
1



SHAPE DESCRIPTORS BASED ON INTERSECTION CONSISTENCY AND GLOBAL
BINARY PATTERNS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERDAL SİVRİ
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ABSTRACT

SHAPE DESCRIPTORS BASED ON INTERSECTION CONSISTENCY AND GLOBAL
BINARY PATTERNS

Sivri, Erdal

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Sinan Kalkan

September 2012, 71 pages

Shape description is an important problem in computer vision because most vision tasks that

require comparing or matching visual entities rely on shape descriptors. In this thesis, two

novel shape descriptors are proposed, namely Intersection Consistency Histogram (ICH) and

Global Binary Patterns (GBP). The former is based on a local regularity measure called In-

tersection Consistency (IC), which determines whether edge pixels in an image patch point

towards the center or not. The second method, called Global Binary Patterns, represents the

shape in binary along horizontal, vertical, diagonal or principal directions. These two methods

are extensively analyzed on several databases, and retrieval and running time performances

are presented. Moreover, these methods are compared with methods such as Shape Context,

Histograms of Oriented Gradients, Local Binary Patterns and Fourier Descriptors. We report

that our descriptors perform comparable to these methods.

Keywords: shape descriptors, shape matching, intersection consistency, local binary patterns
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ÖZ

KESİŞİMLERİN TUTARLIĞI VE GLOBAL İKİLİ ÖRÜNTÜ TABANLI ŞEKİL
TANIMLAYICILAR

Sivri, Erdal

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Sinan Kalkan

Eylül 2012, 71 sayfa

Görsel öğeleri karşılaştırma ve eşlemeye gereksinim duyan çoğu görme işi şekil tanımlayıcılara

ihtiyaç duyduğu için, şekil simgeleme bilgisayarlı görme alanında önemli bir problemdir. Bu

tezde, Kesişimlerin Tutarlılığı Histogramı ve Global İkili Örüntüler olarak adlandırılan iki

yeni şekil tanımlayıcı önerilmektedir. İlki, Kesişimlerin Tutarlılığı isimli, kenar piksellerinin

görüntü parçasının merkezine doğru yönelip yönelmediğini belirleyen bir yerel düzenlilik

ölçütüne dayanmaktadır. Global İkili Örüntüler adı verilen yöntem ise, şekilleri düşey, yatay,

çapraz ve ana eksenler üzerinde ikili formda simgelemektedir. Bu iki yöntemin, birkaç veri ta-

banında kapsamlı bir şekilde analizi gerçekleştirilmiş, ve şekil getirme ve işleyiş süresi perfor-

mansları sunulmuştur. Bu yöntemler ayrıca, Şekil Bağlamı, Yönelmiş Gradiyent Histogram-

ları, Yerel İkili Örüntüler ve Fourier Tanımlayıcıları isimli yöntemlerle karşılaştırılmıştır.

Önerdiğimiz şekil tanımlayıcılar bu yöntemlerle karşılaştırılabilir sonuçlar üretmiştir.

Anahtar Kelimeler: şekil tanımlayıcılar, şekil eşleme, kesişimlerin tutarlılığı, yerel ikili örüntüler
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CHAPTER 1

INTRODUCTION

The amount of digital media is astonishing and ever increasing, requiring algorithms to auto-

mate certain tasks. For instance, a video surveillance system can use object recognition algo-

rithms to detect suspicious people [30]; old documents can be converted into a digital form

using optical character recognition algorithms in just seconds, eliminating the need for hours

of manual work [53]; content-based image retrieval systems can be used to search images

based on shape, color or texture [79]. Such and many other applications require recognition

and identification of objects.

Object recognition is perhaps one of the most challenging problems of computer vision,

mostly because it is an ill-posed problem1 in which 3-D objects are to be recognized us-

ing their 2-D projections under varying viewpoints. A 2-D projection of an object is just one

of the infinitely many projections that are actually possible. Besides this inherent ambiguity,

objects in real world are also subject to visual transformations such as occlusion, deformation

and illumination change, and to make matters even worse, background clutter and intra-class

variation introduce further complications.

The ultimate goal of object recognition is to recognize objects in real world settings in which

objects co-exist with other objects on cluttered backgrounds. Therefore, prior to object recog-

nition, preprocessing algorithms are required to separate regions as figure and background.

After visual entities of interest are extracted from background, object descriptors are used to

represent them in a compact form. The last step is to match each object to a set of objects in

a database to determine the category of the object.

1 A problem is ill-posed if either a solution does not exist or the solution is not unique or it does not depend
solely on the data [26].
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1.1 Problem Definition

There are a number of visual features that can be used to describe objects, such as shape,

brightness, color, texture and motion (if sequence of images is available). Among these fea-

tures, shape is generally the most informative one. Human beings, for instance, can recognize

objects rapidly based solely on their appearance or shape. The category of each shape given

in Figure 1.1 is obvious to a human observer at the first look.

Figure 1.1: Objects can be recognized easily based on their shape (shapes taken from the
MPEG-7 Shape Database [38]).

Motivated from the representative power of visual shape, this thesis approaches the object

recognition problem using shape descriptors. We propose two novel shape descriptors, namely

Intersection Consistency Histogram and Global Binary Patterns. Intersection Consistency

Histogram (ICH) is based on a local regularity measure called Intersection Consistency (IC),

which was previously shown to improve junction localization [32] and edge detection [91].

Intersection Consistency checks whether hypothetical lines going through edge pixels in a

window are oriented towards the center pixel or not. This simple measure is utilized to con-

struct a rich shape descriptor to represent shapes (see Figure 1.2).

The second method, called Global Binary Patterns (GBP), is a computationally simple algo-

rithm that describes shapes using projections of binary pixel values along horizontal, vertical,

diagonal and principal directions. See Figure 1.3 for an illustration of GBP along horizontal

direction. Since direct summation of pixel values along an axis causes the descriptor to lose

the spatial distribution of pixels, it cannot successfully capture the shape information. There-

fore, sequences of binary values, i.e. bits, are interpreted as a single large binary number and

converted to a decimal value. This idea is similar to the one adopted by the popular texture

descriptor called Local Binary Patterns (LBP) [57].

2



195 54 171 15 102

150 53 73 97 103

50 57 81 100 107

50 61 92 109 110

91 117 148 170 254

0.3 0.0 0.1 0.2 0.0

0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1

0.0 0.0 0.0 0.2 0.7

18 3 2 1 0 0 0 1 0 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 1.2: Intersection Consistency Histogram computation inside a 5 × 5 image patch. (a)
Computation of IC values in a window. (b) Computed IC values for each pixel. (c) Resulting
ICH descriptor.

1.2 Contributions and Outline

This thesis has two major contributions:

• A novel shape descriptor, named “Intersection Consistency Histogram”, is proposed.

• Another novel shape descriptor, named “Global Binary Patterns”, that represents the

shape as binary numbers, is proposed. This work is submitted to “1st ACCV Workshop

on Computer Vision with Local Binary Pattern Variants” in conjunction with “ACCV

2012, The 11th Asian Conference on Computer Vision”, and work is in progress for

a submission to “EURASIP Journal on Image and Video Processing, Special Issue on

Local Binary Patterns (LBP)-based Image and Video Analysis”.

Performances of these descriptors are analyzed in detail and compared to widely-used meth-

ods in the literature: Shape Context [8], Histograms of Oriented Gradients [15], Local Binary

Patterns [57] and Fourier Descriptors [25, 61, 65, 83, 85]. A total of six techniques are eval-
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Figure 1.3: Global Binary Patterns computation along horizontal direction (denoted GBPh).
(a) The original image. (b) After thresholding with brightness level 10. (c) After rows are
multiplied by powers of two (20 21 22 23 24). (d) Resulting GBPh descriptor.

uated on five different databases, and retrieval and running time performances are reported

using various metrics and plots.

The rest of the thesis is structured as follows. In Chapter 2, background information on 2-

D shape representation is provided along with detailed descriptions of selected descriptors.

Chapter 3 describes the proposed methods, namely Intersection Consistency Histogram and

Global Binary Patterns in detail. Performance measurements and experimental results are

presented in Chapter 4. Finally, Chapter 5 concludes the thesis with a brief discussion and

future work.
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CHAPTER 2

BACKGROUND

There is a vast amount of literature on shape representation and description. This is due to

shape being an important visual cue for object recognition, which is one of the most im-

portant goals of computer vision. That aside, applications of shape descriptors range from

image compression [33], shape-based indexing [89] and medical image analysis [31, 42] to

content-based image retrieval (CBIR) [79], especially shape retrieval using human drawn ob-

ject sketches [18].

In this chapter, shape representation and description methods are summarized and four of the

most popular descriptors that are compared against the descriptors proposed in this thesis, are

described in detail.

2.1 Shape Descriptors

In real world, object shapes are three dimensional, which can be described using 3-D shape

descriptors. Although there is research on 3-D shape representation [73, 82], most of the

research focuses on 2-D shape representation because 3-D shape descriptors require either

stereo vision (which are not always available) or extraction of monocular depth cues to con-

struct the 3-D pose of the object (which is a complicated and time consuming task). 2-D

shape representation methods are generally divided into two broad categories: contour-based

and region-based methods [11, 86]. The former exploits the shape contour, while the latter

utilizes the area enclosed within the shape contour.

Some shapes are represented better with a region-based descriptor while some are better suited

to a contour-based description. This phenomenon is illustrated in Figure 2.1. Shapes in

5



the first row are similar if a region-based descriptor is used. On the other hand, objects in

each column is similar according to a contour-based descriptor rather than a region-based

descriptor. If the shape at the intersection of boxes is used as a query, contour-based and

region-based descriptors return two disjoint sets of shapes.

Figure 2.1: Examples of contour-based and region-based similarity (taken from [11]).

Shape representation techniques can further be classified according to the scale at which vi-

sual signature is represented: global and local approaches. Global methods consider the shape

as a whole whereas local techniques represent the shape as sub-parts or primitives. Figure 2.2

illustrates shape representation and description methods in hierarchical form. Important algo-

rithms under each category are listed. They will be described in detail later in this chapter.

Shape

Contour-based Region-based

Simple Descriptors
Shape Signature
Curvature Scale Space
Fourier Descriptors
Shape Context
Elastic Matching

Simple Descriptors
Geometric Moments
Grid Descriptor
Shape Matrix
Convex Hull
Axis-based Methods

Figure 2.2: Classification of shape representation and description techniques.

Shape descriptors are expected to satisfy certain requirements to be useful in practice. Gen-

6



erally, they should be invariant to rotation, scale and translation changes. The first one,

namely rotation invariance, is obtained if the representation of the shape does not signifi-

cantly change as a result of arbitrary rotations. Although rotational invariance is a desired

property for a shape descriptor, complete rotational invariance is not always desired to be able

to distinguish, for instance, the shape of digit 9 from that of digit 6. The second property,

scale invariance, is achieved if the representation of the shape is similar to the representation

of a scaled version of the original shape. Finally, translation invariance is achieved if the

representation of the shape does not deviate in the presence of translations in any direction.

2.1.1 Contour-Based Descriptors

In contour-based descriptors, pixels on the boundary of the shape are used to describe shapes.

Most of the contour-based methods extract a contour using a boundary detection or an edge

detection algorithm. Moreover, some of them sample the contour to make it more compact.

In following sections, some of the important contour-based shape representation methods are

reviewed.

2.1.1.1 Simple Contour-Based Descriptors

Descriptors based on extracting simple geometric properties from shape contours can be

investigated under the field of computational geometry. These simple descriptors, such as

perimeter, eccentricity, elongation, rectangularity and principal orientation [12, 86], are able

to classify shapes that are significantly dissimilar in appearance. To start with, the perimeter

of a shape is equal to the number of pixels residing on the contour. Eccentricity is the ratio of

the lengths of major and minor axis. Elongation measures how much elongated a shape is by

computing the ratio of the height and width of the bounding box of the shape. Rectangularity

measure for a shape is proportional to how much space it fills inside the bounding box.

