
 

SIMULATION OF CONJUGATE HEAT TRANSFER PROBLEMS USING 

LEAST SQUARES FINITE ELEMENT METHOD 
 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 
 

 

 

 

 

BY 
 

MUSTAFA UĞUR GÖKTOLGA 
 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

MECHANICAL ENGINEERING 

 

 

SEPTEMBER 2012 



 

Approval of the thesis : 
 

SIMULATION OF CONJUGATE HEAT TRANSFER PROBLEMS USING 

LEAST SQUARES FINITE ELEMENT METHOD 

 

submitted by MUSTAFA UĞUR GÖKTOLGA in partial fulfillment of the 

requirements for the degree of Master of Science in Mechanical Engineering 

Department, Middle East Technical University by,  

 

 

Prof. Dr. Canan Özgen     _____________________  

Dean, Graduate School of Natural and Applied Sciences  

 

Prof. Dr. Suha Oral                 _____________________  

Head of Department, Mechanical Engineering   

 

Asst. Prof. Dr. Cüneyt Sert     _____________________  

Supervisor, Mechanical Engineering Dept., METU  

 

 

Examining Committee Members:  
 

Prof. Dr. Mehmet Haluk Aksel               _____________________  

Mechanical Engineering Dept., METU 

 

Asst. Prof. Dr. Cüneyt Sert     _____________________  

Mechanical Engineering Dept., METU 

 

Assoc. Prof. Dr. Almıla Güvenç Yazıcıoğlu   _____________________ 

Mechanical Engineering Dept., METU 

 

Asst. Prof. Dr. Ahmet Yozgatlıgil               _____________________ 

Mechanical Engineering Dept., METU   

 

Asst. Prof. Dr. Barbaros Çetin    _____________________ 

Mechanical Engineering Dept., Bilkent University 

 

Date: 11.09.2012 

 

 

 

 

 

 

 



 

iii 

 

 

 

PLAGIARISM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced 

all material and results that are not original to this work.  
 

 

 

 

Name, Last name: Mustafa Uğur Göktolga 

 

Signature : 



 

iv 

ABSTRACT 
 

SIMULATION OF CONJUGATE HEAT TRANSFER PROBLEMS USING 

LEAST SQUARES FINITE ELEMENT METHOD 

 

Göktolga, Mustafa Uğur 

M.S., Department of Mechanical Engineering 

Supervisor : Asst. Prof. Dr. Cüneyt Sert 

September 2012, 79 pages 

 

In this thesis study, a least-squares finite element method (LSFEM) based conjugate 

heat transfer solver was developed. In the mentioned solver, fluid flow and heat 

transfer computations were performed separately. This means that the calculated 

velocity values in the flow calculation part were exported to the heat transfer part to 

be used in the convective part of the energy equation. Incompressible Navier-Stokes 

equations were used in the flow simulations. In conjugate heat transfer computations, 

it is required to calculate the heat transfer in both flow field and solid region. In this 

study, conjugate behavior was accomplished in a fully coupled manner, i.e., energy 

equation for fluid and solid regions was solved simultaneously and no boundary 

conditions were defined on the fluid-solid interface. To assure that the developed 

solver works properly, lid driven cavity flow, backward facing step flow and 

thermally driven cavity flow problems were simulated in three dimensions and the 

findings compared well with the available data from the literature. Couette flow and 

thermally driven cavity flow with conjugate heat transfer in two dimensions were 

modeled to further validate the solver. Finally, a microchannel conjugate heat 

transfer problem was simulated. In the flow solution part of the microchannel 

problem, conservation of mass was not achieved. This problem was expected since 

the LSFEM has problems related to mass conservation especially in high aspect ratio 

channels. In order to overcome the mentioned problem, weight of continuity equation 

was increased by multiplying it with a constant. Weighting worked for the 

microchannel problem and the mass conservation issue was resolved. Obtained 
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results for microchannel heat transfer problem were in good agreement in general 

with the previous experimental and numerical works.  

 

In the first computations with the solver; quadrilateral and triangular elements for 

two dimensional problems, hexagonal and tetrahedron elements for three 

dimensional problems were tried. However, since only the quadrilateral and 

hexagonal elements gave satisfactory results, they were used in all the above 

mentioned simulations. 

 

Keywords: Least-Squares Finite Element Method, Conjugate Heat Transfer, 

Microchannel Heat Transfer, Incompressible Viscous Flows, Navier-Stokes 

Equations 
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ÖZ 
 

EN KÜÇÜK KARELER SONLU ELEMAN YÖNTEMİ KULLANILARAK 

EŞLENİK ISI TRANSFERİ PROBLEMLERİNİN BENZETİMİ 

 

Göktolga, Mustafa Uğur 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi : Yrd. Doç. Dr. Cüneyt Sert 

Eylül 2012, 79 sayfa 

 

Bu tez çalışmasında, en küçük kareler sonlu eleman yöntemi (EKKSEY) tabanlı bir 

eşlenik ısı transferi çözücüsü geliştirilmiştir. Bahsedilen çözücüde, akış ve ısı 

transferi hesaplamaları ayrı ayrı yapılmıştır. Bu, akışkan çözücü kısmında hesaplanan 

hız değerlerinin, ısı transferi çözücüsündeki enerji denkleminin taşınım kısmında 

kullanılması manasına gelmektedir. Akışkan çözümlerinde sıkıştırılamayan Navier-

Stokes denklemleri kullanılmaktadır. Eşlenik ısı transferi çözümlerinde, hem katı 

hem de sıvı kısımlar için ısı transferinin hesaplanması gerekmektedir. Bu çalışmada, 

eşlenik davranış sıkı bağlı bir şekilde modellenmiştir. Yani, enerji denklemi sıvı ve 

katı kısımlar için aynı anda çözülmüş ve sıvı-katı arayüzü için ayrıca sınır koşulları 

tanımlanmamıştır. Geliştirilen çözücünün düzgün bir şekilde çalıştığından emin 

olabilmek için; kapakla hareket ettirilen kavite akışı problemi, geriye dönük basamak 

akışı problemi ve ısıyla hareket ettirilen kavite akışı probleminin üç boyutta 

benzetimleri yapılmış ve bulgular literatürde bulunan verilerle örtüşmüştür. 

Çözücüyü daha da doğrulamak için, eşlenik ısı transferi içeren iki boyutlu Couette 

akışı ve ısı ile hareket ettirilen kavite akışı modellenmiştir. Son olarak, bir 

mikrokanal eşlenik ısı transferi probleminin benzetimi yapılmıştır. Mikrokanal 

probleminin akış çözümünde kütlenin korunumu sağlanamamıştır. EKKSEY’in 

özellikle yüksek açıklık oranına sahip kanallarda kütle korunumuyla alakalı 

problemleri olduğu bilindiğinden, bu tarz bir problemle karşılaşmak zaten 

beklenmektedir. Belirtilen problemi aşmak için, süreklilik denkleminin ağırlığı, bir 

katsayıyla çarpılarak artırılmıştır. Ağırlık artırma mikrokanal problemi için işe 
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yaramış ve kütle korunumu sıkıntısı giderilmiştir. Mikrokanal problemi için elde 

edilen sonuçlar, daha önce yapılan deneysel ve sayısal çalışmalarla örtüşmektedir. 

 

Çözücüyle yapılan ilk hesaplamalarda; iki boyutta dört yüzlü ve üçgen elemanlar, üç 

boyutta ise altı yüzlü ve dört yüzlü (üçgen piramit) elemanlar kullanılmıştır. Fakat, 

iki boyutta sadece dört yüzlü, üç boyutta ise sadece altı yüzlü elemanlar tatmin edici 

sonuçlar verdiğinden, yukarıda bahsedilen tüm benzetimlerde bu elemanlar 

kullanılmıştır. 

 

Anahtar Kelimeler: En Küçük Kareler Sonlu Eleman Yöntemi, Eşlenik Isı Transferi, 

Mikrokanal Isı Transferi, Sıkıştırılamayan Ağdalı Akışlar, Navier-Stokes 

Denklemleri 
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CHAPTER 1  

INTRODUCTION 

Finite Element Method (FEM) is a numerical method based on variational principles. 

It was first applied to structural problems in engineering with great success [1, 2]. 

This achievement of FEM has led engineers and mathematicians try to solve fluid 

flow problems with the same variational settings. Since the Navier-Stokes equations 

are non-self adjoint, instead of variational principles such as the minimization of total 

potential energy, weighted residual formulations such as Galerkin FEM was used to 

simulate fluid flow [3]. However, for convection dominated flows, simple 

application of Galerkin FEM may lead to inaccurate results. In order to overcome 

this problem, several modified (stabilized) versions of Galerkin FEM were 

introduced such as Galerkin Least Squares (GLS), Streamline Upwind Petrov-

Galerkin (SUPG), etc. For the same reasons, but with a different mathematical 

background, Least Squares Finite Element Method (LSFEM) has also been 

introduced and applied to fluid flow problems [4]. 

1.1 LSFEM 

LSFEM is based on minimization of residual in a least-squares sense. It has gained 

much interest in fluid flow computations in the last few decades. The reason for the 

growing attraction stems from its many advantages over other finite element 

formulations. The basic advantage of LSFEM is that the resulting stiffness matrix is 

symmetric and positive definite [5]. Therefore, resulting sets of equations can be 

solved by iterative solvers efficiently. In addition, since the stiffness matrix is sparse, 

sparse storage schemes can be used. Together with the use of iterative solvers instead 

of direct ones, memory requirement for LSFEM is very low. 

 



 

2 

Another advantage of LSFEM is its applicability to all kinds of partial differential 

equations (elliptic, parabolic and hyperbolic) without any major modifications [5]. 

On the other hand, there are many versions of finite difference or Galerkin FEM 

formulations depending on the problem of interest. 

 

For convective dominant flows, Galerkin FEM causes numerical oscillations [3]. To 

overcome these oscillations, either some stabilization techniques are applied or 

excessively dense grids are used. On the other hand, LSFEM comes with a built in 

stabilization and does not need any special treatment [5]. Owing to this feature, 

LSFEM can use equal order shape functions for all variables. 

