542 35.8012
2048 x2048 106.6670 4.8565 21.9637

Reflective Four Dragons
512x512 7.0000 0.1716 40.7861

1024x1024 27.3333 0.7540 36.2528
2048 x2048 106.6670 4.8586 21.9544

512x512 1024x1024 2048x2048
Resolution

0

10

20

30

40

50

Sp
ee

d-
up

CPU/GPU Speed-up vs Resolution

Bunny
RefBunny
FourDragon
RefFourDragon

Figure 4.4: GPU vs CPU Speed-up

36

The speed-up achieved by the GPU-based method is more than 20 times in all of

the tests. Figure 4.4 visualizes this observation. It is noticible that in 2048x2048

resolution the speed-up falls about 33% although it is nearly the same for 512x512

and 1024x1024 resolutions. In 2048x2048 resolution, CUDA blocks each with 1024

threads run to perform the exclusive scan operation on 2048 entries in the rows of the

reprojection position buffer. Since a single block runs for a single row, 2048 blocks

each with 1024 threads run in total. The compute capability of the GPU(which is

2.0) used in the tests can at most utilize about 67% of its processing power for thread

blocks with 1024 threads but it can fully utilize its potential for blocks with 256 and

512 threads. In 512x512 and 1024x1024 resolutions, blocks with 256 and 512 threads

for each row are executed respectively. Therefore, the decrease in the speed-up seems

to be due to this limitation. In GPUs with compute capability 3.0 or higher, 100%

utilization for the same configuration is expected as it is indicated by the CUDA

Occupancy Calculator that blocks with 1024 threads can run with full utilization [2].

4.1.2 Overall Performance Gain

To analyze the performance gain achieved by the proposed method, the test scenes

are first rendered for left and right cameras from scratch and then compared with the

reprojection based proposed method which first renders the left image and calculates

the right image by using the information extracted from the left image. The results

and the performance increase is summarized in Table 4.2. Scratch field shows the

time spent on ray tracing from scratch and reuse field expresses the time spent on ray

tracing with the proposed GPU-based method. Measured time results for each scene

are provided in Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9.

The performance increase with reprojection when rendering stereoscopic image pairs

with respect to rendering without reprojection is visualized in Figure 4.5 based on

the data provided in Table 4.2. As shown in Figure 4.5, in Bunny and Four Dragons

Scenes, ray tracing with GPU-based reprojection achieves more than 34% time reduc-

37

Table 4.2: Performance Gain

Scene Resolution Scratch(ms) Reuse(ms) Gain(%)

Bunny
512x512 24.400 16.000 34.426

1024x1024 72.000 43.000 40.277
2048 x2048 239.000 141.667 40.725

Reflective Bunny
512x512 46.400 37.000 20.258

1024x1024 138.800 107.600 22.478
2048 x2048 440.333 343.667 21.952

Four Dragons
512x512 47.400 30.600 35.443

1024x1024 147.000 90.000 38.775
2048 x2048 462.333 286.000 38.139

Reflective Four Dragons
512 x512 134.400 117.200 12.797

1024x1024 421.000 365.800 13.111
2048x2048 1354.000 1181.333 12.752

512x512 1024x1024 2048x2048
Resolution

0

10

20

30

40

50

60

Ga
in

(%
)

Performance Gain vs Resolution

RefBunny
FourDragon
Bunny
RefFourDragon

Figure 4.5: Performance Gain when GPU-based Reprojection is used

38

512x512 1024x1024 2048x2048
Resolution

0

50

100

150

200

250

Ti
m

e(
m

s)

Reprojection vs Rendering From Scratch

Reprojection
Scratch

Figure 4.6: Ray Tracing from Scratch vs Ray Tracing with GPU-based Reprojection
in Bunny Scene

512x512 1024x1024 2048x2048
Resolution

0

100

200

300

400

Ti
m

e(
m

s)

Reprojection vs Rendering From Scratch

Reprojection
Scratch

Figure 4.7: Ray Tracing from Scratch vs Ray Tracing with GPU-based Reprojection
in Reflective Bunny Scene

