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ABSTRACT

A SEGMENT-BASED APPROACH TO CLASSIFY AGRICULTURAL LANDS
USING MULTI-TEMPORAL KOMPSAT-2 AND ENVISAT ASAR DATA

OZDARICI OK, Asli
PhD. Department of Geodetic and Geographic Information Technologies
Supervisor: Assoc. Prof. Dr. Zuhal AKYUREK

February 2012, 258 pages

Agriculture has an important role in Turkey; hence automated approaches are crucial to
maintain sustainability of agricultural activities. The objective of this research is to
classify eight crop types cultivated in Karacabey Plain located in the north-west of
Turkey using multi-temporal Kompsat-2 and Envisat ASAR satellite data. To fulfill this
objective, first, the fused Kompsat-2 images were segmented separately to define
homogenous agricultural patches. The segmentation results were evaluated using multiple
goodness measures to find the optimum segments. Next, multispectral single-date
Kompsat-2 images with the Envisat ASAR data were classified by MLC and SVMs
algorithms. To combine the thematic information of the multi-temporal data set,
probability maps were generated for each classification result and the accuracies of the
thematic maps were then evaluated using segment-based manner. The results indicated
that the segment-based approach based on the SVMs method using the multispectral
Kompsat-2 and Envisat ASAR data provided the best classification accuracies. The
combined thematic maps of June-August and June-July-August provided the highest
overall accuracy and kappa value around 92% and 0.90, respectively, which was 4%
better than the highest result computed with the MLC method. The produced thematic
maps were also evaluated based on field-based manner and the analysis revealed that the

classification performances are directly proportional to the size of the agricultural fields.
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TARIM ALANLARININ COK TARIHLI KOMPSAT-2 VE ENVISAT ASAR
GORUNTULERI KULLANILARAK SINIFLANDIRILMASINDA BOLUT TABANLI
BiR YAKLASIM

OZDARICI OK, Asli
Doktora, Jeodezi ve Cografi Bilgi Teknolojileri Bolimii

Tez Yoneticisi: Dog. Dr. Zuhal AKYUREK

Subat 2012, 258 sayfa

Tarim Tiirkiye’de 6nemli bir role sahiptir, bu nedenle siirdiiriilebilirliginin saglanabilmesi
acisindan tarimsal faaliyetlerin otomatik yaklagimlar ile yiiriitiilmesinin énemi biiytiktiir.
Bu c¢alismanin amaci, Tirkiye’nin kuzey batisinda yer alan Karacabey ovasinda
yetistirilen sekiz iiriin tiirliniin ¢ok tarihli Kompsat-2 ve Envisat ASAR uydu goriintiileri
kullanilarak siniflandirilmasidir. Bu amag¢ dogrultusunda, ilk olarak, homojen tarim
alanlarin1 bulabilmek i¢in keskinlestirilmis (fused) Kompsat-2 goriintiilerine boliitleme
islemi uygulanmistir. En uygun boliitlerin belirlenebilmesi igin iiretilen boliitler ¢oklu
istatistiksel indeksler yardimiyla degerlendirilmistir. Ardindan ¢ok bantli ve tek tarihli
Kompsat-2 goriintiileri, Envisat ASAR verileri ile En Biiyiik Olasilik ve Destek Vektor
Makineleri smiflandirma  yontemleri yardimiyla smiflandirilmistir.  Cok  tarihli
gorilintiilerin  smiflandirilmasi  yoluyla elde edilen tematik haritala ait bilgilerin
birlestirilebilmesi amaciyla her bir tematik harita i¢in olasilik haritalar1 iiretilmis ve
tematik haritalara ait dogruluk oranlar1 boliit bazinda degerlendirilmistir. Sonuglar, en
yiiksek siniflandirma dogruluklarinin Kompsat-2 ve Envisat ASAR goriintiilerinin boliit
tabanli Destek Vektor Makineleri yontemiyle siiflandirilmast sonucunda elde edildigini
gostermistir. Tematik haritalarin birlestirilmesi yoluyla elde edilen Haziran-Agustos ve

Haziran-Temmuz-Agustos aylarma ait gorintiilerin en yiiksek genel ortalama hatalar
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(%92 genel hata orani ve 0.90 kappa) sagladig1 gézlenmistir. Elde edilen dogruluklarin
boliit tabanl olarak gergeklestirilen En Biiyiik Olasilik siniflandirma yontemiyle elde
edilen en iyi sonugtan %4 oraninda daha yiiksek oldugu saptanmigtir. Bu calismada
ayrica, uretilen tematik haritalar gercek tarim parselleri ile cakistirilarak parsel tabanli
analiz sonuglar1 da incelenmistir.  Analizler, smiflandirma dogruluklarinin parsel

biiyiikliikleri ile dogru orantili oldugunu gostermistir.

Anahtar Kelimeler: Cok Tarihli Gorintii Smiflandirmasi, Tarim, Destek Vektor

Makineleri, Kompsat-2, Envisat ASAR
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CHAPTER 1

INTRODUCTION

1.1 Purpose and Scope

Due to the rapid increase of urban population, a dramatic decrease of agricultural lands of
Turkey is evident as in the case of most of the developing countries (Fig.1.1). A rapid
growth of urban population is clear within the fifteen years period between 1995 and
2010 (Figure 1.1) while a reasonable drop of the rural population between those years are
also obvious. Besides, for the same time periods, the variation of land use types is
depicted in Figure 1.2, in which a drop in the rural population is observed for arable lands
while the sizes of the other land types are slightly increased. According to the figures, it
can be stated that demand of agricultural products has gained more importance to provide
agricultural needs in Turkey. In order to supply an extensive knowledge about the
agricultural products, one important way is accurate yield estimation. In traditional
agricultural applications, up-to-date information of crops is generally acquired by farmer
declarations and/or ground visits of the fields. As already stated by Pena-Barragan et al.
(2011), this procedure is not only subject to some errors and discrepancies in farmer
declarations but also quite expensive and requires substantial time. Therefore, in order to
perform fast and accurate yield estimation, automated methods based on the development
stage are necessary to identify crop types of agricultural lands. At this point, analysis of
satellite images and/or aerial photographs could be more reliable and cost-effective way
to monitor agricultural areas. With the current developments involved in satellite sensor
technology, the availability of high spatial resolution images increases (e.g. Geoeye,
Worlview-2, QuickBird, Kompsat-2, and IKONOS). While that technological
improvement provides several advantages to detect distinct small objects with a better
precision in agricultural studies, it may increase the within field spectral variability of

agricultural lands and affect the final accuracies of the thematic maps (e.g. Gong and



Howarth, 1990; De Wit and Clevers, 2004; Smith and Fuller, 2001). In order to handle
this problem, discovering individual pixels as groups of connected pixels based on their
textural and contextual properties are necessary to delineate more meaningful objects,
which is the major interest of Object Based Image Analysis (OBIA) community (e.g.
Gong et al. 1992; Gong and Howarth, 1992; Yu et al. 2006). In the literature, most of the
researchers have developed effective segmentation algorithms and utilized the resulting
segments in parallel to the OBIA (e.g. Schoenmakers et al. 1994; Cheng, 1995; Rydberg
and Borgefors, 2001; Mueller et al. 2003; Zhan et al. 2005; Lee and Warner 2006; Chen
et al. 2006; Li and Xiao., 2007; Lu et al. 2007; Wang et al. 2010; Xiao et al. 2010;
Corcoran et al. 2010). Although a wide variety of results can be obtained through

different parameter combinations and different softwares, additional steps are required to

find more appropriate segmentation results.
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Figure 1.1 Variation of rural and urban population between the years 1995 and 2010 in
Turkey (FAOSTAT, 2011)
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Figure 1.2 Variation of land use types between the years 1994 and 2009 in Turkey
(FAOSTAT, 2011)

In crop classification, multi-temporal approaches provide advantages by including the
phenological characteristics of the crops in the analyses. According to the studies related
with multi-temporal approaches, reliable thematic maps are produced with high
accuracies (e.g. Parmuchi et al. 2002; Ban, 2003; Blaes et al. 2005; Turker and Arikan,
2005; Stankiewicz, 2006; Liu et al. 2006; Wang et al. 2010; Pena-Barragan et al. 2011;
Skriver et al., 2011). However, most of the multi-temporal studies are based on a rule-
based approach, which requires a good knowledge about the data itself. Hence, in this
study, a new multi-temporal classification strategy that combines different individual
classification results in a joint probabilistic approach is proposed. To do that, three-dates
(June, July, and August, 2008) multi-temporal Kompsat-2 MS (4m) and Envisat ASAR
(15 m) data are utilized to classify eight crop types cultivated in a specific agricultural
region of Turkey. Radar satellites sense objects in microwave portion of the
electromagnetic spectrum, which provide information about surface roughness, dielectric
properties, and moisture content. Thus, the contributions of microwave imagery on the

multi-temporal classification performance are also investigated.

The crop types are classified by MLC and SVMs classification methods with pixel-based,
segment-based, and field-based manners. Multi-temporal images are combined based on
the maximum membership values of the pixels computed during the classifications.

Effects of the field sizes on classification accuracies for the original agricultural fields are



also examined in this study. The produced thematic maps are then evaluated based on

confusion matrices and the results are presented.

1.2 Objectives of the Study

The major objectives of this study are stated below:

e to develop an automated multi-temporal classification methodology to provide a
reliable classification results for major crop types cultivated in the region,

e to examine the effect of segment-based approach on the classification
performance,

e to investigate the performance of the microwave data on the classification
framework,

e to compare the performances of the MLC and SVMs methods for the proposed

multi-temporal classification,

Minor contributions of this study are:

e to define an effective image fusion method on the optical data used for the study,

e to produce optimum segmentation results for the agricultural fields by multiple
goodness measures,

e to provide an automated strategy to collect training samples from segments,

e to define an optimum speckle reduction method for the microwave data,

e to find out the field size effect on the classification performance.

1.3 The Software Used in the Study

Several software packages were utilized in this thesis. The Kompsat-2 images were fused
with the “Pansharp” module of PCI Geomatica. For the other image fusion methods
applied, ERDAS Imagine and ENVI softwares were utilized. Evaluation of the fused
products was performed in MatLab environment. To atmospherically correct Kompsat-2
data the “Atcor2” module of PCI Geomatica was used. Speckle effect of Envisat ASAR
data was minimized by the “Radar” module of ERDAS software. “OrthoEngine” module



of PCI Geomatica was utilized for DTM generation and orthorectification. Map updating
and generation of backscattering maps were performed by “Focus” and “Sarsigm”
modules of PCI Geomatica, respectively. Open source Edge Detection and Image
SegmentatiON (EDISON) software was utilized for the segmentation process.
Performance evaluation of the segments was carried out by different open source
software called Alpha. The classification of the images was performed via ERDAS and
ENVI softwares. The proposed multi-temporal classification was performed by a script
written in MatlLab environment. Finally, the evaluation of the thematic maps was

performed by PCI Geomatica.

1.4 Organization of the Thesis

This thesis is organized as six chapters, in which the improvement of the study is

examined in sequence.

Chapter 2 provides an extensive survey about image classification approaches on

different plant species followed by an introduction section presented in Chapter 1.

In Chapter 3, characteristics of the study area, technical details of the Kompsat-2, Envisat
ASAR, and the other data utilized in the study and data preparation steps are presented. In
this part, the data preparation steps are examined as seven titles: (i) image fusion, (ii)
atmospheric correction, (iii) DTM generation, (iv) orthorectification, (v) map updating,

(vi) speckle reduction, and (vii) generating backscattering maps.

Methodological details are presented in Chapter 4, where the image segmentation
methods applied on the fused images and the evaluation of the segments are included.
The classification algorithms of MLC and SVMs methods are described with the

probabilistic approach in this section.
In Chapter 5, the results computed for the thematic maps are presented and discussed.
Confusion matrices of the thematic maps provided the highest classification performance

is presented in this chapter.

Finally, chapter 6 involves the conclusions and recommendations for future studies.



CHAPTER 2

LITERATURE REVIEW

Automated image classification has an important role in remote sensing, which “lies at
the heart of the transformation from satellite image to usable geographic products”
(Wilkinson, 2005). It is a most commonly used technique to extract thematic information
from remotely sensed data. However, classifying remotely sensed data into a thematic
map still remains a big challenge. The study conducted by Lu and Weng (2007) presented
a survey of image classification methods. Different factors such as; complexity of the
landscape, the remotely sensed data selected, the inclusion of different image processing
steps and classification approaches are examined in this study. They concluded that the
classification performance is affected by many factors therefore further researches are
necessary to compare the available methods and develop new classification algorithms
(Lu and Weng, 2007). Wilkinson (2005) evaluated the degree of progress in thematic
mapping through the development of classification algorithms and approaches. He
evaluated the results over 500 reported classification experiments published in the journal
of Photogrammetric Engineering and Remote Sensing by examining various experimental
parameters including the number of classes, size of feature vector, resolution of satellite
data, test area etc. In the paper, the mean value of the kappa coefficient of all the studies
was computed as 0.65 with a standard deviation of 0.19. He found out that while the
individual studies performed between 15 years period have some advantages; this is not
effective to explain the overall picture. This can be due to the quality of the collected
ground truth data, classification methods of class labeling, spatial boundaries used for the
class definition, scale, and fractal effects. The requirement of new methods to classify the
complexity of new satellite products is another factor that limits the classification
accuracy. Therefore, it is concluded that although important advances are achieved,
further researches that develop advanced classification techniques and methodologies are

necessary to improve the classification accuracies.



The experiments examined in the papers described above (Lu and Weng (2007) and
Wilkinson (2007)) indicated that up to know a significant effort is dedicated to obtain
reliable information from the earth surface by remote sensing technology. According to
the studies, one significant way to obtain up-to-date information is to retrieve data from
space-borne optical systems, in which the visible and infrared portions of the Electro
Magnetic Spectrum (EMS) are very widely used. Acquisitions of that kind of systems are
performed in day-time; therefore it is called passive systems. In recent decades, earth
observation researchers have produced different satellite systems called active systems to
produce information at varying atmospheric conditions even at night. The active systems
are capable of collecting microwave data, which illuminates ground targets with its own
radar beam. Therefore, the role of optical and microwave sensors in land-use monitoring
can be viewed as complementary (Liu et al. 2006). This can be achieved by a number of
image fusion methods, decision rules and/or multi-temporal approaches. The multi-
temporal approaches are necessary especially for the agricultural studies, in which the
phenological characteristics of the crops can be a good indicator to improve the

classification performance.

Mapping of crop rotation using multi-temporal Indian Remote Sensing Satellite data was
investigated by Panigrahy and Sharma (1997). They classified six major crop types by
Maximum Likelihood Classification (MLC) method on seven images acquired from IRS
LISS satellite. Results indicated that the images taken between October and March were
found to be optimum to classify the major crop types cultivated in the area with an overall

accuracy over 90%.

Tso and Mather (1999) investigated the performance of multi-temporal SAR imagery on
crop discrimination based on pixel-based and field-based approach. In pixel-based
classifications, they utilized raw intensity images, temporal subtraction images, filtered
images, and textural features. The field-based analyses were performed by computing the
mean backscatter coefficients of the fields. The images were classified by Maximum
Likelihood classifier and Self Organizing Map (SOM) algorithm. For the pixel-based
classifications, the best results were obtained around 60% for the filtered images. They

found out that the texture features did not contribute the classification results. The images



classified with SOM algorithm improved the pixel-based results and the accuracy was

computed greater than 75%.

Haack et al. (2000) evaluated the advantages of combining the optical and radar data.
They used one of the traditional classification techniques, parallel-piped, on three study
sites. The classification components included settlements, natural vegetation, and
agriculture. They acquired that the fusion of optical and radar data improved the
classification accuracy although different manipulations such as texture, spatial filtering,
and de-speckling of the radar data are necessary in order to obtain more reliable results. It
was observed that the image fusion improved the classification accuracies especially for

the settlements.

Lee et al. (2001) examined fully polarimetric synthetic aperture radar (SAR) versus dual-
polarization and single-polarization SAR data for P-, L-, and C-band frequencies in order
to understand the land-use classification capabilities. Several crop types and trees were
classified using complex Wishart distribution and Maximum Likelihood classification
algorithm. For the fully polarimetric crop classification, the L-band provided the best
classification accuracy of 81.65%. The classification result was dramatically increased to
91.21%, when each band was included in the classification. For dual polarization of the
crops, the highest accuracy of 80.91% was computed for the L-band classification of
complex HH and HV polarizations. Result of the single polarization data was revealed
that the complex VV and HV polarizations were provided the best overall accuracy
(59.72%). When the tree-based classifications were examined, it was observed that the P-
band HH and HV polarizations were the best choice. On the other hand, in all cases, it
was found out that the multi-frequency fully polarimetric SAR data was highly

preferable.

Three-based approaches were examined by Dabrowska-Zielinska (2001) using optical
and microwave remotely sensed data to estimate soil moisture. In the first method,
NOAA/AVHHR images and meteorological data were utilized to estimate the moisture
content of the soil by applying H\LE index (ratio of sensible to latent heat). Although
there was a good relationship between soil moisture and the defined index, the application
had some limitations due to the existing cloud cover. For the second method, the

relationship between backscattering coefficient and soil moisture were analyzed using



ERS-2 SAR and NOAA data. It was concluded that soil moisture and geometrical
properties of vegetation were primarily based on the backscattering coefficient. The third
method was applied on the ERS-2 SAR and JERS SAR data set based on the Leaf Water
Area Index. Highest correlation was observed between measured and estimated soil
moisture. In conclusion, it was suggested that the incidence angles smaller than 30° was
found to be more useful to estimate soil moisture and more reliable results can be

obtained using radar satellites with various bands.

The effect of multi-temporal ERS-1 ASAR and Landsat TM data on classification
performance of eight agricultural crop types cultivated in Canada were examined by Ban
Y. (2003). Multiple image combinations were classified by a per-field Artificial Neural
Network approach. The images were also classified by Maximum Likelihood Classifier
for comparison purposes. Based on the results, it was observed that thematic maps
produced with both SAR and Landsat TM image provided higher accuracies than the

results of single-date images.

Classification accuracies of space-borne radar images were analyzed by Herold et al.
(2005) for two test sites in East Africa and one in Nepal. Original radar data were
investigated by applying post-classification smoothing and texture feature extraction
techniques. A traditional classification technique was used to classify four land cover
types. Analyses indicated that the original radar data did not separate the classes
accurately. On the other hand, radar derived measures based on spatial attributes of the
original data increased the overall accuracies of about 30% for each test site. The best
results were obtained when two radar or textural/contextual information of radar derived

bands were utilized in the study.

Panigrahy et al. (2005) examined various indices on the eastern cost of India to assess
efficiency and sustainability of the cropping system generally computed by traditional
survey methods. IRS and Radarsat SAR data taken multiple dates were utilized in the
study. Three main indices called Multiple Cropping Index, Area Diversity Index, and
Cultivated Land Utilization Index were evaluated. Results showed that spatial resolution
of IRS data (188 m) was found to be effective to evaluate the rice cropping system. It was
also pointed out the potential of RS and GIS in generating system database and

management issues.



An investigation on potential SAR signatures to monitor rice crops using multi-temporal
RADARSAT data was performed by Indrani and Chakraborty (2006). Two different
separability tests and knowledge-based classification were utilized to detect rice.
According to the separability tests it was observed that, except for the early rice, other
rice classes were detachable. On the whole, knowledge-based classification of the rice

and non-rice areas produced an overall accuracy over 98%.

An object-based classification using high spatial resolution airborne images Digital
Airborne Imaging Spectrometer (DAIS) was carried out by Yu et al. (2006). In total, forty
three vegetation and five non-vegetation classes were segmented by eCognition software.
The classifications of the images were performed by K-NN algorithm in Classification
and Regression Trees (CART) followed by the definition of feature objects derived from
eleven spectral and ancillary channels, three intensity-hue-saturation (IHS) transform
indices, and four topographic parameters. Accuracies obtained for the classification
algorithm were then compared with the traditional MLC method. Results indicated that
the object-based 1-NN classification method provided better performance than the pixel-
based MLC classification method. They stated that although it was observed an average
accuracy around 50%, using high spatial resolution images in mapping detailed
vegetation was important. They also stated that sample size and quality, classification
method, distribution and characteristics of the vegetation directly affect the classification

performance.

Baghdadi et al. (2006) evaluated several ASAR acquisition configurations to acquire the
surface soil moisture over bare soil from backscattering measurements. To do that, the
ASAR images were acquired at various incidence angles and in HH and HV polarization
combinations. The study consisted of two main steps: (i) a calibration phase and (ii) a
validation phase. First, the data were divided into equal sets. Then, an empirical
relationship was constructed between the backscattering coefficients and the ground truth
volumetric soil moisture. Next, an inversion process was performed on the validation set
in order to calculate the soil moisture. Results indicated that the higher accuracies could
be obtained when both the high and low incidence angles were utilized. Poor results were
acquired for only high incidence angles (40°-43%). This is due to the strong variations

formed between the low sensitivity to soil moisture and the high sensitivity of the
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backscattering coefficients. One other result is that multi-polarized data did not provide

significant improvement for estimating the soil moisture content.

Liu et al. (2006) investigated the winter wheat condition, grain yield and protein content
with the help of Landsat TM and Envisat-ASAR data. Aims were (i) to find out the
backscatter behavior of winter wheat of different growth stages, (ii) to examine and
compare the ability of Envisat-ASAR and Landsat TM data for crop mapping, and (iii) to
explore the information content and temporal limitations of Envisat-ASAR and Landsat
TM for predicting yield and grain protein content of winter wheat. Three growth stages of
the images and five indices were utilized to fulfill those objectives. Results indicated that
reliable crop maps were produced when the Envisat-ASAR and Landsat TM data were
used, together. It was stated that the acquisition dates of the images were quite important
for the analyses. On the other hand, the spectral response of the SAR imagery on crop or
soil changes was found to be difficult to explain. Therefore, it was stated that further
analyses should be performed on SAR response related with soil and crop conditions

under different incidence angles.

Crop characteristics were examined using multi-temporal series of Advanced Synthetic
Aperture Radar (ASAR) data by Stankiewicz (2006). Different polarizations during two
consecutive growing seasons were utilized in the study. Crop signatures were computed
as an arithmetic mean using the agricultural plots. After the segmentation, a Neural
Network (NN) classifier was utilized to classify crop types. Results indicated that the
usage of various polarizations enhanced the classification accuracy. On the other hand, it
was stated that high accuracies over 90% cannot be acquired using only the Envisat

ASAR data.

Blaes et al. (2007) examined discrimination of six crop types based on simulated fifteen
multi-temporal Envisat ASAR data. In the study, they not only evaluated the impact of
spatial resolution on the field size but also the effect of multi-temporal data set in
discriminating crop types. As a result, they found out that the multi-temporal data set was
suitable to extract the crop types for the study. They obtained an overall accuracy of 83%

using a field-based unsupervised classification strategy for large parcels.
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Chen et al. (2007) tested different classification methods using single-band full
polarization SAR data for agricultural crop identification. The classification methods used
were Wishart-Maximum Likelihood Classifier (WML), Normal Distribution Probability
Density Functions (PDF) Based Maximum Likelihood (NML) classifier, and Spatial-
Spectral classifiers. Same training sites were utilized in order to perform a reliable
comparison between the methods. Results indicated that only the Maximum Likelihood
classifiers such as WML and NML provided better results. It was indicated that the
results of WML were superior to the results of the NML if the intensity and phase images
were directly used for training the classifier. They found out that when the images are

supplied to a Spatial-Spectral-Based classifier, the accuracy could be increased.

Support Vector Machine (SVM) based classifier was examined in order to improve the
classification accuracy by means of fusing additional data sources by Watanachaturaporn
et al. (2008). Indian Remote Sensing Satellite IRS-1C Linear Imaging Self Scanning
Sensor (LISS) III having spatial resolution of 23.5 m was acquired over a mountainous
region including nine land cover types. Normalized Difference Vegetation Index (NDVI)
and Digital Elevation Model (DEM) data were used as ancillary data to improve the
quality of the classification. The SVM was implemented using different types of kernel.
The results were compared with four other well-known classifiers called as MLC, a
Decision Tree Classification (DTC), a Back-Propagation Nearest Neighbor (BPNN), and
a Radial Basis Function Network (RBFNET) classifier using the same data set. A
significant increase in the accuracy of the SVM-based classifier was observed by

different kernels and the integration of the ancillary data.

Slazar et al. (2008) investigated the possibility of predicting corn yield using the
Advanced Very High Resolution Radiometer (AVHRR) sensor with Partial Least Squares
(PLS) method. In order to construct a model and validation, 23 years (1982-2004) of
AVHRR data with the official corn yield statistics of Haskel County, USA, were utilized.
The images were used to compare the Vegetation Health (VH) Indices, Vegetation
Condition Index (VCI) and Temperature Condition Index (TCI). The PLS method was
utilized to construct a model relating corn yield anomaly with VH indices. Results
showed that the error of corn yield prediction in the study were around 6%, which was an

acceptable error in that kind of applications.
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A Support Vector Machines (SVMs) method was applied to classify paddy rice with
multi-temporal ALOS/PALSAR imagery in southeast China by Zhang et al. (2009).
Three growing seasons were selected to apply the SVMs classification on the images
followed by computing backscattering coefficients of the data. A conditional kappa value
of 0.87 was obtained by the SVMs method. Results revealed that besides the advantage of
SVMs algorithm, multi-temporal analysis of the backscatter information improved the

classification performance.

McNairn et al. (2009) investigated integration of optical and Synthetic Aperture Radar
(SAR) imagery to classify Canada’s large agricultural lands. In this way, they tried to
answer some critical questions about level of accuracy, satellite data to be utilized,
acquisition times of the satellite images, and classification model. In three-year project,
RADARSAT-1 (HH), Envisat ASAR (alternating polarization: VV, VH), SPOT-4/5, and
Landsat-5 images acquired during the growing period were classified based on Decision
Tree, Neural Network and Maximum Likelihood classifiers. Multi-temporal optical and
SAR data provided consistent results around 85% for each classification method. It was
observed that the best results were computed when dual-polarization mode of VV-VH

combination was used.

Wang et al. (2010) proposed a method using six scenes of multi-temporal, multi-
polarization Envisat ASAR data to produce an agricultural map of Pearl River Delta in
China. They established a decision tree followed by interpreting signature profiles of land
cover types. Results indicated that basic land cover types could be classified effectively
with overall accuracy of 80% when the multi-temporal, multi-polarization data were
utilized. They also proved that the decision tree approach was appropriate to get
satisfactory classification results if appropriate images were used based on the growing

periods of the agricultural classes.

Both object-based and knowledge-based strategies were applied on the fused QuickBird
MS and RADARSAT SAR data to classify sixteen urban land cover types by Ban et al.
(2010). It was observed from the general results that the highest accuracy around 90%
was obtained when optical and SAR data were classified along with object-based and

rule-based approaches.
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Among the studies published so far, object-based image analyses received considerable
attention over pixel-based analyses in land cover classifications due to the reason that
better results can be achieved. At this point two approaches became popular especially for
agricultural applications: (i) field-based, and (ii) segment-based. In field-based
classification, the field geometry defines the spatial relationship between the pixels
falling within the field by the rule-based re-labeling of image classification results. Jansen
et al. (1990) treated the map polygons as objects by expecting only one cover type was
available in each polygon. An improvement of 12% and 20% over a per-pixel MLC were

reported for two agricultural test sites.

Pedley and Curran (1991) compared per-pixel and per-field classification approaches
using SPOT High Resolution Visible (HRV) imagery. The study area covers 10 km by 10
km with well drained and virtually flat area. They applied two classification approaches
on the SPOT image based on MLC method; however they could not acquire high
classification accuracy from those classifications. Therefore, they refined the results by
using prior probabilities, low-pass filters, and image texture. At the end of the analyses,
they had nine classification results, a basic and four refined versions of the per-pixel
classification and three refined versions of the per-field classification for twelve classes.
Among all the results, the highest accuracy was obtained for the per-field classification as

62.1% using the prior probabilities and image texture.

Congalton et al. (1998) proposed a methodology to develop a water model from remotely
sensed data using an agricultural crop map and other vegetation on Lower Colorado River
Basin. For that purpose, Landsat Thematic Mapper image taken four times per-year
integrated with GIS were used to produce an accurate map and to monitor land cover
types. Final thematic accuracy was computed around 90% via the proposed automated

extraction process and data exploration techniques.

Aplin et al. (2001) developed a set of classification methods to detect land cover types on
a per-field basis from high resolution satellite imagery. A Compact Airborne
Spectrographic Imager (CASI) with 4m resolution was used to classify urban and rural
areas in the United Kingdom. Aim of the study was to develop four tools related with the
per-field classification to improve the results. Results indicated that of the methods the

per-field texture filtered classification provided the best performance.
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A field-based land cover map was generated for Jersey by Smith and Fuller (2001), in
which a vector land parcel boundaries were utilized to subdivide the images. The
accuracy of the per-field approach was increased by the knowledge-based corrections; a
GIS database was produced at the end of the analyses with accuracy between 85% and

95%.

De Wit and Clevers (2004) developed a methodology by integrating multi-temporal and
multi-sensor satellite imagery for producing a crop map of the Netherlands. They
achieved 90% overall accuracy and concluded that per-field classification was a more
effective way to produce crop maps than per-pixel approach. They also stated that
dynamic crop boundaries can be determined easily by applying automatic segmentation

techniques.

Lloyd et al. (2004) classified the land cover of a Mediterranean region using an artificial
neural network (ANN) on per-field basis. In addition to spectral information, geo-

statistical and textural measures extracted from the co-occurrence matrix were utilized.

Aplin and Atkinson (2004) developed a method to predict the missing field boundaries in
order to increase the accuracy of per-field classification. The technique was based on a
comparison of the within-field modal land cover proportion and local variance, which

provided an indication of the missing field boundaries.

A tree-based vegetation classification was performed with fuzzy approach using multi-
temporal NDVI data of India by Krishnaswamy et al. (2004). Two IRS LISS data
acquired on November 1998 and April 1999 were used to classify eight vegetation types
in the study. A knowledge-based classification strategy was applied with membership
information and overall kappa value of vegetation classes were computed around 60%.
They concluded that the proposed approach was relatively simple and cost effective to
apply on other applications about vegetation classification. Results achieved for the

proposed method were then utilized to complete the existing reference map of study area.

Blaes et al. (2005) aimed to develop a robust approach in order to discriminate

agricultural crop types. Their strategy was based on a parcel-based classification of multi-
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spectral and multi-temporal images. For that purpose, they used three optical imagery
(SPOT XS and Landsat ETM), fifteen ERS and Radarsat data. Various combinations of
images were utilized to classify a set of 6571 parcels into 39 crop types. A hierarchical
classification strategy was adapted to the classification. Results showed that ERS and
Radarsat data produced similar accuracies. When optical images were included in the
classification, the accuracy was improved by at least 5%. They concluded that the
performance of the classification depends on the sensor types and acquisition dates of the

images.

A recent study was performed by Turker and Ozdarici (2011). They compared the effect
of pre- and post-polygon classification performance on five agricultural crop types
cultivated in north-west of Turkey using SPOT4, SPOTS5, IKONOS, and QuickBird
images. They obtained promising results for the post-polygon classification of IKONOS

and QuickBird data, yielding overall accuracies above 83%.

Although satisfactory results are achieved for the field-based analyses, requirement of
precise agricultural field boundaries is a big limitation to apply the method. This is
because digitizing agricultural fields for especially large areas is an expensive and also
time consuming process. Hence, in recent years, the field-based approach is replaced with
more automated methods like image segmentation. The idea behind the image
segmentation is to partition an image into multiple meaningful objects by searching
homogeneity criteria/s in groups of connected pixels (Cheng et al., 2001). As a result of
continuous development in satellite sensor technology, the availability of high spatial
resolution space images has greatly increased. That development provided a significant
improvement to perceive targets of images, while it increased the spectral within-field
variability. In order to overcome the problems caused by the heterogeneous pixels within
the field, the segment-based approaches have been increasingly utilized in parallel to
Object Based Image Analysis (OBIA) (Blaschke, 2010). On the other hand, delineating
meaningful features from satellite images is a critical step because the resulting output
directly affects the accuracy of subsequent analyses. Hence, significant effort is spent to

develop effective segmentation algorithms.

An early study that implemented a new segmentation method was performed on crop

mapping in the Netherland for the combined high resolution optical and radar data by
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Schoenmakers et al. (1994). Different segmentation products derived from SPOT XS
(20m), CAESAR (5m), L band HH JPL-AIRSAR intensity data, a multi-channel
combination of SPOT XS, and CAESAR data were compared in this study. The proposed
segmentation method was based on region growing followed after edge detection. The
edge detection method was utilized in order to compute per-pixel magnitude and edge
direction. After applying an appropriate threshold on the edges, final edge composition
was acquired. Then, a region growing method was applied within the closed polygons.
They concluded that the segmented radar image provided better results after filtering the
microwave data. It was observed that the filtered radar data exhibited good results as the
optical data. On the other hand, the radar signal of L-band and HH polarization provided
an ineffective performance to the increase of biomass. The best results were obtained

when both optic and radar data was segmented together.

For the automated extraction of agricultural field boundaries, the multispectral
segmentation method of ISODATA algorithm was examined by Rydberg and Borgefors
in 2001. In the study, the segmentation algorithm was integrated with the edge
information generated from the gradient edge detector. After computing the initial point
distance from the edges, the segmentation of ISODATA classifier was applied on the
SPOT image. Next, each segment was labeled with a separate id number. The number of
regions produced by the segmentation procedure exceeded the actual number of the fields
in the image. In order to merge the fields, a likelihood-ratio test was applied on the image.
Results were compared with the manually extracted boundaries and 83% of the ground
truth edges were detected by the proposed algorithm at correct pixels. However, some of

the extra edges representing the within field variation were assumed to be correct.

Du et al. (2002) proposed an approach about segmentation of Synthetic Aperture Radar
(SAR) images based on statistics of the amplitude and textural characteristics of the data.
Both co-polarized and cross-polarized amplitude images were utilized in the study. In the
first case, a filter that preserves the details and edges of the images was applied. Next,
clusters were determined by using a scanning window. After the merging procedure
applied on the segments, the images were classified using a Bayes Maximum Likelihood
classifier. In the second case, the second-order Gaussian Markov random field models
were applied on the unfiltered images to extract textural characteristics of the data. The

results of the two methods were also compared in the study. It was found out that the
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segmentation procedure on the filtered image reduced the speckle and preserved the
edges. On the other hand, the segmentation of the texture measure blurred the borders and
produced smaller unnecessary segments. As a result, the two methods could not eliminate

the user’s judgments and decision on splitting into sub-classes of the segments.

Wang et al. (2004) compared the classification performance of IKONOS and QuickBird
image acquired under similar conditions to classify mangrove species. They used textural
information together with object-based classification. The results showed that the
classification accuracy did not increase when using only the panchromatic channels for
each image. The results also revealed that object-based classification provided more

accurate results for IKONOS imagery.

A segment-based approach was applied on a combination of optical and microwave data
in Kaifeng Township in China by Xu et al. (2004) in order to extract agricultural crop
structure using two dates of last scason RADARSAT C band (HH) having 6.25 pixel size
and two dates of mid-season Landsat ETM+ data (15m). Six classes were included in the
analyses. After applying the pre-processing operations such as atmospheric and geometric
corrections, reducing speckle effects, the optical and radar data were combined. The
combined images were then segmented using an object oriented software, e-Cognition.
Similar, adjacent pixels were aggregated by e-Cognition software. After the
segmentation, a supervised image classification was applied on the images. It was stated
that reliable results especially in residential areas were obtained for agricultural crops.

The resulting accuracy (overall) was computed as 90% for the proposed approach.

Lee and Warner (2006) compared five aspatial and spatial methods in the study called
“Segment based image classification”. These are: (i) standard per-pixel MLC; (ii) Kettig
and Landgrebe’s ECHO classification; (iii) maximum likelihood classification using the
segment mean; (iv) maximum likelihood classification using the segment divergence
index; and (v) maximum likelihood classification using the segment probability density
function (PDF). In order to compare these methods a digital aerial imagery with a Im
pixel size and four multispectral bands acquired over Morgantown, West Virginia, USA
were utilized. At the end of the analyses, it was observed that the MLC using the segment
PDF provided the highest accuracy of 0.78 (kappa) while the lowest accuracy was

computed for the segment divergence index.

18



Xiao et al. (2010) applied a watershed segmentation algorithm on a multispectral high
resolution satellite imagery using log Gabor filter. First, IKONOS panchromatic and
multispectral images were converted from spatial domain to frequency domain. Next, log
Gabor filtering was applied on the panchromatic band of the IKONOS image to compute
texture features. Next, edges were extracted by the pan-sharpened multispectral IKONOS
imagery. Both texture and edge features were represented with gradient in the study. In
order to combine edge and texture information of the objects, a watershed transform was
then applied based on the edges and integrated with the texture features. The proposed
method provided effective performance and it also reduced the over-segmentation
problem of the watershed algorithm. It was stated that further research/s should be

performed to reduce computational load of the method.

An optimal region growing segmentation and the effect of the segments on classification
accuracy was examined by Gao et al. (2011). A region growing algorithm was performed
on Landsat multispectral imagery by setting nine different parameter combinations. The
quality of the segments was evaluated by a statistical test, McNeMar test, and segment-
based classifications were performed on the image. Based on the results it was concluded

that the classification accuracy is directly related with the quality of the segments.

A new methodology called Object-based Crop Identification and Mapping (OCIM) was
developed Pefia-Barragan et al. (2011) for thirteen major crop types cultivated in
California by combining Object-based Image Analysis (OBIA) and decision tree (DT)
algorithms. Several vegetation indices and textural features were obtained from the
images taken three planting period and included in the OCIM methodology. Promising
results were obtained when the extracted features were utilized in the classifications. It
was observed that SWIR band had significant effect on the results to improve the

classification performance.

Major wetland cover types and their classification uncertainty of Poyang Lake in China
were investigated based on an object-based analysis and change detection method by
Dronova et al. (201X). In the analyses, they utilized four multi-temporal images of
Beijing-1 microsatellite (32m) acquired on November 2007 and March 2008. By spectral

indices estimated from the satellite images, they proposed a new semi-automated training
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site selection method. A hard classification was performed to the objects. The
classification uncertainty was then evaluated by fuzzy thresholds. It was found out that
the ‘Vegetation’ was the major class in all the scenes. The highest change was observed

for ‘Mudflat’ among the other classes in the study.

Up to know, a significant number of research papers have been published in the field of
land cover mapping (Table 2.1). However, most of the proposed methods or approaches
are site-specific and requires extensive knowledge to adapt the rules on the data.
Therefore, additional effort should be spent to develop fast and accurate classification
approaches/algorithms based on the phenological characteristics of agricultural crop types

(Wilkinson, 2005; Xiao et al., 2010).
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Table 2.1 Summary of the previous works about the image classification methodologies

* Spatial resolutions of the satellites are categorized in the table as follows: High Spatial

Resolution refers Pixel Size < 5, Medium Spatial Resolution means 5 > Pixel Size > 15,

Low Spatial Resolution is Pixel Size > 15.

