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ABSTRACT

ACOUSTIC SURFACE PERCEPTION THROUGH THE GROUND INTERACTNADF
COMPLIANT LEGS OF A HEXAPOD ROBOT

Ozkul, Mine Ciineyitoglu
M.S., Department of Mechanical Engineering
Supervisor : Asst. Prof. Dr. Yigit Yazicioglu

Co-Supervisor : Asst. Prof. Dr. Afsar Saranli

January 2012, 83 pages

A dynamically dexterous legged robot platform generatesi§ip acoustic signals during the
interaction with the ground and the environment. These staosignals are expected to con-
tain rich information that is related to the interactionfage as a function of the position of
the legs and the overall contact process mixed with the tmtsaunds that initiate the move-
ment. As the robot platform walks or runs in any environméhrig convolved acoustic signal
created can be processed and analyzed in real time opeaatibthe interaction surface can
be identified. Such a utilization of acoustic data can beiplesfor various indoor and out-
door surfaces and this can be useful in adjusting gait paemthat play an essential role in
dynamic dexterity. In this work, surface type identificatis achieved using several popular
signal processing and pattern classification methods neéhemobot platform but @-line.
The performances of the selected features and algorithensvatuated for the collected data
sets and these outputs are compared with the expectatiepgnDing on thefé-line training
and experiment results, the applicability of the study tearbedded robot platform as a fu-
ture application is found quite feasible and the surface ggan input to the robot sensing is

expected to improve the mobility of the robot in both indond @utdoor environment.
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0z

ALTI BACAKLI B IR ROBOTUN ESNEK BACAKALARININ YUZEY ETKILESIMINI
KULLANARAK AKUSTIK Y UZEY ALGILAMASI

Ozkul, Mine Ciineyitoglu
Yiiksek Lisans, Makina Muhendisligi Bolimi
Tez Yoneticisi : Asst. Prof. Dr. Yigit Yazicioglu
Ortak Tez Yoneticisi : Asst. Prof. Dr. Afsar Saranli

Ocak 2012, 83 sayfa

Dinamik ceviklige sahip bacakl bir robot platformu hieehalindeyken cevresiyle etkilesim
halinde oldugu igin akustik sinyaller yayar. Bu akusiikysllerin iceriginde, hareketi saglayan
eyleyicilerin seslerine karismis olarak, bacaklariziggonuna ve etkilesim yuzeyi ile olan
etkilesim surecinin tamamina dair bilgiler bulunmasklbamektedir. Bu karisik sinyali
gercek zamanl olarak islemenin ve sinaylin icerismagkilesim yuzeyinin turiine dair bil-
giyi elde etmenin mimkin oldugu diustnilmektediu tBr bir siirecten elde edilecek yilizey
tipi verisi, bacakl bir robot platformumun yurtyusrpanetrelerini belirlemesine katkida bu-
lunarak cesitli i¢c ve dis ortamlardaki ¢eviklik perfoansini arttiracagi igin dnemlidir. Bu
calismada, robot Uzerinde gercek zamanli islemengereriler ayri bir kaynakta toplanmistir
ve bu ayri ortamda c¢esitli sinyal isleme ve oruntutalama teknikleri uygulanarak incelenmis-
tir. Bu inceleme sonucu cesitli islem parametrelering oruntl tanima algoritmalarinin
karar surecine olan katkilari ve performanslari analiteezk deneyler dncesi beklentiler ile
kiyaslanmistir. Sonuglar degerlendirildiginde, Bu bir analiz ile dnemli miktarda basarili
sonuglar elde edildigi goriimustir ve bu tir birgwyama robot platformu Gzerinde gomul
olarak yapildigi taktirde robotun ylzey tipini tayin etgini saglayabilir. Bu sayede robo-

tun icinde bulundugu ortami algilayarak i¢ ve dis ortlanhareket kabiliyetinin artmasi stz
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konusu olabilecektir.

Anahtar Kelimeler: Bacakli Robotlar, Akustik Algilaman®landirma, Yuzey Tipi, Tanimlama
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CHAPTER 1

INTRODUCTION

Sensing and perception of the environment is an indispénsdiiity for all living creatures.
Acoustic sensing of the environment is essential for sahsince it has a great role in getting
alert from the surrounding dangers even if the threat is blihe of sight. Even the fish, the
simplest animal, can hear up to several kHz and make usesadliiility as a tool for survival
[1]. When this consequential ability is examined more inadeit will be realized that a
huge amount of data related to the composition of the enwiestt comes from the sensory
organs related to acoustic perception. Another vital cuteof acoustic perception for more
complex living organisms is communication. One of the mosi-known example is maybe
the under water communication of whales. Some species dewlean hear and decompose
from very low frequency sounds like 10 Hz, up to several haddtHz and moreover, they

can actively communicate to other whales even if there dters of distance between them

[2].

Putting the sea world and world of predators and preys inuthgl¢ aside, hearing and acous-
tic perception has been an important part of human historyedls with music and oral tra-
dition. Undoubtedly, in present day’s modern life, speeldypthe utmost important role in
communication. According to survey done with British pexg@ female person speaks 8805
words per day and a male person speaks 6073 words on avettade §8ldition to commu-
nication, people get emotional stimulus via music which alteayifts of the psychoacoustic

ability.

Moving from the realm of living creatures to the world of raéles, biomimetics, a relatively
new and an interdisciplinary area that studies on the desitie nature and search the appli-

cability of those designs in engineering problems [4] isdmsinig more common. In robotics



world, where biomimetic approaches are appreciated duestofunctionality in solving var-
ious challenging problems, sensing can be considered asant&l part of robotics research.
Among the literature survey done through all of this thesxpss, there are not many exam-
ples of biomimetic sensing found compared to robotic apfitmis that make use of advanced
sensing. In all of the industries such as automotive, defeestile, shortly, in any mass pro-
duction line, such high technology sensing applicatiores@enty since industrial robotics
cannot be thought of without sensors. Robotics world begelfit from advanced sensing
that make use of some sophisticated signal processingtaperand pattern classification

algorithms.

Among sensing types like visual sensing, acoustic sensitigsaenars, infrared or other types
of proximity sensing, tactile sensing, inertial sensing an on, acoustic sensing within the
audible range has not been quite popular except for the vaespeech processing. Speech
processing is undoubtedly a very important element in hurolot interaction area. How-
ever, the examples given the previous paragraphs are nditsggexamples of acoustic sens-
ing in nature. With making use of a biomimetic approach, telman sense and adapt the
environment like those living creatures that make use df mmustic perception ability of
non-speech signals. In the following section, a compitatid various robotic acoustic per-

ception studies that are extracted from the literature ersgmted.

1.1 ROBOTIC ACOUSTIC PERCEPTION

After a broad literature survey, it is observed that the neimdnd the success of studies on
speech perception is enormous [5]. Among acoustic sensidgparception within audible
range, sound source localization and classification is @oitant branch of study [6]. Among
the field of environment identification via acoustic per@aptcurrent studies are mostly done

in the laboratory settings [7], [8] and are concentrated wumdn generated sounds.

In the fields other than robotics, there are numerous apiglica of acoustic sensing like
medical diagnosis in biomedical applications [9] or in miaehthealth monitoring in industry
[10]. In the future, works in robotic acoustic perceptiom @afact make use of the methods
used in these fields as well. Signal conditioning and pracgds another essential part of

sensing problems, that in the end help, the robot extracteidteires related to the ambient.

2



Finally, sophisticated pattern classification algorithtnsne in handy while making sense of

the environment data collected and extracted.

1.1.1 ANALYSIS OF NON-SPEECH SIGNALS

From literature to a versatile number of applications inustdy, in music, in medicine and
S0 on, the acoustic data is often examined with some very ammfeatures like frequency
components, pitch, intensity, that are of time domain aedudency domain. Power spec-
trum estimate of a sound signal that is to be explained indhevfing chapters is a powerful
method to determine the frequency composition of it. Onb@hhost common tools in acous-
tic signal processing is the discrete Fourier transformTE1], [5]. With transformation to
frequency domain with applying the so-called short timeriavutransform, the power spec-
trum estimate of a signal for any time interval can be eswuand frequency content of the
signal can be revealedfectively. In addition to its use in speech processing, pagectrum

can be used in analyzing non - speech signfiecgvely as well.

There are transforms other than Fourier Transform that waek on acoustic signals like
Wavelet transform [12] or advanced filtering methods [1&} thsignal can be represented or
further analyses on frequency spectrum called cepstréysisaHowever, in the scope of this
study, only zero crossing rate analysis and Fourier tramsfe applied with its most common
form Fast Fourier Transform algorithm and its performarsc®iind satisfactory and no more

other techniques are applied.

1.1.2 EARLIER STUDIES ON INTERACTION AND IMPACT SOUNDS

In a PhD thesis presented in the field of Cognitive Sciencg Hcdustic models and theories
that lie behind daily sounds are examined. In this studytamirsounds of objects are stud-

ied in particular and these sounds are classified into thesi lcategories like material type,
interaction type and configuration. Since that is a thesisogmitive science, later on, the per-
ceptual and psychologicattects of these sounds on humans have been examined. However,
for analyzing these interaction sounds, an experimenssi@e is conducted. with nineteen
undergraduate students that volunteered. These studergg@ected to guess the length and

the material of wooden and metal struck bars, only listettirginteraction sounds of them
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with several surfaces, with eyes blindfolded. The guesaee heen especially successful for
some definite interaction sounds of wooden blocks. At theesimme, these interaction sound
signals are recored and Time x Frequency x Amplitude pladsfermed. The statements
in the results section cannot be said to be not quite plematgrins of acoustics, since this
work is in a completely dferent field than the field of engineering. However, this wark o
Gaver has been an inspiring study to many forthcoming awoegperiments and this study

is further referenced in many other academic papers anddhes

As the digital computers advanced, more signal processipghilities have been available on
acoustic signals. In [14] and [15], detailed studies on ichgaunds with several surfaces of
concrete, ceramic, zinc bricks, tiles and ingots has beerduwzied. In these studies, Durst and
Krotkov have successfully segmented out the spikes thaeardts of impact, from the power
spectrum of the signal. They have analyzed the spectrahdgakf the Fourier Transform
operation as well. The most pronounced side of these stadiBsirst an Krotkov for our
study is that with a minimum distance decision map clasdifiey have been able to classify

the impact sounds quitdiiiently based on their material type.

Later on, Krotkov have conducted collaborative work withri@mie Mellon University De-
partment of Psychology. In [16] the shape invariant pragerdf materials are sought that
are revealed from their spectral contents. In the resedréliatzky et. al. conducted with
human subijects, it is stated that frequency has less cotitibcompared to the decay rate of

the signal, in identification of material type [17].

In [18], a master’s thesis is presented where a valid mattieahaepresentation for a contact
sound is tried to be formed. In this study, acoustic datagated by interaction of the object
with a robot arm in a test station. Vibrations of the objeatisorded by a special high speed
camera. With such a setup, very pure acoustic data coulddoedex; signal to noise ratio

measure is kept as high as possible. A theoretical modeffpact sounds is formed with the

Discrete Fourier Transform of the record, frequency modesdamping parameters.

1.1.3 ROBOTIC SURFACE AND MATERIAL IDENTIFICATION

Like any other sensing and classification problem, robatiziatic perception can be stated to

have three main stageSignal Preprocessing-eature ExtractiorandPattern Classification
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[19]. As new technologies in computer science have emefgstiieature extraction and then
pattern recognition steps have become very rich in methndsapproaches. The work that

include all these steps are examined as a part of literatuve\s

Although [18] or other studies mentioned in the previougieaa@an be considered as robotic
perception of material or interaction type, direct apglmas of non-speech acoustic signal
analysis and complete acoustic perception in robotics fiald be considered to start with
[20]. In Fitzpatrick’s study, there is detailed analysisrobotic acoustic perception on sev-
eral humanoid or human interacting robot platforms. In [2fi¢re is a robot named Obrero,
which can grasp objects with its force-feedback sensitargdh Obrero is capable of record-
ing sounds, as well as sensing the forces on its hand. Itimaowvith several objects like

grasping and tapping is done by the robotic hand and theaelbetween force sensors and

sound spectrograms have been analyzed.

