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ABSTRACT 

 

 

FEATURE DETECTION AND MATCHING TOWARDS AUGMENTED REALITY 
APPLICATIONS ON MOBILE DEVICES 

 

 

Gündoğdu, Erhan 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. A. Aydın Alatan 

 

 

September 2012, 100 pages 

 
 

Local feature detection and its applications in different problems are quite popular in vision 

research. In order to analyze a scene, its invariant features, which are distinguishable in 

many views of this scene, are used in pose estimation, object detection and augmented 

reality. However, required performance metrics might change according to the application 

type; in general, the main metrics are accepted as accuracy and computational complexity. 

The contributions in this thesis provide improving these metrics and can be divided into 

three parts, as local feature detection, local feature description and description matching in 

different views of the same scene. In this thesis an efficient feature detection algorithm with 

sufficient repeatability performance is proposed. This detection method is convenient for 

real-time applications. For local description, a novel local binary pattern outperforming 

state-of-the-art binary pattern is proposed. As a final task, a fuzzy decision tree method is 

presented for approximate nearest neighbor search. In all parts of the system, computational 



 

 
 

v 
 
 

 

efficiency is considered and the algorithms are designed according to limited processing 

time. Finally, an overall system capable of matching different views of the same scene has 

been proposed and executed in a mobile platform. The results are quite promising such that 

the presented system can be used in real-time applications, such as augmented reality, 

object retrieval, object tracking and pose estimation.  

 

Keywords: Local Feature Detection, Local Feature Description, Approximate Nearest 

Neighbor Search, Augmented Reality. 
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ÖZ 
 

 

TAŞINABİLİR ELEKTRONİK CİHAZLARDA ARTTIRILMIŞ GERÇEKLİK 
UYGULAMALARINA YÖNELİK İLGİ NOKTASI ALGILAMA VE EŞLEME  

 

Gündoğdu, Erhan 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan 

 

 

Eylül 2012, 100 sayfa 

 

Yerel ilgi noktası algılama ve bu noktaların Bilgisayarla Görü uygulamalarında kullanımı 

günümüzde oldukça yaygınlaşmıştır. Bir sahneyi analiz edebilmek için, bu sahnenin çeşitli 

açılardaki imgelerinde de ayırt edilebilen ilgi noktaları poz tahmini, kamera kalibrasyonu, 

nesne tanıma, nesne algılama ve arttırılmış gerçeklik uygulamalarında kullanılmaktadır. 

Odaklanılan performans ölçütü uygulama alanına göre değişiklik göstermektedir. 

Genellikle bu ölçütler algoritmaların doğruluğu veya hesaplama yükü olmaktadır. Bu tezde 

ele alınan problemler yerel ilgi noktası algılama, yerel ilgi noktası betimleme ve betimlenen 

bu noktaların verimli bir biçimde eşlenmesi olarak özetlenebilir. Hesaplama karmaşıklığı 

açısından verimli bir ilgi noktası algılama algoritması sunulmuştur. Yerel betimleme için 

ise yeni bir ikili karşılaştırma deseni önerilmiştir. Hızlı eşleme için ise çoklu karar ağacına 

dayanan bir yöntem sunulmuştur. Belirtilen problemlerin çözümlenmesinde hesaplama 

karmaşıklığı yukarıda anlatılan sebeplerle ön plana çıkarılmış olup algoritmalar sınırlı 

kaynak varsayımına dayanarak tasarlanmıştır. Sonuç olarak, aynı sahnenin farklı açılardan 

çekilmiş imgelerindeki ilgi noktalarını bulup eşleyen bir sistem üretilmiştir. Bu sistem 

gerçek veriler üzerinde test edilmiş olup yapılan testler neticesinde bu sistemin arttırılmış 
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gerçeklik, nesne tanıma, nesne takibi ve poz tahmini gibi gerçek zamanlı Bilgisayarla Görü 

uygulamalarında ticari bir ürün olarak sunulabileceği anlaşılmıştır.  

 

Anahtar Kelimeler: Yerel ilgi noktasi algılama, yerel ilgi noktası betimleme, yaklaşık en 

yakın komşu eşlemesi, arttırılmış gerçeklik. 
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CHAPTER 1 

1. INTRODUCTION 

INTRODUCTION 
 

 

 

1.1.  Motivation 
 

Feature detection and matching have been becoming popular due to the increasing 

number of tasks available for mobile devices. Augmented Reality (AR) is one of the 

vision tasks, which requires detection of keypoints and matching these points in different 

views and has a wide application range.  

 

The applications that can be performed using Augmented Reality include the tasks in 

fabrication processes, surgery, navigation, industrial design, military, tourism, news 

report and architecture.  

 

In all of the tasks, AR helps to improve efficiency of the processes. For instance, AR can 

be used as a tourist guide in a museum. A tourist can learn the information about a 

specific monument by just using his mobile phone. A sample application is illustrated in 

Figure 1. When fabrication processes are considered, the damage due to the mistakes of 

workers can be minimized using AR in assembly lines. Moreover, a soldier can be guided 

with the help of an intelligent map in a military task. One of the exciting applications of 

AR can be a navigation system with virtual arrows augmented to the streets of a city. A 

sample illustration is given in Figure 2. 
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Figure 1 A monument identification application using AR 

 

 

 

 

 

Figure 2 A navigation system augmented to the streets 
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In addition, AR can also serve in the area of news report. Recent technological 

improvements have been providing a service in newspapers. For example, a newspaper 

reader can watch the video of the news by just pointing the camera of a mobile device 

towards the image of news on the newspaper. 

 

 

 

 
 

Figure 3 A mobile news report application 

    

 

 

1.2. Scope of the thesis 
 

As it can be realized from the wide application range of AR, contributions to Augmented 

Reality tasks may not only change the daily lives of people, but also increase the 

efficiency of production chain. As a matter of fact, improvements on the vision problems, 

which are components of AR applications, become more of an issue. Local feature 

extraction, local feature description and matching are examples of important parts of AR 
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tasks. Therefore, this thesis is performed for some of the fundamental and crucial 

problems in vision research, namely local feature (interest point) detection, local feature 

description and approximate nearest neighbor search for fast descriptor matching.  

 

In general, decomposing an image into subparts is a feasible method, since dealing with 

smaller regions of an image might improve computational complexity of processing for 

many vision tasks. Furthermore, if these subparts also carry meaningful information, a 

sparse analysis on images could be possible. Therefore, the term “local” is a valuable 

notion in many vision problems.  

 

In this work, the mainly focused problems are fast detection of repeatable points and 

matching these points in different views of the same scene. Although there are many 

well-known and leading methods that attempt to solve this problem in the literature, it is 

still hard to avoid the tradeoff between computational complexity and accuracy. 

Nevertheless, some satisfactory paths to avoid that tradeoff exist when the problem is 

well defined for a specific application. 

 

If local feature detection problem is considered, there are some efficient algorithms with 

acceptable accuracy. Most of them are based on simple pixel intensity comparison in 

image space. Since the idea behind these algorithms has a potential to be improved for 

real-time AR tasks, the focused methods for local feature detection are intensity 

comparison based methods. By analyzing the nature of the relationships between local 

feature points, a new feature detection method, with satisfactory performance, has been 

proposed in this thesis. 

 

The second step in most vision tasks is describing keypoints. State-of-the-art path for this 

problem is use of local descriptors. Although elegant and accurate methods [9], [12], [20], 

exist in the literature, most of them are not feasible to be used in real-time 

implementation. For mobile devices, efficiency is important. Therefore, efficient local 

description methods [16], [24] have been becoming frequently preferred methods. The 

main idea behind these descriptors is intensity comparisons in a local patch around 

keypoints. Easy calculation of intensity comparisons makes these algorithms 

computationally efficient with satisfactory performance in accuracy. Hence, local binary 

descriptors based on intensity comparisons are utilized for local description task. Using 
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the state-of-the-art methods, a new comparison pattern for local binary descriptors is 

proposed. The proposed pattern outperforms its counterparts in terms of accuracy 

performance.  

 

One of the crucial phases of real-time AR applications is matching local descriptors of 

different scenes. In order to match different views of the same scene, several hundred 

local descriptors are required to be extracted. Using these descriptors, local descriptors of 

a different view of the same scene can be matched. However, the most common problem 

is finding the nearest descriptor vectors for all of the descriptors in the test images. As the 

number of descriptors increases, the computation time of matching phase increases 

linearly. If the AR task is assumed to contain many scenes, the number of descriptors in 

the database increases.  

 

If an efficient method is required to match many descriptors, importance of indexing 

methods which can learn a database increases. In the literature, there are approximate 

nearest neighbor methods where the nearest descriptors can be calculated efficiently with 

convincing performance of accuracy. In this thesis, an efficient method for approximate 

nearest neighbor search has also been proposed. In the proposed method, a fuzzy decision 

is exploited to learn the descriptors in a database.         

 

In all parts of the process including feature detection, feature description and matching, 

novel ideas are exploited and implemented for the sake of efficiency. 

 

 

 

 
 

Figure 4 Illustration of a feature matching system 
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Figure 4 shows a typical example of matching different planar views of the same scene. 

Specifically, in Augmented Reality (AR) applications, a set of keypoints of a reference 

image is detected and described before a query image is asked. The aim is to match the 

keypoints of the query image and the keypoints of the reference image to calculate the 

geometric relation between these two images. Afterwards, this geometric relationship 

between these images should be used in AR applications. If the overall system is capable 

of running fast enough, then the resulting system could also be used in real-time. 

 

1.3. Outline of the thesis 
 

In Chapter 2 of the thesis, local interest point detection methods are discussed. Since this 

work aims at improving computational efficiency, computationally efficient methods are 

discussed. Moreover, a novel and efficient algorithm is presented.  

 

In Chapter 3, local feature description methods are analyzed. Moreover, local binary 

descriptors are exploited for the sake of computational efficiency. The contribution of this 

work to local descriptors is a new and regular binary pattern outperforming its state-of-

the-art counterparts.  

 

Chapter 4 includes approximate nearest neighbor search for matching. A decision tree 

based approach is adopted due to its influential performance in the literature.  

 

Finally, a conclusion and discussion chapter summarizes the overall system explaining 

crucial points of the methods analyzed.
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CHAPTER 2 
 

 

LOCAL INTEREST POINT DETECTION METHODS 
 

2. LOCAL INTEREST POINT DETECTION METHODS 
 

2.1. INTRODUCTION 
 

Interest point detection is an important and fundamental stage of many vision tasks, such 

as wide baseline matching, tracking, recognition of objects, AR, pose estimation and 

camera calibration. In order to accomplish these tasks, there are plenty proposed 

algorithms for this problem. In a well-known survey paper [1], the definition of local 

feature is defined as “a local feature is an image pattern which differs from its immediate 

neighborhood." For distinguishing the difference of a point from its neighbors, there 

should be a cost function or a metric, comparing the points for dissimilarity. The authors 

[1] suggest that those differences could be intensity, color or texture. In order to provide a 

meaning to those differences, many cost functions exist, such as gradient [2] or a 

response to a specific kernel [13].  

 

The requirements of applications determine the most feasible interest point detection 

algorithm. For instance, the algorithm in use should be computationally efficient, since 

real time applications are aimed. If the problem is pose estimation or calibration of a 

camera, then there should be an almost perfect localization between correspondences. 

Furthermore, the distinctiveness and repeatability should be prevailing performance 

requirements, if object recognition is desired with a high accuracy. 

 

Some of the important performance metrics are listed below [1]: 
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Repeatability: In multiple images of the same scene with different deformations, 

the same points should exist in all of these images.  

 

Accuracy: In multiple images, detected points should correspond to the exactly 

same points of the scene. 

 

Computational Efficiency: This term can be defined as number of computations 

per pixel, or computation time per image. 

