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The purpose of the study was threefold: (1) to determine the factor 

structure of mathematical thinking at the within-classroom and at the between-

classroom level; (2) to investigate the extent of variation in the relationships 

among different mathematical thinking constructs at the within- and between-

classroom levels; and (3) to examine the cross-level interactions among 

different types of mathematical thinking. Previous research was extended by 

investigating the factor structure of mathematical thinking in derivative at the 

within- and between-classroom levels, and further examining the direct, 

indirect, and cross-level relations among different types of mathematical 

thinking. Multilevel analyses of a cross-sectional dataset containing two 

independent samples of undergraduate students nested within classrooms 

showed that the within-structure of mathematical thinking includes enactive, 

iconic, algorithmic, algebraic, formal, and axiomatic thinking, whereas the 

between-structure contains formal-axiomatic, proceptual-symbolic, and 
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conceptual-embodied thinking. Major findings from the two-level 

mathematical thinking model revealed that: (1) enactive, iconic, algebraic, and 

axiomatic thinking varied primarily as a function of formal and algorithmic 

thinking; (2) the strongest direct effect of formal-axiomatic thinking was on 

proceptual-symbolic thinking; (3) the nature of the relationships was cyclic at 

the between-classroom level; (4) the within-classroom mathematical thinking 

constructs significantly moderate the relationships among conceptual-

embodied, proceptual-symbolic, and formal-axiomatic thinking; and (5) the 

between-classroom mathematical thinking constructs moderate the 

relationships among enactive, iconic, algorithmic, algebraic, formal, and 

axiomatic thinking. The challenges when using multilevel exploratory factor 

analysis, multilevel confirmatory factor analysis, and multilevel structural 

equation modeling with categorical variables are emphasized. Methodological 

and educational implications of findings are discussed.  

Keywords: Multilevel Exploratory Factor Analysis, Multilevel 

Confirmatory Factor Analysis, Multilevel Structural Equation Modeling, 

Mathematical Thinking, Derivative 
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TÜREV KAVRAMINDAKİ MATEMATİKSEL DÜŞÜNMENİN ÇOK 

AŞAMALI YAPISAL MODELİ 

 

 

 

Özdil, Utkun 

Doktora, Orta Öğretim Fen ve Matematik Alanları Eğitimi Bölümü 

Tez Yöneticisi: Prof. Dr. Behiye Ubuz 

 

Ocak 2012, 307 sayfa 

 

 

Bu çalıĢmanın üç amacı vardır: (1) matematiksel düĢünmenin sınıf-içi 

ve sınıflar-arası aĢamada faktör yapısını belirlemek; (2) farklı matematiksel 

düĢünme tipleri arasındaki iliĢkilerin sınıf-içi ve sınıflar-arası aĢamalardaki 

değiĢimini araĢtırmak; ve (3) farklı matematiksel düĢünme tipleri arasındaki 

karĢı-aĢama iliĢkilerini incelemek. Önceki araĢtırmalar türev kavramında 

matematiksel düĢünmenin, sınıf-içi ve sınıflar-arası faktör yapısı araĢtırılarak 

ve farklı matematiksel düĢünme tipleri arasındaki direkt, indirekt, ve karĢı-

aĢama iliĢkileri incelenerek geniĢletilmiĢtir. Birbirinden bağımsız iki 

örneklemde sınıflar içine geçmiĢ lisans öğrencilerini içeren  kesitsel veri setinin 

çok aĢamalı analizleri matematiksel düĢünmenin sınıf-içi aĢamada eylemsel, 

görüntüsel, algoritmik, cebirsel, biçimsel, ve belitsel düĢünme tiplerini 

içerdiğini göstermekte iken sınıflar-arası aĢamada ise biçimsel-belitsel, 

yöntemsel-sembolik, ve kavramsal-Ģekilsel düĢünme tiplerini kapsadığını 

göstermiĢtir. Ġki-aĢamalı matematiksel düĢünme modelinin ana bulguları:  
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(1) eylemsel, görüntüsel, algoritmik, cebirsel, biçimsel, ve belitsel düĢünme 

temelde biçimsel ve algoritmik düĢünmenin iĢlevi ile değiĢimektedir; (2) 

biçimsel-belitsel düĢünmenin en güçlü direkt etkisi yöntemsel-sembolik 

düĢünme üzerindedir; (3) sınıflar-arası aĢamada matematiksel düĢünme 

iliĢkileri döngüsel bir yapıya sahiptir; (4) sınıf-içi düĢünme yapıları biçimsel-

belitsel, yöntemsel-sembolik, ve kavramsal-Ģekilsel düĢünme tipleri arasındaki 

iliĢkilere aracılık etmektedir; ve (5) sınıflar-arası düĢünme yapıları eylemsel, 

görüntüsel, algoritmik, cebirsel, biçimsel, ve belitsel düĢünme tipleri arasındaki 

iliĢkilere aracılık etmektedir. Kategorik değiĢkenlerle çok aĢamalı açımlayıcı 

faktör analizi, çok aĢamalı doğrulayıcı faktör analizi, ve çok aĢamalı yapısal 

denklem modelleme kullanımında karĢılaĢılabilecek sorunlar belirtilmiĢtir. 

Bulguların yöntembilimsel ve eğitimsel uygulamaları tartıĢılmıĢtır. 

Anahtar Kelimeler: Çok AĢamalı Açımlayıcı Faktör Analizi, Çok 

AĢamalı Doğrulayıcı Faktör Analizi, Çok AĢamalı Yapısal Denklem 

Modelleme, Matematiksel DüĢünme, Türev 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

University mathematics posits an ambitious set of outcome goals for 

student learning in calculus. These outcome goals all point to the importance of 

students‟ developing sophisticated and interconnected understandings of calculus 

concepts, procedures, and principles, not simply an ability to state definitions, 

memorize formulas, and apply algorithms. Increased emphasis is being placed not 

only on students‟ capacity to understand the substance of calculus but also on 

their capacity to “think in calculus”. In recent years, mathematics educators have 

convincingly argued that full understanding of calculus consists of more than 

knowledge of mathematical definitions, symbols, facts, and procedures (e.g., 

Kaput, 1994; Robert & Speer, 2001; Tall, 1994). Complete understanding, they 

argue, includes the ability to employ the processes of mathematical thinking, in 

essence: framing definitions, examining symbols, solving problems, making 

conjectures, abstracting theorems, and so on. Students should not view calculus as 

a bounded system of advanced concepts and procedures to be absorbed but, rather, 

as a dynamic process of reasoning logically (Dubinsky, 1994; Tall, 1992) to 

endorse more valid inferences.  

Mathematical thinking in general and that of calculus in particular are 

matters of great of importance for contemporary education at the university level. 

Over the years, mathematics educators have established studies in order to 

incorporate mathematical thinking into undergraduate instruction with the clear 

intention of encouraging both formal and informal vision of thinking in the field 
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(e.g., Epp, 1994; Raman, 2002; Tall, 2008). This intense process of mathematical 

thinking has helped researchers to recognize the need to make clear definitions in 

the specific field of calculus, even though there is little aggreement on a common 

definition for “mathematical thinking”. The notion of mathematical thinking is 

being recognized as an increasingly complex phonemenon compared with the 

simplicity that characterized our conceptions in past decades. Formerly, our 

conceptions of mathematical thinking consisted primarily of the product of 

abstract mathematical thought. Thus, at the most general level, characteristics of 

mathematical thinking that were put forth by the information-processing theory 

were the ability to apprehend information, induce relationships, and apply those 

relationships (Spearman, 1923). On the part of cognitive psychology, however, 

the abilities relevant to mathematical thinking posit three elements: analytical 

thought, practical thought, and creativity (Sternberg, 1988). Information-

processing theory largely focused on the amount of conscious mental 

manipulation required by mathematical tasks, whereas cognitive psychology 

attended to what mental processes and representations are relevant to 

mathematical thinking. For any theory, both mathematical thinking and its 

counterpart, abstract thought, are critically important for extending the quality of 

students‟ sequential reasoning. 

In the same vein, the concerns about the term collectively characterized it 

as a certain kind of abstraction in collegiate level mathematics (Edwards, 

Dubinsky, & McDonald, 2005; Tall, 1991). Studies by Fischbein (1983; 1993) 

raised our awareness that mathematical thinking involves much more than abstract 

mathematical thought rather it encompasses the formal, algorithmic, and intuitive 

processes. Hughes-Hallett‟s (1991) notion of mathematical representations made 

explicit what concerned many mathematics education researchers, namely, that 

mathematical thinking grounds on the relationships among symbolic, numeric, 

graphical, and verbal representations of mathematics. Tall‟s (2004) transformation 

of Fischbein and Hughes-Hallett‟s perspectives on mathematical thinking put a 

cognitively guided mathematical interface on their more general notions as Tall 
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focused on thinking through three worlds of mathematics that we recognize today 

as influencing our conception of mathematical thinking interacting within a 

developmental conceptual-embodied, proceptual-symbolic, and formal-axiomatic 

worlds of mathematics. Selden and Selden (2005) concluded that mathematical 

thinking draws its meaning from a synthesis of processes including formalizing, 

algorithmatizing, visualizing, generalizing, and proving. 

A considerable body of research documented that students possess limited 

grasp in mathematical thinking while defining the derivative concept or describing 

differentiation symbols [Formal Thinking] (Habre & Abboud, 2006; Orton, 1983; 

Zandieh, 1997; Zandieh & Knapp, 2006); proving differentiation theorems 

[Axiomatic Thinking] (Davis, 1993; Dreyfus, 1999; Epp, 2003; Selden & Selden, 

1995; Tall, 1989; Viholainen, 2007); solving routine differentiation problems 

[Algorithmic Thinking] (Ali & Tall, 1996; Borgen & Manu, 2000; Kendal & 

Stacey, 2000, 2003; Tsamir, Raslan, & Dreyfus, 2006); modeling real-life 

phenomena by differentiation symbolism [Enactive Thinking] (Klymchuk, 

Zverkova, Gruenwald, & Sauerbier, 2010; Malaspina & Font, 2010; Maull & 

Berry, 2000; Ubuz & Ersoy, 1997; Villegas, Castro, & Gutiérrez, 2009; White & 

Mitchelmore, 1996; Yoon, Dreyfus, & Thomas, 2010); interpreting graphs [Iconic 

Thinking] (Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997; Berry & Nyman, 

2003; Baker, Cooley, & Triugeoros, 2000; Haciomeroglu, Aspinwall, & Presmeg, 

2010; Hahkiöniemi, 2004; Ubuz, 2001; 2007); and unfolding a network of 

theoretical hypotheses that can be applied to differentiation algorithms [Algebraic 

Thinking] (Hahkiöniemi, 2006; Meel, 1998; Selden, Selden, Hauk, & Mason, 

1999). 

Although the existent literature has mirrored a general relational pattern, 

whether the pattern exists for specific types of thinking has not been thoroughly 

explored. Currently, there is no study that directly addresses the relationships 

among different types of mathematical thinking. However, research that 

concentrates on mathematical thinking has provided with two sets of studies for 

relational approach to thinking: (a) studies that include tasks triggering 
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relationships among two types of thinking (Clark et al., 1997; Engelbrecht et al., 

2005; Habre & Abboud, 2006; Martin, 2000; Selden et al., 1999; Ubuz & Ersoy, 

1997); and (b) studies that involve tasks prompting relationships among a 

combination of three (e.g., Infante, 2007; Muhundan, 2005) or four (e.g., 

Bingolbali & Monaghan, 2008; Viholainen, 2008) types of thinking. Taken 

together, studies highlight a number of difficulties that spring from students‟ weak 

mathematical thinking processes while solving derivative tasks. These difficulties 

illustrate the drawbacks of overreliance on a particular type of mathematical 

thinking in the absence of another thinking type, thus led us to assume that critical 

relationships do exist among formal, axiomatic, algorithmic, algebraic, iconic, and 

enactive thinking.  

To document students‟ difficulties with solving derivative tasks, 

researchers attempted to take students‟ written solutions as an approximate 

snapshot of the construction of and the relationships among different types of 

mathematical thinking, frequently using task-based interviews (e.g., Habre & 

Abboud, 2006; Hahkiöniemi, 2006; Klymchuk, Zverkova, Gruenwald, & 

Sauerbier, 2010; Maull & Berry, 2000; Orton, 1983) and to a lesser extent 

quantitative methods, particularly experimental designs (e.g., Meel, 1998; Ubuz & 

Ersoy, 1997; Ubuz, 2007). Empirical findings provide a sizable body of evidence 

that there are unique and joint effects of mathematical thinking constructs on one 

another.  

Viewed together, previous research has contributed valuably to the 

literature on mathematical thinking in derivative. Yet, research on types of 

mathematical thinking, as well as the possible linkages among them, (a) is 

inferred from empirical findings that provide substantial evidence in favor of the 

positive unilateral interrelations among different types of mathematical thinking, 

(b) is informed by insights from qualitative data, (c) has failed to provide a 

specific structural model that describes the detailed relationships among six types 

of mathematical thinking. And most importantly, previous research has failed to 

incorporate a multilevel perspective, thus almost completely neglected the critical 
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differentiation between student-level relationships and classroom-level 

relationships. Many of the afore-cited studies fit within a single level framework 

of analysis, in which researchers present an explicit lens for designating the 

relationships among different types of mathematical thinking at the within-

classroom level. However, these studies do not inform us about the extent to 

which classrooms differ with respect to the relationships among different types of 

mathematical thinking. Finding relationships only at the student level does not, 

allow one to reflect on the following questions: (a) Are there reliable differences 

in mathematical thinking across classrooms? and (b) Do most classrooms have a 

similar mix of students with a complete mastery of mathematical thinking? 

Furthermore, the inferences based on a single level of analysis cannot highlight 

the stability of relationships among different types of mathematical thinking at 

within- and between-classroom levels and further cannot explain to what extent 

these types influence one another, directly or indirectly at both levels of analysis. 

Since students perform as members of a classroom rather than as individual 

students (O‟Connell & McCoach, 2008), ignoring the influences from any level of 

the hierarchical structure may cause statistical problems and bias in the 

interpretation of results (de Leeuw & Meijer, 2008). In this vein, a multilevel 

approach is required whenever the relationships among different types of 

mathematical thinking are examined (Raudenbush & Bryk, 2002). 

The present study takes these foundations of mathematical thinking and 

extends on this phenemenon by interpenetrating the term within the blend of six 

distinct but interrelated types as: (a) enactive thinking, (b) iconic thinking, (c) 

algorithmic thinking, (d) algebraic thinking, (e) formal thinking, and (f) axiomatic 

thinking.  

An important background development in the process of mathematical 

thinking has been the emergence of perspectives in the calculus reform 

movements. These perspectives employed Schoenfeld‟s (1992) account of 

“learning to think mathematically” that is characterized through the development 

of a mathematical point of view. Researchers asserted that this mathematical point 
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of view grounds on refined ideas, to some extent, relative to its both lower-and-

higher order types and is dependent, at least in part, on the translations between 

these types. It is surprising to note, however, that few studies have empirically 

examined undergraduate students‟ enactive, iconic, algorithmic, algebraic, formal, 

and axiomatic thinking (Stewart & Thomas, 2007; Tall, 2008) and the 

interrelations among them (Christou, Pitta-Pantazi, Souyoul, & Zachariades, 

2005). Although, there is a growing number of scholars question students‟ 

enactive, iconic, algorithmic, algebraic, formal, and axiomatic  thinking in 

concepts such as functions, limits, and/or continuity (Dorier, 1995; Leron, 

Hazzan, & Zazkis, 1995; Lima & Tall, 2008; Przenioslo, 2004, 2007; Selden & 

Selden, 1995; Semadeni, 2008; Tall, 2005, 2008) it is only recently that these 

efforts were employed to investigate the concept of derivative (Hahkiöniemi, 

2006; Ubuz, 2001, 2007; Viholainen, 2005, 2008; Zandieh, 2000). This is 

troubling in the light of studies reflecting difficulties that students encounter with 

the meaning of derivative, proofs of differentiation theorems, graph sketches of 

the derivative, graphical interpretations of the derivative, and optimization 

problems. 

Clearly, grounded on functions and fueled by the limits, the concept of 

derivative capitilizes on mathematical thinking as a multifaceted concept 

(Zandieh, 2000) to incorporate different types of mathematical thinking that were 

previously reserved largely for studies with secondary students (e.g., Johanning, 

2004; Lesh & Doerr, 2002; Lima & Tall, 2008; Mitchelmore & White, 2000; 

Stacey & McGregor, 2000; Stylianides, 2007) and to a lesser extent studies with 

undergraduate students (e.g., Alcock & Simpson, 2004; Ali & Tall, 1996; Ubuz & 

Ersoy, 1997). From a theoretical perspective, studies with undergraduate students 

portray that the classroom environment captures the array of students as a whole 

and reflects the general cognitive body in students‟ mathematical thinking. 

Accordingly, the mathematical thinking nestled in the classroom environment 

emerges from the relationships among individual students‟ mathematical thinking. 

It is therefore necessary to delineate a global factor structure at the between-
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classroom level – a composite of students‟ mathematical thinking at the within-

classroom level –. That is, individual students‟ enactive, iconic, algorithmic, 

algebraic, formal, and axiomatic thinking may cover the broad spectrum of 

classroom‟s mathematical thinking in terms of conceptual-embodied, proceptual-

symbolic, and formal-axiomatic thinking (Christou, Pitta-Pantazi, Souyoul, & 

Zacharides, 2005; Tall, 2004). Given that overview, three compilations emerge. 

First, conceptual-embodied thinking covers enactive and iconic thinking as it is a 

blend of visuo-spatial processes. Second, proceptual-symbolic thinking sets on 

algorithmic and algebraic thinking as it is an amalgam of application and 

manipulation processes. Third, formal-axiomatic thinking unravels formal and 

axiomatic thinking as it is a composite of descriptive and expository processes. 

Viewed together, it is revealing to consider that the structure of mathematical 

thinking at the between-classroom level casts a compact vision of three factors. 

It is also important to note that, in one of the very few published articles 

taking a single-level approach to mathematical thinking, Christou et al. (2005) 

examined two single-level models for specifying the nature of the developmental 

trend in freshmen university students‟ mathematical thinking of the function 

concept. The authors used students‟ written responses to open-ended tasks in the 

context of function concept reflecting the conceptual-embodied, proceptual-

symbolic, and formal-axiomatic thinking. Two main research questions were 

addressed. First, do different tasks in the context of functions can be categorized 

as conceptual-embodied, proceptual-symbolic, or formal-axiomatic thinking? 

Second, what are the relationships among conceptual-embodied, proceptual-

symbolic, or formal-axiomatic thinking? Christou et al. (2005) found that each of 

the tasks employed in the study can represent three distinct types of thinking. 

Furthermore, as predicted by the authors, there were statistically significant and 

meaningful effects of different thinking types on each other. The results 

reaffirmed the developmental trend (Watson, Spirou, & Tall, 2003) as the effect 

of proceptual-symbolic thinking on formal-axiomatic thinking was largely 

mediated by conceptual-embodied thinking. 
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While no specific model of mathematical thinking has emerged, there are 

two lines of literature that pertain to the hypothesized two-level models of 

mathematical thinking in derivative. These include (a) findings from research 

portraying students‟ difficulties that may allude to a number of linkages among 

different types of mathematical thinking, and (b) findings from research providing 

a set of structured patterns associated with a model of task performance in 

different types of mathematical thinking.  

On the basis of this empirical evidence, investigating the relationships 

among undergraduate students‟ different types of mathematical thinking at the 

within-classroom and between-classroom level simultaneously is a noteworthy 

issue for further inquiry. A basic premise of this research is that mathematics 

education research focusing on students‟ mathematical thinking can complement 

and inform innovative efforts initiated by calculus sensitive to different types of 

mathematical thinking in the concept of derivative. Broadly speaking, this study 

nestles a traditional research approach that seeks to investigate students‟ 

difficulties with the concept of derivative (e.g, Hirst, 1972; Orton, 1983; Thurston, 

1972, 1994) and it reflects the increased recognition of the importance of 

mathematical thinking in the learning of derivative (e.g, Tall, 1991; Viholainen, 

2008) within remarkable connections to the relationships at two levels. The 

present study intends to serve as a backdrop for multilevel research on 

mathematical thinking that seeks for the factor structure of mathematical thinking 

at the within- and between-classroom levels, widening the perspective by the 

exploration of within- and between-classroom relationships of undergraduate 

students‟ mathematical thinking in the derivative concept. Thus this research 

would illuminate mathematics education researchers to take into account the 

multilevel structure of mathematical thinking in their attempts to investigate 

students‟ progress in several subjects (e.g., numerical analysis, linear algebra) as 

well as various concepts (e.g., integral, vectors). Using MSEM as a method, 

researchers can obtain greater insight into multilevel and mediational mechanisms 

when the within- and between-classroom relationships are simultaneously 
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estimated. In particular, this study is one of the few attempts for employing 

MSEM techniques with categorical data (e.g., Grilli & Rampichini, 2007). Thus, 

the analysis steps taken in the present study would guide researchers who are 

interested in using multilevel approaches with categorical variables. Accordingly, 

the multilevel models estimated in the present study would shed light into the 

teaching perspectives of mathematics instructors by giving prompt to the 

relationships among different types of mathematical thinking at the within- and 

between-classroom levels.  

 

 

1.1 PURPOSE OF THE STUDY 

 

The purpose of the study was threefold: (a) to determine the factor 

structure of mathematical thinking at the within-classroom and at the between-

classroom level; (b) to investigate the extent of variation in the relationships 

among different types of mathematical thinking at the within-classroom and at the 

between-classroom level; and (c) to examine the cross-level interactions among 

different types of mathematical thinking. More specifically, it was hypothesized 

that the application of multilevel exploratory and confirmatory factor analyses 

would yield a distinct latent factor structure at the within- and between-classroom 

levels (Hypothesis 1). In regard to this distinction and preliminary evidence from 

the pattern of results in mathematical thinking research it was hypothesized that 

there would be statistically significant and positive relationships among different 

types of mathematical thinking at the within- and between-classroom levels. 

Accordingly, it was expected to find statistically significant variation in and 

across classrooms (Hypothesis 2). In addition, it was hypothesized that there 

would be statistically significant cross-level interactions among different types of 

mathematical thinking (Hypothesis 3). The main research questions were (a) What 

is the factor structure of mathematical thinking at the within- and between-

classroom levels?; (b) What are the relationships among different types of 
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mathematical thinking at the within- and between-classroom levels?; and (c) What 

are the cross-level interactions among different types of mathematical thinking? 

Students‟ scores on the researcher-developed Thinking-in-Derivative Test 

were used to run multilevel exploratory factor analysis, multilevel confirmatory 

factor analysis, and multilevel structural equation modeling analysis. The items on 

the test were grouped to identify the latent variables at the within- and between-

classroom levels. The latent variables included at the within-classroom level were 

conceptualized as: enactive thinking, iconic thinking, algorithmic thinking, 

algebraic thinking, formal thinking, and axiomatic thinking. The latent variables 

introduced at the between-classroom level were conceptual-embodied thinking, 

proceptual-symbolic thinking, and formal-axiomatic thinking. Two-level models 

were tested for the hypotheses given above. The main two-level structural model 

that was hypothesized to frame the multilevel relationships among different types 

of mathematical thinking is presented in Figure 1.1. 
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Figure 1.1 The Hypothesized Multilevel Model of Mathematical Thinking in 

Derivative 
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1.2 DEFINITION OF TERMS 

The definition of the latent variables included in the hypothesized two-

level structural models is given below: 

1. Enactive Thinking (ENACTHK) 

Enactive thinking employs students to think about the mathematical 

situations around them in the physical world as an inclusive conception of the 

modeling of real-life phenomena by mathematical symbolism. Thus, it not only 

encompasses the mental perceptions of real-world objects but also internal 

conceptions of visual and spatial imagery (Tall, 2004). The set of enactive views 

includes knowledge of the real-world applicability of mathematical ideas and 

interpretations of mathematics to make sense of situations.  

 

2. Iconic Thinking (ICONTHK) 

Iconic thinking unravels mathematical visualization as the use of physical 

senses and actions. It includes processes that students employ to make sense on 

graphical representations in a way that accounts for how visualization of 

mathematics occurs and what visual mathematics may be learned through 

embodiments of physical objects (Bruner, 1966). Henceforth, effective progress in 

iconic thinking requires making graph interpretations or graph constructions, thus 

developing visual manipulations within relevant images. 

 

3. Algorithmic Thinking (ALGOTHK) 

Algorithmic thinking is conveyed to the use of routine mathematical 

procedures and techniques. It nestles dynamics (Sirotic & Zazkis, 2007) that is 

concerned about the application of rules, procedures, and algorithms. It can be 

defined as processes in which algorithms emerge as a product of students‟ own 

thinking (Rasmussen, Zandieh, King, & Teppo, 2005). Effective progress in 

algorithmic thinking requires identifying the situation to which procedure applies, 

the correct order of algorithms, the correct completion of steps, and finally 

recognizing the correctly completed procedure.  
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4. Algebraic Thinking (ALGETHK) 

Algebraic thinking involves the interplay between the understanding of a 

theoretical syntax within relevant symbols and the unpacking of theoretical 

situations into algorithms. It includes processes that unravel symbolic language 

from the emerging syntax of theorems and meaning of algorithms. It refers to the 

use of any of a variety of representations that handle quantitative situations in a 

relational way (Bednarz, Kieran, & Lee, 1996). Driscoll (1999) defined the term 

as “the capacity to represent quantitative situations so that relations among 

variables become apparent” (p. 1). Derry, Wilsman, and Hackbarth (2007) 

intensively emphasized that effective progress in algebraic thinking posits the 

interplay among the understanding of a theoretical syntax within relevant 

symbols, representing theoretical situations within procedures, and analyzing 

theoretical structures within changes in various algorithms.  

 

5. Formal Thinking (FORMTHK) 

Formal thinking grounds on mathematical definitions, symbols, and facts 

directed towards the recognition of mathematical terminology.  Thus, it draws on 

the symbolic language of mathematics as well as the logic of its exposition. Based 

on definitions, axioms, and symbols, this form of thinking gives prompt to an 

active reasoning process (Fischbein, 1983). Effective progress in formal thinking 

requires stating concept definitions and recalling relevant symbols, facts and 

theorems. 

 

6. Axiomatic Thinking (AXIOTHK) 

Axiomatic thinking nestles proofs and proving, which are the bearers of 

verification, justification, and refutation.  In essence, it is accepted to be at the 

core of mathematical thinking by its very abstract nature (Stylianides & 

Stylianides, 2008). Effective progress in axiomatic thinking requires the 

justification of empirical arguments as methods for validating theoretical 

generalizations.  
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7. Conceptual-embodied Thinking (CONCPTHK) 

Conceptual-embodied thinking forms the basis for all mathematical 

activities that begin with students‟ perceptions and actions on the real-life 

phenomena (Watson & Tall, 2002). Effective progress on conceptual-embodied 

thinking involves reflection on the visual aspects of mathematical objects together 

with the embodiment of the real-life phenomena. 

 

8. Proceptual-symbolic Thinking (PROCPTHK) 

Proceptual-symbolic thinking is grounded on both mathematical 

calculations and symbolic manipulations (Gray & Tall, 2001; Tall & Thomas, 

1991). The joint engagements in effective proceptual-symbolic thinking result in 

using automatized techniques based on symbolism that resonate dually as both 

algorithmic processes and algebraic manipulations.  

 

9. Formal-axiomatic Thinking (FORMAXTHK) 

Formal-axiomatic thinking is based on formal definitions and proof (Tall, 

1989, 1994). Effective progress in formal-axiomatic thinking provides supportive 

structures for the fundamental definitions, symbols, facts. Additionally, it 

mediates processes through an array of a logical synthesis in proving theorems.  

 

 

1.3 THE HYPOTHESIZED TWO-LEVEL MODEL OF  MATHEMATICAL 

THINKING 

On the basis of the theory of mathematical thinking and multilevel 

structural equation modeling the hypothesized Mathematical Thinking Model (see 

Figure 1.1) was developed. The set of related hypotheses predicting the two-level 

structural relations was basically split along two lines. The first line of hypotheses 

is derived from the review of related literature. The common threads of this line 

included (a) findings from research portraying students‟ difficulties that may 

allude to a number of linkages among different types of mathematical thinking, 
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and (b) findings from research providing a set of structured patterns associated 

with a model of task performance in different types of mathematical thinking. 

Although this first line of hypotheses has yielded significant findings, with each 

of the previously mentioned threads considered a distinct facet of the two-level 

relationships among different types of mathematical thinking, another important 

line of hypotheses was derived from the review of methodological issues related 

to multilevel structural equation modeling. As with the first line of review, this 

line of inquiry has added to my understanding of the latent factor structure of 

mathematical thinking at the within-classroom level and at the between-classroom 

level. Because both lines of hypotheses are concerned with theoretical and 

methodological issues, though varying in terms of the focus of the research, it 

seems reasonable to assume that theoretical and methodological research that 

examines student- and classroom-related relations lead to a more complete 

understanding of two-level relationships among different types of mathematical 

thinking.  

 

 

1.4 SIGNIFICANCE OF THE STUDY 

Over the past decade or so, concerns in various fields with methodological 

issues in conducting research with hierarchical (clustered or nested) data have led 

to the development of multilevel modeling techniques. The multilevel theory 

specifies whether the variables belong to the within- or between-group level and 

which direct, indirect, and/or total effects as well as cross-level interaction effects 

should be expected. Apart from direct, indirect, and total effects, cross-level 

interaction effects between the individual level (e.g., student) and group level 

(e.g., classroom) which require the specification of processes within individuals 

that ground these individuals to be differentially influenced by the certain aspects 

of the within- and between-group effects can be put forth in multilevel models 

(Hox, 2002).  
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Despite the existence of hierarchical data structures in social sciences, 

previous research addressed either one of the Structural Equation Modeling 

(SEM) or the Multilevel Modeling (MLM) methods (Raudenbush & Byrk, 2002). 

Generally, SEM methods permit researchers to build and test models including 

both endogenous and exogenous latent variables simultaneously (the measurement 

model and, the structural model). MLM methods, on the other hand, allow for the 

variance attributable to the between-group level (group level) to be portioned from 

the variance associated with the within-group level (individual level), permitting 

the estimation of more accurate standard errors and more reliable information 

about between-and within-group effects (Raudenbush & Byrk, 2002). However, 

application of either methodology alone to the hierarchical data would produce 

several analytical difficulties and misspecifications about the complex relations 

that exist within and between groups. In a way, MLM represents a blind spot on 

the fact that variables are themselves related directly or indirectly to desired 

outcomes disregarding endogenous outcomes may be simultaneously related to 

each other (Kaplan & Elliot, 1997). Use of SEM alone would ignore the clustered 

sampling that is often used to design educational data and would produce biased 

results in the estimation of structural regression coefficients (Muthén, 1989a, 

1989b). To resolve these difficulties, attempts have been made to integrate MLM 

with SEM for studying complex sample data. More recently, multilevel structural 

equation modeling (MSEM) has become a vigorous line of methodological 

research. Similar to the applications of the hierarchical linear model to regression 

in the context of the multilevel model, MSEM is a direct generalization of SEM in 

the context of the multilevel model (Cheung & Au, 2005; Raudenbush & 

Sampson, 1999) which allows the specification of separate structural models with 

direct, indirect, total effects as well as cross-level interaction effects within and 

between groups (Heck, 2001).  

Applications of MSEM to educational research are still rare (see, e.g., 

Heck & Thomas, 2008). Thus, the present study would be an attractive approach 

in that it allows the incorporation of a substantive theory about the relations 
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among mathematical thinking constructs within a nested structure (e.g., students 

nested within classrooms) by giving access to the investigation of the direct, 

indirect, total, and cross-level effects among different types of mathematical 

thinking.  

The mathematical thinking constructs were estimated using the indicators 

via SEM (by use of confirmatory factor analysis). This analysis in SEM was then 

expanded in the MSEM (by use of multilevel exploratory and confirmatory factor 

analyses) to determine the latent factor structure of mathematical thinking at the 

within-classroom level and at the between-classroom level. While no specific 

model of mathematical thinking has emerged, the present study would serve as a 

critical first step in designating the factor structure of mathematical thinking in 

general, and that in part mathematical thinking in derivative. 

The relationship among students‟ conceptual-embodied thinking, 

proceptual-symbolic thinking, and formal-axiomatic thinking has long been 

acknowledged as a critical factor in calculus success (Tall, 2004). The 

interrelation among different mathematical thinking types was particularly 

investigated in the domains of functions (Christou et al., 2005; Tall, 2004, 2005, 

2008), eigenvalues and eigenvectors (Lapp, Nyman, & Berry, 2010; Stewart, 

2008; Stewart & Thomas, 2009), linear dependency/independency (Ertekin, 

Solak, & Yazici, 2010; Stewart & Thomas, 2007, 2009), limits (Pinto & Tall, 

2002; Tall, 2001; Weber & Alcock, 2004), and derivative (Hahkiöniemi, 2006) 

but derivative is, perhaps, one of the concepts that has attracted the least research 

attention in the framework for mathematical thinking based on the theory of 

mathematical thinking thus far. In addressing the relationship, the present study 

would illuminate the interrelations among different types of mathematical 

thinking specific to the derivative which is one of the fundamental concepts of 

calculus. 

Researchers assessed the conceptual-embodied thinking through tasks that 

involve modeling real-life applications (enactive thinking) and visualizing 

applications in the context of graph constructions/interpretations (iconic thinking). 
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The proceptual-symbolic thinking was assessed through tasks that involve 

procedural computations (algorithmic thinking) and interpretations of generalized 

expressions and functional relationships (algebraic thinking). Finally, the formal-

axiomatic thinking was assessed through tasks that involve “what” and “which” 

type of questions in the context of primary level of definitions and symbols 

(formal thinking) and/or that involve “prove that” or “show that” questions in the 

context of abstract level of if-then statements (axiomatic thinking). These three 

mathematical thinking constructs, however, were not classified as enactive, 

iconic, algorithmic, algebraic, formal, and axiomatic thinking rather generally 

simplified as embodied, symbolic, and formal thinking. Henceforth, the present 

study would provide a distinct facet of mathematical thinking by differentiating 

among these types at the within- and between-classroom levels. 

In regard to the measures of performance, the stream of research on 

mathematical thinking put forth researchers‟ tendency to rely on self-developed 

open-ended questions while few of them was found to utilize multiple-choice 

questions in examining students‟ mathematical thinking. And those that are 

available were restricted to matching or true/false questions (Engelbrecht, 

Harding, & Potgieter, 2005; Goerdt, 2007; Stewart, 2008). Accordingly, the 

multiple-choice test developed in the present study would provide a different 

educational measurement perspective in addressing the relationships among 

different types of mathematical thinking. 

Student adoption of mathematical thinking and the use of mathematical 

thinking engagement are primary factors when trying to understand and predict 

student achievement in calculus. The major contribution of the present study is 

that its findings support the relationships among different types of mathematical 

thinking in the range of factor structure known to delineate these relationships at 

the within- and between-classroom levels. The multilevel analyses shed 

considerable light on both the multilevel factor structure of mathematical thinking 

and the multilevel relationships among different types of mathematical thinking. 

Put succinctly, these two-level models demonstrate the importance of 
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mathematical thinking in higher education. Evidence from no less an important 

multiple-choice measure as the Thinking-in-Derivative Test provided strong 

support for the claim that, classrooms, and the differences between them, matter.  

The two-level modeling efforts in the current study made clear that more simply, 

students and classrooms matter when promoting the relationships among different 

types of mathematical thinking. 
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CHAPTER 2 

 

 

REVIEW OF RELATED LITERATURE 

 

 

 

This chapter involves the review of related literature concerning the 

derivative concept, mathematical thinking contexts in the derivative concept, 

and the interrelations among these contexts. 

 

 

2.1 DERIVATIVE 

The teaching and learning of calculus has long been acknowledged as a 

critical theme in much research and is still considered to be an extremely 

important component of mathematics education from upper secondary school 

to university. Numerous studies have examined students‟ understanding of 

calculus in secondary (e.g., Hahkiöniemi, 2006; Lima & Tall, 2008; Presmeg & 

Balderas-Canas, 2001; Radford, 2000) and undergraduate level (e.g., Moore, 

1994; Viholainen, 2008a, 2008b; Ubuz & Ersoy, 1997; Ubuz, 2007). Recent 

reviews of this literature suggest that a more substantial progress has been 

made in investigating undergraduate students‟ understandings of and 

difficulties with calculus (Bingolbali & Monaghan, 2008; Carlson, Oerhtman, 

& Engelke, 2010; Crouch & Haines, 2004; Lima & Tall, 2008; Martin & Harel, 

1989; Newman-Ford, Lloyd, & Thomas, 2009; Orton, 1983; Raman, 2002; 

Selden & Selden, 1995; Ubuz & Kırkpınar, 2000; Ubuz, 2007, 2011). 

Researchers studied students‟ understanding of particular calculus concepts 
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such as functions (Even, 1998; Leinhardt, Zaslavsky, & Stein, 1990), 

continuity (Bezuidenhout, 2001; Tall & Vinner, 1981); convergence (Alcock & 

Simpson, 2004; 2005), limits (Bergé, 2006; Szydlik, 2000; Williams, 2001), 

derivative (Orton, 1983; Zandieh & Knapp, 2006), and integral (Ferrini-Mundi 

& Graham, 1991; Lithner, 2003; Tall, 1996).  

Specifically, derivative is, perhaps, one of the concepts that has 

attracted the least research attention thus far. Prominent researchers recently 

concluded that mapping out students‟ understandings of and difficulties with 

the derivative concept can be an important part of undergraduate mathematics 

education research that seeks to refine and build on students‟ mathematical 

thinking and learning at undergraduate level (Artigue, Batanero, & Kent, 

2007).  

A number of studies generally provide thick information about the 

detailed nature of students‟ conceptions or misconceptions across 

differentiation subjects. Such information is of fundamental importance in 

developing an understanding of the extent to which students are able to 

perform in solving differentiation problems and, therefore, in interpreting 

results about the difficulties they encounter with the derivative concept. In a 

1990 study, Amit and Vinner reported on both correct and incorrect ideas 

present in an undergraduate student‟s interpretations of a graph of a function 

with a tangent line drawn at a point. Researchers indicated that the participant 

was able to read off the value of the function at the point of tangency and use 

the slope of the tangent line to determine the value of the derivative at the point 

of tangency. However, he was likely to assume that the derivative is the 

tangent line itself instead of the slope of that line. An early study of students‟ 

graphical understanding of derivative was conducted by Asiala et al. (1997). In 

particular, students who were given a graph of a function and a tangent line 

were required to specify the point at which a tangent line is drawn to a curve. 

Also they were required to calculate the gradient of the tangent line. The results 

revealed varying degrees of difficulties positing students‟ lack in working with 
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local graphical data and interpreting the derivative as the slope of a tangent line 

at a point. Later studies by Ubuz (2001, 2007) updated the results and 

expanded the analyses to four common misconceptions that students held in the 

graphical understanding of the derivative with mainly similar findings. The 

researcher pointed to these misconceptions as follows: (a) derivative at a point 

gives the function of a derivative, (b) tangent equation is the derivative 

function, (c) derivative at a point is the value of the tangent equation at that 

point, and (d) derivative at a point is the value of the tangent equation at that 

point. As Baker, Cooley, and Trigueros (2000), Berry and Nyman (2003), and 

others have noted, when students were asked to sketch the graph of a function 

given its analytic properties (first and second derivatives, the value of limits, 

and continuity) they failed to coordinate the properties of the graph of a 

function and/or make connections between the graphs of a derived function and 

the function itself. Students encountered particular difficulties in interpreting 

the cusp at a point, the vertical tangent at a point or the removal of continuity. 

Since the concept of derivative is closely aligned with the concept of 

function and the concept of limit, students must consider rate and slope in 

terms of the covariation of the derivative function and the original function. 

However, many undergraduate students do not have a fine-grained knowledge 

about the details of this covariation (Crocker, 1991; Thompson, 1994).  

As Vinner (1982), Tall (1986), and Ellison (1993) have noted, students 

tend to describe derivative implicitly as the slope of the function or the slope of 

the curve at a point. Two explanations that account for this deficiency have 

been proposed. Firstly, researchers suggested that although students had 

intuitive notions of rate as speed and slope as steepness, few students describe 

the derivative as the slope of the tangent line to the curve. That is, deficiencies 

in defining the concept of derivative may stem, in part, from the fact that 

students superficially mention on the tangent line and/or the secant lines 

approaching to a tangent line. In addition, researchers proposed that these 

difficulties may be related to the breadth of the meaning of the definition of the 



 

 

 

 23 

derivative. They argue that the definition of derivative by describing the limit 

of the slope of secant lines approaching a tangent is a complex phenomenon, 

particularly because it requires students to describe the gradient at a point on 

the curve as the slope of the line connecting to nearby points. In some ways, 

this second explanation is a subset of the first, because it proposes that students 

initially think of the derivative as the slope of one secant line very close to the 

tangent (Heid, 1984). Both of these explanations are apparently plausible and 

may account for some of the difficulties that students have in understanding the 

concept of derivative. However, it is not clear whether students are able to 

distinguish between the tangent line and its slope which would yield in a 

complete understanding of derivative. Viholainen (2006) acknowledged that 

students‟ criterion for differentiability was generally the existence of an 

unambiguous tangent line. Their intuitive conception about the tangent 

misleadingly fulfill students‟ two misconceptions as follows: (a) a curve and its 

tangent have one and only one common point, and (b) a tangent keeps the 

whole curve in the same semi-plane (Biza, Christou, & Zachariades, 2008; 

Biza, Nardi, & Zachariades, 2009). Specifically, the majority of the students 

did not reflect the essence of tangent enough and that their efforts result in 

ambiguous conclusions.  

A third explanation, which has not been offered much in the previous 

literature, focuses on whether students are able to respond to the question 

“What is a derivative?”. Importantly, the mathematical nature of this question 

nicely explains apparent deficiencies in students understanding of the 

derivative concept. According to the literature, students are reasonably accurate 

when referring to the graphical interpretation of the derivative. For example, 

Vinner (1992) found that some students tend to define derivative as the slope 

of the tangent line to a curve whereas some others evoked the concept 

something to be calculated and related the derivative to the procedural methods 

of obtaining it. In another study, the way that students defined the derivative 

captured the notions of ratio, limit, and function and that students tend to use 
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the difference quotient in the limiting process by analyzing a sequence of 

average rates of change as the difference in the denominator of the ratios goes 

to zero (Zandieh, 2000). Interestingly, although students know that there is a 

ratio and a limit involved, they guess that the derivative is a function because 

of the symbolic differentiation formula as taking the derivative means that 

decreasing the exponent for the function. Moreover, students were not able to 

think about the symbolic difference quotient, the derivative at a point, or the 

derivative as a function simultaneously. This clearly articulated that students 

generally avoid using definitions (Pinto, 1998; Viholainen, 2007), and rather 

tend to use procedural methods in those definitions (Juter, 2005).  

On the other hand, studies that investigated students‟ competencies in 

solving routine differentiation problems show that they perform quite fast and 

adequately implement differentiation techniques. For example, Viholainen 

(2007) found that without any problems students performed a short calculation 

based on the definition of the derivative which led them to determine whether a 

function is differentiable or not at a given point.  In accordance with previous 

research, Viholainen (2006, 2008a) pointed that students mainly direct their 

attention to carrying out the procedure rather than thinking about the 

prerequisites of the differentiating method they applied. Replicating her earlier 

studies Viholainen (2011) concluded that students are aware of the observed 

critical features of differentiation, however they fail to emphasize connections 

and simultaneously use these connections while interpreting the used 

expressions and drawings in differentiation.    

Overall, research literature on the learning of the concept of derivative 

has been structured around several primary themes that are concerned about the 

difficulties students‟ encounter. Fundamental to these difficulties are students‟ 

lack in the meaning of the derivative concept and the related symbolic 

notations (Orton, 1983; Viholainen, 2008a; Zandieh & Knapp, 2006), the 

graphical interpretations of the derivative (Asiala, Cottrill, Dubinsky, & 

Schwingendorf, 1997; Kendal & Stacey, 1999), modeling real-life situations 
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within the applications of differentiation (Asiala et al., 1997; Aspinwall & 

Miller, 2001), and applying procedures that utilize the differentiation rules 

(Aspinwall & Miller, 2001; Kendal & Stacey, 1999) or the differentiation 

theorems (Clark, Cordero, Cottrill, Czarnocha et al., 1997).  

Students‟ deficiencies in contemplating advanced ideas and strategies 

by filtering them through their existing conceptions about the concept of 

derivative have provided an extensive outline for the relationships among the 

enactive, iconic, algorithmic, algebraic, formal, and axiomatic thinking. 

Although most of the research cited in these works involved the notable efforts 

on the nature of advanced mathematical thinking, it nevertheless can provide a 

lens for considering research on the derivative concept. In that respect, research 

examining the learning of derivative tends to utilize qualitative methods, 

particularly task-based interviews (Asiala, Cottrill, Dubinsky, & 

Schwingendorf, 1997; Borgen & Manu, 2002; Cooley, 2002; Doerr & Tripp, 

1999; Gainsburg, 2006; Habre & Abboud, 2006; Haciomeroglu, Aspinwall, & 

Presmeg, 2010; Hahkiöniemi, 2006; Maull & Berry, 2000; Orton, 1983; 

Tsamir, Rasslan, & Dreyfus, 2006; Zandieh, 1997; Zazkis & Liljedahl, 2002) 

and to a lesser extent quantitative methods, particularly experimental designs 

(Aspinwall & Miller, 2001; Chappell & Killpatrick, 2003; Crocker, 1991; 

Meel, 1998; Tall, 2001; Ubuz & Ersoy, 1997; Ubuz, 2001, 2007). 

At the outset the bulk of these reviews put forth the fact that  there is a 

move in the higher education research to focus on the advanced mathematical 

thinking genres (Mamona-Downs & Downs, 2002, 2008) and in partial on 

students‟ difficulties with grasping the sense of advanced mathematics (Selden 

& Selden, 2005). The parallel concern has been with the concept of derivative 

(Aspinwall & Miller, 2001; Baker, Cooley, & Trigueros, 2000; Orton, 1983; 

Zandieh, 2000) indicating that while there has been attention to the role of 

mathematical thinking in mathematics education for some time (Dreyfus, 1990, 

1991; English, 2002; Tall, 1991; Selden & Selden, 2005) it is only recently that 

an awareness of the significance of the mathematical thinking for the learning 
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of derivative are emerging (Hahkiöniemi, 2006; Viholainen, 2005, 2006, 2007, 

2008a, 2008b). These background developments raise a number of issues 

concerning mathematical thinking and the function of their relationships within 

the learning of the derivative concept itself. 

 

 

2.2 MATHEMATICAL THINKING IN DERIVATIVE  

Thinking in general refers to the means used by individuals to improve 

their understanding of, and exert some control over, their environment (Burton, 

1984, p. 36). Associated with mathematical thinking, these means involve 

mastering concepts and procedures, inducing relationships, and applying those 

relationships (Pimm, 1995; Schoenfeld, 1991; Sternberg, 1996). A number of 

studies have defined mathematical thinking as the type of thinking process 

used in doing mathematics (Chapman, 2011). In that research, several different 

approaches to the conceptualization of mathematical thinking are represented, 

from multiple ways to multiple perspectives about the nature of mathematical 

thinking. Differences in conceptualization of mathematical thinking mirror an 

intense debate during the last decade about what dimensions should be 

included as associates of mathematical thinking. The issue of mathematical 

thinking was linked to mathematical processes (Mason, Burton, & Stacey, 

1982), relational understanding (Skemp, 1976), conceptual knowledge (Hiebert 

& Lefevre, 1986), reflective abstraction (Dubinsky, 1991), mathematical sense-

making (Schoenfeld, 1994), a dynamic process (Mason, Burton, & Stacey, 

1982), mental activity (Watson & Mason, 1998), and advanced thinking (Tall, 

1991).  In the present study, I decided to take the much cited conceptualization 

of Mason, Burton, and Stacey (1982) as a point of departure. Based on a 

thorough review of the literature, Mason, Burton, and Stacey (1982) argued 

that mathematical thinking should be restricted to dimensions concerning the 

nature of thinking and the process of thinking, and that each dimension could 

be expressed as a mental activity or method used in learning mathematics. 
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Within this framework, O‟Daffer and Thornquist (1993) stressed that 

mathematical thinking involves mental activities that provide the understanding 

of ideas, discovering the relationships among the ideas, drawing conclusions 

about the ideas, supporting the relationships among the ideas, and solving 

problems involving the ideas.  Both quantitative and qualitative studies have, at 

least in part, confirmed this conceptualization. Studies based on slightly 

different theoretical frameworks have resulted in slightly same 

conceptualizations, probably reflecting that instruments tend to confirm the 

dimensionality in the theory of mathematical thinking underlying the 

construction of the questions to some extent. Viewed together, these questions 

indicated that mathematical thinking may be prompted within enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking, which was also the 

conclusion of a review of various empirical studies by David Tall. Tall (2004) 

suggested that mathematical thinking may be captured within a model with 

different types, distinguishing between conceptual-embodied, proceptual-

symbolic, and formal-axiomatic thinking. He proposed that conceptual-

embodied thinking nestles mental perceptions of real-world and internal 

conceptions of visuo-spatial imagery. In his study proceptual-symbolic 

thinking was represented by algorithmic actions and algebraic processes, 

whereas formal-axiomatic thinking was presented in a theoretical stance that 

underpins definitions, facts, symbols, and proofs. These distinctions indicate 

that it might be fruitful to explore mathematical thinking under six dimensions 

as enactive, iconic, algorithmic, algebraic, formal, and axiomatic thinking. 

Enactive thinking employs students to think about the situations around them 

in the physical world as an inclusive conception of the modeling of real-life 

phenomena by mathematical symbolism; iconic thinking unravels 

mathematical visualization as the use of physical senses and actions; 

algorithmic thinking is conveyed to the use of routine mathematical procedures 

and techniques; algebraic thinking involves the interplay between the 

understanding of a theoretical syntax within relevant symbols and the 
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unpacking of theoretical situations into algorithms; formal thinking grounds on 

mathematical definitions, symbols, and facts directed towards the recognition 

of mathematical terminology; and axiomatic thinking nestles proofs and 

proving which are the bearers of verification, justification, and refutation 

(Artigue, Batanero, & Kent, 2007; Battista, 2007; Harel & Sowder, 2007; 

Kieran, 1992; Lesh & Zawojewski, 2007; Tall, 1992).  

Students focus on different aspects of a particular task in which they 

develop six distinct but interrelated mathematical thinking. It is impossible to 

untie the merging of enactive, iconic, algorithmic, algebraic, formal, and 

axiomatic thinking in that every mathematical task calls out some paths of 

embodiment, symbolism, and formalism. A mathematical task links to the 

aspects that accompany a specific type of thinking and yet displays the aspects 

of all other thinking types. Accordingly, different types of mathematical 

thinking is used when tackling in appropriate tasks in any context area such as 

derivative, although relevant questions of a mathematical nature might more 

readily expose a variety of thinking types in differentiation at the same time. A 

derivative task is appropriate to specific types of thinking when it provokes or 

responds to the use of the components exemplified in the following lines. 