In [22], recordings with a wheeled robot platform from varsodiferent ambiance are made
and the robot is trained to find its current placement. Thig am acoustic scene analysis
is made. In this study, there are features from sound timeabignd spectrum are extracted
and used and classifiers are applied on these features. Wor@holistic approach towards
ambiance is considered and the records include very nalaitgllife acoustic data, this is why
this study is selected for further examination. The pap28$ §nd [24], more complicated
techniques in feature extraction called Self Organizingp®EgOM) are used on recordings
of a robot hand interacting with variousfiirent daily life objects. In these experiments, in
signal processing and pattern classification, there israpfig a built in environment used,
rather than manual implementation of feature extractioMBJLAB ® R2008a environment
(by Mathworks Inc. Natick, MA) or other coding scheme. It nigydue to the usage of a built
in environment that the feature extraction part of theidgtis not quite explanatory. They
state that they reduce spectrograms in 33 dimensional colactors and feed the SOM with
these segments of spectrogram features. Usage of 33 Ddeadators still seems too much
and consequently much more computational complexityedine increase in features directly
translates into considerable demand for higher compuit@tigower. This study presents very

successful results on recognition of interaction and dhijgre by acoustic means.



1.2 EXPERIMENTS RELATED TO THE SUBJECT

There are studies related to the transmission of impaceroisower floors in apartments.
One such research is conducted by National Research Caifirieédnada, in 1999 [25]. The
conclusions derived from the results of this study is thiagreé are dierent acoustic char-
acteristics of dierent floor structures. In this research, a device callepingpmachine is

used to produce impact sounds with five steel-faced hamtatstrike the test floor. In this
experiment, ASTM method E492 is used which is a standarddoustic testing. The sound

intensity levels in the lower rooms are measured in a veryrothed environment [25].

In fact, the field of perceptual acoustic sensing is extensith a large number of prospective
applications exemplified in living creatures and some of¢hean also be considered for
autonomous robots within a variety of task domains. Sengiagoresence and direction of
danger, sensing human and animal presence, sensing thesmoeuof sudden events as well
as failing mechanical functions of a robotic system can &tedi as a few of these potential
applications. Despite the challenges involved, sensiegdinection of the these acoustic

events is also a possibility with stereo or multi channeluatic processing.

1.3 MOTIVATION AND OBJECTIVES

Considering the robotics literature, there is no particwiark done found in the field of legged
robots and their acoustic emission that is the result of theraction with the environment. It
is observed that, dynamically dexterous robots such as ltrexRlatform [26] make distinct
interaction sounds with the ground. These sounds are insfgoils that are believed to
include important information that is a composition of maaical properties of the robot and
the ground that is interacted with. This thesis work aimsialyze these signals and propose
an utility of perception of environment to mobile robotics general and add arffective

environment sensing tool to legged robotics in a particalanner.

The three main stages in a robotic acoustic perception @mobkted in subsection 1.1.3, are
considered to be the three main discussions in this studindadt form a fundamental outline
of all of this thesis work. In chapter 2, approaches relategréprocessing is mentioned. In

chapter 3, the full definition and explanation of the conaddeature extraction is presented
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and feature selection problem is examined in detail. In tdra, the final stage, pattern
classification is explained. This stage is in fact the actial to be achieved and signal
preprocessing and feature extraction can be consideregtesypisites of this final stage. In
other words, with the help of sophisticated pattern clas#ithin algorithms, the aim of surface

perception can be achieved.



CHAPTER 2

EXPERIMENTAL SETUP AND DATA PREPARATION

In this part, the experimental platform that is the sourdagiration of this study is explained
in detail. Later on, the preliminary analyses on a small datas given. The theory behind
frequency and time domain analyses that are used in this amrlexplained. In the final

parts, the preprocessing and approaches are mentioned.

2.1 ROBOT PLATFORM - SENSORHEX

All of the experimental data of this thesis study is collddi®m SensoRHex Robot Platform
shown in figures 2.1 and 2.2. SensoRHEX is a variation of thexR#atform with dexterous
six half circular legs and it has high performance on irragtérrain due to its inherent dy-
namic stability [26]. In one of the modes of the motion, theagowalks with alternating tripod
gait (shown in figure 2.3) and can turn around and walk bacttsvas well. Using DC servo
motors with gearbox connected to its hips, the robot canedtshalf circular compliant legs
in precisely. In the following sections, the details of tlat mechanics are mentioned. In
this study, the experiment surfaces are important becdgsedre intended to be automati-
cally recognized by the robot. For this reason, the expeariraerfaces are mentioned in the

following sections and the experimental scheme is expihineletail.

2.1.1 MECHANICS OF THE ROBOT

The interaction of this robot with the ground creates natide acoustic signals which are
in fact a mixture of "footsteps” of the robot and motor sourdsning from the robot’s hip

nodes in each actuation cycle. The ground interaction isgnde distinctive from other
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Figure 2.1: SensoRHex Robot Platform

Figure 2.2: SensoRHex is a robot platform that can walk agutar terrain which is a useful
property especially for outdoors



Figure 2.3: Alternating tripod gait

noises coming from the robot body; as a result of the legsgbeiircular, there is no certain
time where the interaction starts and stops. Moreover, mn@gular terrain like outdoor soil
covered with grass, the axial and the lateral planes of thetdvame are inclined. In such a
case, it is not possible to tell the exact time when a seldegpdill start an interaction with

the ground.

2.1.2 RECORDING EQUIPMENT

As aninitial trial, an external notebook PC is used in recags due to the need for a sampling
rate of 44100 Hz of the sound signal. This is a common standaddio with an assumption

that the average human hearing is maximum 22 kHz and by dwubiiat frequency as the
Nyquist sampling theoresuggests the sampling rate should not be less than 44 kHato th

the signal can be sampled without any aliasifiga& [11].

The notebook PC has an audio device which is specified asGotgloration 82801H (ICHS8
Family) HD Audio Controller. This is only used in the very fiet of experiments where
only the feasibility of this work was in question. With PCy f@ better control of the stereo
channels, Ubuntu 9.04 operating system is used. A micraphaoiost level of 710 is fixed
during the recordings. However, after checking the data,seen that this level is rather high
for such a fluctuating sound level record and some of the itnpeeaks are clipped. This may

result in problems in spectral analyses since Fourier Toamsis based on continuity of the
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Table 2.1: Properties of the Recordings

Sampling Rate: 44100 Hz
Sampling Bits: 16
Sampling Format: .wav

Mean (Right Channel): || 0.1658
Std Dev (Left Channel):|| 0.2738
Std Dev (Right Channel); 0.2790

signals. A peak with clipped top results in a straight linéhatpeak and this straight line has
a different sine and cosine components which mean false frequamegonents that can be

considered as bias errors.

A linear PCM Recorder - Olympus LS-11 is used in recordinghef inain experiment set
(explained in the following sections). The PCM recordenisdion the robot and an extension
cord is plugged to the stereo microphone underneath. Tleesirh cord length is quite small
(200 mm approximately) and the original gold plated cordhef microphone is used for this
purpose. Windscreens of the PCM recorder are fixed and gadaiviping elements similar to
the ones in the microphone are placed between the recordéne@robot body. The sensitivity
level of the microphone is set toigh. This setting is preferred for outdoors, conferences
and places where there is ambient noise. Then the level nigeset in the vicinity of 6 as
suggested in the manual of the LS-11 recorder. There is awaakng light that lights when
the sensitivity is set too high and the sound levels reach. p&fter the recording parameters

are set this light is occasionally observed to warn or nonedrat all.

2.1.3 MICROPHONE

A stereo microphone, SONY ECM-DS70P (In Figure 2.4) is usececordings. This mi-

crophone is mostly preferred because of being a relativelglissize and fiordable stereo

microphone. It is thought that the saggitally symmetricigle®f the robot frame and body
requires a stereo microphone with symmetrical sides. Tleeapihone is mounted on the
back of the robot’s aluminum crash frame for the collectidrihe preliminary data set, on
top with rubber pads for passive vibration isolation. Thehtécal specifications of this mi-
crophone can be found in table 2.2. For additional inforomatAppendix-A is available. The

placement of the microphone over the robot body surely h@srdit €fects. For the main
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Figure 2.4: SONY ECM-DS70P Microphone used in experimertdapted From [27]

Table 2.2: Specifications of SONY ECM-DS70P Stereo MicrogheSee Appendix - A for
details

Sensitivity 38 dBV/Pascal
Response Bandwidth 100-15000 Hz
Noise Level 34 dB

Max Sound Pressur¢ 110dB

set of experiments, the microphone is placed in the middteeofobot frame, on the side that

is close to the ground.

For the collection of preliminary data set, the notebookasnected to the microphone on
the robot via an extension jack. This jack may also be a sdarceandom errors. The mi-
crophone’s jack is gold plated; however, the extension @edstandard steel jack. Acoustic
signals are captured over multiple locomotion runs with ectjal range of 100 - 15000 Hz
[27]. The placement of the microphone is observed to havehhe#fect on the performance
but this has not yet been carefully characterized. Thesefoe present our preliminary results
with a fixed microphone position in the middle of the robot,lastrated in Fig. 2.5. The
processing of the acoustic signals are currently conduafedoard in MATLAB® R2008a
environment (by Mathworks Inc. Natick, MA) but the robot fitem has the necessary com-

putational capability for further embedded applications.
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Figure 2.5: The current microphone placement within theybafdthe robot is illustrated.
However, it should be considered that the microphone isafigtunder the robot body on its
other side, closer to the ground

Figure 2.7: The Outdoor Experiment Surfaces - A,0,G regpygt
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Figure 2.8: C surface is actually on L surface

2.2 EXPERIMENT SURFACES

In the beginning of the study, the data from thre@adent surfaces is examined to check out
the feasibility of acoustic surface perception. When theg&l experiments have yielded
successful results, new surfaces are added. The first thréscas were carpet, linoleum
and stone corridor which are denoted as C,L and S. This ewpatiset is referred to dee

preliminary experiment set

Later on, the experiments on stone corridor could not beateple because a large fan with
electric motor which operates 24 h. is assembled to thatp&t corridor. Since this fan is a
loud sound source, the acoustic data recorded at that enviat is expected to be biased; it
would certainly include that motor’s operation frequesci@/e expect that due to this sound,
classification of that specific class would be much easiertlisds certainly not acceptable

for our case because this ease would not be related to sinfdseme other element.

This is in fact an important concern that such specific no&e accidentally mix with the

useful surface acoustic data in all of the experiments. dieioto prevent such a situation, the
experiment ambiances are checked carefully for such saundes. Moreover, spectrograms
of each record are visually checked for existence of any baitrdata except the motor sound
harmonics that is seen easily on each of these graphs. Thitedednalyses are mentioned in

the following sections.
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Table 2.3: The Experiment Surfaces for the Preliminary pseas

Surface Name || Notation Explanation Location
Carpet C Flexible Cover on L|| RoLAB METU EE,room DB 23
Linoleum L Laboratory Floor || RoLAB METU EE,room DB 23
Stone Floor Tiles S Large Tiles METU EE D Block Corridor

Table 2.4: The Experiment Surfaces for the Main Set of Expenits

Surface Namg| Notation Explanation Location
Carpet C Flexible Cover on L RoLAB METU
Linoleum L Laboratory Floor RoLAB METU
Marble R Large Tiles Control Lab, Bilkent Uni.,
Hardwood H Large Tiles Classroom, Bilkent Uni.
Concrete-1 (0] Large Concrete Tileg| Bilkent Uni. Outdoors
Concrete-2 A Small Concrete Tileg METU Outdoors
Grass G Random Nature METU Outdoors

After the feasibility of acoustic surface perception witlr getup is confirmed, a larger set
of experiments is conducted. In this second set of expetsnseven dierent surfaces are
used in total. Two of these surfaces are carpet and linolegaimand the rest five of them
are marble tile, hardwood, outdoor concrete tile-with eniueaves, outdoor concrete tile-
straight and grass which are denoted as R, H, A, O, G respbctiVhe detailed properties
are given in tables 2.3 and 2.4 and the photographs of thecasfare given in figures 2.6 and
2.7.