 

Invariance: The detected features should be invariant to many changes, such as 

affine, rotation, translation, scale, etc. 

 

Distinctiveness/informativeness: The intensity patterns underlying the detected 

features should show a lot of variation, such that features can be distinguished 

and matched. 

 

It is almost impossible to satisfy all of the conditions above for a specific feature 

extraction algorithm. Instead, necessary performance metrics should be studied to be 

improved for the requirements of a specific task.  

 

2.2. RELATED WORK 
 

Local features can be mainly divided into three main classes, as points, regions and 

special segments, as stated in [1]. Interest point detectors will be discussed in this thesis, 

since the detected features is expected to be used in AR applications, which may require 

substantial performance on localization.  

 

2.2.1.  Corner-like keypoint detection methods 
 

Interest points can be further classified as corner-like points and blob-like points. In [2], 

the intensity variation is utilized to find corner-like points, namely Harris corner 

detection. The basic idea behind that corner detection lies on the fact that, the average 

intensity variation should be high both horizontally and vertically along the region of 
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corners. A cost function maximizing the variation in both directions is achieved and a 

second moment matrix, M, is approximated by Sobel operator in order to calculate the 

derivatives, while a Gaussian window is utilized to weigh the neighbors according to the 

distance from the center point.  

 

ܯ    =  ቈ
݃ ∗ ௫ܫ

ଶ ݃ ∗ ൫ܫ௫ܫ௬൯
݃ ∗ ൫ܫ௫ܫ௬൯ ݃ ∗ ௬ܫ

ଶ ቉    (2.1) 

 

The matrix M is the approximated second moment matrix and g represents the Gaussian 

kernel. Eigenvalues of M matrix is exploited to distinguish corner-like points. An 

illustration of the idea for this algorithm is given in Figure 5. 

 

 

 

 
 

Figure 5 Illustration of the window and its change along x and y directions. 

 

 

 

There are many studies related to Harris corner detection [2], e.g. a scale space 

representation is proposed; however, the main idea is the same as [2]. In another approach 

0, the authors propose a new definition of feature quality. According to their definition, a 

good feature should be tracked with a high quality. In this method 0, the same matrix in 

[2] is used, but the minimum of eigenvalues of the M matrix is stated as the feature 

quality. 

 

On the other hand, a feature detector, which is invariant to affine changes, is also 

proposed [4]. This technique provides high repeatability even in large affine deformations 
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of the scene. As an alternative to this feature detector, there are region detectors which are 

also affine invariant. One of such methods is Maximally Stable Extremal Regions MSER 

[43]; in MSER, extremal regions are detected according to their stability by using a 

thresholding procedure to gray-level images. 

 

The methods explained above are based on the differential information of the interest 

points. However; calculations of gradients or differential information take long time to 

compute if the keypoint detection implementation is planned to run in real time. Instead 

of using differential or gradient information, intensity comparison based methods are 

improved to approximate the gradient calculation. 

 

The method proposed by Smith et. al. [5] is the pioneer method using intensity 

comparisons. This detection method uses a circular neighborhood of the interest points, as 

shown in Figure 6. 

 

 

 

 
 

Figure 6 Illustration of SUSAN circles and nucleus. 

 

 

 

The basic idea behind Smallest Univalue Segment Assimilating Nucleus (SUSAN) [5] is 

that the pixels within the circular neighborhood are classified into two, as points similar 

to the nucleus or otherwise. Similarity between pixels is measured using pixel intensity 
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comparisons. If the percentage of the dissimilar area is minimum in a local neighborhood, 

then that point is stated as a corner point according to SUSAN. The most prevailing 

advantage of SUSAN is that it does not need to calculate any derivatives or second 

moment matrices. Hence, it is relatively efficient compared to the detection algorithms 

that calculate image gradients. 

 

Rosten et. al. [6] propose recently a new algorithm, Features from Accelerated Segment 

Test (FAST), which is quite similar to the idea of SUSAN, where there is a circle 

surrounding a center pixel.  

 

 

 

 
 

Figure 7 Illustration of FAST algorithm. 

 

 

 

As it can be observed in Figure 7, the center pixel p is tested by comparing its intensity 

with the pixel intensities on the circle, whose boundary consists of 16 pixels. In FAST 

[6], points whose indices are equal to 1, 5, 9, 13 in Figure 7 on the left are first tested, 

whether at least three of them are brighter or darker from the intensity of the center pixel 

p. If this test is passed successfully, then an exhaustive test can be performed as follows: 

There should be at least n contiguous pixels, which are all brighter or darker than center 

pixel p. If this condition is satisfied then the algorithm declares p as a corner point. 
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Although the algorithm seems to be efficient and intuitive, there are a number of 

disadvantages, such as the first test (testing boundary points 1, 5, 9, and 13) does not 

generalize well for the case n< 12 and multiple features could be detected adjacent to one 

another. 

 

In order to eliminate such disadvantages, a machine learning approach is used to decide 

whether a pixel is a corner [6]. Neighboring pixels are classified as similar, brighter or 

darker than the center pixel p. A decision tree with minimum entropy is constructed by 

using a training data and the minimization is achieved by using Induced Decision Trees 

(ID3) method [7]. 

 

After minimizations procedure, a non-maxima suppression is used to eliminate points 

adjacent to the corners. The non-maxima suppression score is given as: 

 

ܸ =  max ቀ∑ หܫ௣→௫ − ௣ห௫∈ௌ್ೝ೔೒೓೟ܫ , ∑ หܫ௣→௫ − ௣ห௫∈ௌ೏ೌೝೖܫ ቁ 

  

In (2.2), V is the score for non-maxima suppression, ܫ௣ is the center pixel, ܫ௣→௫ is the 

neighbor pixels of  ܫ௣, ܵ௕௥௜௚௛௧ and ܵௗ௔௥௞ are brighter and darker neighbor pixels of the 

center pixel, respectively.   

 

The intuition behind the relation in (2.2) is based on selection of points as corner in their 

local neighborhood, if number of pixels, which are different than the center pixel, is a 

local maximum in terms of brightness intensity. The remaining points are declared as 

corners, as the output of the algorithm.  

 

After the supervised stage of the algorithm, the constructed decision tree serves for asking 

minimum number of questions (or tests), which corresponds to the minimization of the 

entropy of the tree. FAST [6] as a result of this machine learning approach approximately 

asks 2.26 questions on the average per pixel, which is sufficiently efficient. However, ID3 

method used for tree construction is suboptimal and might miss some important corner 

patterns. In spite of these disadvantages, FAST algorithm is appropriate for many vision 

tasks due to its computational efficiency and high repeatability performance. 

 

(2.2) 
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In ORB [8], the corner detection task is implemented by using FAST-9 algorithm, in 

which 9 contiguous pixels should be all brighter or darker than the center pixel. 

Moreover, Harris measures of detected key points are calculated and they are ordered 

according to the Harris measure. First N key points are selected as corner-like points. This 

technique gives better performance in terms of repeatability compared to FAST, since 

relatively strong points are selected out of FAST corner points in terms of their Harris 

score.  

 

In [15], the authors propose a novel method for fast key point extraction and use a circle 

around the point of interest, as in FAST [6] and SUSAN [5] methods. The idea can be 

summarized follows: The circle surrounding a center pixel p is tested such that the pixels 

diametrically opposed to each other are tested to be different than center pixel at the same 

time. If this constraint is satisfied, then those points are eliminated. The points, which are 

not eliminated, are candidates for interest points and their Laplacian of Gaussian (LOG) 

is calculated to suppress non-maxima neighbors. The condition for being a non-corner 

point and LoG approximation is given in (2.3) and (2.4). 

 

(௣)ܫቚ ݂ܫ − ൫௣ାௗோക൯ቚܫ ≤  +߬  And  ݂ܫ ቚܫ(௣) − ൫௣ାௗோക൯ቚܫ ≤  +߬ 

 

 

(݉)ܩ݋ܮ  ≈  ෍ (௣)ܫ− ൫௣ିௗோക൯ܫ + ൫௣ାௗோക൯ܫ
ఝ∈[଴,గ]

 

 

In (2.3) and (2.4), ܫ(௣) is the intensity value of the pixel p (center pixel) and ܫ൫௣ିௗோക൯   and 

 ൫௣ାௗோക൯ are diametrically opposed neighbour pixels of p in ߮ direction. In Equationܫ

(2.3), if both of the conditions are satisfied, then the point of interest is claimed to be non-

corner. In the proposed keypoint extraction method, the rule for being non-corner [15] is 

used. Hence, this rule will be explained in detail in the proposed keypoint extraction 

section.       

 

 

(2.3) 

(2.4) 
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2.2.2.  Blob-like keypoints detection methods 
 

Lindeberg [46] defined “blob” like regions or points as local extremes at least in one scale 

of the image space. Scale-space selection of blobs is further improved by SIFT [9]. Scale-

space selection of blob-like keypoints could be achieved by using a cascade filtering 

approach, as in the popular method Scale Invariant Feature Transform (SIFT) [9]. Lowe 

[9] utilizes a Gaussian function as scale-space kernel, following the works in [10] and 

[11] by the help of the following relation:  

     

ܩଶ∇ߪ =  
ܩ߲
ߪ߲

 ≈  
,ݔ)ܩ ,ݕ (ߪ݇ − ,ݔ)ܩ ,ݕ (ߪ

ߪ݇ − ߪ
 

 

Equation (2.5) presents an important approximation of the partial derivative of the G 

function according to the scale parameter . In fact, this relation is an approximation for 

Laplacian of Gaussian (LoG), namely Difference of Gaussian (DoG), which is relatively 

easier to calculate. In [9], Lowe also shows that the approximation of LoG as DoG has no 

impact on the stability of extreme detection or localization, even for significant 

differences in scale. After calculation of DoG in many scales and octaves, each pixel 

coordinate is tested, whether it is a local maximum in image and scale-space. After 

rejecting points, which are not local extrema, then non-maxima suppression is used to 

eliminate edge responses. After this process, the remaining points are declared as stable 

key points. 

 

,ݔ)ܪ (ߪ =  ቈ
,ݔ)௫௫ܮ (ߪ ,ݔ)௫௬ܮ (ߪ
,ݔ)௫௬ܮ (ߪ ,ݔ)௬௬ܮ  ቉(ߪ

 

Bay et.al.[12] use some previous studies on extraction of blob-like structures and 

conclude that Hessian-based detectors are more stable and repeatable than their Harris-

based counterparts [12].  

 

In equation (2.6),  is the scale at which Hessian matrix is calculated. ܮ௫௫(ݔ,  ,(ߪ

,ݔ)௫௬ܮ ,ݔ)௬௬ܮ , (ߪ  are the second order derivatives of point x convolved with Gaussian (ߪ

kernel by scale . Gaussian second order derivatives, ܮ௫௫(ݔ, ,ݔ)௫௬ܮ ,(ߪ ,ݔ)௬௬ܮ and (ߪ    (ߪ

(2.5) 

(2.6) 
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are all approximated by using simple box filters, as shown in Figure 8 and denoted as 

,௫௫ܦ ௫௬ܦ  and ܦ௬௬.   

 

 

 

 
 

Figure 8 Left to right: (discretized and cropped) Gaussian second order partial derivatives in y-
direction and xy-direction, and their approximations thereof using box filters. The grey regions are 

equal to zero. 
 

 

 

For detecting blob-like structures, determinant of an approximated Hessian matrix, which 

uses approximated derivatives ܦ௫௫, ௫௬ܦ  and ܦ௬௬, is used as follows: 

 

det(ܪ௔௣௣௥௢௫) =  ௫௬൯ଶܦ௬௬ି൫0.9ܦ௫௫ܦ 

 

where ܪ௔௣௣௥௢௫is the approximated Hessian matrix by approximated partial derivatives 

,௫௫ܦ ௫௬ܦ  and ܦ௬௬. After calculation of (2.7), local maximum values of pixels for the 

determinant function of (2.7) in image and scale space are selected to be the points of 

interest. The keypoint extraction based on approximation of Hessian matrix [12] is more 

efficient than SIFT [9], while sacrificing slightly from the performance.   