2.1.1.2 Shape Signatures

Shape signatures describe the shape as a one-dimensional vector constructed from shape

boundary. They capture global properties that are translation, scale and rotation invariant.

7



Central distance, tangent angle, cumulative angle, curvature, complex coordinates, polar co-

ordinates and centroid distance (see Figure 2.3) are among the few of the well-known shape

signatures [17, 84]. Most of the signatures are sensitive to noise and small deviations so

they require further processing such as normalization or quantization [86] to be effective. In

addition, to provide rotation tolerance, signature matching is normalized to shift matching

in 1-D and 2-D space. This phase adds additional computational complexity, making shape

signatures inapplicable to rapid, online image retrieval.

Figure 2.3: Illustration of centroid-distance signature (adapted from [47]). (a) The shape
contour. (b) Radius-angle, R − θ, graph.

2.1.1.3 Curvature Scale Space

Curvature Scale Space utilizes a scale space representation of shape contour to describe the

shape. This method, proposed by Mokhtarian and Mackworth and adopted as a part of the

MPEG-7 contour-based shape descriptors [11], satisfies criteria expected from a general pur-

pose shape descriptor: invariance, uniqueness, stability, efficiency and ease of implementation

[51, 50, 52]. Formally, given a contour, C, parameterized by arc-length s: C(s) = (x(s), y(s)),

the method starts with convolving the coordinates with a Gaussian kernel φσ of width σ:

xσ(s) =

∫
x(s)φσ(t − s)dt, (2.1)

yσ(s) =

∫
y(s)φσ(t − s)dt, (2.2)
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where φσ is the Gaussian kernel of width σ:

φσ(t) =
1

√
2πσ2

e−t2/2σ2
. (2.3)

As the value of σ gets larger, the contour gets smoother until curvature becomes positive (see

Figure 2.4).

Figure 2.4: Illustration of Curvature Scale Space convolution (reprinted from [78]). (a) The
original image. (b-e) The evolution of shape boundary as scale (σ) increases (inflection points
marked).

2.1.1.4 Elastic Matching

Elastic approaches are applied to the problem of visual image retrieval and object matching by

Bimbo and Pala [18] and Anil et al. [29] respectively. The model proposed by Bimbo and Pala
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is based on matching a sketch to an object in the presence of deformations (see Figure 2.5).

This is accomplished by letting the sketch warp under two conflicting requirements. First, the

edges of the image should be followed as closely as possible, and second, deformation of the

template should be taken into account. A deformed template is generated as the sum of the

original template ρ(s), which is a second order spline denoted as ρ = (ρx, ρy), and a warping

deformation θ(s):

ϕ(s) = ρ(s) + θ(s). (2.4)

The similarity between the sketch and the object is computed by minimizing the following

function: F = S + B + M where S is called strain energy:

S = α

∫ 1

0

(dθx

ds

)2

+

(
dθy

ds

)2 ds, (2.5)

B is called the bend energy:

S = β

∫ 1

0

(d2θx

ds

)2

+

d2θy

ds

2 ds, (2.6)

and M is the amount of overlapping between the deformed sketch and the object:

M =

∫ 1

0
I(ϕ(s))ds. (2.7)

The drawback of this method is its computational complexity. Both feature extraction and

matching phases require heavy computations [86].

Figure 2.5: Illustration of elastic deformations (reprinted from [18]). (a) The original image.
(b) Several steps of the deformation process.
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2.1.2 Region-Based Descriptors

Region-based descriptors use all pixels inside the area enclosed by the shape boundary to

build descriptors. This is in contrast to contour-based representations, which use pixels only

from the shape boundary.

2.1.2.1 Simple Region-Based Descriptors

Similar to shape contour properties, region properties are simple descriptors extracted from

the region of a shape. These include, but not limited to, area, compactness and circularity. To

start with, area is equal to number of pixels that exist inside the shape, and compactness or

circularity is computed with the following formula: C = P2/A where P is the perimeter and A

is the area of the shape. These measures are easy-to-compute but are not suitable as a generic

shape descriptor since they cannot capture the appearance of complex shapes. They may be

used to eliminate false positives or combined with other shape descriptors to be effective.

2.1.2.2 Geometric Moments

Image moment invariants are first introduced by Hu [28] for pattern recognition applications.

They are based on the idea that an image can be represented as a set of moments. A moment

of an image is defined to be a particular weighted average of pixel intensities. Given a N ×M

binary image, the (p, q) moment of a shape O ∈ <, denoted by mp,q, is defined as follows.

mp,q =

N∑
x=1

M∑
y=1

xpyq f (x, y). p, q = 1, 2, 3... (2.8)

If p and q go to infinity, the representation of the shape becomes exact. In practice, algo-

rithms use a nonlinear combinations of a number of low order moments, ignoring the less

critical high order moments. The problem with this approach is that the shape cannot be ac-

curately described using only a few invariants constructed from lower order moments. In fact,

geometric moment invariants are evaluated on MPEG-7 shape database [87] and are shown to

perform well only on affinely transformed contour-based shapes. They tend to perform poorly

on arbitrarily deformed ones.

Teague introduced the concept of orthogonal moments to describe an image using moments
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based on the theory of orthogonal polynomials [76]. This method is called Zernike moments

and they allow independent moment invariants to be recovered to an arbitrarily high order.

Among other orthogonal moments are Legendre moments [19], rotational moments [13] and

complex moments [77].

Angular Radial Transformation (ART) [34] is another moment-based shape description method

adopted by MPEG-7 [11]. ART is an efficient method that describes multiple disjoint regions

in a compact way. In addition, it is robust against salt and pepper noise and able to retrieve

objects that are split into disconnected sub-regions.

2.1.2.3 Grid Descriptor

The grid-based shape descriptor is a simple and intuitive method developed by Lu and Sajjan

[44]. The idea is to scan the image from left to right and top to bottom, and create a bitmap

which contains 1 where a cell is covered by the shape or 0 if the cell is outside of the shape

(see Figure 2.6). Shapes are represented as bitmaps and comparison is performed using the

Hamming Distance [27]. Grid-based representations are easy to compute and compact but

they suffer from noise and are not generally tolerant to scale and rotation changes. To make the

descriptor scale and rotation invariant, preprocessing operations called “scale normalization”

and “rotation normalization” are applied. Scale normalization is achieved by proportionally

scaling all shapes so that their major axes have the same length, and rotation normalization is

achieved by rotating the shape so that its major axis is parallel with the x-axis.

1 1

1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

0 0 0 0 0

0 0 0 0 0 0

0 0 0

0

0

0

0

Figure 2.6: Illustration of Grid descriptor (adapted from [44]). (a) Grid overlaid on the
original shape. (b) Cells with at least 15% of pixels covered by the shape. (c) Bit string
representation of the shape. Resulting Grid descriptor constructed by concatenating rows:
1100000011100000011110000111111101111110
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2.1.2.4 Shape Matrix

Shape Matrix is a translation, rotation and scale invariant shape descriptor proposed by Gosh-

tasby [24]. The method is based on transforming the shape into a matrix by polar quantization.

This is similar to raster sampling (grid-based descriptors) but instead of the regular square grid

on a shape image, a polar raster of concentric circles located at the center of the mass is used

(see Figure 2.7). Drawbacks of this method are its sensitivity to noise and computational

complexity [86]. To overcome these disadvantages, a shape descriptor based on the relative

areas of the shape inside concentric circles is proposed [43, 59].

0 0 1 1 0

1 1 1 1 0

1 1 1 1 1

1 1 1 1 1

1

1

1

1

Figure 2.7: Illustration of Shape Matrix polar quantization. (a) Polar raster of concentric
circles are superimposed at the center of mass. (b) Bit string representation of the shape.

2.1.2.5 Convex Hull

The convex hull of a region is defined to be the smallest convex region which covers the region.

In other words, H is a convex hull of region R if R ⊂ H. The difference between H and R,

H − R, is called the convex deficiency. The convex hull can be extracted using a boundary

tracing method [71] or morphological methods [17, 22]. After concavities are extracted the

shape is represented as a string of concavities or concavity tree (see Figure 2.8). Because of

the irregularities of shape boundaries, convex deficiency has small meaningless components

distributed throughout the boundary. The most common solution to this problem is to apply a

smoothing operation to boundary before partitioning.
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Figure 2.8: Illustration of concavity tree construction (reprinted from [4]). (a) The original
shape, (b,c) its concavities, (d) meta-concavities, and (e) corresponding concavity tree.

2.1.2.6 Axis-Based Methods

Axis-based models, first introduced by Blum [10], capture the part information of shapes

and are generally insensitive to articulations and occlusions. The representation proposed by

Blum, called the medial axis, shifts the attention from the boundary to interior region of a

shape. His model is illustrated using the grass-fire analogy in which the interior of the shape

is assumed to be filled with grass and fire is started on every point on the boundary, forming

fire waves (see Figure 2.9). Fire wave fronts meet along lines inside the shape. These lines

constitute the medial axis of the shape.

Figure 2.9: Illustration of Blum’s medial axis. (a) Medial axis model using the grass-fire
analogy. (b) Medial axis skeletons for various shapes.

There has been a great deal of research on axis-based representations after Blum. Some of the

prominent method in this area are: Smoothed Local Symmetries [2], PISA [39], Symmetry
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Set [14], Voronoi Skeletons [55], Shape Axis Tree [21], Shock Graphs [35, 66, 69, 70], TSP

[75] and Disconnected Skeleton [3].

2.2 Shape Descriptors Analyzed in this Thesis

This section presents four of the shape descriptors that are compared with the descriptors

proposed in this study. Shape Context and Fourier Descriptors are widely-used as shape rep-

resentation techniques whereas Histograms of Oriented Gradients is mostly used for human

detection [15] and Local Binary Patterns is generally known as a texture descriptor [57].

These methods are chosen because they are good representatives of shape descriptors that

are available in the literature. Although the performances of these methods on widely-used

databases are not among the best reported in the literature, they are the predecessors of better

performing, more recent methods. The rest of this section is devoted to the description of

these methods in detail.

2.2.1 Shape Context (SC)

Shape Context is a contour-based shape representation technique proposed by Belongie et al.

[7, 8, 9]. The descriptor samples N points on the shape contour and, for each point, describes

relative spatial distributions of other points in a compact representation (see Figure 2.10).

Formally, given N points p1, p2, ..., pN from a contour C, the shape context at point pi is

defined as follows:

hi(θ, r) =

N∑
j=1

δ(θ − θ j, r − r j), (2.9)

where θ j is the slope of the line that passes through points pi and p j:

θ j = tan(~pi − ~p j), (2.10)

ri is distance between points pi and p j:

ri = |~pi − ~p j|, (2.11)

and δ(·, ·) is the Kronecker delta:

δ(x, y) =


1 i f x = 0 and y = 0

0 otherwise
(2.12)
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In this formulation, hi(·, ·), the shape context for pi, is basically a histogram that counts the

number of times a particular angle-distance pair, i.e., (θ, r), occurs between pi and p j for

j = 1, 2, ...,N. Since the histogram has a fixed size K, (12 angle bins and 5 log-distance bins),

h can be indexed with a single index, simplifying the notation, hi(θ, r) ≡ hi(k).

The shape context for the whole contour, C, is defined as the set of shape contexts for all

points pi for i = 1, 2, ..,N on the contour. Algorithm 1 lists the steps required to compute a

shape context, H from a gray scale image I.

Algorithm 1 Shape Context Computation
Require: I: A gray-scale image.

N: number of sampling points.

- Apply an edge detection algorithm on I to get E.