2.3 EXPERIMENTAL SCHEME

As stated in the 2.2, the preliminary experiment set of treadaces is used for the first
analyses and their important statistical properties arengi The general properties of this
data set is given in 2.5. In all of the following experimentsich can be referred dse main
experiment setthe robot walks in a fixed linear trajectory with constanéegh and under
operator control. During the experiments, the robot is@draround by the operator when
needed. However, in the final records that are to be tokenikedle is no turning sound

involved.
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Table 2.5: The Recording Properties for the Preliminary jses

Surface Notation| Recording Numbel| Speed|| Record Length
C 1 1 1.12
L 1 1 1.24
S 1 1 1.52

Table 2.6: The Recording Properties for the Main Set of Brpents

Surface Notation| Recording Numbei| Speed|| Record Length
C 3 1 2.57
L 1 1 1.52
L 3 1 4.14
R 2 1 1.37
H 2 1 2.13
A 3 1 3.07
G 3 1 3.22
C 3 5 4.02
L 3 5 2.58
R 2 5 1.45
H 2 5 2.24
@) 2 5 3.04
A 3 5 2.14
G 3 5 3.53
C 3 5 3.36
L 3 5 3.09
R 2 5 1.09
H 2 5 2.23
A 3 5 2.20
G 3 5 3.40
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Figure 2.9: The corresponding physical speed for the vadfigarameter P of SensoRHEX
platform is measured in [28].

The experiments are conducted for each surface for thféerefit speeds. For a hexapod
robot platform with compliant legs like SensoRHex, it is poissible to measure the exact
speed of the body frame since the focus of the gait is on maxingny terrain rather than the
precision of the position. For this reason, a low speed satdapeed set and a high speed set
of data is recorded. In the robot platform control, therepgigmeter in gait control which is
directly related to the robot platform speed. This paramistdenoted a® in this work. The
approximate corresponding physical speed fdfedént values oP is shown in figure 2.9.
These values are taken from the experimental work on thelggkatform [28]. In the figure
2.9, there is a least squares fit is plotted as well. The raugscare taken foP = 1 for low
speedP = 5 for mid speed an® = 8 for high speed. With the aid of the measured values,
the approximate corresponding physical values of the detbspeed® = 1 andP = 5 are

marked in figure 2.9 and there is already experimental valeasored foP = 8 [28].

For each recording speed, approximately 2 minutes of raupiid taken. In such an experi-

ment, 200 steps are recorded for each surface but obvidhsydepends on speed. Although
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Figure 2.10: The stereo record from the Carpet Surface asfilwdoaded in Audacity.

Time (s)

Figure 2.11: Comparison of approximately 1 s records of Cland here, the signals start
with motor sound peak and end with ground leg interactiork gea the diminishing wave of
the surface impact.

the record lengths change fortlidirent surfaces, shortest length record is considered &nd th
rest of the data is reduced to this length for other surfatég. signals are filtered out from
the turning sounds and irrelevant sound data between theafdrwalking sessions. All of
this work is done in Audacity 1.3.12-beta environment whgh free sound processing tool
compatible with both Ubuntu 9.04 and Ubuntu 10.10. In Autyadi is possible to analyze
the signal in 15 digit floating point numbers varying betwegrand 1 [29]. The illustrative
figure of a waveform is given in figure 2.10. In comparative figgR.11, the two samples from
two different surfaces do not seem tdfei very much in time domain and it is quite hard to

analyze and notice the outstanding specific features ohitiata.
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2.4 ANALYZING THE SIGNAL

As it is stated in chapter 2, the recorded audio signal is atiodits sections that contain
turning and backwards walking sounds. The analyzed signelisde only the straight walk-
ing sounds at constant speeds. When these recorded sigaasamined, there are motor
start and ground impact regions that create peaks with esbtép of the robot 2.10. In
alternating tripod gait, the robot’s three legs are exmktiteouch the ground at one time and
although in most of the recordings this is observed to behswetare some footsteps sounds
that one leg touches earlier than the other two. In thesesctwesignal has two consecutive

peaks. There is a rolling region where the robot’s half daclegs roll to complete one tour.

As classification units, namepatterns to be classified, small portions of the recorded signals
are defined atokens Each of these tokens are small units that serve the purgaseaface
identification and the robot is expected to decide for théasercategory of each token. The
signals recorded for each surface are stated to be cut ietdetigth of the shortest one,
therefore, this way a standard size and number of tokensafur surface could be obtained.

The selection scheme of these tokens are explained in tlogving section, 2.5.

The examination of the recorded time domain signals couldbeodetected to show any
difference from surface to surface with naked eye. When thesalsigre listened by bare
ears, there is also no possibility offidirentiating one surface from other. Although analysis
of time domain data includes important features, sucAeas Crossing Ratehe distinctive

analysis mostly depends on frequency domain analysis.

There are other very important time domain acoustic ideatifbn features widely used in
sound processing applications such as reverberation tiniehvis a property of spaces that is
related to echoes [30]. However, only zero crossing ratessraed to be relevant to our case

since there is only sounds related to ground surface irtteraare considered to be analyzed.

The Zero crossing rate has a non-trivial relationship wiggfiency content of a signal but

still is computed in the time-domain. It is expressed as

N(M-1)

rao= 5 25 Isartx(O)] = Sutx(r - Dl - 1) @)

wheresgr_.] is the standard sign functiomyn) is a rectangular window arg{m) is computed
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Table 2.7: Statistical Properties of the Data - The PrelamirExperiment Set

Carpet || Linoleum Stone
Data Size (Stereo Record)): 3718682| 4957716 || 3204345
Mean (Left Channel): -0.0218 0.1491 0.1702
Mean (Right Channel): 0.1658 0.1658 -0.0211
Std Dev (Left Channel): || 0.2738 0.4785 0.3576
Std Dev (Right Channel):|| 0.2790 0.4836 0.3490

as an average for each token=1,2,--- , M.

2.4.1 STATISTICAL PROPERTIES OF THE DATA

For a preliminary analysis, the recorded tracks are load@dMATLAB® environment. As
a worldwide used powerful tool, MATLAB offers some utilities that allow users to imple-
ment basic but very important statistical operations. d&hV values are calculated by the
MATLAB ® built in functions: mean() , st d() andl engt h() . The maximum amplitude

for all signals is 1 and the minimum is -1 since the signalsharenalized in time domain.

2.4.2 SPECTRAL EXAMINATION OF THE DATA

Fourier Transform has been an important tool in sound peingsrea that enables to trans-
form a time domain function to frequency domain so that tlegdiency components and
harmonics in signals can be analyzed. Fourier transfornieapio a finite length discretely
sampled data is callddiscrete Fourier Transform (DFTand the frequency content of the data
for a a finite length signal can be revealed very clearly witiplementing thd-ast Fourier
Transform (FFT)algorithm [11] which is a computationallyffective implementation of DFT.

The transform for a discrete signal with finite length is giaes

N-1
X[k = > x{nw{n]e Nk = 0,1, .., (N - 1), (2.2)
n=0

Here, X[n] stands for discrete time domain signal with N samples Afi] stands for the

transformed signal, which is complex and is not suitabledfagct use. Since this analysis is
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conducted with finite length signals, there are expecteatprbceding and receding frames
for a broad analysis and a single analysis would not reptekeroverall phenomenon since
there are changes that are time dependent. To analyze sigrtah ime-dependent Fourier

transform (also named ashort-time Fourier Transforinis used. Time-dependent Fourier

transform is represented by

X[n, A) = i x[n + mw{mje ™, (2.3)

m=—oo

whereA is a frequency variable and[n] is a windowed sequence [11]. As seen with the
expression, the resulting[n, 1) is a function of time and frequency. The Hanning window is

expressed as

(2.4)

0.5-0.5coq427n/D),0 < n< D,
wln] =
0, otherwise

and this window is preferred because it starts and ends withalue for the given interval
[0 — D]. For each consecutive sample, the values at the beginmiddh& end of the signal
are expected to be non-zero and thi®ets the assumptions of Fourier Transform [11]. To
reduce this ffect, Hanning window is preferred. A 1024 sample hanning win(D = 1024)

can be seen in figure 2.12.

For the purpose of analyzing the signals in both time andufgagy domains, a larger signal
like a token is divided into regions calledndowsand their spectrum are estimated separately.
To reduce the féects of truncation of the signal from these surrounding &syma tapered
multiplier window w[n] is usually introduced while the DFT is computed [11], [5].hér
Hanning window is preferred since For a more smooth estintla¢ése windows are preferred

to be overlapping up to a given percent.

Expression 2.3, that is referred to 8hort Time Fourier Transform (STFT) literature as
well where with calculationX[n] becomedN-point DFT of a finite length signal. The power

spectrum of the signal can be estimated from this compleressjon. It is given as
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Figure 2.12: Hanning Window - £1024 Samples

SIKl = IX[KI? = X[KIX"[K]. (2.5)

whereS[K] of the time domain signal which is in the end a real sequetdé [With com-
bination of the surrounding frames, an average power spacéstimate for a larger signal
can be estimated. For implementation of FFT algorithm Nha&lue should be selected from
the powers of two [12]. For estimating the power spectrumalbtength of signals, zero
padding up to the next power of two is implemented to the fireht to complete the anal-
ysis properly. The power spectrum estimate is directlyteeldo the intensity of the sound
energy [12], [30]. The ensemble averaged power spectrumagsis with 20 samples for the
preliminary data set is given in figures 2.13. These specpiats seem to be very similar to
each other except at the lower frequency values. Howewefirgt samples always seem to be
very different may correspond to frequency value that is below 100ndzlzerefore should
not be considered as a feature since the microphone datavalitbbelow 100 Hz. Since the
signal is not stationary, the ensemble averaged plots magamain distinctive properties.
The changes in sound energy with respect to time can be seenmetail when the smaller

time frames are analyzed.
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Figure 2.13: Ensemble Average Power Spectrum Estimateddtord on Carpet, Linoleum
and Stone. The ensemble average plots may not be very infgensgince the signal is non-
stationary.
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Table 2.8: The Spectrogram Properties of the Images

FFT Size: 1024
Resolution: 1024
Window Overlap: 50%
Window: Hanning
dB scale: 0 (Dark Blue) - 150 (Red)
Computer Environment|| Matlab Signal Processing Toolbox (Spectrogram() Command)

2.4.3 SPECTROGRAMS OF THE DATA

For a better intuition and understanding of the probleméioerded signals are first listened
by ear and then their spectrum changes with time are obs&itedhe aid of spectrogram
tool. This has been a very important preliminary analysihastudy. Because, the average
power spectrum estimates formed with divided frames ofagelr signal is in fact collapsed
in time axis and does not provide any time information anyenoin practice, this results
in mixed spectrum of and footstep sound regions which in fees not yield very clear
results. In other words, motor and footstep sounds areetbsir be examined as distinct
power spectrum estimates and spectrogram tool visualiese tpower spectrum frames very

well. The spectrogram image can be estimated with the famiven in equation 2.3.

In figures, 2.14, 2.15 and 2.16, the spectrogram images adbestic signals are presented
and their properties related to representation is giveraliet2.8. In these spectrograms,
there are small rectangular regions observed. When thenggie close to red, this indicates
there is more energy in the corresponding frequency bandvéueth the color goes to blue,
this indicates there is lower energy. In all of three spegtim images given, there are two
interaction sounds with the ground, however there are foergy dense regions observed
(see red regions). The first and the third peaks result frenintieraction sounds whereas the
second and the third regions are a result of motor sounds.nther sound was shown on
the recorded signals to create high peaks in time domaintdsdst shown once again that
the sound energy density is quite high in the times when tperiee from the ground. There
are also rolling regions of the threefidirent surfaces of the preliminary experiment set as
shown in these figures. The spectrogram images give impataes about the sound energy
difference due to the impact with thefférent surfaces. Unlike the ensemble averages, in

spectrograms, the changes with respect to time can be @dserv
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Figure 2.14: Spectrogram of Two Interactions with a CarfggtJurface.
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Figure 2.15: Spectrogram of Two Interactions with a Linate{lL) Surface.
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Figure 2.16: Spectrogram of Two Interactions with a StoneS(8face.

2.5 PATTERN SELECTION FOR CLASSIFICATION

After some general purpose inspective analyses are cardiootthe preliminary experiment
set, some time is spent on the utilization of the recordedatéy The units of classification
are often referred to gsatternsin the pattern classification literature [19]. The propegti
of patterns depend on user selection. Like all of the otheksvon pattern classification,
the patterns should be defined first, before passing on te ptbeedures. Patterns should
include definitive properties and in the end of classifiagatitey are expected to be labeled
with a certain class. In the following subsections, all of tpproaches to obtain relevant

patterns from the sound signals are explained.

2.5.1 SEGMENTATION APPROACH

After examining the composition of the spectrograms andfoiheration of average power
spectrum representations, it is decided to extract the msatonds from the overall signal.
In pattern classification procedure, such extraction djggrs are calledegmentation[19].