 

However; second order derivative calculations as in [9] and [12] are still not feasible for 

real-time applications. Therefore, further approximations of the state-of-the-art feature 

extraction algorithms are proposed. For instance; some researchers use box kernels as 

approximations of Laplacian of Gaussians to speed up computation [13]. Convolution of 

image and these box kernels can be computed fast enough for real-time applications. On 

the other hand, Dupac et. al. propose a new blob detector which exploits the phase of 

Fourier transform of the image points [14]. The main idea can be explained as follows: If 

(2.7) 
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a point has a sinus-like structure within its neighborhood, then its phase becomes almost 

zero when the phase is approximated in the neighborhood of this point. The algorithm 

also exploits the phase information to find the shifts through video frames and uses this 

information to track previously determined blob-like points. In this work, the Zero Shift 

Points (ZSP) [14] is also tested in terms of repeatability and computational efficiency. 

 

Once all of the keypoint extraction algorithms are considered, one can observe that state-

of-the art keypoint extraction methods, like Harris corner detection [2], SIFT [9] or Fast-

Hessian [12] are not appropriate for real-time applications due to their computational 

inefficiency. Instead of these methods, pixel intensity comparison based methods [5], [6], 

[8], [15] and [16] could be preferred to execute in real-time even in mobile devices. As a 

matter of fact, a pixel intensity comparison based method is proposed in this thesis and 

will be explained in detail in the next section.  

 

2.3. PROPOSED KEY POINT EXTRACTION METHOD 
 

In this work, a key point extraction algorithm, which borrows some ideas from the 

method in [15], is proposed and this algorithm is based on rapid elimination of non-corner 

points for speed up. Furthermore, there is no need to perform non-maxima suppression to 

locate key points.  

 

2.3.1.  Key point extraction using nested circles 
 

The proposed key point detection procedure is as follows: In order to test whether the 

point C is a corner, the pixels on the perimeter of the purple colored circle in Figure 9 is 

examined first. Any diametrically opposed neighbors, e. g. 1 and 1' in Figure 9, are 

compared in terms of brightness similarity with respect to the center pixel C.  
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Figure 9 Left: The illustration of the center pixel and nested circles. Right: The pseudo-code 
for the algorithm. 

 

 

 

Rule for the similarity condition of the diametrically opposed pixels comparing the center 

pixel is given by the following condition: 

 

(௣)ܫቚ ݂ܫ − ൫௣ାௗோക൯ቚܫ ≤  +߬  And  ݂ܫ ቚܫ(௣) − ൫௣ାௗோക൯ቚܫ ≤  +߬ 

 

where ߬ is a design threshold, as in FAST. If ߬ is selected to be a small value, then only a 

few points are detected; otherwise, the number of detected points increases. During in any 

test for the points on the perimeter, if the similarity condition is satisfied, then the point of 

interest is declared as non-interesting. 

 

If none of the two opposing perimeter points are similar to the center pixel, C, then this 

center point is further tested by the inner circles of the purple colored circle. In the 

following step, the next inner loop (yellow circle in Figure 9) is tested.  

 

If the yellow circle in Figure 9 also fails to determine a similarity of pixels at the end of 

this test, then the preceding inner blue circle is tested for the similarity of the 

diametrically opposed pixels against the center pixel, C. If this final test does not yield 

any two opposing perimeter points similar to C, then the point of interest is declared as an 

(2.8) 
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interest point. It should be emphasized that during any stages of the tests, if the opposing 

pixel pairs are similar to C at the same time, then the point is marked to be non-corner 

(see Figure 9).   

 

2.3.2.  Improving computational complexity 
 

In practice, there can be some redundancy during these nested tests, when a point is 

marked as non-corner in the early stages of these tests. For example, assume that the 

foreground is darker than background and the intensity difference between foreground 

and background is guaranteed to exceed the threshold T of the nested circle test (see 

Figure 9). The illustration of such an example is given in Figure 10 on the left. Blue part 

of the image space is assumed to be foreground of the image and the only corner point in 

this example is at point D, which is 3 pixels right from the center pixel C. Therefore, for 

such a condition as in Figure 10 on the left, if the center pixel C is tested and detected as 

non-corner in the outermost circle test, which is D-D' test, then it is guaranteed that the 

pixels A and B are also not corners. Hence, there is no need to perform any circle test to 

A and B points, since they are also non-corners. The elimination of testing pixels A and B 

(Figure 10 on the left) decreases the computational efficiency significantly.  

 

 

 

 
 

Figure 10 Left: The case when C is eliminated in Purple 5-5' test. Right: The case when C is eliminated 
in Yellow 4-4' test. 
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The computation time can be further decreased, when the center pixel is detected as non-

corner during the yellow circle test of nested circle (see Figure 9). A sample illustration 

of such a case is shown in Figure 10 on the right. Using the same idea, if the test is failed 

for the pixel C in B-B' test, then it is guaranteed that point-A is not a corner. This result is 

due to the fact that if it is tested, it should be eliminated during Blue 3-3’ (see Figure 9) 

test of nested circle.  

 

In order to increase the computational efficiency, the horizontal tests, which are Purple 5-

5', Yellow 4-4' and Blue 3-3' in Figure 9, should be applied initially to eliminate candidate 

non-corners at the beginning of the test for that center pixel, since the redundancy is 

exploited along the horizontal direction. 

 

2.3.3.  Multi-scale extension 
 

When there is a significant change on the scale of the scene, for better repeatability, there 

should be a multi-scale representation, which can also detect the same point in different 

scenes with various scales. Moreover, for a scale invariant description, a scale estimate is 

also required in most of the feature description algorithms that are scale invariant. Hence, 

a scale score should be computed in the proposed technique for description part. 

 

In this thesis, scale invariance is provided by using the idea of [16]. In their work, FAST 

corner detection algorithm [6] is utilized as the baseline feature detection. Scale 

invariance is accomplished by image pyramids and a detection score. The detection score 

being used is the metric utilized by FAST to suppress non-maxima points which is shown 

in Equation (2.2). 
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Figure 11 Scale-space interest point detection used in BRISK [16] 

 

 

 

First of all, an image pyramid that consists of octaves and intra-octaves is generated. Intra 

octaves are 1.5 times larger than or smaller than their neighboring octaves. After this 

procedure, FAST 9-16 detector is applied for each octave and intra-octave with the same 

threshold ߬. In our work, for the sake of simplicity and efficiency, no intra octaves are 

used. In [16], a curve fitting to the detected local maxima in scale and image space is 

applied. In the proposed algorithm, the localization procedure of the scale is not 

implemented. Finally, the detected points have also their scale information to be used in 

the description part of the work. 

 

In the next section; repeatability, localization error and matching score results are 

presented for the proposed approach and compared by some state-of-the-art algorithms. 
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2.4. RESULTS 
 

 There are mainly three performance metrics used for comparing the algorithms 

namely; repeatability, matching score and localization error. 

 

2.4.1. Repeatability 

 

Repeatability is measured according to a similar method in [17] and it is measured 

between two images by extracting features in both of them. After extraction, the points in 

one of the images are projected on top of the other image. A nearest neighbor, which is 

around a predefined distance threshold (3 pixels for our tests), is accepted as “repeated” 

in both images. The repeatability is calculated in the reverse direction as well and then 

their average is calculated to obtain the final repeatability percentage. In order to project a 

point in one of the image to the other one, one must know a priori or estimate the 

homography between two images, if the scene is assumed to be planar in both images. 

Datasets in [18], whose homography matrices are provided, is utilized during tests. In 

Table 1, properties of the datasets are given. There are 5 pairs in each of these types 

tabulated in Table 1. 

 

 
Table 1 Deformation types in datasets 

 

Dataset Name Deformation Type  

Bark  Zoom + Rotation Change  

Bikes  Blur Change  

Boat  Zoom + Rotation Change 

Graffiti  View Point Change  

Leuven  Light Change  

Wall  View Point Change  

Tree  Blur Change  
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In all of the illustrations, the x-axis shows the amount of deformation and as the number 

in this axis increases the amount of deformation increases. For instance; if the 

deformation type is view point change, then as the numbers in the x-axis increases, the 

view point change also increases. 

 

In the viewpoint change test the camera varies from a fronto-parallel view to one with 

significant foreshortening at approximately 60 degrees to the camera. The scale change 

and blur sequences are acquired by varying the camera zoom and focus respectively. The 

scale changes by about a factor of four. The light changes are introduced by varying the 

camera aperture. The x-axis in the experiments corresponds to the deformation strength in 

different deformation types. 

  

 

 

 
 

Figure 12  Repeatability for Bike dataset (deformation type: blur) 
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Figure 13  Repeatability for Trees dataset (deformation type: blur) 

  

 

 

 

 
 
 

Figure 14  Repeatability for Bark dataset (deformation type: rotation + scale) 
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Figure 15  Repeatability for Graffiti dataset (deformation type: affine) 

 

 

 

 
 

Figure 16 Repeatability for Leuven dataset (deformation type: illumination change) 
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Figure 17 Repeatability for Boat dataset (deformation type: rotation + scale) 

 

 

 

 
 

Figure 18 Repeatability for Wall dataset (deformation type: affine) 
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When the average repeatability results are compared

difference 

proposed detector without improvement. Hence, improvement on computational 

complexity can be preferred while sacrificing a slight performance in repeatability. 

Moreover, FAST 

Furthermore, multi scale implementation of proposed detector is also comparable with 

multi scale detection methods such as SURF 

 

2.4.2. 
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Figure 19 Average repeatability results

When the average repeatability results are compared

difference in repeatability performance between proposed detector with improvement and 

proposed detector without improvement. Hence, improvement on computational 

complexity can be preferred while sacrificing a slight performance in repeatability. 

Moreover, FAST [6] and proposed detector have similar performance in average. 

Furthermore, multi scale implementation of proposed detector is also comparable with 

scale detection methods such as SURF 

 Localization Error 

If a point is repeatable, it is obvious that the

image around the predefined distance threshold. The average 

correspondences is defined as localization error for the image pairs. 
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Average repeatability results 

When the average repeatability results are compared (see Figure 19), there is a slight 

in repeatability performance between proposed detector with improvement and 

proposed detector without improvement. Hence, improvement on computational 

complexity can be preferred while sacrificing a slight performance in repeatability. 

and proposed detector have similar performance in average. 

Furthermore, multi scale implementation of proposed detector is also comparable with 

scale detection methods such as SURF [12] and ORB [8].  

that the point is close to the point in the reference 

image around the predefined distance threshold. The average distance between 

localization error for the image pairs.  

Datasets

Average Repeatability Results

 

, there is a slight 

in repeatability performance between proposed detector with improvement and 

proposed detector without improvement. Hence, improvement on computational 

complexity can be preferred while sacrificing a slight performance in repeatability. 

and proposed detector have similar performance in average. 

Furthermore, multi scale implementation of proposed detector is also comparable with 

point is close to the point in the reference 

distance between 
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Figure 20 Localization error for Bark dataset (deformation type: rotation + scale) 

 

 

 

 
 

Figure 21 Localization error for Bike dataset (deformation type: blur) 
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Figure 22 Localization error for Graffiti dataset (deformation type: affine) 
 

 

 

 
 

Figure 23 Localization error for Boat dataset (deformation type: rotation + scale) 
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Figure 24 Localization error for Leuven dataset (deformation type: illumination change) 

 

 

 

 
 

Figure 25 Localization error for Trees dataset (deformation type: blur) 
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Figure 26 Localization error for Wall dataset

Figure 27 Avg. localization error
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Localization error for Wall dataset (deformation type: affine)
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Figure 27 shows the average localization error results in different datasets. As can be 

observed form this figure, it is clear that proposed detector has better localization 

performance than FAST [6] and SURF [12]. This is because of the basic idea behind the 

proposed detection method where the pixel intensity comparisons are utilized up to the 

nucleus pixel. 

