
1

ALGORITHMS FOR THE WEAPON - TARGET ALLOCATION PROBLEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYŞE TURAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JULY 2012

Approval of the thesis:

ALGORITHMS FOR THE WEAPON - TARGET ALLOCATION

PROBLEM

submitted by AYŞE TURAN in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Adnan Yazıcı
Supervisor, Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün
Co-supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. İ. Hakkı Toroslu
Computer Engineering Dept., METU

Prof. Dr. Adnan Yazıcı
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

Asst. Prof. Dr. Selim Temizer
Computer Engineering Dept., METU

Lead Software Design Eng. Dilek Arslan
Software Engineering Dept., ASELSAN INC.

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: AYŞE TURAN

Signature :

iii

ABSTRACT

ALGORITHMS FOR THE WEAPON - TARGET ALLOCATION PROBLEM

Turan, Ayşe

M.Sc., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

Co-Supervisor : Assoc. Prof. Dr. Halit Oğuztüzün

July 2012, 119 pages

Within the air defense domain, the Weapon-Target Allocation problem is a

fundamental problem. This problem deals with the allocation of a set of firing

units or weapons to a set of hostile targets so that the total expected effect on

targets is maximized. The Weapon-Target Allocation problem has been proven

to be NP-Complete by Lloyd and Witsenhausen [14].

In this thesis, the use of various algorithms including search algorithms, max-

imum marginal return algorithms, evolutionary algorithms and bipartite graph

matching algorithms are demonstrated to solve the problem. Algorithms from

the literature are adjusted to the problem and implemented. In addition, ex-

isting algorithms are improved by taking care of the maximum allowed time

criterion. A testbed is developed to be able to compare the algorithms. The

developed testbed allows users to implement new algorithms and compare the

algorithms that are selected by the users easily. Using the testbed, implemented

algorithms are compared based on optimality and performance criteria. The

results are examined and by combining the algorithms that give better results, a

iv

new algorithm is proposed to solve the problem more efficiently. The proposed

algorithm is also compared to the other algorithms and computational results

of the algorithms are presented.

Keywords: Weapon-Target Allocation, Assignment, Air Defense, Optimization,

Performance Evaluation

v

ÖZ

SİLAHLARIN HEDEFLERE TAHSİSİ PROBLEMİNE YÖNELİK
ALGORİTMALAR

Turan, Ayşe

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Ortak Tez Yöneticisi : Doç. Dr. Halit Oğuztüzün

Temmuz 2012, 119 sayfa

Hava Savunma alanında, silahların hedeflere tahsis edilmesi bilinen temel bir

problemdir. Bu problem, sistemde mevcut bir grup silahın bir grup düşman

hedefe, hedeflerde meydana gelecek hasarı maksimize edecek şekilde tahsis edilmesini

ele alır. Silahların hedeflere tahsisi probleminin NP-Tam olduğu Lloyd ve Wit-

senhausen tarafından ispatlanmıştır [14].

Bu tezde, problemin çözümüne yönelik arama algoritmaları, maksimum marjinal

getiri algoritmaları, evrimsel algoritmalar ve ikili grafik eşleme algoritmalarını

da içeren pek çok algoritma açıklanmıştır. Literatürde var olan algoritmalar

probleme uyarlanarak gerçeklenmiştir. Ek olarak, var olan algoritmalar, algo-

ritmanın izin verilen maksimum çalışma zamanı da göz önünde bulundurula-

cak şekilde iyileştirilmiştir. Algoritmaları karşılaştırabilmek için bir test ortamı

geliştirilmiştir. Geliştirilen test ortamı, kullanıcıların kolaylıkla yeni algoritmalar

gerçekleyerek, seçtiği algoritmaları karşılaştırabilmesine imkan sağlamaktadır.

Geliştirilen test ortamı kullanılarak gerçeklenen algoritmalar optimum çözüme

vi

yakınlık ve performans açısından karşılaştırılmıştır. Sonuçlar incelenerek daha

iyi sonuç veren algoritmalar seçilmiş ve bu algoritmalar birleştirilerek yeni bir al-

goritma önerilmiştir. Önerilen algoritma da diğer algoritmalarla karşılaştırılmış

ve elde edilen sonuçlar sunulmuştur.

Anahtar Kelimeler: Silahların Hedeflere Tahsisi, Hava Savunma, Optimizasyon,

Performans Değerlendirmesi

vii

To My Parents

viii

ACKNOWLEDGMENTS

First of all, I would like to express my sincere thanks to my advisors Prof.

Dr. Adnan Yazıcı and Assoc. Prof. Dr. Halit Oğuztüzün for their support,

understanding and guidance throughout this thesis work.

I would like to thank ASELSAN Inc. for facilities provided for the completion

of this thesis and TÜBİTAK BİDEB for the financial support.

I am also thankful to my colleague Dilek Arslan for her support, consideration

and valuable comments and suggestion for this work.

I am greatly indebted to my family for their encouragements, unconditional

support and patience.

Lastly, I would like to thank Murat for always being there for me.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Background . 1

1.1.1 Air Defence . 1

1.1.2 Threat Evaluation and Weapon Allocation System 2

1.1.3 A Ground-Based Air Defense Scenario 2

1.2 Scope and Objectives 10

1.3 Contributions of the Thesis 11

1.4 Organization of the Thesis 11

2 WEAPON - TARGET ALLOCATION PROBLEM 12

2.1 Problem Formulation 12

2.2 Related Work on Weapon - Target Allocation Problem . 16

3 ALGORITHMS FOR WEAPON - TARGET ALLOCATION PROB-
LEM . 19

3.1 Representations . 19

3.2 Search Algorithms . 22

x

3.2.1 Exhaustive Search Algorithm 22

3.2.2 Random Search Algorithm 26

3.3 Maximum Marginal Return (MMR) Algorithms 27

3.3.1 Greedy MMR Algorithm 27

3.3.2 Greedy MMR Algorithm Improved with Local
Search . 29

3.3.3 Random MMR Algorithm 29

3.3.4 Advanced MMR Algorithm 31

3.3.5 Advanced MMR Algorithm Improved with Lo-
cal Search . 31

3.4 Evolutionary Algorithms 33

3.4.1 Genetic Algorithm 38

3.4.2 Genetic Algorithm Improved with MMR Algo-
rithms . 41

3.4.3 Ant-Colony Optimization Algorithm 44

3.4.4 Particle Swarm Optimization Algorithm 52

3.4.5 Particle Swarm Optimization Algorithm Improved
with MMR Algorithms 57

3.5 Bipartite Graph Matching Algorithms 57

3.5.1 Munkres’ Assignment Algorithm 61

3.5.2 Munkres Assignment Algorithm Improved with
MMR Algorithms 75

3.5.3 Advanced Munkres Assignment Algorithm . . 75

3.6 A Suggested Algorithm 76

4 EVALUATION OF ALGORITHMS 77

4.1 Testbed Developed for the Evaluation of Algorithms . . 78

4.1.1 Requirements of the Testbed 78

4.1.2 Design Model of the Testbed 79

4.2 Experimental Results 88

4.2.1 Performance Evaluation 88

4.2.2 Optimality Evaluation 90

4.2.2.1 Objective Function Value Comparison 91

xi

4.2.2.2 Deviation Comparison 93

4.2.2.3 Rank Comparison 93

5 CONCLUSION AND FUTURE WORK 98

REFERENCES . 100

APPENDICES

A COMPUTATIONAL RESULTS OF THE EXPERIMENTS . . . 102

xii

LIST OF TABLES

TABLES

Table A.1 Execution Times (in ms) - 1 104

Table A.2 Execution Times (in ms) - Cont’d 105

Table A.3 Execution Times (in ms) - Cont’d 106

Table A.4 Execution Times (in ms) - Cont’d 107

Table A.5 Objective Function Values - 1 108

Table A.6 Objective Function Values - Cont’d 109

Table A.7 Objective Function Values - Cont’d 110

Table A.8 Objective Function Values - Cont’d 111

Table A.9 Deviations . 112

Table A.10Deviations - Cont’d . 113

Table A.11Deviations - Cont’d . 114

Table A.12Deviations - Cont’d . 115

Table A.13Ranks . 116

Table A.14Ranks - Cont’d . 117

Table A.15Ranks - Cont’d . 118

Table A.16Ranks - Cont’d . 119

xiii

LIST OF FIGURES

FIGURES

Figure 1.1 Typical Air Defense Scenario 2

Figure 1.2 Closest Point of Approach 5

Figure 3.1 Visiting Orders of Nodes in Breadth-First Search 23

Figure 3.2 Visiting Orders of Nodes in Depth-First Search 23

Figure 3.3 Flow Chart of Evolutionary Algorithms 34

Figure 3.4 Roulette-Wheel Selection . 36

Figure 3.5 Stochastic Universal Sampling 36

Figure 3.6 Graph Representation of Weapon - Target Allocation Problem 45

Figure 3.7 Flow Chart of Particle Swarm Optimization Algorithm . . . 54

Figure 4.1 Classes and Packages of Algorithm Package 80

Figure 4.2 Search Algorithms Package 80

Figure 4.3 Maximum Marginal Return Algorithms Package 81

Figure 4.4 Evolutionary Algorithms Package 82

Figure 4.5 Bipartite Graph Matching Algorithms Package 83

Figure 4.6 Suggested Algorithm Package 83

Figure 4.7 Scenario Package . 85

Figure 4.8 Main Screen . 86

Figure 4.9 Execution Times - Small Scale Problem Instance 89

Figure 4.10 Execution Times - Large Scale Problem Instance 89

Figure 4.11 Execution Times - Average 90

Figure 4.12 Objective Function Values - Small Scale Problem Instance . . 91

xiv

Figure 4.13 Objective Function Values - Large Scale Problem Instance . . 92

Figure 4.14 Objective Function Values - Average 92

Figure 4.15 Deviations - Small Scale Problem Instance 93

Figure 4.16 Deviations - Large Scale Problem Instance 94

Figure 4.17 Deviations - Average . 94

Figure 4.18 Ranks - Small Scale Problem Instance 95

Figure 4.19 Ranks - Large Scale Problem Instance 96

Figure 4.20 Ranks - Average . 96

Figure 4.21 Ranks - Algorithm Categories 97

xv

LIST OF ABBREVIATIONS

CPAIUOT Closest Point of Approach in Units of Time
CPA Closest Point of Approach
GA Genetic Algorithm
IFF Identification Friend of Foe
MMR Maximum Marginal Return
NATO North Atlantic Treaty Organization
NP Nondeterministic Polynomial Time
TBH Time Before Hit
TE Threat Evaluation
TEWA Threat Evaluation and Weapon Allocation
VLSN Very Large Scale Neighborhood Search
WA Weapon Allocation
WTA Weapon - Target Assignment

xvi

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Air Defence

Air defence is defined as ”all measures designed to nullify or reduce the effective-

ness of hostile air action” in NATO Glossary of Terms and Definitions, AAP-6

[2].

The concept of air defence has appeared soon after man took to the air and

airplanes were used in attacks. With the impact of technology on warfare, both

aircraft and air defence weapons have been developed and improved. Today,

many kinds of airplanes such as fixed-wing or rotary-wing aircraft, unmanned

aerial vehicles and missiles are used in attack, and many kinds of weapons such

as rockets and artilleries are used in air defence.

Basically, an air defence system is composed of radars detecting hostile air-

craft, defensive weapons firing out the aircraft detected by radars and command

control units making the decisions. Although, the technology behind the devel-

opment of radars and weapons is very important, effective usage of the weapons

against aerial threats is much more crucial. Operators or the decision makers

have to evaluate the tactical situation in real time and protect assets that have no

defense capability against aerial threats or enemy targets by assigning available

weapons to them. Since the decisions should be made in real time, responsi-

bilities are typically divided between a number of operators and computerized

1

Figure 1.1: Typical Air Defense Scenario

systems that help the operators during the decision making processes.

1.1.2 Threat Evaluation and Weapon Allocation System

Threat Evaluation and Weapon Allocation (TEWA) system is a computerized air

defense system that assigns threat values to aerial threats in real time (Threat

Evaluation) and uses these threat values to propose possible engagements of

aerial threats by weapons (Weapon Allocation).

Both Threat Evaluation (TE) and Weapon Allocation (WA) processes are cru-

cial since the outcome of these processes directly affects military resources and

human life.

1.1.3 A Ground-Based Air Defense Scenario

A typical ground-based air defense scenario is illustrated in Figure 1.1.

2

It contains 4 processes:

1. Sensing Process:

In the sensing process, various sensors in the system observe the tactical

environment, detect aerial targets, and assign those targets an identifica-

tion, i.e. friend, assumed friend, neutral, suspect or hostile. Then, sensor

tracks containing information about both hostile and suspect targets are

emitted from the sensors. This process is marked as 1 and 2 in Figure 1.1.

The capabilities and properties of targets such as type, position, kinemat-

ics, radius of operation need to be defined for the purpose of evaluating

the threat values posed by targets to defended assets. These parameters

are defined in the sensing process. In this process, sensors detect aerial

targets and identify them.

The accuracy and quality of the target information is crucial and directly

depend on the choice of sensors. There are various kinds of sensors used

in military. These sensors are usually classified as short range (0 - 50 km),

medium range (50 - 200 km) and long range (> 200 km).

The sensing process is not dealt with in this thesis, but it is direcly related

to threat evaluation process.

2. Target Management Process:

In the target management process, sensor targets coming from various

sensors are combined into a single system target by information fusion

techniques to set up an aerial picture. This process is also known as

Fusion Phase and marked as 3 in Figure 1.1.

When several sensors exist in the system, it is quite possible that the

sensors detect the same target. The combination of targets coming from

various sensors into a single target is done using information fusion meth-

ods. The fusion method used in the target management process is crucial

and stated as ”the fusion method must be designed carefully, because an

inappropriate fuser can render the system worse than the worst individual

sensor.” [17].

3

The information fusion method used in the target management process is

not the main focus of this thesis. But, it is an important process and the

output produced from this process is the input to the threat evaluation

process.

3. TE Process:

In the TE process, system targets are evaluated to measure the threatening

behavior of a target with respect to defended assets by threat evaluation

techniques for each target, and a target value is calculated. This process

is marked as 3 in Figure 1.1.

According to Paradis et al. ”In the defense domain, TE refers to the part

of threat analysis concerned with the ongoing process of determining if an

entity intends to inflict evil, injury, or damage to the defending forces and

its interests, along with the ranking of such entities according to the level

of threat they pose” [3].

In the TE process, a threat value (between 0 and 1) is calculated for each

target and defended asset pair. Then, a prioritized threat list, going from

the most dangerous threat to the least is constructed from these threat

values.

The identification and prioritization of threats is very important because

errors such as incorrectly identifying a non-threat as a threat or prioritizing

a lesser threat as a greater threat can result in engaging the wrong target

that might have severe consequences. An actual example of this situation

occurred in 1988: The USS Vincennes (CG-49) ship shot down Iran Air

Flight 655 over the Persian Gulf and killed all 290 civilian passengers

onboard, including 38 non-Iranians and 66 children just because it has

misidentified the Iranian Air-bus as an attacking F-14 Tomcat fighter [4].

In order to evaluate the threat values for each target and defended asset

pair, a large number of parameters, many of which are related to each

other, have been suggested in the literature. After an exhaustive literature

survey of publications dealing with TE in the information fusion domain

and related areas, Johansson et al. has classified these parameters into

three categories [5]:

4

Figure 1.2: Closest Point of Approach

(a) Proximity Parameters

Proximity parameters are parameters that measure the target’s prox-

imity to the defended asset.

• Range from Closest Point of Approach (CPA): CPA is

the point where the target eventually will be the closest to the

defended asset. It is the orthogonal projection of the position of

the defended asset on the extension of the target’s velocity vector.

The range from CPA is the distance between the position of the

defended asset and the CPA. CPA and range from CPA is shown

in Figure 1.2. The larger the range from CPA, the lower the

threat value.

• Time to CPA (TCPA): The range from CPA divided by target

speed. The larger the time to CPA, the lower the threat value.

• CPA in Units of Time (CPAIUOT): Time it would take

the target to hit the defended asset after a 90 degree turn at its

CPA (range from CPA divided by target speed). The larger the

CPAIUOT, the lower the threat value.

• Time Before Hit (TBH): Time it would take the target to hit

the defended asset (Eqn. 1.1). The larger the TBH, the lower the

threat value.

TBH = TCPA+ CPAIUOT (1.1)

• Distance: The distance between the target and the defended

5

asset. The larger the distance, the lower the threat value.

(b) Capability Parameters

Capability parameters are parameters that measure the target’s ca-

pability to threaten the defended asset (lethality of the target).

• Target Type: The type of the enemy aircraft which can be iden-

tified from other parameters such as answer to IFF-interrogation,

electronic support measures, speed, etc.

• Weapon Type: The armament used by the enemy aircraft dur-

ing the engagement of defended assets. It can be inferred from

the type of the target.

• Fuel Capacity: The fuel capacity of the enemy aircraft. It

can be inferred from the type of the target. The lower the fuel

capacity of the target, the lower the threat value.

• Maximum Radius of Operation: The maximum radius of

operation of the target can be inferred from the fuel capacity of

the target. The lower the target’s maximum radius of operation,

the lower the threat value.

(c) Intent Parameters

Intent parameters are parameters that measure the intent of the tar-

get. Unlike capability, intent is generally more difficult to assess

because it is more subjective.

• Target’s Kinematics: Target’s velocity in combination of its

altitude.

• Number of Recent Maneuvers: The more the target maneu-

vers, the larger the threat value.

Yet, it is possible to increase the number of parameters that will affect

the value of the threat and it may be very difficult to measure or define.

TE is a complex task accomplished by a team of highly skilled person-

nel. It requires domain knowledge and mental integration of data from

many sources. That integration requires a high level of tactical expertise,

including knowledge of the types of threats, defended assets’ and weapon

6

systems’ missions, doctrine, and assessment heuristics built from experi-

ence [6]. Hence, TE process is a poorly defined process because it requires

the reproduction of operator thought in real time and includes many pa-

rameters that may not be measurable easily.

Due to the complex thought processes and cumulative experience embod-

ied in a human operator, a TE system that is capable of replacing or

outperforming a human operator is currently impossible. So, the focus of

a TE system should be to operate as a Decision Support System provid-

ing TE results and various derived threat attributes to a ground-based air

defense operator that are typically too tedious to compute by hand [8].

Algorithms for TE Process

Since TE process is a poorly defined process, work conducted on TE is

not well-documented; only a few algorithms for TE are available in the

literature.

A rule-based algorithm is suggested by using a series of experiments with

U.S. Navy officers [6], [7]. Before the suggested algorithm was developed,

the authors had made a questionnaire and collected data from 9 expe-

rienced U.S. Navy personnel. Then, they had decided on the parameters

that would be taken into account during the threat value calculation phase,

based on the collected data. Then, data had been incorporated into a rule-

based algorithm.

Another kind of rule-based algorithm is suggested, in which fuzzy inference

rules are used to calculate the values of threats, using altitude, speed,

CPA, and range as parameters [9]. Although, the rules are simple, since

the number of parameters used during the threat value calculation phase

is reduced, it does not offer a sufficient solution.

In [10], a Bayesian Network based algorithm is suggested. In the algorithm

the target state estimates are used during the threat value calculation

phase. Evasive maneuvers, fire control radar, countermeasures, political

climate, IFF squawking, flight plan agreement, platform type, and immi-

nence are used as parameters.

In [5], another kind of Bayesian Network based algorithm is suggested. In

7

this algorithm, target type, weapon range, speed, TBH and distance are

used as parameters and these parameters form the nodes of the Bayesian

Network. In the paper, it is suggested that more nodes should be added

to the Bayesian Network as a future work.

Although, the Bayesian-Network based algorithm given in [5] and the rule-

based algorithm given in [9] are compared in [11], a general comparison

about the performance and correctness of the algorithms are missing in

the literature.

Also, in almost all of the suggested algorithms, the investigation on whether

the system’s calculated threat values on realistic scenarios agrees with hu-

man experts on air defense or not is missing.

Since Threat Evaluation process is a poorly defined process and requires

high level of domain knowledge, it is not the main focus of this thesis.

But, it is an important process and the output produced from this process

is directly used in Weapon Allocation Process, which is the main focus of

this thesis.

4. WA Process:

In the WA process, the allocation of weapons to targets is decided based

on the target values and the probability of a successful engagement. This

process is marked as 4 in Figure 1.1.

This process is also known as Weapon Target Assignment (WTA) or Weapon

Allocation (WA).

According to Paradis et al. ”In the defense domain, WA refers to the reac-

tive assignment of weapon systems to engage or counter identified threats”

[3].

WA process is the process of optimally assigning weapons to targets so

that

(a) the total expected survival value of the targets after all engagements

is minimum or

(b) the damage to the defended assets is minimum or

8

(c) the overall survivability of assets is maximum [12].

The result of a WA process may be a list of all weapon systems that are

available for assignment, a list of all weapon systems that are suitable for

assignment to each particular threat, a prioritized list of suitable weapon

systems for each particular threat or reassignment options for substituting

the assigned weapon systems with other weapon systems if required [3].

The WA problem may be considered from a number of different perspec-

tives:

• From the single platform perspective: WA refers to a single

platform protecting itself from threats, where assignment relates to

selecting the most suitable weapon to counter a threat.

• From the force coordination perspective: WA refers to a com-

mand and control platform, where assignment relates to identifying

the most suitably armed platform to engage or counter a threat.

• From the threat-by-threat perspective: WA refers to the as-

signment of weapon systems sequentially, in such a way that the best

weapon system is essentially assigned to each threat in turn from

the highest priority to the lowest priority. It is usually some type of

greedy algorithm in principle.

• From the multi-threat perspective: WA refers to the assign-

ment of weapon systems to the current set of threats concurrently,

so that the assignment is best in some overall sense. It involves the

optimization of a given objective function.

The assignment of weapons to targets in an efficient way is very important

since the problem must be solved in real time. The enormous combina-

torial complexity (even if there are 10 weapons and 10 targets, there are

100 combinations) of the problem implies that optimal solutions cannot

be obtained in real time. Optimal solutions are applicable only when the

input size is very small since the computation time of any optimal algo-

rithm for the problem grows exponentially with the size of the problem.

However, the WA problem is a large scale problem in which the number of

9

weapons and targets is large, making enumeration techniques impractical.

For this reason, there is no exact algorithm to solve WA problem and good

heuristics for solving this problem should be developed [13]. Also, since

there exists no exact algorithms, it is not known how accurate the existing

solutions obtained by these heuristic algorithms are [12].

The problem has two versions, namely static and dynamic. And, it can

be classified as target-based and asset-based. Since this thesis mainly fo-

cuses on Weapon - Target Allocation problem, problem formulation and

algorithms for the problem are given in the following chapters, in detail.

1.2 Scope and Objectives

Although the basic information on air defense, TEWA system, the process of

Threat Evaluation and algorithms existing in the literature are described to

provide a better understanding of the process, the main focus and scope of this

study is on Weapon-Target Allocation problem.

The main objective of this study is to suggest an efficient algorithm for static

target-based Weapon-Target Allocation problem that can be used in real ground-

based air defense systems. For this reason, we first investigate and implement

existing algorithms suggested for this special NP-Complete problem. Next, we

define and relate the problem to some other known problems and use those

algorithms to solve Weapon-Target Allocation problem.

Making a comparison of all algorithms for the problem in terms of correctness

and efficiency is also one of our objectives.

Although, we studied the static target-based Weapon-Target Allocation Prob-

lem, the algorithms can be adopted to the dynamic or asset-based versions.

However, in the dynamic version, there may be rapid changes in the assign-

ments and some fixing rules may be needed. Our scope is the static target-based

version of the problem.

10

1.3 Contributions of the Thesis

In this thesis, static Weapon-Target Allocation problem is defined and studied in

detail. A literature review of existing studies about the topic is conducted. Var-

ious algorithms (search algorithms, maximal marginal return algorithms, evo-

lutionary algorithms, bipartite graph matching algorithms) are applied to the

problem and implemented. Adjusting the problem to be able to use the existing

algorithms and improving the existing algorithms by making use of the maxi-

mum allowed time criterion is one of the contributions of this thesis. Another

contribution is that a testbed is developed to be able to compare the algorithms

and allow users to implement new algorithms and compare them. Also, an al-

gorithm is proposed by making use of the algorithms that give better results.

This algorithm is compared to the other algorithms and it is shown that the sug-

gested algorithm gives the best (closest to the optimal solution) result among

all considered algorithms. The study and comparison of the algorithms for the

Weapon - Target Allocation problem in terms of optimality, performance and

efficiency criteria is also one of the main contributions of this thesis.

1.4 Organization of the Thesis

This thesis work contains 5 chapters. Chapter 2 is about the weapon - target

allocation problem. Related work about the weapon-target allocation problem

is given in this chapter. Several algorithms for the problem are defined and

described in detail in Chapter 3. The developed algorithms are tested on both

small and large scale problem instances and algorithms are compared based on

optimality and performance criteria in Chapter 4. This chapter also includes

the description about the simulation environment and computational results of

the experiments. Chapter 5 concludes the thesis and states future work.

11

CHAPTER 2

WEAPON - TARGET ALLOCATION PROBLEM

2.1 Problem Formulation

Weapon - Target Allocation problem is the problem of engaging weapons to

targets for the purpose of minimizing the damage on the defended assets. There

are two versions of the Weapon - Target Allocation problem: static and dynamic.

Static Version: In the static version, all of the inputs to the problem are

fixed, and all weapons are engaged to targets in a single stage. Weapons

are assigned and fired simultaneously. The damage assessment is made

after all weapon - target engagements are completed [12].

Dynamic Version: In the dynamic version, weapons are assigned in stages

with the assumption that the outcomes of the weapon-target engagements

of the previous stage are observed before assignments for the present stage

are made [13].

Although, the static version of the problem has been studied in the literature,

the study on the dynamic version is scant [13]. It may be due to the fact that

the static version is a special case of the dynamic version.

Lloyd and Witsenhausen has proved that the static version of the Weapon - Tar-

get Allocation problem is an NP-Complete problem by formulating the problem

as a nonlinear integer programming problem [14]. Since the static version of

the problem is a special case of the dynamic one, the dynamic Weapon - Target

Allocation problem is also an NP-Complete problem.

12

Static Weapon - Target Allocation Problem Definition

The problem can be classified as target-based and asset-based. If the aim is

to assign weapons to targets so that the expected survivability of the target is

minimum, it is target-based weapon-target allocation problem. On the other hand,

if the aim is to assign weapons to targets so that the expected survivability of

the defended assets is maximum, then it is asset-based weapon-target allocation

problem.

In the asset-based version of the problem, it is assumed that the aims of the

targets are known. Since the target-based version is more appropriate when the

aim of targets are not known for sure, this thesis work is focused on target-

based weapon-target allocation problem. Yet, both target-based and asset-based

problem formulations are given below.

Target-Based Weapon - Target Allocation Problem

|T |: The number of targets.

T : The set of targets. T = {T1, T2, ..., T|T |}

|W |: The number of weapons.

W : The set of weapons. W = {W1,W2, ...,W|W |}

Vi: The value of target i, calculated during the TE process. i = 1, 2, ..., |T |

Pik: The probability that weapon k destroys target i if it is assigned to it (kill

probability). k = 1, 2, ..., |W | and i = 1, 2, ..., |T |

Xik: 1 if weapon k is assigned to target i. 0, otherwise. k = 1, 2, ..., |W | and

i = 1, 2, ..., |T |

The problem can be formalized as the nonlinear integer programming problem.

It is the problem of minimizing the total expected value of the surviving tar-

gets so that the total number of weapons used is no more than those available

(Eqn. 2.1).

minF =

|T |∑
i=1

Vi

|W |∏
k=1

(1− Pik)Xik (2.1)

13

subject to
|T |∑
i=1

Xik = 1 (2.2)

k = 1, 2, ..., |W | and Xik = 0, 1.

In Eqn. 2.1, the product represents the expected probability of survival for target

Ti. And minimizing the objective function value F , minimizes the expected total

value of surviving targets.

A solution to this problem gives the allocation of weapons to targets so that

the total objective function value F is minimum and the allocations can be

represented as a matrix of decision variables:
X11 X12 ... X1W

X21 X22 ... X2W

... ... Xik ...

XT1 XT2 ... XTW


For a problem instance with |T | targets and |W | weapons, there are |T ||W |

feasible solutions. So, even if there are 5 weapons and 5 targets, there are

55 = 3125 possible allocations, and it is far from trivial for a decision maker to

find the best of the solutions in real-time.