Spatial Resolution*

Previous Study Data Source Method
Optic Radar
Jansen et al. . Maximum
(1990) Multispectral Low - Likelihood
Pedley and Curran, . Maximum
(1991) Multispectral Low - Likelihood
Panigrahy and Sharma, . Maximum
(1997) Multispectral Low - Likelihood
Congalton et al. . Maximum
(1998) Multispectral Low - Likelihood
Aplin et al. . . Maximum
(2001) Multispectral High - Likelihood
Rydberg and Borgefors Multispectral Low - ISODATA
(2001)
Smith and Fuller . Maximum
(2001) Multispectral Low - Likelihood
Lloyd et al. . Artificial Neural
(2004) Multispectral Low - Network
Aplin and Atkinson . . Maximum
(2004) Multispectral ~ High, Low - Likelihood
Yu et al. . . eCognition,
(2006) Multispectral - High - K-NN algorithm
Lee and Warner . ) ECHO Class1ﬁer,
(2006) Multispectral High - Maximum
Likelihood
Watanachaturaporn et . Support Vector
al. (2008) Multispectral Low ) Machines
Slazar et al. . .
(2008) Multispectral Low - Partial Least Squares
Xiao et al. . . Watershed
(2010) Multispectral High ) Segmentation
Gao et al. . Maximum
(2011) Multispectral Low - Likelihood
Pefia-Barragan et al. . Decision Tree
(2011) Multispectral Low - Classifier

21



Table 2.1 (cont’d)

Spatial Resolution*

Previous Study Data Source Method
Optic Radar
Dronova et al. . eCognition
(2011) Multispectral Low ) Fuzzy Classification
" High, .
Turker and Ozdarici Multispectral Medium ) Maximum
(2011) P g Likelihood
Low
Maximum
Tso ?‘fg%ather Radar - Low Likelihood,
SOM
Lee et al. Radar i Medium Maximum
(2001) & Low Likelihood
Segmentation,
Maximum
D(;Oegza)l' Radar i i Likelihood,
Gaussian Markov
Random Field
Herold et al. Maximum
(2005) Radar - Low Likelihood
Baghdadi et al. Index-Based
(2006) Radar - Low Analyses
Stankiewicz Segmentation,
(2006) Radar ) Low Neural Network
Indrani and Chakraborty Rule-Based
(2006) Radar ) Low Classifier
Blaes et al. Spectral Indlf:es,
Radar - Low Backscattering
(2007)
Analyses
Maximum
C}(‘z‘g Oe;)"‘l' Radar ; Medium Likelihood,
ECHO
Zhang et al. .
(2009) Radar - Medium SVMs
Wang et al. Decision Tree
(2010) Radar ) Low Classifier
Schoenmakers et al. Multispectral . .
(1994) & Radar Low High Segmentation
Haack et al. Multispectral . .
(2000) & Radar Low Medium Parallel-Piped
Dabrowska-Zielinska ~ Multispectral Spectral Indlp ©5
Low Low Backscattering
(2001) & Radar
Analyses

22



Table 2.1 (cont’d)

Spatial Resolution*

Previous Study Data Source Method
Optic Radar
Maximum
Ban, Y. Multispectral Low Low Likelihood
(2003) & Radar Artificial Neural
Network
De Wit and Clevers Multispectral Low Low Maximum
(2004) & Radar Likelihood
Xu et al. Multispectral . iy
(2004) & Radar Low Medium E-Cognition
Krishnaswamy et al., . Rule-Based Fuzzy
(2004) Multispectral Low - Classifier
Blaes et al. Multispectral Low Low Parcel-based
(2005) & Radar Classification
Panigrahy et al. Multispectral Index-Based
(2005) & Radar Low Low Analyses
Index-Based
Liu et al. Multispectral Low Low Analyses,
(2006) & Radar Backscattering
Analyses
Decision Tree,
McNairn et al. Multispectral Low Medium Neural Network,
(2009) & Radar & Low Maximum
Likelihood
Ban et al. Multispectral . . eCognition
(2010) & Radar High  Medium
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CHAPTER 3

STUDY AREA, DATA SETS, AND DATA PREPARATION

3.1 Study Area and Data Set

3.1.1 Study Area

The study area is situated in Karacabey, an agricultural area in Bursa, northwest of
Turkey (Fig. 3.1a). It covers an approximately 100 km” and has central geographic
coordinates at 28°14°12”” E and 40°11°09”” N (Fig. 3.1b). The area is one of the most
productive and valuable agricultural regions of Turkey with its rich soils and good
weather conditions. It is surrounded by nine villages (Hotanli, Sultaniye, Kiigiikkaragac,
Yolagazi, Akhisar, Yenisaribey, Ortasaribey, Eskisaribey, and ismet Pasa) and Lake
Manyas, an important lake for Turkey, which provides water supply for the crop types.
The region has a temperate and semi-humid climate with a mean annual temperature of
14.4 °C and a mean annual precipitation of 706 mm. The area has a flat terrain and the
mean elevation above sea level is 10 m. The soil map of the test site is provided in Figure
3.2(a) and Figure 3.2(b), where four soil types (alluvial soil, vertisols, colluvial soils, and
rendzina) and four soil characteristics (I, II, III, and VIII) are available in the region. Most
of the fields have regular shape in the area based on the land consolidation project

performed between 1988 and 1992 (Turker and Ozdarici, 2011).
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Figure 3.1(a) Study area, and (b) Kompsat-2 MS data taken in July, 11, 2008
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Figure 3.2 (a) Soil types exist in the region, and (b) soil characteristics categorized based
on the agricultural ability (e.g. the soil category I is productive while the category VIII is

not suitable for agriculture)

The major crop types cultivated in the area are corn, tomato, rice, wheat, sugar beet, and

pea. The area also contains several grass land fields to provide feed to animals.
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Photograph for some of the crops are presented in Appendix A. Figure 3.3 represents the
phenological characteristics of the crops. In the figure, the black color represents dense
canopy closure, the gray color indicates open canopy closure, and the white color means
the areas having no vegetation, bare soil. As can be seen in the Figure 3.3, the planting
period of corn starts at the end of April and the fields are covered with small corn leafs in
May. In November, harvesting period of the corn fields starts and it continuous until the
end of the November. There are also late corn cultivated in the area between July and
December. These fields are planted generally after harvesting some fields of pea, tomato,
and sugar beet. Wheat is the other major crop type in the region. Its planting date lies
between November and the next July. Except for the wheat, all the crop types are
irrigated in the area. It is also observed from the figure that tomato and rice fields have
similar planting dates between May and October. The rice has completely different
characteristics within the region, because the water necessity of this crop type is more
than the other crops. The rice fields are filled with water at the beginning of the
development stages, April, May, June and July. A root drying process is applied on the
rice fields after fifteen or thirty days and then the rice plots are filled with water again
until mid-July. The planting period of the sugar beet starts in March and ends in
November. The class sugar beet has the third longest planting period after the grass land
and wheat in the area. The grass land is also other interesting crop type of the region. It is
generally seen as green color all the year provided that there is no snow on it. The class
pea has a short planting cycle when compared with the other crop types. Its planting date

lies between April and July (Turker and Ozdarici, 2011).
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Figure 3.3 Phenological characteristics of different crop types
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3.1.2 Data Set

Three different data sets were utilized in this study: (i) optical data, (ii) microwave data,

(iii) vector data of the study area.

3.1.2.1 Optical Data

Three Kompsat-2 panchromatic (PAN) and multispectral (MS) optical data acquired with
a cloud free condition in June, 13 (early season); July, 11 (mid season); August, 18 (late
season) were used in the study (Table 3.1). Technical characteristics of the Kompsat-2
data are given in Table 3.2. The spectral range of PAN image (Im) is between 0.5-0.9
um. Kompsat-2 MS (4m) data has four spectral bands: blue, green, red, and near infrared
(NIR). The spectral ranges of these bands lie between 0.45-0.52, 0.52-0.60, 0.63-0.69 and
0.76-0.90 pum, respectively (Spot Image, 2008). The pre-processing level of the Kompsat-
2 images is level 2A; in which radiometric correction is applied on the images to
minimize the sensor-based radiometric errors. Besides the radiometric correction, the
geometric corrections have also been applied on the images; where the images have been
projected to a standard cartographic projection (UTM WGS 84) without any ground

control points.

Table 3.1 Acquisition details of the Kompsat-2 data used in the study.
GTM: Greenwich Meridian Time

Kompsat-2 PAN&MS
Acquisition Date 13 June 2008 11 July 2008 18 August 2008
Time (GMT) 08:18 08:16 08:06
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Table 3.2 Technical details of the Kompsat-2 data used in this study

Kompsat-2
Products PAN MS
blue: 0.45-0.52
Spectral Bands (um) 0.50-0.90 green: 0.52-0.60
red:  0.63-0.69
nir:  0.76-0.90
Spatial Resolution Im 4m
Footprint 15 kmx15 km
Viewing angle Revisit rate of 3 days with roll angle of 30°
Pre-processing level Level 2A
Datum WGS 84
Map Projection UTM
Zone Number 35

3.1.2.2 Microwave Data

The Envisat ASAR images (15m) used in this study was acquired in June, 28; July, 18;
August 03, 2008 in Precision Image mode (Table 3.3). This mode provides both HH and
VV polarization images with a spatial resolution between 15 m and 150 m and ground
coverage of 56x105 km’. Due to the technical problems occurred during image
acquisition, only the VV polarization images were available in this study. Envisat ASAR
operates in C-band and the images can be acquired with various incidence angles ranging
between 15° and 45.2°. A total of seven acquisition configurations (IS1-...-IS7) are
available for the Envisat ASAR data, however, due to the limitations occurred on data

acquisition, only the configurations of IS2, IS6 and IS7 could be utilized (Euroimage,

2009) (Table 3.4).

Table 3.3 Acquisition details of the Envisat ASAR data used in this study

Envisat ASAR
Acquisition Date 28 June 2008 18 July 2008 03 August 2008
Time (GMT) 08:07 08:04
Beam IS6 1S7
Pass Ascending Descending Descending
Polarization VvV \'AY
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Table 3.4 Technical details of Envisat ASAR data used in this study

Envisat ASAR
Wavelength C-band
Frequency Range 5.331 GHz
Spatial Resolution 15m
Footprint 56 kmx105 km
Acquisition Configuration 1S2, IS6, IS7
Swath Width 1S2: 105km, IS6: 70km, IS7: 56 km

1S2:19.2"-26.7°
Incidence Angle Range 1S6:39.1°- 42.8°

1S7: 42.5" - 45.2°
Pre-processing level Level 1B
Polarization \AY
Datum WGS 84
Map Projection UTM
Zone Number 35

3.1.2.3 Vector Data

Two types of vector data were used in the study: (i) field boundaries, (ii) contour maps.

@) Field Boundaries

The vector data used in this study consists of cadastral maps including agricultural field
boundaries, which was produced by a land consolidation project conducted between the
years 1988 and 1992. The field boundaries were manually digitized and updated by 1:5
000 cadastral maps in a previous work performed by Turker and Arikan (2005) and it was
further modified for this study (Ozdarici and Akyurek, 2009) by manually digitizing the
within field boundaries based on the fused Kompsat-2 data (1 m). After the final
modification, a total of 4689 agricultural fields were provided in Gauss-Kruger (Zone 5)
projection and European datum 1950 (ED 50) (Figure 3.4). The vector data includes crop
information cultivated in the area, which was collected by field works performed

concurrently with the image acquisitions (June, July and August).

(ii) Contour Maps

In this study, 1:25 000- scale digital contour maps covering the test site were obtained

from General Command of Mapping, which is a national mapping agency of Turkey.
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These maps are compiled with NATO level standards and referenced to the Universal
Transverse Mercator (UTM) projection and European Datum 1950 (ED 50). The average
planimetric and vertical accuracies of these maps are stated to be +5m and 2.5 m,

respectively (HGK, 2007).
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Figure 3.4 Agricultural field boundaries of the study area
3.2 Data Preparation

Data preparation part of this study includes image fusion and atmospheric correction of
the Kompsat-2 PAN and MS images, map updating, speckle reduction of Envisat ASAR
data, DEM generation and orthorectification of the optical and microwave data, and
generation of backscattering maps. The flowchart of the pre-processing steps is presented

below (Figure 3.5):
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Figure 3.5 Flowchart of the pre-processing steps applied on Kompsat-2 and Envisat
ASAR data

3.2.1 Image Fusion

Remote Sensing technology provides researchers numerous products with different
spatial, spectral and temporal information covering large proportions of electromagnetic
spectrum. Basic aim is to provide more information from satellite products to solve the
specific problems. On the other hand, the large amount of data acquired by the sensors
brings some problems. The main problem is combining large amount of data with an
abstraction of higher quality and less redundancy. One of the most important methods to
solve the problem is image fusion. Image fusion is a process to generate a new image by
integrating different spatial, spectral and/or temporal characteristics of the data (Pohl and

Van Genderen 1998).

In order to produce color composite images with higher spatial resolution, Kompsat-2
PAN (1m) and MS (4m) data were fused in this study. In order to select a proper method,
nine different image fusion methods frequently used in the literature were tested. Those
methods include; Hue-Saturation-Value (HSV), Brovey, Modified Intensity-Hue-
Saturation (IHS) Resolution Merge, Principle Component (PC) Spectral Sharpening,
Least Square Fusion (LSF), Gram-Schmidt, High Pass Filter (HPF), Wavelet-integrated
IHS and Wavelet-integrated PCA. The detailed explanation of those methods can be
found in Ozdarici and Akyurek (2009) and Ozdarici and Akyurek (2011) in Appendix B
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and Appendix C, respectively. The fused results were evaluated visually, statistically and
in terms of the classification performance. The analyses were conducted for two different
image patches (~5km®) selected from the entire test site, and multiple evaluation
indicators were used in statistical evaluations: relative mean difference, relative variation
difference, correlation, peak signal to noise ratio, universal image quality index, and
ERGAS (erreur relative globale adimensionnelle desynthése) (Table 3.5). Each image
patch fused was then classified with MLC method and the results were evaluated by
confusion matrices. Based on the analyses, it was found that the LSF method was
provided the best performance, therefore the LSF method utilized for the fusion task of
the PAN and MS Kompsat-2 images for this study (Figure 3.6).

Table 3.5 Statistical evaluation indicators of the image fusion methods

Relative Mean Difference (_F _ L_R) /LR
Relative Variation Difference (a_—éR) / é}?
_ COVrirri
Correlation FilRi a X a
Fi” ULgi
MSE = iZN:(F - LR)* PSNR= 2010g10M
Peak Signal to Noise Ratio N<S b i N MSE

0- O 1n 2F.LR 20,0,
0p0x (F)'+(LR)’ §.+0.,

Universal Image Quality Index

o h |1 & RMSE(B,)’
ERGAS ERGAS—IOOT‘/FZ—

= (M)

Where;
i mean the image pixel value,
F refers to the mean value of the fused image,

LR is the mean value of the original low resolution image,

a; is the variance of the fused product and,

aiR is the variance of the original multispectral image,

h, I refers to the high and low spatial resolution,
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N is the number of bands,

Peak is the maximum possible pixel value which is equal to 255 for 8§ bit images,
RMSE (By) means the root mean square error between the degraded fused image and the
original MS image,

M, is the mean value of the original multispectral image for the & * band.

(b)
Figure 3.6 (a) Kompsat-2 PAN and, (b) MS image, (c) the fused result of the false color

composite image

3.2.2 Atmospheric Correction of Kompsat-2 Data

Electromagnetic energy sensed by optical satellites has a mixture of energy due to the
atmospheric absorption and reflectance characteristics of the targets. Hence, digital values
of the images in optical region of the electromagnetic spectrum do not accurately
represent the spatial distribution of the ground surface reflectance. In order to make
reliable measurements, atmospheric correction is necessary especially when a comparison
is performed on the images that contain the same objects (Jensen, 2005; Tso and Mather,
2009). Therefore, prior to the analyses, three dates of the Kompsat-2 images (PAN and
MS) were atmospherically corrected using ATCOR-2 module of PCI Geomatica software
(Richter, 1990).

3.2.3 Generation of Digital Elevation Model (DEM)
In order to remove the relief distortion from the image and provide data with better
geometric quality to the analysis, a Digital Elevation Model (DEM) of the area was

generated to utilize in orthorectification process. As mentioned in section 3.1.2.3 (i), the

1:25 000-scale digital contour maps were used for the generation of DEM. Detailed
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information about the source data (contour maps) can be found in section 3.1.2.3. “Finite
Difference” interpolation method was used to produce DEM from the contours. The
method includes three steps. At an initial step, a raster DEM is produced by assigning the
elevation values of the contours to the relevant pixels. Second, the remaining pixels are
interpolated by a Distance Transform algorithm. In the final step, a smoothing process is
performed by the “Finite Difference” method. During the smoothing process, the original
pixel values encoded in the first step are not changed while other pixel values are updated
(PCI Geomatica, 2009). The produced DEM and its statistics for the study area are given
in Figure 3.7.

Statistics of DEM for the

Study Area
Mean Value: 12.78 m

Mode Value: 10 m

Median Value: 12.59 m
Study Area Standard Deviation: 2.18 m
Minimum Value: 9.26 m

Maximum Value: 37.02 m

Legend N
I:l Study W%%E
Area S

Figure 3.7 The generated DEM and the related statistics for the study area

3.2.4 Orthorectification

Images acquired by satellite platforms inherently involve a number of systematic and
non-systematic geometric distortions. In order to provide images with proper geometric
conditions, those errors must be corrected prior to the analyses. The correction process
may incorporate the topographic maps with other related information sources (Jensen,
2005). The systematic errors can be corrected if the orbital characteristic of the satellite
platform is known a priori. On the other hand the non-systematic errors can only be

removed or minimized after performing a geometric rectification to the imagery. In this
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respect, two common correction methods are used to correct raw (distorted) images: (i)
rectification, (ii) orthorectification. The difference of the two methods can be explained
by the accuracy level of the final product. The rectification process corrects any kind of
distortions except for relief distortion, which is caused by elevation differences occur due
to the rugged topography. The relief distortion can be corrected or minimized with the
help of external elevation information when the orthorectification process is utilized

(Manual of Photogrammetry, 2004).

In this study, the generated DEM of the study area and well distributed Ground Control
Points (GCP) that were collected from fieldworks by sub-pixel Differential Global
Positioning System (DGPS) measurements (Mini MAX, 2004) were used during the
orthorectification process. In terms of the integrity, those GCPs were collected from
distinct features, such as intersection of the roads, within the study area. As a geometric
model, the rigorous “Satellite Orbital Modeling” (PCI Geomatica, 2009) was used for the
entire Kompsat-2 and Envisat ASAR data. For the orthorectification process, at least 6
and 14 evenly distributed GCPs were selected for the Envisat and Kompsat-2 datasets
respectively, and all Root Mean Square Error (RMSE) values of the geometric model
were computed to be less than one pixel size. The number of GCPs used, RMSE values,

and the method used for the resampling are given in Table 3.6.

Table 3.6 The number of GCPs used, resampling method and the RMSE values computed

for each image

Data Acquisition # of GCPs Resampling RMSE
Date (pixels)
28 June 08 6 NN 0.55
Envisat ASAR 18 July 08 8 NN 0.45
03 August 08 10 NN 0.50
13 June 08 16 NN 0.34
Kompsat-2 11 July 08 19 NN 0.47
MS data 18 August 08 18 NN 0.41
13 June 08 14 NN 0.80
Kompsat-2 11 July 08 15 NN 0.85
(fused) data 18 August 08 20 NN 0.75

NN: Nearest Neighbor
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3.2.5 Map Updating

After performing the orthorectification process, the vector data was overlapped with the
fused optical images and the within field agricultural boundaries were manually digitized
(Figure 3.8). During the digitization process, the vector database was also updated based
on the field works performed in June, July, and August, 2008 and crop declarations
gathered from the farmers. In this way, the vector data was prepared as a reference source

to be used in accuracy assessment routines.

Figure 3.8 (a) Exiting vector data, (b) digitized agricultural field boundaries

3.2.6 Speckle Reduction of Microwave Data

In consequence of random variation in the signal detected from a target, microwave
images can have a random pattern of brighter and darker pixels called speckle (Tso and
Mather, 2009). The presence of speckle in microwave imaging systems seriously affects
the interpretability of the imagery even it carries out valuable information about the
imaging system itself (Henderson and Lewis, 1998). Hence, to provide a better
interpretation, the speckle should be reduced prior to the analyses. One traditional way of
reducing the speckle is image filtering (Tso and Mather, 2009). Image filtering is a local
operation that modifies the original pixels of the image with its neighbors (Lillesand et
al., 2004). So far, multiple image filtering methods were tested and presented in a number
of studies (e.g. Lee, 1980; Frost et al., 1982; Kuan et al., 1985; Serkan et al., 2008).

Besides the filtering methods, filter size is an important factor affecting the image quality.
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In order to select the method and filter size that are the most suitable choices for the
study, seven non-adaptive and adaptive image filtering methods were tested; Mean,
Median, Lee, Lee-sigma, Local Region, Frost and Gamma-MAP were evaluated with
3x3, 5x5, 7x7, and 9x9 filter sizes based on several statistical techniques: mean, standard
deviation, correlation, and quality factor on the Envisat ASAR data. The details of those
methods can be found in Ozdarici and Akyurek (2010a) in Appendix D. Results indicated
that the Lee filter with 5x5 windows was found to be the most suitable method to

decrease the speckle of the Envisat ASAR data (Figure 3.9).

(b)

Figure 3.9 A small part of (a) original Envisat ASAR data and (b) the Lee filtered image

with a filter size of 5x5.

The Lee filter is an adaptive speckle filter, which is based on a noise model that involves

three assumptions:

(1) SAR speckle is modeled as multiplicative noise that means the brighter the
area the noisier it is,

(i1) The noise and the signal are statistically independent to each other,

(iii)  The sample mean and the variance of a pixel are equal to the local mean and

the local variance within a fixed window (Lee 1980; Tso and Mather, 2001).

In order to apply the Lee filter, the minimum mean-square error is estimated to construct
the filtering algorithm followed by computing priori mean and variance of each pixel by
its local mean and variance. Based on the computations, the best possible linear

approximation is performed as follows (Lee 1980) (Eq.1):
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Where

z is the noise affected image pixel,

Uy, is mean of the noise,

U, is mean of the noise effected pixel,

C, and C, refer to the coefficient of variations of the noise effected pixel and the noise,

respectively.
3.2.7 Generation of Backscattering Maps

The signals transmitted by a radar system are scattered in all directions, hence, the radar
records only the backscattered energy taken by the sensor. The proportion of the density
of energy scattered to the density of energy transmitted from the objects forms the
intensity of each pixel and it provides backscatter information in a radar image (Waring et
al. 1995). The backscattering coefficient (¢°) is defined by the characteristics of the
scattering behavior of all targets within a pixel and it is expressed a logarithm with
decibel units (Waring et al. 1995). In order to facilitate making absolute comparisons of
the temporal changes of the backscatter behavior, the radar backscattering coefficients
were generated for each Envisat ASAR data to be used in image classification operations.
¢” is computed by the local incidence angle of each pixel across the range direction. This
information is stored in header files of the acquired images. The digital number (DN) of
the ASAR image can be converted to backscatter coefficients using the following

equation (Eq. 2) (Liu, et.al, 2006):

g ;;[dB] = 10log,4, (% sin (o i,j))
(Eq2)

Where;

DN;; is the digital number of the (i, j) pixel, « i,j is the angle of the (i, j) pixel and K is

the calibration constant.
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In order to provide priori knowledge to the classification, the backscatter maps were
integrated with the original agricultural fields and the variation of the backscattering
coefficients were computed for six crop types cultivated in a common planting period

(June, July, and August) are provided in Figure 3.10.
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Figure 3.10 Mean backscatter changes of the crops having common planting period; (a)

corn, (b) tomato, (c) rice, (d) sugar beet, (¢) wheat, and (f) grass land

The mean backscatter value of the corn fields was computed to be -9.33 dB, -10.01 dB
and, -11.41 dB in June, July, and August, respectively. The class tomato exhibits the

highest backscattering coefficient in June, -7.71 dB, because most of the tomato fields
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provide a dense canopy structure in this month. After June, in parallel to the development
stage of tomato, a slight decrease is observed from -8.78 dB to -9.13 dB in July and
August, respectively. Due to the unique tillage characteristics, the rice fields exhibits a
different temporal behavior when compared with the other crop types. The highest
backscattering value (-8.12 dB) is computed in July because the fields have a dense
vegetation structure in this month. The lowest mean backscattering value (-10.62 dB) can
be explained by the effect of bare soil during the first and last planting period of rice. In
August (-10.71 dB) the harvesting period of the rice starts, hence a dramatic decrease is
observed. A slight decrease is obtained for the mean backscatter values of the sugar beet.
The mean backscattering values of this crop type was computed to be -7 dB, -8.04 dB,
and -9.37 dB for June, July, and August, respectively. The temporal fluctuation ranging
between -9.14 dB and -13.01 dB of the class wheat reveals the dramatic decrease in this
time period. Based on the early sowing phase of wheat, the dense canopy closure exists in
June. Together with the harvesting period in July, the bare soil and different tillage
practices may affect the backscatter variation, which may cause a dramatic drop for the
wheat fields. The seasonal variation of mean backscatter coefficients of grass land is
computed to be -10.87 dB, -12.18 dB and -13.82 dB in June, July, and August,

respectively.

4
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Figure 3.11 Mean backscatter values of the crops computed for each date (1: Pea, 2: Corn, 3:
Tomato, 4: Rice, 5: Sugar beet, 6: Wheat, 7: Grass Land cultivated in June; 8: Corn, 9: Tomato,
10: Rice, 11: Sugar beet, 12: Wheat, 13: Grass Land, 14: Late Corn cultivated in July; and 15:
Corn, 16, Tomato, 17: Rice, 18: Sugar beet, 19: Wheat, 20: Grass land cultivated in August).
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The max, min, and mean backscatter characteristics of all the crop types included in the
analysis are presented in Figure 3.11, where a slight decrease is observed for the crops
cultivated in August. This can be explained by the acquisition characteristics of the
microwave data, because the Envisat ASAR data acquired in August has higher viewing
angles (42.50 - 45.20) than the other microwave images due to the characteristics of

different acquisition configuration (IS7).
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CHAPTER 4

METHODOLOGY

The overall methodology of the proposed approach is presented in Figure 4.1. The
methodology is composed of four main sections; (i) image fusion, (ii) image
segmentation, (iii) image classification, and (iv) accuracy assessment. Each section is

described in detail below:

Kompsat-2PAN

Image Fusion

Kompsat-2 MS

Envis f

nvisat ASAR | Atm. Correction |
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Figure 4.1 The overall flowchart of the proposed method

43



4.1 Image Fusion

Definition of image fusion and the method applied on the PAN and MS Kompsat-2

images are provided in previous chapter in section 3.2.1.

4.2 Image Segmentation

In this study, two different image segmentation approaches, Mean-Shift and Berkeley
Image Segmentation, were tested on the study area and segmentation results were
evaluated based on both area- and location-based similarities by the pre-defined
agricultural fields using multiple goodness measures in Ozdarici and Akyurek (2010b)
provided in Appendix E. Based on the results, the Mean-Shift method provided better
segmentation results compared to the results of the Berkeley Image Segmentation
method; hence the Mean-Shift method was utilized in this study and explained in this

section. The flowchart of the image segmentation process is provided in Figure 4.2.

I Kompsat-2 MS l I Kompsat-2 PAN l

Image Fusion

Orthorectification

| Define Parameters I

J
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! Object Digitized Field
N E— Boundaries Boundaries
Turn the Image

S

Segmentation Step
I

Evaluation via
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]
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Optimum
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Figure 4.2 The flowchart of the image segmentation part of the study
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4.2.1 Mean-Shift Method

A popular pattern recognition procedure (Fukunaga and Hostetler, 1975), Mean-Shift, was
utilized in this study to segment homogenous agricultural patches. Mean-Shift examines
each data point in its neighborhood by computing the center of mass of the pre-defined
kernel and shifts the center of the kernel to a new center. The direction between the recent
and the shifted center of the kernel forms the Mean-Shift vector. This kernel shifting
process is repeated until there is no (or a slight) change on the position of the kernel

(Commaniciu and Meer, 1997, 2002; Friedman et al., 2003) (Eq. 4.1).

m (x)=-— ( )—x (Eq.4.1)

Where

K(x) is the kernel defined for the Mean-Shift process
X denotes the center of the kernel used,

h is the size of the kernel,

n is number of the data values (Comaniciu and Meer, 2002)

The formula of the Mean-Shift method adapted to an image space requires three
parameters to be defined; (i) kernel type, (ii) bandwidth, and (iii) minimum region.
Several kernel types such as; Flat, Gaussian, Epanechnikov are utilized in different
studies during the Mean-Shift (Cheng, 1995). Besides the kernel type, two bandwidth
parameters namely; (i) spatial (%) and (ii) range (4,) determine the final quality of the
segments. The spatial (/4;) domain is explained by the positional information of a pixel
while the range (%,) domain describes the gray level of the pixel in a two-dimensional
lattice (e.g. satellite image) (Eq. 4.2). In order to eliminate the segments smaller than a
pre-defined minimum object size, a minimum region (MR) threshold must also be defined
prior to the segmentation operation. The formula of the Mean-Shift method adapted to an
image space is given in Equation 4.2. Further details about the Mean-Shift segmentation

method can be found in Comaniciu and Meer (1997) and Comaniciu and Meer (2002).
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Where;

x" is the spatial part,

x" defines the range part of a vector,

k(x) means the common profile used in both domains,

hy and A, are the employed kernel bandwidths that are used to determine the resolution of
the mode detection by controlling the size of the kernel, and C is the corresponding

normalization constant (Comaniciu and Meer, 2002).

The Mean-Shift method was applied on the fused Kompsat-2 images taken in June, July,
and August by open source segmentation software called Edge Detection and Image
SegmentatiON (EDISON) (EDISON software). The software is capable of segmenting
both gray scale and color images, however it can process color images with three bands at
a time since the color image is converted to Luv color space prior to the segmentation.
Therefore, different band combinations of the image were tested and it was found that the
band combinations, green, red, and near-infrared, provided the most effective solutions
and therefore used for the segmentation. Principle Component Analysis (PCA) was also
applied on the images and the first three PC bands were segmented separately for each
image. However, the produced segments did not provide satisfactory results therefore the
PCA were not included in the analysis. Epanechnikov kernel that provided high
performance in most of the studies (e.g. Commaniciu and Meer, 1999; Friedman et al.,
2003) was utilized in this study. The MR parameter was determined as 1000 pixel which
was based on the total number of pixels that belongs to the smallest agricultural field in
the area. In total 324 parameter combinations in spatial 4, and range /,, domains were
tested {3,4,5,...,20} x {3.4,5,...,20} respectively, and effective parameter combinations
were found for the fused Kompsat-2 data.

4.2.2 Quality Assessment of the Segments
In order to evaluate the segmentation results and define the optimum parameters, the

segmentation results for different parameter combinations were evaluated in a wide

perspective via multiple goodness measures. Two types of measures; (i) area-based and
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(i1) location-based were utilized during the assessment of the segments. In total 11
measures namely; over segmentation, under segmentation, area fit index (AFI), count
over, count under, relative area metric, similar size index, quality rate, under merge, over
merge indices, qLoc, relative position indices and a number of weighted products of their
variants were computed between the segments and the reference field boundaries to
compute the similarities in area- and location-based manner. Specific formulas for each
goodness measure used are given in Table 4.1 in which it was assumed that X = {x;
i=1...n} is the set of n training objects (the selected reference polygons), and ¥ = {y;.

i=1...m} denotes the related subsets of the segments generated from the image data.

Table 4.1 The goodness measures used in this study

Over/Under Segmentation Under Merging

- area(x, NY,)

(area(xl.) —area(x; N yl.))

area(x,) area(x,)
Over Merging Area Fit Index (AFD)

(area(x,)—area(x, M y,))

area(x;)

area(x,) ~ area(V,y,,)

area(x,)

Similar Size Index (SimSize)

min(area(x,),area(y,))

max(area(x,),area(y,))

Relative Area Index (RA)

area(x; Ny;)

area(x;)

Quality Rate Index (QR)

area(x; N y,)
area(x; U y,)

gLoc Distance Index

dist(centroid(x;,),centroid(y,))

Relative Position (RP) index

dist(centroid(x,),centroid(y;)
dist_ ..
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The measures of under merging and over merging are considered to compute area-based
similarities between the reference polygons and the output segments. Based on the total
over segmentation and total under segmentation of an image for p pixels and a training set
of polygons, the minimum (min) and maximum (max) values of the under merging are 0
(zero) and (p-1), respectively. The minimum value (zero, () means the reference polygons
and the relevant segments have a perfect match or over merged. The min and max ranges
of the over merging lies between 0 and p(p-1), respectively, in which the min value
indicates a perfect match or under merging. As its name implies the area fit index (AFI) is
another measure that is utilized to compute the area-based similarities. The min value of
the AFI is (I-p), while the max value of this measure is (p-1)/p. If the AFI is smaller than
zero (AFI<0), which means under segmentation while the reverse case (AFI>0) refers
over segmentation. The relative area (RA) and quality rate (QR) indices were also used to
evaluate the area-based similarities between the segments and the reference fields. The
min and max values of these measures are //p and 1, respectively. For each measure, one
(1) indicates an optimum match. The min and max ranges of the over segmentation and
under segmentation are defined 0 and (p-1)/p, respectively. Zero (0) means a perfect

match for each index.

The indices mean distance (ModDb), relative position, and qLoc distance were utilized to
compute the location-based similarities between the reference polygons and the related
segments. The measure of ModDb is computed based on the distance between the
reference polygon and the closest vertex in the output segment. The min value of this
index is zero (0). If the distance increases, it indicates a worse matching in the
segmentation. Similar to the ModDb, for the measures of relative position index, and
gLoc distance index, an increase in the distance to nadir location indicates worse

matching results.
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Figure 4.3 The selected reference polygons of the vector data

In order to compute the accuracies of the segments, a subset of representative 10% of all
the fields, operator delineated agricultural fields, were selected from the reference vector
data (ground truth) (Figure 4.3) and compared with the relevant segments by open source
software called Alpha v 0.1 (http://nature.berkeley.edu/~nclinton/goodness0 1alpha.zip).
After computing the goodness measures, the optimum parameters of the segments were
determined based on a ranking process of the results in terms of one or more of the
goodness measures followed by performing an optimization process. The evaluations
indicated that the optimum parameter combinations of the fused Kompsat-2 image taken
in July were found as A, =12, h. =3, respectively. The optimum segmentation result
overlaid with the fused Kompsat-2 image and the computed goodness measure values are

given in Figure 4.4.
After the segmentation, two post-processing operations; (i) buffering, and (ii) line

simplification; were applied on the segments to generate more representative objects for

the agricultural patches (Figure 4.5).
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Figure 4.4 The optimum segmentation result and the results of the computed goodness

measures for the fused Kompsat-2 image taken in July (4, 3, A, 10)

During the post-processing operation, first a buffer distance, 10 pixels, was applied inside
the segment boundaries to eliminate the sprawling edges and to separate the segments
from each other. Next, a new shorter buffer distance was applied on the outside of the
segments to keep the distances among the segment edges around 3-4 pixels. In this way,
the effects caused by mixed pixels on the field boundaries were also reduced
significantly. Finally, a line simplification process was performed on the segments to

remove redundant edges by preserving the main shapes of the polygons.
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Figure 4.5 (a) The original segmentation result of the fused Kompsat-2 image (July) and

(b) the post-processed segmentation result of a small part in the study area

4.3 Image Classification

In agricultural activities, quantitative analysis of remotely sensed data is necessary to
provide reliable information about agricultural products. For this purpose, the most
commonly used information extraction method from remotely sensed data is image
classification. Through the image classification, the pixels in an image domain are
automatically categorized into pre-determined land cover classes according to their
spectral characteristics. In traditional remote sensing, image classification operations are
performed based on three categories: (i) unsupervised, (ii) supervised, and (iii) hybrid
(Lillesand et al. 2000). Although a significant number of different image classification
studies is available in the literature, most of them benefit from the supervised approaches
to obtain more reliable results (e.g. Lillesand and Kiefer, 2000, Lu and Weng, 2007,
Turker and Ozdarici, 2011). In the supervised classification approach, sufficient number
of samples called training sample are required as prior information to produce
representative parameters for each class based on a selected supervised algorithm

(Lillesand et al., 2004; De Wit and Clevers, 2004).

In this part, three types of supervised image classification approaches namely, (i) pixel-
based, (ii) segment-based, and (iii) field-based applied on multi-temporal images are

described.
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(1) In the pixel-based classification; first, each single-date Kompsat-2 images
were classified separately by assigning the class label to the pixels. Then the
classification operations were performed using the Kompsat-2 images along
with the Envisat ASAR data.

(i1) For the segment-based approach, the thematic maps generated with the pixel-
based classifications were integrated with the segments. The frequencies of
the pixel values in each segment were computed and the mode of the class id
was assigned as label to the segments,

(iii)  In the field-based approach, the original agricultural field boundaries were
overlaid with the thematic map and the majority class was assigned as label

to the fields.

For a meaningful comparison between those three different types of classification
approaches, the same training sites were automatically selected and utilized in the
analyses. The details of the proposed training site selection strategy and the classification

approaches are given below:

4.3.1 Training Site Selection

In supervised classification, sufficient number of samples is required as prior information
to produce representative parameters for the pre-defined classes. On the other hand,
defining training samples is a critical process since the quality of the samples directly
affects the final accuracies of the thematic maps. Therefore, manual selection of the
training samples not only needs qualified expert knowledge but also requires lots of time
and money (Chen and Stow, 2002; Lu and Weng, 2007). In order to tackle those
problems and eliminate possible bias that may occur during the training area selection, in
this study, a new approach was proposed to automatically select and define homogenous
training samples from a subset of segmentation results. First, the optimum segmentation
output was overlaid with each band (blue, green, red, and NIR) of the MS Kompsat-2
data to find the best representative regions among all the available segments. Next,
standard deviations of the pixels within the segments were computed and stored in a
database. Next, mean values of the standard deviations of the segments computed for
each band were then calculated. In the final step, the segments that have standard

deviation smaller than 2 were extracted as training samples and labeled automatically
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with the help of reference information. In this way, a representative 10% of all the pixels
in the segments were automatically selected as training samples for each image. This
process was performed for each Kompsat-2 MS data taken in three different dates. The
ranges of the training sizes lie as 0.1-1.2 ha, 0.1-2.3 ha, and 0.1-2.2 ha for the images
taken in June, July, and August, respectively. The selected training segments were then
utilized as prior information to carry out the supervised classifications of the 4m MS
Kompsat-2 images (blue, green, red, and near-infrared) and 15m Envisat ASAR data. The
fused Kompsat-2 images (1m) along with the Envisat ASAR data were also classified in
this study; however, the overall accuracies did not exceed 0.2%. Therefore, to increase
the computational efficiency and save time, the MS Kompsat-2 (4m) data were used in
the classification operations. The automatically selected training objects for the MS
Kompsat-2 image taken in July is presented in Figure 4.6. The distribution of other
training segments collected for the MS Kompsat-2 images taken in June and August can

be found in Appendix F.

Legend
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@ Tomato
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Figure 4.6 The automatically selected training samples of the MS Kompsat-2 image taken
in July
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Accuracies obtained for the resulting thematic maps not only depend on the quality of the
training samples but also the optimum bands used in the classification operations (Jensen,
2005). Therefore, to assess the degree of statistical separability between the selected
training class signatures based on the input bands, Bhattacharya Distance and

Transformed Divergence separability indices were utilized.
Let say a and b are the classes that statistical separability is going to be calculated.
Bhattacharya Distance is computed by the mean and covariance matrix of the classes

(Eq.4.3).

Va+Vb|

Vo +Vp

1
Bhatg, = g(Ma - M) ( 5

M, — M) +=log, | —2—=
) ( D * 3% D (Eq4.3)

Where;

M, and M, are the mean vectors of the classes a and b,

V, and V,, are the covariance matrices of the classes a and b.