With segmentation it is aimed to have an easier feature @idraprocess since the signal
is extracted out of the elements that are thought not to levast to classification. The

segmentation is intended to be implemented on pure motards@gions.
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Figure 2.17: Ensemble Average Power Spectrum Estimate@dlsegmented Motor Sounds

Various methods in both time domain and frequency domaia lile looking for threshold
peaks, averaged energy values had shown that the ever omesten noise is hard to segment
from the ground interaction noise due to time-domain andtsplesimilarities. A more pow-
erful and commonly used method call€gectral Subtractiofdl], is tried later on and its

explanation can be found in subsection 2.5.3.

The results of these segmentation approach have not begqunaadenough to claim consid-
erable success. Therefore, a more holistic approach is asigg in the following studies
and pre-filtering or segmentation to evaluate the resultiagsification performance is not
preferred under these conditions. An audio file with pureansbunds is formed with the
successful automated segments of the signal. 20 sampleslégeted in total from three
different surfaces of the preliminary data set. The averagdrapeestimate of this merged
motor audio file can be seen in figure 2.17. As clearly seemgtisea considerable peak
around 1900 - 2100 Hz and the rest of the signal is similar ¢oatiner spectrum figures of

surface interaction.
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Table 2.9: Signal Lengths and Token Sizes for Each Speed Miie Experiment Set -

Holistic Approach

Speed-1: Speed-5: Speed-8:
Overall Signal Length: 4662310 3000000 2000000
Signal Length (Per 25 Tokens): 186492 120000 80000
Record Time (Per 25 Tokens)| 4.23 seconds| 2.72 seconds| 1.81 seconds
Signal Length (Per 50 Tokens): 93246 60000 40000
Record Time (Per 25 Tokens)| 2.12 seconds| 1.36 seconds| 0.91 seconds

2.5.2 HOLISTIC APPROACH

The second approach, naméhe holistic approacthas yielded very successful results that
are presented in chapter 5. In this approach, window framresaich token are selected such
that there is no distinction between motor and interactimmsgs. There can be pure motor
regions in the spectrum average or some irrelevant otharefsasince the experiments are
not conducted in totally silent environment. This appro&liound to be a more natural

perception approach, since in daily life, living creatuvdth hearing ability are not known

to have any specific sound spectrum cancellation or deletechanisms so far to the best of

our knowledge.

2.5.3 MOTOR NOISE EXTRACTION APPROACH

After the studies with holistic approach have reached toesomaturity, spectral subtraction
method is applied to some controlled experiment sets aridrp@gince improvement is exam-

ined. Spectral subtraction can be performed with

Z[K] = (S[K” - aQIKI")™”. (2.6)

In here, Q[k] stands for the power spectrum estimate of the motor noigeakiandZ[K]
stands for the subtracted signal. Withas a weight tdQ[k] andy as a power and root, two
new parameters are introduced into analyses. As it can Inarsebapter 5, there is not much

of an improvement obtained from various valuesraindy. This may be due to either there

28



is useful data removal caused bu subtraction or among ewlaufta andy, better values are

missed.
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CHAPTER 3

FEATURE EXTRACTION

In chapter 1, the role of feature selection and extracti@xjgained briefly. In this chapter, it
is aimed to explain all of the relevant details of this ess¢ptocedure that is implemented in
this work. To define feature selection, one should start dinition offeatures If the units

of classification are called patterns as defined in 2, featoa@ be stated as the distinctive
properties of those entries that are intended to be clasd$if@. For various problems that
require automated decision making in various applicatidesindustrial, medical, research
and many others, application specific features are usetbdxta probably the most common
data set used in pattern classification literature [323,deta set is one of the many examples
to a set of features. Iris is a kind of plant with dazzling flesvend this data set includes
the length and width of sepals and petals (in centimetertire diferentiris species: Iris
Setosa, Iris Versicolour and Iris Virginica as attributébe sepal and petal measures are the
sets of features thatftier from one Iris species to other. They can be expressed iather

and play important roles in the iris species classification.

3.1 APPLICATION SPECIFIC SELECTION

In the iris data set mentioned in the previous paragraphletingth and width of sepals and
petals are the attributes that let the classification pnaeeth be applied. These four attributes
are selected out of the quantitative or qualitative progethat are related to iris plants. In this
case, four numerical values are foundfigient enough to determine the species. However,
for various kinds of problems, there are not only numerid&ibates to be involved. In
addition to numerical attributes in pattern classificatitere are also binary attributes called

predicatesand there can be nominal attributes applicable as well,raépeg on the classifier
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input [19], [33].

By looking at diferent applications such as visual recognition of processades compared
to acoustic perception, the features in each case are exptribe diferent and quite ap-
plication specific. In visual perception, the source data BD signal whereas in acoustic
perception via sound processing gets its data from 1D soigméls Even for two dferent

visual perception applications, the relevant featureslavba very diterent.

To illustrate the case explained in the previous paragrigtlgne application be to identify
the severity of cracks and irregularities of mass produgeducts on a conveyor belt and
other to be a medical image of the brain to identify abnortiesli The features to identify
and classify the cracks and irregularities on a product dvobViously very diferent from the

images of the legions or the abnormalities in the brain image

In the pattern classification literature, this set of refd\attributes are referred to &sature
vectors The classification is applied to the data sets that are asbumbe definitive fea-
tures to form feature vectors, however, additionally, ¢here more complex algorithms such
that they are able to identify the success of the selectadri=aby giving them a weight of

contribution in the final decision [19].

3.2 THE PROBLEM OF HIGH DIMENSIONALITY

Even in the case of iris data set, which yields a rather simlpkssification problem compared
to many other applications, the number of dimensions oibatis is four which is in fact
impossible to visualize in three dimensions without anyjgmtion. This is often referred to
as The Curse Of Dimensionalitin the pattern classification literature. The need for more
features obviously brings more dimensions to add into tlatufe vector and projection to
one axis is not a preferable way to reduce dimensions sinasitlts in loss of data. An
example of loss of data with projection is illustrated in fig3.1. In this example, there are
two features that define two classes (The points with red dunel dre separate classes). In
the 2D feature space, there is a line between that sepahnatestivo classes almost perfectly,
however when only one of the features is considered (eitmmufe 1 or feature 2), there is

not much of a success in classification.

31



1.8 -=Class 1| -
~vClass 2

1.6

14

Feature 2

0.8

0.6r

0.4r

0 L 1 1

Feature 1

Figure 3.1: A two class problem. The projection to neithethef feature axes yields a suc-
cessful classification.
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Most of the pattern classifier algorithms that are implerménwidely can tackle with high

dimensional data. The feature vector required for a feagilalssification may be much more
complex and higher dimensional. A widely used applicatibpaitern recognition in cam-

eras, security systems and various other applicationsnmghuface detection. In the earlier
approaches to face recognition problem identification ofspaf face were used according
to their geometrical properties however, for a mofigcent recognition process, there are
sophisticated statistical learning methods that handidgs wonlinearities in face images de-

veloped in the recent years [34].

Many of the sources in the literature support that [19],]38pre number of features tend to
increase the classification performance since they areargtieHowever, it is clear that higher
dimensional feature vectors lead to computational conitgleXMoreover, increased num-

ber of features do not necessarily mean higher accuracysgsification. Irrelevant features
may increase noise in feature matrix and they may lead t@paénce drop in classification

by causing confusions. Therefore, there is an optimizgti@tess; the number of features
should be selected as high as possible such that the perfoenveill be increased and the

computational complexity will not be increased up to anlarable value.

3.3 SELECTION OF RELEVANT FEATURES

In most of the classification problems, there is often a hugeumt of data like sampled
sound data points or number of millions of pixels. If sounddssidered, 1 second of sound
record sampled at 441000 Hz contains 44100 points which igga humber to handle and
manipulate. By feature extraction, this huge number iseeduo a bunch of numbers that
are inserted into a feature vector for further manipulatigrelassifier. Compared to millions
of data, both in means of computational complexity and gr¢éhe extracted feature vector

is much more advantageous.

Another probable useful outcome of feature extraction ésefimination of noisy data. Fea-
tures can be stated as the fundamental properties of ampaithe overall data derived from
each pattern is expected to include many imperfectionseek® measurement and data ac-
quisition errors. The weight of these noisy elements areeben to be reduced since the

selected features are expected to yield the most relevimtriation.
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3.4 SIGNAL PROCESSING

As it is stated in the chapter 2, Fourier Transform of a sougdas yields very important

results about its spectral contents when handled delcaldle power spectrum is derived
from the energy of the FFT vector and this spectrum has the sarmber of points as the
FFT transform. This is still too many number of points for attge vector since a feasible
FFT size is at least 32 and depending on the signal, the edIEET size should be increased

[12].

After power spectrum is derived, more operations relatei@ature extraction is performed
to obtain the relevant features and to reduce the numbertoéeno the feature vector. An
additional operation of calculation of zero crossing ratgédne in time domain and the derived
feature is added to the feature vector if desired. All of ¢hpsocedures are going to be
explained in the following subsections and the details efgfogram flow and programming

approach is presented in the final subsection of this chapter

3.41 FREQUENCY DOMAIN

Given in equation 2.2, iffrequency Domain Examination of the Dagabsection, the fre-
guency domain transform is applied to each of the tokensatteaexplained in chapter 2. In
application level, there are various parameters that hideet®n the power spectrum estimate
like FFT sizeN, signal window size and overlap,smoothing windayw] type, Various FFT
parameters are selected 3.1. While selecting those paeneertain signal properties and

analyses are taken into account. In [12], if the Nyquistdiestry is given as 44100 Hz,

1/2A = 44100 (3.1)

then the time interval for sample is found to be 0.000011338 s. Iffective bandwidth is
expressed withBe, and accuracy is defined as,/myn wheremy, is the mean value of the

signal andrp, is the standard deviation; then,

BeT = 1/(0m/mMm)? (3.2)
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Table 3.1: Parameters in Frequnecy Domain Transfrom with FF

FFT Length|| Window Sampleg| Window Type || Window Overlap|| Time Per Token
64 50 Hanning 50 % 0.9845 s
128 80 Hanning 50 % 0.8950 s
256 128 Hanning 50 % 0.6554 s
512 250 Hanning 50 % 0.6709 s

1024 800 Hanning 50 % 0.001477 s

expression may be useful in finding the length of the recogdired for the other given pa-
rameters [12]. Finally the number of sample poiNtshould be related ta andT expressed

in equations 3.1 and 3.2. Finally,Nf is given as

N =T/A (3.3)

then all three equations are related and can be used ings#téranalysis parameters [12]. It
should also be noted that, as stated in 2.4.2; for feedingaeate signal to an FFT algorithm,
there is usually zero padding operation required to the ppwafe2. Thereforel., zeros should
be added tiN length signal. Some reasonable sets of parameters aredlefidd. For a win-
dow length of 128 points, by using formula 3Bjs found as 0.002902494 s approximately.
With using formula 3.2, if an accuracy of3lis desired, theféective bandwidth is found as
approximately 3000 Hz. If an accuracy gRls desired, then thdfective bandwidth is found
as approximately 1000 Hz. These values may seem a bit cdaseyer, when the overall
spectrum is considered to be dropped down from around 100aLBz to a bunch of features,

these values seem reasonable and are considered in fedtactien operations.

3.4.2 TRAPEZOIDAL ENERGY BANDS

After estimating the averaged power spectrum, there colregriocedure of extraction of
relevant features. In sound processing literature, thezereany filtering methods of the
spectrum. One of the applications that are widely used isrituegle shapediel Frequency

Filters applied for recognition of human speech [5],[35]. In therent application, however,

there is not a preliminary data on the informative bandsesihe robot footstep sound content
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Linear Trapezoidal Filter Between 100-10000 Hz with 200 Hz Overlap

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 3.2: Linear scale trapezoidal energy filters thatraye spectral energy on pre-
determined number of overlapping frequency bands.

for this specific application is examined for the first timenyfow, the spectrogram images
that are examined for a preliminary intuition about the sbsignal in fact present useful
information about the important energy bands in this sigred explained in the previous
chapter and seen on the spectrograms, the bands betweerz 1@D6BiHz are quite dense in

sound energy. The rest of the spectrum also seem to contevminé data about the signal.

Although there is higher energy observed in lower frequeranyds, the contribution of fre-
quencies to classification is still unknown. Therefore, aegal purpose frequency filter is
formed to obtain averaged spectrum features. The filtersddrhave trapezoidal shapes and
they overlap on each other. This amount of overlap is anatkperiment parameter and

supplied in units of Hz.