This formulation is the simplified version of static Weapon - Target Allocation

problem. It is possible to add new constraints such as lower/upper bounds on

the number of weapons of type i assigned to a target j, or lower/upper bounds

on the number of weapons assigned to target j, or a lower bound on the survival

value of the target j [12].

Asset-Based Weapon - Target Allocation Problem

|T |: The number of targets.

T : The set of targets. T = {T1, T2, ..., T|T |}

|W |: The number of weapons.

W : The set of weapons. W = {W1,W2, ...,W|W |}

14

|A|: The number of defended assets.

A: The set of defended assets. A = {A1, A2, ..., A|A|}

ωj: Protection value of defended asset Aj. j = 1, 2, ..., |A|

Gj: The set of targets aimed at the defended asset Aj. j = 1, 2, ..., |A|

Πi: The probability that target i destroys the defended asset. i = 1, 2, ..., |T |

Pik: The probability that weapon k destroys target i if it is assigned to it (kill

probability). k = 1, 2, ..., |W | and i = 1, 2, ..., |T |

Xik: 1 if weapon k is assigned to target i. 0, otherwise. k = 1, 2, ..., |W | and

i = 1, 2, ..., |T |

The asset-based version of the problem is the problem of maximizing the total

expected protection value of surviving defended assets. (Eqn. 2.3).

maxG =

|A|∑
j=1

ωj
∏
iεGj

(1− Πi

|W |∏
k=1

(1− Pik)Xik) (2.3)

subject to

|T |∑
i=1

Xik = 1 (2.4)

k = 1, 2, ..., |W | and Xik = 0, 1.

In Eqn. 2.3, the inner product represents the expected probability of survival

for target Ti as in the case of target-based version. In addition to that, the

outer product represents the expected probability of survival for the defended

asset Aj. And maximizing the objective function value G, maximizes the total

expected protection value of the defended assets.

In addition to the allocation of weapons to targets, a solution to the asset-based

version of the problem gives the assets that should be protected.

15

2.2 Related Work on Weapon - Target Allocation Problem

Since the algorithms are studied in detail in Chapter 3, this section only includes

a brief overview of the algorithms that exist in the literature.

In [12], four lower-bounding schemes on the survival value of targets are proposed

to give a lower bound on the solution of Weapon - Target Allocation problem.

These schemes are described below:

1. Using Generalized Integer Network Flow Formulation

The Weapon - Target Allocation problem is formulated as a generalized

integer network flow problem on an appropriately defined network and

a lower bound on the solution is derived with 2 different ways from the

formulation.

(a) Linear Programming Based: The lower bounds generated by this

scheme do not seem to be very tight.

(b) Mixed Integer Programming Based: The lower bounds gener-

ated by this scheme seem to be fairly tight.

2. Minimum Cost Flow Based

The objective function is interpreted as maximizing the expected total

damage to the targets. The problem is formulated as a maximum cost

flow problem and an upper bound on the expected damage to the targets

is found. Then, the found upper bound is subtracted from the total value

of targets and a lower bound on the minimum survival value is found.

3. Maximum Marginal Return Based

Maximum marginal return based scheme uses a greedy approach to obtain

a lower bound. It is based on underestimation of the survival of a target

when hit by a weapon since it is assumed that each target is hit by the

best weapons.

Several exact and heuristic algorithms such as Branch and Bound, Maximum

Marginal Return, Genetic Algorithms have been proposed to solve Weapon -

16

Target Allocation problem. Some of them are described briefly below:

1. Branch and Bound Algorithms

In [12], four branch and bound algorithms are developed and compared

for each lower bounding scheme given above. It is seen that, using the

mixed integer programming based lower bounding scheme gives the most

consistent results and is able to solve the highest size problems.

In branch and bound algorithms, instead of enumerating all possible as-

signments, unnecessary enumeration steps are deleted and this improves

efficiency [15]. Each node is a variable and the lower and upper bounds

at that node is stored. Maximum marginal return strategy is used for

branching. For each node of the tree, weapon-target combination giving

the best improvement is found and the corresponding variable is set as the

one to be branched on next.

For searching, it is seen that for smaller size problems, breadth-first search

strategy gives better results. However, for larger size problems, depth-first

search strategy gives a better performance.

2. Very Large Scale Neighborhood Search (VLSN) Algorithm

It is a neighborhood search algorithm where the size of the neighborhood

is very large. It starts with a feasible solution and improves it by replacing

it by an improved neighbor until it obtains a locally optimal solution [12].

3. Maximum Marginal Return (MMR) Algorithm

It is a greedy algorithm in which the best weapon-target pair available is

selected first. The change in the objective function from assigning each

weapon-to-target pairing is evaluated then. And the weapon-to-target

pairing that yields the best marginal return is selected as the next weapon-

to-target pair. This process is iterated until all weapons are assigned to a

target.

Since it is a greedy algorithm, it finds the solution quickly and it is easy

to implement [12].

17

If all weapons are identical, meaning that Wi = W and Pij = Pj, this

algorithm gives the optimal solution [13]. However, if all weapons are not

identical, it does not necessarily find the optimal solution. Usually, it is

the case that it finds a solution which is far from the optimal solution.

4. Genetic Algorithms (GA)

In [16], a genetic algorithm with greedy eugenics that takes into account

a probability of kill value for each weapon is suggested and compared to

MMR algorithm. It is seen that, although MMR algorithm runs much

faster than GA, GA tends to find better solutions than MMR algorithm.

And, GA efficiency increases as the number of targets and weapons in-

creases. Also, it is seen that if a set of weapons can also hit a group of

targets, meaning that grouping of weapons and targets is possible, this

leads to faster and more optimal solutions.

18

CHAPTER 3

ALGORITHMS FOR WEAPON - TARGET

ALLOCATION PROBLEM

3.1 Representations

Since over 15 algorithms are studied in this thesis, setting up a common repre-

sentation for all of the algorithms will make the details easier to understand. By

using Eqn. 2.1 given in Section 2, inputs and outputs are represented as below.

Input: (Problem)

|T |: Number of targets. (noOfTargets)

|W |: Number of weapons. (noOfWeapons)

V: Target values. It is a 1x|T | matrix and the value of each element in the

matrix is between 0 and 1, inclusive. (targetValues)

P: Kill probabilities. It is a |T |x|W | matrix and the value of each element in

the matrix is between 0 and 1, inclusive. (killProbabilities)

In this study, the number of targets and number of weapons are taken from the

user. Then, target values and kill probabilities are generated randomly.

Output: (Solution)

X: Weapon - target allocations. It is a |T |x|W | matrix.

19

In this study, a solution is represented as a vector of length |W | (alloca-

tions) for the simplicity. In the solution vector, each element takes a value

between 1 and |T |. For example, if the value of 4th element is 5 in the

solution vector, it means that weapon 4 is allocated for target 5.

By using this kind of representation for the solution, a mapping from the

decision variables (given as X in the problem formulation) is also provided.

F: Objective function value. It is calculated using Eqn. 2.1 given in Sec-

tion 2 (solutionValue). The pseudocode for the objective function value

calculation algorithm is given as Algorithm 1.

Algorithm 1 Calculate Solution Value

solutionV alue← 0

i← 1

while i <= noOfTargets do

k ← 1

while k <= noOfWeapons do

if allocations[k] == i then

targetV alues[i]← targetV alues[i] ∗ (1− killProbabilities[i][k])

end if

k ← k + 1

end while

solutionV alue← solutionV alue+ targetV alues[i]

i← i+ 1

end while

return solutionV alue

Since more than one weapon can be assigned to a single target, there should be

no 0 in the solution vector. That is, all weapons should be allocated to a target

even if there is only one target. Note that, if the number of targets is greater

than number of weapons there may be unallocated targets left.

It is important to understand the input and output representations for the rest,

so an example is given below:

20

Example:

Let the inputs are given as:

• |T | = 3

• |W | = 5

• V = (
0.8 0.95 0.6

)
• P = 

0.6 0.75 0.5 0.4 0.8

0.3 0.45 0.2 0.6 0.8

0.8 0.75 0.6 0.3 0.45


After the algorithm is applied, let the weapon - target allocation matrix (X) be

1 0 0 1 0

0 1 0 0 0

0 0 1 0 1


So, the corresponding solution vector is(

1 2 3 1 3
)

This solution is interpreted as 1st weapon is assigned to 1st target, 2nd weapon

is assigned to 2nd target, 3rd weapon is assigned to 3rd target, 4th weapon is

assigned to 1st target and 5th weapon is assigned to 3rd target.

The calculated objective function value for the given example is 0.8465.

In this study, basically four different types of algorithms are applied to the

Weapon - Target Allocation problem, namely, Search Algorithms, Maximum

Marginal Return Algorithms, Evolutionary Algorithms, and Bipartite Graph Match-

ing Algorithms. At the end of this chapter, a hybrid algorithm that gives the

best solution compared to the other algorithms is suggested.

In each section, first the general description of the basic algorithm is given.

And for each basic algorithm, two or more algorithms that are derived from the

21

basic algorithm are described. When it will be more clear, the pseudocode of

the algorithm is also provided. The evaluation and comparison of algorithms in

terms of time and optimality is given in Section 4.

3.2 Search Algorithms

A search algorithm is an algorithm that finds an element with given propertied

among a collection of elements. The Weapon - Target Allocation problem can

be represented as a searching problem. But, in this problem, the element to be

searched is dependent on all other elements constituting the collection. It is the

element giving the minimum objective function value among all other elements.

3.2.1 Exhaustive Search Algorithm

An exhaustive search algorithm is an algorithm where the search is guaranteed

to produce all reachable states before it terminates. It tries every possible way to

search for a solution. Exhaustive search algorithms are also known as brute-force

or blind search algorithms in the literature.

An exhaustive search algorithm is usually simple to implement, and always finds

a solution if it exists. However, the cost of the algorithm is directly proportional

to the number of possible solutions. For this reason, exhaustive search algo-

rithms are typically used when the problem size is limited or when computation

time is not as important as simplicity.

Here are some exhaustive search algorithms:

1. Breadth-First Search Algorithm

In the breadth-first search, the search starts at root node and proceeds

by generating and testing each node that is reachable from a parent node

before it expands any of the children. To make it more clear, the visiting

order of nodes is given in Figure 3.1.

2. Depth-First Search Algorithm

22

Figure 3.1: Visiting Orders of Nodes in Breadth-First Search

Figure 3.2: Visiting Orders of Nodes in Depth-First Search

In the depth-first search, the search starts at root node and proceeds as far

as possible along each branch. Then, the search backtracks to the previous

level and explores any remaining alternatives at this level, and so on. To

make it more clear, the visiting order of nodes is given in Figure 3.2.

3. Iterative Deepening Depth-First Search Algorithm

This algorithm is also known as Depth-First Iterative Deepening. In the

iterative deepening depth-first search, the depth-limited search is run re-

peatedly. It increases the depth limit with each iteration until it reaches

the depth of the shallowest goal state. Actually, iterative deepening depth-

first search is equivalent to the breadth-first search, but it uses much less

memory. On each iteration, it visits the nodes in the search tree in the

same order as depth-first search, but the cumulative order in which nodes

are first visited is effectively breadth-first.

23

To find a solution to the problem of Weapon - Target Allocation using Exhaustive

Search, it is needed to search for every possible solutions, meaning that all nodes

should be visited in the tree. For this reason, whether applying Breadth-First

Search or Depth-First Search does not matter much.

For Weapon - Target Allocation problem, there are |T ||W | possible solutions to

test. The pseudocode of the Exhaustive Algorithm is given as Algorithm 2.

Algorithm 2 Exhaustive Search Algorithm

1: solution.allocations← {}
2: solution.value←MaxV alue

3: noOfIterations← |T ||W |

4: if noOfIterations > K ∗ allowedSearchT imeinMs then

5: return NULL

6: end if

7: iterationNo← 0

8: while iterationNo < noOfIterations do

9: feasibleAllocations← GetFeasibleAllocations(iterationNo)

10: feasibleSolutionV alue← CalculateSolutionV alue(feasibleAllocations)

11: if feasibleSolutionV alue < solution.value then

12: solution.allocations← feasibleAllocations

13: solution.value← feasibleSolutionV alue

14: end if

15: iterationNo← iterationNo+ 1

16: end while

17: return solution

Exhaustive search algorithm first gets a feasible solution (9), then calculates the

solution value for that feasible solution (10). If the feasible solution value is less

than the previously found solution value (11), it replaces the solution with this

feasible solution (12, 13) since it is a better solution. This procedure is repeated

until all feasible solutions are tested (8 - 16) and the solution is returned (17).

The pseudocode of getting feasible allocations technique is given as Algorithm 3.

24

Algorithm 3 Get Feasible Allocations

feasibleAllocations← {}
while iterationNo >= 0 do

feasibleAllocations.Add(iterationNo % noOfTargets+ 1)

iterationNo← iterationNo/noOfTargets

end while

while feasibleAllocations.Count < noOfWeapons do

feasibleAllocations.Add(1)

end while

return feasibleAllocations

For example if |T | = 3 and |W | = 2, there are 32 = 9 feasible solutions and

these feasible solutions are found as {1, 1}, {2, 1}, {3, 1}, {1, 2}, {2, 2}, {3, 2},
{1, 3}, {2, 3}, {3, 3} using that technique. Note that {1, 1} means that both

weapons are assigned to the first target and {3, 2} means that the first weapon

is assigned to the third target and the second weapon is assigned to the second

target, and so on.

K is a constant. In the experiments of exhaustive search algorithm, it is cal-

culated that when the number of iterations is 46656, the computation time of

the algorithm is nearly 125 ms on the computer whose specifications are given

in Section 4.2. So, the value of K is calculated as 46656/125 = 370 for that

machine. For this reason, if the number of iterations is greater than 370 times

the maximum allowed search time, then the algorithm should not be applied (5)

because it cannot return within the time of maximum allowed search.

Exhaustive search algorithm is easy to implement and since it tests all of the

feasible solutions, it finds the optimal solution. So, if the number of iterations

is small enough, then it is useful to apply exhaustive search, since it finds the

best solution.

25

3.2.2 Random Search Algorithm

A random search algorithm is an algorithm that uses some kind of randomness

or probability [18]. Random search algorithms are nondeterministic algorithms

meaning that they may give different solutions at each run. Particle swarm opti-

mization, ant colony optimization and genetic algorithms are some examples of

random search algorithms. However, these algorithms are given in the section of

Evolutionary Algorithms. In this section, only a naive random search algorithm

is given (Algorithm 4).

Algorithm 4 Random Search Algorithm
1: startT ime← Now

2: endT ime← startT ime+ allowedSearchT ime

3: solution.allocations← {}
4: solution.value←MaxV alue

5: while endT ime < Now do

6: weaponNo← 1

7: while weaponNo <= noOfWeapons do

8: targetNo← GetARandomTarget

9: feasibleAllocations.Add(targetNo)

10: weaponNo← weaponNo+ 1

11: end while

12: feasibleSolutionV alue = CalculateSolutionV alue(feasibleAllocations)

13: if feasibleSolutionV alue < solution.V alue then

14: solution.allocations = feasibleAllocations

15: solution.value = feasibleSolutionV alue

16: end if

17: end while

18: return solution

Random search algorithm first creates a feasible solution by assigning a target

randomly for each weapon (7 - 14). Then, it calculates the solution value for that

feasible solution (12). If the feasible solution value is less than the previously

found solution value, it replaces the solution value with this feasible solution

26

since it is a better solution (13 - 15). This procedure is repeated until the

maximum allowed search time expires (5 - 17). And the solution is returned

(18).

As exhaustive search algorithm, random search algorithm is also easy to im-

plement and it finds solution very efficiently. However, the solution found by

applying random search algorithm is not the optimal or best solution. Even,

there is a chance that the algorithm returns the worst solution (if time is not

enough, it returns the first created feasible solution without testing the other

ones). Yet, a common experience is that random search algorithms perform well

and are robust in the sense that they give useful information quickly provided

that they explore the solution space adequately [18].

3.3 Maximum Marginal Return (MMR) Algorithms

Maximum marginal return algorithms are algorithms that assign weapons se-

quentially with each weapon being assigned to the target which results in the

maximum decrease (marginal return) in the objective function value [19]. In

other words, in maximum marginal return algorithms, a weapon is always as-

signed to the target with maximum improvement in the objective function value.

Maximum marginal return algorithms are heuristic algorithms, they are easy to

implement and efficient algorithms. Although these algorithms don’t give the

optimal or best solution it is known that these algorithms give near optimal

solutions.

Greedy MMR, Random MMR and Advanced MMR algorithms are described in

the following subsections.

3.3.1 Greedy MMR Algorithm

Greedy MMR algorithm is a deterministic algorithm that finds a target for each

weapon so that the maximum decrease on the solution value occurs. A greedy

MMR algorithm is given as Algorithm 5.

27

Algorithm 5 Greedy MMR Algorithm

1: solution.allocations← {}
2: solution.value←MaxV alue

3: k ← 1

4: while k <= noOfWeapons do

5: maxDecrease←MinV alue

6: i← 1

7: while i <= noOfTargets do

8: decrease← targetV alues[i] ∗ killProbabilities[i][k]

9: if decrease > maxDecrease then

10: maxDecrease← decrease

11: allocatedTarget← i

12: end if

13: i← i+ 1

14: end while

15: solution.allocations[k]← allocatedTarget

16: targetV alues[allocatedTarget] ← targetV alues[allocatedTarget] −
maxDecrease

17: k ← k + 1

18: end while

19: solution.value = CalculateSolutionV alue(solution.allocations)

20: return solution

28

Greedy MMR algorithm sequentially assigns the target so that the maximum

decrease in the solution value occurs for each weapon (4 - 18). Then, it calculates

the solution value (19) and returns the solution (20).

3.3.2 Greedy MMR Algorithm Improved with Local Search

Greedy MMR algorithm given in the previous section is independent of the

maximum allowed search time. It finds the solution in one iteration. It is very

quick and deterministic. However, it can be improved by making use of the

maximum allowed search time. The pseudocode is given in Algorithm 6.

Algorithm 6 Greedy MMR Algorithm Improved with Local Search
startT ime← Now

endT ime← startT ime+ allowedSearchT ime

solution← ApplyGreedyMmrAlgorithm()

while endT ime < Now do

neighborAllocations← RandomlySwapAllocations(solution.allocations)

neighborSolutionV alue← CalculateSolutionV alue(neighborAllocations)

if neighborSolutionV alue < solution.solutionV alue then

solution.allocations← neighborAllocations

solution.solutionV alue← neighborSolutionV alue

end if

end while

return solution

Note that, although Greedy MMR algorithm is deterministic, this improved ver-

sion is nondeterministic since it uses randomization in the local search process.

3.3.3 Random MMR Algorithm

Random MMR algorithm is a nondeterministic algorithm that randomly selects

a weapon and finds a target for that weapon so that the maximum decrease on

the solution value occurs. The random MMR algorithm is given as Algorithm 7.

Random MMR algorithm first selects a weapon from unallocated weapons list

29

Algorithm 7 Random MMR Algorithm
1: startT ime← Now

2: endT ime← startT ime+ allowedSearchT ime

3: solution.allocations← {}
4: solution.value←MaxV alue

5: while endT ime < Now do

6: allocatedWeaponCount← 0

7: while allocatedWeaponCount < noOfWeapons do

8: k ← GetARandomWeapon(unallocatedWeapons)

9: maxDecrease←MinV alue

10: i← 1

11: while i < noOfTargets do

12: decrease← targetV alues[i] ∗ killProbabilities[i][k]

13: if decrease > maxDecrease then

14: maxDecrease← decrease

15: allocatedTarget = i

16: end if

17: i← i+ 1

18: end while

19: allocations[k]← allocatedTarget

20: targetV alues[allocatedTarget] ← targetV alues[allocatedTarget] −
maxDecrease

21: unallocatedWeapons.Remove(k)

22: allocatedWeaponCount← allocatedWeaponCount+ 1

23: end while

24: solutionV alue← CalculateSolutionV alue(allocations)

25: if solutionV alue < solution.V alue then

26: solution.allocations← allocations

27: solution.V alue← solutionV alue

28: end if

29: end while

30: return solution

30

randomly (8). Then, it finds the target so that the maximum decrease in the

solution value occurs for that weapon (11 - 18). It repeats this procedure until

a feasible solution (no weapons should be left unassigned) is get (8 - 23). Next,

it calculates the solution value for that feasible solution (24). If the feasible

solution value is less than the previously found solution value, it replaces the

solution with this feasible solution since it is a better solution (25 - 28). This

procedure is repeated until the maximum allowed search time is expired (5 -

29). And the solution is returned (30).

3.3.4 Advanced MMR Algorithm

Advanced MMR algorithm finds weapon-target pairs so that the maximum de-

crease on the solution value occurs. The choice of which weapon is allocated

next is based on which weapon-target pair maximizes the marginal return. This

version of the algorithm is given as Algorithm 8.

Advanced MMR algorithm first selects a weapon-target pair so that the maxi-

mum decrease in the solution value occurs (7 - 19). It repeats this procedure

until no weapon is left unassigned (4 - 24). Then, it calculates the solution value

(25) and returns the solution (26).

3.3.5 Advanced MMR Algorithm Improved with Local Search

Advanced MMR algorithm given in the previous section is independent of the

maximum allowed search time. It finds the solution in one iteration. It is very

quick and deterministic. However, it can be improved by making use of the

maximum allowed search time. The pseudocode is given in Algorithm 9.

Note that, although Advanced MMR algorithm is deterministic, this improved

version is nondeterministic since it uses randomization in the local search pro-

cess.

31

Algorithm 8 Advanced MMR Algorithm

1: solution.allocations← {}
2: solution.value←MaxV alue

3: allocatedWeaponCount← 0

4: while allocatedWeaponCount < noOfWeapons do

5: maxDecrease←MinV alue

6: k ← 1

7: while k < unallocatedWeapons.Count do

8: i← 1

9: while i < noOfTargets do

10: decrease← targetV alues[i] ∗ killProbabilities[i][k]

11: if decrease > maxDecrease then

12: maxDecrease← decrease

13: allocatedTarget← i

14: allocatedWeapon← k

15: end if

16: i← i+ 1

17: end while

18: k ← k + 1

19: end while

20: unallocatedWeapons.Remove(allocatedWeapon)

21: solution.allocations[k]← allocatedTarget

22: targetV alues[allocatedTarget] ← targetV alues[allocatedTarget] −
maxDecrease

23: allocatedWeaponCount← allocatedWeaponCount+ 1

24: end while

25: solution.value← CalculateSolutionV alue(solution.allocations)

26: return solution

32

Algorithm 9 Advanced MMR Algorithm Improved with Local Search
startT ime← Now

endT ime← startT ime+ allowedSearchT ime

solution← ApplyAdvancedMmrAlgorithm()

while endT ime < Now do

neighborAllocations← RandomlySwapAllocations(solution.allocations)

neighborSolutionV alue← CalculateSolutionV alue(neighborAllocations)

if neighborSolutionV alue < solution.solutionV alue then

solution.allocations← neighborAllocations

solution.solutionV alue← neighborSolutionV alue

end if

end while

return solution

3.4 Evolutionary Algorithms

Evolutionary algorithms are algorithms that mimic the natural biological evolu-

tion. In evolutionary algorithms, individuals constitute the population and each

population represents a candidate solution to the optimization problem. Sur-

vival of the fittest principle is applied to produce better approximation to the

solution and fitness function provides the evolution of populations of individuals

that are better suited to the environment. The process of selecting individuals

as parents according to their level of fitness and cross-overing the parents to

create a new generation is applied. And mutation operator is applied to the

newly created generation. The purpose of this process is to approach closer to

the solution.

Evolutionary algorithms model natural evolution processes, such as selection,

recombination, mutation, migration, locality and neighborhood. In Figure 3.3,

a flow chart of a simple evolutionary algorithm is given.

An evolutionary algorithm first generates an initial population randomly. This

created population is also a feasible solution. Next, it calculates the solution

value for that population or feasible solution. If the optimization criteria are

33

Figure 3.3: Flow Chart of Evolutionary Algorithms

34

not met, a new generation is created. In the generation creation process, firstly,

individuals are selected as parents according to their fitness (selection). And

parents are recombined to create generation (cross-over). Finally, the mutation

operator is applied to the newly generated creation and the solution value is

calculated for this generation or feasible solution. This process is repeated until

the optimization criteria is met and the algorithm stops and returns the lastly

generated population.

Operators Applied in Evolutionary Algorithms: [20]

1. Selection: The selection operator is applied to determine which individ-

uals are chosen for cross-over or recombination and how many individuals

each selected individual produces. First a fitness assignment is made for

each individual and then parents are selected according to their fitness. In

the selection process, there are many techniques that can be applied such

as roulette-wheel selection, stochastic universal sampling or tournament

selection.

Roulette-Wheel Selection: It is the simplest selection technique. It

is also known as stochastic sampling with replacement. In this technique,

the individuals are selected based on a fitness-proportional procedure. The

individuals are mapped to a line such that each individual’s segment is

equal in size to its fitness. Then a random number is generated and the

individual whose segment spans the random number is selected. This

process is repeated until the desired number of individuals is obtained.

To better understand, here is an example: Assume that there are 5 individ-

uals and the fitness values of the individuals are 1, 0.2, 1.6, 0.4 and 1.8. So,

the selection probabilities of the individuals are 1/5 = 0.2, 0.2/5 = 0.04,

1.6/5 = 0.32, 0.4/5 = 0.08, 1.8/5 = 0.36. And assume that two individ-

uals will be selected and random numbers that are generated are 0.5 and

0.89. Then, according to the Figure 3.3, 3rd and 2nd individuals will be

selected.

Stochastic Universal Sampling: As in the roulette-wheel selection,

35

Figure 3.4: Roulette-Wheel Selection

Figure 3.5: Stochastic Universal Sampling

the individuals are mapped to a line such that each individual’s segment

is equal in size to its fitness. However, in stochastic universal sampling

technique, equally spaced pointers are placed over the line as many as

there are individuals to be selected. The position of the first pointer is

given by a randomly generated number.

To better understand, assume the example given in Roulette-Wheel Se-

lection discussion. And assume that the randomly generated number is

0.25 for the position of the first pointer. The distance between pointers

is 1/2 = 0.5. Then, the position of the second pointer is calculated as

0.25 + 0.5 = 0.75. So, according to the Figure 3.5, 5. and 1. individuals

will be selected.

Tournament Selection: A number of individuals are chosen randomly

from the population. The best individual from this group is selected as

parent. This process is repeated as many times as the number of individ-

uals that must be chosen.

2. Cross-Over (Recombination): The cross-over operator is applied to

achieve genetic recombination. By this operator, two or more parents are

combined to produce new individuals.

Single-Point Cross-Over: In single-point cross-over, one position is se-

36

lected randomly and by exchanging the variables between the individuals

about this position, two new individuals are generated.

To better understand, here is an example: Assume that each parent has

8 binary variables. Let the variables of the first parent be 01110101, the

variables of the second parent be 10011010. And let the randomly selected

cross-over position be 3. Then, after the single-point cross-over operator

is applied, the generated individuals be 01111010 and 10010101.

Multi-Point Cross-Over: In multi-point cross-over, multiple positions

are selected randomly with no duplicates and by exchanging the variables

between the individuals about these positions, two new individuals are

generated.

To better understand, assume the example given in single-point cross-over

discussion. And let the randomly selected cross-over positions be 2, 4 and

7. Then, after the multi-point cross-over operator is applied, the generated

individuals be 01010100 and 10111011.

3. Mutation: The mutation operator is applied to randomly alter the indi-

viduals. It is applied to the variables of the individuals that are generated

by cross-over operator. When applying mutation operator, first a position

is randomly selected and the value of the variable at that position is flipped

for a binary variable.

To better understand, here is an example: Let the variables of the indi-

vidual to be mutated be 01010100. And the randomly generated mutation

position be 5. Then, the individual created after applying the mutation

operator be 01011100.

4. Reinsertion: The reinsertion operator is applied when the number of in-

dividuals that are produced by using cross-over and mutation operators is

less than the size of the original population. Similarly, when the number

of individuals that are produced is more than the size of the original pop-

ulation, reinsertion operator is applied to determine which individuals are

to exist in the new population.

Genetic algorithms and swarm intelligence algorithms are the most popular types

37

of evolutionary algorithms. Swarm intelligence algorithms are algorithms that

take inspiration from the social behaviors of insects and other animals [21].

Here are some examples of swarm-based algorithms:

1. Ant-Colony Optimization: It simulates the foraging behavior of ant

colonies.

2. Particle Swarm Optimization: It simulates the movement or intelli-

gence of swarms.

3. Artificial Bee Colony: It simulates the foraging behavior of honey

bees.

4. Firefly: It simulates the flashing behavior of fireflies.

5. Cuckoo Search: It simulates the brooding behavior of cuckoo species.

In the following subsections, genetic algorithm, ant-colony optimization and par-

ticle swarm optimization algorithms are described in detail.