When students are solving an optimization task, their progress is energized by 

a blend of mathematical thinking. In its most general form such a task echoes 

the aspects of enactive thinking that employs students in modeling a real-life 

application of derivative. As a formal thinking, students attempt to disentangle 

the real-life phenomenon to recognize the definition of derivative along with 

differentiation symbols and rules. At this primary level, they are expected to 

understand the given conditions, identify the given quantities, and determine 

the unknowns. Students might advance these explorations into iconic thinking 

by drawing a diagram to identify the given and required quantities on the 

diagram and they might draw back to formal thinking to assign a symbol to the 

quantity that is to be maximized or minimized, also select symbols for other 

quantities and label the diagram with these symbols. They, then step out to 
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enactive thinking by developing a mathematical model (e.g., an equation).  In 

order to come up with a manageable model, algebraic thinking is inevitable in 

that they have to find equations relating variables simultaneously; expressing 

some in terms of others until they are left with just one equation connecting 

two variables. At the abstract level, students might broaden these relations to 

axiomatic thinking of Fermat‟s Theorem to justify that “If f has a local 

maximum or minimum at c, and if f’(c) exists, then f’ (c) = 0.”  Finally, to find 

the maximum or minimum value students access algorithmic thinking by 

applying the fundamental differentiation formula algorithms (e.g., the product 

rule).  

 

2.2.1 ENACTIVE THINKING 

The term “enactive thinking” includes processes that individuals 

employ to think about the situations around them in the physical world. Thus, it 

not only encompasses the mental perceptions of real-world objects but also 

internal conceptions of visual and spatial imagery (Tall, 2004). The set of 

enactive views includes knowledge of the real-world, applicability of 

mathematical ideas, and interpretations of mathematics to make sense of 

situations. Gravemeijer (1999) argued that in enactive thinking mathematics 

comes to the fore as a natural extension of students‟ experiences with the real-

life applications. When given a mathematical situation to explore students have 

the opportunity to demonstrate the information about real-world in order to 

make some predictions for a reasonable solution. Many researchers (Blum & 

Niss, 1991; Greer, 1997; Lesh & Harel, 2003; Mousoulides, Christou, & 

Sriraman, 2008; Toumasis, 2004; Zbiek & Conner, 2006) described enactive 

thinking processes as an inclusive conception of models and modeling to 

accommodate appropriate mathematical ideas and techniques which, in general 

terms, referred to the modeling of real-life phenomena by mathematical 

symbolism (Watson, Spirou, & Tall, 2003). The set of models and modeling 

views coined the term “model” as any mathematical representation of certain 
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aspects of real-life phenomena which is created using mathematical concepts 

such as functions, equations (Edwards & Hamson, 1990).  The term 

“modeling”, on the other hand, was linked to both the development and the 

application of mathematical skills necessary to get efficient answers for the 

real-life phenomena. The accounts of these descriptions collectively identified 

that enactive ideas nestle elements of both a treated-as-real world and a 

mathematics world, processes of which involve the interactions among 

elements such as the real-world situation and the mathematical solution. A step 

toward discerning the similarities and distinctions between modeling and 

enactive thinking processes is the fact that enactive thinking requires a certain 

form of looking at a real-life phenomenon; namely, it requires an enactive 

point of view. However, to adopt a particular enactive point of view is to make 

use of models. This conception of enactive thinking acknowledges the 

connected undertakings of practical situations and numerical integrations 

(Huber & Lunday, 2006) where students are required to describe the problem, 

manipulate the problem to develop a model, and build links between the model 

and the real-life problem (Lesh & Doerr, 2002). To conceive of enactive 

thinking as a consequence of a more general model development denotes that 

mathematics is not to be seen as something untouchable. On the contrary, it is a 

set of ideas to be retrieved and used to describe certain parts of the real-life that 

are the result of a coordination of enactive thinking and of a search for the 

mathematics based on enactive thinking (Lakoff & Nunez, 1997). The enactive 

thinking processes thus involve structuring, interpreting, and solving real-life 

problems (Blum, 2002). My focus on enactive thinking in the concept of 

derivative mandates applications of differentiation to reflect within the little 

empirical work that has been done towards the better understanding of enactive 

thinking involved in modeling real-life applications of the derivative (Asiala, 

Cottrill, Dubinsky, & Schwingendorf, 1997; Gainsburg, 2006; Presmeg & 

Balderas-Canas, 2001; Ubuz & Ersoy, 1997). Associated with any enactive 

thinking process are a mathematizable real-world situation, a mathematical 
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solution, a question that prompted the enactive thinking, and the relationships 

among them. To reflect this within enactive thinking in derivative and my 

interest in mathematical thinking in general, I assume the enactive thinking 

context to be any mathematical insight from optimization problems 

(Klymchuk, Zverkova, Gruenwald, & Sauerbier, 2010; Malaspina & Font, 

2010). Such kind of applications of derivative holds unique qualities that make 

them capable of triggering the production of enactive thinking. Accordingly, 

the ways in which students perceive the required application of the derivative 

and impose their ideas in their solutions in real-life situations reflect their 

enactive thinking. In this sense, enactive thinking might serve as a venue for 

mathematical thinking in the derivative where processes focus on students‟ 

assumptions about and awareness of pertinent mathematics available in finding 

the largest value or the smallest value of a function that a function can take on 

an interval and/or looking for the largest or smallest value of a function subject 

to some kind of constraint. 

 

2.2.2 ICONIC THINKING 

Bruner (1966) coined the term “iconic representation” to unravel 

mathematical visualization to conceptualize the use of physical senses and 

actions in a way that accounts for how embodiment of mathematics occurs and 

what visual mathematics may be learned through embodiments of physical 

objects. Drawing on existing descriptions, iconic thinking is involved in 

processes generated from building a mental scheme to depict visual 

information (Presmeg, 1985, 1986, 1997) that is used interchangeably with the 

notion of “visualization” characterized both as a “noun”- the product, the visual 

image- and as a “verb”- the process, the activity- (Bishop, 1989, p. 7). 

Nemirovsky and Nobre (1997) suggested that iconic thinking presents students 

a form of seeing the unseen that scan through these different roles. This form 

fits with the view of iconic thinking in Friel, Curcio, and Bright‟s (2001) work. 

According to these researchers “iconic sense” is a construct for presenting 
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certain forms of visualization that can be transmitted to others whereas “iconic 

interpretation” is the ability to read a graph and gain meaning from it. Taken 

literally, Costa and Rocha (2005) articulated that the iconic form of thinking 

results from the mental manipulation of images, intellectual operations related 

to the transformation of images, and mental construction of relationships 

among images. In a more figurative sense, it provides learners to illustrate 

embodied notions that help transcend the mathematical actions including 

physical manifestations (Zazkis, Dubinsky, & Dauterman, 1996). The 

embodiment of mathematical actions, via step-by-step graph sketches, then as 

graph interpretions, and as visual objects in their own right is well-represented 

in the literature at the secondary level (Mitchelmore & White, 2000; Noss, 

Healy, & Hoyles, 1997; Presmeg, 1985; Presmeg & Balderas-Canas, 2001; 

Stylianou, 2002) and at the undergraduate level (Alcock & Simpson, 2004, 

2005; Asiala et al., 1997; Aspinwall et al., 1997, Aspinwall & Miller, 2001; 

Berry & Nyman, 2003; Kendal & Stacey, 1999; Lima & Tall, 2008; Pegg & 

Tall, 2005; Przenioslo, 2004, 2005; Roorda, Vos, & Goedhart, 2007; Stewart & 

Thomas, 2007; Ubuz, 2007). The pervasiveness of undergraduate students‟ 

iconic thinking has been affirmed to utilize learning in convergence of 

sequences (Alcock & Simpson, 2004; 2005), limits (Pinto & Tall, 2002; 

Przenioslo, 2004), convergence of sequences (Przenioslo, 2005), derivative 

(Asiala et al., 1997; Aspinwall et al., 1997, 2001; Berry & Nyman, 2003; 

Ferrini-Mundy, 1987; Kendal & Stacey, 1999; Orton, 1983; Roorda, Vos, & 

Goedhart, 2007; Zandieh, 2000), and logic (Carreiras & Santamaria, 1997) 

emerging a consensus that students‟ broad interpretations of graphs related to 

advanced problem solving is enhanced by engaging in iconic thinking 

processes. The findings further shown that the meaning of calculations on the 

given tasks were ensured by iconic transformations that usually attempted to 

transform the original graph into an algorithmic form for which a solving 

procedure was already known. 
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The concept of derivative nestles versatile iconic thinking processes 

(e.g., slope of a tangent line) that include both a procedural and conceptual 

fluency in translation within and between graphical representations 

(Viholainen, 2008a, 2008b). Thus, the iconic stance in the concept of 

derivative implies that students can benefit from constructing visual ideas 

underpinning derivative concepts (e.g., extrema points) by performing actions 

that have graphical manifestations, condensing these to processes and 

encapsulating these as interpretations in the visual world. For instance, 

interpreting the image of a curved graph of a derivative function intersecting 

the x-axis may be linked with the extremas of the corresponding function or 

sketching the graph of a function f(x) may be linked to the graph of its 

derivative .  

 

2.2.3 ALGORITHMIC THINKING 

Several researchers (Fischbein, 1983; 1994; Gray & Tall, 1994; Lima & 

Tall, 2008; Marrongelle, 2007; Sirotic & Zazkis, 2007; Stewart & Thomas, 

2007; Tall, 2002; Tirosh, Fischbein, Graeber, & Wilson, 1998) described 

algorithmic thinking simply as the capability to apply procedures. Henceforth, 

most of them used mathematical procedures and techniques to convey 

algorithmic thinking as a process. Their viewpoints jointly underscored the 

importance of algorithmic thinking in operating on with mathematical 

properties and extending these properties to wider computations. In other 

words, algorithmic thinking was accepted to be stored in mathematical 

competencies including routine practices that are technically justified and 

which have to be actively trained. In this sense, algorithmic thinking nestles 

dynamics (Sirotic & Zazkis, 2007) that is concerned about the practice and 

mastery of a set of computational procedures in which algorithms emerge as a 

product (Rasmussen, Zandieh, King, & Teppo, 2005).  
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There are currently increased efforts to highlight the algorithmatization 

process in reducing mathematical conditions to procedural forms throughout 

secondary grades (Cooper, 2003; Johanning, 2004; Lima & Tall, 2008; Stacey 

& MacGregor, 2000) and university (Ali & Tall, 1996; Clark et al., 1997; 

Orton, 1983; Roorda, Vos, & Goedhart, 2007; Williams, 2001). Researchers 

mainly argued that the ready-made procedures presented with little connection 

to reasoning may encourage limitations in students‟ mathematical thinking 

(Gravemeijer & van Galen, 2003). In terms of the contextualization of 

operations algorithmically in a stepwise flaw of procedures it is widely 

accepted that, when engaged in algorithmic thinking, students may exhibit an 

automatized progress, thus perform more spontoneously on the given task. 

Marrongelle (2007) underlined algorithmic thinking processes as a 

controversial part of mathematics in the sense of the efficient mechanisms it 

provides for communicating generalized procedures on the one hand and the 

limitations it endengers by preventing students to develop mathematical 

insights on the other.  

It has been extensively documented that algorithmic thinking in solving 

derivative tasks often trigger responses aligned with procedures (Ali & Tall, 

1996; Aspinwall & Miller, 2001; Clark et al., 1997; Kendal & Stacey, 1999; 

Orton, 1983; Viholainen, 2005; Zandieh, 2000). Fischbein‟s (1983) analysis of 

algorithmic thinking facilitates our understanding of the building blocks 

proposed in the concept of derivative. His analysis incorporates two 

dimensions: (a) the ability to describe and use the rules along with relevant 

procedures; and (b) the ability to algorithmatize theoretical justifications. 

During the first dimension, students integrate the rules to apply procedures 

(e.g., knowing that the derivative rule for a constant function is “if , 

then  0.” and applying this rule to find the derivative of .). 

Next, these steps are organized into algorithms, which reflect the explanation 

of why certain procedures hold for this problem situation (e.g.,  

because from the definition of derivative: 
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; accordingly 

). Thus, algorithmic 

thinking requires identifying the situation to which procedure applies, the 

correct order of algorithms, the correct completion of steps, and finally 

recognizing the correctly completed procedure.  

 

2.2.4 ALGEBRAIC THINKING 

The constitution of a symbolic language and the concomitant rise of 

symbolic thinking contain the germ of algebraic thinking that shed lights to the 

emerging syntax of theorems and meaning of algorithms. Algebraic thinking 

about the syntax of theorems and about the meaning of algorithms to 

restructure thinking in adaptive response to changing the theoretical situation 

demands may be particularly critical in testing the hypotheses of a theorem. 

Thus, the itemization into algebraic thinking by Mason (1996) brought the 

process further as an activity. Unwrapping theorems and pushing symbols, he 

viewed algebraic thinking simply in „algorithm seeking‟. Zazkis and Liljedahl 

(2002) supported that the very formation of this algorithm in the mind of the 

student, in whatever form it is envisioned, is algebraic thinking (p. 399). In 

characterizing algebraic thinking, Derry, Wilsman, and Hackbarth (2007) 

intensively emphasized the interplay among the understanding of a theoretical 

syntax within relevant symbols, representing theoretical situations within 

procedures, and analyzing theoretical structures within changes in various 

algorithms. Algebraic thinking, hence, involve the algorithmizations students 

use to endow them with meaning in their encounter with theorems (Radford, 

2000). Even and Tirosh (2002) postulated that the ability to think algebraically 

unfolds a network of connections to enrich the theoretical justifications of 

respective procedures. Researchers put forward students‟ difficulties with 

developing such algebraic techniques to acquire and make sense of theorems 

(Gainsburg, 2006; Radford, 2000; Radford & Puig, 2007). The transition from 
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the understanding of the distinctive manner in which simple procedures and 

compounded algorithms stand for the theorems they represent to the grasping 

of the sense of procedures carried out on those theorems was taken as a shift 

that nestles complexities for students. These complexities were evidenced to 

significantly hinder students‟ ability to succeed with more advanced 

mathematics (Ladson-Billings, 1998). To better understand the algebraic 

thinking in the concept of derivative, it may be helpful to notice that, the 

theorems has to be represented through symbols, for it is the initial point of the 

advanced mathematical thinking process. The symbols then express the 

algorithms as general procedures in the theorem, the ultimate goal of being 

algebraic representation. For instance, the theoretical text of the Mean Value 

Theorem unfolds as algorithmic calculations from this representation of the 

theorem to derive inequalities such as |tanb – tana| ≤ | b-a|, where –π/2 < a,b < 

π /2. Moreover, Mean Value Theorem figures out the connection between the 

slope at a point (local picture of derivative) and the average slope across an 

interval (global picture of derivative) where students make algebraic 

manipulations with functions that are continuous in the closed interval [a, b] 

and differentiable in the open interval (a, b).  

Followed by a move towards algebraic thinking and algebraic 

symbolism in mathematical abstractions, some research which was set out to 

trace the development of students‟ use of algebraic thinking concerned 

secondary school students (Cooper, 2003; Irwin & Britt, 2005; Johanning, 

2004; Radford, 2000; Stacey & MacGregor, 2000; Steele & Johanning, 2004; 

Sutherland, 1989; Tall & Thomas, 1991; Zazkis & Liljedahl, 2002), and to a 

lesser extent, undergraduate students (Borko et al., 2005; Derry, Wilsman, & 

Hackborth, 2007). Researchers reported that algebraic thinking is necessary for 

mathematics throughout several mathematical subjects including division 

(Cooper, 2003), patterns (Radford, 2000; Zazkis & Liljedahl, 2002), functions 

(Derry, Wilsman, & Hackborth, 2007), numbers (Irwin & Britt, 2005; Zazkis & 

Liljedahl, 2002), equations (Kramarski & Hirsch, 2003), and word problems 
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(Stacey & MacGregor, 2000; Steele & Johanning, 2004). Collectively, findings 

echoed students‟ difficulties with making the transition from arithmetic to 

algebra that requires them to reason about a theorem and to express appropriate 

algorithms (Kieran, 1989; Kramarski & Hirsch, 2003; Sutherland, 1989; Tall & 

Thomas, 1991). Henceforth, researchers suggested that for meaningful 

algebraic thinking to occur it is not sufficient to see the general theorem in the 

particular algorithms, indeed it must be expressed algebraically.  

 

2.2.5 FORMAL THINKING 

Formal thinking draws on the symbolic language of mathematics as 

well as the logic of its exposition. Based on definitions, symbols, and theorems, 

this form of thinking gives prompt to an active reasoning process (Fischbein, 

1983). The standpoint of Fischbein, here, parallels that formal thinking is 

constructed through the ability to connect mathematical symbols and notations 

with relevant definitions (Bergsten, 2004). This cognitive process is facilitated 

by the knowledge about how the mathematical realm works (Tsamir & Tirosh, 

2008) in a declarative manner. Tsamir and Bazzini (2000) argued that a wider 

perspective of the mathematical realm encompasses the knowledge of how to 

validate concepts in mathematical context by their definitions or notations. 

Formal thinking, then, involves the capacity to reason propositionally and the 

ability to make deductions beginning from formal definitions (Fischbein, 1994) 

followed by their relevant notations, and further pertinent theorems. Sirotic and 

Zazkis (2007) suggested that in order to understand the depth of the formal 

thinking it is necessary to examine students‟ ability to recall the symbols 

relevant to a concept, state the meanings of these symbols in their own words, 

and sequentially implement these meanings in a broader mathematical context 

of facts and rules. Researchers generally accept that formal thinking processes 

can be carried out by rote (Semadeni, 2008; Tirosh, Fischbein, Graeber, & 

Wilson, 1998), and thus become declarative and in part procedural. However, 

the importance of formal thinking cannot be overemphasized that it has a 
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powerful complementary role in two aspects: (a) it helps students to exert 

meanings from visual images related to definitions and theorems (Orton, 

1983); and (b) it provides students the opportunity to apply appropriate 

procedures relevant to a concept in conjunction with its definition and 

symbolic use (Zandieh & Knapp, 2006). Probably, formal thinking enables 

students to systematically take turns between fundamental concept definitions, 

notations, and rules.  In a deeper sense, these aspects articulated that students‟ 

access to formal thinking indicate the successful discrimination of the concept 

definition (e.g., rate of change) denoted by a symbol (e.g., ). Accordingly, 

formal thinking evokes in the concept definition and its notation incorporated 

into the facts and rules (e.g., f(x) = sinx  (x) = = cosx.  

Recent attention to address student learning in calculus has generated 

renewed efforts to understand the essential role of formal thinking at the 

secondary level (Gray & Tall, 2007; Lima & Tall, 2008) and at the 

undergraduate level (Alcock & Simpson, 2004, 2005; Orton, 1983; Przenioslo, 

2004, 2005; Szydlik, 2000; White & Mitchelmore, 1996; Williams, 1998; 

Williams, 2001). A number of researchers have commented on the 

fundamentality of formal thinking on the basis of undergraduate mathematics 

in learning convergence of sequences (Alcock & Simpson, 2004; 2005), limits 

(Przenioslo, 2004, 2005), functions (Williams, 1998), equivalence relations 

(Chin & Tall, 2000, 2001), and derivative (Orton, 1983; Viholainen, 2008; 

White & Mitchelmore, 1996; Zandieh, 1998, 2000) contending that students‟ 

understanding of fundamental formal concepts is underdeveloped. Collectively, 

they supported that the acceleration of formal thinking slights further subtle 

processes in solving more sophisticated calculus problems.  

The chief characteristic of formal thinking in the concept of derivative 

is the fact that it is framed by a world of concrete concepts (e.g., definitions, 

symbols, notations) and higher evolved forms of abstractions from fundamental 

mathematical concepts that offer students an array of lines of conceptual 
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development. From this point of view, the concept of derivative can be 

regarded to grasp the essence of the functions and limits from which it is 

abstracted. This abstraction also addresses the meaning of symbolization of 

derivative as  which is then used in differentiation rules and further in 

the statements of theorems under some circumstances (Thurston, 1972, 1994).  

 

2.2.6 AXIOMATIC THINKING 

In terms of axiomatic thinking, what Stylianides and Stylianides (2008) 

assert is that the process of proving and the concept of proof are the bearers of 

the cognitive activity of axiomatising in which the properties are deduced 

solely from the theorems. This was initially discussed at some length in 

Advanced mathematical thinking (Tall, 1991), which was in essence an 

overview of axiomatic thinking as a combination of verification, justification, 

or refutation, and in particular of its emphasis on rigorous formal mathematics. 

Taking a comprehensive and subjective stance Harel and Sowder (2007) 

supported the term „proof‟ to include both formal and informal arguments 

(justification, verification, and explanation) in an attempt to imbue 

mathematical thinking with a spirit of axiomatic enquiry. Then, through a 

closer examination of axiomatic thinking in practice, it came to the further 

conclusion that proof is the central idea of modern mathematics and proving is 

the style of presentation of that mathematics (Epp, 2003; Tall, 2001). In his 

further study, Tall (2002) used the hyphenated term theorem-proving to 

describe the overarching view of axiomatic thinking that encompasses the 

following major processes that are frequently involved in the process of 

making sense of and establishing mathematical proof: (a) predicting and 

experimenting in the real world, (b) using statements that are available for 

justification, (c) employing forms of valid mathematical argumentation, (d) 

connecting a sequence of assertions for or against a mathematical claim, and 

(e) communicating with appropriate forms of mathematical expressions. The 

choice of a hyphenated term to encompass these five processes reflected Tall‟s 
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intention to view the processes in an integral way. Also, given that the term 

“proving” has been associated with many different aspects of mathematical 

processes that are related to axiomatic thinking (e.g., inductive reasoning, 

deductive reasoning), the hyphenated term theorem-proving clarified that the 

focus is on aspects of axiomatic thinking related to the proofs of theorems. In 

this context, proving and proof, Stylianides and Stylianides (2008) suggested, 

are formally constituted building blocks of axiomatic thinking that empower 

students to reflect on the set of accepted statements (e.g, definitions, axioms, 

theorems), interpret the modes of argumentation (e.g., logical rules of 

inference), and make transformations among the modes of argument 

representation (e.g., verbal, graphical, symbolic) in a certain mathematical way 

– much in the same manner that mathematicians do in using true statements, 

valid arguments, and appropriate representations.  

A great number of educational researchers have focused on how 

axiomatic thinking is dealt with by elementary school students (Stylianides, 

2007; Stylianides & Stylianides, 2008), secondary school students (Hanna, 

2000; Hanna & Jahnke, 1996; Hoyles & Küchemann, 2002; Miyakawa & 

Winslow, 2009; Yackel & Hanna, 2003), undergraduate students (Bills & Tall, 

1998; Chin & Tall, 2002; Furinghetti & Morselli, 2009; Gibson, 1998; Martin 

& Harel, 1989; Weber, 2006), and teachers (Corleis, Schwarz, Kaiser, & 

Leung, 2008; Hatzikiriakou & Metallidou, 2008; Schwarz, Leung, Buchholtz, 

Kaiser, Stillman, Brown, & Vale, 2008). They recommended that axiomatic 

thinking is central to doing mathematics throughout several mathematical 

subjects including integral (Bills & Tall, 1998), continuity and convergence 

(Gibson, 1998), number theory (Furinghetti & Morselli, 2009), equivalence 

relations (Chin & Tall, 2002), divisibility (Martin & Harel, 1989), group 

homomorphisms (Weber, 2006), group isomorphisms (Leron, Hazzan, & 

Zazkis, 1995), logic (Inglis & Simpson, 2008), derivative (Davis, 1993; Mills 

& Tall, 1988), and geometry (Schwarz et al., 2008; Weiss, Herbst, & Chen, 

2009). There is a body of research reporting that students lack rich axiomatic 
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thinking to derive the truth of a statement (Goetting, 1995; Martin & Harel, 

1989), distinguish between inductive and deductive arguments (Morris, 2002), 

reason on proof settings (Sowder & Harel, 2003), validate the given statement 

(Selden & Selden, 2003), focus on the proof methods (Sowder, 2004; Weber, 

2001; Weber & Alcock, 2004). As the focus of attention drew on the 

understanding that mathematics is founded on axiomatic thinking and is not a 

set of arbitrary rules to mechanically apply, researchers point to the 

involvement of proof-based textbooks in the curriculum (Stacey & Vincent, 

2009; Stylianides, 2009) and the integration of dynamic geometry 

environments to mathematics classes (Hoyles & Healy, 1999; Olivero & 

Robutti, 2001) that provide students the opportunity to make sense on the 

essence of axiomatic thinking.  

When students are introduced the axiomatic thinking, a new focus of 

attention occurs within the transition from using symbols and computations to 

give answers to selecting certain properties as definitions and theorems to build 

up the other properties by logical inferences (Gray, Pinto, Pitta, & Tall, 1999; 

Mariotti, 2006). Consequently, the empirical evidence for the growing 

emphasis on axiomatic thinking showed that the mathematical processes it 

mediates are not something transparent for the students (Harel & Sowder, 

2007) as they step into the rigid forms of mathematics.  

Axiomatic thinking deposited in the concept of derivative, the rigorous 

system that they form, and the advanced mathematical thinking processes that 

they mediate offer students certain lines of theoretical development, malleable 

directions of logical growth that the students can pursue and transform in 

accordance to the proving activities they engage with. For instance, providing a 

justification for the truth of the given function f(x) has exactly one root by 

reference to the Mean Value Theorem is formally cast by axiomatic thinking.  
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In a broader sense mathematical thinking processes that are provoked 

when solving different tasks may be analyzed from the perspective of “Three 

Worlds of Mathematics” (Tall, 2004), which proposes the existence of 

conceptual-embodied, proceptual-symbolic, and formal-axiomatic thinking.  

 

2.2.7 CONCEPTUAL-EMBODIED THINKING 

Most studies on students‟ conceptual-embodied thinking fall in one of 

two categories, that is, the positive effect approach with a focus on students‟ 

visual and spatial imagery lead to great leaps of insight in mathematics, and the 

negative effect approach that calls for blind alleys of error in the embodiment 

of mathematics. Obviously, there are many arguments both for and against 

each one of the two approaches. For example, an advantage of the positive 

effect approach is that conceptual-embodied thinking is involved in processes 

generated from a mental scheme to depict visual information (Presmeg, 1986, 

2006; Zimmerman & Cunningham, 1991). At the same time, this approach 

points that conceptual-embodied thinking is used interchangeably with 

“visualization” characterized both as a “noun”-the product (e.g., visual image) 

and as a “verb”-the process (e.g., activity) (Bishop, 1989, p.7). Yet to deny the 

importance of conceptual-embodied thinking, however, is to deny the roots of 

many of the most profound mathematical ideas relevant to functions, 

continuity, and differentiation (Tall, 1991). Nemirovsky and Nobre (1997) 

expressed a concern about diverting attention from important mathematical 

subjects, and this concern of importance assigned to seeing the unseen gave 

rise to conceptual-embodied thinking to be a fundamental source of presenting 

certain forms of visualization. Research into these converse approaches showed 

that students lack the ability to represent, transform, and generalize visual 

representations of the derivative that trigger the harmonization of conceptual-

embodied thinking (Asiala et al., 1997; Aspinwall et al., 1997, 2001).  

Researchers have long reported the difficulties in conceptual-embodied 

thinking encountered by students referring to basic calculus concepts as the 
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derivative (Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997; Gainsburg, 

2006; Presmeg & Balderas-Canas, 2001; Ubuz & Ersoy, 1997). Many of the 

main difficulties has been subject to their lack in the ability to communicate, 

document, and reflect on visual information depicted in applications of 

derivative (Orton, 1983; Yoon, Dreyfus, & Thomas, 2010). The origins of such 

difficulties may be analyzed in light of various perspectives: interpreting a 

graph and constructing its derivative graph (e.g., Ubuz, 2007) and/or solving 

optimization problems (e.g., Villegas, Castro, & Guttiérrez, 2009).  

Students generally have very weak conceptual-embodied thinking skills 

in the calculus (Epp, 1987; Selden, Selden, & Mason, 1994), which in turn 

leads to lack of conceptualizations of the graphical implications of the first 

derivative, second derivative, and continuity together with the coordination of 

these elements to sketch the graph of the relevant function  (Baker, Cooley, & 

Trigueros, 2000). Many students are proficient at, for example, differentiating a 

function and finding its critical values and inflection points (Lima & Tall, 

2008; Pegg & Tall, 2005). However, they fail to conceptualize these actions 

and work with these actions if they are presented in graphical form rather than 

in equation form. Furthermore, when the intervals of increasing/decreasing 

values and/or concavity are presented to the students they fail to visualize the 

graphical implications of these differentiation features (Roorda, Gos, & 

Goedhart, 2007). Concomitantly, while students were attempting to solve a 

conceptual-embodied thinking task they demonstrated difficulties with 

coordinating information in two major areas of concern (Baker, Cooley, & 

Trigueros, 2000). First, they failed to coordinate overlapping information 

across contiguous intervals on the domain. Second, they failed to coordinate 

differentiation features that were explicitly stated rather than derived from a 

differentiation formula. The main obstacles that students encountered were 

identified as the cusp point, the vertical tangent, removal of continuity, and the 

second derivative.  
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Many of the problems in conceptual-embodied thinking displayed by 

students involved confusions by the conditions that a graph is increasing and 

concave down and/or graphical implications of functions with cusps 

(Aspinwall et al., 1997; Slavit, 1995; Vinner, 1989). Researchers reported that 

in their access to conceptual-embodied thinking students showed a strong 

tendency to use the first derivative to gain most of their information from the 

graph (Asiala et al., 1996). Apparently, students displayed a reasonable 

conceptual-embodied thinking in analyzing the functions with the first 

derivative and building the relationship between the slope of the tangent and 

the derivative. However, students were lack of conception about recognizing 

the first and the second derivative as a function and notably they could not 

interpret the relationship of the second derivative to the first (Thompson, 

1994). Eventually, students should transmit conceptual-embodied thinking to 

consider the first derivative as itself a function in order to make sense on the 

second derivative.  

Beginning with graph constructions and/or interpretations students‟ 

difficulties in conceptual-embodied thinking led in the direction of their 

obstacles in modeling optimization problems. For example, in area 

optimization a characterization of students made evident that there is a strong 

relationship between understanding the structure of the real-life situation (e.g., 

optimization) and exposing conceptual-embodied thinking in the construction, 

use, and articulation of differentiation (Villegas, Castro, & Guttiérrez, 2009). 

The constituent parts of this body of relationship may relate to any of the 

difficulties in conceptual-embodied thinking mentioned earlier. As students 

mobilize opportunities to engage in conceptual-embodied thinking the 

following obstacles arise: visualization of the optimization scenario (e.g., 

drawing a diagram of the area), labeling the variables in the scenario, deciding 

on the variables to be minimized or maximized, writing this as a function of the 

variables in terms of just one variable, solving for the variable in the equation 

f‟ = 0 (Campos & Estrada, 1999; Tall, 2005). In cultivating conceptual-
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embodied thinking in their encounter with real-life applications of the 

derivative students were not able to find the values of variable for which f‟ 

does not exist or check each zero of the derivative to see whether this zero of f‟ 

corresponds to a relative minimum or a relative maximum (Porzio, 1999). 

 

2.2.8 PROCEPTUAL-SYMBOLIC THINKING 

The nature of proceptual-symbolic thinking has been a source of 

discussion and debate for many years (see, e.g., Fischbein, 1983; Lima & Tall, 

2008). Proceptual-symbolic thinking occupies a privileged position in calculus, 

being a core thinking type for all students. This is largely due to its perceived 

usefulness in triggering responses aligned with procedures in especially solving 

differentiation problems (Zandieh, 2000). The value of proceptual-symbolic 

thinking lies in its potential to prompt students to identify the situation to 

which procedure applies, the correct order of algorithms, the correct 

completion of procedural steps, and finally to recognize the correctly 

completed procedure. Often there is a conflict between this emphasis on 

usefulness and those who see proceptual-symbolic thinking as a form of mere 

integration of rules to apply procedures, emphasizing technical 

implementations and focused routines inwards (Ali & Tall, 1996).   

Proceptual-symbolic thinking in derivative was singled out from three 

components: a process of algorithms that produces differentiation and a symbol 

that represents either the process or the concept of derivative (dy/dx). In terms 

of this contextualization researchers argued that ready-made procedures 

encourage students to operate in a stepwise flaw of algorithms (Gravemeijer & 

van Galen, 2003). While algorithmic approaches to differentiation may help 

students to formalize procedures, they may actually hamper understanding 

unless proper techniques are available for the student to fold back to. 

Accordingly, students face many obstacles in activating proceptual-symbolic 

thinking in derivative. Among the most objective ones are procedural obstacles 

identified by Orton (1983). On the one hand, they are related to both 
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algorithmic and algebraic methods in conjunction with various unconscious 

schemes of thinking; on the other hand, they are related to the concept of 

derivative and related proceptual terms (algorithm, procedure). It has been 

widely documented that while differentiating a function students could not 

apply the proper algorithmic techniques and obtain the correct solution 

(Marongelle, 2007). A perennial problem in students‟ proceptual-symbolic 

thinking is thus how to apply differentiation procedures. The end product for 

students is often an algorithm step which focuses on the computing, and less so 

on the broader differentiation perspective. These problems are often reinforced 

by typical differentiation questions that ask students to “solve, find, evaluate, 

determine, differentiate”, etc. (see Ferrini-Mundy & Guether-Graham, 1991). 

Approaching proceptual-symbolic thinking from a practical point of view, 

researchers accepted that students exhibit an automatized progress, thus 

perform more spontaneously on the given differentiation task (Orton, 1983; 

Roorda, Vos, & Goedhart, 2007; Viholainen, 2005). Clearly, this leads students 

lack the ability to solve the derivative of a function at a given point and 

evaluate the correctness of their solutions (Tsamir, Rasslan, & Dreyfus, 2006). 

Another difficulty in students‟ proceptual-symbolic thinking in 

derivative stems from its dual nature. Indeed, proceptual-symbolic thinking in 

derivative can be understood in two essentially different ways: algebraically- as 

a production of symbolic language and algorithmically- as a computational 

process. Those two ways of understanding the proceptual-symbolic thinking in 

derivative, although apparently ruling out one another, should, however, 

complete each other and constitute a coherent unity in understanding a 

theoretical syntax within relevant differentiation symbols, representing 

theoretical situations in differentiation within procedures and analyzing 

theoretical structures within changes in various differentiation algorithms 

(Derry, Wilsman, & Hackbarth, 2007). Although students knew how to apply 

an algebraic algorithm, they did not understand the mathematical 
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underpinnings involved in the differentiation theorems, and that had mixed 

ideas regarding the algorithms involved (Zandieh & Knapp, 2006).  

Undoubtedly, a deep analysis of research on proceptual-symbolic 

thinking goes far beyond the implementation of simple algorithms in 

derivative. The functioning of these implementations is also to a great extent 

dependent on the quality of students‟ theoretical justifications of respective 

differentiation procedures that go with these implementations. With the 

availability of effective proceptual-symbolic thinking, there is the opportunity 

to enrich algebraic manipulations and algorithmic calculations by supporting 

students to unfold a network in which compounded procedures and algorithms 

that stand for the theorems (Gainsburg, 2006; Radford & Puig, 2007). 

 

2.2.9 FORMAL-AXIOMATIC THINKING 

The analysis of formal-axiomatic thinking in derivative produced by 

students has been a recurring theme in the mathematics education literature. 

Generally these types of analysis are of two kinds: those that concentrate on the 

content and structure of derivative (e.g., the meaning of derivative, the symbol 

of derivative) and those that concentrate on the theory of differentiation (e.g., 

proofs and proving of differentiation theorems). Reports on students‟ 

difficulties with formal-axiomatic thinking in derivative thus fit into these two 

categories.  

This research has given rise for analyzing student understanding of the 

concept of derivative (Zandieh, 1997, 2002), which describes formal-axiomatic 

thinking that is important for students to make sense of concrete differentiation 

terminology and be able to use this terminology in order to manage 

successfully differentiation issues that come up in their mathematical practice. 

In an effort to explore a scheme for describing students‟ difficulties with 

formal-axiomatic thinking in differentiation, researchers demonstrated that 

these difficulties were inextricably linked to the extent to which a student may 

be qualified in elaborating the meaning of derivative (Hirst, 1972; Orton, 1980, 
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1983; Viholainen, 2008; White & Mitchelmore, 1996). Results articulated that 

students lack the ability to find and describe a coherent structure for the 

derivative based on a context standing for the whole derivative concept. More 

specifically, students did not have a very complete understanding of derivative 

in terms of representing the derivative graphically as the slope of the tangent 

line to a curve at a point, verbally as the instantaneous rate of change, 

physically as speed or velocity, and symbolically as the limit of the difference 

quotient (Zandieh & Knapp, 2006). Students‟ lack in formal-axiomatic 

thinking in rate of change and tangent lines added on their difficulties with the 

symbolic language of derivative comprising deficiencies in the meaning of  , 

 (Ubuz, 1994, 1996). Thus, it was obvious that mathematically, 

students were not able to develop formal-axiomatic thinking in their 

interpretations indicating that the derivative concept involves a ratio, a limit, 

and a function.  

Studies on formal-axiomatic thinking in derivative have showed, as 

well, a range of difficulties that students encounter in tackling with proofs and 

proving in differentiation (Hahkiöniemi, 2006; Tall, 1986, 2004). The 

authenticity in proofs and proving requires students to be able to identify 

differentiation situations in which proof is called for, recognize important 

theoretical differences among these situations, and stage appropriate 

opportunities for proving to engage in formal-axiomatic thinking (Przenioslo, 

2004, 2005). Given the central role that formal-axiomatic thinking can play in 

the proving activity that takes place in differentiation (Zandieh, 2000), 

however, students have a scant acceleration in proving whether a function is 

differentiable at a given point (Zandieh, 2007) and proving differentiation 

theorems (Zandieh, 1997). Moreover, with regard to the relationship between 

differentiability and continuity, under the assumption of certain axioms 

students failed to demonstrate whether a statement is necessarily true (Zandieh, 

1997). 
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Formal-axiomatic thinking is thus a complex mathematical progress 

combining processes of concise differentiation terminology and the heuristic 

processes of producing a conjecture relevant to differentiation (Gray, Pinto, 

Pitta, & Tall, 1999) and that the outcome of this progress reflects an important 

part of the differentiating process. 

When we focus explicitly on the literature in mathematical thinking, it 

becomes apparent that many researchers have emphasized the value of the 

relationships among enactive, iconic, algorithmic, algebraic, formal, and 

axiomatic thinking in the teaching and learning of calculus (e.g., Edwards, 

Dubinsky, & McDonald, 2005; Mitchelmore & White, 2000, Przenioslo, 2005) 

in general, and the concept of derivative (e.g., Orton, 1983; Viholainen, 2008) 

in partial. The following section provides an indepth understanding for the 

relationship among enactive, iconic, algorithmic, algebraic, formal, and 

axiomatic thinking together with the relationship among conceptual-embodied, 

proceptual-symbolic, and formal-axiomatic thinking that delineate the paths in 

regard to the within- and between-classroom associations, respectively. 

 

 

2.3 WITHIN- AND BETWEEN-CLASSROOM RELATIONS OF 

MATHEMATICAL THINKING IN DERIVATIVE 

The stream of research on the relationships among enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking that reported the unique 

and joint effects of thinking types on one another converge to promote 

students‟ performance in derivative (e.g., Borgen & Manu, 2002; Hahkiöniemi, 

2006; Maull & Berry, 2000; Orton, 1983; Selden, Selden, Hauk, & Mason, 

1999; Zandieh, 2000). This implies that the relative contribution of each 

thinking type to performance in derivative may serve as a target or source 

beyond the relative contributions of other thinking constructs. By its very 

mathematical nature, students‟ thinking in concept definitions, symbols, and 

rules directs their attention towards the relevant features of the variables and 
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conditions in the problem context. The arrangement of this thinking leads them 

to operate on formulas and extend these formulas to algorithms. The dynamics 

nestled in the practice and mastery of procedures provides students the ability 

to read a graph, gain meaning from it, and make visual interpretations. It is 

then, in a more figurative sense, students illustrate embodied notions that help 

transcend graph constructions. Taken literally, these iconic incorporations 

facilitate the coordination of enactive ideas in manipulating these ideas to 

develop a model and linking the model to real-life applications. The formation 

of such processes prompts students to think algebraically in unfolding the 

network of theoretical justifications. Algebraic ideas, hence, involve the 

algorithmatizations that students use to endow them with meaning in their 

encounter with hypothesis testing. These building blocks further empower 

students to reflect on a set of theorems or “if-then” statements and make 

inferences. The evidence in this causal picture led us to predict that two-level 

relationships among enactive, iconic, algorithmic, algebraic, formal, and 

axiomatic thinking.   

The relationship among students‟ conceptual-embodied thinking, 

proceptual-symbolic thinking, and formal-axiomatic thinking has long been 

acknowledged as a critical factor in calculus success (Tall, 2004). The 

interrelation among different thinking types was particularly investigated in the 

domains of functions (Christou, Pitta-Pantazi, Souyoul, & Zachariades, 2005; 

Tall, 2004, 2005, 2008), eigenvalues and eigenvectors (Lapp, Nyman, & Berry, 

2010; Stewart, 2008; Stewart & Thomas, 2009), linear 

dependency/independency (Ertekin, Solak, & Yazici, 2010; Stewart & Thomas, 

2007, 2009), limits (Pinto & Tall, 2002; Tall, 2001; Weber & Alcock, 2004), 

and derivative (Hahkiöniemi, 2006) but derivative is, perhaps, one of the 

concepts that has attracted the least research attention in the framework for 

mathematical thinking based on the theory of three worlds of mathematics thus 

far. In addressing the relationship, most researchers reported that types of 

thinking describe a hierarchy that grows in sophistication and that these 
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interconnected developments are available to, and are used by students further 

through their progress in mathematics (Tall, 2008).  

Researchers assessed the conceptual-embodied thinking through tasks 

that involve modeling real-life applications (enactive thinking) and visualizing 

applications in the context of graph constructions/interpretations (iconic 

thinking). The proceptual-symbolic thinking was assessed through tasks that 

involve procedural computations (algorithmic thinking) and interpretations of 

generalized expressions and functional relationships (algebraic thinking). 

Finally, the formal-axiomatic thinking was assessed through tasks that involve 

“what” and “which” type of questions in the context of primary level of 

definitions and symbols (formal thinking) and/or that involve “prove that” or 

“show that” questions in the context of abstract level of if-then statements 

(axiomatic thinking). These three mathematical thinking constructs, however, 

were not classified as enactive, iconic, algorithmic, algebraic, formal, and 

axiomatic thinking rather generally simplified as embodied, symbolic, and 

formal thinking. Whether researchers are speaking of embodied, symbolic, and 

formal thinking they hold to the same premise that any of these types of 

thinking involve enactive, iconic, algorithmic, algebraic, formal, and axiomatic 

thinking (Bruner, 1966; Fischbein, 1983; Hughes-Hallett, 1991; Tall, 2004).  

In the case of derivative concept, these research findings brought about 

six noteworthy points to delineate the context of mathematical thinking tasks. 

First, the context of enactive thinking tasks were mainly reserved for rate of 

change and population growth, and to a lesser extent for optimization. Second, 

the context of iconic thinking tasks mostly involved either one of graph 

constructions or graph interpretations of a function and its derivative but 

ignored the assessment of both processes simultaneously. Third, the context of 

algorithmic tasks was limited to the applications of simple differentiation 

formulas such as power rule or the product rule thereby excluding the 

computations of other differentiation algorithms such as evaluating the 

derivative of a function via limit of a difference quotient. Fourth, the context of 
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algebraic thinking tasks required students to make explanations for why a 

certain differentiation rule holds at a specific point or whether a solution exists 

for a given function at a specific point, however, did not provoke them to test 

the hypotheses of fundamental differentiation theorems such as the Mean 

Value Theorem or Rolle‟s Theorem. Fifth, the context of formal thinking tasks 

only included the meaning of the derivative concept or the meaning of the 

symbol dy/dx, thereby not going further to comprise other essential 

differentiation concepts, symbols, and facts. Lastly, the context of axiomatic 

thinking tasks were based on the justification of conditional inferences relevant 

to basic differentiation rules. While a substantial research literature was 

available to document the context of iconic, algorithmic, and formal thinking 

tasks, far less research has served us to outline the context of enactive, 

algebraic, and axiomatic thinking tasks in derivative concept. For example, in 

the case of axiomatic thinking tasks much research effort has gone into 

assessing students within the context of number theory (Alcock & Inglis, 2008; 

Furinghetti & Morselli, 2009; Martin & Harel, 1989; Morris, 2002; Stylianides 

& Stylianides, 2009), set theory (Moore, 1994; Stewart, 2008), matrix algebra 

(Sowder & Harel, 2003), and/or logic (Inglis & Simpson, 2008; Nelson & 

Hannan, 2002; Stylianides, Stylianides, & Philippou, 2004). The bulk of 

assessment contexts reviewed to outline the tasks that reflect different types of 

mathematical thinking further put forth researchers‟ tendency to rely on self-

developed open-ended questions while few of them was found to utilize 

multiple-choice questions in examining students‟ mathematical thinking. And 

those that are available were restricted to matching or true/false questions 

(Engelbrecht, Harding, & Potgieter, 2005; Goerdt, 2007; Stewart, 2008). 

An important development in the search for the most conventional 

setting for mathematical representation of real-life phenomena has been the 

emergence of enactive thinking perspectives where students are required to 

model applications of mathematics to the given situation. These views result in 

the interpretation of mathematical models by which students explore 
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mathematical demands paying attention to the potential enactive thinking 

encapsulated in the use of the model. Thus, a growing number of researchers 

point to a very powerful enactive chain in the concept of derivative that can be 

traced from the way students think about the real-life phenomena sustained by 

a model in general and the modeling of area/volume optimization (Carreira, 

2001; Davis, 2007; Doerr & Tripp, 1999; Gravemeijer, 1999; Liu & Niess, 

2006; Mousoulides, Christou, & Sriraman, 2008; Ubuz & Ersoy, 1997). They 

acknowledged that the enactive thinking highlights the net of ideas strongly 

combined with iconic aspects and properties of the model that also extends 

some aspects of formal thinking which incorporated and rearranged pieces of 

algorithmic and algebraic thinking embedded in the model. The results 

documented that students struggle to make the leap from the real-life 

phenomena to the differentiation. Students‟ conceptualizations about the 

enactive thinking were dominated by modeling into a function, differentiating 

the function, and setting the function to zero. Bagni and Menghini (2005) 

supported that their tendency to model the real-life situations into formulae was 

one of the main obstacles to the appreciation of finding the optimal way of 

doing something, which further led them to reluctance on retaining the iconic 

setting.  

Studies mainly focused on the effect of computer technology in helping 

students to create models through data collection, experimentation, and 

representation as they employ enactive thinking by modeling the real life 

situations into the problems of optimization (Drijvers, 2000; Klymchuk et al., 

2010; Malaspina & Font, 2010), rate of change (Confrey & Smith, 1994; Doerr 

& Zangor, 2000; Gravemeijer & Doorman, 1999) and maximum/minimum 

(Ubuz & Ersoy, 1997). The findings provided evidence about the paths of 

enactive thinking to gear forms of describing and organizing real-life 

phenomena, to project iconic thinking (Orton, 1983; Ubuz & Ersoy, 1997) onto 

enactive thinking, and to rebuild formal (Gravemeijer & Doorman, 1999; 

Orton, 1983) and algorithmic (Gravemeijer & Doorman, 1999; Orton, 1983) 
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thinking. These paths further affirmed that the production of enactive thinking 

in tackling with a model into applied derivative problems also indicates 

axiomatic thinking (Zandieh, 2000) can become algorithms as algorithms 

become part of the theorization. Yackel, Rasmussen, and King (2000) stated 

that the mathematics explored within the real-life situation is given some 

sensible meaning from its relation with tangible links to different types of 

mathematical thinking. It is widely acknowledged that when students are 

offered real-life problems that involve the use of models into derivative, they 

are challenged and compelled to unpack enactive thinking underlying 

applications of derivative (e.g., population growth). According to Drijvers 

(2000), once the construction of enactive scaffolds takes place, that is, once the 

enactive senses start to be appropriated, the activity of optimizing (e.g., the 

area of a rectangle) becomes valid. Gravemeijer and Doorman (1999) 

supported the mediating nature of enactive thinking in the way students 

engaged in the process of enchaining definitions, algorithms, and graphs. They 

stated that students were regularly drawing on their formal thinking repertoire 

to understand and make sense of the the real-life problem to exert the meaning 

of the derivative as “rate of change” together within algorithms. In accord with 

the findings of Zandieh and Knapp (2006), many students‟ enactive thinking 

flowed as an extension of their formal and iconic thinking that indicated a 

bodily basis for rate of change as an approximation for the derivative. Through 

its iconic thinking potentiality, enactive thinking opens up the scope of 

algorithmic (Drijvers, 2000), algebraic (Kutzler, 2000), formal (Doerr & 

Zangor, 2000), and axiomatic (Zandieh & Knapp, 2006) thinking in the 

concept of derivative. Kutzler (2000) emphasized that enactive ideas provide a 

double anchoring for the production of algebraic thinking offering duplicated 

references by the links between the definition of derivative as “the slope of a 

tangent line at a given point” embedded in the optimization context and 

referential theorems. He further indicated that enactive thinking links to the 

representations of algorithms and theorems compensating each other in the 
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language of algebraic thinking and is even used as a form of visualization 

within iconic thinking to state the effects of different definitions of the 

derivative such as rate of change and the slope of a tangent line.  

The presence, role, extent, and constraints of iconic thinking in 

conjunction with visual-graphical states in the problem-solving processes of 

university students as they solved derivative problems challenged research 

approaches because of the difficulties in apprehending the construction and use 

of visualization. Iconic thinking used in solving derivative problems is 

accepted to be related with not only formal (Berry & Nyman, 2003; Orton, 

1983; Viholainen, 2005), algorithmic (Hahkiöniemi, 2006; Orton, 1983; Tall, 

2002), algebraic (Kutzler, 2000), and axiomatic (Viholainen, 2008) ideas, but 

often laden with insights of enactive thinking (Presmeg & Balderas-Canas, 

2001; Zandieh & Knapp, 2006). Researchers persistently acknowledge that the 

graphical representations of the derivative concept influence students‟ 

generating formal meanings and making algorithmic inventions. Tall (1994) 

argued that for the advanced mathematical thinking ways of formalization, 

symbolization, and algorithmatization to emerge in students‟ activities; 

accompanying visual mathematics should be experienced. Following Tall‟s 

remarks, Berry and Nyman (2003) take this line of argument one step further, 

by emphasizing a dialectical relation between images-in-use and formal-

algorithmic sense making. According to this point of view, it is in the process 

of visualizing those formalizations and algorithmatizations emerge and develop 

their meaning. In this process, students‟ links between the graph of a function 

and its derivative shape the very formal thinking of the function itself from 

which they emerge, while at the same time, formal thinking shape the iconic 

manipulations that emerge. It is also possible to have the students demonstrate 

a fully algorithmic thinking, the interaction between procedural experiences of 

the differentiation rules and graphical interpretations of the extremas 

Aspinwall, Shaw, and Presmeg (1997) presupposed, that grow in concert with 

visual thinking. According to Viholainen (2008), it is these aspects of iconic 
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thinking that may enable axiomatic solution processes of students. He pointed 

on students‟ engagements in iconic thinking through skilful drive along the 

formal definition of differentiability to its iconic aspects relevant to continuity 

as they prove whether the given function is differentiable at a given point. In 

contrast, Delos Santos and Thomas (2001) documented that iconic thinking is 

attempted for the purpose of sense making in the use of formal symbol dy/dx 

both as a derivative of y with respect to x and as a slope of the tangent line; 

however these attempts did not seem to cast light on students‟ iconic 

interpretations of dy/dx= k sufficiently to enable any further progress. 