- Apply a (preferably uniform) sampling algorithm to extract N points from E to get a

contour, C.

- Initialize a N × 5 × 12 matrix: H.

for all pi ∈ C do

for all p j ∈ C do

~V ← ~pi − ~p j

H(i, θ, r)← #
{
pi , p j

∣∣∣∣ |~V | ∈ bin(r) & log(tan(~V)) ∈ bin(θ)
}

end for

end for

- Reshape H to get a two dimensional N × 60 matrix.

Given two shape contexts, hi and h j corresponding to two sampled points from two different

images, comparison is carried out using the χ2 test statistic:

Ci j =
1
2

N∑
n=1

[hi(n) − h j(n)]2

hi(n) + h j(n)
, (2.13)

where Ci j denotes the cost of matching shape context hi with shape context h j, i.e. Ci j is the

degree of dissimilarity between hi and h j. Given Ci j for all pairs of sampled points (pi, p j),

matching is performed by solving a correspondence problem. This is known as the “linear

assignment problem” and is efficiently solved using the “Hungarian algorithm” [37]. Fig-

ure 2.10 illustrates the steps of the whole process using three points sampled from two similar

sample shapes.
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Figure 2.10: Shape Context computation (taken from [7]). (a,b) Original shapes. (c,d) Sam-
pled edge points. (e-g) Example shape contexts for reference points marked by ◦, � and /.
Note the visual similarity of the shape contexts for homologous points, ◦ and �. On the con-
trary, the shape context for / is quite different. (h) Correspondences found using bipartite
matching, with costs defined by the χ2 statistic.

In general, a shape descriptor should be invariant to translation, rotation and scale changes.

Shape context is able to satisfy all three requirements. Translation invariance is naturally

supported since the algorithm does not use absolute coordinates. Rotation invariance can be

achieved by measuring angles at a point relative to the direction of the tangent. Finally, scale

invariance is accomplished by normalizing all distances by the mean of all point pair distances

on the contour.

A very well-known variation of Shape Context is the Inner Distance Shape Context (IDSC)

algorithm, proposed by [40]. The difference between Shape Context and Inner Distance Shape

Context is that the former uses Euclidean distance to build the log-polar histogram, while the

latter uses a measure called inner-distance, which is defined as the length of the shortest path

between two points inside the region enclosed by the shape boundary. This distance measure

is shown to represent articulated shapes better [41].
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2.2.2 Histograms of Oriented Gradients (HOG)

Histograms of Oriented Gradients (HOG) is an object detection algorithm proposed by Dalal

ans Triggs [15]. The method constructs a histogram of gradient occurrences in localized grid

cells (see Figure 2.11). In the original paper, authors demonstrated the success of the tech-

nique on human detection problem, and in this study, the performance of HOG on shape sil-

houette databases is analyzed and compared with other popular descriptors. In mathematical

terms, HOG in an image patch P is defined as follows:

HOG(k) =
∑
p∈P

δ

( ⌊
θp

L

⌋ )
, (2.14)

where δ(·) is the Kronecker delta given in Equation 2.15, L is a normalizing constant and

θp is the orientation at point p, which is equal to the image gradient at that point. HOG(k)

corresponds to the value of the kth bin in a K-bin histogram. The value of K used in the

experiments is set to 9, and the value of the normalizing constant, L, is equal to 180/K = 20

[15].

δ(x) =


1 i f x = 0,

0 otherwise.
(2.15)

Using Equation 2.14, the steps required to compute HOG descriptor for a given image, I, is

given in Algorithm 2. See Figure 2.11 for graphical description of the method.

Figure 2.11: Histograms of Oriented Gradients computation (taken from [36]).

In Chapter 4, HOG descriptors are evaluated on several shape databases using square grids

(T = V) of various sizes. Results are compared with other well-known shape descriptors.
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Algorithm 2 Histograms of Oriented Gradients Computation
Require: I: A gray-scale image.

T × V: dimensions of the grid.

Let I be decomposed to sub-matrices as,

P1
1 P2

1 ... PV
1

P1
2 P2

2 ... PV
2

... ... ... ...

P1
T P2

T ... PV
T


- Let H be a T × V × K matrix.

for all t ∈ 1..T do

for all v ∈ 1..V do

H(t, v)← HOG(Pv
t ) – Compute HOG for patch Pv

t

end for

end for

- Reshape H to get a vector of size T · V · K.

2.2.3 Local Binary Patterns (LBP)

Local Binary Patterns (LBP), albeit computationally simple, is a powerful texture descriptor

introduced by Ojala et al. [57]. The basic idea is to compute a bit string in an image patch by

thresholding neighbor pixels with respect to the center pixel (see Figure 2.12). The bit string

is interpreted as a binary number and converted to a decimal number, which is used to build a

histogram. Formally, LBP for a single pixel pc = (xc, yc) in a gray-scale image I is defined as

follows:

LBPK(pc) =

K−1∑
p=0

s(np(pc) − I(pc))2p, (2.16)

where K is the number of neighbors in a 3 × 3 window, np is the pth neighbor of pc in

clockwise order, and s is defined as follows:

s(x) =


1 i f x ≥ 0

0 otherwise
(2.17)
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Given a gray-scale image I, assuming P denotes the set of pixels in I, LBP is defined as

follows:

LBP(k) =
∑
p∈P

δ(LBPK(p) − k), (2.18)

where LBPK is as defined in Equation 2.16 and δ(·) is the Kronecker delta given in Equa-

tion 2.15. Figure 2.12 depicts the computation of binary pattern for a center pixel in a 3 × 3

window. Algorithm 3 lists a pseudo-code to compute LBP for a given gray scale image I.

5 4

4 1

3

3

2 0

3 1 1

1 0

10 0

1 1 2

8 16

12832 64

4 1 2

8 0

1280 0

4

Figure 2.12: General Local Binary Patterns computation (reprinted from [45]). The LBP
value for the center pixel is equal to 1 + 2 + 4 + 8 + 128 = 143.

Algorithm 3 Local Binary Patterns Computation
Require: I: A gray-scale image.

- Initialize a L × 256 matrix H, where L = N · M.

for all p ∈ I do

- Let B a vector of size 8.

N ← 8neigh(I, p)

for all ni ∈ N do

if I(p) > I(ni) then

Bi ← Bi + 1

end if

end for

- Convert the binary vector B to a decimal number to get D.

H(k)← # {D ∈ bin(k)} – Increment the kth bin of histogram

end for

Local Binary Patterns is modified by Ojala and Pietikäinen [56] to use neighborhoods of

various sizes. They proposed a circular neighborhood defined with two parameters, number of

sampling points P, and radius R. In this context, the notation LBPP,R means LBP is computed
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using P points sampled on a circle of radius R. Using this notation, Equation 2.16 is simplified

as Equation 2.19.

LBPP,R =

P−1∑
p=0

s(gp − gc)2p, (2.19)

where gc is the gray-scale intensity value of the center pixel pc = (xc, yc) and gp is the gray-

scale intensity value of the pth sampled point, the coordinates of which are given by Equa-

tion 2.20 and Equation 2.21 (see Figure 2.13).

Cx p = xc + Rcos(2πp/P) (2.20)

Cx p = yc − Rsin(2πp/P) (2.21)

Figure 2.13: Local Binary Patterns LBPP,R computation (reprinted from [45]). (a) (P,R) =

(8, 1.0). (b) (P,R) = (12, 2.5). (c) (P,R) = (16, 4.0).

LBP and its variants are studied extensively in the literature [62]. Another extension to the

original descriptor is the introduction of uniform patterns, which are shown to reduce the

length of the feature vector without losing important information [58]. There are also spatio-

temporal representations of LBP. The original LBP descriptor and its variants work in the

spatial domain; in other words, they do not consider the time axis. The Volume Local Binary

Patterns (VLBP) extracts texture descriptor in three dimensional space (X,Y,T ), where X and

Y denote the spatial coordinates and T denotes the time coordinate [90]. In this way, VLBP

combines spatial and temporal information together to describe dynamic textures.

In this thesis, only the original LBP descriptor, as defined in Equation 2.18, is analyzed, and

in Chapter 4, results of the original LBP implementation are presented.

2.2.4 Fourier Descriptors (FD)

Fourier transformation theory [22], a tool that is widely used in signal processing, has con-

tributed to image processing for many years. Its uses vary from image compression and
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image encoding to image filtering and shape description. This study focuses on the appli-

cation of Fourier transform theory on shape description. This method is known as Fourier

descriptors and it is investigated extensively in shape recognition and image retrieval litera-

ture [25, 61, 65, 83, 85].

Fourier descriptors are constructed by applying a Fourier transform on a shape signature,

which is a one dimensional function derived from shape boundary [84]. Any shape signa-

ture can be used to obtain Fourier descriptors, such as complex coordinates, centroid distance

and curvature function. It has been shown that Fourier descriptors of centroid distance out-

performs other shape signatures [83]. This study, however, investigates Fourier descriptors

derived from complex coordinates.

The first step to compute Fourier descriptors from the image is to extract boundary points:

(x0, y0), (x1, y1), ..., (xN−1, yN−1). Then, pixel coordinates (xk, yk) are converted to complex

coordinates as follows:

zi = xk + jyk. (2.22)

where j2 = −1. Complex numbers, z0, z1, ..., zN−1, in spatial domain are converted to fre-

quency domain using the Discrete Fourier Transform [63] as follows:

Zk =

N−1∑
n=0

zne− j 2π
N kn. (2.23)

After complex coordinates are transformed to frequency domain, they are normalized by the

first term, Z0 as follows:

Zk =
|Zk|

|Z0|
. k = 1, ...,N − 1 (2.24)

As a result, Fourier descriptors for the image, are formed using the first K terms of the series

Zk where k = 1, ...,N − 1:

FD = [Z1,Z2, ...,ZK]. (2.25)
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CHAPTER 3

METHODS

The previous chapter introduced the literature on shape representation and the state-of-the-

art shape descriptors. In this chapter, the two novel shape descriptors, namely Intersection

Consistency Histogram and Global Binary Patterns, which are proposed in this thesis, are

presented in detail. First, the concept of Intersection Consistency (IC) and its application to

shape description is discussed. Then, a computationally simple, novel shape descriptor called

Global Binary Patterns is described.

3.1 Intersection Consistency Histogram (ICH)

Intersection Consistency Histogram is a shape representation technique based on a local con-

sistency measure called Intersection Consistency (IC). The descriptor creates a histogram of

IC values for each pixel in a window to build a rich global descriptor.

3.1.1 Intersection Consistency (IC)

Intersection consistency is a local consistency measure, proposed by Kalkan et al. [32], to

improve junction localization. It measures whether the pixels in a window point towards the

center or not. Formally, intersection consistency at point pc in an image patch P is defined as

follows.

IC(pc) =
1
|P|

∑
p∈P

[m(p)]k
[
1 −

d(lp, pc)
d(p, pc)

]
, (3.1)
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where lp is the line passing through pixel p, m(p) is the magnitude of the pixel p, d(lp, pc) is

the point-to-line distance between pc and lp1, d(p, pc) is the point-to-point distance between

p and pc, and k is a parameter, empirically determined to be 2 [32].

The IC measure for the center pixel pc is computed by taking the average value of the ratio of

the point-to-line distance to the point-to-point distance with respect to the center pixel for all

other pixels in a window (see Figure 3.1). Observe that, if the hypothetical line going through

p passes the center point pc, this ratio becomes zero, as the point-to-line distance evaluates to

zero, the IC measure gets its highest possible value.

51 54 71 95 102

50 53 73 97 103

50 57 81 100 107

50 61 92 109 110

91 117 148 170 187

Figure 3.1: Intersection Consistency computation inside a 5 × 5 image patch (adapted from
[91]).