3.4.1 Genetic Algorithm

In this section, a sample genetic algorithm that is applied on Weapon - Target

Allocation problem is described. Genetic algorithm is a kind of evolutionary

algorithm that uses random search. Since the algorithm uses randomization,

it is a nondeterministic algorithm. The pseudocode of the applied algorithm is

given as Algorithm 10.

Genetic algorithm first generates an initial population (10) by using Algo-

rithm 11.

Initial population is constructed from individuals and each individual is a feasible

solution where each weapon is allocated to a random target. Then, for each

individual or feasible solution in the population, it calculates the solution value

and sets the solution to the individual that gives the minimum solution value

38

Algorithm 10 Genetic Algorithm
1: startT ime← Now

2: endT ime← startT ime+ allowedSearchT ime

3: solution.allocations← {}
4: solution.value←MaxV alue

5: if noOfTargets > noOfWeapons then

6: noOfIndividuals← noOfTargets

7: else

8: noOfIndividuals← noOfWeapons

9: end if

10: population← GenerateInitialPopulation(noOfIndividuals)

11: while endT ime < Now do

12: individualNo← 1

13: while individualNo <= noOfIndividuals do

14: solFromIndv ← population[individualNo]

15: solV alueFromIndv ← CalculateSolutionV alue(solFromIndv)

16: if solV alueFromIndv < solution.value then

17: solution← solFromIndv

18: end if

19: individualNo← individualNo+ 1

20: end while

21: parents← SelectParents(population)

22: population← CrossOver(parents)

23: population←Mutate(population)

24: end while

25: return solution

39

Algorithm 11 Generate Initial Population

population← {}
i← 1

while i <= noOfIndividuals do

individual← {}
k ← 1

while k <= noOfWeapons do

individual.Add(RandomlySelectATarget)

k ← k + 1

end while

population.Add(individual)

i← i+ 1

end while

return population

(13 - 20). Next, it applies selection operator to the population (21) by using

Algorithm 12.

Deterministic Tournament Selection is applied as the selection operator tech-

nique. In the selection phase, each individual to be selected as parent is de-

termined as follows: First, two individuals are selected from the population

randomly. Then, their solution values are compared and the individual having

less solution value is added to the list of parents. This process is repeated until

all parents are selected. The genetic algorithm then applies multi-point cross-

over operator to the parents that are selected from the selection phase (22) by

using Algorithm 13.

In this phase, random positions are selected as the cross-over positions and

the individuals that are created by exchanging parents from those cross-over

positions are returned. Next, the algorithm applies mutation operator to the

newly generated population (23) by using Algorithm 14.

In the mutation phase, a position is chosen randomly, and for the weapon at that

position, a new target is allocated randomly. The individuals created by applying

selection, cross-over and mutation operators constitute the new population. The

40

Algorithm 12 Select Parents

parents← {}
i← 1

while i <= noOfIndividuals do

candidate1← population[RandomPosition]

candidate2← population[RandomPosition]

solutionV alue1← candidate1.solutionV alue

solutionV alue2← candidate2.solutionV alue

if solutionV alue1 < solutionV alue2 then

parents.Add(candidate1)

else

parents.Add(candidate2)

end if

i← i+ 1

end while

return parents

whole process (calculating solution values for each individual in the population

and generating new population) is repeated until the maximum allowed search

time expires (11 - 24). And the solution is returned as the individual that has

the minimum solution value(25).

3.4.2 Genetic Algorithm Improved with MMR Algorithms

Instead of generating the initial population randomly, using an MMR algorithm

in the generation phase improves the solution. However, since applying an al-

gorithm increases the generation time of the population, algorithm should be

chosen carefully. In this work, Greedy MMR and Advanced MMR algorithms

are tried and it is seen that they give good results. Since the comparison is

made in Chapter 4, only the pseudocode and description are given here.

The pseudocodes of the methods that use Greedy MMR algorithm and Advanced

MMR algorithm are given in Algorithm 15 and Algorithm 16, respectively.

41

Algorithm 13 Cross-Over Parents

individuals← parents

i← 1

while i <= noOfIndividuals do

crossOverPosition← RandomlySelectAPosition

parent1← parents[i]

parent2← parents[i+ 1]

tmp← parent2

while crossOverPosition <= noOfWeapons do

parent2[crossOverPosition+ 1]← parent1[crossOverPosition+ 1]

parent1[crossOverPosition+ 1]← tmp[crossOverPosition+ 1]

crossOverPosition← crossOverPosition+ 1

end while

individuals[i]← parent1

individuals[i+ 1]← parent2

i← i+ 2

end while

return individuals

Algorithm 14 Mutate Individuals
i← 1

while i <= noOfIndividuals do

mutationPosition← RandomlySelectAPosition

tmp← individuals[i]

tmp[mutationPosition]← RandomlySelectATarget

individuals[i]← tmp

i← i+ 1

end while

return individuals

42

Algorithm 15 Generate Initial Population using Greedy MMR

population← {}
mmrSol ← ApplyGreedyMmrAlgorithm()

population.Add(mmrSol)

i← 1

while i < noOfIndividuals do

neighbor.allocations← RandomlySwapAllocations(mmrSol.allocations)

neighbor.solutionV alue← CalculateSolutionV alue(neighbor.allocations)

population.Add(neighbor)

i← i+ 1

end while

return population

Algorithm 16 Generate Initial Population using Advanced MMR

population← {}
mmrSol ← ApplyAdvancedMmrAlgorithm()

population.Add(mmrSol)

i← 1

while i < noOfIndividuals do

neighbor.allocations← RandomlySwapAllocations(mmrSol.allocations)

neighbor.solutionV alue← CalculateSolutionV alue(neighbor.allocations)

population.Add(neighbor)

i← i+ 1

end while

return population

43

In the generation of the initial population, first individual is chosen to be the

solution found by applying the Greedy/Advanced MMR. And the other individ-

uals are chosen by swapping allocations of that solution. By doing so instead of

generating the initial population randomly, better individuals are created and

the solution is closer to the optimal solution.

3.4.3 Ant-Colony Optimization Algorithm

Ant-colony optimization takes inspiration from the foraging behavior of ant

colonies.

Initially all of the ants search for the food randomly. When an ant finds a food,

it starts to deposit pheromone on the ground while returning back to the colony.

By depositing pheromone on the ground, they mark the path to the food that

should be followed by other members of the colony. If an ant comes across a

path with pheromone, it stops searching for the food randomly and starts to

follow the path marked with pheromone. If it reaches the food, it starts to

deposit pheromone on the path back to the colony also. This positive feedback

strengthens the pheromone trail on the same path and causes all of the ants to

follow a single path. On the other hand, if the path is not followed by other

colony members, the pheromone evaporates in time and eventually the path

disappears.

An Ant-Colony Optimization algorithm basically consists of 3 main steps [21].

After the initialization of pheromone trails, while there is still time, at each

iteration:

1. Ants create solutions.

2. Created solutions are improved through a local search. This process is also

known as daemon actions and it is an optional process.

3. Pheromone update is applied to increase the pheromone values that are

associated with good solutions and to decrease the pheromone values that

are associated with bad solutions (pheromone evaporation).

44

Figure 3.6: Graph Representation of Weapon - Target Allocation Problem

To be able to apply ant-colony optimization algorithm to a problem, the problem

needs to be represented as a graph. The graph representation of Weapon - Target

Allocation problem is shown in Figure 3.6.

Ant System is the first Ant-Colony Optimization algorithm proposed in the

literature. Max-Min Ant System and Ant Colony System are two variants of the

Ant System. In this study, Ant Colony System is chosen to be applied as an

Ant-Colony Optimization algorithm [22].

The pseudocode of the Ant-Colony Optimization algorithm is given as Algo-

rithm 17.

The description of the algorithm is given below in subsections of Initialization,

Construction of the Solution, Local Pheromone Update, and Global Pheromone

Update.

Initialization

In Ant Colony System, during the initialization phase, heuristic values (10) and

pheromone values (11) are calculated.

For the Weapon - Target Allocation problem, the heuristic value (ηik) for the

edge Eik is assigned as follows:

ηik = Vi × Pik (3.1)

And the value of the pheromone (τik) for all the edges Eik are assigned uniformly.

45

Algorithm 17 Ant-Colony Optimization Algorithm
1: startT ime← Now

2: endT ime← startT ime+ allowedSearchT ime

3: solution.allocations← {}
4: solution.value←MaxV alue

5: if noOfTargets > noOfWeapons then

6: noOfAnts← noOfTargets

7: else

8: noOfAnts← noOfWeapons

9: end if

10: CalculateHeuristicV alues()

11: CalculatePheromoneV alues()

12: while endT ime < Now do

13: minSolutionV alue←MaxV alue

14: antNo← 1

15: while antNo <= noOfAnts do

16: constructedSol ← ConstructSolution()

17: if constructedSol.solutionV alue < minSolutionV alue then

18: bestSolV alue← constructedSol.solutionV alue

19: iterationBestSolAlloc← constructedSol.allocations

20: if constructedSol.solutionV alue < solution.solutionV alue then

21: solution← constructedSol

22: end if

23: end if

24: CalculateHeuristicV alues()

25: antNo← antNo+ 1

26: end while

27: UpdatePheromoneV alues(iterationBestSolAlloc, bestSolV alue)

28: end while

29: return solution

46

The pseudocode of the calculation method of heuristic values is given as Algo-

rithm 18.

Algorithm 18 Calculate Heuristic Values
i← 1

while i <= noOfTargets do

k ← 1

while k <= noOfWeapons do

heuristicV alues[i][k]← targetV alues[i]× killProbabilities[i][k]

k ← k + 1

end while

i← i+ 1

end while

The pseudocode of the calculation method of pheromone values is given as Al-

gorithm 19.

Algorithm 19 Calculate Pheromone Values
i← 1

while i <= noOfTargets do

k ← 1

while k <= noOfWeapons do

pheromoneV alues[i][k]← 1/noOfAnts× solutionV alue
k ← k + 1

end while

i← i+ 1

end while

Construction of the Solution

During the construction of the solution phase (16), the pseudorandom propor-

tional rule given in Eqn. 3.2 is used.

For each weapon k, target i is chosen with the rule given in Eqn. 3.2 for Weapon

- Target Allocation problem.

47

i =

argmaxiε{1,2,...,|T |}{τ
α
ikη

β
ik}, q ≤ q0

s, otherwise
(3.2)

q is a random variable that is uniformly distributed over [0, 1].

q0 is a threshold and it is set to 0.5 for simplicity.

The parameters α and β are constants that control the relative importance of

the pheromone versus the heuristic information. They are both set to 1 for

simplicity.

s is an index selected using Roulette Wheel Selection. The probability that s is

selected is given in Eqn. 3.3.

Ps =
ταskη

β
sk∑

lε{1,2,...,|T |}ταlkη
β
lk

(3.3)

So, the interpretation of Eqn. 3.2 is as follows: If q ≤ q0, then the target

maximizing the product of the pheromone and heuristic information is chosen

for the weapon. Otherwise, the target which is determined through Roulette

Wheel Selection is chosen for the weapon.

The pseudocode of the constructing the solution method is given as Algo-

rithm 20.

The method for finding the target index for a weapon based on Eqn. 3.2 is given

as Algorithm 21.

Local Pheromone Update

After each construction phase (i.e, an ant have reached node W|W |), the local

pheromone update is applied by using Eqn. 3.4.

τik = (1− ϕ)τik + ϕτ0 (3.4)

ϕ is a constant to represent pheromone evaporation rate and it is set to 0.1 for

48

Algorithm 20 Construct Solution

solution.allocations← {}
solution.value←MaxV alue

k ← 1

while k <= noOfWeapons do

i← FindTargetIndexForWeapon(k)

solution.allocations.Add(i)

UpdatePheromoneV aluesLocally(k)

targetV alues[i]← targetV alues[i]× (1− killProbabilities[i][k]

CalculateHeuristicV alues()

k ← k + 1

end while

solution.solutionV alue← CalculateSolutionV alue(solution.allocations)

return solution

simplicity.

τ0 is the initial value of the pheromone.

The pseudocode of the algorithm that updates local pheromone values using

Eqn. 3.4 is given as Algorithm 23.

Global Pheromone Update

At the end of each iteration (i.e., all ants within an iteration have reached node

W|W |) the global pheromone update is applied by using Eqn. 3.5.

τik =

(1− ρ)τik + ρ∆τik, if weapon k is allocated for target i

τik, otherwise
(3.5)

ρ is a constant to represent pheromone increase rate and it is set to the value of

pheromone evaporation rate, 0.1 for simplicity.

∆τik is the amount of pheromone laid on edge Eik and it is computed using

Eqn. 3.6.

49

Algorithm 21 Find Target Index For Weapon

targetIndex← 1

Q← RandomV alue

if Q <= Q0 then

targetIndex← ArgMax(k)

else

total← 0

i← 1

while i <= noOfTargets do

total← total + pheromoneV alues[i][k]α × heuristicV alues[i][k]β

i← i+ 1

end while

Q← RandomV alue ∗ total
total← 0

while i <= noOfTargets do

total← total + pheromoneV alues[i][k]α × heuristicV alues[i][k]β

if Q <= total then

targetIndex← i

break

end if

i← i+ 1

end while

end if

return targetIndex

50

Algorithm 22 Arg Max

1: targetIndex← 1

2: maxV alue←MinV alue

3: i← 1

4: while i <= noOfTargets do

5: value← pheromoneV alues[i][k]α × heuristicV alues[i][k]β

6: if value > maxV alue then

7: targetIndex← i

8: maxV alue← value

9: end if

10: i← i+ 1

11: end while

12: return targetIndex

Algorithm 23 Local Update Pheromone Values
1: i← 1

2: while i <= noOfTargets do

3: pheromoneV alues[i][k]← pheromoneV alues[i][k]× evaporationRate
4: pheromoneV alues[i][k] ← pheromoneV alues[i][k] + (evaporationRate ×

(1/noOfAnts× solutionV alue)
5: i← i+ 1

6: end while

7: return targetIndex

51

∆τik = 1/Fbest (3.6)

The pseudocode of the algorithm that updates local pheromone values using

Eqn. 3.5 is given as Algorithm 24.

Algorithm 24 Global Update Pheromone Values
1: i← 1

2: while i <= noOfTargets do

3: k ← 1

4: while k <= noOfWeapons do

5: if iterationBestSolutionAllocations[k] == i then

6: pheromoneV alues[i][k] ← pheromoneV alues[i][k] × (1 −
pheromoneIncreaseRate)

7: pheromoneV alues[i][k] ← pheromoneV alues[i][k] +

(pheromoneIncreaseRate× (1/bestSolutionV alue))

8: end if

9: k ← k + 1

10: end while

11: i← i+ 1

12: end while

3.4.4 Particle Swarm Optimization Algorithm

Particle swarm optimization takes inspiration from the movement and intelli-

gence of swarms.

In particle swarm optimization, particles form a swarm and the position of a

particle corresponds to a candidate solution to the problem. Particles move

around the search space according to a simple formula over the particle’s position

(given as Eqn. 3.7) and velocity (given as Eqn. 3.8). Initially the positions and

velocities of all particles are given randomly. Then, objective function value is

calculated using the particles’ positions (candidate solution). If the optimization

criteria are met, the algorithm returns the best particle. Otherwise, the positions

52

and velocities are updated based on the objective function value, and objective

function value is recalculated using the new positions.

Each particle’s velocity is updated according to the formula given in Eqn. 3.7:

~vj
t+1 = ω~vj

t + ϕb~rb
t(~bj

t
− ~xj

t) + ϕg ~rg
t(~gt − ~xj

t) (3.7)

Each particle’s position is updated according to the formula given in Eqn. 3.8:

~xj
t+1 = ~xj

t + ~vj
t+1 (3.8)

~xj
t is the position of particle j at time t.

~vj
t is the velocity of particle j at time t.

~bj
t

is the personal best position of particle j at time t.

~g is the global best position of the swarm.

ω is the constant to represent the importance of the previous velocity vector

(momentum). In the implementation, this constant is set to 0.8 for simplicity.

ϕb and ϕg is the constants to represent the importance of personal best position

(cognitive component) and global best position (social component), respectively.

In the implementation, both constants are set to 0.2 for simplicity.

~rb
t and ~rg

t are vectors with random numbers uniformly distributed between 0

and 1.

A sample flow chart of the algorithm is given in Figure 3.7.

The pseudocode of the implemented Particle Swarm Optimization algorithm is

given as Algorithm 25.

In the implemented particle swarm optimization algorithm, first the initial swarm

is generated from particles (5). Random positions and random velocities are

assigned to each particle. The generation of the initial swarm is given as Algo-

rithm 26.

Then, for each particle (8 - 23), the objective function value is calculated based

53

Figure 3.7: Flow Chart of Particle Swarm Optimization Algorithm

54

Algorithm 25 Particle Swarm Optimization
1: startT ime← Now

2: endT ime← startT ime+ allowedSearchT ime

3: solution.allocations← {}
4: solution.value←MaxV alue

5: swarm← GenerateInitialSwarm(noOfParticles)

6: while endT ime < Now do

7: i← 1

8: while i <= noOfParticles do

9: swarm[i].solutionV alue← CalculateSolV alue(swarm[i].allocations)

10: if swarm[i].solutionV alue == solution.solutionV alue then

11: swarm[i].velocities← GetRandomV elocities()

12: else

13: if swarm[i].solutionV alue < swarm[i].bestSolutionV alue then

14: swarm[i].bestSolutionV alue← swarm[i].solutionV alue

15: swarm[i].bestAllocations← swarm[i].allocations

16: if swarm[i].solutionV alue < solution.solutionV alue then

17: solution.allocations← swarm[i].allocations

18: solution.solutionV alue← swarm[i].solutionV alue

19: end if

20: end if

21: end if

22: i← i+ 1

23: end while

24: i← 1

25: while i <= noOfParticles do

26: k ← 1

27: while k <= noOfWeapons do

28: swarm[i].velocities[k]← UpdateV elocity(swarm[i], k)

29: swarm[i].allocations[k]← UpdatePosition(swarm[i], k)

30: k ← k + 1

31: end while

32: i← i+ 1

33: end while

34: end while

35: return solution

55

Algorithm 26 Generate Initial Swarm

swarm← {}
i← 1

while i <= noOfParticles do

particle.allocations← GetRandomPositions()

particle.bestAllocations← particle.allocations

particle.velocities← GetRandomV elocities()

particle.solutionV alue←MaxV alue

particle.bestSolutionV alue←MaxV alue

swarm.add(particle)

i← i+ 1

end while

return swarm

on the particle’s position or allocations (9). If the objective function value of

the particle is equal to the global solution value (10), then the velocities of the

particles are updated randomly (11). Otherwise, if the solution value of the

particle is better (less) than the global solution value (16), then the swarm’s

best known position (global solution) is updated to the particle’s position or

allocations (17, 18). Next, the position and the velocity of all particles in the

swarm is updated (25 - 33).

The velocity of a particle is updated according to Eqn. 3.7, the pseudocode of

which is given in Algorithm 27.

Algorithm 27 Update Velocity

velocity ← particle.velocities[k]×momentum
velocity ← velocity + random × cognitiveConstant ×
(particle.bestAllocations[k]− particle.allocations[k])

velocity ← velocity + random× socialConstant× (solution.allocations[k]−
particle.allocations[k])

return velocity

The position of a particle is updated according to Eqn. 3.8, the pseudocode of

which is given in Algorithm 28.

56

Algorithm 28 Update Position

position← particle.allocations[k] + particle.velocities[k]

return position

This whole process is repeated until the maximum allowed search time is reached

and the swarm’s best known position (global solution) is returned.

3.4.5 Particle Swarm Optimization Algorithm Improved with MMR

Algorithms

Instead of generating the initial swarm by assigning positions to the particles

randomly, using an MMR algorithm in the generation phase improves the so-

lution. Similar to the improved version of the genetic algorithm, Greedy MMR

and Advanced MMR algorithms are used.

The pseudocodes of the methods that use Greedy MMR algorithm and Advanced

MMR algorithm are given in Algorithms 29 and 30, respectively.

In the generation of the initial swarm, first particle is chosen to be the solution

found by applying the Greedy/Advanced MMR. And the other particles are cho-

sen by swapping allocations of that solution. By doing so instead of generating

the initial swarm by assign random positions to the particles, better individuals

are created and the solution is closer to the optimal solution.

Note that, since evolutionary algorithms use randomization, all evolutionary

algorithms are nondeterministic algorithms.

3.5 Bipartite Graph Matching Algorithms

Before going into the details of the bipartite graph matching algorithms, it is

necessary to give a brief background information about bipartite graphs. The

definitions given in this section are taken from the paper referenced in [23].

A graph G = (V,E) is bipartite if its vertices V can be divided into two disjoint

sets, V + and V −, such that each edge connects a vertex in V + to one in V −.

57

Algorithm 29 Generate Initial Swarm using Greedy MMR

swarm← {}
mmrSol ← ApplyGreedyMmrAlgorithm()

particle.allocations← mmrSol.allocations

particle.bestAllocations← mmrSol.allocations

particle.solutionV alue← mmrSol.solutionV alue

particle.bestSolutionV alue← mmrSol.solutionV alue

particle.velocities← GetRandomV elocities()

swarm.Add(particle)

i← 1

while i < noOfParticles do

neighborAlloc← RandomlySwapAllocations(mmrSol.allocations)

neighborSolV al← CalculateSolutionV alue(neighborAlloc)

particle.allocations← neighborAlloc

particle.bestAllocations← neighborAlloc

particle.solutionV alue← neighborSolV al

particle.bestSolutionV alue← neighborSolV al

particle.velocities← GetRandomV elocities()

swarm.add(particle)

i← i+ 1

end while

return swarm

58

Algorithm 30 Generate Initial Swarm using Advanced MMR

swarm← {}
mmrSol ← ApplyAdvancedMmrAlgorithm()

particle.allocations← mmrSol.allocations

particle.bestAllocations← mmrSol.allocations

particle.solutionV alue← mmrSol.solutionV alue

particle.bestSolutionV alue← mmrSol.solutionV alue

particle.velocities← GetRandomV elocities()

swarm.Add(particle)

i← 1

while i < noOfParticles do

neighborAlloc← RandomlySwapAllocations(mmrSol.allocations)

neighborSolV al← CalculateSolutionV alue(neighborAlloc)

particle.allocations← neighborAlloc

particle.bestAllocations← neighborAlloc

particle.solutionV alue← neighborSolV al

particle.bestSolutionV alue← neighborSolV al

particle.velocities← GetRandomV elocities()

swarm.add(particle)

i← i+ 1

end while

return swarm

59

A subset M of E is a matching if no vertex is incident to more than one edge

in M .

Maximum matching is a matching that contains the largest possible number

of edges.

Alternating path is a path in which the edges belong alternatively to the

matching and not the matching.

Augmenting path is an alternating path that starts from and ends on un-

matched vertices.

In the general form of the assignment problem, there are a number of workers

and a number of jobs. Any worker can be assigned to perform any job, incurring

some cost that may vary depending on the worker-job assignment. It is required

to perform all jobs by assigning exactly one worker to each job in such a way

that total cost of the assignment is minimized.

The assignment problem consists of finding a maximum weight matching in a

weighted bipartite graph. The Munkres’ Assignment Algorithm (also known as

Hungarian Algorithm or Kuhn-Munkres Algorithm) is one of many algorithms

that have been devised to solve the assignment problem within polynomial time.

To better understand the algorithm details, the matrix representation of the

graph is used. As an example, assume that there are 4 workers (w1, w2, w3 and

w4) and 4 jobs (j1, j2, j3 and j4) and the cost matrix is:


3 4 7 1

4 5 2 2

2 6 8 6

6 2 3 1



This matrix can be interpreted as the cost of worker w1 performing job j3 is 7,

the cost of worker w3 performing job j3 is 8, etc. If the assignment is (w1, j3),

(w2, j1), (w3, j4), (w4, j2), then the cost is 7 + 4 + 6 + 2 = 19. The assignment

algorithms try to minimize this total cost.

60

3.5.1 Munkres’ Assignment Algorithm

In this section, the basic Munkres’ Assignment Algorithm to solve Weapon -

Target Allocation problem is described.

Although in the general assignment problem exactly one worker should be as-

signed to each job, in the Weapon - Target Allocation problem, more than one

weapon can be assigned to a single target. In other words, there is no one-to-

one correspondence between workers and jobs in the Weapon - Target Allocation

problem.

The pseudocode of the Munkres’ Assignment Algorithm is given in Algorithm 31.

As it can be seen from the pseudocode, Munkres’ Assignment Algorithm has 8

steps:

1. Constructing the Cost Matrix:

To be able to apply Munkres’ Assignment Algorithm, the cost matrix

needs to be square. In the cost matrix construction step, an NxN matrix

is created where N is the maximum of |W | and |T |.

The value of each cell (k, i) in the cost matrix is given according to the

equation 3.9:

CostMatrix[k][i] = targetV alues[i]× (1− killProbabilities[i][k]) (3.9)

If |W | is greater than |T |, the cells of the dummy columns contain the

maximum value of the matrix. If |T | is greater than |W |, the cells of the

dummy rows contain the maximum value of the matrix.

The pseudocode of the method for constructing the cost matrix is given in

Algorithm 32.

After this step, the algorithm goes into Step-2 which is the step of reducing

rows.

2. Reducing the Rows:

61

Algorithm 31 Munkres’ Assignment Algorithm
1: step← 1

2: DONE ← false

3: while NOTDONE do

4: if step == STEP1 then

5: step← ConstructCostMatrix()

6: end if

7: if step == STEP2 then

8: step← ReduceRows()

9: end if

10: if step == STEP3 then

11: step← StarZeros()

12: end if

13: if step == STEP4 then

14: step← CoverColumns()

15: end if

16: if step == STEP5 then

17: step← PrimeZeros()

18: end if

19: if step == STEP6 then

20: step← ConstructAlternatingZeros()

21: end if

22: if step == STEP7 then

23: step← AddSubtractMinV alue()

24: end if

25: if step == STEP8 then

26: solution← GetSolution()

27: DONE ← true

28: end if

29: end while

30: return solution

62

Algorithm 32 Constructing the Cost Matrix

InitializeWithZeros(costMatrix)

if noOfWeapons > noOfTargets then

n← noOfWeapons

else

n← noOfTargets

end if

k ← 1

while k <= n do

i← 1

while i <= n do

costMatrix[k][i]← targetV alues[i]× (1− killProbabilities[i][k])

i← i+ 1

end while

k ← k + 1

end while

k ← 1

while k <= n do

i← 1

while i <= n do

if costMatrix[k][i] == 0 then

costMatrix[k][i]← maxV alueInMatrix(costMatrix)

end if

i← i+ 1

end while

k ← k + 1

end while

return STEP2

63

In the row reducing step, for each row of the matrix, the smallest element

of that row is found and subtracted from every element in that row.

The pseudocode of the method for reducing the rows of the matrix is given

in Algorithm 33.

Algorithm 33 Reducing the Rows

k ← 1

while k <= n do

minV alueOfRow ←MaxV alue

i← 1

while i <= n do

if costMatrix[k][i] < minV alueOfRow then

minV alueOfRow ← costMatrix[k][i]

end if

i← i+ 1

end while

i← 1

while i <= n do

costMatrix[k][i]← costMatrix[k][i]−minV alueOfRow
i← i+ 1

end while

k ← k + 1

end while

return STEP3

After this step, the algorithm goes into Step-3 which is the step of starring

the zeros.

3. Starring the Zeros:

In the starring zeros step, first a zero is found in the resulting matrix.

Then, if there is no starred zero in the row or column of that zero, the

found zero is starred. This process is repeated for each element in the

matrix.

The pseudocode of the method for starring the zeros in the matrix is given

64

in Algorithm 34.

Algorithm 34 Starring the Zeros

k ← 1

while k <= n do

i← 1

while i <= n do

if costMatrix[k][i] == 0 AND !rowCover[k] AND !columnCover[i]

then

marks[k][i]← Starred

rowCover[k]← true

columnCover[i]← true

end if

i← i+ 1

end while

k ← k + 1

end while

return STEP4

After this step, the algorithm goes into Step-4 which is the step of covering

the columns of the matrix.

4. Covering the Columns:

In the covering columns step, each column containing a starred zero is

covered. If all of the columns are covered, this means that the starred

zeros describe a complete set of unique assignments.

The pseudocode of the method for covering the columns in the matrix is

given in Algorithm 35.

After this step, if all of the columns in the matrix are covered, the algorithm

goes into Step-8, otherwise it goes into Step-5.

5. Priming Zeros:

In the priming zeros step, first an uncovered zero is found and primed.

