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ABSTRACT 

ONTOLOGY BASED REUSE INFRASTRUCTURE FOR TRAJECTORY 

SIMULATION 

 
 

DURAK, Umut 

Ph. D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Kemal İDER 

Co-Supervisor: Assoc. Dr. Halit OĞUZTÜZÜN 

June 2007, 241 pages 

 
 

In this research, we developed an ontology based reuse infrastructure for trajectory 

simulation and investigated the use of ontologies and domain engineering practices 

to develop a formalized methodology to make use of the experience and knowledge 

leveraged from the past trajectory simulation projects. Trajectory simulation in this 

context is a computational tool to calculate the flight path and other parameters of 

munition such as its orientation or angular rates during its operation  

In this thesis, engineering knowledge to simulate the trajectory of a munition is 

captured in an ontology called Trajectory Simulation ONTology (TSONT). 

Concepts of trajectory simulation and the relation among these concepts are 

captured by using Web Ontology Language and presented as a domain model that is 

available for reuse. 

Using the formalized domain knowledge, reuse infrastructure specifications are 

constructed to enable the reuse of software artifacts for two main programming 

paradigms, which are object oriented programming and function oriented 

programming. UML and application frameworks are used when constructing for 
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object oriented paradigm. And data flow diagrams are used to formalize the design 

of the function oriented simulations to compute the trajectory of munition. Object 

oriented and function oriented platform independent designs are constructed to 

specify the infrastructure using the knowledge captured in TSONT and made 

available for reuse. With constructing two different designs for two different 

paradigms by using the same domain model, evidence of knowledge reuse were 

produced. 

Three different case studies were carried out as infrastructure implementation. In 

the first case study, an object oriented application framework was developed in 

MATLAB for six degrees of freedom trajectory simulation using platform 

independent object oriented design. This framework is reused to develop two 

different simulations. Using the developed framework for two applications 

produced evidence of code reuse. In the second case, a point mass trajectory 

simulation framework is designed to be implemented in C# reusing the same 

platform independent object oriented design. This case produced the evidence of 

design reuse. In the last case study, a MATLAB Simulink Blockset is developed for 

point mass unguided trajectory simulations and two different simulations are built 

using the Blockset. By this case, we collected the evidence of code reuse also in 

function oriented paradigm. 

Keywords: Trajectory Simulation, Engineering Ontologies, Ontology Driven 

Simulation, Simulation Reuse. 

 



 vi 

ÖZ 

YÖRÜNGE BENZETİMİ İÇİN ONTOLOJİ TEMELLİ YENİDEN 

KULLANIM ALTYAPISI 

 
 

DURAK, Umut 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Kemal İDER 

Ortak Tez Yöneticisi: Doç.Dr. Halit OĞUZTÜZÜN 

Haziran 2007, 241 sayfa 

 
 

Bu çalışmada, yörünge benzetimi için ontoloji tabanlı bir yeniden kullanım altyapısı 

geliştirilmiş, ontolojilerin ve alan mühendisliği yaklaşımlarının başarı ile 

tamamlanmış yörünge benzetimi projelerinde elde edilen tecrübelerin aktarılması 

için geliştirilmiş bir yöntem için kullanılması incelenmiştir. Bu bağlamda, yörünge 

benzetimi mühimmatın uçuşu boyunca konumu, yönelimi ve açısal hızları gibi uçuş 

parametrelerinin hesaplanması için kullanılan bir araç olarak tanımlanabilir. 

Bu tez kapsamında, bir mühimmatın uçuş benzetiminin yapılabilmesi için gerekli 

olan mühendislik bilgisi kullanılarak TSONT isimli bir ontoloji geliştirilmiştir. Ağ 

Ontoloji Dili (Web Ontology Language) kullanılarak yörünge benzetimi kavramları 

ve bu kavramlar arasındaki ilişkiler modellenerek, yeniden kullanılabilecek bir alan 

modeli olarak kullanıcıya sunulmuştur. 

Ontoloji biçiminde resmileştirilmiş alan bilgi birikimi kullanılarak, işlev yönelimli 

programlama veya nesne yönelimli programlama paradigmaları kullanılarak 

hazırlanan yazılım ürünlerinin yeniden kullanımına olanak sağlayacak bir yeniden 

kullanım altyapısı tanımlanmıştır. Nesne yönelimli programlama paradigması için 

geliştirilen yeniden kullanıp altyapısı için UML ve uygulama çerçeveleri 
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pratiklerinden yararlanılırken, işlev yönelimli programlama paradigması için 

oluşturulan yeniden kullanım altyapısı için veri akış şemalarından yararlanılmıştır. 

Bu iki paradigmanın yeniden kullanım altyapılarını tanımlamak için TSONT 

kullanılarak platformdan bağımsız yazılım tasarımları geliştirilmiş ve yeniden 

kullanıma sunulmuştur. Aynı alan bilgisi kullanarak iki farklı tasarım 

geliştirilebilmesi, TSONT’ta modellenen bilgi birikiminin yeniden kullanılabildiği 

konusunda elimize kanıtlar sunmuştur. 

Yeniden kullanım altyapısının uygulaması için üç farklı çalışma yapılmıştır. İlk 

çalışmada, platformdan bağımsız nesne yönelimli yazılım tasarımı temel alınarak 

MATLAB ortamında altı serbestlik dereceli yörünge bezetimleri için bir uygulama 

çerçevesi geliştirilmiştir. Daha sonra da bu çerçeve kullanılarak iki farklı benzetim 

geliştirilmiştir. Yeniden kullanım altyapısının bir parçası olarak geliştirilen bu 

uygulama çerçevesinin iki farklı benzetim geliştirmesinde kullanılması, altyapının 

kod yeniden kullanımını desteklediğine dair bir kanıt olarak değerlendirilmiştir. 

İkinci çalışmada gene aynı platformdan bağımsız nesne yönelimli yazılım tasarımı 

kullanılara bu sefer nokta kütle yörünge benzetimi için ve farklı bir platformda, C# 

dilinde geliştirilecek bir çerçeve tasarlanmıştır. Bu sayede de yeniden kullanım 

altyapısının tasarım yeniden kullanımını desteklediğine dair kanıtlara ulaşılmıştır. 

Son çalışmada işlev yönelimli yazılım tasarımı kullanılarak güdümsüz nokta kütle 

yörünge bezetimi için bir MATLAB Simulink Blockset’i geliştirilmiştir. Daha sonra 

da bu Blockset kullanılmak vasıtası ile iki farklı yörünge benzetimi geliştirilmiştir. 

Bu sayede de geliştirilen yeniden kullanım altyapısının, işlev yönelimli 

programlama paradigmasında da kod yeniden kullanımını desteklediği sonucuna 

ulaşılmıştır. 

Anahtar Kelimeler: Yörünge Benzetimi, Mühendislik Ontolojileri, Ontoloji Tabanlı 

Benzetim, Simülasyon Yeniden Kullanımı.  
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CHAPTER 1  

INTRODUCTION 

1.1 Trajectory Simulation Domain: An Overview 

In this chapter, first an overview of trajectory simulation domain is presented. Then 

the motivation of this research is discussed before introducing the related literature. 

Chapter concludes with the sections on scope of the research and the organization 

of this thesis. One will also find the list of publications that presents the results of 

this research at the end of this chapter. 

1.1.1 What is Trajectory Simulation? 

Computer simulation is defined as studying various models of real world systems 

by numerical evaluation using software designed to imitate the systems operations. 

Computerized models of real or proposed systems are constructed to conduct 

numerical experiments to obtain a better understanding of the behavior of that 

system for a given set of conditions [1]. System then can be defined as a 

combination of elements or components interrelated to each other and to the whole 

which act together to achieve a certain goal [2]. Model on the other hand is a 

simplified representation of a system intended to enhance our ability to understand, 

explain, change, preserve, predict and control the behavior of a system [3]. 

Trajectory simulation in this context is a computational tool to calculate the flight 

path and other parameters of munition like its orientation or angular rates during its 

operation. It is such a tool that implements models of various components of a 

munition and their interfaces with each other and the environment. A time sequence 

of the dynamic events describing the operation and the flight of a munition is the 

result of any trajectory simulation run [4]. 
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Trajectory simulation is based on mathematical model of munition, and 

environment which consists of equations that describe physical laws and logical 

sequences. The physical laws in the trajectory simulation govern the motion of 

munition and the effects of its subsystems. Basically equations of motion determine 

the acceleration, velocity and position resulting from forces and moments due to 

gravity, thrust and aerodynamics. There may also be other equations existing to 

simulate subsystems such as control system. 

Zipfel [5] defines hierarchy of modeling and simulation in military simulation at 

four different levels: engineering, engagement, mission and campaign. Engineering 

level provides the tools for design tradeoff at the subsystem and system level to 

support the design, test and performance evaluations. In engagement level, 

simulations are for determining the effectiveness of the systems as they interact in 

terms of reliability, survivability, vulnerability and lethality. Mission level 

simulations are to investigate how operational goals are achieved by incorporating 

large number of cooperative and diverse players to the simulation. Lastly campaign 

level simulations engage decision makers in broad scale conflicts like war games.  

 

Figure 1 Hierarchy of Modeling and Simulation 
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Through out this hierarchy depicted above in Figure 1 from bottom to up, trajectory 

simulations are used for variety of purposes in a variety of ways. While different 

applications require different simulation approaches, the level of sophistication of 

simulations varies greatly depending on the application. These levels of 

sophistication range from simple point mass models to a very detailed six-seven 

degree of freedom models.  

1.1.2 Purpose of Trajectory Simulations 

The objectives of a trajectory simulation are greatly determined by the objectives of 

the intended user. Intended user aims at obtaining an understanding of various 

aspects of the performance of the munition for any of many different purposes 

encountered in analysis, development, procurement and operation of munition using 

trajectory simulations [4]. The U.S. Department of Defense (DoD), as an example 

defines its aim for using simulations as evaluating weapon system requirements and 

course of action to reduce the time line and the cost of the complex weapon 

systems; conducting training; and for realistic mission rehearsal [6]. The objectives 

of trajectory simulations are summarized in this section referring MIL-HDBK-1211 

[4]. 