In the original paper [32], IC is used to improve junction localization. In a follow-up work,

IC is proposed as a method to improve edge detection [91]. In this thesis, the IC measure is

utilized to build a rich shape descriptor called Intersection Consistency Histogram.

3.1.2 ICH Algorithm

In this thesis, the original IC equation is slightly modified to construct a rich shape descriptor,

which is referred to as Intersection Consistency Histogram. ICH for a gray-scale image I is

1 The line equation for lp, is computed using the image gradient at point p. In other words, lp is computed
using orientation at the pixel p, denoted θp.
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defined as follows.

ICH(l) =
∑
p∈P

δ ( bL · IC(p)c − l ) , (3.2)

where δ(·) is the Kronecker delta defined in Equation 2.15, P denotes the set of pixels in I,

IC denotes the intersection consistency formula defined in Equation 3.1, and l is the value of

the histogram bin between 1 and L (the value of L is set to 10 for the implementation)2. This

equation builds a histogram with L bins. Algorithm 4 presents the steps required to compute

Intersection Consistency Histogram for a given image I. See Figure 1.2 (from Chapter 1) for

a graphical illustration of the algorithm.

Algorithm 4 Intersection Consistency Histogram Computation.
Require: I: A gray-scale image.

- Let ICH be a vector of size L.

for all i ∈ 1..N do

for all j ∈ 1..M do

p← I(i, j)

ic← bL · IC(p)c

ICH(ic)← ICH(ic) + 1 –See Equation 3.2

end for

end for

ICH produces a single L-bin histogram, which alone cannot successfully capture the whole

shape structure. Therefore, it is extended in Algorithm 5 as a grid-based method. This version

is based on dividing the image into grids and running Algorithm 4 separately for each grid. In

the grid-based method, the ICH for the whole image is the concatenation of the ICH for each

grid. In the rest of the thesis, the grid-based method is used.

Figure 3.2 displays ICH descriptors for sample images from the MPEG-7 database [38]. ICH

descriptors are extracted using Algorithm 5 with parameters T and V set to 4. The length of

each descriptor vector is, thus, equal to T · V · L = 4x4x10 = 160 3. As Figure 3.2 suggests

descriptors of similar images form a uniform distribution as illustrated in Figures 3.2(a) and

3.2(b). On the other hand, descriptors in Figures 3.2(c) and 3.2(d) constitute a more scattered

distribution.

2 IC values are in the range 0 − 1 since pixel magnitudes, m(p), are normalized.
3 The number of bins, L, is set to 10 for the experiments conducted in Chapter 4.
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Algorithm 5 Grid-based Intersection Consistency Histogram Computation.
Require: I: A gray-scale image.

T × V: dimensions of the grid.

Let I be decomposed to sub-matrices (grids) as,

P1
1 P2

1 ... PV
1

P1
2 P2

2 ... PV
2

... ... ... ...

P1
T P2

T ... PV
T


- Let ICH be a T × V × L matrix.

for all t ∈ 1..T do

for all v ∈ 1..V do

- Assume Pv
t is an M × N matrix

p← Pv
t ( M

2 ,
N
2 ) – Center point of the image patch Pv

t

ic← bL · IC(p)c – See Equation 3.1

ICH(t, v, ic)← ICH(t, v, ic) + 1 – See Equation 3.2

end for

end for

- Reshape H in row-major order to get a vector of size T · V · L.

3.2 Global Binary Patterns (GBP)

Global Binary Patterns is a simple, yet efficient, shape descriptor similar to Local Binary

Patterns [57]. The method creates a set of bit strings for any direction of a thresholded binary

image and interprets these bit strings as binary numbers to build a global descriptor (see

Figure 3.3).

3.2.1 GBP Algorithm

In its simplest form, Global Binary Patterns of a row, r, of a binary image I is defined as

follows:

GBPh(r) =

R∑
j=1

I(r, j) · 2 j−1, (3.3)
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Figure 3.2: Sample images (resized to 32 × 32) from the MPEG-7 [38] database and their
corresponding ICH descriptors (brighter intensities indicate higher values). Descriptors are
extracted using Algorithm 5 with parameters T and V set to 4. The length of each descriptor
vector is, thus, equal to T · V · L = 4x4x10 = 160. Figures (a) and (b) contain shapes from
mcategories Apple and Bone respectively. On the other hand, Figures (c) and (d) contain
shapes from different categories. ICH descriptors in Figures (a) and (b) form a more uniform
distribution compared to descriptors in Figures (c) and (d).

where R is the number of columns in image I. GBPh computes Global Binary Patterns along

horizontal direction. Algorithm 6 lists the steps required to compute the GBPh descriptor.

Similarly, GBP along vertical direction, denoted GBPv, is defined as follows:

GBPv(c) =

C∑
i=1

I(i, c) · 2i−1, (3.4)

where C is the number of rows in image I. See Figure 3.3 for an illustration of GBP compu-

tation along horizontal and vertical directions, denoted GBPhv.
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Algorithm 6 Global Binary Patterns (GBPh) Computation
Require: I: A R ×C thresholded image.

- Let GBPh be a vector of size N.

for all i ∈ 1..R do

for all j ∈ 1..C do

GBPh(i)← GBPh(i) + I(i, j) · 2 j−1

end for

end for
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4 14 17 23 128 10 11 2 12

Figure 3.3: Global Binary Patterns computation along horizontal and vertical directions, de-
noted GBPh and GBPv respectively. (a) The original image. (b) After thresholding with
brightness level 10. (c) After rows are multiplied by powers of two: (20 21 22 23 24). (d)
After each row is summed horizontally. (e) After columns are multiplied by powers of two:
(20 21 22 23 24). (f) After columns are summed vertically. (g) Resulting GBP descriptor.

GBPh and GBPv are defined along horizontal and vertical directions. In fact, GBP can be

constructed along any arbitrary direction, which may effect (as investigated in Chapter 4)

the performance of the descriptor. To this end, formulations presented in Equations 3.3 and

3.4 are extended to incorporate projection along an arbitrary direction with orientation θ (see

Figure 3.4). Let lpo
θ be the line, with orientation θ, that passes through po, which is the bottom-

right pixel in the image I, GBPθ for an image I is defined as follows:

GBPθ(k) =
∑
p∈I

δ

(
L

xp − min(xpi j)
max(xpi j) − min(xpi j)

− k
)
· I(p) · 2dp

, (3.5)
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where δ(·) is the Kronecker delta defined in Equation 2.15, dp is the point-to-line distance

between the pixel p and the line lpo
θ , xp is the projection of the pixel p onto the line lpo

θ , and L

is the desired length of the GBPθ descriptor (L is taken to be 32 and 64 for the experiments

conducted in this study).

Figure 3.4: Illustration of the projection of a pixel onto a line that passes through the pixel po

with orientation θ.

Using Equation 3.5, it is possible to use any number of projections to form the GBP descriptor.

Analysis in this study is performed using combinations of horizontal, vertical, diagonal and

principal directions defined as follows.

GBPh(I) = GBP90(I), (3.6)

GBPh′(I) = GBPRh
90(I), (3.7)

GBPv(I) = GBP0(I), (3.8)

GBPv′(I) = GBPRv
0 (I), (3.9)

GBPd(I) = GBP45(I), (3.10)

GBPp(I) = GBPφ(I), (3.11)

where Rh and Rv denote the reverse of the image in horizontal and vertical directions, and φ

is the orientation of the principal axis of the shape, which is computed using principal com-

ponent analysis (PCA) [60]. Based on the nature of the problem, different GBPs as defined in

Equations 3.6, 3.8, 3.10 and 3.11 can be concatenated as a single feature descriptor.

Figure 3.5 displays GBP descriptors for sample images from the MPEG-7 database [38].
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Figure 3.5: Sample images (resized to 32 × 32) from the MPEG-7 [38] database and their
corresponding GBP descriptors (brighter intensities indicate higher values). Descriptors are
constructed by concatenating GBPh, GBPv and GBPd descriptors (Equations 3.6, 3.8 and
3.10).Figures (a) and (b) contain shapes from categories Apple and Bone respectively. On the
other hand, Figures (c) and (d) contain shapes from different categories. GBP descriptors in
Figures (a) and (b) form a more uniform distribution compared to descriptors in Figures (c)
and (d).

GBP descriptors are constructed using horizontal, vertical and diagonal projections: GBPh ⊕

GBPv ⊕GBPd (⊕ concatenates two vectors). In this figure, the length of each GBP descriptor

is equal to 3 ·C for images with dimensions C ×C. Therefore, the length of the descriptors is

equal to 3 · 32 = 96 since images are resized to 32 × 32. As seen from the figure, descriptors

extracted from similar shapes form a more uniform distribution compared to those extracted

from dissimilar shapes.
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3.2.2 Properties of GBP

GBP descriptors, GBPh, GBPv and GBPd, are not invariant to translation, scale and rotation

changes. Translation invariance can be achieved by normalizing the descriptor vector or by

removing empty rows and columns before applying Equation 3.3. Rotation invariance is pro-

vided, as presented in Equation 3.5, by incorporating projection along the principal direction,

which is computed using principal component analysis (PCA) [60].

GBP is a powerful, efficient and simple descriptor. Computational requirements of GBP are

very low. The memory requirement is O(N) where N is the number of pixels that exist along

an axis. The running time complexity is O(N · M) for a N × M image. In addition to high

computational efficiency, it is also a very straightforward algorithm.
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CHAPTER 4

EXPERIMENTS AND RESULTS

In the previous chapter, two novel shape descriptors, namely Intersection Consistency His-

togram (ICH) and Global Binary Patterns (GBP), were proposed and explained in detail. This

chapter analyzes these methods in detail and compares them with state-of-the-art methods on

several widely used databases. First, database parameters used in the experiments are intro-

duced, and then image retrieval and running time performances of each method are analyzed

in comparison with those of Shape Context, Histograms of Oriented Gradients, Local Binary

Patterns and Fourier Descriptors.

4.1 The Databases

The experiments in this study are carried out using five publicly available databases, which

are selected according to their popularity in shape description and representation research.

4.1.1 Brown University Kimia-99 Shape Database

The Brown University Kimia-99 shape database [67] contains a total of 99 images from 9

categories. Figure 4.1 displays thumbnails of all images from the database.

Evaluation on Kimia-99 shape database is performed using a score called TopRank, in which

every shape is compared to all other shapes and number of correctly classified N nearest

neighbors for each query image is reported in a tabular form. Since the database contains 11

images from each of 9 categories, the maximum score for each neighbor is 99. Table 4.1 lists

the best reported results on this database [6].
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Figure 4.1: Images from the Brown University Kimia-99 Shape Database.

4.1.2 Brown University Kimia-216 Shape Database

The Brown University Kimia-216 shape database [67] contains a total of 216 images from 18

categories. Figure 4.2 displays 10 sample images from each category.

As is the case for Kimia-99 shape database, evaluation on Kimia-216 database is performed

using the TopRank score. Since this database contains 12 images from each of 18 categories,

the maximum possible score for each neighbor is 216. Table 4.2 lists some of the best per-

forming algorithms on this database [5].

4.1.3 MPEG-7 CE Shape-1 Part-B Database

The MPEG-7 CE Shape-1 Part-B database [38] contains a total of 1400 images from 70

categories. Figure 4.3 depicts a subset of images each from a different category.
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Table 4.1: TopRank scores of different methods on the Brown University Kimia-99 Shape
Database (taken from [6]).

Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Graph Transduction [6] 99 99 99 99 99 99 99 99 97 99
Symbolic Rep. [16] 99 99 99 98 99 98 98 95 96 94
Shape Tree [20] 99 99 99 99 99 99 99 97 93 86
Triangle Area [1] 99 99 99 98 98 97 98 95 93 80
IDSC [41] 99 99 99 98 98 97 97 98 94 79

Figure 4.2: Arbitrary images from the Brown University Kimia-216 Shape Database.