 

In LSFEM with C
0
 continuous approximations, it is first necessary to reduce the 

order of differential equation set to one. In order to do so, additional unknowns must 

be defined and then extra equations constituting relationship between additional 

unknowns and original ones must be written. These additional unknowns and 

equations bring increased computational costs and this is the main disadvantage of 

LSFEM. However, this disadvantage is compensable considering the resulting 

symmetric positive definite system. There may be different selections of additional 

unknowns and extra equations for a given set of differential equations. For Navier-

Stokes equations, there are three well-known first order formulations. The most 

widely used one is the velocity-vorticity-pressure formulation [6-8]. There are also 

velocity-stress-pressure [5, 9] and velocity-velocity flux-pressure [10, 11] 

formulations. All these formulations were evaluated by Kayser-Herold and Matthies 

and it was concluded that none of them is superior over others mathematically as 

they all need some kind of modifications for optimal convergence [2]. Therefore, 

velocity-vorticity-pressure formulation was used in this study since it is the most 

widely used one and it brings minimum amount of extra unknowns and equations. It 

is also essential to reduce the order of energy equation to one. In many works, heat 

flux was introduced as the additional unknown [5, 12-14]. No alternative to this first 

order formulation was found for the energy equation and hence, heat flux and its 

definition were used as additional unknown and equations. 
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In addition to definition of vorticity in velocity-vorticity-pressure formulation, Jiang 

also added the divergence of vorticity equation to the system to satisfy the ellipticity 

of the equations [5]. However, Bochev showed that verification of Jiang is not 

completely correct but valid only under some special boundary conditions [15]. 

Trials with the developed code also showed that the use of divergence of vorticity 

equation deteriorates convergence. Therefore, for the solution of Navier-Stokes 

equations, additional vorticity equation was not included in the current work. 

Similarly, for the solution of energy equation, the use of curl of heat flux equation 

together with definition of heat flux was advised by Jiang [16]. Dennis and 

Dulikravich followed this approach and obtained satisfactory results [13]. Also in the 

current study, trials with and without curl of heat flux equation were conducted and 

better convergence rates were observed when the additional equation was used. 

 

Since LSFEM tries to minimize the overall residual stemming from all the 

differential equations together, the contribution of each equation to the residual is of 

equal importance. As conservation of mass is represented only by the continuity 

equation in Stokes and Navier-Stokes equations, significance of mass conservation is 

underrated [2, 17]. Therefore, conservation of mass may not be satisfied for inlet-

outlet type flows and this fact is another disadvantage of LSFEM. Special treatments 

are necessary in order to overcome the problem. Deang and Gunzburger applied a 

simple weighting technique via multiplying the continuity equation by a constant and 

obtained satisfactory results [18]. This method was also adopted in the current work 

due to its simplicity and effectiveness as the computations show. Alternative 

methods to simple weighting can be listed as setting strict boundary conditions with 

appropriate first order formulation and a combined FOSLS/FOSLL* approach [19, 

20].  

 

Due to the fact that the advantages of LSFEM surpass its disadvantages, it has been 

used to discretize many differential equation sets modeling fluid flow problems since 

1970’s. These equation sets and flow problems may be listed as; Stokes equations 

[21-23], incompressible Navier-Stokes equations [24-27], compressible Euler 

equations [28-30], pure convection problems [5, 31], natural convection problems [5, 

12], and other flows of engineering interest [32, 33]. However, there are only a few 
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studies that utilized LSFEM for coupled problems where physical phenomena in 

fluid and solid media are analyzed together. In their fluid-structure interaction (FSI) 

study, Kayser-Herold and Matthies used Galerkin-FEM to model structural part and 

LSFEM to model fluid flow [34]. This approach causes the global algebraic system 

to lose its symmetric and positive definite property. In another FSI study, Heys et al. 

used first-order system least squares (FOSLS) to model both fluid and solid domain 

[35]. They used fully-coupled, semi-coupled and fully-decoupled approaches and 

compare the results. 

 

In the field of conjugate heat transfer, even less work was conducted using LSFEM. 

This is one of the reasons why this study was devoted to developing LSFEM based 

solver which simulates conjugate heat transfer. 

1.2 Conjugate Heat Transfer 

Conjugate heat transfer (CHT) deals with modeling heat transfer in both fluid and 

solid regions. The most important issue in conjugate heat transfer simulations is to 

predict heat transfer characteristics through the fluid-solid interface. A schematic of 

fluid-solid interface is shown in Figure 1.1. 

 

 

Figure 1.1 Two Adjacent Cells on Fluid-Solid Interface for a CHT Problem [36] 

 

There are various approaches in modeling solid and fluid media and heat transfer 

between these two. These approaches can basically be split into two. In fully coupled 

approach, all the system of equations in both fluid and solid regions are formed and 

solved simultaneously. On the other hand, in loosely coupled approach, fluid and 
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solid regions are solved separately and continuity of heat flux and temperature found 

in each media are provided as boundary conditions to the other, and the system is 

solved in an iterative manner.  

 

In [37], Patankar used finite difference method (FDM) to simulate conjugate heat 

transfer. He solved both the fluid and solid domain simultaneously. To assure that the 

velocity values were zero in solid, very high viscosity was defined for the solid 

region. A harmonic mean of thermal conductivities was defined between the two 

neighbor cells, including adjacent fluid and solid grids. Therefore, the whole system 

was solved at once and continuity of temperature and heat flux through the interface 

was ensured. Hribersek and Kuhn used boundary-domain integral method (BDIM) in 

[38]. They also solved flow equations in fluid and solid regions together and satisfied 

the zero-velocity in solid region by specifying appropriate boundary conditions along 

the fluid-solid interface. In addition, the continuity of heat flux and temperature was 

provided by defining two-way boundary conditions through the interface and hence, 

additional iterative procedure was avoided. On the other hand, Divo et al. [39] solved 

the fluid and solid parts separately, in an iterative way. They used boundary element 

method (BEM) to solve heat conduction equation in the solid and finite volume 

method (FVM) to solve compressible Navier-Stokes for the fluid region. Initially the 

FVM based solver worked with an adiabatic wall boundary condition and 

temperature output was given as boundary condition to BEM based solver. Then, 

steady heat conduction was solved using BEM and heat fluxes were given to fluid 

part as boundary condition. Iterations continued until the interface temperature and 

heat flux values from both solvers were close enough. Wansophark et al. used a fully 

coupled approach to model conjugate heat transfer [36]. They utilized streamline 

upwind FEM for fluid flow simulations and classical Galerkin FEM for heat 

conduction in solid. Triangular grids with equal order shape functions were adopted. 

In the only work found using LSFEM to model conjugate heat transfer, Dennis and 

Dulikravich simulated magneto-hydrodynamics with heat transfer in two dimensions 

[13]. They modeled heat transfer in both solid and fluid in a fully coupled manner. 

Navier-Stokes equations including energy equation for fluid and solid regions were 

solved together with Maxwell equations. 
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In the current study, fluid flow and heat transfer simulations were conducted in a 

separate fashion for the forced convection problems. This seems to be a valid 

approach when the viscous dissipation and changes of fluid properties are neglected. 

Therefore, the energy equation for fluid flow reduced to convection-conduction 

equation. As White [40] claimed, these simplifications are meaningful when the 

changes of velocities are low in orders of magnitude compared to heat transfer. In the 

flow solver, only the fluid part was modeled and the velocity values obtained were 

extracted to be used in the convective part of the energy equation. For the heat 

transfer part, a fully coupled approach to model conjugate heat transfer was adopted 

as Reddy [41] advised for FEM based solvers. By doing so, continuity of temperature 

and heat flux through the interface was automatically preserved. Velocity values for 

the solid part were set to zero manually and convection-conduction equation reduced 

to pure conduction equation, enabling the use of single energy equation for both 

media. The only change made to the energy equation depending on the medium was 

to place appropriate thermal conductivity for fluid and solid parts. 

 

Conjugate heat transfer appears in many engineering applications such as 

combustion processes, HVAC systems, electronics cooling, etc. Especially in 

microelectronics industry, the fast growth of technology brings the need for 

developing more efficient and effective cooling systems. Some of the most efficient 

techniques in microchip cooling can be listed as; two phase flow, usage of metal 

foams, liquid jet impingement and microchannel heat transfer [42, 43]. Cooling with 

the use of microchannels is advantageous over other methods in many aspects [43]. 

Furthermore, they are more suitable to be simulated with the current numerical 

method. Therefore, solution of conjugate heat transfer phenomenon in microchannels 

was selected as the ultimate aim for this study. Sample microchannel geometry is 

presented in Figure 1.2. 
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Figure 1.2 Sample Microchannel Arrangement [44] 

 

In order to get familiar with the microchannel heat transfer concept, a literature 

survey covering both experimental and numerical works was conducted. In one of 

the pioneering works, Tuckerman [45] conducted an experimental study comparing 

integral cooling of electronics component and cooling through microchannels. He 

concluded that the use of microchannels is more appropriate considering issues like 

packaging, reliability and cost. Kawano et al. [46] constructed a microchannel 

configuration and tested it both experimentally and numerically. They also used the 

developed microchannels in a practical application. Fedorov and Viskanta [42] 

simulated the same configuration numerically for different Reynolds numbers and 

presented a thorough investigation of heat transfer characteristics of the system. They 

also made recommendations about the cooling efficiency of microchannel geometries 

and thermal stress related issues. Toh et al. [47] studied the effect of variable fluid 

properties on pressure drop characteristics. They computed the Poiseuille’s constant 

for both constant and varied flow property cases and compared the results with 

Tuckerman’s experimental findings. Xie et al. [48] performed optimization of water 

cooled minichannels with computational tools. A trade-off between the pump power 

and the heat removal rates was conducted and an optimum configuration was chosen. 

1.3 Outline of the Thesis 

Since the ultimate goal was to simulate microchannel heat transfer with the 

developed LSFEM based conjugate heat transfer solver, there were basic steps to 
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follow in this thesis research. Outline of the thesis matches with the order of these 

steps.  

 

It was first necessary to extract required formulation from the literature and utilize 

them in code development. Therefore, the next chapter is devoted to formulations 

and methodologies used in the solver. Firstly, the general numerical procedure 

adopted in the present study is presented. Then, proper forms of governing equations 

of fluid flow and heat transfer phenomena are given. After brief information on FEM 

and in particular LSFEM formulations, first order forms of governing equations to be 

used in LSFEM are introduced. Finally, the element types used in the study and some 

other aspects of the developed code are mentioned. 

 

The solver must be validated before its application to a microchannel problem. 

Validation was conducted through the simulation of well-known benchmark 

problems and comparison of the results with the ones in the literature. These 

computations and comparisons are given in Chapter 3. Initially, the flow solver was 

validated with two widely accepted benchmark problems, namely the lid-driven 

cavity and flow over backward facing step problems. Simulation of backward facing 

step flow was especially crucial in evaluating mass conservation issues related to 

LSFEM. Then, in order to evaluate the heat transfer solver, natural convection in a 

cubical cavity was investigated. Since the main aim is to simulate conjugate heat 

transfer, it is necessary to solve some benchmark problems in this field, too. 

However, there could not be found a widely solved conjugate heat transfer problem, 

especially in three dimensions. Instead, two simple two-dimensional problems 

investigated in some previous studies were solved. 