For the procurement of new weapon systems or the improvements in the current 

weapon systems, firstly the requirements are established. In order to establish the 

requirements for new weapon systems or the improvements of the current ones, 

analysis are carried out to determine the number of each kind of weapons that will 

be needed in the national arsenal. These analyses are done using models that cover a 

spectrum from one-to-one engagements between a weapon and a target to many-to-

many engagements between multitudes of weapons of different kinds against a 

multitude of targets of different kinds. By the operation of these models, particulars 

of the battle are made visible so that the factors that drive the outcome can be 

analyzed. Some of these factors are the quantities and locations of fire units, target 
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search and detection system characteristics, weapon launch doctrines, fire unit 

reaction times, number of munitions per unit fire, reload times, kill assessment 

times, defended area coverage, munition fly out times, countermeasure capabilities, 

and kill probabilities. All these efforts are for a better understanding of the 

improvements needed in the existing systems and the requirements for new systems. 

These analyses models, mostly named as war games, rely on munition trajectory 

simulations for data on performance capabilities of various munitions under the 

conditions and environments being analyzed. Again the level of detail of trajectory 

simulation to be used to establish requirements varies depending on main interest 

underlying the application of the simulation. For example, if the aim of the analysis 

is to determine the defended area coverage, a simple trajectory simulation is 

adequate; however, if the reaction of the missile seeker to specific countermeasures 

is worked on, more detailed seeker simulations may be required. The Extended Air 

Defense Simulation (EADSIM) of Teledyne Brown Engineering can be a good 

example of this type. It is a many-on-many simulation of air, missile and space 

warfare which is extensively used around the world in many agencies. Trajectory 

simulations are carried out by its weapon model which is one of its physical models. 

EADSIM physical models are given below in Figure 2 [7]. 

 

Figure 2 EADSIM Physical Models 
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Trajectory simulations are extensively used starting from conceptual design to flight 

tests throughout the development of weapon systems. Designers make use of 

trajectory simulations starting from optimizing the external configuration to the 

testing of a subsystem design or to the forecasting of a flight test results. Defense 

Industry Research and Development Institute of Scientific and Technological 

Research Council of Turkey (TÜBİTAK-SAGE) Flight Mechanics Computer Aided 

Design Software, (FMCAD) which is given in Figure 3, is one of the examples of 

this type [8]. 

 

 

Figure 3 FMCAD – Flight Mechanics Computer Aided Design Software of 

TUBİTAK - SAGE 
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Each new weapon system has unique characteristics that place different 

requirements on simulations. Simulation capabilities also evolve within conjunction 

with the development process of the system. The requirements for the simulation 

realism through the lifecycle of the weapon system are not the same. During the 

early development stage, for example in conceptual design, proof of concept and 

source selection are dominant issues. In this phase relatively simple simulations are 

mostly appropriate. During full-scale development, for example, when the system 

performance under adverse combat conditions is analyzed, much more complex 

simulated environments and ammunition response characteristics are needed. 

Fleeman, on the other hand, in his book named “Tactical Missile Design” advices 

the reader to use one to four degrees of freedom trajectory simulations through 

conceptual design and six degrees of freedom trajectory simulations in the 

preliminary design phase of weapon system development projects [10]. 

Military training is another important area where trajectory simulations are used. 

Warriors of every rank make use of modeling and simulation to challenge their 

skills at the tactical, operational, or strategic level through the use of realistic 

synthetic environments. It is usually hard and costly to conduct exercises to engage 

warriors without risking the injury, environmental damage or equipment damage. 

Simulations usually enable conducting trainings in any arena, using weapons that 

would be unsafe on conventional live ranges [6]. Trajectory simulations as a part of 

training simulator systems, enables realistic practice and better assessment of crew 

performance. 

Trajectory simulations for training simulators are developed for munitions that are 

fully developed and where all performance data is available. Furthermore, in most 

of the cases real time operation requirements apply to trajectory simulations. Due to 

these two reasons, trajectory simulations are built focusing on representing the 

overall weapon performance rather than a detailed representation of subsystems. 

Fundamentally, all fire control problems are variations of the same basic situation: 

launching munition from a weapon station to hit a selected target [11]. In an 
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engagement scenario, the target or the weapon station or both may be moving. For 

all cases, fire control is the science of offsetting the direction of weapon fire from 

the line of sight of the target in order to hit the target. Fire control systems make use 

of trajectory simulations to estimate the trajectory of the munition at the specific 

conditions of fire. Trajectory simulations may be used to generate tables or curve 

fits that are used by fire control systems or they may be an integral part of fire 

control systems and work online. NATO Armaments Ballistic Kernel (NABK) can 

be pronounced as the contemporary example of the use of trajectory simulation for 

fire control [12]. NABK is used as a part of software’s for generating firing tables to 

be used manually or in fire control systems as look up tables, as well as onboard fire 

control systems [13,14]. ASELSAN BAIKS2000 Fire Control System is one of the 

examples that use NABK. 

As in the case of training, the simulation used in fire control simulate the trajectory 

of munitions that are fully developed and all the performance characteristics are 

well known. Fast calculation, on the other hand, is one of the very important 

requirements for the trajectory simulations that are used for fire control. So, the 

models used for the fire control are extremely optimized for minimization of the 

computation time. 

1.1.3 Essentials of Trajectory Simulation 

Trajectory simulations consist of number of models and numerical methods. The 

mathematical model of the motion of the munition constructs the base of any 

trajectory simulation. Subsystem and environment models aim at computing the 

effect of subsystem behavior and environment on the motion of the munition. These 

models are solved by making use of number of numerical methods, like numerical 

solvers or interpolation algorithms. This section introduces the essentials of 

trajectory simulations by basically using [4]. 



 8 

Mathematical models that simulate the motion of the ammunition are based on 

Newton’s and Euler’s laws. While Newton’s second law governs the translational 

degrees of freedom, Euler’s law controls the attitude dynamics. Munition, 

considered as a rigid body in space, is a dynamic system that experiences six 

degrees of freedom [5]. Its motion in space is defined by six components of 

velocity, three translational, three rotational. Three basic types of forces act on a 

munition and are included on in almost all trajectory simulations; the forces of 

gravity, propulsion and aerodynamics. In addition, the gyroscopic moments of 

internal rotors are sometimes included in simulations. Due to different fidelity and 

performance requirements, simplifications are made in trajectory simulations by 

approximating or neglecting the degree of freedom. Some of common 

simplifications are neglecting munition roll which results in a five degrees of 

freedom model and approximating all three rotational degrees of freedom that 

retains the three translational degrees of freedom, which is three degrees of freedom 

models. 

The environment interacts with ammunition in two basic ways. First, the flow of air 

over the surface of the ammunition produces aerodynamic forces and moments. 

Second, the ability of atmosphere or the sea to transmit electromagnetic, sonar etc. 

signals impacts on the performance of the seeker. Trajectory simulations employ 

tables or models of atmosphere to provide values of atmospheric properties at the 

instantaneous altitude of the munition for each computational cycle. 

Subsystem models incorporate subsystem behaviors to the munition motion. The 

guidance models in trajectory simulation contain algorithms that model the 

guidance functions; these include tracking the target and application of guidance 

law. Propulsion models contain algorithms that model the burning of propellant in 

terms of its effect on munitions flight by means of thrust force and inertial 

properties. Weapon models incorporate the effects of weapon behavior with flights 

initial conditions. Using fuze models, the characteristics of munitions fuze are 

considered to terminate the trajectory. 
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The vectors used in trajectory simulations represent factors such as forces, 

moments, accelerations, velocities and positions. For the direction of a vector to 

have a meaning, it must be described relative to some frame of reference. A vector 

is described by its three components on axes of a coordinate system. Number of 

coordinate systems may be used in a trajectory simulation. Coordinate systems are 

characterized by the position of their origins, their angular orientations, and their 

motions relative to inertial space. Common coordinate systems used in trajectory 

simulations are earth coordinate system, body coordinate system, wind coordinate 

system, guidance coordinate system, tracker coordinate system and target 

coordinate system. 

Differential equations that are used to compute the trajectory of a munition mostly 

do not have closed form solutions [15]. These equations in trajectory simulations 

are solved by making use of a number of numerical methods. Many numerical 

integration methods are available to solve differential equations [16]. Selection of 

appropriate numerical method is basically affected by the accuracy and performance 

requirements of specific simulation. McCoy [17] in his book on exterior ballistics 

states that first and second order methods are optimum solutions of the point mass 

models where as for higher degree of freedom models which require higher 

computational accuracy, higher order methods are suggested.  

1.2 Trajectory Simulation Reuse: Motivation 

Trajectory simulations, as they are being developed for any purpose discussed 

before, are subject to different sets of requirements. While accuracy and the 

performance requirements affect the model to be used, the platform and 

programming language requirements affects the way they are developed.  

Results of a flight simulation software methods survey that was carried out by 

NASA among the number of facilities that are developing flight simulations showed 

us that, there is wide variety of practices used in flight simulation development [18]. 
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It won’t be a mistake to extrapolate these results to trajectory simulation facilities. 

Besides different practices among different facilities; single facility usually uses 

number of different practices at the same time for different projects. 

From our observations, it is a common practice in the industry that developments of 

these simulations are carried out as isolated projects although they rely on the same 

body of knowledge [19]. When the complexity of the modeled systems and 

characteristics of the simulation domain is considered, the risk of failure in 

trajectory simulation projects is considered to be high. Besides the risk of failure, 

expenditure of intellectual labor to solve the similar problems of the same domain is 

a waste. Another aspect is the quality of the products of each development. The 

verification in trajectory simulation project requires great effort because the 

verification of the mathematical models and developed software really demands 

expert reviews and flight data which are expensive. 

As other groups that develop trajectory simulations, Modeling and Simulation Team 

of TÜBİTAK-SAGE suffers from the lack of any formal methodology and tools to 

make use of past successful implementations of trajectory simulations. 