Students‟ reactions to the derivative problems in iconic thinking context with 

regard to their attempts made to introduce symbols, usually in the form of 

memorized formulas, were reminiscent of the iconic thinking of students in 

Asiala et al.‟s (1997) research. They persistently seek for an expression 

representing the function to differentiate rather than interpreting the derivative 

as a slope of the tangent line. Tall (2002) nevertheless inferred the presence of 

iconic thinking genesis in students‟ solving applications of the derivative that 

went straight to the sublimation of enactive thinking and its experiential 

foundations of iconic thinking. 

Recent research underpinning the way derivative is learnt stress the 

importance of algorithmic thinking focused on its interconnectedness to formal 

(Orton, 1983; Viholainen, 2008), algebraic (Kendal & Stacey, 1999), axiomatic 

(Selden & Selden, 1995; Tall, 1989, 1998), enactive (Carreira, 2001), and 

iconic (Zandieh, 2000) ideas. The value of algorithmic thinking lies in its 

potential to reduce complex problems to simple procedures. However, as 

researchers have witnessed, algorithmic processes aligned only procedurally 

often emerge from automatical actions without an ability to understand 

advanced foundations of derivative‟s practical value. Viholainen (2008) calls 

on the part of algorithmic thinking which is often deeply ingrained, confound 

the development of formal and iconic thinking in representing problem 

situations, thus impel students to be reluctant on drawing inferences based on 
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essential aspects of definitions or graphs of derivative (Weber & Alcock, 

2004). In a similar vein, Eisenberg (1994) underscored “avoidance to 

visualize” and concurred with several researchers (Eisenberg & Dreyfus, 1991; 

Tall & Vinner, 1981; Vinner, 1989; Vinner & Dreyfus, 1989) who documented 

students‟ predominant reliance on routine algorithmic applications of the 

derivative concept in creating graphic solutions. This implies that students‟ 

procedural approaches can easily dominate their coming to grips with iconic 

thinking by developing and testing hypotheses (Marrongelle, 2007). However, 

the algorithmic solutions of students which were to some extent inspired by 

representations of iconic thinking formed the starting point for a series of 

discussions, in which a model-based representation of enactive thinking in 

derivative problems is emerged. Students‟ challenges of algorithmic techniques 

contributed to their solving conflicts in their modeling everyday life 

applications of the derivative (Orton, 1983; Ubuz & Ersoy, 1997; Viholainen, 

2005). Stylianou (2002) suggested that the ability to present the derivative 

concept within realistic contexts and exhibit flexible transitions between 

procedures and organization of advanced enactive thinking insights strengthen 

the management of derivative tasks. 

Although algorithmic thinking processes were understood as a 

collection of routine procedures, Clark et al. (1997) and Orton (1983) have 

argued that these routines can make advanced mathematical ideas explicit in 

solving theorem-based derivative problems that nestle axiomatic thinking. The 

claim is that algorithmic thinking is important in all facets of the concept of 

derivative including theorems. The argument for including algorithmic ideas as 

part of theorems is that students go through algebraic essences in the theorem 

and extract relevant numeric information by procedural insights. This parallels 

Gravemeijer and van Galen (2003) who presented algorithmic thinking in 

which algorithms emerge as the product of students‟ both algebraic and 

axiomatic thinking generalizations. Algebraically, to apply the Mean Value 

Theorem, is to be able to carry out the inductions involved through algorithms, 
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not merely to be able to state its underlying certain facts. Thus, what a student 

thinks through algorithmic techniques, in addition to stateable theoretical 

knowledge, includes operational inventions (Delos Santos & Thomas, 2001) 

and further visual translations (Zandieh, 1998). Despite its controversial nature, 

differentiating algorithms which work well serve as a building block for the 

implementation of differentiation methods used in exploring differentiability 

(Viholainen, 2006). Indeed, they nestle links within the differentiation context 

that reflects standard closed form solutions fulfilled with algorithmatizing 

activities.  

Algebraic thinking has been considered to be an essential characteristic 

of mathematics in terms of views of its role and its essence. A more recent 

tendency among researchers is to investigate the forms to which it adheres. 

Nathan and Koedinger (2000) sketch this adherence by an initial emphasis on 

theorems that almost exclusively involve formal thinking linkages of 

definitions and symbols. This particular way, in which students formally acted 

underpins the emergence of their algebraic thinking was regulated by a 

conceptually established process where formal thinking plays a central role.  

The immersing and initiating students into the particularities of algebraic 

meanings in which the applications of algorithms are grounded delineate the 

operational character of algebraic thinking. According to Sfard and Linchevski 

(1994), students‟ emergent algebraic thinking, as required in the application of 

algorithms, appeared hence as the orientiation of a highly specialized kind of 

procedural praxis requiring a critical use of algorithms to achieve specific 

expressions of algebraic thinking. Iconically, from the point of view of the 

students, every iconic representation is a legitimate component of a theorem 

that it can convey algebraic thinking insights to obviate the need for rigor in the 

algebraic thinking acquired through visualization (Francis, 1996). Derry et al. 

(2007) argued visualization through algebraic thinking makes it possible not 

only to transform statements in the theorem, alter definitions, and manipulate 

symbols but also to examine algorithms in theorems that are inaccessible 
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without algebraic thinking. They appeared to think of students‟ algebraic 

thinking development largely within the iconic thinking precedence view. 

However, analyses of Bagni and Menghini (2005) suggested an enactive 

thinking direction for the development of algebraic thinking that circumvents 

many of the misunderstandings caused by iconic thinking. In this enactive 

thinking direction, translating a theorem into an equation demands the 

contraction of the theoretical statements. That is, the equation narrates the 

theorem to allow for manipulations of algebraic thinking. With these views in 

mind, Radford and Puig (2006) framed students‟ algebraic thinking processes 

to be more effective when they are employed in the form of both enactive and 

iconic thinking. However, Furinghetti and Morselli (2009) documented that 

embedding the models or visual properties at issue in a form of representation 

suitable to an algebraic thinking is one of the main difficulties of the required 

axiomatic statements. In justifying axiomatic statements, it is this difficulty 

which prevents students to adopt increasingly sophisticated modes of algebraic 

thinking. Selden and Selden (2005) cited students‟ weak ability in translating 

back-and-forth between algebraic and axiomatic thinking practices while 

unpacking algebraic statements into the axiomatic language of proofs. This 

adds to the deficiencies in students to trivialize theorems and relevant 

algorithms in moving from informal reasons to proper axiomatic arguments. It 

is important to explicitly stress a closing remark that fundamental to laying a 

foundation for meaningful algebraic thinking is to employ versatile thinking of 

complemented overall grasp of the advanced mathematics (Tall & Thomas, 

1991). 

The sequence of research leading to the development of formal thinking 

for pervading sophisticated insights has provided fertile ground to investigate 

the links to enactive (Carreira, 2001), iconic (Pinto & Tall, 2001), algorithmic 

(Bagni & Menghini, 2005), algebraic (Derry, Wilsman, & Hackbarth, 2007), 

and axiomatic (Epp, 2003; Hanna, 2000) thinking. The analyses presented in 

these studies reflected the potentiality of formal thinking in gearing advanced 
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mathematics throughout secondary level (Gray & Tall, 2007; Lima & Tall, 

2008; Sajka, 2003) and undergraduate level (Alcock & Simpson, 2004, 2005; 

Przenioslo, 2004, 2005; Szydlik, 2000; Zandieh, 2000). The emergent relations 

delineating formal thinking at university can be viewed in limits (Przenioslo, 

2004, 2005), functions (Williams, 1998), and derivative (Hahkiöniemi, 2006; 

Orton, 1983; Viholainen, 2005; White & Mitchelmore, 1996; Zandieh, 2000).   

There is a body of research suggesting that students lack rich 

understandings of the formal definition of the derivative along with relevant 

rules and symbols that prevent them from correctly applying algorithms (Asiala 

et al., 1997; Clark et al., 1997; Viholainen, 2005) and explicitly interpreting 

graphs of a function and its derivative (Berry & Nyman, 2003; Orton, 1983). 

For example, Orton (1983) reported that students are often unable to give the 

correct definition of the derivative for clearly stating the symbols of 

differentiation as well as the approaches to differentiation. There were clear 

indications from his study that students‟ formal thinking processes are basically 

concerned with ratio and proportion. Moreover, they do not regularly see the 

connections between the meaning of rate of change and its graphical 

representations. The deficits in stating the rate of change formula prohibit 

students from carrying out the appropriate procedures in derivative and further 

adopting its definition to model real-life situations in the given task. Although 

it seems that students‟ difficulties with the application of derivative rules are 

typically altered throughout their formal thinking in translation and 

interpretation of the symbols (Chin & Tall, 2000; Clark et al., 1997; Roorda, 

Vos, & Goedhart, 2007), it is equally clear that students‟ interpretations of 

those symbols are in place before they begin their illustrations on graphs 

(Delos Santos & Thomas, 2001). Much that is accepted as a sign that students 

are in possession of algorithmic and iconic thinking operations of the 

derivative consists in their being able to state certain facts, rules, and theorems. 

Their appropriation of formal ideas re-emerge to aid in customizing maximum-

minimum viewpoints in optimization problems (Ubuz & Ersoy, 1997; Ubuz, 
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2007) or theorem-based applications of differentiability (Viholainen, 2005) and 

further in exploiting links between the graph of a function and its derivative 

(Berry & Nyman, 2003). Students‟ subsequent codings of the definition of 

derivative and relevant notations into axiomatic forms postulate that formal 

methods can harmonize the essence of differentiation (Zandieh, 2000). 

Moreover, formal thinking reflects the evolution of the derivative concept from 

an algebraic thinking application of the differentiability theorem to an 

algorithmic thinking manipulation grasping the relationships between 

continuity and differentiability (Bagni & Menghini, 2005) characteristic of the 

capacity to algorithmatize the theorem by recalling the theorem statement when 

desired. Tall (2004), citing the shift in students‟ thinking about embodied 

structures to more formal notions, highlighted that, for students, formal 

thinking can function as a gateway in building from definitions and 

marginalizing fundamental symbols, notations, facts, and rules.  

The notion of axiomatic thinking in the derivative has traditionally been 

associated, almost exclusively, with university mathematics. In recent years, 

many researchers have recommended that axiomatic thinking become central 

to all students‟ experiences with derivative throughout the execution of proofs 

in increasing/decreasing functions (Epp, 2003), differentiability (Mills & Tall, 

1988), and differentiation rules (Tall, 1989; Viholainen, 2007). Researchers 

have found that, in general, students‟ difficulties with generating axiomatic 

thinking are related to the following factors: (a) understanding the nature of 

proofs, (b) formulating statements, and (c) applying procedures to deduce the 

truth of statements. They have identified students‟ abrupt introduction to proof 

in university as a possible explanation for these difficulties that students face 

with proof (Harel & Sowder, 1998; Martin & Harel, 1989; Selden & Selden, 

2003), thereby proposing that students engage with axiomatic thinking in a 

coherent duplication of different types of mathematical thinking. Henceforth, a 

richly differentiated mathematical thinking of axiomatic statements (Bell, 

1976; de Villiers, 1990, 1999; Hanna & Jahnke, 1996; Hanna, 2000) arise as 
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(a) demonstrating formal definitions and symbols, (b) yielding algorithms 

within relevant procedures, (c) incorporating a well-known fact into an 

axiomatic framework from an enactive perspective, (d) communicating the 

algebraic transmission of theorems within the meaning of a definition, 

consequences of an assumption, and systematization of an algorithm, and (e) 

constructing iconic representations to verify or explain the statement. Barwise 

and Etchemendy (1991) documented that the content of axiomatic thinking in 

the derivative directs to the manipulation of the aforementioned processes 

rather than solely to the interpretation of formal structure of sentences. They 

indicated that axiomatic thinking in the derivative proceeds on the basis of 

explicit rules of differentiation that taken as a whole apply to different types of 

mathematical thinking. Given this compression, successful engagement with 

axiomatic thinking requires several advanced thinking processes by students. 

One such process is to understand the information in the proofs (Gibson, 1998). 

Indicative of the start off for an axiomatic thinking attempt is recognizing the 

definitions and symbols of all the elements in the statement to generate 

hypotheses and draw conclusions. The amalgam of formal thinking, an output 

of definitions and symbols helps students to become entangled with the 

completeness of the axiomatic thinking. This power of formal definitions and 

symbols to evoke axiomatic thinking caused Epp (2003) to suggest that it is 

important for students to learn to express the definitions of axiomatic-based 

concepts such as not, or, if-then, if-and only if to consolidate facts about 

negations of axiomatic statements. For instance, they should insert the meaning 

of “if-then” to understand that a conditional statement is false if, and only if, its 

hypothesis is true and its conclusion is false. In axiomatic statements, formal 

thinking starts as simple structures of definitions and grows in interiority with 

the symbols. However, many students lack respect for formal thinking such as 

using words like if-then, if-and only if or symbols like ∀, ∃ that make a crucial 

difference to the interpretation of these axiomatic statements (Inglis & 

Simpson, 2008). Pointing out the axiomatic thinking was further emphasized in 
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having students charmed to encounter algorithmic implications whose 

command of axiomatic thinking is transitive (Epp, 2003; Hanna, 2000). 

Another important ability for successful engagement with axiomatic thinking is 

to discover algebraic thinking for showing the conclusion of a theorem is true 

whenever its hypothesis is true. This algebraic thinking argument arises from a 

sequence of connected ideas and connections between these ideas to form an 

axiomatic thinking argument (Gibson, 1998). According to Giaquinto (1994), 

such axiomatic thinking arguments can in turn lead students to grasp the 

structure of algebraic thinking arguments and their ramifications that yield an 

explicit understanding of every link within the explorations precisely 

formulated for tentative interpretations of a theorem. An important ability for 

successful performance in this process comes to the scene that presents the role 

of enactive thinking. When the complexity and subtlety of axiomatic ideas 

become conceived as a zigzag path (Stylianides & Stylianides, 2008) between 

enactive thinking attempts to generate valid arguments and criticisms of these 

attempts, students become able to sensitize the importance of enactive thinking 

that leads them to unambiguous and meaningful conclusions. Epp (2003) 

suggested that students should be challenged to convey very clearly axiomatic 

thinking the interplay of experimentation and its relation to the real world 

within enactive-supported explorations. Finally, one other important ability for 

engagement with axiomatic thinking is to use iconic thinking. The studies that 

examined the use of iconic thinking representations within axiomatic 

statements, and in particular their potential contribution to exhibit axiomatic 

thinking, acknowledged that iconic thinking plays a heuristic role in employing 

axiomatic thinking viewpoints (Barwise & Etchemendy, 1991; Epp, 2003; 

Gibson, 1998; Hanna, 2000; Harel & Sowder, 2007; Zimmerman & 

Cunningham, 1991). Such considerations have gained in scope and status in 

part because iconic thinking representations have increased the possibilities of 

visual aspects to promote both exploration and experimentation. Although, 

there is strong evidence for the impact of iconic thinking on exerting axiomatic 
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thinking aspects, some researchers also realize that misleading visualizations 

abound (Brown, 1999). However, iconic thinking is widely intensified to have 

promise in providing evidence for not only an axiomatic statement but also for 

its justification. Iconic thinking aids have been welcomed as visual 

accompaniments to axiomatic statements, where they can inspire both the 

theorem to be proved and approaches to the proof itself. Gibson (1998) 

postulated that students found axiomatic statements more understandable when 

they think about them in iconic thinking terms and that iconic thinking reduces 

the burden proving has placed in their minds. In the same vein, Hanna (2000) 

reported that using iconic thinking representations help students organize their 

axiomatic thinking and give them concrete mathematical objects to hang onto 

while they deal with the abstraction of axiomatic statements.  

The focal point of the most well-known debate relating to conceptual-

embodied thinking concentrates on the fact that conceptual-embodied thinking 

is applicable and useful for analyzing and finding solutions for very diverse 

practices in differentiation beginning with proceptual-symbolic thinking 

(Campos & Estrada, 1999; Klymchuk et al., 2010) and ending with formal-

axiomatic thinking  (Malaspina & Font, 2010; Porzio, 1999). While most 

analysis of conceptual-embodied thinking was focused on perspectives of 

visualization, researchers aimed to explain, discuss, and exemplify how 

processes which are prior to accompanying conceptual-embodied thinking 

influence proceptual-symbolic and formal-axiomatic thinking. They were 

mostly interested in the pre-proceptual-symbolic thinking processes, or as Tall 

(2002) describes, the part of routine applications which is on the periphery of 

conceptual-embodied thinking. Taken together, conceptual-embodied thinking 

is largely concerned with proceptual-symbolic thinking and to some degree 

concerned with formal-axiomatic thinking (Christou et al., 2005).  

Concomitantly, proceptual-symbolic thinking in derivative can be 

coded and recoded in different conceptual-embodied thinking implementations 

(Tall, 2002). Moreover, it can be transferrable over formal-axiomatic thinking 
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situations and conditions (Stewart & Thomas, 2009). Thus, proceptual-

symbolic thinking is particularly important for upholding the formal-axiomatic 

thinking innovations that are deemed essential for conceptual-embodied 

thinking. This connection can be interpreted as differentiation requirements, 

emphasizing effective use of procedures and mastery of algorithms in 

operational form.  

From this interactional point of view, formal-axiomatic thinking in 

derivative is conceived of as a process that can be described as development of 

derivative theorems, with the help of basic differentiation terminology (Tall, 

1999). This approach can be referred to as the integration of formal-axiomatic 

thinking into conceptual-embodied and proceptual-symbolic thinking. Within 

this incorporation, formal-axiomatic thinking can be seen as a process of visual 

change of actions in derivative graphs (conceptual-embodied thinking) that 

may take place when students engage in meaningful guidance of differentiation 

rules (Watson & Tall, 2002). This process may also receive its content and 

structure through the use of differentiation techniques (Gray & Tall, 2007). 

Taken as a whole, the underlying thread of the relationships among 

different types of mathematical thinking in derivative is an advanced blend of 

thinking processes supplemented with specialized mathematical meanings at 

the within- and between-classroom levels. It comes equipped with an extensive 

range of concepts and subconcepts of the derivative, including definitions, 

symbols, notations, algorithms, theorems, graphs, diagrams, and model 

applications for presenting the derivative at an advanced level. The 

considerations on this interrelationship collectively embedded the 

understanding of derivative as the object of investigation in mathematics 

education (Habre & Abboud, 2006; Hahkiöniemi, 2004, 2005a, 2005b, 2006; 

Sanchez-Matamoros, Garcia, & Llinares, 2008; Ubuz, 2007; Zandieh, 2000). 

This is at variance with Harel, Selden, and Selden‟s (2006) emphasis on the 

importance of an inclusive conception of derivative to accommodate a set of 

significant ideas necessary to perform different mathematical thinking 
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structures around the relationships among the conceptual views, procedural 

applications, and visual constructions of the derivative. Drawing on Dubinsky, 

Cordero, Hillel, and Zazkis (1998) who suggested researchers to design 

frameworks that take into account the interrelation of advanced mathematical 

concepts, procedures, and representations, the present study intends to orient 

the function of enactive, iconic, algorithmic, algebraic, formal, and axiomatic 

thinking in derivative with reference to their both within- and between-

classroom transitions.  

 

 

2.4 THE PRESENT STUDY 

Having established these facts mentioned above, the present study 

aimed to test the interrelationships among mathematical thinking constructs 

(enactive, iconic, algorithmic, algebraic, formal, and axiomatic thinking). We 

estimated two-level structural models to investigate the hypothesized effects of 

the selected thinking constructs on each other. The structural relationships 

among these constructs were interpreted as indices of effects of one construct 

on the other at both within- and between-levels. Three main research questions 

were addressed.  

First, what is the factor structure of mathematical thinking at the within- 

and between-classroom levels? More specifically, we hypothesized that the 

application of multilevel exploratory and confirmatory factor analyses would 

demonstrate a distinct latent factor structure at the within-classroom and at the 

between-classroom level (Hypothesis 1).  

Second, to what extent do the relationships among different types of 

mathematical thinking vary at the within- and between-classroom levels? 

Based on preliminary evidence from the pattern of results in mathematical 

thinking research it was expected to find statistically significant variation in the 

relationships among enactive, iconic, algorithmic, algebraic, formal, and 

axiomatic thinking at the within-classroom level; and in the relationships 
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among conceptual-embodied, proceptual-symbolic, and formal-axiomatic 

thinking at the between-classroom level (Hypothesis 2).  

Finally, what are the cross-level interactions among different types of 

mathematical thinking at the within- and between-classroom levels? Based on 

preliminary evidence from the pattern of results in mathematical thinking 

research it was expected to find statistically significant cross-level interactions 

at the within- and between-classroom levels. More specifically, in regard to 

testing lower level mediation models, it was hypothesized that enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking will moderate the 

relationships among conceptual-embodied, proceptual-symbolic, and formal-

axiomatic thinking; whereas in regard to testing upper level mediation models, 

it was hypothesized that conceptual-embodied, proceptual-symbolic, and 

formal-axiomatic thinking will moderate the relationships among enactive, 

iconic, algorithmic, algebraic, formal, and axiomatic thinking (Hypothesis 3). 

From a theoretical point of view mathematical thinking is framed by 

enactive, iconic, algorithmic, algebraic, formal, and axiomatic thinking. 

Students attached to the effective use of models, graphical representations, 

procedures, hypotheses, definitions, and proofs are more apt to align their 

progress with a sophisticated blend of mathematical thinking. Many students 

predominantly emphasize one type of thinking when doing mathematics, while 

using the other type of thinking infrequently. However, the essence of 

mathematical thinking most likely requires developing competence with both 

informal mathematics (e.g., iconic thinking and algorithmic thinking) and 

formal mathematics (e.g., algebraic thinking and axiomatic thinking). Similar 

issues of concern point in the same direction: towards the hypothesis that 

students should espouse the blend of mathematical thinking in other subject 

areas such as linear algebra, real analysis, numerical analysis etc. In this sense, 

mathematical thinking model in the present study presents two-level relations 

specific for calculus as well as provides insightful directions that can be 

adapted to measures in other subject areas at the university level.  



 

 

 

 68 

From a structural point of view using a multilevel framework we were 

able to establish two-level associations among different types of mathematical 

thinking. Such associations hold the promise to better integrate within- and 

between-classroom models mathematical thinking. In this vein, the 

mathematical thinking model in the present study offers researchers a 

concentrated focus on the interrelations of mathematical thinking to further 

interrogate and/or understand their affects within other cognitive constructs 

such as mathematical reasoning (e.g., inductive and deductive reasoning) 

(Simon, 1996), mathematical understanding (e.g., instrumental and relational 

understanding) (Skemp, 1978, 1987), and mathematical knowledge (e.g., 

declarative, conditional, and procedural knowledge) (Aydin & Ubuz, 2010).  
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

 

This chapter involves the methodology of the study comprising 

population and sample, the development of the instrument together with their 

validity and reliability, procedure, data collection and analysis including the 

multilevel structural equation modeling techniques.  

A nonexperimental design with hierarchical data was used. Students were 

considered to be nested within classrooms. Information was obtained for each 

level of nesting in the sample, thus the focus was on the within-classroom 

(students) and the between-classroom (classrooms) level. No control group of 

students who had experienced a nonmathematical vision existed since 

undergraduate students in state universities that had adopted, in wholesale 

vision, a calculus course at their first and/or second years at the university. The 

lack of experimental manipulation indicates that the results of the present study 

support inferences about the relationships among different types of mathematical 

thinking together with the magnitude of these relationships. However, as a 

consequence of the cross-sectional designs the results of the present study do not 

generally support strong causal inferences. 

 

 

3.1 POPULATION AND SAMPLE 

The target population of this study consists of all undergraduate students 

in Turkey who enrolled in calculus courses during the 2009-2010 and 2010-2011 
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academic years. The accessible population is all undergraduate students 

attending to state universities in eight different cities in Turkey. Total number of 

university students in Turkey attending to the state and foundation universities is 

3.529.334. Of these students 924.536 (424.330 females and 500.206 males) 

major in a four year undergraduate program at state universities. For the aim of 

the present study two independent samples of undergraduate students who were 

enrolled in Calculus courses at their first or second year at the university. The 

total number of the students in these two different samples was 3523.  

Sample 1 included 1099 undergraduates (548 females and 551 males) 

within 72 classrooms from 8 state universities. Participants were freshmen (n = 

415), sophomores (n = 154), juniors (n = 317), and seniors (n = 213) with an age 

range of 17 to 25, comprising 348 students from Faculty of Education, 364 

students from Faculty of Arts and Sciences, and 387 students from Faculty of 

Engineering. Sample 2 involved 2424 undergraduates (1161 females and 1263 

males) within 134 classrooms from 9 state universities in Turkey. Participants 

were sophomores (n = 924), juniors (n = 911), and seniors (n = 589) with an age 

range from 17 to 25, including 835 students from Faculty of Education, 817 

students from Faculty of Arts and Sciences, and 772 students from Faculty of 

Engineering. The mean number of students per classroom for Sample 1 and 

Sample 2 was M= 15.25 and 18.64, respectively. State universities are 

institutions of higher education that accept students on the basis of their scores 

on the University Entrance Examination (YGS) conducted by the Student 

Selection and Placement Center (OSYM). This assessment measures high school 

students‟ general educational development and their capability to complete 

university-level work with 240 multiple-choice questions equally distributed 

under two domains: Common General Knowledge Courses (Turkish Literature, 

History, General Geography, Philosophy, Mathematics, Geometry, Physics, 

Chemistry, and Biology) and Content Courses (Turkish Literature, Geography of 

Turkey, Geography of Countries, Psychology, History, Sociology, Logic, 

Mathematics, Geometry, Physics, Chemistry, and Biology). The first domain 
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assesses students cumulatively on the ninth and tenth grade curriculum, whereas 

the latter requests them to answer questions generally related to the eleventh and 

twelfth grade curriculum. In this sense, although the subject names are the same, 

their contents are different in terms of secondary school curriculum. It takes 

students 195 minutes to complete this test. To be accepted to state universities 

students are required to take the adequate score on these two domains for 

making preferences of departments and grant an academic degree. In every 

semester, students attending to state universities have to pay a certain fee to the 

Institute of Higher Education (YOK) depending on the departments they are 

accepted. 

For the purpose of the present study, as well as the methodological issues 

(e.g., complex sampling designs) concerning multilevel modeling techniques 

(students within classrooms) cluster sampling was used. In regard to the 

multistage (Stapleton, 2006) sampling procedures, the first level of selection 

(i.e., primary sampling unit) included random selection of classrooms in a 

faculty and then the sampling of all students in the selected classrooms. 

Characteristics of students indicated that the Sample 1 and Sample 2 mirrored 

the target population in terms of gender distribution, age, high school 

performance, and socioeconomic status. The selection here mainly revolves 

around the question of whether differences in mathematical thinking are more a 

reflection of state universities which were included in the present study. 

Couched in how students from diverse graduate degrees and different 

mathematical backgrounds would reflect on the items contextualized in different 

types of mathematical thinking, the participants have the potential to represent 

the general student body in state universities. Furthermore, both samples were 

identified as appropriate on the basis of the departments that students were 

majoring. That is, the participants have the potential to represent the general 

student body in Faculty of Education, Faculty of Arts and Sciences, and Faculty 

of Engineering included in the present study. 
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3.2 INSTRUMENT 

 

3.2.1 THINKING-IN-DERIVATIVE TEST (TDT) 

A multiple-choice test covering the content of derivative was developed 

to measure undergraduate students‟ mathematical thinking (see Appendix A). 

The development of the multiple-choice test items related to the six theory-

driven thinking constructs: enactive thinking, iconic thinking, algorithmic 

thinking, algebraic thinking, formal thinking, and axiomatic thinking to be 

included in the Thinking-in-Derivative Test (TDT) are presented in the 

following lines. Furthermore, the validation of the six-factor structure of the 

TDT by use of the confirmatory factor analysis and further validation of this 

structure followed by the examination of subgroup validity coefficients, and the 

estimation of the reliability of students‟ scores on the TDT is also addressed. 

At the beginning of the test development process, it was primarily 

asserted whether the content of the TDT is intended to be unidimensional or 

multidimensional. Accordingly, for the general content domain of the test a 

name was provided (i.e., Thinking-In-Derivative), and in regard to the review of 

the related literature on the derivative concept and mathematical thinking, six 

subdomains (enactive thinking, iconic thinking, algorithmic thinking, algebraic 

thinking, formal thinking, and axiomatic thinking) were identified. Since it was 

believed subdomains were useful in covering the concept of derivative, a 

multidimensional interpretation was considered to be appropriate.  

Raymond and Neustel (2006) recommended a practice analysis as a 

means to establish the criticality and frequency of use of knowledge and 

thinking skills in a content domain. They indicated that it is important to define 

the construct and to link the definition to the test via a survey of the content. 

Regarding the context of the derivative concept in a standard calculus course 

content, a practice analysis was conducted to identify the content domain (i.e., 

the derivative concept and applications of derivative) and its subdomains (i.e., 

basic concepts, rules, and facts, graph sketches and/or interpretations, maximum 
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and minimum problems). The design of the TDT outlined by the practice 

analysis was intended to speak to the idea that the test is multidimensional with 

well-defined categories of content subdomains. In this sense, the test 

development activities proceeded with the idea that each item reflects one of 

these different subdomain content categories.  

After the practice analysis was completed, four alignment criteria (Webb, 

2006) were utilized to frame the content of the TDT: (a) the content topics of 

derivative to be included in the TDT, (b) the complexity of the test items, (c) the 

range of derivative content to be covered, and (d) the degree of emphasis to be 

given to specific derivative content expectations. To respond correctly to TDT 

items, students not only need to be familiar with the differentiation content being 

assessed, but also they need to exhibit a range of cognitive behaviors to energize 

their mathematical thinking in the differentiation topic. More specifically, 

mathematical thinking in the differentiation topic consists of having the ability to 

proceed effectively in numerous behaviors like recalling, recognizing, 

computing, retrieving, selecting, representing, modeling, solving, analyzing, 

generalizing, synthesizing, integrating, and justifying. Thus, each mathematical 

thinking domain included items developed to address specific cognitive 

behaviors. Ultimately, this process led to the development of the general test 

specifications that identify the behaviors that students should activate when 

engaging in different mathematical thinking subdomains (see Table 3.1). Item 

development was accordingly based on these test specifications, and that each 

item has a content identifier that uniquely places it in one and only one 

subdomain. 

This process consequently included an indepth investigation of the 

calculus textbooks (e.g., Adams, 1999; Balcı & Aral, 2003; Balcı, 1997; 

Bittinger, 2004; Goldstein, 2007; LaTorre, Kenelly, Fetta Reed, Harris, & 

Carpenter, 2005; Stewart, 2003; Swokowski, Olinick, & Pence, 1994), calculus 

books (e.g., Boyer, 1949; Chartrand, Polimeni, & Zhang, 2008; Harcharras & 

Mitrea, 2007; Nelsen, 1993, 2000; Solow, 2001; Thompson & Gardner, 1999), 
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calculus course materials (e.g., the handout materials of M119 calculus course 

offered in Middle East Technical University and the handout materials of M109 

calculus course offered in Ankara University), calculus lecture notes (e.g., 

Akkoç, 1982), journal articles (e.g., Modica, 2010; Orton, 1983, Zandieh & 

Knapp, 2006), doctoral dissertations (e.g., Hahkiöniemi, 2006; Ubuz, 1996; 

Viholainen, 2008) and university entrance examination questions (e.g., 1981-

2010). The typical questions in the existing instruments tended to be open-ended 

to which students were asked to provide their responses and explanations. This 

approach was shifted to the multiple-choice format for this study. In explication, 

multiple-choice items are used to tap more adequately all the aspects of a 

construct (Haladyna, Downing, & Rodriguez, 2002) and the reliance on this 

format contributes to overemphasize on testing student learning at the expense of 

the more difficult-to-measure cognitive abilities (Frederiksen, 1984). 

Despite the dominant role that open-ended questions have played in 

assessing mathematical thinking of students, drawing a direct link from the 

open-ended question solutions to student misconceptions and errors facilitated 

the development of multiple-choice items. The indepth analysis of the results of 

previous research that utilized open-ended assessment context served as an 

important lever for developing the distractors. 

Guided by the practice analysis and general test specifications, a question 

pool was constructed including 183 multiple-choice items contextualized in 

enactive, iconic, algebraic, algorithmic, formal, and axiomatic thinking. 

Multiple-choice items were then re-evaluated to eliminate those which appeared 

redundant or ambiguous and those which appeared irrelevant to a specific 

subdomain. Items were chosen on the basis of their membership in the content 

subdomains denoted in the test specifications.  
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Table 3.1 The Cognitive Behaviors for the Mathematical Thinking Subdomains 

Mathematical Thinking Subdomain Cognitive Behaviors 

Enactive Thinking 

Model the differentiation problem in the 
context of a real-life phenomenon.  

 
Generate an appropriate model such as an 
equation to translate the differentiation 

problem into a function to be maximized 

or minimized. 

Iconic Thinking 

Retrieve information from the graph of a 
function and/or derivative function to 

interpret a set of graphical information. 

 
Construct graphical representations for a 

given differentiation relationship. 

Algorithmic Thinking 

Compute derivatives via an appropriate 

differentiation method.  
 
Evaluate derivatives to carry out 

algorithmic differentiation procedures. 
 
Solve routine differentiation problems. 

Algebraic Thinking 

Integrate linkages between a 
differentiation theorem and its 

hypotheses. 

 
Synthesize the differentiation theorem to 

apply its hypotheses. 

 
Justify the truth or falsity of a 

differentiation theorem statement by 

reference to its hypotheses. 

Formal Thinking 

Recall the definitions, notations, and 

conventions relevant to differentiation 

concepts. 

 
Recognize the differentiation facts, rules, 

and terminology. 

Axiomatic Thinking 

Analyze differentiation theorems to 
determine, describe, and use relationships 

between mathematical facts and 

situations. 
 
Generalize the justifications to which the 

inferences are applicable by restating 
them in more widely terms of 

differentiation. 
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Following that it was aimed to assess the content validity of the 

subdomains and to identify any particular items which may still be ambiguous or 

irrelevant. In order to achieve these goals, initially, this first version of the TDT 

was submitted to the advisor was submitted a table presenting the item number, 

the context of the item to the relevant thinking dimension, the objective of the 

item, the solution of the item, and the answer key of the item. To rank how well 

the items fit with construct definitions, a definition of enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking was also provided. The 

advisor was requested to analyze the questions in terms of their contribution to 

the relevant thinking context, comprehensiveness, and appropriateness to the 

content of differentiation in calculus course. With regard to her comments and 

recommendations 123 questions were dropped in terms of the overlaps in the 

objectives of the questions. Furthermore, the structure, syntax, and distractors of 

the questions were revised. For the context of enactive and algorithmic thinking 

questions it was suggested to reconsider the overlaps in the objectives. In terms 

of algorithmic questions overlaps in procedures on which students are expected 

to progress were taken into consideration, while for the context of enactive 

questions overlaps in equations for which a model will be generated were 

examined. For the context of the iconic thinking questions it was suggested to 

equal the number of questions on graph construction and graph interpretation 

within considering the integration of more unfamiliar functions. For the context 

of formal thinking questions it was suggested to reexamine the distractors within 

considerations of students‟ common misconceptions and errors in the 

definitions, facts, and notations of the concept of the derivative. For the context 

of algebraic thinking questions it was suggested to focus on the more 

sophisticated linkages between a differentiation theorem and its hypotheses 

rather than simple syntheses of a differentiation theorem to apply its hypotheses. 

For the context of axiomatic thinking questions it was suggested to eliminate the 

hints in the distractors.  
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The second version of the TDT with 60 multiple-choice test items was 

submitted to a professor in the Department of Mathematics at Ankara University 

along with the definitions of thinking contexts and objectives of the questions to 

gather trustworthy judgements and suggestions. Regarding the professor‟s 

comments the theoretical definitions of the differentiation theorems were 

integrated into the syntax of the axiomatic thinking questions. Furthermore, in 

terms of algebraic thinking questions, some of the functions on which the 

hypotheses of the differentiation theorems to be applied were revised. The 

revised questions were consulted with the advisor. Regarding this crosscheck the 

advisor suggested to shift the syntax of algebraic thinking questions to a more 

plausible sense that would trigger students to focus on the hypotheses of 

differentiation theorems for the given functions to justify whether they apply the 

given theorem. The suggestions on the formal thinking questions in this second 

version mainly focused on the revisions for the distractors in which the term 

being defined as part of its relevant misconceptions and errors. This process 

retained 32 multiple-choice items in the TDT. 

The third version of TDT including the revised 32 questions was 

reconsulted with the advisor. Regarding her comments two questions in the 

enactive thinking context were dropped mainly in response to the particular 

overlaps in their objectives. In this process the duration of the test and the 

requirement for at least four indicators per latent variable (Jöreskog & Sörbom, 

1993) were also taken into consideration.  

The final version of TDT including 30 multiple-choice items was 

administered to three third grade university students from the Department of 

Elementary Mathematics Education in Middle East Technical University, two 

research assistants from the Department of Secondary Science and Mathematics 

Education in Middle East Technical University, and two students attending to 

Master of Science Without Thesis program at the Department of Secondary 

Science and Mathematics Education in Gazi University. One of the students 

attending to Master of Science Without Thesis program at the Department of 
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Secondary Science and Mathematics Education in Gazi University was 

requested to solve each item with the researcher using a think-aloud procedure. 

These processes enabled to determine the time that the items take to solve and to 

ensure the clarity and intelligibility of the items. Upon the completion of the 

TDT students were consulted about the overall design of the test. All students 

confirmed that the items were clear and understandable. Taking into account 

their suggestions, only some wordings and the placement of items were revised. 

The revised final version of the TDT was reevaluated by the advisor and 

no more further revisions were made on the test. These 30 multiple-choice test 

included six items in formal thinking context, five items in axiomatic thinking 

context, four items in algebraic thinking context, five items in iconic thinking 

context, five items in algorithmic thinking context, and five items  in enactive 

thinking context which were confirmed to be understandable and appropriate for 

undergraduate students, thus content valid to administer. The sequence of items 

with their respective mathematical thinking contexts is presented in Table 3.2. 

The table of specifications of the 30 multiple-choice test items is presented in 

Table 3.3.  
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Table 3.2 Items Contextualized in Mathematical Thinking Contexts 

 

 

 

Item Mathematical Thinking Context 

1 

Formal Thinking 

2 

3 

4 

5 

6 

7 

Axiomatic Thinking 

8 

9 

10 

11 

12 

Algebraic Thinking 
13 

14 

15 

16 

Iconic Thinking 

17 

18 

19 

20 

21 

Algorithmic Thinking 

22 

24 

25 

26 

23 

Enactive Thinking 

27 

28 

29 

30 
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Table 3.3 Table of Specifications for the Items of the TDT 

 

 

 

 

 

 

 

 

 

 

 

 

Items Objectives 

1 Recall the definition of the derivative 

2 Recall the definition of the inflection point 

3 Recall the definitions of the increasing function and decreasing 

function 

4 Recall the definitions of the local maximum and local minimum 

5 Recognize the product rule for differentiation  

6 Recognize the notations relevant to differentiation 

7 Analyze Rolle‟s Theorem to make valid inferences from given 

information 

8 Analyze the Mean Value Theorem to make valid inferences from given 

information 

9 Analyze Fermat‟s Theorem to make valid inferences from given 

information 

10 Analyze the Intermediate Value Theorem to make valid inferences 

from given information 

11 Analyze the differentiability/continuity theorem to make valid 

inferences from given information 

12 Synthesize the hypotheses of the Mean Value Theorem to establish 

results on a given interval  

13 Justify  that the given partial function implies the hypotheses of Rolle‟s 

Theorem, Fermat‟s Theorem, and the Intermediate Value Theorem 

14 Justify that the given polynomial function implies the hypotheses of 

Rolle‟s Theorem and Fermat‟s Theorem 

15 Synthesize the Mean Value Theorem to determine whether the given 

functions imply its hypotheses on a given interval 
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Table 3.3 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

Items Objectives 

16 Retrieve information from the graph of a function to compute the 

derivative of another function 

17 Retrieve information from the graph of a derivative function to 

determine the inflection points 

18 Construct the derivative graph of a function with reference to the graph 

of the original function 

19 Construct the graph of a function with reference to the graph of the 

derivative function 

20 Retrieve information from the graph of a function to compute the 

derivative of another function 

21 Compute the derivative of a given function  

22 Evaluate the values on an interval where the given function is always 

decreasing 

23 Model a rectangle to maximize the area 

24 Evaluate the derivative of a given function via using the limit of a 

difference quotient 

25 Compute the product of the unknowns in a function via using its local 

extremum point and the inflection point 

26 Evaluate whether a given partial function is differentiable at a given 

point 

27 Model a parabola to maximize the side length of a triangle 

28 Model a quarter-circle to maximize the area of a rectangle 

29 Model a cylinder to minimize the height of an oil can 

30 Model a square to maximize the volume of a rectangular prism box 
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The scoring criteria representing the six thinking constructs were 

specified for correct and incorrect responses. Based on this, the highest score 1 

was awarded for correct responses, while the lowest score of 0 was reserved for 

incorrect responses. The possible scores on the TDT ranged from 0 to 30. 

The pilot study of the TDT was conducted during the spring semester of 

2009-2010 academic year. At this stage four phases were involved: test 

administration, confirmatory factor analysis, subgroup validity analysis, and 

reliability analysis. 

 

3.2.1.1 Test Administration 

The TDT including 30 multiple-choice items was administered to 766 

undergraduate students (352 female and 414 male). Cross-sectional data for 

freshmen, sophomores, juniors, and seniors attending to the Faculty of Education 

(N = 253, 33%), Faculty of Arts and Sciences (N = 284, 37%), and Faculty of 

Engineering (N = 229, 29%) from nine universities residing in seven different 

cities of Turkey were collected. Of these students 10.4% were from the 

department of elementary mathematics teacher education, 6.5% from secondary 

mathematics teacher education, 11.6% from secondary chemistry teacher 

education, 4.4% from secondary biology teacher education, 21.8% from 

mathematics, 7.7% from physics, 7.6% from statistics, 0.5% from geological 

engineering, 12.7% from civil engineering, and 16.7% from food engineering. 

The sample for the pilot study had an age range from 17 to 24.  

Students were from different sections of either one of the Fundamentals 

of Mathematics, General Mathematics, or Calculus classes offered by the 

Department of Mathematics and were allocated to these sections according to 

their major department at the first grade. They were also requested demographic 

data including their university, department, gender, grade level, cumulative 

grade point average, high school mathematics achievement, and type of the 

graduated high school.  
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The TDT was administered to classes during regular course hours by 

either the researcher or the lecturers. The 60-min study was administered in 

lectures selected by the chair of the departments of the participating faculties 

based on availability of testing time. In classes where the researcher was not 

available, lecturers were present during the study administration. On the 

occasions that they were present, lecturers were given information about the 

study; they did not communicate with their students during the testing session 

and did not assist in the data collection.  

The test administration process guided through the validation of the six-

factor structure of the TDT together with the reliability of the test scores. 

 

3.2.1.2 Confirmatory Factor Analysis 

A confirmatory factor analysis (CFA) was conducted on students‟ scores 

on the 30 TDT items to provide supportive evidence to the six-factor structure of 

the TDT. As any multiple-choice achievement test is likely to have some degree 

of multidimensionality (Tate, 2002, 2004). CFA provides the evidence for 

asserting that a set of item responses is sufficiently multidimensional when a 

construct definition (i.e., mathematical thinking) posits several dimensions (i.e., 

enactive thinking, iconic thinking) in the face of theory (Kline, 2005; Thompson 

& Daniel, 1996). Furthermore, with an initial theory CFA can be utilized without 

conducting an exploratory factor analysis (Brown, 2006).  

The analyses employed the LISREL 8.7 (Jöreskog & Sörbom, 1993) 

statistical software package in calculating weighted least squares estimates. An 

alternative to the Pearson product-moment correlation coefficient is the 

tetrachoric correlation. A tetrachoric correlation is used when observed variables 

are categorical which are assumed to represent underlying bivariate normal 

distributions. In other words, it measures the linear relationship between two 

observed, categorical variables that are manifestations of latent, normal 

continuous variables. Thus, a tetrachoric correlation is a more appropriate 

measure of the relationship between two multiple-choice items on a test than the 



 

 

 

 84 

Pearson correlation (Olsson, 1979). It follows that the matrix of tetrachoric 

correlations is more appropriate than the matrix of Pearson correlations for 

confirmatory factor analysis when binary (0/1) multiple-choice test items serve 

as observed variables (McLeod, Swygert, & Thissen, 2001).  

Because a set of multiple-choice items does not have a multivariate 

normal distribution, the maximum likelihood (ML) estimation that is typically 

employed in confirmatory factor analysis is not the best method of estimation for 

testing the factor structure of such variables (Bollen, 1989). Instead, it is 

suggested to apply weighted least square estimation (WLS) to the matrix of 

tetrachoric correlations, where the weight matrix is defined in terms of the 

asymptotic covariance matrix among all tetrachoric correlations (Schumacker & 

Lomax, 2004). Thus, all analyses were conducted on the asymptotic covariance 

matrix of the estimated tetrachoric correlations. Thompson (2004) argued that 

“correlated factors are usually expected and almost always provide a better fit to 

the data” (p. 118).  Thus, the evaluation of the correlations among the factors in 

these models was an effort to maximize model-to-data fit (Kieffer & Reese, 

2009). It should also be stressed that the factor loading of the first item at each 

latent factor was fixed to 1 in order to set the metric of the mathematical 

thinking constructs automatically. 

Lance and Vandenberg (2002) suggested that evidence for discriminant 

validity is provided when other theoretically substantial factor models are 

demonstrated to fit worse to the target model. Discriminant validity of the scores 

on the TDT was tested in a way that the superiority of the theoretical model as 

compared to three other substantial models was investigated. Three alternative 

factor analytic models were tested: a common factor model, a three-factor 

model, and a null model. The common factor model was specified such that all 

items loaded on a single general factor as mathematical thinking proposing that 

enactive, iconic, algorithmic, algebraic, formal, and axiomatic thinking are not 

conceptually or statistically distinct. The three-factor model was specified such 

that items loaded on three factors proposing thinking dimensions as conceptual-
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embodied, proceptual-symbolic, and formal-axiomatic thinking. Tall (2002) 

distinguished mathematical thinking types as conceptual-embodied, proceptual-

symbolic, and formal-axiomatic thinking. However, it is impossible to untie the 

merging of enactive, iconic, algorithmic, algebraic, formal, and axiomatic 

thinking in that every mathematical task calls out some paths of embodiment, 

symbolism, and formalism. The null model implied all the items are uncorrelated 

proposing that each item on the TDT is a single factor.  

Chi-square difference testing was used to make model comparisons (Lee 

& Song, 2001). Furthermore, multiple criteria including the ratio of chi-square to 

the degrees of freedom (
2 df/ ), the root mean square residual (RMR), 

goodness-of-fit index (GFI), adjusted-goodness-of-fit index (AGFI), root mean 

square error of approximation (RMSEA), and comparative fit index (CFI) were 

used to test model-data-fit. It is suggested substantively interpretive models with 

chi-square ratios of three or less, a RMR below .05, a GFI above .90, an AGFI 

above .90, a RMSEA from .06 to .08, and a CFI above .95 as good fitting 

(Schreiber, Stage, King, Nora, & Barlow, 2006; Schreiber, 2008).  

 

3.2.1.3 Further Validation  

As further validation evidence, subgroup validity was demonstrated. It is 

appropriate to present subgroup validity evidence when groups whose scores are 

expected to differ on a test do so in the hypothesized direction (Hinkin, 1995). In 

the current study, gender and faculty affiliation were expected to differentiate 

students on the six dimensions of the TDT. Gender was coded with 1 = female 

and 2 = male; and faculty affiliation was coded as 1 = Faculty of Education, 2 = 

Faculty of Arts and Sciences, and 3 = Faculty of Engineering. The dependent 

variables were six dimensions of the TDT. The predictions were based on two 

lines of review of the literature. First, gender effect in mathematical thinking has 

long been subject to mathematics education research at elementary, middle, and 

secondary levels (e.g., Fennema & Sherman, 1977; Friedman, 1989; 
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Grootenboer & Hemmings, 2007; Rothman & McMillan, 2003; Tartre & 

Fennema, 1995), while there is by now a sparse literature at the university level 

(Edge & Friedberg, 1984; Stage & Kloosterman, 1995; Ubuz & Kırkpınar, 2000; 

Ubuz, 2011). Many of these studies are couched in the differences between 

males and females in favor of males (Ercikan, McCreith, & Lapointe, 2005; 

Grootenboer & Hemmings, 2007; Leder, 1992; Oakes, 1990). However, meta-

analyses of the causes, correlates, and effects of gender tend to reflect diverse 

results and provide an empirical support for either small or no significant 

differences (Friedman, 1989; Hyde, Fennema, & Lamon, 1990). Second, faculty 

affiliation merits special attention for revealing how institutional factors 

facilitate for some students, even while inhibiting for others, the accumulation 

and exchange of various kinds of mathematical thinking (Maull & Berry, 2000; 

Praslon, 1999; Ubuz, 2011; Ubuz & Kırkpınar, 2000; Ubuz & Ersoy, 1997).  

Although many studies appeared to assume that faculty affiliation has no bearing 

in students‟ mathematical thinking (Asiala et al., 1997; Bezuidenhout, 1998), 

there is considerable evidence in support of the fact that faculty affiliation is 

essential to predict students‟ progress in different types of mathematical thinking 

(Bingolbali & Ozmantar, 2009; Bingolbali & Monaghan, 2008; Ubuz & 

Kirkpinar, 2000; Ubuz & Ersoy, 1997).  

Multivariate analysis of variance was generated to check these issues.  

 

3.2.1.4 Reliability Analysis 

The reliability analysis was undertaken to produce a revised test made up 

of items that are significantly intercorrelated. Because the focus of the 

development of TDT was in a multidimensional sense positing that it covers six 

specific contexts of mathematical thinking, the reliability analysis was 

conducted separately for the scores on each dimension using Kuder-Richardson 

Formula 20 (KR-20) reliability coefficient as a measure of internal consistency. 