 

As the code was validated through the successful simulation of abovementioned 

problems, solution of a microchannel heat transfer problem could be conducted. A 

microchannel configuration analyzed both experimentally and numerically by 

previous researches was found and simulated with the current code. Details of the 

problem and results obtained are presented in Chapter 4. 
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Finally, conclusions and discussions about the performance of LSFEM for conjugate 

heat transfer problems are given in Chapter 5. In addition, possible enhancements 

and future works are summarized.  
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CHAPTER 2  

FORMULATIONS AND METHODS USED 

2.1 General Numerical Procedure 

In this study, there are basically two solvers. One is forced convection solver and the 

other one is natural convection solver. Both of them have the conjugate heat transfer 

capability as well. Since the aim of this work is to model a microchannel heat 

transfer problem, in most of the parts of the thesis the attention is given to the 

conjugate heat transfer solver with forced convection. Natural convection based 

solver was developed in order to solve the well-known and reliable benchmark 

problems and see the heat transfer modeling capabilities of the formulation. In here, 

general working principles of these two solvers are explained. 

2.1.1 Forced Convection Solver 

There are two basic assumptions made in the formulation of forced convection 

solver. The first one is that the viscous dissipation is neglected due to small changes 

of velocities in the flows of interest. Negligible change in fluid properties due to 

temperature increase is the second assumption. This is valid again for the flows 

solved in this study where temperature rises are small. Owing to these two 

simplifications, the energy equation reduces to convection-conduction equation and 

can be solved separately from the fluid flow part. Therefore, in forced convection 

solver, first the flow computations are conducted. Then, velocity values exported 

from the flow solver are imported to the heat transfer solver to be used in the 

convective part of the energy equation. Heat transfer solver is run with appropriate 

boundary conditions and the solution is finished. 
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In order to handle conjugate nature, a fully coupled approach was used as Reddy [41] 

suggested for FEM based codes. Zero velocity values are given to solid regions and 

the energy equation for solid part reduces to conduction equation. Inserting 

corresponding thermal conductivities for fluid and solid regions, single energy 

equation is solved for the whole domain. Therefore, continuity of heat flux and 

temperature are guaranteed and no additional thermal boundary conditions are given 

to the fluid-solid interface. 

 

In the flow solver part, nonlinear convective terms appearing in momentum 

equations were linearized using Newton linearization. Therefore, some number of 

Newton linearization iterations is conducted to get converged results. To ensure 

convergence, velocity values from the previous iteration are compared with the 

current one until some specified tolerance is achieved. However, in the heat transfer 

solver part, no nonlinear terms are present since the velocities are no longer variables 

to be solved but imported values. Convergence is achieved when the error of the 

iterative solver drops below the specified tolerance. The details of the iterative solver 

is presented in the following sections. 

2.1.2 Natural Convection Solver 

In natural convection, fluid flow and heat transfer are coupled through Boussinesq 

approximation. According to the approximation, change of density is effective only 

in acceleration due to gravity [49]. In addition, temperature and density are related 

through volumetric thermal expansion. Therefore, temperature combined with 

gravitational acceleration appears in the momentum equations as a body force. 

 

Since the temperature is present in flow equations, fluid flow and heat transfer are 

solved in a coupled manner for natural convection solver. In conjugate heat transfer 

problems, for solid parts, the terms related to fluid flow are equated to zero and only 

the energy equation is solved. In addition, for the solid regions, flow related variables 

(velocity, vorticity and pressure) are set to zero by defining boundary conditions. 

 

For natural convection solver, again there are nonlinear convective terms both in 

momentum and energy equations. Therefore, different from the forced convection, 
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temperature values are also checked to observe convergence of Newton linearization 

steps. 

2.2 Governing Equations 

2.2.1 Equations for Viscous Incompressible Newtonian Flows 

2.2.1.1 Continuity Equation 

The continuity equation for fluid dynamics in its most general form is given below 

  

  
        2.1 

where   is time,    is the fluid’s density,   is the velocity vector and    ⁄  is the 

material derivative. For incompressible flows, the density is constant and its 

derivative vanishes, yielding the following continuity equation 

      2.2 

For 3D flows in Cartesian coordinates, Eqn. (2.2) can be expanded as follows 

  

  
 

  

  
 

  

  
   2.3 

where  ,   and   are the Cartesian velocity components.  

2.2.1.2 Conservation of Momentum Equations 

For a Newtonian fluid, conservation of momentum equations can be expressed using 

index notation as follows 

 
  

  
       

 

   
[ (

   

   
 

   

   
)          ]    2.4 

where   is the pressure,   is the body force per unit mass,   is the dynamic viscosity 

and   is the second or bulk viscosity coefficient. If the fluid is incompressible and the 

dynamic viscosity is constant, Eqn. (2.4) reduces to 

 
  

  
              2.5 
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Further assuming that the flow is steady, components of conservation of momentum 

equations for 3D Cartesian coordinates become 
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Note that density was carried to right hand side of the equations and combined with 

the dynamic viscosity to yield kinematic viscosity,  . 

2.2.1.3 Conservation of Energy Equation 

For fluid motion, one possible way of writing the energy equation is as follows 

 
  

  
                2.9 

where   is the temperature,   is the dissipation function,   is the internal energy per 

unit mass and   is the thermal conductivity. Defining enthalpy,     
 

 
 , and 

taking   as constant, the  Eqn. (2.9) becomes 

 
  

  
 

  

  
        2.10 

Dissipation function is defined using index notation as 

     
   

   
 2.11 

If the change of flow velocities is small in orders of magnitude compared to that of 

heat transfer, as is the case for the scope of this thesis,     ⁄  and   can be 

neglected since they are both on the order of square of velocity
 
[40]. By using this 

assumption and inserting        , energy equation for fluid flow becomes 
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      2.12 

This form of the energy equation can simply be called as the convection-conduction 

equation for fluids. Again, assuming steady flow, energy equation for fluid domain in 

3D Cartesian coordinates becomes 

   ( 
  

  
  

  

  
  

  

  
)   (

   

   
 

   

   
 

   

   
) 2.13 

 

2.2.2 Energy Equation for Solids 

Neglecting heat generation, steady-state energy equation for solids is simply the 

following conduction equation 

 (
   

   
 

   

   
 

   

   
)    2.14 

As can easily be deduced from Eqn. (2.13) and (2.14), convection-conduction 

equation can be solved for both fluid and solid parts by setting velocity values for 

solid to zero and using appropriate thermal conduction coefficients. 

2.2.3 Natural Convection Equations 

To test the LSFE formulation’s ability for simulation of heat transfer in 

incompressible flows, a natural convection solver was developed in addition to the 

main code. Following dimensionless equations were taken from Tang and Tsang [12] 

      2.15 

  

  
         

 

  
    

 

  
     

2.16 

  

  
      

 

  
      

2.17 

where   is the gravity vector, and the dimensionless numbers are defined as 

   
   

 
 

 

 
 



 

15 

   
  

     
 

   
      

  
 

   √
  

  
 

   √      

For steady flow in 3D Cartesian coordinates, assuming the gravity is in negative  -

direction, the equations take the following form 
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)    2.22 

 

2.3 LSFEM Formulation 

2.3.1 Basics of Classical Galerkin FEM formulation  

In order to explain the basic steps in a finite element analysis, the following sample 

differential equation that represents 1D, steady advection-diffusion phenomena is 

used 

 
  

  
  

   

   
   2.23 
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This equation can be solved by approximating it on finite elements, which are 

obtained by discretizing the domain. Discretization and polynomial approximation 

procedure on a domain composed of NE finite elements can be seen in Figure 2.1. 

 

Figure 2.1 Sample Piecewise Continuous Polynomial Approximation over Finite 

Elements [50] 

 

As can be seen from Figure 2.1, the approximations over the elements are linear. The 

overall solution is C
0
 continuous, i.e. the solution itself is continuous at element 

interfaces, but not its first derivative. 

 

Considering FEM as a weighted residual type numerical method, it is possible to 

start the formulation with writing the following residual of the differential equation 

      
  

  
  

   

  
   2.24 

Residual should be minimized as much as possible in order to get accurate results. In 

weighted residual type numerical methods, this minimization is performed in the 

following weighted integral sense 

∫            
 

   2.25 
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∫ (  
  

  
   

   

  
   )    

 

   2.26 

Here   represents the computational domain. Since the differential equation is 

second order and approximations over elements are only first order, the term with 

second order derivative needs special care. For most of the finite element methods, 

integration by parts is applied to second order derivatives 

∫    
   

  
  

 

 ∫  
  

  

  

  
  

 

 ∫   
  

  
    

 

 2.27 

where   represents the boundary of the domain with its unit outward normal being 

  . Substituting Eqn. (2.27) into (2.26), the following expression is obtained 

∫ (  
  

  
  

  

  

  

  
)   

 

 ∫    
 

 ∫   
  

  
  ⏟    

  

  
 

 
2.28 

Note that the second term on RHS includes  
  

  
, which is equal to heat flux with a 

minus sign in front. Heat flux is a kind of natural (or Neumann) boundary condition 

(NBC) and automatic inclusion of NBC in the system is an advantage of FEM. The 

next step is to write the equations in terms of approximations over nodes. 

      ∑    

  

   

 2.29 

where    is the approximate solution that is chased, NN is the number of nodes in 

the domain,   ’s are the nodal unknowns and   's are the user selected shape 

functions. Putting this equation into the weighted residual statement, one gets 

∫ [  (∑  
   

  
)   

  

  
(∑  

   

  
)]    

 

∫     
 

 ∫       
 

 2.30 

One of the most important aspects in an FEM is the selection of weight functions. In 

Galerkin FEM, the weight functions are selected to be the same as shape functions. 

Since there are NN shape functions, there are NN different selections for weight 

function and this leads to NN different equations that can be used to solve for NN 

nodal unknowns. It is possible to represent these set of equations in matrix form as 
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[ ]{ }  { }  { } 2.31 

where [ ] is the stiffness matrix, { } is the nodal unknown vector, { } is the force 

vector and { } is the so called boundary integral vector, given as follows 

    ∫ (   
   

  
  

   

  

   

  
)  

 

          ∫      
 

           ∫        
 

 2.32 

Values of NN nodal unknowns are found by solving this system of equations. In 

order to implement this procedure into a computer code, integrals in Eqn. (2.32) are 

written and evaluated separately for each element instead of the whole domain. Then 

the global system is formed by assembling elemental ones. 

2.3.2 Basics of LSFEM Formulation 

If the elements with more continuity than C
0 

are used with LSFEM, it becomes 

almost impossible to construct residual equations, especially in 3D [2]. Furthermore, 

LSFEM is applicable to first order differential equations when C
0
 continuous 

elements are used. Therefore, it is a prerequisite to decrease the order of differential 

equation to one. This is accomplished by defining new variables and adding extra 

differential equations. For Eqn. (2.23), definition of the following flux is appropriate 

    
  

  
 2.33 

using which 1D steady advection-diffusion equation can be written as follows 

 
  

  
 

  

  
   2.34 

Now the heat flux appears as an unknown. Therefore, instead of specifying the 

derivative of temperature as NBC, heat flux is specified as essential (or Dirichlet) 

boundary condition (EBC). Since the derivatives of the unknowns in the original 

differential equations are defined as new variables in LSFEM, always the EBC’s are 

defined on the boundaries. This is a unique property of LSFEM. 