Trajectory simulations are software systems. Then software reuse which actually 

depends on a very simple idea, using the previously developed software assets in 

developing new artifacts should also apply to trajectory simulation domain [20]. 

System development based on reusable software artifacts, in principle, should cost 

less which, most of the times, means shorter schedules and contain fewer defects 

because of the “tried and true” parts of which it is composed [21]. Applying 

software reuse practice in trajectory simulation domain will then lead us to less 

risky projects which results in high quality trajectory simulations. 

The main motivation in this study is developing a reuse infrastructure that will 

enable trajectory simulation developers to make use of the past successful trajectory 

simulations in a structured way. Target reuse group of this study is the Modeling 

and Simulation Team of TÜBİTAK-SAGE. 



 11 

1.3 Trajectory Simulation Reuse Studies in Literature 

There have been number of efforts to make reuse work in the trajectory simulation 

domain. In the early days of trajectory simulations, developed programs are tried to 

be fit for multiple purposes. These general purpose trajectory simulations were 

capable of simulating the flight of a wide range of munitions. These codes were 

used by different end users rather than then being used as reusable assets in new 

trajectory simulation projects. GTRAJ is one of the trajectory simulation examples 

of this type. It is a general purpose trajectory simulation that supports point mass 

and modified point mass trajectories. It is developed by Firing Tables and Ballistic 

Branch of US ARDEC [22]. 

Besides, there are some studies in the literature for generic mathematical models to 

be used in different trajectory simulations. These studies do not point a specific 

implementation but introduce mathematical models to be used in variety of 

implementations [23, 24, 25 and 26]. 

There are contemporary studies for developing reusable trajectory simulations. 

These studies aim at developing reusable trajectory simulation software. NABK, 

genSim, JSBSim and Aerospace Blockset are the major examples of this type.  

NABK has been developed till mid 90’s as the shareable and reusable ballistic 

kernel for fire control of cannon artillery, mortars and unguided rockets by various 

NATO nations. It is implemented as an ADA95 class library which enables library 

reuse of its operational processors. It supports point mass, modified point mass and 

five degrees of freedom trajectories [12]. 

genSim is a generic six degrees of freedom simulation developed at Raytheon 

Missile Systems. It is a library that includes all of the first level components 

necessary to build missile simulations for everything from guided projectiles to long 

range missiles. Program specific algorithm and hardware models can be attached 



 12 

plug-and-play to the genSim architecture. It also supports some interfaces to legacy 

simulation code developed previously in FORTRAN or ADA [27]. 

JSBSim is an open source flight dynamics model in C++. It described as a batch 

simulation application aimed at modeling flight dynamics and control of aircraft. 

But the framework it provides is said to be handling modeling craft ranging from a 

simple ball, to a missile, an aircraft, rocket, hybrid vehicle, a rotorcraft, and so on. 

These crafts can feature different propulsion systems, ground reaction mechanisms, 

aerodynamic characteristics, and control systems if there exists any [28]. 

The Aerospace Blockset enables its user to work on aerospace system design, 

integration, and simulation by providing key aerospace subsystems and components 

in the adaptable MATLAB Simulink block format. It has number of reusable blocks 

from environmental models to equations of motion, from gain scheduling to 

animation. Blockset supports it users by the core components to assemble a broad 

range of large aerospace system simulations rapidly and efficiently. Trajectory 

simulation is one of the application areas that Aerospace Blockset is used for [29]. 

1.4 Scope of the Research 

In all trajectory reuse studies in literature, the aim has been either to develop a code 

that can be reused by a number of projects or to develop a program that can be used 

by users of different agendas. Due to the diverse requirements different trajectory 

simulation projects that was discussed in the previous sections, there happens to be 

no single trajectory simulation that will fit all the requirements of different users 

who need a product which will facilitate one of engineering, engagement , mission 

or campaign level modeling and simulation. Each study mentioned in the previous 

section has its intended user group with a specific problem set and implementation 

platform. As an example, while NABK has been a strong reuse candidate for fire 

control systems development projects, Aerospace Blockset targets aerospace system 

designers. While it is hard to use Aerospace Blockset for a distributed aircraft 
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simulator projects, it won’t be a good choice to use NABK for a weapon system 

design. 

This research aims far more than code or library reuse that will inherently be 

platform and problem family specific. An infrastructure that will enable knowledge, 

design, code and library reuse is targeted. To develop a trajectory simulation, 

domain knowledge is transformed to a software product by using the methods and 

tools of software engineering. During this transformation it is aimed at enabling 

reuse in different abstraction levels starting from domain knowledge through 

platform independent design, platform specific design, and code. 

In this research, we investigated the use of ontologies and domain engineering 

practices to develop a formalized methodology to make use of experience and 

knowledge leveraged from the past trajectory simulation projects. Formal 

specification of trajectory simulation domain is developed as a domain model in the 

form of ontology called Trajectory Simulation ONTology (TSONT) [30, 31]. This 

ontology of trajectory simulation domain, TSONT, made domain knowledge 

available for either automatic or manual transformation to a software design. 

TSONT is then used to develop object oriented and function oriented platform 

independent software designs. Other than domain knowledge that was made 

available to reuse in the form of ontology, these designs are developed to be the 

parts of reuse infrastructure. Every simulation built by transforming these designs is 

regarded as indispensable parts of reuse infrastructure. An object oriented 

framework for six degrees of freedom guided missile simulation is developed by 

transforming the object oriented platform independent design. A guided surface to 

surface rocket and a guided bomb simulation were built by framework completion 

[19]. A point mass MATLAB Simulink Blockset was developed using the function 

oriented platform independent design and number of simulations were built using 

this Blockset to propose a methodology and a set of reuse artifacts for function 

oriented paradigm. 
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Collaborative research has been carried out on automatic transformation of domain 

ontology to software specifications. In two different studies, two different 

programming paradigms were targeted. For function oriented software 

development, we succeeded automatic generation of MATLAB Simulink block 

definitions from TSONT [32]. For object oriented paradigm, we have been able to 

produce an abstract software design in the form of a UML class diagram from 

TSONT using automatic means [33]. 

1.5 Organization of Thesis 

The thesis comprises six chapters. In Chapter 1, a brief overview of the trajectory 

simulation domain is presented with the scope and the motivation of this thesis. 

In Chapter 2, ontology based reuse methodology developed is discussed. First, the 

basics of software reuse are presented with some historical perspective. Then, 

domain engineering is explained as the practice of software reuse. Ontology based 

approach to domain engineering is given as the contemporary approach to domain 

engineering. And the chapter is concluded with the section which discusses how the 

ontology driven domain engineering is structured in this thesis. 

In Chapter 3, ontology concept as a means of knowledge sharing is explained. After 

presenting the definition of ontology in computer science, components of ontology 

and the merits of ontologies are given. Applications of ontologies in general and in 

engineering domain are discussed by referring the related literature. After 

presenting the guidelines of building ontologies, we presented the way TSONT is 

built. In the last section of this chapter, we explain the way we make benefit of 

Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) effort of 

National Aeronautics and Space Administration (NASA) for capturing the 

mathematical models of the domain. 
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In Chapter 4, TSONT is presented as the domain model of ontology based reuse 

infrastructure that was developed in this research. After briefing the ontology, we 

introduce the top level entities of the ontology followed by the hierarchies of the 

domain captured in TSONT. Then the way we captured the domain entities of 

trajectory simulation as OWL (Web Ontology Language) classes of TSONT is 

presented. This chapter is concluded with the discussion about the individuals of 

TSONT. 

In Chapter 5, the specification and the implementation ontology based reuse 

infrastructure is presented. This section is structured considering two programming 

paradigms namely object oriented programming and function oriented 

programming. Both the specification and the implementation of the reuse 

infrastructure are discussed for these two different paradigms. Case studies are 

presented. 

In Chapter 6, the conclusions emerging from the present work are discussed. We 

first discussed TSONT effort as one of the first attempts on formalizing the 

mechanical engineering knowledge with the importance of ontologies in knowledge 

sharing in engineering domain. Then we evaluated the ontology based trajectory 

simulation reuse infrastructure. The advantages of this ontology based approach 

over the past trajectory simulation reuse attempts are discussed. Finally, some 

future work recommendations are made. 

1.6 Publications 

The material in this thesis has been previously presented in the following 

publications. 

• Durak, U., Anlağan, Ö., Oğuztüzün, H., Yeniden Kullanılabilir Uçuş 

Benzetimi Mimarisi İçin Yol Haritası, SAVTEK 2004, Ankara, 2004. 
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• Durak, U., Oğuztüzün, H., İder, K., An Ontology for Trajectory Simulation, 
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CHAPTER 2  

REUSE METHODOLOGY 

In this chapter, ontology based reuse methodology developed is discussed. First, the 

basics of software reuse are presented with some historical perspective. Then, 

domain engineering is explained as the practice of software reuse. Ontology based 

approach to domain engineering is given as the contemporary approach to domain 

engineering. Eventually, chapter is concluded with a section that discusses how the 

ontology driven domain engineering is structured in this thesis. 

2.1 Software Reuse: Overview 

Among many other definitions, software reuse is defined in Reuse Based Software 

Engineering book of Mili et al. [34] as the process whereby an organization defines 

a set of systematic operating procedures to specify, produce, classify, retrieve, and 

adopt software artifacts for the purpose of using them in its development activities. 

As explained by Arango [35], although the concept of software reusability can be 

traced back to the beginning of computer programming, it is pronounced as a 

software engineering problem at the 1969 NATO Conference [36]. Little progress 

was reported until mid to late 1970’s, when some organizations put to a test the 

promise of productivity through reusability. The Workshop on Reusability in 

Programming, in 1983, was a milestone in the process. Early research focused on 

methods and mechanisms to perform reuse, on representation of reusable 

components, and on organization of repositories of components.  

Three main motivations of software reuse are gains in productivity, quality and 

development schedules [34]. By reusing existing assets, we save the manpower 

required to develop them again. When an asset is developed for reuse, larger 
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investment is allocated to its quality and the quality increases by the feed backs of a 

larger user base. And lastly, using reusable assets not only results in a decrease in 

manpower but also it shortens time to market. 