The items were also investigated in terms of two criteria (Pallant, 2005): An 

item was deleted if (a) it had a corrected item-total correlation lower than .30, 
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and (b) deletion of the item resulted in a substantial increase in the reliability 

coefficient of the mathematical thinking dimension.  

 

 

3.3 PROCEDURE 

In the fall semester of 2009-2010 academic year extensive and detailed 

information was obtained about advanced mathematical thinking, the teaching 

and learning of the derivative concept at the university level, the teaching and 

learning of calculus, and multilevel structural equation modeling through review 

of related literature. In the spring semester of 2009-2010 TDT was developed. 

Prior to the pilot study and the main study permission was taken from the METU 

Human Research Ethics Committee in January. Subsequently, permission was 

taken from the President‟s Office of the state universities that participated in the 

present study. Accordingly, the TDT was piloted. In the summer break, data 

analyses of the TDT was conducted. The 6-month rental edition of the 

TESTFACT 4 program was purchased for the item analyses of the TDT. Once 

the program was practiced via exercises and the manual that were electronically 

available, the reliability analyses of the students‟ scores were conducted.  

During September-December 2010 the main study was conducted in 

terms of the administration of TDT as part of calculus or appropriate classes. 

After the data were collected Mplus 6.1 software program was purchased 

(STBML60005110) with regard to its availability and flexibility in multilevel 

structural equation modeling with categorical variables. Until the program was 

shipped to the researcher, multilevel exploratory factor analysis, multilevel 

confirmatory factor analysis, and multilevel structural equation modeling 

techniques were practiced via the demo version of Mplus on the Mplus website 

(www.statmodel.com). Mplus course videos, handouts, and electronic version of 

the User‟s Guide were further followed from the official website.  
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3.4 DATA COLLECTION 

The testing was conducted during September-December in the fall 

semester of 2010-2011 academic year. The 60-min study was administered in 

lectures selected by the chair of the departments of the participating faculties 

based on availability of testing time. In classes where the researcher was not 

available, lecturers were present during the study administration. On the 

occasions that they were present, lecturers were given information about the 

study; they did not communicate with their students during the testing session 

and did not assist in the data collection.  

 

 

3.5 DATA ANALYSES 

The preliminary data analysis began by the preparation of the data files. 

The data gathered through the TDT were obtained in PASW Statistics 18 files 

separately for the Sample 1 and Sample 2. Descriptive analyses were run to get 

indepth information about the data. The descriptive statistics are reported in 

Appendix B and Appendix C for Sample 1 and Sample 2, respectively.  

In addition, single-level structural equation modeling analyses were run 

to validate the instrument and to determine the latent mathematical thinking 

constructs that would be introduced to the two-level structural model in the 

subsequent multilevel analyses, whereas multilevel structural equation modeling 

analyses were run to determine the factor structure of mathematical thinking at 

the within- and between-classroom levels and to investigate the relationships 

among different types of mathematical thinking at the within- and between-

classroom levels. PASW Statistics 18 (SPSS Inc., 2010) was used to run the 

descriptive analyses, LISREL 8.7 (Jöreskog & Sörbom, 1993) was used to run 

single-level structural equation modeling analyses, TESTFACT 4 (Bock, 

Gibbons, Schilling, Muraki, Wilson, & Wood, 2003) was used to run the 

reliability analyses, and Mplus version 6.1 (Muthén & Muthén, 1998-2010) was 

used to run the multilevel analyses. 
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3.5.1 MISSING DATA ANALYSES 

Most of the data analysis procedures in educational research are designed 

for complete samples. The underlying idea is that the data are generated 

randomly from the population of interest. The invalidation of this assumption 

that the data are drawn randomly, missing data may cause a number of 

problems: (a) bias in parameter estimates; (b) inflation of Type I and Type II 

error rates; (c) degrade in the performance of confidence intervals; and (d) 

reduction in statistical power (Collins, Schafer, & Kim, 2001).  

Missing data is a potentially serious methodological problem in 

nonexperimental research with crosssectional design (Trautwein & Lüdtke, 

2009). In most educational tests item nonresponse relates to omitted items, not 

reached items, or multiple response items. The response to an item is classified 

as omitted if it is missing, and at least one of the following items has a presented 

correct, incorrect, or multiple response. The response to an item is classified as 

nonreached each response from a block of items follows a contiguous sequence 

of missing responses to items which contain the last item the block. The 

response to an item is classified as multiple response if the respondent marks 

more than one choices. In general, students are assumed to narrow down the 

range of possible correct answers. The selected response is then classified as 

either correct or incorrect if the selection contains both the correct and the 

incorrect answer. However, if each marked response is incorrect this selection is 

inappropriate. In the present study, the multiple responses were treated as 

missing as they would not provide an authentic determinacy for students‟ actual 

mathematical thinking performance on the relevant item.  

A total of 1200 undergraduates were in Sample 1 with 45 students having 

no response in either one of the items but an index of descriptive information 

(e.g., gender, university, faculty, and department). These students were 

automatically dropped (3.75% loss) and 1155 students were remained for the 

further missing data analyses. 
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For the items considered in Sample 1, the average percentage of missing 

data was 2.15% ranging from 1.7% to 4.1%. The lowest missing rate was for the 

formal thinking item, Item 6 that requested students to state the mathematical 

symbol standing for the derivative concept. The highest missing rate was for the 

algebraic thinking item, Item 15. Given a number of functions students were 

requested to select the one that satisfies the hypotheses of the Mean Value 

Theorem. There are two possible explanations for the relatively higher missing 

rate at this item. First, students who are mostly familiar with items that require 

factual knowledge of derivative theorems might be less likely to answer this 

item which requires an inquiry-based mathematical thinking. Second, some 

students might not tend to make sense on the fundamentals of Mean Value 

Theorem. Thus, missing rate for this item was ignorable and that; there were 

only unintentionally missing data. The nonreached items toward the end of the 

TDT had a nonresponse rate ranging from 1.4% to 2.3%.  

A total of 2576 undergraduates were in Sample 2 with 76 students having 

no response in either one of the instruments but an index of descriptive 

information (e.g., gender, university, faculty, and department). These students 

were automatically dropped (2.95% loss) and 2500 students were remained for 

the further missing data analyses. 

For the items considered in the Sample 2, the average percentage of 

missing data was 5.04% ranging from 0% to 12%. The lowest missing rate was 

for the formal thinking item, Item 5 that requested students to state the product 

rule. The highest missing rate was for the axiomatic thinking item, Item 9. Given 

Fermat‟s Theorem students were requested to select the correct conjecture. 

There are two possible explanations for the relatively higher missing rate at this 

item. First, students who are mostly familiar with items that require routine 

procedures and technical algorithms might be less likely to answer this item 

which requires a sophisticated and a nonroutine manner of mathematical 

thinking. Second, some students might not tend to make sense on Fermat‟s 

Theorem. Thus, missing rate for this item was ignorable and that; there were 
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only unintentionally missing data. The nonreached items toward the end of the 

TDT had a nonresponse rate ranging from 2.4% to 3.3%.  

For both samples the nonreached responses on the TDT signaled that 

some students were unable to complete the whole multiple-choice test within the 

given duration. On the other hand, the omitted responses did not follow a long 

contiguous set of items. It was likely that students did not attend to certain items. 

When an answer to an item was missing the preceding and following items were 

not. This might possibly be a consequence of not knowing. If there was a long 

sequence of missing responses to consecutive items, it would be concluded that 

the first few responses may be due to the fact that not knowing and the rest due 

to the fact that not attending. This indicated that some students were unable to 

complete the whole multiple-choice test within the given duration.  

Following that the type of missingness for item nonresponse in the data 

set was investigated separately for Sample 1 and Sample 2 by conducting 

Little‟s MCAR test (Little, 1988) on the PASW Statistics 18. Both samples were 

classified according to the values of the multiple-choice items that are subject to 

missing data due to nonresponse. The classification of missing data mechanisms 

depends on whether the probability of the items‟ missing data depends on the 

state of the item and/or other independent variables (Rubin, 1976).  

For the Sample 1, results demonstrated that the data were missing 

completely at random (MCAR) (p= .318, p> .05). Similarly, for the Sample 2, 

results revealed that the data were missing completely at random (MCAR) (p= 

.456, p> .05). Given the low percentage of overall nonresponse rate (2.15% and 

5.04%, respectively) of the data and that, the data are MCAR; it was opted for 

the listwise deletion procedure that would give unbiased estimates (Acock, 2005; 

Cohen, Cohen, West, & Aiken, 2003). In a special case of MCAR, the 

probability of missing data of the items depends neither on the item itself nor on 

other independent variables. When data are MCAR the missing data mechanism 

can be regarded as ignorable (Little & Rubin, 2002) in the sense that inference 

does not depend on that mechanism (Chen & Astebro, 2003).  
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Taken together, the overall levels of loss at 30 multiple-choice items 

included in the present study was considered low enough to support the 

feasibility of further multilevel exploratory factor analyses with 1099 students 

and, multilevel confirmatory analysis and multilevel structural equation 

modeling with 2424 students. 

 

 

3.5.2 POWER ANALYSIS 

Power analysis is an important aspect of multilevel structural equation 

modeling studies. The purpose of the power analysis is to provide the researcher 

with information needed to address the research questions in a precise fashion. 

Statistical inference is drawn upon the relationships among four variables: alpha, 

beta, power, effect size, and sample size (Tabachnick & Fidell, 2007). For any 

statistical model, the relationships among the four are such that each is a 

function of the other three. Thus, in research planning, it has been widely 

acknowledged to know the sample size necessary to attain the desired power for 

the specified alpha and hypothesized effect size (Cohen, 1988). The power of the 

study should be large enough to conduct a research of value. Similarly, the effect 

size of the study should be large enough to make meaningful inferences and so 

that the results are statistically and practically significant.   

Power is the probability of rejecting a false null hypothesis and the 

specification for power is .80 which is a convention for general use (Cohen et 

al., 2003). On the other hand, an effect size measure is the size of the 

relationship among variables (Weinfurt, 1995) which is expressed as the 

proportion of explained variance in the dependent variables. In other words, 

effect size is an indicator of the association that exists between two or more 

variables. Multiple regression analysis provides a better understanding for the 

multilevel structural equation modeling. The multiple correlation indices are 

multiple correlation (R), squared multiple correlation (
2R ), and adjusted squared 
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multiple correlation (
2

adjR ). Squared multiple correlation is a measure of the 

strength of the linear relationship. The measure of effect size is equivalent to the 

2R  used in multiple regression. The squared multiple correlation indicates the 

amount of variance explained by the set of independent variables (Raykov & 

Penev, 2010). It is used as a model fit criterion in multiple regression analysis 

(Schumacler & Lomax, 2004). Cohen (1988) suggested a classification of effect 

sizes, which were measured in terms of
2R . This classification indicated for 

effect sizes: 0.01 is small, 0.09 is medium and 0.25 or greater is large. In social 

studies, small to medium effect sizes emerge (Weinfurt, 1995). Furthermore, 

multilevel structural equation modeling techniques require large sample sizes at 

each level of analysis (Rabe-Hesketh, Skrondal, & Zheng, 2007; Schreiber & 

Griffin, 2004). 

In regard to the aforementioned assumptions, the alpha, beta, power, and 

effect size were fixed to carry out the multilevel analyses. Setting these indices a 

priori to the research enabled to determine the minimum sample size required to 

estimate the two-level structural models.  

Prior to the study, the alpha which is the probability of making a Type I 

Error, was set at .01. The power was set at .95 as it is a large enough value 

indicating that the relationships are worth investigating. Based on the power, the 

beta was fixed at .05 (power = 1 – β). Taken with the conventional value of .25 

as a large effect, the effect size for the population was fixed at .40. In the present 

study the number of the within-classroom variables was 6 and the number of the 

between-classroom variables was 3. However, at the beginning of the study the 

number of variables introduced to the two-level models was set at 100 which is 

the maximum number to obtain the index L. Consequently, Cohen‟s sample size 

table was used to determine the sufficient sample size of this multilevel study. 

The sample size of the study was computed as follows: 

.01, β = .05, power = .95, effect size = .40 

 =  =  =  
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In regard to Cohen‟s table with .01, 100, power = .95, L equals 

to 70.37. 

1 = 70.37/.66 + 100 + 1 = 207.621  208 

Thus, the adequate sample size for the present study was computed as 

207.621 indicating that the sample size should be at least 208, approximately. 

The two independent sample sizes were 1099 and 2424 at the within-classroom 

level. From a methodological standpoint, these values were far above the 

necessary sample size set for the beginning of the study. Furthermore, the 

sample size at the between-classroom level was 72 and 130 for Sample 1 and 

Sample 2, respectively. These values were also large enough to test two-level 

structural models.  

 

 

3.6 OVERVIEW MULTILEVEL STRUCTURAL EQUATION 

MODELING 

Over the past decade or so, concerns in various fields with 

methodological issues in conducting research with hierarchical (clustered or 

multilevel) data have led to the development of multilevel modeling techniques. 

The theory of multilevel modeling grounds on sociology underlying that the 

effects of the social context on individuals must be mediated by intervening 

cognitive or psychological processes dependent on the characteristics of the 

social context (Chan, 1998; Erbring & Young, 1979; Stinchcombe, 1968). 

Therefore, multilevel theory specifies whether the variables belong to the within- 

or between-classroom level and which direct and/or indirect effects as well as 

cross-level interaction effects should be expected. More specifically, cross-level 

interaction effects between the individual and group level which require the 

specification of processes within individuals that ground these individuals to be 

differentially influenced by the certain aspects of the within- and between-

classroom effects can be put forth in multilevel models (Hox, 2002). 



 

 

 

 95 

Despite the existence of hierarchical data structures in social sciences, 

previous research addressed either one of the Structural Equation Modeling 

(SEM) or the Multilevel Modeling (MLM) methods (Raudenbush & Byrk, 

2002). Generally, SEM methods permit researchers to build and test models 

including both endogenous and exogenous latent variables simultaneously (the 

measurement model and the structural model). MLM methods, on the other 

hand, allow for the variance attributable to the between-classroom level (group 

level) to be portioned from the variance associated with the within-classroom 

level (individual level), permitting the estimation of more accurate standard 

errors and more reliable information about between-and within-classroom 

effects (Raudenbush & Byrk, 2002). However, application of either 

methodology alone to the hierarchical data would produce several analytical 

difficulties and mispecifications about the complex relations that exist within 

and between groups. In a way, MLM represents a blind spot on the fact that 

variables are themselves related directly or indirectly to desired outcomes 

disregarding endogenous outcomes may be simultaneously related to each other 

(Hoffman, 1997; Kaplan & Elliot, 1997b). Use of SEM alone would ignore the 

clustered sampling that is often used to design educational data and would 

produce biased results in the estimation of structural regression coefficients 

(Muthén, 1989a, 1989b).  

To resolve these difficulties, attempts have been made to integrate MLM 

with SEM for studying complex sample data. More recently, multilevel 

structural equation modeling (MSEM) has become a vigorous line of 

methodological research. Similar to the applications of the hierarchical linear 

model to regression in the context of the multilevel model, MSEM is a direct 

generalization of SEM in the context of the multilevel model (Cheung & Au, 

2005; Raudenbush & Sampson, 1999) which allows the specification of separate 

structural models with direct and indirect effects within and between groups 

(Heck, 2001). The most critical aspect of MSEM is that the magnitude of the 

regression coefficients (i.e., factor loadings) are standardized separately at the 
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within- and between-group levels. Thus, there is no relation in the proportion of 

variance accounted for in one level versus the other level (Byrne, 2012, p. 365). 

As such, there is no correspondence between interpretations of relationships at 

the within- versus between-group levels.  

Several types of multilevel models can be investigated with SEM 

techniques including two-level measurement models that define latent constructs 

through their observed indicators, path models that investigate two-level 

relationships among observed variables, and two-level structural models that 

focus on the relationships among latent and observed variables. Applications of 

MSEM to educational research are still rare (Heck & Thomas, 2008). However, 

it is an attractive approach because it allows the researcher to incorporate a 

substantive theory about the relations among variables within a nested structure 

(e.g., students nested within schools) as well as relations at a group level (in this 

case schools) by giving access to the investigation of one of the aforementioned 

models.  

To summarize, the tradition that prompted an interest in multilevel 

structural models is the practice of examining nested educational structure. 

Multilevel structural models have a natural appeal to educational researchers 

because the structure of education is often hierarchical. Examples for multilevel 

educational structure are plentiful. In schools, students are nested within 

classrooms, and classrooms are nested within teachers. Guo and Zhao (2000) 

pointed that multilevel structural models offer a number of the following 

advantages. First, they provide a convenient framework for investigating 

hierarchical data. Second, such models correct for the biases in parameter 

estimates that result from the clustering effect. Third, multilevel structural 

models provide unbiased standard errors and thus correct confidence intervals 

and significance tests. Finally, in line with the first advantage, estimates of the 

variances and covariances of random effects at the within and between levels 

enable researchers to decompose the total variance in the outcome variable into 

portions associated with the within level and the between level.  
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3.6.1 ASSUMPTIONS OF MULTILEVEL STRUCTURAL EQUATION 

MODELING 

Inferential statistical methods are based on assumptions. Provided certain 

assumptions are met, methods that researchers use will generally function as 

intended. However, if the assumptions are violated it is likely that certain 

procedures will not produce the desired results at least under some data-analytic 

conditions.  

In educational research, regarding the assumptions, practical issues are 

usually of concern especially when applying a sophisticated statistical method, 

such as MSEM. Since multilevel structural models assume large sample sizes, 

the minimum sample sizes required at the within- and between-classroom levels 

is one the fundamental issues. However, MSEM approaches are relatively new 

and that only a few studies have investigated the sample size requirements of 

these approaches. Although researchers agreed that problems would occur for 

small and inadequate between-classroom samples, they showed a controversy in 

that between-classroom sample size should be at least 100 (Hox & Maas, 2001) 

and/or at least 30 to 50 (Stapleton, 2006) for good performance of the estimator 

being used. In support of this controversy, illustrated examples using MSEM in 

the literature vary a lot in the sample sizes employed. Some studies satisfy the 

between-classroom sample size larger than 100 criterion (Duncan, Alpert, & 

Duncan, 1998; Kaplan & Elliott, 1997a, 1997b; Muthén, 1994) while some 

studies fulfill the between–classroom sample size should be between 30 to 50 

criterion (Heck, 2001; Hox, 1998; Maas & Hox, 2005).  

The issue of small between-classroom sample size becomes even more 

critical when applying MSEM to educational research because the classroom-

level sample size is always small, whereas the student-level sample size is 

comparatively large. The multilevel analyses on comparing the student and 

classroom factor structures conducted by several researchers shed light into this 

issue (e.g., Burstein, 1980; D‟Haanens, Damme, & Onghena, 2010; Goldstein & 

Bonnet, & Rocher, 2007; Goldstein & Rasbash, 1996; Nasser & Hagtvet, 2006; 
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Muthén, 1991; Webster & Fischer, 2000). It is easy to observe that the typical 

between-classroom sample size is around 30 to 200, whereas the within-

classroom sample size can be as large as 300 to 3500 in educational research.  

Although the between-classroom sample size is relatively small in 

educational research, it is unclear whether the large within-classroom sample 

size is beneficial to the overall performance of MSEM procedures, especially at 

the between-classroom level. Some researchers suggested a trade-off between 

sample sizes at different levels of analysis, partially for multilevel regression 

(Mok, 1995; Snijders & Bosker, 1992; Tabachnick & Fidell, 2007). They 

indicated that increasing within-classroom sample size may reduce the between-

classroom sample size requirement. That is, increasing the within-classroom 

sample size would subsequently increase the precision on the parameter 

estimates at the between-classroom level. Although most of the previous 

research suggested that increasing the between-classroom sample size is more 

beneficial than increasing the within-classroom sample size (e.g., Snijders & 

Bosker, 1992), it is not clear whether the large within-classroom sample size in 

educational research will help the between-classroom model fit or parameter 

estimates in MSEM. Since most of these suggestions are based on simulation 

studies with artificial data, the effects of sample sizes on real data sets remains 

unknown. Considerations derived from the sample size assumption are likely to 

be generalizable to those with suggestions in educational research indicating that 

sufficient sample sizes for MSEM is at least 200 at the within-classroom level 

(e.g., Heck & Thomas, 2008) and at least 30 at the between-classroom level 

(e.g., Stapleton, 2006).  

Provided that the sample sizes are large enough at both within- and 

between-classroom levels, multilevel structural equation modeling is appropriate 

when data are collected at multiple levels simultaneously. As mentioned before, 

the term “levels” refers to how data are organized and more important 

statistically, to whether observations are dependent or independent. One of the 

important characteristics of such data is the within-classroom observations are 



 

 

 

 99 

not independent. Students in a classroom share whatever characteristics the 

classroom has, and the overall performance of the classroom has in common the 

characteristics of the student. This lack of independence means that traditional 

multiple regression analysis or conventional single-level SEM analysis in which 

within-classroom observations are treated as independent observations cannot be 

used because such ordinary least-squares techniques violate the fundamental 

assumption: the independence of observations. In a multilevel data structure, 

units of observations (i.e., students) are randomly sampled from populations at 

different levels simultaneously. For example, in a study of mathematical 

thinking, individual students are sampled to provide a basis for making 

inferences about classrooms. At the same time, the classrooms are meant to 

provide a basis for making inferences about each student. Thus, the error 

associated with sampling at each level of analysis should be estimated. That is, 

the within-classroom relationships found in a sample of between-classroom 

would probably be similar to, but not exactly the same as, the relationships 

found in another classroom. MSEM takes into account simultaneously the 

sampling error at each level of analysis to estimate the factor structure of 

educational constructs at the within-classroom and between-classroom levels. 

In this vein, the assumptions underlying the multilevel structural model 

are similar to the assumptions in ordinary single-level multiple regression 

analysis: linear relationships, homoscedasticity, and normal distribution of the 

residuals (Maas & Hox, 2004). Specifically, the assumptions of multilevel 

structural equation models emphasize multivariate normal distributions for all 

residuals, independence of residuals for different levels, and independence of 

residuals for different units in the same level (Curran, 2003). In the case of latent 

variable, the local independence implies that the residual covariance matrix is 

diagonal (Raudenbush & Byrk, 2002). If the multilevel model fits the data well 

then assumptions relevant to uncorrelated residuals are assumed to be not 

violated. In multilevel structural equation modeling, it is known that violations 

of these assumptions lead to highly inaccurate parameter estimates and standard 
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errors (Tabachnick & Fidell, 2007). Prominent among these violations is that the 

correlated errors among the students within a classroom violate the independent 

observations assumption, resulting in downwardly biased standard error 

estimates, overly large test statistics, and inflated Type I error rates (Snijders & 

Bosker, 1992). However, provided that the sample size is large, MSEM can be 

regarded as a robust analysis method. In response to the challenge of 

appropriately analyzing hierarchical data, it preserves the original data structure 

while explicitly modeling the within-classroom homogeneity of errors by 

allowing the estimation of error terms for both the student and the classroom 

(Krull & MacKinnon, 2001). In the case of severe violations, for example when 

the variance of the error terms differ across observations, this method has the 

advantage that heterocedasticity can be modeled directly (Goldstein, 1995).  

Distributional assumptions are made about the errors at the within-

classroom and at the between-classroom level in the multilevel structural model. 

The within-classroom level errors as well as the between-classroom level errors 

are both assumed to be independently and normally distributed. For multilevel 

structural models with categorical outcomes the normality assumption is not 

realistic (Dedrick et al., 2009). Associated with revealing the robustness of 

multilevel structural equation modeling with categorical variables, the normality 

conditions investigated in the present study were indicated by skewness and 

kurtosis values for each observed variable. Lei and Lomax (2005) categorized 

the absolute values of skewness and kurtosis less than 1.0 as slight 

nonnormality, the values between 1.0 and 2.3 as moderate nonnormality, and the 

values above 2.3 as severe nonnormality. In contrast, Fabrigar et al. (1999) 

accepted that nonnormality is severe if skewness is above 2 and kurtosis is above 

7.  With categorical variables, the values of skewness and kurtosis are generally 

not a problem for model assumptions as it is for continuous variables where 

normality is violated (Muthén, 1989a). Additionally, categorical variable 

methodology takes into account the floor and ceiling effects. Ceiling effect 

occurs when students‟ scores on a test pile up at the high end, whereas floor 
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effect occurs when students‟ scores on a test pile up at the low end. The 

percentage of students scoring at the highest and the lowest levels reflect 

whether a test is too easy or too difficult to cause an undesirable measurement 

outcome that would possibly inflate the multivariate normality assumption 

(Croacker & Algina, 1986). The percentage of responses at the lowest or the 

highest level response option at 25% or more can be taken as a large floor or 

ceiling effect (Haladyna, 1994). 

Also implicit in the assumptions about the mediation analyses in the 

present study is that multilevel mediation models (i.e., cross-level mediator 

models) make all of the standard assumptions of the multilevel structural models 

(i.e., linearity, normality, homogeneity of error variance, and independence of 

errors). 

 

3.6.2 CONCEPTUAL BACKGROUND FOR MULTILEVEL 

STRUCTURAL EQUATION MODELS 

The estimation procedures in multilevel models with categorical 

observed variables have been rendered possible the widespread availability of a 

class of statistical models (Finney & DiStefano, 2006; Kaplan, 2009). The 

distinguishing feature of such models lies beneath whether they assume a 

logistic distribution or a normal distribution. Logit or probit link functions 

therefore introduce an additional source of classification of models which is 

based on tethrachoric correlations. In general logit and probit link functions 

provide similar fits and conclusions (Goldstein, Bonnet, & Rocher, 2007) it is 

suggested the link function choice should be based primarily on ease of 

interpretation and computational demands (Hedeker, 2008). 

In the context of latent variable modeling with categorical variables, the 

detailed descriptions of the single-level latent variable model, multilevel 

regression model, multilevel logit model, and multilevel probit model are 

presented below. 
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3.6.2.1 The Single-Level Latent Variable Model  

To provide a familiar starting point, I begin with a review of the single-

level latent variable model. My review focuses on a specific single-level model 

with categorical variables (1 = correct; 0 = incorrect) that educational 

researchers are likely to estimate. A simple latent variable model of this type 

relates the responses on a set of items to one or more underlying latent factors. A 

basic version can be expressed as follows. 

For a student (i) who responds to item (r), the probability ( ) of a 

correct response can be given by 

)=  

 

 

where g is a link function, the logit or the probit, and the response,  , is 1 if 

the item is correctly responded and 0 if the item is incorrectly responded and the 

 are mutually independent. This is just a categorical factor model with a 

single factor (𝜃) and a set of factor loadings, . The term  refers to the 

“facility” for Item r, as it belongs to the fixed part of the model.  

An important assumption in this model is that the responses   are 

conditionally independent. Because some of the items involve responses to the 

similar context (e.g., graph interpretation of the derivation function, modeling 

real life applications of the derivative), it is possible that this assumption will be 

violated, as the conditional probability of a correct response to an item may 

depend on the outcome with respect to a similar item responded previously. 

When the factor loadings  are constrained to be equal this refers to a model 

with a logit link. However, the two link functions are, in fact, very similar and 

that the estimated probabilities are very close. Goldstein, Bonnet, and Rocher 

(2007) suggested that the probit link is more advantageous than the logit link in 

terms of computational issues and the interpretation with regard to the 

underlying normal propensity distribution for the responses. Here it is wise to 
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note that latent variable models with categorical variables are often motivated 

and described by using the “threshold” concept. Such models assume that a 

continuous latent variable underlies the observed categorical response. Then, a 

threshold X determines if the dichotomous response Y equals 0 (  ≤  X) or 1 

(  > X). Thus, for a categorical response there is an underlying continuous 

response for an item with a threshold value (X) such that responses above that 

threshold value are correct and those below that value are in correct. 

 

3.6.2.2 The Multilevel Regression Model  

For a description of the multilevel regression model in its most general 

form a simple two-level model can be expressed as follows. 

Assume that we have data from j classrooms, with a different number of 

students  in each classroom. On the within-classroom level, we have the 

outcome variable . Furthermore, we have one explanatory variable  on the 

within-classroom level, and one between-classroom explanatory variable . To 

model these data, we essentially have a separate regression model at the within-

classroom level and at the between-classroom level as follows:  

.                                                                   (1) 

The variation of the regression coefficients   can be modeled by a between-

classroom regression model as follows: 

 =                                                                         (2) 

and 

 =  .                                                                      (3) 

 

In equation (2),  is the average intercept and is the coefficient estimating 

the association between    and  .  In equation (3),  is the average slope 

between   and  . Accordingly,  represents how  changes for 

differences in . Both   and   are error terms at the between-classroom 

level, where  is the deviation from the overall mean (or average intercept) for 
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classroom j and  is the deviation from the overall mean regression 

coefficient,  , for classroom j. 

Substituting equations (2) and (3) into (1) and rearranging terms yields 

the following single equation: 

.       (4) 

The segment ( ) in equation (4) contains all the 

fixed coefficients, that is it refers to the fixed part of the model. The segment 

( ) in this combined model contains all the random error terms 

and is referred to as the random part of the model. The term  is an 

interaction term that appears in the model because the varying regression slope 

 of the within-classroom level variable  with the between-classroom 

variable  is modeled.  

The multilevel structural models for categorical outcomes can be derived 

through the aforementioned multilevel latent variable model conceptualization. 

It is assumed that there exists a latent continuous variable  underlying . In 

this case only the categorical within-classroom variable  is observed directly, 

but  is not. However, it is known that  > 0 if  = 1 and  ≤ 0 if  = 0. 

A multilevel model for  equivalent to (4) can be written as 

.                                                            (5) 

Conditional on the random effect  at the between-classroom level, either a 

logit multilevel model or a probit multilevel model can be derived from equation 

(5) depending on the assumption that whether  in (5) has a standard logistic 

distribution or a normal distribution. 

 

3.6.2.3 The Multilevel Logit Model  

At the most basic level, the multilevel logit model is conceptually 

equivalent to equation (5), a cross-level direct effects model. Similarly, suppose 

that we observe , a categorical response for student i in classroom j and , 
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an explanatory variable at the within-classroom level. The probability of the 

response equal to 1 can be defined as  and  can be modeled 

using a logit link function. In this case the standard assumption is that  has a 

Bernoulli distribution. Then the two-level model is as follows. 

                                                            (6) 

where  is the random effect at the between-classroom level. It should be noted 

that without  this combined model (6) would be an ordinary logistic regression 

model. As in the case of multilevel regression models, is assumed to be 

normally distributed and further conditional on , s are assumed to be 

independent. More specifically, the within-classroom logit model is as follows 

 

                                                            (7) 

and the between-classroom logit model can be expressed as 

 

 =  .                                                                                      (8) 

Relative to equations (7) and (8), equation (6) is the so-called combined logit 

model. Collectively, because the error terms are assumed to follow a logistic 

distribution and the random effects are assumed to follow a normal distribution, 

these models are referred to as multilevel logit models.  

 

3.6.2.4 The Multilevel Probit Model  

A cross-level direct effects model is called a multilevel probit model 

when both the error terms and the random effects are assumed to follow a 

normal distribution. In the resulting multilevel probit model from these 

assumptions, the error terms have mean 0 and variance 1, as is the case in the 

variance of the standard normal distribution.  

From a multilevel latent variable modeling perspective, denoted by  
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  is the vector of categorical measurements on 

student i (i = 1, 2,…, N). It is assumed that each   takes on a value of 0 or 1. 

Conditionally on a set of random effects   , the model for the probability that a 

correct response be observed on the jth student in the ith classroom is specified 

as 

,                                            (9) 

where  is a vector of covariates having fixed effects β and  stands for a 

vector of covariates that possibly overlaps with , having  q-dimension random 

effects .   

The existence of a latent variable   indicates that it is continuously 

distributed and related to the actual response through a certain threshold. In the 

context of independent categorical data this approach motivates the standard 

probit model. In such models, it is assumed that the observed categorical 

response is actually obtained by dichotomizing an observed continuous latent 

variable. Similar to the logit model, it is further assumed that there is a need for 

a certain threshold value (e.g., a cut-off value). Provided that an intercept term is 

included in the model this cut-off value can be 0. Likewise, this threshold can be 

chosen as (  = 1) if   > 0 for a correct response and for an incorrect 

response (  = 0 )  if  ≤ 0. Accordingly, if it is assumed that  is normally 

distributed, then the random-effects regression model can be expressed as 

follows. 

=   +                                                              (10) 

where the error terms   are assumed to be normally distributed with mean 0 

and variance 1. When the variance parameter is fixed to 1 the derived model for 

the categorical within-classroom variable   is exactly equation (9) that poists 

the multilevel probit model. 
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3.6.2.5 The Cross-Level Moderator Model  

The basic cross-level moderator model involves a three-factor system in 

which an initial independent latent variable affects a mediational variable, 

which, in turn, affects a dependent latent variable. This system aims to determine 

whether the relation between the independent and the dependent variable due, 

wholly or partially, to the meditational variable. Given that the independent 

variables can reside at both within- and between-classroom levels cross-level 

models may take several forms as shown in Figure 3.1 and Figure 3.2 (Krull & 

MacKinnon, 2001). In essence, for instance, upper level mediation exists when 

the effect of a between-classroom independent variable on a within-classroom 

dependent variable is mediated by another between-classroom independent 

variable (221 mediation).  

 

 

 

 

Figure 3.1 Upper level mediation in a two-level model (221) 
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Lower level mediation exists when the meditational variable is a within-

classroom variable (e.g., 211 mediation). 

 

 

 

 

Figure 3.2 Lower level mediation in a two-level model (211) 

 

 

 

Baron and Kenny (1986) suggested three preconditions to support a 

mediation hypothesis. First, there should be a significant relationship between 

the independent variable and the dependent variable. Second, there should be a 

significant relationship between the independent variable and the meditational 

variable. Third, there should be a significant relationship between the 

meditational variable and the dependent variable.  

The statistical model for testing a lower level, 211 mediation can be 

expressed at the within-classroom level and at the between-classroom level as 

follows:  

.                                                                (11) 

The variation of the regression coefficients   can be modeled by a between-

classroom regression model as follows: 

 =                                                                       (12) 

and 

 =                                                                       (13) 
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In equation (11),  refers to the within-classroom dependent variable,  refers 

to within-classroom intercept,  refers to slope of the mediator , and   

refers to overall error term. In equation (12),  refers to intercept of between-

classroom regression predicting , refers to slope of between-classroom 

regression (independent between-classroom variable )  predicting , and   

refers to error term for within-classroom intercept . In equation (13),  

refers to intercept of between-classroom regression predicting ,  refers to 

refers to slope of between-classroom regression ( ) predicting , and  

refers to error term for within-classroom slope . Then the meditational 

equation for ith student in classroom j at the within-classroom level can be 

depicted as 

=                                                                                     (14) 

and at the between-classroom level it can be expressed as 

 =   .                                                                   (15) 

 

Of interest several mediation hypotheses including 121 and 212 

designs can be tested with similar cross-level moderator models (Preacher, 

Zyphur, & Zhang, 2010). 

 

3.6.3 ESTIMATION OF MULTILEVEL STRUCTURAL EQUATION 

MODELS 

Model estimation involves finding parameter values such as factor 

loadings, factor variances and covariances to evaluate the difference between the 

observed and reproduced covariance matrices (Long, 1997). Early use of 

multilevel modeling was limited to cases of perfectly balanced sampling designs 

(i.e., equal group sizes) yielding closedform mathematical formulas available to 

estimate the variance and covariance components (Raudenbush & Byrk, 2002). 

When sampling designs were unbalanced, problems occurred in using iterative 

estimation procedures to obtain efficient estimates (Harville, 1977). Determining 
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the extent to which the clustering is present is the critical first step to decide 

whether MSEM will dominate over single-level techniques (Longford, 1993).  

Where variability due to the clustering is present across within- and 

between-classrooms, statistical concerns about MSEM under different sampling 

conditions and emerging solutions have drawn the attention of researchers (Hox 

& Maas, 2001; Muthén & Satorra, 1995). In general, with balanced group sizes 

and continuous observed variables, full information maximum likelihood 

(FIML) estimation can be used (Muthén, 1984). FIML estimation depends on 

large sample sizes preferably at both within- and between-classroom levels for 

the estimates to have desirable asymptotic properties (Muthén, 1990). However, 

FIML is computationally demanding to use practically, when applied to 

unbalanced groups. It produces incorrect chi-square values, fit indexes and 

standard errors (Kaplan, 2009). To offset this, with unbalanced group sizes, 

Muthén‟s quasi-likelihood (MULM) estimator is probably the most widely used 

procedure in MSEM (Kaplan & Elliott, 1997). Although it gives less information 

than FIML, empirical findings reveal that the MUML estimation gives similar 

results as FIML estimation with rough approximations to the chi-square test 

statistics and standard errors of parameter estimates (Hox & Maas, 2001; 

Muthén, 1991). Specifically, it is appropriate to use weighted least squares 

estimation with mean (WLSM) estimator or the maximum likelihood estimation 

with robust standard errors (MLR) with unbalanced group sizes and categorical 

variables. WLSM provides weighted least square parameter estimates using a 

diagonal weight matrix with standard errors and mean-adjusted chi-square test 

statistic that use a full weight matrix (Muthén & Satorra, 1995). The use of 

WLSM is suggested when there is large number of categorical variables (i.e., > 

15) included in the model estimation process (Muthén, du Toit, & Spicic, 1997). 

On the other hand, MLR provides maximum likelihood parameter estimates with 

standard errors and a chi-square test statistic which requires a numerical 

integration algorithm.  
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MLR uses full information estimation with logit and/or probit links 

(default is the logit in Mplus), whereas WLSM uses limited information 

estimation with only probit links. However, MLR uses the same model as 

WLSM when assuming normal factors and using probit links. Both estimators 

are robust to nonnormality of data and nonindependence of observations for 

unbalanced group sizes (Hox & Maas, 2004). Thus, the WLSM estimator to 

illustrate the overall procedures of MSEM was used in the present study. 

However, MLR estimator using a numerical integration algorithm was also used 

when the estimation of multilevel models with categorical variables took 

considerable time to converge on a solution.  

 

3.6.4 STEPS IN MULTILEVEL STRUCTURAL EQUATION 

MODELING WITH CATEGORICAL VARIABLES 

A four-step procedure is followed in preceding MSEM with categorical 

variables (Muthén & Muthén, 1998-2010). In a preliminary analysis step the 

proportions of within- and between-classroom variance (intraclass correlation 

coefficients) of the study variables are computed. This enables to determine the 

percentage of total variation attributable to between-classroom variation and 

whether it is of value to use multilevel modeling approaches. Subsequently, 

three steps are taken into consideration: multilevel exploratory factor analysis 

(MEFA), multilevel confirmatory factor analysis (MCFA), and multilevel 

structural equation modeling. The conceptual background for each of these steps 

is given in the following lines.  

It is important to note that researchers who are interested in MSEM with 

continuous variables should follow Muthén‟s (1989a, 1989b) five-step 

procedure: conventional structural equation modeling of the total sample 

covariance matrix, estimation of between-classroom variation, estimation of 

pooled within-classroom structure, estimation of between-classroom structure, 

and estimation of the within- and between-classroom structure simultaneously. 
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3.6.4.1 Step 1 Intraclass Correlation Coefficient (ICC) 

The computation of ICCs is a crucial preliminary analysis which displays 

whether multilevel analyses are required: if the proportion of variance 

attributable to the classrooms is large enough (i.e., ρ≥ .10), further multilevel 

analyses can be dispensed with (Bickel, 2007). If ICCs for the items are not 

large (i.e., close to zero), it is worthwhile to conduct conventional single-level 

SEM analyses to obtain unbiased chi-square model/data fit statistic, parameter 

estimates, and standard errors (Julian, 2001).  

Muthén (1994) suggested computing the estimated intraclass correlation 

coefficients (ICC) for each item to get a rough indication of the amount of 

between-classroom variation. For continuous variables, ICC is defined as 

                                                ρ=                                                                                         

where  and  are the between- and within-classroom variances, respectively.  

For categorical variables with logit link function takes the form of 

    ρ=                                                                                         

 

whereas, for probit link function it is formulated as 

ρ=                  . 

 

3.6.4.2 Step 2 Multilevel Exploratory Factor Analysis (MEFA) 

Traditionally, exploratory factor analysis has been conducted on data 

from cross-sectional designs using students as the unit of analysis (i.e., a single-

level exploratory factor analysis). However, data from such designs have shown 

that characteristics of educational constructs may not be as stable as previously 

hypothesized (Goldstein, 1987; Muthén, 1994; O‟Connell & McCoach, 2008). 

Using single timepoint measures, then, inherently confound student and 

classroom variation on the given occasion (e.g., multiple-choice test, attitude 

scale) that the characteristic of an educational construct is measured. Simply 
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collecting cross-sectional data where single timepoint observations are nested 

within classrooms provides a method to tease apart within- and between-

classroom variation for variables of interest and the factors that may underlie 

them.  

Technically, MEFA is used to determine the number of continuous latent 

variables that are needed to explain the correlations among a set of categorical 

observed variables at the within- and between-classroom levels. The continuous 

latent variables are referred to as factors, and the observed categorical variables 

are referred to as factor indicators. This way, two separate exploratory factor 

analysis models are obtained: one that accounts for the structure of the items at 

within-classroom level and the other that accounts for the structure of the items 

at between-classroom level.  

MEFA can be conducted in two ways. First, the within-classroom 

structure of an educational construct might be previously determined by a pilot 

study using single-level factor analysis procedures. As the factor structure at the 

between-classroom level is unknown, the number of factors at the between-

classroom level can be specified with regard to the decions made upon the 

theory and the review of related literature holding the within-classroom model 

constant. Second, if both within- and between-classroom structures are not 

known then maximum number of factors that can be extracted can be determined 

by the formula given below:  

a = pm + m(m+1)/2 + p –  and b = p (p + 1)/2; where p is the number of 

observed variables and m is the number of factors. The a ≤ b criterion; where a is 

the number of parameters to be estimated and b is the number of 

variances/covariances should be supplied. Along with Fabrigar, Wegener, 

MacCallum, and Strahan (1999) specifying too few factors (i.e., underfactoring) 

and/or too many factors (i.e., overfactoring) at both levels should be attentively 

taken into consideration. It should also be noted that it is typically suggested to 

include fewer factors at the between-classroom level than at the within-

classroom level (Heck & Thomas, 2008; Hox, 2002). 
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Once the number of factors to be extracted at the within- and between-

classroom levels is determined and MEFA is conducted, suggestions such as (a) 

eigenvalue-greater-than-one rule (Kaiser, 1960), (b) pattern matrix coefficients 

have to exceed .30 on at least one factor (Hair, Black, Babin, Anderson, & 

Tatham, 2006), and (c) at least three significant coefficients is required to 

identify a factor (Zwick & Velicer, 1986) can be followed to guide the analytical 

decisions. Based on the results, D‟Haenens, Damme, and Onghena (2010) 

suggested that different factor solutions can be compared regarding (a) the 

interpretation of factors (i.e., dropping the factors that are poorly measured), and 

(b) the number of items included in each factor (i.e., dropping items that poorly 

measure factors).  

 

3.6.4.3 Step 3 Multilevel Confirmatory Factor Analysis (MCFA) 

MCFA is a theory-based technique that is used to determine if the 

number of factors and the factor loadings of the observed variables on them 

conform to what is hypothesized. It serves as a multilevel measurement model in 

which latent variables are prescribed and thus applied to cross-validate the factor 

structure at the within- and between-classroom levels that emerged from MEFA. 

The measurement model for MCFA is a multivariate regression model that 

describes the relationships between a set of observed dependent variables (i.e., 

categorical factor indicators) and a set of continuous latent variables (i.e., 

factors). The relationships are described by a set of linear regression equations 

for categorical factor indicators. When WLSM estimator is used these equations 

are probit regression equations whereas they are logistic regression equations for 

MLR estimator (Muthén & Muthén, 1998-2010). From a methodological point 

of view, in MCFA researchers posit an a priori MEFA structure and test the 

ability of a solution based on this structure to fit the data at each level of analysis 

(e.g., within-classroom and between-classroom) within three considerations: (a) 

the factor solution is well-defined and it evinces interpretable and distinct factors 

(Nezlek, 2008); (b) parameter estimates are consistent with theory and in the line 
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of a priori predictions (McDonald & Marsh, 1990); and (c) the goodness-of-fit 

statistics are at a reasonable size (Dedrick, Ferron, Hess, Hogarty, Kromrey, 

Lang et al., 2009). 

 

3.6.4.4 Step 4 Multilevel Structural Equation Modeling (MSEM) 

MSEM is a regression-based technique that examines both the direct and 

indirect relationships among latent variables along with the total effects within a 

nested structure. In this sense, the multilevel structural model is an indication of 

the extent which the hypothesized relationships at the within- and between-

classroom levels are supported by the data (Stapleton, 2006). Multilevel 

constructs within a given methodological network may be combined in a variety 

of different ways to estimate models differing in structure. Two broad classes of 

models involve cross-level and homologous multilevel models.  

Cross-level models demonstrate the relationships at different levels of 

analysis. The most common cross-level models are the cross-level direct effects 

model and the cross-level moderator model. Klein and Kozlowski (2000) 

distinguished between these two types of models in response to the need to 

estimate a particular model to test a direct effect or a mediation hypothesis in a 

specific design. In a cross-level direct effects model it is hypothesized that a 

predictor variable at one level of analysis influences an outcome variable at a 

different level of analysis. Such a model typically suggests that a predictor 

variable at the between-classroom level influences an outcome variable at the 

within-classroom level. A cross-level mediator model on the other hand 

describes the interaction effects suggesting that variables at two different levels 

of analysis interact to predict an outcome at the within-classroom level and/or 

between-classroom level. Thus, for example, a within-classroom variable might 

moderate the effects of a between-classroom variable on a within-classroom 

outcome (2-1-1 model). Alternatively, a between-classroom variable might 

moderate the effects of a within-classroom on a within-classroom outcome (1-2-

1 model). Mathematically, these two-cross level models are equivalent (Bauer, 
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Preacher, & Gil, 2006). This line of reasoning suggests several mediation 

models can be created based on the cross-level mediation hypotheses whereby 

lead to the specification of upper level mediation (e.g., 2-2-1 and 1-2-2 designs) 

as well as lower level mediation (e.g., 1-1-1, 1-1-2, and 2-1-2 designs) (Kenny, 

Korchmaros, & Bolger, 2003; Pituch & Stapleton, 2008; Preacher, Zyphur, & 

Zhang, 2010).  

The second class of multilevel structural models – the homologous 

multilevel models- specifies that relationships among variables hold at multiple 

levels of analysis. Researchers might propose for example that the association 

between two variables is not a cross-level relationship but a multilevel, 

homologous relationship. That is, at both the within- and between-classroom 

levels the same relationship is hypothesized. Models of this type have the 

primary value of generalizing both latent constructs and functional relationships 

linking the latent constructs across within- and between-classroom levels (Klein 

& Kozlowski, 2000).  

Ideally, whether we are considering a cross-level or a homologous 

multilevel model the strategies that compare the alternative models should be 

emphasized. Rather than merely making a series of model trimming or model 

building attempts in the proposed model through examining modification indices 

(Heck & Thomas, 2008), alternative models should be tested in terms of these 

modifications which are made sparingly with regard to the theory and statistical 

power. Subsequently, Chi-square Difference Testing should be conducted in 

order to determine which model (i.e., the proposed model or the alternative 

model) fits the data well. For nested and nonnested models different procedures 

are applied as well as in response to the estimator being used (Bentler & Bonett, 

1980). 
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3.6.5 MULTILEVEL STRUCTURAL EQUATION MODELING WITH 

MPLUS  

Hierarchical and nested data structures are common in education (Morris, 

1995). However, the use of multilevel models is a promising but still 

underutilized approach (Dedrick et al., 2009), and that these models are more 

complicated than conventional single-level models. Much of the methodological 

work in MSEM is continuing at present with a tendency in hard thinking about 

hierarchical data, iterative model checking, and developing better software. The 

pervasiveness of hierarchical data has led to a proliferation of statistical 

software, referred to under a number of names including HLM (Raudenbush & 

Byrk, 2002), LISREL (Jöreskog & Sörbom, 1993), EQS (Bentler, 1995), Mplus 

(Muthén & Muthén, 1998), and MLwiN (Rasbash, Charlton, Browne, Healy, & 

Cameron, 2009). Although the MSEM approach and corresponding computer 

software, HLM have been widely accepted in the analysis of crosscultural 

multivariate data, the techniques have not been widely applied to the analysis of 

multilevel educational data structures with Mplus (Hox, 1995; Muthén, 1994). 

Mplus 6.1 (Muthén & Muthén, 1998-2010) program is attractive for multilevel 

modeling. It provides a flexible framework that makes possible the specification 

and testing of a wide variety of theoretical models. A defining feature of the 

software program is its providing the opportunity to handle numerous types of 

models with categorical observed and latent variables. Mplus can be used for 

single-level regression and path analysis, exploratory factor analysis, 

confirmatory factor analysis, structural equation modeling, mixture modeling, 

multilevel exploratory factor analysis, multilevel confirmatory factor analysis, 

multilevel structural equation modeling, multilevel mixture modeling, and 

further missing data modeling within Bayesian analysis and Monte Carlo 

simulation studies. The user-friendly interface of the program in analyzing 

multilevel data considerably enhance the analytic possibilities with MSEM for 

research designs where individuals are nested within groups. Furthermore, 
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licensed users have the opportunity to register the Mplus Discussion Board and 

request help from Mplus Support Service when needed.  

The Mplus multilevel modeling framework draws on the unifying theme 

of latent variable modeling and the unique use of both observed and latent 

variables. Continuous latent variables that are formed by categorical observed 

variables are used to represent random effects corresponding to the variation in 

coefficients across groups in the nested data structure. The goal of the multilevel 

analysis is then to decompose the variation in a set of relationships into variance 

components associated with each level of a hierarchical data structure and 

explain the variation present at each level simultaneously designating the direct, 

indirect, and total effects (Bollen, 1987). 

After Mplus is installed, it can be run from the Mplus Editor for 

Windows including a language generator and a graphics module. Apart from 

other software programs Mplus does not provide a pictorial diagram of the 

multilevel models. The user language for Mplus consists of a set of ten 

commands each of which has several options. However, for most analyses only a 

small subset of commands is amounted. The ten commands include TITLE, 

DATA, VARIABLE, DEFINE, ANALYSIS, MODEL, OUTPUT, SAVEDATA, 

PLOT, and MONTECARLO.  For simplicity, only the commands that were used 

in the present study will be detailed in the following lines.  