 

2.4.3. Matching Score 

 

If a point is repeatable by taking one of the images as reference, then projection of itself 

and its neighbors are compared with the reference image by using NCC. Calculation is 

achieved in the reverse direction and the average gives the matching score for that 

particular image pairs. 

 

 

 
 

Figure 28 Matching score for Bark dataset (deformation type: rotation + scale) 
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Figure 29 Matching score for Bike dataset (deformation type: blur) 

 

 

 

 
 

Figure 30 Matching score for Boat dataset (deformation type: rotation + scale) 
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Figure 31 Matching score for Graffiti dataset (deformation type: affine) 

 

 

 

 
 

Figure 32 Matching score for Leuven dataset (deformation type: illumination) 
 

 

75

80

85

90

95

100

20 30 40 50 60

M
at

ch
in

g 
Sc

or
e

Pe
rc

en
ta

ge

viewpoint angle

GRAFFITI

FAST [6]

SURF [12]

Harris [2]

ZSP [14]

ORB [8]

Proposed (single scale)

75

80

85

90

95

100

2 3 4 5 6

M
at

ch
in

g 
Sc

or
e

Pe
rc

en
ta

ge

decreasing light

LEUVEN

FAST [2]

SURF [12]

Harris [2]

ZSP [14]

ORB [8]

Proposed (single scale)



 

 
 

34 
 
 

 

 
 

Figure 33 Matching score for Trees dataset (deformation type: blur) 

 

 

 

 
 

Figure 34 Matching score for Wall dataset (deformation type: affine) 
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2.4.4. Algorithm Specifications: 

 

In order to compare the algorithms, some open source implementations have been used. 

The source code of the detection algorithm used for SURF, which is Fast-Hessian, is 

obtained from OpenCV 2.3 with 4 octaves and threshold minimum Hessian score is 

adjusted to make the number of detected points close to the number of points detected in 

other algorithms. Harris Corner Detection is also implemented in OpenCV in multi-scales 

as well as ORB. Zero Shift Points blob detector is implemented in C++. The source code 

of FAST algorithm is also from OpenCV 2.3, which is not the machine learning 

approach, but FAST-9-16 version. The proposed algorithm is implemented using 

OpenCV image loading and matrix entry accessing functions. Hence, the code is not fully 

optimized, as FAST, and the source code can be improved to make the algorithm faster.  

 

It should be noted that, the proposed algorithm is executed on a webcam and a standard 

PC (2.8 GHz). A frame from the webcam with detected features is shown in Figure 35. 

 

Table 2 shows the execution times of the algorithms for C++ implementations. The 

computation times are calculated using an average computation time score out of all of 

the datasets and these computation times are calculated a few hundred times and 

averaged. 

 
Table 2 Execution times of the algorithms for 800x600 frames. For all of the compared algorithms, 

approximate number of detected points is kept around 1000. (In machine learning version of FAST, the 

computation time per a 768x288 frame is declared as 1.3 ms in case of the number of detected points is 

approximately 500 meaning that our implementation and FAST implementation have almost the same 

computation time). 

 

 Multi 

Scale 

Harris[2] 

Proposed 

(multi -

scale) 

Proposed 

(single scale) 
SURF[12] FAST[6] ZSP[14] 

Exec. Time 

per frame 

(ms) 

72.2 9.2 3.5 140.1 10.5 920.4 
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Figure 35 A sample capture from the webcam. The diameter of the circles represents the scale of the 
detected points. 

 

 

 

2.5. CONCLUSION 
 

In this work, state-of-the art interest point detection algorithms are compared as Speed Up 

Robust Features [12], ORB [8], Harris Corner Detector [2], Zero Shift Points [14], 

Features from Accelerated Segment Test [6] in terms of repeatability, localization error 

and matching score. Furthermore, a novel algorithm is also proposed. 

 

In order to discuss performance of the algorithms, the algorithms which are tested in 

multi scale have better performance than others as FAST, proposed detector and its speed 

up version in the datasets in which the deformation type is blur. When the mobile 

applications are considered, multi scale implementations should have more computational 
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complexity than the ones in single scale. However, the camera might have some blur 

effect. Therefore, a sense of scale should be included in an efficient way for the utilized 

algorithms. 

 

In the datasets Wall and Graffiti, which have the affine transformation, the proposed 

algorithm outperforms the best state-of-the-art methods in terms of repeatability, 

especially for the case with high changes in view point angle. The affine transformation 

rather than scale change is a crucial deformation for video sequences, if the pose of a 

camera is required to be calculated. Hence, the proposed method becomes advantageous 

for such a scenario. 

 

In case of rotation and scale changes, the proposed algorithm prevails in terms of the 

trade-off between computation complexity and repeatability performance. This result is 

also important in augmented reality applications, such that an object should be recognized 

to augment a reality on top of the given scene. When the light condition is considered, 

almost all of the algorithms perform in the same level in terms of repeatability. 

 

Once the localization error is analyzed, the proposed algorithm always performs better 

than FAST, while localization is also a crucial performance metric for pose estimation 

problems. 

 

Finally, the matching score is another performance evaluation criterion which represents 

how well the given point resembles its correspondence in the other view of the same 

scene. All of the corner detection algorithms performs almost same, while blob-detector 

methods have a slight decrease in performance. 

 

To conclude this chapter, the proposed algorithm can be used in mobile devices when the 

performances are considered, since there should be sufficient time to compute descriptors 

and match them in a video sequence in real-time. 
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CHAPTER 3 
 

 

LOCAL INTEREST POINT DESCRIPTION METHODS 

3. LOCAL INTEREST 

 POINT DESCRIPTION METHODS 
 

 

3.1. INTRODUCTION 
 

Local interest point description is crucial; it is a fundamental part of many computer 

vision applications, such as wide baseline matching, object tracking, object recognition, 

augmented reality, and camera calibration. In order to describe an interest point, there are 

many existing methods that focus on the interest point location and its predefined 

neighborhood. By using this region of interest, such points can be described and matched 

according to the descriptor extraction method.  

 

As technology in mobile devices has been improving sharply, the number of tasks that 

can be implemented in mobile devices is rising. Although these tasks are applicable in 

mobile world, the developers are aware of some restrictions related to resources, such as 

memory consumption or computation time. When these restrictions are taken into 

consideration, a local interest point descriptor should be computationally efficient and 

have less memory consumption.  

 

In the literature, there are many feature description algorithms that have high performance 

in terms of precision, such as SIFT [9], SURF [12] , GLOH [19] and DAISY [20]. In 

these algorithms, the common idea is computing the gradient information in a local patch 

in which floating point precision is required for representation of the local patches in 

terms of orientation gradients. Computations in floating point precision require relatively 

higher time during the calculation of the descriptor as well as its matching phase. In order 
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to avoid the floating point precision, floating point values are quantized so that there is 

zero or negligible loss in the performance [21], [22], [23]. Although such an approach is a 

promising idea to decrease the memory consumption and computation time in matching 

phase, calculation of those floating point numbers typically takes a long time with no 

possibility for real time implementations. 

 

Both computation time reduction and high performance in terms of precision can be 

achieved up to a scale by using binary descriptors. One of the earliest local binary 

descriptors is proposed in BRIEF [24]. In this work, the main idea is approximating 

gradient information, which is usually preferred for interest point description. Instead of 

approximating floating points after description of features, it is proposed in [24] that one 

might approximate or replace gradient calculation by brightness intensity comparisons. 

Concatenation of such binary comparisons results with a binary string. Using this 

approximation, description computation, memory consumption and the calculation of the 

distance between descriptors are all reduced significantly.  

 

3.2. RELATED WORK 
 

3.2.1. Distribution based and differential based descriptors 

 

Most of the popular local descriptors are based on calculation of histograms of a local 

patch to exploit different characteristics of the appearance or shape. In [25], Lazebnik et. 

al. propose a histogram based method in which  two dimensions of these histograms are 

based on distance from the center point and pixel intensities. Zabih et. al. use rank and 

census transform to distinguish local image pairs [26] in which those transforms are based 

on the comparison of the center pixel intensity to its neighbor pixels. One of the 

expressive representations for 3D object recognition was introduced by Johnson et. 

al.[38] to exploit the range data information. This representation makes use of the point 

locations in a 3D interest point. This idea is later extended for images by [39]. In this 

description method, the distances from the interest point and pixel intensities are used for 

two dimensions of histograms. Nevertheless, scale-invariance and rotation invariance are 

not provided by the aforementioned algorithms. 
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In Scale Invariant Feature Transform (SIFT) [9], a keypoint is described computing 

gradient magnitudes and orientation in the region of interest, as shown in Figure 36. The 

whole procedure is performed in the estimated scale of the detected SIFT point. These 

gradient magnitudes are then weighted by a Gaussian window; the blue circle in Figure 

36 indicates this window. Each of these gradient values is accumulated in orientation 

histograms (shown at right in Figure 36). The descriptor is generated by a vector 

containing the values of the orientation histogram entries, corresponding to occurrences 

of the arrows on the right side of Figure 36.   

 

 

 

 
 

Figure 36 Illustration of SIFT descriptor calculation using orientation gradients. 

 

 

 
Although SIFT [9], being rotation and scale invariant, is a very distinctive feature 

description technique, it is computationally quite inefficient to calculate all of the gradient 

information inside a local patch.  

 

Hence, some coarse techniques to approximate gradient calculation are also proposed to 

reduce computation time, as in SURF [12]. In this work, the first step is finding a 

dominant orientation and then aligning the local patch according to that orientation. The 

oriented patch is split up into subregions (squares). Subregions are then used to calculate 

the Haar wavelet response in horizontal and vertical direction by the help of integral 
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image method to decrease computational burden. Similar to SIFT, all of the calculations 

including dominant orientation and histogram calculations are performed in the selected 

scale of SURF interest point. SURF technique selects its interest points in scale-space. An 

illustration is shown in Figure 37. As it can be observed from Figure 37, homogenous 

regions and regions with high frequency can be distinguished by the help of magnitudes 

of Haar wavelets. As in [9], after representing subregions by Haar wavelet responses, the 

descriptor vector is formed using the response entries of each sub region.  

 

 

 

 
 

Figure 37 Illustration of SURF descriptor calculation. 

 

 

 
Although SURF requires less computation time compared to SIFT, Bay et. al. [12] also 

argue that SURF outperforms SIFT in most cases. Therefore; if computational complexity 

is not a significant issue for a specific application, SURF and SIFT should be preferred 

for local description. 

 

In GLOH [19], an extension of the SIFT descriptor is proposed to increase the robustness 

and distinctiveness of the descriptor. In this work, SIFT descriptor is computed in log 

polar grids instead of regular grids. In addition, the computed descriptor is also reduced 

by PCA. By modifying SIFT in these aspects; a slight improvement in the performances 

occurs. Nevertheless, the computational complexity is still a problem. 
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Following the exploitation of log-polar grid idea, Tola et. al. propose a local image 

descriptor [20] which is computationally efficient when it is compared to SIFT and 

SURF. In this work, the main idea is to sample some meaningful locations in a local 

patch and then utilize those points to calculate gradient and register this information into 

the descriptor. Such a sampling improves the performance quite significantly that state-

of-the-art SIFT is outperformed by DAISY for dense depth reconstruction. The 

illustration of the sampling pattern is given in Figure 38.  