In the past, reuse was understood as using generalized repositories of “components” 

and “parts” which can be accessed by many kinds of applications. It took several 

years of failures characterized by low levels of reuse to make it clear that this 

approach could not succeed. Then, the domain concept is defined and the success of 

reuse is related to the use of artifacts in the context of a domain. Domain is defined 

as the area in which an organization does business [37]. 

As Mili et al. presented, in recent years, however, it was also recognized that the 

mere creation of repositories of domain oriented assets was not enough to ensure 

reuse success. For a domain, it is also necessary to design a generic architecture, 

known as the domain architecture, of systems in that domain. With the 

identification of domain architecture, it becomes possible to develop systematically 

reusable assets that fit the architecture via a suitable interconnection mechanism. 

Reusable assets can be listed as compiled libraries, source code, requirements 

specifications, designs, test data, documentation, and software architectures [34]. 

2.2 Domain Engineering 

 Arango says that there exists a gap between the kinds and form of the knowledge 

available about problem domains and the content and form of the items of 

information that can be reused in software construction. Knowledge about the 

problem domain is often implicit and informal. While reusable information is made 

available to the software developer, it must be represented explicitly and formally. 

The term reuse infrastructure refers to the information that is made available to the 

software developer, together with auxiliary information needed to use and 

manipulate it. The process of developing a reuse infrastructure from problem 

domain is called domain engineering [35]. 
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Domain engineering is defined as a process for building reusable assets, which 

includes activities for analyzing the domain, identifying common reusable assets, 

and populating them in the repository [38]. It is presented as an activity of a 

synthesis process that creates and supports a standardized application engineering 

process and products in a business area [39]. In this context, application engineering 

is the process that organizes and directs resources for producing and supporting a 

system by applying the reuse paradigm. The process includes activities for 

employing reusable assets from a repository. 

It is stated that, domain engineering is carried out to addresses knowledge and asset 

development, capture, and evolution for a family of systems. It is defined as the 

process of identifying and recording commonalities and variables in a domain. It 

aims to create reusable assets and new systems using that information. Domain 

engineering activities create a "space" of solutions from which application 

engineers will later draw point solutions. A domain, in this context, is an application 

area containing systems that share design decisions. Domains can be classified 

depending on functional capabilities, such as navigation or stores management, or 

on cross functional areas; e.g., user interfaces, reliability, and security [40].  

Arango and Prieto-Diaz explain domain engineering practice in [41] as follows. 

They state that domain engineering is fundamentally composed of three activities: 

domain analysis, infrastructure specification and infrastructure implementation. 

Domain analysis is the identification, acquisition and evolution of reusable 

information on a problem domain to be reused in software specification and 

construction. The purpose of domain analysis is to construct the model of the 

problem domain. Then domain model will then serve as: 

• Unified resource of reference to solve ambiguities that may arise during the 

analysis of the problems or implementation of reusable components 

• Repository of shared knowledge for communication and orientation 
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• Specification of reusable components to the application developer. 

It is claimed that a domain model is not directly useful for operational reuse. There 

exists a gap between the kinds and the forms of domain knowledge in a domain 

model and the content and form of software assets that can be reused in software 

construction. To bring this gap, a reuse infrastructure is built. 

Infrastructure specification is then defined as the selection and organization of 

reusable information in the model to fit the patterns of reuse in the environment of 

reuser. As a result, an architecture for reusable information is specified. For 

example, a library of programs, a database scheme. The infrastructure specification, 

together with the semantics captured by the domain model, is input to the 

infrastructure implementation step that actually produces and tests the components.  

It is said that infrastructure implementation is the design and encoding of the pieces 

resulting from the specification process using particular representations required by 

the technology or reused: for example encoding the specified programs using 

programming languages. 

Among many research activities on domain engineering [42, 43], CAMP (Common 

ADA Missile Packages) was the first and most famous one [44]. CAMP Project was 

the first explicitly reported domain engineering experience. In this project eleven 

tactical missile systems were analyzed, several common components were 

identified, and grouped by their functionality. A set of general design templates was 

derived in the form of Ada generics and later integrated in a design support system, 

the Ada Missile Parts Engineering Expert (AMPEE). AMPEE aimed to support 

component identification, component selection, and component construction [45]. 

There are several early efforts described in literature (see [46, 34] for a review) to 

define domain engineering methods from 90’s, such as Feature-Oriented Domain 

Engineering (FODA), Domain Analysis and Reuse Environment (DARE), Reuse 

Library Process Model (RPLM), Organisation Domain Modeling (ODM) and 
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Domain Specific Software Architecture (DSSA). Among these, we focused on 

ontology based domain engineering approaches [47, 48, 49 and 50]. In this research 

we defined a derivative of ontology driven domain engineering methodology which 

we used to develop trajectory simulation reuse infrastructure [31, 32]. 

2.3 Ontology Based Domain Engineering 

Neighbors defines the domain analysis as “the activity of identifying the objects and 

operations of a class or similar systems in a particular problem domain” [51]. From 

Webster, domain is “field or sphere of activity or influence” [52]. From the 

software engineering point of view, domain is defined as the application area of the 

field for which the software systems are developed [45]. Examples include traffic 

management systems, management information systems or command and control 

systems. Domains can be broad like manufacturing or narrow like arithmetic 

operations. Domains on the other hand are limited by their boundaries which define 

their scope. The borders of a domain define what objects, operation and relations 

belong to the domain. 

Diaz defines domain analysis as a process where information used in developing 

software systems is identified, captured, structured, and organized for further reuse 

[45]. More specifically, domain analysis is said to be dealing with the development 

and evolution of an information infrastructure to support reuse. The inputs of this 

process are a domain analysis methodology, custom-built for each specific domain. 

And output of domain analysis is a domain model. Domain models range in level of 

complexity and expressive power, from a simple domain taxonomy to functional 

models to domain languages [41]. 

Diaz says that as the knowledge about the domain is collected during domain 

analysis, the problem is representing this knowledge for ease of human 

understanding and machine processability [45]. Ontology approach to knowledge 

representation is utilized in this research to solve this problem. 
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According to Uschold [53], “An ontology may take a variety of forms, but 

necessarily it will include a vocabulary of terms, and some specification of their 

meaning. This includes definitions and an indication of how concepts are inter-

related which collectively impose a structure on the domain and constrain the 

possible interpretations of terms”. Thus, ontology consists of concepts and relations, 

and their definitions, properties and constraints expressed as axioms. An ontology is 

not only a hierarchy of terms, but a fully axiomatized theory about the domain [54].  

In the domain engineering, it is said that ontologies can act both as a domain model 

and a component in the repository [48]. Ontology based domain engineering is 

interested in the use of an ontology as a domain model and how to derive 

components from it. 

The advantages of an ontology based approach to domain engineering are discussed 

in detail by Falbo et al. in his paper “An Ontological Approach to Domain 

Engineering” [47]. Briefly, ontology enables us to build a domain model 

independent from the software technology and it gives a strong tool to capture the 

domain conceptualization.  

2.4 Methodology Explained 

In our approach to trajectory simulation development with reuse, we defined an 

original domain engineering methodology. We focused on two basic programming 

paradigms, namely object oriented programming and function oriented 

programming. For both, we envisioned to make use of model driven technologies. 

Trajectory Simulation ONTology (TSONT) is treated as the domain model. It is 

being developed to be a reusable knowledge library on trajectory simulations. The 

basic idea behind developing an ontology as the domain model of the trajectory 

simulation domain is, first, to establish a common vocabulary that is agreed among 

the people working on trajectory simulations. Another main consideration is to 
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create a backbone for systematization of knowledge on how to build a trajectory 

simulation [55]. 

In the last decade ontologies have been used for variety of engineering applications 

[56, 57, 58, 59, 60, 61, and 62]. In this research, we aim to use the ontology as a 

basis for constructing trajectory simulation applications. Potential benefits of this 

approach include documentation, maintenance, reliability, knowledge reuse and 

interoperability of the developed applications. 

For object oriented programming, we turned to software frameworks to realize the 

notion of infrastructure in our domain engineering practice. Johnson and Foote state 

that a framework is a set of classes that embodies an abstract design for solutions to 

a family of related problems, and supports reuse at a larger granularity than classes 

[63]. As noted by Fayad, frameworks enhance modularity by encapsulating 

implementation details behind their interfaces and these interfaces enhance the 

reusability by defining generic components that can be reapplied to create new 

applications [64]. They will be discussed in detail in proceeding sections. 

We find it favorable to construct new simulations by framework completion, 

provided, of course, a suitable framework is available. Otherwise one needs first to 

develop a framework, and then complete it for the particular application. This 

approach is expected to create a collection of related frameworks addressing 

different platforms and problem families. 

We firstly build a platform independent framework architecture, which can be 

transformed to some platform and problem family specific framework architectures. 

We propose to design the platform independent framework architecture on the 

domain model, so that it is traceable to the domain knowledge represented in the 

ontology. We use the ontology as a guide for the specification of static structure of 

the framework, behavior model and definition of the interfaces of the framework. 

The taxonomy of classes of TSONT is reflected in the inheritance hierarchy of the 

abstract software design. Abstract behavior model is based on the dependency 
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relations of the functions of TSONT, and finally the framework interfaces are 

designed based on the function specifications of TSONT. This is a testimony to 

knowledge reuse. 

 

Figure 4 Domain Engineering Methodology 

Together with the framework architecture that targets a specific platform and 

problem family, this platform independent framework architecture is regarded as 

the outcome of the infrastructure specification activity of domain engineering. The 
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platform dependent and problem family specific frameworks are then the outcome 

of infrastructure implementation. This is a testimony to design reuse. Domain 

engineering methodology developed is depicted below in Figure 4. 

As presented above in Figure 4, for function oriented programming, reuse 

infrastructure specification is built again using the knowledge captured in TSONT. 