Evaluation on MPEG-7 database is performed using the so-called Bull’s Eye Score, in which

every shape is compared to all other shapes and top 40 similar results are collected. The

final score is the ratio of correct matches to the highest possible number of matches, which

is 20 × 70 since the database contains 20 images from each category. Table 4.3 lists the best

reported results on MPEG-7 database [6].

4.1.4 Natural Silhouettes Database

The Natural Silhouettes database [23] contains a total of 490 images from 12 categories.

Figure 4.4 shows 8 sample images from each category.
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Table 4.2: TopRank Scores of different methods on the Brown University Kimia-216 Shape
Database (taken from [5]).

Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Path Similarity [5] 216 216 215 216 213 210 210 207 205 191
Shock Edit [66] 216 216 216 215 210 210 207 204 200 187
SC [8] 214 209 205 197 191 178 161 144 131 101

Figure 4.3: Arbitrary images from the MPEG-7 CE Shape-1 Part-B Database.

4.1.5 Columbia Object Image Library (Coil-100) Database

The Coil-100 Database [54] contains a total of 7200 images from 100 categories, each of

which includes a single object viewed from different angles. In this study, 25 images from 20

objects are selected to create a subset of this database. Each object is viewed with rotation

increments of 10 ◦, from 0 ◦ to 240 ◦, for a total of 25 images per object. Figure 4.5 shows

sample images from the database.

Evaluation on the Coil-100 database is usually performed by using four views for each object.

The first two results listed in Table 4.4 use eight to ten images, and the last method uses
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Table 4.3: Bull’s Eye test scores of different methods on the MPEG-7 CE Shape-1 Part-B
Database (adapted from [6]).

Algorithm Score
Diffusion Process [81] 93.32%
Graph Transduction [6] 91.61%
Shape Tree [20] 87.70%
Triangle Area [1] 87.23%
Hierarchical Procrustes [46] 86.35%
Symbolic Representation[16] 85.92%
Inner Distance [41] 85.40%

Figure 4.4: Arbitrary images from the Natural Silhouettes database.

only four images. Experiments conducted in this thesis, on the other hand, use 25 images

per object; thus, results reported in this study are not consistent with the results provided in

Table 4.4.

4.2 Performance Measurements

Experimental evaluation is based on image retrieval performance. Performance of algorithms

are presented using several methods: Bull’s Eye Score, TopRank Score and Receiver Operat-

ing Characteristics curve. In addition, sample query results for each database are provided to
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Figure 4.5: Arbitrary images from the Coil-100 Database.

Table 4.4: Accuracies of different methods on the Coil-100 Database.

Algorithm Accuracy
Nearest Prime Simplicial Complex [88] 97.2%
Multiple-View Object Recognition [80] 95.0%
Deep Learning from Temporal Coherence [49] 92.5%

illustrate the top K query results of each algorithm for randomly selected images.

4.2.1 Bull’s Eye Score

Bull’s Eye Score is computed by comparing each image in a database to all other images and

the percentage of correct labels among top N results are reported for each category. N is twice

the number of images available in a category. Therefore, the highest possible score is N/2×M

where M is the number of distinct categories.

4.2.2 TopRank Score

TopRank Score is computed by counting the number of N nearest neighbors that are correctly

classified for all query images. This is accomplished by comparing each image to all other

images and taking the top N most similar images for each query image. The number of correct
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classifications for each of the N neighbors is reported in a tabular form.

4.2.3 Receiver Operating Characteristic

Receiver operating characteristics (ROC) curves are graphical plots that illustrate the perfor-

mance of a classifier. ROC curves are especially useful in cases where evaluation metrics

such as accuracy, precision or recall are not informative enough to judge the quality of a

classifier, mostly because they require a decision threshold to be set arbitrarily [48, 64]. A

ROC curve is plotted by computing the ratio of sensitivity, also known as true positive rate

or recall rate, to specificity, also known as false positive rate, for various thresholds. ROC

curves are well-suited to classifiers that output scores or probabilities rather than labels.

Definitions of accuracy (accuracy), true positive rate (tpr) and false positive rate ( f pr) are

presented in Equations 4.1, 4.2 and 4.3 respectively (see Table 4.5).

accuracy =
tp + tn

tp + f p + tn + f n
, (4.1)

tpr =
tp

tp + f n
, (4.2)

f pr =
tn

tn + f p
, (4.3)

where tp, f p, tn and f n represent True Positive, False Positive, True Negative and False

Negative respectively. Semantics of these metrics are illustrated in Table 4.5. ROC curves

are plotted setting various thresholds for classifier outputs. This means, ROC curve plotters

expect the output of classifiers to be a similarity metric, preferably normalized to reflect prob-

abilities. Algorithms studied in this thesis produce distance or cost between images; therefore,

these values need to be converted to similarity values. This is accomplished by first normal-

izing costs and then by converting distance to similarity as proposed by Shepard [68].

s(A, B) = e−d(A,B). (4.4)

4.3 Results

In this section, comparative analysis of six shape descriptors, two of which are proposed in

this work, is presented in detail. Experiments are performed on five widely-used databases
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Table 4.5: Tabular Description of Classification Metrics

Actual
value

Prediction outcome

p n total

p′
True
Positive
(tp)

False
Negative
(fn)

P′

n′
False
Positive
(fp)

True
Negative
(tn)

N′

total P N

using several parameters for each method, and retrieval and running time performances are

reported using various metrics and plots.

4.3.1 Parameter Investigation

This section is devoted to the investigation of parameters for the proposed methods. Parameter

studies are carried out on five databases, and performance curves are reported separately for

each database. The effect of these parameters on the retrieval performance are analyzed and

the best-performing parameter settings are reported for both Global Binary Patterns (GBP)

and Intersection Consistency Histogram (ICH). Parameter investigation for the methods se-

lected for comparison with GBP and ICH are presented in Appendix B. In the following

section, methods are compared using the best performing parameter settings determined in

this section.

4.3.1.1 Shape Context

Shape Context, as outlined in Algorithm 1, has a single parameter, namely the Number of

Sampling Points. As shown in Table 4.6, there are three parameter settings for Shape Con-

text, named SC-1, SC-2 and SC-3. See Section B.1 in Appendix B for the effects of these

parameters on the retrieval performance of Shape Context.
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Table 4.6: SC Parameter Settings.

Method ID Number of Sampling Points Image Dimensions

SC-1 50 32 × 32

SC-2 50 64 × 64

SC-3 100 64 × 64

Table 4.7: HOG Parameter Settings. Grid Size specifies the number of rows and columns in
a grid.

Method ID Grid Size Image Dimensions

HOG-1 2 × 2 32 × 32

HOG-2 4 × 4 32 × 32

HOG-3 8 × 8 32 × 32

HOG-4 2 × 2 64 × 64

HOG-5 4 × 4 64 × 64

HOG-6 8 × 8 64 × 64

4.3.1.2 Histograms of Oriented Gradients

Histograms of Oriented Gradients computes histograms of image gradients in image patches,

which are obtained by dividing the image into grid cells. HOG, as described in Algorithm 2,

requires a gray-scale image and dimensions of the grid. The Grid Size column in Table 4.7

lists various grid dimensions used in the experiments1, and the Image Dimensions column

contains image dimensions. See Section B.2 in Appendix B for the effects of these parameters

on the retrieval performance of Histograms of Oriented Gradients.

4.3.1.3 Local Binary Patterns

Local Binary Patterns, as outlined in Algorithm 3, does not require any parameters. However,

experimental evaluations are performed by dividing the image into grids and running LBP

1 A grid with size T × V has T · V cells
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Table 4.8: LBP Parameter Settings. Grid Size specifies the number of rows and columns in a
grid.

Method ID Grid Size Image Dimensions

LBP-1 1 × 1 32 × 32

LBP-2 2 × 2 32 × 32

LBP-3 4 × 4 32 × 32

LBP-4 1 × 1 64 × 64

LBP-5 2 × 2 64 × 64

LBP-6 4 × 4 64 × 64

separately for each sub-grid. This is specified with the Grid Size parameter. For instance, for

a 32 × 32 image, with a grid size of 2 × 2, the algorithm is run 4 times for each sub-grid. See

Section B.3 in Appendix B for the effects of these parameters on the retrieval performance of

Local Binary Patterns.

Table 4.9: FD Parameter Settings.

Method ID Number of Fourier Terms Image Dimensions

FD-1 5 32 × 32

FD-2 20 32 × 32

FD-3 40 32 × 32

FD-4 50 32 × 32

FD-5 5 64 × 64

FD-6 20 64 × 64

FD-7 40 64 × 64

FD-8 50 64 × 64

4.3.1.4 Fourier Descriptors

Fourier Descriptors algorithm has a single parameter: the Number of Fourier Terms. The ef-

fect of this parameter on performance is tested using several image dimensions (see Table 4.9).
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Refer to Section B.4 in Appendix B for the effects of these parameters on the retrieval perfor-

mance of Fourier Descriptors.

Table 4.10: ICH Parameter Settings. Grid Size specifies the number of rows and columns in
a grid.

Method ID Grid Size Image Dimensions

ICH-1 2 × 2 32 × 32

ICH-2 4 × 4 32 × 32

ICH-3 8 × 8 32 × 32

ICH-4 2 × 2 64 × 64

ICH-5 4 × 4 64 × 64

ICH-6 8 × 8 64 × 64

Table 4.11: GBP Parameter Settings. Grid Size specifies the number of rows and columns in
a grid.

Method Grid Image GBPs Method Grid Image GBPs

ID Size Dimensions Used ID Size Dimensions Used

GBP-1 1 × 1 32 × 32 GBPhv GBP-13 1 × 1 64 × 64 GBPd

GBP-2 2 × 2 32 × 32 GBPhv GBP-14 2 × 2 64 × 64 GBPd

GBP-3 4 × 4 32 × 32 GBPhv GBP-15 4 × 4 64 × 64 GBPd

GBP-4 1 × 1 32 × 32 GBPd GBP-16 1 × 1 64 × 64 GBPp

GBP-5 2 × 2 32 × 32 GBPd GBP-17 2 × 2 64 × 64 GBPp

GBP-6 4 × 4 32 × 32 GBPd GBP-18 4 × 4 64 × 64 GBPp

GBP-7 1 × 1 32 × 32 GBPp GBP-19 1 × 1 32 × 32 GBPhv′

GBP-8 2 × 2 32 × 32 GBPp GBP-20 2 × 2 32 × 32 GBPhv′

GBP-9 4 × 4 32 × 32 GBPp GBP-21 4 × 4 32 × 32 GBPhv′

GBP-10 1 × 1 64 × 64 GBPhv GBP-22 1 × 1 64 × 64 GBPhv′

GBP-11 2 × 2 64 × 64 GBPhv GBP-23 2 × 2 64 × 64 GBPhv′

GBP-12 4 × 4 64 × 64 GBPhv GBP-24 4 × 4 64 × 64 GBPhv′
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4.3.1.5 Intersection Consistency Histogram

Similar to Histograms of Oriented Gradients, Intersection Consistency Histogram computes

histograms for image patches, which are obtained by dividing the image into grid cells. ICH,

as described in Algorithm 5, requires a gray-scale image and dimensions of the grid. The

Grid Size column in Table 4.7 lists various grid sizes used in the experiments, and the Image

Dimensions column contains image dimensions.

Figure 4.6 includes performance curves for Intersection Consistency Histogram. Different

parameter settings for ICH perform close to each other. However, IC-1 and IC-4, which are

the two methods that use the smallest grid size (2 × 2), perform poorly compared to others.

For this reason, it is safe to argue that using large cells (larger than 16 × 16) worsens the

performance of ICH.