The Transformed Divergence Index is implemented based on the Eq.4.4 and Eq. 4.5

below:

TDivery, = 2000 [1 —exp (%)] (Eq.4.4)
Where;

Diver,y, is computed as:

Diverab = %tT[(Va - Vb)(V_lb - V_la)] + %tr[(v_la - V_lb)(Ma - Mb)(Ma -
M) (Eq.4.5)

tr[ ] is the trace of matrix (e.g. the sum of the diagonal elements),

M, and M, are the mean vectors of the classes a and b,
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V, and V,, are the covariance matrices of the classes @ and b.

The separability values are scaled between 0 and 2 for each index. The value of 2
indicates a complete separation between the classes and therefore, the larger the value the
greater the statistical distance between the class @ and b (Jensen, 2005). The separability
values of each crop pairs computed for the Bhattacharya Distance and the Transformed
Divergence Index of the four-band MS Kompsat-2 images acquired in June, July, and
August (a, b, ¢), and the same optical bands with Envisat-ASAR data (d, e, f) are given in
Table 4.2 and Table 4.3.

Except for the matrix produced for the four-band Kompsat-2 MS image taken in August,
the average separability values were computed over 1.70 for other image combinations.
The Kompsat-2 MS image taken in August provided relatively poor separability values
when compared with the other matrices. This can be explained by the inefficient training
samples collected for the August image. The average separability value computed for the
four-band Kompsat-2 MS image taken in August was improved when the Envisat ASAR
data was included in the analysis. The same case is also valid for the other images taken
in June and July. This means an improvement was observed for the separability values of

the four-band Kompsat-2 MS images when the Envisat ASAR data was included.

Table 4.2 The matrices of Bhattacharya distance of the four-band Kompsat-2 MS images
taken in June, July, and August (a, c, ), with the Envisat ASAR data (b, d, f).

Four-band Kompsat-2 MS image taken in June

Class Names Corn Tomato Rice Sugarbeet Wheat
Tomato 1.94

Rice 1.99 1.99

Sugar beet 1.99 1.90 1.99

Wheat 1.97 1.63 1.91 1.95

Grass Land 1.51 1.40 1.97 1.80 1.51

Average Separability: 1.83
Signature pair with Minimum Separability: Tomato, Grass Land

(a)
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Table 4.2 (Cont’d)

Four-band Kompsat-2 MS image with Envisat ASAR data taken in June

Class Names Corn  Tomato Rice  Sugarbeet  Wheat
Tomato 1.94

Rice 1.99 1.99

Sugar beet 1.99 1.93 1.99

Wheat 1.97 1.65 1.91 1.97

Grass Land 1.55 1.58 1.98 1.95 1.54

Average Separability: 1.86

Signature pair with Minimum Separability: Wheat, Grass Land

(b)

According to the matrices, it was observed that the separability values improved when the

Envisat ASAR data was included in the computation. For the matrix of four-band
Kompsat-2 MS image and Envisat ASAR data taken in June, the major confusions were
observed for the crop pairs of grass land -corn, grass land-tomato, and grass land-wheat
as 1.55, 1.58, and 1.54, respectively. A moderate separability value of 1.65 was computed

for the class pairs of wheat and tomato.

Four-band Kompsat-2 MS image taken in July

Class Names Corn Tomato Rice Sugarbeet Wheat
Tomato 0.90

Rice 1.85 1.95

Sugar beet 1.99 1.82 2.00

Wheat 1.99 1.99 2.00 2.00

Grass Land 1.91 1.95 1.99 1.99 1.58

Average Separability: 1.86

Signature pair with Minimum Separability: Corn, Tomato

(©)
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Table 4.2 (Cont’d)

Four-band Kompsat-2 MS image with Envisat ASAR data taken in July

Class Names Corn  Tomato Rice  Sugarbeet Wheat
Tomato 1.04

Rice 1.88 1.95

Sugar beet 1.99 1.82 2.00

Wheat 1.99 1.99 2.00 2.00

Grass Land 1.93 1.98 1.99 1.99 1.59

Average Separability: 1.88

Signature pair with Minimum Separability: Corn, Tomato

(d)

The lowest separability value was computed as 1.04 for tomato and corn of the four-band
Kompsat-2 MS image and Envisat ASAR data acquired in July. The classes grass land
and wheat provided moderate result of about 1.59. The separability values of the other
crop types exhibited relatively high results over 1.80. The max separabilities (2.00) were

provided between the class pairs of sugar beet-rice, wheat-rice, and wheat-sugar beet.

Four-band Kompsat-2 MS image taken in August

Class Names Corn Tomato Rice Sugarbeet Wheat
Tomato 1.56

Rice 1.51 1.30

Sugar beet 1.82 1.04 0.96

Wheat 1.99 1.92 1.99 1.99

Grass Land 1.99 1.66 1.99 1.99 1.27

Average Separability: 1.67

Signature pair with Minimum Separability: Rice, Sugar beet

(e)
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Table 4.2 (Cont’d)

Four-band Kompsat-2 MS image with Envisat ASAR data taken in August

Class Names Corn Tomato Rice Sugarbeet Wheat
Tomato 1.63

Rice 1.53 1.47

Sugar beet 1.84 1.07 1.27

Wheat 1.99 1.97 1.99 1.99

Grass Land 1.99 1.93 1.99 1.99 1.38

Average Separability: 1.74

Signature pair with Minimum Separability: Tomato, Sugar beet

The lowest separability values of the four-band Kompsat-2 MS image and Envisat ASAR
data taken in August were computed for the class pairs of sugar beet-tomato (1.07), sugar
beet-rice (1.27), grass land-wheat (1.38), and rice-tomato (1.47). A marginal result of

about 1.53 was observed between the class rice and corn.

Separability values computed for the Transformed Divergence Index slightly improved

the results of the Bhattacharya distance. The results are provided below:

Table 4.3 The matrices of Transformed Divergence Index for four-band Kompsat-2 MS
images taken in June, July, and August (a, ¢, ¢), with the Envisat ASAR data (b, d, f).

®

Four-band Kompsat-2 MS image taken in June

Class Names Corn  Tomato Rice  Sugar beet  Wheat
Tomato 1.99

Rice 1.99 1.99

Sugar beet 1.99 1.95 1.99

Wheat 1.99 1.94 1.99 1.99

Grass Land 1.85 1.64 1.99 1.85 1.58

Average Separability: 1.92

Signature Pair with Minimum Separability: Wheat, Grass Land

(a)
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Table 4.3 (Cont’d)

Four-band Kompsat-2 MS image with Envisat ASAR data taken in June

Class Names Corn Tomato Rice  Sugar beet  Wheat
Tomato 1.99
Rice 1.99 1.99
Sugar beet 1.99 1.96 1.99
Wheat 1.99 1.94 1.99 1.99
Grass Land 1.88 1.76 1.99 1.97 1.62
Average Separability: 1.94
Signature Pair with Minimum Separability: Wheat, Grass Land
(b)

Four-band Kompsat-2 MS image taken in July
Class Names Corn Tomato Rice Sugarbeet Wheat
Tomato 0.98
Rice 1.97 1.99
Sugar beet 1.99 1.96 2.00
Wheat 1.99 2.00 2.00 2.00
Grass Land 1.96 1.98 2.00 2.00 1.80

Average Separability: 1.91

Signature pair with Minimum Separability: Corn, Tomato

(©

Four-band Kompsat-2 MS image with Envisat ASAR data taken in July

Class Names Corn Tomato Rice Sugarbeet Wheat
Tomato 1.13

Rice 1.98 1.99

Sugar beet 1.99 1.97 2.00

Wheat 1.99 2.00 2.00 2.00

Grass Land 1.97 1.99 2.00 2.00 1.81

Average Separability: 1.92

Signature pair with Minimum Separability: Corn, Tomato

(d)
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Table 4.3 (Cont’d)

Four-band Kompsat-2 MS image taken in August

Class Names Corn Tomato Rice Sugarbeet Wheat
Tomato 1.69

Rice 1.70 1.92

Sugar beet 1.86 1.51 1.09

Wheat 2.00 1.98 2.00 2.00

Grass Land 1.99 1.95 2.00 1.99 1.52

Average Separability: 1.81

Signature pair with Minimum Separability: Rice, Sugar beet

(©)

Four-band Kompsat-2 MS image with Envisat ASAR data taken in August

Class Names Corn Tomato Rice Sugarbeet Wheat
Tomato 1.75

Rice 1.72 1.96

Sugar beet 1.87 1.55 1.42

Wheat 2.00 1.99 2.00 2.00

Grass Land 1.99 1.99 2.00 1.99 1.60

Average Separability: 1.86

Signature pair with Minimum Separability: Rice, Sugar beet

®

In this study, manually collected training samples were also analyzed for each image and
similar results were obtained with the results achieved from the proposed automated
approach. Furthermore, due to the lower separability values, the optical band
combinations less than four were not included in the analysis. The separability values
computed for Bhattacharya Distance less than four band combinations are provided in

Appendix G.

4.3.2 Pixel-Based Analysis

In this study, two different types of pixel-based image classification methods called; (i)

Maximum Likelihood Classification (MLC) and (ii) Support Vector Machines (SVMs)
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were examined to classify eight crop types by four-band Kompsat-2 MS images and
Envisat ASAR data. When performing the classifications, other type of land classes such
as villages, roads, and water canals were manually excluded. The flowchart of the pixel-
based image classification is presented in Figure 4.7. Detailed explanations of the MLC

and SVMs methods are provided in Section 4.3.2.1 and Section 4.3.2.2, respectively.

4.3.2.1 Maximum Likelihood Classification (MLC)

Maximum Likelihood Classification (MLC), a traditional supervised classification
method, computes the probabilities of a pixel for a given number of training classes and
assigns the class id to the pixel that has the highest probability value. The method
assumes that the statistics of each class in the training data has a normal distribution. In
order to obtain the most probable classes, a probability density function is computed. If
the classification is performed on a single band image, the statistics mean and variance of

each training class are computed as in Eq.4.6 (Jensen, 2005).

plxlw;) = T—exp
(2m)26;

(Eq.4.6)

[_ 1(x] ﬁi)zl

~2
2 o;

Where;
exp [ ] is e (the base of the natural logarithms) raised to the computed power,
x is the brightness values of the pixel,

i, is the estimated mean value of the pre-defined training class,

07 is the estimated variance of all measurements in this class.
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Figure 4.7 The flowchart of the pixel-based image classification process

If a multi-band classification problem of a given training data set is searched, there is a
need to define an n-dimensional multivariate normal density function by computing the
variance and covariance statistics of the training data used in the classification operation

(Eq.4.7) (Jensen, 2005).

) 1 1. )
p(X|w,) = — o 19P[3 (X-M)Vi(Xx-M,) (Eq4.7)
(2m)z| V|2
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M; is the mean vector of each training class,
V; is the covariance matrix of each training class,
| V; | is the determinant of the covariance matrix,
V71 is the inverse of the covariance matrix,

(X — M;)T is the transpose of the vector (X — M;).
The MLC method was tested on the study area based on two different data sets:

(1) The four-band single-date Kompsat-2 images (June, July, and August) and,
(i1) The four-band single-date Kompsat-2 images (June, July, and August) with
the corresponding Envisat ASAR data.

First, the classification method was applied on the MS Kompsat-2 data by the
automatically selected training samples and the resulting thematic maps for the six crop
types (corn, tomato, rice, sugar beet, wheat, and grass land) having common growing
period were produced separately for each date (June, July, and August) (Figure 4.8 (a, c,
e)). The classification results of the fused Kompsat-2 products were also tested in the
analyses. However, the overall accuracies did not exceed 0.2% to the classification results
of the MS data. Hence, the MS Kompsat-2 data was used in the classification operations
to increase the computational efficiency and save time. In order to make use of different
characteristics of the microwave data, backscattering coefficients of the filtered Envisat
ASAR data was included as additional band to the classification analyses. The resulting

pixel-based classification results of the six crop types are given in Figure 4.8 (b, d, f).
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Figure 4.8 (a, c, ) The pixel-based results of the MLC for the four-band MS Kompsat-2
images acquired in June, July, and August (2008), respectively. (b, d, f). The

classification results of the same optical images with Envisat-ASAR.
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4.3.2.2 Support Vector Machines (SVMs) Classification

The Support Vector Machines (SVMs) approach has become an attractive supervised
classification method in recent years due to the effective classification performance in the
remote sensing analyses (e.g. Huang et al., 2002; Keuchel et al., 2003; Foody and Mathur,
2004; Pal and Mather, 2005; Foody and Mathur, 2006; Liu et al., 2006; Pal, 2006; Yang,
2011; Taskin Kaya et al., 2011) although it was proposed in the late 1970s (Vapnik,
1979). A recent and an extensive review of the SVMs method were performed by
Mountrakis et al. (2011). Based on the studies conducted, the SVM method has several
advantages compared to the other image classification algorithms: (i) The SVMs do not
have any assumption about data distribution, because the distribution of remotely sensed
images is usually unknown. This characteristic makes the SVMs method superior to the
other image classification methods, especially MLC; because the MLC assumes that the
data have a normal distribution. However, if the selected classes have different kind of
distributions than the normal distribution, this may negatively affect the final
performance of the classification. (ii) Other important characteristic of the SVMs method
is the ability of classifying the data successfully using small numbers of training data set.
The SVMs algorithm can be effectively applied on the data using a limited number of
training samples which is a very important characteristic, especially for the studies
analyzing large areas. This is because the collection of ground truth is very expensive and
time consuming process for large test sites. Besides the advantages described above, the
usage of an appropriate kernel type in the analysis provides further effective classification
performance (e.g. Kavzoglu and Colkesen, 2009; Yang, 2011; Mountrakis et al., 2011).
Detailed explanation about the SVMs algorithm is presented below:

In SVMs, a structural risk minimization concept is introduced to reduce the probability of
misclassification of the data by defining a hyper plane (e.g. a decision boundary) based
on the training samples (Vapnik, 1995, 1998). The method was originally developed to
solve linear classification problems by assigning the labels +1 and -1, in which a hyper
plane is constructed to classify the data with maximal distance, called ‘margin’. Figure
4.9 shows multiple hyper planes that separate the two classes, where the hyper plane b
separates the classes with maximum margin, while the other hyper planes (a, c, and d) are
very close to the training data points and do not provide an efficient separation. So, the

logic of the SVMs classifier is to construct the optimum hyper plane that keeps the
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distance between the hyper plane and the training samples as large as possible (Tso and

Mather, 2009).

In a case of two linearly separable classes, the training data set is defined by {x;, yi}, i =
1,...n, y; €{1, -1}, x; € RY, where x; is the training data value in d dimensional space and

y; is the class label of the training data.

Vo

Class 1

O  C(Class 2

Optimum separating hyperplane

Figure 4.9 Examples of hyper planes and the optimum hyper plane (b) in the linear
situation (Tso and Mather, 2009)

In this case, a decision function can be defined based on the equation below (Eq.4.8):

wix+b=0

(Eq.4.8)
Where;
x is a data point on the hyper plane,
w is normal to the hyper plane,
T means matrix transposition, and

b indicates bias.

If it is assumed that the constructed hyper plane is suitable for separating all training data,

the equation can be written as wix; +b > +1, y; = 1, for the closest training points on one
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side of the hyper plane with the perpendicular distance from the origin and w'x; +b < -1,
yi = -1, for the training points lying on the other side of the hyper plane. The training
points on the hyper planes are called support vectors, which are used to construct the
optimum hyper plane and classify the unknown data in the analyses. Hence, a small
number of training samples could be sufficient to obtain high accuracies for the SVMs

method. The two equations defined above can be combined as below (Eq.4.9);
y; (WX x;+b) -1 >0 (Eq.4.9)

The margin between two hyper planes is written as 2/ || w || . Depending on the restriction

indicated in Eq.4.9, the maximization of the margin is formulated as (Eq. 4.10);

w 2
min{ > } (Eq.4.10)

In order to make the Eq. 4.9 easy, a dual Lagrangian equation is utilized:

1
Layar = Xi=q & — 3 Xiz1 & %G YiYX; X ; (Eq.4.11)
Where;

a; represents positive Lagrangian multipliers.

The hard margin SVM optimization problem is then defined using the Eq. 4.12.

f(x) = sign (Z o v (x X x;) + b) (Eq.4.12)

i=1

Where;

nsv means the number of support vectors.
Based on the formula, all the training samples are suitable to the inequality restriction and

thus the points can be separated easily, which is called sard margin method. On the other

hand, due to the nature of remotely sensed data, this situation does not always valid and
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the linear boundaries do not provide a good separation to the data points. Therefore, a soft

margin method was introduced to overcome this problem by defining the slack variables

$i ,1=1,....., n. When the slack variables are added to the basic formula of the SVM, the
Eq.4.9 is updated as Eq. 4.13.

Yiw'X x;-+b) 21- 85 §i: 2 0, (Eq4.13)

The optimal problem then computed as Eq.4.14 when the penalty parameter (C) is added

into the analysis:

min " = " 2 +C i &
2 - : 1.14)

Where;
C is a penalty parameter that is defined by the user prior to the classification. When the C
increases, it means the degree of misclassification increases (Tso and Mather, 2009;

ENVI Manual, 2007).

The first part of the equation (Eq. 4.14) is to increase the margin to its maximum level,
while the second part is to search the training points positioned to the “wrong” side of the

margin (Figure 4.10).

Optimum hyperplane: wix +b "I-_ Misclassified Instance
ES

[ |w

o

72
Support Vectors

Origin

‘%;rgin

Figure 4.10 Linear hyper planes for two classes that do not totally separated (Tso and
Mather, 2009)
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The linear hyper planes are not suitable to separate the classes in most real-world

problems; therefore the concept of non-linear decision surface is proposed. Based on this

concept, to increase the separability between classes, the data points are mapped into a

higher dimensional Euclidean space (called Hilbert Space).

In order to improve the computational performance of the SVMs performed in higher

dimensional space, several kernel functions are presented (Vapnik 1995). Most of the

recent remote sensing studies indicated that the definition of kernel function based on the

study is a very critical step to obtain reliable outputs (e.g. Yang, 2011; Schélkopt et al.,

1997). The mostly used kernel functions are given in Eq.4.15, Eq.4.16, Eq.4.17, and

Eq.4.18.

Linear kernel:

K(x;x) =x"T xx;

Polynomial kernel:

K(xx) = (r(xi x %) +6)",y > 0,6 >0

Radial basis function:

K(x;xj) = exp(—y x;—x; 2),y>0

Sigmoid kernel:
K(x;x;) = tanh(y(x; X xj) = 8),¥ > 0,6 >0
Where;
v defines gamma term in the kernel function,
¢ is the polynomial degree for the polynomial kernel types,

§ means bias term (Tso and Mather, 2009).

(Eq. 4.15)

(Eq. 4.16)

(Eq. 4.17)

(Eq. 4.18)

In order to classify multiple classes, the method of SVMs is then extended (Vapnik, 1998;

Crammer and Singer, 2002). There are three main approaches proposed for the problem

of multiclass SVMs in the literature: (i) one-against-one, (ii) one-against-others, and (iii)

directed acyclic graph (DAG).
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The one-against-one method was applied on the MS Kompsat-2 images and Envisat
ASAR data in this study, in which the training process is performed based on each couple
of classes and the label is assigned to the pixel having the highest vote (Chang and Lin,
2001; Wu et al., 2004; Tso and Mather, 2009). Radial Basis Function (RBF) kernel that
provides the improved classification accuracies in most of the studies (e.g. Yang, 2011;
Kavzoglu and Colkesen, 2010, Pal and Mather, 2005) was utilized in the analyses. In
order to perform a meaningful comparison, the same training samples were used when
classifying the data with MLC and SVMs method (Section 4.2.1). Similar to the analyses
of MLC, the Kompsat-2 images taken for each date were classified with the method of
SVMs, and after that, Envisat ASAR data were also included in the analyses. The gamma
functions (y) and penalty parameters (C) utilized in the classifications of each image
combinations are provided in Table 4.4. The resulting thematic outputs of the SVMs

method are presented in Figure 4.11.

Table 4.4 Gamma functions (y) and penalty parameters (C) used for the SVMs
classification of the MS Kompsat-2 images and for the combined maps of Kompsat-2 MS
and Envisat ASAR data

Data Month  y C
June 0.25 2200
Four-band Kompsat-2 MS image July 0.25 200

August 0.25 200

June 0.20 2200
Four-band Kompsat-2 MS image and Envisat ASAR data  July 0.20 200

August  0.20 200
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Figure 4.11 (a, c, ) The pixel-based results of the SVMs classification for the four-band
MS Kompsat-2 images acquired in June, July, and August, respectively. (b, d, f). The

classification results of the same optical images with Envisat-ASAR data.
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4.3.3 Probability Estimation

In multi-temporal applications, reliable methods are necessary to combine the information
of the same objects taken in different images. This is generally performed based on
multiple decision rules. Although the rule-based analysis may provide acceptable results
in various remote sensing studies (e.g. Ban, et al., 2010), defining the rules require not
only an efficient knowledge about the study area but also an accurate data analysis.
Suitability of these rules to the study area and data directly affects the resulting accuracy
of the thematic maps. Hence, much more effective methods are necessary to combine

such multi-temporal data.

In this study, a new approach was proposed to combine the thematic information of
optical and microwave images taken in different dates. The proposed approach is based
on a hard classification strategy in which, first, probability maps were computed for each
single-date image in pixel-based manner and the max membership value is then assigned
as a class label to the pixels. The probabilities of the pixels were computed using two
different approaches due to the different characteristics of the classifiers used. For the
MLC, the probability membership function of the class a is computed by the following
equations, Eq.4.19, Eq.4.20, Eq.4.21, and Eq.4.22:

_ P, (x)
fa(x) = ST P () (Eq.4.19)
Where;
Pi(x) = ;1 X exp[—O.S(x — )TV (x - ,ui*)] (Eq.4.20)

@m"z| vy |2

N means the dimension of the pixel vectors,
m 1s the number of classes,
In the equation (Eq.4.20), fuzzy mean and covariance matrices are calculated as below,

respectively:

* Z?:l fa(xi)xi

Ha =75 ¢ Ge) (Eq.4.21)
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n is the total number of sample pixel measurement vectors,
f 1s the membership function of class a,

x; is a sample pixel measurement vector (1 <i<n)

Sy faCe) e — ) (e — )T
ieq fa(x)

V= 1.4.22)

In the equation Eq. 4.20, the term (x — u;*)TV;"*(x — ;") defines the Mahalanobis
Distance between the pixel x and the signature means. The membership function of class
a and the distance value is inversely proportional. That means, if the distance between the
pixel and the class mean is high, the membership function of the pixel is small and the
pixel is most likely to be incorrectly classified (Pouncey and Swanson, 1999, Jensen,
2005). Figure 4.12 indicates the combined thematic map (June-July-August) of the four-
band Kompsat-2 and Envisat ASAR data classified by the MLC method with the
probability map.

Legend
Ocm @ Sugar beet Value N
@ Tomato O Wheat High : 1
@® Rice O Grassland I Meters W-%;»E
Bl Masked Area Low: 0 0 750 1.500 3.000 s

Figure 4.12 (a) The combined thematic map (June-July-August) of four-band Kompsat-2
and Envisat ASAR data computed for the MLC method (b) with the probability map

(black areas represent the most correctly classified pixels)
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In order to assess the probabilities of the thematic maps computed for the SVMs method,
assume that an observation of x is provided with its label y. Based on the given
observations; let say 7;;, which is the estimated pair wise class probabiliti (Eq.4.23)
P(y = i|y =i or j,x), are exist. A model was constructed by i" and jt"classes of a

training set to compute 1;; for each new X. After computing all r;;, estimation of p; =
g p ij p g ij 4}

P(y = i|x),i =1,.., k. is performed for each pixel as follows (Wu et al., 2004):

K

. 2

pmn Z Z (10 — 1jp;)
i=1 jij#i
Subject to:
K
(Eq.4.24)

Zpi = 1,pi = O,Vi.

i=1
The classification rule is then defined by

§ = argmax; [plz] (Eq.4.25)

Where;
p? denotes the solution of Eq. 4.24,

k is the number of classes.

Figure 4.13 indicates a combined SVMs classification result of the four-band Kompsat-2
images with Envisat ASAR data taken in June, July, and August with the computed
probability map. Other probability maps produced for the MLLC and SVMs methods with

the corresponding thematic maps are given in Appendix H.
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Figure 4.13 (a) The combined thematic map of SVMs method and (b) its probability map

In this study, the probability maps were generated for each single-date: image. However,
according to the field-works it was observed that a crop rotation occurs for the class pea
and late corn in the test site. The images taken in June represent the late planting period
of the pea. After June, a crop rotation occurs for the pea fields. A similar case is valid for
the late corn cultivated in July. To find those regions, first, the Kompsat-2 and Envisat
ASAR data taken in June and July were classified separately by including new training
samples for the class pea and late corn into the classification. However, the produced
maps did not provide satisfactory results for the crops. Hence, a histogram threshold was
set on the probability maps of the single-date June and July to find out the pixels that
were most likely to be incorrectly classified. The incorrectly classified pixels under the
threshold (< 0.90) were then extracted from the thematic map and those regions were

reclassified again (Figure 4.14).
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Figure 4.14 (a) Correctly classified pixels and (b) the new thematic map of June including

pea

4.3.4 Segment-Based Analysis

With the recent advances in RS technology, high spatial resolution satellites (e.g.
GeoEye-1, Worldviewl-2, and QuickBird) have become available and provide an
opportunity to obtain more detailed information from the earth surface. On the other
hand, in the case of agricultural applications, with the improvement of high spatial
resolution images, the traditional pixel-based analyses are negatively affected due to the
misclassification problems caused by for example; the nutrient limitations, pests, disease,
the variation in soil moisture conditions, and the mixed pixel effects on the agricultural
boundaries (Smith and Fuller, 2001; De Wit and Clevers, 2004). Hence, in order to
eliminate the misclassification problems, a segment-based strategy is proposed, in which
the image is divided into homogenous segments and each pixel is assigned to a final class
of the entire segment according to the statistical properties, instead of determining the
class label for each pixel separately (De Wit and Clevers, 2004). In this case, quality of
the segments generated for the homogenous regions play a critical role to determine the
accuracy of the classification. In this study, the segment-based approach was applied on

the thematic maps defined below (Figure 4.15):
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i.  The optimum segmentation result was integrated to the classified map,
ii. the frequency of the classified pixels (mode) in the segments were computed,

iii. the label of majority class was assigned to the segments (Figure 4.16).

(b)

Figure 4.15 A small part of (a) false color composite MS Kompsat-2 image (taken in
July), (b) the result of MLC classification (blue, green, red, NIR), and (c) the

classification result of the segment-based approach overlaid with the produced segments.

The segment-based results of the combined image (June-July-August) generated for the
MLC and SVMs method are presented in Figure 4.17 and Figure 4.18, respectively. The
thematic maps of the segment-based approach produced for the single-date images and

multiple image combinations are provided in Appendix H.
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Figure 4.16 The flowchart of the segment-based image classification methodology
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Figure 4.17 (a) The combined (June-July-August) thematic maps produced by the
segment-based approach using MLC method of four-band Kompsat-2 MS images (b)
with Envisat ASAR data.
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Figure 4.18 (a) The combined (June-July-August) thematic maps produced by the
segment-based approach using SVMs method of four-band MS Kompsat-2 MS images
(b) with Envisat ASAR data.
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4.3.5 Field-Based Analysis

Besides the pixel-based and segment-based analyses, the thematic maps generated with
the pixel-based approach were overlaid with the reference agricultural fields and the
results were evaluated in a field-based manner, as well. To perform the field-based
analyses, frequency of the pixels classified by MLC and SVMs was computed and the
mode of the class id was assigned as label to the original fields. After that, to analyze the
field size effect on the accuracies, the field agricultural fields were divided into three
groups based on the field-sizes. The first group includes small agricultural fields with the
field size range from 0.01 ha to 4.99 ha, the second group indicates the fields that have
medium size (5.00 ha-9.99 ha), and the third group contains the large fields (10.00ha-
38.31ha) (Figure 4.19). The resulting combined thematic maps (June-July-August)
produced by the field-based approach of the MLC and SVMs methods are presented in
Figure 4.20 and Figure 4.21, respectively. The field-based results computed for the MLC

and SVMs method based on the field sizes are provided in Appendix 1.

e

5 ‘ Ll

Field Sizes (ha) Meters
I 0.01 -4.99 0 1.250 2.500 5.000 W % E
[ 15.00-9.99 S

| 10,00- 3831

Figure 4.19 Agricultural fields classified based on the field-sizes
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Figure 4.20 (a) The field-based results of the combined (June-July-August) thematic map
of the MLC method for four-band Kompsat-2 MS images (b) with the Envisat-ASAR
data.

Legend
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Figure 4.21 (a) The field-based result of the combined (June-July-August) thematic map
of the SVMs method for four-band Kompsat-2 MS images with (b) the Envisat-ASAR
data.
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CHAPTER 5

RESULTS AND DISCUSSION

Evaluation of the thematic maps is a crucial process to image classification analyses to
understand and interpret the quality of the final products produced. In this chapter, the
evaluation strategy is explained in detail followed by an introduction of the reference data
used in the accuracy assessment process. The computed accuracies of the pixel-based,

segment-based and field-based analyses are then discussed.

5.1 Reference Data

The reference data was prepared by updating the database of the existing vector data
(agricultural field boundaries) by the field works performed concurrently with the image
acquisitions. Three visits were performed on the test site and crop information such as
canopy developments, irrigation, fertilization activities were recorded into a database of
the vector data. After transferring the vector data into a raster format based on the crop
information, around 30% of all the pixels were utilized as a reference source in the
accuracy assessment process. During the computations of the accuracy measures, to
provide a reliable evaluation, the training areas were excluded from the reference data.
The reference fields utilized in the accuracy assessment process of the six crop types that

have a common development period are presented in Figure 5.1.
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Figure 5.1 Reference map for six crop types (corn, tomato, rice, sugar beet, wheat, and

grass land)

To evaluate the thematic maps, in total 567 sample points were scattered on the reference
fields by a simple random sampling strategy, where the sample points were distributed to
the reference fields based on its class percentages. The number of samples used in the

evaluation was determined by Jensen (2005) in Eq.5.1:

Where
N refers to the sample size

" class out of k classes that has the

[I; is the proportion of a population in the i
proportion closest to 50%,

b; is the desired precession for this class (e.g. 5%),

B explains the upper (</k) x100™ percentile of the chi square (X°) distribution with 1
degree of freedom,

k 1s the number of classes.
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5.2 Evaluation Method

Accuracies of the thematic maps were computed by confusion (error) matrices, which is
a very widely used accuracy assessment method in remote sensing studies. By the
confusion matrix, the relationship between the known reference data (ground truth) and
the corresponding results can be compared pixel-by-pixel basis on the defined categories
(Lillesand, 2004). The matrix consists of three major accuracy measures: (i) producer’s
accuracy (omission error), (i) user’s accuracy (commission error) and (iii) overall
accuracy. The producer’s accuracy (omission error) is computed by dividing the total
number of correctly classified pixels by the total number of the given reference pixels,
which indicates the probability of a reference pixel that is correctly classified. The user’s
accuracy (commission error) is defined by a ratio between the total number of correctly
classified pixels in a category and the total number of pixels that were actually classified
in that category. The user’s accuracy of a class indicates the reliability of a pixel
classified on a map actually represents that category on the ground. In order to provide a
general accuracy for the results, the overall accuracy is computed by dividing the total
number of correctly classified pixels, major diagonal elements of the matrix, by the total

number of pixels in the error matrix (Jensen, 2005).

The overall accuracy includes the data along the major diagonal only and excludes the
errors of omission and commission, therefore Kappa was also computed to evaluate the
results. The Kappa value incorporates the non-diagonal elements of the error matrix,
which removes the chance agreement. The Kappa statistics (k) are adapted from Lillesand

(2004) in (Eq. 5.2):

k = NY_ 1 xi=2" (Xig. X4p) (E0.5.2)
N2-3T__; (g 240) -
Where;
7 = number of rows in the error matrix
x;; =number of observations in row i and column i (on the major diagonal)
x;+ = total of observations in row i
x+; = total of observations in column i

N = total number of observations include in matrix
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Table 5.1 Summary table of the analyzed data

Data Date Class No Methods Approaches
June
Kompsat-2 July 6
MS August
June 6&8 MLC
July 6&8
August 6
Kompsat-2 June&July
MS  &Envisat | June&August MLC &
ASAR July&August 6 Probabilistic
June& July&August Approach
June Pixel-Based,
Kompsat-2 July 6 Segment-Based,
MS August Field-Based
June 6&8 SVMs
July 6&8
August 6
Kompsat-2 June&July
MS &Envisat | June&August SVMs &
ASAR July&August 6 Probabilistic
June& July&August Approach

According to Table 5.1, in total 64 different overall accuracy measures were computed

for the image combinations based on pixel-based, segment-based, and field-based

mannecr.

Table 5.2 and Table 5.3 provide a general overview about the results computed for the

classification methods of the (a) MLC and (b) SVMs, respectively, based on the pixel-

based and segment-based analyses for the six crop types having similar planting period.

For each method, the highest accuracies in the results are examined by confusion matrices

in Section 5.3 and Section 5.4 for pixel-based and segment-based analyses, respectively.

The classification results computed for the MLC and SVMs method were evaluated based
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on the field-based analyses, as well. The confusion matrices of the field-based results are
provided in Section 5.5. Other confusion matrices generated for the produced thematic

maps can be found in Appendix L.
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Table 5.2 MLC results of the thematic maps computed for different image combinations based on pixel-based and

segment-based manners

Kompsat-2 MS (4 m) Kompsat-2 MS (4 m) & Envisat ASAR (15 m)
Data Pixel-based results Segment-based results Pixel-based results Segment-based results
Overall Overall Overall Overall Overall Overall Overall Overall
Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy  Kappa
(%) (%) (%) (%)

June 45.67 0.34 51.85 0.41 54.32 0.44 63.66 0.56
July 74.25 0.69 76.36 0.71 75.13 0.70 80.42 0.76
August 71.95 0.66 78.13 0.73 79.18 0.75 82.71 0.79
June-July 75.66 0.70 84.30 0.81 77.07 0.72 87.47 0.84
June-August 72.66 0.67 84.48 0.81 78.83 0.74 88.71 0.86
July-August 76.01 0.71 82.71 0.79 78.66 0.74 85.36 0.82

June-July-August 75.66 0.70 85.18 0.82 79.18 0.75 88.71 0.86
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Table 5.3 SVMs results of the thematic maps computed for different image combinations based on pixel-based and

segment-based manner

Kompsat-2 MS (4 m) Kompsat-2 MS (4 m) & Envisat ASAR (15 m)

Data Pixel-based results Segment-based results Pixel-based results Segment-based results

Overall Overall Overall Overall Overall Overall Overall Overall
Accuracy  Kappa Accuracy Kappa Accuracy Kappa Accuracy  Kappa

(%) (%) (%) (%)
June 51.67 041 59.61 0.51 56.96 0.48 63.84 0.56
July 76.01 0.71 84.12 0.81 79.18 0.75 85.36 0.82
August 65.43 0.58 70.54 0.64 76.01 0.71 78.30 0.73
June-July 80.24 0.76 91.71 0.90 80.77 0.76 92.59 091
June-August 70.54 0.64 82.54 0.78 81.48 0.77 88.88 0.86
July- August 79.36 0.75 86.59 0.83 82.36 0.78 86.59 0.83

June-July-August 82.01 0.78 91.35 0.89 84.48 0.81 92.06 0.90




5.3 Results of the Pixel-Based Analysis

In this section, the results of the pixel-based classification of the MLC and SVMs
methods are discussed in sections 5.3.1 and 5.3.2, respectively. In the pixel-based
analysis the minimum spatial unit is a pixel that defines the minimum discernable object

on the satellite image.

5.3.1 Results of the MLC Method

The overall accuracies and overall kappa results of the pixel-based MLC classification
method computed for the single-date images and different image combinations are

provided in Table 5.4.

Table 5.4 The overall accuracies of the pixel-based classifications for the thematic maps

generated
Kompsat-2 MS Kompsat-2 MS & Envisat ASAR
Month Overall Overall Kappa Overall Overall Kappa
Accuracy (%) Accuracy (%)
June 45.67 0.34 52.20 0.42
July 74.25 0.69 75.13 0.70
August 71.95 0.66 79.18 0.75
June-July 75.66 0.70 77.07 0.72
June-August 72.66 0.67 78.83 0.74
July-August 76.01 0.71 78.66 0.74
June-July-August 75.66 0.70 79.18 0.75

Results indicated that an improvement was observed for the thematic maps when the
Envisat ASAR data was included in the classification analyses. The highest improvement
was observed around 8% for the Kompsat-2 and Envisat ASAR data taken in August. The
overall accuracy and kappa values of the August image were computed as 79.18% and
0.75, respectively. The results computed for the combined thematic map of the images
taken in June-July-August, and the thematic map produced for the single-date August
images provided the best overall accuracies. Comparable results around 78% were

obtained for the thematic maps of the dual image combinations. On the other hand, the
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lowest overall accuracy (52.20%) and kappa value (0.42) were computed for the
Kompsat-2 and Envisat ASAR data taken in June. These unsatisfactory performances can
be explained by the acquisition date of the images, because the crops are in the first
planting phase in June and the canopy development of the crops has not been completed
yet. Thus, bare soil may substantially affect the spectral response of different crop types.

The confusion matrix of the combined map of June-July-August can be seen in Table 5.5.

Table 5.5 Confusion matrix of the combined map of June-July-August

Classes Corn Grass Rice Sugar Tomato Wheat Row | UA*¥*
Land beet T (%)
Corn 67 6 6 1 19 4 103 65.04
Grass Land 1 77 0 0 1 19 98 78.57
Rice 0 0 84 2 0 0 86 97.67
Sugar beet 1 0 3 63 6 0 73 86.30
Tomato 2 3 2 17 64 1 89 71.91
Wheat 1 23 0 0 0 94 118 79.66
Column T 72 109 95 83 90 118 567
PA ** (%) 93.05 70.64 88.42 75.90 71.11 79.66

Overall A. (%): 79.18 Kappa: 0.75

*: Total
**: Producer’s Accuracy

**%: User’s Accuracy

According to the confusion matrix in Table 5.5, the highest producer’s accuracy of
93.05% was obtained for the corn, which can be explained by significant spectral
difference between the corn and other crop types because; only 5 of the 72 corn pixels for
validation were misclassified as other cover types. The class rice also provided high
producer’s accuracy around 88%. Reasonable producer’s accuracies over 70% were

obtained for the classes grass land, sugar beet, and wheat.

User’s accuracies of the crops indicated that the lowest accuracy (65.04%) was computed
for the corn with the highest commission error although it provided the maximum
producer’s accuracy (93.05%). This is due to the fact that only 67 pixels of 113 reference
pixels were classified as corn. The major confusion occurred for the class tomato with 19
pixels. On the other hand, the class rice yielded the best user’s accuracy of 97.67%. The
user’s accuracy of the sugar beet was found as 86.30% while the user’s accuracies of the

grass land, tomato, and wheat exhibited acceptable results over 70%.
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o  MLC Results of the Class Pea and Late Corn computed for the Kompsat-2 and
Envisat ASAR data

Owing to the crop rotation occurring in June and July, the class pea and late corn were
classified separately by MS Kompsat-2 and Envisat ASAR data. However, marginal
producer’s and user’s accuracies around 50% were observed for the class pea and late
corn. Hence, to improve the classification accuracies, a histogram threshold (< 0.90) was
applied on the probability maps of the images taken in June and July and mostly
incorrectly classified pixels below the threshold was excluded from the images and the
masked areas were then classified again. The resulting confusion matrices computed

based on the pixel-based MLC are shown in Table 5.6.