Data flow diagrams are treated as the tools for abstract function oriented design. As 

presented in the famous software engineering book of Sommerville, data flow 

diagrams are concerned with designing a sequence of functional transformations 

that convert system inputs into the required outputs. These diagrams illustrate how 

data flows through a system and how the output is derived from the input through a 

sequence of functional transformations [65].  

Different from our object oriented scenario, we do not propose a single abstract 

design that covers whole domain. Rather we propose a collection of data flow 

diagrams for different problem sets, like, point mass data flow diagrams that we 

will present in the following sections or a modified point mass projectile simulation 

data flow diagrams. This collection of abstract designs will be the reuse assets for 

the future projects. Platform specific design will be the refinement of these abstract 

designs. Reuse infrastructure is implemented in the form of function libraries or 

blocksets using the platform specific designs for specific trajectory simulation 

applications. Applications are suggested to be developed using the function libraries 

or reusable blocks developed as the infrastructure.  

In this chapter, after introducing the literature on software reuse, domain 

engineering and ontology based domain engineering, ontology based reuse 

methodology developed is presented. Next chapter will introduce some background 

on ontologies and knowledge sharing. 
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CHAPTER 3  

ONTOLOGIES AND KNOWLEDGE SHARING 

In this chapter, ontology concept as a means of knowledge sharing is explained. 

After briefing the definition of the ontology, components, merits and applications of 

ontologies are explained. Engineering applications of ontologies are referred to 

before discussing the principles that are taken into account when constructing 

TSONT. In the last section, we explain way we make benefit of Dynamic 

Aerospace Vehicle Exchange Markup Language (DAVE-ML) effort of National 

Aeronautics and Space Administration (NASA) for capturing the mathematical 

models of the domain. 

3.1 What is Ontology? 

The term ontology is borrowed from philosophy, where it has the meaning of a 

systematic explanation of Existence. In the Artificial Intelligence field, first Neches 

defined ontology as “An ontology defines the basic terms and relations comprising 

the vocabulary of a topic area as well as the rules for combining terms and relations 

to define extensions to the vocabulary” [66]. Later in 1993, Gruber’s definition 

“Ontology is explicit specification of conceptualization” [68] became famous. 

Struder and colleagues explained Gruber’s definition. They claimed that 

conceptualization refers to an abstract model of some phenomenon in the world 

which identifies the relevant concepts of that phenomenon and they explained the 

word “explicit” as type of concepts used, and the constraints on their use are 

explicitly defined [69]. 
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3.2 Components of Ontology 

According to Gruber [70], knowledge in ontologies can be formalized using five 

kinds of components: concepts, relations, functions, axioms and instances.  

Concepts can be anything about which something is said, and therefore, can be a 

description of a task, function, action, strategy etc. Taxonomies are widely used to 

organize the ontological knowledge in domain using generalization/specialization 

relationship through simple/multiple inheritance. Relationships represent a type of 

interaction between the concepts of the domain and functions can be regarded as a 

special kind of relation. Axioms on the other hand are used to model sentences that 

are always true. They are added to ontology for several purposes, such as 

constraining the information contained in the ontology, verifying its correctness or 

deducting new information. Instances are the terms that are used to represent the 

elements of the domain. They actually represent the elements of the concepts [71]. 

3.3 Merits of Ontologies 

Mizoguchi in his paper “Ontological Engineering: Foundations of next generation 

knowledge processing” [55] lists the merits of the ontology as follows: 

1. A common vocabulary: Ontology creates a vocabulary agreed among the 

people involved to describe of the target world. 

2. Explication of what has been often left implicit: Knowledge bases are 

usually built based on an implicit conceptualization possessed by the 

builder. This implicitness is one of the main causes of preventing knowledge 

sharing and reuse. So the explicit representation of assumptions and 

conceptualization in an ontology is a contribution to knowledge reuse and 

sharing. 
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3. Systematization of knowledge: An ontology constructs a backbone for the 

systematization of knowledge by providing a well established 

vocabulary/concepts that people use to describe phenomena, theories and 

target things under consideration. 

4. Standardization: Ontology constructs a standardization of shared 

terms/concepts that enables a communication among human and computer 

agents. 

5. Meta-model functionality: To construct an abstraction of the target in a 

model, ontology provides us concepts and relations among them to be used 

as building blocks of the model. This building blocks can be regarded as a 

meta-model. 

3.4 Applications of Ontologies 

In “An Ontological Approach to Domain Engineering” paper [47], applications of 

ontologies are classified in four main categories: Neutral authoring, ontology as 

specification, common access to information and ontology-based search. 

Falbo et al. in the same paper explain each application group as follows [47]: “An 

ontology is developed in a single language and it is translated into different formats 

and used in multiple target applications.” This enables neutral authoring. “An 

ontology of a given domain is created and it provides a vocabulary for specifying 

requirements for one or more target applications. In this case ontology can be 

viewed as domain model. The ontology is used as a basis for specification and 

development for domain applications, allowing knowledge reuse.” This can be 

classified as the use of ontology as a specification. For common access to 

information: “Ontology is used to enable multiple target applications (or human) to 

have access to heterogeneous sources of information that are expressed using 

diverse vocabulary or inaccessible format ”. Ontology-based search is explained as: 
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“An ontology is used for searching an information repository for desired resources, 

improving precision and reducing the overall amount of time spent searching.” 

Here among the applications of ontologies, ontology as specification is the way that 

this research is focused on. The basic idea behind ontology as specification is to 

author an ontology which models the application domain, and provides a 

vocabulary for specifying the requirement for one or more target applications. The 

richer the ontology is in expressing the meaning, the less it has the potential for 

ambiguity in creating requirements. The software is based on the ontology, which 

thus plays an important role in the development of the software. The benefits of this 

approach include documentation, maintenance, reliability and knowledge reuse. 

3.5 Engineering Ontologies 

In this research, a large scale engineering ontology was developed. The first efforts 

on developing engineering ontologies were in 90’s. Ontologies in engineering 

domain have been developed for various purposes including specifying engineering 

information systems, integration of engineering applications, supporting 

engineering design and forming a conceptual foundation for engineering ontologies. 

The PhysSys was one of the first engineering ontologies. It is based upon system 

dynamics theory that is practiced in engineering modeling, simulation and design. 

The PhysSys was developed to formally define how design engineers or the end 

users of Computer Aided Engineering (CAE) systems understand their domain and 

to provide a foundation for the conceptual schema for data structuring in 

engineering databases, libraries and other CAE information systems [56, 57]. The 

ideas formalized in PhysSys provided a base for the development of a library of 

reusable models for engineering and design. This library was developed in the 

European Union ESPRIT-II program Open Library for Models of mEchatronic 

Components (OLMECO). The aim of the OLMECO project was to develop a 

modeling and simulation environment for industrial applications [58]. 
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The KACTUS project targeted at the development of methods and tools for the 

reuse of knowledge about technical systems during their life-cycle. The project was 

application-driven: systems were being developed in the domains of preliminary-

ship design, oil-production processes, and electrical networks [59]. 

Mihai Ciocoiu and his colleagues attacked the growing complexity of 

manufacturing information and the increasing need to exchange this information 

among various software applications like CAD, performance analysis, 

manufacturability analysis, product data management system, process planner, 

production management system, scheduler, and a simulation system. As a solution 

to this problem, they made use of taxonomies or ontologies of manufacturing 

concepts and terms, because ontologies provide a way to make explicit the 

semantics (i.e., the meaning) for the concepts used, rather than relying just on the 

syntax used to encode those concepts [60]. 

In MIT Artificial Intelligence Laboratory, a research was carried out aiming to 

develop a large scale ontology for the mechanical engineering world to support a 

wide range of tasks including analysis and design. Common patterns of behavior are 

tried to be identified and labeled with the terms that mechanical engineers use to 

talk about mechanical devices [61]. 

In one of the early efforts of ontology development for engineering domain, Gruber 

and Olsen described an ontology namely EngMath for mathematical modeling in 

engineering. This ontology builds a conceptualization on abstract algebra and 

measurement theory. It includes scalar, vector, and tensor quantities, physical 

dimensions, units of measure, functions of quantities, and dimensionless quantities. 

EngMath is designed for knowledge sharing purposes. It was aimed to be used as a 

communication language among cooperating engineering agents, and as a 

foundation for other engineering ontologies [62]. 
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3.6 Ontology Development 

Currently, ontology development is a craft rather than a science. It is still a research 

area. Falbo et al. defines the ontology development process as set of activities 

consisting purpose identification and requirements specification, evaluation and 

documentation, integration existing ontologies, ontology capture, ontology 

formalization as in Figure 5 [47]. 

  

Figure 5 Ontology Development Process [47]  

During purpose identification and requirements specification, the purpose of the 

ontology and its intended use is identified.  

Ontology capture is to capture the domain conceptualization. The relevant domain 

entities (e.g. concepts, relations, properties) are identified and organized in this step. 

Mostly a model represented in a graphical language is used to facilitate the 

communication with the domain experts. 

Ontology formalization aims to explicitly represent the conceptualization in a 

formal language. This language is used to represent the elements that model the 

existing domain entities in a precise and unambiguous way. 
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It is common practice to integrate the developed ontology with existing ones to use 

previously established conceptualization during ontology capture and/or 

formalization.  

Ontologies are checked whether the ontology satisfies the specification 

requirements or not in the evaluation step. Ontologies are evaluated against the 

ontology competence and some design quality criteria. 

Purpose, requirements, textual description of conceptualization, and the formal 

ontology must be documented, including. This activity is done in the documentation 

step. 

TSONT is being developed considering the guidelines Fablo defined. The purpose 

of the TSONT was identified in the proposal of this research. Protégé is used as the 

ontology development environment. It is a tool developed by Stanford University. It 

enables a graphical environment to facilitate the communication with the domain 

experts besides enabling an integrated formalization of the captured 

conceptualization while constructing graphical representation of ontology [67]. 

TSONT is formalized using Web Ontology Language which will be presented in the 

proceeding sections. We did not integrate TSONT with other ontologies but we 

aligned TSONT using Suggested Upper Merged Ontology (SUMO) of IEEE in 

order to enable painless integration with other mid level ontologies like TSONT. 