39

512x512 1024x1024 2048x2048
Resolution

0

100

200

300

400

500

Ti
m

e(
m

s)

Reprojection vs Rendering From Scratch

Reprojection
Scratch

Figure 4.8: Ray Tracing from Scratch vs Ray Tracing with GPU-based Reprojection
in Four Dragons Scene

512x512 1024x1024 2048x2048
Resolution

0

200

400

600

800

1000

1200

1400

Ti
m

e(
m

s)

Reprojection vs Rendering From Scratch

Reprojection
Scratch

Figure 4.9: Ray Tracing from Scratch vs Ray Tracing with GPU-based Reprojection
in Reflective Four Dragons Scene

40

Ray Depth Color Mapping

2 3 41

Figure 4.10: Ray depth visualization for Reflective Bunny and Reflective Four Drag-
ons Scenes. The number of rays(excluding shadow rays) shot for each pixel are indi-
cated by color coding which is provided in the lower right corner.

tion when compared to ray tracing from scratch. However in the other scenes, time

reduction is lower than 23% for all resolutions. One of the main factors affecting the

reprojection time performance is the number of reflection and refraction rays since

only the first level ray intersections are used in the reprojection method and the rays

that are spawned after the first level rays are calculated from scratch. In Bunny and

Four Dragons Scenes, all the surfaces are perfectly diffuse whereas other scenes have

reflective surfaces. Figure 4.10 visualizes the total number of rays spawned for each

pixel in Reflective Bunny and Reflective Four Dragon Scenes. Since scenes with only

diffuse surfaces have the same number of rays(excluding shadow rays) spawned for

each pixel, they are not visualized in Figure 4.10.

The rate of successful reprojections to the total number of rays spawned is provided in

Table 4.3. Reprojection ratio field of Table 4.3 indicates the percentage of successful

reprojections when compared with the total number of rays(excluding shadow rays)

and max ratio field indicates the maximum possible reprojection ratio for that image.

The cases where max ratio is lower than 100% are the scenes with reflective surfaces

as new rays need to be spawned for reflective surfaces. As visualized in Figure 4.12,

41

(a) Reprojection validity image for Bunny and
Reflective Bunny Scenes

(b) Reprojection validity image for Four Drag-
ons and Reflective Four Dragons Scenes

Figure 4.11: Reprojection validity images for Bunny and Four Dragons Scenes. Red
pixels represent invalid or missing reprojections whereas green pixels represent suc-
cessful reprojections.

Bunny and Dragon Scenes have high rate of successful reprojections due to their

diffuse-only reflectance properties, whereas the reflective versions of these scenes

have lower rate of successful reprojections since the total number of rays spawned is

higher.

The reprojection validity buffer is visualized in validity images to see which pixels are

successfully reprojected. Since only first-hit ray intersections are used in reprojection

calculations, validity images of reflective and diffuse-only versions of the same scenes

are the same. Therefore, only one image is presented for the scenes differing only in

materials. Figure 4.11(a) and Figure 4.11(b) show validity images for Bunny and Four

Dragons Scenes respectively. Green pixels represent successful reprojections and red

pixels indicate pixels the color value of which need to be calculated from scratch.

During ray tracing with reprojection, percentage of time spent for each major compo-

nent is analyzed in Figure 4.13. This components are ray tracing the left image while

extracting extra information for reprojection calculation, reprojection calculation and

ray tracing the right image using the results of reprojection calculation. Inspecting

42

Table 4.3: Successful Reprojection Rate

Scene Resolution Reprojection Ratio(%) Max Ratio(%)

Bunny
512x512 94.4748 100.0000

1024x1024 94.5627 100.0000
2048x2048 94.5183 100.0000

Reflective Bunny
512x512 53.0628 56.1661

1024x1024 53.1174 56.1716
2048x2048 53.0910 56.1701

Four Dragons
512x512 91.0980 100.0000

1024x1024 91.1456 100.0000
2048x2048 91.1115 100.0000

Reflective Four Dragons
512x512 47.5941 52.2449

1024x1024 47.6233 52.2497
2048x2048 47.6015 52.2453

512x512 1024x1024 2048x2048
Resolution

40

50

60

70

80

90

100

Ra
te

 o
f S

uc
ce

ss
fu

l R
ep

ro
je

ct
io

ns
(%

)