The TITLE command is used to provide a title for the analysis. The 

DATA command is used to provide information about the data set to be 

analyzed. In terms of this command, the location of the data set to be analyzed is 

specified. The data must be numeric except for certain missing value options and 

must reside in an external ASCII file. Researchers can save SPSS files as FIXED 

ASCII format and specify the number of observations and number of groups in 

the data set. The FILE option is a required option under this command that is 

used to specify the name and the location of the ASCII file. The VARIABLE 

command is used to provide information about the naming and description of the 

variables in the data set. Variable names are generated as a list under the 
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NAMES option. The USEVARIABLES option is used to select variables for a 

specific analysis. NAMES option includes all the variables in the data set 

whereas the USEVARIABLES option generates only the variables that are to be 

used from the NAMES statement of the VARIABLE command. New variables 

can be created by the DEFINE command. The CATEGORICAL option is used 

to specify which dependent variables are treated as binary or ordered categorical 

whereas the NOMINAL option is used to specify which dependent variables are 

treated as unordered categorical in the model and its estimation. There are two 

options specific to two-level models: WITHIN and BETWEEN. The 

WITHIN/BETWEEN options are used with the analysis TYPE = TWOLEVEL 

to identify the variables in the within/between-level and modeled only on the 

within/between level of analysis. The CLUSTER option specifies the variable 

that contains the clustering information (i.e., group, class, school). 

The ANALYSIS command is used to describe the technical details of the 

analysis that involves type of analysis, the statistical estimator, the 

parameterization of the model, and specifics of the computational algorithms. In 

order to capture the four step procedure of the MSEM techniques the 

ANALYSIS command presents the options as TYPE = TWOLEVEL BASIC 

(Step 1), TYPE = TWOLEVEL EFA # # UW # # UB (Step 2), and TYPE = 

TWOLEVEL (Step 3 and Step 4). Depending on the analysis type there are 

several ESTIMATOR and ALGORITHM options. 

The MODEL command is used to provide a description of the model to 

be estimated. This command has variations for use with models with indirect and 

cross-level effects. In order to be able to specify a model, researchers need to 

make four important distinctions about the variables in the VARIABLES 

command. The distinctions are whether the variables are observed or latent, 

whether variables are dependent or independent, whether variables are at the 

within-level or at the between-level, and the scale of the observed dependent 

variables.  
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The underlying framework of Mplus comprises the measurement model 

including the indicators of the latent variables and the structural model involving 

the relationships among the observed and latent variables. Accordingly, a model 

may consist of only a measurement model as in the multilevel confirmatory 

factor, only a structural model as in a multilevel path analysis, or both the 

measurement and structural model as in the multilevel structural analysis. In a 

TYPE = TWOLEVEL analysis there are three major options: BY, ON, and 

WITH. BY defines latent variables, ON defines regression relationships, WITH 

defines correlational relationships, @ fixes a parameter at a default value or a 

specific value, | names and defines random effect variables, XWITH defines 

interactions between variables. Furthermore, MODEL INDIRECT: describes the 

relationships for which indirect and total effects are requested. Under this option 

IND describes a specific indirect effect or a set of indirect effects and VIA 

describes a set of indirect effects that includes specific mediators. The most 

important variations of the MODEL command are %WITHIN% which describes 

the within part and %BETWEEN% which describes the between part of a two-

level model.  

The OUTPUT command is used to request additional output such as 

sample statistics (SAMPSTAT), standardized and unstandardized parameter 

estimates (STANDARDIZED), and/or modification indices (MODINDICES).  

The Mplus output initially provides the input setup which contains the 

restatement of the input file. The restatement of the input instructions arranges a 

record of which input file produced the results in the output. How Mplus 

interpreted the input instructions and read the data are shown in the summary of 

the analysis specifications. Researchers should check the number of 

observations, read the warnings and error messages generated by the program to 

appropriately understand and modify the analysis. The summary of analysis 

results provides fit statistics (e.g., chi-square test statistic, degrees of freedom, 

and p-value for the analysis model), parameter estimates, and standard errors. 

The type of regression coefficient (logit or probit) produced during model 
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estimation is determined by the scale of the dependent variable (continuous or 

categorical) and the estimator being used (ML, MLR, WLS, WLSM, etc.). The 

parameter estimates, standard errors, and the value of the parameter estimate 

divided by the standard error are also provided in the output. The value of the 

parameter estimate divided by the standard error (Est./S.E.) is a statistical test of 

significance (z-test). The critical value for a two-tailed test at the .05 level refers 

to an absolute value greater than 1.96.  

SAMPSTAT option is used to request the sample statistics such as 

sample means, variances, covariances, and correlations. For categorical variables 

using WLSM estimation these include sample thresholds, sample tetrachoric 

correlations, and sample probit regression coefficients. The STANDARDIZED 

option is used to request standardized parameter estimates and their standard 

errors. Mplus output provides three types of standardizations as the default: 

STDYX, STDY, and STD. For standardization, STDYX uses the variances of 

the continuous latent variables and the outcome variables. The standardized 

coefficient is interpreted as the change in y in y standard deviation units for a 

standard deviation change in x. Since such a standard deviation change of a 

binary variable is not meaningful, STDY should be used for categorical 

covariates. The standardized coefficient is interpreted as the change in y in y 

standard deviation units when x changes from zero to 1. Finally, STD uses only 

the variances of the continuous latent variables. 

The MODINDICES option is used to request modification indices and 

expected parameter change indices. To request modification indices for all 

matrices MODINDICES (ALL) is specified. However, for simplicity it is 

suggested to specify MODINDICES (3.84). The modification indices are the 

amount chi-square will drop the parameter is estimated as part of the model. The 

chi-square value of 3.84 refers to the value that should be exceeded for one 

degree of freedom at the .05 level, and that the desired modification index 

should be at least 3.84 and large enough to free the parameter.  
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3.6.5.1 The Goodness-of-Fit Criteria for Multilevel Structural Equation 

Modeling 

In the present study Mplus Version 6.1 (Muthén & Muthén, 1998-2010) 

was used to formulate and estimate the two-level models.  For the evaluation of 

the adequacy of the multilevel models in explaining the data a set of goodness-

of-fit indices provided by the Mplus program. Model-data-fit indices 

recommended by Schreiber, Stage, King, Nora, and Barlow (2006) were the chi-

square goodness-of-fit statistic (
2 ), the root mean square error of 

approximation (RMSEA), the standardized root mean square residual (SRMR), 

the comparative fit index (CFI), and the Tucker-Lewis index (TLI). For lack of 

any standard cut-off criteria for MSEM with categorical variables, a small 

(relative to its degrees of freedom) non-significant chi-square, a RMSEA from 

.06 to .08, a SRMR close to .08, a CFI above .90, and a TLI above .90 were 

displayed as good fitting (Hu & Bentler, 1999; Marsh, Hau, & Bentler, 2004; 

Yu, 2002). Hox (2002) noted that goodness-of-fit indices are more sensitive to 

the evaluation of within-model misspecifications (i.e., models at the within-

classroom level) and less sensitive to the evaluation of between-model 

misspecifications (i.e., models at the between-classroom level). Interpretations 

of goodness-of-fit criteria are given in detail below: 

 

1. Chi-Square Statistic ( ) 

Chi-square is a measure of overall fit of the model to the data (Jöreskog 

& Sörbom, 1993). A nonsignificant chi-square value implies that the model fits 

the data. However, chi-square statistic has been widely criticized because of its 

sensitivity to sample size (Bollen, 1989; 1993; Kelloway, 1998; Kline, 2005). It 

tends to indicate a significant probability level when the sample size increases 

(Schumacker & Lomax, 2004). In MSEM lower values of chi-square are 

intended.  
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2. Root Mean Squared Error of Approximation (RMSEA) 

The RMSEA is a measure of discrepancy per degree of freedom. It is 

suggested that values from .07 to .10 indicate a moderate fit, the values from .04 

to .06 indicate a good fit, and the values from .00 to .03 indicate an excellent fit 

to the data (Hu & Bentler, 1999). 

3. Standardized Root Mean Square Residual (SRMR) 

The SRMR reflects the average magnitude of the residuals. It has a lower 

bound of 0 and upper bound of 1 (Hu & Bentler, 1999). In Mplus, SRMR values 

are available for within-classroom level and between-classroom level models. 

The values less than .05 indicate a good fit to the data (Ryu & West, 2009), 

however values close to .08 are also acceptable (Marsh, Hau, & Bentler, 2004). 

4. Comparative Fit Index (CFI) 

The CFI provides an indication of how much better the current model is 

than a baseline model. It varies along a 0 to 1 continuum in which values at or 

greater than .90 and .95 indicate an acceptable and excellent fits to the data 

respectively (McDonald & Marsh, 1990).   

5. Tucker Lewis Index (TLI) 

The TLI which is known as the Non-normed Fit Index (NNFI) refers to 

the number of degrees of freedom in a model. Similar to CFI, it varies along a 0 

to 1 continuum in which values at or greater than .90 and .95 indicate an 

acceptable and excellent fits to the data respectively (McDonald & Marsh, 1990; 

Ryu, 2008).  

 

 

3.6.6 MULTILEVEL STRUCTURAL VARIABLES OF THE STUDY 

 

3.6.6.1 Within-Classroom Level Variables 

Six within-classroom level variables were introduced to the multilevel 

structural model of mathematical thinking on the basis of the results of the 

confirmatory factor analysis of students‟ scores on TDT at the pilot study. These 
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variables included enactive thinking, iconic thinking, algorithmic thinking, 

algebraic thinking, formal thinking, and algorithmic thinking. 

 

3.6.6.2 Between-Classroom Level Variables 

Three within-classroom level variables were introduced to the multilevel 

structural model of mathematical thinking on the basis of the results of the 

MEFA and MCFA. These variables included conceptual-embodied thinking, 

proceptual-symbolic thinking, and formal-axiomatic thinking.  
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CHAPTER 4 

 

 

RESULTS 

 

 

 

Results of the present study are given in two main sections as 

preliminary analysis and multilevel structural equation modeling. Preliminary 

analysis includes the confirmatory factor analysis, reliability analysis, and the 

further validation analysis of the TDT. Multilevel structural equation modeling 

involves the validation of multilevel structural equation modeling assumptions, 

computation of intraclass correlation coefficients, multilevel exploratory factor 

analysis, multilevel confirmatory factor analysis, and two-level structural 

equation modeling.  

 

 

4.1 PRELIMINARY ANALYSIS 

Evidence accumulated through a cross-sectional data set and 

summarized with preliminary analysis substantiated that the TDT is a valid and 

reliable instrument to measure undergraduate students‟ mathematical thinking 

in derivative. This data set also demonstrated the existence of six different 

types of mathematical thinking: enactive, iconic, algorithmic, algebraic, 

formal, and axiomatic thinking. It is important to note that multiple-choice 

items presents a risk of guessing. However, the inspection of students‟ written 

responses on the test papers provided evidence for controlling the guessing 

factor.  
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4.1.1 RESULTS OF CONFIRMATORY FACTOR ANALYSIS FOR 

THE THINKING-IN-DERIVATIVE TEST 

Confirmatory factor analysis (CFA) was conducted to specify the 

observed variables that indicate the latent factors of the Thinking-in-Derivative 

Test (TDT).  

The CFA supported the six-factor solution that emerged from the 

aforementioned hypotheses. The weighted least square estimations appeared 

between .39 and .97; demonstrating that the factor coefficients of each item on 

the related context were at a reasonable size to define enactive thinking 

(ENACTHK), iconic thinking (ICONTHK), algorithmic thinking 

(ALGOTHK), algebraic thinking (ALGETHK), formal thinking (FORMTHK), 

and axiomatic thinking (AXIOTHK). More specifically, Items 1, 2, 3, 4, 5, and 

6 comprised FORMTHK, whereas items 7, 8, 9, 10, and 11 constituted 

AXIOTHK. Items 12, 13, 14, and 15 were amount to ALGETHK while 

ICONTHK involved items 16, 17, 18, 19, and 20. Items 21, 22, 24, 25, and 26 

reflected ALGOTHK whereas items 23, 27, 28, 29, and 30 mirrored 

ENACTHK.   

Fit statistics of squared multiple correlation ( ) were calculated for 

each observed variable (Item 1 – Item 30) that represent the latent variables. 

The values of  that equal to the proportion of explained variance indicated 

the reliability of the items that specify ENACTHK, ICONTHK, ALGOTHK, 

ALGETHK, FORMTHK, and AXIOTHK were substantial in size ranging 

from .70 to .90. 

Table 4.1 presents the standardized estimates and reliability coefficients 

for the items in the six dimensions of the TDT generated in this phase.  
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Table 4.1 Standardized estimates and reliability coefficients of items in TDT 

 

 

 

Items ENACTHK ICONTHK ALGOTHK  
24 1.00   .70 

29 .69   .83 

28 .76   .79 

30 .60   .89 

27 .65   .85 

20  1.00  .74 

19  .87  .87 

16  .85  .74 

18  .94  .81 

17  .67  .77 

23   1.00 .77 

25   .92 .78 

22   .79 .70 

21   .81 .73 

26   .65 .83 
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Table 4.1 (continued) 

 

 

 

Items ALGETHK FORMTHK AXIOTHK  
15 1.00   .90 

14 .88   .88 

12 .77   .80 

13 .87   .86 

4  1.00  .86 

5  .85  .84 

3  .73  .84 

2  .74  .83 

6  .93  .88 

1  .90  .88 

9   1.00 .80 

10   .77 .87 

8   .67 .77 

11   .90 .84 

7   .89 .80 
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4.1.2 RESULTS OF FURTHER VALIDATION ANALYSIS FOR THE 

THINKING-IN-DERIVATIVE TEST 

 

4.1.2.1 Results Of Discriminant Validity Analysis 

The model comparisons were presented in Table 4.2. Testing of four 

different models revealed that the target model fit the data better than the 

common, three-factor, and null models across fit indices. Furthermore, the chi-

square difference tests indicated the superiority of the target model as 

compared to these alternate theoretically plausible models. In addition, the 

difference in practical fit between the four models was substantial. 

Collectively, these results offered supplementary evidence for the six theory-

driven dimensions of the TDT, especially at the within-classroom level. The 

LISREL input files for the CFA models are given in Appendices. Specifically, 

the LISREL input files for the common factor model, the three-factor model, 

the null model, and the theoretical target model are presented in Appendix D, 

Appendix E, Appendix F, and Appendix G, respectively. 
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Table 4.2 Goodness-of-fit statistics for tests of discriminant validity 

 

 

 

 

 

 

 

 

 

 

 

 

Model Statistics 

 2  Df 
NC  

( df/2 ) 

Target 789.77 372 2.1 

Common factor 1284.83 350 3.6 

Three-factor 989.79 341 2.8 

Null 1580.14 390 4.5 

    

 RMSEA RMR GFI 

Target .03 .07 .98 

Common factor .05 .08 .92 

Three-factor .05 .08 .94 

Null .06 .09 .91 

    

 AGFI  CFI 

Target .95  .98 

Common factor .91  .95 

Three-factor .93  .96 

Null .89  .95 

    

     Δ 2  Δdf ΔCFI 

Target - - - 

Common factor 495.06 1.5 .03 

Three-factor 199.02 .7 .02 

Null 790.37 2.4 .03 
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The more parsimonious, common factor model showed a poorer fit to 

the data than the target model. The comparison of the target model to the 

common factor model across goodness of fit indices revealed the target model 

fits the data better. In addition, the chi-square difference test indicated the 

superiority of the target model as compared to the common factor model 

( 2 495.06, Δdf= -22, p< .001). The significance of the chi-square 

supported that it is unlikely to take the common factor model as a correct 

alternate. In addition, the difference in practical fit between the two models 

( .03) was substantial, which was greater than the cutoff point 

( .01) suggested by Cheung and Rensvold (2002). Taken together, these 

findings provided additional support for the subscale dimensionality of the 

TDT.  

As is revealed in Table 4.2, the target model fit the data better than the 

three factor model across fit indices. The chi-square difference test indicated 

the superiority of the target model as compared to the null model 

( 2 199.02, Δdf= -31, p< .001). The significance of the chi-square was in 

favor of the six-factor model.  Additionally, the difference in practical fit 

between the two models was significant ( .02).  

It is widely acknowledged that a null model is expected to have a 

poorer fit to the data than a target model. However, a null model can establish 

discriminant validity if it is shown to fit significantly worse than the target 

model. As is demonstrated in Table 4.2, the target model again had a better fit 

to the data. The chi-square difference test indicated the superiority of the target 

model as compared to the null model ( 2 790.37, Δdf= 18, p< .001). The 

difference in practical fit between the two models was considerable in size 

( .03) and that these results offered supplementary evidence of the 

existence of the six a priori dimensions of the TDT.  
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4.1.2.2 Results Of Subgroup Validity Analysis 

Results of the multivariate analysis of variance revealed that the six 

dimensions of the TDT differentiate between females and males. Preliminary 

assumption testing on multivariate normality and homogeneity of variance-

covariance matrices was generated and no violations were detected. In terms of 

testing multivariate normality with categorical variables, the floor and ceiling 

effects were investigated. Turning first to the frequencies on the 30 items 

demonstrated percentages of responses on the correct choice (from 15.5% to 

19.3%) and on the incorrect choice (from 10.8% to 23%). The percentage of 

responses at the lowest or the highest level response option was well below the 

cut-off 25% value (Haladyna, Downing, & Rodriguez, 2002; Haladyna, 1994). 

Thus, the data did not violate the assumption of the multivariate normality. 

This further indicated that there were no substantial multivariate outliers in the 

data.  

To test whether the data violate the assumption of homogeneity of 

variance-covariance matrices, Box‟s Test of Equality of Covariance Matrices 

was checked.  The significance value was .028 for gender. Since this value was 

larger than the significance value of .001 (Tabachnick & Fidell, 2007) the data 

did not violate the assumption of homogeneity of variance-covariance matrices. 

Consistent with the predictions, results of the multivariate analysis revealed a 

significant main effect for female/male difference (Wilk‟s Lambda = .98, F (6, 

759) = 2.06, p < .001, 
2

 = .016) suggesting that the female and male students 

differed on a linear combination of the six dimensions of the TDT. The partial 

eta squared of .016 would be interpreted as a small effect (Cohen, 1988). The 

follow-up univariate analyses revealed that there was a significant difference 

between females and males on enactive thinking, F (1, 764) = 3.28, p < .001, 

2
 = .004. Males (M = 2.89, SD = 1.45) outperformed females (M = 2.70, SD = 

1.42) in modeling real life applications of the derivative within optimization 
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problems. On iconic, algorithmic, and algebraic thinking males again scored 

higher than females; however they did not appear significant.  

Further validation evidence indicated that the six dimensions of the 

TDT differentiate among students majoring in Faculty of Education, Faculty of 

Arts and Sciences, and Faculty of Engineering. To test whether the data violate 

the assumption of homogeneity of variance-covariance matrices, Box‟s Test of 

Equality of Covariance Matrices was checked.  The significance value was 

.044 for faculty affiliation. Since this value was larger than the significance 

value of .001 (Tabachnick & Fidell, 2007) the data did not violate the 

assumption of homogeneity of variance-covariance matrices. In line with the 

predictions, results of the multivariate analysis revealed a significant main 

effect for faculty affiliation difference (Wilk‟s Lambda = .74, F (12, 1516) = 

19.99, p < .001, 
2

 = .137) suggesting that students from Faculty of Education, 

Faculty of Arts and Sciences, and Faculty of Engineering differed on a linear 

combination of the six dimensions of the TDT. The partial eta squared of .137 

would be interpreted as a large effect (Cohen, 1988). The follow-up univariate 

analyses revealed that there was a significant difference among students 

attending different faculties in all six dimensions of the TDT (p < .001). In 

addition students majoring in Faculty of Arts and Sciences outperformed their 

counterparts who are majoring in Faculty of Education and Faculty of 

Engineering on all six dimensions of the TDT. This finding demonstrated that 

scientific students were more apt to energize their enactive, iconic, algorithmic, 

algebraic, formal, and axiomatic thinking than teaching and /or engineering 

students.  

 

4.1.3 RESULTS OF RELIABILITY ANALYSIS 

The necessary steps taken with TESTFACT 4 program for estimating 

the reliability coefficients indicated that the reliability analysis resulted in the 

acceptance of all the items for further analyses. The TESTFACT 4 input file is 

presented in Appendix H. 



 

 

 

 134 

Results documented that none of the items violated the aforementioned 

criteria. The KR-20 reliability coefficient for the scores on enactive thinking 

was .78, iconic thinking was .97, algorithmic thinking was .96, algebraic 

thinking was .91, formal thinking was .93, and axiomatic thinking was .87. 

These findings reflected high reliability of the six dimensions of TDT.  

 

 

4.2 RESULTS OF TESTING MULTILEVEL STRUCTURAL 

EQUATION MODELING ASSUMPTIONS 

The present study used MSEM as a useful quantitative method in 

specifying, estimating, and testing the hypothesized theoretical models that 

describe the relationships among mathematical thinking at the within- and 

between-classroom levels. Accordingly, it was focused on the validity of 

models and the directed effects among model parameters. Because multivariate 

normality of observed data is a typical assumption for multivariate regression 

analysis, it is certainly a crucial assumption for MSEM analysis when 

parameter estimation methods such as WLSM and MLR are used (Schumacker 

& Lomax, 2004). Any violation of the normality and independence 

assumptions can produce inaccurate parameter estimates, which will lead to 

improper interpretation of the results. Therefore, the present study initially 

sought to know the robustness of MSEM analysis results under normality, 

sample size, and estimation methods.  

In Sample 1, the inspection of the absolute values of skewness and 

kurtosis for the observed variables (item1 through item30) revealed that the 

values for skewness ranged from .016 to 1.43 and the values for kurtosis 

ranged from .068 to 2.00. Similarly, in Sample 2, the inspection of the absolute 

values of skewness and kurtosis for the observed variables (item1 through 

item30) revealed that the values for skewness ranged from .008 to 1.77 and the 

values for kurtosis ranged from .858 to 2.00. For both samples, investigation of 

the values of skewness and kurtosis for each observed variable were acceptable 
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and that there is only slight nonnormality. That is, the findings concluded that 

nonnormality has negligible effects on parameter estimates. The values of 

skewness and kurtosis values of each item in TDT for Sample 1 and Sample 2 

are presented in Appendix I and Appendix J, respectively. 

Students‟ scores on each item on the TDT, total scores on each 

mathematical thinking dimension, and total scores on the overall test were 

investigated in order to determine whether floor or ceiling effects exist. 

Descriptive statistics were generated to characterize the TDT score 

distributions, including percentage floor and ceiling effects of each item on the 

TDT, total scores on each mathematical thinking dimension, and total scores 

on the overall test for Sample 1 and Sample 2, respectively. The results of these 

analyses are presented in Appendix K, Appendix L, and Appendix M for 

Sample 1 and in Appendix N, Appendix O, and Appendix P for Sample 2, 

respectively. 

As evidenced by the skewness and kurtosis values of Sample 1 and 

Sample 2, there were no floor and ceiling effects in students‟ scores on each 

item on the TDT, total scores on each mathematical thinking dimension, and 

total scores on the overall test.  

Turning first to Sample 1, the frequencies on the 30 items demonstrated 

percentages of responses on the correct choice (from 35.5% to 79.2%)  and on 

the incorrect choice (from 20.8% to 53%). Results revealed that the formal 

thinking question, Item 5 (79.2%) showed a ceiling effect whereas enactive 

thinking question, Item 29 showed a floor effect (53%). The remaining items 

showed almost equal percentages of responses on the correct and incorrect 

choices indicating that there were no floor and ceiling effects. None of the sub-

total scores of the TDT showed floor or ceiling effects. The percentage of 

responses at the lowest (total = 0) and highest response (total = 6) ranged from 

.07% to 15.7% for formal thinking. The percentage of responses at the lowest 

(total = 0) and highest response (total = 4) ranged from 8.2% to 15.8% for 

algebraic thinking. The percentage of responses at the lowest (total = 0) and 
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highest response (total = 5) ranged from 3.8% to 17.3%, from 6.4% to 23.4%, 

from 5.2% to 21.8%, and from 4.6% to 17.4% for enactive, iconic, algorithmic, 

and axiomatic thinking, respectively. In the same vein, the floor and ceiling 

effects were not pronounced for students‟ total scores on the TDT. Scores 

ranged from 3 to 30 with only 116 students obtaining top scores on the test. 

The percentage of responses at the lowest response (total = 0) and highest 

response (total = 30) ranged from .0% to 10.6%. Given the large sample size 

(N = 1099), results indicated no floor or ceiling effects.  

Moving to Sample 2, the frequencies on the 30 items demonstrated 

percentages of responses on the correct choice (from 42.5% to 83.1%)  and on 

the incorrect choice (from 33.6% to 57.5%). As with Sample 1, formal thinking 

question, Item 5 (83.1%) evidenced a ceiling effect. On the other hand,  iconic 

thinking question, Item 29 showed a floor effect (33.6%). The remaining items 

showed almost equal percentages of responses on the correct and incorrect 

choices indicating that there were no floor and ceiling effects. None of the sub-

total scores of the TDT showed floor or ceiling effects. The percentage of 

responses at the lowest (total = 0) and highest response (total = 6) ranged from 

1.5% to 9.4% for formal thinking. The percentage of responses at the lowest 

(total = 0) and highest response (total = 4) ranged from 11.2% to 12.9% for 

algebraic thinking. The percentage of responses at the lowest (total = 0) and 

highest response (total = 5) ranged from 4.9% to 15.6%, from 5.7% to 15.9%, 

from 5.7% to 16.8%, and from 4.5% to 14.2% for enactive, iconic, algorithmic, 

and axiomatic thinking, respectively. In the same vein, the floor and ceiling 

effects were not pronounced for students‟ total scores on the TDT. Scores 

ranged from 3 to 30 with only 101 students obtaining top scores on the test. 

The percentage of responses at the lowest response (total = 0) and highest 

response (total = 30) ranged from .0% to 4.2%. Given the large sample size (N 

= 2424), results indicated no floor or ceiling effects. 

Collectively, floor and ceiling effects demonstrated by the percentage of 

responses at the lowest and highest response in students‟ scores on each item 
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on the TDT, total scores on each mathematical thinking dimension, and total 

scores on the overall were negligible and minimal. In essence, the modest floor 

and ceiling effects meant that the TDT was sufficiently challenging but not 

overtly difficult. This strength of the TDT provided support for the multivariate 

normality assumption. 

In the present study WLSM and MLR estimators were used to test the 

theoretical models. The weighted least squares and maximum likelihood 

estimation methods used commonly in MSEM are asymptotic, which translates 

to the assumption that the sample size is large (Maas & Hox, 2004). The 

accuracy of estimation methods with adequate sample sizes has been markedly 

criticized in relation to the assumptions of MSEM (Hox & Maas, 2001). This 

concerns especially the between-classroom level, because the sample size at 

the highest level (the sample of classrooms) is always smaller than the sample 

size at the lowest level (the sample of students). Along with the suggestions of 

several researchers (Muthén, 1994; Raudenbush & Byrk, 2002; Snijders & 

Bosker, 1999; Stapleton, 2006), the present had the adequate sample size at the 

within-classroom level (N = 2424) and at the between-classroom-level (N = 

130).  

The assumptions relevant to local dependence in consonance with the 

multivariate normal distributions for all residuals, independence of residuals 

for different levels, and independence of residuals for different units in the 

same level were also met by the use of WLSM and MLR estimators. Along 

with Raudenbush and Bryk (2002) the estimation methods used in the present 

study imply that the residual covariance matrix is diagonal. Since all the 

multilevel models fit the data well assumptions relevant to uncorrelated 

residuals were assumed to be not violated. 

Taken together, the assumptions of normality and independence of 

observations were met via the use of accurate estimators (WLSM and MLR) 

for models with categorical variables which was available in Mplus program. 
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4.3 MULTILEVEL STRUCTURAL EQUATION MODELING 

According to the preliminary analysis (e.g., confirmatory factor 

analysis) with students‟ scores on the TDT, the observed variables that 

represent the six different types of mathematical thinking constructs were 

determined and then introduced to the multilevel analyses. Two independent 

samples were used for multilevel analyses. Sample 1 was used for multilevel 

exploratory factor analysis, whereas Sample 2 was used for multilevel 

confirmatory analysis and multilevel structural equation modeling All 

multilevel analyses were conducted via Mplus 6.1 software program using 

either one of the weighted least squares with mean and maximum likelihood 

with robust standard errors estimators.  

The results of the multilevel structural equation modeling that offer the 

relationships among students‟ different types of mathematical thinking at the 

within-classroom and between-classroom level are presented partially. The 

results follow a sequence of four steps. In Step 1, initial descriptive analyses 

were run including the calculation of means and standard deviations of the 

variables. Intraclass correlation coefficients (ICCs) were then computed to 

determine the proportions of within- and between-classroom variance for all 

the study variables. In Step 2, multilevel exploratory factor analysis (MEFA) 

was conducted on the TDT scores of Sample 1 to determine the underlying a 

priori structure of the items in TDT by defining a set of common latent factors. 

In Step 3, multilevel confirmatory factor analysis (MCFA) was conducted on 

the TDT scores of Sample 2 to cross-validate the factor structure that emerged 

from Step 2. Finally, in Step 4, multilevel structural equation modeling 

(MSEM) was conducted on the TDT scores of Sample 2 to estimate the 

relationships among six mathematical thinking constructs. This step includes 

two stages. At the first stage, a theoretical two-level model was tested to 

highlight the essence of the interrelations among six different types of 

mathematical thinking at the within- and between-classroom levels. This cross-

level direct effects model was tested to provide an estimate of how much of the 
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variance in student and classroom levels could be explained in terms of the 

relationships among mathematical thinking constructs, and thus a grasp of the 

relationships that exhibit differences at each level. In regard to the relationships 

specified at this first stage, at the second stage, additional cross-level 

moderator models were tested to investigate the within-classroom relations of 

mathematical thinking as a function of between-classroom factors as well as 

the between-classroom relations of mathematical thinking as a function of 

within-classroom factors.  

 

4.3.1 RESULTS OF DESCRIPTIVE ANALYSIS AND INTRACLASS 

CORRELATION COEFFICIENTS 

The means, standard deviations, and intraclass correlation coefficients 

of the main variables included in the study are presented in Table 4.3 for 

Sample 1 and Sample 2, separately. The Mplus input file for Step 1 is given in 

Appendix Q. 
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Table 4.3 Means, standard deviations, and intraclass correlations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Sample 1 (N = 1099) Sample 2 (N = 2424) 

 M SD ICC M SD ICC 

FORMTHK       

Item 1 .48 .50 .26 .49 .50 .45 

Item 2 .56 .49 .34 .53 .49 .29 

Item 3 .59 .49 .22 .49 .50 .27 

Item 4 .61 .48 .17 .57 .49 .19 

Item 5 .79 .40 .56 .83 .37 .49 

Item 6 .56 .49 .23 .52 .49 .35 

       

AXIOTHK       

Item 7 .60 .49 .39 .64 .47 .19 

Item 8 .49 .50 .31 .48 .49 .21 

Item 9 .68 .46 .44 .73 .44 .24 

Item 10 .46 .49 .33 .42 .49 .30 

Item 11 .59 .49 .43 .55 .49 .32 

       

ALGETHK       

Item 12 .48 .50 .28 .45 .49 .15 

Item13 .48 .50 .22 .45 .49 .13 

Item14  .57 .49 .20 .55 .49 .14 

Item 15 .56 .49 .22 .51 .49 .13 



 

 

 

 141 

Table 4.3 (continued) 

 

 

 

 

 

 

With means ranging from .46 to .79 and .42 to .83, students in Sample 1 

and Sample 2 progressed in moderate to high levels of mathematical thinking, 

and there was considerable variation across the six mathematical thinking 

constructs examined. The difference between the mathematical thinking types 

with the highest reported score on Item 5 (formal thinking) and the lowest 

reported score on Item 10 (axiomatic thinking) was approximately more than 

half a standard deviation. Students‟ achievement levels on formal thinking 

Variable Sample 1 (N = 1099) Sample 2 (N = 2424) 

 M SD ICC M SD ICC 

ICONTHK       

Item 16 .59 .49 .30 .57 .49 .21 

Item 17 .50 .50 .20 .43 .49 .17 

Item 18 .62 .48 .37 .57 .49 .35 

Item 19 .65 .47 .32 .66 .47 .23 

Item 20 .64 .48 .37 .60 .48 .38 

       

ALGOTHK       

Item 21 .63 .48 .43 .61 .48 .31 

Item 22 .64 .48 .33 .61 .48 .24 

Item 24 .59 .49 .27 .58 .49 .31 

Item 25 .56 .49 .39 .55 .49 .32 

Item 26 .54 .49 .28 .48 .49 .22 

       

ENACTHK       

Item 23 .65 .47 .40 .65 .47 .26 

Item 27 .49 .50 .28 .50 .50 .15 

Item 28 .59 .49 .37 .48 .48 .30 

Item 29 .47 .49 .22 .49 .49 .17 

Item 30 .62 .48 .29 .49 .49 .24 
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items were greater than those on the axiomatic thinking items. This finding 

builds on and extends the understanding of mathematical thinking in three 

significant ways. First, as it is the case at secondary level, the impact of 

declarative editions of mathematical thinking comes fore to the ground at the 

undergraduate level. Second, faculty-wide adoptions of calculus curricula are 

used as part of a formal thinking routine rather than more sophisticated lines of 

axiomatic thinking. This provides a more accurate overall picture of students‟ 

mathematical thinking specifically in derivative concept and therefore may not 

be typical of all concepts. However, the low mean and standard deviation of 

Item 1 was .48 and .49 for Sample 1 and Sample 2, respectively. This finding 

added a brushstroke to the emerging picture of mathematical thinking in 

university classrooms indicating that students failed in the construction of 

meaning for the derivative. For many students it appeared hard to structure the 

derivative concept as an instantaneous rate of change or the slope of a tangent.  

As expected the emerging body of the results of descriptive analysis 

concluded that students were more successful in more familiar items. For 

instance, in both samples, students performed slightly higher in algorithmic 

thinking items with regard to facility with both arithmetic and symbolic 

manipulation procedures mixed over differentiation algorithms.  

Multilevel analysis was employed to account for the wide variability 

between classrooms and the interdependency of students within the same 

classroom. Preliminary analysis showed that there were meaningful between-

classroom differences in students‟ mathematical thinking. The ICCs indicated 

the proportion of total variance that is located between classrooms; given the 

same total variance, the higher the ICC, the more similar the mathematical 

thinking of students in the same classrooms and the more different the 

mathematical thinking of students in different classrooms. Theoretically, the 

values of ICC range between 0 and 1.  

Results of the analysis with Sample 1 yielded that the ICCs were 

somewhat higher for axiomatic thinking (ranging from .31 in items to .44) than 
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for formal thinking (ranging from .17 in items to .56), algebraic thinking 

(ranging from .20 in items to .28), iconic thinking (ranging from .20 in items to 

.37), algorithmic thinking (ranging from .27 in items to .43), and enactive 

thinking (ranging from .22 in items to .40). With Sample 2, The ICCs were 

somewhat higher for formal thinking (ranging from .19 in items to .45) than for 

axiomatic thinking (ranging from .19 in items to .32), algebraic thinking 

(ranging from .13 in items to .15), iconic thinking (ranging from .17 in items to 

.20), algorithmic thinking (ranging from .22 in items to .32), and enactive 

thinking (ranging from .15 in items to .31).  

Taken as a whole, ICC values of around .17 to .56 ascertained that the 

nested structure of the data set should be modeled using multilevel analyses 

(Muthén, 1994; Snijders & Bosker, 1999).  

 

4.3.2 RESULTS OF MULTILEVEL EXPLORATORY FACTOR 

ANALYSIS 

The Mplus input file for Step 2 is given in Appendix R. In line with 

Hypothesis 1, a series of MEFAs was conducted to determine the factor 

structure for the mathematical thinking constructs at both the within-classroom 

and the between-classroom levels with Sample 1. Geomin rotation was used for 

all models that varied in the number of factors specified at each level of the 

nested data structure (from 1 to 6 factors). Primarily two recommendations 

were followed in preceding the MEFA. First, if latent factors are indicated by 

categorical variables it is suggested to include at most four factors at the 

within- or between-classroom levels (Muthén & Muthén, 1998-2010). 

However, overfactoring introduces much less error to factor loading estimates 

than underfactoring (Fabrigar, Wegener, MacCallum, & Strahan, 1999). Along 

with these recommendations, the confirmatory factor analysis results of the 

pilot TDT data which supported the six-factor solution ( 2  (789.77, N = 766) 

= 2.12, RMSEA = .03, RMR= .07, GFI = .96, AGFI = .95, and CFI= .98) were 
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pursued and six factors were specified at the within-classroom level of the data 

structure. This progress resulted in models that could be estimated (i.e., the 

model estimation converged). Second, it is typically suggested to include fewer 

factors at the between-classroom level than at the within-classroom level 

(Heck, 2001). As the factor structure at the between-classroom level was 

unknown 1, 2, and 3 factors at the between-classroom level, holding the 

within-classroom six-factor model constant. In line with Christou et al. (2005), 

broader factors were found at the between-classroom level.  

As shown in Table 4.4, models including a minimum of three factors at 

both the within- and between-classroom levels, respectively, fit reasonably 

well according to the fit indices. In particular, the models that specified (a) 6 

Within – 2 Between factors and (b) 6 Within – 3 Between factors fit best 

according to the more rigorous cutoff values for the RMSEA and SRMR. 

These two models were compared by means of a chi-square difference test. 

Since WLSM estimation was used, the difference between two scaled chi-

square values for nested models was not distributed as a chi-square. Therefore, 

chi-square values were corrected before performing a difference test (Muthén 

& Muthén, 1998-2010). Using chi-square difference testing of the WLSM chi-

square values (Satorra & Bentler, 2001) for the two nested models, the 6 

Within - 3 Between factors model fit significantly better,  (df = 28) = 

122.04, p < .01. 

The pattern matrix coefficients for the 6 Within – 3 Between factors 

model are presented in Table 4.5. These coefficients are factor loadings that 

represent the unique contribution of each item to the factor, thus accounting for 

the interfactor correlations. Along with Hair et al. (2006), all items had pattern 

matrix coefficients greater than .30 indicating that they correspond precisely to 

the hypothesized factors at within and between levels. At the within-classroom 

level of the MEFA, items 7, 8, 9, 10, and 11 loaded on the first factor; this 

factor is referred to as axiomatic thinking. Items 1, 2, 3, 4, 5, and 6 loaded on  
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Table 4.4 Overall model fit for multilevel exploratory factor analysis 

 

 

 

Model 

(Factors) 

2 (df) RMSEA CFA/TLI 
SRMR 

(Within/Between) 

1 Within-

1Between 
3183.98(810) .058 .73/.71 .079/.131 

2 Within- 

1 Between 
3046.97(781) .051 .79/.77 .072/.131 

3 Within- 

1 Between 
2723.03 (753) .049 .82/.79 .066/.131 

4 Within-

1Between 
2481.08 (726) .047 .84/.81 .061/.131 

5 Within-  

1 Between 
2334.73 (700) .046 .85/.82 .056/.131 

6 Within- 

1 Between 
2203.70 (675) .045 .86/.82 .052/.131 

1 Within- 

2 Between 
3477.69 (781) .056 .76/.73 .079/.067 

2 Within- 

2 Between 
2676.69 (752) .048 .82/.80 .072/.067 

3 Within- 

2 Between 
2328.93 (724) .045 .85/.82 .066/.067 

4 Within- 

2 Between 
2062.98 (697) .042 .87/.84 .061/.067 

5 Within- 

2 Between 
1893.84 (671) .041 .89/.85 .056/.067 

6 Within- 

2 Between 
1735.68 (646) .039 .90/.87 .052/.067 

1 Within- 

3 Between 
3353.82 (753) .056 .76/.73 .079/.053 

2 Within- 

3 Between 
2568.00 (724) .048 .83/.80 .072/.053 

3 Within- 

3 Between 
2225.14 (696) .045 .86/83 .066/.053 

4 Within- 

3 Between 
1962.20 (669) .042 .88/.95 .061/.053 

5 Within- 

3 Between 
1793.89 (643) .040 .90/.96 .052/.053 

6 Within- 

3 Between 

1636.032 

(618) 
.039 .92/.97 .042/.053 
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the second factor; this factor is referred to as formal thinking. Items 16, 17, 18, 

19, 20 loaded on the third factor while items 21, 22, 24, 25, and 26 loaded on 

the fourth factor. These factors were referred to as iconic thinking and 

algorithmic thinking, respectively. Items 12, 13, 14, and 15 loaded on the fifth 

factor whereas items 23, 27, 28, 29, and 30 loaded on the sixth factor. These 

factors constituted the algebraic thinking and enactive thinking, respectively. 

At the between-classroom level the Factor 1 was reserved for items 1, 2, 3, 4, 

5, 6, 7, 8, 9, 10, and 11 and referred to as formal-axiomatic thinking 

(FORMAXTHK). Items 12, 13, 14, 15, 21, 22, 24, 25, and 26 constituted 

Factor 2 and referred to as proceptual-symbolic thinking (PROCPTHK). 

Finally, items 16, 17, 18, 19, 20, 23, 27, 28, 29, and 30 revolved around 

conceptual-embodied thinking (CONCPTHK) and aggregate under Factor 3. 

Overall, the factors emerged at the between-classroom level were composites 

of the factors at the within-classroom level. In line with theory (Tall, 2008), 

items on FORMAXTHK -a combination of items on FORMTHK and 

AXIOTHK- were based on formal definitions and proof. On the other hand, 

items on PROCPTHK grew out of items on ALGOTHK and ALGETHK 

underscoring algorithms and hypotheses that function both as procedures to 

implement and theorems to manipulate. Likewise, items on CONCPTHK 

appeared as a blend of items on ENACTHK and ICONTHK which were based 

on perception of and reflection on properties of graphical representations or 

assets of models that are initially visualized but then symbolized.  
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Table 4.5 Pattern matrix coefficients for the 6 within – 3 between factors model 

 

 

 

    Factor 

Mathematical thinking 1 2 3 4 5 6 

       

Within-classroom variables       

Item 9 .81      

Item11 .72      

Item7 .68      

Item8 .65      

Item 10 .57      

Item 3  .80     

Item 4  .60     

Item 6  .54     

Item 2  .50     

Item 5  .44     

Item 1  .43     

Item 20   .59    

Item 16   .53    

Item 19   .50    

Item 18   .48    

Item 17   .46    

 

 

 

 



 

 

 

 148 

Table 4.5 (continued) 

 

 

 

    Factor 

Mathematical thinking 1 2 3 4 5 6 

       

Within-classroom variables       

 Item 23    .83   

 Item 22    .69   

 Item 26    .65   

 Item 25    .63   

 Item 21    .43   

 Item 14     .94  

 Item 13     .88  

 Item 12     .69  

 Item 15     .53  

 Item 29      .76 

 Item 24      .61 

 Item 28      .57 

 Item 27      .52 

Item 30      .51 
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Table 4.5 (continued) 

 

 

 

 Factor 

Mathematical thinking 1 2 3 

    

Between-classroom variables    

                        Item 5 .96   

 Item 10 .95   

Item 2 .95   

Item 3 .92   

Item 9 .88   

Item 8 .81   

Item 4 .78   

  Item 11 .76   

Item 7 .66   

Item 1 .58   

Item 6 .45   

  Item 13  .97  

  Item 22  .90  

  Item 21  .88  

  Item 25  .87  

  Item 23  .78  

  Item 14  .74  

  Item 15  .73  

  Item 26  .61  

  Item 12  .44  

  Item 18   .97 

  Item 16   .96 

  Item 24   .94 

  Item 28   .94 

  Item 20   .90 

  Item 30   .89 

  Item 29   .88 

  Item 27   .64 

  Item 19   .63 

  Item 17   .57 
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Interfactor correlations among the 6 within-classroom factors and the 3 

between-classroom factors, separately, are presented in Table 4.6. At the 

within-classroom level, statistically significant and positive correlations were 

found between (a) axiomatic thinking factor and the remaining five factors, (b) 

formal thinking factor and, algorithmic and enactive thinking factors, (c) iconic 

thinking and, algorithmic, algebraic, and enactive thinking factors, and (d) 

algorithmic thinking and, algebraic and enactive thinking factors. Likewise, at 

the between-classroom level results revealed statistically significant and 

positive correlations among formal-axiomatic, proceptual-symbolic, and 

conceptual-embodied thinking factors. The correlations among the between-

classroom factors were generally larger than those found among within-

classroom factors. The highest correlation was between formal-axiomatic 

thinking and proceptual-symbolic thinking factors (r = .45, p < .01), whereas 

the lowest correlation appeared between formal-axiomatic thinking and 

conceptual- thinking factors (r = .14, p < .01). 
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Table 4.6 Interfactor correlations at the within- and between-classroom levels 

 

 

 

Mathematical thinking 1 2 3 4 5 6 

       

Within-classroom level       
1. Axiomatic thinking -      
2. Formal thinking  .26* -     
3. Iconic thinking .10* .07 -    
4. Algorithmic thinking .27* .28* .29* -   
5. Algebraic thinking .11* .02 .18* .37* -  
6. Enactive thinking .25* .19* .43* .30* .09 - 

       

Betwen-classroom level       
1. Formal-axiomatic thinking -      
2. Proceptual-symbolic thinking .45* -     
3. Conceptual-embodied thinking .14* .32* -    

 

      * p < .001 
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4.3.3 RESULTS OF MULTILEVEL CONFIRMATORY FACTOR 

ANALYSIS 

The Mplus input file for Step 3 is given in Appendix S. In regard to the 

expectations along with Hypothesis 1, the MCFA on students‟ scores on the 30 

TDT items provided supportive evidence to the 6 Within – 3 Between 

structure. Results of this fully unconditional model showed a fairly good fit 

relative to the assessment criteria. The relation yielded (
2 (792) = 1399.98; 

p= .001; RMSEA= .03 SRMR= (Within/Between) = .02/.04 CFI= .94; TLI= 

.93). The standardized coefficients for the items in the 6 Within – 3 Between 

factor structure were demonstrated in Table 4.7. The completely standardized 

solution was displayed, which refers to a standardization based on the 

variances of both mathematical thinking constructs and the items (i.e., StdYX). 

It should also be stressed that the factor loading of the first item at each latent 

factor was fixed to 1 in order to set the metric of the mathematical thinking 

constructs automatically. Accordingly, the within-level WLSM estimates 

appeared between .32 and .92 while the between-level WLSM estimates ranged 

from .36 to .86. These values were all significant at p< .001; demonstrating that 

the factor coefficients of each item on the related mathematical thinking 

dimension were at a reasonable size to define ENACTHK, ICONTHK, 

ALGOTHK, ALGETHK, FORMTHK, and AXIOTHK at the within-classroom 

level and FORMAXTHK, PROCPTHK, and CONCPTHK at the between-

classroom level.  
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Table 4.7 Standardized estimates of the multilevel confirmatory factor analysis 

at the within- and between-classroom levels* 

 

 

 

 Factor 

Mathematical thinking AXIOTHK FORMTHK ICONTHK 

    

Within-classroom variables    

Item 9 1.00 (.00)   

  Item11 .42 (.05)   

Item7 .56 (.07)   

Item8 .42 (.06)   

  Item 10 .67 (.08)   

Item 3  1.00 (.00)  

Item 4  .92 (.09)  

Item 6  .52 (.10)  

Item 2  .47 (.10)  

Item 5  .85 (.12)  

Item 1  .62 (.12)  

 Item 20   1.00 (.00) 

 Item 16   .66 (.06) 

 Item 19   .56 (.04) 

 Item 18   .83 (.07) 

Item 17   .49 (.04) 

 

      * Standardized errors are given in parantheses. 
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Table 4.7 (continued)* 

 

 

 

 Factor 

Mathematical thinking ALGOTHK ALGETHK ENACTHK 

    

Within-classroom variables    

 Item 23 1.00 (.00)   

 Item 22 .84 (.05)   

 Item 26 .69 (.05)   

 Item 25 .89 (.07)   

 Item 21 .70 (.05)   

 Item 14  1.00 (.00)  

 Item 13  .69 (.07)  

 Item 12  .46 (.07)  

 Item 15  .31 (.03)  

 Item 29   1.00 (.00) 

 Item 24   .87 (.18) 

 Item 28   .32 (.10) 

 Item 27   .64 (.14) 

Item 30   .89 (.10) 

 

     * Standardized errors are given in parantheses. 
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Table 4.7 (continued)* 

 

 

 

 

* Standardized errors are given in parantheses. 

 Factor 

Mathematical thinking FORMAXTHK PROCPTHK CONCPTHK 

    

Between-classroom variables    

                  Item 5 1.00 (.00)   

 Item 10 .56 (.12)   

Item 2 .86 (.14)   

Item 3 .81 (.14)   

Item 9 .82 (.14)   

Item 8 .43 (.10)   

Item 4 .62 (.10)   

  Item 11 .87 (.16)   

Item 7 .59 (.10)   

Item 1 .79 (.16)   

Item 6 .73 (.15)   

  Item 13  1.00 (.00)  

  Item 22  .36 (.08)  

  Item 21  .41 (.03)  

  Item 25  .87 (.04)  

  Item 24  .81 (.03)  

  Item 14  .80 (.03)  

  Item 15  .62 (.06)  

  Item 26  .37 (.04)  

  Item 12  .43 (.07)  

  Item 18   1.00 (.00) 

  Item 16   .74 (.08) 

  Item 23   .83 (.09) 

  Item 28   .82 (.08) 

  Item 20   .41 (.12) 

  Item 30   .74 (.08) 

  Item 29   .38 (.07) 

  Item 27   .44 (.07) 

  Item 19   .54 (.07) 

  Item 17   .44 (.07) 
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In addition, with regard to the 6 Within – 3 Between model, the amount 

of explained variance were computed for each mathematical thinking construct 

at the within- and between-classroom levels. The percentage variance extracted 

( ) reflects the overall amount of variance in the items accounted for by each 

mathematical thinking construct. Guidelines suggest that  values above .50 

indicate a better representation of the latent construct by the items (Tabachnick 

& Fidell, 2007). At the within-classroom level, s for ENACTHK, 

ICONTHK, ALGOTHK, ALGETHK, FORMTHK, and AXIOTHK were .55, 

.57, .58, .63, .53, and .63, respectively. At the between-classroom level, s for 

FORMAXTHK, PROCPTHK, and CONCPTHK were .53, .53, .54, 

respectively. Collectively, the s, in general, suggested a fairly good 

representation of the mathematical thinking constructs by the items with higher 

percentages for ALGETHK and AXIOTHK. 