This thesis is being regarded as the documentation of ontology developed. We do 

not regard the ontology development process to be completed. TSONT is planned to 

be continuously maintained and enhanced as the reuse infrastructure is used. With 

the experience gained by new projects, it will become more mature and more 

complete. 
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3.7 Principles of Building Ontology 

Ontologies are actually designed. One chooses how to represent something in an 

ontology by making design decisions. Following guidelines defined by Gruber [68] 

was taken into account when developing TSONT. 

Clarity: To make TSONT effectively communicate the intended meaning of defined 

terms, definitions are stated objectively and independent of social or computational 

context. 

Coherence: To make TSONT coherent, the definitions are checked against logical 

consistency. 

Extendibility: TSONT is designed to encourage the use of the shared vocabulary. 

One can either expand TSONT or add individuals to define new terms for special 

uses based on the existing vocabulary. 

Minimal encoding bias: The conceptualization in TSONT is specified at the 

knowledge level. We do not use any particular symbol-level encoding.  

Minimal ontological commitment: TSONT has ontological commitment on 

trajectory simulation developments that is sufficient to support trajectory simulation 

development knowledge sharing activities. 

3.8 How to Represent an Ontology? 

Early attempts on representation systems resulted to several languages. Some 

examples are Ontolingua, OKBC, OCML, Loom, and FLogic. Contemporary 

studies in representation systems resulted to web languages like OIL, DAML, 

DAML+OIL and OWL for building ontologies [71]. 
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Web Ontology Language (OWL) was developed to be the standardized and broadly 

acceptable ontology language of the Semantic Web by World Wide Web 

Consortium (W3C) Web Ontology Working Group [72, 73, 74]. Considering the 

current support to this language in terms of tools and publications, OWL is selected 

as the language to represent TSONT. 

The requirements of OWL were well-defined syntax, well-defined semantics, 

efficient reasoning support, sufficient expressive power and convenience of 

expressions. The requirement of a well defined syntax is necessary condition for 

machine processing of information. Formal semantics describes precisely the 

meaning of knowledge. “Precisely” here means that the semantics is not subjective 

and it is open to different interpretations by different people or machines. 

Reasoning support on the other hand is necessary to check the consistency of the 

ontology and knowledge. These requirements leaded W3C’s Web Ontology 

Working Group to define a language as powerful as a combination of Resource 

Description Framework (RDF) Schema with a full logic [75]. They then defined 

OWL as three sub languages, each of which is geared towards fulfilling different of 

these requirements: 

OWL Full: The entire language is called OWL Full. It uses all the OWL languages 

primitives. 

OWL DL: For computational efficiency, OWL DL (short for: Description Logic) is 

a sublanguage of OWL Full is defined. It restricts the way in which the constructors 

from OWL and RDF can be used. 

OWL Lite: With further restrictions, OWL DL is limited to a subset of the language 

constructors. For example, OWL Lite excludes enumerated classes, disjointness 

statements and arbitrary cardinality (among others). The advantage of this is a 

language that, it is easier to grasp for users and easier to implement for tool 

builders. The disadvantage is, as one would expect, its restricted expressivity. 
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OWL is built on RDF and RDF Schema (RDFS) and uses RDF’s Extensible 

Markup Language (XML) syntax. OWL documents are usually called OWL 

Ontologies. They are also RDF documents.  

An OWL ontology starts with a collection of assertion for housekeeping purposes. 

The assertions are grouped under owl:Ontology element which contains comments, 

version control and inclusions of other ontologies. For Example: 

<owl:Ontology rdf:about=""> 

<rdfs:comment>An example OWL ontology</rdfs:comment> 

<owl:priorVersion rdf:resource="http://www.mydomain.org/spacecraft"/> 

<owl:imports rdf:resource="http://www.mydomain.org/aircraft"/> 

<rdfs:label>Spacecraft Ontology</rdfs:label> 

</owl:Ontology> 

 

Classes are defined by using owl:Class element. For example we can define a 

ramjet as: 

<owl:Class rdf:ID="Ramjet"> 

<rdfs:subClassOf rdf:resource="#Thruster"/> 

</owl:Class> 

 

OWL has the definitions for disjoint classes and equivalent classes as 

owl:disjointWith and owl:equivalanetClass. There are two predefined classes, 

owl:Thing and owl:Nothing. Thing is the most general class. Nothing on the other 

hand is the empty class. 

OWL has two kinds of properties. Object properties relate objects to objects and 

datatype properties relate the objects to datatype values. Rdfs:subClassOf is used to 

define inheritance restriction. owl:allValuesFrom is used to specify the class of 

possible values of the property specified by owl:onProperty. owl:hasValue states a 

specific value that the property, specified by owl:onProperty must have. Cardinality 

relations can be given using owl:cardinality, owl:minCardinality and 

owl:maxCardinality. Some properties of the elements can be defined directly: 
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• owl:TransitiveProperty defines a transitive property, such as “has better 

sound than”. 

• owl:SymmetricProperty defines a symmetric property, such as “has same 

height as”. 

• owl:FunctionalProperty defines a property that has at most one unique value 

for each object, such as “weight”. 

• owl:InverseFunctionalProperty defines a property for which two different 

objects cannot have the same value 

Boolean combinations e.g. union, intersection of classes can also be defined by 

using owl. owl:oneOf element, on the other hand, is used for enumerations and is 

used to define a class by listing all its elements. 

Instances of classes are declared as in RDF. Unique names assumption is not 

adopted by OWL. Thus, just because two instances have different name, does not 

imply they are different individuals. 

OWL does not allow derived data types, although XML Schema provides 

mechanism for derived data types. OWL document just consists of data types that 

are most frequent used ones like strings, integer, boolean, time and date. 

When the layered structure of the language is considered, in OWL Full, one can use 

all the language constructors as long as the result is legal RDF. When one needs to 

use OWL DL, the constraints to be obeyed are as following; Any resource in OWL 

DL is allowed to be either class, a datatype, a datatype property, an object property, 

an individual, a data value or a part of built in vocabulary. All resources must be 

partitioned, and this partitioning must be stated explicitly. Furthermore, no 

cardinality restriction can be applied on transitive properties. And lastly anonymous 

classes are only allowed in the domain and range of owl:equivalentClass and 

owl:disJointWith and rdfs:subClassOf. Each OWL Lite ontology must be and OWL 
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DL ontology. For OWL Lite, it must further obey the following constraints. 

owl:OneOf, owl:disjointWith, owl:unionOf, owl:ComplementOf and owl:hasValue 

are not allowed. Furthermore, cardinality statements can only be made on values 0 

and 1. And lastly owl:equivalentClass statements cannot be made between 

anonymous classes, but only between class identifiers. 

One should decide upon the sub-language to use before starting working on an 

ontology. There are simple rules of thumb when deciding upon a sub language, 

formulated as follows by Horridge et al. [76]. 

• The choice between OWL-Lite and OWL-DL is better to be based upon 

whether the simple constructs of OWL-Lite are sufficient or not. 

• The choice between OWL-DL and OWL-Full is better to be based upon 

whether to carry out automated reasoning on the ontology or to be able to 

use highly expressive and powerful modeling facilities is important. 

In this study, what we want to do is to capture as much knowledge from the domain 

as possible to lead us to some software architecture. So we selected to use the most 

expressive one, OWL-Full, in order not to be constrained by the language. 

3.9 DAVE-ML 

Trajectory simulation domain involves mathematical models that account for some 

kind of behavior or some law. Capturing these models in a systematic way and 

representing them as an integrated part of the ontology is an important concern. At 

this juncture, the Dynamic Aerospace Vehicle Exchange Markup Language 

(DAVE-ML) effort of National Aeronautics and Space Administration (NASA) for 

the benefit of flight modeling and simulation community has been leveraged [77]. 

DAVE-ML is a proposed standard to interchange of aerospace dynamic models. It 

is aimed to provide a programming language independent representation of 
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aerodynamics, mass/inertia, propulsion and guidance, navigation and control laws 

of a vehicle. DAVE-ML is XML-based. It uses MathML to describe mathematical 

relations. MathML is an XML-based language for describing mathematics for 

machine to machine communication. We take advantage of DAVE-ML to 

incorporate mathematical models into our ontology TSONT. 

DAVE-ML is being regarded as the way to document the mathematical model 

implementations in TSONT. DAVE-ML’s intentions is defined as to allow a 

programming language independent representation of the aerodynamic, 

mass/inertia, propulsion, guidance navigation and control laws for trajectory 

simulations [78]. 

 

Figure 6 An Example DAVE-ML File Header 
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There is only one basic element in DAVE-ML. It is DAVEFunc. It is used to 

describe static models such as aerodynamic and inertia/mass models. It is composed 

of data tables and equations for a particular model. It has five components: a file 

header, variable definitions, breakpoint definitions, table definition and a function 

definition. File header is used to give a background and reference data for the 

represented model. A file header example is given above in Figure 6. 

Breakpoints define a list of monotonically increasing floating point values. Function 

table definitions generally contain the data points for aerodynamic coefficients as a 

function of one or more parameter like mach, angle of attack, control surface 

deflections. Function definitions as given below in Figure 7; connect the data tables 

to breakpoints to define how an output should vary with one or more input. 

 

Figure 7 An Example DAVE-ML Function Definition 

Variables are used to capture inputs, calculations and outputs for a model. Variables 

can be regarded as the signal routes in a block diagram or the parameters in the 

computer program. They can be either inputs of the models, constants used in the 

models, intermediate results or outputs of the models. MathML is used to represent 

the mathematical relation of input variables and outputs. An example is presented 

above in Figure 8. 
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Figure 8 An Example DAVE-ML Variable Definition 

This chapter introduced the basic concepts of ontologies and knowledge sharing.  

First the definition of ontology is given. Then the components, merit and 

applications of ontologies are explained. Ontology development efforts in 

engineering domain in the literature are reviewed. After presenting the basic 

practices of ontology construction, DAVE-ML effort of NASA is presented. In the 

next chapter, we will introduce Trajectory Simulation Ontology that was built as the 

domain model of trajectory simulation reuse infrastructure. 
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CHAPTER 4  

TRAJECTORY SIMULATION ONTOLOGY  

In this chapter, Trajectory Simulation ONTology (TSONT) is being presented. 