 

There are two first order differential equations now; Eqn. (2.33) and (2.34), which 

can be written in matrix form as follows 
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[
 

 

  

 

  

 
 

  
 

] {
 
 
}   {

 
 
} 2.35 

or in a compact form as  

[ ]{ }  { } 2.36 

where [ ] is the differential operator matrix, { } is the unknown vector and { } is 

the RHS vector. The weighted residual form of these two equations are written as 

follows 

∫   ( 
  

  
 

  

  
  )

⏟          
  

    
 

 2.37 

∫   ( 
  

  
  )

⏟      
  

    
 

 2.38 

where    and    are the weight functions,    and    are residuals of the first and 

second differential equation respectively. 

 

Approximate solution for LSFEM has the same form as Galerkin FEM, given by 

Eqn. (2.29). But in addition to  , the second unknown   also needs to be discretized 

in a similar way 

      ∑    

  

   

 2.39 

Unlike Galerkin FEM, in LSFEM weight functions are selected to be the derivatives 

of the residuals with respect to nodal unknowns, which mathematically corresponds 

to the minimization of residual in a least squares sense. To explain the details further, 

it is better to write the contribution to the residual of only one node, say, 1
st
 node of 

the domain. 

  
     

   
  

   

   
  

    2.40 
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      2.41 

The superscripts of residual represent the equation number, whereas subscripts are 

for node number. Since the weight functions are derivatives of nodal unknowns, they 

can be written as 

   
  

   
 

   
 

 

   
( ∑  

   

  

  

   

 ∑  

   

  

  

   

  )   
   
  

 2.42 

where first subscript of weight function represents node number and the second 

subscript represents unknown number, i.e.,   or  . Other weight functions can be 

written similarly 
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 2.44 

   
  

   
 

   
    2.45 

Using differential operator matrix and unknown vector, residual equations can be 

written in compact form as 

[  ]  [ ][  ]{  }  {  } 2.46 

where [  ] is a 2x2 matrix of which the diagonal elements are    (shape function of 

the first node) and other elements are zero. Similarly, weight functions can be written 

in matrix form as 

[  ]  [ ][  ] 2.47 

As stated earlier, for computer implementation purposes, weighted residual equations 

are written for each element and then assembled to solve global equations. Consider 

the one dimensional element and shape functions over it, shown in Figure 2.2 



 

21 

 

Figure 2.2 Elemental Shape Functions over 1D Element 

where 1 and 2 are elemental node numbers, not the global. Writing Eqn. (2.37) and 

(2.38) for both of the nodes of the one dimensional element and inserting Eqn. (2.46) 

and (2.47), elemental stiffness matrix and force vector can be written again in 

compact form without the matrix brackets 

   ∫            
  

             ∫        
  

   2.48 

where superscript T represents transpose and S
e
 is elemental shape function matrix 

and defined as 

   [
  
    

  

   
    

 ] 2.49 

As can be deduced from Equation 2.48, elemental stiffness matrix is symmetric. This 

is one of the most important features of LSFEM. Furthermore, it is also a crucial 

advantage that after developing a solver for a differential equation set using the 

relations explained above, one almost only needs to change the differential equation 

operator [ ] to adapt the code for other kinds of differential equation sets. However, 

it should be mentioned that the 1D advection-diffusion equation is an ordinary 

differential equation. As Jiang proposes in [5], for a partial differential equation set 

in 3D, it is more appropriate to write the differential operator and equations in the 

following form 

[  ]{ }  [  ]
 { }

  
 [  ]

 { }

  
 [  ]

 { }

  
 { } 2.50 

The differential operator matrices will be given for each type of modeled problem in 

the Section 2.3.3. 
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It should also be noted that in a computer implementation, integrals in Eqn. (2.48) 

should be evaluated numerically. In FEM based solvers, mostly the Gauss quadrature 

is used as numerical integration scheme. 

2.3.3 Governing Equations in LSFEM Form 

2.3.3.1 Conservation of Mass and Momentum Equations 

As explained in Chapter 1, velocity-vorticity-pressure formulation was used to make 

Navier-Stokes equations first order. In this formulation, vorticity is defined as an 

additional unknown and second order derivatives of velocities in momentum 

equations are rewritten in terms of vorticity. This brings one extra unknown for 2D 

and three extra unknowns for 3D problems. In addition, definition of vorticity 

components, given below, must be added as extra equations. 
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   2.53 

Using these relations, Eqn. (2.6 - 2.8) can be written as follows 
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)     2.56 

With continuity equation staying the same, there are 7 equations for 7 unknowns. 

Here it is important to note that the extra equation for the divergence of vorticity, 

proposed by Jiang [5], was not used in the current study. 

 

There is one more issue to solve before the stiffness matrices can be formed; the 

nonlinear convective terms in conservation of momentum equations. These nonlinear 
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terms must be linearized in some way to solve Navier-Stokes equations. There are 

basically two types of popular linearization techniques being Newton linearization 

and successive substitution. Successive substitution is more stable whereas Newton 

linearization provides faster convergence. Due to this quick convergence and ability 

to converge when used with appropriate initial guesses, Newton linearization was 

preferred in this study. Newton linearization is performed as follows 

 
  

  
   

  

  
  

   

  
   

   

  
 2.57 

where    is the velocity value from previous iteration or initial guess. As    

approaches  , i.e. the solution converges, left and right hand sides of Eqn. (2.57) 

become equal.  After Newton linearization; the unknown vector, resulting coefficient 

matrices and force vector become 
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 2.63 

2.3.3.2 Energy Equation 

For energy equation, it is necessary to reduce the order of differentiation of 

temperature. In many works, heat flux was introduced [5, 12-14] as the additional 

unknown. The first order formulization of energy equation for 3D Cartesian 

coordinates become 
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   2.67 

Curl of heat flux equations were added to the system as mentioned in Chapter 1. 
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   2.70 

Since heat transfer solver works in an uncoupled manner with the flow solver, 

velocity values do not change during heat transfer solution. Therefore, there is no 

nonlinear term in the equation set. The resulting unknown vector and coefficient 

matrices become 
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 2.75 

The force vector is simply a null vector of size 7. Note that when the velocity values 

in Eqn. (2.73-2.75) are zero, the energy equation becomes heat conduction equation. 

 

In numerical computations, both the system of equations with and without the curl of 

heat flux equation were tried and it was observed that the system with extra 

equations converge more rapidly. 

2.3.3.3 Natural Convection Equations 

In order to discretize the natural convection equations, the formulation proposed by 

Tang and Tsang was followed [12]. Vorticity and heat flux were added to the system 

as additional unknowns to make the system first order. The resulting system of 

equations in 3D Cartesian coordinates is 
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The system is determined with 11 unknowns and 11 equations in total. Neither the 

divergence of vorticity nor the curl of heat flux equation was added to the system. 

Since the heat transfer and the flow solver work coupled for natural convection 

problems, the convective terms in Eqn. (2.76-2.78) and Eqn. (2.83) are the sources of 

nonlinearity, which were linearized through Newton linearization. The resulting 

unknown vector, coefficient matrices and force vector are as follows 
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2.4 Used Element Types 

For 2D problems basically two element types, triangular and quadrilateral, are used. 

Similarly, in 3D, tetrahedrons and hexagonal elements are the most preferred 

elements. All of these element types were adopted and tried in the developed code. 

The choice of element type influences the numerical solution strongly. In addition to 

the element types, the number of nodes on the elements is also crucial in 

computations. Depending on elemental node numbers, there are two basic element 

types for quadrilateral and hexagonal elements, being Lagrange type and serendipity 

type elements [51]. In this work, Lagrange type elements were used. Both in 2D and 

3D, linear and quadratic elements were utilized. The node numbers used for linear 

and quadratic elements are presented in Table 2.1. 
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Table 2.1 Node Numbers of Different Elements 

 Linear Quadratic 

2D 
Triangle 3 6 

Quadrilateral 4 9 

3D 
Tetrahedron 4 10 

Hexagonal 8 27 

 

These 4 element configurations are shown in Figure 2.3 - Figure 2.6. 

 

Figure 2.3 Lagrange Type Quadrilateral Elements: (a) Linear, (b) Quadratic [52] 

 

Figure 2.4 Triangular Elements: (a) Linear, (b) Quadratic 
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Figure 2.5 Lagrange Type Hexagonal Elements: (a) Linear, (b) Quadratic 

 

 

Figure 2.6 Tetrahedron Elements: (a) Linear, (b) Quadratic 

 

In the trial simulations with all these elements, it was seen that only quadrilateral and 

hexagonal elements gave satisfactory results. Part of this drawback can be explained 

by the following requirement proposed by Jiang [5] 

                                      2.93 

where       is number elements in the domain,        is the number of Gauss 

quadrature points used in numerical integrations over elements,     is the number of 

differential equations for the problem,       is the number of nodes in the domain, 

  is the number of unknowns at each node and     is the number of boundary 

conditions implemented on the boundaries of the domain. If the number of Gauss 
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quadrature points chosen is small, this requirement cannot be hold and iterative 

solver does not converge. Further, if the number of Gauss quadrature points is large 

and left hand side of the inequality is way higher than the right hand side, then the 

system becomes overdetermined and leads to underestimated solution. Therefore, the 

LHS and RHS of the Eqn. (2.93) should be close to each other. 

  

Jiang showed that the above requirement is the reason why linear triangles and 

tetrahedrons cannot achieve desired results with LSFEM. Even if one-point Gauss 

quadrature is used, the LHS results in very high numbers compared to RHS and the 

requirement cannot be satisfied. Hence, Jiang advised the use of high order triangles 

and tetrahedrons. However, trials in this study showed that it is very difficult to 

achieve the requirement given in Eqn. (2.93) even with the quadratic triangles and 

tetrahedrons. Therefore, desired results with triangles and tetrahedrons cannot be 

obtained. 

 

Simulations with quadratic quadrilaterals and hexagons were proven to be accurate. 

