

AUTOMATED NAVIGATION MODEL EXTRACTION FOR WEB LOAD TESTING

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ĐSMĐHAN REFĐKA KARA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

DECEMBER 2011

AUTOMATIC NAVIGATION MODEL EXTRACTION FOR WEB LOAD

TESTING

Submitted by ĐSMĐHAN REFĐKA KARA in partial fulfillment of the requirements for

the degree of Master of Science in InformationSystems, Middle East Technical

University by,

Prof. Dr. Nazife BAYKAL ____________________

Director, Informatics Institute

Prof. Dr. Yasemin YARDIMCI ÇETĐN ____________________

Head of Department, Information Systems

Assist. Prof. Dr. Aysu BETĐN CAN ____________________

Supervisor, Information Systems, METU

Examining Committee Members

Prof. Dr. Semih BĐLGEN ____________________

Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Aysu BETĐN CAN ____________________

Information Systems, METU

Assist. Prof. Dr. Bülent Gürsel EMĐROĞLU ____________________

Computer Engineering, Başkent University

Assist. Prof. Dr. Erhan EREN ____________________

Information Systems, METU

Assist. Prof. Dr. Banu GÜNEL HACIHABĐBOĞLU ____________________

Information Systems, METU

Date: 29.12.2011

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name : Đsmihan Refika KARA

Signature : _________________

iv

ABSTRACT

AUTOMATIC NAVIGATION MODEL EXTRACTION FOR WEB LOAD TESTING

Kara, Đsmihan Refika

M.S., Department of Information Systems

Supervisor: Assist. Prof. Dr. Aysu BETĐN CAN

December 2011, 48 pages

Web pages serve a huge number of internet users in nearly every area. An

adequate testing is needed to address the problems of web domains for more efficient

and accurate services. We present an automated tool to test web applications against

execution errors and the errors occured when many users connect the same server

concurrently. Our tool, called NaMoX, attains the clickables of the web pages, creates a

model exerting depth first search algorithm. NaMoX simulates a number of users, parses

the developed model, and tests the model by branch coverage analysis. We have

performed experiments on five web sites. We have reported the response times when a

click operation is eventuated. We have found 188 errors in total. Quality metrics are

extracted and this is applied to the case studies.

Keywords: Load Test, Web applications, Branch Coverage Analysis, Model Based

Testing

v

ÖZ

WEB LOAD TESTLERĐ ĐÇĐN OTOMATĐK OLARAK MODEL ÇIKARTILMASI

Kara, Đsmihan Refika

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Aysu BETĐN CAN

Aralık 2011, 48 sayfa

Web sayfaları pek çok internet kullanıcısına hitap ettiklerinden, bu uygulamaların

yeterli seviyede test edilmeleri gerekmektedir. Bu sayede hata oranları azaltılarak,

kullanıcılara daha verimli ve daha doğru hizmet verilebilir. Bu tezde öngörülmemiş

çalışma hataları ve birden fazla kullanıcının aynı anda web sunucularına bağlantı

kurmaları sonucu oluşan hataları içeren, web sayfalarını otomatik olarak test eden bir

araç sunacağız. Aracımızın ismi NaMoX’tur. NaMoX, öncelikle web sayfalarının

tıklanabilirlerine ulaşarak ve derinlik bilgisine dayanarak, derinlik öncelikli algoritma ile

bir model oluşturur. Çıkartmış olduğu bu modeli kullanarak, birden fazla kullanıcıyı

simüle eder ve dal kapsama analizi yaparak, web sayfasını yük testi için hazırlar. Bu

calismada beş tane örnek web sayfası üzerinde deneyler yapıldı, simüle edilen her bir

kullanıcı için web sitesinin tıklanabilirlerine erişilme yanıt süreleri, ve karşılaşılan

hatalar bulundu. Toplamda 188 adet hata bulundu. Kalite metrikleri çıkartılarak, örnek

sayfalara kalite karşılaştırması uygulandı.

vi

Anahtar Kelimeler: Yük Testi, Web Uygulamaları, Dal Kapsama Analizi, Model Tabanlı

Test

vii

This thesis is dedicated to:

My Grand Parents…

viii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assist. Prof. Dr. Aysu Betin Can for her guidance,

patience and the discipline that she provided throughout my thesis.

I would like to present my thanks to the faculty and the staff of Informatics Institute,

especially Ali Kantar, for their support to my education.

For providing scholarship, I would also thank the Scientific and Technological Research

Council of Turkey (TÜBĐTAK).

Finally, I would like to render my thanks to my father Himmet, my mother Canan, my

sister Evdegül, my brother Yasin, and my fiancé Ali for their patience and apprehension.

ix

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. v

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

LIST OF SYMBOLS ... xiii

CHAPTER

1. INTRODUCTION .. 1

1.1 Overview ... 3

2. LITERATURE REVIEW AND BACKGROUND ... 4

2.1 Web Testing .. 4

2.2 Model Based Testing ... 9

2.3 Technologies Used .. 11

2.3.1 Selenium .. 11

2.3.2 HTML Agility Pack ... 12

2.3.3 XML Path Language .. 13

3. NaMoX ... 14

3.1 Methodology ... 15

3.1.1 Creating the State Graph .. 15

3.1.2 Creating the Test Sequences for Load Testing .. 19

3.2 Design and Implementation ... 20

3.2.1 Crawler .. 22

3.2.1.1 Clickable Finder ... 22

3.2.1.2 Model Extractor ... 24

x

3.2.2 Load Generator .. 26

3.2.2.1 Input Provider .. 26

3.2.2.2 Branch Traverser .. 27

3.3 Usage .. 28

4. EXPERIMENTS ... 30

4.1 Test Environment .. 30

4.2 Test Results ... 31

5. CONCLUSION ... 42

REFERENCES ... 44

xi

LIST OF TABLES

Table 4.1: Detected Clickables ... 32

Table 4.2: Clickables Types ... 32

Table 4.3: Detected Error Numbers .. 33

Table 4.4: Detected HTTP Exceptions for Each Case Study 34

Table 4.5: Error Severities ... 35

Table 4.6 Quality Measurement ... 38

Table 4.7 Server Response Times .. 39

Table 4.8: Durations of NaMoX ... 40

Table 4.9: Results on JMeter .. 41

xii

LIST OF FIGURES

Figure 2.1: Example HTML source code .. 13

Figure 3.1: Example HTML source code including clickables 16

Figure 3.2: State flow graph visualization .. 17

Figure 3.3: Example graph file ... 18

Figure 3.4: HTTP Errors .. 19

Figure 3.5: Input Values File .. 20

Figure 3.6: System architecture of NaMoX .. 21

Figure 3.7: User Interface – Input Form ... 28

Figure 3.8: User Interface – Tester Form .. 29

xiii

LIST OF SYMBOLS

AJAX Asynchronous JavaScript and XML

ASP Active Server Pages

DOM Document Object Model

GB Giga Byte

GHz Giga Hertz

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

METU Middle East Technical University

PHP Hypertext Preprocessor

QoS Quality of Service

RAM Random Access Memory

UML Unified Modeling Language

URL Uniform Resource Locator

XML EXtensible Markup Language

XPATH XML Path Language

XSL EXtensible Stylesheet Language

1

CHAPTER 1

INTRODUCTION

With the rapid growth of internet technologies, web applications become very pervasive

nearly in every area such as banking, education or government agencies. The

convenience gained the popularity of web applications. However, internet users

encounter some unexpected errors during their business on the web. These errors

attenuate the reliability of the web domain and the web site loses its users. Hence, an

adequate testing is needed to address the problems of web domains for more efficient

and accurate services.