Reprojection Rate vs Resolution

RefFourDragon
FourDragon
Bunny
RefBunny

Figure 4.12: Successful Reprojection Rates for test scenes

43

Figure 4.13 , it is observed that as the rendering cost(based on the geometric scene

complexity and the materials) increases, the percentage of time spent on the reprojec-

tion calculation with respect to the rest of the process decreases.

4.2 Quality Tests

As previously discussed, the reprojection method introduces errors due to deviation

from sampling points. Since the ray tracer used in this work is based on uniform

single point sampling for each pixel location, the output of the ray tracing with repro-

jection is expected to be the same as the second stereoscopic image(the right image)

calculated from scratch if no error is introduced. Therefore, the right image calcu-

lated without reprojection is selected as the ground truth reference for the result of

ray tracing with reprojection. The error in pixel color values is calculated by mea-

suring their Euclidean distance from the corresponding color value in the reference

image in the RGB color space. The sum of the error values is divided by the total

number of pixels in the final image to give the average error for comparison among

different image resolutions and scenes. The comparison of average error introduced

by reprojection is given in Figure 4.14.

It is observed that the average error decreases as the resolution of the image increases

for all the scenes. This observation results from reduced deviation from sampling

points as a pixel may reproject to a location away from the nearest sampling point by

at most half of a pixel width. As resolution increases, pixel width decreases along

with the average error introduced by the reprojection method.

It is also noticible that at the same resolution, reprojection method applied to the re-

flective versions of scenes results in more error compared to the application to their

diffuse-only counter-parts. For reflective and refractive surfaces, normal and depth

values are also transferred to the right image in addition to diffuse color. As discussed

in earlier chapters, small variations in normal value may result in large variations in

44

Ray Tracing
Left Image

85.1%

Ray Tracing
Right Image

12.6%

Reprojection2.3%

(a) Bunny Scene

Ray Tracing
Left Image

64.7%

Ray Tracing
Right Image

34.4%

Reprojection0.9%

(b) Reflective Bunny Scene

Ray Tracing
Left Image

82.2%

Ray Tracing
Right Image

16.7%

Reprojection1.1%

(c) Four Dragons Scene

Ray Tracing
Left Image

57.5%

Ray Tracing
Right Image

42.1%

Reprojection0.4%

(d) Reflective Four Dragons Scene

Figure 4.13: Distribution of Time Spent in Ray Tracing with GPU-based Reprojection

45

512x512 1024x1024 2048x2048
Resolution

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

RG
B

Er
ro

r [
0-

25
5]

RGB Error vs Resolution

RefFourDragon
FourDragon
TexturedPrimitives
Bunny
RefBunny

Figure 4.14: RGB error introduced by reprojection for all scenes

512x512 1024x1024 2048x2048
Resolution

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pe
rc

ep
tib

le
 P

ix
el

 E
rr

or
 R

at
e(

%
)

Perceptible Pixel Error Rate vs Resolution

RefFourDragon
FourDragon
TexturedPrimitives
Bunny
RefBunny

Figure 4.15: Percentage of pixels which are perceptible as being in error by reprojec-
tion for all scenes

46

color values. Therefore, it is not surprising to see that reflective surfaces introduce

extra error in addition to the error in diffuse color. To compare the error variation

between reflective and diffuse versions of Bunny and Dragon Scenes, difference be-

tween the final color images calculated by reprojection and calculated from scratch

are stored in color difference images, each pixel of which has three color channels for

the error in each channel. To make it more suitable for viewing and error inspection,

the images are inverted and color values are remapped. The darker a pixel is, the more

error is present.