4.3.1.6 Global Binary Patterns

Global Binary Patterns can be applied using combinations of several projections listed in

Equations 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11. Evaluations in this study are performed using the

following GBP descriptors: GBPd given in Equation 3.10, GBPp given in Equation 3.11, and

GBPhv and GBPhv′ defined as follows:

GBPhv(I) = GBPh(I) ⊕GBPv(I) (4.5)

GBPhv′(I) = GBPh(I) ⊕GBPv(I) ⊕GBPh′ ⊕GBPv′ (4.6)

where ⊕ concatenates two vectors. GBP runs are performed using various image dimensions

and grid sizes as specified in Table 4.11. The column Grid Size specifies the size of the grid,

and the Image Dimensions column lists image dimensions.

Tables 4.12 and 4.13 include the retrieval performance score of each GBP parameter setting

listed in Table 4.11. As seen from the tables, GBP-19, GBP-20 and GBP-21, outperform other

parameter settings on almost all databases. These descriptors use several projections along

vertical and horizontal directions (GBPhv′), which are shown to capture the shape information

better.
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Figure 4.6: ROC curves for Intersection Consistency Histogram. For the sake of visibility,
only tpr > 0.4 is shown without loss of any information.

4.3.2 Comparison of Retrieval Performances

In this section, retrieval performances of the methods proposed in this study, namely ICH and

GBP, are analyzed in comparison with the selected descriptors: Shape Context, Histograms of

Oriented Gradients, Local Binary Patterns and Fourier Descriptors. Results are provided using

database-specific score metrics and ROC curves as introduced in Section 4.2. In addition,
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Table 4.12: Scores of GBP parameter settings (Table 1 of 2).

(a) Kimia-99 database TopRank scores

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

GBP-21 95 85 84 79 76 73 68 66 57 56

GBP-3 95 85 82 79 77 73 68 66 59 53

GBP-24 96 84 84 77 75 73 69 63 66 49

GBP-12 96 86 85 78 74 67 74 61 61 53

GBP-20 95 86 82 79 75 78 70 69 55 46

GBP-15 96 87 86 83 73 74 63 65 55 49

GBP-6 95 88 83 79 75 75 68 62 52 52

GBP-18 96 84 84 77 74 66 71 61 60 50

GBP-9 96 85 88 75 73 70 67 63 55 49

GBP-19 94 86 89 76 75 71 62 59 55 50

GBP-23 94 83 85 78 75 72 66 63 59 42

GBP-2 95 82 80 78 75 73 64 67 59 39

GBP-8 93 89 84 73 68 66 67 60 55 46

GBP-11 95 82 83 74 70 69 69 62 54 39

GBP-22 95 86 85 73 69 65 59 60 49 44

GBP-17 95 82 83 80 62 65 66 57 47 34

GBP-1 95 81 82 80 71 66 57 51 44 38

GBP-10 94 83 83 70 66 56 54 50 55 36

GBP-5 91 80 76 72 67 58 53 54 53 37

GBP-14 93 81 70 71 66 60 51 46 49 36

GBP-7 86 79 71 71 57 56 57 48 43 37

GBP-16 88 80 71 69 61 51 55 48 37 24

GBP-4 82 67 63 52 44 38 43 38 32 25

GBP-13 82 65 65 49 41 37 43 27 34 21

(b) Kimia-216 database TopRank scores

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

GBP-19 205 192 183 179 179 163 163 163 152 140

GBP-22 203 197 182 180 165 165 169 153 146 147

GBP-21 203 190 185 176 178 164 152 150 149 134

GBP-3 204 190 183 175 175 162 158 150 145 138

GBP-24 204 190 179 174 173 162 157 155 148 137

GBP-20 205 192 182 179 168 161 159 152 140 140

GBP-12 200 193 181 177 168 161 153 150 152 141

GBP-6 200 190 186 168 169 165 156 150 143 139

GBP-15 200 192 179 176 166 161 158 157 146 129

GBP-23 203 192 179 173 164 157 157 150 140 145

GBP-2 199 189 177 171 165 161 155 153 140 137

GBP-11 195 189 178 174 158 154 152 147 145 146

GBP-1 196 189 177 166 163 158 155 153 142 138

GBP-10 194 185 178 162 158 155 154 151 146 135

GBP-5 188 173 168 154 158 142 144 139 133 127

GBP-14 189 178 163 156 143 146 139 134 131 129

GBP-4 178 168 152 149 143 137 131 128 127 99

GBP-13 180 169 158 147 141 130 125 125 124 106

GBP-8 184 169 154 142 142 134 124 126 110 98

GBP-18 184 166 157 138 142 136 130 124 111 93

GBP-17 182 163 145 144 135 131 128 122 117 96

GBP-9 182 163 157 145 141 130 122 117 105 90

GBP-7 180 164 141 154 130 129 124 121 107 94

GBP-16 176 162 153 141 134 131 124 112 102 89

retrieval results of each method for randomly selected query images are visualized in a table.

Methods are compared using their best-performing parameter settings as determined in the

previous chapter. In other words, from each method, the best parameter setting is selected for

comparison with other methods (see Appendix B for the performance curves of each method).

Figure 4.7 includes performance curves for all databases. For the sake of visibility, only

tpr > 0.4 is shown. As the figure suggests, GBP, HOG and SC perform very close to each

other followed by ICH, LBP and FD on all databases except the Coil-100 database. GBP

outperforms SC and HOG in the Kimia-99 database and performs comparable to them in

other databases. The performance of ICH follows the performances of GBP, HOG and SC.

ICH outperforms LBP on most databases and FD on all databases. In fact, FD is the worst

performing method in all databases. Performances of methods are almost the same on all

45



Table 4.13: Scores of GBP parameter settings (Table 2 of 2).

(a) MPEG-7 database

Method Bull’s Eye

GBP-19 59.38

GBP-22 57.81

GBP-20 56.55

GBP-1 56.38

GBP-23 55.95

GBP-24 55.75

GBP-12 55.54

GBP-21 55.48

GBP-2 55.33

GBP-3 55.26

GBP-11 54.90

GBP-10 54.65

GBP-15 53.73

GBP-6 52.92

GBP-14 49.91

GBP-5 49.12

GBP-18 48.42

GBP-9 48.15

GBP-7 45.97

GBP-8 45.75

GBP-16 45.21

GBP-17 45.17

GBP-4 41.02

GBP-13 40.08

(b) Coil-100 database

Method Accuracy

GBP-20 90.60

GBP-21 90.40

GBP-23 90.20

GBP-2 88.80

GBP-3 88.80

GBP-11 88.60

GBP-24 88.40

GBP-19 88.00

GBP-5 86.60

GBP-12 86.20

GBP-22 86.20

GBP-6 84.80

GBP-15 84.40

GBP-14 84.20

GBP-1 82.40

GBP-18 82.20

GBP-9 80.60

GBP-10 80.40

GBP-17 76.80

GBP-8 75.20

GBP-13 74.00

GBP-16 73.20

GBP-4 71.00

GBP-7 69.40

(c) Natural Silhouettes database

Method Accuracy

GBP-20 93.27

GBP-23 92.86

GBP-3 92.65

GBP-21 92.45

GBP-19 92.24

GBP-24 92.24

GBP-22 91.63

GBP-12 91.22

GBP-2 90.61

GBP-11 90.00

GBP-1 89.59

GBP-15 89.39

GBP-6 88.16

GBP-10 87.55

GBP-14 83.88

GBP-5 82.04

GBP-17 78.98

GBP-18 78.98

GBP-8 78.78

GBP-13 78.57

GBP-16 77.76

GBP-4 77.55

GBP-7 76.73

GBP-9 76.73

databases except for the Coil-100 database. As described in Section 4.1, the Coil-100 database

contains images of real world objects. This makes the Coil-100 database different from others,

which contain silhouettes of artificial shapes. The low performance of GBP in this database

indicates that it is not yet very successful at describing real world objects with texture. ICH,

on the other hand, performs better in the Coil-100 database compared to other databases. It is

the second best performing method on this database.

In Table 4.14, database-specific scores are listed. As introduced in Section 4.1, the MPEG-7

database and the Kimia databases use Bull’s Eye and TopRank scores respectively. Tables

4.14(a) and 4.14(b) list TopRank scores respectively for the Kimia-99 and the Kimia-216

databases, and Table 4.14(c) includes Bull’s Eye scores on the MPEG-7 database. For the
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(a) Kimia-99 database
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(b) Kimia-216 database
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(c) MPEG-7 database
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(d) Natural Silhouettes database
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(e) Coil-100 database

Figure 4.7: ROC curves for all methods with best parameter settings. For the sake of visibility,
only tpr > 0.4 is shown without loss of any information.

other two databases, namely the Natural Silhouettes database and the Coil-100 database, ac-

curacy measures, as defined in Section 4.2, are listed. As seen from the tables, HOG performs

better than other methods on all databases, except the MPEG-7 database. GBP is the second

best-performing method after HOG, and it even outperforms HOG on the MPEG-7 database.

GBP has the worst performance on the Coil-100 database. ICH follows GBP, HOG and SC

closely, and it outperforms GBP on the Coil-100 database.
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Table 4.14: Scores for all methods with best parameter settings.

(a) Kimia-99 database

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

HOG-6 96 88 89 87 80 70 69 64 52 45

GBP-21 95 85 84 79 76 73 68 66 57 56

SC-3 93 84 82 80 78 75 72 59 55 41

LBP-5 97 85 85 75 72 65 61 57 48 40

ICH-5 90 79 76 74 71 66 57 49 47 36

FD-5 72 61 59 54 41 37 35 35 34 27

(b) Kimia-216 database

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

HOG-2 209 205 201 195 194 188 180 172 155 143

SC-3 206 203 190 188 181 176 170 168 162 147

GBP-19 205 192 183 179 179 163 163 163 152 140

ICH-6 199 195 183 179 173 157 152 144 154 129

LBP-5 199 191 179 169 158 152 153 147 139 127

FD-5 156 139 128 125 107 103 87 86 82 69

(c) MPEG-7 database

Method Bull’s Eye

GBP-19 59.38

SC-3 58.97

HOG-5 57.38

ICH-3 50.90

LBP-5 50.38

FD-5 28.55

(d) Natural Silhouettes database

Method Accuracy

HOG-5 96.12

GBP-20 93.27

SC-3 93.06

ICH-6 91.43

LBP-3 86.94

FD-1 57.96

(e) Coil-100 database

Method Accuracy

HOG-5 99.40

SC-3 94.20

LBP-5 94.00

ICH-6 92.20

GBP-20 90.60

FD-5 47.20

4.3.3 Comparison of Running times

Shape descriptors are expected to be fast enough to be useful in practice. The computational

complexity of a shape descriptor becomes even more crucial for applications with real-time

requirements such as Content-based Image Retrieval systems, which allow users to submit

query images and fetch similar images as fast as possible. CBIR systems, therefore, need fast

feature extraction and, especially, matching algorithms. For these reasons, running times of

Global Binary Patterns and Intersection Consistency Histogram are analyzed in comparison

with the selected descriptors.

Running time comparisons are investigated on an arbitrarily chosen database: Brown Uni-

versity Kimia-216 Shape Database. In order to judge the running time performance of each
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technique fairly, each method is run on the same machine2 using the same programming lan-

guage (Matlab). Moreover, to make comparisons more accurate, experiment runs are divided

into two phases, and real time measurements for both phases are reported separately. These

phases, called Extraction and Matching, are described briefly as follows:

• Extraction: In this phase, descriptors are extracted from images that are pre-loaded

into memory, i.e., reading and resizing images are performed before this step. After

the successful completion of this step, the shape descriptors from all images would

be extracted. Running times reported in this step are expected to reflect running time

complexities of each method.