The energy for each band is estimated by multiplying theayent power spectrum matrix
with a corresponding filter matrix. This filter matrix has was between 0 and 1. The larger
the frequency overlap becomes, the finer the values get. foimss the inclined regions of

the trapezoid. The flat sides of the trapezoids are eithelOl or

The energy for each barig}, is then defined as

Ep = NZ/ZS[k]Zb[k]; b=212---,B (3.4)
k=0
for b being the energy band (one trapezoidal area). It is cledr #sB gets higher, the
final feature vector size increases and so is the compughtcmmplexity of the process. It
is expected that the classification performance may ineréas up to a certain value and
thereforeB is the value to be optimized. With considering the calcatadiin subsection

3.4.1, the number of trapezoidal energy bands are not sdléatbe more than 15 in all of the
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) ) Find the Differences From
Filter Matrix[Bx(NFFT/2)] Power Spectrum Power Spectrum Estimate Matrix
Estimate Matrix [(NFFT/2)x1]
[(NFFT/2)x1] V
Form Difference Matrix
[(NFFT/2-1)x1]
Form Base Features Matrix V
Sum the Differences
Base Features from Average Energy Bands [Bx1] Zero Crossing Rate [1x1] Derivative of the Spectrum [1x1]

Form Feature Vector - Size: [(B + 1 + 1)x1]

Feature Vector [(B+2)x1]

Figure 3.3: The final feature vector when all of the mentiofezdures are included

studies since after this number ((1000@00)/15 = 660 Hz), the &ective bandwidth of the

analysis is not found enough in terms of accuracy for thectsdeFFT size and window size.

3.4.3 ZERO CROSSING RATE

Zero crossing rate as another important feature is addduetéetture vector and itdfects
are studied on. With the help of formula 2.1 given inrg, is calculated. Being patented,
zero crossing rate is known as distinguishing whether timtecty of a sound signal contains
speech or not [36] since, due to the physical shape of the hgoand producing organs,
the speech signal has low zero crossing rate values and pégitral energy. Since in this
case the recorded signals are unvoiced, the expected zmsirgg rates are high. There may
not be dramatical dfierence of,. for each surface however it is still believed to have a high
contribution to classification and this assumption is vedifin the following sections. The
zero crossing rate feature is used with afioient of 0.001 for being comparable to other
features in magnitude. This déieient is determined heuristically with considering vasou

feature sets.
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3.4.4 DERIVATIVE OF THE SPECTRUM

As itis stated in chapter 2, there is a large number of featilmat can be derived from a sound
signal. After forming a variable sizeB(+ 1) feature vector with average power spectrum
features and zero crossing rate, there is a final featuredatdine feature which is called

derivative spectrum vector. This vector is denoted\&4-. For a power spectrum estimate

S[K] with N points, letS[k] spectrum djerencebe

AS[K] = IS[K] - S[k + 1] (3.5)

wherek is thek™ element of the spectrum, there will bg2—1 points of spectrum ffierences

since the two consecutive spectrum elements are subtradtesican be stated as a
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CHAPTER 4

CLASSIFIERS USED IN THIS WORK

In the chapter 3, the details of forming a feature vector withlementing the procedure of
extracting the relevant features are given. In this chajitex aimed to explain the final step
in the classification scheme, the pattern classificatiop. skor pattern classification, there
is a large number of algorithms available in literature [@BH in this work, only four of

these algorithms are selected after an exhaustive analygisrformance of other classifiers

is done.

A rule of thumb in the literature of pattern classificationNs Free Lunch TheoremThis
theorem states that there is no superiority of one classditaver another before each of the
algorithms are implemented. Even compared to random gugdbiere is still no superiority
[19]. Therefore, the performances of various classifiemikhbe tried and a classifier that

performs well on this specific problem should be selected.

4.1 ALGORITHMS IMPLEMENTED

For the preliminary experiment set, a popular and widelyvikmalgorithm calledVector

Quantizeris implemented by coding in MATLAB environment. This algorithm have yielded
very successful results for three classes. By looking aetlresults, the feasibility and the
applicability of this work is demonstrated once again. Hesvewhen the main experiment
set is collected, a performance drop is observed after flagses. To tackle with this prob-
lem, various other algorithms are implemented on the mapement set with six classes
and some of these algorithms have yielded successful seslitte implementation is done
in WEKA environment which is a Machine Learning Library widimeat user interface [33].

This is an open source library developed by University of k&, New Zealand.
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In WEKA environment, all of the applicable algorithms areplemented for a selected data
set B = 10, r,c andaggsincluded). The ones with the highest performance are rankech
are Logistic Model Trees, Simple Logistic, Logistic, Rand&orest, Functional Tree, Mul-
tiple Perceptron, LAD Tree, Nearest Neighbor,DTNB, Bayes, lRandom Tree and Simple
CART. At the same time, the times for building the models a®rded. The same proce-
dure is repeated fd? = 5 andP = 8 and the algorithms that yield consistently good results
in the shortest time are selected. During the very firstdneith WEKA, the speed of the
Naive Bayes algorithm is found outstanding although itdgrerance is lower compared to
the algorithms listed. Among the high performance algamnghFunctional Tree and Simple
Logistic algorithms are selected. Simple Logistic aldoritis not as fast as Functinal Tree
algorithm, however, it yields much better results Foe 8 case, this is why this algorithm is

selected.

4.1.1 VECTOR QUANTIZATION

Vector Quantizer Algorithm (VQ), compared to more recegbathms, is a relatively simple
method however it is rather easy to implement and to viseatizwo or three dimensional
cases. In this work, it is also shown that, for the sound detaveld from the footstep sounds

of a dexterous robot body, it is veryfective as a classifier, up to four classes.

41.1.1 CODEBOOKVECTORS

In VQ algorithm, a larger set of feature vectors in multi dima®nal feature space are boiled
down to a fewer set. These new set of features obtained froltipteufeature vectors have the
same size as all feature vectors and if the larger featuris sensidered as being composed
of clusters, these new feature sets represent the ovesalll ¢br each class. These new sets
of vectors are calle€odebook Vectorand this approach is in fact originated from the needs
for lossy compression of data in signal processing ared &k concept is illustrated in three

dimensional feature vectors in figure 4.2.

These clusters are formed accordingkimeans algorithmhowever, they can be formed by
various diferent algorithms such dsxpectation Maximizatiowr Farthest Firstalgorithms
[33].
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Figure 4.1: A cluster of data expressed with three featuneistiaree codebook vectors are
calculated and shown in the figure as C1, C2 and C3 in threengiiomes.

1.Initialize with the values oM, P, ,ui,,u%, e ,,u,LC for the jth class.
2.ClassifyM samples, with considering the nearﬁlét
3.Re-calculat¢tij

4. Iterate step 3 until there is no changguﬂn

5.Returnyi,y£, e ,ylj:,c.

Figure 4.2: The k-means clustering algorithm - Adapted ff2&j
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4.1.1.2 VQAS A SUPERVISED LEARNING METHOD

VQ is a frequently used classifier in machine learning as bahpervised learning method
where the category of each pattern is provided and a modelafch class in constructed so
that the new classes are categorized based on this tnaioddland anunsupervised learning
methodwhere there is no such assignment and learning is more h§t@ja In the former
case, the codebook vectqzné, /1]2 , yf,c formed from theteaching classeare collected
together to form the models for each class, likefor the j*h class. The new data set with no
class assignment (namedtasting data sein literature [19]) is then assigned to any of these

models®;, with respect to a certain measure like smallest Euclidéstante.

4.1.2 NAIVE BAYES ALGORITHM

Naive Bayes algorithm is simply the application Béyesian Decision Rulehile deciding

the category of the patterns. This algorithm considers tloe data and for future decisions,
makes use of this prior knowledge in a probabilistic manRer.a binary classification prob-
lem of classed; wherej = 1,2, prior probability stated a¥(l;) for the j" class and the

conditional density expressed ¥§|l;), theBayes formulas stated as

o Y()P()
Y(ljlv) = W, (4.2)
2
yv) = > YAMY()). (4.2)
=1

In here, the feature value isand its probability to belong to clags= 1 or j = 2 can be
estimated with this expression with making use of prior kizalge related to thefiect ofv

on classification [19]. The Bayesian Decision Rule is then
Decidely, if Y(I1|v) > Y(I2|v); otherwise decidé [19].

In WEKA, Naive Bayes Classifier is selected to be implement&t a Normal Distribution

estimator.
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4.1.3 DECISION TREE ALGORITHMS IN GENERAL

In pattern classification literature, there is a wide braathlgorithms calleddecision tree
algorithmsthat handle the data in a hierarchical way with forming eletagy and leaf nodes
and branches depending on the feature values [19]. Thigargtef classification algorithms
is widely accepted and used and with mathematically enltamzthods (one such method is
explained in the following paragraphs), they are proverat@dry powerful. In each decision
tree, there is a root node that is placed on top of every othée.nFrom this root node, there
is a branching made with a certain set of rules. In the endhdhes reach the leaf nodes and
with following all of the nodes in a decision tree, an assigninto each of the patterns is
completed. In other words, the output of a tree algorithm lsaé node which assigns each

pattern to a class [19].

4.1.3.1 MULTIVARIATE TREES

In the introductory part of this subsection, the definitidadecision tree is given and general
properties of a decision tree is explained. In the basicsitatitree approach, each decision
node has to follow a unique branch and the other branchesisrarded and can no longer
have dfects on the decision of the class of that specific patternh 8aes are callednivari-

ate Decision TreesAlthough, being simpler to visualize and implement, thigtidct choice

in univariate tree decision is found to be problematic in ynahthe cases since many other
probabilities are discarded so quickly. Especially in sasbere the distribution of the infor-
mative and discriminative features ihdimensional feature space can not be exactly parallel
to the measured data that forms patterns to be classified [A%uch cases, there are trees
calledMultivariate Decision Treethat are formed with delicate mathematical rules and they

consider the #ect of multiple branches on each decision node.

4.1.3.2 THE LOGITBOOST ALGORITHM

In both statistics and pattern classification literatuneye is a concept callddaximum Like-
lihood (ML). For a normal distribution of probability densitiesrfg(vll;), it can be safely
assumed that the normal density is with m@greven though the exact values related to this

density is not known. The Maximum Likelihood method maxiesizhe probability of getting
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Figure 4.3: The univariate tree generated by Simple CAR®rélyn for P=1, E, = 8. This
simpler type of classification does not yield satisfact@yults for out problem.

these samples that are observed in reality [19].

An improved method for classification is suggested with tame calledinear logistic re-
gression The fitting procedure in this type of regression is baseddaling the maximum

likelihood estimates for parametgy for classj, if a regression problem is given in as

f(v) =Bv (4.3)

wherev is an input vector of features. For the linear logistic regien, the posterior prob-
abilities of J classes are estimated. By implementing LogitBoost Algaritthese posterior

probabilities can be estimated [37].

Logitboost algorithm is given in Figure 4.4. This algoritfinds the maximum likelihood
linear logistic model by forward stage-wise fitting Bf = 3, fnj(v) where fy is stated as
the arbitrary functions of the input variables that are fillérggt squares regression [37]. This
procedure is continued until convergence is obtained edtita Q;. In here,yi*j is given as

the observed class membership probability taking valuewaiény; is of classj and 0O for .
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1.Estimate the weights:
hj=21/ri=12...,rj=12...,JFj(v)=0
yi=\=1/3Y;

2.Repeatstep (1) far=1,2,...,Q
a)Repeat foj =1,2,...,J

))For the j" class, calculate working responses and weights:
oY)
RO =IO
hij = yj(vi)(1 - y;j(v))
ii)Using weightsh; j, fit a least squares regressionzgfto v;.

b)Setfmj(v) « L (fmj(v) - %él fmc()), Fj(V) < Fj(v) + fmj(v)

i

c)Updatey;j(v) = - o
R

3.0Output is arg ma,->Fj(v3=l

Figure 4.4: Logitboost Algorithm applied to a J class prableAdapted from [37]

Table 4.1: Parameters of FT Algorithm in WEKA

Binary Split (Conversion to Binary) No
Error On Probabilities (Minimize RMS error (Selectegl)
/ Misclassification Error (Not Selected) Not Selected
Minimum Number of Instances for Splitting in a Nodg: 15
Model Type: FT
Number of Boosting Iterations: 15
Weight Trim Beta: No

4.1.3.3 FUNCTIONAL TREES

When a better performance algorithm is sought, variousritiignos are applied to the selected
sets of the main experiment set in WEKA environment. Amorggé#halgorithms, Functional
Tree Algorithm, is found to be both time saving and more aatgucompared to 12 other high

performance algorithms that are implemented.