There are several test techniques used to prevent the inaccuracies. Load testing is one of

the test techniques that ensures the application can operate under a specific load. In web

application context, it is considerably important because there is an intense data transfer

and high number of users. Several works on load testing have focused on three topics

[1]:

• User writes test scenario using scripts using XML or Jython (e.g.

TestMaker[2], Grinder[3], LoadSim[4], JMeter[5]).

2

• User enters the scenario using a graphical objects representing some

built-in interactions (like JMeter[5], LoadTest[6]).

• User interacts with a browser and the interactions are recorded with a

capture tool. (Like DieselTest[7], OpenSTA[8], LoadTest[6]). Some applications

also combine the last two items (LoadTest[6]).

The most consequential disadvantage of these three approaches is the coverage. The

coverage analysis is left to the user, which begets to overlook some navigation and

reduce the testing adequacy. These tools mostly focus on the number of the concurrent

users. The content of the page is keeping in the background although it is a

considerable topic in testing.

Furthermore, most of these tools do not address the scripts inside the HTML codes.

These tools do not realize and handle the scripts. However, scripting languages are

becoming widespread and used in most popular pages, such as Facebook or Google.

In this thesis, we present an automated tool, called NaMoX, to create a navigation model

for load testing. NaMoX checks execution errors and the errors composed when many

users connect the same server concurrently.

NaMoX addressed the coverage problem by generating the test cases using a model

extracted from the clickables, defined as hyperlinks and elements that have OnClick

events, of the web page using branch coverage analysis. Branch coverage ensures that

each possible branch of the model is executed at least once. NaMoX also crawls text

boxes, list boxes and checkboxes to give specific values to these input boxes, using a

gray box approach.

Taking the gray box approach, NaMoX overcomes the script issue by executing the test

scenarios through a browser. This approach enables NaMoX not to discriminate scripts

from static contents. NaMoX uses Selenium [9] to open web browser and to perform

click operations on that browser. Selenium is a functional and acceptance testing tool for

Web applications that provides an API to use several web browsers such as FireFox[10].

NaMoX firstly extracts the clickables from the source code and builds a transition graph

3

of the web application. Selenium, which can test client-side functionality implemented

in JavaScript [9], is used for performing click operations of published clickables.

We have performed experiments on five commercial web sites, in JavaScript, ASP and

PHP pages. We have reported the response times when a click operation is eventuated.

We have found 188 errors in total.

1.1 Overview

There are five chapters in this thesis. Chapter 1 introduces some test techniques and

focuses on severity of load testing. The contributions of our tool are described. The case

studies and the results are explained briefly.

Chapter 2 deals with the background knowledge and related works about load testing

and crawling algorithms.

Chapter 3 proposes the phases of the project in detail. The methodology and system

architecture is explained in this chapter. We give technical information about NaMoX

and our model’s perspective.

Chapter 4 analyses the experiments in our study. The results in five web sites are

described. The test environments and the durations for modeling and running tests are

explained.

The final chapter is the conclusion part of the work. This chapter summarizes the study

and the outputs of the thesis. The future works are also told in this chapter.

4

CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

This chapter puts forth the previous work done in the literature on the automatic

navigation model based testing and web testing. Section 2.1 provides an overview of

related works about web testing. Section 2.2 focuses on literature review on model based

testing. Finally, Section 2.3 mentions the technologies used in NaMoX.

2.1 Web Testing

Web testing includes any activity evaluating an attribute or capability of a web

application and determining that it meets its required results.

There are many testing techniques used to meet the requirements of a system including

web systems. One of them is load testing which ensures the web site runs under the

expected load. The response times and the failures should be tested at different load

levels [11].

5

It is critical for an end user especially customers that web applications are fast and

reliable; therefore load testing is an important task for making sure a web site meets the

requirements for optimizing applications different components for end users. [12].

The Apache JMeter [5] is a load test tool which measures performance of a web

application. The JMeter takes the URLs and input values for input boxes values

manually. It caches (i.e. records) the test and replays it to take the test result. Test

results can be analyzed and replayed offline. However, JMeter is not supported by real

web browsers. Users cannot see the browsers while running or after the test.

Furthermore, it does not support JavaScript codes which are really very popular item in

web programming. On the other hand, NaMoX finds the clickables automatically by the

program instead of recording. These clickables are used for creating a navigational

model of the web application as a state machine. Based on that state machine, test cases

are generated with a number of simulated users. NamoX also have a support on

JavaScript.

BrowserMob [13] also provides web site load testing. It takes Selenium [14] (described

in Section 2.3.1 in details) scripts, and runs the tests according to these scripts. Selenium

records user actions and builds test scripts, automates browsers. It performs reusable

scripts in many programming languages that can be later executed. BrowserMob also

supports JavaScript, which is different than JMeter that cannot handle scripts.

BrowserMob uses real browsers, and reports the network performance of the tested web

page. Although there are many similarities, the main difference of NaMoX from

BrowserMob is that NaMoX creates the Selenium scripts automatically. Therefore,

NaMoX does not use record and replay algorithm.

Marchetto et al [15] proposed a case study based on comparison of web testing

techniques applied to AJAX web applications. It aims to find the answers of these

questions:

• What is the effectiveness in revealing faults of each Web testing technique?

• What is the effort required to apply each Web testing technique?

6

The results show that the state based techniques are more successful on detecting

unexpected errors. But the effort is higher especially in preparation phases. Following

the results of this study we chose the model in NaMoX to be a state based model to

detect more errors.

Menascé [11] describes the quality of service factors of load testing and how it works.

This study specified QoS factors as:

• Availability,

• Response time.

This study shows the relationship between the number of users and response times. As

user number increases, response time also increases. When a certain number of users in

the system is reached, there is an exact increase in response time.

The experiments (explained in Chapter 4 in details) done using NaMoX show the direct

proportion between response time and number of users as explained in Menascé’s study.

Mosberger et al. [16] have a study on measuring web server’s performance, called

httperf. httperf run on the client and produce an HTTP workload on the server composed

of three parts:

• The core HTTP engine: provides connection

• Workload generation: ensures load constitution.

• Statistics collection: creates a performance graph by collecting statistics of loads.

NaMoX does not have the ability to measure the performance of the whole system,

however it generates some load and collects the response times of accessing to each

clickable as described in the later chapters of this thesis.

A popular product for industry-strength load testing is Mercury Interactive’s

LoadRunner [17]. It uses a script-driven approach and increases usability by a visual

editor for end-user scripts. This end-user scripts run on a load engine that takes care of

load balancing and monitoring automatically. Most current load testing tools operate in a

7

similar manner to LoadRunner. However, LoadRunner does not provide a model-based

solution.

Dirk Draheim et al. [18] has a study on realism in the simulation of user behavior.

According to this study, a load test is applicable when the virtual users’ behaviors are

similar to the actual users, otherwise virtual users’ behaviours can generate inconsistent

results. However, the manual test case implementation is time consuming and difficult.

Most of the current load testing tools supports the composition of test cases consisting of

a fixed sequence of operations.