 

 

 

 
 

Figure 38 Illustration of DAISY sampling pattern. 
 

 

 
In this figure, each circle represents a region whose radius is proportional to the standard 

deviation of the Gaussian kernels. The “+” signs are the sampling points and overlapping 

circular regions provides rotational robustness and smoothness. The gradients are 

calculated for the whole image space and their Gaussian filtered versions are saved for 

different variances. All of the calculated gradients of sampling point in different 

orientations are concatenated to extract the descriptor. 
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Takacs et. al.[44] propose a rotation invariant local feature description method based on 

the histogram of gradients. In this description method, gradient is calculated on a circular 

neighborhood of the interest point and these gradients are projected to a local radial 

coordinate system. This local radial coordinate system provides rotation invariance. After 

calculation of image gradients in different locations around the interest point, histograms 

of these gradients are constructed to represent the local interest point. Nevertheless, this 

method is not scale invariant and relatively less distinctive compared to SIFT, GLOH and 

DAISY.   

 

One of the methods for representation of images is use of spatial-frequency of images. 

For instance, Fourier transform disintegrates the image into basis functions. Nevertheless, 

in their survey for local descriptors, Mikolajczyk et. al. [42] state that it is difficult to 

make use of these representations due to the fact that spatial relations between points are 

not explicit and basis functions are infinite. However, Gabor transform [40] is able to 

solve these problems, although a large number of filters are required. Gabor and wavelet 

transforms [41] are good candidates for texture classification with high computational 

complexity.  

 

3.2.2. Intensity comparison based descriptors 

 

When the aforementioned distribution and differential based local descriptors are 

considered, none of them are applicable for real-time applications due to their 

computational complexity. Since the aim of this work is to execute in real-time 

applications even by mobile devices, more efficient methods, such as local binary 

descriptors, are more appropriate for the attacked problem in this thesis. In this part, local 

binary descriptors will be discussed. 

 

The earliest intensity based binary descriptor is proposed by Calonder et. al. [24]. In this 

work, approximation of gradient is used, instead of approximation of descriptors with 

floating point accuracy, since computation of floating numbers is still time-consuming. 

The formulation is as follows [24]: 

 

,࢖)߬   ,ݔ (ݕ = ቄ1  ݂݅ (ݔ)࢖ < (ݕ)࢖
݁ݏ݅ݓݎℎ݁ݐ݋           0

�    (3.1) 
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where τ represents a test on patch p of size S x S and p(x) is the pixel intensity in a 

smoothed version of p at location x = (u,v)T. This test is performed in nd different location 

pairs resulting in nd-dimensional binary string which can also be written [24] : 

 

(࢖)݂ = ∑ 2௜ିଵ
ଵழ௜ழ௡೏ ,࢖)߬ ௜ݔ ,  ௜)   (3.2)ݕ

 

In this binary descriptor (BRIEF), the main contributions are based on the observation 

that intensity comparison based binary descriptor can be used as a local descriptor and the 

comparison location pattern should be random. It is also claimed that the random patterns 

are useful than regular patterns. This hypothesis is supported by trying different patterns 

in the local patch. However; a regular or a deterministic pattern compared to the random 

ones is not sufficient to conclude that random patterns are more useful than the regular 

ones. This being the case, a more efficient (less number of comparisons) and legitimate 

binary pattern, which is deterministic, is proposed in this thesis. 

 

Before going further detail in regular patterns, it is also worth to discuss random binary 

descriptors which is inferred using variety of comparative results [8] .In ORB [8], the 

same idea of intensity comparison is used as in [24]. The advantage of ORB descriptor is 

that it is rotation invariant, since a dominant orientation is calculated and the tests are 

performed according to that orientation.    

 

For orientation calculation, Intensity Centroid method [27] is used in ORB. In this 

method, the first moments of an image is used, while these moments are defined as 

follows [27], 

 

   ݉௣௤ = ∑ ,ݔ)ܫ௤ݕ௣ݔ ௫,௬(ݕ     (3.3) 

 

By using these moments, the centroid is computed as, 

 

ܥ    = ቀ௠భబ
௠బబ

, ௠బభ
௠బబ

ቁ      (3.4) 

 

Using these moments, orientation of the patch can also be calculated as, 
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߆      = ,଴ଵ݉)2݊ܽݐܽ ݉ଵ଴)       (3.5) 

 

In (3.5), atan2(.) is quadrant –aware version of tangent inverse. In [8], it is also shown 

that Intensity Centroid method is more robust against noise than gradient based 

orientation calculations. For each interest point, the orientation is calculated by the 

method above. The orientation angle is used to project the sampling points for 

comparison tests to the dominant rotation. Therefore, there is no need to rotate the whole 

patch, since rotating sampling pattern is more efficient. The formulation of this technique 

[8] is given in (3.6) and (3.7). 

 

   ܵ =  ቀ௫ଵ,.,.,.,௫௡
௬ଵ,.,.,.,௬௡ቁ      (3.6) 

 

In (3.6), (xi, yi) represents test location pairs. By exploiting the orientation angle that is 

calculated previously, RΘ is generated. After this procedure SΘ is generated as follows, 

 

   ܵ௵ = ܴ௵ܵ      (3.7) 

 

SΘ in (3.7) is the rotated version of the binary pattern. For the sake of simplicity and 

reducing the computation time, angles are discretized by 2π/30 and a look up table is 

generated for fast computation. 

 

Moreover, they have learnt the intensity comparison which gives the closeness of the 

mean to 0.5. In other words; an ideal comparison result, which can be a ‘1’ or a ‘0’, 

should not have a mean close to ‘0’ or ‘1’. This means that this comparison almost always 

has the same value. This being the case, this comparison carries no information. 

Therefore; in ORB [8], the major claims about the sampling pattern are as follows: Each 

test should be independent from each other, a very high variance of binary comparisons 

should result and the mean of these comparisons should be approximately equal to 0.5. In 

order to select high quality intensity comparisons, learning is implemented to select the 

important comparisons out of 200K combinations. The selection procedure is as follows: 

They first choose 300K interest points detected by using FAST detector in multi-scale. 

All possible binary tests are enumerated drawn from 31x31 patches. The algorithm for 

constructing the ideal binary pattern is as follows: 
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1) Run each test against all training patches 

2) Put the test into an order according to their mean value (closest to 0.5), forming 

the vector T 

3) Greedy Search is applied as follows: 

 

a. Put the first test into the result vector R and remove it from T 

b. Take the next test from T, and compare it against all tests in R. If there is 

a correlation with any of the tests in R, eliminate it. Else add it to R.  

c. Repeat the tests until there are 256 tests in R. 

 

The resulting binary pattern that is obtained from training data is given in Figure 39. 

 

 

 

 
 

Figure 39 ORB binary pattern. Left: High variance under orientation. Right: Reduced Correlation. 
 

 

 
After the third procedure of the binary pattern construction, selected comparisons give 

different values from each other in the training dataset due to the decorrelation process.  

Figure 39 shows the uncorrelated tests on the right. As it can be observed from this 

figure, the pattern seems to be non-random and there is a majority of vertical tests on the 

patches. This observation is due to utilizing FAST corner detector and aligning it in the 

dominant orientation where corner point will be possibly showing up or bottom. Hence, it 

is intuitive that the maximum correlation is obtained as a result of vertical comparisons. 

However, the inference of the ORB pattern lacks the ground truth information. In the 
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learning procedure of ORB [8], there is no such information that the comparisons that 

have high variance or etc. are giving the same results in the true correspondences and 

different results in the false correspondences. Since this is not accomplished, the ORB is 

quite arguable as the best learnt binary pattern for local patch description. 

 

 

 
 

Figure 40 Binary pattern of BRISK 
 

 

 
Once the powerful pattern of DAISY and fast computation opportunity of BRIEF 

descriptor are considered, both of the methods are fused in Leutenegger’s work [16]. The 

proposed binary pattern, as well as the fundamental idea in BRISK, are illustrated in 

Figure 40. In this figure, there is a sampling pattern with N=60 points. The small blue 

circles represent the sampling locations. The larger red dashed circles denote standard 

deviation value of the Gaussian kernels. These kernels aggregate brightness intensity 

information in the sampling points. In other words, those sampling points are smoothed to 

be robust to noise. After this procedure, the binary combinations of sampling points 

constitute a set. The distant pairs are used to estimate the orientation of the patch. The 

short pairings are used to build up the binary descriptor using intensity comparisons as in 
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[24] and [8]. Although this seems to be an elegant idea to exploit both DAISY and ORB, 

the computation complexity is still above ORB descriptor due to aggregation of intensity 

values. 

 

 

 

3.3. PROPOSED LOCAL BINARY DESCRIPTOR 
 

When all of the state-of-the art local binary descriptors are considered, as well as quite 

distinctive SURF, DAISY algorithms, which make use of gradient information in the 

patch, it is worth experimenting a DAISY-type pattern and the first binary descriptor idea 

in [24]. 

 

To summarize, DAISY is exploiting a circular pattern for gradient histograms, which is 

more distinctive than sampling from rectangular grids. BRIEF is approximating the 

gradient calculation using intensity comparisons. In this work, it is proposed to 

approximate the DAISY-type descriptor using the idea of BRIEF.  

 

The binary sampling pattern is illustrated as in Figure 41.  
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Figure 41 Proposed binary pattern illustration. The end points of the lines constitute a comparison pair 

and the middle points of these lines are sampling points in the pattern. In proposed descriptor, there 
are four nested circles and the sampling points are chosen sparsely on the circles. (a) first nested circle 
(b) first and second nested circles (c) first, second and third nested circles (d) final descriptor pattern 

 

 

 
In DAISY [20], the orientation gradient histograms are calculated in the sampling pattern. 

In the proposed method, intensity comparisons are evaluated at sampling points in 8 

directions corresponding to 4 comparisons per sampling location. In Figure 41, the end 

points of the lines show the pixel locations to operate intensity comparisons. One of the 

main advantages of using such a configuration is that the orientation gradient histogram 

information is compressed in the diametrically opposed end point comparisons around the 

sampling points. Moreover, using such a circular overlapping grid provides rotational 

robustness. 

 

Through experimentation, it is argued that the proposed 128 bit descriptor has 

approximately the same performance as 256-bit ORB descriptor. Hence, the best 
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parameters are selected for the proposed 128 bit descriptor. The parameter tests and their 

results are explained in the experimental results part of the work. 

 

Parameter selection is performed by a distinctiveness criterion which measures the ratio 

of distinctive false and true descriptor pairs. Hence, the ground truth information, which 

is not used in ORB, is taken into account.  

 

Scale invariance of proposed local binary descriptor is satisfied by a similar idea of ORB 

[8]. For a given image, interest points are detected in multi scale and the number of 

detected points in a particular scale is determined proportional to the number of pixels in 

that image scale without eliminating keypoints in scale-space. Utilization of such a multi-

scale method has the advantage of computational complexity, since there is no need to 

calculate a score for scale-space elimination. Furthermore, the same points are detected in 

different scales. This case makes more likely to find the true correspondences by the same 

interest point in different scales. When scale-space elimination is used in the detection 

phase, the noisy nature of local binary descriptors might cause matching of the unique 

interest point in the selected scale to fail. 

 

 

3.4. EXPERIMENTAL RESULTS 
 

During the experiments, ORB and the proposed descriptor are compared in terms of 

distance histograms and precision recall curves. For the sake of fairness, the idea in ORB 

is used as follows: The detected points in multi-scale are ordered according to their Harris 

score. Moreover, ORB interest point detection is used in distance histograms for fair 

comparison of descriptors. In precision-recall curves, SURF, ORB and proposed 

descriptor versions are also compared in terms of their own detection methods. 