TheFunctional Tree AlgorithnfFT), combines multiple univariate trees with linear fuogs.
As the decision tree gets larger, there are multivariatesade created and this tree is pruned
with keepingfunctional leaves within the tree. This approach is stated as the fistton

implement functional nodes and functional leaves all togef38].
In WEKA implementation, a logistic regression model is camelo with a decision tree for

45



1.1f Stop-CriterionDataS e}
-A Leaf Node is returned with a constant value.
2.Build a model with Constructab
3.For all elements of € DataS et
-Find Vi, = ©(V)
-Updatev with new attributess,”
4.Pick from the original and the new attributeg, in order to maximize a selected merit-
function.
5.For alli of DataS et
-Treq = GrowTreeDatasS et Constructo)
6.Based on the selected attribulageis returned as a decision node that contains madel
and descendanicres.

Figure 4.5: Pseudo Code of the GrowTree Function of the Famalt Tree Algorithm for
inputsDataS efConstructor Adapted from [38]

finding maximum likelihood estimates with using LogitBo@dtjorithm [37]. Logistic re-
gression as explained above is a linear statistical modeliticludes fitting the data set to a
probabilistic function which usually yields a dichotomaugput [39]. In case of LogitBoost
algorithm, a linear logistic regression function is usednitadel the posterior class probabili-

ties. In table 4.1, all of the WEKA parameters are given fasslfications.

4.1.4 SIMPLE LOGISTIC

In simple logistic classifier, there is no decision tree fedbut LogitBoost algorithm is com-
bined with simple regression functions which are used as lesners. A base learner or a
weak learner is like a classifier which is better than chamzkiacludes only one node of
decision [19]. The logistic model is to be fit using linearnegsion functions as base learn-
ers. Some parameters for this algorithm like maximum nunabdroosting operations are
common with functional tree classifier, since they both mage of LogitBoost algorithm.
In functional tree algorithm, stopping criteria is to redbh leaf node whereas in the case of

simple logistic algorithm, heuristic stop is used whichaetffastens the procedure.
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4.2 CROSS VALIDATION

Regardless of the choice of classification algorithm, ther certain base rule in selection
of patterns that is the testing data should not be used in Ini@ileing. Otherwise the result
would clearly be biased in favor of the correct decision. iken for testing is put into the al-
gorithm database for the first time and decision is made amlgdwly introduced tokens. For

a larger and statistically more reliable data set with largenber of patterns used in model
training, cross-validationtechnique is preferred. In cross validation, the tokensuebeg the
test token are can be fed into classifier to form the model dmehvall of these tokens are fed,
the technique is callelbave one out cross-validatigi9]. For cross validation, the number
of excluding tokens are callddldsand the selection becomes leave one out cross validation
when the number of folds are selectedvisthe number of tokens for each class. In this case,
the model of the class that the selected token belong to axik M — 1 tokens obviously since

the test data cannot be fed into classifier model.

In cross validation, the class models are trained once dgaach token. This makes this
method to be more computationally complex. However, inshisly, this approach is used in
all classifiers, compared to separate training and testss®is this methods always providers
more statistically reliable data with more number of tokeans into models. However, the

results may be rather optimistic since, the training setthadesting set is obtained from the

same data set.

4.3 THE EXECUTION PROCEDURE

So far, the patterns, the features and the methodology teée in experimentation are all
explained in a detailed manner. At this point, the impleragon of all of these concepts is to
be given. Since there is a lot of parameters that nfiiscathe classification results, a planned

and organized way of experimentation is followed and im@eted to collected data.

4.3.1 THE PROGRAM FLOW

The MATLAB® code structure is formed with a function calleg@an() with experiment

parameters such as experiment number. With the given exeetinumber, the program
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Figure 4.6: The flow of the overall procedure

browses into Experiments folder and loads the given experiment parameters. Later on, the
main program opens the Surface Records folder and the time series signals are loaded one by
one and saved as .mat files for the further manipulations. Depending on selection of feature
extraction flag, the averaged power spectrum estimates of the signals are estimated and saved
in folders. If this flag is not set, the program searches for any saved spectrum data and if there
is no data found, the program throws an exception. In either of the feature extraction flag
inputs, the program loads previously saved data and forms feature matrices with the given
properties and records these matrices in a format that WEKA can load. For implementation
of the VQ classifier, there is another parameter. When this parameter is selected, k-means

algorithm is used with leave one out cross validation explained in 4.2.

The overall procedure is explained with a chart given in 4.6. In this chart, all the procedure
starting from the signal preprocessing to the end of classification where an ID is assigned for
each surface is shown. The procedure is the same for any selected classifier algorithm since

this is supervised type of learning.
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Table 4.2: Experiment Sets Table - In both of these expetirsets, Hanning window is

preferred

Experiment Set Eg || FFT Length|| Window Size || Window Overlap|| Token Size
1 1024 884 50% 20
2 1024 884 50% 25
3 256 128 50% 25
4 256 128 50% 50

Table 4.3: Experiment Numbers Table- In all of these expenits, the main data set for
recordings is used. The classes@e 6 cases are (C, L, R, H, A, G) and in other cases, the
classes added or removed are denoted wiémd - signs.

Experiment # £, Ep rc || AEp || Eg Classes P
1 5-15|| Yes| Yes | 1 C,.L,S 1
2 5-15| No || No 1 C,.L,S 1
3 5-15| Yes| Yes | 2 C,L,S 1
4 5-15| No || No 2 C.L,S 1
5 5-15| Yes| Yes | 3 C.LLRA 1,5,8
6 5-15 | Yes| No 3 C.LLRA 1,5,8
7 5-15 || No || No 3 C.LLRA 1,5,8
8 1-15]|| Yes|| Yes || 3 CLRHAG | 15,8
9 1-15|| Yes || Yes || 4 C,LLR,HAG 1,5,8
10 1-15|| No || No 3 CLRHAG | 15,8
11 1-15|| Yes|| No 3 CLRHAG | 15,8
12 1-15|| Yes|| Yes || 3 C,R,HAG 5
13 1-15]| Yes|| Yes || 3 || C,L,R,H,O,AG 5

4.3.2 THE EXPERIMENT PLANNING

There can be a large number of parameters that would sufelst ¢he results, no matter what
minor or major the changes are. These parameters are maimbetection of patterns, the
features and FFT parameters and the classifier selectioolasslifier settings. Considering
all these, the token size is taken as the first identifier amdype of experiments are formed
with fixed FFT parameters and upon these selection, a ctedrsét of experiments are im-
plemented. This list of experiment sdfg are given in 4.2. In these sets, the main variables
are the features to be added to the feature matrix and evesriment numbeE, has an

experiment set. The sets of experiments are given in 4.2.
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Table 4.4: A Sample Confusion Matrix f&, = 3, B = 8 andP. = 3

C|L S
Cll 24| 0] 1
Ll O y22( 3
S| 0| 1124

4.4 ANALYSIS OF CLASSIFICATION PERFORMANCE

In order to select and implement the best set of parametsagyres and classification algo-
rithms in further applications, there should be a perforoeasriteria defined. In this study, the
two main considerations in this selection have been theracgwf classification with respect
to certain metrics and computational complexity of the powre implemented. There should
be a metric such that it should yield the overall performaasevell as the performances of
classification per class. In the following subsections,gedormance metric is explained in

detail.

4.4.1 CONFUSION MATRICES

Confusion matriceare used quite frequently in expressing the performancéassifiers. A
confusion matrix ha€ rows and columns whek@ is the number of classes in a classification
problem. For a confusion matri&, the rows (or columns) stand for the true classes and
columns (or rows) stand for the predicted classes. In théggament, let = 1,2,...,C
denote the row index anp= 1,2,...,C denote the column index; the diagonal elemexjs
correspond to the correct guesses whereasfthdiagonal elements wheret j correspond

to incorrect guesses [40]. WEKA machine learning softwasesuthis representation for

performance measure as well.

A couple of sample confusion matrices are given in 4.4 and #able 4.4 is for the prelimi-

nary experiment set and the table 4.5 is for the main expetiset.
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Table 4.5: A Sample Confusion Matrix for ExperimeBt, = 8, B=8 andP = 1

C|L RIHI|AI|SG
Cill1l7]| 2 1 0 1| 4
L 6142} 0} O 1 1
Ri Ol 0|25 O O} O
Hi)l 0O 0y 4121| 0} O
Al 1 1 0] 01 23| O
G| 3 2 1 0| 2| 18

4.4.2 OVERALL SUCCESS RATE

When all of the diagonal elemensg; are summed, a measure on overall performance of a

classifier can be defined. In

2. ajj

Sp=—=3
AT Yaj+ Yy

.100(%) (4.4)

where thesuccess rat®f confusion matrixA is represented aSa in percents. Since this
measure is scalar, it can be an input to various discussiothglats of performance evalua-
tion. For the confusion matrices given in 4.4 and 4.5 the ssgcates are 93.33 and 83.43

respectively.

4.4.3 SUCCESS RATE PER CLASS

Hence the confusion matrix yields detailed information fasclassification per each class,
performance per class can also be expressed. Derived f@ootifusion matrixd, success

rate per class is given as

a..
Sj = —2—.100(%) (4.5)
aij + ]

wherej is the class whose performance is questioned. To illustiaté.5, the success rate

for Gis 72 %, L is 84 % and R is 100 %.
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4.5 CONSIDERATION OF COMPUTATION TIME

This work is intended to be used in a real life robotic appitca As explained in 2 in detail,
in order to be a useful information, the decision on the serfeype should be as fast as
possible, to contribute in the gait parameters in the dynanvironment described. For this
reason, computational complexity of the overall procesgig important in applicability of

this property of the robot.

Itis mostly theoretical to calculate the overall time spmma computation since the computers
used do not operate in real time and they are not totally ahittéstic. There is, however,
a general estimate to be formed by averaging the tim® ofins for the performance. In
this study, the computational complexity evaluations aseld on such averaged benchmark
values and unless otherwise stated, the number of runseistedlag) = 10 and the time is

averaged for 10 runs.
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CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter, the experimental results of this work aesented. Although there are hints
inserted in the overall text on these results, they are niated by numerical values up to
this point. In the following sections, following the expmental schemes that are determined
carefully, the demonstration of success of classificatfonghe diferent experiment sets are
done in a very detailed manner. There are more scans amoggiyéreexperiment sets how-
ever, the number of all of these analyses is too much, thereforelatively reduced number
of experiment results are presented in this thesis. In thphic or table presentations, the
general trend is preferred to be shown with the best reprathen cases and the rest of the
similar results are mentioned in the text. However, the paeted situations that have been

observed are necessarily presented and discussed.

5.1 EARLIER VECTOR QUANTIZER WORK ON PRELIMINARY DATA
SET

The preliminary data set is explained in section 2.2. Thy fiest analyses are conducted in
this data set with diierent parameters of VQ classifier like number of codebookoveand
the number of base features and the addition of featyres asgs Between experiment sets
1-2 and 3-4, the only dlierence is the addition of these features to base featurdsveBe
these two sets, the token size varies. The tables 5.1 and&w2that the addition of these
features improve the performance significantly from 75-88%bove 90%. It is expected
that with a shorter token size (With larger token sk the success rate should drop since
the information available is a bit less. However, for thegenduration tokens, the success

rate has been slightly lower. With the longer duration rdspmore noise is present which is
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Table 5.1: Some outstanding results of varying number ofegeespectrum features - B, for
fixed P, = 2

Experiment Number E,, || Variable= B || Performance
2 12 75.00 %
2 10 76.67 %
1 12 93.33%
1 10 93.33%
4 12 85.00 %
4 10 74.67 %
3 12 98.33 %
3 10 94.67 %

Table 5.2: Some outstanding results of varying number ofegeespectrum features - B, for
fixed P, = 3

Experiment Number E,, || Variable= B || Performance
2 12 78.33 %
2 10 84.00 %
1 12 98.33 %
1 10 93.33%
4 12 77.33%
4 10 84.00 %
3 12 93.33 %
3 10 98.33 %

believed to shadow better decisions a little more than tipe@xent set with shorter token
size. In other words, is more likely to be a coincidence, threegal trend is expected to be the

otherwise and this point is demonstrated in the experimaitksthe main experiment set.