However, since there are 27 nodes in quadratic hexagonal element, the band width of 

the resulting global stiffness matrix becomes large. Consequently, the memory 

requirement of the system increases. In addition, since the number of Gaussian points 

used in the numerical integration was kept high to satisfy Eqn. (2.93), the time 

required to obtain stiffness matrix increased dramatically. Therefore, it was decided 

to use linear quadrilaterals and hexagons in the solution of problems 

 

Since the integral limits of Gauss quadrature integration scheme are -1 to 1, shape 

functions are also defined in these limits. Elements having these limits are called 

master elements and transformation from master element coordinates to global 

coordinates is done using Jacobian of the elements. Linear quadrilateral master 

element and its coordinates are shown in Figure 2.7. 
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Figure 2.7 Linear Quadrilateral Master Element  

 

Depending on the node number of the element, proper shape functions should be 

used. The most important feature of the shape functions is their Kronecker-delta 

property, according to which the shape function associated with a node of the 

element has the value of 1 on that node and 0 on the other nodes. This can be shown 

mathematically, for a 1D element, as follows 

  (  )      { 
            
            

 2.94 

Shape functions for any element can be determined using Kronecker-delta property. 

For example, for the one dimensional linear element given in Figure 2.8, the shape 

functions are as follows 

   
 

 
               

 

 
      2.95 

  

 

Figure 2.8 1D Master Element and Shape Functions 

 

Shape functions for linear quadrilateral and hexagonal elements can be found by 

combining the one dimensional shape functions given by Eqn. (2.95). 
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2.5 Linear Solver and Storage Schemes 

As mentioned earlier, LSFEM results in a sparse, symmetric and positive definite 

(SPD) matrix system, which can be solved by iterative solvers such as the conjugate 

gradient method efficiently. Efficiency of conjugate gradient method can 

significantly be improved by the application of preconditioning. The idea behind 

preconditioning is to improve condition number of the coefficient matrix [53]. For a 

matrix with SPD property like the stiffness matrix in LSFEM, the preconditioner 

should be similar to the original matrix and have the same SPD property. The 

simplest preconditioner is the diagonal of the original matrix and this choice leads to 

the famous Jacobi preconditioning. There are other preconditioning techniques, like 

incomplete Cholesky factorization, which improve condition number of the 

coefficient matrix even more. However, it is time consuming to construct Cholesky 

factors and then taking the inverse of those factors to be used in preconditioning of 

conjugate gradient. Therefore, a trade-off analysis between the time spent to apply 

the incomplete Cholesky and the gain from faster convergence of conjugate gradient 

should be made. For the sake of simplicity, Jacobi preconditioned conjugate gradient 

solver was used in this study. Implementation of incomplete Cholesky conjugate 

gradient might be a future improvement. 

 

Since the number of elements required to solve fluid flow and heat transfer problems 

in three dimensions is high, the coefficient matrix can occupy terabytes of memory if 

it is stored in full version. To solve this problem, two methods were applied. The first 

one is to store only the elemental stiffness matrices instead of one large global matrix 

and apply the conjugate gradient solution in an element by element (EBE) manner; 

and the second solution is to store the global stiffness matrix using a sparse storage 

scheme. 

 

In EBE solution, the elemental stiffness matrices were formed and stored. The time 

consuming matrix vector multiplication of the conjugate gradient solution was 

performed using the elemental stiffness matrices, without forming the global stiffness 

matrix at all. If the system to be solved is extremely large that even the storage of 

elemental matrices exceeds memory limits, elemental stiffness matrices can be 

formed during conjugate gradient iterations and can be removed from the memory 
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after being used. However, this way the computation time increases drastically. As 

an alternative to EBE solution, it is possible to store the global stiffness matrix in the 

memory using a sparse storage scheme and perform matrix vector product operation 

of the conjugate gradient solver at the global level. Among many sparse storage 

schemes, compressed row storage scheme was used in this study [54].  

 

In both EBE and sparse storage solutions, only the lower halves of the elemental and 

global stiffness matrices were stored, benefiting their symmetric structure. In order to 

decrease the time requirements while solving the equations, it was decided to use a 

third party library to perform basic linear algebra operations. For this purpose, Basic 

Linear Algebra Subprogram (BLAS) routines of Intel
®
 MKL were used [55]. These 

routines are best suited for matrix-vector products in the developed code when sparse 

storage scheme is used. Considerable time reduction in computations was achieved 

when Intel
®
 MKL was utilized. 

 

Trying to achieve both low computation times and memory requirements; sparse 

storage scheme based on compressed row storage and Jacobi preconditioned 

conjugate gradient solver supplemented with Intel
®
 MKL were used in most of the 

simulations mentioned in the next chapters. 

 

In order to provide an insight about the memory requirements and the speed of the 

developed codes, RAM consumption and time elapsed in the solution of 

microchannel heat transfer problem were recorded. Simulations were conducted 

using a computer with Intel Xeon E5-2670 CPU’s. The speed of each CPU is 2.6 

GHz and 8 cores were utilized in the calculations. For the solution of a domain 

composed of 119040 elements, 193 MB of memory was used. The flow solution 

takes 22 minutes whereas the heat transfer solution takes 166 minutes. The speed of 

heat transfer solver was low because very high number of conjugate gradient 

iterations was required to obtain convergent results.   
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CHAPTER 3  

CODE VALIDATION 

To check whether the codes can successfully solve viscous incompressible flow and 

heat transfer problems, some benchmark problems found in the literature were solved 

and the results are presented in this chapter. 

3.1 Flow Solver Validation 

Two very famous benchmark problems for incompressible flows were solved and the 

obtained results were compared with the available data in the literature. These 

problems are lid driven cavity flow and backward facing step flow. 

3.1.1 3D Lid Driven Cavity Flow  

The problem simulates the flow inside a cubical cavity with all the faces being 

stationary except the top one, as shown in Figure 3.1. The top wall was given a 

velocity of 1 m/s in the  -direction. Zero reference pressure was specified on the 

middle of the bottom wall. All the edges of the cubical cavity were taken as 1 meter 

in length. The computations were performed for Reynolds numbers of 100 and 1000. 

An imaginary fluid with a density of 1 kg/m
3
 was used and the desired Reynolds 

numbers were obtained by varying the viscosity. 



 

37 

 

Figure 3.1 Configuration for 3D Lid Driven Cavity Flow [7] 

 

A non-uniform mesh with 125000 (50   50   50) elements was used. The elements 

get finer as they get close to the wall regions. Mesh for the top wall is presented in 

Figure 3.2. All other walls had the same mesh and a structured mesh of hexagonal 

elements was obtained for the entire volume based on these face meshes. 

 

Figure 3.2 Non-Uniform Top Wall Mesh for 3D Lid Driven Cavity Flow  

 

As convergence criterion, tolerances of      and      were selected for Newton 

iterations and conjugate gradient solver respectively. Converged solutions were 

obtained for both Reynolds numbers. 
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The  - and  -velocity contours at       plane for Reynolds number 100 are given 

in Figure 3.3. 

 

Figure 3.3  - and  -velocity Contours at       for Re = 100 

 

In several works in the literature [5, 7, 56-58],  -velocity profiles on         

line and  -velocity profiles on         line were presented. To check the 

accuracy of results obtained with the code, comparison with data from Jiang [5] and 

Yang et al. [56] were made. Jiang used LSFEM as in this work, whereas Yang et al. 

used implicit weighted ENO scheme to solve the Cavity problem. In Figure 3.4,   

and  -velocity profiles for Reynolds number of 100 are presented on         

and         lines, respectively. Since Jiang did not provide  -velocity values, 

only results from Yang et al. are presented. A similar comparison for Re=1000 is 

presented in Figure 3.5. 
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Figure 3.4 Velocity Profiles along Centerlines for Re=100 

 

 

Figure 3.5 Velocity Profiles along Centerlines for Re=1000 

 

Although results are in good agreement in general, there are slight differences 

especially in predicting maximum velocities along centerlines. This might be due to 
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differences in the grids used. Jiang discretized the computational domain into a 50   

50   50 uniform mesh. He added 2 layers of mesh near top wall in order to achieve 

more resolution and obtained a mesh of 50   52   50 nodes. On the other hand, 

Yang et al. used 33   33   33 non-uniform mesh which gets denser near all walls as 

in this work. 

3.1.2 Backward Facing Step (BFS) Flow 

Although the solver was proven to be successful in the simulation of 3D lid driven 

cavity flow, it was still necessary to test it with an inlet-outlet type benchmark 

problem. This is because LSFEM has problems in mass conservation as stated earlier 

and one cannot test it with flow simulation inside the cavity. Furthermore, since one 

of the main motivations in this work is to be able to develop a code to simulate 

microchannel heat transfer problems, it is obligatory to test the flow solver with an 

inlet-outlet type problem. Therefore, it was decided to solve another well-known 

benchmark problem for incompressible flow solvers, namely the backward facing 

step (BFS) flow. 

 

In BFS problem, the fluid coming from a narrow channel flows into a wider one and 

experiences a sudden expansion as seen in Figure 3.6. Due to this sudden expansion, 

there occurs circulation regions and prediction of detachment and reattachment 

points becomes important. There are many versions of BFS flow with different 

expansion ratios (   ). In the experimental work of Armaly et al. [59], an expansion 

ratio of 1/1.94 was used and that is the one simulated in this work. 
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Figure 3.6 Geometric Parameters of the Backward Facing Step Flow [60] 

The values of geometric parameters shown in Figure 3.6 are given in Table 3.1. 

 

Table 3.1 Values of Geometric Parameters for BFS Problem 

            

200 mm 100 mm 10.1 mm 5.2 mm 4.9 mm 180 mm 

 

A large number of researchers solved BFS problem in 2D and 3D (see Table 1 of 

[60]). Since most of the researchers referenced Armaly et al.’s experimental work 

[59], and the most comprehensive numerical work simulating the same geometry is 

Williams and Baker’s study [60], most of the results of the current study were 

compared with these two references. Reattachment length results were also compared 

with Jiang et al.’s [61] and Ku et al.’s [62] works. Again Jiang et al. used LSFEM as 

in this work, whereas Williams and Baker implemented continuity constrained 

method and Ku et al. used pseudo-spectral matrix element method. 

 

The problem was solved for different Reynolds numbers up to 700. While calculating 

Reynolds number, mean velocity at the inlet was taken as reference velocity and 

twice the height of entrance region was used as hydraulic diameter. The primary 

reattachment length shown in Figure 3.7 and velocity at different   stations were 

computed and compared with the available data from references. Since the flow is 
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symmetric up to the Reynolds number of interest, the half domain in  -direction was 

solved and symmetrical boundary condition was applied. The symmetry plane can be 

seen in Figure 3.6. At the exit of the domain, fully developed boundary conditions 

were applied and reference pressure was specified as zero. The working fluid is air 

and its properties together with hydraulic diameter are given in Table 3.2. 

 

Table 3.2 Flow and Fluid Properties for BFS Flow 

       

                                   

 

 

 

Figure 3.7 Primary Circulation Region and Reattachment Length [60] 

 

The computational domain was composed of 50   11   30 structured mesh for 

entrance region and 80   21   30 structured mesh for the region after the step, a total 

of 66900 elements. Elements were clustered near step, entrance and wall regions. 