Definitions of inlier-outlier, distance histograms and precision-recall used in experiments 

are given below. 

 

Inlier/outlier: Let X1 є View1 and X2 є View2. Homography, H, between the images is 

provided as a ground truth. Projection of X1 on to View2 is X2’ = H X1. If there is a point 

X2 such that |X2’ - X2|< R , then point X1 and X2 are said to repeatable points, which 
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constitute inlier correspondence. If the condition is not satisfied, then that correspondence 

is said to be an outlier. 

 

Distance histogram: Distance histograms are used as a distinctiveness measure as in [24] 

and [8]. Interest points of two views for the same scene are described and matched (using 

brute-force-matching and Hamming distance). If a match is a true correspondence (inlier), 

then the distance between matched descriptors is added to the inlier distance histogram. 

Otherwise, it is accumulated in the outlier histogram. If the inlier and outlier histograms 

are well-separated and both have less variance, it indicates that the descriptor is a 

distinctive one. Therefore, distance histograms could be used as a distinctiveness 

measure. In this work, 256 bit proposed local binary descriptor and 256 bit ORB are 

compared in terms of distance histograms. 

 

Precision and Recall: Assume there are two images and the corner points previously 

detected on these images are described and matched. At the end of the matching 

procedure, let N denote number of correspondences. To use those correspondences for 

homography estimation, most of the correspondences should be correct. Therefore, there 

should be a distance threshold T, which ignores the correspondences by larger distance 

value than itself. Let Nthr denote the number of correspondences after thresholding. The 

true correspondences out of Nthr correspondences are denoted by Ntrue. Precision and recall 

formulas are given in (3.8) below. 

 

݊݋݅ݏ݅ܿ݁ݎܲ = ࢋ࢛࢚࢘ࡺ
࢘ࢎ࢚ࡺ

݈݈ܴܽܿ݁                 ࢊ࢔ࢇ                  = ࢋ࢛࢚࢘ࡺ
ࡺ

   (3.8) 

 

Precision and recall curves are plotted using different threshold values for ORB, SURF, 

proposed local binary descriptor and its different versions with different length. Proposed 

local binary descriptor has different bit length versions as 64 bit, 128 bit and 256 bit. 

 

Parameter selection of the proposed descriptor: As it can be seen from Figure 42, blue 

stars are the sampling points located on the circles. The radius differences between those 

circles are Ck’s and the pixel intensity comparisons are achieved in the diametrically 

opposed points of the comparison circles as illustrated with Rk radius. Hence, the best 

parameter search is performed by using our 128-bit proposed descriptor, since it performs 

slightly worse than its 256-bit version of the proposed descriptor. Moreover, the 
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parameters here are C1 and R1, and all Ck’s and Rk’s are fixed at R1 and C1, respectively. 

The reason for not varying Rk’s and Ck’s is that in the preliminary experiments it is 

observed that using different Rk’s or Ck’s does not improve the performance or slightly 

decrease the precision-recall rates.  

 

 

 
Figure 42 Parameters of the proposed descriptor. C1 is the distance of the circles and Rk’s are radius of 

the comparison circles. 

 

 
 
In order to compare the binary patterns with different parameters, distance histograms are 

utilized. The mean values (µ) and standard deviations (ơ) of the inliers and outliers are 

calculated. Fisher’s criterion in Equation (3.9) is used to analyze which of the patterns are 

most distinctive: 

 

ܬ   = |ஜభିஜమ|
ඥ ഑భమା ഑మమ     (3.9) 

 

In (3.9),  ଵand  ଶ are variances of inliers and outliers, respectively and µଵand µଶ are mean 

values of the inliers and outliers. If ܬ becomes maximum for a specific binary pattern, it 
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indicates that this binary pattern is the most distinctive one for the dataset under 

consideration. 

 

Dataset properties: The tests are performed on the datasets for which the homography 

between different viewpoints of the same scene are provided as ground truth, since the 

repeatability tests for feature detectors are fulfilled. As can be seen from Table 3, 

deformation types are given for different datasets with visual examples. 

 

 
Table 3 Dataset properties with visual examples. 

 

Dataset 

Name 
Deformation Type Visual Example 

Bark, Boat 
Zoom + Rotation 

Change 

Bikes, Tree Blur Change 

Graffiti, 

Wall 
View Point Change 

Leuven Light Change 
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Table 4 Fisher’s criterion results for different Rk and Ck parameters. The parameter combinations 
giving maximum Fisher’s score are shown in bold. 

 

 
 

 

Fisher’s criterion comparison results shows that dense sampling and shorter distance 

comparisons make the performance better. The optimum values are C1 =2 and R1 =2 for 

all of the datasets. In the remaining part of the thesis, Ck=3 and Rk=3 are used, since 

nearby comparisons might lead to a sensitivity to noise in real-time applications.   

 

 
Table 5 Fisher’s Criterion comparison of ORB [8] and the proposed pattern 

 

 BARK TREES LEUVEN GRAFFITI BOAT BIKES BARK 
Proposed 
(256 bit) 

0.74 0.87 1.12 0.44 0.60 1.08 0.46 

ORB [8] 0.68 0.80 1.09 0.60 0.57 1.02 0.34 
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As soon as the distance histogram comparisons between 256 bit proposed descriptor and 

256 bit ORB are analyzed (see Table 5), the proposed binary pattern has more separate 

histograms of inliers and outliers than those of ORB, since Fisher’s criterion scores are 

higher in the proposed pattern than ORB. The detailed visualization of these histograms is 

shown in Appendix A.  

 

The next experimental results present the recall-precision curves of the algorithms. 

In all of the curves, precision and recall percentages are normalized to 1.  

 

 

 

 
 

Figure 43 Recall-Precision Curves for Bark Dataset 
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Figure 44 Recall-Precision Curves for Bikes Dataset 
 

 

 

 
 

Figure 45 Recall-Precision Curves for Boat Dataset 
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Figure 46 Recall-Precision Curves for Graffiti Dataset 
 

 

 

 
 

Figure 47 Recall-Precision Curves for Leuven Dataset 
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Figure 48 Recall-Precision Curves for Trees Dataset 
 

 

 

 
 

Figure 49 Recall-Precision Curves for Wall Dataset 
 

 

As it can be observed from Figure 43 to Figure 49, the proposed binary pattern for 
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256 bit ORB does in terms of precision-recall curves. Hence, the proposed 128 bit 

descriptor is used in our real-time implementations, since it is easier to calculate when 

compared to 256 bit and 512 bit versions and has a slight performance decrease against 

256 bit and 512 bit versions. This being the case, it can be claimed that the proposed 

descriptor pattern saturates at the bit length of 128 approximately.  

 

When 1K keypoints are detected and their descriptors are extracted, description extraction 

time for 1K keypoints is computed as approximately 150 ms by the SURF algorithm. The 

parameters of SURF descriptor are selected as default in OpenCV implementation (4 

octaves and 2 layers). Description extraction time for 256 bit local binary descriptor is 

computed as approximately 20 ms for 1K keypoints. Once those computation times are 

compared, powerful computational efficiency of local binary descriptors arises and it is 

convenient to use local binary descriptors for real time applications.
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CHAPTER 4 
 

 

APPROIMATE NEAREST NEIGHBOUR FOR DESCRIPTOR 
MATCHING 

4. APPROXIMATE NEAREST NEIGHBOUR FOR 

DESCRIPTOR MATCHING 
 

 

4.1. INTRODUCTION 
 

In application areas, in which local feature descriptors are used, one of the main goals is 

matching descriptors of different views of the same scene. In order to match descriptors, 

the fundamental and ideal method is linear search since linear search finds the closest 

descriptor in the descriptor database to the query descriptor.  

 

Assume there is N number of d-dimensional descriptors in the system database. A query 

vector q asks the nearest descriptor out of N descriptors in the d-dimensional descriptor 

space. Linear search is the exact answer to find the nearest vector to query descriptor out 

of the descriptors in the system database and it can be defined as computing the distance 

from the query point to every point in the database. This has a computational complexity 

O(Nd) where N and d are number of descriptor vectors in the database and the dimension, 

respectively.  

 

Linear search does not seem to be feasible for large database applications and the cases in 

which higher dimensional descriptor vectors are used. Dimensionality reduction is one of 

the methods to decrease computation time of linear search. Nevertheless, this is not 

appropriate for the problem in this thesis, since binary descriptors are required for real-

time application of the problem and dimensions of binary vectors cannot be reduced. 

Moreover, use of descriptors which are not binary vectors is computationally inefficient. 
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At that point, approximate nearest neighbor search can be accepted as a solution to 

decrease the computation time of search. Definition of nearest neighbor search and 

approximate nearest neighbor search are given as follows: 

 

   ܺ∗ = ݃ݎܽ min
௑∈஽ಿ

,ܺ)࢖  (4.1)     (ݍ

 

where ܦே =  { ଵܺ, ܺଶ … ܺே, } is a set of descriptors in the dataset, ܺ∗is the nearest 

neighbor to ݍ and ࢖ is the distance metric for the descriptor space. 

 

൫࢖   ஺ܺேே,ݍ൯ < (1 + ,∗ܺ)࢖ (∆  (4.2)    (ݍ

 

where  ∆ stands for any positive real number and ஺ܺேே is the approximate nearest 

neighbor to ݍ. 

 

Hamming distance can be used in binary space for approximate nearest neighbor search. 

For binary descriptors, Hamming distance between vectors x and y is equal to number of 

ones in x XOR y. 

 

State-of-the-art approximate nearest neighbor search is discussed in the related work part. 

 

4.2. RELATED WORK AND PROPOSED METHOD 
 

There are many indexing methods for approximate nearest neighbor problem. 

Nevertheless, many of them are not appropriate for binary vectors. In the literature, there 

are many state-of-the-art algorithms which are feasible for higher dimensional spaces.  

 

Locality sensitive hashing [28] is one of the methods for approximate nearest neighbor. 

This algorithm is based on projection of vectors onto a space with a smaller dimension. 

This projection is achieved by using random coordinates of the descriptor space and the 

projected vectors are used to form buckets of projections with different coordinate values. 

As those buckets are constructed, approximate nearest neighbor can be obtained by using 

nearest neighbor search in these buckets. 
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There is also another approach, namely K-D trees, to approximate nearest neighbor 

search. In [29], K-D trees method is proposed as a generalization of a binary tree to high 

dimensional spaces. Afterwards, its modified versions [30] and [31] are also proposed to 

optimize the order of the coordinates. The idea behind K-D trees is that the database is 

clustered hierarchically according to the coordinates of the descriptors. The descriptors in 

the database are classified into two clusters in each stage of the hierarchical classification 

according to the value in one of the coordinates of the vector. In other words, the data is 

split into two halves by a hyperplane orthogonal to a selected dimension. At the end of 

this procedure, the descriptors in the database are kept in the leaves of this tree. Once the 

vector with minimum distance to the query vector is required to be searched out of the 

database, the query vector is matched by the constructed tree. There is also a K-D trees 

algorithm using multiple K-D trees [32], in which the order of the coordinates is selected 

randomly. Nevertheless, the computational complexity of this kind of algorithms 

increases, as the dimension of the descriptor space is enlarged.  

 

Another tree-based approach to approximate nearest neighbor problem is hierarchical k-

means [33], [34]. In this approach, an initial k-means clustering is performed on the 

training data where the number of clusters is k. After this initial approach is performed, 

the data is split into k clusters, where each cluster consists of the descriptor vectors 

closest to a particular cluster center. The same process is then recursively applied to each 

of the clusters. The algorithm is stopped, when there is l number of levels in the 

hierarchy. Finally, a tree with l levels is constructed. In the search part, a query vector is 

propagated down the tree by comparing the query vector to the k cluster centers and 

choosing the nearest one. There are also other tree based hierarchical methods, such as 

vantage-point trees [35] or spill trees [36].  