 

4.3.4 RESULTS OF MULTILEVEL STRUCTURAL EQUATION 

MODELING 

 

4.3.4.1 Results of Cross-Level Direct Effects Model 

The Mplus input for Step 4 is given in Appendix T. The multilevel 

model of the relationships among different types of mathematical thinking is 

presented in Figure 4.1. As hypothesized (Hypothesis 2) results revealed 

statistically significant and positive relationships among enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking at the within-classroom 

level and formal-axiomatic, proceptual-symbolic, and conceptual-embodied 

thinking at the between-classroom level.  
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Figure 4.1 Multilevel model of mathematical thinking in derivative* 

                          * All the paths are significant at p < .001 

 

 

 

 

Primarily the intercorrelations among these constructs that are 

demonstrated in Table 4.8 were investigated. Overall, the correlations were in 

the expected direction, and a similar pattern of associations was found for each 

mathematical thinking construct. At both within- and between-classroom 
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levels, higher attainment in a particular type of mathematical thinking was 

associated with a higher level of competency in other types. For most 

mathematical thinking types, the size of the correlations was considerably 

higher at the between-classroom level than at the within-classroom level-this 

pattern is well known from student achievement studies in educational research 

(O‟Connell & McCoach, 2008). Furthermore, the ICCs for mathematical 

thinking constructs signified substantial between-classroom variation with 

values exceeding .10 (Bickel, 2007). The ICC values for enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking were .31, .33, .41, .28, 

.48, and .39, respectively. The ICCs were somewhat higher for the algorithmic 

and formal thinking than for algebraic thinking. Most of the variance for 

enactive, iconic, algebraic, and axiomatic thinking resides at the within-

classroom level. Meaningful between-classroom differences were also found 

for formal-axiomatic, proceptual-symbolic, and conceptual-embodied thinking 

with values of .53, .41, and .39, respectively.  
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Table 4.8 Intercorrelations among factors at the within- and between-classroom 

levels 

 

 

 

Mathematical thinking 1 2 3 4 5 6 

       

Within-classroom level       
1. Axiomatic thinking -      
2. Formal thinking  .38 -     
3. Iconic thinking .50 .46 -    
4. Algorithmic thinking .27 .24 .22 -   
5. Algebraic thinking .26 .39 .35 .26 -  
6. Enactive thinking .24 .34 .24 .33 .34 - 

       

Betwen-classroom level       
1. Formal-axiomatic thinking -      
2. Proceptual-symbolic thinking .76 -     
3. Conceptual-embodied thinking .72 .74 -    
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Results indicated that the variances of proceptual-symbolic and 

conceptual-embodied thinking lay quite predominantly at the between-

classroom level whereas the variance of formal-axiomatic thinking settles 

roughly equally within- and between-classroom levels. Taken together, these 

findings highlight the need to consider the within and between-classroom 

levels separately when probing for the relationships among different types of 

mathematical thinking. 

The hypothesized theoretical model attained a good fit to the data, 

2 (18) = 303.11; p= .001; RMSEA= .02 SRMR= (Within/Between) = .01/.02 

CFI= .98; TLI= .97. As shown in Figure 4.1 direct, indirect, and total effects 

were examined for significance at the .001 level. A direct effect can be 

interpreted as a causal effect denoted by the directional relation among the 

latent constructs. An indirect effect represents the portion of the relationship 

between two variables that is mediated by one or more variables. The total 

effect is equal to the sum of the direct and indirect effects. 

Turning first to the within-classroom level, formal thinking had 

statistically significant and positive direct effects on enactive (β = .09), iconic 

(β = .24), algorithmic (β = .35), algebraic (β = .11), and axiomatic (β = .23), 

thinking. Students who had adequate knowledge of definitions, symbols, and 

facts relevant to the derivative concept were able to integrate modeling 

situations into optimization procedures, retrieve information from the graph of 

a derivative function, solve routine differentiation problems, reason on the 

algebraic changes within theoretical differentiation structures, and synthesize 

the steps in differentiation proofs. Formal thinking also had indirect effects on 

enactive (  = .16), iconic (  = .10), and algebraic (  = .01) thinking through 

influencing algorithmic thinking. Similarly, mediated by enactive thinking it 

had indirect effects on iconic (  = .01), algebraic (  = .01), and axiomatic (  = 

.09) thinking. Formal thinking further had significant indirect effects on 

algebraic (  = .01) and axiomatic (  = .05) thinking moderated by iconic 
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thinking. Taken as a whole, these findings implied that students who were 

more prone to recall the fundamental differentiation terminology tend to excel 

in diverse types of thinking as pertained to differentiation techniques, 

optimization models, and/or rough differentiation sketches.  

The three direct effects of algorithmic thinking were on enactive (β = 

.47), iconic (β = .28), and algebraic (β = .30) thinking. Its strongest impact was 

on enactive thinking, while to a lesser extent on algebraic and iconic thinking. 

One explanation might be that there is very much of differentiation procedures 

which can be used to perform a task that is “enactive” in nature. The execution 

of such a task radically differs from others because students are required to 

cultivate a series of technical steps in order to find a maximum or minimum 

value (e.g., assign a symbol to the quantity that is to be maximized/minimized, 

select a symbol for other unknown quantities, and express a function of more 

than one variable). Through the influence of enactive thinking, substantial 

indirect effects appeared among algorithmic thinking and, iconic (  = .07), 

algebraic (  = .06), and axiomatic (  = .04), thinking. Mediated by iconic 

thinking, algorithmic thinking had indirect effects on algebraic (  = .01) and 

axiomatic (  = .06) thinking. These indirect effects of algorithmic thinking 

through enactive and iconic thinking made up an important segment in 

classifying students‟ performance into a set of structured thinking patterns 

associated with different components of the derivative concept.  Algebraic 

thinking was specified dependent of enactive (β = .15), iconic (β = .04), and 

axiomatic (β = .23) thinking; and this specification was not disproved by the 

data. The stronger association between algebraic and axiomatic thinking was 

expected due to the connected contextualization of the tasks aiming to expose 

students‟ repertoire of differentiation theorems to build relationships among the 

hypotheses relative to these theorems. Enactive thinking had the strongest 

direct effect on iconic thinking (β = .16) and to a lesser extent on axiomatic 

thinking (β = .09). This finding was expected in that, students who were able to 

draw a diagram to model the optimization phenomenon would typically be 
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more likely to draw the graph of a derivative function and/or given the 

derivative function sketch the graph of the original function. Interestingly, the 

direct effect of iconic thinking on axiomatic thinking (β = .22) was somewhat 

higher than expected. One likely explanation for the unexpected result is due to 

the intrinsic potential of graphical representations for making interpretations 

about the transformation between differentiation theory and visual practice. 

Concerning the relationships at the between-classroom level, the two-

level model depicted a cyclic interrelation among formal-axiomatic, 

proceptual-symbolic, and conceptual-embodied thinking. Formal-axiomatic 

thinking had a significant and positive direct effect on proceptual-symbolic 

thinking (β = .62), whereas proceptual-symbolic thinking had a significant 

direct effect on conceptual-embodied thinking (β = .55), and in turn 

conceptual-embodied thinking had a significant direct effect on formal-

thinking (β = .51). The strongest relationship between formal-axiomatic and 

proceptual-symbolic thinking signified that classrooms equipped with more 

rigorous aspects of differentiation tend to enforce their theoretical progress in 

the more flexible grounds of differentiation techniques. Though being 

automatized such flexibility provides classrooms to further incorporate their 

procedural knowledge of differentiation into more visual forms and that to 

become fairly more proficient in driving an algorithm within their model 

and/or graph constructions. This cyclic nature of the associations was also 

evident in the indirect effects among between-classroom variables. The effect 

of formal-axiomatic thinking on conceptual-embodied thinking was mediated 

by proceptual-thinking (  = .34), while the effect proceptual-symbolic thinking 

on formal-axiomatic thinking was mediated by conceptual-embodied thinking 

(  = .28). In turn, conceptual-embodied thinking had a significant indirect 

effect on proceptual-symbolic thinking (  = .31) through influencing formal-

axiomatic thinking. Collectively, these indirect effects reaffirmed the important 

role of mediation among different types of mathematical thinking in the 

classroom context. Along with the statistically significant and positive direct 
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and indirect effects, it can be concluded that the total effects of the 

mathematical thinking constructs at the within- and between-classroom levels 

were all substantial in size. 

The estimation of the mathematical thinking model enabled to further 

evaluate the extent of variation at the within- classroom level and at the 

between-classroom level for each relevant mathematical thinking construct. At 

the within-classroom level, results revealed that the amount of variance 

explained was .26, .29, .12, .16, .15, and .18 for enactive, iconic, algorithmic, 

algebraic, formal, and axiomatic thinking, respectively. Moving to the 

between-classroom level the amount of explained variance increased to .48, 

.56, and .51 for formal-axiomatic, proceptual-symbolic, and conceptual-

embodied thinking, respectively. Taken together, the s calculated as the 

change in the variance components for the within- and between-classroom 

levels as reported by Mplus indicated that all mathematical thinking constructs 

introduced to the two-level model were practically significant contributors for 

one another. 

 

4.3.4.2 Results of Cross-Level Moderator Models 

The within-classroom relations as a function of between-classroom 

factors were tested with a total of 42 cross-level moderator models. On the 

other hand, the between-classroom relations as a function of within-classroom 

factors were tested with a total of 18 cross-level moderator models.  

The Mplus input files for testing each cross-level moderator model are 

presented for the within-classroom moderations and between-classroom 

moderations in Appendix U and Appendix V, respectively.  

As hypothesized (Hypothesis 3), results revealed that enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking significantly moderated 

the relationships among conceptual-embodied, proceptual-symbolic, and 

formal-axiomatic thinking. In that respect, conceptual-embodied, proceptual-

symbolic, and formal-axiomatic thinking significantly moderated the 
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relationships among enactive, iconic, algorithmic, algebraic, formal, and 

axiomatic thinking. 

 

4.3.4.2.1 Results of the Within-Classroom Relations as a Function of 

Between-Classroom Factors 

Results documented that the between-classroom factors, conceptual-

embodied, proceptual-symbolic, formal-axiomatic thinking, significantly 

moderated the relationships among the within-classroom factors –enactive, 

iconic, algorithmic, algebraic, formal, and axiomatic thinking- specified in the 

cross-level direct effects model. Statistically, the upper level moderations 

reflected that the between-classroom factors that are observed to be 

significantly related to the random coefficients can be termed cross-level 

interactions and simply denote that a between-classroom factor influences a 

within-classroom slope. The gamma coefficients ( ) for the within-classroom 

relations as a function of between-classroom factors are presented in Table 4.9. 

To examine whether between-classroom factors mediated the formal 

thinking effects on algebraic thinking, formal-axiomatic, conceptual-embodied, 

and proceptual-symbolic thinking were introduced as predictor variables 

separately. The regression coefficients for formal-axiomatic (  = .84), 

conceptual-embodied (  = .09), proceptual-symbolic (  = .34) thinking were 

significant and of considerable size. To examine whether between-classroom 

factors mediated the formal thinking effects on algorithmic thinking, formal-

axiomatic, conceptual-embodied, and proceptual-symbolic thinking were 

introduced as predictor variables separately. The regression coefficients for 

formal-axiomatic (  = .22), conceptual-embodied (  = .25), proceptual-

symbolic (  = .61) thinking were significant and of considerable size. To 

examine whether between-classroom factors mediated the formal thinking 

effects on axiomatic thinking, formal-axiomatic, conceptual-embodied, and 

proceptual-symbolic thinking were introduced as predictor variables separately. 
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The regression coefficients for formal-axiomatic (  = .30), conceptual-

embodied (  = .10), proceptual-symbolic (  = .16) thinking were significant 

and of considerable size. To examine whether between-classroom factors 

mediated the formal thinking effects on enactive thinking, formal-axiomatic, 

conceptual-embodied, and proceptual-symbolic thinking were introduced as 

predictor variables separately. The regression coefficients for formal-axiomatic 

(  = .46), conceptual-embodied (  = .51), proceptual-symbolic (  = .45) 

thinking were significant and of considerable size. To examine whether 

between-classroom factors mediated the formal thinking effects on iconic 

thinking, formal-axiomatic, conceptual-embodied, and proceptual-symbolic 

thinking were introduced as predictor variables separately. The regression 

coefficients for formal-axiomatic (  = .40), conceptual-embodied (  = .20), 

proceptual-symbolic (  = .44) thinking were significant and of considerable 

size.  

Collectively, these results implied that students‟ formal thinking is 

significantly associated with their algebraic, algorithmic, axiomatic, enactive, 

and iconic thinking in classrooms with higher formal-axiomatic, conceptual-

embodied, and proceptual-symbolic thinking. The strongest mediation effect 

was that of formal-axiomatic thinking on the relationship between formal and 

algebraic thinking. This signaled that when students‟ strong knowledge of 

derivative, indicative of their hypothetical knowledge of differentiation 

theorems, is coupled with the classroom‟s knowledge of fundamental 

differentiation rules and theorems, this results in stronger cross-level formal-

algebraic relationships. The lowest effect was of conceptual-embodied thinking 

that mediates the relationship between formal and algebraic thinking. This 

result was expected in that students in classrooms where higher levels of real-

life applications of the derivative are possessed by visualization might not tend 

to use the embodied and/or visual aspects of the derivative concept to build 

links between the definition of derivative and the algebraic manipulation of 
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derivative theorems. Furthermore, the lack of significance in the mediation 

effect of formal-axiomatic thinking on the effects of formal thinking on 

enactive and iconic thinking supported this line of reasoning, suggesting that 

the formal thinking effects on enactive and iconic thinking stem from students‟ 

patterning of proceptual-symbolic and/or conceptual-symbolic thinking rather 

than from their theorizing formal-axiomatic thinking. This finding signaled that 

the combination of more rigorous knowledge of differentiation symbols, facts, 

and axioms in a classroom do not offer support for students‟ linking the 

definition of derivative to the identification of the maximum/minimum value of 

a function or the construction of the graph of a derivative function. 

To examine whether between-classroom factors mediated the iconic 

thinking effects on algebraic thinking, formal-axiomatic, conceptual-embodied, 

and proceptual-symbolic thinking were introduced as predictor variables 

separately. The regression coefficients for formal-axiomatic (  = .03), 

conceptual-embodied (  = .03), proceptual-symbolic (  = .04) thinking were 

significant and of considerable size. To examine whether between-classroom 

factors mediated the iconic thinking effects on axiomatic thinking, formal-

axiomatic, conceptual-embodied, and proceptual-symbolic thinking were 

introduced as predictor variables separately. The regression coefficients for 

formal-axiomatic (  = .61), conceptual-embodied (  = .02), proceptual-

symbolic (  = .15) thinking were significant and of considerable size. 

Taken together, these results implied that students‟ iconic thinking is 

significantly associated with their algebraic and axiomatic thinking in 

classrooms with higher formal-axiomatic, conceptual-embodied, and 

proceptual-symbolic thinking. The strongest mediation effect was that of 

formal-axiomatic thinking on the relationship between iconic and axiomatic 

thinking. The mediation might present an important aspect of classroom‟s 

theoretical structure of differentiation has an influence on students‟ functioning 

in finding the local maxima or minima of a differentiable function in regard to 

the Fermat‟s Theorem applied to investigating the local maxima/minima of a 
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function on a graph. Somewhat unexpectedly, however, the mediation of 

conceptual-embodied thinking on that relationship was nonsignificant. The 

lowest and in part almost equal mediation effects were that of formal-axiomatic 

and conceptual-embodied thinking on the relationship between iconic and 

algebraic thinking. 

To examine whether between-classroom factors mediated the enactive 

thinking effects on algebraic thinking, formal-axiomatic, conceptual-embodied, 

and proceptual-symbolic thinking were introduced as predictor variables 

separately. The regression coefficients for formal-axiomatic (  = .70), 

conceptual-embodied (  = .06), proceptual-symbolic (  = .04) thinking were 

significant and of considerable size. To examine whether between-classroom 

factors mediated the enactive thinking effects on axiomatic thinking, formal-

axiomatic, conceptual-embodied, and proceptual-symbolic thinking were 

introduced as predictor variables separately. The regression coefficients for 

formal-axiomatic (  = .11), conceptual-embodied (  = .14), proceptual-

symbolic (  = .20) thinking were significant and of considerable size. To 

examine whether between-classroom factors mediated the enactive thinking 

effects on iconic thinking, formal-axiomatic, conceptual-embodied, and 

proceptual-symbolic thinking were introduced as predictor variables separately. 

The regression coefficients for formal-axiomatic (  = .58), conceptual-

embodied (  = .24), proceptual-symbolic (  = .53) thinking were significant 

and of considerable size.  

The findings mirrored that students‟ enactive thinking is significantly 

associated with their algebraic, axiomatic, and iconic thinking in classrooms 

with higher formal-axiomatic, conceptual-embodied, and proceptual-symbolic 

thinking. The strongest mediation of formal-axiomatic thinking was again 

brought on the scene for the relationship between enactive and algebraic 

thinking. Although the mediation of formal-axiomatic thinking on the 

relationship between enactive and iconic thinking was strong it did not appear 
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to be significant. This finding clearly supported the fact that classroom‟s rigid 

forms of logical arguments in differentiation do not function in students‟ 

relating the differentiation processes applicable in a graph to each other and to 

relevant real-life situations.  

To examine whether between-classroom factors mediated the 

algorithmic thinking effects on algebraic thinking, formal-axiomatic, 

conceptual-embodied, and proceptual-symbolic thinking were introduced as 

predictor variables separately. The regression coefficients for formal-axiomatic 

(  = .73), conceptual-embodied (  = .09), proceptual-symbolic (  = .05) 

thinking were significant and of considerable size. To examine whether 

between-classroom factors mediated the algorithmic thinking effects on 

enactive thinking, formal-axiomatic, conceptual-embodied, and proceptual-

symbolic thinking were introduced as predictor variables separately. The 

regression coefficients for formal-axiomatic (  = .36), conceptual-embodied (  

= .44), proceptual-symbolic (  = .29) thinking were significant and of 

considerable size. To examine whether between-classroom factors mediated 

the algorithmic thinking effects on iconic thinking, formal-axiomatic, 

conceptual-embodied, and proceptual-symbolic thinking were introduced as 

predictor variables separately. The regression coefficients for formal-axiomatic 

(  = .49), conceptual-embodied (  = .22), proceptual-symbolic (  = .11) 

thinking were significant and of considerable size.  

Results demonstrated that students‟ algorithmic thinking is significantly 

associated with their algebraic, axiomatic, and iconic thinking in classrooms 

with higher formal-axiomatic, conceptual-embodied, and proceptual-symbolic 

thinking. In contrast to the aforementioned statistically significant and strong 

effects, classroom‟s formal-axiomatic thinking did not have a role in the paths 

of algebraic and enactive thinking associated with algorithmic thinking. 

However, classroom‟s portrait of formal-axiomatic thinking was still a 

significant and strong mediator students‟ calculations from graphical forms 

(e.g., the gradient of a tangent at a point) or using differentiation procedures to 
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obtain numerical results from graphs (e.g., interpolation for approximating an 

average rate of change).  

To examine whether between-classroom factors mediated the axiomatic 

thinking effects on algebraic thinking, formal-axiomatic, conceptual-embodied, 

and proceptual-symbolic thinking were introduced as predictor variables 

separately. The regression coefficients for formal-axiomatic (  = .68), 

conceptual-embodied (  = .09), proceptual-symbolic (  = .02) thinking were 

significant and of considerable size.  

Taken as a whole, results confirmed that students‟ axiomatic thinking is 

significantly associated with their algebraic thinking in classrooms with higher 

formal-axiomatic, conceptual-embodied, and proceptual-symbolic thinking. 

The strongest mediation effect was that of formal-axiomatic thinking on the 

relationship between axiomatic and algebraic thinking. The mediation might 

mirror once again the important role of classroom‟s body of formal 

differentiation theory in students‟ having sufficiently well-formed concept-

oriented knowledge to move fluently between theoretical perspectives and 

algebraic manifestations. It is likely for students to link between a theorem and 

its hypotheses in classrooms where appropriate theoretical and conceptual 

perspectives are chosen to solve a differentiation problem. The lowest 

mediation effect was that of conceptual-embodied thinking. However, this 

finding supported that the strength of visual and enactive interpretations is 

extremely sensitive to the accurate conception of what constitutes a 

differentiation proof and the ability to derive algebraic inferences from that 

logical conceptions. As expected, the mediation effect of proceptual-symbolic 

thinking on the relationship between axiomatic and algebraic thinking was 

statistically nonsignificant. This implied that the classroom‟s tendency in 

practicing rote application of algorithms and procedures at the expense of 

hypotheses of differentiation theorems did not mediate students‟ understanding 

the nature of a differentiation theorem to exclusively involve in the algebraic 

manipulations relevant to its hypotheses. 
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Table 4.9 Gamma coefficients for the within-classroom relations as a function 

of between-classroom factors 

 

 

 

Within-Classroom Level Between-Classroom Level Coefficient 

Relationship Factor  

FORMTHKALGETHK 

FORMAXTHK .84* 

CONCPTHK .09* 

PROCPTHK .34* 

FORMTHKALGOTHK 

FORMAXTHK .22* 

CONCPTHK .25* 

PROCPTHK .61* 

FORMTHKAXIOTHK 

FORMAXTHK .30* 

CONCPTHK .10* 

PROCPTHK .16* 

FORMTHKENACTHK 

FORMAXTHK .46 

CONCPTHK .51* 

PROCPTHK .45* 

FORMTHKICONTHK 

FORMAXTHK .40 

CONCPTHK .20* 

PROCPTHK .44* 

ICONTHKALGETHK 

FORMAXTHK .03* 

CONCPTHK .03* 

PROCPTHK .04* 

ICONTHKAXIOTHK 

FORMAXTHK .61* 

CONCPTHK .02 

PROCPTHK .15* 

ENACTHKALGETHK 

FORMAXTHK .70* 

CONCPTHK .06* 

PROCPTHK .04* 

ENACTHKAXIOTHK 

FORMAXTHK .11* 

CONCPTHK .14* 

PROCPTHK .20* 

* Significant values at p < .001 
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Table 4.9 (continued) 

 

 

 

Within-Classroom Level Between-Classroom Level Coefficient 

Relationship Factor  

ENACTHKICONTHK 

FORMAXTHK .58 

CONCPTHK .24* 

PROCPTHK .53* 

ALGOTHKALGETHK 

FORMAXTHK .73 

CONCPTHK .09* 

PROCPTHK .05* 

ALGOTHKENACTHK 

FORMAXTHK .36 

CONCPTHK .44* 

PROCPTHK .29* 

ALGOTHKICONTHK 

FORMAXTHK .49* 

CONCPTHK .22* 

PROCPTHK .11* 

AXIOTHKALGETHK 

FORMAXTHK .68* 

CONCPTHK .09* 

PROCPTHK .02 

* Significant values at p < .001 

 

 

 

4.3.4.2.2 Results of the Between-Classroom Relations as a Function of 

Within-Classroom Factors 

Results documented that the within-classroom factors -enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking- significantly moderated 

the relationships among the between-classroom factors, conceptual-embodied, 

proceptual-symbolic, formal-axiomatic thinking, specified in the cross-level 

direct effects model. Statistically, the lower level moderations reflected that the 

within-classroom factors that are observed to be significantly related to the 

random coefficients can be termed cross-level interactions and simply denote 

that a within-classroom factor influences a between-classroom slope.  
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To examine whether within-classroom factors mediated the formal-

axiomatic thinking effects on proceptual-symbolic thinking, enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking were introduced as 

predictor variables separately. The regression coefficients for formal (  = .09), 

axiomatic (  = .05), iconic (  = .07), enactive (  = .06), algebraic (  = .08), 

and algorithmic (  = .10) thinking were significant and of considerable size. 

To examine whether within-classroom factors mediated the proceptual-

symbolic thinking effects on conceptual-symbolic thinking, enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking were introduced as 

predictor variables separately. The regression coefficients for formal (  = .03), 

axiomatic (  = .03), iconic (  = .04), enactive (  = .05), algebraic (  = .03), 

and algorithmic (  = .00) thinking were significant and of considerable size. 

To examine whether within-classroom factors mediated the conceptual-

embodied thinking effects on formal-axiomatic thinking, enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking were introduced as 

predictor variables separately. The regression coefficients for formal (  = .14), 

axiomatic (  = .13), iconic (  = .05), enactive (  = .08), algebraic (  = .07), 

and algorithmic (  = .11) thinking were significant and of considerable size. 

Collectively, results demonstrated that for most within-classroom 

factors, the mediation effects were considerable in size and statistically 

significant. Notably, the nonsignificant effects appeared only in the 

relationship between proceptual-symbolic and conceptual-embodied thinking 

mediated by formal, algorithmic, and algebraic thinking. The strongest 

mediation effect was that of formal thinking on the relationship between 

conceptual-embodied and formal-axiomatic thinking. This finding obviously 

indicated that in a classroom the links between visual and theoretical 

conceptualizations of the derivative concept are primarily formed through or 

facilitated by students‟ basic knowledge of the definitions, symbols, rules, and 

facts relevant to differentiation. To a lesser extent, the strong mediation effect 
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of axiomatic thinking on the relationship between conceptual-embodied and 

formal-axiomatic thinking was also reasonable. Similarly, students‟ individual 

norms of thinking about theorems may moderate the classroom‟s line of 

reasoning in graphs of a derivative function registered in theoretical aspects of 

the original function or vice versa. In line with the predictions, the lowest 

mediation effect was that of axiomatic thinking on the relationship between 

proceptual-symbolic and conceptual-embodied thinking. One possible reason 

might be that in a classroom when technical knowledge of differentiation 

procedures, indicative of interpreting derivative graphs as representing 

functions, is coupled with students‟ operating on theorems, this may not result 

in too strong essence in making procedural and visual connections between 

corresponding differentiation processes. 
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Table 4.10 Gamma coefficients for the between-classroom relations                     

as a function of within-classroom factors 

 

 

 

Within-Classroom Level Between-Classroom Level Coefficient 

Relationship Factor  

FORMAXTHKPROCPTHK 

ENACTHK .06* 

ICONTHK .07* 

ALGOTHK .10* 

ALGETHK .08* 

FORMTHK .09* 

AXIOTHK .05* 

PROCPTHKCONCPTHK 

ENACTHK .04* 

ICONTHK .05* 

ALGOTHK .03 

ALGETHK .00 

FORMTHK .03 

AXIOTHK .03* 

CONCPTHKFORMAXTHK 

ENACTHK .05* 

ICONTHK .08* 

ALGOTHK .07* 

ALGETHK .11* 

FORMTHK .14* 

AXIOTHK .13* 

* Significant values at p < .001 
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CHAPTER 5 

 

 

5. DISCUSSION, CONCLUSION AND IMPLICATIONS 

 

 

 

This chapter presents the discussion and conclusion of the results, 

educational implications, limitations, and recommendations for future research. 

 

 

5.1 DISCUSSION 

The purpose of the study was threefold: (a) to determine the factor 

structure of mathematical thinking at the within-classroom and at the between-

classroom level; (b) to investigate the extent of variation in mathematical 

thinking at the within-classroom and at the between-classroom level; and (c) to 

examine the cross-level interactions among different types of mathematical 

thinking. 

So first, when a researcher wants to test whether the factor structure of 

mathematical thinking differs across levels of analysis (i.e., within-classroom 

and between-classroom), by means of multilevel exploratory and confirmatory 

factor analyses does it matter whether he/she controls for the nesting of 

students within classrooms?  

The results of the multilevel exploratory factor analysis showed that the 

30 multiple-choice items of the Thinking-in-Derivative Test could be divided 

into a six-factor structure (enactive, iconic, algorithmic, algebraic, formal, and 

axiomatic thinking) at the within-classroom level and a three-factor structure 

(formal-axiomatic, proceptual-symbolic, and conceptual-embodied thinking) at 
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the between-classroom level. All three factors at the between-classroom level 

were clear combinations of several factors at the within-classroom level, albeit 

with a different order of the items. The distinct factor structure was in line with 

previous research (Schwartz, 1992, 1994) documenting that the same items can 

cluster differently at the within versus between levels of analysis. This 

differentially clustering of items happened with mathematical thinking 

constructs as well. The within-classroom factors formal thinking and axiomatic 

thinking generated the formal-axiomatic thinking factor, whereas algorithmic 

thinking and algebraic thinking factors aggregated under proceptual-symbolic 

thinking factor at the between-classroom level. Additionally, at the within-

classroom level enactive thinking and iconic thinking factors emerged, whereas 

at the between-classroom level a blend of these two factors appeared as 

conceptual-embodied thinking factor. Although hard to identify 

straightforwardly, this conceptual meaning of between-classroom factors are 

consistent with the conceptualizations of Tall (2004) stating that three different 

types of mathematical thinking (e.g., formal-axiomatic thinking, proceptual-

symbolic thinking, and conceptual-embodied thinking) are provoked when 

solving advanced mathematics problems. In accordance with this line of 

conceptualization, Tall further indicated that a mathematical task links to the 

aspects that accompany a specific type of thinking (e.g., formal-axiomatic 

thinking) and yet displays the aspects of all other types (formal thinking and 

axiomatic thinking).   

As regards the size of the factor loadings it was noticed much higher 

loadings at the between-classroom level (from .35 to .97) than at the within-

classroom level (from .32 to .67). Here, all factor loadings were significant. 

The more inclusive between-classroom factors correlated moderately, while 

among the larger group of interfactor correlations at the within-classroom 

level, at least some correlations were low. This finding supported Shieh and 

Fouladi (2003) suggesting that when using these constructs in further 

multilevel analysis to investigate relationships low correlations are to be 
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preferred. Identical conclusions concerning both levels of analysis were 

solutions with a simple structure and low to moderate interfactor correlations. 

However, compared to the factor loadings at the within-classroom level higher 

factor loadings at the between-classroom level were obtained.  

The 6 Within – 3 Between factor structure that emerged in the 

multilevel exploratory factor analysis was cross-validated in the multilevel 

confirmatory factor analysis with an independent sample of undergraduate 

students. Results of the multilevel confirmatory factor analysis were marginally 

acceptable proved by high goodness-of-fit indices indicating that the model fits 

the data well, thus confirming that students‟ mathematical thinking in 

derivative can be designated by 6 factors at the within-classroom level and 

more global 3 factors at the between-classroom level. Furthermore, high 

percentages of variance extracted indicate an adequate representation of the 

mathematical thinking constructs specified at the within- and between-

classroom levels.  

Concerning the factor structure, exactly the same factors for 

conventional confirmatory factor analysis and multilevel confirmatory factor 

analysis were found at the within-classroom level. Most items appeared in a 

different order when comparing confirmatory factor analysis with multilevel 

confirmatory factor analysis at the within-classroom level. Thus, items that 

were most crucial for an underlying thinking dimension within confirmatory 

factor analysis were not the most crucial for that same underlying dimension 

within multilevel confirmatory factor analysis. Similarly, a clear distinction 

was related to the size of the factor loadings of the items. Regarding multilevel 

confirmatory factor analysis at the within-classroom level, most items had a 

slightly lower factor loading. The same phenomenon was observed when using 

multilevel exploratory factor analysis. This might be due to the downward-

correction of the tetrachoric correlation matrix when controlling for the 

dependency of the students‟ responses (Muthén & Satorra, 1995).  
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Obviously, these findings implied that the constructed factors of both 

multilevel exploratory factor analysis and multilevel confirmatory factor 

analysis were reliable measures of students‟ mathematical thinking, and thus 

provided a step forward to estimate a two-level model of mathematical 

thinking. 

Moving to the second goal of the present study the relationships among 

different types of mathematical thinking derived at the within- and between-

classroom levels were investigated. The amount of variance identified at each 

level of the nested data structure provides an indication of whether or not 

mathematical thinking constructs are accessed rigidly across classrooms or 

varying relative to a student‟s own potential of progress in mathematical 

thinking. The results of the present study are somewhat disappointing in that 

the amount of variance explained was not large, particularly at the within-

classroom level where most of the variability resides for mathematical thinking 

constructs (e.g., enactive thinking, iconic thinking, and algebraic thinking). 

Part of the problem may be due to the categorical nature of the data, which 

served to constrain the relationships being modeled (Snijders & Boskers, 

1999). The proportion of variance suggests there is considerable amount of 

variability in undergraduate students‟ different types of mathematical thinking 

between classrooms and that this aspect of mathematical thinking may be 

indicative of students‟ overall intellectual abilities to bring in their diverse 

thinking processes. Further inspection of the ICCs across two levels for each of 

the mathematical thinking constructs indicates that algebraic thinking had the 

lowest and formal-axiomatic thinking had the highest amount of between-

classroom variance, 28% and 53%, respectively. From a methodological 

perspective, these findings suggest that researchers should pay careful attention 

to the clustering of students nested within classrooms when examining the 

relationships among different types of mathematical thinking in cross-sectional 

studies at educational settings (O‟Connell & McCoach, 2008).  
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The multilevel model tested in the current study suggests an interesting 

conceptualization of the relationships among different types of mathematical 

thinking at both within- and between-classroom levels and sheds light on the 

pattern (direction and magnitude) of these relations. Thus, the present study 

contributes to the existing body of literature on students‟ mathematical thinking 

by introducing a more sensible representation of the complexity of the 

relationships among the factors underlying students‟ mathematical thinking. 

The multilevel structural equation modeling analysis provided to capture this 

complexity while taking into account the hierarchical nature of the data.  

Accordingly, with respect to the multilevel structural model estimating the 

relationships among different types of mathematical thinking, interesting 

findings emerged at both within- and between-classroom levels.  

At the within-classroom level, formal thinking had the strongest 

predictive power on algorithmic thinking; that as students become talented in 

defining the derivative concept, they exhibit a higher progress in applying 

differentiation algorithms. This finding supports the findings of previous 

studies (Habre & Abboud, 2006; Orton, 1983; Roorda, Vos, & Goedhardt, 

2007), which provided evidence that students who were able to define and/or 

symbolize the derivative concept would be more apt to manage the algorithms 

and procedures within relevant derivative problems. To a lesser extent, formal 

thinking also had statistically significant and positive direct effects on students‟ 

gains in enactive thinking, iconic thinking, algebraic thinking, and axiomatic 

thinking. this finding supports previous research that underlined students‟ core 

basis of differentiation terminology students‟ understanding of the core 

differentiation terminology positively contributes to their successful utilization 

of max/min problems (Ubuz & Ersoy, 1997), graph 

constructions/interpretations of the derivative function (Ubuz, 2007), 

transformations between corollaries and differentiation procedures 

(Viholainen, 2006), and proofs in relation to differentiability (Tall, 1998). The 

strongest direct effect of algorithmic thinking on enactive thinking provided 
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support to the results of previous studies (Thompson, 1994; Ubuz & Ersoy, 

1997; Villegas, Castro, & Gutiérrez, 2009) indicating that students‟ capability 

to use appropriate differentiation techniques would lead them to master the 

steps to be taken in modeling optimization problems. In accordance with the 

findings of previous researchers (Aspinwall et al., 1997; Gray, Loud, & 

Sokolowski, 2009; Marrongelle, 2007), algorithmic thinking had a significant 

and positive direct effect on iconic thinking and algebraic thinking. That is, 

students who are equipped with the procedural knowledge of the derivative 

would be able to effectively visualize the derivative as a slope of the tangent 

line to the curve and algebraically unfold a network of connections in the Mean 

Value Theorem. The significantly positive direct effect of enactive thinking on 

iconic thinking, algebraic thinking, and axiomatic thinking presented in the 

Mathematical Thinking Model could throw some light on the relationships 

raised by several researchers (Derry, Wilsman, & Hackbarth, 2007; Ferrini-

Mundy, 1987; Tall, 1989; Ubuz & Ersoy, 1997; Sowder & Harel, 2003) where 

students who had the ability to determine the max/min value for a given 

function integrate this appropriately into their identification of the absolute 

max/min points on the graph a function, exploration of conditions under which 

a differentiation theorem can be true, and justification of statements in one 

theorem with regards to the conditions satisfied in another theorem. For 

instance, a student who is more apt to model a max/min situation would be 

more inclined to confirm that in the statement of Rolle‟s Theorem, f(x) is a 

continuous function on the closed interval [a,b], henceforth by the Intermediate 

Value Theorem it achieves a maximum and a minimum on [a,b]. The 

significant effect of iconic thinking on algebraic thinking could also be 

documented for axiomatic thinking. Our study was in agreement with those 

studies (Asiala et al., 1997; Bingolbali & Monaghan, 2008) on the account that 

students‟ inclusive manner of engagement in graphical representations of the 

derivative affects their testing necessary hypotheses to determine whether a 

function is differentiable or translating empirical arguments to derivative 
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proofs. The sense of this relationship clearly articulated the ways to harmonize 

the visual demonstration of a derivative theorem within the more rigid fashion 

of formal mathematics and thereby expedite students‟ actions on “proof 

without words”. Another central result that was framed in the within-classroom 

level of the Mathematical Thinking Model is that algebraic thinking was 

positively associated with axiomatic thinking. This finding was consistent with 

previous research (Thompson, 1994; Zandieh & Knapp, 2006), which reported 

that students‟ repertoire of differentiation theory enriched by relevant axioms 

and conjectures would likely to influence their understandings of the 

theoretical syntax that is to be represented by various algorithms. The 

pervasive effects of formal thinking on enactive thinking and iconic thinking 

and to a lesser extent algebraic thinking held algorithmic thinking as an 

essential mediator. In contrast, the indirect effect of formal thinking on iconic 

thinking, algebraic thinking, and axiomatic thinking through influencing 

enactive thinking was negligible. Similarly, formal thinking had minor indirect 

effects on algebraic thinking and axiomatic thinking mediated by iconic 

thinking. These findings elucidated that to some extent students‟ knowledge of 

derivative concept draws upon their practical knowledge of algorithms, 

models, and graphs relevant to differentiation and follows a continuum of 

theoretical differentiation strategies. Similar issues of concern were evident in 

the relatively small indirect effects of algorithmic thinking on algebraic 

thinking and axiomatic thinking through influencing enactive thinking and 

iconic thinking. Furthermore, mediated by enactive thinking, students‟ 

algorithmic thinking had an indirect effect on iconic thinking. Obviously these 

results affirmed that students‟ proper use of visualization skills would serve as 

a link between their procedural and logical reasoning while solving derivative 

problems.  

Turning to the relationships emerged at the between-classroom level 

provided support in favor of the fact that the effects of one type of 

mathematical thinking on the other represents important features of the link 
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between formal-axiomatic thinking, proceptual-symbolic thinking, and 

conceptual-embodied thinking (Stewart & Thomas, 2007, 2009). Our study has 

the new perspective of a link among other studies investigating the 

interrelationships among different types of mathematical thinking. Coupled 

with the cyclic associations, it holds the strongest promise in unfolding the 

relationship where formal-axiomatic thinking influenced the gains in 

proceptual-symbolic thinking as the gains in proceptual-symbolic thinking 

influenced conceptual-embodied thinking and in turn conceptual-embodied 

thinking influenced formal-axiomatic thinking. Taken as a whole, this shows 

that a classroom‟s profile of mathematical thinking in derivative cannot be 

drawn without designating each individual student‟s knowledge of definitions 

and theorems, knowledge of algorithms and algebraic representations and, 

knowledge of models and graphical representations relevant to the derivative 

concept. From this perspective, the strongest direct effect was from formal-

axiomatic thinking to proceptual-symbolic thinking followed by proceptual-

symbolic thinking to conceptual-embodied thinking, and to a lesser extent 

conceptual-embodied thinking to formal-axiomatic thinking. In line with 

previous research (Christou et al., 2005; Stewart & Thomas, 2007; Stewart, 

2008; Tall, 2004) these relationships imply that classrooms‟ mathematical 

thinking in derivative builds from patterns of declarative and strategic 

knowledge: recalling the definition of derivative; proving differentiation 

formulas. Once this type of thinking is practiced and becomes routine, it can be 

symbolized as algorithms and used dually as hypotheses on which the 

procedures can be performed: solving a derivative problem; elaborating the 

conditions of a derivative theorem in order to determine whether a given 

function satisfies these conditions. As the focus of attention switches from 

theory to the manipulation of algorithms, classrooms‟ mathematical thinking 

shifts to the embodiment of physical conceptions and actions: modeling a real-

life phenomenon; constructing the graph of a derivative function. Throughout 

classrooms‟ mathematical thinking processes in derivative, embodiment and 



 

 

 

 183 

visualization give specific meanings in varied contexts of differentiation while 

symbolism in algorithms and algebraic manipulations requires students to have 

computational power. Along with Tall (2008), these relationships give a cyclic 

parsimony to the between-classroom framework of mathematical thinking in 

derivative by accompanying an approach that interlinks embodiment, 

symbolism, and formalism. Another central result that framed this approach is 

that formal-axiomatic thinking, proceptual-symbolic thinking, and conceptual-

embodied thinking, and the indirect relations among the three mediate the links 

relative to the derivative concept and differentiation processes. Researchers‟ 

(Cavallaro et al., 2007) considerations for each type of mathematical thinking 

to become predominant on the others via mediation resonate with our results. 

By becoming reflectively engaged in each type of mathematical thinking, i.e., 

by becoming involved in justifications and applications of the derivative, 

visualization-mediated practices offer students a wide array of mathematical 

thinking in derivative. For instance, in relation to the items (2, 19, 25) provided 

in the Thinking-in-Derivative Test, in a classroom where students appropriately 

define the inflection point would be more successful in finding the product of 

the unknown variables in a function when the local extreme and the inflection 

points are given. Such classrooms would thereby more effectively interpret the 

graph of a second derivative function in order to identify its inflection points. 

The relationships among different types of mathematical thinking at the 

between-classroom level offers an integrated understanding that pointed 

knowledge of concepts and theorems more strongly forms the grounds for the 

acquisition of procedures and fosters the algebraic manipulations (Christou et 

al., 2005). This result might be partly attributable to the focus of university 

teaching of mathematics on formal-axiomatic and proceptual-symbolic 

thinking. Therefore, classrooms are better equipped to deal with those types of 

mathematical thinking in terms of linking within particular definitions (e.g., 

derivative), symbols (e.g., dy/dx), theorems (e.g., proof of Rolle‟s Theorem), 
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computations (e.g., derivative operations), and algebraic manipulations (e.g., 

syntax of Rolle‟s Theorem).  

Finally, the third goal of the present study was the exploration of so-

called cross-level effects, which are present when a within-classroom 

mathematical thinking construct proves to impact the relationship among two 

mathematical thinking constructs at the between-classroom level as well as 

when a between-classroom level mathematical thinking construct proves to 

impact the relationship among two mathematical thinking constructs at the 

within-classroom level (Baron & Kenny, 1986; James & Brett, 1984). All the 

cross-level effects in the present study implied that the magnitude of the 

relation between two mathematical thinking constructs at one level of analysis 

varies as a function of another mathematical thinking construct at the other 

level.  

The nested series of cross-level moderator models suggest that both 

lower-level and upper-level models fit the data reasonably well. Thus, it is 

appropriate to further decompose or probe the cross-level effects to better 

understand the structure of the relations at the within- and between-classroom 

levels (Aiken & West, 1991).  

The connotations of these cross-level effects are twofold. First, it is 

suggested that mathematical thinking needs to be studied in its educational 

context, which is characterized by relational phenomena that cannot be 

understood in terms of students independently. For undergraduate students 

attending different faculties, perhaps the most prominent educational context is 

their immediate classroom (Artigue, 2001). Although mathematical thinking 

has its origin at the student level of analysis, it may form a shared cognition or 

a collective climate at the classroom level. This bottom-up process of 

mathematical thinking posits to several theories that provide the theoretical 

underpinnings for the emergence of mathematical thinking as a classroom-level 

construct as well (Kozlowski & Klein, 2000a, 2000b). Sociocultural theory 

(Cobb, 1994; Yackel, Rasmussen, & King, 2000) argues that students use 
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knowledge gathered from others in their direct educational contexts to form 

processes in mathematical thinking. Given that students of the same classroom 

are exposed to the same instruction, they will possess shared enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking and form common 

processes regarding the general conceptual-embodied, proceptual-symbolic, 

and formal-axiomatic thinking practices in the classroom. Similarly, research 

on constructivist theory reveals that students learn from each other, via 

interactions with existing students in the classroom, the procedures dictating 

how mathematical thinking is generally carried out and how students‟ 

mathematical thinking is generally activated in the same classroom (von 

Glasersfeld, 1987). This type of thinking exchange takes place most frequently 

among students in the same classroom, thereby fostering the formation of 

relatively homogeneous mathematical thinking in the classroom. Second, 

students‟ mathematical thinking is influenced not only by his or her own 

enactive, iconic, algorithmic, algebraic, formal, and axiomatic thinking but also 

by the conceptual-embodied, proceptual-symbolic, and formal-axiomatic 

thinking of the classroom. As a result, conceptual-embodied, proceptual-

symbolic, and formal-axiomatic thinking, once formed as part of a between-

classroom context, will have top-down influences on students‟ enactive, iconic, 

algorithmic, algebraic, formal, and axiomatic thinking. In sum, in line with the 

above theories, the significant cross-level effects obtained in the present study 

support the use of classroom as an appropriate level to examine the existence 

of mathematical thinking as shared processes among students.  

 

 

5.2 CONCLUSION 

Beyond the well-researched phenomenon of mathematics achievement, 

mathematical thinking has received little attention within mathematics 

education research. Findings of the present study showed that mathematical 

thinking has a distinct factor structure at the within- and between-classroom 
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levels, and that significant relationships among different types of mathematical 

thinking are present at both levels.  

The application of multilevel structural equation modeling techniques 

to data from the multiple-choice Thinking-in-Derivative Test was revealing. 

Advocates of educational measurement and assessment have, at times, attacked 

multiple-choice tests as biased, discriminatory, or inadequate especially in 

testing higher-order mathematical thinking skills. The analyses reported in the 

present study provide little support and comfort to those critics in the field.  

The central point emerging from the analyses is that classroom matters 

when promoting the relationships among different types of mathematical 

thinking. Mathematical thinking was simultaneously examined as a composite 

of the relationships at the within- and between-classroom levels. Classrooms 

are complex systems, and mathematical thinking should be explored as a 

system in educational settings. Along with the direct and indirect effects, the 

cross-level interactions among different types of mathematical thinking showed 

that enactive, iconic, algorithmic, algebraic, formal, and axiomatic thinking in 

relation to the concept of derivative are differentially affected by facets of the 

classrooms‟ conceptual-embodied, proceptual-symbolic, and formal-axiomatic 

thinking as activated by students. This demonstrated that classrooms 

systematically differ from one another in their conceptual-embodied, 

proceptual-symbolic, and formal-axiomatic thinking, and that this variation can 

to a large extent be explained by students‟ enactive, iconic, algorithmic, 

algebraic, formal, and axiomatic thinking. The data also support the 

assumption that students‟ individual enactive, iconic, algorithmic, algebraic, 

formal, and axiomatic thinking is not only influenced by how he or she 

accesses to a particular type of mathematical thinking, but also by the 

composition of the classroom in terms of conceptual-embodied, proceptual-

symbolic, and formal-axiomatic thinking. This information is of particular 

value for instructors and mathematicians, for whom the cognitive well-being of 

their students should be a desired educational outcome in itself. 
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At the very least this study can serve to animate research in education to 

move beyond individual differences among students and beyond the 

conventional experimental and correlational research on student learning. The 

intent is for these multilevel structural equation modeling approaches to 

become more widely used and to further studies that investigate variance 

within- and between-classrooms. The vision is that these multilevel structural 

equation modeling approaches will provide a means for unifying 

methodologies to better understand the interactions of students as learners in a 

classroom, mathematical thinking relations as educational treatments, and 

classrooms as the contexts in which they occur. 

As mathematical thinking is a cognitive-intensive and contentious 

aspect of university learning, more research is clearly warranted into how 

mathematical thinking types affect students‟ performance – and into how 

mathematical thinking experiences in classroom settings influence learning in 

higher education. 

 

 

5.3 IMPLICATIONS 

Throughout this study two-level structural equation models were used 

to explore the factor structure of mathematical thinking at student and 

classroom levels and to investigate the relationships among different types of 

mathematical thinking in and across classrooms. Although complex, these two-

level models, nevertheless, are revealing and point to a number of directions 

for future research on  mathematical thinking, efforts that go beyond 

investigating individual differences among students or group differences 

among classrooms for that matter. 

Most importantly, the findings of the present study argue for 

methodological focus not only on individual student but also on collective 

classroom level. While the mechanisms of mathematical thinking must be 

investigated more thoroughly, particularly in terms of how mathematical 
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thinking is structured, significant differences across relationships indicate that 

the factor structure of mathematical thinking does matter. Thus, the results of 

the multilevel exploratory and confirmatory factor analyses offer some 

preliminary implications for mathematics education researchers. First, when a 

researcher is interested in the relevant dimensions of cognitive constructs at the 

classroom level, in order to compare classrooms with regard to their positions 

on the measures for classroom process variables (e.g., thinking, reasoning, and 

understanding) multilevel exploratory factor analysis should be considered. 

Second, researchers should use multilevel confirmatory factor analysis to test 

whether the structure of any cognitive construct differs in and across levels of 

analysis. Indeed, the same items can cluster differently at the within- versus 

between- levels of analysis. By statistical means of the multilevel confirmatory 

factor analysis researchers might allow their theory to dictate the two-level 

analyses they opt to perform, and not their statistical analyses determining their 

theory. Thus, this differentially clustering of items provides a methodology for 

systematical investigation of the robustness of measures at the within- and 

between-classroom levels. 

The results, with regard to the relationships among different types of 

mathematical thinking at the within- and between-classroom levels attest to the 

power of mathematical thinking at the university, call claims of teaching and 

learning effects at the undergraduate level, and emphasize the importance of 

different mathematical constructs both as outcome and mediator variables. In a 

sense, the two-level theoretical model identifies basic building blocks of 

mathematical thinking in calculus. The mathematical thinking model has the 

potential to inform mathematicians about the development of a thinking-

prompted calculus curricula by clarifying and providing working relationships. 

Evidence from the within-classroom level relationships, is the emergent trend, 

that overall, formal and algorithmic thinking gear other mathematical thinking 

types. This gives mathematicians the opportunity to understand how to 

introduce undergraduate students to factual information and computational 
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techniques in order to comprehensively teach all the facets of the six types of 

mathematical thinking in derivative. The mathematical thinking model also 

helps mathematicians to identify the purpose of the differentiation activities 

that are incorporated into the calculus curriculum from a connected 

perspective. This model gives mathematicians access to a viable range of in 

practice linkages across six types of mathematical thinking (e.g., the 

relationship between formal and algorithmic thinking), some of which had 

previously been accessible only in principle in calculus courses (e.g., the 

relationship between axiomatic and algebraic thinking). On the basis of the 

significant relationship between iconic and axiomatic thinking, for instance, a 

mathematician may design an instruction which facilitates proving 

(AXIOTHK) with effective utilization of visualizing (ICONTHK). Such an 

instruction may be designed to direct the attention of students to the visual 

content of a theorem statement, rather than solely to the theoretical structure of 

its proof. Thus, in their teaching, mathematicians may put forth logical 

essences and proof construction by manipulating both visual (ICONTHK) and 

theoretical (AXIOTHK) processes in an integrated manner. With this 

instruction, axiomatic thinking goes well beyond simple inspection of 

conjectures, principles, and/or postulates. Rather, it derives from iconic 

thinking with the incorporation of diagrams, tables, and/or graphs into the 

proving process. In the same vein, the significant relationship between iconic  

and algebraic thinking provides mathematicians with an instructional 

perspective that highlights algebraic thinking proceeds on the basis of explicit 

assumptions of theorems that, taken as a whole, apply to both hypothetical 

(ALGETHK) and visual (ICONTHK) processes. As the between-classroom 

relations in this study clearly show, conceptual-embodied, proceptual-

symbolic, and formal-axiomatic thinking can be used to enhance the role of 

embodiment, symbolism, and formalism in the classroom. The use of a cyclic 

approach may pose two questions that in essence a single issue: How can this 

approach best be integrated into the calculus curriculum as a whole, and how 
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can it best be used to promote mathematical thinking? The attractive and 

engaging techniques offered by mathematicians may raise the profile of 

mathematical thinking at the between-classroom level. In this regard, the 

curriculum designs and instructional methods can primarily take on from tasks 

that energize conceptual-embodied thinking, follow through tasks that mobilize 

formal-axiomatic thinking, and end up with tasks that prompt proceptual-

symbolic thinking. As is evident in the between-classroom relations 

mathematical thinking is not characterized by the replacement of one type of 

thinking by another that supposedly is “higher” or “more abstract”; rather it is 

characterized by the development and interlinking of different types of thinking 

that can develop alongside and in combination with one another. On the other 

hand, the cross-level interactions among mathematical thinking types presented 

in the context of students nested within classrooms can direct mathematicians 

attention to reconsider each individual students‟ mathematical thinking can 

carry a wealth of information about the broad spectrum of classroom‟s 

mathematical thinking or vice versa. The results of the upper-level mediation 

models suggest that formal-axiomatic thinking  is a key mediator of the within-

classroom relations. As such, measures of formal-axiomatic thinking may 

potentially be useful for identifying students who are likely to struggle in 

calculus and may require a specific intervention. Such intervention may need to 

include an amalgam that improves  defining and/or proving processes 

(FORMAXTHK), even during secondary school. Because of the strong 

mediation of formal-axiomatic thinking in within-classroom relations, 

interventions may need to focus on ways to make calculus more dependent on 

basic mathematical terminology and abstract mathematical theory. 