Surface meshes for    ,     and     planes are given in Figure 3.8 (ratios of 

coordinate axes are not to scale). 
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Figure 3.8 Surface Mesh for    ,     and     Planes of BFS Problem 
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In their work, Williams and Baker used 4   11   24 and 87   20   24 mesh for 

upstream and downstream of the step, respectively. The reason of large difference 

between the numbers of streamwise edge meshes upstream of the step between 

present work and Williams and Baker’s is that, a uniform velocity was given at the 

inlet in this work whereas Williams and Baker used fully developed inlet velocity 

profile. Uniform inlet was preferred in the current study because it is uncertain 

whether Williams and Baker's inlet profile was parabolic in both   and   directions, 

or only in   direction. 

 

To calculate the reattachment length after the step, a point where the  -velocity is 

zero was sought. The length between the step and the zero  -velocity point was set 

as reattachment length. In order to observe how the developed code predicts primary 

reattachment length, results from other works were compared with the current one 

and the results are presented in Figure 3.9. Note that the reattachment length,   , was 

normalized with the step height,  . 

 

 

Figure 3.9 Change of Primary Reattachment Length with Reynolds Number  

 

As can be seen from Figure 3.9, developed code predicted the change of primary 

reattachment length with Reynolds number successfully. There is a slight difference 

only at Reynolds number of 700. Although a denser mesh around the possible 
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reattachment point was used, no further improvement was observed in predicting 

reattachment length. 

 

For Reynolds number of 648, change of primary reattachment length in   direction is 

presented in Figure 3.10. Note that   coordinate was normalized by half width,    . 

The agreement between the results of Armaly et al. and the present work can be seen 

in the figure. The change of reattachment length in  -direction shows the three 

dimensionality of flow in this Reynolds number regime. As can be seen, there is a 

difference at Armaly et al.’s results in reattachment length between Figure 3.9 and 

Figure 3.10. This might be due to a mistake Armaly et al. made while presenting their 

results. 

 

Figure 3.10 Change of Primary Reattachment Length in  -direction at Re=648  

 

In addition to reattachment length results, the changes of  -velocities in  -direction 

at different   and   stations were also compared. These comparisons further show 

how accurately the code predicts flow structure in the domain. All the presented 

results are for Reynolds number of 648. First of all, in Figure 3.12,  -velocity profile 

along  -direction at just above the step, i.e.,       , is given for 3 different   

values. It is seen that the  -velocities computed by the code are consistent with the 

experimental data except at        mm. Although different mesh resolutions were 

tried to solve this problem, the results could not be further enhanced and the reason 
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for this incompatibility could not be found. Figure 3.11 shows the points where the 

compared velocities were extracted in  -direction. 

 

Figure 3.11 The Points through Which  -Velocities are Compared in  -Direction 

 

 

Figure 3.12 Change of  -Velocities along  -Direction at        and Different  -

Stations, Re=648 

 

In Figure 3.13, changes of  -velocities along  -direction at       mm and different 

 -stations are given. This time however, the results of Williams and Baker’s work 

[60] are also present. Again the velocities are for Reynolds number of 648. The 

results obtained with the developed code are well consistent with experimental and 

numerical data. In addition, it is clear that flow field is strongly three dimensional for 

this Reynolds number regime as Armaly et al. [59] claimed. Due to the fact that 

Armaly et al. probed velocity values near wall with very few points, they missed the 
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flow reversals which were caught by both the current code and Williams and 

Baker’s. 

 

 

 

Figure 3.13 Change of  -Velocities along  -Direction at       mm and at different 

 -Stations, Re=648  

 

By solving backward facing step problem in 3D successfully, the code proved to be 

sufficient for the solution of inlet-outlet type flow problems. It should be noted that 

the velocity values at both inlet and outlet of the channel were checked and there 

occurred no deterioration in mass conservation. Therefore, no additional treatment 

was done to ensure continuity for this problem. 
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3.2 Heat Transfer Solver Validation 

For incompressible flows, benchmark heat transfer problems found in the literature 

are mostly coupled with fluid flow through natural convection. No fully trustable 

benchmark problem solving fluid flow and heat transfer in an uncoupled manner 

could be found. Therefore, it was decided to develop a coupled code and test it by 

solving the 3D thermally driven cavity flow. 

3.2.1 Thermally Driven Cavity (TDC) Flow 

In this benchmark problem, the natural convection inside a differentially heated 

cubical cavity is analyzed. One of 6 surfaces of the cube is heated whereas the 

opposite wall is cooled. All other 4 surfaces are kept adiabatic. The general view of 

computational geometry and boundary conditions is given in Figure 3.14. 

 

Figure 3.14 General Geometry and Boundary Conditions for TDC Flow [63] 

 

Due to the heated wall, the fluid nearby gets hotter and lighter, and therefore moves 

in opposite direction of gravity. The heated fluid faces the cooled wall on the 

opposite side and gets colder and denser, and moves down in the direction of gravity. 

This way the heat inside the cavity is convected and different flow and temperature 

profiles occur depending on Rayleigh and Prandtl number of the fluid. Consequently, 

accurate prediction of temperature and velocity changes inside the cavity is an 

important evaluation criterion for the developed code. 
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For the TDC problem, air was selected to be the working fluid. Prandtl number was 

set to be 0.71, Froude number became 1 and the problem was solved for Rayleigh 

numbers of 10
4
, 10

5
 and 10

6
. Computational grid was the same as in the lid driven 

cavity problem, i.e., a grid of 125000 structured elements clustered near the wall 

regions (see Figure 2.1). 

 

In Figure 3.15 and Figure 3.16,   and   velocities along centerlines in   and   

directions respectively are presented. The Rayleigh number of interest in figures is 

10
5
. 

 

Figure 3.15 Comparison of  -Velocities along Centerline in  -Direction, Ra=10
5
 

 

Figure 3.16 Comparison of  -Velocities along Centerline in  -Direction, Ra=10
5
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The work of Bilski et al. [64] and Krane and Jesse [65] were of experimental type 

and were conducted at Rayleigh numbers of 1.03 10
5
 and 1.89 10

5 
respectively. 

Fusegi et al. [66] solved the problem using a finite difference scheme and 

investigated the effect of boundary condition types given for horizontal walls. They 

employed a computational grid of 62   62   62. Fusegi et al. claimed that the 

horizontal walls in experimental setups cannot be insulated perfectly and this might 

be the source of difference in this velocity comparison. Indeed, they used a 

conducting wall boundary condition for the top and bottom wall and the results of 

that case were closer to experimental findings. Therefore, it is better to compare the 

results of the current work with that of Fusegi et al. In that perspective, the results 

obtained here are highly satisfactory. 

 

In Figure 3.17, the temperature contours for Ra=10
6
 are compared with the work of 

Wakashima and Saitoh [63]. In their study, Wakashima and Saitoh implemented a so 

called time-space method and used a computational grid of 120   120   120. 

Temperature contours at       reveal that there is a high consistency between the 

current work and the reference study. 

 

 

Figure 3.17 Temperature Contours for Ra=10
6
 at      , Wakashima and Saitoh 

[63] (left), Current Work (right)  

 

For a final comparison of TDC results, maximum velocities along centerlines and 
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Table 3.3 for all Rayleigh numbers. Although there are slight differences in some 

values, these differences do not exceed 5% and therefore the results are consistent 

with other works. 

Table 3.3  -Vorticity at the Center of the Cavity, Maximum Velocities and Their 

Positions along Centerlines 

 Study         

(  location) 

     

(  location) 

Ra = 10
4
 

Wakashima and 

Saitoh [63] 

1.1018 0.1984 

(0.8250) 

0.2216 

(0.1167) 

Fusegi et al.  [66] - 0.2013 

(0.8167) 

0.2252 

(0.1167) 

Current Work 1.0645 0.1933 

(0.8286) 

0.2179 

(0.1150) 

Ra = 10
5
 

Wakashima and 

Saitoh  [63] 

0.2576 0.1416 

(0.8500) 

0.2461 

(0.0667) 

Fusegi et al.  [66] - 0.1468 

(0.8547) 

0.2471 

(0.0647) 

Current Work 0.2442 0.1387 

(0.8538) 

0.2456 

(0.05973) 

Ra = 10
6
 

Wakashima and 

Saitoh [63] 

0.1366 0.0811 

(0.8583) 

0.2587 

(0.0333) 

Fusegi et al. [66] - 0.08416 

(0.8557) 

0.2588 

(0.0331) 

Current Work 0.1338 0.08169 

(0.8538) 

0.2583 

(0.0346) 

 

The overall performance of natural convection solver is pretty well and the heat 

transfer solver can be regarded as validated. 
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3.3 Conjugate Heat Transfer Solver Validation 

Again, there could not be found a widely solved conjugate heat transfer benchmark 

problem to be simulated in the literature. Instead, the conjugate heat transfer 

modeling capability of the developed code was tested with two simple two 

dimensional problems. The first one is again a natural convection inside the cavity 

problem with a solid region adjacent to the cavity. Second problem is the well-

known Couette problem with a heated solid part at the bottom. Details of the 

problems and the results in a comparative way are presented in the next two sub-

sections. 

3.3.1 Conjugate Heat Transfer in Thermally Driven Cavity Flow 

The problem domain is given in Figure 3.18. 

 

Figure 3.18 General View of Thermally Driven Cavity with Conjugate Heat Transfer 

[38] 

 

As can be seen from Figure 3.18, in addition to the standard cavity, there is a solid 

region on the left and the left side of the solid is heated whereas the right of the fluid 

domain is cooled. Other surfaces are kept insulated and no-slip boundary condition is 

given for all the walls. Velocity values in the solid region are set to zero. 

 

For the fluid regions, the equations to be solved are 2D versions of Eqn. (2.15-2.17). 

For the solid region on the other hand, only the Eqn. (2.17) was solved with a slight 
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modification. The term    ⁄  was multiplied with the ratio of thermal conductivity of 

solid to that of fluid. The convective part in Eqn. (2.17) vanished in the solid part 

since the velocities were set to zero before the calculations. 

 

The mesh used for the fluid region was the same as given in Figure 3.2. For the solid 

part, 10   50 elements clustered near the interface and boundaries were used. 

 

Working fluid was air and the Prandtl number was 0.71. Calculations were 

performed for Rayleigh number of 71000. Three different thermal conductivity 

ratios, i.e.,   were examined. The temperature contour for     was compared with 

the work of Hribersek and Kuhn [38] and is presented in Figure 3.19. 