After an overview, top level entities, the hierarchies, classes and individuals of 

TSONT are discussed. 

4.1 TSONT: An Overview 

Trajectory Simulation Ontology, abbreviated as TSONT, is being developed as the 

domain model of Trajectory Simulation Reuse Infrastructure. It is being developed 

as a reusable knowledge library on trajectory simulations for trajectory simulation 

developers. 

As mentioned earlier, ontologies are designed. For each artifact, the goal of its 

design is to conform to its requirements. The aim of developing TSONT as the 

domain model of the Trajectory Simulation Reuse Infrastructure is first to establish 

a common vocabulary that is agreed among people working on trajectory 

simulations and to create a backbone for systematization of knowledge on how to 

build a trajectory simulation. Considering these two requirements, TSONT design 

tried to capture common vocabulary of trajectory simulation and to present the 

entities and the relation among the entities in a trajectory simulation in a way to 

drive the design and development of simulation software. 

There can be many other ways to capture and systemize or formalize the knowledge 

about trajectory simulation development. While there is no barrier for any team that 

is developing trajectory simulation to use TSONT as a domain model, TSONT is 

being developed for Modeling and Simulation Team of TUBITAK-SAGE. So, 

although the literature about trajectory simulation development is widely used to 
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construct TSONT, it is being peer reviewed by the target reuse group in order to 

make it capture the shared vocabulary and the conceptualization of the people 

participating in that group. 

Once TSONT is presented in the proceeding sections, one will see that some of the 

hierarchies are not complete and some knowledge about some classes is missing. 

The current state tries to capture the shared vocabulary and experienced 

conceptualization as related to ongoing projects rather than all available in the 

literature. As TSONT will be used as the domain model of the reuse infrastructure, 

it will be enhanced with the new experiences of the group. In this manner TSONT 

can be regarded as the knowledge base that is serving the gained experience in a 

formal way in order to be used in the future projects. 

4.2 Top Level TSONT 

Top level entities of TSONT are Trajectory Simulation Attribute, Trajectory 

Simulation Class, Trajectory Simulation Function, Trajectory Simulation Object, 

Trajectory Simulation Quantity, Trajectory Simulation Record and Trajectory 

Simulation Sequence, as shown in Figure 9. 

 

Figure 9 TSONT Top Level Entities 
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These top level entities of TSONT agree with those of SUMO (Suggested Upper 

Merged Ontology). By reusing SUMO, we promote interoperability with other 

domain ontologies. SUMO is an upper level ontology proposed by the Standard 

Upper Ontology Working Group, an IEEE-sanctioned working group of 

collaborators from the fields of engineering, philosophy, and information science. 

The SUMO provides definitions for general-purpose terms and acts as a foundation 

for more specific domain ontologies [79]. 

 

Figure 10 Excerpt from TSONT Top Level 

Trajectory Simulation Attribute can be regarded as the subclass of SUMO Attribute. 

It is defined as qualities in trajectory simulation domain which we cannot or prefer 

not to reify into subclasses of an object. Similarly, Trajectory Simulation Class is 

regarded as a subclass of SUMO Class and Trajectory Simulation Function as a 

subclass of SUMO Function. Trajectory Simulation Object, again a subclass of 



 44 

SUMO Object, corresponds roughly to the class of ordinary physical objects in 

Trajectory Simulation domain. Trajectory Simulation Quantity is defined as any 

specification of how many or how much of something in Trajectory Simulation 

domain; it is a subclass of SUMO Quantity. 

Trajectory Simulation Record and Trajectory Simulation Sequence are Trajectory 

Simulation Composite Data types that can be used for developing trajectory 

simulation codes. Although these data types are well established in programming, 

we refer to Vienna Development Method Specification Language (VDM-SL), an 

ISO Standard modeling language, for the sake of definiteness [80]. 

Figure 10 presents an excerpt from TSONT to show how these top level entities are 

inherited down to concepts of trajectory simulation domain. Trajectory Simulation 

can be a Scalar Quantity or a Vectoral Quantity. Acceleration Vector, Angular 

Acceleration Vector, Angular Velocity Vector, Force Vector, Moment Vector, 

Orientation Vector, Position Vector and Velocity Vector are all types of Vectoral 

Quantity. Further, Aerodynamic Force, Gravitational Force and Thrust Force are all 

derived from the Force Vector. 

4.3 TSONT Hierarchies 

4.3.1 Trajectory Simulation Objects 

Trajectory Simulation Objects are the physical entities whose behavior is simulated. 

SUMO has a parallel definition for objects which corresponds objects roughly to the 

class of ordinary objects such as normal physical objects. 

Munition, munition subsystems and weapon are said to be trajectory simulation 

objects. Munition is defined as a complete device charged with explosives, 

propellants, pyrotechnics, initiating composition, or nuclear, biological, or chemical 

material for use in military operations, including demolitions [81]. Munition 
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subsystems are the parts of munition which affects its simulation, like guidance 

system, propellant or autopilot. Weapon is defined as the launch platform of 

munition. The hierarchy of Trajectory Simulation Object is given below in Figure 

11. 

 

Figure 11 Trajectory Simulation Object Hierarchy 

The munition classification is carried out in this domain analysis effort in order to 

scope the target group of system whose flight will be simulated by the trajectory 

simulations that will be developed by using the reuse infrastructure. There is no best 

classification or the correct classification for munitions. There can be number of 

ways to classify. There is no “one” classification in the literature that classifies all 

types of munition. Different classifications are unified in TSONT. 

Three different sources are used to capture the taxonomy. The first one is AOP 29, 

“NATO Indirect Fire Ammunition Interchangeability” [82]. It is used for the 

classification of ammunitions, particularly the projectiles. The second one is DoD 
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101, “An Introduction to Military” which is published through Federation of 

American Scientists web site [83]. DoD 101 is used for the classification of bombs. 

The last one is DoD 4120.14-L, dated May, 12th, 2004 [84]. The Appendix 2 of this 

document is “Approved Mission Design Series Designators and Symbols for 

Guided Missiles, Rockets, Probed, Boosters, and Satellites”. This section is used for 

the classification of the missiles. These three classifications with their examples are 

presented in APPENDIX A. Besides, TSONT is given in APPENDIX N. 

4.3.2 Trajectory Simulation Classes 

 

Figure 12 Trajectory Simulation Class Hierarchy 

Trajectory Simulation Classes are subsets of the SUMO class. They are the abstract 

entities of trajectory simulation domain which are used to compute a trajectory. 
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This abstraction does not rely on any literature rather tried to capture the agreed 

conceptualization of trajectory simulation problem among the co-workers who will 

use the trajectory reuse infrastructure. The top level classes are Coordinate System, 

Model, Parameter, Solver, Trajectory Simulation and Trajectory Simulation Phase 

as given above in Figure 12. 

Trajectory Simulation is defined as a tool to compute the flight path and other 

parameters of munition as it leaves the launcher and engages to a target based on 

mathematical model of munition, its subsystems and environment which consist of 

equations that describe physical laws and logical sequences [4].  

Trajectory Simulation Phase is used to define some number of generic trajectory 

phases. These phases are defined considering the set of models they require to 

compute the trajectory throughout any instance of them. TSONT phase hierarch is 

depicted below in Figure 13. 

 

Figure 13 Trajectory Simulation Phase Hierarchy 

Phase captures the basic models, such as Aerodynamics Model or Dynamics Model. 

Thrusted Phase, Guided Phase and Propelled Phase capture the related models.  

Trajectory Simulation Phase stands for trajectory simulation phases which are 

neither guided nor propelled or thrusted. Trajectory Simulation Phase has an 

Aerodynamics Model (to compute aerodynamic forces and in some cases 

moments), Dynamics Model (to compute accelerations), Earth Model, Atmosphere 
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Model and Gravity Model. Propelled Phase stands for the trajectory simulation 

phases for the munitions which are propelled from a gun by a charge. So this phase 

has a propellant model in addition to the standard phase definition. Guided Phase 

stands as a class for guided munition trajectory phases. It extends the standard phase 

definition by adding Autopilot Model, CAS Model, Guidance Model and Sensor 

Model to calculate any guided trajectory segments. Thrusted Phase is added to 

represent the trajectory segments in which the thruster is working. It adds thruster 

model to standard phase definition. In Launcher Phase is a kind of Thrusted Phase 

where launcher model is used to consider the affects of launcher on trajectory.  

Some phases have hybrid characteristics. In a trajectory phase both guidance and 

thruster might be active. E.g. Air-to-air missile simulation. In this case, that phase is 

derived both from guided phase and thrusted phase definitions so it has all the 

characteristics of both. 

Model refers to logical or mathematical models of the actors that affect the flight of 

the munition. They encapsulate the approximations and assumptions, both structural 

and quantitative, about the affects of these actors to trajectory [1]. Aerodynamics 

Model, Atmosphere Model, Autopilot Model, CAS Model, Dynamics Model, Earth 

Model, Gravity Model, Guidance Model, Launcher Model, Propellant Model, 

Sensor Model, Termination Model, Terrain Model and the Thruster Model are the 

ones currently captured by TSONT. 

Aerodynamics Model incorporates the effects of aerodynamic flow over munition 

body on its flight. This model is for computing the aerodynamics forces and 

moments acting on the munition. The classification is presented belove in Figure 

14. The first level taxonomy divides the model into two as Point Mass 

Aerodynamics Model and Rigid Body Aerodynamics Model. Point Mass 

Aerodynamics Models only deal with the force but the Rigid Body Models also 

compute moments. Then the taxonomy is detailed to capture different aerodynamic 

models for different dynamic representations of munitions which affect the number 
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of forces and moments computed. The last level in the taxonomy captures the 

reference frames that these forces and moments are computed. 