NaMoX’s created model is appropriate for realistic situations. This model is constructed

according to a logical order. The given initial URL forms the starting point and this

URL’s clickables are extracted and they are traversed according to depth-first search

algorithm.

Scott Barber [19] has a study on the performance of load test tools. In this study, the

considerations are divided into three categories:

• User psychology

• System considerations

• Usage considerations

User psychology is the most often ignored consideration. However, Dirk Draheim et al.

[18] mentioned, realistic use behavior plays a material role and is an critical evaluation

criteria in performance of load test tools.

As it is mentioned, NaMoX’s model is occurred according to a logical order. Therefore,

this model is created suitable for user psychology.

System considerations [19] decide the performance that the system can handle within the

given parameters. System considerations include the following:

• System hardware

• Network and/or Internet bandwidth of the system

•Geographical replication

• Software architecture

8

These system considerations are included in the NaMoX’s future work told in Chapter 5

in details. The experiments should be done in a strong performance server. According to

these considerations, NaMoX will decide the thread number of load generation.

Usage considerations changes for each web application. For instance, an application for

reading news or an application accessing some data from a company database requires

different performance. A graphical application may be slower and some applications

selecting data may be faster.

NaMoX eliminates this problem by using the Selenium [14] library in its load test

module. Selenium improves performance and optimizes the test cases. NaMoX uses

XPath [20] as the unique identifier and Selenium also improves the performance of the

XPath processing.

Daniel A. Menascé [11] predicts web applications’ performance at any load levels.

• Nvu = number of virtual users.

• Nc = number of concurrent requests a Web site is processing.

• Z = average think time, in seconds.

• R = average response time for a request, in seconds.

• Xo = average throughput, in requests per second.

The study gets the following relationship:

Nvu = [R(Nc) + Z] × Xo (Nc).

 (Equation 2.1)

The metrics [21] are also very important for testing tools, determines application’s

performance and provides specific information on system errors. Some metrics are

explained in below:

Connections: This test measures the number of refused connections while the load test

module is running. A failed connection may cause from a busy server that cannot handle

new requests or memory may not be adequate. It also may mean that the user sent

malformed data to the server.

9

NaMoX reports HTTPExceptions and TimeOutExceptions. Connection failures may be

because of the some http errors such as HTTP 408 Request Timeout Error, HTTP 504

Gateway Timeout Error, HTTP 416 Requested Range Not Satisfiable Error or

TimeOutExceptions.

Throughput: Throughput is the metric of sum of response data size divided by the

number of seconds in the reporting interval. This is an important metric that controls the

application and its server connection is working properly. As the load in the web

application increases, the throughput also increases [21].

HTTP 500 Internal Server Error is one of the failures that NaMoX handles and can be

used as a throughput metric error. When the number of virtual user is over loaded, this

kind of failures may be occurred.

Hits per Second: As the hits per seconded is increased, the application will handle more

request in a second [21]. Hits per second metric explains if there is a possible scalability

issue with the application.

Pages per Second: Pages per second measures the number of pages requested from the

application per second. The more the page per second, the more work the application is

doing per second [21].

NaMoX uses Selenium [14] that automates user activities and creates scripts according

to the activities. According to the Selenium’s performance, the pages per second metric

will be changed.

2.2 Model Based Testing

Model based testing develops test cases from an extracted model of a system under test.

Utting et al.[22] investigate model based testing tools’ approaches and understanding the

issues of integrating model based testing into a software development process. This

study classified the approaches in model based testing tools. According to these

classifications, NaMoX has online test case generation including arc coverage algorithm.

10

A. Pretschner et al. [23] compares the coverage and number of detected errors of model

based tests with hand crafted tests. The results showed that the tests using a model detect

more failures than hand crafted tests. This work also adduce that there is strong

correlation between coverage and failure detection. In NaMoX, we extracted a

navigation model on clickables of the HTML source code. On this model, we applied the

branch coverage techniques for detection of more exceptions according to this study.

Kung et al [24] generates tests based on multiple models of the web applications. These

models are: Object Relation Diagrams, Object State Diagrams, a Script Cluster Diagram,

and a Page Navigation Diagram. This study uses white box test technique, assuming the

source code is available. NaMoX uses gray box technique for composing the state

diagram.

There are several example studies for testing object oriented programs using finite state

machines. For instance, Kung et al. [25] extract the model from the code using symbolic

execution. On the other hand Turner and Robson [26] derive the FSM from the design of

classes. NaMoX differs from these studies, composes the model from the clickables of

the HTML source code.

Crawljax [27] is the first web crawler targeted for Ajax applications. Given URL and a

depth, Crawljax firstly finds the defined clickables of the web page. The clickables

include the links on the source code, and the elements that have ‘onClick’ and

‘onMouseOver’ events. Crawljax provides an automatic click of the clickable objects.

At the time of automatically clicking, a graph with DOM states is being created

dynamically.

The ATUSA [28] is used with the Crawljax [27] project as a test generator tool. It uses a

dynamic analysis to construct a model of an application’s state graph. ATUSA has

detected six types of failures: three of them are the generic plugins, and the rest three

through the application-specific plugins. However, it does not ensure one hundred

percent coverage of state machine.

11

2.3 Technologies Used

This section explains the technologies that are used in NaMoX’s background. In Section

2.3.1, a browser automation tool Selenium [14] will be described. Section 2.3.2 explains

HTML Agility Pack [29] which is used for parsing the html source code of a web site.

Section 2.3.3 gives information about Xpath [20] that is used as a unique property of

clickables.

2.3.1 Selenium

Selenium [14] is a recording tool which records user actions for building test scripts and

automating browsers. It performs reusable scripts in one of many programming

languages that can be later executed. It has support of multiple browser platforms such

as Mozilla FireFox [10], Google Chrome [30] or Internet Explorer [31], and several

languages such as Java, JavaScript, Ruby, PHP, Python, Perl, or C #. It also provides an

infrastructure for calling Selenium inside the programming languages.

We use Selenium not only for executing test cases while performing load testing but also

for collecting clickable items in a web page while building the navigation graph of a web

site. There are four important method of Selenium library used in NaMoX:

• Selenium.Click(XpathOfTheClickable) : implements the click operation. This

function is used in executing clickables in model extraction. Also, it is managed

in running the load test module.

• Selenium.Open(UrlOfTheClickable) : implements opening the given URL. This

function is also used in executing clickables in model extraction and in load test

module as Selenium.Click.

• Selenium.GetHtmlSource(): returns the HTML source code of the URL in which

the browser is.

• Selenium.GetLocation(): returns the URL in which the browser is.

12

2.3.2 HTML Agility Pack

HTML Agility Pack [29] is a .NET code library which models and parses HTML

documents, supporting XPath.

NaMoX needs to get clickables and input boxes from the HTML source code. For this

purpose, firstly the HTML source code is discovered from a given URL with Selenium,

and it is parsed by HTML Agility Pack.