 

 

Figure 3.19 Comparison of Temperature Contours for      and          

Hribersek & Kuhn [38] (left), Current Work (right) 

 

The high consistency between the two solutions can be seen from Figure 3.19. The 

temperature values along the solid-fluid interface was also recorded and is given in 

Figure 3.20. 
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Figure 3.20 Temperature Distribution along the Interface for Different   

 

The temperature distributions along the interface also reveal that the developed code 

predicted the temperature profiles for conjugate problems successfully as well. 

3.3.2 Conjugate Heat Transfer in Couette Flow 

The last problem to be solved before the simulation of a microchannel was the 

Couette flow with conjugate heat transfer. In this problem, a heated solid region was 

added to the bottom of the well-known Couette flow and temperature profiles for 

different thermal conductivity ratios were examined. Problem domain is shown in 

Figure 3.21. 

 

Figure 3.21 General View of Couette Flow with Conjugate Heat Transfer [36] 
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As seen from the figure, the top plate was moved in positive  -direction with a 

velocity of 1 m/s. The fluid flow was periodic, i.e., the inlet flow profile was the 

same as the exit flow profile. Velocities were zero at the fluid-solid interface. Bottom 

of the solid was kept at non-dimensional temperature of 1 whereas the top of the 

fluid was at 0 temperature. A 40   30 uniform mesh was used for the whole domain. 

 

Only the fluid domain was solved initially and resultant velocity values were 

exported to the heat transfer solver. Since no details were presented in Wansophark 

et al.’s work [36], all fluid properties of interest were taken as 1. The temperature 

profile in  -direction was extracted and compared with the analytical results of 

reference [40]. The results for different thermal conductivity ratios are given in 

Figure 3.22. 

 

Figure 3.22 Temperature Profiles for Couette Flow in  -Direction for Different K 

 

Again there is an excellent agreement between the current findings and the exact 

results from White [40]. After all these validations, the code developed proved to be 

suitable for simulation of inlet-outlet type fluid flow and conjugate heat transfer 

phenomena. Therefore, it was time to model a real life microchannel heat transfer 

problem. 
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CHAPTER 4  

SIMULATION OF CONJUGATE HEAT TRANSFER IN A 

MICROCHANNEL 

Since the developed flow and conjugate heat transfer solvers were validated through 

a comprehensive work, a microchannel heat transfer problem could be modeled. As 

part of it is explained in the introduction, a number of studies involving numerical 

and/or experimental conjugate microchannel heat transfer are present [42, 45-48, 67]. 

Among these works, Kawano et al.’s [46] and, Fedorov and Viskanta’s [42] were 

examined in detail. It was because both studies investigated the same microchannel 

configuration and, the computational and experimental methods were explained 

clearly. 

 

In the experiments, Kawano et al. first formed a microchannel and tested it, and then 

they used it in a real application for cooling electronic equipment. The general view 

of the tested microchannel is shown in Figure 4.1. 

 

 

Figure 4.1 Tested Microchannel by Kawano et al. [46] 
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There were 110 channels in the system in total. The microchannel was made up of 

Silicon, whereas a Silicon dioxide (SiO2) film was placed between the channel and 

thermocouples for electrical isolation. 

Two important factors that characterize the performance of a microchannel are 

Poiseuille’s constant ( ) and thermal resistance (  ). Poiseuille’s constant is directly 

related to pressure loss and therefore critical in determining pump power whereas the 

thermal resistance is crucial in evaluating cooling capabilities of the microchannel. 

Poiseuille’s constant is defined as 

      
     

    
 
 4.1 

where    is the pressure drop through the channel,    is the hydraulic diameter of 

the channel,   is the channel length and    is the mean velocity at the inlet. In the 

experiments, Poiseuille’s constant was measured without heat flux input. Therefore, 

to make proper comparisons, Poiseuille’s constant was calculated for no heat input 

case in Fedorov and Viskanta’s computations as well. 

 

Fedorov and Viskanta studied only a single channel of this heat exchanger as seen in 

Figure 4.2 [42], which was also the problem geometry simulated in the current work. 

The dimensions of the geometric parameters shown in this Figure 4.2 are given in 

Table 4.1. 
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Figure 4.2 Geometry and Boundaries for Single Microchannel to be Simulated [42] 

 

Table 4.1 Geometrical Dimensions of Single Channel 

        
    

    
    

    

180 μm 57 μm 270 μm 450 μm 21.5 μm 21.5 μm 10 mm 

 

Fedorov and Viskanta performed a mesh independency study and used a final mesh 

of 100   16   32 nodes in  ,   and   directions for the whole domain including fluid 

and solid regions. In the present study, a mesh with the same number of elements 

with Fedorov and Viskanta’s work was tried initially. However, since the grid had 

only 6 elements on the left  -wall in  -direction, there occurred a large size 

difference between the adjacent fluid and solid meshes. As the heat transfer in fluid 

and solid regions were solved in a fully coupled manner in this study, the number of 

elements in the  -direction in solid was increased to make adjacent fluid and solid 
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cells of comparable sizes. In addition, to prevent very high aspect ratio meshes at the 

end of domain in  -direction where exit thermal boundary condition was applied, the 

number of element in  -direction was increased and the nodes were clustered a bit 

through the exit of the domain. Making the above mentioned adjustments, a final 

mesh of 120   16   62 elements was used. The meshes at  ,   and   planes are 

shown in Figure 4.3. Note that the axis ratios are not to scale. Due to this fact, very 

high aspect ratios of the elements cannot be observed from Figure 4.3. The highest 

aspect ratio occurring in the domain is almost 50, which is very large. As can be seen 

from Figure 4.3, the elements are much denser at the entrance region. This structure 

was formed on purpose to resolve thermal and flow development properly. 
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Figure 4.3  ,   and  -Plane Mesh of Microchannel Geometry  

 

For the flow of interest in this problem, continuum flow assumption is valid and 

Navier-Stokes equations can be used as in reference [42]. The only different 
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approach used in simulations between the current work and reference [42] is that the 

properties such as viscosity and thermal conductivity were assumed to be constant in 

this work, whereas Fedorov and Viskanta modeled the change of fluid properties 

with temperature.  

 

For the flow solution, no slip boundary condition was applied on the walls. At the 

inlet, uniform flow velocity in  -direction depending on Reynolds number was 

given. Velocity components in other two directions were set to zero. In Reynolds 

number calculation; properties of fluid (water) were taken at 20° C, which is the inlet 

temperature as stated in [46]. For the exit of the channel, assuming the flow is 

hydrodynamically fully developed, pressure and tangential velocity components were 

given as zero. Properties of fluid used in flow computations and hydraulic diameter 

are given in Table 4.2. 

Table 4.2 Properties of Fluid Used in Flow Calculations 

                 

 6 6    99                   

 

In the first flow solutions obtained with the developed code, backflow occurred at the 

exit of the channel and therefore, a problem with conservation of mass was observed. 

This was expected since it was stated by Heys et al. that LSFEM encounters 

continuity problems in high aspect ratio channels such as the current microchannel 

geometry [19]. Therefore, as described in Chapter 1, it was decided to use weighting 

of the continuity equation as proposed by Deang and Gunzburger [18] and 

coefficients of continuity were multiplied with 10 initially. The results obtained with 

this initial trial were satisfactory and no loss of mass was experienced. 

 

In Figure 4.4 calculated Poiseuille’s constant is compared with the data available 

from experimental work of Kawano et al., analytical result taken from again Kawano 

et al.’s work and two numerical studies. In addition, to provide further comparison, 

simulation with commercial code Fluent was conducted using the same mesh created 

for the developed code. As can be seen from Figure 4.4, there is a high consistency 

between the data obtained by the current code and Fluent. Furthermore, all the 

obtained results with LSFEM lie within the experimental uncertainty. Although the 
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increase of Poiseuille’s constant with Reynolds number was found a bit less than 

experimental findings and what reference [42] predicted, the difference is not too 

large. Li et al. [67] overestimated the Poiseuille’s constant for low Reynolds number 

and could not model the increase of it with Reynolds number.  

 

 

Figure 4.4 Change of Poiseuille’s Constant with Reynolds Number 

 

It should be noted that, according to the theory, the Poiseuille’s constant should not 

change with Reynolds number for the fully developed region as can be seen from the 

analytical result in Figure 4.4. However, both the experimental and numerical results 

show a dependency on Re, which can be explained by the existence of the flow 

development region at the entrance of channel. For all the Reynolds numbers 

simulated, the length of flow development region is less than 1 mm. 

 

In order to examine the effect of weighting of the continuity equation, weights of 3 

and 100 were also tried, in addition to the initial value of 10. It was observed that 

simulation with different weights all converged to the same pressure drop values. 

However, as the weight increased the convergence rate increased, too. 
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After solving the flow field, obtained velocity values were used for the heat transfer 

simulations. As stated earlier, water enters into the channel with a temperature of 

20°C. All the external walls except the right   wall were assumed to be perfectly 

insulated. Therefore, heat fluxes normal to the surfaces were set to zero as thermal 

boundary condition. A heat flux of 90 W/cm
2
 coming into the domain was applied 

from the right   wall. At the exit of the flow, either nothing as specified or 

temperature gradient and hence the heat flux in  -direction was taken as zero. Both 

boundary conditions for the fluid exit converged to the same temperature 

distributions. Since the temperature of the domain increases through the end of the 

domain, fluid and solid (water and silicon) properties were calculated at an estimated 

average temperature of 300 K. Water and silicon properties used in conjugate heat 

transfer calculations are given in Table 4.3. 

 

Table 4.3 Properties of Materials Used in Heat Transfer Calculations 

       
                        

          ⁄    6     ⁄  99      ⁄    9    ⁄  

 

As stated earlier in several times, the heat transfer in fluid and solid regions was 

solved together and no special treatment was applied at the fluid-solid interfaces. 

Since the velocities at the solid parts were zero, convection-conduction equation 

reduced to pure conduction equation for the solid parts automatically. Only the 

thermal conductivities should be changed in the differential operators depending on 

the material. 

 

Thermal resistances from the experimental and other numerical works were 

compared with the ones obtained with the current study. Thermal resistance is 

defined as 

              4.2 

where          is the constant inlet temperature,    9  W  m2 is the specified 

heat flux at the right   wall and     is the surface temperature at the coordinates 

    and      
 . Figure 4.5 shows the thermal resistance comparison. 
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Figure 4.5 Change of Thermal Resistance with Reynolds Number 

 

As can be seen from Figure 4.5, the closest results to the experiments were obtained 

with the commercial code Fluent. Although the present work underpredicted the 

thermal resistance values compared to experiments, the results are in experimental 

uncertainty except for       and very close to, even better than, the results of 

Fedorov and Viskanta [42]. Kawano et al. [46] indicated that for      , the flow 

velocities are too low that all the experimental uncertainties cannot be estimated. 

This explains why all numerical solutions including the current one failed to predict 

the thermal resistance for Reynolds number of 80. In addition, the change of thermal 

resistance with Reynolds number was modeled successfully in the present work.  