 

In [37], Trzcinski et. al. analyzed a number of methods in the literature related to 

approximate nearest neighbor search. Moreover, they also proposed a method, called 

Parc-Trees, in which multiple random trees are used. The Parc-Trees algorithm is given 

below: 

 

 S : set of descriptors  

I. Choose k random samples out of S 

II. Partition S into  k subsets  according to the nearest samples 
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III. Repeat the same procedure until the number of elements in the subset is less than 

k. 

 

This algorithm gives one random tree result. In Parc-Trees, multiple random trees are 

generated. In the search phase, a query vector is propagated downward along all the trees 

and the best result is selected as approximate nearest neighbor.  

 

In [37], k-d trees, vantage point trees, locality sensitive hashing, hierarchical k-means 

algorithms are compared against Parc-Trees algorithm. Comparative results all of the 

algorithms, except Parc-Trees, yields undesired performance in binary spaces. For k-d 

trees method, the performance is quite sensitive to noise, since the data is split according 

to one dimension and the error in that dimension of the query vector affects the 

performance significantly. The reason for hierarchical k-means and vantage point trees 

fail in binary space is that there are many equidistant vectors to two random points. Such 

a thick boundary problem in binary space causes most of the algorithms to fail. In order to 

overcome this disadvantage of binary space, Parc-Trees method prefers using multiple 

random trees. Using multiple trees seems to compensate for the false decisions of another 

tree or trees.  

 

Another important consideration is that use of a single unique tree is disadvantageous, 

even if many nodes are visited during the search algorithm. Suppose each search result in 

a tree is independent from each other and it has a failure probability of ݌௘. Searching 

independently n times should decrease the probability to ݌௘
௡ . This should be straight line 

in the logarithmic scale. In [32], a study on the probability error versus maximum number 

of searched nodes is performed. The resulting graph is shown in Figure 50. 
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Figure 50 Priority search result for error and the ideal error decrease [32]. 

 

 

 
As it can be observed from Figure 50, priority search is not close for representing the 

independent searches. This being the case, one can claim that usage of one tree with 

multiple searches does not improve the performance of the approximate nearest neighbor 

search results, since the searches are not independent from each other. Therefore, use of 

multiple random trees prevails and is another reason for Parc-Trees giving promising 

results. 

 

In order to handle the uncertainty in the thick boundaries of the binary space, a loose 

criterion is used in some methods, such as [33], [35] and [37]. In [36], a loose criterion is 

used while constructing a hierarchical binary tree. Assume C1 and C2 are two centroids 

of the data space. Those centroids are selected among the data set as the most distant 

centroids. As it can be observed from Figure 51, the middle point of these centroids, M is 

obtained. By using an overlapping distance threshold t, the data space is split into two 

subparts. The region between L and R lines in Figure 51 is the region of points all of 

which are sent to both of the subparts of the data space. The crucial point in this 

partitioning is overlapping size t. If t is not selected small enough, the construction of tree 

may not terminate due to the result that the subparts may be equal to the parent part, if the 

overlapping size is high enough. Since the partitioning of the data is performed 

hierarchically, the overlapping size t should be shrunk as the space, which the subparts 
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fill, gets smaller. Since the space of the subparts cannot be calculated during tree 

construction and optimum overlapping size may change according to dataset type, the 

method in [36] avoids this problem by a hybrid tree. If overlapping sub-region idea does 

not change partitioning significantly, then the non-overlapping classical nearest neighbor 

partitioning is used. By controlling the overlapping partitioning and the overlapping size 

in a reasonable range, the termination of the tree construction is prohibited. To sum up, 

Spill Trees [36] is a modified version of hierarchical k-means algorithm using a 

branching factor 2, since binary trees are used. 

 

In this work, some advantageous parts of the algorithms are merged. The proposed 

approximate nearest neighbor is a modified version of Parc-Trees algorithm following 

the idea of spill trees [36]. 

 

In the proposed method, the data is split into k according to k centroids C1, C2… Ck, that 

are selected randomly. For the sake of simplicity assume k is two and centroids are C1 

and C2. In classical hierarchical K-means, if the distance of the vector W shown in Figure 

51 to C1 is smaller than the distance of that vector to C2, the vector W will go to the 

group of centroid C1. Let d1 = p(C1,W) and d2 = p(C2,W), while  p is the distance metric 

and W is the vector to be grouped in the database. If max (d1, d2) < α*min (d1, d2), then 

the vector W is sent to both of the groups of C1 and C2. Here parameter α is a predefined 

threshold for learning stage. This loose criterion makes the approximate nearest neighbor 

more accurate, since the vectors in the approximately equidistant boundaries of the 

centroids are clustered into both of the groups. This means that within the loose criterion, 

there cannot be a search propagating in the wrong direction due to those thick boundaries. 

 

In both the proposed algorithm and Parc-Trees, multiple random trees are generated to 

perform approximate nearest neighbor. In the construction stage, the centroids to cluster 

the database are selected randomly. After that procedure, the database is clustered 

according to the nearest centroids. Unlike Parc-Trees, the clustering of the database is 

achieved according to the loose criterion similar to [36]. Spill trees [36] uses a unique 

binary tree whereas the proposed algorithm is using multiple random trees and does not 

have to be binary. The other difference is that proposed algorithm selects centroids 

randomly, while spill trees choose the farthest pairs as centroid vectors. This is not 

feasible in our case, since the proposed method is a modified version of Parc Trees 
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algorithm, where the branching factor does not have to be two. Another advantage of this 

proposed algorithm is that its learning stage is fast enough, since there is no need to 

consider about random centroid selection. Furthermore, by exploiting the loose criterion 

in spill trees, the thick boundary problem is handled better than Parc-Trees does since the 

descriptors which are in the boundaries of the clusters are accepted as members of both of 

the clusters. Therefore, a query vector near a cluster boundary will go to the both of the 

clusters due to the fuzzy decision tree structure. 

 

The computational complexity of the proposed system is approximately ܱ(ܓ ܌ log࢑  (ࡺ

where d is dimension, k is branching factor and N is the number of vectors in the 

database. This is valid, of course, if the tree is dividing the database in a balanced way. 

 

 
 

Figure 51 Illustration of 2 dimensional descriptor space. C1 and C2 are centroids and W is the data 
point to be classified into buckets of C1 and/or C2. 

 

 

 

4.3. EXPERIMENTAL RESULTS 
 

Performance of the proposed approximate nearest neighbor is compared with Parc-Trees 

algorithm [37] since it is proven in that work that Parc-Trees has better performance than 

K-D trees, vantage point tree and hierarchical k-means approach in terms of precision 

versus computation time curves. In our experiments, three types of experiments are 
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conducted, as Precision-Recall Curves, Precision-Computation time curves for different 

number of trees and Precision-Computation time curves for different number of 

branching factors. In all of these experiments, the proposed 128 bit local binary descriptor 

and the proposed corner detector is used in multi-scales. Moreover, the idea of Harris 

Score ordering in ORB is also used due to the powerful repeatability results of ORB 

corner detector. The parameter for loose criterion α is chosen as 1.1, since in the datasets 

used in experiments, the value 1.1 is small enough to terminate the construction of tree.  

 

4.3.1. Precision-Recall Curves 

 

To plot precision –recall curves, a distance threshold Thr is used. Approximately 1K 

points are matched to 1K points in different datasets where different views of the same 

scene are given [18]. Brute-force-matching result (linear search) is used as ground truth 

which indicates the correspondences with minimum distance performing an exhaustive 

search. Assume there are N number of correspondences. Correspondences by a Hamming   

distance under Thr are selected and number of thresholded correspondences is denoted by 

Nthr. The true correspondences out of thresholded correspondences are extracted using 

ground truth correspondences of brute-force-matching. Number of true correspondences 

is denoted by Ntrue. Precision and recall definitions for our experiments are given below. 

 

࢔࢕࢏࢙࢏ࢉࢋ࢘࢖    =  (4.3)    ࢘ࢎ࢚ࡺ/ࢋ࢛࢚࢘ࡺ

 

࢒࢒ࢇࢉࢋ࢘     =   (4.4)                         ࡺ/ ࢋ࢛࢚࢘ࡺ

In precision-recall graphs, precision and recall percentages are normalized to 1. 

 

The curves of precision versus recall are plotted using different thresholds. 
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Figure 52 Precision vs recall curve for Bark Dataset 

 

 

 

 
 

Figure 53 Precision vs recall curve for Bike Dataset 
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Figure 54 Precision vs recall curve for Boat Dataset 
 

 

 

 
 

Figure 55 Precision vs recall curve for Graffiti Dataset 
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Figure 56 Precision vs recall curve for Leuven Dataset 
 

 

 

 
 

Figure 57 Precision vs recall curve for Trees Dataset 
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Figure 58 Precision vs recall curve for Wall Dataset 
 

 

 

Figure 52 to Figure 58 are precision-recall results of the proposed (denoted as Modified 

Parc Trees in the legend) algorithm and original Parc-Trees algorithm for different 

number of trees. Proposed algorithm with a single tree has almost equal performance with 

original Parc-Trees algorithm. Proposed algorithm with 1 tree has a computational 

burden which is half of the original Parc-Trees algorithm approximately. Although the 

proposed algorithm with 1 tree is expected to have quarter computation time of the 

original Parc-Trees algorithm with 4 trees, it is half, since the number of levels in the 

trees in the proposed algorithm has number of levels as twice as original Parc-Trees 

algorithm. These results can further be observed from precision-computation time curves. 
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4.3.2. Precision-Computation time curves for different number of trees 

 

For precision – computation time curves, the same definition of the precision is used in 

section 4.3.1. The time is calculated using the clocks of the computer. The computation 

time is calculated using the clocks of the computer and all of the computations are 

calculated using 1K training and 1K test vectors. The curves are plotted for different 

threshold values. This means that the selected threshold value eliminates correspondences 

with Hamming distances higher than that value. After this elimination, the precision 

values are calculated for correct matches out of the correspondences thresholded. In these 

curves, Precision percentage values are normalized to 1.  

 

 

 

 
 

Figure 59 Precision-comp. time curve for Bark Dataset (complexity type: # of trees) 
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Figure 60 Precision-comp. time curve for Bikes Dataset (complexity type: # of trees) 
 

 

 

 
 

Figure 61 Precision-comp. time curve for Boat Dataset (complexity type: # of trees) 
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Figure 62 Precision-comp. time curve for Graffiti Dataset (complexity type: # of trees) 
 

 

 

 
Figure 63 Precision-comp. time curve for Leuven Dataset (complexity type: # of trees) 

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

GRAFFITI Dataset: Precision-Computation tİme curve

Computational Complexity : # of trees

Original  Parc Trees (thr:35)
Modified Parc Trees (thr:65)
Modified Parc Trees (thr:50)
Modified Parc Trees (thr:35)
Original Parc Trees (thr:65)
Original Parc Trees (thr:50)

Computation Time (ms)

P
re

ci
si

on

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LEUVEN Dataset: Precision-Computation tİme curve

Computational Complexity : # of trees

Original  Parc Trees (thr:35)
Modified Parc Trees (thr:65)
Modified Parc Trees (thr:50)
Modified Parc Trees (thr:35)
Original Parc Trees (thr:65)
Original Parc Trees (thr:50)

Computation Time (ms)

P
re

ci
si

on



 

 
 

75 
 
 

 

 
Figure 64 Precision-comp. time curve for Trees Dataset (complexity type: # of trees) 

 

 

 

 
Figure 65 Precision-comp. time curve for Wall Dataset (complexity type: # of trees) 

 

 

 

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TREES Dataset : Precision-Computation tİme curve

Computational Complexity : # of trees

Original  Parc Trees (thr:35)
Modified Parc Trees (thr:65)
Modified Parc Trees (thr:50)
Modified Parc Trees (thr:35)
Original Parc Trees (thr:65)
Original Parc Trees (thr:50)

Computation Time (ms)

P
re

ci
si

on

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

WALL Dataset: Precision-Computation tİme curve

Computational Complexity : # of trees

Original  Parc Trees (thr:35)
Modified Parc Trees (thr:65)
Modified Parc Trees (thr:50)
Modified Parc Trees (thr:35)
Original Parc Trees (thr:65)
Original Parc Trees (thr:50)

Computation Time (ms)

P
re

ci
si

on



 

 
 

76 
 
 

 

As it can be seen from Figure 59 to Figure 65, the proposed matching method performs 

better than Parc-Trees algorithm and using less number of trees than Parc-Trees 

algorithm, the proposed algorithm matches descriptor vectors in high precision. 