As stated in 4, VQ algorithm applied in MATLA® environment is used while doing the
preliminary analyses. Instead of the builkmeans() command, an implementation of the
algorithm with the help of web sources [41], is preferred lEarning and implementing a
specific classifier. In this application, the experimentpagters that are specific for the clas-
sifier are listed as the number of k-means iterations to fiagéetor centroidﬁi,,ué, e ,,u,LC,
the initial number to start iteration and the number of caaddvectors for each class repre-
sentation. Among these, the number of iterations is in faetn endless loop therefore, the
algorithm stops when there is no smaller distance that caraloglated. The initial number

to start iterations is always selected as the first elemetfiteofeature vector.
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As shown in table 5.1 and 5.2, the results of this particidahave been found quite successful
therefore the applicability of this study is proven and a enloroad set of records including

different speeds are made.

5.2 VQ IMPLEMENTATION TO FOUR CLASSES OF MAIN DATA SET

The main set is recorded and first examined with VQ. When dh@&ix or seven classes (for
P = 5 only) are examined, the success rate have dropped sigifi¢®iscussed and shown
in the following sections more in detail). For this reasdre humber of classes is increased
gradually and a set of experiments is done first with foursgas These experiments are
covered in experiment seks, = 5,6,7. The results for these experiment sets fdfedent
speeds are all examined in detail for a better approach déssification with more number of

classes.

As seenin figure 5.1, fdP;. = 10 case, the performance offéirent speeds fiers. Especially
for P = 8 case, the success rate drops significantly anB fei, there is considerable amount
of drop (around 8% in average) compared tofhe 1 case. Moreover, the success rate does

not seem to be variating forftierent number of base features.

When the #ect of the features,; and ag4s are examined in figure 5.2, it is seen that the
improvement that is brought by these features is very sigmifiaround 20 % foP = 1. On
the other hand. the improvement = 5 is very low and there is slight drop of performance

for P = 8 case.

The dfect of P. is examined for dierent speeds. Fé& = 1 andP = 5 cases, the best results
are taken arounB. = 10— 15 and there is not much of an improvement in any of these cases
The success rate fé& = 1 is in fact found applicable (around 80%) but ®E 5 case (around
70%), a performance improvement is sought. In figure 5.3s#ach results for selectéd
values are given. Unfortunately, with tuning the numberadter centers, there is not much

change observed.

The success rate fér = 8 case is not found satisfactory and there are ways for ingonent is
sought. In the previous paragraphs, an unexpected penficerdgrop with additional features

was mentioned. With the implementation Bf = 6, the dfect of this could be examined.
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Figure 5.1: The performance of VQ forffirent speeds with featureg andasgsincluded
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Figure 5.2: The performance of VQ forffirent speeds without featuneg andasgs
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Figure 5.3: Observing the performance change wiffedént values oP; for P =5
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Figure 5.4: Seeking the best performance with tuning theegabfP. for P = 8

From the figure 5.4, it can be said that for VQ classifier for yndiversifying values of

Pc, the addition of featuresys makes a deterioratingffect on classification performance.
Moreover, there is the expected increasing trend of suagegsswith increasing number of
base features is finally observed wiy = 6 for P = 8. Although there is an improvement
found for P = 8 case which in general has very inadequate success ratedabOu%o, the

amount of it (approximately 15%) is not found satisfactorhis can also be stated as a
reason for searching for a afidirent classifier, in addition to the problem with larger nemb

of classes.

5.3 WEKA IMPLEMENTATION ON THE MAIN DATA SET

As stated in the previous section, the number of classes ihaveased, VQ in supervised
mode did not perform quite well. Therefore, as explainednapter 4, WEKA environment

is preferred since there is a large number of classifierdadlai and easier to implement.
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Once a classifier is selected among others after evaluatithgreaspect to performance and

time criteria stated in 4, then it can be embedded into theti®bontroller PC.

After the VQ performance is seen to be dropping with five @dasdefore moving on to
other classifiers, VQ algorithm implemented in MATL&Bznvironment is confirmed with
WEKA's VQ. In WEKA, the supervised VQ is named asarning Vector Quantization Al-
gorithm - 1(LVQ1) and comes with WEKA 1.8 Classification Algorithms gtin. All of
the experiments conducted in MATLABenvironment are confirmed in WEKA environment

and they have yielded the same results as expected.

As it is stated in previous chapter in 4, there are variousrélgns implemented in WEKA
environment. A sample performance of these algorithm&or- 8, B = 10 and their per-
formance forP = 1 is given in figure 5.5. In this figure, there are algorithmseslved with

a better performance than FT and SL, however, the time pdesestimation is very high
compared to FT or SL. For instance, it takes 7.5 s in averageito a model and assign a
class to a model. Moreover, not every algorithm yields altgsile. Random Tree classifier
has diverged foP = 5 case. For other speeds and other number of base featusgetor-
mance varies as expected, however, when the time and cemeergs considered, FT and SL

is seen to be much better after many number of trials.

5.3.1 TIME COMPLEXITY VS PERFORMANCE

Since there are a large number of experiments includingcpégment sets, all of the experi-
ments are not repeated for all classifiers and all featuse 3étere are sample cases selected
for each speed and each experiment set and sample clagsificate done. In figure 5.6
the results folE, = 10, r,c and AEy is given for diferent speed® = 1,P = 5,P = 8. In
these graphs, SL classifier and FT classifiers are both da$¢ovhave higher performance
compared to VQ and NB. In especial} = 8 case, SL shows higher performance, in other
experiments sets witk, = 1,2,...,15 however, it should be noted that the time scale of
the graphic is logarithmic. The time consumed by SL algariibk relatively high compared
to other algorithms. Yielding results around 2.5 s for eaddeh training and classification

procedure, computation by SL is not found feasible.
In WEKA environment, all of the applicable algorithms areplemented for a selected data
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Figure 5.7: The Performances of Naive Bayes and Functioread Tlassifiers foP = 1, P =
5P=8(E,=8)

set B = 10, r,c andaggsincluded). The ones with the highest performance are rankech

are Logistic Model Trees, Simple Logistic, Logistic, Ramd&orest, Functional Tree, Mul-
tiple Perceptron, LAD Tree, Nearest Neighbor, DTNB, Bayes, Random Tree and Simple
CART. At the same time, the times for building the models a®rded. The same proce-
dure is repeated fdP = 5 andP = 8 and the algorithms that yield consistently good results
in the shortest time are selected. During the very firstdneith WEKA, the speed of the
Naive Bayes algorithm is found outstanding although it§qrerance is lower compared to
the algorithms listed. Among the high performance alganghFunctional Tree and Simple
Logistic algorithms are selected. Simple Logistic alduoritis not as fast as Functional Tree
algorithm, however, it yields much better results Poe 8 case, this is why this algorithm is

selected.

NB algorithm is seen to be quite fast compared to other dlyos. It is selected for this

reason and its performance is compared with FT in the foligvgraphics.
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5.3.2 NAIVE BAYES VS FUNCTIONAL TREE ALGORITHM

For any confusion matriXA derived from any classifier, with the help of the success %ate
stated in chapter 4 gives the most relevant informationrdiga the classifier performance.
However, this does not necessarily mean that for a high ssoege, success rate per class
S; is balanced per class. In other words, there can be someeslésat are misclassified
quite often and there may be classes that are classifiedcpgrf@he results for classes are
examined more in detail in this chapter, the success ratelass statements are embedded

into discussions on classifiers.

The comparative evaluation between FT and NB performarscdsrie in figure 5.7. In gen-
eral, FT is seen to yield more successful results that hasaa icicreasing trend as the number
of features increase compared to NB. In NB results, thereti@rtlear increasing trend. In
both of these graphs, a peak is observedHgpe 3 andP = 5. It can be commented that it
is a coincidental case where very definitive features cometb@r. Rather than focusing on
local maximums in the graphs, general trend is observed ealdaged. However, it is found
quite normal to find such outlying performance while scagtire parameter surfaces. For FT
classifier,P = 5 case seems to be the most successful one and there is ajvagyfarmance
of P =1 andP = 5 for NB. For both of the classifier® = 8 case is the worst one. As stated
above, SL classifier have performed on this speed higher amdgo other classifiers, even

to FT, however, it is not preferred since this classifier reenbfound slow for this application.

In terms of classes, NB performs quite well with classes RHldat can be safely stated as
88% or higher. However, there is no diagonal dominance obétafor class G aP = 1 case
with this classifier in any of the experiment sets. This clesnty class C foP = 5 and A for

P = 8. This drops the overall performance with a considerableuarn G is confused with
various other surfaces and this reminds of the performarageteend of VQ. In VQ classifier,
as the number of classes increased, the performance droppsidlerably and especially the

classification results of grass has been wrong in most ofrife t

For FT classifier, success per class is rather homogeneouscd80% wherk, > 5, although
the highest number of confusions are originated from A andufases. FoiE, < 5 the
homogeneity is still kept within 10-15 % range and per clagass rate is minimum 50%

and diagonal dominance is not disturbed at all. The clabsg¢ate confused often do not seem
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to change dramatically for fierent speeds for this classifier compared to NB. It is useful t
note that the mostly problematic class fe 8 is A for both classifiers. In speeés= 1 and

P = 5. the classification rates for R and H are higher than 90%.

5.4 ANALYZING THE EFFECT OF THE SELECTED FEATURES

The number of base features is a critical concern for selectn the beginning of the study
it is assumed that up to a certain limit, the increase of trexage spectrum sums named
as base featurds, explained in 3 with its mathematical expression, is exgktberesult in
the increase in classification performance. After sometguoinvever, there is a drop or a
saturation expected. All these phenomena are observed graéiphs that swedf, values on

x-axis and show the success rate in y-axis.

In the previous section, it is assumed that with the addibibrero crossing rate,c and sum

of spectrum derivativé\Ey, to the feature vector as new features should improve thsielas
fication performance in terms of success rate although thieg ladditional computational
complexity. Various experiment sets are formed based upisnassumption and the most
suitable algorithms are decided this way. Therefore, th&iaption is to be checked and
verified once again with solid evidence on some common expen sets. In the following
paragraphs, the detailed analysis of tffe@ of addition of each new feature on performance
is made. The number of base featuBss selected to be 15 at maximum due to the reasons

explained in 3.4.1 in detail.

541 THE EFFECT OF NUMBER OF AVERAGE SPECTRUM FEATURES

In this work, all of the figures presented indicate the saimeor drop in success rate as the
number of base features passes a certain limit. To illesthas phenomenon, it can be stated
that on figure 5.7, for the FT classifier, upEg = 6 the success rate seems to increase with a
higher rate of change, excluding tkg = 4 case folP = 5 which can be stated as an outlying
performance for a relatively low number of features. Thecess rate is then observed to be
saturating to values slightly higher than 80 % with some tlatibns for each speed. For NB
classifier however, 70 % success seems to be a saturatiom afsduE, = 2 for P = 8 and

the rest of the speeds seems not to fiected at all except the outlying case with = 4 and
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P = 5 again. In figure 5.8 for FT, the increase and saturatiordtiemore clear since there
are no additional features likec or AE, to boost the performance for the number of base

features.

As stated in chapter 3, the base features are in fact somefsbiters and their success
mostly depend on how well that they can emphasize tfferéntiating features of the signals
for different surfaces and for FT classifier, a fine performance caetiveed with optimizing
the number of features so that there is performance impremeiend the complexity is not
increased that much which can Bg = 7 or E, = 8 case. In the case of reduced number of
base features, it is observed that C, L, A and G classes am enofused folN B, where the

performance of L is improved with the increasing numbeEgf

5.4.2 THE EFFECT OF ZERO CROSSING RATE FEATURE

Figure 5.8 clearly shows thai; improves the performance fér= 1 andP = 5, E, < 5 cases.
After this point, there is relatively not much increase oted in performance; depending on

speed, it is around 2-7 %. The performance boost is mostlywéh P = 5 case.

5.4.3 THE EFFECT OF DERIVATIVE SPECTRUM FEATURE

Similar to zero crossing rate, the addition of this featimavss its best #ect on lower number
of base features. After a certain point likg = 5 the performance improvement is not that
high and there are even drops of 1-2% for sdggevalues. In experimenti, = 5, 6, 7 with

VO classifier, it was seen than f& = 8 case, there was a significant drop. However with
a more sophisticated probabilistic classification procedthe possible detrimentaffect of
this feature is reduced and the cases only when this featude de utilized contribute in
overall classification. This cannot be directly proved kepehding on the data and the results

available, it is the best comment that could be suggested.