Table 5.6 Confusion matrix of the map of June including the class pea

Classes Corn Grass Rice Sugar Tomato Wheat Pea Row | UA***

Land beet T" (%)
Corn 9 3 0 1 1 8 1 23 39.13
Grass Land 29 51 1 2 17 28 6 134 | 38.06
Rice 1 0 88 2 2 1 10 104 | 84.61
Sugar beet 3 2 2 63 7 3 2 82 76.82
Tomato 3 5 0 3 17 1 5 34 50
Wheat 5 18 4 2 6 76 25 136 | 55.88
Pea 6 2 1 0 4 6 35 54 64.81
Column T 56 81 96 73 54 123 84 567

6296 91.66 86.30 31.48 61.78 | 41.66
Overall A (%): 59.78 Kappa: 0.52

PA ** (%)  16.07

The classification of seven classes including the pea revealed a marginal classification
performance, where the overall accuracy and overall kappa were calculated as 59.78%
and 0.52, respectively (Table 5.6). For the class pea, of 54 pixels for validation, only 35
were correctly classified as pea and the producer’s accuracy of that class was computed
as 60.71%. The major confusions were observed for the class rice and wheat with 10 and
25 pixels, respectively. The user’s accuracy of the pea indicated that only 35 pixels of 54
were classified as pea that was actually represents that category on the ground. The pea
pixels were confused mostly with corn and wheat in the user’s accuracy level. The results
can be explained by the reason that the pea is in harvesting period, so most of the pea
fields are old in June. Spectral response of the pea fields may be unhealthy in this period

and this situation negatively affects the classification performance of the pea pixels.
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Table 5.7 Confusion matrix for the map of July including the late corn

Classes Corn Grass Rice Sugar Tomato Wheat Late Row | UA***

Land beet Corn T (%)
Corn 64 1 0 0 13 0 31 111 | 57.65
Grass 0 54 0 0 0 31 4 89 60.67
Land
Rice 0 0 83 1 4 1 0 89 93.25
Sugar beet 0 0 4 71 1 0 0 76 93.42
Tomato 3 0 1 9 51 0 1 65 78.46
Wheat 0 14 2 0 0 63 9 88 71.59
Late Corn 1 9 0 0 6 3 30 49 61.22
Column T" 68 78 90 81 75 98 77 567
PA ** (%) 94.11 69.23 9222 87.65 68 64.28 | 38.96

Overall A (%): 73.36 Kappa: 0.68

Table 5.7 indicates the confusion matrix of the MLC for seven crop types including late
corn computed for the Kompsat-2 and Envisat ASAR data. The overall accuracy and
kappa values were computed to be 73.36% and 0.68, respectively, which means a
moderate classification performance. The class corn provided the highest user’s accuracy
while its user’s accuracy was poor (57.65%). On the other hand, the lowest producer’s
accuracy of 38.96% was obtained for the late corn. The major confusion was calculated
for the class corn due to the similar spectral response characteristics. Of the 77 pixels of
the late corn for validation, only 30 were correctly classified as late corn and 31 pixels
were wrongly classified as corn in the matrix. Although the lowest producer’s accuracy
was computed for the late corn, a moderate user’s accuracy of about 61.22% was
obtained for the same class. The major confusion of the late corn was observed for the
grass land. The highest user’s accuracy was obtained for the rice and sugar beet above

90% 1in the matrix.

5.3.2 Results of the SVMs Method

Table 5.8 summarizes the overall accuracies of the pixel-based SVMs classifications for
different image combinations. According to the Table 5.8, it was observed that except for
the images taken in August, the method of SVMs improved the classification accuracies
of the MLC method. This improvement indicates effective classification performance of
the SVMs approach. Similar to the results computed for the MLC method, a certain

improvement was observed when the Envisat ASAR data was included in the
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classification framework. The highest improvement was around 11% for the thematic
map of Kompsat-2 and Envisat ASAR data taken in August (overall accuracy: 76.01%
and kappa: 0.71) and the combined map of the optical and microwave images acquired in
June and August (overall accuracy: 81.48% and kappa: 0.77). While the highest
improvement was observed for those images, the combined map of June-July- August
provided the best performance with an overall accuracy of 84.48% and kappa value of
0.81 when the Envisat ASAR data was included in the classification. The error matrix of

the combined map (June-July-August) is provided in Table 5.9.

Table 5.8 The overall accuracies of the pixel-based classifications for the thematic maps

Kompsat-2 MS (4 m) Kompsat-2 MS (4m) & Envisat
Month ASAR (15 m)
Overall Overall Kappa Overall Overall Kappa
Accuracy (%) Accuracy (%)
June 51.67 0.41 56.96 0.48
July 76.01 0.71 79.18 0.75
August 65.43 0.58 76.01 0.71
June-July 80.24 0.76 80.77 0.76
June-August 70.54 0.64 81.48 0.77
July-August 79.36 0.75 82.36 0.78
June-July-August 82.01 0.78 84.48 0.81

The confusion matrix in the Table 5.9 revealed that the maximum producer’s and user’s
accuracy were observed for the class rice around 93% and 95%, respectively. The high
accuracies of the rice pixels can be explained by the dielectric properties of the
microwave data due to the flooded rice fields and the multi-temporal optical response
characteristics. Although the lowest producer’s accuracy (71.08%) was computed for the
class corn, which was mainly confused with the sugar beet, the corn pixels had fairly
good user’s accuracy around 86%. The other crop types also provided rather good results

for the combined thematic map (June-July-August).
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Table 5.9 Confusion matrix of the combined map of June-July-August

Classes Corn Grass Rice Sugar Tomato Wheat Row | UA***

Land beet T (%)
Corn 59 3 4 0 0 3 69 85.50
Grass 4 78 0 0 1 6 89 87.64
Land
Rice 4 0 106 1 1 0 112 | 94.64
Sugar beet 11 2 0 81 10 1 105 | 77.14
Tomato 3 2 3 15 64 1 88 72.72
Wheat 2 9 1 1 0 91 104 | 87.50
ColumnT" 83 94 114 98 76 102 567
PA ** (%) 71.08 8297 9298 82.65 84.21 89.21

Overall A (%): 84.48 Kappa: 0.81

5.4 Results of the Segment-Based Analysis

This part examines the classification results of the segment-based analysis, where the
minimum spatial unit is a segment. The segment-based results and discussions for the

MLC and SVMs method are presented in Section 5.4.1 and Section 5.4.2, respectively.

5.4.1 Results of the MLC Method

Table 5.10 summarizes the overall accuracies of the thematic maps computed for the
segment-based approach. It was observed that the segment-based approach improved the
classification accuracies of the results computed for the pixel-based MLC. The highest
overall accuracy 88.71% and kappa value of 0.86 were achieved for the combined
thematic map of June-July-August of the classified Kompsat-2 and Envisat ASAR data,
which were higher around 4% than the relevant classification results of the Kompsat-2
data. Similar results were obtained for the combined thematic map of June and July.
Except for the June image (overall accuracy: 61.19, kappa: 0.53), other thematic maps
provided rather good results over 80%. This improvement can be explained by the
segments that define the textural information of the classes by overcoming the problem of

within field spectral variability.

The confusion matrix of the combined thematic map of Kompsat-2 and Envisat ASAR
data revealed that the highest producer’s (94.73%) and user’s accuracies (100%) were
computed for the class rice (Table 5.11). This is due to the dielectric property of water

sensed by microwave data. The rice fields appear dark during the early vegetative phase
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when the fields are flooded, which makes the rice fields significantly different from that
of the other land cover. The crops corn, grassland, sugar beet, tomato, and wheat yielded
producer’s accuracies over 85%, which denotes a good identification performance.
Nevertheless, the user’s accuracies of corn and tomato were around 77%, which
demonstrates that the segment-based analysis of the combined images slightly
overestimated the classification performance for those crops. The major confusion of the
class corn was computed with 9 pixels for the class tomato. Tomato was mainly mixed
with the sugar beet with 11 pixels. The confusions are due to the similar spectral response

characteristics of those crop types.

Table 5.10 The overall accuracies of the segment-based MLC for the thematic maps

generated
Kompsat-2 MS Kompsat-2 MS & Envisat ASAR
Month Overall Overall Kappa Overall Overall Kappa
Accuracy (%) Accuracy (%)
June 51.85 0.41 61.19 0.53
July 76.36 0.71 80.42 0.76
August 78.13 0.73 82.71 0.79
June-July 84.30 0.81 87.47 0.84
June-August 84.48 0.81 86.59 0.83
July- August 82.71 0.79 85.36 0.82
June-July-August 85.18 0.82 88.71 0.86

Table 5.11 Confusion matrix of the combined map of June-July-August

Corn  Grass Rice Sugar Tomato Wheat Row UA
Land beet T

Corn 63 0 2 1 9 6 81 77.77
Grass 0 93 0 0 0 2 95 97.89
Land
Rice 0 0 920 0 0 0 90 100
Sugar beet 2 0 0 71 3 0 76 93.42
Tomato 7 0 3 11 78 2 101 77.22
Wheat 0 16 0 0 0 108 124 87.09
Column T 72 109 95 83 90 118 567
PA 87.50 8532  94.73 85.54 86.66 91.52

Overall A (%): 88.71 Kappa: 0.86
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o  MLC Results of the Class Pea and Late Corn

Table 5.12 provides the confusion matrix of the thematic map of June produced by the
segment-based approach for seven crop types including class pea. An improvement
around 5% was observed when the segment-based approach was applied on the thematic
map, where the overall accuracy and kappa result were found as 64.72% and 0.58,
respectively. Even an obvious improvement was observed with the segment-based
approach; it was not sufficient to obtain high producer’s accuracy of the class pea, which
was computed as 45.23%. The lowest producer’s accuracy around 23% was computed for
the class corn with the highest omission error. Other classes provide reasonable
producer’s accuracies over 75% except for the class tomato and wheat. When the user’s
accuracies of the crops were examined, it was observed that the classes of corn, rice,
sugar beet and tomato provided significant results over 85%. On the other hand, the
lowest user’s accuracy of 42.25% was obtained for the grass land. The classes of wheat
and pea exhibited marginal results. The user’s accuracy of pea was computed as 57.57%,

where the major confusions were observed for the class corn and wheat.

Table 5.12 The confusion matrix of the reclassified map including pea

Classes Corn Grass Rice Sugar Tomato Wheat Pea Row | UA***
Land beet T (%)
Corn 13 1 0 0 0 1 0 15 86.66
Grass 29 60 0 0 15 36 2 142 | 4225
Land
Rice 0 0 92 2 0 2 103 | 89.32
Sugar beet 4 0 0 62 3 0 1 70 88.57
Tomato 0 0 0 1 29 2 1 33 87.87
Wheat 2 17 1 5 5 73 35 138 | 52.89
Pea 8 2 3 3 2 9 38 66 57.57
Column T 56 81 96 73 54 123 84 567

PA ** (%) 2321 74.07 9583 84.93 53.70 59.35 [ 45.23
Overall A (%): 64.72  Kappa: 0.58

The confusion matrix including the late corn is presented in Table 5.13, where the overall
accuracy and kappa value were computed as 78.30% and 0.74, respectively. An
improvement around 5% was observed for the overall accuracies of the segment-based
approach compared with pixel-based results. The lowest producer’s accuracy around 25%
was computed for the late corn. The major confusion of the late corn was observed for the

class corn. Only 19 pixels in 77 for validation were correctly classified as late corn due to
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the spectral similarity and similar phenological characteristics of the crops. On the other
hand the other crop types provided significant producer’s accuracies over 85% while
marginal result (65.30%) was observed for the class wheat. The user’s accuracies of the
classes indicated that except for the corn, acceptable results were obtained for the other
crop types over 70%. The lowest accuracy around 50% was observed for the class corn,
which denotes a marginal result. The user’s accuracy of the late corn was computed as

73.07% though it provided an inefficient producer’s accuracy (24.67%).

Table 5.13 The confusion matrix of the reclassified map including late corn

Classes Corn Grass Rice Sugar Tomato Wheat Late Row | UA***
Land beet Corn T (%)
Corn 67 1 5 2 6 4 47 132 | 50.78
Grass 0 75 0 0 0 24 0 99 75.75
Land
Rice 0 0 78 0 0 1 0 79 98.73
Sugar beet 0 0 3 72 0 0 0 75 96
Tomato 1 0 2 7 69 0 0 79 87.34
Wheat 0 0 2 0 0 64 11 77 83.11
Late Corn 0 2 0 0 0 5 19 26 73.07
Column T 68 78 90 81 75 98 71 567

PA ** (%) 98.52 96.15 86.66 88.88 92 65.30 | 24.67
Overall A (%): 78.30 Kappa: 0.74

5.4.2 Results of the SVMs method

The overall accuracies of the SVMs method computed for the segment-based strategy are
presented in Table 5.14. According to the table, even the classifications were performed
based on the Kompsat-2 data only, the segment-based approach of the SVMs method
improved the classification accuracies of the MLC results. For the thematic maps
produced using the Kompsat-2 image, the highest overall accuracies around 90% were
computed for the dual and triple map combination of June and July, and the combined
map of June-July-August, respectively. The computed accuracy was improved around 1%
when the Envisat ASAR data was included in the classification analyses. For the thematic
maps generated for the Kompsat-2 and Envisat ASAR data, the highest overall accuracy
of 92% was obtained for dual image combination of June and July and the combined map
of June-July-August. The kappa results of those images were computed around 90%,

which means an outstanding classification performance for the crop types. The confusion
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matrix of the dual combination of the images taken in June and July are given in Table

5.15.

Table 5.14 The overall accuracies of the segment-based SVMs classifications for the

thematic maps

Kompsat-2 MS Kompsat-2 MS & Envisat ASAR
Month Overall Overall Kappa Overall Overall Kappa
Accuracy (%) Accuracy (%)

June 59.61 0.51 63.84 0.56
July 84.12 0.81 85.36 0.82
August 70.54 0.64 78.30 0.73
June-July 91.71 0.90 92.59 0.91
June-August 82.54 0.78 88.88 0.86
July- August 86.59 0.83 86.59 0.83
June-July-August 91.35 0.89 92.06 0.90

According to the confusion matrix of the combined map of June and July (Table 5.15),
the producer’s accuracies were computed significantly high (over 85%), which means a
quite good classification performance. The maximum producer’s accuracy of about 99%
was achieved for the grass land, in which only 1 pixel of 94 were omitted as tomato.
Promising results (97.89%) were achieved for the user’s accuracy of the grass land, as
well. The best user’s accuracy was found for the class wheat around 99%, in which of the
93 pixels 92 were correctly classified as wheat. The lowest, but not actually low, user’s
accuracy was computed around 83% for tomato, which was mainly confused with sugar

beet due to the spectral overlaps.

Table 5.15 Confusion matrix of the combined map of June-July

Corn  Grass Rice Sugar Tomato Wheat Row UA

Land beet T
Corn 75 0 0 1 6 7 89 84.27
Grass 0 93 1 0 0 1 95 97.89
Land
Rice 4 0 111 1 1 0 117 94.87
Sugar beet 4 0 1 85 0 1 90 94.44
Tomato 0 1 1 11 69 1 83 83.13
Wheat 0 0 1 0 0 92 93 98.92
Column T 83 94 114 98 76 102 567
PA 90.36 9893 9736  86.73 90.78 90.19

Overall A (%): 92.59 Kappa: 0.91
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The class pea and late corn were also classified by the segment-based SVMs method
without using a histogram threshold. This is because the reclassified thematic maps did
not significantly improve the thematic accuracies of the classes when the masked areas
were reclassified. The segment-based SVMs classification approach computed for the
images taken in June improved the producer’s and user’s accuracies of the class pea
around 10% and 5%, respectively, compared to the results of segment-based MLC
method. A dramatic improvement around 50% was computed for the producer’s accuracy
of the late corn (76.62%) when a segment-based SVMs classification was applied on the
June image. The user’s accuracy of the late corn was found to be 75.64%, which was

higher around 2% than the corresponding MLC result.

5.5 Results of the Field-Based Analysis

This part presents the results of field-based analyses of the Kompsat-2 and Envisat ASAR
data computed for the MLC method. First, the analyses were performed on all the fields,
thereafter the effects of field sizes were analyzed by dividing the fields into three groups:
(1) small (0.1-4.9 ha), (i) medium (5-9.9 ha), (iii) large fields (10-38 ha).

Table 5.16 presents the confusion matrix of the field-based classification computed for all
reference fields. The overall accuracy and kappa values of the matrix were computed as
92.45% and 0.90, respectively, which indicates similar performance with the segment-
based approach. In the producer’s accuracy level, all the crop types provided high
accuracies over 85%. The highest producer’s accuracy was computed for the class rice
with the minimum omission error. For sugar beet, all the reference pixels were correctly
classified and the class had maximum user’s accuracy (100%). The smallest user’s
accuracy of 57.14% was observed for the class tomato although producer’s accuracy of
tomato was relatively high (88.88%). The major confusion was observed as 5 pixels for

sugar beet due to the similar spectral response characteristics.
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Table 5.16 Confusion matrix of the field-based analysis

Corn  Grass Rice Sugar Tomato Wheat Row UA
Land beet T

Corn 26 0 1 0 1 6 34 76.47
Grass 0 25 0 0 0 2 27 92.59
Land
Rice 0 0 48 0 0 1 49 97.95
Sugar beet 0 0 0 54 0 0 54 100
Tomato 1 0 0 5 8 0 14 57.14
Wheat 0 3 0 0 0 84 87 96.55
Column T 27 28 49 59 9 93 265
PA 9629 89.28 9795 91.52 88.88 90.32

Overall A (%): 92.45 Kappa: 0.90

Table 5.17 indicates the results of field-based analysis based on the small fields between
0.1 and 4.9 ha. In total 195 agricultural fields were analyzed for that group. The overall
accuracy and kappa values were computed as 90.76% and 0.81, respectively. Except for
the grass land (70%), the producer’s accuracies of all the other crop types were calculated
over 85%. No confusion was observed for the class rice in the producer’s accuracy level
(100%). Similar result was computed for the class sugar beet in the user’s accuracy level.
On the other hand, the highest commission error (57.14%) was observed for tomato while

it provided fairly acceptable producer’s accuracy (88.88%).

Table 5.17 Confusion matrix of the small fields (0.1 ha and 4.9 ha)

Corn  Grass Rice  Sugar Tomato Wheat Row UA
Land beet T

Corn 25 0 0 0 1 5 31 80.64
Grass 0 7 0 0 0 2 9 77.77
Land
Rice 0 0 34 0 0 1 35 97.14
Sugar beet 0 0 0 48 0 0 48 100
Tomato 1 0 0 5 8 0 14 57.14
Wheat 0 3 0 0 0 55 58 94.82
Column T 26 10 34 53 9 63 195
PA 96.15 70 100 90.56 88.88 87.30

Overall A (%): 90.76 Kappa: 0.81

The field-based analysis computed for the medium fields (5 ha-9.9 ha) include four crop
types; grass land, rice, sugar beet, and wheat. The confusion matrix of the crops is given
in Table 5.18, where the overall accuracy and kappa value were computed as 96.87% and
0.95, respectively. It was observed from the matrix that all the crops provided

significantly high accuracies. The major confusion was computed for the sugar beet in the
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user’s accuracy level. This is due to the reason that 1 sugar beet field out of 2 was

classified as rice, where the number of samples is not adequate for validation.

Table 5.18 Confusion matrix of the medium fields (5 ha and 9.9 ha)

Grass Rice Sugar Wheat Row | UA
Land beet T
Grass 6 0 0 0 6 100
Land
Rice 0 12 0 0 12 100
Sugar beet 0 1 1 0 2 50
Wheat 0 0 0 12 12 100
Column T 6 13 0 0 32
PA 100 92.30 100 100

Overall A (%): 96.87 Kappa: 0.95

Table 5.19 indicates the confusion matrix of the large fields (10-38 ha), which includes

grass land, rice, and wheat. The overall accuracy and kappa value for the large fields were

computed as 100%, where all the classes were classified in its maximum accuracy level.

Based on the results, it is quite evident that the larger the fields, the higher the

classification performances reached.

Table 5.19 Confusion matrix of the large fields (10 ha and 38 ha)

Grass Rice Wheat Row UA
Land T
Grass 9 0 0 9 100
Land
Rice 0 1 0 1 100
Wheat 0 0 12 12 100
Column T 9 1 12 22
PA 100 100 100 100

Overall A (%): 100 Kappa: 100

Similar results were obtained for the field-based analyses of the SVMs method.

Confusion matrix of the field-based analysis for the SVMs method is provided in

Appendix 1.

101



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

In this part the conclusions derived from this study are presented along with the

recommendations for further studies.

6.1 Conclusions

Based on the results, the following conclusions are drawn from this study:

e The Least Square Fusion was found to be the most effective method compared to
the other image fusion methods that provided high spatial resolution (1 m) MS
Kompsat-2 images for the study,

e It was observed that the Lee filter with 5x5 window size was an appropriate

method to minimize the speckle effect of the Envisat ASAR data,

e For all the image combinations used, the separability values between the classes
and also the classification accuracies were improved when the C-band Envisat

ASAR data was included in the classification framework,

o Based on the Transformed Divergence Index, major confusions were
observed between wheat/grass land, corn/tomato, and tomato/sugar beet
for the MS Kompsat-2 and Envisat ASAR data acquired in June, July,
and August 2008, respectively. Using less than four optical bands caused
low separability values. Additional images based on the development
periods of the crops might be a good way to increase the separabilities

between the classes,
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o For the segment-based MLC method, an improvement of 13% was
observed for the combined thematic map of June-July-August when the

Envisat ASAR data was included into the classification framework.

o In terms of the segment-based SVMs method of the combined thematic
map of June-July-August, an improvement around 10% was achieved

when the Envisat ASAR data was included into the classification.

The classification accuracies are strongly affected from the quality of the
segments. In this study, for the segmentation task, the goodness measures
computed for 324 different parameter combinations of the Mean-Shift were
evaluated and the optimum segments were provided for the classification

operations,

The proposed training site selection strategy was found to be effective to prevent
possible bias on the classification performance and save time during the

collection of training sample,

Segment-based approach was found to be an effective way compared to the pixel-
based method during the classification of images by overcoming the problem of

misclassification due to the within field internal spectral variability,

o For the segment-based MLC method, the highest accuracies were
obtained for the combined map of June-July-August classified with MS
Kompsat-2 and Envisat ASAR data, which improved the overall
accuracy of the pixel-based classification around 10% and computed to

be 88.71%.

o The best results around 92% were obtained for the segment-based SVMs
method of the combined thematic maps of the June-July and June-July-
August classified with MS Kompsat-2 and Envisat ASAR data, which is

better around 10% than the corresponding pixel-based results.
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e It was observed that multi-temporal classification approach is essential to provide
reliable results in agricultural classification studies. For this study, higher
accuracies were obtained for the classification of multi-date data compared to the

single-date satellite images,

e Selection of the optimum growing dates of different crop types is a key factor to
improve the classification performance. In this study, based on the results, the
images taken in June, July, and August were found to be effective to classify the

crop types,

o It was observed that high accuracies were computed around 89% for the
segment-based MLC results of the combined thematic maps of June-

August, and June-July-August.

o For the segment-based SVMs method, the highest accuracies were
computed around 92% for the combined map of June-July and June-July-

August.

e Results indicated that the SVMs method provided better classification accuracies
compared to the results obtained from MLC method except for the images taken

in August:

o The segment-based SVMs improved the maximum overall accuracy of
the segment-based MLC method around 4% and it was computed as

92.06%.

o A significant drop around 3% was observed for the map of August
classified with the segment-based MLC and SVMs methods. This can be
explained by unrepresentative training samples that provide inefficient
classification performance for the image taken in August, which can be

explained by the low separability index values of the August image.
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Multi-temporal segment-based approach along with the probabilistic approach
was found to be effective to combine the information of multi-date data and

improved the classification accuracies of the agricultural crop types,

To set a histogram thresholds on the probability maps to classify pea and late
corn improved the classification accuracies of the single-date images of June and
July but the improvement was not enough to achieve the high classification

accuracies computed for the multi-temporal data sets,

o For the pixel-based MLC of the optical and microwave data taken in June
and July, marginal user’s accuracies over 60% were observed for the
class pea and late corn while low producer’s accuracies were computed
around 40%. For the class pea, this can be explained by the acquisition
dates of the images because the pea fields are in harvesting period in June
and bare soil may affect the spectral response of this crop type. The
major confusion of late corn was observed for the class corn because
each crop type exists in July on the study area, which causes spectral

overlaps between these classes.

It was observed that the segment-based approach provided similar results based
on the field-based analyses, which is a good indicator of reliability for the

segments produced,

o The maximum overall accuracy for the segment- and field-based
approaches was computed around 92% for the combined thematic map
(June-July-August) of the MLC and SVMs classifications of the MS
Kompsat-2 and Envisat ASAR data,

It was revealed that field sizes of the agricultural parcels directly affects the
classification accuracies, hence, it can be stated that the higher the field-size, the

higher the classification performance,
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6.2 Recommendations

The following items are recommended for further studies:

e To detect more precise agricultural fields, satellite images (e.g. Geoeye and
Worldview-2) or aerial photographs that provide higher spatial resolutions might

be utilized in the segmentation process.

e Further research should be performed to classify land cover types by microwave

images that have spatial resolution higher than 15m (TerraSAR, Radarsat etc.),

e Besides VV polarizations, HH and other cross polarized microwave data should
be analyzed in further studies to understand the polarization effect of the
microwave data on the classification results. On the other hand, phase information
of Envisat ASAR data might be included in the analysis in order to understand the

potential of the phase information on the classification performance,

e In order to classify the crop types more reliably, additional images and also
ground truth taken on early-, mid-, and late-season of each month might be

helpful.

e Evaluation of the segment-based classification results is still a challenging
process. This is because the produced segments generally do not represent actual
fields on the ground; therefore an appropriate segment-based evaluation method is

necessary to further assess the segments.

e The proposed methodology should be tested on rough terrains and the effects of
topography on the results should be evaluated,

e In order to see the effect of red and near infrared bands on the segmentation
performance, Normalized Difference Vegetation Index (NDVI) may be tested in

the study,

106



Soil condition (e.g. clay, fertilizer, water content) directly affects the spectral
response characteristics of the satellite imagery and also classification accuracies,
therefore more detailed ground truth data and further researches are necessary to

understand the crop conditions,

As a future application area, the resulting products (thematic maps, statistics,
graphs, etc.) can provide valuable information to various departments; hence this
information should be shared with the relevant departments to assess the crop
diversity in agricultural communities, to compute water consumption in large

regions, etc.
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APPENDIX A

PHOTOGRAPHS OF THE CROP TYPES CULTIVATED IN THE STUDY AREA
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Figure A.2 A wheat field in the test site (April 2008)
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Figure A.3 A wheat field in the test site (April 2008)

Figure A.4 A wheat field in the test site (June 2008)
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Figure A.6 A sugar beet field in the test site (June 2008)

123



Figure A.7 A tomato field in the test site (June 2008)

Figure A.8 A tomato field in the test site (June 2008)
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Figure A.10 An irrigated rice field in the test site (June 2008)
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Figure A.12 A rice field in the test site (June 2008)
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Figure A.13 A corn field in the test site (June 2008)

14 A corn field in the test site (June 2008)

Figure A
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Figure A.15 A corn field in the test site (June 2008)
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APPENDIX B

GORUNTU ZENGINLESTIRME YONTEMLERININ TARIMSAL URUN
SINIFLANDIRMASI UZERINDEKI ETKIiLERININ DEGERLENDIRILMESI

Proceeding: Published in “Tiirkive Ulusal Fotogrametri ve Uzaktan Algilama Birligi V.
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ANAHTAR KELIMELER: Gériintii Zenginlestirme, Gorlintii Sniflandirmasi, Tarim,
Dogruluk Degerlendirme, QuickBird

OZET

Goriintli zenginlestirme, farkli mekansal, spektral ve zamansal goriintli 6zellikleri biraraya
getirilerek bu goriintiilerden yiiksek mekansal ve spektral 6zelliklere sahip yeni bir goriintii
elde etme yontemidir. Yontemin ana amaci, goriintii analizlerine (goriintii siniflandirmasi,

boliitleme, degisim belirleme vb.) detayl girdi saglamaktir.
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Calismada literatiirde sikca karsilasilan dokuz farkli goriintii zenginlestirme ydntemi test
edilmis ve bu yontemlerin tarimsal iiriin siniflandirmasi iizerindeki etkileri incelenmistir.
Caligma alan1 olarak Bursa’da yer alan Karacabey Ovasi se¢ilmistir. Karacabey Ovasi, alanda
yetistirilen iirlin ¢esitliligi bakimindan Tiirkiye’nin en verimli ovalar1 arasinda yer almaktadir.
Tarimsal alanlarda yetistirilen {riinlerin giivenilir bir sekilde haritalanabilmesi igin son
yilllarda yiiksek mekansal ¢oziiniirliik saglayan uydular 6nem kazanmistir. Bu ¢alismada 13
Agustos 2004 tarihli QuickBird siyah-beyaz (0.61m) ve renkli (2.44 m) goriintiileri
kullanilmistir. Hesaplamalarda kolaylik saglamak amaciyla analizler goriintiiniin yaklasik 5
km? lik bolimii iizerinde uygulanmustir. Goriintiiler iizerinde ilk olarak, Gram-Schmidt, En
Kiiciik Kareler, Yiiksek Frekans Filtreleme ydntemi, Ana Bilesenler Spektral goriintii
zenginlestirme yontemi, Renk-Doygunluk-Parlaklik doniisiimii (RDP), lyilestirilmis
Yogunluk-Renk-Doygunluk (YoRD) doniisiimii, Brovey, Dalgaboyu tabanli Ana Bilesenler
Yontemi ve Dalgaboyu tabanli YoRD goriintii zenginlestirme yontemleri uygulanmistir.
Zenginlestirilmis goriintiiler lizerinde yer alan bes iiriin sinift (Misir, Bugday, Aniz, Domates
ve Seker Pancar1) En Biiylik Olasilik Siniflandirma yontemi yardimiyla siniflandirilmistir.
Goriinti zenginlestirme yontemleri sonucunda iiretilen zenginlestirilmis goriintiilerin spektral
kalitesinin gercek renkli goriintii ile karsilagtirilabilmesi i¢in goriintiiler, gergek renkli
goriintii  ¢ozlniirligli olan 2.44 m ye doOnistiirilerek simiflandirilmistir.  Smiflandirma
stiresince tim goriintiiler i¢in ayni Ornek alanlar kullanilmistir. Smiflandirma sonuglari
gercek renkli goriintiiye ait smiflandirma sonucu ile karsilastirilmig ve referans harita
yardimiyla degerlendirilmistir. Kullanilan referans harita, {irtin bilgilerinin alana gidilerek
toplanmasi yoluyla {iretilmistir. Referans harita iiretimi, goriintii ¢ekim tarihiyle es zamanlh
olarak gergeklestirilmistir. Referans harita yardimiyla siniflandirilmig goriintiiler i¢in hata
matrisleri olusturulmus ve genel hata, Kappa degeri ve iiriin smiflarina ait dogruluk oranlar
bu matrisler yardimiyla hesaplanmistir. Degerlendirmeler sonucunda gergek renkli goriintiiye
ait en yiiksek genel hata orant %84,2 olarak hesaplanmistir. Gram-Schmidt goriinti
zenginlestirme yontemi gercek renkli goriintiiden elde edilen smiflandirma dogrulugunu
yaklagik %4 arttirarak %88 olarak hesaplanmigtir. Bu orani yaklagik %86 ile En Kiiciik
Kareler yontemi, Ana Bilesenler Spektral goriintii zenginlestirme yontemi, Yiiksek Frekans

Filtreleme Yontemi ve lyilestirilmis YoRD doniisiimii yontemleri izlemistir. Brovey ve
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Dalgaboyu tabanli YoRD doniisiimlerine ait dogruluk oranlar1 yaklasik %85 olarak
hesaplanmis ve bu iki yonteme ait sonuglar da kabul edilebilir bulunmustur. Diger taraftan
Dalgaboyu tabanli Ana Bilesenler yontemi ve RDP yontemlerine ait dogruluk oranlarinin
gercek renkli goriintii i¢in hesaplanan orandan diisiikk oldugu gézlenmistir. Bu iki yonteme ait
genel dogruluk oranlar1 yaklagik %81 olarak hesaplanmistir. Elde edilen sonuglar, Gram-
Schmidt, En Kiigiik Kareler, Ana Bilesenler Spektral, Yiiksek Frekans Filtreleme Yontemi,
Tyilestirilmis YoRD déniisiimii, Brovey déniisiimii ve Dalgaboyu tabanli YoRD gériintii
zenginlestirme yoOntemlerinin tarim alanlarindaki iiriin ¢esitliliginin siniflandirilmasinda

smiflandirma dogrulugunu arttirmak i¢in kullanilabilecegini gostermistir.
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EVALUATING THE CONTRIBUTION OF IMAGE FUSION METHODS
INTO THE CLASSIFICATION ACCURACIES OF AGRICULTURAL CROPS
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KEY WORDS: Image Fusion, Image Classification, Agriculture, Accuracy, QuickBird

ABSTRACT:

Image fusion is a process to generate a new image by integrating different spatial, spectral
and/or temporal resolution images. The main goal of image fusion is to provide detail input to

the later image analyses (image classification, segmentation, change detection, etc.).

This study focuses on evaluating the influence of nine different image fusion methods,
mostly encountered in the literature, on the accuracies of the agricultural crop classification.
The study site selected is on the Karacabey Plain, one of the most productive and valuable
agricultural regions, located in Bursa in Turkey. A new trend for the agricultural crop
classification is to utilize high resolution satellite products in order to extract the crop types

more reliably. Therefore, a QuickBird panchromatic (0.61m) and multispectral (2.44m)
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images acquired on 13 August 2004 were used in this study. A small part of QuickBird ( ~5
km?) image was used in order to improve computational efficiency in the analyses. Nine
different fusion methods, namely Gram-Schmidt, Least Square Fusion (LSF), High Pass
Filter Resolution Merge (HPF), Principle Component (PC) Spectral Sharpening, Hue-
Saturation-Value (HSV), Modified Intensity-Hue-Saturation (IHS) Resolution Merge,
Brovey, Wavelet-based PCA (Principle Component Analysis), and Wavelet-based IHS were
used to combine the panchromatic and multispectral data. The fused images were classified
into number of five classes (Corn, Wheat, Residue, Tomato and Sugar beet) as a supervised
manner using Maximum Likelihood Classification method. Before the classification, the
fused images were resized to 2.44m, the size of the original multispectral image, in order to
understand the radiometric quality of the fused products. During the classification the same
training areas were used for each image. The classification results were then compared with
the classification of the original multispectral image. The accuracies of the classified thematic
maps were tested using a reference map. The reference map was produced by collecting
information about crop types from the study area. Producing reference map and image
acquisition were performed simultaneously. Based on the reference map, the overall
accuracy, overall kappa and individual class accuracies were computed using error matrices.
The overall accuracy of the original multispectral image, was computed as 84,2%. The
classified images fused by the Gram-Schmidt method provided the highest overall accuracy
of about 88%. The Gram-Schmidt method was followed by the methods of LSF, PC Spectral
Sharpening, HPF, and Modified IHS Resolution Merge and their accuracies were computed
around 86%. The accuracies of Brovey and Wavelet IHS Resolution Merge also revealed
acceptable result, which was around 85%. On the other hand, the results obtained from the
Wavelet PCA and HSV methods were found lower than the accuracy of the classified
original image. The accuracies of these methods were computed as around 81%. The results
revealed that the methods of the Gram-Schmidt, LSF, PC Spectral Sharpening, HPF, and
Modified IHS Resolution Merge, Brovey, and Wavelet IHS Resolution Merge can be used to
fuse the images before the classification of the agricultural crops to increase the classification

accuracy.
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1. GIRiS

Uzaktan Algilama, arastirmacilara mekansal, spektral ve zamansal c¢oziiniirliikte cesitli
irliinler saglayarak elektromanyetik spektrumun biiyiik bir boliimiine ait bilgi ¢ikarimina
katkida bulunmaktadir. Uzaktan algilama teknolojisinin sagladig1 bu genis capli veri, bir
takim problemleri de beraberinde getirmektedir. Bu problemlerden baslicalari; verilerin
birbirleri ile uyumu, yiiksek kalitede bilgi elde etmek ve gereksiz bilgilerin ayiklanmasi
olarak sayilabilir. En 6nemli problemlerden bir tanesi, renkli goriintiiye ait spektral bilgi ile
siyah-beyaz goriintiiye ait mekansal bilginin nasil etkili bir sekilde kullanilacagina yoneliktir.
Bu problemlerin ¢oziimiinde kullanilan en etkili yontem ‘gdriintii zenginlestirme’ olarak
adlandirilmaktadir. Goriintii  zenginlestirme, farkli mekansal, spektral ve zamansal
¢Oziiniirliikteki goriintiilerin birlestirilmesi ve bu sayede yliksek spektral ve mekéansal
Ozelliklerde yeni bir goriintii elde edilmesi islemi olarak tanimlanabilir. Daha genel bir ifade
ile goriintii zenginlestirme, farkli kaynaklardan elde edilen uydu verilerinin birlesimi,
koreldsyonu ve kombinasyonu olarak ifade edilebilir. Bu yaklasim sadece gorsel yonden
kaliteli goriintiiler iiretmekle kalmaz daha sonra goriintii {izerine uygulanacak analizlere de
detayli girdi saglar. Pohl ve van Genderen tarafindan 1998 yilinda goriintii zenginlestirme
yontemlerinin degerlendirilmesine yonelik genis ¢apli bir ¢alisma yapilmistir. Calismada,
gorlintii zenginlestirme yontemleri; piksel tabanli, nesne tabanli ve karar agaci diizeyinde
olmak fizere 3 gruba ayrilmaktadir. Piksel diizeyinde gerceklestirilen yontemler veriyi
olusturan en kiigiik nesneler (piksel) tizerinde uygulanmaktadir. Nesne diizeyinde uygulanan
yontemler, goriintiiyli olusturan nesnelerin zenginlestirilmesine yonelik olarak yapilmaktadir.
Karar agac1 diizeyinde gerceklestirilen zenginlestirme yontemlerinde goriintiiler {izerinde
zenginlestirme islemini gerceklestirecek uygun kurallarin  (kararlarin)  belirlenmesi
gerekmektedir (Pohl ve van Genderen, 1998). Bu calismada piksel diizeyinde uygulanan
goriintii zenginlestirme yontemlerine yer verilecektir. Goriintii zenginlestirme yontemleri ile
ilgili problemler ve kisitlamalar bugiine kadar bir ¢ok arastirmaci tarafindan incelenmistir
(Chavez vd., 1991, Pellemans vd., 1993, Zhang, 2002). Bu arastirmacilardan Zhang (2002),
gorlintii  zenginlestirme yontemlerine ait sorunlart Landsat 7 ve IKONOS goriintiileri
iizerinde inceleyerek bu problemlere neden olan aksakliklarin belirlenmesi igin ¢esitli
tespitlerde bulunmustur. Colditz vd. (2006) Landsat 7 goriintiisii {izerinde 5 farkli goriintii

zenginlestirme yontemi uygulamig ve sonuglari 3 farkli siniflandirma yontemi yardimiyla
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smiflandirilarak degerlendirmistir. Elde edilen bulgular, Brovey ve RDP doniigiimlerinin
gorintiilerin zenginlestirilmesi ve daha sonra bu goriintiilere uygulanacak smiflandirma
islemi i¢in uygun yontemler olmadigini gostermistir. Benzer bir ¢alisma Karathanassi vd.
tarafindan gergeklestirilmistir (Karathanassi vd., 2007). Calismada goriintii zenginlestirme
yontemlerini incelemek amaciyla ¢esitli degerlendirme yontemleri kullanilmugtir.
Degerlendirmeler sonucunda en yiiksek sonuglarin Lokal Ortalama ve Dagilim Uyusmasi, En
Kiigiik Kareler ve Gram-Schmidt goriinti zenginlestirme yontemlerinin sagladigi
gozlenmistir. Yukarida sozii edilen ¢alismalara benzer bir diger calisma Konstantinos (2008)
tarafindan gergeklestirilmistir. Calismada zenginlestirme yontemi uygulanmig goriintiiler
gorsel ve istatistiksel olarak degerlendirildikten sonra kontrolsiiz bir siniflandirma yontemi

kullanilarak yontemlerin siniflandirma dogrulugu tizerindeki etkileri incelenmistir.