Furthermore, results of the lower-level mediation models demonstrate that 

some within-classroom factors minimally mediate the between-classroom 

relations, whereas some have strong mediator effects. For instance, algorithmic 

thinking is the strongest mediator of the relationship between formal-axiomatic 

and proceptual-symbolic thinking. This mediation may affect both students and 
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classrooms. It may be helpful, therefore, to teach formalism and symbolism in 

conjunction with computational techniques that target the mobilization of 

algorithmic thinking within the linkages between formal-axiomatic and 

proceptual-symbolic thinking. For instance, a useful teaching strategy may be 

to instruct students initially to access formal-axiomatic thinking to energize 

proceptual-symbolic thinking for formulating a solution plan that grounds on 

the basic concepts, theory, hypotheses, and algorithms and then, penetrate 

algorithmic thinking into this association by implementing technical 

procedures. Mathematicians and mathematics educators may also integrate this 

cross-level relationship into a measurement context to develop useful 

diagnostic tools for determining why students have deficits in connecting 

formal-axiomatic and proceptual-symbolic thinking, and thus for determining 

what type of mathematical thinking (in this case algorithmic thinking that 

mobilizes computational fluency) is needed to address these deficits.  In this 

vein, to some extent, the norms of enhancing authentic mathematical tasks are 

not well developed in both secondary school and university classrooms. One of 

the challenges that face mathematics education is to develop worthwhile tasks 

that promote students‟ mathematical thinking and thus foster classroom‟s 

mathematical thinking. Drawing on this connection, mathematics education 

researchers may develop multiple-choice and/or open-ended question pools to 

construct item banks and/or testlets including tasks that challenge students to 

demonstrate fruitful mathematical thinking. 

Collectively, the harmony of the two-level relationships as well as the 

the interactions mainly provide an important avenue for the mathematicians 

and mathematics educators whose instructional focus is on the teaching and 

learning of advanced mathematics. However, this harmony further orchestrates 

with the educational aims of secondary school mathematics teachers whose 

teaching is directed towards precalculus concepts and procedures. On the side 

of secondary education, the findings again support the idea that mathematical 

thinking types lie on a continuum and influence one another and hence 
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elucidate the role that individual student‟s mathematical thinking in a specific 

task plays as an underlying mechanism in classroom‟s mathematical thinking. 

Thus, the findings of this research have two main implications for secondary 

mathematics education. First, developing educational approaches and tasks that 

allow and trigger the interaction among different types of mathematical 

thinking can enhance, factually, conceptually and procedurally, the learning 

outcomes of young students‟ problem solving in precalculus subjects. Given 

the traditionally and internationally highlighted need to support students to 

construct a well-connected web of mathematical thinking, tasks such as the 

ones used in this research that enable students to apply more than one type of 

mathematical thinking and possess into the connections among these different 

types of mathematical thinking can be highly beneficial in helping secondary 

students develop their understanding of the derivative concept and the 

differentiation process. A second implication of this study is that educational 

activities that offer secondary students the opportunity to work on and 

elaborate different types of mathematical thinking that brings overt thinking 

aspects of a task into interaction, hence enhancing students‟ mathematical 

thinking development. As a set, in addition to extending the research literature 

on students‟ thinking in derivative, this research may enhance information 

available to curriculum designers. Specifically, the two-level relationships may 

enable students‟ mathematical thinking to be described and delineated in a 

coherent and systematic manner. Taking into consideration that mathematical 

thinking types do improve one another (i.e., two-level relationships, cross-level 

interactions), this model offers mathematics teachers and instructors a 

framework of students‟ mathematical thinking while solving various formats of 

derivative tasks. This model can thus be used as a tool in mathematics teachers‟ 

instruction for organizing instruction and building mathematical tasks, in 

general, and constructing derivative tasks, in partial. Taken together, these 

implications further encourage reflection on both educational and instructional 

approaches in the transition from secondary school to university.  
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The constructivist theory of mathematical thinking (Edwards, 

Dubinsky, & McDonald, 2005) suggests that high-quality instruction fosters 

the development of students‟ higher-order enactive, iconic, algorithmic, 

algebraic, formal, and axiomatic thinking and thus enhances the classroom‟s 

experience of conceptual-embodied, proceptual-symbolic, and formal-

axiomatic thinking. The present results supports this hypothesis in the 

derivative context, emphasizing that – in order to trigger sophisticated rather 

than naive mathematical thinking in mathematics– instructors need to set 

effective tasks that are well integrated into lectures, that reinforce classroom 

thinking. The distinction among different types of mathematical thinking at the 

within- and between-classroom levels illuminates alternative ways in which 

useful instructional designs for calculus courses could be implemented. One of 

the challenges that face higher education is to develop worthwhile tasks that 

require students to effectively employ heuristics in order to maximize the 

chances that they arrive at the best possible solution. Fruitful learning areas 

might be created by the inclusion of thinking-specific tasks that primarily 

activates students‟ thinking about definitions/symbols/facts (formal thinking), 

continues through about procedures/algorithms (algorithmic thinking), thinking 

about real-life phenomena (enactive thinking), and thinking about graphical 

representations (iconic thinking), and finally outlines thinking about algebraic 

manipulations (algebraic thinking) together with thinking about proofs/proving 

(axiomatic thinking). An issue that needs to be followed up in classroom 

contexts concerns the specific sequence of instructional tactics to be presented 

to undergraduate students. The cyclic interrelationships at the between-

classroom level established in the present study underline that none of the 

thinking types are sufficient on their own. For instance, the leap to fundamental 

definitions and theorems (formal-axiomatic thinking) can only be achieved 

when algorithmic and/or algebraic manipulations (proceptual-symbolic 

thinking) are enhanced with visual constructions and interpretations 

(conceptual-embodied thinking) or vice versa. Henceforth, the combination of 
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thinking types at the within- and between-classroom levels casts light on the 

synthesis of taking into account the thinking capabilities of the student as an 

individual and as a member of the classroom, and in turn brings the 

engagement in sophisticated ways of mathematical thinking in calculus. From 

an assessment perspective, the two-level model appears to be valuable in 

providing mathematicians with useful background on students‟ mathematical 

thinking and in enabling them to monitor general growth in a classroom‟s 

mathematical thinking. The viability of using this model for informing 

mathematical thinking in regular classroom situations provides opportunities 

for fine-tuning the relationships among different types of mathematical 

thinking and making these relationships more effective for generating 

instructional programs that build on the mathematical thinking portrait of 

students and classrooms.  

Whilst a variety of relationships at the within- and between-classroom 

levels were identified, at the between-classroom level, these are largely 

relationships beyond the control of the classroom (namely the universities 

and/or faculties). Nonetheless, these relationships need to be considered by 

policy-makers. Furthermore, identifying these relationships helps to explain the 

overall mathematical thinking and to alert those in authority as to the effect of 

different types of mathematical thinking on students‟ achievement in 

mathematics at the university. Furthermore, with reform in calculus classes 

with a concentrated focus on the development of mathematical thinking, 

educational practioners and department chairs can become deeply concerned 

with instructional methods appropriate for both students and classrooms. The 

two-level relationships in the present study require a serious commitment to 

restructuring calculus classes that different types of mathematical thinking 

should be provoked to ensure success in advanced mathematics courses. More 

specifically, issues such as faculty affiliation truly may be more salient in some 

classrooms than in others. Bingolbali and Ozmantar (2009) point out, is the fact 

that faculty affiliation has, by and large, certain connotations that send signals 
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to the structure of calculus courses as to what mathematics is useful or 

appropriate for students. Lecturers might make deliberate amendments to their 

instructions and put more emphasis on certain aspects of the same concepts in 

regard to the students of different faculties. For instance, while teaching the 

rules of differentiation, a lecturer might put more emphasis on proving the 

chain rule at Faculty of Arts and Sciences whilst at Faculty of Engineering on 

technically applying the procedure beneath the chain rule to evaluate the 

derivative. If university personnel can do more to create equal opportunities for 

students, then students might tend to experience higher levels of mathematical 

thinking. That is, for instance some students from Faculty of Education who do 

not feel supported in those environments where mathematical thinking is likely 

to be less fostered may experience additional cognitive rejection and 

achievement problems. 

Finally, the present research is description of some sort as it provides 

alternative accounts of enactive, iconic, algorithmic, algebraic, formal, and 

axiomatic thinking. More than focusing on the well-known types such as 

conceptual-embodied, proceptual-symbolic, and formal-axiomatic thinking, it 

underlines the non-transparency of embodiment, symbolism, and formalism; it 

draws attention back to the roots of mathematical thinking (e.g., Bruner, 1966; 

Fischbein, 1983) and that, it tends to look through in search of a 

comprehensible framework of mathematical thinking. Henceforth, this study 

provides a more detailed way to look at how descriptions of mathematical 

thinking types are constructed and deployed to specify certain characteristics of 

each thinking type. Accordingly, mathematics education researchers can look 

for and examine in any particular mathematics domain to see what these 

descriptions make possible and what alternative descriptions of mathematical 

thinking can be provided. In the guidance of this study, researchers may ask 

themselves: (a) How have the mathematical thinking types in this study been 

constructed? Could alternative types have been constructed? (b) What 

inferences about mathematical thinking do these descriptions make possible? 
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(c) What kinds of descriptions appear in the categorization of mathematical 

thinking types? Where do this categorization come from? What alternative 

forms of categorization could be used? What difference would these alternative 

categorizations make? (d) How do these questions combine to construct a 

different multilevel model of mathematical thinking? As previously mentioned, 

the above-highlighted questions are likely to be familiar to mathematics 

education researchers. They are not, however, the only people interested in 

different types of mathematical thinking; they are also of interest to 

mathematics teachers, mathematics lecturers, government advisors or textbook 

writers. Advanced mathematics curricula, for example, often include 

descriptive lists of higher-order thinking skills that students should acquire, 

thereby describing mathematical thinking as something that can be 

distinguished and categorized into different types to which teachers and/or 

lecturers can be held accountable. In this case, this study offers a starting point 

for how such a description and categorization might be put into educational 

practice. 

 

5.4 LIMITATIONS 

With its large sample size, hierarchical dataset, and subject specificity, 

the present study provides well-founded insights into the factor structure of 

mathematical thinking at the within- and between-classroom levels and the 

relationships among different types of mathematical thinking at these levels. 

However, there are some limitations that should be addressed in future studies.  

It is important to note that even though the present study examined 

certain types of mathematical thinking as dependent variables and some others 

as predictors, the cross-sectional nature of the data does not permit to infer 

cause-effect relationships. Furthermore, the relationships among different types 

of mathematical thinking was investigated in the calculus classroom only and 

specifically on the derivative concept. It will be of importance to examine these 

hypotheses in other subject domains (e.g., numerical analysis) and concepts 
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(e.g., interpolation). On the other hand, a 30 item multiple-choice test was the 

sole source of information about students‟ mathematical thinking. Although 

multiple-choice tests provide us easy-to-measure student learning and content 

(Haladyna, 1994), their use presents a risk of guessing. That is, students may 

choose the correct answer even if they do not access to the mathematical 

thinking needed to reach a solution. In view of presenting students enough 

number of test items (n = 30) and including sufficient number of distracters for 

these items (options = 4), however, it was considered the chance of a student 

guessing the right answer to be decreased. 

Although this investigation was based on two very strong data sets 

including independent samples, the data used from the Thinking-in-Derivative 

Test was limited to university students in particular regions attending. Similar 

studies should be conducted in various provinces to shed light on the 

relationships among different types of mathematical thinking at the within- and 

between-classroom levels.  

Mathematical thinking in classrooms is a complex phenomenon, and 

the nature of mathematical thinking and, in all likelihood, its stimulation across 

grade levels might differ markedly. The present study used data from second, 

third, and fourth graders. More studies examining the relationships among 

different types of mathematical thinking should involve first year university 

students. This would provide an indepth understanding of what characteristics 

of mathematical thinking exert at which grade levels, and in what forms of 

relationships. Moreover, the proposed models were tested for the data from 

students at the undergraduate level. There is always the possibility that the data 

from elementary and/or secondary students might affect the pattern of results at 

the within-classroom level as well as at the between-classroom level.  

In the present study only two levels of analysis were used to explore the 

relationships among different types of mathematical thinking. From a 

theoretical point of view, however, one would probably argue that in 

educational settings classrooms are the natural frame of reference for students‟ 
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mathematical thinking (e.g., O‟Connell & McCoach, 2008; Hill & Goldstein, 

1998). From a methodological point of view, it is preferable to include all 

substantial levels of analysis in multilevel modeling (e.g., Raudenbush & Byrk, 

2002). Thus, the present study would have been even stronger if grade level 

and/or faculty have been used as additional units in the hierarchical sampling 

process. However, this three-level modeling approach would make the study 

considerably more complex given that applications of three-level modeling are 

fairly recent in educational research and software programs providing the use 

of this technique are still developing.  

 

 

5.5 RECOMMENDATIONS FOR FUTURE RESEARCH 

Mathematical thinking in higher education is an issue of tremendous 

importance for students, classrooms, and lecturers. The present study 

significantly extends previous mathematical thinking research by focusing on 

the two-level structural relationships among different types of mathematical 

thinking. As a consequence of the pattern of results, the following 

recommendations could be inferred. The present study shows that it is possible 

to separate within- and between-classroom variance in responses to 

mathematical thinking items. Identifying the university as a source of variance 

(e.g., students nested within classrooms nested within universities), future 

research may incorporate more than two levels of nesting. Moreover, 

multilevel techniques are not limited to cross-sectional data but can be used in 

longitudinal data where cluster sampling has been employed. This study 

encountered some theoretical issues that lend support to the use of multilevel 

modeling techniques and specification of the direct and indirect effects of the 

constructs at both levels. Therefore, future research requires the cross-

validation and/or replication of this present study with any multilevel analysis 

in combination with multiple indicators-multiple causes (MIMIC) and 

multiple-group approaches. Meanwhile, qualitative studies are important to 
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better understand students‟ different types of mathematical thinking in 

educational settings. For example, interviews could be conducted with students 

to better understand the nature and function of mathematical thinking in these 

settings, as their progress in different types of mathematical thinking may be 

influenced by classroom differences relating to significant others‟ 

mathematical thinking. Analogously, a sense of understanding may be gathered 

through conducting classroom observations to detect individual and collective 

development in different types of mathematical thinking.  

With within-classroom and between-classroom effects simultaneously 

accounted for, certain factors at the student and classroom levels might 

significantly contribute to the explanation of variance in different types of 

mathematical thinking. Identifying the predictors of mathematical thinking at 

the within- and between-classroom levels is important for future research to 

better address the pathways of mathematical thinking in educational settings. In 

addition to the call for investigating the influence of affective factors (e.g, 

metacognition, self-efficacy, self-regulation) on mathematical thinking 

(O‟Connell & McCoach, 2008) personal variables such as gender, 

socioeconomic status or institutional factors such as faculty affiliation and 

grade level can be introduced to the multilevel models of mathematical 

thinking. Future research should examine these factors more specifically as 

possible predictors of mathematical thinking that may help target within- and 

between-classroom interventions more effectively. It is clear that factors at 

within- and between-classroom levels should be assessed when examining 

different aspects of mathematical thinking and developing initiatives to 

enhance both students‟ and classrooms‟ mathematical thinking.  

In line with the factor structure of mathematical thinking at the within- 

and between-classroom levels, the present study employed a cross-level 

multilevel model. However, it is important to realize that the application of 

multilevel exploratory factor analysis is partly subjective in nature. Due to the 

exploratory decisions that researchers make in order to select the most 
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appropriate factor solution, independent researchers might come to different 

results at the within- and between-classroom levels. Therefore, future 

researchers may choose to estimate a homologous multilevel model in which 

relationships among variables hold at both levels of analysis. For instance, 

researchers may postulate the existence of shared mathematical thinking 

constructs and thus use the aggregated measures of within-classroom 

constructs at the between-classroom level (e.g., formal thinking at the within-

classroom level and average formal thinking at the between-classroom level). 

Such model specifications are valuable in that they allow the researchers to 

generalize the mathematical thinking constructs and functional interrelations 

linking these constructs across different levels of the educational system. 

The student and the classroom become face-to-face in an instructional 

encounter mathematical learning can be characterized as participating in 

mathematical thinking practices (Rasmussen, Zandieh, King, & Teppo, 2005). 

Exhaustively, mathematical thinking types at the within-classroom level and at 

the between-classroom level are tendered as important examples of such 

practices. Closely related to the direct/indirect/cross-level effects of 

mathematical thinking constructs, the present study can guide research in the 

overutilization of mathematical thinking types as centerpieces around which to 

craft different item formats (e.g., open response, true/false).   

Furthermore, future studies can provide further insights into the 

development of mathematical thinking and pinpoint practical implications for 

high-quality mathematical thinking by examining which characteristics of 

mathematical tasks enhance the experience of mathematical thinking and 

which elicit ineffective mathematical thinking. Research on general 

instructional quality in mathematics has shown cognitively activating 

mathematical tasks to be positively linked to achievement (Henningsen & 

Stein, 1997; Stein, Grover, & Henningsen, 1996). Similar patterns of results 

might be expected to emerge between mathematical thinking constructs and 

mathematical tasks.  



 

 

 

 201 

Another avenue on which future researchers might consider embarking 

is the mathematics education community has now a new, well-validated 

measure of mathematical thinking. With its very multidimensional nature, the 

Thinking-in-Derivative Test measures enactive, iconic, algorithmic, algebraic, 

formal, and axiomatic thinking. Future research should consider adapting this 

measure to test whether the interrelationships differs in other cognitive 

domains such as mathematical reasoning, understanding, and knowledge.  

In conclusion, this research represents the first known attempt at taking 

a cross-level, student-classroom approach to the study of mathematical 

thinking. The data provide a promising pattern of results that will hopefully be 

explored by researchers integrating longitudinal and/or growth models. It 

would be important to conduct longitudinal studies that follow cohorts of 

students to examine how they progress in different types of mathematical 

thinking over time, and how the relationships among different types of 

mathematical thinking may be influenced by a broad spectrum of variables, 

from exogenous factors to students and to classrooms at the within- and 

between-classroom levels. Henceforth, experimental studies are needed to 

better highlight the issue of causation, thereby complementing longitudinal 

studies. Given the robustness of mathematical thinking on highly relevant 

outcomes at the university (Tall, 2004), this research continues to have direct 

implications on how students and classrooms interact in terms of the 

relationships among different types of mathematical thinking.  
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APPENDIX A 

 

 

A. THINKING-IN-DERIVATIVE TEST 

 

 

 

Üniversiteniz: 

Bölümünüz: 

Sınıfınız: 

Ağırlıklı Not Ortalamanız:  

Lise Matematik Başarınız:             1 (   )      2 (   )      3 (   )      4 (   )     5(   ) 

Mezun Olduğunuz Lise Türü:       Devlet (    )   Özel (    )   Anadolu (    )    

                                                          Fen (    )    Anadolu Öğretmen (    ) 

Cinsiyet:                   Kız (   )    Erkek (   ) 

 

Bu test türev kavramı ile ilgili 30 sorudan oluĢmaktadır. Her sorunun tek doğru 

cevabı vardır. Doğru olduğunu düĢündüğünüz cevabınızı iĢaretleyiniz. Lütfen 

her soruyu cevaplamaya dikkat ediniz. TeĢekkürler!   

 

SPECIMEN ITEM FOR FORMAL THINKING 

 

Türev sembolü aĢağıdakilerden hangisidir? 

 

     A) 
y

x




       B) 

y

x




       C)  

d

dx
      D) 

y

x




       E) 

dy

dx  
 

 

SPECIMEN ITEM FOR ALGEBRAIC THINKING 

 

        :[6,15]f R Ģeklinde tanımlanan f fonksiyonu için f(6)= -2 ve '( ) 10f x   dur.  

         Bu fonksiyon [6,15] aralığında Ortalama Değer Teoremi‟nin koĢullarını  

         sağladığına göre aĢağıdakilerden hangisi doğrudur? 

I. f(15) in en büyük değeri 88 dir. 

II. f fonksiyonunun [6, 15] aralığındaki ortalama değeri 45 dir. 

III. f fonksiyonu [6, 15] aralığında 45 değerini en az bir kez alır. 

 

A) Yalnız I      B) Yalnız II      C) I ve III      D) II ve III     E) I, II, ve III 
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SPECIMEN ITEM FOR AXIOMATIC THINKING 

 

“Rolle Teoremi:  f: [a,b]R fonksiyonu sürekli ve her x Є (a,b) noktasında 

türevlenebilir olsun. Eğer f(a) = f(b) ise (a,b) aralığında, (c) = 0 olacak 

Ģekilde en az bir c noktası vardır.” Teoremi ile ilgili olarak aĢağıdaki 

çıkarımlardan hangisi doğrudur? 

 

A) f fonksiyonunun (a,b) aralığında birden çok kökü vardır. 

B) f fonksiyonunun (a,b) aralığında en az bir kritik noktası vardır. 

C) f fonksiyonuna (c, f(c)) noktasında çizilen teğet x eksenine diktir. 

D) f fonksiyonunun (a,b) aralığında birinci türevi her zaman pozitif veya 

her zaman negatiftir. 

E) f fonksiyonuna (a,b) aralığında çizilen kiriĢ doğrusunun eğimi ile teğet 

doğrusunun eğimi birbirinden farklıdır.      

 

 

 

SPECIMEN ITEM FOR ICONIC THINKING 

 

 
Yukarıdaki Ģekilde, d doğrusu f fonksiyonunun grafiğine A noktasında teğettir. 

h(x)= x. f(x) olduğuna göre,  aĢağıdakilerden hangisidir? 

 

A) -4            B) -2            C) 0            D) 2            E) 7 
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SPECIMEN ITEM FOR ALGORITHMIC THINKING 

 

       olduğuna göre,  türev fonksiyonunun x= 1 için 

değeri aĢağıdakilerden hangisidir? 

 

A) .             B) .         C) .       D) .               E) .  

 

 

SPECIMEN ITEM FOR ENACTIVE THINKING 

 

 
Yukarıdaki Ģekilde dikdörtgen biçimindeki bir bahçenin [AD] kenarının tümü 

ile [AB] kenarının yarısına taĢ duvar örülmüĢ, kenarlarının geriye kalan 

kısmına bir sıra tel çekilmiĢtir. Kullanılan telin uzunluğu 120 m olduğuna göre, 

bahçenin alanı en fazla kaç m
2
 olabilir? 

 

A) 1200        B) 1250      C) 2300     D) 2350    E) 2400 
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APPENDIX B 

 

 

B. DESCRIPTIVE STATISTICS OF SAMPLE 1 

 

 

 

Table B.1 Descriptive statistics of Sample1 

 

 Cumulative Grade Point Average  

Grade Level 1  2 3 4 Total 

1 28 201 159 27 415 

2 3 70 68 13 154 

3 6 123 175 13 317 

4 0 58 133 22 213 

5 - - - - - 

Total 37 452 535 75 1099 

Prior 

Mathematics 

Achievement 

     

1 4 7 2 0 13 

2 3 61 73 5 142 

3 10 121 89 9 229 

4 14 124 135 19 292 

5 6 139 236 42 423 

Total 37 452 535 75 1099 
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APPENDIX C 

 

 

B. . DESCRIPTIVE STATISTICS OF SAMPLE 2 

 

 

 

Table C.1 Descriptive statistics of Sample2 

 

 

 
 Cumulative Grade Point Average  

Grade Level 1  2 3 4 Total 

1 - - - - - 

2 30 450 389 55 924 

3 26 428 407 50 911 

4 9 239 300 41 589 

5 - - - - - 

Total 65 1117 1096 146 2424 

Prior 

Mathematics 

Achievement 

     

1 4 10 10 4 28 

2 6 89 73 6 174 

3 14 196 147 17 374 

4 23 404 389 43 859 

5 18 418 477 76 989 

Total 65 1117 1096 146 2424 
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APPENDIX D 

 

 

DTHE LISREL INPUT FILE FOR THE COMMON-FACTOR MODEL 

OF THE TDT 

 

 
 

Real Data Set 

 

Observed Variables 

QUES1 QUES2 QUES3 QUES4 QUES5 QUES6 QUES7 QUES8 QUES9  

QUES10 QUES11 QUES12 QUES13 QUES14 QUES15 QUES16 QUES17 

QUES18  

QUES19 QUES20 QUES21 QUES22 QUES23 QUES24 QUES25 QUES26 

QUES27 QUES28 QUES29 QUES30 

Correlation matrix from File: tdt.cor 

Asymptotic Covariance Matrix from File: tdt.acm 

Sample Size = 766 

Latent Variables 

Think 

Relationships 

QUES2 QUES3 QUES4 QUES6 QUES7 QUES8 QUES9 QUES10 QUES11 = 

Think  

QUES12 QUES13 QUES14 QUES15 QUES21 QUES22 QUES23 QUES25 

QUES26 = Think 

QUES16 QUES17 QUES18 QUES19 QUES20 QUES24 QUES27 QUES28 

QUES30 = Think 

QUES1 = 1*Think 

Path Diagram 

Admissibility Check = 1000 

Iterations = 5000 

Method of Estimation: Diagonally Weighted Least Squares 

End of problem 
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APPENDIX E 

 

 

E. THE LISREL INPUT FILE FOR THE THREE-FACTOR MODEL OF 

THE TDT 

 

 

 

Real Data Set 

 

Observed Variables 

QUES1 QUES2 QUES3 QUES4 QUES5 QUES6 QUES7 QUES8 QUES9  

QUES10 QUES11 QUES12 QUES13 QUES14 QUES15 QUES16 QUES17 

QUES18  

QUES19 QUES20 QUES21 QUES22 QUES23 QUES24 QUES25 QUES26 

QUES27 QUES28 QUES29 QUES30 

 

Correlation matrix from File: tdt.cor 

Asymptotic Covariance Matrix from File: tdt.acm 

Sample Size = 766 

Latent Variables 

Formaxthink Procsymthink Concembthink  

Relationships 

QUES2 QUES3 QUES4 QUES6 QUES7 QUES8 QUES9 QUES10 QUES11 = 

Formaxthink 

QUES13 QUES14 QUES15 QUES21 QUES22 QUES23 QUES25 QUES26 = 

Procsymthink 

QUES17 QUES18 QUES19 QUES20 QUES24 QUES27 QUES28 QUES30 

=Concembthink 

 

QUES1 = 1*Formaxthink 

QUES12 = 1*Procsymthink 

QUES16 = 1*Concembthink 

 

Set Error Covariance Between QUES6 and QUES2 Free 

Set Error Covariance Between QUES6 and QUES1 Free 

Set Error Covariance Between QUES2 and QUES1 Free 
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Set Error Covariance Between QUES30 and QUES15 Free 

Set Error Covariance Between QUES10 and QUES4 Free 

Set Error Covariance Between QUES8 and QUES1 Free 

Path Diagram 

Admissibility Check = 1000 

Iterations = 5000 

Method of Estimation: Diagonally Weighted Least Squares 

End of problem 
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APPENDIX F 

 

 

FTHE LISREL INPUT FILE FOR THE NULL MODEL OF THE TDT 

 

 

 

Real Data Set 

Observed Variables 

QUES1 QUES2 QUES3 QUES4 QUES5 QUES6 QUES7 QUES8 QUES9  

QUES10 QUES11 QUES12 QUES13 QUES14 QUES15 QUES16 QUES17 QUES18  
QUES19 QUES20 QUES21 QUES22 QUES23 QUES24 QUES25 QUES26 QUES27 

QUES28 QUES29 QUES30 

Correlation matrix from File: tdt.cor 
Asymptotic Covariance Matrix from File: tdt.acm 

Sample Size = 766 

Latent Variables 
Enacthink Iconthink Algethink Algothink Formthink Axiothink  

Relationships 

QUES2 QUES3 QUES4 QUES5 QUES6 = Formthink 

QUES8 QUES9 QUES10 QUES11 = Axiothink 
QUES13 QUES14 QUES15 = Algethink 

QUES17 QUES18 QUES19 QUES20 = Iconthink 

QUES22 QUES23 QUES25 QUES26 = Algothink 
QUES27 QUES28 QUES29 QUES30 = Enacthink 

QUES1 = 1* Formthink 

QUES7 = 1* Axiothink 
QUES12 = 1* Algethink 

QUES16 = 1* Iconthink 

QUES21 = 1* Algothink 

QUES24 = 1* Enacthink 
Let Correlation Between Latent Variables Equal to 0. 

Let Correlation Between Observed Variables Equal to 0. 

Let Correlation Between Latent Variables and Observed Variables Equal to 0. 
Path Diagram 

Admissibility Check = 1000 

Iterations = 5000 

Method of Estimation: Diagonally Weighted Least Squares 
End of problem 
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APPENDIX G 

 

 

G. THE LISREL INPUT FILE FOR THE TARGET MODEL OF THE 

TDT 

 

 

 

Real Data Set 
Observed Variables 

QUES1-QUES30 

Correlation matrix from File: tdt.cor 
Asymptotic Covariance Matrix from File: tdt.acm 

Sample Size = 766 

Latent Variables 
Enacthink Iconthink Algethink Algothink Formthink Axiothink  

Relationships 

QUES2 QUES3 QUES4 QUES5 QUES6 = Formthink 

QUES8 QUES9 QUES10 QUES11 = Axiothink 
QUES13 QUES14 QUES15 = Algethink 

QUES17 QUES18 QUES19 QUES20 = Iconthink 

QUES22 QUES23 QUES25 QUES26 = Algothink 
QUES27 QUES28 QUES29 QUES30 = Enacthink 

QUES1 = 1*Formthink 

QUES7 = 1*Axiothink 
QUES12 = 1*Algethink 

QUES16 = 1*Iconthink 

QUES21 = 1*Algothink 

QUES24 = 1*Enacthink 
Set Error Covariance Between QUES26 and QUES2 Free 

Set Error Covariance Between QUES21 and QUES10 Free 

Set Error Covariance Between QUES6 and QUES5 Free 
Set Error Covariance Between QUES12 and QUES5 Free 

Set Error Covariance Between QUES15 and QUES1 Free 

Set Error Covariance Between QUES5 and QUES4 Free 

Set Error Covariance Between QUES25 and QUES6 Free 
Set Error Covariance Between QUES30 and QUES27 Free 

Set Error Covariance Between QUES23 and QUES2 Free 

Set Error Covariance Between QUES23 and QUES5 Free 
Set Error Covariance Between QUES4 and QUES1 Free 
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Set Error Covariance Between QUES13 and QUES1 Free 
Set Error Covariance Between QUES18 and QUES2 

Path Diagram 

Method of Estimation: Diagonally Weighted Least Squares 
End of problem 
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APPENDIX H 

 

 

THE TESTFACT4 INPUT FILE FOR RELIABILITY ANALYSIS OF 

THE TDT 

 

 
 

>TITLE 

THINKING IN DERIVATIVE TEST  

               ITEM AND TEST STATISTICS 

>PROBLEM  NITEMS=30, RESPONSE=5; 

>NAMES      QUES1, QUES2, QUES3, QUES4, QUES5, 

            QUES6, QUES7, QUES8, QUES9, QUES10, 

            QUES11, QUES12, QUES13, QUES14, QUES15, 

            QUES16, QUES17, QUES18, QUES19, QUES20 

            QUES21, QUES22, QUES23, QUES24, QUES25, 

            QUES26, QUES27, QUES28, QUES29, QUES30; 

>RESPONSE   'A','B','C','D','E'; 

>KEY        EBADCEBDEBBACACBAEAEDCDEADABEC; 

>RELIABIITY KR20; 

>PLOT       PBISERIAL, CRITERION, FACILITY; 

>TETRACHORIC NDEC=3, LIST; 

>SAVE CORRELAT, FSCORES 

>INPUT      NIDCHAR=7, SCORES, FILE='MLT.DAT'; 

(7A1,T11,30A1) 

>STOP 
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APPENDIX I 

 

 

DESCRIPTIVE STATISTICS OF THE ITEMS OF TDT FOR SAMPLE1 

 

 

 

Table I.1 Descriptive statistics of the items of TDT for Sample1 

 

 

 

Item Min Max Mean SD Skewness Kurtosis 

QUES1 0 1 .48 .50 .06 1.99 

QUES2 0 1 .56 .49 -.25 -1.94 

QUES3 0 1 .59 .49 -.34 -1.88 

QUES4 0 1 .61 .48 -.43 -1.81 

QUES5 0 1 .79 .40 -1.43 .06 

QUES6 0 1 .56 .49 -.25 -1.93 

QUES7 0 1 .60 .49 -.41 -1.82 

QUES8 0 1 .49 .50 .04 -2.00 

QUES9 0 1 .68 .46 -.77 -1.40 

QUES10 0 1 .46 .49 .17 -1.97 

QUES11 0 1 .59 .49 -.36 -1.87 

QUES12 0 1 .48 .50 .09 -1.99 

QUES13 0 1 .48 .50 .09 -1.99 

QUES14 0 1 .57 .49 -.27 -1.92 

QUES15 0 1 .56 .49 -.22 -1.95 
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Table I. 1 (continued) 

 

 

 

Item Min Max Mean SD Skewness Kurtosis 

QUES16 0 1 .59 .49 -.38 -1.85 

QUES17 0 1 .50 .50 -.01 -2.00 

QUES18 0 1 .62 .48 -.48 -1.76 

QUES19 0 1 .65 .47 -.61 -1.62 

QUES20 0 1 .64 .48 -.57 -1.66 

QUES21 0 1 .63 .48 -.54 -1.70 

QUES22 0 1 .64 .48 -.58 -1.66 

QUES23 0 1 .65 .47 -.60 -1.63 

QUES24 0 1 .59 .49 -.35 -1.87 

QUES25 0 1 .56 .49 -.24 -1.94 

QUES26 0 1 .54 .49 -.16 -1.97 

QUES27 0 1 .49 .50 .02 -2.00 

QUES28 0 1 .59 .49 -.37 -1.86 

QUES29 0 1 .47 .49 .12 -1.98 

QUES30 0 1 .62 .48 -.47 -1.77 
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APPENDIX J 

 

 

DESCRIPTIVE STATISTICS OF THE ITEMS OF TDT FOR SAMPLE2 

 

 

 

Table J.1 Descriptive statistics of the items of TDT for Sample2 

 

 

 

Item Min Max Mean SD Skewness Kurtosis 

QUES1 0 1 .49 .50 .01 -2.01 

QUES2 0 1 .53 .49 -.12 -1.98 

QUES3 0 1 .49 .50 .01 -2.00 

QUES4 0 1 .57 .49 -.29 -1.91 

QUES5 0 1 .83 .37 -1.77 1.13 

QUES6 0 1 .52 .49 -.09 -1.99 

QUES7 0 1 .64 .47 .60 -1.63 

QUES8 0 1 .48 .49 .06 -1.99 

QUES9 0 1 .73 .44 -1.06 -.85 

QUES10 0 1 .42 .49 .30 -1.91 

QUES11 0 1 .55 .49 -.21 -1.95 

QUES12 0 1 .45 .49 .19 -1.96 

QUES13 0 1 .45 .49 .19 -1.95 

QUES14 0 1 .55 .49 -.22 -2.00 

QUES15 0 1 .51 .49 -.04 -1.91 
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Table J.1 (continued) 

 

 

 

Item Min Max Mean SD Skewness Kurtosis 

QUES16 0 1 .57 .49 -.29 -1.93 

QUES17 0 1 .43 .49 .26 -1.90 

QUES18 0 1 .57 .49 -.30 -1.51 

QUES19 0 1 .66 .47 -.69 -1.81 

QUES20 0 1 .60 .48 -.43 -1.77 

QUES21 0 1 .61 .48 -.47 -1.77 

QUES22 0 1 .61 .48 -.47 -1.77 

QUES23 0 1 .65 .47 -.65 -1.56 

QUES24 0 1 .58 .49 -.36 -1.87 

QUES25 0 1 .55 .49 -.21 -1.95 

QUES26 0 1 .48 .49 .05 -1.99 

QUES27 0 1 .49 .50 -.00 -2.00 

QUES28 0 1 .60 .48 -.41 -1.82 

QUES29 0 1 .46 .49 .15 -1.97 

QUES30 0 1 .57 .49 -.28 -1.92 
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APPENDIX K 

 

 

PERCENTAGE FLOOR AND CEILING EFFECTS OF THE ITEMS OF 

TDT FOR SAMPLE 1 

 

 

Table K.1 Percentage floor and ceiling effects of items of TDT for Sample 1 

 

 
Item Min Max Mean SD %incorrect %correct 

QUES1 0 1 .48 .50 51.7 48.3 
QUES2 0 1 .56 .49 43.8 56.2 

QUES3 0 1 .59 .49 41.5 58.5 

QUES4 0 1 .61 .48 39.3 60.7 
QUES5 0 1 .79 .40 20.8 79.2 

QUES6 0 1 .56 .49 43.6 56.4 

QUES7 0 1 .60 .49 39.8 60.2 

QUES8 0 1 .49 .50 51.0 49.0 
QUES9 0 1 .68 .46 32.0 68.0 

QUES10 0 1 .46 .49 54.2 45.8 

QUES11 0 1 .59 .49 41.1 58.9 
QUES12 0 1 .48 .50 52.4 47.6 

QUES13 0 1 .48 .50 52.4 47.6 

QUES14 0 1 .57 .49 43.2 56.8 
QUES15 0 1 .56 .49 44.5 55.5 

QUES16 0 1 .59 .49 40.7 59.3 

QUES17 0 1 .50 .50 49.6 50.4 

QUES18 0 1 .62 .48 38.2 61.8 
QUES19 0 1 .65 .47 35.3 64.7 

QUES20 0 1 .64 .48 36.1 63.9 

QUES21 0 1 .63 .48 36.9 63.1 
QUES22 0 1 .64 .48 36.0 64.0 

QUES23 0 1 .65 .47 35.5 64.5 

QUES24 0 1 .59 .49 41.3 58.7 
QUES25 0 1 .56 .49 43.9 56.1 

QUES26 0 1 .54 .49 45.8 54.2 

QUES27 0 1 .49 .50 50.5 49.5 

QUES28 0 1 .59 .49 40.8 59.2 
QUES29 0 1 .47 .49 53.0 47.0 

QUES30 0 1 .62 .48 38.5 61.5 
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APPENDIX L 

 

 

DESCRIPTIVE STATISTICS FOR SCORES ON THE SUBDOMAINS 

OF TDT FOR SAMPLE 1 

 

 

 

Table L.1 Descriptive statistics for scores on the subdomains of TDT for 

Sample 1 

 

 

 

Subdomain Min Max Mean SD Skewness Kurtosis 

ENACTHK 0 5 2.81 1.42 .04 -.93 

ICONTHK 0 5 3.00 1.53 -.22 -.99 

ALGOTHK 0 5 2.96 1.51 -.17 -1.03 

ALGETHK 0 4 2.07 1.19 .12 -.95 

FORMTHK 0 6 3.59 1.52 .05 -.85 

AXIOTHK 0 5 2.81 1.44 -.00 -.93 
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APPENDIX M 

 

 

DESCRIPTIVE STATISTICS FOR TOTAL SCORES ON TDT FOR 

SAMPLE 1 

 

 

 

Table M.1 Descriptive statistics for total scores on TDT for Sample 1 

 

 

 

Total 

Score 

Min Max Mean SD Skewness Kurtosis 

MATTHK 3 30 17.27 6.53 .50 -.56 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

267 

 

 

 

APPENDIX N 

 

 

PERCENTAGE FLOOR AND CEILING EFFECTS OF THE ITEMS OF 

TDT FOR SAMPLE 2 

 

 

Table N.1 Percentage floor and ceiling effects of items of TDT for Sample 2 

 

 
Item Min Max Mean SD %incorrect %correct 

QUES1 0 1 .49 .50 50.5 49.5 
QUES2 0 1 .53 .49 46.8 53.2 

QUES3 0 1 .49 .50 50.2 49.8 

QUES4 0 1 .57 .49 42.8 57.2 
QUES5 0 1 .83 .37 16.9 83.1 

QUES6 0 1 .52 .49 47.6 52.4 

QUES7 0 1 .64 .47 35.6 64.4 

QUES8 0 1 .48 .49 51.5 48.5 
QUES9 0 1 .73 .44 26.4 73.6 

QUES10 0 1 .42 .49 57.5 42.5 

QUES11 0 1 .55 .49 44.8 55.2 
QUES12 0 1 .45 .49 54.9 45.1 

QUES13 0 1 .45 .49 54.8 45.2 

QUES14 0 1 .55 .49 44.3 55.7 
QUES15 0 1 .51 .49 49.0 51.0 

QUES16 0 1 .57 .49 42.8 57.2 

QUES17 0 1 .43 .49 56.5 43.5 

QUES18 0 1 .57 .49 42.5 57.5 
QUES19 0 1 .66 .47 33.6 66.4 

QUES20 0 1 .60 .48 39.3 60.7 

QUES21 0 1 .61 .48 38.5 61.5 
QUES22 0 1 .61 .48 38.4 61.6 

QUES23 0 1 .65 .47 34.4 65.6 

QUES24 0 1 .58 .49 41.1 58.9 
QUES25 0 1 .55 .49 44.7 55.3 

QUES26 0 1 .48 .49 51.3 48.7 

QUES27 0 1 .49 .50 50.2 49.8 

QUES28 0 1 .60 .48 39.9 60.1 
QUES29 0 1 .46 .49 53.8 46.2 

QUES30 0 1 .57 .49 43.0 57.0 
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APPENDIX O 

 

 

DESCRIPTIVE STATISTICS FOR SCORES ON THE SUBDOMAINS 

OF TDT FOR SAMPLE 2 

 

 
 

Table O.1 Descriptive statistics for scores on the subdomains of TDT for 

Sample 2 

 

 

 

Subdomain Min Max Mean SD Skewness Kurtosis 

ENACTHK 0 5 2.78 1.43 -.02 -.91 

ICONTHK 0 5 2.85 1.43 -.13 -.85 

ALGOTHK 0 5 2.86 1.47 -.15 -.95 

ALGETHK 0 4 1.96 1.20 .11 -.93 

FORMTHK 0 6 3.45 1.44 -.03 -.61 

AXIOTHK 0 5 2.84 1.38 -.11 -.87 
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APPENDIX P 

 

 

DESCRIPTIVE STATISTICS FOR TOTAL SCORES ON TDT FOR 

SAMPLE 2 

 

 

 

Table P.1 Descriptive statistics for total scores on TDT for Sample 2 

 

 

 

Total 

Score 

Min Max Mean SD Skewness Kurtosis 

MATTHK 3 30 16.76 5.57 .36 -.11 
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APPENDIX Q 

 

 

THE MPLUS INPUT FILE FOR THE STEP 1 

 

 
 

TITLE:     Intraclass Correlation Coefficients MSEM 

DATA:      FILE IS msemave.dat; 

                   VARIANCES = NOCHECK; 

                   VARIABLE:  NAMES ARE class ques1-ques30; 

                                           USEVARIABLES ARE ques1-ques30;  

                                           CATEGORICAL ARE ques1-ques30; 

                                           CLUSTER IS class; 

ANALYSIS:  TYPE IS TWOLEVEL BASIC; 

                        ESTIMATOR IS WLSM; 

OUTPUT:    SAMPSTAT STANDARDIZED; 
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APPENDIX R 

 

 

THE MPLUS INPUT FILE FOR THE STEP 2 

 
 

 

    TITLE:     Two-Level Exploratory Factor Analysis 

    DATA:      FILE IS mefa.dat; 

                      VARIANCES = NOCHECK; 

    VARIABLE:  NAMES ARE class ques1-ques30; 

                            USEVARIABLES ARE class ques1-ques30; 

                            CATEGORICAL ARE ques1-ques30; 

                            CLUSTER IS class; 

     ANALYSIS:  TYPE = TWOLEVEL EFA 1 6 UW 1 3 UB; 

                             ESTIMATOR IS WLSM; 

                             ROTATION = GEOMIN; 
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APPENDIX S 

 

 

THE MPLUS INPUT FILE FOR THE STEP 3 

 
 

 

      TITLE: Two-Level Confirmatory Factor Analysis 

      DATA: FILE IS mcfa.dat; 

                   VARIANCES = NOCHECK; 

      VARIABLE: NAMES ARE class ques1-ques30; 

                             USEVARIABLES ARE class ques1-ques30; 

                             CATEGORICAL ARE ques1-ques30; 

                             CLUSTER IS class; 

      ANALYSIS: TYPE = TWOLEVEL; 

                             ESTIMATOR IS WLSM; 

      MODEL: 

 

                %WITHIN% 

                formthkw BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                axiothkw BY ques9@1 ques11 ques7 ques8 ques10; 

                algethkw BY ques14@1 ques13 ques12 ques15; 

                iconthkw BY ques20@1 ques16 ques19 ques18 ques17; 

                algothkw BY ques24@1 ques22 ques26 ques25 ques21; 

                enacthkw BY ques29@1 ques23 ques28 ques27 ques30; 

 

                %BETWEEN% 

                formaxthk BY ques5@1 ques10 ques2 ques3 ques9 ques8 

                ques4 ques11 ques7 ques1 ques6; 

                procepthk BY ques13@1 ques22 ques21 ques25 

                ques24 ques14 ques15 ques26 ques12; 

                concpthk BY ques18@1 ques16 ques23 ques28 ques20 

                ques30 ques29 ques27 ques19 ques17; 

        OUTPUT: SAMPSTAT STANDARDIZED; 
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APPENDIX T 

 

 

THE MPLUS INPUT FILE FOR THE STEP 4 

 

 

 
TITLE:     Two-Level Structural Equation Modeling 

DATA:      FILE IS msem.dat; 

                  VARIANCES = NOCHECK; 

VARIABLE:  NAMES ARE class ques1-ques30;  

                       USEVARIABLES ARE class ques1-ques30; 

                       CATEGORICAL ARE ques1-ques30; 

                       CLUSTER IS class; 

ANALYSIS: 

                      TYPE = TWOLEVEL; 

                      ESTIMATOR = MLM; 

MODEL: 

                %WITHIN% 
                formthk BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                axiothk BY ques9@1 ques11 ques7 ques8 ques10; 

                algethk BY ques14@1 ques13 ques12 ques15; 

                iconthk BY ques20@1 ques16 ques19 ques18 ques17; 

                algothk BY ques24@1 ques22 ques26 ques25 ques21; 

                enacthk BY ques29@1 ques23 ques28 ques27 ques30; 

                iconthk ON formthk; 

                     algothk ON formthk; 

                     enacthk ON formthk; 

                     algethk ON formthk; 

                     axiothk ON formthk; 
                     enacthk ON algothk; 

                     iconthk ON algothk; 

                     algethk ON algothk; 

                     iconthk ON enacthk; 

                     algethk ON enacthk; 

                     axiothk ON enacthk; 

                     algethk ON iconthk; 

                     axiothk ON iconthk; 

                     algethk ON axiothk; 

                     %BETWEEN% 

               formaxthk BY ques5@1 ques10 ques2 ques3 ques9 ques8 

               ques4 ques11 ques7 ques1 ques6; 
               procepthk BY ques13@1 ques22 ques21 ques25 

               ques24 ques14 ques15 ques26 ques12; 

               concpthk BY ques18@1 ques16 ques23 ques28 ques20 

               ques30 ques29 ques27 ques19 ques17; 
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                     formaxthk ON concpthk; 
                     procpthk ON formaxthk; 

                     concpthk ON procpthk; 

MODEL INDIRECT: 

                     enacthk IND algothk formthk; 

                     iconthk IND algothk formthk; 

                     algethk IND algothk formthk; 

                     iconthk IND enacthk formthk; 

                     algethk IND enacthk formthk; 

                     axiothk IND enacthk formthk; 

                     algethk IND iconthk formthk; 

                     axiothk IND iconthk formthk; 
                     iconthk IND enacthk algothk; 

                     algethk IND enacthk algothk; 

                     axiothk IND enacthk algothk; 

                     algethk IND iconthk algothk; 

                     axiothk IND iconthk algothk; 

OUTPUT: SAMPSTAT STANDARDIZED MODINDICES (3.84); 
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APPENDIX U 

 

 

THE MPLUS INPUT FILES FOR THE STEP 5 

 

CROSS-LEVEL MODELS AT THE WITHIN-CLASSROOM LEVEL  

 

 

 

MODEL 1 
                      TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 
                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques18 ques16 ques23 ques28     
                                 ques20 form alge; 

                                 WITHIN = form alge; 

                                 CATEGORICAL ARE ques18 ques16 ques23 ques28 ques20; 

                                 CLUSTER IS class; 
                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 
                      MODEL: 

                               %WITHIN% 

                               concptw BY ques18 ques16 ques23 ques28 ques20; 

                               form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 
                               alge BY ques14@1 ques13 ques12 ques15; 

                               int | concptw XWITH form; 

                               alge ON form int; 
                               %BETWEEN% 

                               concpt BY ques18 ques16 ques23 ques28 ques20; 

                       OUTPUT: SAMPSTAT; 

 

MODEL 2 
                    TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 

                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 
                                 USEVARIABLES ARE class ques5 ques10 ques2 ques3 ques9 

                                 form alge; 

                                 WITHIN = form alge; 
                                 CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 
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                                 CLUSTER IS class; 
                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 
                      MODEL: 

                               %WITHIN% 

                               formaxw BY ques5 ques10 ques2 ques3 ques9; 
                               form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                               alge BY ques14@1 ques13 ques12 ques15; 

                               int | formaxw XWITH form; 

                               alge ON form int; 
                               %BETWEEN% 

                               formax BY ques5 ques10 ques2 ques3 ques9; 

                       OUTPUT: SAMPSTAT; 