• Matching: After all descriptors are extracted, the matching phase follows. In this step,

a simple matching algorithm is executed. This algorithm performs an all-to-all com-

parison between shape descriptors using a distance metric specific to the method. For

instance, Shape Context uses an algorithm called “Hungarian algorithm” to compare

descriptors [37]. Running times reported in this phase depend on the running time

complexity of the distance algorithm and the length of the descriptor vector.

In Figure 4.8, running time measurements of both phases are visualized side-by-side for each

method with parameter settings defined in Section 4.3.1. Among the six methods, the worst

running time performance belongs to Shape Context. Durations of the Matching phases of

SC-1, SC-2 and SC-3 are significantly higher than the durations of other methods. The reason

for this low running time performance is attributed to the distance algorithm, i.e. “Hungarian

algorithm”, which has a running time complexity of order O(n3) [37]. The explanation as to

why SC-3 takes a little more time than SC-1 and SC-2 lies in the difference of the Number

of Sampling Points parameter. As presented in Table 4.6, SC-3 uses 100 sampling points

whereas SC-1 and SC-2 use 50 sampling points. Note that the complexity of the “Hungarian

algorithm” depends on the number of sampling points.

Fourier Descriptors and Histograms of Oriented Gradients are two methods whose running

time measurements do not depend significantly on the choice of parameters. As suggested by

Figure 4.8(b) and 4.8(e), variants of FD and HOG exhibit almost identical running time per-

formances. On the other hand, Shape Context, Local Binary Patterns, Global Binary Patterns
2 A machine with Intel Xeon E5430 Quad-Core CPU (2.66 GHz) and 16 GB RAM.
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(a) Shape Context
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(b) Histograms of Oriented Gradients
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(c) Local Binary Patterns
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(d) Fourier Descriptors
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(e) Global Binary Patterns

 1

 10

 100

IC
H

-1

IC
H

-2

IC
H

-3

IC
H

-4

IC
H

-5

IC
H

-6

R
un

ni
ng

 ti
m

e 
(lo

g-
se

co
nd

s)
 

Extraction
Matching

(f) Intersection Consistency Histogram

Figure 4.8: Running time measurements of all methods on the Kimia-216 database. Running
times are reported in log-seconds.

and Intersection Consistency Histogram show varying extraction times depending on param-

eters. For instance, the Extraction phase durations of LBP-4, LBP-5 and LBP-6 are almost

ten times higher than those of LBP-1, LBP-2 and LBP-3. This difference is due to the dimen-

sions of the images used in the runs; LBP-1, LBP-2 and LBP-3 use images with dimensions

32 × 32 while LBP-4, LBP-5 and LBP-6 use images with dimensions 64 × 64. Similarly, the

running time of Intersection Consistency Histogram depends on the dimension of the images.

ICH runs faster on images with dimensions 32 × 32 (ICH-1, ICH-2 and ICH-3) compared to

images with dimensions 64 × 64 (ICH-4, ICH-5 and ICH-6). The running time performance
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of Global Binary Patterns depends strictly on the Grid Size parameter. For instance, the grid

size of GBP-3 is larger than GBP-1, causing GBP-3 to run slower. Image dimension does not

seem to affect the performance of GBP significantly.

Figure 4.9 depicts running time measurements of each method in a single graph for bet-

ter comparison. Parameters for each method are selected according to their retrieval perfor-

mances as presented in Section 4.3.1.
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Figure 4.9: Running time measurements of all methods on the Kimia-216 database. Running
times are reported in log-seconds. For each method, the best performing parameter setting is
used.

Excluding Shape Context, one can safely state that the Extraction phase of LBP has the next

worst performance. ICH follows LBP with approximately ten seconds of extraction duration.

Among the six methods depicted in Figure 4.9, GBP has the best running time performance,

followed by HOG. One final point worth mentioning is that durations of the Matching phase

is roughly the same for each method except Shape Context. This is due to the computational

complexity of the “Hungarian algorithm” as aforementioned.
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CHAPTER 5

CONCLUSION

In this study, one of the most prominent problems in computer vision, namely shape repre-

sentation and description, is studied using four popular shape descriptors as case studies, and

two novel shape description methods are proposed that exhibit performance comparable to

(and better than on some databases) widely-used algorithms in the literature. Proposed meth-

ods, named Intersection Consistency Histogram (ICH) and Global Binary Patterns (GBP), are

evaluated on standard databases, and image retrieval and running time performances are com-

pared to those of Shape Context, Histograms of Oriented Gradients, Fourier Descriptors and

Local Binary Patterns.

Intersection Consistency Histogram is inspired from the well-known Histograms of Oriented

Gradients method and Global Binary Patterns is a global version of the popular texture de-

scriptor, Local Binary Patterns. The retrieval performance of ICH demonstrates its usage in

shape representation problem as a proof-of-concept. Although the performance of ICH on

shape databases does not reach the level of popular methods, it is open to improvements,

which are discussed at the end of this chapter. In addition, the success of ICH on the Coil-100

database is an indication of its capability to describe real world objects with texture.

Global Binary Patterns shows a retrieval performance very close to the best performing method

on most databases and it outperforms other methods on the MPEG-7 database. In addition,

running time performance of GBP is the best one among the six methods analyzed in this

study. Although, on the databases used in this thesis, there are methods other than Histograms

of Oriented Gradients, Shape Context, Local Binary Patterns or Fourier Descriptors, with bet-

ter performances, Global Binary Patterns manifests itself as a promising shape descriptor that

is faster and simpler. For these reasons, GBP is well-suited to real-time applications or appli-

52



cations with quick development requirements.

5.1 On Shapes

As argued by Tari [74], shapes are continuous objects with respect to deformations, classifi-

cations and variations of input. Even if printed on digital media using discrete signals, shapes

are continuous entities as already illustrated by Gestalt school of perception (see Figure 5.1).

(a) (b)

Figure 5.1: Figure (a) contains a set of points that form a circle perception. Figure (b) illus-
trates a peanut shape as its neck gets thin or thick. The peanut transforms from a single blob
to two discrete blobs as its neck thins. Images are taken from [74].

In addition, shapes coexist with other shapes in a continuous environment as opposed to being

alone. Nearby objects affect the identity of the shape substantially. This requires a top-

down approach to shape description, which is not investigated in this study. The descriptors

proposed in this thesis assume isolated shape silhouettes as input.

A shape descriptor should not be sensitive to small changes in the shape. In other words,

small variations in the shape should be reflected as small changes in the corresponding repre-

sentation. ICH satisfies this property since a small orientation change in a pixel would yield

a small deviation in the representation. GBP, on the other hand, is sensitive to small changes

as a single pixel translation or noise may significantly change the decimal value of the binary

sequence and thus the representation.

5.2 Future Work

The shape descriptors from the literature that are studied in this thesis are presented in their

simplest forms. For instance, Fourier Descriptors and Local Binary Patterns have a number

of modifications that are well-known in the literature. Shape Context has a very successful

predecessor, named Inner-distance Shape Context, that can be analyzed. One possible future
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work is to extend the scope of the analysis to include more recent methods. These studies

could inspire new ideas for Global Binary Patterns and Intersection Consistency Histogram.

As mentioned above, methods proposed in this thesis perform comparable to, and in some

cases better than, the widely-used methods in the field but there is still a lot of room for

improvement. To start with, both algorithms use non-overlapping windows to extract features.

However, HOG, an LBP variant [72] and many other algorithms use overlapping windows

to better capture localized shape of an object. In a follow-up study, ICH and GBP can be

extended to utilize overlapping grid cells.

Global Binary Patterns is not tolerant to changes in scale and translation. Thus, one possible

improvement is to use more sophisticated distance metrics to make GBP robust to scale and

translation changes. The version of GBP that uses the principal axis is expected to be invariant

to rotation changes but this is not confirmed in this thesis and left out as a future work.
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[62] M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen. Computer Vision Using Local Bi-
nary Patterns, volume 40. Springer-Verlag London Limited, 2011.

[63] J. G. Proakis and D. K Manolakis. Digital Signal Processing (4th Edition). Prentice
Hall, 2006.

[64] F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation for com-
paring induction algorithms. In Proceedings of the Fifteenth International Conference
on Machine Learning, 1997.

[65] Y. Rui, A. C. She, and T. S. Huang. Modified fourier descriptors for shape representa-
tion – a practical approach. In Proceedings of First International Workshop on Image
Databases and Multi-Media Search, 1996.

[66] T. B. Sebastian, P. N. Klein, and B. Kimia. Recognition of shapes by editing shock
graphs. In Proceedings of the IEEE International Conference on Computer Vision, 2001.

[67] T. B. Sebastian, P. N. Klein, and B. Kimia. Recognition of shapes by editing shock
graphs. In Proceedings of the International Conference on Computer Vision (ICCV),
2001.

[68] R. N. Shepard. Toward a universal law of generalization for psychological science.
Science, 237(4820):1317, 1987.

[69] K. Siddiqi and B. Kimia. A shock grammar for recognition. In Proceedings of the
International Conference on Computer Vision and Pattern Recognition (CVPR), 1996.

[70] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker. Shock graphs and
shape matching. In Proceedings of the Sixth International Conference on Computer
Vision (ICCV), 1998.

[71] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision.
Chapman & Hall, 2 edition, 1998.
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APPENDIX A

SAMPLE QUERIES

Tables A.1, A.2, A.3, A.4 and A.5 show query results of all methods with best parameter

settings for randomly selected images from the Kimia-99, Kimia-216, MPEG-7, Natural Sil-

houettes and Coil-100 databases respectively. For each query image, top 3 closest matches

are listed with their corresponding costs.
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Table A.1: Sample queries on the Kimia-99 database. For each method, the best performing
parameter setting is used.
Q
u
ery

S
im

ilar
Im

ages
S
C

H
O
G

L
B
P

F
D

G
B
P

IC
H

14192
22432

22686
0.14

0.16
0.17

0.03
0.03

0.03
0.09

0.10
0.10

0.16
0.19

0.19
0.33

0.33
0.35

11508
12786

12938
0.12

0.13
0.15

0.02
0.02

0.02
0.06

0.20
0.22

0.10
0.11

0.15
0.19

0.23
0.26

10170
17434

19020
0.06

0.16
0.17

0.01
0.02

0.03
0.10

0.15
0.17

0.05
0.19

0.19
0.12

0.29
0.31

8562
20416

23008
0.05

0.16
0.16

0.01
0.02

0.02
0.02

0.10
0.13

0.05
0.14

0.18
0.18

0.24
0.33

16264
22328

23884
0.10

0.11
0.12

0.02
0.02

0.02
0.06

0.15
0.24

0.10
0.12

0.13
0.24

0.24
0.26

14862
18962

19300
0.01

0.12
0.12

0.00
0.02

0.02
0.08

0.14
0.16

0.02
0.11

0.11
0.04

0.22
0.24

14862
23346

25788
0.01

0.12
0.13

0.00
0.02

0.02
0.17

0.24
0.27

0.02
0.12

0.12
0.04

0.23
0.25

16842
17664

19112
0.10

0.11
0.11

0.01
0.02

0.02
0.13

0.16
0.22

0.08
0.10

0.10
0.22

0.23
0.24

12202
12296

17962
0.09

0.09
0.10

0.01
0.01

0.02
0.08

0.10
0.10

0.07
0.08

0.09
0.25

0.26
0.27

12284
18610

19570
0.09

0.13
0.14

0.02
0.02

0.02
0.14

0.15
0.15

0.11
0.17

0.18
0.27

0.31
0.33

10744
12492

12558
0.04

0.05
0.05

0.01
0.01

0.01
0.06

0.08
0.10

0.07
0.08

0.09
0.10

0.11
0.13

8284
9012

9350
0.04

0.04
0.04

0.01
0.01

0.01
0.06

0.10
0.11

0.07
0.07

0.08
0.11

0.12
0.13
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Table A.2: Sample queries on the Kimia-216 database. For each method, the best performing
parameter setting is used.
Q
u
ery