If there is no starred zero in the row containing the primed zero, the

algorithm continues with Step-6. Otherwise, the row containing the primed

65

Algorithm 35 Covering the Columns

k ← 1

while k <= n do

i← 1

while i <= n do

if marks[k][i] == Starred then

columnCover[i]← true

end if

i← i+ 1

end while

k ← k + 1

end while

i← 1

coveredColumnsCount← 0

while i <= n do

if columnCover[i] == true then

coveredColumnsCount← coveredColumnsCount+ 1

end if

i← i+ 1

end while

if coveredColumnsCount == n then

return STEP8

else

return STEP5

end if

66

zero is covered and the column containing the starred zero is uncovered.

This process is repeated until there are no uncovered zeros left. If there

are no uncovered zeros left, the algorithm continues with Step-7.

The pseudocode of the method for priming the zeros in the matrix is given

in Algorithm 36.

Algorithm 36 Priming Zeros

while true do

position← FindAZeroPosition(costMatrix)

if position == NULL then

return STEP7

end if

marks[position.row][position.column]← Primed

columnOfStarInRow ← FindColumnOfStarInRow(position.row)

if columnOfStarInRow == NULL then

uncoveredPrimedZeroPosition← position

return STEP6

end if

position.column← columnOfStarInRow

rowCover[position.row]← true

columnCover[position.column]← false

end while

6. Constructing Alternating Zeros:

In the alternating zeros construction step, a series of alternating primed

and starred zeros is constructed. Z0 is the uncovered primed zero found

in Step-5. Z1 is the starred zero in the column of Z0 and Z2 is the primed

zero in the row of Z1. This alternation process is repeated until the series

terminate at a primed zero that has no starred zero in its column. Then,

the path is augmented by unstarring each starred zero of the series, starring

each primed zero of the series, erasing all primes and uncovering every line

in the matrix.

The pseudocode of the method for constructing the alternating zeros is

given in Algorithm 37.

67

Algorithm 37 Constructing Alternating Zeros

Z0← uncoveredPrimedZeroPosition

path← {}
while true do

path.Add(Z0)

row ← FindRowOfStarInColumn(Z0.column)

if row == NULL then

BREAK

end if

Z1.row ← row

Z1.column← Z0.column

path.Add(Z1)

Z0.row ← Z1.row

Z0.column← FindColumnOfPrimeZeroInRow(Z1.row)

end while

AugmentPath(path)

ClearCovers()

ErasePrimes()

return STEP4

68

After this step, the algorithm again goes into Step-4 which is the step of

covering the columns of the matrix.

7. Adding/Subtracting Minimum Uncovered Value of the Matrix:

In this step, the minimum uncovered value of the matrix is added to every

element of each covered row and it is subtracted from every element of

each uncovered column.

The pseudocode of the method for adding/subtracting the minimum value

of the matrix is given in Algorithm 38.

Algorithm 38 Adding/Subtracting Minimum Uncovered Value of the

Matrix
minV alueOfMatrix← FindMinV alOfUncoveredElements()

k ← 1

while k <= n do

i← 1

while i <= n do

if rowCover[k] == true then

costMatrix[k][i]← costMatrix[k][i] +minV alueOfMatrix

end if

if columnCover[i] == false then

costMatrix[k][i]← costMatrix[k][i]−minV alueOfMatrix

end if

i← i+ 1

end while

k ← k + 1

end while

return STEP5

After this step, the algorithm goes into Step-5 which is the step of priming

zeros.

8. Getting the Solution:

The cells containing the starred zeros construct the solution. If the num-

ber of targets (|T |) is equal to the number of weapons (|W |), then the

69

solution is optimal. However, most of the times, these two values are not

equal. If |T | is greater than |W |, the starred zeros in the dummy rows are

discarded and the other starred zeros form the solution since all weapons

are allocated to a target. On the other hand, if |T | is less than |W |, the

starred zeros in the dummy columns cannot be discarded because if they

are discarded, there will be unallocated weapons which is not desired. So,

for these weapons that are allocated to dummy targets, new real targets

are assigned.

The pseudocode of the method for getting the solution is given in Algo-

rithm 39.

Algorithm 39 Getting the Solution

solution.allocations← {}
solution.solutionV alue←MaxV alue

starredZeros← GetStarredZeros()

k ← 1

while k <= noOfWeapons do

starredZeroPosition← starredZeros[k]

if starredZeroPosition.column > noOfTargets then

targetIndex← FindOptimalTargetForWeapon(k)

else

targetIndex← starredZeroPosition.column

end if

solution.allocations.Add(targetIndex)

k ← k + 1

end while

solution.solutionV alue← CalculateSolutionV alue(solution.allocations)

return solution

The algorithm terminates by returning the solution.

An Example Application of Munkres’ Assignment Algorithm:

To be able to follow the steps easily, the application of steps are described with

the following sample problem instance: T = 4, W = 4, V = (0.95 0.75 0.75 0.69)

70

and

P =


0.72 0.96 0.66 0.51

0.67 0.98 0.95 0.68

0.53 0.68 0.96 0.53

0.88 0.88 0.64 0.84


Step-1: Construct the Cost Matrix

Applying this step to the example, the cost matrix becomes

C =


0.26 0.25 0.36 0.08

0.04 0.01 0.24 0.08

0.32 0.04 0.03 0.25

0.47 0.24 0.35 0.11


The algorithm continues with Step-2.

Step-2: Reduce Rows

The minimum values in the rows are 0.08, 0.01, 0.03 and 0.11. Subtracting these

values from the values of rows, the cost matrix becomes

C =


0.18 0.17 0.28 0

0.03 0 0.23 0.07

0.29 0.01 0 0.22

0.36 0.13 0.24 0


The algorithm continues with Step-3.

Step-3: Star the Zeros

After starring the zeros, the cost matrix becomes

C =


0.18 0.17 0.28 0∗
0.03 0∗ 0.23 0.07

0.29 0.01 0∗ 0.22

0.36 0.13 0.24 0


Step-4: Cover the Columns

71

Applying the step of covering the columns to the example, the columns except

the first column are covered. Since all columns are not covered, the algorithm

continues with Step-5 for the example.

Step-5: Prime the Zeros

For the example, all zeros are covered. Since there is no uncovered zero, no zeros

are marked as primed and algorithm continues with Step-7.

Step-7: Add/Subtract the Minimum Uncovered Value of the Matrix

There is no row covered in the resulting matrix and the only uncovered column

is the first column. The smallest value of the uncovered elements is 0.03. So, this

value is subtracted from each element of the first column. Then, the resulting

matrix becomes

C =


0.15 0.17 0.28 0∗

0 0∗ 0.23 0.07

0.26 0.01 0∗ 0.22

0.33 0.13 0.24 0


The algorithm continues with Step-5.

Step-5: Prime the Zeros

The only uncovered zero is located at the cell (2, 1). This zero is primed. Since

there is a starred zero at the row of this primed zero, this row (row 2) is covered

and the column containing the starred zero (column 2) is uncovered. Since,

there are no more uncovered zeros, the algorithm continues with Step-7.

The cost matrix after applying this step becomes

C =


0.15 0.17 0.28 0∗
0′ 0∗ 0.23 0.07

0.26 0.01 0∗ 0.22

0.33 0.13 0.24 0


Step-7: Add/Subtract the Minimum Uncovered Value of the Matrix

72

The only covered row is 2. row and the uncovered columns are 1st and 2nd

columns. The smallest value among the uncovered elements is 0.01. So, this

value is added to the elements of second row and subtracted from the elements

of 1st and 2nd column. Then, the resulting matrix becomes

C =


0.14 0.16 0.28 0∗
0′ 0∗ 0.24 0.08

0.25 0 0∗ 0.22

0.32 0.12 0.24 0


The algorithm continues with Step-5.

Step-5: Prime the Zeros

The only uncovered zero is located at the cell (3, 2). This zero is primed. Since

there is a starred zero at the row of this primed zero, this row (row 3) is covered

and the column containing the starred zero (column 3) is uncovered. Since,

there are no more uncovered zeros, the algorithm continues with Step-7.

The cost matrix after applying this step becomes

C =


0.14 0.16 0.28 0∗
0′ 0∗ 0.24 0.08

0.25 0′ 0∗ 0.22

0.32 0.12 0.24 0


Step-7: Add/Subtract the Minimum Uncovered Value of the Matrix

The covered rows are 2nd and 3rd rows and the uncovered columns are 1st, 2nd

and 3rd columns. The smallest value among the uncovered elements is 0.12. So,

this value is added to the elements of 2nd and 3rd rows and subtracted from the

elements of 1st, 2nd and 3rd columns. Then, the resulting matrix becomes

C =


0.02 0.04 0.16 0∗
0′ 0∗ 0.23 0.19

0.25 0′ 0∗ 0.34

0.2 0 0.12 0


73

The algorithm continues with Step-5.

Step-5: Prime the Zeros

The only uncovered zero is located at the cell (4, 2). This zero is primed. Since

there is no starred zero at the row of this primed zero, the algorithm continues

with Step-6.

The cost matrix after applying this step becomes

C =


0.02 0.04 0.16 0∗
0′ 0∗ 0.23 0.19

0.25 0′ 0∗ 0.34

0.2 0′ 0.12 0


Step-6: Construct Alternating Zeros:

Z0 is the uncovered primed zero located at the cell (4, 2). Z1 is the starred zero

located at the cell (2, 2) and Z2 is the primed zero located at the cell (2, 1). Since

there is no starred zero at the column of Z2 alternating process is terminated.

So, the path consists of the cells (4, 2), (2, 2) and (2, 1). Then, this path is

augmented by unstarring the starred zeros and starring the primed zeros. Next,

all primes are cleared and all lines are uncovered.

The cost matrix after applying this step becomes

C =


0.02 0.04 0.16 0∗
0∗ 0 0.23 0.19

0.25 0 0∗ 0.34

0.2 0∗ 0.12 0


The algorithm continues with Step-4.

Step-4: Cover the Columns

Applying the step of covering the columns to the resulting matrix, this time all

columns are covered. So, the algorithm goes into Step-8.

Step-8: Get the Solution

74

The cells containing the starred zeros construct the solution. So, the solution is

as follows:

1st weapon is allocated for 4th target

2nd weapon is allocated for 1st target

3rd weapon is allocated for 3rd target

4th weapon is allocated for 2nd target

Note that, if |W | = |T |, then the Munkres’ Assignment Algorithm gives the

optimal solution in polynomial time.

3.5.2 Munkres Assignment Algorithm Improved with MMR Algo-

rithms

If |T | is less than |W |, the getting solution process in Step-8 can be improved by

making use of MMR algorithms. For the weapons that are unallocated (or allo-

cated to dummy targets) and the targets, the problem is reconstructed. Then,

greedy MMR algorithm improved with local search (given in Section 3.3.2) or

advanced MMR algorithm improved with local search (given in Section 3.3.5) is

applied to the subproblem. The solution is used for the allocation of unallocated

weapons to real targets. This process improves the solution, the results are given

in Chapter 4.

3.5.3 Advanced Munkres Assignment Algorithm

The algorithm given in this section is a combination of the other Munkres’ as-

signment algorithms given in previous sections. Basically, if |T | is equal to |W |,
it runs basic Munkres’ assignment algorithm given in section 3.5.1 and returns

the solution. If |T | is less than |W |, then it runs the improved algorithms given

in section 3.5.2 and returns the solution with best objective function value. Oth-

erwise, if time is enough, the problem is divided into subproblems and Munkres’

assignment algorithm is applied to the subproblems and the solution with the

best objective function value is returned.

75

3.6 A Suggested Algorithm

By making use of the results of all algorithms described in this chapter, an

algorithm is proposed (Algorithm 40).

Algorithm 40 Suggested Algorithm

1: exhaustiveSol← ApplyExhaustiveSearchAlgorithm()

2: if exhaustiveSol == NOTNULL then

3: return exhaustiveSol

4: end if

5: advancedMmrSol← ApplyAdvancedMmrAlgorithm()

6: advancedMunkresSol← ApplyAdvancedMunkresAlgorithm()

7: if advancedMmrSol.solutionV alue < advancedMunkresSol.solutionV alue

then

8: return advancedMmrSol

9: else

10: return advancedMunkresSol

11: end if

This proposed algorithm first tries to apply exhaustive search algorithm since it

gives the optimal solution. If the maximum allowed time is enough for finding

the optimal solution, then the algorithm returns that solution (1 - 3). Otherwise,

it applies both Advanced MMR algorithm (5) and Advanced Munkres algorithm

(6) and returns the better solution (7 - 10).

76

CHAPTER 4

EVALUATION OF ALGORITHMS

Although in the literature, the study on the evaluation of the Weapon - Target

Allocation algorithms is very sparse, the results obtained from the evaluation

of the algorithms are very crucial because of the critical consequences. In this

chapter, the algorithms described in the previous chapter are evaluated in terms

of performance and optimality metrics. The following algorithms are evaluated:

1. Exhaustive Search Algorithm

2. Random Search Algorithm

3. Greedy MMR Algorithm

4. Greedy MMR Algorithm Improved with Local Search

5. Random MMR Algorithm

6. Advanced MMR Algorithm

7. Advanced MMR Algorithm Improved with Local Search

8. Genetic Algorithm

9. Genetic Algorithm Improved with Greedy MMR Algorithm

10. Genetic Algorithm Improved with Advanced MMR Algorithm

11. Ant Colony Optimization Algorithm

12. Particle Swarm Optimization Algorithm

77

13. Particle Swarm Optimization Algorithm Improved with Greedy MMR Al-

gorithm

14. Particle Swarm Optimization Algorithm Improved with Advanced MMR

Algorithm

15. Munkres’ Assignment Algorithm

16. Munkres’ Assignment Algorithm Improved with Greedy MMR Algorithm

17. Munkres’ Assignment Algorithm Improved with Advanced MMR Algo-

rithm

18. Advanced Munkres’ Assignment Algorithm

19. Suggested Algorithm

In the following subsections, first, the testbed that is developed for the evaluation

of algorithms is introduced. Next, the experimental results that are obtained by

applying the algorithms to sample problem instances are explained.

4.1 Testbed Developed for the Evaluation of Algorithms

In this subsection, the testbed that has been developed for comparing the al-

gorithms is introduced. The testbed has been implemented in CSharp pro-

gramming language and Microsoft Visual Studio 2010 has been used as the

development environment.

Below, the requirements and design model of the testbed is given.

4.1.1 Requirements of the Testbed

A testbed that is developed for comparing the Weapon - Target Allocation al-

gorithms should:

1. Create the problem instance by taking the inputs (number of weapons and

number of targets) from the user.

78

2. Restrict the running time of the algorithm so that maximum allowed time

which is set by the user is not exceeded.

3. Allow user to select the algorithms to be compared.

4. Apply all selected algorithms on the same problem instance.

5. Be able to save the problem instance (number of weapons, number of tar-

gets, target values, kill probabilities, etc.) and comparison results (solution

value, execution time, the allocations and order for each algorithm that is

applied) for future use.

6. Order the selected algorithms by the solution value.

7. Allow users to develop new algorithms and compare them to the existing

algorithms easily.

4.1.2 Design Model of the Testbed

The implemented testbed consists of basically 3 packages: Algorithm Package,

Scenario Package and Graphical User Interface (GUI) Package. The diagrams

given in this section are prepared by making use of the Enterprise Architect 7.5

tool.

1. Algorithm Package

The classes and packages of the Algorithm Package is shown in Figure 4.1.

This package includes the base class (CBaseAlgorithm) with a method

for calculating the objective function value and an abstract method for

finding the solution, and the algorithm packages. Algorithm packages

include:

• Search Algorithms (Shown in Figure 4.2),

• Maximum Marginal Return Algorithms (Shown in Figure 4.3),

• Evolutionary Algorithms (Shown in Figure 4.4),

• Bipartite Graph Matching Algorithms (Shown in Figure 4.5),

79

Figure 4.1: Classes and Packages of Algorithm Package

Figure 4.2: Search Algorithms Package

80

Figure 4.3: Maximum Marginal Return Algorithms Package

81

Figure 4.4: Evolutionary Algorithms Package

82

Figure 4.5: Bipartite Graph Matching Algorithms Package

Figure 4.6: Suggested Algorithm Package

83

• Suggested Algorithm (Shown in Figure 4.6).

As it can be seen, all algorithms inherit from the base algorithm. If an

algorithm needs to be developed, it should implement the base algorithm

class.

2. Scenario Package

The classes of the Scenario Package is shown in Figure 4.7. This package

consists of the following 5 classes:

• Problem: This class contains the methods for creating a problem

instance (number of weapons, number of targets, target values, kill

probabilities, maximum allowed time). Number of weapons, number

of targets and maximum allowed time are taken from the user and the

target values and kill probabilities are generated randomly by using

those values.

• Solution: This class contains the list of allocations and the solution

(objective function) value found by applying the algorithm to the

problem instance.

• Solution In Experiment: This class contains the properties of the

solution found by applying an algorithm that exists in the experiment.

In addition to the list of allocations and solution value, it includes

type, execution time and rank of the algorithm.

• Experiment: This class contains the problem instance and the list

of solutions found by applying all selected algorithms that exist in

the experimental setup.

• Result: In case of running more than one experiment at a time,

this class contains the list of experiments.

3. GUI Package

To be able to use the testbed efficiently, a GUI is developed. The main

screen of the testbed is shown in Figure 4.8.

Basically, the user enters the number of targets, the number of weapons

and the maximum allowed time for running each algorithm. Then, he/she

84

Figure 4.7: Scenario Package

85

Figure 4.8: Main Screen

86

selects the algorithms to be compared.

If Use Intervals checkbox is checked, it means that more than one exper-

iment are desired to be run. For example, for the sample screen given in

Figure 4.8, 18 experiments are run with the following parameters:

• |W | = 3, |T | = 3, time = 1000 ms,

• |W | = 3, |T | = 3, time = 1500 ms,

• |W | = 3, |T | = 3, time = 2000 ms,

• |W | = 3, |T | = 5, time = 1000 ms,

• |W | = 3, |T | = 5, time = 1500 ms,

• |W | = 3, |T | = 5, time = 2000 ms,

• |W | = 3, |T | = 7, time = 1000 ms,

• |W | = 3, |T | = 7, time = 1500 ms,

• |W | = 3, |T | = 7, time = 2000 ms,

• |W | = 5, |T | = 3, time = 1000 ms,

• |W | = 5, |T | = 3, time = 1500 ms,

• |W | = 5, |T | = 3, time = 2000 ms,

• |W | = 5, |T | = 5, time = 1000 ms,

• |W | = 5, |T | = 5, time = 1500 ms,

• |W | = 5, |T | = 5, time = 2000 ms,

• |W | = 5, |T | = 7, time = 1000 ms,

• |W | = 5, |T | = 7, time = 1500 ms,

• |W | = 5, |T | = 7, time = 2000 ms.

If Use Intervals checkbox is not checked, a single experiment is run using

the values given in Start column.

The comparison results are shown at the right of the screen. The results

can also be saved to a file for future use. The user can pick the information

by using save options.

87

4.2 Experimental Results

Since the evaluation of algorithms needs to be fair, all algorithms were run on

the same computer. The computer has the following specifications:

• CPU: Intel Core2 Duo, 2.4GHz

• RAM: 3 GB

• Operation System: Microsoft XP

For the evaluation, the problem instances can be categorized into two: large scale

instances (10 <= |T |, |W | <= 80) and small scale instances (|T |, |W | < 10).

The minimum and maximum values are determined as 10 and 80 to be more

realistic.

The implemented algorithms are applied on 40 small scale and 110 large scale

problem instances. |T | and |W | are varied from 3 to 80 and the maximum

allowed search time is varied from 100 to 2600.

4.2.1 Performance Evaluation

The performance evaluation of the implemented algorithms is done by comparing

the execution times of the algorithms. The average value of maximum allowed

execution time in the problem instances is 1500 ms. In Figure 4.9, the execution

time of the algorithms for small scale problem instances is illustrated. As it can

be seen, some of the implemented heuristic algorithms such as Random Search,

Random MMR, Genetic Algorithm, etc. make use of the maximum allowed

execution time. On the other hand, some algorithms such as Exhaustive Search,

Greedy MMR, Advanced MMR, etc. executes independent of the maximum

allowed execution time.

The illustration of the execution times for large scale problem instances (Figure

4.10) is similar. However, for large scale problem instances it is impossible

to apply Exhaustive Search Algorithm, since it is exponential. So, the given

illustration excludes the Exhaustive Search Algorithm.

88

Figure 4.9: Execution Times - Small Scale Problem Instance

Figure 4.10: Execution Times - Large Scale Problem Instance

89

Figure 4.11: Execution Times - Average

The execution times for all problem instances is illustrated in Figure 4.11.

Although there are algorithms that run with better execution times than that

of the Suggested Algorithm, the Suggested Algorithm also gives a very good

execution time result. Even if |T | = |W | = 80, the Suggested Algorithm returns

in 46 ms.

The execution times received from applying all experiments are given in Ap-

pendix A.

4.2.2 Optimality Evaluation

As it has been stated earlier, the Weapon - Target Allocation Problem is an NP-

Complete problem and almost all of the implemented algorithms are heuristic

algorithms. So, it is difficult to decide whether the implemented algorithm gives

the optimal solution or not. However, it is a fact that the lesser the objective

function value, the nearer the solution is to the optimum.

90

Figure 4.12: Objective Function Values - Small Scale Problem Instance

In this subsection, comparisons based on the objective function values, devia-

tions and ranks of the algorithms are given.

4.2.2.1 Objective Function Value Comparison

In all of the experiments run, the algorithms are ordered based on the objective

function values. The average objective function values for the small and large

problem instances are illustrated in Figures 4.12 and 4.13.

The overall objective function values for the algorithms is illustrated in Fig-

ure 4.14. As it can be seen from the figure, the suggested algorithm gives the

minimum objective function value.

The objective function values received from applying all experiments are given

in Appendix A.

91

Figure 4.13: Objective Function Values - Large Scale Problem Instance

Figure 4.14: Objective Function Values - Average

92

Figure 4.15: Deviations - Small Scale Problem Instance

4.2.2.2 Deviation Comparison

By using the objective function values, deviations from the minimum are plotted.

The figures are similar and given in Figures 4.15, 4.16, and 4.17.

The deviations received from applying all experiments are given in Appendix

A.

4.2.2.3 Rank Comparison

For each experiment conducted, a rank value is given to each algorithm based on

the objective function value. If two algorithms score the same objective function

value, the same rank is given to both of the algorithms. The algorithm which

gives minimum objective function value is given rank 1. For small scale problem

instances (illustrated in Figure 4.18), the Exhaustive Search Algorithm and the

Suggested Algorithm get rank 1.

For large scale problem instances (illustrated in Figure 4.19), since the exhaus-

93

Figure 4.16: Deviations - Large Scale Problem Instance

Figure 4.17: Deviations - Average

94

Figure 4.18: Ranks - Small Scale Problem Instance

tive search algorithm cannot be applied, it gets the worst result. However, the

suggested algorithm still gets the best rank.

The average rank values for the algorithms are illustrated in Figure 4.20. So, if a

comparison is made based on the optimality among the implemented algorithms,

the Suggested Algorithm gives the result that is closest to the optimal solution.

Also, it can be interpreted from the figures that the improved algorithms give

better results than the original algorithms. For example, Genetic Algorithm

Improved with MMR Algorithms give better result than the Genetic Algorithm

and Particle Swarm Optimization Algorithm Improved with MMR Algorithms

give better result than the Particle Swarm Optimization Algorithm, etc.

The ranks are compared based on the algorithm categories (Search Algorithms,

MMR Algorithms, Evolutionary Algorithms and Suggested Algorithm) in Fig-

ure 4.21. Although the implementation of the MMR algorithms is easier, they

produce very good results. Bipartite graph matching algorithms give also good

results.

95

Figure 4.19: Ranks - Large Scale Problem Instance

Figure 4.20: Ranks - Average

96

Figure 4.21: Ranks - Algorithm Categories

The rank values received from applying all experiments are given in Appendix

A.

97

CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis study presents an efficient algorithm for static target-based Weapon

- Target Allocation problem that can be used in real ground-based air defence

systems. In this thesis, a mathematical formulation of the Weapon - Target

Allocation problem is given. Since the Weapon - Target Allocation problem is

an NP-Complete problem, there is no exact algorithm that gives the optimal

solution in polynomial time. So, heuristic algorithms are developed to solve

this problem. The problem is considered with respect to other known problems

and the algorithms for those problems are used in the solution. Search algo-

rithms, MMR algorithms, evolutionary algorithm and bipartite graph matching

algorithms are implemented in order to solve the problem. The algorithms are

improved by making use of the maximum allowed time criterion. A simulation

environment is developed to be able to compare the algorithms and to allow

users to test new algorithms easily. An algorithm is proposed by making use of

the algorithms that give better results. This algorithm is compared to the other

algorithms and it is seen that the suggested algorithm gives the best (closest to

the optimal solution) result among all. The comparisons of the algorithms for

the Weapon - Target Allocation problem in terms of optimality, performance

and efficiency criteria are presented.

For all algorithms that are implemented, the pseudocodes are given to be more

clear. For testing the performance and correctness of algorithms, the developed

simulation environment is used. To be more understandable, the results are

illustrated graphically. Also, the details of the computational results of the

98

comparisons are given in Appendix A.

In this thesis, the target values which are the output of the Threat Evaluation

phase are generated randomly and supplied directly to the algorithms. This the-

sis work can be extended to deal with the whole TEWA system, including the

Threat Evaluation phase. Also, the kill probabilities are generated randomly.

The reason for generating these values randomly is that the determination of

these values requires high domain knowledge (such as the knowledge of all pos-

sible target types and the properties of targets, existing weapon types and the

properties of weapons, etc.). To be more realistic, methods for determining these

values in real-time can be developed with a domain expert as a future work.

In this thesis, only the static version of the Weapon - Target Allocation problem

is studied. In the static version, all weapons are engaged to targets in a single

stage. Although there are cases in which the assignment and firing of weapons

are made simultaneously, usually it is not the case. The outcomes of the engage-

ments may affect the next engagement stage in actual cases. Yet, the algorithms

implemented within this thesis work can be applied periodically to deal with the

dynamic environment. However, there may be fluctuations in the assignments

due to the application of the algorithm periodically to the problem. To solve

fluctuation problem, some fixing rules may be applied. The dynamic version of

the Weapon - Target Allocation problem can be studied as a future work. The

simulation environment that is developed for the comparison of algorithms can

be used for comparing the dynamic versions of algorithms. This thesis work

actually forms a basis for the study of the dynamic version.

By making use of the simulation environment, more algorithms can be imple-

mented and compared to existing algorithms easily.

99

REFERENCES

[1] S. Lloyd, H. Witsenhausen, “Weapon Allocation is NP-complete”, Proceed-
ings of the 1986 Summer Conference on Simulation, 1986.

[2] NATO Standardization Agency, “NATO Glossary of Terms and Defini-
tions”, AAP-6, 2008.

[3] S. Paradis, A. Benaskeur, M. Oxenham and P. Cutler, “Threat Evalua-
tion and Weapon Allocation in Network-Centric Warfare”, 7th International
Conference on Information Fusion, pp. 1078–1085, 2005.

[4] K. P. Werrell, “A Short Operational History of Ground-Based Air Defense”,
Air University Press BELLSYS, vol. 27, pp. 379–423, 1948.

[5] F. Joohansson, G. Falkman, “A Bayesian Network Approach to Threat
Evaluation with Application to an Air Defense Scenario”, 11th International
Conference on Information Fusion, pp. 1352–1358.

[6] M. Liebhaber, B. Feher, “Air Threat Assessment: Research, Model, and
Display Guidelines”, Command and Control Research and Technology Sym-
posium, 2002.

[7] M. Liebhaber, B. Feher, “Surface Warfare Threat Assessment: Require-
ments Definition”, Technical Report 1887, SSC San Diego, 2002.

[8] J. N. Roux, J. H. Van Vuuren, “Real Time Threat Evaluation in a Ground
Based Air Defence Environment”, ORiON, vol. 24, pp. 75–100.

[9] Y. Liang, “An Approximate Reasoning Model for Situation and Threat As-
sessment”, 4th International Conference on Fuzzy Systems and Knowledge
Discovery, 2007.

[10] N. Okello, G. Thoms, “Threat Assessment Using Bayesian Networks”, 6th
International Conference on Information Fusion, 2003.

[11] F. Johansson, G. Falkman, “A Comparison Between Two Approaches to
Threat Evaluation in an Air Defense Scenario”, 5th International Confer-
ence on Modeling Decisions for Artificial Intelligence, 2008.