Although the difference in the RGB color space gives information about the similarity

between two images, that color space is not perceptually uniform. In other words, the

response of the human visual system to color differences are not the same across

the RGB color space. To evaluate the significance of the difference among images

better, a perceptual difference analysis tool proposed by Yee and Newman [30] is

used. As Figure 4.15 visualizes, the percentage of pixels perceived as being different

from the reference image is lower than 3% in all the scenes for all the resolutions.

The Reflective Four Dragons Scene shows a higher rate of perceptible pixel errors.

This situation seems to result from the high variation in surface normal values and

reflectivity of the objects. After the Reflective Four Dragons Scene, the Textured

Primitives Scene exhibits a relatively higher rate of perceptible pixel errors which is

believed to be due to the high amount of sharp color changes present in the scene. As

expected, the scenes with only diffuse surfaces without any texture mapping has the

least rate of perceptible pixel errors. This mainly stems from the smoothly varying

radiance values of the objects in the scene. Similar to the relationship of the RGB

space average error to image resolution, the rate perceptible pixel errors decreases as

the resolution increases.

The color difference images for Bunny Scenes are presented in Figure 4.16(a)and

Figure 4.17(a), and images for Four Dragons Scenes are given in Figure 4.18(a) and

Figure 4.19(a). Along with the color difference images in the RGB color space, per-

ceptibly different parts are marked in perceptible difference images. The pixels that

47

(a) Bunny Scene RGB Error (b) Bunny Scene Perceptible Pixel Errors

Figure 4.16: RGB error and perceptible error visualization of Bunny Scene

(a) Reflective Bunny Scene RGB Error (b) Reflective Bunny Scene Perceptible Pixel
Errors

Figure 4.17: RGB error and perceptible error visualization of Reflective Bunny Scene

48

(a) Four Dragons Scene RGB Error (b) Four Dragons Scene Perceptible Pixel Errors

Figure 4.18: RGB error and perceptible error visualization of Four Dragons Scene

(a) Reflective Four Dragons Scene RGB Error (b) Reflective Four Dragons Scene Perceptible
Pixel Errors

Figure 4.19: RGB error and perceptible error visualization of Reflective Four Dragons
Scene

49

(a) Texture Primitives Scene RGB Error (b) Texture Primitives Scene Perceptible Pixel
Errors

Figure 4.20: RGB error and perceptible error visualization of Texture Primitives
Scene

are expected to be perceived as being in error are marked by red color, the other

pixels are marked by pale green color. Perceptible difference images for Bunny, Re-

flective Bunny, Four Dragons, Reflective Four Dragons and Texture Primitives Scenes

are visualized in Figure 4.16(b), Figure 4.17(b), Figure 4.18(b), Figure 4.19(b) and

Figure 4.20(b) respectively.

To see the effect of depth on deviation of reprojection positions from sampling points,

the color difference image for the Textured Primitives Scene is presented in Fig-

ure 4.20(a). As deviation from sampling points is an alternating function of depth,

the effect of depth on the error introduced by reprojection is expected to behave sim-

ilarly. It is apparent in Figure 4.20(a) that the error introduced by reprojection is

dependent on the depth as the error alternates in a pattern similar to that of the devi-

ation from the sampling points. Another observation is the effect of color frequency

on the error patterns. Comparing the color image of the Textured Primitives Scene

with its error image, the regions where the change in color values is high exhibit high

rates of error.

50

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, a GPU-based stereoscopic rendering method that exploits the spatial

coherence in the stereoscopic image pairs is presented. One of the stereoscopic im-

age pairs is first rendered via ray tracing while exporting extra surface information

in addition to color values. Then all the corresponding reprojection position of each

pixel is calculated in parallel. The reprojections that are invalidated due to visibility

from the second camera are determined and discarded. The remaining usable surface

information is used in ray tracing of the second image. All the computations steps

are carried out on the GPU in parallel. On the contrary to previous approaches, paral-

lelism is achieved in performing reprojections among pixels in a row. The presented

method is adapted to run with a fully GPU-based OptiX ray tracing engine.