Bu calismada dokuz (9) farkli goriintii zenginlestirme ydntemi sonucu {iretilmis goriintiiler
kontrollii bir smiflandirma yontemi yardimiyla simiflandirilarak goriintii zenginlestirme
yontemlerinin iiriin siniflandirmasi {izerindeki etkileri incelenmistir. Analizler 13 Agustos
2004 tarihli QuickBird renkli (2.44m) ve siyah-beyaz (0.60m) goriintiileri {izerinde
uygulanmistir. flk olarak Gram-Schmidt, En Kiigiik Kareler, Yiiksek Frekans Filtreleme
yontemi, Ana Bilesenler Spektral goriintli zenginlestirme yontemi, Renk-Doygunluk-
Parlaklik doniisiimii (RDP), Iyilestirilmis Yogunluk-Renk-Doygunluk (YoRD) déniisiimii,
Brovey, Dalgaboyu tabanli Ana Bilesenler Yontemi ve Dalgaboyu tabanli YoRD goriintii
zenginlestirme yontemleri kullanilarak QuickBird goriintiileri zenginlestirilmistir. Yukarida
sayllan yontemler yoluyla iiretilen goriintiiler bes (5) farkli istatistiksel degerlendirme
yontemi yardimiyla degerlendirilerek iretilen yiiksek ¢oziiniirliikteki goriintiilerin gercek
renkli gorilintilye ait spektral degerlere yakinligr olgiilmiistiir. Bu amag¢ i¢in kullanilan
degerlendirme yontemleri; Goreli Ortalama ve Varyans farklari, Korelasyon, En Yiiksek
Sinyal Hata Oram ve Genel Kalite Indeksidir. Zenginlestirilmis goriintiilerin istatistiksel ve
gorsel olarak degerlendirilmelerinin ardindan goriintiiler lizerinde yer alan bes (5) farkli iiriin
smifi (misir, domates/biber, bugday, aniz ve seker pancar1) En Biiyiik Olasilik siniflandirma
yontemi yardimiyla siniflandirilmigtir. Siniflandirmalarda kullanilan 6rnek alanlar gergek
renkli goriintii iizerinden toplanmis ve ayni alanlar zenginlestirilmis ve gergek renkli

goriintiilerin siniflandirilmasinda kullanilmistir. Siniflandirma sonrasinda tematik haritalar
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tizerinde Sieve filtresi uygulanmis ve belli bir esik degerinin altinda kalan poligonlari
olusturan pikseller birbirine komsu olan en yakin poligonlarin i¢ine diisen piksel degerine
atanmistir. Elde edilen sonuglar hata matrisleri yardimiyla degerlendirilmis ve genel hata
oranlari, kappa degerleri ve iirlinlere ait dogruluklar hesaplanarak sonuglar gercek renkli

goriintiiden elde edilen smiflandirma sonucu ile karsilagtirilmistr.

2. CALISMA ALANI VE VERI SETi
2.1 Calisma Alam

Analizleri gergeklestirmek icin segilen ¢alisma alani, Tiirkiye’nin kuzeybatisinda bulunan
Marmara bolgesindeki Bursa ilinde yer almaktadir (Sekil 1). Karacabey Ovasi olarak bilinen
alan, ikliminin {iretime elverisli olmasi ve zengin {iriin ¢esitliligi bakimindan Tiirkiye’nin en
verimli ve en degerli ovalar1 arasinda yer almaktadir. Alanda yetistirilen baslica {iriinler;
misir, domates, biber, sogan, piring, seker pancari, bugday ve bezelye olarak sayilabilir

(Ozdarici, 2005).

On

Study Area

Sekil 1. Calisma alani

2.2 Veri Seti

Calismada uydu goriintiisii ve referans veri olmak iizere iki farkli veri tipi kullanilmistir.
Goriintli zenginlestirme yontemleri, 0.61 m siyah-beyaz ve 2.44 m renkli QuickBird uydu

goriintiileri lizerinde uygulanmustir (Sekil 2). Kullanilan QuickBird goriintiileri iiriin
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dagiliminin ve gelisiminin en st diizeyde oldugu Agustos 2004 tarihinde elde edilmistir.
Goriintiiler, standart iiriin formatindadir. Standart {iriin formatina sahip olan goériintiilerde
sensoOr ile ilgili diizeltmeler yapilmis, radyometrik ve geometrik hatalar diizeltilmis ve
gorlintiiler kartografik projeksiyon sistemine uygun hale getirilmistir. Hesaplamalarda
kolaylik saglamak igin 8 bitlik QuickBird goriintiisiiniin yaklasik 5 km® lik bir boliimii
kullanilmigtir. Renkli QuickBird goriintiisii mavi, yesil, kirmizi ve yakin kizil 6tesi olmak
iizere dort banttan olusmaktadir. Calismada kullanilan Brovey, RDP, lyilestirilmis YoRD
doniistimii, Dalgaboyu tabanli YoRD doniisiimii yontemleri ii¢ bant ile sinirlidir. Bu nedenle
karsilagtirma islemi igin ¢aligmada yesil, kirmizi ve yakin kizil 6tesi bantlart kullanilmistir.
Kullanilan yesil, kirmizi ve yakin kizil 6tesi bantlar alandaki {iriin gesitliligini agiklamada

mavi banttan daha etkilidir (Ozdaric1, 2005).

Analizlerde kullanilan bir diger veri alanda yetistirilen {irlinlere ait parsel bilgilerini igeren
vektor veridir. Vektor veri 2002 yilinda Arikan tarafindan yapilan bir ¢alisma sonucunda
kadastro bilgileri kullanilarak {iretilmis ve 2005 yilinda Ozdaric1 tarafindan yapilan bir
calisma ile giincellenerek bu calismaya girdi saglamistir (Arikan, 2003; Ozdarici, 2005).
Sozii edilen caligmalar yoluyla elde edilen vektor veri calismanin goriintii siniflandirmasi ve

dogruluk analizi asamasinda kullanilmustir.

Sekil 2. (a) 13 Agustos 2004 tarihine ait siyah-beyaz (a) ve renkli (b) QuickBird goriintiileri
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3. YONTEM

Bu bélimde ¢alismada kullanilan yontemler agiklanmustir. Ik béliimde goriintii
zenginlestirme yontemleri incelenecektir. Ikinci boliimde, zenginlestirilmis goriintiiler
tizerinde uygulanan goriintii smiflandirma yontemi anlatilacaktir. Son olarak smiflandirma

islemi sonunda {iretilen tematik haritalara ait sonuglar ortaya koyulacaktir.

3.1 Goriintii Zenginlestirme Yontemleri

Basarili bir goriintli zenginlestirme, goriintiilerin birbirine gére geometrik olarak hassas bir
sekilde yonelimlerini gerektirir. Analizlerde kullanilan QuickBird goriintiileri birbirlerine
gore diizeltilmis olarak elde edilmistir. Goriintiiler ayni tarihte ve zamanda g¢ekildikleri igin
iki veri arasinda zaman farki yoktur. Calismada literatiirde sik¢a kargilagilan Renk-
Doygunluk-Parlaklik déniisiimii (RDP), Brovey, lyilestirilmis Yogunluk-Renk-Doygunluk
(YoRD) doniisiimii, Ana Bilesenler Spektral goriintii zenginlestirme yontemi, Gram-Schmidt,
En Kiiciik Kareler, Yiiksek Frekans Filtreleme yontemi, Dalgaboyu tabanli Ana Bilesenler
Yontemi ve Dalgaboyu tabanlt YoRD goriintii zenginlestirme yontemleri degerlendirilmistir.

Yontemlere ait agiklamalar asagida yer almaktadir.

3.1.1 Renk-Doygunluk-Parlakhik (RDP) Doniisiimii

RDP doniisimii  Yogunluk-Renk-Doygunluk (YoRD) doniisiimii ile benzer oOzellikler
gostermektedir. Yontem, Kirmizi-Mavi-Yesil (KMY) uzaymin RDP uzayina doniistiiriillmesi
ile baglar. Bu doniislim, goriintii zenginlestirme siirecinde renkler {izerinde yiiksek kontrol
olanag1 saglar. Donlislimil, parlaklik (P) ve yiiksek mekansal ¢oziiniirliige sahip bantlarin yer
degistirmesi izler. Bu islem, renk ® ve Doygunluk (D) bantlarina ait piksellerin yiiksek
mekansal ¢oziiniirliige doniistiiriilmesi (resampling) ile devam eder. Son asamada, RDP uzay1
RGB uzaymma tekrar doniistiiriilerek goriintii zenginlestirme islemi tamamlanir (ENVI

kilavuzu). RDP doniisiimii 3 banta sahip goriintiiler lizerinde uygulanabilmektedir.
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3.1.2 Brovey Doniisiimii

Brovey doniisiimiinde yiiksek ve diisiik mekénsal ¢oziiniirliiklii veri ozellikleri 139ir araya
getirilerek bu goriintiilerden yeni bir goriintii elde etmek i¢in basit bir oran kullanilir. Bu
oran, diisiik mekansal ¢oziiniirliige sahip bantlarin yiiksek mekansal ¢oziiniirliige sahip bant
ile ¢arpilmasi ve sonucun diisik mekansal ¢oziiniirliikklii bantlarin toplamina boliinmesi
seklinde olmaktadir (Esitlik 1). Bu igslem diisiik mekénsal ¢oziiniirliiklii bantlarin uygun bir
yeniden drnekleme yontemi (6rn. En yakin komsuluk, bilinear, cubic convolution) yardimiyla
yliksek mekansal ¢oziiniirliige doniistiiriilmesi ile son bulmaktadir (ENVI kilavuzu). Brovey

doniisiimii 3 bant ile smirhidir.

DN xDN ,,,

DNfused, = —;
> DN,
i=1

)

Esitlikte;

DN; renkli goriintiiye ait bantlarm piksel degerleri i (i=1,2,3), DN, yiksek mekansal
¢Oziintirliiklii veriye ait piksel degeri;

N renkli goriintiideki bant sayisi (Bantl+Bant2+Bant3).
3.1.3 lyilestirilmis YoRD Déniisiimii

YoRD doniigiimii, zenginlestirme islemi uygulanacak goriintiilleri RGB uzaymdan YoRD
uzayma doniistiirerek bantlar arasindaki mekansal koreldsyonu algilamada kolaylik saglar.
YoRD uzaymi olusturan yogunluk degeri; parlakligi, renk degeri baskin olan rengi,
doygunluk ise gri degere gore olan safligi ifade eder (Lillesand, 2005). Renkli goriintiiniin
YoRD uzayina doniistiiriilmesini doniisiim sonucunda elde edilen yogunluk degeri ile yiiksek
mekansal ¢6ziiniirliiklii gorilintiiniin yer degistirmesi takip eder. Ardindan renk ve doygunluk,

siyah-beyaz goriintiiniin sahip oldugu mekansal ¢oziiniirliige doniistiiriiliir. Bu islemi YoRD
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uzaymdan KYM uzayima gegmeyi saglayan ters doniisiim islemi takip eder ve zenginlestirme

islemi tamamlanir (Siddiqui, 2003).

YoRD doniisiimii, yiliksek mekansal c¢oziinlirlige sahip goriintiiye ait detaylarin
korunmasinda etkili bir yontem olmasina ragmen bu yontem ile iiretilecek zenginlestirilmis
goriintiiler sadece siyah-beyaz goriintii ile yogunluk degerinin benzerlik gosterdigi
durumlarda gecerlidir. Fakat renkli goriintiiye ait yogunluk degeri her zaman yiiksek
mekansal ¢oziiniirliklii goriintiiler ile benzer 6zellikler gostermeyebilir. Bu nedenle daha
giivenilir sonuglar elde etmek icin alternatif olarak iyilestirilmis YoRD doniisiimii

gelistirilmistir.

Iyilestirilmis YoRD déniisiimiinde amag gériintiiniin KYM uzayma déniistiiriilmesinden énce
yiksek mekansal ¢oziiniirliiklii gorlintiiye ait istenmeyen piksellerin filtrelenmesidir.
Yontem, basit bir oran hesabina dayanir. Amag, yiiksek mekénsal ¢oziintirliiklii goriintiiniin
renkli gorlintiiye ait yogunluk degerine benzetilmesidir (Esitlik 2) (ERDAS Kilavuzu).

Iyilestirlimis YoRD déniisiimii 3 banta sahip goriintiiler iizerinde uygulanabilmektedir.

ad, +a,d +a,d,

Z 'B J dj @
J

r, =

esitlikte

r; = yogunluk iyilestirme orani
a, = kirmizi banttaki piksel degerine ait katsay1 pay1
d,. = kirmiz1 banta ait piksel degeri

a, = yesil banttaki piksel degerine ait katsay1 pay1

S
Il

yesil banta ait piksel degeri
a, = mavi banttaki piksel degerine ait katsay1 pay1
d, = mavi banta ait piksel degeri

[, = j bantindaki piksel degerine ait katsay1 pay1
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d, = j bantina ait piksel degeri

Jj banti, yiiksek mekansal ¢oziiniirlige sahip verinin kapsadigi spektral aralig1 temsil eden

diisiik mekansal ¢oziiniirliikli bantlar1 ifade eder.

3.1.4 Ana Bilesenler Goriintii Zenginlestirme Yontemi

Renkli goriintiilere ait bantlar birbirlerine goére genellikle benzer bilgiler igerir. Ana
Bilesenler goriintli zenginlestirme yoOnteminin amaci, bu bantlardan birbirinden bagimsiz
dogrusal kombinasyonlar {iretmek ve bu sayede bantlar arasinda tekrarlanan bilgiyi en aza
indirmektir. Bu doniisiim sonucunda birbirine dik akslar iiretilir. islem, goriintiiniin ger¢ek

uzayima (RGB uzay1) doniistliriilmesi ile son erer.

Ana Bilesenler goriintii zenginlestirme yontemi, diisiik ve yiiksek mekansal ¢oziiniirliikli
goriintiilerin zenginlestirilmesi i¢in kullanilan etkili bir yontemdir. Ilk olarak, goriintiiye Ana
Bilesenler doniisiimii uygulanir. Bir sonraki iglem, bu doniisiim sonucunda {iretilen ilk bandin
(Ana Bilesen 1) yiiksek mekansal ¢oziiniirliikli veri ile yer degistirmesidir. Bu asamada,
retilen ilk ana bilesenin yiiksek mekansal ¢oziiniirliiklii veri 6zelliklerine yakin oldugu
varsayimindan yola ¢ikilir. Bu islemi, spektral bilgi iizerinde olabilecek hatalar1 dnlemek
amaciyla siyah-beyaz goriintiiniin ilk ana bilesen bandina gore Olgeklenmesi takip eder.
Ardindan ters donlisiim uygulanarak goriintii ger¢ekte bulundugu uzaya (KYM) doniistiiriliir.
Son asama, renkli goriintiiye ait bantlarin yiiksek mekansal ¢oziiniirliige doniistiiriilmesi
islemidir (ENVI Kilavuzu). Ana Bilesenler goriintli zenginlestirme yontemi 3 ve 3’ten fazla

banta sahip goriintiiler i¢cin uygulanabilmektedir.
3.1.5 En Kiiciik Kareler Goriintii Zenginlestirme Yontemi

En Kiigiik Kareler goriintii zenginlestirme yontemi iki temel problemi ¢6zmeyi hedeflemistir.
Bu problemlerden biri renk bozulmalari, digeri kullanici ve veri bagimliligidir. Diger goriintii
zenginlestirme yontemlerinde oldugu gibi En Kiiciik Kareler goriintii zenginlestirme yontemi
de gergek renkli goriintii ve zenginlestirilmis goriintii arasinda en iyi etkilesimi kurmay1
hedefler. Bu amag¢ dogrultusunda goriintii zenginlestirme iglemini standart ve otomatik hale

getirmek icin bir takim istatistiksel yontemlere basvurur. En Kiiciik Kareler goriintii
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zenginlestirme yonteminin uygulanmasinda kullanilan istatistiksel yontemlere iliskin
literatiirde net bir bilgi bulunmamaktadir (PCI Geomatica Kilavuzu). Gram-Schmidt goriintii

zenginlestirme yontemi 3 ve daha fazla banta sahip goriintiiler iizerinde uygulanabilmektedir.

3.1.6 Gram-Schmidt Goriintii Zenginlestirme Yontemi

Gram-Schmidt goriintii zenginlestirme yontemi ismini matematik biliminde sik¢a karsilasilan
Gram-Schmidt teoreminden almistir. Gram-Schmidt, dogrusal cebirde kullanilan énemli bir
yontemdir ve bir uzay1 olusturan vektorlerin birbirine gore dik hale getirilmesi i¢in kullanilir.

Bu islem, veri iizerinde daha fazla kontrol imkani saglar.

Yontemde ilk olarak, ytliksek mekansal ¢oziiniirliige sahip veriyi diisiik mekansal ¢6ziintirliige
doniistiirmek i¢in siyah-beyaz goriintiiniin simiilasyonu yapilir. Ardindan simiilasyon islemi
uygulanmig siyah-beyaz veriye ve renkli goriintiiye ait spektral bantlara Gram-Schmidt
donilisiimii uygulanir. Bu doniisiimde simulasyon islemi uygulanmis yiiksek ¢oziintirliikli
bant, siralamada ilk sirada yer alir. Gergek yiikksek mekansal c¢oziiniirliiklii banta ait
istatistikler Gram-Schmidt doniisiimii uygulanmig ilk banta adapte edilir ve gercek yiiksek
mekansal ¢oziiniirliiklii bant Gram-Schmidt doniigiimii sonucu elde edilen ilk bantin yerini
alir. Yiiksek mekansal ¢oziiniirliige sahip yeni bantlar iiretmek icin ters doniisiim islemi

uygulanarak zenginlestirme iglemi tamamlanir (Laben ve ark. 2000; ENVI Kilavuzu).

3.1.7 Yiiksek Frekans Filtreleme Yontemi

Yiiksek Frekans Filtreleme yontemi yiliksek ve diisiik mekansal ¢oziiniirliklii goriintiileri
filtreleme teknigi yardimiyla zenginlestirmektedir. Yontem, goriintiileri olusturan piksellerin
okunmasi ve R degerinin hesaplanmasi ile baslar. R degeri, renkli goriintiideki piksel
boyutunun siyah-beyaz goriintiideki piksel boyutuna oranidir. Bu oran QuickBird goriintiisii
icin 4 olarak hesaplanmustir. R degeri hesaplandiktan sonra filtre boyutu belirlenerek yiiksek
mekansal ¢oziinilirliige sahip goriintii filtrelenir. Caligmada kullanilan QuickBird goriintiisii
icin gorintli 6zellikleri ve R degeri dikkate alinarak 9x9 boyutunda bir filtre kullanilmistir.

Renkli goriintiiye ait piksel boyutunun filtrelenmis goriintiiniin  piksel boyutuna
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dontistiiriilmesi i¢in renkli goriintii {izerinde yeniden 6rnekleme islemi uygulanir. Ardindan
filtrelenmis goriintii renkli goriintiiye ait bantlara eklenir. Islem, iiretilen gériintiiniin gercek
renkli goriintilye ait istatistiksel degerlere benzetilmesi ile sona erer (ERDAS Kilavuzu).

Yontem, 3 ve daha fazla banta sahip goriintiiler iizerinde uygulanabilmektedir.

3.1.8 Dalgaboyu Tabanh Goriintii Zenginlestirme Yontemi

Dalgaboyu tabanli goriintii zenginlestirme yontemi, Fourier doniisiimii ile benzer 6zellikler
gostermektedir. Fourier doniisiimiinde uzun dalga boylar1 (siniis ve kosiniis) kullanilirken
dalgaboyu tabanli doniisiimlerde birbirinden farkli kisa dalgaboylar1 kullanilmaktadir. Bu
nedenle yontem, daha lokal islemler iizerinde uygulanabilmektedir. Yontemin en &nemli
noktalarindan bir tanesi, temel dalga boylarinin belirlenmesi agamasidir. Doniisiime girdi
olacak sinyale (goriintii) birbirinin ardi sira filtreleme iglemi uygulanir ve 6nemli pargalar
belirlenerek goriintii temsil edilir. Bu islem sayesinde farkli ¢oziiniirliikte birden fazla
goriintii elde edilmektedir. Uretilen goriintiilerdeki farkliliklar goriintiiye ait detaylar1 temsil
eder. Coklu mekansal ¢oziiniirliige sahip goriintiiller KYM uzayima doniistiiriilerek gercek
renkli goriintii elde edilebilir (Ranchin vd., 2003; ERDAS Manual). Asagida dalgaboyu

tabanli iki farkli goriintii zenginlestirme yontemi agiklanmaktadir.

3.1.8.1 Dalgaboyu tabanh YoRD Doéniisiimii

Dalgaboyu tabanli YoRD doniisiimii, goriintiinin KYM uzayindan YoRD uzayina
doniistliriilmesi ve yogunluk degerinin elde edilmesi ile baglar. Bu asamayi, yiiksek mekansal
¢Oziiniirliige sahip goriintiiye dalgaboyu doniisiimiiniin uygulanmasi takip eder. Dalgaboyu
doniistimii uygulanmig goriintii daha sonra yogunluk bant1 ile yer degistirir. Son olarak ters
donilistim islemi uygulanarak goriintii KYM uzayma getirilir. Dalgaboyu tabanli YoRD

doniislimii ti¢ bant ile smirlidir.
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3.1.8.2 Dalgaboyu tabanh Ana Bilesenler Goriintii Zenginlestirme Yontemi

Dalgaboyu tabanli ana bilesenler goriintii zenginlestirme yonteminde goriintiiye ilk olarak
Ana Bilesenler doniistimii uygulanir. Ana Bilesenler goriintii zenginlestirme ydntemi
sonucunda tretilen ilk bilesen yiiksek mekansal ¢oziiniirliige sahip goriintii ile yer degistirir
ve KYM uzayina geri doniisiim gergeklestirilir. Ana Bilesenler yontemi {i¢ ve daha fazla

banta sahip goriintiiler {izerinde uygulanabilmektedir.

Yukarida agiklanan goriintii zenginlestirme yontemleri yoluyla iiretilen goriintiiler Goreli
ortalama ve Varyans farklari, Korelasyon, En Yiiksek Sinyal Hata Oram ve Genel Kalite
Indeksi yardimiyla incelenmistir. Degerlendirme yontemleri zenginlestirilmis goriintii

¢Oziiniirliigii olan 2.44m ye diisiiriilerek gergeklestirilmistir (Ozdaric1 ve Akyiirek, 2008).

3.2 Goriintii Stmflandirmasi

Goriintii zenginlestirme yontemlerinin ana amaci, goriintii lizerinde uygulanacak analizlere

detayl girdi saglamak ve bu sayede giivenilir bilgi elde etmektir.

Bu asamada, goriintii zenginlestirme yontemi sonucunda elde edilen yiiksek mekansal
¢cOziiniirliige sahip renkli goriintiiler gercek renkli goriintii ¢oziintirliigii olan 2.44 m ye
dontstiiriilerek En Biiyiik Olasilik smiflandirma yontemi yardimiyla siniflandirilmastir.
Goriintli zenginlestirme islemi sonucunda elde edilen ¢oziiniirliikk olan 0.60 m nin gergek
renkli gorlintii ¢ozliniirligiine dontstiiriilmesinin nedeni iiretilen goriintiilerin spektral olarak
gercek renkli goriintii ile karsilagtirilabilmesi ve bu sayede zenginlestirilmis goriintiiler
tizerindeki spektral hatalarin bulunabilmesidir. Goriintiilerin siniflandirilmasinda kullanilan
yontem, En Biiyiik Olasulik smiflandirma yontemi, goriintii lizerindeki bilinmeyen pikselleri
bilgisayara tanitilan O0rnek alanlara baglh kalarak varyans ve kovaryans degerlerine gore
gruplandirmaktadir (Lillesand et.al, 2004). En Biiyiik Olasilik smiflandirma yontemi
yardimiyla misir, bugday, aniz, domates ve seker pancar1 olmak {izere bes iiriin tiiri
siiflandirilmistir. Siiflandirma 6ncesinde uygun bir esik degeri (2 piksel) atanarak parsel
kenarlarma diisen pikseller ger¢ek renkli ve zenginlestirilmis goriintiilerden g¢ikarilmigtir.

Parsel kenarlarina diisen piksellerin goriintiilerden ¢ikarilmasinin ardindan siniflandirma
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islemi icin gercek renkli goriintii {izerinde 6rnek alanlar belirlenmistir. Ornek alan secimi
homojen parseller {izerinden yapilmistir. Bu alanlarin se¢iminde goriintii iizerindeki spektral
farkliliklar ve fenolojik olaylar dikkate alinmigtir. Toplanan alanlar, ayrilabilirlik indeksleri
yardimiyla degerlendirilmistir. Bu incelemeler sonucunda domates ve biberin ayrilma
oranlarmin diisiik oldugu gozlenmis ve bu iki {irlin, domates sinifi altinda birlestirilmistir.
Siniflandirma islemi tamamlandiktan sonra bu goriintiiler {izerinde Sieve filtresi uygulanmig
ve bu sayede tematik haritalama sonucu ortaya ¢ikan istenmeyen biiyiikliikteki piksellerden
olusan poligonlar elimine edilmistir. Filtre biiyilikliigii bu ¢alisma i¢in 20 piksel olarak
belirlenmistir. Filtreleme isleminin ardindan tematik haritalar iizerinde dogruluk analizi

yapilarak sonuclar degerlendirilmistir.

3.3 Dogruluk Analizi

Uretilen tematik haritalarn gercege yakin olup olmadigi hata matrisleri yardimiyla
degerlendirilmigtir. Hata matrisi olugturmak i¢in alanin goriintii ¢ekim tarihi ile es zamanl
olarak elde edilen parsel bilgisini i¢ceren referans veriden yararlanilmistir. Sonuglar iizerinde
olabilecek Onyargty1 onlemek i¢in siniflandirma iglemi i¢in toplanan 6rnek alanlar dogruluk
analizine dahil edilmemistir. Siniflandirilmis goriintiilerin dogruluklarini test etmek i¢in alan
iizerinde rastgele ornekleme yontemi kullanilarak (simple random sampling) 557 nokta
belirlenmistir. Bu noktalar referans verideki gercek bilgiler ile karsilastirilarak hata matrisleri
olusturulmustur. Dogruluk analizleri i¢in belirlenen nokta sayisi, asagida verilen esitlige

dayanmaktadir (Esitlik 3) (Jensen, 2005).

— BH[(I_H:')
b}

1

N 3)

Esitlikte yer alan;

N : 6rnek boyutu

[1,: alanda bulunan & sinif iginde toplam alanin %50’sini kapsamaya en yakin olan i sinifinin

tiim alana oranini

b; . i smifi i¢in hedeflenen hassasiyet diizeyini (6rn. %5),
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B: 1 serbestlik derecesinde ve (a / k) x 100 formiiliiyle hesaplanan Ki kare (y’) tablosundaki
degeri,

k :alanda bulunan toplam sinif sayisini gostermektedir.

Ratgele 6rnekleme iglemi dogruluk analizi i¢in on defa tekrarlanmis ve tiim goriintiiler igin
ayni ornek noktalar kullanilmistir. Bu sayede dogruluk analizi iizerinde olabilecek 6n yargi
en aza indirilmeye caligilmistir. Dogruluk analizleri sonucunda tematik haritalara ait genel

hata ve kappa oranlar1 ve {iriinlere ait dogruluklar elde edilmistir.

4. TARTISMA

Uretilen tematik haritalar icin hata matrisleri olusturulmus, en kiiciik ve en biiyiik genel hata
ve kappa oranlari ile smiflara ait dogruluk oranlari hesaplanmistir. Hata matrisleri sonucu
ulagilan genel hata ve Kappa sonuglarina ait ortalama degerler tablo 2 de verilmektedir. Tablo

2 de verilen degerler Kappa sonuglarina gore biiyiikten kii¢iige dogru siralanmigtir.

Smiflandirma sonuglart Gram-Schmidt, lyilestirilmis YoRD doniisiimii, Dalgaboyu tabanli
YoRD doniisiimii, En Kiiglik Kareler yontemi, Ana Bilesenler Spektral goriintii
zenginlestirme yontemi, Yiiksek Frekans Filtreleme yontemi, Brovey doniisimii ve
Dalgaboyu tabanli Ana Bilesen doniisiimiiniin gercek renkli goriintiiye ait siniflandirma
dogrulugunu arttirdigini gostermistir. Buna karsilik RDP yonteminin gergek renkli goriintiiye
ait smiflandirma sonucunu yaklagik %3 oraninda disiirdiigli gozlenmistir. Siniflandirma
sonuglarina ait en yiiksek oran, %83,4 genel dogruluk ve %79,2 Kappa degerleri ile Gram-
Schmidt goriintii zenginlestirme yontemi tarafindan saglanmigtir. Gram-Schmidt goriintii
zenginlestirme yontemi, gercek renkli goriintliye ait siniflandirma dogrulugunu yaklagik %3
oraninda arttirmigtir. Gram-Schmidt yontemine en yakin sonucu %83,4 genel dogruluk ve
%79,14 Kappa oranlari ile lyilestirilmis YoRD doniisiimii saglamistir. Bu yéntemleri, gercek
renkli goriintii sonucuna yaklasik %2 lik artis saglayan Dalgaboyu tabanli YoRD doniisiimii,
En Kiiglik Kareler yontemi, Ana Bilesenler Spektral goriintii zenginlestirme yontemi, Yiiksek
Frekans Filtreleme yontemi ve Brovey doniisiimleri izlemistir. Dalgaboyu tabanli Ana
Bilesenler goriintii zenginlestirme yontemi %79,69 genel dogruluk ve % 77,49 Kappa

sonucuyla gercek renkli goriintii sonucunu yaklasik %1 oraninda arttirmustir.
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Table 2. Goriintii siniflandirmasi sonuglari

Image Classification Avg. Overall Avg. Overall
Methods Accuracy (%) Kappa (%)
Gram Schmidt 83,4 79,2
Dyilestirilmis YoRD doniigiimii 83,4 79,14
Dalgaboyu tabanlt YoRD doniisiimii 82,99 78,63
En Kiiciik Kareler 82,95 78,55
Ana Bilesenler Spektral 82,84 78,36
Yiiksek Frekans Filtreleme y. 82,41 77,9
Brovey 82,77 78,3
Dalgaboyu tabanli PCA 79,69 77,49
Renkli QuickBird goriintiisii 81,03 76,2
RDPdoniisiimii 78,97 73,35

Uriinlere ait en yiiksek hata oranlar1 sekil 3 de verilmektedir. Sekil 3a da yer alan siyah
kutucuklar, goriintiiler iizerinden toplanan Ornek alanlar1 gostermektedir. Gergek renkli
goriintiiye ait sonuglar, en diisiik iiretici dogrulugunun %78,26 ile misir bitkisi tarafindan
saglandigin1 gostermektedir. Diger taraftan en diisiik kullanic1 dogrulugu yaklasik %75 ile

domates ve seker pancart bitkileri i¢in hesaplanmusgtir.
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Genel Dogruluk Orani | 84.2%
Genel Kappa Oram | 80.2%
Uretici Kullanici
Dogrulugu Dogrulugu
(%) (%)
Aniz 81.65 92.70
Bugday 92 86.79
Mswr 78.26 91.52
Domates 89.28 75.18
S.Pancari 81.63 76.92

Gram-Schmidt goriintii zenginlestirme ydntemi biitiin iiriinler igin %80 in iizerinde {iretici

dogrulugu ortaya koymustur. En diigilk kullanict dogrulugu bu yoéntem ile smiflandirilmis

goriintii i¢in %76,57 dogruluk ile seker pancari tarafindan saglanmistir.

Genel Dogruluk Oram | 87.61%
Genel Kappa Oram | 84.5%
Uretici Kullanici
Dogrulugu Dogrulugu
(%) (%)
Anizg 82.59 95.74
Bugday 94 89.52
Musir 85.50 91.47
Domates 90.17 85.59
S.Pancari 86.73 76.57

En Kiicik Kareler yontemi de Gram-Schmidt yontemine yakin sonuglar gostermistir. En

diisiik tretici ve kullanic1 dogruluklart bu yontem igin %79,16 ile seker pancari bitkisi igin

hesaplanmistir
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Genel Dogruluk Oram | 86.35%
Genel Kappa Oram | 82.8%
Uretici Kullanici
Dogrulugu Dogrulugu
(%) (%)
Aniz 84.69 95.40
Bugday 87.37 87.37
Misir 85.29 89.23
Domates 93.54 82.27
S.Pancari 79.16 79.16

Ana Bilesenler goriintii zenginlestirme yontemine ait liretici ve kullanici dogruluklari

incelendiginde bu ydntemine ait en diisiik iiretici dogrulugunun %67,70 ile seker pancari

bitkisi tarafindan saglandigi goriilmektedir. Yonteme ait en diisiik kullanict dogrulugu

%75,32 ile domates bitkisi i¢cin hesaplanmuisgtir.

Genel Dogruluk Oram 86.35%
Genel Kappa Oram 82.8%
Uretici Kullanici
Dogrulugu Dogrulugu
(%) (%)
Aniz 84.69 93.25
- N Bugday 91.26 86.23
qi ' Msir 90.44 91.79
la‘l"* /R Domates 93.54 75.32
(d) S.Pancari 67.70 91.54

Yiiksek Frekans Filtreleme yontemi yardimiyla iiretilen goriintiiler i¢in bulunan sonugclar,

musir ve seker pancari bitkisine ait iiretici dogruluklarinin yaklasik %79 ile en diislik seviyede

oldugunu gostermistir. Bu {irlinler i¢in bulunan kullanici dogruluklart yaklasik %90 olarak

hesaplanmistir. En diisiik kullanici dogrulugu %74,51 ile domates bitkisi tarafindan

saglanmustir.
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Genel Dogruluk Oram | 86.17%

Genel Kappa Orani | 82.6%
Uretici Kullanici
Dogrulugu Dogrulugu
(%) (%)

Anizg 91.83 92.78

Bugday 89.32 86.79

Misir 79.41 90.75

Domates 91.93 74.51

S.Pancart 79.16 92.68

Tyilestirilmis YoRD déniisiimii kullanilarak elde edilen sonuglar en diisiik iiretici ve kullanici

dogruluklarmin seker pancart bitkisi i¢in yaklasik %75 olarak hesaplanmistir.

Genel Dogruluk Oram | 85.99%

Genel Kappa Oram | 82.4%
Uretici Kullanici
Dogrulugu Dogrulugu
(%) (%)

Anizg 90.81 90.81

Bugday 86.40 91.75

Msir 88.23 93.75

Domates 87.09 80.59

S.Pancart 76.04 73

Brovey doniisiimii sonucu elde edilen goriintii lizerinde uygulanan dogruluk analizi sonuglari,
en disiik tiretici dogrulugunun %65,93 dogruluk payi ile aniz igin, en disiik kullanici
dogrulugunun ise %79,03 ile bugday bitkisi i¢in hesaplandigini goéstermistir. Brovey
doniisiimii sonucunda elde edilmis bulgular, bu yontem ile elde edilmis goriintiiniin diger

yontemlerden farkli siniflandirma sonuglari oldugunu ortaya koymustur.
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Genel Dogruluk Orani | 85.4%
Genel Kappa Oram | 81.7%
Uretici Kullanic1
Dogrulugu Dogrulugu
(%) (%)
Anizg 65.93 96.77
Bugday 87.50 79.03
Misir 86.89 86.89
Domates 92.79 83.06
S.Pancari 90.81 87.25

Dalgaboyu tabanli goriintii zenginlestirme yontemi de iiretici dogruluklar1 agisindan Brovey
doniisiimii ile benzer 6zellikler gdstermistir. Bu yontem sonucu iiretilen en diigiik {iretici
dogrulugu %65,93 ile aniz bitkisi i¢in hesaplanmistir. Diger taraftan en diisiik kullanici

dogrulugu %72,32 ile seker pancari bitkisi tarafindan saglanmistir.

Genel Dogruluk Orani | 85.1%
Genel Kappa Oram | 81.3%
Uretici Kullanici
Dogrulugu Dogrulugu
(%) (%)
Anig 79.09 93.54
Bugday 89.65 82.97
Misir 83.80 90.84
Domates 88.61 85.82
S.Pancart 85.26 72.32

Genel dogruluk oranlar1 incelendiginde Dalgaboyu tabanli Ana Bilesenler goriinti
zenginlestirme yonteminin gercek renkli goriintiiye ait siniflandirma sonucunu yaklasik %1
(genel hata) oraninda diigiirdiigii gozlenmistir. Bu yontem sonucunda iiretilen tematik
haritanin genel Kappa oran1 gergek renkli goriintii sonucunu ayni oranda arttirmistir. En
kiigtik iiretici ve kullanic1 dogruluklari bu yontem ig¢in sirastyla 70,33% ve 77,93% olarak

aniz ve musir urlinleri i¢in hesaplanmistir. En diislik kullanict dogrulugu gergek renkli
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goriintii ile benzerlik gosterecek sekilde %75 olarak domates ve seker pancari bitkilerinden

elde edilmistir.

Genel Dogruluk Oram | 82.22%
Genel Kappa Oram | 77.6%
Uretici Kullanict
Dogrulugu Dogrulugu
(%) (%)
Anizg 70.33 98.46
Bugday 89.28 81.96
Mswr 77.93 86.26
Domates 88.28 74.24
S.Pancart 84.69 77.57

En diistik siniflandirma sonuglart RDP doniisiimi uygulanmig goriintiiden elde edilmistir.
RDP doniigiimii uygulanan goriintliye ait en diisiik tiretici dogruluklar sirastyla %72,47 ve
%063 ile aniz ve bugday bitkileri i¢cin hesaplanmistir. En diisiik kullanici dogrulugu yaklasik
%75 dogruluk payi ile bugday ve musir bitkilerinden saglanmustir.