The originated HTML source code is firstly loaded on an HtmlDocument class in the

HTML Agility Pack library as shown in below:

HtmlAgilityPack.HtmlDocument htmldoc = new

HtmlAgilityPack.HtmlDocument();

htmldoc.LoadHtml(htmlSource);

The loaded html document is decomposed in html nodes by SelectNodes(XPath) method

presented as in the below example for input boxes:

foreach (HtmlAgilityPack.HtmlNode node in

htmldoc.DocumentNode.SelectNodes("//input"))

{

 Input input = new Input();

 input.InputClass = node.Attributes["class"].Value;

 input.InputId = node.Attributes["id"].Value;

 input.InputName = node.Attributes["name"].Value;

 input.InputType = node.Attributes["type"].Value;

 input.InputValue = node.Attributes["value"].Value;

 input.InputXPath = node.XPath;

}

13

2.3.3 XML Path Language

Clark et al. [32] defines XPath as a syntax and semantics for functionality between XSL

Transformations and XPointer. XPath aims to handle the part of XML document and

manipulates strings, numbers and booleans.

In NaMoX, we used XPath as a unique attribute of clickables and input boxes. Since

HTML codes do not have to have identification (id) for each element, we use XPath as

the primary key of these classes.

According to the example HTML source code in Figure 2.1, there are two clickables.

link1 and button1.

<html> <body>

Main Page

 link1

<INPUT TYPE=BUTTON ID=button1

OnClick="window.location='button1.htm'"/>

</body> </html>

Figure 2.1: Example HTML source code

The XPaths of the clickables in Figure 2.1 are:

• link1 : body[1]//a[1] (selects the first a of the body)

• button1 : body[1]//input[1] (selects the first input of the body)

14

CHAPTER 3

NaMoX

In order to solve problems specified in Chapter 1, we developed a tool, called NaMoX.

We aim to extract a navigation model of a web application for web load testing. To the

best of our knowledge, there is no open source load testing tool that takes test cases from

a model. To show that our model extraction enables test case generation for load testing,

we performed our own load test runner module. We also propose NaMoX as an

automated tool to find unhandled exception errors during creation of the model and

running the load test partition. NaMoX adapts depth-first search algorithm to compose

the navigation model. Moreover, the created model’s coverage is designated by the

clickables, including hyperlinks and elements that have OnClick events. Test cases are

automatically generated employing the model using branch coverage analysis technique.

NaMoX uses gray box technique for composing the state diagram.

In this chapter, the study is presented in details. Firstly, the methodology and algorithm

of the study is explained. Then, the design and implementation of NaMoX is describes

in terms of system architecture.

15

3.1 Methodology

This section will be described in two parts:

• Creating the state graph

• Creating the test sequences

Section 3.1.1 describes the formation of the state graph. Section 3.1.2 deals with the

composed test sequences for web load testing.

3.1.1 Creating the State Graph

NaMoX’s primary work is creating a model from a seed URL of a web application using

states and transitions. In this model, states are combination of the clickables and HTML

source code that contain these clickables. The clickables are defined as hyperlinks and

elements that have OnClick events. These clickables are detected from the HTML

source code through a crawling process. Clickables’ attributes are:

• Clickable Xpath

• Clickable URL

• Clickable Id

• Clickable Type

• Clickable Event

explained in Section 3.2.1.1 in details.

State graph’s transitions consist of the current state, the clickable, and the created next

state when the clickable performed in the current state. Transitions also include the go

back clickables while returning back to the previous state.

Figure 3.1 shows a small sized example HTML code. In this source code, there are two

clickables. One of them is link1 which is a hyperlink, second one is button1 which has

an OnClick event.

16

<html> <body>

Main Page

 link1

<INPUT TYPE=BUTTON ID=button1

OnClick="window.location='button1.htm'"/>

</body> </html>

Figure 3.1: Example HTML source code including clickables

Figure 3.2 shows the state flow graph visualization of the extracted model when depth

equals to 1 for Figure 3.1. Graph’s vertices include the states; and arcs are formed from

transitions. We use XPath [20] to denote the clickables in a page because it is a unique

attribute of the clickable.

17

 S1, link1 (xpath: //body[1]//a[1]), S2

 S2, clickableGoBack(xpath: null), S1

 S1, link1 (xpath: //body[1]//input[1]), S3

 S3, clickableGoBack(xpath:null), S1

Figure 3.2: State flow graph visualization

We crawl the web pages in a depth first manner and while crawling we build the state

graph as stated above. After this model is extracted, it is being preserved for reusing

explained in Section 3.1.2 in details. The transitions of the graph are being written on a

text file. Figure 3.3 shows an example of the graph file. To increase readability, the

URL*id number of state* is written instead of state. NaMoX writes the states to another

state files, giving the ids as file names, and matches this state files with the id number of

state in the graph file.

S2

(HTML Source
link1.htm,

Clickables of S2)

S1

(HTML Source
Code of S1,

link1&button1)

S3

(HTML Source
Code of

button1.htm,
Clickables of S3)

18

FROM=> http://www.gucci.com/int/home *1*

WITH=>Xpath://body[1]//span[1]//div[2]//header[1]//h1[1]//a[1]

Event:href

TO=> http://www.gucci.com/int/home *2*

Figure 3.3: Example graph file

While composing the graph, there can be errors in execution level. As told in Chapter 4,

we call this type of errors as 1st Level Errors. These error types are shown in Figure 3.4.

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Large

19

415 Unsupported Media Type

416
Requested Range Not

Satisfiable

417 Expectation Failed

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version not supported

Figure 3.4: HTTP Errors [33]

3.1.2 Creating the Test Sequences for Load Testing

As stated in Section 3.1.1, the model build using crawling is preserved for reusing. Once

the graph is generated, testers can use it to load test the application anytime. In the graph

file text, the transitions are navigation actions as shown in Figure 3.3. These transitions

are formed from the branches of the state machine. NaMoX reads this graph file text and

runs a branch coverage test from that model with a number of threads concurrently. In

order to perform that, we could add some other coverage criteria, such as switch

coverage, path coverage or random testing and let the tester choose for different levels of

test adequacy.

According to the specified coverage criteria, NaMoX creates test sequences. It firstly

reads the graph file and loads the model. Based on the source code in the state file text,

NaMoX crawls the textboxes, listboxes and checkboxes from the HTML source code.

To provide the input values of these extracted input boxes, the tool expects the user to

20

provide an input values file. This input file includes the URL, the Xpath of the widget

that takes the input, and the value of the input that the user wants to assign (see Figure

3.5).

http://localhost/test.html //body[1]//input[2] Test

Figure 3.5: Input Values File

Based on the thread count given by the user, the generated test sequences are executed

concurrently simulating many concurrent users on a real browser. NaMoX captures the

errors shown in Figure 3.4. NaMoX also records response times for each thread.

3.2 Design and Implementation

The system architecture of NaMoX is shown in Figure 3.6. NaMoX consists of four

main components: Crawler, Load Generator, Selenium and HTML Agility Pack. Below

we explain each of these components in detail. Selenium and HTML Agility Pack are

the available free source libraries [14, 29]. Therefore their usage is explained in Crawler

and Load Generator modules.

21

Figure 3.6: System architecture of NaMoX

WEB PAGES

CRAWLER LOAD GENERATOR

SELENIUM

HTML

AGILITY

PACK

2ND LEVEL TEST

RESULTS
1ST LEVEL TEST

RESULTS

CLICKABLE

FINDER

MODEL

EXTRACTOR
BRANCH

TRAVERSER

INPUT

PROVIDER

22

3.2.1 Crawler

Crawler constitutes the main component of NaMoX. This component consists of two

modules. The first module is Clickable Finder. Clickable Finder is responsible for

finding the items in the document that has an OnClick event attached to it and the

hyperlinks, i.e. the clickables. The second module is the model extractor. This

component builds the model, its states and transitions according to a depth first search

algorithm.