Over 90% successful reprojections are observed in fully diffuse surfaces leading to

significant speed-ups in the calculation of the second image. Compared to the CPU-

based method about 20 times speed-up is achieved.

The net performance gain achieved using the GPU-based method proposed is shown

to be greater than 30% in scenes with diffuse-only materials. The effect of the rate of

reflective and refractive surfaces on the amount of performance gain is examined.

51

The errors introduced by reprojection is examined in detail. The relation of deviation

of reprojection coordinates from sampling points to the depth of the surface is ana-

lyzed. The implications of deviation from sampling points in uniform and stochastic

sampling mechanisms is mentioned. The quality degradation introduced by reprojec-

tion is examined by using a perception based difference method and it is shown that

in all the test scenes the rate of perceptible errors is less than 3%.

5.2 Future Work

As mentioned previously, projections of surfaces visible in the first image in the

stereoscopic image pair reproject to positions in the second image independent of

the sampling mechanism used in the second image, leading to degradations in the

quality of the reprojected image. In addition to diffuse color values, normal and depth

values reprojected are in error due this sampling error. The effect of the error in the

normal values effect the final color significantly if the surface in question is highly

reflective or refractive.

To reduce the error introduced by the deviation from sampling points, values at actual

sampling points in the second image can be interpolated from neighbor reprojections

based on their distance to the actual sampling point. In surfaces with smoothly vary-

ing color and normal values, the error is expected to reduce when this interpolation

based method is applied.

In surfaces where the variation of the normal and color values is too high for the image

resolution, no increase in quality should be expected as interpolation can not recon-

struct the unknown and frequently changing surface property correctly. Furthermore,

instead of linear interpolation, parametric surface values can be stored to be used in

calculating the unknown surface properties. For instance, center point and radius of

a sphere primitive can be used in calculating the surface property at a certain depth if

it is known that this sphere projects to the pixel location in question. However, this

52

calculations should not be too computationally demanding as this may negate perfor-

mance gains achieved by the reprojection method. This interpolation based approach

is considered for the uniform sampling case. The application of that method can

be extended to multisampling and stochastic sampling cases. In stochastic sampling

case, variation of sampling points in the y axis poses an additional challenge as that

may call for taking samples from neighbor rows to properly interpolate the surface

properties.

The effects of more complex shading models can be explored to see the effect of dif-

ferent shading methods on the success rate of the reprojection method. Representing

the shading calculation as a shade tree and reusing the nodes that are independent of

the changing parameters between cameras(e.g. view direction) can be a starting point.

53

REFERENCES

[1] Compute Unified Device Architecture (CUDA). http://www.nvidia.com/
object/cuda_home.html. Accessed: 07/10/2012.

[2] CUDA C Best Practices Guide. http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html. Accessed: 07/10/2012.

[3] NVIDIA 3D Vision Automatic : Best practices guide. http:
//developer.download.nvidia.com/whitepapers/2010/3D_Vision_
Best_Practices_Guide.pdf. Accessed: 07/10/2012.

[4] OpenCL. http://www.khronos.org/opencl. Accessed: 07/10/2012.

[5] Optix. http://www.nvidia.com/object/optix.html. Accessed:
07/10/2012.

[6] Stanford 3D Scanning Repository. http://graphics.stanford.edu/
data/3Dscanrep/. Accessed: 14/11/2012.

[7] Stephan J. Adelson and Larry F. Hodges. Stereoscopic ray-tracing. The Visual
Computer, 10(3):127–144, 1993.

[8] Stephan J. Adelson and Larry F. Hodges. Generating exact ray-traced animation
frames by reprojection. IEEE Computer Graphics and Applications, 15(3):43–
52, 1995.

[9] Stephen J. Adelson and Larry F. Hodges. Visible surface ray-tracing of stereo-
scopic images. In Proceedings of the 30th annual Southeast regional confer-
ence, ACM-SE 30, pages 148–156, New York, NY, USA, 1992. ACM.