5.5 ANALYZING THE EFFECT OF TOKEN SIZE

For a shorter token size, the computation time is expecteldaje. For this reason, the token

size is reduced by half by setting paramétér= 50. In this set of experiments, the size of
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the overall sound data is the same, however, the data isedivido 50 tokens. As shown is
figure 5.9, there is considerable amount of performance dropnd 11-15 % especially for
P = 5 case these values are likely to be close to 15 %. A more clephdor comparison
means is given in figure 5.10. These graphs for NB and FT amddwith averaged values
for all three speed values. It is also useful to note that fbeementioned drop pattern for
increased number d is observed in FT graph favl = 50 case as well. There is only one
case of improvement observed for c&e= 1 andP = 8, however, this case is not applicable
at all becausé&y, = 1 does not yield high success rates that are expect and iagevdrere is

no increase observed in any of the cases, this is found mosidmyable.

In terms of timing, where a benefit is sought by decreasingdken length, the estimation
time is 0.62 s in average fovl = 25 case and 0.61 s in average Mr= 50 case. Depending
on the application, this may seem to be a less improvemengVventhere may cases where a
real time decision making procedure is of concern. Theee$oich an improvement could be
found worth to apply in exchange of performance drop. Theag be cases where accuracy
around 70 % would be enough and the emphasis is put on fasi@eanaking and there may
be cases where the accuracy is important and time complexitype a compromise. In this
particular application higher accuracy is preferable nebugh the i-line training time is

increased considerably for multiple experiments.

5.6 ANALYSIS ON CLASSES

A new class is introduced to the system fdr= 25. This new class O (Shown in 2.7 is a
bare surface unlike the surfaces that are covered or partiavered like carpet, linoleum,
grass and concrete tile with autumn leaves. Surfaéimsss is expected to be higher for class
H, since H surface is made of wood and not from concrete. As sethe photographs, this
surface is similar to marble tile in terms of geometricalgand dimensions. The surface
stiffness is estimated to be close to marble tile as well comparethér surfaces. Surface A
is also a type of concrete tile however, there are areas edweith random soil and grass as

well as the autumn leaves.

This new class is expected to lower the performance sineajiite similar to surface R and

A. The results (an illustrative sample given in 5.3 in cordasmatrix form) reveal that the
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Table 5.3: A Sample Confusion Matrix for Experimdy = 13,B = 10

C{lL|JRI|HI]JO|AI|G
C|l 18| 1|l 0 O | 2 3 1
L1220 0} O 1 1
R| O] O 18| 3 || 4| 0| O
Hi) O]l O]l 024 1 0| O
O 0y O 6 || 3]16| 0| O
Al 1l 10 1022} 0
G| O 21 0] 04| 0] 2|21

surface is often confused with marble tile. There is a parforce drop observed to be around
10% for R and slightly less for other classes and close to 18 @eneral. There is a case
where the success rate is the same for six class and severicashowever, the confusion
matrices of these two cases are not exactly the same. If theldSEifier is observed, it
seems to yield considerably successful results around 86r%afuesE, > 7. For both
classifiers, the success rate is increased with a consldesaiount with five classes where
linoleum surface is removed. As previously stated, thiaseris often confused with carpet.
In 2.8, the carpet surface is shown on linoleum surface. Athe carpet surfaces recorded
are actually on linoleum surface. The overall performarfae classification with dferent
number of classes is shown in figure 5.11. The success rabséwed to be very high in 5

class E, = 12) around 90 %.

5.7 THE EFFECTS OF SPECTRAL SUBTRACTION

Spectral subtraction of the motor noise is considered aseamest for performance increase
since the data includes a high amount of motor sound thatie/ed to mask the interaction
sound. For this purpose, a motor model formed with 20 s of mubise for each surface is
extracted from the audio data manually and this data is olbedr carefully by human ear for
not containing any interaction sound. The motor model igesuitho the same power spectrum
derivation procedure explained in section 2. First inticmtin 1979 [42], spectral subtraction
concept is known for a long time in signal processing litgratand it has impressive success

on various applications like canceling engine noise.
Exhausting varioug andy values in 2.6, 0.5 forr and 2 fory is observed to increase iden-
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Figure 5.12: Thefects of spectral subtraction fér= 1

tification performance for some of the cases. These casagvarein figures 5.12, 5.13 and
5.14. However, the dlierence is not as much as expected (around 3% at maximum). This
may be due to continuation of the acoustic impact data initjreakalthough magnitude of

the impact is to decay while the legs turn for the next impact subtraction results in loss

of this data. In other words, some useful data for classifinanay have been erased from
the spectrum when some portion of the signal is emphasizieel b&st performance increase

is observed for speed 8, #25 seen in 5.14. This part of the study is not quite focused on,
therefore, the methods that are applied may befiitéent and there is not many experiments

conducted to reach a conclusion.
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CHAPTER 6

CONCLUSION

In this work, acoustic surface sensing and perception foohile robot is examined. With
a legged mobile robot, there can be various sensory waystefrdiming the surface type
and acoustic sensing is claimed to be a considerable diter@anong other ways of sensing.
The experimental setup, namely the SensoRHEX robot, tepired the idea of applicability
is able to travel in both indoor and outdoor surfaces and #ia dollected from available
surfaces are examined for this purpose. With the aid of afelifeature extraction schemes

and sophisticated pattern recognition algorithms, theli®kave yielded high success rates.

At this point it should be emphasized that when the same dasdistened by miscellaneous
people, the dierence between most of the surfaces could not be told atlakeTare various
approaches tried on the recorded signals but in all of theraxjgnts a more natural sound
data is preferred. This means the ambient sound was notydarty reduced. However, the
ambient data is checked for any misleading features thateffiegt the result of classification
in a positive but wrong way since it is not related to the stefateraction sound. In other
words, the data is collected carefully for not leading to arigconceptions but at the same
time the random noise coming from the ambient is rather highsimilar to daily hearing data
of living creatures. The collected data is in fact a combamathat is closely related to surface
stiffness and damping values since there is an impact type ititerao the touch of each
leg. Moreover, the data should also be related to surfaaghrass since there is ground-leg
interaction during the rolling motion of the C shaped legkefE are also elements expected
from the sound wave reflections that are related to the acqusiperties of the environment.
In this study, the overall feect of these elements are included in tokens. The underlying

physical mechanism is complicated and the sepaifééets of each factor is not focused on,
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since the signal is not preferred to be recorded in a stralytrolled environment. On the
other hand, the focus has been on seeking ways to utilizeothitstép sounds that naturally

occur in SensoRHEX platform.

The power spectrum estimate derived with discrete timeiEotansform (DTFT) is expected
and found to be very informative of the surface type sinceetlsbould be unique distribution
of sound energy on flerent frequency bands forftkrent types of ground interaction as well
as the diferent types of surfaces. Multiplication with the trapeabifilter bands have simpli-
fied the estimate to a selected number of features which iacinaf controlled parameter in
experiments. These filters cover a reasonable spectrum0efQ000 Hz and as the number
of bands increase each band gets thinner. For the finer bimtsional tree algorithm per-
formed much better compared to various other algorithmgeasethe performance of Naive
Bayes algorithm did not change very much and even decreasamie of the cases. Various
algorithms are evaluated in terms of timing concerns anaiigecloser ones to the high suc-
cess rate values and low time values in the computationaplaxity vs success rate graph are
preferred. The zero crossing rate derived from the time doateta and the sum of derivative
spectrum feature is put into classifier as features and #ffeict on success is examined in
detail. In the end, the spectral subtraction of the motonddtom the spectrum is explained
and applied. Contrary to the expectations, the resultsatranproved as expected. This may
either be due to the suppression of informative featurelkandkes with spectral subtraction
or any inadequacy in application of the method. As an impros, feature weighting should
be reconsidered and instead of using weigths that are detirheuristically, the methods

that consider variance of features like Mahalanobis distaran be used.

6.1 APPLICABILITY OF THE WORK

Although the similar surfaces can be confused more comgardifferent surfaces, the ratio
of this confusion is not high to detriment the applicabilitiithe approach. For a particular
set of features derived with a controlled set of parametedsfar some selected pattern clas-
sification algorithms success rates are high. Howevergthleould be more data collected
and analyzed for more statistical reliability. These sastid sets for the selected data set can
be stated as functional tree algorithm implemented to aasigintained with a more holistic

approach. In this work, the holistic approach can be expthims not cutting out the motor
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noise that is embedded into signal and taking three-foutsfeps of the robot into consid-
eration before making a decision. Being the first classifigsléementation, vector quantizer
algorithm performed quite well up to four classes. Howewdren the number of classes ex-
ceeded five, the drop in performance has been very dramatisiclasses, the succes rates
have been maximum around 50 %. This rate is still higher taadam selection of classes,
which is 1/6 for a six class problem by simple probability equation. €lessification results
for Functional Tree algorithm and Simple Logistic algomitiare considerably high and Naive
Bayes algorithm performs approximately 10 % better than XQthe length of the selected
signal for each patter decreases, the success rate dropsdrowhe rate is still considerably
high around 70 %. Even for a newly added class that is quitédzsito one of the classes, the
confusion increased as expected but did not lead to worséiged his is due to the acous-
tical difference between the two interactions with the two similafag@s. The results are
examined in terms of speeds and increase of speed has desult®ver success rates. For
the slow and mid speed, the success rate was quite high aBiu#ielfor many feature sets
and some very definitive feature sets are discovered. Log#Blogistic linear regression al-
gorithm performs very good results on highest speed howismelatively slow compared

to Functional Tree and Naive Bayes algorithms for this aaion.

With a fast analysis embedded to its software, a legged rodnothave models for surfaces
that are formed from surface type in an empirical manners Triformation can be useful in
adjusting the gait parameters of the robot and can be evehassadditional information in
mapping of the traveled environment. In this study, the $deas been on finding the record
duration, the spectral and time domain features and thsifitagion algorithms that result in
determining the type of the surfacfextively. This data could then be directly used in adjust-
ment of gait parameters, these gait parameters is expexteaiit in a considerable amount
for dissimilar surfaces. The data obtained from the surfgge could also be combined with
the outputs of other sensors like accelerometers for marglax decisions related to robot
body dynamics. Another interesting analysis could be tdyaeahe current data measured
from each hip motor and there can be correlation sought leetwlee current sensor records

with the acoustic data.
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6.2 FUTURE DIRECTIONS

There are both theoretical and practical directions that beafollowed after this work to
continue. As a former direction, there can be a theoretalation sought between the surface
hardness, dfiness, damping and the acoustic emissions. In this modelC thieaped legs
of the robot and the ground can be modeled as springs withtaircestifness values. A
mechanical model with damping andfitess would model the contact of the robot body
to the surface. In addition to this pure mechanical and tidmal view, there can be some
work to do on motor noise with a more theoretical signal psso® approach rather than
directly focusing on the outcome of the discrete time Fauransform as done in this study.
A more detailed motor model can be constructed with estirgatie important harmonics and
validating them with the empirical data. Another study oa thlation of the rolling sound of

the legs to the surface roughness.

As a further direction, more work can be done in identifioatid surfaces while turning or
going backward as well. A more interesting research can hdued is to detect abnormal-
ities in motor and gearbox sounds and such a work could bedayesl as an application of
machine health monitoring. State correction could be da@sed on surface type determina-
tion. A hearing library of the robot could be created with newords from the same and the

different surfaces and this can be fed with variofidipe training.

It is believed that, as mentioned above if the both direstitime theoretical and the empirical
work are handled separately or are combined, there can musdnteresting outcomes. A
fully autonomous robot behavior with gait parameter cdrttrat makes use of these surface
information derived by acoustic means would surely inclsdeeral important concepts of
robotics and be an important step in the field of mobile raisotA fault detection mechanism
that does sub-system diagnostics can be applied to thésambedded software. Although
this seems to be a fully empirical work, such a study can ghelunportant theoretical parts
in signal processing and pattern classification fields. éf ibbotics in general and mobile
robotics in particular are considered, acoustic sensimgpanception of surface type is be-
lieved to be very useful in these areas and there can be ricstnof academic work done
on these fields as well as various applications of researtidevelopment with considerable

Success.
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APPENDIX A

SONY ECM-DS70P MICROPHONE SPECIFICATIONS

Tachnical specifications
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Figure A.1: SONY ECM-DS70P Microphone Specifications