 

MODEL 3 
                    TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 

                                 VARIANCES = NOCHECK; 
                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques13 ques22 ques21 ques25  

                                 ques24 form alge; 

                                 WITHIN = form alge; 
                                 CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 

                                 CLUSTER IS class; 

                      ANALYSIS: 
                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 

                      MODEL: 

                               %WITHIN% 
                               procptw BY ques13 ques22 ques21 ques25 ques24; 

                               form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                               alge BY ques14@1 ques13 ques12 ques15; 
                               int | procptw XWITH form; 

                               alge ON form int; 

                               %BETWEEN% 
                               procpt BY ques13 ques22 ques21 ques25 ques24; 

                       OUTPUT: SAMPSTAT; 

 

MODEL 4 
                    TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 
                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques18 ques16 ques23 ques28     
                                 ques20 form algo; 

                                 WITHIN = form algo; 

                                 CATEGORICAL ARE ques18 ques16 ques23 ques28 ques20; 
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                                 CLUSTER IS class; 
                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 
                      MODEL: 

                               %WITHIN% 

                                  concptw BY ques18 ques16 ques23 ques28 ques20; 
                                  form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                                  algo BY ques24@1 ques22 ques26 ques25 ques21; 

                               int | concptw XWITH form; 

                               algo ON form int; 
                               %BETWEEN% 

                               concpt BY ques18 ques16 ques23 ques28 ques20; 

                       OUTPUT: SAMPSTAT; 

 

MODEL 5 
                  TITLE:     Cross-Level Effects 

                    DATA:      FILE IS msemagg.dat; 

                               VARIANCES = NOCHECK; 
                    VARIABLE:  NAMES ARE class ques1-ques30; 

                               USEVARIABLES ARE class ques5 ques2 ques10 ques3 ques9 

                               form algo; 

                               WITHIN = form algo; 
                               CATEGORICAL ARE ques5 ques2 ques10 ques3 ques9; 

                               CLUSTER IS class; 

                    ANALYSIS: 
                              TYPE = TWOLEVEL RANDOM; 

                              ALGORITHM = INTEGRATION; 

                    MODEL: 

                             %WITHIN% 
                             formaxw BY ques5 ques10 ques2 ques3 ques9; 

                             form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                             algo BY ques24@1 ques22 ques26 ques25 ques21; 
                             int | formaxw XWITH form; 

                             algo ON form int; 

                             %BETWEEN% 
                             formax BY ques5 ques2 ques10 ques3 ques9; 

                     OUTPUT: SAMPSTAT; 

                       

MODEL 6 
                    TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 
                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques13 ques22 ques21 ques25  

                                 ques24 form algo; 
                                 WITHIN = form algo; 

                                 CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 
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                                 CLUSTER IS class; 
                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 
                      MODEL: 

                               %WITHIN% 

                               procptw BY ques13@1 ques22 ques21 ques25 ques24; 
                               form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                               algo BY ques24@1 ques22 ques26 ques25 ques21; 

                               int | procptw XWITH form; 

                               algo ON form int; 
                               %BETWEEN% 

                               procpt BY ques13@1 ques22 ques21 ques25 ques24; 

                       OUTPUT: SAMPSTAT 

 

MODEL 7 
                     TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 

                                 VARIANCES = NOCHECK; 
                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques18 ques16 ques23 ques28  

                                 ques20 

                                 form axio; 
                                 WITHIN = form axio; 

                                 CATEGORICAL ARE ques18 ques16 ques23 ques28 ques20; 

                                 CLUSTER IS class; 
                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 

                      MODEL: 
                               %WITHIN% 

                               concptw BY ques18 ques16 ques23 ques28 ques20; 

                               int | concptw XWITH form; 
                               axio ON form int; 

                               %BETWEEN% 

                               concpt BY ques18 ques16 ques23 ques28 ques20; 
                       OUTPUT: SAMPSTAT; 

 

MODEL 8 
                      TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 

                                 VARIANCES = NOCHECK; 
                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques5 ques10 ques2 ques3 ques9 

                                 form axio; 
                                 WITHIN = form axio; 

                                 CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 

                                 CLUSTER IS class; 
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                      ANALYSIS: 
                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 

                      MODEL: 
                               %WITHIN% 

                               formaxw BY ques5 ques10 ques2 ques3 ques9; 

                               form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 
                               axio BY ques9@1 ques11 ques7 ques8 ques10; 

                               int | formaxw XWITH form; 

                               axio ON form int; 

                               %BETWEEN% 
                               formax BY ques5 ques10 ques2 ques3 ques9; 

                       OUTPUT: SAMPSTAT; 

 

MODEL 9 
                    TITLE:     Cross-Level Effects 
                      DATA:      FILE IS msemagg.dat; 

                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 
                                 USEVARIABLES ARE class ques13 ques22 ques21 ques25    

                                 ques24 

                                 form axio; 

                                 WITHIN = form axio; 
                                 CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 

                                 CLUSTER IS class; 

                      ANALYSIS: 
                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 

                      MODEL: 

                               %WITHIN% 
                               procptw BY ques13 ques22 ques21 ques25 ques24; 

                               form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                               axio BY ques9@1 ques11 ques7 ques8 ques10; 
                               int | procptw XWITH form; 

                               axio ON form int; 

                               %BETWEEN% 
                               procpt BY ques13 ques22 ques21 ques25 ques24; 

                       OUTPUT: SAMPSTAT; 

 

MODEL 10 
                      TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 
                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques18 ques16 ques23 ques28  
                                 ques20 

                                 form enac; 

                                 WITHIN = form enac; 
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                                 CATEGORICAL ARE ques18 ques16 ques23 ques28 ques20; 
                                 CLUSTER IS class; 

                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 
                                ALGORITHM = INTEGRATION; 

                      MODEL: 

                               %WITHIN% 
                               concptw BY ques18 ques16 ques23 ques28 ques20; 

                                  form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                                  enac BY ques29@1 ques23 ques28 ques27 ques30; 

                               int | concptw XWITH form; 
                               enac ON form int; 

                               %BETWEEN% 

                               concpt BY ques18 ques16 ques23 ques28 ques20; 
                       OUTPUT: SAMPSTAT; 

 

MODEL 11 
                    TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 

                                 VARIANCES = NOCHECK; 
                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques5 ques10 ques2 ques3 ques9 

                                 form enac; 

                                 WITHIN = form enac; 
                                 CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 

                                 CLUSTER IS class; 

                      ANALYSIS: 
                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 

                      MODEL: 
                               %WITHIN% 

                               formaxw BY ques5 ques10 ques2 ques3 ques9; 

                               form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                               enac BY ques29@1 ques23 ques28 ques27 ques30; 
                               int | formaxw XWITH form; 

                               enac ON form int; 

                               %BETWEEN% 
                               formax BY ques5 ques10 ques2 ques3 ques9; 

                       OUTPUT: SAMPSTAT; 

 

MODEL 12 
                    TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 
                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques13 ques22 ques21 ques25  

                                 ques24 
                                 form enac; 
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                                 WITHIN = form enac; 
                                 CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 

                                 CLUSTER IS class; 

                      ANALYSIS: 
                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 

                      MODEL: 
                               %WITHIN% 

                               procptw BY ques13 ques22 ques21 ques25 ques24; 

                               form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                               enac BY ques29@1 ques23 ques28 ques27 ques30; 
                               int | procptw XWITH form; 

                               enac ON form int; 

                               %BETWEEN% 
                               procpt BY ques13 ques22 ques21 ques25 ques24; 

                       OUTPUT: SAMPSTAT; 

 

MODEL 13 
                      TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 
                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques18 ques16 ques23 ques28  

                                 ques20 
                                 form icon; 

                                 WITHIN = form icon; 

                                 CATEGORICAL ARE ques18 ques16 ques23 ques28 ques20; 
                                 CLUSTER IS class; 

                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 
                                ALGORITHM = INTEGRATION; 

                      MODEL: 

                               %WITHIN% 

                               concptw BY ques18 ques16 ques23 ques28 ques20; 
                               int | concptw XWITH form; 

                               icon ON form int; 

                               %BETWEEN% 
                               concpt BY ques18 ques16 ques23 ques28 ques20; 

                       OUTPUT: SAMPSTAT; 

 

MODEL 14 
                    TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 
                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques5 ques10 ques2 ques3 ques9 

                                 form icon; 
                                 WITHIN = form icon; 
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                                 CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 
                                 CLUSTER IS class; 

                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 
                                ALGORITHM = INTEGRATION; 

                      MODEL: 

                               %WITHIN% 
                               formaxw BY ques5 ques10 ques2 ques3 ques9; 

                               form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                               icon BY ques20@1 ques16 ques19 ques18 ques17; 

                               int | formaxw XWITH form; 
                               icon ON form int; 

                               %BETWEEN% 

                               formax BY ques5 ques10 ques2 ques3 ques9; 
                       OUTPUT: SAMPSTAT; 

 

MODEL 15 
                      TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 
                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques13 ques22 ques21 ques25  

                                 ques24 
                                 form icon; 

                                 WITHIN = form icon; 

                                 CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 
                                 CLUSTER IS class; 

                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 
                      MODEL: 

                               %WITHIN% 

                               procptw BY ques13 ques22 ques21 ques25 ques24; 
                               form BY ques3@1 ques4 ques6 ques2 ques5 ques1; 

                               icon BY ques20@1 ques16 ques19 ques18 ques17; 

                               int | procptw XWITH form; 
                               icon ON form int; 

                               %BETWEEN% 

                               procpt BY ques13 ques22 ques21 ques25 ques24; 

                       OUTPUT: SAMPSTAT; 
 

MODEL 16 
                      TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 

                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 
                                 USEVARIABLES ARE class ques13 ques22 ques21 ques25  

                                ques24 
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                                 icon alge; 
                                 WITHIN = icon alge; 

                                 CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 

                                 CLUSTER IS class; 
                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 
                                MITERATIONS = 1000000;  

                      MODEL: 

                               %WITHIN% 

                               procptw BY ques13 ques22 ques21 ques25 ques24; 
                               icon BY ques20@1 ques16 ques19 ques18 ques17; 

                               alge BY ques14@1 ques13 ques12 ques15; 

                               int | procptw XWITH icon; 
                               alge ON icon int; 

                               %BETWEEN% 

                               procpt BY ques13 ques22 ques21 ques25 ques24; 

                       OUTPUT: SAMPSTAT; 
 

MODEL 17 
                    TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 

                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 
                                 USEVARIABLES ARE class ques13 ques22 ques21 ques25  

                                ques24 

                                 icon alge; 
                                 WITHIN = icon alge; 

                                 CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 

                                 CLUSTER IS class; 
                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 

                                MITERATIONS = 1000000;  
                      MODEL: 

                               %WITHIN% 

                               formaxw BY ques5 ques10 ques2 ques3 ques9; 
                               icon BY ques20@1 ques16 ques19 ques18 ques17; 

                               alge BY ques14@1 ques13 ques12 ques15; 

                               int | formaxw XWITH icon; 
                               alge ON icon int; 

                               %BETWEEN% 

                               formax BY ques5 ques10 ques2 ques3 ques9; 

                       OUTPUT: SAMPSTAT; 

 

MODEL 18 
                    TITLE:     Cross-Level Effects 

                      DATA:      FILE IS msemagg.dat; 
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                                 VARIANCES = NOCHECK; 

                      VARIABLE:  NAMES ARE class ques1-ques30; 

                                 USEVARIABLES ARE class ques13 ques22 ques21 ques25  

                                 ques24 

                                 icon alge; 

                                 WITHIN = icon alge; 

                                 CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 

                                 CLUSTER IS class; 

                      ANALYSIS: 

                                TYPE = TWOLEVEL RANDOM; 

                                ALGORITHM = INTEGRATION; 

                                MITERATIONS = 1000000;  

                      MODEL: 

                               %WITHIN% 

                               concptw BY ques18 ques16 ques23 ques28 ques20; 

                               icon BY ques20@1 ques16 ques19 ques18 ques17; 

                               alge BY ques14@1 ques13 ques12 ques15; 

                               int | concptw XWITH icon; 

                               alge ON icon int; 

                               %BETWEEN% 

                               concpt BY ques18 ques16 ques23 ques28 ques20; 

                       OUTPUT: SAMPSTAT; 

 

MODEL 19 
                      TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 
                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques18 ques16 ques23 ques28   

                                  ques20 

                                   icon axio; 
                                   WITHIN = icon axio; 

                                   CATEGORICAL ARE ques18 ques16 ques23 ques28 ques20; 

                                   CLUSTER IS class; 
                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 
                        MODEL: 

                                 %WITHIN% 

                                 concptw BY ques18 ques16 ques23 ques28 ques20; 

                                 icon BY ques20@1 ques16 ques19 ques18 ques17; 
                                 axio BY ques9@1 ques11 ques7 ques8 ques10; 

                                 int | concptw XWITH icon; 

                                 axio ON icon int; 
                                 %BETWEEN% 

                                 concpt BY ques18 ques16 ques23 ques28 ques20; 

                         OUTPUT: SAMPSTAT; 
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MODEL 20 
                      TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 
                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques5 ques10 ques2 ques3 ques9 

                                   icon axio; 
                                   WITHIN = icon axio; 

                                   CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 

                                   CLUSTER IS class; 
                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 
                        MODEL: 

                                 %WITHIN% 

                                 formaxw BY ques5 ques10 ques2 ques3 ques9; 

                                 icon BY ques20@1 ques16 ques19 ques18 ques17; 
                                 axio BY ques9@1 ques11 ques7 ques8 ques10; 

                                 int | formaxw XWITH icon; 

                                 axio ON icon int; 
                                 %BETWEEN% 

                                 formax BY ques5 ques10 ques2 ques3 ques9; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 21 
                        TITLE:     Cross-Level Effects 
                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 
                                   USEVARIABLES ARE class ques13 ques22 ques21 ques25       

                                  ques24 

                                   icon axio; 
                                   WITHIN = icon axio; 

                                   CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 

                                   CLUSTER IS class; 

                        ANALYSIS: 
                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 
                                 %WITHIN% 

                                 procptw BY ques13 ques22 ques21 ques25 ques24; 

                                 icon BY ques20@1 ques16 ques19 ques18 ques17; 
                                 axio BY ques9@1 ques11 ques7 ques8 ques10; 

                                 int | procptw XWITH icon; 

                                 axio ON icon int; 

                                 %BETWEEN% 
                                 procpt BY ques13 ques22 ques21 ques25 ques24; 

                         OUTPUT: SAMPSTAT; 
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MODEL 22 
                      TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 
                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques18 ques16 ques23 ques28  

                                   ques20 
                                   enac alge; 

                                   WITHIN = enac alge; 

                                   CATEGORICAL ARE ques18 ques16 ques23 ques28 ques20; 
                                   CLUSTER IS class; 

                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 
                                  ALGORITHM = INTEGRATION; 

                        MODEL: 

                                 %WITHIN% 

                                 concptw BY ques18 ques16 ques23 ques28 ques20; 
                                 int | concptw XWITH enac; 

                                 alge ON enac int; 

                                 %BETWEEN% 
                                 concpt BY ques18 ques16 ques23 ques28 ques20; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 23 
                      TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 
                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques5 ques10 ques2 ques3 ques9 
                                   enac alge; 

                                   WITHIN = enac alge; 

                                   CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 
                                   CLUSTER IS class; 

                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 
                        MODEL: 

                                 %WITHIN% 

                                 formaxw BY ques5 ques10 ques2 ques3 ques9; 
                                 alge BY ques14@1 ques13 ques12 ques15; 

                                 enac BY ques29@1 ques23 ques28 ques27 ques30; 

                                 int | formaxw XWITH enac; 
                                 alge ON enac int; 

                                 %BETWEEN% 

                                 formax BY ques5 ques10 ques2 ques3 ques9; 

                         OUTPUT: SAMPSTAT; 
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MODEL 24 
                      TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 
                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques13 ques22 ques21 ques25  

                                   ques24 
                                   enac alge; 

                                   WITHIN = enac alge; 

                                   CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 
                                   CLUSTER IS class; 

                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 
                                  ALGORITHM = INTEGRATION; 

                        MODEL: 

                                 %WITHIN% 

                                 procptw BY ques13 ques22 ques21 ques25 ques24; 
                                 alge BY ques14@1 ques13 ques12 ques15; 

                                 enac BY ques29@1 ques23 ques28 ques27 ques30; 

                                 int | procptw XWITH enac; 
                                 alge ON enac int; 

                                 %BETWEEN% 

                                 procpt BY ques13 ques22 ques21 ques25 ques24; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 25 
                      TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 
                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques18 ques16 ques23 ques28  

                                   ques20 
                                   enac axio; 

                                   WITHIN = enac axio; 

                                   CATEGORICAL ARE ques18 ques16 ques23 ques28 ques20; 

                                   CLUSTER IS class; 
                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 
                        MODEL: 

                                 %WITHIN% 

                                 concptw BY ques18 ques16 ques23 ques28 ques20; 
                                 enac BY ques29@1 ques23 ques28 ques27 ques30; 

                                 axio BY ques9@1 ques11 ques7 ques8 ques10; 

                                 int | concptw XWITH enac; 

                                 axio ON enac int; 
                                 %BETWEEN% 

                                 concpt BY ques18 ques16 ques23 ques28 ques20; 
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                         OUTPUT: SAMPSTAT; 

 

MODEL 26 
                      TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 
                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques5 ques10 ques2 ques3 ques9 

                                   enac axio; 
                                   WITHIN = enac axio; 

                                   CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 

                                   CLUSTER IS class; 

                        ANALYSIS: 
                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 
                                 %WITHIN% 

                                 formaxw BY ques5 ques10 ques2 ques3 ques9; 

                                 enac BY ques29@1 ques23 ques28 ques27 ques30; 
                                 axio BY ques9@1 ques11 ques7 ques8 ques10; 

                                 int | formaxw XWITH enac; 

                                 axio ON enac int; 

                                 %BETWEEN% 
                                 formax BY ques5 ques10 ques2 ques3 ques9; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 27 
                      TITLE:     Cross-Level Effects 
                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques13 ques22 ques21 ques25  
                                   ques24 

                                   enac axio; 

                                   WITHIN = enac axio; 
                                   CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 

                                   CLUSTER IS class; 

                        ANALYSIS: 
                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 

                                 %WITHIN% 
                                 procptw BY ques13 ques22 ques21 ques25 ques24; 

                                 enac BY ques29@1 ques23 ques28 ques27 ques30; 

                                 axio BY ques9@1 ques11 ques7 ques8 ques10; 
                                 int | procptw XWITH enac; 

                                 axio ON enac int; 

                                 %BETWEEN% 
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                                 procpt BY ques13 ques22 ques21 ques25 ques24; 
                         OUTPUT: SAMPSTAT; 

 

MODEL 28           
                      TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 
                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30 form axio icon algo 

                                   alge enac 
                                   agg1-agg30 mathk formagg axioagg iconagg algoagg 

                                   algeagg enacagg formax procpt concpt formaxag 

                                   procptag concptag; 

                                   USEVARIABLES ARE class ques18 ques16 ques23 ques28  
                                   ques20 

                                   enac icon; 

                                   WITHIN = enac icon; 
                                   CATEGORICAL ARE ques18 ques16 ques23 ques28 ques20; 

                                   CLUSTER IS class; 

                        ANALYSIS: 
                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 

                                 %WITHIN% 
                                 concptw BY ques18 ques16 ques23 ques28 ques20; 

                                 alge BY ques14@1 ques13 ques12 ques15; 

                                 enac BY ques29@1 ques23 ques28 ques27 ques30; 
                                 int | concptw XWITH enac; 

                                 icon ON enac int; 

                                 %BETWEEN% 

                                 concpt BY ques18 ques16 ques23 ques28 ques20; 
                         OUTPUT: SAMPSTAT; 

 

MODEL 29 
                      TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 
                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques5 ques10 ques2 ques3 ques9 
                                   enac icon; 

                                   WITHIN = enac icon; 

                                   CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 

                                   CLUSTER IS class; 
                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 
                        MODEL: 

                                 %WITHIN% 

                                 formaxw BY ques5 ques10 ques2 ques3 ques9; 
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                                 enac BY ques29@1 ques23 ques28 ques27 ques30; 
                                 icon BY ques20@1 ques16 ques19 ques18 ques17; 

                                 int | formaxw XWITH enac; 

                                 icon ON enac int; 
                                 %BETWEEN% 

                                 formax BY ques5 ques10 ques2 ques3 ques9; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 30 
                        TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 
                                   USEVARIABLES ARE class ques13 ques22 ques21 ques25  

                                   ques24 

                                   enac icon; 
                                   WITHIN = enac icon; 

                                   CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 

                                   CLUSTER IS class; 
                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 
                                 %WITHIN% 

                                 procptw BY ques13 ques22 ques21 ques25 ques24; 

                                 enac BY ques29@1 ques23 ques28 ques27 ques30; 
                                 icon BY ques20@1 ques16 ques19 ques18 ques17; 

                                 int | procptw XWITH enac; 

                                 icon ON enac int; 

                                 %BETWEEN% 
                                 procpt BY ques13 ques22 ques21 ques25 ques24; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 31 
                      TITLE:     Cross-Level Effects 
                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 
                                   USEVARIABLES ARE class ques18 ques16 ques23 ques28  

                                   ques20 

                                   algo alge; 

                                   WITHIN = algo alge; 
                                   CATEGORICAL ARE ques18 ques16 ques23 ques28 ques20; 

                                   CLUSTER IS class; 

                        ANALYSIS: 
                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 
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                                 %WITHIN% 
                                 concptw BY ques18 ques16 ques23 ques28 ques20; 

                                 algo BY ques24@1 ques22 ques26 ques25 ques21; 

                                 alge BY ques14@1 ques13 ques12 ques15; 
                                 int | concptw XWITH algo; 

                                 alge ON algo int; 

                                 %BETWEEN% 
                                 concpt BY ques18 ques16 ques23 ques28 ques20; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 32 
                        TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 
                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques5 ques10 ques2 ques3 ques9 

                                   algo alge; 
                                   WITHIN = algo alge; 

                                   CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 

                                   CLUSTER IS class; 
                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 
                                 %WITHIN% 

                                 formaxw BY ques5 ques10 ques2 ques3 ques9; 

                                 algo BY ques24@1 ques22 ques26 ques25 ques21; 
                                 alge BY ques14@1 ques13 ques12 ques15; 

                                 int | formaxw XWITH algo; 

                                 alge ON algo int; 
                                 %BETWEEN% 

                                 formax BY ques5 ques10 ques2 ques3 ques9; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 33 
                      TITLE:     Cross-Level Effects 
                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 
                                   USEVARIABLES ARE class ques13 ques22 ques21 ques25  

                                   ques24 

                                   algo alge; 
                                   WITHIN = algo alge; 

                                   CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 

                                   CLUSTER IS class; 

                        ANALYSIS: 
                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 
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                        MODEL: 
                                 %WITHIN% 

                                 procptw BY ques13 ques22 ques21 ques25 ques24; 

                                 algo BY ques24@1 ques22 ques26 ques25 ques21; 
                                 alge BY ques14@1 ques13 ques12 ques15; 

                                 int | procptw XWITH algo; 

                                 alge ON algo int; 
                                 %BETWEEN% 

                                 procpt BY ques13 ques22 ques21 ques25 ques24; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 34 

                        TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques18 ques16 ques23  

                                   ques28 ques20 

                                   algo enac; 

                                   WITHIN = algo enac; 

                                   CATEGORICAL ARE ques18 ques16 ques23 ques28  

                                   ques20; 

                                   CLUSTER IS class; 

                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 

                                 %WITHIN% 

                                 concptw BY ques18 ques16 ques23 ques28 ques20; 
                                    algo BY ques24@1 ques22 ques26 ques25 ques21; 

                                    enac BY ques29@1 ques23 ques28 ques27 ques30; 

                                 int | concptw XWITH algo; 

                                 enac ON algo int; 

                                 %BETWEEN% 

                                 concpt BY ques18 ques16 ques23 ques28 ques20; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 35 
                        TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 
                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques5 ques10 ques2 ques3 ques9 

                                   algo enac; 
                                   WITHIN = algo enac; 

                                   CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 
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                                   CLUSTER IS class; 
                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 
                        MODEL: 

                                 %WITHIN% 

                                 formaxw BY ques5 ques10 ques2 ques3 ques9; 
                                 algo BY ques24@1 ques22 ques26 ques25 ques21; 

                                 enac BY ques29@1 ques23 ques28 ques27 ques30; 

                                 int | formaxw XWITH algo; 

                                 enac ON algo int; 
                                 %BETWEEN% 

                                 formax BY ques5 ques10 ques2 ques3 ques9; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 36 
                      TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 
                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques13 ques22 ques21 

                                   ques25 ques24 algo enac; 

                                   WITHIN = algo enac; 
                                   CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 

                                   CLUSTER IS class; 

                        ANALYSIS: 
                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 

                                 %WITHIN% 
                                 procptw BY ques13 ques22 ques21 ques25 ques24; 

                                 algo BY ques24@1 ques22 ques26 ques25 ques21; 

                                 enac BY ques29@1 ques23 ques28 ques27 ques30; 
                                 int | procptw XWITH algo; 

                                 enac ON algo int; 

                                 %BETWEEN% 
                                 procpt BY ques13 ques22 ques21 ques25 ques24; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 37 
                      TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 
                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques18 ques16 ques23 ques28  
                                   ques20 

                                   algo icon; 

                                   WITHIN = algo icon; 
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                                   CATEGORICAL ARE ques18 ques16 ques23 ques28 ques20; 
                                   CLUSTER IS class; 

                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 
                                  ALGORITHM = INTEGRATION; 

                        MODEL: 

                                 %WITHIN% 
                                 concptw BY ques18 ques16 ques23 ques28 ques20; 

                                 icon BY ques20@1 ques16 ques19 ques18 ques17; 

                                 algo BY ques24@1 ques22 ques26 ques25 ques21; 

                                 int | concptw XWITH algo; 
                                 icon ON algo int; 

                                 %BETWEEN% 

                                 concpt BY ques18 ques16 ques23 ques28 ques20; 
                         OUTPUT: SAMPSTAT; 

 

MODEL 38 
                        TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 
                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques5 ques10 ques2 ques3 ques9 

                                   algo icon; 
                                   WITHIN = algo icon; 

                                   CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 

                                   CLUSTER IS class; 
                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 
                                 %WITHIN% 

                                 formaxw BY ques5 ques10 ques2 ques3 ques9; 

                                 icon BY ques20@1 ques16 ques19 ques18 ques17; 
                                 algo BY ques24@1 ques22 ques26 ques25 ques21; 

                                 int | formaxw XWITH algo; 

                                 icon ON algo int; 
                                 %BETWEEN% 

                                 formax BY ques5 ques10 ques2 ques3 ques9; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 39 
                      TITLE:     Cross-Level Effects 
                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 
                                   USEVARIABLES ARE class ques13 ques22 ques21 

                                   ques25 ques24 algo icon; 

                                   WITHIN = algo icon; 
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                                   CATEGORICAL ARE ques13 ques22 ques21 ques25 ques24; 
                                   CLUSTER IS class; 

                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 
                                  ALGORITHM = INTEGRATION; 

                        MODEL: 

                                 %WITHIN% 
                                 procptw BY ques13 ques22 ques21 ques25 ques24; 

                                 icon BY ques20@1 ques16 ques19 ques18 ques17; 

                                 algo BY ques24@1 ques22 ques26 ques25 ques21; 

                                 int | procptw XWITH algo; 
                                 icon ON algo int; 

                                 %BETWEEN% 

                                 procpt BY ques13 ques22 ques21 ques25 ques24; 
                         OUTPUT: SAMPSTAT; 

 

MODEL 40 

                        TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques18 ques16 ques23  

                                   ques28 ques20 

                                   axio alge; 

                                   WITHIN = axio alge; 

                                   CATEGORICAL ARE ques18 ques16 ques23 ques28  

                                   ques20; 

                                   CLUSTER IS class; 

                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 

                                 %WITHIN% 

                                 concptw BY ques18 ques16 ques23 ques28 ques20; 
                                    alge BY ques14@1 ques13 ques12 ques15; 
                                    axio BY ques9@1 ques11 ques7 ques8 ques10; 

                                 int | concptw XWITH axio; 

                                 alge ON axio int; 

                                 %BETWEEN% 

                                 concpt BY ques18 ques16 ques23 ques28 ques20; 

                         OUTPUT: SAMPSTAT; 

 

MODEL 41 

                        TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 
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                                   VARIANCES = NOCHECK; 

                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques5 ques10 ques2 ques3   

                                   ques9 

                                   axio alge; 

                                   WITHIN = axio alge; 

                                   CATEGORICAL ARE ques5 ques10 ques2 ques3 ques9; 

                                   CLUSTER IS class; 

                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 

                        MODEL: 

                                 %WITHIN% 

                                 formaxw BY ques5 ques10 ques2 ques3 ques9; 
                                    alge BY ques14@1 ques13 ques12 ques15; 

                                    axio BY ques9@1 ques11 ques7 ques8 ques10; 

                                 int | formaxw XWITH axio; 

                                 alge ON axio int; 

                                 %BETWEEN% 

                                 formax BY ques5 ques10 ques2 ques3 ques9; 

                         OUTPUT: SAMPSTAT; 

 

   MODEL 42 
                       TITLE:     Cross-Level Effects 

                        DATA:      FILE IS msemagg.dat; 

                                   VARIANCES = NOCHECK; 
                        VARIABLE:  NAMES ARE class ques1-ques30; 

                                   USEVARIABLES ARE class ques13 ques22 ques21 

                                   ques25 ques24 axio alge; 

                                   WITHIN = axio alge; 
                                   CATEGORICAL ARE ques13 ques22 ques21 ques25  

                                   ques24; 

                                   CLUSTER IS class; 
                        ANALYSIS: 

                                  TYPE = TWOLEVEL RANDOM; 

                                  ALGORITHM = INTEGRATION; 
                        MODEL: 

                                 %WITHIN% 

                                 procptw BY ques13 ques22 ques21 ques25 ques24; 

                                    alge BY ques14@1 ques13 ques12 ques15; 
                                    axio BY ques9@1 ques11 ques7 ques8 ques10; 

                                 int | procptw XWITH axio; 

                                 alge ON axio int; 
                                 %BETWEEN% 

                                 procpt BY ques13 ques22 ques21 ques25 ques24; 

                         OUTPUT: SAMPSTAT; 



 

297 

 

 

 

APPENDIX V 

 

 

THE MPLUS INPUT FILES FOR THE STEP 5 

 

CROSS-LEVEL MODELS AT THE BETWEEN-CLASSROOM LEVEL  

 

 

 

MODEL 1 
                TITLE:     Cross-Level Effects 

                  DATA:      FILE IS msemagg.dat; 

                             VARIANCES = NOCHECK; 
                  VARIABLE:  NAMES ARE class ques1-ques30; 

                             USEVARIABLES ARE class  ques16-ques20 formax concpt; 

                             BETWEEN = formax concpt; 
                             CATEGORICAL ARE ques16-ques20; 

                             CLUSTER IS class; 

                  ANALYSIS: 

                            TYPE = TWOLEVEL RANDOM; 
                            ALGORITHM = INTEGRATION; 

                  MODEL: 

                           %WITHIN% 
                           iconthk BY ques16-ques20; 

                           %BETWEEN% 

                           iconthkb BY ques16-ques20; 
                           concpt BY ques18@1 ques16 ques23 ques28 ques20 

                           ques30 ques29 ques27 ques19 ques17; 

                           formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 

                           ques4 ques11 ques7 ques1 ques6; 
                           int | iconthkb XWITH concpt; 

                           formax ON concpt int; 

                   OUTPUT: SAMPSTAT; 
 

MODEL 2 
                TITLE:     Cross-Level Effects 
                  DATA:      FILE IS msemagg.dat; 

                             VARIANCES = NOCHECK; 

                  VARIABLE:  NAMES ARE class ques1-ques30; 
                             USEVARIABLES ARE class  ques12-ques15 formax concpt; 

                             BETWEEN = formax concpt; 

                             CATEGORICAL ARE ques12-ques15; 
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                             CLUSTER IS class; 
                  ANALYSIS: 

                            TYPE = TWOLEVEL RANDOM; 

                            ALGORITHM = INTEGRATION; 
                  MODEL: 

                           %WITHIN% 

                           algethk BY ques12-ques15; 
                           %BETWEEN% 

                           algethkb BY ques12-ques15; 

                           concpt BY ques18@1 ques16 ques23 ques28 ques20 

                           ques30 ques29 ques27 ques19 ques17; 
                           formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 

                           ques4 ques11 ques7 ques1 ques6; 

                           int | algethkb XWITH concpt; 
                           formax ON concpt int; 

                   OUTPUT: SAMPSTAT; 

 

MODEL 3 
                  TITLE:     Cross-Level Effects 
                    DATA:      FILE IS msemagg.dat; 

                               VARIANCES = NOCHECK; 

                    VARIABLE:  NAMES ARE class ques1-ques30; 

                               USEVARIABLES ARE class ques21 ques22 ques24 ques25  
                               ques26 

                               formax concpt; 

                               BETWEEN = formax concpt; 
                               CATEGORICAL ARE ques21 ques22 ques24 ques25 ques26; 

                               CLUSTER IS class; 

                    ANALYSIS: 

                              TYPE = TWOLEVEL RANDOM; 
                              ALGORITHM = INTEGRATION; 

                    MODEL: 

                             %WITHIN% 
                             algothk BY ques21 ques22 ques24 ques25 ques26; 

                             %BETWEEN% 

                             algothkb BY ques21 ques22 ques24 ques25 ques26; 
                             concpt BY ques18@1 ques16 ques23 ques28 ques20 

                             ques30 ques29 ques27 ques19 ques17; 

                             formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 

                            ques4 ques11 ques7 ques1 ques6; 
                             int | algothkb XWITH concpt; 

                             formax ON concpt int; 

                     OUTPUT: SAMPSTAT; 

 

MODEL 4 
                  TITLE:     Cross-Level Effects 

                  DATA:      FILE IS msemagg.dat; 

                             VARIANCES = NOCHECK; 
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                  VARIABLE:  NAMES ARE class ques1-ques30; 
                             USEVARIABLES ARE class  ques7-ques11 formax concpt; 

                             BETWEEN = formax concpt; 

                             CATEGORICAL ARE ques7-ques11; 
                             CLUSTER IS class; 

                  ANALYSIS: 

                            TYPE = TWOLEVEL RANDOM; 
                            ALGORITHM = INTEGRATION; 

                  MODEL: 

                           %WITHIN% 

                           axiothk BY ques7-ques11; 
                           %BETWEEN% 

                           axiothkb BY ques7-ques11; 

                           concpt BY ques18@1 ques16 ques23 ques28 ques20 
                           ques30 ques29 ques27 ques19 ques17; 

                           formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 

                           ques4 ques11 ques7 ques1 ques6; 

                           int | axiothkb XWITH concpt; 
                           formax ON concpt int; 

                   OUTPUT: SAMPSTAT; 

 

MODEL 5 
                    TITLE:     Cross-Level Effects 
                    DATA:      FILE IS msemagg.dat; 

                               VARIANCES = NOCHECK; 

                    VARIABLE:  NAMES ARE class ques1-ques30; 
                               USEVARIABLES ARE class  ques23 ques27 ques28 ques29 

                              ques30  formax concpt; 

                               BETWEEN = formax concpt; 

                               CATEGORICAL ARE ques23 ques27 ques28 ques29 ques30; 
                               CLUSTER IS class; 

                    ANALYSIS: 

                              TYPE = TWOLEVEL RANDOM; 
                              ALGORITHM = INTEGRATION; 

                    MODEL: 

                             %WITHIN% 
                             enacthk BY ques23 ques27 ques28 ques29 ques30; 

                             %BETWEEN% 

                             enacthkb BY ques23 ques27 ques28 ques29 ques30; 

                             concpt BY ques18@1 ques16 ques23 ques28 ques20 
                             ques30 ques29 ques27 ques19 ques17; 

                             formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 

                             ques4 ques11 ques7 ques1 ques6; 
                             int | enacthkb XWITH concpt; 

                             formax ON concpt int; 

                     OUTPUT: SAMPSTAT; 
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MODEL 6 
               TITLE:     Cross-Level Effects concpt formax 

                DATA:      FILE IS msemagg.dat; 
                           VARIANCES = NOCHECK; 

                VARIABLE:  NAMES ARE class ques1-ques30; 

                           USEVARIABLES ARE class  ques1-ques6 formax concpt; 

                           BETWEEN = formax concpt; 
                           CATEGORICAL ARE ques1-ques6; 

                           CLUSTER IS class; 

                ANALYSIS: 
                          TYPE = TWOLEVEL RANDOM; 

                MODEL: 

                         %WITHIN% 
                         formthk BY ques1-ques6; 

                         %BETWEEN% 

                         formthkb BY ques1-ques6; 

                         concpt BY ques18@1 ques16 ques23 ques28 ques20 
                         ques30 ques29 ques27 ques19 ques17; 

                         formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 

                         ques4 ques11 ques7 ques1 ques6; 
                         int | formthkb XWITH concpt; 

                         formax ON concpt int; 

                 OUTPUT: SAMPSTAT; 

 

MODEL 7 
                TITLE:     Cross-Level Effects 
                  DATA:      FILE IS msemagg.dat; 

                             VARIANCES = NOCHECK; 

                  VARIABLE:  NAMES ARE class ques1-ques30; 
                             USEVARIABLES ARE class  ques12-ques15 formax procpt; 

                             BETWEEN = formax procpt; 

                             CATEGORICAL ARE ques12-ques15; 
                             CLUSTER IS class; 

                  ANALYSIS: 

                            TYPE = TWOLEVEL RANDOM; 

                            ALGORITHM = INTEGRATION; 
                  MODEL: 

                           %WITHIN% 

                           algethk BY ques12-ques15; 
                           %BETWEEN% 

                           algethkb BY ques12-ques15; 

                           formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 
                           ques4 ques11 ques7 ques1 ques6; 

                           procpt BY ques13@1 ques22 ques21 ques25 

                          ques24 ques14 ques15 ques26 ques12; 

                           int | algethkb XWITH formax; 
                           procpt ON formax int; 

                   OUTPUT: SAMPSTAT; 



 

301 

 

MODEL 8 
                TITLE:     Cross-Level Effects 

                  DATA:      FILE IS msemagg.dat; 
                             VARIANCES = NOCHECK; 

                  VARIABLE:  NAMES ARE class ques1-ques30; 

                             USEVARIABLES ARE class  ques21 ques20 ques22 ques24  

                             ques25 
                             ques26 formax procpt; 

                             BETWEEN = formax procpt; 

                             CATEGORICAL ARE ques21 ques20 ques22 ques24 ques25 
                             ques26; 

                             CLUSTER IS class; 

                  ANALYSIS: 
                            TYPE = TWOLEVEL RANDOM; 

                            ALGORITHM = INTEGRATION; 

                  MODEL: 

                           %WITHIN% 
                           algothk BY ques21 ques20 ques22 ques24 ques25 ques26; 

                           %BETWEEN% 

                           algothkb BY ques21 ques20 ques22 ques24 ques25 ques26; 
                           formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 

                           ques4 ques11 ques7 ques1 ques6; 

                           procpt BY ques13@1 ques22 ques21 ques25 

                          ques24 ques14 ques15 ques26 ques12; 
                           int | algothkb XWITH formax; 

                           procpt ON formax int; 

                   OUTPUT: SAMPSTAT; 

 

MODEL 9 
                  TITLE:     Cross-Level Effects 

                  DATA:      FILE IS msemagg.dat; 

                             VARIANCES = NOCHECK; 
                  VARIABLE:  NAMES ARE class ques1-ques30; 

                             USEVARIABLES ARE class  ques7-ques11 formax procpt; 

                             BETWEEN = formax procpt; 

                             CATEGORICAL ARE ques7-ques11; 
                             CLUSTER IS class; 

                  ANALYSIS: 

                            TYPE = TWOLEVEL RANDOM; 
                            ALGORITHM = INTEGRATION; 

                  MODEL: 

                           %WITHIN% 
                           axiothk BY ques7-ques11; 

                           %BETWEEN% 

                           axiothkb BY ques7-ques11; 

                           formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 
                           ques4 ques11 ques7 ques1 ques6; 

                           procpt BY ques13@1 ques22 ques21 ques25 
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                          ques24 ques14 ques15 ques26 ques12; 
                           int | axiothkb XWITH formax; 

                           procpt ON formax int; 

                   OUTPUT: SAMPSTAT; 

 

MODEL 10 
                    TITLE:     Cross-Level Effects 

                    DATA:      FILE IS msemagg.dat; 

                               VARIANCES = NOCHECK; 
                    VARIABLE:  NAMES ARE class ques1-ques30; 

                               USEVARIABLES ARE class  ques23 ques27 ques28 ques29 

                              ques30  formax procpt; 

                               BETWEEN = formax procpt; 
                               CATEGORICAL ARE ques23 ques27 ques28 ques29 ques30; 

                               CLUSTER IS class; 

                    ANALYSIS: 
                              TYPE = TWOLEVEL RANDOM; 

                              ALGORITHM = INTEGRATION; 

                    MODEL: 
                             %WITHIN% 

                             enacthk BY ques23 ques27 ques28 ques29 ques30; 

                             %BETWEEN% 

                             enacthkb BY ques23 ques27 ques28 ques29 ques30; 
                             formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 

                             ques4 ques11 ques7 ques1 ques6; 

                             procpt BY ques13@1 ques22 ques21 ques25 
                            ques24 ques14 ques15 ques26 ques12; 

                            int | enacthkb XWITH formax; 

                            procpt ON formax int; 

                     OUTPUT: SAMPSTAT; 

 

MODEL 11 
                TITLE:     Cross-Level Effects 

                DATA:      FILE IS msemagg.dat; 

                           VARIANCES = NOCHECK; 
                           VARIABLE:  NAMES ARE class ques1-ques30; 

                           USEVARIABLES ARE class  ques1-ques6 formax procpt; 

                           BETWEEN = formax procpt; 
                           CATEGORICAL ARE ques1-ques6; 

                           CLUSTER IS class; 

                ANALYSIS: 

                          TYPE = TWOLEVEL RANDOM; 
                          ALGORITHM = INTEGRATION; 

                MODEL: 

                         %WITHIN% 
                         formthk BY ques1-ques6; 

                         %BETWEEN% 

                         formthkb BY ques1-ques6; 



 

303 

 

                         formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 
                           ques4 ques11 ques7 ques1 ques6; 

                           procpt BY ques13@1 ques22 ques21 ques25 

                          ques24 ques14 ques15 ques26 ques12; 
                         int | formthkb XWITH formax; 

                         procpt ON formax int; 

                 OUTPUT: SAMPSTAT; 
 

MODEL 12 
                  TITLE:     Cross-Level Effects 
                  DATA:      FILE IS msemagg.dat; 

                             VARIANCES = NOCHECK; 

                  VARIABLE:  NAMES ARE class ques1-ques30; 
                             USEVARIABLES ARE class  ques16-ques20 formax procpt; 

                             BETWEEN = formax procpt; 

                             CATEGORICAL ARE ques16-ques20; 

                             CLUSTER IS class; 
                  ANALYSIS: 

                            TYPE = TWOLEVEL RANDOM; 

                            ALGORITHM = INTEGRATION; 
                  MODEL: 

                           %WITHIN% 

                           iconthk BY ques16-ques20; 

                           %BETWEEN% 
                           iconthkb BY ques16-ques20; 

                           formax BY ques5@1 ques10 ques2 ques3 ques9 ques8 

                           ques4 ques11 ques7 ques1 ques6; 
                           procpt BY ques13@1 ques22 ques21 ques25 

                          ques24 ques14 ques15 ques26 ques12; 

                           int | iconthkb XWITH formax; 
                           procpt ON formax int; 

                   OUTPUT: SAMPSTAT; 

 

MODEL 13 
                  TITLE:     Cross-Level Effects 

                  DATA:      FILE IS msemagg.dat; 
                             VARIANCES = NOCHECK; 

                  VARIABLE:  NAMES ARE class ques1-ques30 form axio icon algo alge  

                             enac 

                             agg1-agg30 mathk formagg axioagg iconagg algoagg 
                             algeagg enacagg formax procpt concpt formax 

                             procpt concpt; 

                             USEVARIABLES ARE class  ques12-ques15 procpt concpt; 
                             BETWEEN = procpt concpt; 

                             CATEGORICAL ARE ques12-ques15; 

                             CLUSTER IS class; 

                  ANALYSIS: 
                            TYPE = TWOLEVEL RANDOM; 
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                            ALGORITHM = INTEGRATION; 
                  MODEL: 

                           %WITHIN% 

                           algethk BY ques12-ques15; 
                           %BETWEEN% 

                           algethkb BY ques12-ques15; 

                           procpt BY ques13@1 ques22 ques21 ques25 
                           ques24 ques14 ques15 ques26 ques12; 

                           concpt BY ques18@1 ques16 ques23 ques28 ques20 

                           ques30 ques29 ques27 ques19 ques17; 

                           int | algethkb XWITH procpt; 
                           concpt ON procpt int; 

                   OUTPUT: SAMPSTAT; 

 

MODEL 14 
                  TITLE:     Cross-Level Effects 

                  DATA:      FILE IS msemagg.dat; 
                             VARIANCES = NOCHECK; 

                  VARIABLE:  NAMES ARE class ques1-ques30; 

                             USEVARIABLES ARE class  ques21 ques20 ques22 ques24  
                             ques25 

                             ques26 procpt concpt; 

                             BETWEEN = procpt concpt; 

                             CATEGORICAL ARE ques21 ques20 ques22 ques24 ques25 
                             ques26; 

                             CLUSTER IS class; 

                  ANALYSIS: 
                            TYPE = TWOLEVEL RANDOM; 

                            ALGORITHM = INTEGRATION; 

                  MODEL: 
                           %WITHIN% 

                           algothk BY ques21 ques20 ques22 ques24 ques25 ques26; 

                           %BETWEEN% 

                           algothkb BY ques21 ques20 ques22 ques24 ques25 ques26; 
                           procpt BY ques13@1 ques22 ques21 ques25 

                           ques24 ques14 ques15 ques26 ques12; 

                           concpt BY ques18@1 ques16 ques23 ques28 ques20 
                           ques30 ques29 ques27 ques19 ques17; 

                           int | algothkb XWITH procpt; 

                           concpt ON procpt int; 
                   OUTPUT: SAMPSTAT; 

 

MODEL 15 
                 TITLE:     Cross-Level Effects 

                DATA:      FILE IS msemagg.dat; 

                           VARIANCES = NOCHECK; 
                VARIABLE:  NAMES ARE class ques1-ques30; 

                           USEVARIABLES ARE class  ques7-ques11 procpt concpt; 
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                           BETWEEN = procpt concpt; 
                           CATEGORICAL ARE ques7-ques11; 

                           CLUSTER IS class; 

                ANALYSIS: 
                          TYPE = TWOLEVEL RANDOM; 

                          ALGORITHM = INTEGRATION; 

                MODEL: 
                         %WITHIN% 

                         axiothk BY ques7-ques11; 

                         %BETWEEN% 

                         axiothkb BY ques7-ques11; 
                         procpt BY ques13@1 ques22 ques21 ques25 

                         ques24 ques14 ques15 ques26 ques12; 

                         concpt BY ques18@1 ques16 ques23 ques28 ques20 
                         ques30 ques29 ques27 ques19 ques17; 

                         int | axiothkb XWITH procpt; 

                         concpt ON procpt int; 

                 OUTPUT: SAMPSTAT; 
 

MODEL 16 
                     TITLE:     Cross-Level Effects 

                    DATA:      FILE IS msemagg.dat; 

                               VARIANCES = NOCHECK; 

                    VARIABLE:  NAMES ARE class ques1-ques30; 
                               USEVARIABLES ARE class  ques23 ques27 ques28 ques29 

                              ques30  procpt concpt; 

                               BETWEEN = procpt concpt; 
                               CATEGORICAL ARE ques23 ques27 ques28 ques29 ques30; 

                               CLUSTER IS class; 

                    ANALYSIS: 
                              TYPE = TWOLEVEL RANDOM; 

                              ALGORITHM = INTEGRATION; 

                    MODEL: 

                             %WITHIN% 
                             enacthk BY ques23 ques27 ques28 ques29 ques30; 

                             %BETWEEN% 

                             enacthkb BY ques23 ques27 ques28 ques29 ques30; 
                             procpt BY ques13@1 ques22 ques21 ques25 

                             ques24 ques14 ques15 ques26 ques12; 

                             concpt BY ques18@1 ques16 ques23 ques28 ques20 
                            ques30 ques29 ques27 ques19 ques17; 

                             int | enacthkb XWITH procpt; 

                             concpt ON procpt int; 

                     OUTPUT: SAMPSTAT; 
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MODEL 17 
                TITLE:     Cross-Level Effects formax procpt 

                DATA:      FILE IS msemagg.dat; 
                           VARIANCES = NOCHECK; 

                VARIABLE:  NAMES ARE class ques1-ques30; 

                           USEVARIABLES ARE class  ques1-ques6 procpt concpt; 

                           BETWEEN = procpt concpt; 
                           CATEGORICAL ARE ques1-ques6; 

                           CLUSTER IS class; 

                ANALYSIS: 
                          TYPE = TWOLEVEL RANDOM; 

                          ALGORITHM = INTEGRATION; 

                MODEL: 
                         %WITHIN% 

                         formthk BY ques1-ques6; 

                         %BETWEEN% 

                         formthkb BY ques1-ques6; 
                           procpt BY ques13@1 ques22 ques21 ques25 

                      ques24 ques14 ques15 ques26 ques12; 

                                         concpt BY ques18@1 ques16 ques23 ques28 ques20 
                                         ques30 ques29 ques27 ques19 ques17; 

                         int | formthkb XWITH procpt; 

                         concpt ON procpt int; 

                 OUTPUT: SAMPSTAT; 

MODEL 18 

                  TITLE:     Cross-Level Effects 

                  DATA:      FILE IS msemagg.dat; 
                             VARIANCES = NOCHECK; 

                  VARIABLE:  NAMES ARE class ques1-ques30; 

                             USEVARIABLES ARE class  ques16-ques20 procpt concpt; 
                             BETWEEN = procpt concpt; 

                             CATEGORICAL ARE ques16-ques20; 

                             CLUSTER IS class; 

                  ANALYSIS: 
                            TYPE = TWOLEVEL RANDOM; 

                            ALGORITHM = INTEGRATION; 

                  MODEL: 
                           %WITHIN% 

                           iconthk BY ques16-ques20; 

                           %BETWEEN% 
                           iconthkb BY ques16-ques20; 

                           procpt BY ques13@1 ques22 ques21 ques25 

                           ques24 ques14 ques15 ques26 ques12; 

                           concpt BY ques18@1 ques16 ques23 ques28 ques20 
                           ques30 ques29 ques27 ques19 ques17; 

                           int | iconthkb XWITH procpt; 

                           concpt ON procpt int; 
                   OUTPUT: SAMPSTAT; 
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