[10] James Arvo and David Kirk. An introduction to ray tracing. chapter A survey
of ray tracing acceleration techniques, pages 201–262. Academic Press Ltd.,
London, UK, UK, 1989.

[11] S. Badt. Two algorithms for taking advantage of temporal coherence in ray
tracing. The Visual Computer, 4:55–64, 1988.

[12] Loren Carpenter. The a-buffer, an antialiased hidden surface method. SIG-
GRAPH Comput. Graph., 18(3):103–108, January 1984.

[13] A. Es and V. İşler. Gpu based real time stereoscopic ray tracing. In 22nd Inter-
national symposium on computer and information sciences, ISCIS, pages 1 –7,
November 2007.

54

[14] John D. Ezell and Larry F. Hodges. Some preliminary results on using spatial
locality to speed up ray tracing of stereoscopic images. pages 298–306, 1990.

[15] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Bat-
taile. Modeling the interaction of light between diffuse surfaces. In Proceedings
of the 11th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’84, pages 213–222, New York, NY, USA, 1984. ACM.

[16] E. Gröller and W. Purgathofer. Coherence in computer graphics. Technical
report, 1992.

[17] Johannes Gunther, Stefan Popov, Hans-Peter Seidel, and Philipp Slusallek. Re-
altime ray tracing on gpu with bvh-based packet traversal. In Proceedings of
the 2007 IEEE Symposium on Interactive Ray Tracing, RT ’07, pages 113–118,
Washington, DC, USA, 2007. IEEE Computer Society.

[18] R.M. Hayes. 3-D movies: a history and filmography of stereoscopic cinema.
McFarland classics. McFarland, 1998.

[19] James T. Kajiya. The rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’86,
pages 143–150, New York, NY, USA, 1986. ACM.

[20] L. Lipton. Foundations of the Stereoscopic Cinema. Van Nostrand Reinhold,
New York, 1982.

[21] T. Möller, E. Haines, and N. Hoffman. Real-Time Rendering. Ak Peters Series.
Taylor & Francis Group, 2008.

[22] Diego Nehab, Pedro V. Sander, and John R. Isidoro. The real-time reprojection
cache. In ACM SIGGRAPH 2006 Sketches, SIGGRAPH ’06, New York, NY,
USA, 2006. ACM.

[23] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hobe-
rock, David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin
Robison, and Martin Stich. Optix: a general purpose ray tracing engine. In
ACM SIGGRAPH 2010 papers, SIGGRAPH ’10, pages 66:1–66:13, New York,
NY, USA, 2010. ACM.

[24] Stefan Popov, Johannes Gunther, Hans-Peter Seidel, and Philipp Slusallek.
Stackless kd-tree traversal for high performance GPU ray tracing. Computer
Graphics Forum, 26(3):415–424, September 2007. (Proceedings of Eurograph-
ics).

[25] Holly E. Rushmeier and Kenneth E. Torrance. Extending the radiosity method
to include specularly reflecting and translucent materials. ACM Trans. Graph.,
9(1):1–27, January 1990.

55

[26] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan
primitives for gpu computing. In Proceedings of the 22nd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, GH ’07, pages
97–106, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Associa-
tion.

[27] Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen Marschner, Erik
Reinhard, Kelvin Sung, William Thompson, and Peter Willemsen. Fundamen-
tals of Computer Graphics, Second Ed. A. K. Peters, Ltd., Natick, MA, USA,
2005.

[28] Ming Wan, Nan Zhang, Arie Kaufman, and Huamin Qu. Interactive stereo-
scopic rendering of voxel-based terrain. In Proceedings of the IEEE Virtual
Reality 2000 Conference, VR ’00, pages 197–, Washington, DC, USA, 2000.
IEEE Computer Society.

[29] Turner Whitted. An improved illumination model for shaded display. Commun.
ACM, 23(6):343–349, June 1980.

[30] Yangli Hector Yee and Anna Newman. A perceptual metric for production test-
ing. In ACM SIGGRAPH 2004 Sketches, SIGGRAPH ’04, pages 121–, New
York, NY, USA, 2004. ACM.

56