 

4.3.3. Precision-Computation time curves for different branching factors 

 

For precision – computation time curves, the same definition of the precision is used in 

section 4.3.1. The time is calculated using the clocks of the computer. The curves are 

plotted for different threshold values. The trade-off for computational complexity is here 

branching factor k since computation time increases as the branching factor increases. 

As it is stated in the previous section, precision percentage values are normalized to 1. 

 

 

 

 
Figure 66 Precision-comp. time curve for Bark Dataset (complexity type: branching factor) 
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Figure 67 Precision-comp. time curve for Bikes Dataset (complexity type: branching factor) 

 

 

 

 
Figure 68 Precision-comp. time curve for Boat Dataset (complexity type: branching factor) 

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BIKES Dataset: Precision-Computation tİme curve

Computational Complexity : Branching factor

Original  Parc Trees (thr:40)
Modified Parc Trees (thr:60)
Modified Parc Trees (thr:50)
Modified Parc Trees (thr:40)
Original Parc Trees (thr:60)
Original Parc Trees (thr:50)

Computation Time (ms)

P
re

ci
si

on

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

BOAT Dataset: Precision-Computation tİme curve

Computational Complexity: Branching Factor

Original  Parc Trees (thr:40)
Modified Parc Trees (thr:60)
Modified Parc Trees (thr:50)
Modified Parc Trees (thr:40)
Original Parc Trees (thr:60)
Original Parc Trees (thr:50)

Computation Time (ms)

P
re

ci
si

on



 

 
 

78 
 
 

 

 
Figure 69 Precision-comp. time curve for Graffiti Dataset (complexity type: branching factor) 

 

 

 

 
Figure 70 Precision-comp. time curve for Leuven Dataset (complexity type: branching factor) 
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Figure 71 Precision-comp. time curve for Trees Dataset (complexity type: branching factor) 

 

 

 

 
Figure 72 Precision-comp. time curve for Wall Dataset (complexity type: branching factor) 

 

 

 
From Figure 66 to Figure 72, precision-computation time curves for different branching 
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better precision by using less number of branching factor, compared to Parc-Trees 

algorithm. 

 

4.4. CONCLUSION 
 

When all of the experiments for different conditions are considered, the proposed method 

is able to beat Parc-Trees algorithm performance. Although the proposed method is 

random as Parc-Trees algorithm, proposed method outperforms Parc-Trees even using a 

single tree, since it is able to handle thick boundary problem in binary space. For real-

time applications, the proposed matching algorithm can run approximately in 2 ms 

satisfying the conditions for estimating homography between two planar views, when 

there are 1K points in reference image and 300 points in the query image. 

 

 

 

 
 

Figure 73 Two sample frames shows the matching results of the keypoints 
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Figure 74 Mobile application using an Android tablet PC 
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CHAPTER 5 
 

 

CONCLUSIONS, DISCUSSIONS AND FUTURE WORK 
5. CONCLUSIONS, DISCUSSION AND FUTURE WORK 
 

 

 

In this thesis, important problems of Computer Vision; namely, local feature detection, 

local feature description, and methods for matching descriptors for real-time 

implementations have been analyzed and new methods have been proposed for those 

problems. Although the problems analyzed in this thesis are well-known and various 

solutions exist, the main focus in this thesis is to observe and analyze the trade-off 

between computational efficiency and accuracy of the algorithms for real-time 

implementations.  

 

Once the literature is considered in terms of efficient corner detection methods, the 

proposed corner detection algorithm in this thesis is a promising candidate for real-time 

applications, since it has a competitive repeatability performance and an efficient 

computation complexity.  

 

In FAST [6], the average number of comparisons per pixel is stated as 2.26. Although, 

number of comparisons depends on the texture of the scene, the proposed key point 

detection method performs a minimum of 0.5 and a maximum of 2.2 comparisons per 

pixel in average in the datasets used in the experiments. This means that most of the time 

the proposed key point extraction algorithm is more efficient that FAST. Therefore, if the 

necessary optimizations are fulfilled in the source code of the proposed algorithm, it is 

clear that the proposed key point extraction method will be less time consuming than 

FAST.  
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View point change is one of the frequent conditions for AR applications for planar 

scenes. When the deformation conditions for repeatability experiments are considered, 

the proposed key point extraction method outperforms FAST in the datasets where 

deformation type is viewpoint change. Hence, the proposed method is proven to be 

advantageous for AR applications of planar scenes. 

 

One of the important performance metrics for pose estimation, which is required for AR 

applications, is localization error. The proposed method has less localization error than 

FAST in all of the experimental dataset due to the nature of the proposed method. 

Therefore, one should use the proposed extraction method if the localization error is 

required to be as small as possible.    

 

Local feature description is another important problem for vision research, since it is 

proven to be successful in various vision applications. As this work pays attention to 

computational efficiency of local descriptor, local binary comparison idea is embraced 

due to its computational efficiency.  

 

The proposed local binary pattern clearly outperforms ORB [8] binary pattern in most 

cases in terms of distinctiveness. This being the case, precision-recall curves of the 

proposed binary pattern reveals better results than ORB. The proposed 256 bit descriptor 

results in higher precision rates within the same recall rates or vice versa. This result also 

shows that regular patterns may be more distinctive than random binary patterns. This is 

because of the fact that ORB pattern is learnt without using the ground truth information 

in which true correspondences gives the same result and false correspondences gives 

different result for a specific comparison test. Therefore, a further study on local binary 

description should be determining the optimum binary pattern as a future work. The 

literature lacks this research, since there is no algorithm which can learn the best binary 

descriptor pattern by using the ground truth information of local correspondences.  

 

Moreover, multi-thread implementations of the descriptor algorithms can be preferred if 

there are more than one processor. If multi-thread option is available, then different color 

channels can be utilized for local description such that local description can be performed 

in each channel separately and fused to have the appropriate descriptor matches. 

 



 

 
 

84 
 
 

 

Approximate nearest neighbor search is an old research area, where there are many 

improvements and methods to solve approximate nearest neighbor problem. Nevertheless, 

construction of an approximate nearest neighbor search algorithm requires high 

computational efficiency especially in large database applications and when the number 

of dimensions is relatively high. In order to avoid these drawbacks, methods using 

multiple random trees are feasible for efficiency if the algorithms are expected to run in 

mobile devices. Therefore, an approximate nearest neighbor search method based on 

multiple random trees is proposed in this thesis. Moreover, it is proven that fuzzy 

decisions in the construction of the decision tree improve performance significantly.  

 

In the implementation phase, high precision rates should be guaranteed to have sufficient 

correspondences between two scenes. Hence, low recall rates with high precision are 

acceptable for augmented reality applications for planar scenes. Once the precision-recall 

and precision-computation time curves are analyzed, the proposed algorithm outperforms 

Parc-Trees [37] significantly that the precision values in the proposed method becomes 

1.5 times greater than in Parc-Trees within the same computation time or the same recall 

rates. Therefore, the proposed idea prevails for augmented reality implementations in 

real-time. 

 

Taking computational efficiency and real-world conditions into account, a feature 

detection and matching system has been built to be implemented in mobile devices. 

Moreover; in the AR implementation of the system, Harris score ordering idea in ORB is 

adapted to the system due to its prevailing performance in terms of repeatability. This 

overall system has been tested in real-world data, which is a webcam with a resolution of 

480x640. Using 1K keypoints for target/reference image and 300 keypoints for test 

frame, the keypoint detection, keypoint description using 256 bit binary descriptors and 

the proposed matching method with 3 trees take 15 ms in a 2.8 GHz desktop PC. A 

sample illustration is shown in Figure 73. This figure shows the matching result of 

reference image and test frame. In addition, homography between two planar surfaces are 

calculated and the bounding box of the reference image is drawn in the test image using 

this homography matrix.  

 

Moreover, an Android application [45] has also been implemented for this system in a 1.2 

GHz (Tegra 3 Quad core) tablet PC. The computation time of three phases (detection, 
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description and matching) in the tablet PC is approximately 150 ms. The captured frame 

for this application is shown in Figure 74. 

 

According to the real world experiments in desktop and tablet PC’s, one can say that the 

proposed methods perform promisingly in terms of efficiency and accuracy. This being 

the case, overall system can be used in real-time implementations especially in 

Augmented Reality, pose estimation, object recognition, object tracking. 
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APPENDICES 

7. APPENDICES 
 
 

7.1.  APPENDIX A 
 

In this Appendix, distance histogram illustration of inliers and outliers for proposed 256 
bit binary pattern and ORB are shown. 

 

 

 

Figure 75 Distance histograms of Bark Dataset for proposed descriptor (256 bit) 
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Figure 76 Distance histograms of Bark Dataset for ORB descriptor (256 bit) 

 

 

 

 
Figure 77 Distance histograms of Bikes Dataset for proposed descriptor (256 bit) 
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Figure 78 Distance histograms of Bikes Dataset for ORB descriptor (256 bit) 

 

 

 

 
Figure 79 Distance histograms of Boat Dataset for proposed descriptor (256 bit) 
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Figure 80 Distance histograms of Boat Dataset for ORB descriptor (256 bit) 

 

 

 

 
Figure 81 Distance histograms of Graffiti Dataset for proposed descriptor (256 bit) 
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Figure 82 Distance histograms of Graffiti Dataset for ORB descriptor (256 bit) 

 

 

 

 
Figure 83 Distance histograms of Leuven Dataset for proposed descriptor (256 bit) 

 
 
 
 

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100

103
106

109
112

115
118

121
124

127
130

133
136

139
142

145
148

151
154

157
160

163
166

169
172

175
178

181
184

187
190

193
196

199
202

205
208

211
214

217
220

223
226

229
232

235
238

241
244

247
250

253
256

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

GRAFFITI Dataset: Distance Histograms of 256 bit ORB Descriptor

inliers (mean=103.8, dev=32.4)

outliers (mean=127.0, dev=20.7)

hamming distances

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100

103
106

109
112

115
118

121
124

127
130

133
136

139
142

145
148

151
154

157
160

163
166

169
172

175
178

181
184

187
190

193
196

199
202

205
208

211
214

217
220

223
226

229
232

235
238

241
244

247
250

253
256

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

LEUVEN Dataset: Distance Histograms of 256 bit Proposed Descriptor

inliers (mean=64.3, dev=35.6)

outliers (mean=113.5, dev=25.6)

hamming distances



 

 
 

98 
 
 

 

 
Figure 84 Distance histograms of Leuven Dataset for ORB descriptor (256 bit) 

 

 

 

 
Figure 85 Distance histograms of Trees Dataset for proposed descriptor (256 bit) 
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Figure 86 Distance histograms of Trees Dataset for ORB descriptor (256 bit) 

 

 

 

 
Figure 87 Distance histograms of Wall Dataset for proposed descriptor (256 bit) 
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Figure 88 Distance histograms of Wall Dataset for ORB descriptor (256 bit) 
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