3.2.1.1 Clickable Finder

Clickable Finder is responsible for finding the defined clickables. We define clickables

as hyperlinks and the elements having OnClick events. These specified clickables are

extracted from the source code by using HTML Agility Pack [29] library which parses

the source code. The input boxes such as textbox, listbox or checkbox are also extracted

using this library (explained in Section 3.2.2.1 in details).

The clickables have five important attributes:

• Clickable Xpath: It describes the Xpath of the clickable. For instance;

//body[1]//input[2] means the clickable in the first body tag, under the second

input tag.

• Clickable URL: It defines the URL in which that clickable is.

• Clickable Id: It is the id of the clickable if it is determined in the source code. It

may be null if it is not defined.

• Clickable Type: If the clickable is a hyperlink, then the type is “href”; else if the

clickable is another element that has onClick event, then the clickable type refers

to “OnClick”.

• Clickable Event: If the clickable is a hyperlink, then the type is “href”; else if the

clickable is another element that has onClick event, then the clickable type refers

to “click”.

23

Getting clickables algorithm is shown in below:

procedure GetClickables(htmlSourceCode)

 HtmlAgilityPack.HtmlDocument htmldoc � htmlSourceCode

 foreach(HtmlAgilityPack.HtmlNode link in

htmldoc.SelectNodes("//*[@href]"))

 clickable.clickableXpath � link.XPath

 clickable.clickableUrl � selenium.GetLocation

 clickable.clickableId � link.Id

 clickable.clickableType � “href”

 clickable.clickableEvent � “href”

 end foreach

foreach(HtmlAgilityPack.HtmlNode click in

htmldoc.SelectNodes("//*[@onClick]"))

 clickable.clickableXpath � click.XPath

 clickable.clickableUrl � selenium.GetLocation()

 clickable.clickableId � click.Id

 clickable.clickableType � “OnClick”

 clickable.clickableEvent � “click”

 end foreach

end procedure

According to this algorithm, Html Agility Pack [29] parses the HTML source code. The

hrefs and onClicks are collected from the code and assigned to an HtmlNode element.

The HtmlNode element’s XPath [32] assigned to the clickableXPath and id assigned to

the clickableId. The clickableUrl is taken from Selenium.GetLocation() method. This

method returns the URL in which the browser is, described in detail in Section 2.3.1.

NaMoX uses static HTML source codes while getting clickables. Server side scripts

poses no problemfor NaMoX because source codes generates them. As Selenium [14]

24

simulates the click operation of the clickable, the client side scripts also pose no

problem.

3.2.1.2 Model Extractor

NaMoX’s primary task is creating a model from the HTML source code of a web page.

In this model, states are the combinations of the clickables and HTML source codes. On

the other hand, transitions include the current state, the clickable, and the created next

state when the clickable performed in the current state. Transitions also include the go

back clickables while returning back to the previous state. NaMoX does not use

browser’s goBack function, because in dynamic pages, URL may not change although

the content changes. NAMoX prevents this case by holding the previous state and

returns back to that state during traversal.

While creating the model, there are two parameters derived from the user; the initial

URL, and the depth. The entered initial URL defines the start point of the crawling. The

entered crawl depth shows the levels to be followed. It means that in how many levels

the clickables are continued to be detected. According to the depth, the web page’s

clickables are traversed recursively using Selenium library using Click and Open

functions explained in Section 2.3.1.

Creating model algorithm is shown in below:

procedure InitGraph(URL, depth)

 currentState.htmlSource � URL.GetHtmlSource()

currentState.clickables � GetClickables(currentState.htmlSource)

AddVertex(currentState)

CreateGraph(0, depth, currentState, URL)

end procedure

procedure CreateGraph(level, depth, currentState, currentUrl)

level = 0

if(level<depth)

25

 foreach(Clickable c in currentState.clickables)

 previousState � currentState

 nextState �Execute(c)

 transition � CreateTransition (currentState, c, nextState)

 if(!IncludesEdge(transition))

 AddTransition(transition)

 end if

 if(!IncludesVertex(nextState))

 AddVertex(nextState)

CreateGraph(level + 1, depth, nextState,

currentUrl);

 end if

 transition=CreateTransition(nextState,clickableGoBack,currentState)

 if(!IncludesEdge(transition))

 AddTransition(transition)

 end if

 GoTo(previousState)

 end foreach

end if

end procedure

The execution errors may occur during the Execute function when composing the graph.

These errors are hold in a file named ExecutionErrors.txt. We call them 1st level errors

explained in Chapter 4 in detail.

26

3.2.2 Load Generator

This component uses a gray box testing approach and it generates test cases for load

testing. It consists of two modules. Input provider is the first module crawling input

boxes of the source code. The Branch Traverser runs the test according to the branch

coverage algorithm.

3.2.2.1 Input Provider

Input Provider aims to crawl the input boxes of the source code in the graph file and

assign a specified value determined by the user. The input boxes such as textbox, listbox

or checkbox, are extracted from the source code by using HTML Agility Pack library

which is useful for parsing source codes in given algorithm below:

procedure GetInputs(htmlSource, URL)

foreach(HtmlAgilityPack.HtmlNode i in htmldoc.SelectNodes("[input]"))

 input.inputClass � i.Class

input.inputXpath � i.XPath

 input.inputUrl � URL

 input.inputId � i.Id

 input.inputType � i.Type

 input.inputName � i.Name

 end foreach

end procedure

After the input boxes are crawled, the user should specify the values of these input boxes

from the input values file. The file should be filled with the URL of the input box, xpath

of the input box and finally the value of the input box. In this part of the NaMoX, the

user should see the html source code; therefore the white box method will be used.

27

According to the input values file, the input boxes values are assigned to the related

element with the below algorithm:

procedure FillInput(Input i, File InputValues)

 value � InputValues.GetValue(i.inputUrl, i.inputXpath)

 i.inputValue � value

end procedure

3.2.2.2 Branch Traverser

Branch Traverser module reads the graph file text. It originates the URL and the

clickable’s xpath. Then, it handles Selenium to automate the click operation from the

xpath of the clickable, also automates opening the URL action from the URL of the

clickable.

• Selenium.Click(XpathOfTheClickable) : implements the click operation.

• Selenium.Open(UrlOfTheClickable) : implements opening the given URL.

In order to make the graph file keeps the transactions, branch traverser runs the test

according to graph file’s order, causes branch coverage analysis. A number of threads

are introduced to this process, to procure load testing analysis.

Recall that NaMoX does not use browser’s goBack function. It saves the current state

while traversing the model in a depth first manner and restores that state while

backtracking. NaMoX need to do this state saving since in dynamic pages, URL may not

change although the content changes and the goBack function of the browser may result

in a wrong navigation.

Unexpected errors may occur during the execution of test sequences. We call them 2nd

level errors explained in Chapter 4 in details.