 

In addition to thermal resistance, Fedorov and Viskanta [42] also gave bulk 

temperature, interface temperature and interface heat flux values. These temperature 

and heat flux results of the current study and Fluent were again compared with that 

of Fedorov and Viskanta. The change of bulk temperature in   direction is given in 

Figure 4.6 
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Figure 4.6 Change of Bulk Temperature in  -Direction 

 

The bulk temperature was calculated using Eqn. (4.3). 

 

      ∫ ∫           

   ⁄

    ⁄

   ⁄

    ⁄

      ∫ ∫  

   ⁄

    ⁄

   ⁄

    ⁄

      ⁄  4.3 

Similarly, average interface temperatures on   and   walls were calculated using 

Eqn. (4.4) and Eqn. (4.5). 

      ∫          ⁄    

   ⁄

    ⁄

       ⁄  4.4 

      ∫            ⁄  

   ⁄

    ⁄

       ⁄  4.5 

Interface temperature comparisons are given in Figure 4.7. 
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Figure 4.7 Change of Interface Temperatures in  -Direction (     ⁄  Wall on Left 

and      ⁄  Wall on Right) 

 

Considering the bulk temperature comparisons, the results from the current study and 

Fluent have similar trends whereas results of Fedorov and Viskanta [42] have a 

different one. Bulk temperature increases with   linearly in the current study and 

Fluent. However, Fedorov and Viskanta predicted the change of bulk temperature 

with   as a curve. Their bulk temperature result is likely to converge some 

temperature value if the length of the channel is long enough. Since there is a 

constant heat flux applied to the system, this curved behavior of the bulk temperature 

of Fedorov and Viskanta’s work seem to be wrong. There is a slight difference in the 

results of Fluent and current work and this difference keeps constant through the end 

of domain. 

 

Although the trends of the current work and that of Fedorov and Viskanta are a little 

different for bulk temperature, the difference for interface temperature trends is 

enormous. The interface temperature increases sharply at the inlet portion of the 

channel and then remains constant till the end in the solution of Fedorov and 

Viskanta. However, interface temperatures increase almost linearly in the current and 

Fluent results. The increase of interface temperature on      ⁄  wall is less in the 

current study than Fluent’s calculation. Although the temperature profiles on 

     ⁄  wall are similar for Fluent and the current results in general, there 

occurred large jumps at the inlet and exit of the domain in the current study. To judge 
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whether the linear increase of interface temperature as in Fluent and current results or 

the constant interface temperature as in Fedorov and Viskanta’s work is the correct 

behavior, it is better to observe the heat flux results at the interfaces, too. Natural 

logarithms of heat fluxes on the interfaces are given in Figure 4.8. 

 

 

Figure 4.8 Change of Interface Heat Fluxes into the Fluid in  -Direction (     ⁄  

Wall on Left and      ⁄  Wall on Right) 

 

The large difference in trends between the current solution and that of Fedorov and 

Viskanta is present in the interface heat fluxes, too. In the current results and Fluent 

results, heat flux into the fluid domain through interface is almost constant in most of 

the domain. However, the heat flux drops linearly in the solution of Fedorov and 

Viskanta. Considering the bulk and interface temperatures together with heat fluxes 

in Fedorov and Viskanta’s work, it is like the bulk temperature will eventually reach 

the interface temperature and the interface heat flux will drop to zero. This seems to 

be nonsense since there is a constant heat flux flowing into the domain on the outer 

wall. In some other works in the literature such as that of Toh et al. [47] and Li et al. 

[67], the temperature values at the fluid-solid interface increase in axial direction as 

well. Therefore, temperature and heat flux calculations of Fedorov and Viskanta may 

be inaccurate and checking the correctness of the current work by comparing the 

results with that of Fedorov and Viskanta may lead to improper conclusions. 
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Comparing the results of interface heat flux of Fluent and the current code, it is seen 

that the heat flux in   direction exceeded the heat flux in   direction in the current 

results whereas they were almost equal in Fluent’s calculations. This difference 

stems from different calculations of conduction in the Silicon with the current code 

and Fluent. In the current solution, heat flux coming from the outer   wall went all 

way to the fluid without changing its direction much whereas in Fluent, the heat flux 

went through side ways in the solid first and then penetrates into the fluid from all 

interfaces. Considering relatively high thermal conductivity of Silicon, the Fluent’s 

solution seems more probable. On the other hand, looking at sharp increases or 

decreases and wiggly results in interface temperatures and heat fluxes, it is certain 

that the inlet and exit portions of the domain were problematic in the current 

simulations. 

 

It should be noted that although the flow velocities were not large, the numerical 

values of convective terms in energy equation were very high due to high density and 

specific heat values of water. Therefore, it was difficult to obtain satisfactory 

convergence rates since the fluid and solid parts were solved in a fully coupled 

fashion. One should think about two adjacent solid and fluid elements to understand 

the numerical difficulty. At one cell, there is a high diffusion due to high thermal 

conductivity of Silicon whereas at the adjacent cell, diffusion rates decrease 

considerably and convection pops up in enormous amounts. Since all the system was 

solved at once, this sudden increase and decreases resulted in high condition numbers 

for resulting coefficient matrices. 

 

In conclusion for the microchannel heat transfer simulations, although the 

Poiseuille’s constant and the thermal resistances are predicted successfully, 

temperature and heat flux values at the interfaces reveal that further simulations 

should be conducted for some other microchannel configurations in the literature and 

the accuracy of the current solvers should be examined broadly. 

 

It is also worth mentioning that the microchannel configuration is capable of 

removing heat at the rates of 90 W/cm
2
 even at small Reynolds numbers, with really 

small thermal resistances. In addition, dimensions of the microchannel geometry are 
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extremely small that even the tiny microchips can be cooled properly. These prove 

that the microchannels are efficient and reliable devices to be used in microchip 

cooling. 
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CHAPTER 5  

CONCLUSIONS AND DISCUSSIONS 

In this thesis research, development of a conjugate heat transfer solver based on least 

squares finite element method was aimed. Since the investigation of heat transfer 

characteristics of microchannels is one of the progressing engineering areas in which 

conjugate heat transfer phenomenon occurs, the ultimate goal was selected as 

modeling microchannel heat transfer with the developed solver. To achieve this goal, 

firstly the necessary formulation and methodologies to develop solvers were 

determined. Then, developed solvers were validated by simulating some previously 

solved problems and by comparing the current results with the ones found in the 

literature. Finally, a real life microchannel configuration which had been previously 

examined both experimentally and numerically was found and simulated. The 

findings compared well in general with the data from other works. 

 

Since the changes of velocity magnitudes in the problems simulated in this study 

were low, viscous dissipation could be neglected and energy equations could be 

simplified to convection-conduction equation. Further assuming that the fluid 

properties such as viscosity and density are independent of temperature, fluid flow 

and heat transfer parts could be solved separately. Therefore, the fluid flow was 

solved first and then velocity values were exported to the heat transfer solver to be 

used in convective part of the energy equation. On the other hand, fluid flow and heat 

transfer equations were coupled in simulating natural convection since the change of 

density with temperature was modeled for gravitational forces following the 

approximation of Boussinesq. 
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In the flow solver part, velocity-vorticity-pressure first order system was used. 

Jiang’s [5] advice about inclusion of divergence of vorticity equation as an extra 

equation in order to satisfy the ellipticity of Navier-Stokes equation system was not 

followed. Trials with and without the divergence of vorticity equation showed that 

both versions gave the same results, but the convergence rates for the excluded 

version were higher. 

 

In LSFEM formulation of the energy part, heat flux was defined in order to reduce 

the system of differential equations to first order. The critical part in forming heat 

transfer equations was whether the curl of heat flux equation should be added to the 

system or not. Jiang [16] claimed that curl of heat flux should be included in the 

system and, Dennis and Dulikravich [13] supported this claim in their work. Again, 

the trials with the current code showed that inclusion of curl of heat flux equation 

increases convergence speeds and hence, the included version was used in heat 

transfer solutions. However, in the natural convection solver where fluid flow and 

heat transfer were coupled, the work of Tang and Tsang [12] was followed and curl 

of heat flux and divergence of vorticity equations were not included. 

 

For conjugate heat transfer part of the solver, a fully coupled approach was used as 

advised by Reddy for FEM based solvers [41]. In this approach, elemental systems 

from both fluid and solid regions were assembled into the same global system and 

solved simultaneously. This way, continuity of both the heat flux and temperature at 

the fluid-solid interface was satisfied automatically and no additional care was taken. 

 

LSFEM is known to have local mass conservation problems. In high aspect ratio 

channels, even the global mass conservation may not be achieved in flow solutions 

with LSFEM [19]. This problem was encountered during the simulation of 

microchannel flow. In order to solve the problem, simple weighting of the continuity 

equation was performed as advised by Deang and Gunzburger [18]. The results 

obtained with this approach were satisfactory and used in flow simulations where 

problems with mass conservation were faced. 
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Although the fully coupled approach adopted in conjugate heat transfer simulations 

provide easy treatment, there might occur problems if the convective parts of the 

energy equation become dominant numerically. Indeed, microchannel heat transfer 

simulations suffered from this situation. Due to water’s high thermal capacity and 

density, the convection part of the energy equation had high values although the flow 

velocities were relatively low. On the other hand, solid region was highly conductive 

due to the relatively high thermal conductivity of Silicon. When the elemental 

systems written for each medium were assembled into one global system, condition 

number of the resultant coefficient matrix became high. Therefore, it took too many 

iterations to obtain converged solutions. 

 

The current study may be improved in many ways. These are left as possible future 

works and may be listed as: 

 Making the solver applicable to unsteady problems. This way, both the real 

transient problems may be solved and a time marching approach may be used 

for steady state problems. 

 Adopting the incomplete Cholesky factorization as the preconditioner of the 

conjugate gradient solver and comparing the new version with the current 

Jacobi preconditioner in terms of CPU times. 

 Handling the conjugate heat transfer problems in a separated fashion for fluid 

and solid media and comparing the results of the new method with the current 

fully coupled version. 

 Overcoming the problems related to the usage of tetrahedron elements and 

hence, being able to create meshes more flexibly. 

 Simulating more microchannel heat transfer problems to further validate the 

solver. This way, the solver can be used confidently as a computational tool 

for real engineering applications where conjugate heat transfer occurs. 

  

Although there are certain problems that may arise in the application of LSFEM, 

these problems may be overcome easily with special care and necessary precautions. 

Considering the advantages like resulting sparse, symmetric and positive definite 

matrices and applicability to all kinds of flow regimes; LSFEM still stands as a 

promising research area which deserves further investigation. As for the developed 
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solver; it can serve as a useful tool in simulation of conjugate heat transfer 

phenomenon in a wide variety of engineering applications with the future 

improvements and added features. 
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