Genel Dogruluk Oram 81.6%
Genel Kappa Oram 76.9%
Uretici Kullanict
Dogrulugu Dogrulugu
(%) (%0)
Aniz 72.47 90.80
Bugday 63 75.90
Miswr 90.58 73.09
Domates 91.96 83.06
S.Pancari 86.73 92.39

Figure 6 (a) Renkli QuickBird goriintiisii (b) Gram-Schmidt, (¢) En Kiigilik Kareler, (d) Ana
Bilesenler Spektral, (¢) Yiiksek Frekans Filtreleme, (f) Iyilestirilmis YoRD, (g) Brovey, (h)
Dalgaboyu tabanli YoRD, (i) Dalgaboyu tabanli Ana Bilesenler, (j) RDP doniisiimii
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Sonuglar, Brovey ve RDP doniisiimleri disinda kalan goriintii zenginlestirme yontemlerinin
alanda yetistirilen {riinleri giivenilir bir sekilde ayrabildigini gostermistir. En diisiik
ayrilabilirlik domates ve seker pancari iiriinleri arasinda gozlenmistir. Diger taraftan, gergek
renkli goriintii ile Brovey ve RDP doniistimleri sonucu iiretilen goriintiiler arasinda spektral
acidan farkliliklar olmasi bu yontemler sonucunda iiretilen goriintiiler iizerine diisen 6rnek
alanlarin diger goriintiilerden farkli olmasina ve ftriinlerin farkli siiflara atanmasma yol

agcmustir.

QuickBird goriintiilerine uygulanan zenginlestirme ydntemlerinden, Brovey, RDP,
Dalgaboyu tabanli YoRD ve lyilestirilmis YoRD déniisiimleri 3 bant ile smirlidir. Bu 6zellik,
goriintli  zenginlestirme yontemlerine katki saglayacak bilgi miktarim1 kisitlamakta ve
zenginlestirme sonrasinda uygulanacak analizlerin performansini olumsuz ydnde
etkilemektedir. Bunun nedeni genis spektral araliga sahip olan goriintiilerin dar araliga sahip
olanlardan daha fazla bilgi sunma kapasitesine sahip olmasidir.

Ana Bilesenler Spektral ve Dalgaboyu tabanli Ana Bilesenler goriintii zenginlestirme
yontemleri goriintiilere Ana Bilesen doniisiimiiniin uygulanmasi ile
gergeklestirilebilmektedir. Fakat goriintliye Ana Bilesen doniisiimiiniin uygulanmasi bir
takim problemleri de beraberinde getirmektedir. Ana Bilesen doniisiimiiniin dogrusallik
mantig1 ile ¢alismas1 ve Gaussian dagilimini esas almasi bu dagilima uymayan ¢oklu moda
sahip veriler tlizerinde gilivenilir sonuglar ortaya koymada olumsuz yonde etkili
olabilmektedir. Bu nedenle yontemin uygulanacagi goriintii 6zelliklerinin dikkate alinmasi

gerekmektedir.

5. SONUCLAR

Caligmada 9 farkli goriintii zenginlestirme yontemi incelenmis ve bu yontemlerin goriintii
siniflandirmast iizerindeki etkileri degerlendirilmistir. Kullanilan goriintii zenginlestirme
yontemleri; Gram-Schmidt, En Kiiciik Kareler, RDP, Brovey, lyilestirilmis YoRD, Ana
Bilesenler Spektral, Yiiksek Frekans Filtreleme Yontemi, Dalgaboyu tabanli YoRD
donilisiimii ve Dalgaboyu tabanli Ana Bilesenler goriintii zenginlestirme yoOntemleridir.
Yontemler, hesaplamalarda kolaylik saglamak amaciyla yaklasik 5 km® lik QuickBird

goriintiileri iizerinde uygulanmistir. Analizlerde siyah-beyaz ve yesil, kirmiz1 ve yakim kizil
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Otesi bantlarindan olusan QuickBird renkli gorintiileri kullanilmistir. Zenginlestirilmis
gorintiiler, Géreli ortalama ve varyans farklar, Korelasyon, En Yiiksek Sinyal Hata Orani ve
Genel Kalite Indeksi kullamlarak spektral acidan degerlendirilmistir. Sonuglarm istatistiksel
olarak degerlendirilmesinin ardindan gercek renkli goriintli ve zenginlestirilmis goriintiiler En
Biiytik Olasilik siniflandirma yontemi yardimiyla siniflandirilmistir. Goriintii siniflandirmast
icin gerekli ornek alanlar renkli QuickBird goriintiisii iizerinden toplanmustir. Uretilen
zenginlestirilmig goriintiiler ve renkli QuickBird goriintiisii daha sonra Ornek alanlar
yardimiyla siiflandirilmis ve sonuglar hata matrisleri yardimiyla degerlendirilmistir. Hata
matrisleri sonucunda hesaplanan kappa degerleri %79,2 dogrulukla en yiliksek dogrulugu
Gram-Schmidt goriintii zenginlestirme yonteminin sagladigini gostermistir. Gram-Schmidth
yontemi, gergcek renkli goriintiiniin siniflandirilmast sonucu firetilen tematik haritanin
dogrulugunu yaklasik %3 oraninda arttirmustir. Iyilestirilmis YoRD doniisiimii, Dalgaboyu
tabanlt YoRD doniisiimii, En Kiiclik Kareler, Ana Biselenler Spektral, Keskinlestirilmis
Filtreleme Yontemi, Brovey ve Dalgaboyu tabanli Ana Bilesenler yontemlerinin de gercek
renkli gorlintiiye ait tematik harita dogrulugunu belli oranlarda arttirdig1 gozlenmistir. Diger
taraftan RDP doniisiimii kullanilarak tretilen tematik harita dogrulugu gergek renkli

goriintiiye ait dogrulugu %1 oraninda diigtirmiistiir.

Sonuglar Gram-Schmidt, Tyilestirilmis YoRD déniisiimii, Dalgaboyu tabanli YoRD ve Ana
Bilesenler Zenginlestirme yontemi, En Kiiciik Kareler, Ana Bilesenler Spektral, Yiiksek
Frekans Filtreleme Yontemi ve Brovey doniisiimii kullanilarak elde edilmis goriintiilerin
tarimsal alanlarda yetistirlen iiriin ¢esitliligini ayirmada etkili oldugunu gdstermistir. Goriintii
zenginlestirme yontemlerinin tarim alanlarinda yetistirilen {irlin deseninin tesbit edilmesine
olan katkisinin belirlenebilmesi i¢in yontemlerin iiriin ¢esitliliginin temsil edildigi farkl

calisma bolgelerine uygulanmasi yapilan ¢alismanin giivenilirligini arttiracaktir.
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Abstract: This study focuses on evaluating four different image fusion methods on an
agricultural land of Turkey. Two subsets of QuickBird images having almost 5 km” are
used as test sites in the analyses. Panchromatic and multispectral QuickBird data are
fused and a high resolution colour images are generated by the image fusion methods
namely: Gram-Schmidt, Least Square Fusion, Principle Component Spectral Sharpening,
and Wavelet-integrated Principle Component Analysis. In order to examine the spectral
properties of the fused images, the fused products are resampled to spatial resolution of
multispectral image first, and then several statistical evaluation methods called: Relative
Mean Difference (RMD), Relative Variation Difference (RVD), Correlation (C), Peak
Signal to Noise Ratio (PSNR), Universal Image Quality Index (UQI) and Erreur Relative
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Globale Adimensionnelle Desynthése (ERGAS) are computed. Based on the results, it is

observed that the Gram-Schmidt method provides the best performance for each test site.

Key words: Image fusion, agriculture, QuickBird, evaluation.

1. Introduction

Image fusion is a process to generate a new image by integrating different spatial and
spectral characteristics of the images. It is used to generate not only visually appealing
images but also provide detailed input to the later image analyses like image classification,
change detection, landslide hazard detection etc. [1]. A review article was presented by
Pohl and Van Genderen in 1998 [2] about image fusion methods, in which concepts,
methods and applications of image fusion were examined. Various pixel-level fusion
methods were applied on QuickBird images by Karathanassi et al. in 2007 [3] and fused
outputs were evaluated using some statistical evaluation indicators. Another assessment was
performed on nine different image fusion methods by Konstantinos in 2008 [4], in which
the fused products were evaluated both visually and statistically. Results indicated that the
Local Mean and Variance Matching, Local Mean Matching, PANsharp and the Modified
IHS algorithms produced better outputs. A similar study was conducted by Colditz et al. in
2006, where five image fusion methods on Landsat 7 ETM+ images were examined [5].
Acceptable results were obtained with the Wavelet, multi-sensor multi-resolution image
fusion and the method of principle component analysis. Problems and limitations of image
fusion methods were examined by some other studies (Refs. [6-8]). Although several
researches about evaluating the performance of image fusion methods are available in the
literature, general view is that more studies are needed to examine the fusion methods on

different data sets to make a generalization.
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classification, object-based image analysis, GIS. E-mail: aozdarici@gmail.com.
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In this study we focused on four image fusion methods namely: Principle Component
(PC) Spectral Sharpening, Least Square Fusion (LSF), Gram-Schmidt, and Wavelet-
integrated PCA, mostly encountered in the literature, on an agricultural land. QuickBird
panchromatic (PAN) and four band (blue, green, red and near-infrared) multispectral (MS)
images were utilized in the analyses. The fused results acquired by the fusion methods were
resampled from 0.60 m to 2.44 m in order to compare them with the original MS image
(2.44 m) by utilizing multiple evaluation indicators called: Relative Mean Difference
(RMD), Relative Variation Difference (RVD), Correlation (C), Peak Signal to Noise Ratio
(PSNR), Universal Quality Index (UQI) and Erreur Relative Globale Adimensionnelle

Desynthése (ERGAS).

2. Methodology

2.1 Study Area and Data

The study area was selected from Karacabey Plain (Bursa) which is located in Marmara
region in northwest of Turkey. The Karacabey Plain is a representative region of
agricultural structure and it is characterized by rich, loamy soils having good weather
conditions. The main crops can be listed as corn, tomato, pepper, wheat, pea, sugar beet and
rice among twelve crop types cultivated in the area [9].

QuickBird PAN (0.61 m) and MS (2.44 m) images were used to test the image fusion
methods in the study. The spectral range of QuickBird PAN image lies between 0.44-0.90
pm. The multispectral image consists of four channels including blue (0.45-0.52 pm),
green (0.52-0.60 um), red (0.63-0.69 um), and near-infrared (0.76-0.89 pm). The images
were taken on 13 August 2004 in which crop variation is in its maximum level in the
area. The images used in the study correspond to the standard imagery product, where
corrections for sensor, radiometric and geometric distortions are performed and the

images are mapped to a cartographic projection. For the computational efficiency, two
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small parts of 8 bit QuickBird image (~5 km?) selected from the area were used in the
study. The first test site composes of five classes namely corn, wheat, residue, tomato and

sugar beet and the second test site includes rice fields instead of the class of sugar beet.
2.2 Methods
In this part, the characteristics of image fusion methods used in the study are examined.

2.2.1 Image Fusion Methods

2.2.1.1 Principle Component (PC) Spectral Sharpening Method

Principle Component Analysis (PCA) is used to reduce redundancy between image
bands by generating a set of new uncorrelated linear combinations of the original
variables. The technique is used to fuse low spatial resolution multispectral bands and a
corresponding high spatial resolution PAN band. To do that, first, a PC transformation is
applied on the multispectral data. Second, the PC band 1 is replaced with the high spatial
resolution data. This is based on an assumption that the first PC and the PAN data which
have similar spectral characteristics. Next, a scaling process is performed to match the PC
band 1 to remove distortions of the spectral information. Next, an inverse transform is
applied to return the RGB space. Final step is to perform a resampling process on the
multispectral data to conform it to the high resolution pixel size [10].

2.2.1.2 Least Square Fusion (LSF) Method

LSF aims to achieve a best color relationship between the original multispectral and
fused images while improving the spatial resolution of the image fused. The main
objectives of this technique are to prevent color distortions and operator/data dependency.
To do this, some statistical approaches are used to standardize the fusion process [3, 11].

2.2.1.3 Gram-Schmidt Method

In the method of Gram-Schmidt spectral sharpening, first, a simulation of PAN band is

performed using lower resolution spectral bands. In the simulation process, the high

160



resolution PAN band is blurred by appropriate factor, sub-sampled and interpolated up to
an appropriate scale. Second, the Gram-Schmidt orthogonolization transformation, which
provides to remove the redundant information in the data, is applied on the simulated
PAN band and the spectral bands. The simulated lower spatial resolution PAN image is
used as the first band in the Gram-Schmidt transformation. Third, the statistics of the
higher spatial resolution PAN image are adjusted to the statistics of the first transform
band resulting from the Gram-Schmidt transformation. Next, the higher spatial resolution
PAN image having adjusted statistics is replaced with the band of the first transform.
Finally, an inverse transform is applied to produce higher resolution spectral bands [10].
2.2.1.4 Wavelet-Integrated PCA Method

The wavelet transform is applied on the images by producing a set of low resolution
PAN images from the high resolution PAN image using wavelet coefficients for each
level. After decomposing the PAN band, the resulting low resolution PAN band is
replaced with a multispectral band at the same resolution level. Then, a reverse wavelet
transform is performed to convert the data to the original resolution level of PAN [12].

In the Wavelet-integrated PCA method, PCA is applied on the multispectral image
prior to the wavelet analysis. After applying a histogram match between the first PC and
the PAN image, the first PC is replaced with the PAN band. The inverse transform is
applied on the image to construct a fused RGB image.

2.2.2 Evaluation Methods

In order to understand the spectral effects of the image fusion methods, the fused
products (0.60 m) were examined relative to the multispectral image (2.44 m). Six
different evaluation indicators called Relative Mean Difference (RMD), Relative
Variation Difference (RVD), Correlation, Peak Signal to Noise Ratio (PSNR), Universal
Image Quality Index (UQI) and Erreur Relative Globale Adimensionnelle Desynthése

(ERGAS) were computed for the fused products of each image in Matlab environment.
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Before the computations there is a need to decrease the spatial resolution of the fused
products to the spatial resolution of low resolution image in order to examine the spectral
quality of the fused products. Hence the spatial resolutions of the fused images were
resampled to the multispectral image resolution (2.44 m). In this paper, the fused image
with reduced resolution is called as “fused image”. The assessment criterion is based on
preserving the spectral quality of the multispectral data for the fused products. Based on
the results, if spectral quality of the multispectral and fused images is similar to each
other, it can be stated that their global statistical parameters should be very similar [8].
The evaluation indicators used in this study are explained below:

2.2.2.1 Relative Mean Difference (RMD)

The RMD refers to the difference of means between the fused products and the low
resolution image (Eq. (1)). It is computed as follows:

(F~LR)/LR (1
where, F refers to the mean value of the fused image, LR is the mean value of the low
resolution image.

2.2.2.2 Relative Variation Difference (RVD)
The objective of RVD is to find the variation difference between the fused product and

the low spatial resolution image (Eq. (2)). It is computed using the following equations:

(ai - aiR) / (9; (2)

where, 0 i is the variation of the fused product and, 5; is the variation of the low
resolution image.

2.2.2.3 Correlation (C)

This evaluation criterion is used to compute the correlation between the fused product

and the low spatial resolution image (Eq. (3)).
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F; means the fused image and LR; refers to the low spatial resolution image.

2.2.2.4 Peak Signal to Noise Ratio (PSNR) Index
The PSNR index is used to reveal radiometric distortions of the final product after
applying an image fusion method (Eq. (4-5)). The computation is performed between the

fused image and the low resolution image [3]. It is calculated as:
MSE:W;(FL_LRI) (4)

Peak

JMSE ®)

where, F; is the pixel value i of the fused image, LR; is the pixel value i of the low

PSNR =20log,,

resolution image, N refers to the number of non-null image pixels, Peak is the maximum
possible pixel value which is equal to 255 for 8 bit images.

2.2.2.5 Universal Image Quality Index (UQI)

The UQI has the capability of modeling any distortions as a combination of three
different factors: (i) loss of correlation, (ii) luminance distortion, and (iii) contrast
distortion (Eq. (6)). The dynamic range of Q is between -1 and 1. The possible highest
value is provided if the spectral quality of the fused product and the low resolution image

are identical [13].
_ Opx 2F.LR 20,0, 6)
Q_ 8.0 2 T2 A2 2
O (F)" +(LR) aF+8LR

where, F refers to the mean value of the fused product, LR is the mean value of the low

spatial resolution image, 0, and O,, means the variation of the fused and the low
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resolution image, respectively, Or 1x is the variance value of the fused and the low
resolution images.

2.2.2.6 ERGAS

ERGAS (erreur relative globale adimensionnelle desynthése), relative dimensional
global error in synthesis, is used to compare the spectral characteristics of the fused and
reference image for identity. The ERGAS value exhibits a strong tendency to decrease
when the quality of the fused product increases. If the ERGAS value is less than 3, it can

be said that the resulting fused image has a “good quality” [14] (Eq. (7)).

RMSE(B
Z (B,)’

ERGAS = 100
N&E (M) )

where, 4, [ refers to the high and low spatial resolution, N is the number of bands, RMSE
(By) means the root mean square error between the fused image and the low resolution
image, M, is the mean value of the low resolution image for the " band [14].

If the conditions of these evaluation indicators provide the smallest possible RMD,
RVD, ERGAS and the maximum C, PSNR, UQI values with the MS image, it can be
stated that the fused image better preserves the spectral information of the low resolution

image [3].
3. Results and Discussion

The images fused were assessed both visually and statistically in the study. The visual
interpretation of the outputs revealed that except for the method of Wavelet-integrated
PCA, the visual quality of the other methods was found relatively good. Some spectral
distortions were obtained through visual interpretation of the products of wavelet-
integrated PCA. The reason could be explained by the changes of the wavelength ranges

of the new satellite products (e.g. QuickBird and Kompsat-2) in respect to the available
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fusion methods, which can be solved by updating the existing fusion methods [11, 15].
The visual qualities of the methods based on the photo interpretation of the authors are
given in Table 1.

The statistical results were ranked based on the ERGAS values (Tables 2 and 3).
Statistical evaluation of the first test site indicated that the Gram-Schmidt image fusion
method better preserved the spectral quality of the MS image (Table 2). The results of
Gram-Schmidt method was followed by the LSF method. It was observed that the
methods of Wavelet-integrated PCA and PC Spectral Sharpening exhibited relatively
poor results with the highest ERGAS and the lowest UQI values. The image fusion results
can be seen for a small part of study area in Fig. 1 to make a visual comparison.

Results obtained for the second test site indicated that similar to the first test site, the
Gram-Schmidt method provided the best performance with the smallest RMD (-0.00) and
ERGAS values (0.76) and the highest C, PSNR and UQI values when compared with the
results of other image fusion methods (Table 3). The LSF method exhibited similar
results with the Gram-Schmidt except for its ERGAS value, which was computed
relatively high when compared with the Gram-Schmidt method. The method of Wavelet-
integrated PCA also exhibited high results although the PSNR index of it was too small

(14), the poorest value among the others.

Table 1 Visual quality of the image fusion methods.

Gram- PC Wavelet-
LSF
Schmidt Spectral S. PCA
Very Good X
Good X
Medium X
Poor X
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Table 2 Statistical result of image fusion methods of the first test site.

Methods RMD RVD C PSNR uQI ERGAS
Gram-Schmidt

LSF

Wavelet PCA 0.53 35.14

PC Spectral S. 0.39 18.24

Poor B Good qery Good

Table 3 Statistical results of image fusion methods of the second test site.

Methods RMD RVD C PSNR uQI ERGAS
Gram-Schmidt
Wavelet PCA

PC Spectral S. 4.24

Poor EEGo0d m’y Good

5. Conclusions

Image fusion is an important step for agricultural areas for the later image analyses like
sensing agricultural patches and predicting undesirable agricultural issues like plant
diseases, drought, and wrong agricultural practices etc. Hence, utilizing effective image
fusion methods could provide researchers to improve the quality of the interpretation. The
focus of this study was to evaluate four different image fusion methods in a statistical and
visual manner on two test sites in an agricultural land. Visual evaluation revealed that the
methods of Gram-Schmidt and LSF had better performance than other methods for each
test site. In order to evaluate the results in a statistical manner, some basic evaluation
indicators called RMD, RVD, C, PSNR, UQI and ERGAS were utilized. It was observed
that better statistical results were achieved for the Gram-Schmidt method on both test
sites. That means the results obtained for the Gram-Schmidt method better preserved the

spectral characteristics of the QuickBird MS image. Similar results were observed for the
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LSF methods while the other methods exhibited relatively poor outputs. The method of
the Wavelet-integrated PCA provided acceptable spectral values although the visual
quality of it was relatively poor. The PC Spectral Sharpening provided the worst results
when compared with the other image fusion methods although the values of RMD, RVD

and C were acceptable. A small part of fused images of the second test site can be seen in

Fig. 2.

(e)

Fig. 1 (a) A part of original multispectral image from the first test site and results
of (b) Gram-Schmidt method, (¢) LSF method, (d) PC Spectral Sharpening
method, (e) Wavelet-integrated PCA.
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Fig. 2 (a) A part of original multispectral image from the second test site and results of
(b) Gram-Schmidt method, (¢) LSF method, (d) PC Spectral Sharpening method, (e)
Wavelet-integrated PCA.
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ABSTRACT

This study presents a comprehensive evaluation of the most frequently used non-adaptive
and adaptive Synthetic Aperture Radar (SAR) filtering techniques called; Mean, Median,
Lee, Lee-sigma, Local Region, Frost and Gamma- MAP. Envisat ASAR Precision Image
(PI) mode data acquired on August 2008 is used to examine the filtering techniques.
Three test sites (~ 4 km2), located in Karacabey of Bursa in northwest of Turkey are
selected. Two of them consist of homogenous agricultural fields and the third one is
selected from lake. One of the agricultural test sites has 143 fields where seven different
crop types namely; corn, pasture, pepper, sugar beet, tomato, wheat, and watermelon
exist. The other agricultural test site contains relatively smaller agricultural fields and it

has 386 fields where corn, rice, sugar beet, tomato, wheat, and watermelon are cultivated
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in it. After correcting the images geometrically, the filtering operations are applied on the
amplitude data using 5x5 windows. The filtering performances are evaluated by
computing difference of means (MeanDif), difference of standard deviation (StdDif),
correlation, and quality factor (Q). If the conditions of these evaluation indicators provide
the smallest possible means, standard deviation and the maximum correlation and Q, it
can be stated that the filtered image preserves the spectral information of the original
image while reducing the speckle effect. Based on this evaluation the most reliable
outputs are achieved by applying the Lee filter when compared with the original data.
This technique is followed by the results of the Mean, Median, Gamma-MAP and Frost
filters.
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INTRODUCTION

Microwave signals backscattered from the earth’s surface can be in phase or out of phase
when received by the satellite sensor. This stage causes random pattern of brighter and
darker pixels in the microwave image called speckle. This characteristic reduces the
interpretability of the microwave images. One of the most widely used method of
reducing this limitation is image filtering. Image filtering is a local operation which
modifies the original image with the neighboring pixels on the image (Lillesand et.al,
2004). This operation is applied using a window called kernel. There are several well-
known researchers developing filtering algorithms for the SAR images (Lee 1980; Frost
et.al, 1982 and Kuan et.al, 1985). In addition to this, there are also several researchers to
examine the results of the filtered products and to evaluate the effectiveness of these
methods (Lopes et.al, 1990; Shi and Fung, 1994; Serkan et.al, 2008). Shi and Fung (1994)
compare the most widely used filtering methods called Kuan and Frost Filter, Enhanced
Lee Filter, Enhanced Frost Filter and Gamma Map filter based on the preservation of
point targets, linear features and angular structures. Two water bodies extracted from the
ERS-1 image are filtered using the filtering methods in the study. The methods were
applied on both the original SAR image and the computer simulated data. Results of the
study indicate that the Kuan filter was found to be more accurate for determining point
targets of the images. The results point out that the linear features could be separated
better than the other filtering methods using the Frost filter. The Frost filter also provided
the best results in term of the preservation of the angular structures in the image. Lopes
et. al. (1990) also compares the most well-known adaptive filters called Frost, Kuan, Lee
and Homomorphic filters on a SAR data and its simulation products. In order to improve
the efficiency of the filter, some criteria are included in the filters. It is indicated that the
filters reduce the speckle while better preserve the textural information. Herold et.al
(2005) aims to improve the classification accuracy of the radar images. They examine
various spatial components like speckle reduction while trying to improve the
classification accuracy. Five different speckle filters (mean, median, local region, Frost
and Lee) are applied on the image using 3x3 and 5x5 windows. They find that the mean
and median filters increased the classification accuracy better than the other methods with
the 5x5 window size. Serkan et al. (2008) propose a new adaptive speckle filter called
Edge Map-Directed Adaptive Mean (ENDAM) and compare it with the other filtering

methods (Mean, Median, Kuan, Lee, Lee-Sigma, Frost, Crimmins, Martin, Nagao and
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Dong). The filtering operations were performed on a JERS-1 SAR image of Tuzla,
Istanbul and a simulated SAR data. The ENDAM filtering method uses a wavelet edge
detection algorithm while performing the filtering process, which is the main difference
between the proposed method and the other filtering methods. Results indicate that the
proposed method provided near results compared with the other filtering results. The
objective of this study is to compare the most widely used SAR filtering methods called
Mean, Median, Lee, Lee-Sigma, Frost, Gamma-Map and Local Region filters. Envisat
ASAR precision image (I) mode is used to this purpose. The filters are tested on three
different sites having almost 5 km2 extracted from the data. Two out of three belongs to
an agricultural area and third one is taken from a lake site. The kernel size of 5x5 is
applied on the test sites and results are evaluated four statistical evaluation indicators

namely; mean, Std, correlation and Q.

STUDY AREA AND DATA

Three study sites are selected from Marmara Region in Turkey (Figure 1). The sizes of
these areas are approximately 5 km2. Two out of three are selected from one of the most
valuable agricultural area called Karacabey Plain in Turkey. Most of the fields in the
areas have rectangular shape. The sizes of the fields ranged from 0.1 ha to 9.5 ha and
from 0.1 to 13.7 ha for the first and second areas, respectively. There are six crop types
filtered in the first region including, pasture, pepper, sugar beet, tomato, wheat, and
watermelon. The land cover of the second agricultural region comprises six crop types
including corn, rice, sugar beet, tomato, wheat, and watermelon. The third site is selected
from the Ulubat Lake near the Karacabey Plain. The study area and the locations of the

test sites on the whole area can be seen in figure 1 and 2.
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Figure 1 Study Area
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Figure 2 Envisat ASAR data and selected locations

The Envisat ASAR Precision Image mode used for the filtering operations acquired on 03

August 2008. Table 1 shows the technical summary of the data.

Table 1 Technical summary of the Envisat ASAR data

Envisat ASAR
Image Type Image Mode
Processing Level Level 1b
Spatial Resolution 125 m
Wavelength Range C-band
Frequency Range 5331 GHz
Polarization Vv
Image Swath 157
Swath Width 70km and 56km
Datum WGS 84
Map Projection UTM
Zone Number 35

The image was obtained by an ESA Category 1 User project proposed by Akyurek and
Ozdarici in 2007. The acquired model provides HH and VV polarization image data with

a spatial resolution between 12.5 m and 150 m and coverage of 56x105 km?2. In this
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study, the VV polarization image is used. Envisat ASAR operates in the C band and has
various incidence angles between 150 and 45.20. Seven acquisition configurations are
available for the Envisat ASAR. The technical characteristics of these configurations can
be seen in table 2. Among the seven configuration category, the image used was acquired
as IS7 acquisition configuration. The incident angles of the IS7image vary from 42.5° to
45.2°

Table 2 The configurations types of the Envisat ASAR data

Image Swath | Swath Width (km) | Ground Position (km) | Incidence Angle Range
IS1 105 187-292 15.0-22.9
IS2 105 242-347 19.2-26.7
1S3 82 337-419 26.0-31.4
IS4 88 412-500 31.0-36.3
IS5 64 490-555 35.8-394
IS6 70 550-620 39.1-42.8
IS7 56 615-671 42.5-45.2

SPECKLE FILTERING

Speckle, a grainy appearance caused by the interference between waves reflected from
microscopic scattering through the terrain, reduces the interpretability of the images
therefore it must be balanced with the amount of detail required for the spatial scale and
the nature of the particular applications (Medeiros et. al., 2003; CCRS, 2000). There are
two methods to reduce the speckle: (i) image filtering, (ii) multi look processing. In this
study image filtering processes are examined. Image filtering is a local operation in which
pixel values of an original image are modified using the gray values of the neighboring
pixels. It can be categorized two main groups: (i) Non-adaptive speckle filters and (i)
adaptive speckle filters. Non-adaptive filters use the same set of weights to smooth the
image over the entire image (e.g. Mean and Median etc.). On the other hand, adaptive
filters use weights based on the degree of speckle in the image (Lee, Frost, Kuan,
Gamma-Map, Local Region etc.). The smoothing is dependent on the local statistics for
the adaptive filters. Therefore, adaptive filters have more capability of preserving the
details than the non-adaptive filters (Tso and Mather, 2001). Some of the adaptive filters
like Lee, Lee-Sigma and Frost assume a Gaussian distribution while the Gamma-MAP
filter assumes a Gamma distribution to decrease the speckle (Lopes et.al. 1990). In

addition to the characteristics of the filtering methods, the window size is also one of the
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most important factors for smoothing an image. The larger the window size means the
larger smoothing. Therefore, it should be decided before smoothing the images based on

the analyses.

Mean Filter

The mean filter is a simple filtering method that slides its window (kernel) on the image
and replaces the center value in the window with the average (mean) of all the pixel
values in the window. It has a speckle reduction capability but it also removes high
frequency information in the image. It is one of the most popular non-adaptive filtering
methods. Mean filter uses the same set of smoothing for the whole image. Due to the

characteristics it ignores the differences in image texture, contrast, etc.

Median Filter

The median filtering procedure is based on ranking the pixel values in the specified
window and assigning the median pixel to the center value of the window. Median
filtering is another mostly used non-adaptive filtering method. It is more effective than
the mean filter. This is because it suppresses the speckle while preserving the

characteristics of sharp edges.

Lee Filter

Lee filter is an adaptive speckle filter. It is based on three assumptions:

(i) SAR speckle is modeled as a multiplicative noise that means the brighter the area the
noisier it is.

(i1) The noise and the signal are statistically independent to each other.

(ii1) The sample mean and sample variance of a pixel is equal to its local mean and local

variance found calculated within a window (Lee, 1980; Tso and Mather, 2001).

The assumptions above define the noise model of the Lee filter. In order to apply the
filter, two main steps should be performed. The first one is approximating a multiplicative
model by a linear model specified by the mean and the standard deviation. The other step

is applying minimum mean square error criterion to this model. The filtering procedure
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can be summarized as follows in a detail manner. First, a window size is determined.

Second, the speckle noise mean g, and standard deviation o, are determined based on

A A

the speckle model. If window i has N, pixels, estimates of 4, and O'v2 are computed

as follows:
" 1 1
= Nz ol = ey ) ]

Where;

z;; is the return from pixel i in a window £,

A

M, refers to estimate mean intensity of pixels within the window,

N ,, means number of pixels in the window

Third, local noise fading mean £ and standard deviation o, of the pixels within the

window are computed. Fourth, noise-free signal standard deviation o is determined.

A A

Next, weight coefficient k is determined. Finally, the computed x value is assigned x to

the central pixel of the window. The formula of the Lee filter can be seen in Equation 2.

_[z)c=C) (mCl+C 2
SRV Yrva M V7 Veve:

Where

z is the noise effected image pixel,

M, is mean of the noise,

M., mean of the noise affected pixel,

C.andC, refer to the coefficient of variations of the noise effected pixel and the noise,

respectively.
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Lee-sigma Filter

Lee-sigma filter is an adaptive speckle filter. As its name implies, the Lee-sigma filter
uses the standard deviation (sigma) to suppress the speckle on an image window. The
procedure of the Lee-sigma filter is similar to the Lee filter. It estimates the noise-free
signal within the predefined window. The basic difference is that the Lee sigma filter uses
two sigma ranges of the pixels within the window. In this way, the pixels lying outside
this range are excluded from the averaging process. The formula of the Lee-sigma filter

can be seen in equation 3.

A n+l n+j n+i  n+j
X, = Z Zék,zk, / Z Z% (3]
k=i—-nl=j-n k=i-nl=j-n

Where;

oy=1ifz, 20z, <z,+20,z;

0,, =0 otherwise

Frost Filter

The basic idea of the Frost filter is to minimize the mean square error based on the
multiplicative noise assumption so that an optional filtering model is to be constructed
(Tso and Mather, 2001). It is based on the assumptions of the multiplicative and
stationary noise. The pixel of interest is replaced with a weighted sum of the values
within the predefined window. The weighting factor is inversely proportional with the
distance from the pixel of interest (ERDAS Manual). Its calculation is performed based

on the formula below (Equation 4, 5 and 6).

DN = Z Kae ™ [4]

nxn
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Where;

a=y/ 7 5]
7,

K is a normalization constant

4 is alocal mean

o means local variance

o refers to image coefficient of variation value

n is the moving window size
[t x—x, [+ 7=y, | (6]
Gamma Map Filter

The Gamma- Map filter assumes that the scene reflectivity of an image has a Gaussian
distribution. Therefore, this filter uses a priori knowledge of the probability density
function (PDF) of the scene when suppressing the speckle of the image (Shi and Fung,

1994). Under this assumption the computation of the Gamma Map filter can be performed

as follows (Equation 7).

A3 A A
M —,Uﬂ2+0(/l—DN):0 [7]

Where;

M 1is the original image variance

A

L 1s the expected valuej
o refers to original image variance

DN is the input value
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Local Region Filter

The Local Region filter compares the variance values of the regions surrounding the pixel
of interest (Equation 8). While doing this, it divides the moving window into eight
regions based on angular position. The central pixel of the window is then replaced with

the mean values within the region with the lowest variance (Sheng and Xia, 1996).

o> :Z( DN, —,U)/

n-—1

[8]

EVALUATION INDICATORS

Quality of all the filtered products (3x3, 5x5, 7x7, and 9x9) was evaluated quantitatively
using mean, standard deviation, correlation and quality factor. When evaluating the
filtered products, preserving the radiometric quality of the data was taking into
consideration. That means if the radiometric quality of the original and fused images is
similar to each other, it can be stated that their global statistical parameters should be very
similar (Karathanassi et al., 2007). If the conditions of these evaluation indicators provide
the smallest possible means, standard deviation and the maximum correlation, the
filtering performance can be thought as good. The computations of the correlation and Q

measures can be seen in equation 9, 10 and 11.
Correlation

Correlation values were computed between the original and filtered products based on the

equation below.

_covy,

0127 3,%0,

where

COV,, refers to covariance of the original and filtered image

60 and 6 , are the standard deviations of the original and filtered images, respectively.
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Quality Factor (Q)

On the other hand the Q is an important test measures which is used to reduce the
standard deviation to decrease the variations in the uniform areas. The computation of the

quality factor is given in equation 10 and 11.

0= |.lushiftJ
Loxio_z jf [10]

Where;

Mo = M= | o — 4, |

M, is the mean value of the original image

4 ; 1s the mean value of the filtered image

(0'2 ) 1 the variance of the filtered image

L, is the equivalent number of looks value of the original image which is computed as:

_ Mo

L, :
O,

[11]

where

M mean value,

o is the variance of the image data,

The Q value is always equal to 1 for the original image. Any change in the mean value
will reduce the Q. This can be evaluated as reduction in filter capability. A decrease in the
variation for the filtered image will increase the value of Q. That means the higher the Q

value, the stronger the speckle reduction (Serkan et.al, 2008).
RESULTS AND DISCUSSION

Seven different filtering methods called Mean, Median, Lee, Lee-sigma, Frost, Gamma-

Map and Local Region were examined in the study. The filters with 5x5 kernels were
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applied on three scenes extracted from an Envisat ASAR image taken on August 2008.
Six criteria namely mean, Std, mean difference (MeanDif), Std difference (StdDif),
correlation and Q were selected to evaluate the effectiveness of the results. Based on the
table 3, it was indicated that the Lee filtered image provided similar mean value with the
original image and it was reduced Std value of the original image around 1.19. Its
correlation value was found relatively high (0.73) when compared with the Mean,
Median, Frost, Local Region and Gamma-Map filters. The highest Q value was computed
for the Lee filter for the first test site. These numerical indicators showed that the Lee
filter yielded the best results in the other filtering methods. Although the Mean and
Median filters exhibited closer results to the mean value of the original image and high
StdDif values, the correlation and Q values were found relatively low when compared
with the Lee filter. The Gamma-MAP filter also revealed satisfactory results although its
mean values is low (5.34) than the original image. The Lee-Sigma filter exhibited
relatively low results but unexpectedly it has the highest correlation value (0.81). The
poorest results were obtained for the Local Region filter. Although the mean and median
value of the image filtered by the Local Region filter were high enough, the correlation

and Q value of this filter is very low.

Table 3 Filtering results for the first test site

5x5 Window

Meanif | SdDif Correlation Q
Original (FirstSite) - - - 1
Mean 0 0.98 0.64 297
Median 0.09 0.92 0.64 2.65
Lee 0.01 1.19 0.73 2.8
Lee-Sigma 0.3 0.82 0.81 2.15
Frost 0.01 09 0.74 2.64
Local Region 0.13 0.63 0.53 1.8
Gamma-MAP 0.84 1.1 0.8 2.67

When the second agricultural test site was examined, it was observed that the Lee and
Gamma-MAP filters provided the highest results relative to the other filtering methods
(Table 4). The Lee filter preserves the mean of the original image while the mean value of
the Gamma-MAP filter was rather low (5.34) from the original value. The highest Q
values of 2.46 and 2.67 were computed for the Gamma-MAP and Lee (filters,
respectively. The results of the Lee and Gamma-MAP filters were followed by the Mean
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and the Median filters. Except for the mean values of the filters, the other indicators were
provided similar results. The mean value of the Mean filter was exhibited similar result
with the original image (6.02) while the result of the mean value (5.92) for the Median
filter was found low. Acceptable results were achieved by the Frost filter. The values of
the Lee-Sigma filter were found to be less efficient. Similar to the first agricultural test
site, the worst results were found for the Local Region filtering method. The correlation

and the Q values were computed as 0.58 and 2.67, respectively.