S
im

ilar
Im

ages
S
C

H
O
G

L
B
P

F
D

G
B
P

IC
H

6390
6726

7342
0.04

0.07
0.07

0.01
0.01

0.01
0.05

0.11
0.11

0.05
0.06

0.07
0.05

0.05
0.06

7164
8562

8642
0.06

0.07
0.13

0.01
0.01

0.01
0.03

0.03
0.03

0.06
0.08

0.11
0.06

0.07
0.09

22536
31598

40952
0.17

0.42
0.43

0.01
0.03

0.03
0.10

0.12
0.12

0.23
0.63

0.63
0.16

0.24
0.24

12184
13184

19250
0.08

0.09
0.16

0.02
0.02

0.02
0.03

0.08
0.12

0.14
0.25

0.31
0.13

0.16
0.18

14270
14890

15790
0.14

0.15
0.20

0.02
0.02

0.02
0.06

0.08
0.12

0.20
0.24

0.28
0.16

0.17
0.18

14890
16938

17320
0.14

0.16
0.20

0.02
0.02

0.02
0.06

0.07
0.08

0.28
0.28

0.29
0.17

0.18
0.19

20258
21894

28210
0.25

0.27
0.27

0.03
0.03

0.03
0.06

0.07
0.14

0.49
0.51

0.53
0.25

0.26
0.26

22128
22814

23134
0.27

0.27
0.28

0.01
0.01

0.02
0.07

0.17
0.20

0.26
0.27

0.28
0.10

0.11
0.11

4748
5784

6598
0.04

0.05
0.05

0.01
0.01

0.01
0.03

0.04
0.04

0.02
0.03

0.05
0.04

0.05
0.05

7640
10136

11200
0.02

0.16
0.17

0.01
0.02

0.03
0.00

0.11
0.14

0.02
0.22

0.28
0.06

0.19
0.19

11838
12172

12664
0.13

0.15
0.16

0.02
0.02

0.03
0.11

0.11
0.11

0.26
0.27

0.27
0.15

0.16
0.16

5546
7010

9112
0.18

0.19
0.21

0.04
0.04

0.05
0.05

0.05
0.08

0.24
0.26

0.31
0.17

0.18
0.21
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Table A.3: Sample queries on the MPEG-7 database. For each method, the best performing
parameter setting is used.
Q
u
ery

S
im

ilar
Im

ages
S
C

H
O
G

L
B
P

F
D

G
B
P

IC
H

7484
12736

15248
0.17

0.19
0.21

0.03
0.03

0.03
0.09

0.10
0.10

0.30
0.34

0.39
0.13

0.13
0.14

5778
12090

26212
0.42

0.43
0.44

0.03
0.04

0.04
0.05

0.05
0.07

0.10
0.55

0.60
0.15

0.18
0.18

8058
11408

11942
0.16

0.17
0.19

0.04
0.05

0.05
0.11

0.13
0.13

0.30
0.31

0.38
0.08

0.08
0.11

6900
7838

8264
0.17

0.18
0.18

0.01
0.02

0.02
0.10

0.13
0.13

0.20
0.25

0.27
0.12

0.12
0.12

8128
13300

15634
0.17

0.18
0.19

0.06
0.06

0.06
0.17

0.17
0.18

0.62
0.63

0.63
0.16

0.16
0.16

8096
8400

9286
0.03

0.03
0.03

0.00
0.00

0.01
0.00

0.02
0.05

0.08
0.09

0.13
0.03

0.03
0.04

10972
12392

12420
0.01

0.02
0.02

0.00
0.00

0.00
0.04

0.07
0.09

0.07
0.07

0.08
0.02

0.02
0.02

7436
15446

16492
0.23

0.23
0.24

0.05
0.05

0.05
0.08

0.08
0.09

0.51
0.51

0.51
0.16

0.18
0.18

10870
19036

21134
0.25

0.29
0.30

0.03
0.03

0.03
0.13

0.15
0.16

0.32
0.33

0.37
0.08

0.10
0.12

6782
7418

8992
0.13

0.15
0.15

0.03
0.03

0.03
0.07

0.09
0.11

0.09
0.09

0.09
0.06

0.07
0.07

6312
6712

6802
0.13

0.13
0.16

0.03
0.03

0.03
0.08

0.09
0.09

0.08
0.10

0.11
0.07

0.07
0.07

4998
8334

9178
0.08

0.10
0.11

0.01
0.01

0.01
0.04

0.08
0.09

0.09
0.10

0.14
0.07

0.07
0.07
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Table A.4: Sample queries on the Natural Silhouettes database. For each method, the best
performing parameter setting is used.
Q
u
ery

S
im

ilar
Im

ages
S
C

H
O
G

L
B
P

F
D

G
B
P

IC
H

7662
17514

21400
0.19

0.39
0.40

0.05
0.06

0.06
0.10

0.11
0.11

0.18
0.36

0.39
0.19

0.24
0.25

5608
6064

15016
0.02

0.21
0.27

0.00
0.03

0.03
0.02

0.02
0.09

0.01
0.04

0.18
0.03

0.11
0.17

20656
26034

26306
0.42

0.43
0.44

0.06
0.06

0.06
0.11

0.12
0.12

0.33
0.36

0.36
0.22

0.24
0.25

10894
11298

12996
0.25

0.26
0.27

0.03
0.03

0.03
0.01

0.01
0.03

0.21
0.22

0.22
0.11

0.11
0.12

17264
17916

18228
0.39

0.40
0.41

0.05
0.05

0.05
0.09

0.13
0.14

0.32
0.36

0.36
0.18

0.18
0.19

23364
26868

27506
0.41

0.41
0.41

0.04
0.04

0.04
0.08

0.08
0.09

0.26
0.30

0.30
0.17

0.17
0.18

21964
22194

22490
0.39

0.39
0.40

0.04
0.04

0.04
0.07

0.07
0.08

0.29
0.30

0.31
0.18

0.19
0.19

19160
24944

24990
0.35

0.39
0.48

0.07
0.07

0.07
0.09

0.13
0.14

0.31
0.34

0.34
0.20

0.21
0.23

9144
9774

10340
0.21

0.26
0.28

0.01
0.01

0.01
0.07

0.10
0.12

0.08
0.08

0.11
0.05

0.06
0.06

26022
28546

30456
0.28

0.37
0.40

0.02
0.02

0.03
0.05

0.08
0.08

0.15
0.19

0.28
0.11

0.11
0.14

10456
16504

21326
0.32

0.40
0.41

0.03
0.04

0.04
0.06

0.11
0.11

0.18
0.27

0.29
0.19

0.20
0.22

24192
26654

26752
0.42

0.42
0.46

0.05
0.05

0.05
0.08

0.08
0.09

0.28
0.31

0.32
0.18

0.19
0.19
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Table A.5: Sample queries on the Coil-100 database. For each method, the best performing
parameter setting is used.
Q
u
ery

S
im

ilar
Im

ages
S
C

H
O
G

L
B
P

F
D

G
B
P

IC
H

8812
9966

10316
0.25

0.27
0.32

0.13
0.13

0.14
0.06

0.08
0.08

0.09
0.10

0.15
0.07

0.07
0.08

8626
9276

12588
0.20

0.20
0.26

0.12
0.12

0.13
0.09

0.09
0.10

0.15
0.17

0.22
0.12

0.13
0.14

14636
14890

16052
0.19

0.26
0.27

0.12
0.13

0.13
0.06

0.08
0.08

0.14
0.15

0.15
0.07

0.07
0.07

9668
11266

15888
0.16

0.22
0.23

0.21
0.22

0.22
0.08

0.08
0.09

0.09
0.10

0.16
0.05

0.06
0.06

10516
11150

13350
0.18

0.25
0.29

0.09
0.10

0.10
0.10

0.13
0.13

0.11
0.11

0.14
0.09

0.09
0.09

8886
12874

17534
0.21

0.28
0.29

0.08
0.08

0.10
0.11

0.12
0.13

0.12
0.12

0.16
0.07

0.08
0.09

23502
24458

28594
0.28

0.29
0.29

0.16
0.16

0.16
0.08

0.09
0.10

0.13
0.16

0.16
0.13

0.14
0.15

5608
7246

8056
0.16

0.20
0.21

0.11
0.11

0.11
0.02

0.04
0.05

0.05
0.06

0.10
0.05

0.05
0.05

17880
21904

28486
0.21

0.27
0.27

0.11
0.11

0.11
0.04

0.06
0.07

0.13
0.18

0.20
0.07

0.09
0.10

10382
12274

12830
0.22

0.25
0.28

0.12
0.13

0.13
0.17

0.20
0.22

0.08
0.10

0.12
0.06

0.07
0.07

6884
11172

13290
0.19

0.24
0.24

0.10
0.11

0.11
0.12

0.13
0.13

0.12
0.13

0.15
0.08

0.09
0.09

21462
22160

22174
0.21

0.24
0.28

0.08
0.08

0.08
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APPENDIX B

PARAMETER INVESTIGATION FOR THE SELECTED

DESCRIPTORS

B.1 Parameter Investigation of Shape Context

Figure B.1 includes ROC curves for Shape Context on all databases. As the figure suggests,

SC-1, SC-2 and SC-3 perform very close to each other. This result indicates that the dimen-

sions of the image and the number of sampling points does not significantly affect the perfor-

mance of Shape Context as long as they are large enough. In other words, these results do not

demonstrate the performance of Shape Context using very few number of sampling points.

A more comprehensize analysis is required to determine a lower bound for the number of

sampling points.

B.2 Parameter Investigation of Histograms of Oriented Gradients

Results of Histograms of Oriented Gradients are presented in Figure B.2. On the Kimia-216,

MPEG-7 and Natural Silhouettes databases, HOG-3 and HOG-6 perform worse compared to

others. These two use smaller grids than others. However, the performance of HOG-6 on the

Coil-100 database suggests a reverse picture. The Coil-100 database is different than other

databases since it contains images of real world objects while the others include silhouettes

of artificial shapes. This means that the parameters of HOG needs to be adjusted according to

the type of the database.
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Figure B.1: ROC curves for Shape Context. For the sake of visibility, only tpr > 0.4 is shown
without loss of any information.

B.3 Parameter Investigation of Local Binary Patterns

Local Binary Patterns are extracted by dividing the image into grids of sizes 1 × 1, 2 × 2

and 4 × 4. As seen from Figure B.3, variants of LBP with the same grid size perform very

close to each other. For instance, LBP-1 and LBP-4, both extracted from the whole image,

demonstrate close performances. The effect of grid size to the performance is limited on all
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Figure B.2: ROC curves for Histograms of Oriented Gradients. For the sake of visibility, only
tpr > 0.4 is shown without loss of any information.

databases but judging the results on the Kimia databases and the MPEG-7 database, one can

argue that applying LBP on the whole image is not a good idea. LBP-1 and LBP-4 use a 1× 1

grid and they perform worse compared to others.
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Figure B.3: ROC curves for Local Binary Patterns. For the sake of visibility, only tpr > 0.4
is shown without loss of any information.

B.4 Parameter Investigation of Fourier Descriptors

Figure B.4 includes the performance curves of Fourier Descriptors. As seen from the figure,

the number of Fourier terms does not need to be high to achieve a high performance. FD-

1 and FD-5, both use the first 5 Fourier terms, show good performances on the Kimia099

database. The effect of image dimension depends on the database since on some databases,
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performances on 32× 32 resized images are better than those of 64× 64 images, and on some

databases, 64 × 64 resized images give better results.
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Figure B.4: ROC curves for Fourier Descriptors. For the sake of visibility, only tpr > 0.4 is
shown without loss of any information.
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