28

3.3 Usage

In Figure 3.7, the user interface of NaMoX is shown. The user should specify the initial

URL and the crawl depth. The entered initial URL defines the starting point of the

crawling. The entered crawl depth shows the number of clicks for each path while

exploring the side. After the initial URL and crawl depth information taken from the

user, Submit button triggers the Selenium Remote Control [14] tool in Mozilla Firefox,

and loads the URL as entered initial URL. The Firefox browser shows automatic

transitions between web pages according to the clickables. When this process ends, the

model is extracted and the graph file is ready for use.

Figure 3.7: User Interface – Input Form

The server name, browser type and port that are entered by the user specify the server,

browser type and port of the test environment as shown in Figure 3.8.

29

Before running the test, the user should prepare input values file as explained in Section

3.2.2.1. This input file includes the URL, the Xpath of the widget that takes the input,

and the value of the input that the user wants to assign.

Figure 3.8: User Interface – Tester Form

30

CHAPTER 4

EXPERIMENTS

Our experiments verify the NaMoX under two topics:

• Accuracy

• Performance

This chapter includes three sections. First section describes the test environment. Section

4.2 focuses on the results derived in five web sites. Finally, Section 4.3 compares

NaMoX with JMeter.

4.1 Test Environment

NaMoX has two progressive steps including navigational model extraction and test

execution. The test execution module requires quite big memory and processing time for

creating several threads concurrently. We reserved one of the METU Informatics

31

Institute’s servers but they only allocated 3GHz processor and 2 GB RAM. Therefore,

we experimented with maximum 30 threads simultaneously.

4.2 Test Results

We have used our tool NaMoX in five commercial web sites listed as:

• SALĐNA - http://www.salina.com.tr

• GUCCI - http://www.gucci.com

• ERĐNMEZ - http://www.erinmez.com.tr/

• MĐLLĐYET - http://www.milliyet.com.tr/

• ÖSYM - http://sonuc.osym.gov.tr/

SALĐNA and ERĐNMEZ are chosen as case studies because these web sites’ all source

codes can be accessed and it is easy for us to test NaMoX in these web pages.

The reason that ÖSYM is selected as a case study is the server breakdowns on this web

page. ÖSYM is the web page of Turkey’s educational system. In this web site, the

students learn their exam results. When an important exam result is announced on the

web; therefore, there are a great number of students trying to access the web server and

it results with a server crash.

MĐLLĐYET is Turkey’s very famous news web page. The site has a lot of clickables and

this is an opportunity for NaMoX to make its test in such a comprehensive web domain.

GUCCI is a shopping web page that has also many clickables. The GUCCI’s web site is

applied as a case study in the Crawljax [27] study, therefore NaMoX selected the web

site to form an example.

Table 4.1 shows the line of HTML source codes of each web site and summarizes the

results of detected clickables in five web sites. In SALĐNA’s and ERĐNMEZ’s web sites,

we recorded clickables in two depths; depth 2 and depth 3. This analysis shows the great

expansion of number of clickables according to the depth.

32

Table 4.1: Detected Clickables

NAME HTML LOC DEPTH NUMBER OF

CLICKABLES

DETECTED

SALĐNA 100 2

3

143

1588

GUCCI 484 2 392

ERĐNMEZ 61 2

3

86

566

MĐLLĐYET 243 2 3122

OSYM 113 2 40

As explained in Section 3.2.1.1, clickables are divided into two parts: The hyperlinks

and the elements that have OnClick events. NaMoX reports these sections for each web

application. Figure 4.2 shows the case studies’ number of hyperlinks and OnClick event

elements.

Table 4.2: Clickables Types

NAME NUMBER OF

HYPERLINKS

NUMBER OF ONCLICK

ELEMENT EVENTS

SALĐNA 129 14

GUCCI 336 56

ERĐNMEZ 86 0

33

Table 4.2 (cont.)

MĐLLĐYET 2641 481

OSYM 29 11

We classified the detected errors in two parts:

First Level Errors:

While composing the graph, there can be errors in execution level. These errors are

called as First Level Errors. The error list is given in the Figure 3.4. The errors which

start with the digit “4” shows the client errors, the errors start with “5” define server

errors. These errors are caught by using HttpException class in NaMoX.

Second Level Errors:

Second Level Errors are the caught unexpected errors while several users connect to the

web server at the same time including first level errors and time out exceptions if

existed.

Table 4.3 shows the statistics of detected errors. Since second level errors include first

level errors, the second level error count is bigger than first level error count. The rest of

the errors in second levels are the exceptions in class TimeOutException.

Table 4.3: Detected Error Numbers

NAME NUMBER OF FIRST LEVEL

ERRORS

DEPTH: 2

NUMBER OF SECOND

LEVEL ERRORS

THREAD NUMBER: 30

SALĐNA 21

(18: Hyperlink clickable error)

(3: OnClick clickable error)

24

(21: Hyperlink clickable error)

(3: OnClick clickable error)

34

Table 4.3 (cont.)

GUCCI 10

(8: Hyperlink clickable error)

(2: OnClick clickable error)

16

(14: Hyperlink clickable error)

(2: OnClick clickable error)

ERĐNMEZ 14

(14: Hyperlink clickable error)

(0: OnClick clickable error)

15

(15: Hyperlink clickable error)

(0: OnClick clickable error)

MĐLLĐYET 32

(20: Hyperlink clickable error)

(12: OnClick clickable error)

54

(40: Hyperlink clickable error)

(14: OnClick clickable error)

OSYM 0 2

(2 : Hyperlink clickable error)

Table 4.4 shows the HTTP exceptions that NaMoX detected for each case study:

Table 4.4: Detected HTTP Exceptions for Each Case Study

NAME ERROR TYPE REPETITION

SALĐNA HTTP 403 – Forbidden 4

HTTP 404 – Not Found 17

GUCCI HTTP 408 – Request Timeout 6

HTTP 404 - Not Found 4

ERĐNMEZ HTTP 408 – Request Timeout 8

HTTP 503 – Service

unavailable

2

HTTP 404 - Not Found 4

35

Table 4.4 (cont.)

MĐLLĐYET HTTP 408 – Request Timeout 12

HTTP 404 - Not Found 20

OSYM - 0

The caught errors are important for specifying the quality of a web application. NaMoX

detected the failures in case studies as shown in Table 4.3, but the critical point in this

experiment is measuring these failures’ severities. If the initial URL of a web application

is broken, the test will end and there will be no acquired useful results. Therefore,

NaMoX also measures the depths of the errors. The lower the depth is, the severe is the

error. Table 4.5 shows the depths of the failures in NaMoX’s case studies:

Table 4.5: Error Severities

NAME ERROR TYPE ERROR

REPETITION

ERROR DEPTH

SALĐNA HTTP 403 – Fobidden 4 2

 HTTP 404 - Not Found 17 2

GUCCI HTTP 408 – Request

Timeout

6 2

 HTTP 404 - Not Found 4 2

ERINMEZ HTTP 408 – Request

Timeout

8 2

 HTTP 503 – Service

unavailable

2 2

 HTTP 404 - Not Found 4 2

36

Table 4.5 (cont.)

MĐLLĐYET HTTP 408 – Request

Timeout

12 2

 HTTP 404 - Not Found 14 2

 HTTP 404 - Not Found 6 1

OSYM - - -

Table 4.5 explains that, in MĐLLĐYET’s web page, HTTP 404 exceptions are occurred

in first and second depth. As it is mentioned, as the depth decreases, error severity

increases.