Table 4 Filtering results for the second test site

5x5 Window

MeanDif 'LSthff Correlation Q
Original (Second Site) - - - 1
Mean 0 091 0.68 2.25
Median 0.1 0.87 0.68 2.35
Lee 0.01 0.88 0.76 2.46
Lee-Sigma 0.28 0.78 0.81 1.97
Frost 0.01 0.83 0.77 2.03
Local Region 0.17 0.6 0.58 1.46
Gamma-MAP 0.68 1.19 0.81 2.67

The third site consists of pixels that are located on the Ulubat Lake which represents a
more homogenous area than the other test sites. Therefore, the comparison of the filters
using this site can be more realistic than the others. When the third site was examined, it
was observed that similar to the first and the second agricultural test sites the Lee filter
was superior to the other filtering methods (Table 5). It was provided a better preservation
of the mean value (1.99) and a high StdDif (0.31) value. While the correlation value of
the Lee filtered image was computed as 0.56, the Q value of it was found rather high
(2.82). Acceptable results were obtained for the Mean and the Median filters although
their correlation values were computed low (0.45). The Frost and the Gamma-MAP filters
were also found effective. The Lee-Sigma and Local Region filters exhibited the poorest
results when compared with the other filtering methods. The Lee-Sigma filter provided
relatively high correlation value (0.71) and its Q value was found to be 1.67. The
correlation value of the Local Region filter was computed as 0.41 while the Q value of

this filter was 1.71.
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Table 5 Filtering results for the third test site

5x5 Window

MeanDif | SdDif Correlation Q
Original (Lake Site) - - - 1
Mean -0.03 0.34 0.44 317
Median -0.01 0.33 0.45 3.09
Lee -0.01 0.31 0.56 2.82
Lee-Sigma 0.16 0.12 0.76 1.67
Frost -0.01 0.27 0.65 238
Local Region 0.03 0.19 0.41 1.72
Gamma-MAP 0.09 0.32 0.56 271

CONCLUSION

Aim of this paper is to examine the most widely used filtering methods and to decide the
best method for agricultural areas. Three different test sites consisting of two agricultural
areas and a small part of lake were selected to apply the filtering performances. The
filtered products were evaluated based on the MeanDif, StdDif, Correlation, and Q
indicators. The numerical results indicated that the Lee filter performs much better for
preserving the spectral characteristics of the original image while reducing the speckle.
The results of the Mean, Median, Gamma-MAP and Frost filters were found satisfactory.
The Lee-Sigma filter could not provide similar results with the Lee filter and the results
of those filters were found low. The poorest results were obtained for the Local Region
filter. Although the analyses exhibited consistent results for three test sites, further
quantitative evaluations (e.g. edge preserve, texture) should be added to the analyses in

order to examine the filtering methods more reliably.
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OZET

Bu ¢aligmada iki 6nemli goriintii segmantasyon yontemine, Ortalama Kaydirma (Mean-Shift) ve
Berkeley Goriintii Segmantasyon (Berkeley Image Segmentation — BIS), ait sonuglar vektor
tabanli ¢ok sayida Ol¢lim teknigi kullanilarak degerlendirilmis ve bu anlamda olusan boslugun
doldurulmasina katki saglanmasi hedeflenmistir. Bu amacla Bursa’da yer alan Karacabey Ovasi
iizerinde Haziran, Temmuz ve Agustos 2008 tarihlerinde gektirilen keskinlestirilmis Kompsat-2
uydu gorintiileri kullanilmistir. Segmentasyon islemi Oncesinde ¢ok zamanl goriintiilere ait
bantlara Ana Bilesenler Doniigiimii uygulanmustir. Analizlerde Ortalama Kaydirma ve BIS
yontemleri igin ¢esitli parametre bilesenleri kullanilmistir. Elde edilen segmentlerin degerlendirme
islemi sirasinda onceden belirlenmis 6rnek alanlar sayesinde her bir segment {izerinde alan ve
konum tabanli 14 farkli dogruluk 6lgme teknigi kullanilarak drnek alanlar ve segmentler arasinda

konum ve sekil benzerligi bulmaya yarayan hesaplamalar yapilmistir. Bu hesaplamalara baglh
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olarak her iki yontem icin de en yiiksek dogruluga sahip olan goriintii segmentasyon sonuglari
kargilagtirilarak degerlendirilmistir. Elde edilen bulgular, her iki yontem igin belli parametre
bilesenleri ile elde edilen sonuglarin goriintiileri olusturan nesneleri saptamakta uygun oldugunu
bunun yaninda Ortalama Kaydirma goriintii segmentasyon yonteminin BIS ydnteminden daha

etkili sonuglar sergiledigini gdstermistir.

Anahtar Sozciikler: Goriintli Segmantasyonu, Ortalama Kaydirma Yontemi, Berkeley Goriintii

Segmentasyonu, Yiiksek Mekansal Coziiniirliik, Dogruluk Analizi
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AN EVALUATION OF MEAN-SHIFT AND BERKELEY IMAGE SEGMENTATION
METHODS USING MULTI-TEMPORAL KOMPSAT-2 IMAGES

This study focuses on examining the results of two image segmentation methods, Mean-Shift and
Berkeley Image Segmentation (BIS), by comparing it based on both area-based and location-
based measures on an agricultural site. The test site (~10 km?) was selected from an important
agricultural area, Karacabey Plain (Bursa), located in north-west of Turkey. Three Kompsat-2
images taken on June, July and August (2008) were used in the analyses by applying a Principle
Component Analysis technique on the image bands. Multiple parameter combinations for Mean-
Shift and BIS were tested and the resulting segments were evaluated using goodness measures that
measure the shape similarity between the segments and training polygons. Results indicated that
although some parameter combinations of each method provide efficient outputs based on the
computations of goodness measures, Mean-Shift segmentation method provided more superior

results than BIS.

Keywords: Image Segmentation, Mean-Shift, BIS, High Spatial Resolution, Accuracy Assessment

1.GIRiS

Uydu teknolojilerindeki gelismelere paralel olarak elde edilen goriintiilere ait mekansal
¢Oziinlirliigiin artmasi, nesne i¢ine diisen piksel degerlerindeki gesitliligi arttirmis ve bu
etki, geleneksel piksel tabanli goriintii analizlerini negatif yonde etkilemistir. Bu durum,
uzaktan algilama ¢aligmalarinda nesne tabanli goriintii analizlerine olan 6nemin artmasina
neden olmustur (6rn. De Wit ve Clever 2004). Nesne tabanli goriintli analizlerinin ilk
basamagini goriintii segmentasyonu olusturur. Goriintli segmentasyonu, birbirine komsu
olan pikseller arasindaki homojenlik bilgisini arastirarak goriintiiyli anlamli pargalara
bolme islemidir (Cheng vd. 2001). Bu islem sonucunda elde edilen her bir segment,
goriintilyll olusturan nesnelerin tanimlanmasinda kullanilir. Goriintii segmentasyonu
yontemiyle goriintiiye ait nesneleri elde etme islemi nesne tabanli goriintii analizlerinin
onemli bir basamagini olusturur. Bu konuda algoritma gelistirme ve bu algoritmalarin
cesitli amagclara yonelik kullanimiyla ilgili ¢ok sayida galigmaya rastlamak miimkiindiir
(6rn. Schoenmakers vd., 1994; Cheng, 1995; Rydberg and Borgefors, 2001; Mueller vd.,
2003; Martin vd., 2004; Zhan vd., 2005; Lee and Warner 2006; Chen vd., 2006; Li and
Xiao., 2007; Lu vd., 2007, Wang vd., 2010; Xiao vd., 2010; Corcoran vd., 2010).
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Literatiirde bu amaca yonelik birgok ¢alisma bulunmasina ragmen hala etkili yontemlere
ve ek analizlere ihtiyag oldugu gozlenmektedir. Bunun nedeni segmentasyon
algoritmalar1 sonucunda {iiretilen segmentlere ait dogruluk analizlerinin tek bir kritere
dayandirilarak yapilmasidir (Liu and Yang, 1994; Zhang, 1996; Zhang, 2001; Martin vd.,
2001; Ge vd., 2006; Chabrier vd., 2006; Li and Xiao, 2007). Fakat iiretilen segmentlerin
referans nesnelere gore her yonden etkili bir sekilde degerlendirilebilmesi igin tek
degerlendirme kriterinin yeterli olmadigi (Zhang, 2001, Clinton et al. 2010) ve bu nedenle
farkli degerlendirme yontemlerine ihtiya¢ oldugu agiktir (6rn. Zhang 1996; Chabrier vd.
2006; Radoux and Defourny, 2007; Corcoran vd. 2010).

Segmentasyon sonuglarinin degerlendirilmesinde kullanilan istatistiksel yontemler nesne
tabanli goriintii analizlerinin 6nem verdigi bir konudur. Bu nedenle ¢aligmada, Ortalama
Kaydirma ve Berkeley Gorlintii Segmentasyon yontemi adiyla anilan iki farkli
segmentasyon sonucunun bir tarim alani iizerinde farkli dogruluk o6l¢lim teknikleri
kullanilarak incelenmesi konu edilmistir. Ilk olarak; uydu gériintiisii ve ¢alisma alanmin
tanitilmasinin  ardindan Ortalama Kaydirma ve Berkeley Goriintii Segmentasyon
yontemleri aciklanmaktadir. Ikinci asamada elde edilen segmentasyon sonuglarini
degerlendirme yontemleri tanitilmaktadir. Tartisma ve sonug bdliimlerinde galisma alani
icin bulunan segmentasyon sonuglari, degerlendirme yontemleri yardimiyla test edilerek

tartisilmaktadir. Son olarak ¢aligmanin igerigi ile birlikte genel sonuglar verilmektedir.

1.1 Calisma Alam

Caligma alani, Tiirkiye’nin kuzeybatisina diigen Marmara bolgesindeki Karacabey Ovasi
(Bursa) olarak belirlenmistir (Sekil 1). Bu ¢alisma i¢in Karacabey Ovasi’nin yaklagik 10
km?® lik bir kismi kullamilmustir. Alan, zengin toprak yapisi ve ikliminin tarima elverisli
olmasi nedeniyle Tiirkiye'nin en verimli ovalar arasinda yer almaktadir. Alanda bagsta
misir, biber, bezelye, bugday, piring ve seker pancart olmak flizere c¢esitli {irlinler

yetistirilmektedir (Ozdarici, 2005).
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Sekil 1. Calisma alani

1.2 Veri Seti

Calisma alaninda yetistirilen iirlinlere ait segmentleri bulmak i¢in Haziran, Temmuz ve
Agustos (2008) tarihlerinde ¢ekilmis pankromatik (1m) ve renkli (4m) Kompsat-2 uydu
goriintiileri kullanilmistir. Goriintiilerin farkli aylarda ¢ekilmesinin nedeni iiriinlere ait
ekim, biiyiime, olgunlasma ve hasat donemleri ile ilgili bilgiler elde ederek segmentasyon
islemini kolaylagtirmaktir. Kompsat-2 uydusu 1 m ¢oziiniirliikkte pankromatik ve 4m
¢Oziiniirlikte renkli goriintii saglamaktadir. Renkli goriintii; mavi, yesil, kirmizi ve yakin
kizil 6tesi olmak {izere dort banttan olusmaktadir. Bu bantlara ait spektral aralik sirasiyla
0.45-0.52, 0.52-0.60, 0.63-0.69 ve0.76-0.90 pum degerleri arasindadir. Pankromatik
gorlintiiye ait spektral aralik ise 0.50-0.90 um dir. Kompsat-2 goriintiisiine ait islem
diizeyi 2A dir. Bu diizeyde goriintii radiometrik olarak diizeltilmis ve yer kontrol noktast
(YKN) kullanilmaksizin geometrik diizeltme islemi standart harita projeksiyonu (UTM
WGS 84) na gore yapilmustir.

Elde edilen segmentlere ait dogruluk analizlerinin yapilabilmesi igin referans olacak bir
veri setine ihtiya¢ vardir. Bu veri alanda bulunan parsel sinir bilgilerini iceren vektor
veridir. Veri tabaninda her bir parsele ayr1 numaralar verilerek aylara ait {irlin bilgileri
tanimlanmugtir. Vektor veri, alana ait 1:5.000 ol¢ekli kadastral haritalar kullanilarak
Gauss-Kruger (Zone-5) ve Avrupa Datumu (1950) na gore sayisallastirilmigtir (Turker ve

Arikan 2005). Vektor veri bu ¢alismada, elde edilen segmentler ile gergek parseller

191



arasindaki sekil benzerliklerini 6lgmek amaciyla goriintii ¢ekim tarihleri ile es zamanlt

olarak giincellenmistir.

2. YONTEM

2.1 On islemler

Calismada kullanilacak verilerin birbirleri ile uyumunu saglamak amaciyla verilere bir
dizi 6n islem uygulanmustir. ilk olarak, aymi aya ait pankromatik ve renkli Kompsat-2
goriintiileri ‘En Kiiciik Kareler’ goriintii keskinlestirme algoritmasi kullanilarak ii¢ farkl
yiiksek ¢oziiniirliiklii renkli goriintii elde edilmistir (Ozdaric1 ve Akyiirek 2009). Ikinci
asamada 1:25.000 olgekli sayisal haritalardan elde edilen Sayisal Arazi Yiikseklik Modeli
(SYM) yardimiyla keskinlestirilmis goriintiilerin hassas geometrik diizeltme islemi
gerceklestirilmistir. Bu amagla {i¢ goriintii i¢in belirgin noktalardan toplanmis YKN ler
kullanilmigtir. Bu islemler sonucunda ortalama hata bir pikselin altinda hesaplanmistir.
Bir sonraki agamada farkli aylara ait keskinlestirilmis renkli goriintiilere ait bantlar bir
araya getirilerek tiim bantlar tizerinde ‘Ana Bilesenler Doniistimii’ uy gulanmistir (Sekil

2).

e Kilom eters
0 0,5 1

Sekil 2. Ana Bilesenler Doniisiimii uygulanmis Kompsat-2 gériintiisii
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2.2 Ortalama Kaydirma Yoéntemi

Ortalama Kaydirma yonteminin temeli, filtre yardimiyla yogunluk tahmini yapmaya
dayanir. Yontem, filtre i¢ine diisen piksellere ait ortalama degeri hesaplayarak filtreye ait
gercek merkezin hesaplanan yogunluk merkezine kaydirilmasini igerir ve Ozetle su

sekilde tanimlanabilir:

“d” boyutlu R’ uzayinda bulunan n nokta igin x; vektorii (i = 1. . . n) verilsin. Herhangi
bir K kerneli kullanilarak ¢ok degiskenli Ortalama Kaydirma vektorii - mg(x) asagidaki

formiille hesaplanir (Comaniciu ve Meer, 2002):

Zn:x,.K(x_xij
me =t
ZK( i j

(1

Formiilde kullanilan x, K filtresinin merkez noktasi, /4 ise kullanilan filtrenin boyutunu
tanimlamaktadir. Onemli modlarin bulunabilmesi i¢in formiiliin (1), segmentasyonu

yapilacak uzay1 kapsayana kadar birden ¢ok defa tekrarlanmasi gerekmektedir.

72 ﬁfK (%)
Jx(x)

my(x) =

)

Ortalama Kaydirma vektorii her zaman 6znitelik uzayinda var olan dagilimin en ¢ok artan
yoniinii gostermektedir. Yine aynm1 formiilden anlasilabilecegi iizere, filtrenin merkezi,
yine ayni filtrenin i¢ine diisen noktalarin yogun oldugu bdlgeye dogru kaydirilmaktadir.
Ortalama Kaydirma vektorii yerel egim (gradient) tahmini ile uyustugu siirece, 6znitelik
uzaymnda var olan dagilimin duragan noktalarina (stationary points) kadar bir yol
izleyebilir. Oznitelik uzaymin modlari ise bu duragan noktalardir. Dolayistyla Ortalama

Kaydirma islemi iki basamakli bir tekrar oldugu soylenebilir:
e  mg(x) vektoriin hesaplanmasi

e  K{(x) kernelinin mg(x) kadar 6telenmesi
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Bu yontem ile hesaplanan vektdrler her zaman yogunlugun en fazla oldugu yere dogru
hareket eder. Formiil 2 deki esitlik, hesaplanan vektoriin filtre yardimiyla elde edilen

yogunluk ile daima dogru orantili oldugunu gostermektedir.

Yontemin renkli goriintiiler {izerinde de uygulanabilmesi amaciyla ortak alan (joint
domain) kavrami gelistirilmistir. Bu kavrama gore her 6rnek, hem mekansal uzayda (%)
hem de renk uzay:r (4,) nda tanimlanir. Ortak alanda mekan ve renk vektorlerine ait
farliliklar gidermek i¢in uygun bir normalizasyon islemi gerekmektedir. Bu nedenle iki
1sinsal simetrik filtre lirtinii olan ¢ok degiskenli filtre (multivariate kernel) 6klid uzaymda

bant genisligi parametresi olarak kullanilmaktadir.

2

k

2
s

X

h

r

X

C
Kh“h, (x) 7

WEE ®

) r

Formiil (3) de; x* uzaysal kismi, x" spektral kismi, 4, ve &, uzaysal ve spektral kisimlar
i¢in uygulanan filtre boyutlarini ve C ise tanimlanacak olan normalizasyon katsayisini

belirtmektedir (Comaniciu ve Meer, 2002).

Bu ¢alismada segmentasyon islemi, goriintiilere Ana Bilesenler Doniisiimii uygulandiktan
sonra gerceklestirilmistir. Segmentasyon islemlerinde mekansal (%;) degiskeni icin {2, 3,
4,5,6,7, 8,9, 10} ve renk (%) degiskeni icin {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}
degerleri kullanilmistir. En kiiclik alan parametresi bu calisma i¢in 1000 piksel olarak
belirlenmistir. En kiiclik alan degiskeni, alanda bulunan en kiigiik parsel i¢ine diisen
piksel sayisimi ifade etmektedir. Bu sayede Ortalama Kaydirma yontemi ile segment
edilecek goriintii lizerinde toplam 90 parametre bilesimi test edilmistir. Tiim bantlara ait
segmentleri tek bir katmanda toplamak i¢in segmentasyon islemi sonucunda elde edilen
raster formatindaki katmanlar birbirleri ile c¢arpilarak 32 bit olarak kaydedilmistir.
Ardindan en kiiglik parsel biiyiikliigiinden daha kiiciik alana sahip segmentler uygun
islemlerle elimine edilmistir. Son olarak, raster formatindaki bant, vektore doniistiiriilerek

dogruluk analizlerine hazir hale getirilmistir.
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2.3 Berkeley Goriintii Segmentasyon Yontemi

Berkeley goriintii segmentasyon yontemi, Benz vd. (2004) tarafindan ortaya ¢ikarilan
alan birlestirme mantigina dayanir. Yontemin ilk asamasinda her piksel bir alan olarak
disiiniiliir. Pikseller, spektral homojenlik ve sekil kriterlerine bagl olarak birlestirilir
veya farkli nesneler olarak tanimlanir. Yontemde her bir nesne (piksel) birbirinin siirekli
komsusu olarak diisiiniilmektedir. @ ve b seklinde birbirine komsu olan iki nesne
diisiiniildiigiinde bu iki nesnenin olasi bilesimi ab birlesik (merged) nesne olarak kabul

edilir. Birlesik nesneye ait spektral heterojenlik (4,) asagidaki esitlikle ifade edilir.

Ahp = Z Wi (nabo-i,ab - (nabo-i,a + nb O-i,b )) (4)
1

Esitlikteki,

I bant agirligin,
n bir pikselin kapladig alan,

o, goriintiiye ait bantlardaki nesneler i¢in standart sapmay: ifade etmektedir.

Nesnelere ait yumusaklik (Akzy) ve yogunluk (Ah,) farki asagidaki sekilde

hesaplanmaktadir:
Ah - nablab _n, l, nb
Ah — nablab _ nala _ nblb
© by b, b
Esitlikteki;

[ nesnenin ¢evre uzunlugunu,

b nesneyi gevreleyen poligon gevresinin uzunlugunu ifade etmektedir.

Nesneler arasindaki bigim farkliliklarma ait heterojenlik bilgisi asagidaki sekilde

aciklanmaktadir:
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Ah, =w Ah, +w Ah_,

O<w, ,w <Lw, +w, =1

Esitlikteki

w, degeri kullanici tarafindan segilen siklik parametresini,

w, ise yine kullanici tarafindan belirlenen yumusaklik parametresini ifade eder.

Berkeley Goriintii Segmentasyon yonteminde kullanilan 6lgek orani ise asagidaki esitlik

yardimryla hesaplanmaktadir:

r=w,Ah, +wAh,,

O<w,,w, <Lw,+w =1

Esitlikte goriilen w, kullanici tarafindan belirlenen bigim parametresini ifade etmektedir.

Nesne birlestirme islemi dnceden belirlenmis 6lgek esik degeri kriteri (7)) karsilanana

kadar devam eder (¢ =0,1,2,...7).

2.4 Dogruluk Analizi

Her iki segmentasyon ydntemine ait sonuclarin gilivenilirliginin arastirilabilmesi igin
segmentlere ait g¢esitli kriterleri degerlendiren dogruluk testleri yapilmistir (Clinton vd.
2010). Uretilen segmentlere uygulanan testler Clinton vd. (2010)’ ne ait calismada detayli
olarak agiklanmaktadir. Bu kriterlerin amaci, elde edilen segmentler ve belirlenmis 6rnek
alanlar arasinda konum ve sekil benzerliklerini ¢esitli yonlerden aragtirmaktir. Bu amagla
ilk olarak c¢alisma alanmin %10 u kapsayan ornek poligonlar titizlikle belirlenmis ve
ormek poligonlar ile elde edilen segmentler dogruluk analizleri yardimiyla
karsilastirilmistir. Son olarak, hesaplanan sonuglar siralanmis ve en c¢ok kritere sahip

segmentasyon sonucu ¢alisma alani igin en ideal sonug olarak belirlenmistir.

196



3. TARTISMA

Caligmada iki farkli segmentasyon sonucu, ornek alanlara bagli olarak degerlendirilmistir.
Elde edilen segmentler dogruluk kriterleri yardimiyla 6rnek alanlar ile karsilastirilarak
segmentler ve Ornek alanlar arasinda sekil benzerligi aranmistir. Berkeley Goriintii
Segmentasyon yontemi segmentasyon esnasinda ¢ok sayida parametre bilesimi
kullanilarak iiretilmis segmentasyon sonuglarint ornek alanlara benzerligine gore
otomatik olarak siralayabilmektedir. Berkeley Goriintli Segmentasyon yontemi bu islem
icin Hsu vd. (2008) ne ait calismada ad1 gegen ‘grid arastirma’ yontemini kullanmaktadir.
Ortalama Kaydirma Segmentasyon yontemi sonuglari igin bu islem elle yapilmistir. Bu
sayede iki yontem icin elde edilen en iyi sonuglar birbirleri ile karsilastirilarak test alani
icin hangi segmentasyon yoOnteminin daha giivenilir olduguna karar verilmistir. Elde

edilen sonuglar ve kullanilan parametreler sekil 3’ de verilmektedir.

Sekil 3. (a) Ortalama Kaydirma Segmentasyon Y ontemi ve (b) Berkeley Gorlintii

Segmentasyon Y Ontemi Sonuglart

Dogruluk analizleri sonucunda Ortalama Kaydirma yénteminin Berkeley Goriintii
Segmentasyon yoOntemine gore daha iyi sonucglar sergiledigi gozlenmistir. Ortalama
kaydirma yontemi i¢in kullanilan en uygun mekan ve renk degiskenleri sirasiyla 4, 9 ve
h,: 3 olarak belirlenmistir. Otomatik siralama islemi sonrasinda Berkeley Goriintii
Segmentasyonu i¢in en ideal parametreler sekil, yogunluk ve Olgek esik degeri igin

sirastyla s: 0.1, ¢: 0.9 ve T: 175 olarak belirlenmistir. Bu degiskenler kullanilarak
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ortalama kaydirma ydntemi i¢in segment sayist 562 olarak hesaplanirken Berkeley

Gorlintii Segmentasyon iglemi i¢in bu saymin 293 oldugu gozlenmistir.

Tiim sonuglar genel olarak incelendiginde Berkeley Goriintii Segmentasyon yontemine ait
Olgek esik degerinin artmasiyla elde edilen segment sayisinin ters orantili olarak diistiigi
gdzlenmistir. Diger bir ifade ile 6l¢ek esik degerinin artmasi iki ya da daha fazla parsele
ait segmentlerin birbirleri ile birlesmesine neden olmaktadir (over-segmentation). Diger
taraftan segmentasyon isleminde c¢ok kiigiik mekéansal ve renk degiskenleri (ks 4,)
kullanilmasinin gereginden fazla kiigiik segmentlere yol actigi goézlenmistir (under-

segmentation).

4. SONUCLAR

Segmentasyon sonuglarinin 6rnek alanlara gore detayli olarak degerlendirilmesi sadece
giivenilir segmentasyon sonuglar1 liretmeye yardimci olmakla kalmayip ayni zamanda var
olan segmentasyon algoritmalarinin iyilestirilmesinde dnemli bir siirectir (Zhang 1996;
Clinton vd. 2010). Bu calismada c¢esitli parametrelerle elde edilen segmentasyon
sonuglarmin 6rnek alanlar ile olan konum ve alan tabanli uyumu genis bir ¢ercevede
incelenmistir. Segmentasyon sonuglarimin birden ¢ok dogruluk Olgiim teknigi ile
degerlendirilmesinin  nedeni iretilen segment kalitesinin ¢esitli  faktorlerden

etkilenmesidir (Zhan vd. 2005).

Uretilen segmentler dogruluk dlgiitlerine gére siralandiktan sonra her iki yonteme ait en
uygun segmentasyon sonuglari dogruluk Olgiitlerine goére birbirleri ile de
kargilagtirilmigtir. Bu incelemeler 1s18inda Ortalama Kaydirma Yonteminin ¢aligma alani
i¢in en ideal segmentasyon sonucunu iirettigini géstermistir. Ortalama Kaydirma Y 6ntemi
en ideal sonucu saglamasina ragmen {iretilen bazi segmentlerde hala hatalar (over-

segmentation ve under-segmentation) oldugu gézlenmistir.

Tarim iiriinlerinin uydu goriintiilerinden tespit edilmesinde ¢ok zamanli goriintii kullanimi
analizlerde daha giivenilir sonuglar almak agisindan onemlidir (De Wit ve Clevers 2004).
Bununla birlikte segmentasyon islemi 6ncesinde ve sonrasinda yapilacak analizlerin de
kaliteli segmentler iiretmedeki basarisi da goz ardi edilmemesi gereken diger bir noktadir

(Zhang 1996).
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Segmentasyon islemi sonucunda liretilen sonuglarin dogruluk kriterlerine gore otomatik
olarak siralanmasi dogruluk analizlerindeki olast insan faktoriinii biiylik Olciide
azaltacaktir. Bu nedenle yeni gelistirilecek segmentasyon yontemlerinde bu durumun goz

onilinde bulundurulmasi arastirmacilara yarar saglayacaktir.
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APPENDIX F

SIGNATURE SEPARABILITY VALUES

Table F.1 The matrices of Bhattacharya distance for three-band, blue, green, red, of the
Kompsat-2 MS images taken in June, July, and August (a, c, e), with the Envisat ASAR
data (b, d, f).

Three-band Kompsat-2 MS image (blue, green, red) taken in June

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.91

Rice 1.32 1.62

Sugar beet 1.99 1.87 1.83

Wheat 1.89 1.50 1.45 1.94

Grass Land 1.32 0.90 0.50 1.71 1.16

Average Separability: 1.53

Signature pair with Minimum Separability: Rice, Grass Land

(a)

Three-band Kompsat-2 MS image (blue, green, red) with Envisat ASAR

data taken in June

Class Names Corn Tomato  Rice Sugar beet  Wheat
Tomato 1.92

Rice 1.44 1.67

Sugar beet 1.99 1.92 1.89

Wheat 1.90 1.52 1.51 1.96

Grass Land 1.37 1.26 0.66 1.94 1.24

Average Separability: 1.61

Signature pair with Minimum Separability: Rice, Grass Land

(b)
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Table F.1 (Cont’d)

Three-band Kompsat-2 MS image (blue, green, red) taken in July

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 0.78

Rice 1.73 1.82

Sugar beet 1.96 1.74 1.95

Wheat 1.89 1.99 1.99 2.00

Grass Land 1.65 1.91 1.99 1.99 1.46

Average Separability: 1.79

Signature pair with Minimum Separability: Corn, Tomato

(c)
Three-band Kompsat-2 MS image (blue, green, red) with Envisat ASAR
data taken in July

Class Names Corn Tomato  Rice Sugar beet ~ Wheat
Tomato 0.93
Rice 1.78 1.83
Sugar beet 1.96 1.74 1.96
Wheat 1.94 1.99 1.99 2.00
Grass Land 1.76 1.96 1.99 1.99 1.47

Average Separability: 1.82

Signature pair with Minimum Separability: Corn, Tomato

(d)

Three-band Kompsat-2 MS image (blue, green, red) taken in August

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.45

Rice 1.20 1.25

Sugar beet 1.76 0.99 0.85

Wheat 1.99 1.89 1.99 1.99

Grass Land 1.99 1.46 1.99 1.99 1.06

Average Separability: 1.59

Signature pair with Minimum Separability: Rice, Sugar beet

(e)
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Table F.1 (Cont’d)

Three-band Kompsat-2 MS image (blue, green, red) with Envisat ASAR

data taken in August

Class Names Corn Tomato  Rice Sugar beet  Wheat
Tomato 1.56

Rice 1.23 1.42

Sugar beet 1.79 1.02 1.18

Wheat 1.99 1.96 1.99 1.99

Grass Land 1.99 1.90 1.99 1.99 1.20

Average Separability: 1.68

Signature pair with Minimum Separability: Tomato, Sugar beet

Q)

Table F.2 The matrices of Bhattacharya distance for three-band, green, red, NIR of the
Kompsat-2 MS images taken in June- July-August (a, c, e), with Envisat ASAR data (b,

d, 1).
Three-band Kompsat-2 MS image (green, red, NIR) taken in June

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.89

Rice 1.99 1.99

Sugar beet 1.99 1.89 1.98

Wheat 1.97 1.46 1.90 1.95

Grass Land 1.47 1.17 1.97 1.80 1.49

Average Separability: 1.79

Signature pair with Minimum Separability: Tomato, Grass Land

(2)
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Table F.2 (Cont’d)

Three-band Kompsat-2 MS image (green, red, NIR) with Envisat ASAR

data taken in August

Class Names Corn Tomato  Rice Sugar beet ~ Wheat
Tomato 1.90

Rice 1.99 1.99

Sugar beet 1.99 1.93 1.99

Wheat 1.97 1.49 1.91 1.97

Grass Land 1.51 1.38 1.98 1.95 1.52

Average Separability: 1.83

Signature pair with Minimum Separability: Tomato, Grass Land

(b)

Three-band Kompsat-2 MS image (green, red, NIR) taken in July

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 0.89

Rice 1.73 1.88

Sugar beet 1.99 1.80 2.00

Wheat 1.99 1.99 2.00 2.00

Grass Land 1.91 1.95 1.99 1.99 1.38

Average Separability: 1.83

Signature pair with Minimum Separability: Corn, Tomato

(©)
Three-band Kompsat-2 MS image (green, red, NIR) with Envisat ASAR

data taken in July
Class Names Corn Tomato  Rice Sugar beet ~ Wheat
Tomato 1.03
Rice 1.78 1.89
Sugar beet 1.99 1.81 2.00
Wheat 1.99 1.99 2.00 2.00
Grass Land 1.93 1.98 1.99 1.99 1.41

Average Separability: 1.85

Signature pair with Minimum Separability: Corn, Tomato

(d)
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Table F.2 (Cont’d)

Three-band Kompsat-2 MS image (green, red, NIR) taken in August

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.49

Rice 1.41 0.91

Sugar beet 1.78 0.62 0.82

Wheat 1.99 1.87 1.99 1.99

Grass Land 1.99 1.63 1.99 1.99 0.88

Average Separability: 1.56

Signature pair with Minimum Separability: Tomato, Sugar beet

(©)

Three-band Kompsat-2 MS image (green, red, NIR) with Envisat ASAR
data taken in August

Class Names Corn Tomato  Rice Sugar beet  Wheat
Tomato 1.58

Rice 1.43 1.19

Sugar beet 1.81 0.68 1.14

Wheat 1.99 1.96 1.99 1.99

Grass Land 1.99 1.92 1.99 1.99 0.99

Average Separability: 1.64

Signature pair with Minimum Separability: Tomato, Sugar beet

)
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Table F.3 The matrices of Bhattacharya distance for three-band, blue, red, NIR of the
Kompsat-2 MS data taken in June-July-August (a, c, €), with Envisat ASAR data (b, d, f).

Three-band Kompsat-2 MS image (blue, red, NIR) taken in June

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.93

Rice 1.99 1.99

Sugar beet 1.85 1.51 1.98

Wheat 1.63 1.60 1.83 1.91

Grass Land 1.40 1.39 1.92 1.28 1.49

Average Separability: 1.74

Signature pair with Minimum Separability: Sugar beet, Grass Land

(a)

Three-band Kompsat-2 MS image (blue, red, NIR) with Envisat ASAR

data taken in June

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.94

Rice 1.99 1.99

Sugar beet 1.96 1.67 1.99

Wheat 1.97 1.63 1.84 1.95

Grass Land 1.44 1.56 1.93 1.84 1.52

Average Separability: 1.81

Signature pair with Minimum Separability: Corn, Grass Land

(b)

Three-band Kompsat-2 MS image (blue, red, NIR) taken in July

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 0.76

Rice 1.38 1.87

Sugar beet 1.94 1.40 2.00

Wheat 1.99 1.99 1.99 2.00

Grass Land 1.91 1.95 1.99 1.99 1.57

Average Separability: 1.78

Signature pair with Minimum Separability: Corn, Tomato

(©)

208



Table F.3 (Cont’d)

Three-band Kompsat-2 MS image (blue, red, NIR) with Envisat ASAR

data taken in July
Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 0.93
Rice 1.53 1.88
Sugar beet 1.95 1.42 2.00
Wheat 1.99 1.99 2.00 2.00
Grass Land 1.93 1.97 1.99 1.99 1.58

Average Separability: 1.81

Signature pair with Minimum Separability: Corn, Tomato

(d)

Three-band Kompsat-2 MS image (blue, green, NIR) taken in August

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.54

Rice 1.44 1.26

Sugar beet 1.82 1.01 0.87

Wheat 1.99 1.89 1.99 1.99

Grass Land 1.99 1.59 1.99 1.99 1.25

Average Separability: 1.64

Signature pair with Minimum Separability: Rice, Sugar beet

(e)
Three-band Kompsat-2 MS image (blue, red, NIR) with Envisat ASAR

data taken in August

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.49

Rice 1.28 1.41

Sugar beet 1.59 0.96 1.19

Wheat 1.99 1.97 1.99 1.99

Grass Land 1.99 1.92 1.99 1.99 1.33

Average Separability: 1.67

Signature pair with Minimum Separability: Tomato, Sugar beet

®
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Table F.4 The matrices of Bhattacharya distance for three-band, blue, green, NIR, of the
Kompsat-2 MS images taken in June, July, and August (a, c, ), with the Envisat ASAR
data (b, d, f).

Three-band Kompsat-2 MS image (blue, green, NIR) taken in June

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.93

Rice 1.99 1.99

Sugar beet 1.96 1.38 1.98

Wheat 1.93 1.24 1.28 1.45

Grass Land 1.42 1.34 1.88 1.02 1.26

Average Separability: 1.60

Signature pair with Minimum Separability: Sugar beet, Grass Land

(a)

Three-band Kompsat-2 MS image (blue, green, NIR) with Envisat ASAR

data taken in June

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.94

Rice 1.99 1.99

Sugar beet 1.99 1.59 1.99

Wheat 1.94 1.27 1.32 1.64

Grass Land 1.47 1.53 1.89 1.77 1.31

Average Separability: 1.71

Signature pair with Minimum Separability: Tomato, Wheat

(b)

Three-band Kompsat-2 MS image (blue, green, NIR) taken in July

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 0.84

Rice 1.64 1.88

Sugar beet 1.97 1.57 1.99

Wheat 1.94 1.96 1.99 2.00

Grass Land 1.76 1.82 1.98 1.99 1.07

Average Separability: 1.76

Signature pair with Minimum Separability: Corn, Tomato

(©)
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Table F.4 (Cont’d)

Three-band Kompsat-2 MS image (blue, green, NIR) with Envisat ASAR
data taken in July

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.00

Rice 1.71 1.89

Sugar beet 1.98 1.58 1.99

Wheat 1.97 1.99 1.99 2.00

Grass Land 1.84 1.94 1.99 1.99 1.14

Average Separability: 1.80

Signature pair with Minimum Separability: Corn, Tomato

(d)

Three-band Kompsat-2 MS image (blue, green, NIR) taken in August

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.54

Rice 1.44 1.26

Sugar beet 1.82 1.01 0.87

Wheat 1.99 1.89 1.99 1.99

Grass Land 1.99 1.59 1.99 1.99 1.25

Average Separability: 1.64

Signature pair with Minimum Separability: Rice, Sugar beet

(e)
Three-band Kompsat-2 MS image (blue, green, NIR) with Envisat ASAR

data taken in August

Class Names Corn Tomato Rice Sugar beet Wheat
Tomato 1.62

Rice 1.47 1.44

Sugar beet 1.84 1.03 1.21

Wheat 1.99 1.96 1.99 1.99

Grass Land 1.99 1.92 1.99 1.99 1.37

Average Separability: 1.72

Signature pair with Minimum Separability: Tomato, Sugar beet

®
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APPENDIX G

THE COLLECTED TRAINING SAMPLES

Legend

O Corn
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@ Tomato
O Wheat
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Figure G.1 The collected training sites of the MS Kompsat-2 image (green band) taken in

June
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Legend
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Figure G.2 The collected training sites of the MS Kompsat-2 image (green band) taken in

August
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APPENDIX H

THE PRODUCED THEMATIC MAPS

Figure H.1 Results of the pixel-based MLC of the four-band Kompsat-2 data (a,

c, &, g, i, k, m) with the probability maps (b, d, f, h, j, I, n)
214



Figure H.1 (Cont’d)
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Figure H.1 (Cont’d)
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Figure H.2 Results of the pixel-based MLC of the four-band Kompsat-2 and
Envisat ASAR data (a, ¢, e, g, i, k, m) with the probability maps (b, d, f, h, j, I, n)

216




Figure H.2 (Cont’d)
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Figure H.2 (Cont’d)
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Figure H.3 Results of the pixel-based SVMs of the four-band Kompsat-2
data (a, c, e, g, 1, k, m) with the probability maps (b, d, f, h, j, I, n)
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Figure H.3 (Cont’d)
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Figure H.3 (Cont’d)
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Figure H.4 Results of the pixel-based SVMs of the four-band Kompsat-2 and
Envisat ASAR data (a, c, e, g, I, k, m) with the probability maps (b, d, f, h, j, I, n)
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Figure H.4 (Cont’d)
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(Figure H.4 Cont’d)
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Figure H.5 (a, ¢, €, g, i, k, m) The segment-based results of the MLC for the

four-band MS Kompsat-2 images. (b, d, f, h, j, I, n) The classification results of

the same optical images with the Envisat-ASAR data.
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Figure H.5 (Cont’d)
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Figure H.5 (Cont’d)
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Figure H.6 (a, c, e, g, i, kK, m) The segment-based results of the SVMs

classification for the four-band MS Kompsat-2 images. (b, d, f, h, j, I, n). The
classification results of the same optical images with Envisat-ASAR data.
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Figure H.6 (Cont’d)
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Figure H.6 (Cont’d)
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Figure H.7 (a, c, e, g, i, k, m) The field-based results of the MLC method for the
MS Kompsat-2 images, (b, d, f, h, j, I, n) The classification results of the same

optical images with Envisat ASAR data.
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Figure H.7 (Cont’d)

230



Figure H.7 (Cont’d)
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Figure H.8 (a, c, e, g, i, k, m) The field-based results of the SVMs method for
the MS Kompsat-2 images acquired in June, July, and August, respectively. (b,
d, f, h, ], I, n). The classification results of the same optical images with Envisat-
ASAR data.
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Figure H.8 (Cont’d)
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Figure H.8 (Cont’d)
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APPENDIX 1

CONFUSION MATRICES OF THE PRODUCED THEMATIC MAPS

Table 1.1 Confusion matrix of the (a) pixel-based and (b) segment-based MLC,

respectively, for the map of June classified with Kompsat-2 data.