[12] R. K. Ahuja, A. Kumar, K. C. Jha, J. B. Orlin, “Exact and Heuristic
Algorithms for the Weapon-Target Assignment Problem”, Massachusetts
Institute of Technology Press, Cambridge, 2007.

[13] P. A. Hosein, M. Athans, “Some Analytical Results for the Dynamic
Weapon-Target Allocation Problem”, Massachusetts Institute of Technol-
ogy Press, Cambridge, 1990.

100

[14] S. P. Lloyd, H. S. Witsenhausen, “Weapons Allocation is NP-Complete”,
Summer Conference on Simulation, Reno, 1986.

[15] J. M. Rosenberger, H. S. Hwang, R. P. Pallerla, A. Yücel, R. L. Wilson,
E. G. Brungardt, “The Generalized Weapon Target Assignment Problem”,
10th International Command and Control Research and Technology Sym-
posium, 2005.

[16] M. Chan, “A Genetic Algorithm for the Weapon to Target Assignment
Problem”.

[17] A. Tebo, “Sensor Fusion Employs a Variety of Architecture, Algorithms,
and Applications”, OE Reports (the International Society for Optical En-
gineering), 1997.

[18] B. Z. Zabinsky, “Random Search Algorithms”, University of Washington,
Seattle, WA, 2009.

[19] P. A. Hosein, J. T. Walton, M. Athans, “Dynamic Weapon-Target As-
signment Problems with Vulnerable C2 Nodes”, Massachusetts Institute of
Technology Press, Laboratory for Information and Decision Systems, 1988.

[20] H. Pohlheim, “GEATbx: Genetic and Evolutionary Algorithm Toolbox for
use with MATLAB Documentation”, 2006.

[21] M. Dorigo, M. Birattari, T. Stützle, “Ant Colony Optimization: Artifi-
cial Ants as a Computational Intelligence Technique”, Universite Libre de
Bruxelles, Belgium, 2006.

[22] F. Johansson, “Evaluating the Performance of TEWA Systems”, PhD The-
sis, University of Skövde, 2010.

[23] H. A. Baier Saip, C. L. Lucchesi, “Matching Algorithms for Bipartite
Graphs”, Universidade Estadual de Campinas, Brasil, 1993.

101

APPENDIX A

COMPUTATIONAL RESULTS OF THE

EXPERIMENTS

The execution times, objective function values, deviations and ranks of the algo-

rithms are given in the following tables. The numbers for the algorithm names

are given below:

1. Exhaustive Search Algorithm

2. Random Search Algorithm

3. Greedy MMR Algorithm

4. Greedy MMR Algorithm Improved with Local Search

5. Random MMR Algorithm

6. Advanced MMR Algorithm

7. Advanced MMR Algorithm Improved with Local Search

8. Genetic Algorithm

9. Genetic Algorithm Improved with Greedy MMR Algorithm

10. Genetic Algorithm Improved with Advanced MMR Algorithm

11. Ant Colony Optimization Algorithm

12. Particle Swarm Optimization Algorithm

13. Particle Swarm Optimization Algorithm Improved with Greedy MMR Al-

gorithm

102

14. Particle Swarm Optimization Algorithm Improved with Advanced MMR

Algorithm

15. Munkres’ Assignment Algorithm

16. Munkres’ Assignment Algorithm Improved with Greedy MMR Algorithm

17. Munkres’ Assignment Algorithm Improved with Advanced MMR Algo-

rithm

18. Advanced Munkres’ Assignment Algorithm

19. Suggested Algorithm

103

T
ab

le
A

.1
:

E
x
ec

u
ti

on
T

im
es

(i
n

m
s)

-
1

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

9
3

9
3

9
3

9
3

0
0

0
0

0
4
0

2
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

1
0
9

9
3

9
3

9
3

1
5

0
0

0
0

6
0

2
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

1
7
1

9
3

9
3

9
3

0
0

0
1
5

0
8
0

2
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

1
5
6

9
3

9
3

9
3

1
5

0
1
5

0
1
5

2
0

4
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

1
2
5

9
3

9
3

9
3

0
0

0
1
5

1
5

4
0

4
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

1
2
5

9
3

9
3

9
3

0
0

0
0

0
6
0

4
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

2
8
1

9
3

9
3

9
3

1
5

0
1
5

0
1
5

8
0

4
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

5
0
0

9
3

9
3

9
3

3
1

1
5

3
1

1
5

1
5

2
0

6
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

1
8
7

9
3

9
3

9
3

3
1

1
5

3
1

7
8

7
8

4
0

6
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

3
9
0

9
3

9
3

9
3

1
5

1
5

1
5

4
6

4
6

6
0

6
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

5
9
3

9
3

9
3

9
3

1
5

1
5

0
0

1
5

8
0

6
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

1
2
5

9
3

9
3

1
0
6
2

9
3

9
3

9
3

3
1

3
1

3
1

3
1

4
6

2
0

8
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

4
3
7

9
3

9
3

9
3

6
2

1
0
9

1
0
9

2
8
1

2
8
1

4
0

8
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

8
9
0

9
3

9
3

9
3

4
6

7
8

4
6

1
7
1

1
7
1

6
0

8
0

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

1
3
4
3

9
3

9
3

9
3

3
1

4
6

4
6

1
4
0

1
4
0

8
0

8
0

1
0
0

0
9
3

0
9
3

9
3

1
5

9
3

9
3

9
3

1
0
9

1
7
6
5

9
3

9
3

9
3

4
6

3
1

4
6

3
1

4
6

2
0

2
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

0
0

0
0

0
4
0

2
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

6
0
9

5
9
3

5
9
3

5
9
3

0
0

0
0

0
6
0

2
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

6
2
5

5
9
3

5
9
3

5
9
3

1
5

0
0

0
0

8
0

2
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

6
4
0

5
9
3

5
9
3

5
9
3

1
5

0
1
5

1
5

1
5

2
0

4
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

6
4
0

5
9
3

5
9
3

5
9
3

0
0

0
1
5

1
5

4
0

4
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

6
2
5

5
9
3

5
9
3

5
9
3

1
5

0
0

0
0

6
0

4
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

8
5
9

5
9
3

5
9
3

5
9
3

1
5

1
5

0
0

1
5

8
0

4
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

1
0
1
5

5
9
3

5
9
3

5
9
3

3
1

1
5

3
1

1
5

3
1

2
0

6
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

7
8
1

5
9
3

5
9
3

5
9
3

1
5

1
5

3
1

9
3

6
2

4
0

6
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

7
8
1

5
9
3

5
9
3

5
9
3

1
5

1
5

1
5

4
6

4
6

6
0

6
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

1
5

0
1
5

0
1
5

8
0

6
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

1
0
6
2

5
9
3

5
9
3

5
9
3

3
1

3
1

3
1

3
1

4
6

2
0

8
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

8
9
0

5
9
3

5
9
3

5
9
3

6
2

1
0
9

1
0
9

2
8
1

2
8
1

4
0

8
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

8
9
0

5
9
3

5
9
3

5
9
3

4
6

4
6

4
6

2
0
3

2
0
3

6
0

8
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

1
3
2
8

5
9
3

5
9
3

5
9
3

4
6

4
6

4
6

1
5
6

1
4
0

8
0

8
0

6
0
0

0
5
9
3

0
5
9
3

5
9
3

1
5

5
9
3

5
9
3

5
9
3

5
9
3

1
7
9
6

5
9
3

5
9
3

5
9
3

3
1

3
1

3
1

4
6

4
6

2
0

2
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

0
4
0

2
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

0
6
0

2
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

0
8
0

2
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
1
4
0

1
0
9
3

1
0
9
3

1
0
9
3

0
0

1
5

1
5

1
5

2
0

4
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
1
4
0

1
0
9
3

1
0
9
3

1
0
9
3

1
5

0
0

0
1
5

4
0

4
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
1
4
0

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

1
5

104

T
ab

le
A

.2
:

E
x
ec

u
ti

on
T

im
es

(i
n

m
s)

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

6
0

4
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
1
4
0

1
0
9
3

1
0
9
3

1
0
9
3

1
5

1
5

0
0

1
5

8
0

4
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
5
3
1

1
0
9
3

1
0
9
3

1
0
9
3

1
5

1
5

3
1

3
1

1
5

2
0

6
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
1
7
1

1
0
9
3

1
0
9
3

1
0
9
3

3
1

1
5

1
5

7
8

7
8

4
0

6
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
1
7
1

1
0
9
3

1
0
9
3

1
0
9
3

1
5

1
5

1
5

3
1

4
6

6
0

6
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
1
7
1

1
0
9
3

1
0
9
3

1
0
9
3

1
5

0
1
5

1
5

1
5

8
0

6
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

2
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

4
6

3
1

3
1

3
1

4
6

2
0

8
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
3
2
8

1
0
9
3

1
0
9
3

1
0
9
3

6
2

1
0
9

1
0
9

2
8
1

2
8
1

4
0

8
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
7
8
1

1
0
9
3

1
0
9
3

1
0
9
3

3
1

7
8

4
6

1
7
1

1
7
1

6
0

8
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
3
2
8

1
0
9
3

1
0
9
3

1
0
9
3

3
1

4
6

4
6

1
4
0

1
4
0

8
0

8
0

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

1
5

1
0
9
3

1
1
0
9

1
0
9
3

1
0
9
3

1
7
8
1

1
0
9
3

1
0
9
3

1
0
9
3

3
1

3
1

3
1

3
1

6
2

2
0

2
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

0
4
0

2
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
6
2
5

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

0
6
0

2
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
6
5
6

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

1
5

8
0

2
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
6
0
9

1
5
9
3

1
5
9
3

1
5
9
3

1
5

0
1
5

1
5

1
5

2
0

4
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
1
5

1
5

4
0

4
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
6
5
6

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

1
5

6
0

4
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
7
1
8

1
5
9
3

1
5
9
3

1
5
9
3

1
5

0
1
5

0
1
5

8
0

4
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

2
0
4
6

1
5
9
3

1
5
9
3

1
5
9
3

1
5

1
5

3
1

3
1

1
5

2
0

6
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
7
6
5

1
5
9
3

1
5
9
3

1
5
9
3

1
5

1
5

1
5

9
3

9
3

4
0

6
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
9
5
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5

1
5

1
5

4
6

4
6

6
0

6
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
7
6
5

1
5
9
3

1
5
9
3

1
5
9
3

0
0

1
5

1
5

1
5

8
0

6
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

2
0
9
3

1
5
9
3

1
5
9
3

1
5
9
3

4
6

3
1

3
1

3
1

4
6

2
0

8
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
7
6
5

1
5
9
3

1
5
9
3

1
5
9
3

6
2

1
0
9

1
0
9

3
1
2

2
8
1

4
0

8
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
7
8
1

1
5
9
3

1
5
9
3

1
5
9
3

4
6

7
8

4
6

1
7
1

1
7
1

6
0

8
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

2
7
0
3

1
5
9
3

1
5
9
3

1
5
9
3

4
6

4
6

4
6

1
5
6

1
4
0

8
0

8
0

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

1
5

1
5
9
3

1
5
9
3

1
5
9
3

1
6
0
9

1
7
6
5

1
5
9
3

1
5
9
3

1
5
9
3

3
1

3
1

3
1

4
6

4
6

2
0

2
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
0

0
4
0

2
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
1
0
9

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
0

0
6
0

2
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
1
7
1

2
0
9
3

2
0
9
3

2
0
9
3

1
5

0
0

0
0

8
0

2
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
1
8
7

2
0
9
3

2
0
9
3

2
0
9
3

1
5

0
1
5

0
1
5

2
0

4
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
1
0
9

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
1
5

1
5

4
0

4
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
1
5
6

2
0
9
3

2
0
9
3

2
0
9
3

1
5

0
0

0
1
5

6
0

4
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
2
8
1

2
0
9
3

2
0
9
3

2
0
9
3

1
5

0
1
5

1
5

1
5

8
0

4
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
5
4
6

2
0
9
3

2
0
9
3

2
0
9
3

1
5

1
5

3
1

3
1

3
1

2
0

6
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
1
5
6

2
0
9
3

2
0
9
3

2
0
9
3

3
1

1
5

1
5

7
8

9
3

4
0

6
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
3
4
3

2
0
9
3

2
0
9
3

2
0
9
3

1
5

1
5

1
5

4
6

4
6

6
0

6
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
3
4
3

2
0
9
3

2
0
9
3

2
0
9
3

1
5

0
1
5

1
5

1
5

8
0

6
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
1
0
9

2
0
9
3

2
0
9
3

2
0
9
3

3
1

3
1

3
1

4
6

4
6

105

T
ab

le
A

.3
:

E
x
ec

u
ti

on
T

im
es

(i
n

m
s)

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

8
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
2
1
8

2
0
9
3

2
0
9
3

2
0
9
3

6
2

1
0
9

1
0
9

2
8
1

2
9
6

4
0

8
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
6
5
6

2
0
9
3

2
0
9
3

2
0
9
3

4
6

7
8

4
6

1
7
1

1
7
1

6
0

8
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
6
5
6

2
0
9
3

2
0
9
3

2
0
9
3

4
6

4
6

4
6

1
5
6

1
4
0

8
0

8
0

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

1
5

2
0
9
3

2
1
0
9

2
0
9
3

2
0
9
3

3
5
4
6

2
0
9
3

2
0
9
3

2
0
9
3

3
1

3
1

3
1

4
6

6
2

2
0

2
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
0

0
4
0

2
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

1
5

0
0

0
0

6
0

2
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
6
4
0

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
1
5

0
8
0

2
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

1
5

0
1
5

0
1
5

2
0

4
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
6
4
0

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
1
5

1
5

4
0

4
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
6
8
7

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
0

1
5

6
0

4
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
8
7
5

2
5
9
3

2
5
9
3

2
5
9
3

0
1
5

0
1
5

1
5

8
0

4
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

3
0
6
2

2
5
9
3

2
5
9
3

2
5
9
3

1
5

1
5

3
1

3
1

3
1

2
0

6
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
7
5
0

2
5
9
3

2
5
9
3

2
5
9
3

1
5

1
5

1
5

9
3

9
3

4
0

6
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
7
3
4

2
5
9
3

2
5
9
3

2
5
9
3

1
5

1
5

1
5

4
6

4
6

6
0

6
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
9
3
7

2
5
9
3

2
5
9
3

2
5
9
3

1
5

0
1
5

0
1
5

8
0

6
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
6
2
5

3
2
0
3

2
5
9
3

2
5
9
3

2
5
9
3

3
1

3
1

3
1

3
1

4
6

2
0

8
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
6
5
6

2
5
9
3

2
5
9
3

2
5
9
3

6
2

1
0
9

1
0
9

2
8
1

2
8
1

4
0

8
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
6
5
6

2
5
9
3

2
5
9
3

2
5
9
3

4
6

7
8

4
6

1
4
0

1
7
1

6
0

8
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
6
7
1

2
5
9
3

2
5
9
3

2
5
9
3

3
1

4
6

4
6

1
5
6

1
7
1

8
0

8
0

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

1
5

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

3
5
4
6

2
5
9
3

2
5
9
3

2
5
9
3

3
1

3
1

4
6

4
6

4
6

3
3

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

9
3

9
3

9
3

9
3

0
0

0
0

0
6

3
1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

9
3

9
3

9
3

9
3

0
0

0
0

0
9

3
1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

9
3

9
3

9
3

9
3

0
0

0
0

0
3

6
1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

9
3

9
3

9
3

9
3

0
0

0
0

0
6

6
1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

9
3

9
3

9
3

9
3

0
0

0
0

0
9

6
1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

9
3

9
3

9
3

9
3

0
0

0
0

0
3

9
1
0
0

4
6

9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

9
3

9
3

9
3

9
3

0
0

0
0

3
1

6
9

1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

9
3

9
3

9
3

9
3

0
0

0
0

0
9

9
1
0
0

0
9
3

0
9
3

9
3

0
9
3

9
3

9
3

9
3

9
3

9
3

9
3

9
3

0
0

0
0

0
3

3
6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

0
0

0
0

0
6

3
6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

0
0

0
0

0
9

3
6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

0
0

0
0

0
3

6
6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

0
0

0
0

0
6

6
6
0
0

1
0
9

5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

0
0

0
0

9
3

9
6

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

0
0

0
0

0
3

9
6
0
0

4
6

5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

0
0

0
0

3
1

6
9

6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

0
0

0
0

0
9

9
6
0
0

0
5
9
3

0
5
9
3

5
9
3

0
5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

5
9
3

0
0

0
0

0

106

T
ab

le
A

.4
:

E
x
ec

u
ti

on
T

im
es

(i
n

m
s)

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

3
3

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

0
6

3
1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

0
9

3
1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

0
3

6
1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

0
6

6
1
1
0
0

1
0
9

1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

1
0
9

9
6

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

0
3

9
1
1
0
0

4
6

1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

3
1

6
9

1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

0
9

9
1
1
0
0

0
1
0
9
3

0
1
0
9
3

1
0
9
3

0
1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

1
0
9
3

0
0

0
0

0
3

3
1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

0
6

3
1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

0
9

3
1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

0
3

6
1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

0
6

6
1
6
0
0

1
2
5

1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

1
0
9

9
6

1
6
0
0

1
6
8
7

1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

1
6
5
6

3
9

1
6
0
0

3
1

1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

3
1

6
9

1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

0
9

9
1
6
0
0

0
1
5
9
3

0
1
5
9
3

1
5
9
3

0
1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

1
5
9
3

0
0

0
0

0
3

3
2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
0

0
6

3
2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
0

0
9

3
2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
0

0
3

6
2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
0

0
6

6
2
1
0
0

1
0
9

2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
0

1
0
9

9
6

2
1
0
0

1
6
7
1

2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
0

1
6
4
0

3
9

2
1
0
0

4
6

2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
0

3
1

6
9

2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
0

0
9

9
2
1
0
0

0
2
0
9
3

0
2
0
9
3

2
0
9
3

0
2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

2
0
9
3

0
0

0
0

0
3

3
2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
0

0
6

3
2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
0

0
9

3
2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
0

0
3

6
2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
0

0
6

6
2
6
0
0

1
0
9

2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
0

1
0
9

9
6

2
6
0
0

1
6
5
6

2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
0

1
6
4
0

3
9

2
6
0
0

4
6

2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
0

3
1

6
9

2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
0

0
9

9
2
6
0
0

0
2
5
9
3

0
2
5
9
3

2
5
9
3

0
2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

2
5
9
3

0
0

0
0

0
A
V
G
:

1
3
5
0

3
9

1
3
4
3

0
1
3
4
3

1
3
4
3

1
1
3
4
3

1
3
4
3

1
3
4
3

1
3
4
3

1
5
1
5

1
3
4
3

1
3
4
3

1
3
4
3

1
3

1
4

1
5

3
5

7
5

107

T
ab

le
A

.5
:

O
b

je
ct

iv
e

F
u
n
ct

io
n

V
al

u
es

-
1

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
0

1
0
0

IN
F

3
,5

1
,5

1
,5

1
,3

0
,6

0
,6

2
,4

1
,9

0
,7

1
,5

3
,5

1
,5

0
,6

0
,4

0
,4

0
,4

0
,4

0
,4

4
0

2
0

1
0
0

IN
F

1
4
,2

1
0
,0

9
,9

1
0
,1

9
,5

9
,5

1
2
,8

1
0
,2

1
0
,1

1
1
,0

1
4
,6

1
0
,0

9
,5

1
3
,4

1
3
,4

1
3
,4

1
3
,4

9
,5

6
0

2
0

1
0
0

IN
F

2
6
,6

2
1
,3

2
1
,3

2
1
,3

2
1
,0

2
1
,0

2
4
,1

2
1
,5

2
1
,1

2
2
,4

2
6
,6

2
1
,3

2
1
,0

2
7
,2

2
7
,2

2
7
,2

2
7
,2

2
1
,0

8
0

2
0

1
0
0

IN
F

3
8
,5

3
2
,8

3
2
,8

3
2
,9

3
2
,8

3
2
,8

3
6
,5

3
3
,0

3
3
,2

3
4
,0

3
8
,5

3
2
,8

3
2
,8

3
8
,9

3
8
,9

3
8
,9

3
8
,9

3
2
,8

2
0

4
0

1
0
0

IN
F

0
,8

0
,1

0
,1

0
,0

0
,0

0
,0

0
,2

0
,2

0
,0

0
,2

0
,6

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

4
0

1
0
0

IN
F

8
,4

2
,2

2
,1

2
,0

0
,7

0
,7

6
,3

2
,5

0
,9

2
,8

8
,4

2
,2

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

6
0

4
0

1
0
0

IN
F

1
8
,4

9
,8

9
,8

9
,4

8
,5

8
,5

1
7
,1

1
0
,0

9
,0

1
1
,1

1
9
,9

9
,8

8
,5

1
5
,3

1
5
,3

1
5
,3

1
5
,3

8
,5

8
0

4
0

1
0
0

IN
F

3
0
,5

1
9
,6

1
9
,6

1
9
,4

1
8
,8

1
8
,8

2
9
,0

1
9
,6

1
8
,9

2
1
,5

3
0
,7

1
9
,6

1
8
,8

2
7
,9

2
7
,9

2
7
,9

2
7
,9

1
8
,8

2
0

6
0

1
0
0

IN
F

0
,2

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,1

0
,0

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

6
0

1
0
0

IN
F

5
,1

0
,5

0
,5

0
,5

0
,0

0
,0

3
,5

0
,5

0
,0

0
,8

5
,0

0
,5

0
,0

0
,2

0
,1

0
,0

0
,0

0
,0

6
0

6
0

1
0
0

IN
F

1
3
,6

2
,4

2
,4

2
,4

0
,7

0
,7

1
1
,8

2
,7

0
,8

4
,1

1
3
,9

2
,4

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

8
0

6
0

1
0
0

IN
F

2
2
,8

9
,4

9
,4

9
,1

7
,6

7
,6

2
2
,7

9
,7

7
,8

1
1
,9

2
3
,5

9
,4

7
,6

1
4
,7

1
4
,7

1
4
,7

1
4
,7

7
,6

2
0

8
0

1
0
0

IN
F

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

4
0

8
0

1
0
0

IN
F

2
,4

0
,1

0
,1

0
,1

0
,0

0
,0

2
,2

0
,1

0
,0

0
,2

2
,4

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

6
0

8
0

1
0
0

IN
F

9
,6

1
,6

1
,6

0
,8

0
,1

0
,1

9
,4

1
,7

0
,4

2
,0

1
0
,6

1
,6

0
,1

0
,2

0
,1

0
,1

0
,1

0
,1

8
0

8
0

1
0
0

IN
F

1
8
,2

3
,1

3
,1

2
,6

0
,8

0
,8

1
8
,1

3
,4

1
,4

5
,6

1
7
,9

3
,1

0
,8

0
,4

0
,4

0
,4

0
,4

0
,4

2
0

2
0

6
0
0

IN
F

2
,9

1
,5

1
,4

1
,3

0
,6

0
,6

2
,3

1
,7

1
,0

1
,2

3
,5

1
,5

0
,6

0
,4

0
,4

0
,4

0
,4

0
,4

4
0

2
0

6
0
0

IN
F

1
3
,5

1
0
,0

1
0
,0

9
,9

9
,5

9
,5

1
1
,8

1
0
,4

9
,6

1
0
,5

1
4
,7

1
0
,0

9
,5

1
3
,4

1
3
,4

1
3
,4

1
3
,4

9
,5

6
0

2
0

6
0
0

IN
F

2
6
,2

2
1
,3

2
1
,3

2
1
,1

2
1
,0

2
1
,0

2
2
,9

2
1
,9

2
1
,3

2
1
,9

2
6
,7

2
1
,3

2
1
,0

2
7
,2

2
7
,2

2
7
,2

2
7
,2

2
1
,0

8
0

2
0

6
0
0

IN
F

3
7
,8

3
2
,8

3
2
,8

3
2
,8

3
2
,8

3
2
,8

3
4
,0

3
3
,0

3
2
,8

3
3
,6

3
7
,9

3
2
,8

3
2
,8

3
8
,9

3
8
,9

3
8
,9

3
8
,9

3
2
,8

2
0

4
0

6
0
0

IN
F

0
,6

0
,1

0
,1

0
,0

0
,0

0
,0

0
,1

0
,1

0
,0

0
,1

0
,6

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

4
0

6
0
0

IN
F

8
,0

2
,2

2
,0

1
,7

0
,7

0
,7

3
,6

2
,4

1
,0

2
,5

7
,8

2
,2

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

6
0

4
0

6
0
0

IN
F

1
9
,0

9
,8

9
,7

9
,3

8
,5

8
,5

1
3
,4

1
0
,2

8
,8

1
1
,2

1
9
,5

9
,8

8
,5

1
5
,3

1
5
,3

1
5
,3

1
5
,3

8
,5

8
0

4
0

6
0
0

IN
F

2
9
,6

1
9
,6

1
9
,5

1
9
,4

1
8
,8

1
8
,8

2
4
,4

1
9
,6

1
9
,0

2
1
,6

3
0
,4

1
9
,6

1
8
,8

2
7
,9

2
7
,9

2
7
,9

2
7
,9

1
8
,8

2
0

6
0

6
0
0

IN
F

0
,1

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,2

0
,0

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

6
0

6
0
0

IN
F

4
,2

0
,5

0
,4

0
,4

0
,0

0
,0

1
,5

0
,6

0
,0

0
,6

4
,7

0
,5

0
,0

0
,2

0
,1

0
,0

0
,0

0
,0

6
0

6
0

6
0
0

IN
F

1
2
,8

2
,4

2
,4

2
,3

0
,7

0
,7

8
,2

2
,9

1
,2

4
,3

1
4
,0

2
,4

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

8
0

6
0

6
0
0

IN
F

2
3
,5

9
,4

9
,4

8
,8

7
,6

7
,6

1
7
,5

9
,5

8
,2

1
2
,6

2
3
,2

9
,4

7
,6

1
4
,7

1
4
,7

1
4
,7

1
4
,7

7
,6

2
0

8
0

6
0
0

IN
F

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

4
0

8
0

6
0
0

IN
F

2
,3

0
,1

0
,1

0
,1

0
,0

0
,0

0
,8

0
,1

0
,0

0
,2

2
,6

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

6
0

8
0

6
0
0

IN
F

8
,3

1
,6

1
,5

0
,7

0
,1

0
,1

5
,7

1
,7

0
,2

2
,1

1
0
,0

1
,6

0
,1

0
,2

0
,1

0
,1

0
,1

0
,1

8
0

8
0

6
0
0

IN
F

1
7
,9

3
,1

3
,0

2
,2

0
,8

0
,8

1
4
,4

3
,4

1
,2

5
,7

1
8
,8

3
,1

0
,8

0
,4

0
,4

0
,4

0
,4

0
,4

2
0

2
0

1
1
0
0

IN
F

2
,8

1
,5

1
,1

1
,3

0
,6

0
,6

1
,9

1
,3

0
,8

1
,2

3
,5

1
,5

0
,6

0
,4

0
,4

0
,4

0
,4

0
,4

4
0

2
0

1
1
0
0

IN
F

1
3
,7

1
0
,0

9
,8

1
0
,0

9
,5

9
,5

1
1
,2

1
0
,4

9
,5

1
0
,3

1
4
,8

1
0
,0

9
,5

1
3
,4

1
3
,4

1
3
,4

1
3
,4

9
,5

6
0

2
0

1
1
0
0

IN
F

2
5
,9

2
1
,3

2
1
,3

2
1
,2

2
1
,0

2
1
,0

2
2
,6

2
1
,7

2
1
,4

2
1
,8

2
6
,0

2
1
,3

2
1
,0

2
7
,2

2
7
,2

2
7
,2

2
7
,2

2
1
,0

8
0

2
0

1
1
0
0

IN
F

3
7
,8

3
2
,8

3
2
,7

3
2
,7

3
2
,8

3
2
,8

3
4
,0

3
3
,2

3
3
,0

3
3
,9

3
8
,2

3
2
,8

3
2
,8

3
8
,9

3
8
,9

3
8
,9

3
8
,9

3
2
,8

2
0

4
0

1
1
0
0

IN
F

0
,6

0
,1

0
,1

0
,0

0
,0

0
,0

0
,1

0
,1

0
,0

0
,1

1
,2

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

4
0

1
1
0
0

IN
F

7
,8

2
,2

1
,9

1
,6

0
,7

0
,7

4
,1

2
,5

1
,3

2
,5

7
,9

2
,2

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

108

T
ab

le
A

.6
:

O
b

je
ct

iv
e

F
u
n
ct

io
n

V
al

u
es

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

6
0

4
0

1
1
0
0

IN
F

1
8
,1

9
,8

9
,4

9
,5

8
,5

8
,5

1
2
,1

9
,8

8
,6

1
1
,1

1
6
,7

9
,8

8
,5

1
5
,3

1
5
,3

1
5
,3

1
5
,3

8
,5

8
0

4
0

1
1
0
0

IN
F

2
9
,5

1
9
,6

1
9
,6

1
9
,3

1
8
,8

1
8
,8

2
3
,4

1
9
,8

1
9
,0

2
1
,5

2
8
,8

1
9
,6

1
8
,8

2
7
,9

2
7
,9

2
7
,9

2
7
,9

1
8
,8

2
0

6
0

1
1
0
0

IN
F

0
,1

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,1

0
,0

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

6
0

1
1
0
0

IN
F

4
,3

0
,5

0
,4

0
,4

0
,0

0
,0

0
,9

0
,5

0
,1

0
,8

4
,7

0
,5

0
,0

0
,2

0
,1

0
,0

0
,0

0
,0

6
0

6
0

1
1
0
0

IN
F

1
2
,7

2
,4

2
,1

2
,3

0
,7

0
,6

6
,7

2
,6

0
,8

4
,3

1
3
,5

2
,4

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

8
0

6
0

1
1
0
0

IN
F

2
1
,8

9
,4

9
,3

8
,7

7
,6

7
,6

1
6
,7

9
,7

8
,1

1
1
,8

2
3
,2

9
,4

7
,6

1
4
,7

1
4
,7

1
4
,7

1
4
,7

7
,6

2
0

8
0

1
1
0
0

IN
F

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

4
0

8
0

1
1
0
0

IN
F

2
,2

0
,1

0
,1

0
,0

0
,0

0
,0

0
,5

0
,1

0
,0

0
,2

2
,6

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

6
0

8
0

1
1
0
0

IN
F

8
,9

1
,6

1
,4

0
,7

0
,1

0
,1

3
,7

1
,6

0
,1

1
,8

9
,3

1
,6

0
,1

0
,2

0
,1

0
,1

0
,1

0
,1

8
0

8
0

1
1
0
0

IN
F

1
8
,1

3
,1

3
,0

2
,2

0
,8

0
,8

1
2
,5

3
,1

1
,1

5
,5

1
7
,9

3
,1

0
,8

0
,4

0
,4

0
,4

0
,4

0
,4

2
0

2
0

1
6
0
0

IN
F

2
,8

1
,5

0
,9

1
,1

0
,6

0
,6

1
,8

1
,5

0
,8

1
,3

3
,9

1
,4

0
,6

0
,4

0
,4

0
,4

0
,4

0
,4

4
0

2
0

1
6
0
0

IN
F

1
3
,5

1
0
,0

9
,8

9
,8

9
,5

9
,5

1
0
,8

1
0
,0

9
,8

1
0
,5

1
3
,4

1
0
,0

9
,5

1
3
,4

1
3
,4

1
3
,4

1
3
,4

9
,5

6
0

2
0

1
6
0
0

IN
F

2
5
,9

2
1
,3

2
1
,3

2
1
,1

2
1
,0

2
1
,0

2
2
,2

2
1
,3

2
1
,4

2
1
,8

2
6
,2

2
1
,3

2
1
,0

2
7
,2

2
7
,2

2
7
,2

2
7
,2

2
1
,0

8
0

2
0

1
6
0
0

IN
F

3
7
,9

3
2
,8

3
2
,8

3
2
,7

3
2
,8

3
2
,8

3
3
,9

3
3
,3

3
3
,0

3
3
,2

3
7
,2

3
2
,8

3
2
,8

3
8
,9

3
8
,9

3
8
,9

3
8
,9

3
2
,8

2
0

4
0

1
6
0
0

IN
F

0
,5

0
,1

0
,1

0
,0

0
,0

0
,0

0
,0

0
,1

0
,0

0
,1

1
,0

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

4
0

1
6
0
0

IN
F

7
,8

2
,2

1
,6

1
,6

0
,7

0
,7

4
,2

2
,2

1
,0

2
,8

7
,6

2
,2

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

6
0

4
0

1
6
0
0

IN
F

1
8
,2

9
,8

9
,2

9
,4

8
,5

8
,5

1
2
,4

1
0
,0

8
,6

1
1
,3

1
8
,0

9
,8

8
,5

1
5
,3

1
5
,3

1
5
,3

1
5
,3

8
,5

8
0

4
0

1
6
0
0

IN
F

2
9
,6

1
9
,6

1
9
,5

1
9
,3

1
8
,8

1
8
,8

2
2
,4

1
9
,9

1
9
,0

2
1
,1

3
0
,0

1
9
,6

1
8
,8

2
7
,9

2
7
,9

2
7
,9

2
7
,9

1
8
,8

2
0

6
0

1
6
0
0

IN
F

0
,1

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,1

0
,0

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

6
0

1
6
0
0

IN
F

4
,3

0
,5

0
,4

0
,4

0
,0

0
,0

1
,2

0
,4

0
,1

0
,6

4
,3

0
,5

0
,0

0
,2

0
,1

0
,0

0
,0

0
,0

6
0

6
0

1
6
0
0

IN
F

1
2
,9

2
,4

2
,1

2
,1

0
,7

0
,7

6
,4

2
,5

0
,8

4
,5

1
3
,5

2
,4

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

8
0

6
0

1
6
0
0

IN
F

2
2
,7

9
,4

9
,2

8
,7

7
,6

7
,6

1
5
,8

9
,8

8
,0

1
2
,2

2
2
,6

9
,4

7
,6

1
4
,7

1
4
,7

1
4
,7

1
4
,7

7
,6

2
0

8
0

1
6
0
0

IN
F

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

4
0

8
0

1
6
0
0

IN
F

1
,9

0
,1

0
,1

0
,0

0
,0

0
,0

0
,5

0
,1

0
,0

0
,2

2
,8

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

6
0

8
0

1
6
0
0

IN
F

9
,2

1
,6

1
,5

0
,7

0
,1

0
,1

3
,3

1
,8

0
,1

1
,6

9
,9

1
,6

0
,1

0
,2

0
,1

0
,1

0
,1

0
,1

8
0

8
0

1
6
0
0

IN
F

1
8
,3

3
,1

2
,9

2
,5

0
,8

0
,8

1
0
,8

3
,2

0
,9

5
,5

1
8
,1

3
,1

0
,8

0
,4

0
,4

0
,4

0
,4

0
,4

2
0

2
0

2
1
0
0

IN
F

2
,6

1
,5

0
,8

1
,2

0
,6

0
,6

1
,9

1
,9

0
,8

1
,1

3
,4

1
,5

0
,6

0
,4

0
,4

0
,4

0
,4

0
,4

4
0

2
0

2
1
0
0

IN
F

1
3
,6

1
0
,0

9
,8

9
,8

9
,5

9
,5

1
1
,4

1
0
,3

9
,8

1
0
,4

1
4
,7

1
0
,0

9
,5

1
3
,4

1
3
,4

1
3
,4

1
3
,4

9
,5

6
0

2
0

2
1
0
0

IN
F

2
5
,8

2
1
,3

2
1
,2

2
1
,1

2
1
,0

2
1
,0

2
2
,3

2
1
,7

2
1
,4

2
1
,9

2
5
,7

2
1
,3

2
1
,0

2
7
,2

2
7
,2

2
7
,2

2
7
,2

2
1
,0

8
0

2
0

2
1
0
0

IN
F

3
7
,9

3
2
,8

3
2
,7

3
2
,7

3
2
,8

3
2
,8

3
4
,2

3
3
,3

3
3
,3

3
3
,4

3
8
,0

3
2
,8

3
2
,8

3
8
,9

3
8
,9

3
8
,9

3
8
,9

3
2
,8

2
0

4
0

2
1
0
0

IN
F

0
,6

0
,1

0
,1

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,1

0
,7

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

4
0

2
1
0
0

IN
F

7
,8

2
,2

1
,8

1
,6

0
,7

0
,7

4
,0

2
,2

1
,1

2
,7

7
,6

2
,2

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

6
0

4
0

2
1
0
0

IN
F

1
8
,1

9
,8

9
,3

9
,2

8
,5

8
,5

1
2
,1

9
,7

8
,5

1
1
,2

1
8
,1

9
,8

8
,5

1
5
,3

1
5
,3

1
5
,3

1
5
,3

8
,5

8
0

4
0

2
1
0
0

IN
F

2
9
,1

1
9
,6

1
9
,4

1
9
,3

1
8
,8

1
8
,8

2
3
,1

2
0
,2

1
9
,0

2
1
,3

3
0
,9

1
9
,6

1
8
,8

2
7
,9

2
7
,9

2
7
,9

2
7
,9

1
8
,8

2
0

6
0

2
1
0
0

IN
F

0
,1

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,1

0
,0

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

6
0

2
1
0
0

IN
F

3
,8

0
,5

0
,4

0
,3

0
,0

0
,0

0
,7

0
,5

0
,0

0
,6

5
,0

0
,5

0
,0

0
,2

0
,1

0
,0

0
,0

0
,0

6
0

6
0

2
1
0
0

IN
F

1
2
,5

2
,4

2
,0

2
,2

0
,7

0
,6

5
,7

2
,6

0
,9

4
,1

1
2
,4

2
,4

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

8
0

6
0

2
1
0
0

IN
F

2
2
,8

9
,4

9
,2

8
,8

7
,6

7
,6

1
3
,4

9
,5

8
,0

1
2
,0

2
3
,3

9
,4

7
,6

1
4
,7

1
4
,7

1
4
,7

1
4
,7

7
,6

109

T
ab

le
A

.7
:

O
b

je
ct

iv
e

F
u
n
ct

io
n

V
al

u
es

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

8
0

2
1
0
0

IN
F

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

4
0

8
0

2
1
0
0

IN
F

1
,9

0
,1

0
,1

0
,0

0
,0

0
,0

0
,4

0
,1

0
,0

0
,2

2
,6

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

6
0

8
0

2
1
0
0

IN
F

8
,7

1
,6

1
,4

0
,7

0
,1

0
,1

2
,7

1
,6

0
,2

1
,8

9
,2

1
,6

0
,1

0
,2

0
,1

0
,1

0
,1

0
,1

8
0

8
0

2
1
0
0

IN
F

1
8
,1

3
,1

2
,9

2
,2

0
,8

0
,8

9
,9

3
,2

1
,1

5
,8

1
9
,2

3
,1

0
,8

0
,4

0
,4

0
,4

0
,4

0
,4

2
0

2
0

2
6
0
0

IN
F

2
,9

1
,5

0
,9

1
,2

0
,6

0
,6

1
,5

1
,3

0
,8

1
,1

3
,5

1
,5

0
,6

0
,4

0
,4

0
,4

0
,4

0
,4

4
0

2
0

2
6
0
0

IN
F

1
3
,6

1
0
,0

9
,6

9
,8

9
,5

9
,5

1
1
,1

1
0
,1

9
,9

1
0
,5

1
4
,1

1
0
,0

9
,5

1
3
,4

1
3
,4

1
3
,4

1
3
,4

9
,5

6
0

2
0

2
6
0
0

IN
F

2
4
,9

2
1
,3

2
1
,2

2
1
,1

2
1
,0

2
1
,0

2
2
,4

2
1
,6

2
1
,2

2
1
,8

2
6
,4

2
1
,3

2
1
,0

2
7
,2

2
7
,2

2
7
,2

2
7
,2

2
1
,0

8
0

2
0

2
6
0
0

IN
F

3
7
,4

3
2
,8

3
2
,8

3
2
,6

3
2
,8

3
2
,8

3
3
,9

3
3
,2

3
3
,1

3
3
,8

3
7
,9

3
2
,8

3
2
,8

3
8
,9

3
8
,9

3
8
,9

3
8
,9

3
2
,8

2
0

4
0

2
6
0
0

IN
F

0
,4

0
,1

0
,0

0
,0

0
,0

0
,0

0
,1

0
,1

0
,0

0
,1

1
,0

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

4
0

2
6
0
0

IN
F

7
,8

2
,2

1
,5

1
,4

0
,7

0
,7

3
,7

2
,2

1
,1

2
,7

8
,5

2
,2

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

6
0

4
0

2
6
0
0

IN
F

1
8
,1

9
,8

9
,5

9
,4

8
,5

8
,5

1
1
,7

1
0
,2

8
,7

1
0
,9

1
9
,0

9
,8

8
,5

1
5
,3

1
5
,3

1
5
,3

1
5
,3

8
,5

8
0

4
0

2
6
0
0

IN
F

2
9
,4

1
9
,6

1
9
,4

1
9
,3

1
8
,8

1
8
,8

2
3
,0

1
9
,6

1
9
,2

2
1
,1

2
9
,4

1
9
,6

1
8
,8

2
7
,9

2
7
,9

2
7
,9

2
7
,9

1
8
,8

2
0

6
0

2
6
0
0

IN
F

0
,1

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,2

0
,0

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

4
0

6
0

2
6
0
0

IN
F

4
,3

0
,5

0
,4

0
,4

0
,0

0
,0

0
,8

0
,5

0
,1

0
,7

5
,0

0
,5

0
,0

0
,2

0
,1

0
,0

0
,0

0
,0

6
0

6
0

2
6
0
0

IN
F

1
2
,8

2
,4

1
,8

2
,3

0
,7

0
,7

5
,6

2
,8

0
,7

4
,3

1
3
,1

2
,4

0
,7

0
,4

0
,4

0
,4

0
,4

0
,4

8
0

6
0

2
6
0
0

IN
F

2
2
,7

9
,4

9
,2

8
,8

7
,6

7
,6

1
3
,4

9
,8

8
,0

1
2
,0

2
3
,8

9
,4

7
,6

1
4
,7

1
4
,7

1
4
,7

1
4
,7

7
,6

2
0

8
0

2
6
0
0

IN
F

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

4
0

8
0

2
6
0
0

IN
F

1
,8

0
,1

0
,1

0
,0

0
,0

0
,0

0
,3

0
,1

0
,0

0
,2

2
,8

0
,1

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

6
0

8
0

2
6
0
0

IN
F

8
,7

1
,6

1
,2

0
,7

0
,1

0
,1

2
,4

1
,8

0
,1

1
,8

9
,3

1
,6

0
,1

0
,2

0
,1

0
,1

0
,1

0
,1

6
6

1
0
0

IN
F

0
,4

0
,7

0
,7

0
,6

0
,4

0
,4

0
,7

0
,6

0
,6

0
,3

0
,6

0
,7

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

9
6

1
0
0

IN
F

1
,9

1
,8

1
,8

1
,7

1
,7

1
,6

1
,8

2
,3

1
,8

1
,6

2
,0

1
,8

1
,7

2
,4

2
,4

2
,4

1
,6

1
,7

6
9

6
0
0

IN
F

0
,2

0
,3

0
,3

0
,2

0
,1

0
,1

0
,2

0
,3

0
,3

0
,1

0
,2

0
,1

0
,1

0
,2

0
,2

0
,2

0
,2

0
,1

9
6

6
0
0

IN
F

1
,7

1
,8

1
,7

1
,7

1
,7

1
,6

2
,0

1
,7

1
,6

1
,6

2
,5

1
,8

1
,7

2
,4

2
,4

2
,4

1
,6

1
,7

9
9

6
0
0

IN
F

1
,1

1
,0

1
,0

0
,9

0
,6

0
,6

1
,2

1
,3

0
,6

0
,6

1
,1

1
,0

0
,6

0
,5

0
,5

0
,5

0
,5

0
,5

6
9

1
1
0
0

IN
F

0
,1

0
,3

0
,2

0
,1

0
,1

0
,1

0
,2

0
,2

0
,1

0
,1

0
,6

0
,2

0
,1

0
,2

0
,2

0
,2

0
,2

0
,1

9
9

1
1
0
0

IN
F

0
,9

1
,0

0
,8

0
,7

0
,6

0
,6

1
,1

0
,8

0
,7

0
,6

1
,0

1
,0

0
,6

0
,5

0
,5

0
,5

0
,5

0
,5

9
6

1
1
0
0

IN
F

1
,7

1
,8

1
,7

1
,7

1
,7

1
,6

1
,8

1
,7

1
,7

1
,6

2
,1

1
,8

1
,7

2
,4

2
,4

2
,4

1
,6

1
,7

6
9

1
6
0
0

IN
F

0
,1

0
,3

0
,2

0
,1

0
,1

0
,1

0
,1

0
,1

0
,1

0
,1

0
,4

0
,3

0
,1

0
,2

0
,2

0
,2

0
,2

0
,1

9
9

1
6
0
0

IN
F

0
,8

1
,0

0
,7

0
,7

0
,6

0
,6

0
,8

0
,8

0
,7

0
,5

1
,1

1
,0

0
,6

0
,5

0
,5

0
,5

0
,5

0
,5

6
9

2
1
0
0

IN
F

0
,1

0
,3

0
,2

0
,1

0
,1

0
,1

0
,1

0
,2

0
,2

0
,1

0
,3

0
,3

0
,1

0
,2

0
,2

0
,2

0
,2

0
,1

9
9

2
1
0
0

IN
F

0
,7

1
,0

0
,8

0
,8

0
,6

0
,6

0
,9

0
,8

0
,7

0
,5

1
,0

0
,9

0
,6

0
,5

0
,5

0
,5

0
,5

0
,5

6
9

2
6
0
0

IN
F

0
,1

0
,3

0
,2

0
,1

0
,1

0
,1

0
,1

0
,1

0
,1

0
,1

0
,3

0
,2

0
,1

0
,2

0
,2

0
,2

0
,2

0
,1

9
9

2
6
0
0

IN
F

0
,9

1
,0

0
,6

0
,8

0
,6

0
,5

0
,7

0
,8

0
,7

0
,6

1
,0

1
,0

0
,6

0
,5

0
,5

0
,5

0
,5

0
,5

6
9

2
6
0
0

IN
F

0
,1

0
,3

0
,2

0
,1

0
,1

0
,1

0
,1

0
,2

0
,1

0
,1

0
,3

0
,2

0
,1

0
,2

0
,2

0
,2

0
,2

0
,1

9
9

2
6
0
0

IN
F

0
,8

1
,0

0
,7

0
,7

0
,6

0
,6

0
,8

0
,9

0
,6

0
,6

1
,2

1
,0

0
,6

0
,5

0
,5

0
,5

0
,5

0
,5

8
0

8
0

2
6
0
0

IN
F

1
7
,8

3
,1

2
,8

2
,4

0
,8

0
,8

9
,3

3
,1

1
,2

5
,6

1
8
,0

3
,1

0
,8

0
,4

0
,4

0
,4

0
,4

0
,4

3
3

1
0
0

0
,3

0
,3

0
,5

0
,5

0
,3

0
,4

0
,3

0
,5

0
,4

0
,3

0
,3

0
,5

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

6
3

1
0
0

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

2
,1

2
,0

1
,9

1
,9

2
,0

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

110

T
ab

le
A

.8
:

O
b

je
ct

iv
e

F
u
n
ct

io
n

V
al

u
es

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

9
3

1
0
0

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

4
,1

3
,7

3
,7

4
,1

4
,1

4
,1

3
,7

3
,7

3
6

1
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

3
9

1
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

3
3

6
0
0

0
,3

0
,3

0
,5

0
,3

0
,3

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

6
3

6
0
0

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

9
3

6
0
0

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

4
,1

3
,7

3
,7

4
,1

4
,1

4
,1

3
,7

3
,7

3
6

6
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

6
6

6
0
0

0
,3

0
,3

0
,7

0
,7

0
,4

0
,4

0
,3

0
,6

0
,7

0
,3

0
,3

0
,6

0
,5

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

3
9

6
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

3
3

1
1
0
0

0
,3

0
,3

0
,5

0
,3

0
,3

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

0
,5

0
,3

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

6
3

1
1
0
0

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

2
,1

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

9
3

1
1
0
0

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

4
,3

3
,7

3
,7

4
,1

4
,1

4
,1

3
,7

3
,7

3
6

1
1
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

6
6

1
1
0
0

0
,3

0
,3

0
,7

0
,5

0
,4

0
,4

0
,3

0
,3

0
,5

0
,6

0
,3

0
,4

0
,5

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

3
9

1
1
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

3
3

1
6
0
0

0
,3

0
,3

0
,5

0
,3

0
,3

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

6
3

1
6
0
0

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

9
3

1
6
0
0

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

4
,0

3
,7

3
,7

4
,1

4
,1

4
,1

3
,7

3
,7

3
6

1
6
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,1

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

6
6

1
6
0
0

0
,3

0
,3

0
,7

0
,5

0
,5

0
,4

0
,3

0
,4

0
,5

0
,4

0
,3

0
,9

0
,6

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

9
6

1
6
0
0

1
,6

1
,7

1
,8

1
,7

1
,7

1
,7

1
,6

1
,6

1
,7

1
,6

1
,6

2
,0

1
,8

1
,7

2
,4

2
,4

2
,4

1
,6

1
,6

3
9

1
6
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

3
3

2
1
0
0

0
,3

0
,3

0
,5

0
,3

0
,3

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

0
,5

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

6
3

2
1
0
0

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

9
3

2
1
0
0

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

4
,0

3
,7

3
,7

4
,1

4
,1

4
,1

3
,7

3
,7

3
6

2
1
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

6
6

2
1
0
0

0
,3

0
,3

0
,7

0
,5

0
,4

0
,4

0
,3

0
,4

0
,3

0
,3

0
,3

1
,0

0
,5

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

9
6

2
1
0
0

1
,6

1
,7

1
,8

1
,7

1
,7

1
,7

1
,6

1
,7

1
,6

1
,7

1
,6

1
,9

1
,8

1
,6

2
,4

2
,4

2
,4

1
,6

1
,6

3
9

2
1
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

3
3

2
6
0
0

0
,3

0
,3

0
,5

0
,3

0
,3

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

0
,5

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

0
,3

6
3

2
6
0
0

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

2
,6

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

1
,9

9
3

2
6
0
0

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

3
,7

4
,1

4
,1

4
,1

3
,7

3
,7

3
6

2
6
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

6
6

2
6
0
0

0
,3

0
,3

0
,7

0
,5

0
,4

0
,4

0
,3

0
,4

0
,3

0
,5

0
,3

1
,0

0
,4

0
,4

0
,3

0
,3

0
,3

0
,3

0
,3

9
6

2
6
0
0

1
,6

1
,7

1
,8

1
,7

1
,7

1
,7

1
,6

1
,8

1
,7

1
,7

1
,6

2
,2

1
,8

1
,7

2
,4

2
,4

2
,4

1
,6

1
,6

3
9

2
6
0
0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

0
,0

A
V
G
:

IN
F

8
,6

5
,0

4
,8

4
,7

4
,4

4
,4

6
,6

5
,0

4
,5

5
,4

8
,9

4
,9

4
,4

6
,0

5
,9

5
,9

5
,9

4
,3
7

111

T
ab

le
A

.9
:

D
ev

ia
ti

on
s

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
0

1
0
0

IN
F

3
,0
6

1
,1
0

1
,1
0

0
,9
2

0
,2
2

0
,2
2

2
,0
3

1
,4
7

0
,2
7

1
,0
7

3
,0
4

1
,1
0

0
,2
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

2
0

1
0
0

IN
F

4
,7
8

0
,5
5

0
,4
5

0
,6
5

0
,0
0

0
,0
0

3
,3
5

0
,7
3

0
,6
3

1
,4
9

5
,1
2

0
,5
5

0
,0
0

3
,9
4

3
,9
4

3
,9
4

3
,9
4

0
,0
0

6
0

2
0

1
0
0

IN
F

5
,6
3

0
,3
1

0
,3
1

0
,3
1

0
,0
0

0
,0
0

3
,1
4

0
,5
8

0
,1
8

1
,4
0

5
,6
9

0
,3
1

0
,0
0

6
,2
1

6
,2
1

6
,2
1

6
,2
1

0
,0
0

8
0

2
0

1
0
0

IN
F

5
,7
6

0
,0
7

0
,0
7

0
,1
4

0
,0
0

0
,0
0

3
,7
8

0
,2
7

0
,4
2

1
,2
2

5
,7
8

0
,0
7

0
,0
0

6
,1
2

6
,1
2

6
,1
2

6
,1
2

0
,0
0

2
0

4
0

1
0
0

IN
F

0
,8
6

0
,1
7

0
,1
6

0
,0
7

0
,0
0

0
,0
0

0
,2
3

0
,2
0

0
,0
0

0
,2
0

0
,6
7

0
,1
7

0
,0
0

0
,1
4

0
,0
2

0
,0
1

0
,0
1

0
,0
0

4
0

4
0

1
0
0

IN
F

7
,9
1

1
,7
1

1
,6
5

1
,5
7

0
,2
4

0
,2
4

5
,8
7

2
,0
8

0
,4
2

2
,3
9

7
,9
9

1
,7
1

0
,2
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
0

4
0

1
0
0

IN
F

9
,8
8

1
,2
8

1
,2
8

0
,9
1

0
,0
0

0
,0
0

8
,6
0

1
,4
7

0
,4
4

2
,5
4

1
1
,4
0

1
,2
8

0
,0
0

6
,8
1

6
,8
1

6
,8
1

6
,8
1

0
,0
0

8
0

4
0

1
0
0

IN
F

1
1
,6
9

0
,7
4

0
,7
4

0
,5
6

0
,0
0

0
,0
0

1
0
,1
7

0
,7
8

0
,1
1

2
,7
1

1
1
,9
0

0
,7
4

0
,0
0

9
,1
0

9
,1
0

9
,1
0

9
,1
0

0
,0
0

2
0

6
0

1
0
0

IN
F

0
,2
3

0
,0
1

0
,0
1

0
,0
1

0
,0
0

0
,0
0

0
,0
7

0
,0
1

0
,0
0

0
,0
2

0
,1
5

0
,0
1

0
,0
0

0
,1
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

6
0

1
0
0

IN
F

5
,0
4

0
,4
5

0
,4
5

0
,4
5

0
,0
0

0
,0
0

3
,5
0

0
,4
3

0
,0
1

0
,7
4

4
,9
4

0
,4
5

0
,0
0

0
,1
4

0
,0
4

0
,0
2

0
,0
2

0
,0
0

6
0

6
0

1
0
0

IN
F

1
3
,2
2

1
,9
7

1
,9
5

1
,9
7

0
,2
3

0
,2
3

1
1
,3
7

2
,2
6

0
,4
2

3
,7
2

1
3
,4
8

1
,9
7

0
,2
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

8
0

6
0

1
0
0

IN
F

1
5
,2
1

1
,7
6

1
,7
6

1
,4
6

0
,0
0

0
,0
0

1
5
,0
6

2
,1
0

0
,1
6

4
,3
1

1
5
,8
7

1
,7
6

0
,0
0

7
,0
8

7
,0
8

7
,0
8

7
,0
8

0
,0
0

2
0

8
0

1
0
0

IN
F

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
2

0
,0
0

0
,0
0

0
,0
0

0
,0
7

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

8
0

1
0
0

IN
F

2
,4
7

0
,1
4

0
,1
4

0
,1
0

0
,0
0

0
,0
0

2
,2
0

0
,1
5

0
,0
3

0
,2
7

2
,4
5

0
,1
4

0
,0
0

0
,1
5

0
,0
1

0
,0
0

0
,0
0

0
,0
0

6
0

8
0

1
0
0

IN
F

9
,5
9

1
,5
6

1
,5
6

0
,7
5

0
,0
0

0
,0
0

9
,3
2

1
,6
7

0
,3
3

1
,9
4

1
0
,5
1

1
,5
6

0
,0
0

0
,1
6

0
,0
9

0
,0
8

0
,0
8

0
,0
0

8
0

8
0

1
0
0

IN
F

1
7
,8
4

2
,6
7

2
,6
7

2
,1
6

0
,4
1

0
,4
1

1
7
,6
8

3
,0
3

1
,0
0

5
,2
5

1
7
,4
9

2
,6
7

0
,4
1

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

2
0

2
0

6
0
0

IN
F

2
,4
8

1
,1
0

1
,0
0

0
,9
1

0
,2
2

0
,1
9

1
,8
9

1
,2
6

0
,6
0

0
,8
1

3
,1
2

1
,0
8

0
,2
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

2
0

6
0
0

IN
F

4
,0
3

0
,5
5

0
,5
0

0
,4
5

0
,0
0

0
,0
0

2
,3
5

0
,9
1

0
,1
4

1
,0
1

5
,2
6

0
,5
5

0
,0
0

3
,9
4

3
,9
4

3
,9
4

3
,9
4

0
,0
0

6
0

2
0

6
0
0

IN
F

5
,2
9

0
,3
1

0
,3
1

0
,1
1

0
,0
0

0
,0
0

1
,9
6

0
,9
0

0
,3
4

0
,9
0

5
,7
7

0
,3
1

0
,0
0

6
,2
1

6
,2
1

6
,2
1

6
,2
1

0
,0
0

8
0

2
0

6
0
0

IN
F

5
,0
8

0
,0
7

0
,0
7

0
,0
2

0
,0
0

0
,0
0

1
,2
4

0
,2
7

0
,0
6

0
,8
9

5
,1
6

0
,0
7

0
,0
0

6
,1
2

6
,1
2

6
,1
2

6
,1
2

0
,0
0

2
0

4
0

6
0
0

IN
F

0
,6
0

0
,1
7

0
,1
3

0
,0
9

0
,0
0

0
,0
0

0
,1
7

0
,1
4

0
,0
2

0
,1
4

0
,6
7

0
,1
7

0
,0
0

0
,1
4

0
,0
2

0
,0
1

0
,0
1

0
,0
0

4
0

4
0

6
0
0

IN
F

7
,5
5

1
,7
1

1
,5
5

1
,2
2

0
,2
4

0
,2
4

3
,1
6

1
,9
9

0
,5
2

2
,0
9

7
,3
6

1
,7
1

0
,2
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
0

4
0

6
0
0

IN
F

1
0
,4
8

1
,3
1

1
,2
2

0
,8
4

0
,0
3

0
,0
0

4
,9
6

1
,7
4

0
,3
5

2
,7
1

1
1
,0
4

1
,3
1

0
,0
3

6
,8
4

6
,8
4

6
,8
4

6
,8
4

0
,0
3

8
0

4
0

6
0
0

IN
F

1
0
,7
8

0
,7
4

0
,7
3

0
,5
6

0
,0
0

0
,0
0

5
,6
3

0
,7
8

0
,2
4

2
,7
5

1
1
,5
6

0
,7
4

0
,0
0

9
,1
0

9
,1
0

9
,1
0

9
,1
0

0
,0
0

2
0

6
0

6
0
0

IN
F

0
,1
8

0
,0
1

0
,0
1

0
,0
1

0
,0
0

0
,0
0

0
,0
1

0
,0
1

0
,0
0

0
,0
2

0
,2
6

0
,0
1

0
,0
0

0
,1
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

8
0

4
0

6
0
0

IN
F

1
0
,7
8

0
,7
4

0
,7
3

0
,5
6

0
,0
0

0
,0
0

5
,6
3

0
,7
8

0
,2
4

2
,7
5

1
1
,5
6

0
,7
4

0
,0
0

9
,1
0

9
,1
0

9
,1
0

9
,1
0

0
,0
0

2
0

6
0

6
0
0

IN
F

0
,1
8

0
,0
1

0
,0
1

0
,0
1

0
,0
0

0
,0
0

0
,0
1

0
,0
1

0
,0
0

0
,0
2

0
,2
6

0
,0
1

0
,0
0

0
,1
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

6
0

6
0
0

IN
F

4
,2
0

0
,4
5

0
,4
2

0
,3
8

0
,0
0

0
,0
0

1
,4
7

0
,5
5

0
,0
1

0
,5
5

4
,6
7

0
,4
5

0
,0
0

0
,1
4

0
,0
4

0
,0
2

0
,0
2

0
,0
0

6
0

6
0

6
0
0

IN
F

1
2
,3
9

1
,9
7

1
,9
7

1
,8
4

0
,2
3

0
,2
3

7
,7
5

2
,4
4

0
,7
4

3
,8
8

1
3
,6
1

1
,9
7

0
,2
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

8
0

6
0

6
0
0

IN
F

1
5
,8
7

1
,7
6

1
,7
6

1
,1
9

0
,0
0

0
,0
0

9
,8
3

1
,8
5

0
,5
8

4
,9
4

1
5
,5
5

1
,7
6

0
,0
0

7
,0
8

7
,0
8

7
,0
8

7
,0
8

0
,0
0

2
0

8
0

6
0
0

IN
F

0
,0
5

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

8
0

6
0
0

IN
F

2
,3
8

0
,1
4

0
,1
3

0
,1
0

0
,0
0

0
,0
0

0
,8
5

0
,1
4

0
,0
1

0
,2
5

2
,6
9

0
,1
4

0
,0
0

0
,1
5

0
,0
1

0
,0
0

0
,0
0

0
,0
0

6
0

8
0

6
0
0

IN
F

8
,2
7

1
,5
6

1
,4
8

0
,7
0

0
,0
0

0
,0
0

5
,6
6

1
,6
3

0
,1
9

2
,0
7

9
,9
1

1
,5
6

0
,0
0

0
,1
6

0
,0
9

0
,0
8

0
,0
8

0
,0
0

8
0

8
0

6
0
0

IN
F

1
7
,4
8

2
,6
7

2
,6
4

1
,8
5

0
,4
1

0
,4
1

1
4
,0
5

2
,9
6

0
,7
7

5
,2
9

1
8
,4
3

2
,6
7

0
,4
1

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

2
0

2
0

1
1
0
0

IN
F

2
,3
9

1
,1
0

0
,7
1

0
,8
8

0
,2
2

0
,2
2

1
,4
4

0
,8
9

0
,3
4

0
,7
7

3
,0
6

1
,1
0

0
,2
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

2
0

1
1
0
0

IN
F

4
,2
8

0
,5
5

0
,3
1

0
,5
0

0
,0
0

0
,0
0

1
,7
1

0
,9
7

0
,0
0

0
,8
6

5
,3
8

0
,5
5

0
,0
0

3
,9
4

3
,9
4

3
,9
4

3
,9
4

0
,0
0

6
0

2
0

1
1
0
0

IN
F

4
,9
8

0
,3
1

0
,3
1

0
,2
3

0
,0
0

0
,0
0

1
,6
0

0
,7
0

0
,4
6

0
,8
8

5
,0
9

0
,3
1

0
,0
0

6
,2
1

6
,2
1

6
,2
1

6
,2
1

0
,0
0

8
0

2
0

1
1
0
0

IN
F

5
,0
5

0
,1
1

0
,0
0

0
,0
2

0
,0
3

0
,0
3

1
,2
4

0
,5
2

0
,3
2

1
,2
0

5
,5
0

0
,1
1

0
,0
3

6
,1
5

6
,1
5

6
,1
5

6
,1
5

0
,0
3

112

T
ab

le
A

.1
0:

D
ev

ia
ti

on
s

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

4
0

1
1
0
0

IN
F

0
,6
4

0
,1
7

0
,1
3

0
,0
7

0
,0
0

0
,0
0

0
,1
2

0
,0
9

0
,0
0

0
,1
4

1
,2
1

0
,1
7

0
,0
0

0
,1
4

0
,0
2

0
,0
1

0
,0
1

0
,0
0

4
0

4
0

1
1
0
0

IN
F

7
,3
5

1
,7
1

1
,4
8

1
,1
7

0
,2
4

0
,2
2

3
,6
3

2
,0
5

0
,8
9

2
,1
1

7
,4
5

1
,7
1

0
,2
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
0

4
0

1
1
0
0

IN
F

9
,5
8

1
,2
8

0
,8
8

1
,0
0

0
,0
0

0
,0
0

3
,5
7

1
,2
5

0
,1
4

2
,6
0

8
,1
6

1
,2
8

0
,0
0

6
,8
1

6
,8
1

6
,8
1

6
,8
1

0
,0
0

8
0

4
0

1
1
0
0

IN
F

1
0
,6
6

0
,7
4

0
,7
4

0
,4
9

0
,0
0

0
,0
0

4
,5
4

1
,0
4

0
,1
9

2
,6
9

1
0
,0
4

0
,7
4

0
,0
0

9
,1
0

9
,1
0

9
,1
0

9
,1
0

0
,0
0

2
0

6
0

1
1
0
0

IN
F

0
,1
5

0
,0
1

0
,0
1

0
,0
1

0
,0
0

0
,0
0

0
,0
1

0
,0
1

0
,0
0

0
,0
2

0
,1
7

0
,0
1

0
,0
0

0
,1
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

6
0

1
1
0
0

IN
F

4
,2
4

0
,4
5

0
,3
8

0
,3
7

0
,0
0

0
,0
0

0
,9
0

0
,4
6

0
,0
9

0
,7
3

4
,6
5

0
,4
5

0
,0
0

0
,1
4

0
,0
4

0
,0
2

0
,0
2

0
,0
0

6
0

6
0

1
1
0
0

IN
F

1
2
,2
3

1
,9
7

1
,6
3

1
,8
4

0
,2
3

0
,2
1

6
,2
7

2
,2
1

0
,3
8

3
,8
4

1
3
,0
9

1
,9
7

0
,2
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

8
0

6
0

1
1
0
0

IN
F

1
4
,1
3

1
,7
6

1
,7
2

1
,1
2

0
,0
0

0
,0
0

9
,0
8

2
,0
3

0
,4
3

4
,2
1

1
5
,6
1

1
,7
6

0
,0
0

7
,0
8

7
,0
8

7
,0
8

7
,0
8

0
,0
0

2
0

8
0

1
1
0
0

IN
F

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
5

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

8
0

1
1
0
0

IN
F

2
,2
3

0
,1
4

0
,1
3

0
,0
8

0
,0
0

0
,0
0

0
,5
5

0
,1
3

0
,0
0

0
,2
1

2
,6
4

0
,1
4

0
,0
0

0
,1
5

0
,0
1

0
,0
0

0
,0
0

0
,0
0

6
0

8
0

1
1
0
0

IN
F

8
,8
6

1
,5
6

1
,3
2

0
,6
5

0
,0
0

0
,0
0

3
,6
4

1
,5
9

0
,0
0

1
,7
5

9
,2
3

1
,5
6

0
,0
0

0
,1
6

0
,0
9

0
,0
8

0
,0
8

0
,0
0

8
0

8
0

1
1
0
0

IN
F

1
7
,7
2

2
,6
7

2
,5
8

1
,8
5

0
,4
1

0
,4
1

1
2
,1
2

2
,6
8

0
,7
6

5
,1
5

1
7
,5
1

2
,6
7

0
,4
1

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

2
0

2
0

1
6
0
0

IN
F

2
,4
2

1
,1
0

0
,4
8

0
,7
2

0
,2
2

0
,1
9

1
,4
3

1
,0
6

0
,4
0

0
,8
7

3
,4
4

0
,9
4

0
,2
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

2
0

1
6
0
0

IN
F

4
,0
0

0
,5
5

0
,3
8

0
,3
6

0
,0
0

0
,0
0

1
,3
0

0
,5
0

0
,3
1

1
,0
2

3
,9
4

0
,5
5

0
,0
0

3
,9
4

3
,9
4

3
,9
4

3
,9
4

0
,0
0

6
0

2
0

1
6
0
0

IN
F

4
,9
2

0
,3
1

0
,3
1

0
,1
2

0
,0
0

0
,0
0

1
,2
5

0
,3
1

0
,4
0

0
,8
8

5
,2
3

0
,3
1

0
,0
0

6
,2
1

6
,2
1

6
,2
1

6
,2
1

0
,0
0

8
0

2
0

1
6
0
0

IN
F

5
,2
1

0
,1
6

0
,1
6

0
,0
0

0
,0
9

0
,0
9

1
,2
4

0
,6
3

0
,3
3

0
,5
6

4
,5
8

0
,1
6

0
,0
9

6
,2
0

6
,2
0

6
,2
0

6
,2
0

0
,0
9

2
0

4
0

1
6
0
0

IN
F

0
,5
9

0
,1
7

0
,1
1

0
,0
8

0
,0
0

0
,0
0

0
,0
8

0
,1
0

0
,0
0

0
,1
0

0
,9
9

0
,1
6

0
,0
0

0
,1
4

0
,0
2

0
,0
1

0
,0
1

0
,0
0

4
0

4
0

1
6
0
0

IN
F

7
,3
3

1
,7
1

1
,1
9

1
,1
9

0
,2
4

0
,2
3

3
,7
7

1
,7
6

0
,6
0

2
,3
2

7
,1
5

1
,7
1

0
,2
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
0

4
0

1
6
0
0

IN
F

9
,6
8

1
,2
8

0
,7
0

0
,8
6

0
,0
0

0
,0
0

3
,8
4

1
,5
2

0
,1
4

2
,8
2

9
,5
1

1
,2
8

0
,0
0

6
,8
1

6
,8
1

6
,8
1

6
,8
1

0
,0
0

8
0

4
0

1
6
0
0

IN
F

1
0
,7
8

0
,7
4

0
,6
6

0
,4
6

0
,0
0

0
,0
0

3
,5
9

1
,0
6

0
,2
4

2
,3
1

1
1
,1
9

0
,7
4

0
,0
0

9
,1
0

9
,1
0

9
,1
0

9
,1
0

0
,0
0

2
0

6
0

1
6
0
0

IN
F

0
,1
4

0
,0
1

0
,0
1

0
,0
1

0
,0
0

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
2

0
,1
6

0
,0
1

0
,0
0

0
,1
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

6
0

1
6
0
0

IN
F

4
,2
6

0
,4
5

0
,3
6

0
,3
5

0
,0
0

0
,0
0

1
,1
5

0
,4
0

0
,0
8

0
,6
3

4
,3
3

0
,4
5

0
,0
0

0
,1
4

0
,0
4

0
,0
2

0
,0
2

0
,0
0

6
0

6
0

1
6
0
0

IN
F

1
2
,4
5

1
,9
7

1
,7
0

1
,6
7

0
,2
3

0
,2
3

5
,9
4

2
,1
1

0
,3
4

4
,0
3

1
3
,0
6

1
,9
7

0
,2
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

8
0

6
0

1
6
0
0

IN
F

1
5
,1
3

1
,7
8

1
,6
3

1
,0
6

0
,0
1

0
,0
0

8
,2
3

2
,1
8

0
,3
8

4
,6
1

1
5
,0
3

1
,7
8

0
,0
1

7
,0
9

7
,0
9

7
,0
9

7
,0
9

0
,0
1

2
0

8
0

1
6
0
0

IN
F

0
,0
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

8
0

1
6
0
0

IN
F

1
,9
7

0
,1
4

0
,1
2

0
,0
7

0
,0
0

0
,0
0

0
,5
7

0
,1
5

0
,0
0

0
,2
3

2
,7
9

0
,1
4

0
,0
0

0
,1
5

0
,0
1

0
,0
0

0
,0
0

0
,0
0

6
0

8
0

1
6
0
0

IN
F

9
,1
1

1
,5
6

1
,4
0

0
,6
2

0
,0
0

0
,0
0

3
,2
7

1
,7
2

0
,0
7

1
,5
8

9
,8
6

1
,5
6

0
,0
0

0
,1
6

0
,0
9

0
,0
8

0
,0
8

0
,0
0

8
0

8
0

1
6
0
0

IN
F

1
7
,9
0

2
,6
7

2
,5
0

2
,0
9

0
,4
1

0
,4
1

1
0
,3
7

2
,8
6

0
,5
4

5
,1
5

1
7
,6
9

2
,6
7

0
,4
1

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

2
0

2
0

2
1
0
0

IN
F

2
,1
9

1
,1
0

0
,3
7

0
,7
5

0
,2
2

0
,1
9

1
,5
0

1
,4
6

0
,3
7

0
,7
3

2
,9
8

1
,1
0

0
,2
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

2
0

2
1
0
0

IN
F

4
,1
7

0
,5
5

0
,3
4

0
,3
6

0
,0
0

0
,0
0

1
,9
8

0
,8
3

0
,2
9

0
,9
6

5
,2
1

0
,5
5

0
,0
0

3
,9
4

3
,9
4

3
,9
4

3
,9
4

0
,0
0

6
0

2
0

2
1
0
0

IN
F

4
,8
8

0
,3
1

0
,2
6

0
,1
2

0
,0
0

0
,0
0

1
,3
4

0
,7
7

0
,4
9

0
,9
3

4
,7
3

0
,3
1

0
,0
0

6
,2
1

6
,2
1

6
,2
1

6
,2
1

0
,0
0

8
0

2
0

2
1
0
0

IN
F

5
,1
7

0
,1
1

0
,0
0

0
,0
3

0
,0
3

0
,0
3

1
,4
8

0
,5
4

0
,5
9

0
,6
6

5
,2
8

0
,1
1

0
,0
3

6
,1
5

6
,1
5

6
,1
5

6
,1
5

0
,0
3

2
0

4
0

2
1
0
0

IN
F

0
,6
8

0
,1
7

0
,0
9

0
,0
8

0
,0
0

0
,0
0

0
,0
7

0
,0
5

0
,0
0

0
,0
9

0
,7
8

0
,1
7

0
,0
0

0
,1
4

0
,0
2

0
,0
1

0
,0
1

0
,0
0

4
0

4
0

2
1
0
0

IN
F

7
,4
0

1
,7
1

1
,3
3

1
,1
8

0
,2
4

0
,2
2

3
,5
4

1
,7
1

0
,6
9

2
,2
9

7
,1
3

1
,7
1

0
,2
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
0

4
0

2
1
0
0

IN
F

9
,6
3

1
,2
8

0
,8
3

0
,6
5

0
,0
0

0
,0
0

3
,6
0

1
,2
3

0
,0
2

2
,6
5

9
,6
2

1
,2
8

0
,0
0

6
,8
1

6
,8
1

6
,8
1

6
,8
1

0
,0
0

8
0

4
0

2
1
0
0

IN
F

1
0
,2
8

0
,7
4

0
,5
7

0
,4
6

0
,0
0

0
,0
0

4
,3
2

1
,3
8

0
,1
8

2
,4
4

1
2
,1
3

0
,7
4

0
,0
0

9
,1
0

9
,1
0

9
,1
0

9
,1
0

0
,0
0

2
0

6
0

2
1
0
0

IN
F

0
,1
3

0
,0
1

0
,0
1

0
,0
1

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
0

0
,0
1

0
,1
9

0
,0
1

0
,0
0

0
,1
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

6
0

2
1
0
0

IN
F

3
,8
2

0
,4
5

0
,4
0

0
,3
3

0
,0
0

0
,0
0

0
,7
0

0
,4
4

0
,0
0

0
,6
1

5
,0
0

0
,4
5

0
,0
0

0
,1
4

0
,0
4

0
,0
2

0
,0
2

0
,0
0

113

T
ab

le
A

.1
1:

D
ev

ia
ti

on
s

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

6
0

6
0

2
1
0
0

IN
F

1
2
,0
5

1
,9
7

1
,5
6

1
,7
7

0
,2
3

0
,2
1

5
,2
5

2
,1
7

0
,4
6

3
,7
1

1
1
,9
7

1
,9
7

0
,2
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

8
0

6
0

2
1
0
0

IN
F

1
5
,1
6

1
,7
8

1
,6
0

1
,1
8

0
,0
1

0
,0
0

5
,7
8

1
,9
1

0
,3
6

4
,4
2

1
5
,6
5

1
,7
8

0
,0
1

7
,0
9

7
,0
9

7
,0
9

7
,0
9

0
,0
1

2
0

8
0

2
1
0
0

IN
F

0
,0
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

8
0

2
1
0
0

IN
F

1
,9
8

0
,1
4

0
,1
3

0
,0
7

0
,0
0

0
,0
0

0
,4
0

0
,1
6

0
,0
1

0
,2
5

2
,6
8

0
,1
4

0
,0
0

0
,1
5

0
,0
1

0
,0
0

0
,0
0

0
,0
0

6
0

8
0

2
1
0
0

IN
F

8
,6
5

1
,5
6

1
,3
7

0
,6
4

0
,0
0

0
,0
0

2
,6
8

1
,5
7

0
,1
1

1
,7
4

9
,1
2

1
,5
6

0
,0
0

0
,1
6

0
,0
9

0
,0
8

0
,0
8

0
,0
0

8
0

8
0

2
1
0
0

IN
F

1
7
,7
5

2
,6
7

2
,5
5

1
,8
0

0
,4
1

0
,3
6

9
,4
7

2
,8
4

0
,7
2

5
,3
8

1
8
,8
3

2
,6
7

0
,4
1

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

2
0

2
0

2
6
0
0

IN
F

2
,5
2

1
,1
0

0
,5
1

0
,7
5

0
,2
2

0
,1
7

1
,1
2

0
,9
1

0
,3
7

0
,6
7

3
,0
5

1
,1
0

0
,2
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

2
0

2
6
0
0

IN
F

4
,1
6

0
,5
5

0
,1
8

0
,3
6

0
,0
0

0
,0
0

1
,6
3

0
,6
6

0
,4
4

1
,0
1

4
,6
8

0
,5
5

0
,0
0

3
,9
4

3
,9
4

3
,9
4

3
,9
4

0
,0
0

6
0

2
0

2
6
0
0

IN
F

3
,9
6

0
,3
1

0
,2
6

0
,1
4

0
,0
0

0
,0
0

1
,4
2

0
,6
8

0
,2
7

0
,8
6

5
,4
7

0
,3
1

0
,0
0

6
,2
1

6
,2
1

6
,2
1

6
,2
1

0
,0
0

8
0

2
0

2
6
0
0

IN
F

4
,7
2

0
,1
9

0
,1
9

0
,0
0

0
,1
1

0
,1
1

1
,2
2

0
,5
4

0
,4
8

1
,2
0

5
,2
3

0
,1
9

0
,1
1

6
,2
3

6
,2
3

6
,2
3

6
,2
3

0
,1
1

2
0

4
0

2
6
0
0

IN
F

0
,4
0

0
,1
7

0
,0
6

0
,0
8

0
,0
0

0
,0
0

0
,1
0

0
,0
9

0
,0
0

0
,1
1

1
,0
5

0
,1
7

0
,0
0

0
,1
4

0
,0
2

0
,0
1

0
,0
1

0
,0
0

4
0

4
0

2
6
0
0

IN
F

7
,3
7

1
,7
1

1
,0
5

0
,9
2

0
,2
4

0
,2
2

3
,2
8

1
,7
5

0
,6
8

2
,2
1

8
,1
0

1
,7
1

0
,2
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
0

4
0

2
6
0
0

IN
F

9
,5
7

1
,3
1

1
,0
1

0
,9
3

0
,0
3

0
,0
0

3
,1
9

1
,7
0

0
,1
9

2
,4
2

1
0
,4
7

1
,3
1

0
,0
3

6
,8
4

6
,8
4

6
,8
4

6
,8
4

0
,0
3

8
0

4
0

2
6
0
0

IN
F

1
0
,6
0

0
,7
9

0
,6
7

0
,5
4

0
,0
5

0
,0
0

4
,2
4

0
,8
6

0
,4
7

2
,3
8

1
0
,6
4

0
,7
9

0
,0
5

9
,1
5

9
,1
5

9
,1
5

9
,1
5

0
,0
5

2
0

6
0

2
6
0
0

IN
F

0
,1
3

0
,0
1

0
,0
1

0
,0
1

0
,0
0

0
,0
0

0
,0
1

0
,0
1

0
,0
0

0
,0
1

0
,2
4

0
,0
1

0
,0
0

0
,1
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

6
0

2
6
0
0

IN
F

4
,3
2

0
,4
5

0
,3
9

0
,3
6

0
,0
0

0
,0
0

0
,8
1

0
,5
3

0
,0
4

0
,7
1

4
,9
8

0
,4
5

0
,0
0

0
,1
4

0
,0
4

0
,0
2

0
,0
2

0
,0
0

6
0

6
0

2
6
0
0

IN
F

1
2
,4
0

1
,9
7

1
,4
1

1
,8
4

0
,2
3

0
,2
3

5
,2
2

2
,3
8

0
,3
1

3
,8
6

1
2
,7
2

1
,9
7

0
,2
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

8
0

6
0

2
6
0
0

IN
F

1
5
,1
4

1
,7
8

1
,5
9

1
,2
0

0
,0
1

0
,0
0

5
,7
4

2
,2
1

0
,3
8

4
,3
5

1
6
,1
9

1
,7
8

0
,0
1

7
,0
9

7
,0
9

7
,0
9

7
,0
9

0
,0
1

2
0

8
0

2
6
0
0

IN
F

0
,0
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
3

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

4
0

8
0

2
6
0
0

IN
F

1
,8
5

0
,1
4

0
,1
1

0
,0
8

0
,0
0

0
,0
0

0
,3
6

0
,1
4

0
,0
0

0
,2
3

2
,8
8

0
,1
4

0
,0
0

0
,1
5

0
,0
1

0
,0
0

0
,0
0

0
,0
0

6
0

8
0

2
6
0
0

IN
F

8
,6
2

1
,5
6

1
,1
2

0
,6
3

0
,0
0

0
,0
0

2
,3
2

1
,7
8

0
,0
2

1
,7
4

9
,2
1

1
,5
6

0
,0
0

0
,1
6

0
,0
9

0
,0
8

0
,0
8

0
,0
0

6
6

1
0
0

IN
F

0
,0
7

0
,4
5

0
,4
5

0
,2
9

0
,0
7

0
,0
7

0
,3
7

0
,3
0

0
,3
3

0
,0
0

0
,3
1

0
,4
5

0
,0
7

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
6

1
0
0

IN
F

0
,2
6

0
,1
4

0
,1
4

0
,0
6

0
,0
6

0
,0
0

0
,1
2

0
,6
4

0
,2
0

0
,0
0

0
,3
5

0
,1
4

0
,0
6

0
,7
7

0
,7
7

0
,7
7

0
,0
0

0
,0
6

6
9

1
0
0

IN
F

0
,0
9

0
,1
6

0
,1
6

0
,0
6

0
,0
0

0
,0
0

0
,0
7

0
,1
6

0
,2
4

0
,0
0

0
,1
2

0
,0
1

0
,0
0

0
,1
3

0
,0
9

0
,0
7

0
,0
7

0
,0
0

9
9

1
0
0

IN
F

0
,6
1

0
,5
0

0
,5
0

0
,4
2

0
,1
5

0
,1
5

0
,7
0

0
,8
1

0
,1
5

0
,0
9

0
,5
8

0
,5
0

0
,1
5

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
6

6
0
0

IN
F

0
,0
1

0
,1
4

0
,0
7

0
,0
3

0
,0
6

0
,0
0

0
,3
2

0
,0
9

0
,0
0

0
,0
0

0
,8
1

0
,1
4

0
,0
6

0
,7
7

0
,7
7

0
,7
7

0
,0
0

0
,0
6

6
9

6
0
0

IN
F

0
,0
1

0
,1
6

0
,1
1

0
,0
4

0
,0
0

0
,0
0

0
,0
5

0
,0
7

0
,0
0

0
,0
0

0
,4
7

0
,0
5

0
,0
0

0
,1
3

0
,0
9

0
,0
7

0
,0
7

0
,0
0

9
9

6
0
0

IN
F

0
,3
9

0
,5
0

0
,2
8

0
,2
1

0
,1
5

0
,1
5

0
,5
9

0
,3
6

0
,1
8

0
,0
9

0
,5
0

0
,5
0

0
,1
5

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
6

1
1
0
0

IN
F

0
,0
1

0
,1
4

0
,0
1

0
,0
1

0
,0
6

0
,0
0

0
,1
5

0
,0
8

0
,0
6

0
,0
0

0
,4
7

0
,1
4

0
,0
6

0
,7
7

0
,7
7

0
,7
7

0
,0
0

0
,0
6

6
9

1
1
0
0

IN
F

0
,0
0

0
,1
6

0
,1
0

0
,0
4

0
,0
0

0
,0
0

0
,0
2

0
,0
0

0
,0
1

0
,0
0

0
,3
3

0
,1
6

0
,0
0

0
,1
3

0
,0
9

0
,0
7

0
,0
7

0
,0
0

9
9

1
1
0
0

IN
F

0
,3
1

0
,5
0

0
,2
7

0
,2
1

0
,1
5

0
,1
0

0
,3
2

0
,3
0

0
,2
6

0
,0
3

0
,6
2

0
,5
0

0
,1
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
9

1
6
0
0

IN
F

0
,0
4

0
,1
6

0
,0
6

0
,0
4

0
,0
0

0
,0
0

0
,0
3

0
,0
6

0
,0
6

0
,0
0

0
,1
8

0
,1
6

0
,0
0

0
,1
3

0
,0
9

0
,0
7

0
,0
7

0
,0
0

9
9

1
6
0
0

IN
F

0
,2
2

0
,5
0

0
,3
0

0
,3
2

0
,1
5

0
,1
0

0
,4
5

0
,3
1

0
,2
1

0
,0
3

0
,5
7

0
,4
0

0
,1
5

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
9

2
1
0
0

IN
F

0
,0
2

0
,1
6

0
,0
6

0
,0
3

0
,0
0

0
,0
0

0
,0
1

0
,0
4

0
,0
0

0
,0
0

0
,1
5

0
,1
4

0
,0
0

0
,1
3

0
,0
9

0
,0
7

0
,0
7

0
,0
0

9
9

2
1
0
0

IN
F

0
,4
1

0
,5
0

0
,0
8

0
,2
9

0
,1
5

0
,0
3

0
,2
3

0
,3
1

0
,2
7

0
,0
8

0
,5
1

0
,5
0

0
,1
5

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
9

2
6
0
0

IN
F

0
,0
0

0
,1
6

0
,1
0

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
6

0
,0
0

0
,0
0

0
,2
0

0
,1
1

0
,0
0

0
,1
3

0
,0
9

0
,0
7

0
,0
7

0
,0
0

9
9

2
6
0
0

IN
F

0
,3
2

0
,5
0

0
,2
1

0
,2
1

0
,1
5

0
,1
0

0
,3
5

0
,4
7

0
,1
5

0
,0
9

0
,7
5

0
,5
0

0
,1
5

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

8
0

8
0

2
6
0
0

IN
F

1
7
,4
5

2
,6
7

2
,4
2

1
,9
7

0
,4
1

0
,4
0

8
,9
0

2
,7
0

0
,7
6

5
,1
8

1
7
,6
4

2
,6
7

0
,4
1

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

114

T
ab

le
A

.1
2:

D
ev

ia
ti

on
s

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

3
3

1
0
0

0
,0
0

0
,0
0

0
,1
9

0
,1
9

0
,0
0

0
,0
9

0
,0
0

0
,1
9

0
,0
9

0
,0
0

0
,0
0

0
,1
9

0
,0
9

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
3

1
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,2
6

0
,1
8

0
,0
0

0
,0
0

0
,1
8

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
3

1
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
1

0
,0
1

0
,0
1

0
,0
0

0
,4
3

0
,0
0

0
,0
0

0
,4
6

0
,4
6

0
,4
6

0
,0
0

0
,0
0

3
6

1
0
0

0
,0
0

0
,0
0

0
,0
3

0
,0
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
3

0
,0
0

0
,0
0

0
,1
3

0
,0
3

0
,0
0

0
,0
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

3
9

1
0
0

0
,0
0

0
,0
0

0
,0
4

0
,0
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
4

0
,0
1

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
0

0
,0
0

3
3

6
0
0

0
,0
0

0
,0
0

0
,1
9

0
,0
0

0
,0
0

0
,0
9

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
3

6
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
3

6
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,4
2

0
,0
0

0
,0
0

0
,4
6

0
,4
6

0
,4
6

0
,0
0

0
,0
0

3
6

6
0
0

0
,0
0

0
,0
0

0
,0
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
0

0
,0
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
6

6
0
0

0
,0
0

0
,0
0

0
,4
5

0
,3
7

0
,1
3

0
,0
7

0
,0
0

0
,2
8

0
,3
7

0
,0
0

0
,0
0

0
,2
8

0
,2
2

0
,0
7

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

3
9

6
0
0

0
,0
0

0
,0
0

0
,0
4

0
,0
1

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
1

0
,0
1

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
0

0
,0
0

3
3

1
1
0
0

0
,0
0

0
,0
0

0
,1
9

0
,0
0

0
,0
0

0
,0
9

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,2
5

0
,0
0

0
,0
9

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
3

1
1
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,2
6

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
3

1
1
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,6
5

0
,0
0

0
,0
0

0
,4
6

0
,4
6

0
,4
6

0
,0
0

0
,0
0

3
6

1
1
0
0

0
,0
0

0
,0
0

0
,0
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
6

1
1
0
0

0
,0
0

0
,0
0

0
,4
5

0
,2
4

0
,1
3

0
,0
7

0
,0
0

0
,0
0

0
,1
6

0
,3
1

0
,0
0

0
,0
7

0
,1
9

0
,0
7

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

3
9

1
1
0
0

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
0

0
,0
0

3
3

1
6
0
0

0
,0
0

0
,0
0

0
,1
9

0
,0
0

0
,0
0

0
,0
9

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
9

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
3

1
6
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
3

1
6
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,3
2

0
,0
0

0
,0
0

0
,4
6

0
,4
6

0
,4
6

0
,0
0

0
,0
0

3
6

1
6
0
0

0
,0
0

0
,0
0

0
,0
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,1
0

0
,0
3

0
,0
0

0
,0
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
6

1
6
0
0

0
,0
0

0
,0
0

0
,4
5

0
,2
4

0
,1
9

0
,0
7

0
,0
0

0
,1
3

0
,2
4

0
,0
7

0
,0
0

0
,6
5

0
,2
8

0
,0
7

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
6

1
6
0
0

0
,0
0

0
,0
1

0
,1
4

0
,0
1

0
,0
1

0
,0
6

0
,0
0

0
,0
0

0
,0
7

0
,0
0

0
,0
0

0
,3
3

0
,1
4

0
,0
6

0
,7
7

0
,7
7

0
,7
7

0
,0
0

0
,0
0

3
9

1
6
0
0

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
0

0
,0
0

3
3

2
1
0
0

0
,0
0

0
,0
0

0
,1
9

0
,0
0

0
,0
0

0
,0
9

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,1
9

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
3

2
1
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
3

2
1
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,3
4

0
,0
0

0
,0
0

0
,4
6

0
,4
6

0
,4
6

0
,0
0

0
,0
0

3
6

2
1
0
0

0
,0
0

0
,0
0

0
,0
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
5

0
,0
3

0
,0
0

0
,0
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
6

2
1
0
0

0
,0
0

0
,0
0

0
,4
5

0
,2
4

0
,1
3

0
,0
7

0
,0
0

0
,1
3

0
,0
0

0
,0
0

0
,0
0

0
,6
5

0
,2
2

0
,0
7

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
6

2
1
0
0

0
,0
0

0
,0
1

0
,1
4

0
,0
7

0
,0
1

0
,0
6

0
,0
0

0
,0
8

0
,0
0

0
,0
3

0
,0
0

0
,2
6

0
,1
4

0
,0
0

0
,7
7

0
,7
7

0
,7
7

0
,0
0

0
,0
0

3
9

2
1
0
0

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
1

0
,0
1

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
0

0
,0
0

3
3

2
6
0
0

0
,0
0

0
,0
0

0
,1
9

0
,0
0

0
,0
0

0
,0
9

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,1
9

0
,0
9

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

6
3

2
6
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,7
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
3

2
6
0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,4
6

0
,4
6

0
,4
6

0
,0
0

0
,0
0

3
6

2
6
0
0

0
,0
0

0
,0
0

0
,0
3

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
1

0
,0
3

0
,0
0

0
,0
2

0
,0
0

0
,0
0

0
,0
0

0
,0
0

9
6

2
6
0
0

0
,0
0

0
,0
3

0
,1
4

0
,0
7

0
,0
3

0
,0
6

0
,0
0

0
,1
3

0
,0
3

0
,0
1

0
,0
0

0
,5
7

0
,1
4

0
,0
6

0
,7
7

0
,7
7

0
,7
7

0
,0
0

0
,0
0

3
9

2
6
0
0

0
,0
0

0
,0
0

0
,0
4

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
0

0
,0
2

0
,0
1

0
,0
0

0
,0
0

0
,0
1

0
,0
0

0
,0
0

0
,0
0

A
V
G
:

IN
F

4
,2
7

0
,6
4

0
,5
3

0
,4
3

0
,0
6

0
,0
5

2
,2
7

0
,7
1

0
,1
9

1
,1
1

4
,5
9

0
,6
2

0
,0
6

1
,6
6

1
,6
3

1
,6
3

1
,5
8

0
,0
0
4

115

T
ab

le
A

.1
3:

R
an

k
s

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
0

1
0
0

1
2

1
1

7
6

4
2

2
9

8
3

5
1
0

7
2

1
1

1
1

1
4
0

2
0

1
0
0

1
2

1
0

3
2

5
1

1
8

6
4

7
1
1

3
1

9
9

9
9

1
6
0

2
0

1
0
0

1
0

7
3

3
3

1
1

6
4

2
5

8
3

1
9

9
9

9
1

8
0

2
0

1
0
0

1
1

8
2

2
3

1
1

7
4

5
6

9
2

1
1
0

1
0

1
0

1
0

1
2
0

4
0

1
0
0

1
4

1
3

8
7

5
1

1
1
1

1
0

2
9

1
2

8
1

6
4

3
3

1
4
0

4
0

1
0
0

1
2

1
0

6
5

4
2

2
9

7
3

8
1
1

6
2

1
1

1
1

1
6
0

4
0

1
0
0

1
1

9
4

4
3

1
1

8
5

2
6

1
0

4
1

7
7

7
7

1
8
0

4
0

1
0
0

1
1

9
4

4
3

1
1

8
5

2
6

1
0

4
1

7
7

7
7

1
2
0

6
0

1
0
0

1
4

1
3

8
7

6
1

1
1
0

5
3

9
1
2

8
1

1
1

4
2

2
1

4
0

6
0

1
0
0

1
3

1
2

8
7

8
1

1
1
0

6
2

9
1
1

8
1

5
4

3
3

1
6
0

6
0

1
0
0

1
1

9
5

4
5

2
2

8
6

3
7

1
0

5
2

1
1

1
1

1
8
0

6
0

1
0
0

1
1

9
4

4
3

1
1

8
5

2
6

1
0

4
1

7
7

7
7

1
2
0

8
0

1
0
0

1
4

1
2

8
7

5
1

1
1
0

6
3

9
1
3

8
1

1
1

4
2

2
1

4
0

8
0

1
0
0

1
3

1
2

6
6

5
1

1
1
0

7
4

9
1
1

6
1

8
3

2
2

1
6
0

8
0

1
0
0

1
3

1
1

7
7

6
1

1
1
0

8
5

9
1
2

7
1

4
3

2
2

1
8
0

8
0

1
0
0

1
1

1
0

5
5

4
2

2
9

6
3

7
8

5
2

1
1

1
1

1
2
0

2
0

6
0
0

1
4

1
2

9
7

6
3

2
1
1

1
0

4
5

1
3

8
3

1
1

1
1

1
4
0

2
0

6
0
0

1
2

1
0

5
4

3
1

1
8

6
2

7
1
1

5
1

9
9

9
9

1
6
0

2
0

6
0
0

1
1

8
3

3
2

1
1

7
5

4
6

9
3

1
1
0

1
0

1
0

1
0

1
8
0

2
0

6
0
0

1
1

8
4

4
2

1
1

7
5

3
6

9
4

1
1
0

1
0

1
0

1
0

1
2
0

4
0

6
0
0

1
4

1
2

1
0

6
5

1
1

1
1

9
4

7
1
3

1
0

1
8

3
2

2
1

4
0

4
0

6
0
0

1
2

1
1

6
5

4
2

2
9

7
3

8
1
0

6
2

1
1

1
1

1
6
0

4
0

6
0
0

1
3

1
1

6
5

4
2

1
9

7
3

8
1
2

6
2

1
0

1
0

1
0

1
0

2
8
0

4
0

6
0
0

1
2

1
0

5
4

3
1

1
8

6
2

7
1
1

5
1

9
9

9
9

1
2
0

6
0

6
0
0

1
5

1
3

1
0

9
6

2
1

7
8

4
1
1

1
4

1
0

2
1
2

5
3

3
2

4
0

6
0

6
0
0

1
4

1
2

8
7

6
1

1
1
1

9
2

1
0

1
3

8
1

5
4

3
3

1
6
0

6
0

6
0
0

1
1

9
5

5
4

2
2

8
6

3
7

1
0

5
2

1
1

1
1

1
8
0

6
0

6
0
0

1
1

1
0

4
4

3
1

1
8

5
2

6
9

4
1

7
7

7
7

1
2
0

8
0

6
0
0

1
4

1
3

8
7

5
1

1
1
0

6
2

9
1
1

8
1

1
2

4
3

3
1

4
0

8
0

6
0
0

1
4

1
2

7
6

5
1

1
1
1

8
3

1
0

1
3

7
1

9
4

2
2

1
6
0

8
0

6
0
0

1
4

1
2

8
7

6
1

1
1
1

9
5

1
0

1
3

8
1

4
3

2
2

1
8
0

8
0

6
0
0

1
2

1
0

6
5

4
2

2
9

7
3

8
1
1

6
2

1
1

1
1

1
2
0

2
0

1
1
0
0

1
2

1
0

8
4

6
2

2
9

7
3

5
1
1

8
2

1
1

1
1

1
4
0

2
0

1
1
0
0

1
1

9
4

2
3

1
1

7
6

1
5

1
0

4
1

8
8

8
8

1
6
0

2
0

1
1
0
0

1
1

8
3

3
2

1
1

7
5

4
6

9
3

1
1
0

1
0

1
0

1
0

1
8
0

2
0

1
1
0
0

1
2

9
4

1
2

3
3

8
6

5
7

1
0

4
3

1
1

1
1

1
1

1
1

3
2
0

4
0

1
1
0
0

1
4

1
2

1
1

8
5

1
1

7
6

2
9

1
3

1
1

1
1
0

4
3

3
1

4
0

4
0

1
1
0
0

1
3

1
1

7
6

5
3

2
1
0

8
4

9
1
2

7
3

1
1

1
1

1

116

T
ab

le
A

.1
4:

R
an

k
s

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

6
0

4
0

1
1
0
0

1
2

1
1

6
3

4
1

1
8

5
2

7
1
0

6
1

9
9

9
9

1
8
0

4
0

1
1
0
0

1
2

1
1

5
4

3
1

1
8

6
2

7
1
0

5
1

9
9

9
9

1
2
0

6
0

1
1
0
0

1
4

1
2

9
7

5
1

1
8

6
2

1
0

1
3

9
1

1
1

4
3

3
1

4
0

6
0

1
1
0
0

1
4

1
2

8
7

6
1

1
1
1

9
4

1
0

1
3

8
1

5
3

2
2

1
6
0

6
0

1
1
0
0

1
3

1
1

7
5

6
3

2
1
0

8
4

9
1
2

7
3

1
1

1
1

1
8
0

6
0

1
1
0
0

1
2

1
0

5
4

3
1

1
9

6
2

7
1
1

5
1

8
8

8
8

1
2
0

8
0

1
1
0
0

1
5

1
3

1
0

7
6

1
1

1
1

5
3

8
1
4

9
1

1
2

4
2

2
1

4
0

8
0

1
1
0
0

1
4

1
2

8
6

5
1

1
1
1

7
2

1
0

1
3

8
1

9
4

3
3

1
6
0

8
0

1
1
0
0

1
4

1
2

8
7

6
1

1
1
1

9
2

1
0

1
3

8
1

5
4

3
3

1
8
0

8
0

1
1
0
0

1
2

1
1

6
5

4
2

2
9

7
3

8
1
0

6
2

1
1

1
1

1
2
0

2
0

1
6
0
0

1
4

1
2

1
0

5
6

3
2

1
1

9
4

7
1
3

8
3

1
1

1
1

1
4
0

2
0

1
6
0
0

1
2

1
1

6
4

3
1

1
8

5
2

7
1
0

6
1

9
9

9
9

1
6
0

2
0

1
6
0
0

1
0

7
3

3
2

1
1

6
3

4
5

8
3

1
9

9
9

9
1

8
0

2
0

1
6
0
0

1
1

9
3

3
1

2
2

7
6

4
5

8
3

2
1
0

1
0

1
0

1
0

2
2
0

4
0

1
6
0
0

1
5

1
3

1
2

9
6

1
1

5
7

2
8

1
4

1
1

1
1
0

4
3

3
1

4
0

4
0

1
6
0
0

1
3

1
2

7
6

5
3

2
1
0

8
4

9
1
1

7
3

1
1

1
1

1
6
0

4
0

1
6
0
0

1
2

1
1

5
3

4
1

1
8

6
2

7
1
0

5
1

9
9

9
9

1
8
0

4
0

1
6
0
0

1
2

1
0

5
4

3
1

1
8

6
2

7
1
1

5
1

9
9

9
9

1
2
0

6
0

1
6
0
0

1
4

1
1

9
6

7
1

1
5

8
2

1
0

1
3

9
1

1
2

4
3

3
1

4
0

6
0

1
6
0
0

1
4

1
2

9
7

6
1

1
1
1

8
4

1
0

1
3

9
1

5
3

2
2

1
6
0

6
0

1
6
0
0

1
2

1
0

6
5

4
2

2
9

7
3

8
1
1

6
2

1
1

1
1

1
8
0

6
0

1
6
0
0

1
3

1
2

6
5

4
2

1
1
0

7
3

8
1
1

6
2

9
9

9
9

2
2
0

8
0

1
6
0
0

1
4

1
1

1
0

8
5

1
1

7
6

3
9

1
3

1
0

1
1
2

4
2

2
1

4
0

8
0

1
6
0
0

1
4

1
2

7
6

5
1

1
1
1

8
2

1
0

1
3

7
1

9
4

3
3

1
6
0

8
0

1
6
0
0

1
4

1
2

8
7

6
1

1
1
1

1
0

2
9

1
3

8
1

5
4

3
3

1
8
0

8
0

1
6
0
0

1
2

1
1

6
5

4
2

2
9

7
3

8
1
0

6
2

1
1

1
1

1
2
0

2
0

2
1
0
0

1
3

1
1

8
5

7
3

2
1
0

9
4

6
1
2

8
3

1
1

1
1

1
4
0

2
0

2
1
0
0

1
2

1
0

5
3

4
1

1
8

6
2

7
1
1

5
1

9
9

9
9

1
6
0

2
0

2
1
0
0

1
2

1
0

4
3

2
1

1
8

6
5

7
9

4
1

1
1

1
1

1
1

1
1

1
8
0

2
0

2
1
0
0

1
2

9
4

1
2

3
3

8
5

6
7

1
0

4
3

1
1

1
1

1
1

1
1

3
2
0

4
0

2
1
0
0

1
5

1
3

1
2

8
7

1
1

6
5

2
9

1
4

1
1

1
1
0

4
3

3
1

4
0

4
0

2
1
0
0

1
2

1
1

7
6

5
3

2
9

7
4

8
1
0

7
3

1
1

1
1

1
6
0

4
0

2
1
0
0

1
2

1
1

6
4

3
1

1
8

5
2

7
1
0

6
1

9
9

9
9

1
8
0

4
0

2
1
0
0

1
2

1
0

5
4

3
1

1
8

6
2

7
1
1

5
1

9
9

9
9

1
2
0

6
0

2
1
0
0

1
4

1
1

1
0

6
7

1
1

8
5

3
9

1
3

1
0

1
1
2

4
2

2
1

4
0

6
0

2
1
0
0

1
4

1
2

9
7

6
1

1
1
1

8
2

1
0

1
3

9
1

5
4

3
3

1
6
0

6
0

2
1
0
0

1
3

1
2

7
5

6
3

2
1
0

8
4

9
1
1

7
3

1
1

1
1

1
8
0

6
0

2
1
0
0

1
3

1
1

6
5

4
2

1
9

7
3

8
1
2

6
2

1
0

1
0

1
0

1
0

2

117

T
ab

le
A

.1
5:

R
an

k
s

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

8
0

2
1
0
0

1
5

1
2

1
1

8
6

1
1

7
5

3
9

1
4

1
0

1
1
3

4
2

2
1

4
0

8
0

2
1
0
0

1
4

1
2

7
6

5
1

1
1
1

9
3

1
0

1
3

7
1

8
4

2
2

1
6
0

8
0

2
1
0
0

1
4

1
2

8
7

6
1

1
1
1

9
4

1
0

1
3

8
1

5
3

2
2

1
8
0

8
0

2
1
0
0

1
3

1
1

7
6

5
3

2
1
0

8
4

9
1
2

7
3

1
1

1
1

1
2
0

2
0

2
6
0
0

1
3

1
1

9
5

7
3

2
1
0

8
4

6
1
2

9
3

1
1

1
1

1
4
0

2
0

2
6
0
0

1
2

1
0

5
2

3
1

1
8

6
4

7
1
1

5
1

9
9

9
9

1
6
0

2
0

2
6
0
0

1
2

9
5

3
2

1
1

8
6

4
7

1
0

5
1

1
1

1
1

1
1

1
1

1
8
0

2
0

2
6
0
0

1
1

8
3

3
1

2
2

7
5

4
6

9
3

2
1
0

1
0

1
0

1
0

2
2
0

4
0

2
6
0
0

1
5

1
3

1
2

6
7

2
1

9
8

3
1
0

1
4

1
2

2
1
1

5
4

4
2

4
0

4
0

2
6
0
0

1
3

1
1

7
6

5
3

2
1
0

8
4

9
1
2

7
3

1
1

1
1

1
6
0

4
0

2
6
0
0

1
3

1
1

6
5

4
2

1
9

7
3

8
1
2

6
2

1
0

1
0

1
0

1
0

2
8
0

4
0

2
6
0
0

1
3

1
1

6
5

4
2

1
9

7
3

8
1
2

6
2

1
0

1
0

1
0

1
0

2
2
0

6
0

2
6
0
0

1
4

1
1

9
8

6
1

1
5

7
2

1
0

1
3

9
1

1
2

4
3

3
1

4
0

6
0

2
6
0
0

1
4

1
2

8
7

6
1

1
1
1

9
3

1
0

1
3

8
1

5
4

2
2

1
6
0

6
0

2
6
0
0

1
2

1
0

6
4

5
2

2
9

7
3

8
1
1

6
2

1
1

1
1

1
8
0

6
0

2
6
0
0

1
3

1
1

6
5

4
2

1
9

7
3

8
1
2

6
2

1
0

1
0

1
0

1
0

2
2
0

8
0

2
6
0
0

1
5

1
2

1
1

9
8

2
1

7
6

4
1
0

1
3

1
1

2
1
4

5
3

3
2

4
0

8
0

2
6
0
0

1
5

1
3

9
7

6
2

1
1
2

8
3

1
1

1
4

9
2

1
0

5
4

4
2

6
0

8
0

2
6
0
0

1
4

1
2

8
7

6
1

1
1
1

1
0

2
9

1
3

8
1

5
4

3
3

1
8
0

8
0

2
6
0
0

1
3

1
1

7
6

5
3

2
1
0

8
4

9
1
2

7
3

1
1

1
1

1
6

6
1
0
0

9
2

8
8

3
2

2
7

4
6

1
5

8
2

1
1

1
1

1
6

9
1
0
0

1
5

7
1
3

1
1

4
2

2
5

1
2

1
4

1
9

3
2

1
0

8
6

6
2

9
9

1
0
0

1
0

7
5

5
4

3
3

8
9

3
2

6
5

3
1

1
1

1
1

9
6

6
0
0

1
2

3
8

6
4

5
1

9
7

1
1

1
1

8
5

1
0

1
0

1
0

2
5

6
9

6
0
0

1
4

3
1
2

1
0

4
2

2
6

8
2

1
1
3

5
2

1
1

9
7

7
2

9
9

6
0
0

1
2

8
9

6
5

3
3

1
1

7
4

2
1
0

9
3

1
1

1
1

1
6

9
1
1
0
0

1
3

2
1
1

9
6

2
1

5
3

4
1

1
2

1
1

2
1
0

8
7

7
2

9
9

1
1
0
0

1
3

9
1
1

7
5

4
3

1
0

8
6

2
1
2

1
1

3
1

1
1

1
1

9
6

1
1
0
0

1
0

3
6

3
3

4
1

7
5

4
1

8
6

4
9

9
9

2
4

6
9

1
6
0
0

1
4

4
1
2

8
5

2
1

3
6

7
1

1
3

1
2

2
1
1

1
0

9
9

2
6

9
2
1
0
0

1
4

4
1
3

7
5

2
2

3
6

2
1

1
2

1
1

2
1
0

9
8

8
2

9
9

2
1
0
0

1
3

1
0

1
1

3
8

5
2

6
9

7
4

1
2

1
1

5
1

1
1

1
1

9
9

1
6
0
0

1
4

6
1
2

7
9

4
3

1
1

8
5

2
1
3

1
0

4
1

1
1

1
1

6
9

2
6
0
0

1
3

1
1
1

8
4

2
1

2
5

3
1

1
2

9
2

1
0

7
6

6
2

9
9

2
6
0
0

1
1

6
9

5
5

4
3

7
8

4
2

1
0

9
4

1
1

1
1

1
9

6
1
0
0

1
1

7
5

5
3

3
1

4
9

6
1

8
5

3
1
0

1
0

1
0

2
3

3
3

1
0
0

1
1

3
3

1
2

1
3

2
1

1
3

2
1

1
1

1
1

1
6

3
1
0
0

1
1

1
1

1
1

1
4

3
1

1
3

1
1

1
1

1
2

1

118

T
ab

le
A

.1
6:

R
an

k
s

-
C

on
t’

d

T
W

T
im

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

9
3

1
0
0

1
1

1
1

1
1

1
3

4
3

1
5

1
1

6
6

6
2

1
3

6
1
0
0

1
1

5
5

1
2

2
1

4
1

1
6

5
2

3
1

1
1

1
3

9
1
0
0

1
1

1
1

9
5

2
1

2
6

2
3

1
0

8
2

4
7

4
4

1
3

3
6
0
0

1
1

3
1

1
2

1
1

1
1

1
1

1
1

1
1

1
1

1
6

3
6
0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
2

1
9

3
6
0
0

1
1

1
1

1
1

1
1

1
1

1
3

1
1

4
4

4
2

1
3

6
6
0
0

1
1

6
3

1
2

2
1

1
1

1
4

1
2

5
1

1
1

1
6

6
6
0
0

1
1

9
7

3
2

1
5

8
1

1
6

4
2

1
1

1
1

1
3

9
6
0
0

1
1

1
0

6
3

2
1

2
5

1
1

9
8

1
4

7
4

4
1

3
3

1
1
0
0

1
1

3
1

1
2

1
1

1
1

1
4

1
2

1
1

1
1

1
6

3
1
1
0
0

1
1

1
1

1
1

1
1

1
1

1
3

1
1

1
1

1
2

1
9

3
1
1
0
0

1
1

1
1

1
1

1
1

1
1

1
4

1
1

3
3

3
2

1
3

6
1
1
0
0

1
1

6
3

1
2

2
1

1
1

1
1

4
2

5
1

1
1

1
6

6
1
1
0
0

1
1

8
6

3
2

1
1

4
7

1
2

5
2

1
1

1
1

1
3

9
1
1
0
0

1
1

9
6

3
2

1
1

2
1

1
8

5
2

4
7

4
4

1
3

3
1
6
0
0

1
1

3
1

1
2

1
1

1
1

1
1

2
1

1
1

1
1

1
6

3
1
6
0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
2

1
9

3
1
6
0
0

1
1

1
1

1
1

1
1

1
1

1
3

1
1

4
4

4
2

1
3

6
1
6
0
0

1
1

5
3

1
2

2
1

1
1

1
6

5
2

4
1

1
1

1
6

6
1
6
0
0

1
1

8
6

4
2

1
3

5
2

1
9

7
2

1
1

1
1

1
9

6
1
6
0
0

1
3

6
3

3
4

1
1

5
1

1
7

6
4

8
8

8
2

1
3

9
1
6
0
0

1
1

9
3

1
2

1
1

5
1

1
8

6
2

4
7

4
4

1
3

3
2
1
0
0

1
1

3
1

1
2

1
1

1
1

1
1

3
1

1
1

1
1

1
6

3
2
1
0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
2

1
9

3
2
1
0
0

1
1

1
1

1
1

1
1

1
1

1
3

1
1

4
4

4
2

1
3

6
2
1
0
0

1
1

5
3

1
2

2
1

1
1

1
6

5
2

4
1

1
1

1
6

6
2
1
0
0

1
1

6
5

3
2

1
3

1
1

1
7

4
2

1
1

1
1

1
9

6
2
1
0
0

1
3

8
6

3
5

1
7

1
4

1
9

8
1

1
0

1
0

1
0

2
1

3
9

2
1
0
0

1
1

9
4

3
2

1
1

1
1

1
7

8
2

5
6

5
5

1
3

3
2
6
0
0

1
1

3
1

1
2

1
1

1
1

1
3

2
1

1
1

1
1

1
6

3
2
6
0
0

1
1

1
1

1
1

1
1

1
1

1
3

1
1

1
1

1
2

1
9

3
2
6
0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

3
3

3
2

1
3

6
2
6
0
0

1
1

6
3

1
2

2
1

1
1

1
4

6
2

5
1

1
1

1
6

6
2
6
0
0

1
1

6
5

3
2

1
2

1
4

1
7

2
2

1
1

1
1

1
9

6
2
6
0
0

1
4

8
6

4
5

1
7

4
3

1
9

8
5

1
0

1
0

1
0

2
1

3
9

2
6
0
0

1
1

8
3

1
2

1
1

1
1

1
7

6
2

4
5

4
4

1
A
V
G
:

1
0

8
7

5
4

2
1

7
5
,7

3
5
,5

1
0

6
2

5
,9

5
4

4
1
,2

119