The clickable type is also important for NaMoX in defining the quality metrics. We

divided clickables into two types: hyperlinks and OnClick events. According to these

parameters, we weighted the errors to measure the quality. Equation 4.1 shows the

relations between:

• Let Q: quality metric,

• ��: number of hyperlink clickable,

• ��: number of OnClick event clickable,

• S: error severity of the

• n: number of errors,

• ��: weight of the hyperlink clickable,

• ��: weight of the OnClick event clickable,

• D: error depth

Q =��� ∗ (∑ ��
 ∗ (1/��
)�
�� ��)
�

���

 (Equation 4.1)

37

According to the Equation 4.1, as error depth increases, the quality metric (Q) of the

web application decreases. If quality metric is closer to 0, it can be said that the quality

of the web page increases. If we get Q as 0, it means that there is no error on the tested

application.

We searched the literature to get the quality metrics for NaMoX. However, we could not

find out a metric about number of errors. The existing metrics include such concerns:

• Cohesiveness [34]: Cohesiveness metric classifies the web pages according to

their topics.

• Number of Virtual Users [11]: This metric measures the optimum number of

virtual users according to the web application.

• Centrality [35]: Centrality metric defines hierarchies in the web applications.

• Connections [21]: This metric is about the connections that are refused when

making the test.

• Throughput [21]: This metric is the sum of response data size divided by the

number of seconds in the reporting duration.

• Hits per Second [21]: Hits per second metric will tell if there is a possible

scalability issue with the application.

• Pages per Second [21]: Pages per second metric measures the number of pages

requested from the application per second.

• Web Page Search and Retrieval [35]: This metric evaluates the performance of

Web search and retrieval services.

According to the metric for NaMoX, we measured the quality metrics for each case

study. Table 4.6 shows the quality metrics of the five case studies. According to the

quality metric that we implemented, we assume the hyperlink clickables’ weights as 0.8,

OnClick event clickables’ weight as 1. There are also no severity coefficients for

HTTPExceptions and TimeoutExceptions in the literature; therefore we assume the

following severities:

• HTTP 408 Exception: 0.6

• HTTP 414 Exception: 0.6

38

• HTTP 415 Exception: 0.6

• The rest HTTP 4XX Exception: 0.8

• HTTP 500 Exception: 1.2

• HTTP 503 Exception: 1.2

• The rest HTTP 5XX Exception: 1

• TimeOut Exception: 0.6

These assumptions are done according to the criticality levels of the failures. The HTTP

5XX Exceptions are occurring because of the server problems; therefore they are more

important than HTTP 4XX Exceptions. If there is a server error or if the service is

unavailable, the testing module will fail, so we specified highest severity coefficients for

HTTP 500 and HTTP 503 exceptions. Time out exceptions including HTTP 408 and

TimeOutExceptions are composing in order to thread numbers; hence we assumed a

smaller coefficient. HTTP 414 and HTTP 415 exceptions’ severity is also given as 0.6,

because they have same severity as time out exceptions.

According to these assumptions, Equation 4.1 returns:

Q = 0.8 ∗ �∑ ��
 ∗ (����)�
�� �� � + 	1 ∗	(∑ ��
 ∗ (����)�
�� ��)	

 (Equation 4.2)

Table 4.6 Quality Measurement

NAME QUALITY METRIC

SALĐNA 0,135

GUCCI 0,025

ERĐNMEZ 0,056

39

Table 4.6 (cont.)

MĐLLĐYET 0,015

OSYM 0,016

As it is mentioned, as quality metric close to 0, the quality of the web page increases.

According to Table 4.6, we can order the qualities of the case studies as:

1. MĐLLĐYET

2. ÖSYM

3. GUCCI

4. ERĐNMEZ

5. SALĐNA

NaMoX also saves the response times while test execution for each thread. For

SALĐNA’s web site, Table 4.7 represents server response times for three threads for five

clickable.

Table 4.7 Server Response Times

ACTION THREAD 1

(msec)

THREAD 2

(msec)

THREAD 3

(msec)

open:default.aspx?ln=tr 190 313 342

goBack:http://www.salina.com.tr 186 355 377

open:default.aspx?ln=eng 385 552 627

goBack:http://www.salina.com.tr/ 166 262 312

open:bilgi.aspx?ln=tr&id=11 241 313 424

40

Table 4.8 shows the durations of the model extraction and test execution models.

Normally, it is expected the durations close to each other. However, as Daniel A.

Menascé [11] mentioned; the response times are increases while the number of virtual

users increasing.

Table 4.8: Durations of NaMoX

NAME MODEL EXTRACTION

DEPTH: 2

TEST EXECUTION

THREAD NUMBER: 30

SALĐNA 6 min. 8 min.

GUCCI 3 hours 24 min. 4 hours 52 min.

ERĐNMEZ 46 min. 1 hour 3 min.

MĐLLĐYET 19 hours 38 min. 22 hours 29 min.

OSYM 4 min. 5 min.

4.1 Comparison with JMeter

JMeter [5] allows load testing to measure performance of a web application. However,

JMeter requires manual effort. The user should extract the links and input boxes, and

create HTTP Requests for each hyperlink and input boxes. According to our results in

NaMoX, the number of clickables range from 40 to 2549 in our experiments. Detecting

these clickables and exercising each of them cannot be done manually in JMeter, or

requires too much time to implement. However, since JMeter do not use real browsers,

the response times may be less than NaMoX.

Table 4.9 shows the durations of threads’ executions and spent manual effort in JMeter.

In that example, we created a five click scenario with three threads. Firstly, the links are

specified manually, and then these links are composed as a HTTP Request sample in

JMeter. After that, a listener is added manually to see the logs.

41

Table 4.9: Results on JMeter

ACTION MANUAL

EFFORT

(min)

THREAD

1 (msec)

THREAD

2 (msec)

THREAD

3 (msec)

Detecting the Links and Input

Values

15 - - -

Adding HTTP Request Defaults 5 - - -

Adding HTTP Request of

open:default.aspx?ln=tr

2 256 288 311

Adding HTTP Request of

goBack:http://www.salina.com.tr

2 315 351 362

Adding HTTP Request of

open:default.aspx?ln=eng

2 372 485 504

Adding HTTP Request of

goBack:http://www.salina.com.tr/

2 298 301 319

Adding HTTP Request of

open:bilgi.aspx?ln=tr&id=11

2 322 324 387

Adding a Listener 2 - - -

Table 4.9 shows the durations for only a simple scenario in JMeter. It takes time to add

HTTP Request more than a minute. But, the most time consuming step in JMeter is

designing a test scenario. As number of clickables is increased, detecting the links and

input values durations will also be increased.

42

CHAPTER 5

CONCLUSION

This study is an automatic navigational model extractor for load testing on dynamic

content web sites to improve testability, accessibility and accuracy. The main

contributions of the paper are:

• A systematic process and algorithm to infer a state machine from a web domain.

The states of the state machine are the collection of HTML source code and the

clickables. The transitions are the onclick events on clickables or hyperlinks

together with associated document item, which can also involve Go Back events.

Challenges addressed include the identification of clickable elements, and the

construction of the state machine;

• A systematic process to create test suites for load testing using branch coverage

on the state machine model instead of using record and replay algorithms.

• Five case studies used to measure the effectiveness, accuracy, and performance

of the proposed approach.