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 13 6 0 1 7 7 34 38.23
Grass Land 34 51 0 54 21 45 45 24.87
Rice 3 2 88 0 5 0 98 89.79
Sugar beet 20 7 3 28 18 1 77 36.36
Tomato 1 8 3 5 28 0 108 62.22
Wheat 8 23 7 5 14 51 205 47.22
Column T 79 97 101 93 93 97 567

PA ** (%) 16.45 52.57  87.12 30.10 30.10 49.03
Overall A (%): 45.67 Kappa: 0.34

(a)

Classes Corn  Grass Rice Sugar Tomato Wheat Ro*w UA***

Land beet T (%)
Corn 12 0 0 0 3 0 15 80
Grass Land 33 67 0 53 26 46 225 29.77
Rice 3 0 98 0 0 2 103 95.14
Sugar beet 22 5 2 30 13 1 73 41.09
Tomato 0 7 0 2 33 1 43 76.74
Wheat 9 18 1 8 18 54 108 50
Column T 79 97 101 93 93 104 567

PA ** (%) 15.19 69.07  97.03 32.25 35.48 51.92
Overall A (%): 51.85 Kappa: 0.41

(b)
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respectively, for the map of July classified with Kompsat-2 data.

Table 1.2 Confusion matrix of the (a) pixel-based and (b) segment-based MLC,

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 73 6 16 0 19 6 120 60.83
Grass Land 2 83 0 1 3 51 140 59.28
Rice 0 0 84 0 0 0 84 100
Sugar beet 0 0 8 85 2 0 95 89.47
Tomato 8 2 5 12 52 1 80 65
Wheat 0 3 1 0 0 44 48 91.66
Column T 83 94 114 98 76 102 567
PA ** (%) 87.95 88.29 73.68 86.73 68.42 43.13

Overall A (%): 74.25 Kappa: 0.69
(a)

Classes Corn  Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 83 1 10 1 29 9 133 62.40
Grass Land 0 92 3 1 0 50 146 63.01
Rice 0 0 88 0 0 0 88 100
Sugar beet 0 0 4 80 0 0 84 95.23
Tomato 0 1 9 16 47 0 73 64.38
Wheat 0 0 0 0 0 43 43 100
Column T 83 94 114 98 76 102 567
PA ** (%) 100 97.87 77.19 81.63 61.84 42.15

Overall A (%): 76.36 Kappa: 0.71
(b)

Table 1.3 Confusion matrix of the (a) pixel-based and (b) segment-based MLC,
respectively, for the map of August classified with Kompsat-2 data.

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 71 0 20 0 3 0 94 75.53
Grass Land 0 72 0 0 24 7 103 69.90
Rice 0 0 63 5 3 0 71 88.73
Sugar beet 1 0 10 65 21 0 97 67.01
Tomato 3 15 5 13 35 4 75 46.66
Wheat 0 25 0 0 0 102 127 80.31
Column T 75 112 98 83 86 113 567
PA ** (%) 94.66  64.28 64.28 78.31 40.69 90.26

Overall A (%): 71.95  Kappa: 0.66
(a)
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Table 1.3 (Cont’d)

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 70 0 19 1 6 0 96 72.91
Grass Land 0 87 1 0 23 3 114 76.31
Rice 0 0 71 0 0 0 71 100
Sugar beet 0 0 2 77 21 0 100 77
Tomato 5 13 5 5 36 6 70 51.42
Wheat 0 12 0 0 0 102 114 89.47
Column T 75 112 98 83 86 113 567

PA ** (%) 93.33 77.67 72.44 92.77 41.86 90.26
Overall A (%): 78.13  Kappa: 0.73

(b)

Table 1.4 Confusion matrix of the (a) pixel-based and (b) segment-based MLC,
respectively, for the map of June-July classified with Kompsat-2 data.

Classes Corn Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 57 7 3 1 30 6 104 54.80
Grass Land 1 85 1 3 5 34 129 65.89
Rice 0 0 920 1 1 0 92 97.82
Sugar beet 2 1 0 67 1 0 71 94.36
Tomato 10 2 1 11 53 1 78 67.94
Wheat 2 14 0 0 0 77 93 82.79
Column T 72 109 95 83 90 118 567

PA ** (%) 79.16 77.98 94.73 80.72 58.88 65.25
Overall A (%): 75.66 Kappa: 0.70

(a)

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 68 0 2 1 35 5 111 61.26
Grass Land 0 98 0 0 0 20 118 83.05
Rice 0 0 89 0 0 0 89 100
Sugar beet 2 0 0 77 0 0 79 97.46
Tomato 2 0 4 5 55 2 68 80.88
Wheat 0 11 0 0 0 91 102 89.21
Column T 72 109 95 83 90 118 567

PA ** (%) 9444 8990  93.68 92.77 61.11 77.11
Overall A (%): 84.30 Kappa: 0.81

(b)
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Table 1.5 Confusion matrix of the (a) pixel-based and (b) segment-based MLC,

respectively, for the map of June-August classified with Kompsat-2 data.

Classes Corn  Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 60 3 12 1 6 3 85 70.58
Grass Land 3 75 0 1 22 19 120 62.50
Rice 0 0 75 4 1 0 80 93.75
Sugar beet 1 1 4 64 18 0 88 72.72
Tomato 7 5 2 12 43 1 70 61.42
Wheat 0 25 2 1 0 95 124 76.61
Column T 72 109 95 83 90 118 567

PA ** (%) 83.33 68.80  78.94 77.10 47.77 80.50
Overall A (%): 72.66 Kappa: 0.67

(a)

Classes Corn Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 66 0 5 0 13 3 87 75.86
Grass Land 0 93 0 1 30 6 130 71.53
Rice 0 0 90 0 0 0 90 100
Sugar beet 1 0 0 75 16 0 92 81.52
Tomato 5 0 0 7 31 0 43 72.09
Wheat 0 16 0 0 0 109 125 87.20
Column T 72 109 95 83 90 118 567

PA ** (%) 91.66 85.32 94.73 90.36 34.44 92.37
Overall A (%): 81.83 Kappa: 0.78

(b)

Table 1.6 Confusion matrices of the (a) pixel-based and (b) segment-based MLC,
respectively, for the map of July-August classified with Kompsat-2 data.

Classes Corn  Grass Rice Sugar Tomato  Wheat Royv UA***

Land beet T (%)
Corn 66 3 17 1 25 3 115 57.39
Grass Land 0 78 0 0 7 13 98 79.59
Rice 0 0 70 2 0 0 72 97.22
Sugar beet 0 0 8 63 3 0 74 85.13
Tomato 6 3 0 17 55 3 84 65.47
Wheat 0 25 0 0 0 929 124 79.83
Column T 72 109 95 83 90 118 567

PA ** (%) 91.66 7156  73.68 75.90 61.11 83.89
Overall A (%): 76.01 Kappa: 0.71

(2)
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Table 1.6 (Cont’d)

Classes Corn  Grass Rice Sugar Tomato  Wheat Ro*w UA*#**

Land beet T (%)
Corn 92 1 14 1 29 6 143 64.33
Grass Land 0 91 0 1 0 5 97 93.81
Rice 0 0 80 0 0 0 80 100
Sugar beet 1 0 1 53 1 0 56 94.64
Tomato 3 3 1 19 53 1 80 66.25
Wheat 0 11 0 0 0 100 111 90.09
Column T 72 109 95 83 90 118 567
PA ** (%) 95.83 85.84 83.33 71.62 63.85 89.28

Overall A (%): 82.71 Kappa: 0.79
(b)

Table 1.7 Confusion matrices of the (a) pixel-based and (b) segment-based MLC,
respectively, for the combined map (June-July-August) classified with Kompsat-2 data.

Classes Corn  Grass Rice Sugar Tomato Wheat Ro*w UA***

Land beet T (%)
Corn 63 6 11 1 25 4 110 57.27
Grass Land 1 75 0 1 8 18 103 72.81
Rice 0 0 80 3 0 0 83 96.38
Sugar beet 1 1 4 63 3 0 72 87.50
Tomato 6 2 0 15 54 2 79 68.35
Wheat 1 25 0 0 0 94 120 78.33
Column T 72 109 95 83 90 118 567
PA ** (%) 87.50 68.80 84.21 75.90 60 79.66

Overall A (%): 75.66 Kappa: 0.70
(a)

Classes Corn  Grass  Rice  Sugar  Tomato Wheat Row | UA***

Land beet T (%)
Corn 68 0 2 1 35 7 113 60.17
Grass Land 0 93 0 0 0 2 95 97.89
Rice 0 0 89 0 0 0 89 100
Sugar beet 2 0 1 71 0 0 74 95.94
Tomato 2 0 3 11 55 2 73 75.34
Wheat 0 16 0 0 0 107 123 86.99
Column T 72 109 95 83 90 118 567
PA ** (%) 94.44 85.32 93.68 85.54 61.11 90.67

Overall A (%): 85.18 Kappa: 0.82
(b)
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Table 1.8 Confusion matrix of the (a) pixel-based and (b) segment-based MLC,
respectively, for the map of June classified with Kompsat-2 data and Envisat ASAR data.

Classes Corn  Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 12 5 0 0 7 6 30 40
Grass Land 33 61 0 21 14 45 174 35.05
Rice 3 2 91 0 3 0 99 91.91
Sugar beet 21 4 1 60 19 1 106 56.60
Tomato 3 6 3 6 32 0 50 64
Wheat 7 19 6 6 18 52 108 48.14
Column T 79 104 101 93 93 104 567
PA ** (%) 15.19 62.88 90.09 64.51 34.40 50

Overall A (%): 54.32 Kappa: 0.44
(a)

Classes Corn  Grass  Rice  Sugar  Tomato Wheat Row | UA***

Land beet T (%)
Corn 12 0 0 0 3 0 15 80
Grass Land 32 80 0 13 13 45 183 43.71
Rice 3 0 98 0 0 2 103 95.14
Sugar beet 22 0 1 70 13 1 107 65.42
Tomato 1 0 0 2 46 1 50 92
Wheat 9 17 2 8 18 55 109 50.45
Column T 79 97 101 93 93 104 567
PA ** (%) 15.19 82.47 97.03 75.26 49.46 52.88

Overall A (%): 63.66 Kappa: 0.56
(b)

Table 1.9 Confusion matrix of the (a) pixel-based and (b) segment-based MLC,
respectively, for the map of July classified with Kompsat-2 data and Envisat ASAR data.

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***
Land beet T (%)
Corn 75 9 16 0 18 6 124 60.48
Grass Land 3 82 0 1 3 47 136 60.29
Rice 0 0 83 0 0 0 83 100
Sugar beet 0 0 8 85 2 0 95 89.47
Tomato 5 0 6 12 53 1 77 68.83
Wheat 0 3 1 0 0 48 52 92.30
Column T 83 94 114 98 76 102 567
PA ** (%) 90.36 87.23 72.80 86.73 69.73 47.05
Overall A (%): 75.13  Kappa: 0.70
(a)
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Table 1.9 (Cont’d)

Classes Corn  Grass Rice Sugar Tomato  Wheat Ro*w UA*#**

Land beet T (%)
Corn 83 1 11 2 10 9 116 71.55
Grass Land 0 93 2 0 0 47 142 65.49
Rice 0 0 88 0 0 0 88 100
Sugar beet 0 0 4 80 0 0 84 95.23
Tomato 0 0 9 16 66 0 91 72.52
Wheat 0 0 0 0 0 46 46 100
Column T 83 94 114 98 76 102 567
PA ** (%) 100 98.93 77.19 81.63 86.84 45.09

Overall A (%): 80.42 Kappa: 0.76
(b)

Table 1.10 Confusion matrix of the (a) pixel-based and (b) segment-based MLC,
respectively, for the map of August classified with Kompsat-2 data and Envisat ASAR

data.

Classes Corn  Grass Rice Sugar Tomato Wheat ROXV UA***

Land beet T (%)
Corn 72 0 15 0 2 0 89 80.89
Grass Land 0 81 0 0 2 4 87 93.10
Rice 0 0 71 5 3 0 79 89.87
Sugar beet 1 1 7 66 18 0 93 70.96
Tomato 2 12 5 12 56 6 93 60.21
Wheat 0 18 0 0 5 103 126 81.74
Column T 75 112 98 83 86 112 567
PA ** (%) 96 72.32 72.44 79.51 65.11 91.15

Overall A (%): 79.18 Kappa: 0.75
(a)

Classes Corn  Grass  Rice  Sugar  Tomato Wheat Row | UA***

Land beet T (%)
Corn 69 0 14 1 6 0 90 76.66
Grass Land 0 89 0 0 4 4 97 91.75
Rice 0 0 77 0 0 0 77 100
Sugar beet 0 0 1 75 21 0 97 77.32
Tomato 6 11 6 7 55 5 90 61.11
Wheat 0 12 0 0 0 104 116 89.65
Column T 75 112 98 83 86 113 567
PA ** (%) 92 79.46 78.57 90.36 63.95 92.03

Overall A (%): 82.71 Kappa: 0.79

(b)
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Table 1.11 Confusion matrices of the (a) pixel-based and (b) segment-based MLC,
respectively, for the map of June-July classified with the MS Kompsat-2 and Envisat
ASAR data

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA*#**

Land beet T (%)
Corn 74 8 4 1 23 4 114 64.91
Grass Land 2 62 1 3 0 38 106 58.49
Rice 0 106 0 0 0 106 100
Sugar beet 0 3 0 72 2 0 77 93.50
Tomato 5 2 4 15 45 0 71 63.38
Wheat 1 10 1 3 0 78 93 83.87
Column T 82 85 116 94 70 120 567
PA ** (%) 90.24 72.94 91.37 76.59 64.28 65

Overall A (%): 77.07 Kappa: 0.72
(a)

Classes Corn  Grass Rice Sugar Tomato Wheat Ro*w UA***

Land beet T (%)
Corn 80 1 1 1 17 9 109 73.39
Grass Land 0 76 1 1 0 19 97 78.35
Rice 0 0 112 0 0 0 112 100
Sugar beet 0 0 0 83 0 0 83 100
Tomato 2 1 2 7 53 0 65 81.53
Wheat 0 7 0 2 0 92 101 91.08
Column T 82 85 116 94 70 120 567

PA ** (%) 97.56  89.41 96.55 88.29 75.71 76.66
Overall A (%): 87.48 Kappa: 0.84

(b)

Table 1.12 Confusion matrices of the (a) pixel-based and (b) segment-based MLC,
respectively, for the map of June-August classified with the MS Kompsat-2 and Envisat
ASAR data

Classes Corn  Grass Rice Sugar Tomato Wheat Ro*w UA***

Land beet T (%)
Corn 75 4 13 0 2 0 94 79.78
Grass Land 4 69 0 0 8 14 95 72.63
Rice 5 0 78 3 0 0 86 90.69
Sugar beet 1 0 2 81 12 0 96 84.37
Tomato 1 4 0 18 47 1 71 66.19
Wheat 2 22 0 0 4 97 125 77.60
Column T 82 99 93 102 73 112 567

PA ** (%) 85.22 69.69 83.87 79.41 64.38 86.60
Overall A (%): 78.83  Kappa: 0.74

(a)
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Table .12 (Cont’d)

Classes Corn  Grass Rice Sugar Tomato  Wheat Ro*w UA*#**

Land beet T (%)
Corn 63 0 0 1 9 2 75 84
Grass Land 0 93 0 0 6 2 101 92.07
Rice 0 0 92 0 0 0 92 100
Sugar beet 3 0 2 71 3 0 79 89.87
Tomato 6 0 1 11 72 2 92 78.26
Wheat 0 16 0 0 0 112 128 87.50
Column T 72 109 95 83 90 118 567
PA ** (%) 87.50 85.32 96.84 85.54 80 9491

Overall A (%): 88.71  Kappa: 0.86
(b)

Table 1.13 Confusion matrices of the (a) pixel-based and (b) segment-based MLC,
respectively, for the map of July-August classified with the MS Kompsat-2 and Envisat
ASAR data

Classes Corn  Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 84 5 10 0 12 2 113 74.33
Grass Land 0 82 0 0 1 13 96 85.41
Rice 0 0 78 3 1 0 82 95.12
Sugar beet 0 0 5 46 7 0 58 79.31
Tomato 11 4 3 25 60 1 104 57.69
Wheat 1 15 0 0 2 926 114 84.21
Column T 96 106 96 74 83 112 567

PA ** (%) 87.50  77.35 81.25 62.16 72.28 85.71
Overall A (%): 78.66  Kappa: 0.74

(a)
Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***
Land beet T (%)

Corn 83 1 11 1 10 6 112 74.10
Grass Land 0 92 0 1 0 2 95 96.84
Rice 0 1 84 0 0 0 85 98.82
Sugar beet 1 0 0 53 4 0 58 91.37
Tomato 12 2 1 19 69 1 104 66.34
Wheat 0 10 0 0 0 103 113 91.15
Column T 96 106 96 74 83 112 567

PA ** (%) 86.45 86.79 87.50 71.62 83.13 91.96
Overall A (%):85.36 Kappa: 0.82

(b)
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Table 1.14 Confusion matrices of the (a) pixel-based and (b) segment-based MLC,
respectively, for the combined map (June-July-August) classified with the MS Kompsat-2
and Envisat ASAR data

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA*#**

Land beet T (%)
Corn 67 6 6 1 19 4 103 65.04
Grass Land 1 77 0 0 1 19 98 78.57
Rice 0 0 84 2 0 86 97.67
Sugar beet 1 0 3 63 6 0 73 86.30
Tomato 2 3 2 17 64 1 89 71.91
Wheat 1 23 0 0 0 94 118 79.66
Column T 72 109 95 83 90 118 567
PA ** (%) 93.05 70.64 88.42 75.90 71.11 79.66

Overall A (%): 79.18  Kappa: 0.75
(a)

Classes Corn  Grass Rice Sugar Tomato Wheat Ro*w UA***

Land beet T (%)
Corn 63 0 2 1 9 6 81 71.77
Grass Land 0 93 0 0 0 2 95 97.89
Rice 0 0 920 0 0 0 90 100
Sugar beet 2 0 0 71 3 0 76 93.42
Tomato 7 0 3 11 78 2 101 77.22
Wheat 0 16 0 0 0 108 124 87.09
Column T 72 109 95 83 90 118 567
PA ** (%) 87.50 85.32 94.73 85.54 86.66 91.52

Overall A (%): 88.71  Kappa: 0.86
(b)

Table I.15 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,

respectively, for the map of June classified with Kompsat-2 data.

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***
Land beet T (%)

Corn 16 10 0 1 6 6 39 41.02
Grass Land 24 39 0 14 24 47 148 26.35
Rice 7 9 94 0 11 1 122 77.04
Sugar beet 18 9 0 68 18 0 113 60.17
Tomato 1 4 2 3 26 0 36 72.22
Wheat 13 26 5 7 8 50 109 45.87
Column T 79 97 101 93 93 104 567

PA ** (%) 20.25 40.20 93.06 73.11 27.95 48.07

Overall A (%): 51.67 Kappa: 0.41
(a)
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Table .15 (Cont’d)

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***
Land beet T (%)

Corn 16 3 0 0 3 0 22 72.72
Grass Land 27 60 0 3 26 48 164 36.58
Rice 6 0 98 1 9 5 119 82.35
Sugar beet 24 4 0 80 13 0 121 66.11
Tomato 0 0 0 2 33 0 35 94.28
Wheat 6 30 3 7 9 51 106 48.11
Column T 79 97 101 93 93 104 567

PA ** (%) 20.25 61.85 97.03 86.02 35.48 49.03

Overall A (%): 59.61 Kappa: 0.51
(b)

Table 1.16 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,
respectively, for the map of July classified with Kompsat-2 data.

Classes Corn Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 71 12 12 0 6 7 108 65.74
Grass Land 2 63 0 0 0 15 80 78.75
Rice 0 0 72 0 0 0 72 100
Sugar beet 0 0 0 78 1 0 86 90.69
Tomato 10 14 22 20 69 2 137 50.36
Wheat 0 5 1 0 0 78 84 92.85
Column T 83 94 114 98 76 102 567
PA ** (%) 85.54 67.02 63.15 79.59 90.78 76.47

Overall A (%): 76.01 Kappa: 0. 71
(a)

Classes Corn  Grass Rice Sugar Tomato  Wheat Royv UA***

Land beet T (%)
Corn 83 5 8 1 7 7 111 74.77
Grass Land 0 84 2 0 0 11 97 86.59
Rice 0 0 83 0 0 0 83 100
Sugar beet 0 0 4 76 0 0 80 95
Tomato 0 5 17 21 69 2 114 60.52
Wheat 0 0 0 0 82 82 100
Column T 83 94 114 98 76 102 567
PA ** (%) 100 89.36 72.80 77.55 90.78 80.39

Overall A (%): 84.12  Kappa: 0.81

(b)
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Table 1.17 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,
respectively, for the map of August classified with Kompsat-2 data.

Classes Corn  Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 74 0 33 0 1 0 108 68.51
Grass Land 0 55 2 0 17 8 82 67.07
Rice 0 1 62 14 0 78 79.48
Sugar beet 0 0 8 39 5 0 52 75
Tomato 9 16 8 44 51 4 132 38.63
Wheat 0 22 1 1 1 90 115 78.26
Column T 83 94 114 98 76 102 567

PA ** (%) 89.15 58.51 54.38 39.76 67.10 88.23
Overall A (%): 65.43 Kappa: 0.58

(a)

Classes Corn Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 70 0 31 1 1 0 103 67.96
Grass Land 0 59 1 0 13 6 79 74.68
Rice 0 0 59 0 0 59 100
Sugar beet 0 0 2 40 5 0 47 85.10
Tomato 5 10 5 42 67 2 131 51.14
Wheat 0 43 0 0 0 105 148 70.94
Column T 75 112 98 83 86 113 567

PA ** (%) 93.33 52.67 60.20 48.19 77.90 92.92
Overall A (%): 70.54 Kappa: 0. 64

(b)

Table 1.18 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,

respectively, for the map of June-July classified with Kompsat-2 data.

Classes Corn  Grass Rice Sugar Tomato  Wheat Royv UA***

Land beet T (%)
Corn 64 12 3 0 4 7 90 71.11
Grass Land 7 65 1 0 3 15 91 71.42
Rice 4 1 102 0 1 0 108 94.44
Sugar beet 2 2 2 82 5 0 93 88.17
Tomato 6 6 5 16 63 1 97 64.94
Wheat 0 8 1 0 0 79 88 89.77
Column T 83 94 114 98 76 102 567

PA ** (%) 77.10  69.14  89.47 83.67 82.89 77.45
Overall A (%): 80.24  Kappa: 0.76

(2)
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Table 1.18 (Cont’d)

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 79 0 0 0 6 7 92 85.87
Grass Land 0 92 0 0 0 9 101 91.08
Rice 4 0 111 1 1 0 117 94.87
Sugar beet 0 0 0 85 0 0 85 100
Tomato 0 2 1 12 69 2 86 80.23
Wheat 0 0 2 0 0 84 86 97.67
Column T 83 94 114 98 76 102 567

PA ** (%) 95.18 97.87 97.36 86.73 90.78 82.35
Overall A (%): 91.71  Kappa: 0.90

(b)

Table 1.19 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,

respectively, for the map of June-August classified with Kompsat-2 data.

Classes Corn Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 57 6 3 0 2 2 70 81.42
Grass Land 12 57 0 0 19 10 98 58.16
Rice 4 1 106 10 7 0 128 82.81
Sugar beet 5 3 1 55 6 0 70 78.57
Tomato 4 7 3 32 37 2 85 43.52
Wheat 1 20 1 1 5 88 116 75.86
Column T 83 94 114 98 76 102 567

PA ** (%) 68.67 60.63 92.98 56.12 48.68 86.27
Overall A (%): 70.54 Kappa: 0.64

(a)
Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***
Land beet T (%)

Corn 79 1 0 0 6 0 86 91.86
Grass Land 0 73 0 0 21 1 95 76.84
Rice 4 0 112 1 10 3 130 86.15
Sugar beet 0 1 0 69 0 0 70 98.57
Tomato 0 2 0 28 39 2 71 54.93
Wheat 0 17 2 0 0 926 115 83.47
Column T 83 94 114 98 76 102 567

PA ** (%) 95.18 77.66  98.24 70.40 51.31 94.11
Overall A (%): 82.54  Kappa: 0.78

(b)
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Table 1.20 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,
respectively, for the map of July-August classified with Kompsat-2 data.

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 73 7 19 0 3 4 106 68.86
Grass Land 0 70 0 0 0 6 76 92.10
Rice 0 1 78 3 1 0 83 93.97
Sugar beet 0 0 3 69 1 0 73 94.52
Tomato 10 10 13 25 71 3 132 53.78
Wheat 0 6 1 1 0 89 97 91.75
Column T" 83 94 114 98 76 102 567
PA ** (%) 87.95 7446  68.42 70.40 93.42 87.25

Overall A (%): 79.36  Kappa: 0.75
(a)

Classes Corn  Grass  Rice  Sugar  Tomato Wheat Row | UA***

Land beet T (%)
Corn 79 1 10 1 7 7 105 75.23
Grass Land 0 89 2 0 0 8 99 89.89
Rice 0 0 97 0 0 0 97 100
Sugar beet 0 0 2 72 0 0 74 97.29
Tomato 4 4 3 25 69 2 107 64.48
Wheat 0 0 0 0 0 85 85 100
Column T 83 94 114 98 76 102 567
PA ** (%) 95.18  94.68 85.08 73.46 90.78 83.33

Overall A (%): 86.59 Kappa: 0.83
(b)

Table 1.21 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,
respectively, for the map of the combined map (June-July-August) classified with

Kompsat-2 data.

Classes Corn Grass Rice Sugar Tomato  Wheat Roy UA***
Land beet T (%)

Corn 66 9 4 0 3 3 85 77.64
Grass Land 5 68 0 0 3 5 81 83.95
Rice 4 0 103 3 2 0 112 91.96
Sugar beet 2 2 1 73 4 0 82 89.02
Tomato 6 6 5 21 64 3 105 60.95
Wheat 0 9 1 1 0 91 102 89.21
Column T 83 94 114 98 76 102 567

PA ** (%) 79.51 72.34 90.35 74.49 84.21 89.21

Overall A (%): 82.01 Kappa: 0.78
(a)
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Table [.21 (Cont’d)

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 79 1 0 0 6 7 93 84.94
Grass Land 0 87 0 0 0 1 88 98.86
Rice 4 0 111 1 1 0 117 94.87
Sugar beet 0 0 0 80 0 0 80 100
Tomato 0 3 1 17 69 2 92 75
Wheat 0 3 2 0 0 92 97 94.84
Column T 83 94 114 98 76 102 567

PA ** (%) 95.18 92.55 97.36 81.63 90.78 90.19
Overall A (%): 91.85 Kappa: 0.89

(b)

Table 1.22 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,
respectively, for the map of June classified with Kompsat-2 data and Envisat ASAR data.

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 19 12 0 2 8 5 41.30
Grass Land 21 46 0 2 14 46 35.65
Rice 5 7 95 0 9 0 81.89
Sugar beet 20 5 0 77 20 2 62.09
Tomato 1 4 1 4 35 0 71.71
Wheat 13 23 5 8 7 51 47.66
Column T 79 97 101 93 93 104 567

PA ** (%) 24.05 47.42 94.05 82.79 37.63 49.03
Overall A (%): 56.96 Kappa: 0.48

(a)

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 17 4 0 0 4 1 26 65.38
Grass Land 19 71 0 3 14 42 149 47.65
Rice 3 0 97 0 9 3 112 86.60
Sugar beet 31 1 0 79 13 3 127 62.20
Tomato 0 0 0 4 44 1 49 89.79
Wheat 9 21 4 7 9 54 104 51.92
Column T 79 97 101 93 93 104 567

PA ** (%) 21.51 73.19  96.04 84.94 47.31 51.92
Overall A (%): 63.84 Kappa: 0.56

(b)
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Table 1.23 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,
respectively, for the map of July classified with Kompsat-2 data and Envisat ASAR data.

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 74 9 10 0 8 7 108 68.51
Grass Land 2 78 1 0 1 11 93 83.87
Rice 0 0 73 0 0 0 73 100
Sugar beet 0 0 8 77 1 0 86 89.53
Tomato 7 4 21 21 66 3 122 54.09
Wheat 0 3 1 0 0 81 85 95.29
Column T 83 94 114 98 76 102 567

PA ** (%) 89.15 82.97 64.03 78.57 86.84 79.41
Overall A (%): 79.18 Kappa: 0.75

(a)

Classes Corn  Grass  Rice  Sugar Tomato Wheat Row | UA***
Land beet T (%)
Corn 83 0 9 1 6 7 106 78.30
Grass Land 0 92 2 0 0 11 105 87.61
Rice 0 0 81 0 0 0 81 100
Sugar beet 0 0 2 76 0 0 78 97.43
Tomato 0 2 20 21 70 2 115 60.87
Wheat 0 0 0 0 0 82 82 100
Column T 83 94 114 98 76 102 567
PA ** (%) 100 97.87  71.05 77.55 92.10 80.39
Overall A (%): 85.36 Kappa: 0.82
(b)

Table 1.24 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,
respectively, for the map of August classified with Kompsat-2 data and Envisat ASAR

data.
Classes Corn  Grass Rice Sugar Tomato  Wheat Royv UA***
Land beet T (%)
Corn 71 0 23 0 5 0 99 71.71
Grass Land 0 67 0 0 0 4 71 94.36
Rice 0 0 63 3 1 0 67 94.03
Sugar beet 1 0 9 50 3 0 63 79.36
Tomato 3 13 3 30 76 5 130 58.46
Wheat 0 32 0 0 1 104 137 7591
Column T 75 112 98 83 86 113 567

PA ** (%) 94.66  59.82  64.28 60.24 88.37 92.03
Overall A (%): 76.01 Kappa: 0.71

(2)
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Table .24 (Cont’d)

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 69 0 26 1 1 0 97 71.13
Grass Land 0 92 1 0 0 7 100 92
Rice 0 0 62 0 0 0 62 100
Sugar beet 0 0 3 40 8 0 51 78.43
Tomato 6 1 6 42 77 2 134 57.46
Wheat 0 19 0 0 0 104 123 84.55
Column T 75 112 98 83 86 113 567
PA ** (%) 92 82.14 63.26 48.19 89.53 92.03

Overall A (%): 78.30 Kappa: 0.73
(b)

Table 1.25 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,
respectively, for the map of June-July classified with Kompsat-2 data and Envisat ASAR

data.

Classes Corn Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 61 10 3 0 3 7 84 72.61
Grass Land 4 73 0 0 2 13 92 79.34
Rice 4 104 0 1 0 109 95.41
Sugar beet 9 3 0 84 13 1 110 76.36
Tomato 3 3 5 14 56 1 82 68.29
Wheat 2 2 0 1 80 90 88.88
Column T 83 94 114 98 76 102 567
PA ** (%) 73.49 77.66 91.22 85.71 73.68 78.43

Overall A (%): 80.77 Kappa: 0.76
(a)

Classes Corn  Grass Rice Sugar Tomato  Wheat Royv UA***

Land beet T (%)
Corn 75 0 0 1 6 7 89 84.27
Grass Land 0 93 1 0 0 1 95 97.89
Rice 4 0 111 1 1 0 117 94.87
Sugar beet 4 0 0 85 0 1 90 94.44
Tomato 0 1 1 11 69 1 83 83.13
Wheat 0 0 1 0 0 92 93 98.92
Column T 83 94 114 98 76 102 567
PA ** (%) 90.36  98.93 97.36 86.73 90.78 90.19

Overall A (%): 92.59  Kappa: 0.91

(b)
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Table 1.26 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,
respectively, for the map of June-August classified with Kompsat-2 data and Envisat

ASAR data.

Classes Corn  Grass Rice Sugar Tomato Wheat Ro*w UA***

Land beet T (%)
Corn 56 2 2 0 0 3 63 88.88
Grass Land 5 70 0 1 2 7 85 82.35
Rice 4 0 108 1 5 0 118 91.52
Sugar beet 14 2 0 81 11 1 109 74.31
Tomato 2 2 3 14 56 0 77 72.72
Wheat 2 18 1 1 2 91 115 79.13
Column T 83 94 114 98 76 102 567

PA ** (%) 67.47 7446  94.73 82.65 73.68 89.21
Overall A (%): 81.48  Kappa: 0.77

(a)

Classes Corn Grass Rice Sugar Tomato  Wheat Ro*w UA***

Land beet T (%)
Corn 75 1 0 0 6 1 83 90.36
Grass Land 0 80 0 0 0 0 80 100
Rice 4 0 112 1 10 3 130 86.15
Sugar beet 4 0 0 86 0 1 96 89.58
Tomato 0 2 0 11 55 1 69 79.71
Wheat 0 11 2 0 0 926 109 88.07
Column T 83 94 114 98 76 102 567

PA ** (%) 90.36 85.10 98.24 87.75 72.36 94.11
Overall A (%): 88.88 Kappa: 0.86

(b)

Table 1.27 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,

respectively, for the map of July-August classified with Kompsat-2 data and Envisat

ASAR data.

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 72 2 12 0 3 5 94 76.59
Grass Land 1 82 1 0 0 6 90 91.11
Rice 0 0 89 4 1 0 94 94.68
Sugar beet 0 0 2 64 2 0 68 94.11
Tomato 10 3 9 29 70 1 122 57.37
Wheat 0 7 1 1 0 920 99 90.90
Column T 83 94 114 98 76 102 567

PA ** (%) 86.74  87.23 78.07 65.30 92.10 88.23
Overall A (%): 82.36 Kappa: 0.78

(2)
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Table .27 (Cont’d)

Classes Corn  Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 79 1 9 2 7 7 105 75.23
Grass Land 0 89 2 0 0 8 99 89.89
Rice 0 0 929 0 0 0 99 100
Sugar beet 0 0 2 69 0 0 71 97.18
Tomato 4 3 2 27 69 1 106 65.09
Wheat 0 1 0 0 0 86 87 98.85
Column T 83 89 114 98 76 102 567
PA ** (%) 95.18 94.68 86.84 70.40 90.78 84.31

Overall A (%): 86.59 Kappa: 0.83
(b)

Table 1.28 Confusion matrix of the (a) pixel-based and (b) segment-based SVM,
respectively, for the combined map (June-July-August) classified with Kompsat-2 data
and Envisat ASAR data.

Classes Corn Grass Rice Sugar Tomato  Wheat ROXV UA***

Land beet T (%)
Corn 59 3 4 0 0 3 69 85.50
Grass Land 4 78 0 0 1 6 89 87.64
Rice 4 0 106 1 1 0 112 94.64
Sugar beet 11 2 0 81 10 1 105 77.14
Tomato 3 2 3 15 64 1 88 72.72
Wheat 9 1 1 0 91 104 87.50
Column T 83 94 114 98 76 102 567
PA ** (%) 71.08 82.97 92.98 82.65 84.21 89.21

Overall A (%): 84.48 Kappa: 0.81
(a)

Classes Corn  Grass Rice Sugar Tomato  Wheat Royv UA***

Land beet T (%)
Corn 75 1 1 1 6 4 88 85.22
Grass Land 0 89 0 0 0 1 90 98.88
Rice 4 0 111 1 1 0 117 94.87
Sugar beet 4 0 0 83 0 1 88 94.31
Tomato 0 0 0 13 69 1 83 83.13
Wheat 0 4 2 0 0 95 101 94.05
Column T 90.36  94.68 97.36 84.69 90.78 93.13 567
PA ** (%)

Overall A (%): 92.06  Kappa: 0.90
(b)
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Table 1.29 Segment-based results of the MLC method of the (a) class pea and (b) late
corn computed for the Kompsat-2 and Envisat ASAR data.

Classes Corn Grass Rice Sugar Tomato Wheat Pea RO:N UA***

Land beet T (%)
Corn 9 3 0 1 1 8 1 23 39.13
Grass Land 29 51 1 2 17 28 134 38.06
Rice 1 0 88 2 2 1 10 104 84.61
Sugar beet 3 2 2 63 7 3 2 82 76.82
Tomato 3 5 0 17 5 34 50
Wheat 5 18 4 2 6 76 25 136 55.88
Pea 6 2 4 6 35 54 64.81
Column T* 56 81 96 73 54 123 84 567

PA ** (%) 16.07 6296 91.66  86.30 31.48 61.78  41.66
Overall A (%): 59.78 Kappa: 0.52

(a)

Classes Corn Grass Rice Sugar Tomato Wheat Late Roy UA***
Land beet Corn T (%)
Corn 64 1 0 0 13 0 31 111 57.65
Grass 0 54 0 0 0 31 4 89 60.67
Land
Rice 0 0 83 1 4 1 0 89 93.25
Sugar beet 0 0 4 71 1 0 0 76 93.42
Tomato 3 0 1 9 51 0 1 65 78.46
Wheat 0 14 2 0 0 63 9 88 71.59
Late Corn 1 9 0 0 6 3 30 49 61.22
Column T 68 78 90 81 75 98 77 567
PA ** (%) 94.11 6923 9222  87.65 68 64.28 38.96
Overall A (%): 73.36 Kappa: 0.68
(b)

Table 1.30 Confusion matrix of the MLC field-based results for all the reference fields
computed for the Kompsat-2 and Envisat ASAR data

Corn Grass Rice Sugar Tomato  Wheat Row UA
Land beet T

Corn 26 0 1 0 1 6 34 76.47
Grass Land 0 25 0 0 0 2 27 92.59
Rice 0 0 48 0 0 1 49 97.95
Sugar beet 0 0 0 54 0 0 54 100
Tomato 1 0 5 8 0 14 57.14
Wheat 0 3 0 0 84 87 96.55
Column T 27 28 49 59 9 93 265
PA 96.29 89.28 97.95 91.52 88.88 90.32

Overall A (%): 92.45 Kappa: 0.90
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Table 1.31 Confusion matrix of the field-based results for the MLC method computed for
small fields (0.1-4.9 ha) with the Kompsat-2 and Envisat ASAR data.

Corn Grass Rice Sugar Tomato  Wheat Row UA
Land beet T

Corn 25 0 0 0 1 5 31 80.64
Grass Land 0 7 0 0 0 2 9 77.77
Rice 0 0 34 0 0 1 35 97.14
Sugar beet 0 0 0 48 0 0 48 100
Tomato 1 0 0 5 8 0 14 57.14
Wheat 0 3 0 0 0 55 58 94.82
Column T 26 10 34 53 9 63 195
PA 96.15 70 100 90.56 88.88 87.30

Overall A (%): 90.76 Kappa: 0.81

Table 1.32 Confusion matrix of the field-based results for the MLC method computed for
medium fields (5 - 9.9 ha) with the Kompsat-2 and Envisat ASAR data.

Grass Rice Sugar Wheat Row UA
Land beet T
Grass Land 6 0 0 0 6 100
Rice 0 12 0 0 12 100
Sugar beet 0 1 1 0 2 50
Wheat 0 0 0 12 12 100
Column T 6 13 0 0 32
PA 100 9230 100 100 |

Overall A (%): 96.87 Kappa: 0.95

Table 1.33 Confusion matrix of the field-based results for the MLC method computed for
large fields (10 - 38 ha) with the Kompsat-2 and Envisat ASAR data.

Grass Rice ‘Wheat Row UA
Land T
Grass Land 9 0 0 9 100
Rice 0 1 0 1 100
Wheat 0 0 12 12 100
Column T 9 1 12 22
PA 100 100 100 100

Overall A (%): 100 Kappa: 100
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Table [.34 Confusion matrix of the field-based results for the SVMs method computed for
all the fields with the Kompsat-2 and Envisat ASAR data.

Corn Grass Rice Sugar Tomato  Wheat Row UA

Land beet T
Corn 24 0 0 0 0 3 27 88.88
Grass Land 0 24 0 0 0 4 28 85.71
Rice 1 0 49 0 0 1 51 96.07
Sugar beet 2 0 0 53 0 2 57 92.98
Tomato 0 2 0 6 9 0 17 52.94
Wheat 0 2 0 0 0 83 85 97.64
Column T 27 28 49 59 9 93 265
PA 88.88 85.71 100 89.83 100 89.24

Overall A (%): 91.31 Kappa: 0.88
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