43

Future work consists of conducting more case studies to improve the ability of finding

different clickables such as onMouseOver events, onSelectChange events. Testing will

be done with different coverage techniques such as switch coverage, random tests to

catch errors in unexpected user behavior. Furthermore, the results will extend to more

graphical user interface and generating more detailed reports by combining this study

with a load test tool. NaMoX will also add an error bar in its results which will measure

the same web application in different days and reports the severity level for each

measurement. In addition, the system considerations will be included in NaMoX and

NaMoX will decide the thread number of load generation in a strong performance

server.

44

REFERENCES

[1] Buret Julien, Droze Nicolas. An Overview of Load Test Tools (2003).

http://clif.objectweb.org/load_tools_overview.pdf , last visited: January 2012.

[2] Gerardo Canfora, Massimiliano Di Penta. Testing Services and Service-Centric

Systems: Challenges and Opportunities. IT Professional, pages 10-17, 2006

[3] http://grinder.sourceforge.net, last visited: December 2011

[4] S.S. Foley, V. Pandey, M. Tang, F. Terkhorn, A. Venkatraman, Benchmarking

Servers using Virtual Machines (2007). http://www.cs.indiana.edu/~mhtang/paper.pdf,

last visited: January 2012.

[5] J. Grundy, J. Hosking, L. Li, and N. Liu. Performance Engineering of Service

Compositions. In Proceedings of the 2006 International Workshop on Service–Oriented

Software Engineering (SOSE 2006), pages 26–32, 2006

[6] http://www.xceptance-loadtest.com/products/xlt/what-is-xlt.html, Last visited

December 2011

[7] http://sourceforge.net/projects/dieseltest, last visited: December 2011

45

[8] Anantha K. Bangalore, Arun K. Sood. Securing Web Servers Using Self Cleansing

Intrusion Tolerance (SCIT). In Proceedings of the Second International Conferenceon

Dependability , pages 60-65, 2009.

[9] Grig Gheorghi. A Look at Selenium. Software Quality Engineering, 7(8):38–44.

2005.

[10] Stefan Frei, Thomas Duebendorfer, Bernhard Plattner. Firefox (in) security update

dynamics exposed. ACM SIGCOMM Computer Communication Review 39 (2009), no.

1, pages 16–22, 2009.

[11] Daniel A. Menascé. Load Testing of Web Sites. Internet Computing, IEEE, pages

70-74, 2002.

[12] G. Banga and P. Druschel. Measuring the Capacity of aWeb Server under Realistic

Loads. In Proceedings of the World Wide Web, 2(1-2), pages 69–83, 1999.

[13] https://browsermob.com, last visited: December 2011

[14] A. Holmes and M. Kellogg. Automating Functional Tests Using Selenium. In

Proceedings of the AGILE Conference '06, pages 270 - 275, 2000.

[15] A. Marchetto, F. Ricca, and P. Tonella. A case study-based comparison of web

testing techniques applied to Ajax web applications. Internatıonal Journal on Software

Tools for Technology Transfer, 10(6):477–492, 2008.

[16] David Mosberger, Tai Jin. Httperf—A Tool for Measuring Web Server

Performance. In Proceedings of the Workshop on Internet Server Performance, 1998.

[17] Mercury Interactive Corporation. Load Testing to Predict Web Performance.

Technical Report WP-1079-0604, Mercury Interactive Corporation, 2004.

[18] D. Darheim, J. Grundy, J. Hosking, C. Lutteroth, G. Weber. Realistic Load Testing

of Web Applications. In Proceedings of the 10th European Conference on Software

Maintenance and Reengineering, pages 11-70, 2006.

46

[19] Scott Barber. How fast does a website need to Be? (2010).

http://www.perftestplus.com/resources/how_fast.pdf, last visited: January 2012

[20] Torsten Grust. Accelerating XPath Location Steps. In Proceedings of the 2002

ACM SIGMOD international conference on Management of data, pages 109-120, 2002.

[21] http://softwareqatestings.com, last visited: January 2012.

[22] Mark Utting, Alexander Pretschner, Bruno Legeard. A Taxonomy of Model-Based

Testing. Technical report, Department of Computer Science, The University of Waikato

(New Zealand), 2006.

[23] A. Pretschner, W. Prenninger, S. Wagner, C. Kuhnel, M. Baumgartner, B. Sostawa,

R. Zolch, T. Stauner. One Evaluation of Model-Based Testing and its Automation. In

Proceedings of the 27th international conference on Software engineering, 2005.

[24] D. Kung, C. H. Liu, and P. Hsia. A model-based approach for testing Web

applications. In Proceedings of the Twelfth International Conference on Software

Engineering and Knowledge Engineering, 2000.

[25] J. Z. Gao, D. Kung, P. Hsia, Y. Toyoshima, and C. Chen. Object state testing for

object-oriented programs. In Proceedings of the 19th Computer Software and

Applications Conference (COMPSAC 95), pages 232-238, 1995.

[26] C. D. Turner and D. J. Robson. The state-based testing of object-oriented programs.

In Proceedings of the 1993 IEEE Conference on Software Maintenance (CSM-93),

pages 302-310, 1993.

[27] Ali Mesbah, Engin Bozdag, Arie van Deursen. Crawling AJAX by Inferring User

Interface State Changes. In Proceedings of the Eighth International Conference Web

Engineering, 2008. ICWE '08., pages 122-134, 2008

[28] Arie van Deursen and Ali Mesbah. Research Issues in the Automated Testing of

Ajax Applications. In Proceedings of the SOFSEM 2010 Theory and Practice of

Computer Science, 2010.

47

[29] http://htmlagilitypack.codeplex.com, last visited: December 2011.

[30] Charles Reis, Adam Barth, and Collin Jackson.

Browser security: lessons from Google chrome. Communications of ACM, pages 45–

49, 2009.

[31] http://windows.microsoft.com/tr-TR/internet-explorer/products/ie/home, last

visited: December 2011.

[32] J. Clark and S. DeRose. XML path language (XPath). W3C Recommendation,

1999.

[33] http://www.modemhelp.net/httperrors/httperrors.shtml, last visited: December

2011.

[34] Xiaolan Zhu, Susan Gauch. Incorporating quality metrics in centralized/distributed

information retrieval on the World Wide Web. In the Proceedings of the 23rd annual

international ACM SIGIR conference on Research and development in information

retrieval, pages 288-295, 2000.

[35] Devanshu Dhyani, Wee Keong Ng, Sourav S. Bhowmick. A Survey of Web

Metrics. ACM Computing Surveys, Vol. 34, No.4, pages 469-503, 2002.

48

TEZ FOTOKOPĐSĐ ĐZĐN FORMU

ENSTĐTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı: KARA
Adı: Đsmihan Refika
Bölümü: Bilişim Sistemleri

TEZĐN ADI (Đngilizce): Automatic Navigation Model Extraction for Web Load Testing

TEZĐN TÜRÜ: Yüksek Lisans Doktora

1. Tezimin tamamından kaynak gösterilmek şartıyla fotokopi alınabilir.

2. Tezimin içindekiler sayfası, özet, indeks sayfalarından ve/veya bir bölümünden
kaynak gösterilmek şartıyla fotokopi alınabilir.

3. Tezimden bir (1) yıl süreyle fotokopi alınamaz.

TEZĐN KÜTÜPHANEYE TESLĐM TARĐHĐ:..