 

Figure 14 Aerodynamics Model Hierarchy 

Atmosphere Model is assigned to provide the required meteorological conditions to 

the models which require them in order to incorporate the effects of atmospheric 

conditions to the munitions flight. 

 

Figure 15 Atmosphere Model Hierarchy 

TSONT captures four different representations of atmospheric conditions for 

trajectory simulations. These include Grided Met Message (METGM) [85], 
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Computer Met Message (METCM) [86], Ballistic Met Message (METB3) [87] and 

standard atmosphere (ICAO) [88].  

Although there are few different standard atmosphere definitions, the definition of 

International Civil Aviation Organisation which is widely used, is captured in 

TSONT. Grided Met Message is a pretty new concept. Technology development 

and validation efforts are still in progress. It provides atmosphere state at points in 

three dimensional space at a time. Below is a figure presenting use of METGM in a 

trajectory simulation.  

 

Figure 16 Grided Met Message in a Trajectory Simulation [89] 

Ballistic met messages and computer met message are coded messages that report 

the atmospheric conditions in selected layers starting at the surface and extending to 

an altitude that will normally include the maximum ordinate of trajectory. Ballistic 

met message used in manual computations in which the weather conditions existing 

in one layer or zone are weighted against the conditions in lower layers and reported 

as percentages of standard. Computer met message on the other hand reports actual 

average wind direction, wind speed, air temperature, and pressure in each layer. The 

computer met message is designed to be used by the computer system in the 

computation of the equations of motion. An example of computer met message 

from Field Manual 6-40, is given below in Figure 17 [90]. 
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Figure 17 Computer Met Message [90] 

Autopilot Model stands for mathematical models that transform the guidance 

commands to control commands. Autopilots are actually control systems, which 

produce control action commands for the missile to track the commands coming 

from the guidance subsystem. They work as a translator between the guidance 

system and the control actuation system. There are a number of different autopilot 

implementations in literature [91]. Autopilot itself, receives instructions from the 

guidance subsystem about the strategy for how to steer the munition to intercept, 

and it translates these instructions into appropriate control of the munition [92]. 

Autopilot Model class of TSONT captures the basic functionality of mentioned 

above. As different autopilot models will be simulated by using TSONT, the 

Autopilot Model taxonomy of TSONT will be enhanced. 

Control Actuation System Model represents the behavior of control actuation 

system of munition. It models how the commanded fin deflections are converted to 

actual fin deflections. Currently on a second order system model is captured in 

TSONT as given below in Figure 18 [92]. 
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Figure 18 CAS Model Hierarchy 

Dynamics Model employ the equations of motion, which describe the relationships 

between the forces and moments acting on the munition and the resulting motion 

[4]. Dynamics Models uses forces and moments to compute the dynamic model’s 

state derivatives, namely velocity and acceleration of the munition. 

 

Figure 19 A Portion of Dynamics Model Hierarchy 

Dynamics Models can be classified into two, as Point Mass and Rigid Body 

Dynamics Models in the first place considering the abstraction of the munition in 

the space. Besides these two, In Launcher Model represents a specific type of 

Dynamics Model where launcher constraints apply on the munition. Variable Mass 

Dynamics Models on the other hand stands for the dynamics models that thrust 

forces are also in consideration. The taxonomy is then detailed further considering 
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the degrees of freedom and the reference frame. Figure 19 depicts a portion of 

Dynamics Model Hierarchy. 

 

Figure 20 Earth Models [89] 

Earth Model represents the model of the Earth on which the munition flies. This 

effects how the altitude of the munition in its flight is computed as given above in 

Figure 20 [23]. Two fundamental approaches are captured in TSONT. Those Earth 

Models are Flat Earth Model and Round Earth Model. Earth Model Hierarchy is 

presented below in Figure 21. 

 

Figure 21 Earth Model Hierarchy 

During the engagement process of a guided munition, number sensors measures one 

or more parameters of the path of the missile relative to the target. The logical 

process to determine the required flight path corrections based on the sensor 
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measurements, is called a guidance law. The objective of a guidance law is to cause 

the munition to come as close as possible to the target. Guidance laws usually can 

be expressed in mathematical terms and are implemented through a combination of 

electrical circuits and mechanical control functions [4]. Guidance Models model the 

guidance laws of munitions which compute commanded accelerations using the 

relative target and munition motion. Rather than all guidance methods in the 

literature, TSONT captures the Guidance Models that have been experienced by 

target reuse group. Those are Proportional Navigation Guidance Model, Polynomial 

Guidance Model and Command Line of Sight Guidance Model.  

 

Figure 22 Guidance Model Hierarchy 

Figure 22 presents the Guidance Model Hierarchy captured in TSONT. Proportional 

navigation guidance law computes acceleration commands, perpendicular to the 

munition and the target line of sight, which are proportional to line of sight rate and 

closing velocity [15]. Command Line of Sight (CLOS) guidance attempts to keep 

the missile within a guidance beam transmitted from the ground [4]. Polynomial 

guidance on the other hand, is based on generating the necessary commands on 

either the rates of the flight path angles or the normal acceleration components that 

keep the missile on a polynomial trajectory. The polynomial definition of the 

trajectory can be second or third order [92]. 

Launcher Model stands to represent the interactions of the munition and the 

launcher such as tip off rates and friction [23, 92]. 
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For the projectiles that are launched by using a propellant charge, the muzzle 

velocity depends on factors like propellant type and propellant temperature. 

Propellant Models computes the muzzle velocity using the propellant properties 

[89]. 

In order to guide a munition for a successful intercept a target, it is vital to get the 

correct information about the motion of the target and munition itself during the 

flight. That information is provided by various sensors, such as inertial sensors, 

seekers, radar altimeters and GPS [92, 94]. The Sensor Model of TSONT includes 

the models of these sensors. 

Termination Model is used to identify the end of either a phase or the whole 

trajectory. This logical model uses the phase termination conditions or the fuze data 

of the munition to determine the end of a trajectory phase or the trajectory itself. 

Terrain Model represents the terrain the munition flies over. This model is 

responsible to provide the height of the terrain from sea level. 

 

Figure 23 Thruster Model Hierarchy 

Above is the Thruster Model Hierarchy Several types of thrusters are used to propel 

the munition. Thruster Models are responsible to compute the thrust force and 

moment, and the mass of the thruster during the flight of the munition. Presently, 
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solid propellant rocket motors, liquid propellant rocket motors and airbreathers are 

captured in TSONT. Based on the experience gained in the previous trajectory 

simulation projects, Solid Rocket Motors are further detailed in the hierarchy.. 

Solid Rocket Motor Models compute the thrust force depending on the design of the 

propellant which results in a specific impulse and the instantaneous ambient 

atmospheric pressure acting on an area equivalent to the exit area of the rocket 

nozzle. Liquid Rocket Motor models are essentially the same as Solid Rocket Motor 

Models unless the potential for throttle control is exploited in the design of the 

liquid system. Airbreather Models compute performance as a function of throttle 

control setting, Mach number, and ambient atmospheric properties [4]. 

 

Figure 24 Solver Hierarchy 

Above, Figure 24 depicts the solver hierarchy in TSONT. The differential equations 

frequently encountered in trajectory simulations cannot be solved by classical 

analytical methods. A large number of numerical integration methods have been 

developed to solve these equations using computers. Numeric solvers are classified 

as one-step and multi-step methods in TSONT. A one-step solver uses the value of 

the dependent variable only at the current integration step to compute the value at 

the succeeding step. A multi-step solver on the other hand uses values of the 
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dependent variable at the current integration step and also at one or more preceding 

steps. One-step difference equations are self-starting, and multi step processes 

depend on a self-starting method to calculate the first few integration intervals. 

Euler’s and the Runge-Kutta solvers are examples of one step solvers Milne’s and 

the Adams solvers are examples of multi-step solvers [4].  

Munition and its subsystems like motor, fuze or sensor, are represented by a set of 

parameters in the trajectory simulations. Parameter classes refer to the group of 

classes responsible to provide simulation parameters to the Model classes that 

simulate the behavior. 

Aerodynamics and Physicals are the parameters of the munition itself. Subsystem 

parameters, Autopilot Data, CAS Data, Charge Data, Fuze Data, Guidance Data, 

Sensor Data, Solid Rocket Motor Data and Weapon Data are also captured in 

TSONT. This parameter class hierarchy is further detailed considering the set of 

data provided.  

 

Figure 25 Parameter Hierarchy 
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The hierarchy of Parameter classes is presented above in Figure 25.Aerodynamics 

class for example is classified into Point Mass Aerodynamics and Rigid Body 

Aerodynamics. Then Rigid Body Aerodynamics class is further classified to classes 

like Five DOF Aerodynamics and Modified Point Mass Aerodynamics.  

Vectors in three-dimensional space are widely used in trajectory simulation to 

represent factors such as forces, accelerations, velocities, positions, moments, 

angular accelerations, and angular rates. A vector has a meaning when it is 

described relative to some frame of reference. Right-handed, orthogonal coordinate 

systems are commonly used as frames of reference. A vector is described by its 

three components on the axes of a coordinate system. A number of different 

coordinate systems maybe used in a trajectory simulation. Coordinate systems are 

characterized by the positions of their origins, their angular orientations, and their 

motions relative to inertial space or relative to other specified systems. A vector can 

then be described by its coordinates in any of the coordinate systems [4]. Number 

coordinate systems are captured in TSONT, such as Body Coordinate System and 

Earth Coordinate System. The Coordinate System hierarchy is depicted below in 

Figure 26. 

 

Figure 26 Coordinate System Hierarchy 
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4.3.3 Trajectory Simulation Functions 

 

Figure 27 Trajectory Simulation Function Hierarchy 

Trajectory Simulation Functions are a subset of SUMO function. Trajectory 

Simulation Function hierarchy captures the functionalities served by classes 

underneath the Trajectory Simulation Class hierarchy presented in the previous 

section. The list of functions captured in TSONT is given above in Figure 27. 

Forces and moments acting on the munition during its flight are computed by using 

functions Compute Aerodynamics Force, Compute Aerodynamics Moment, 
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Compute Friction Force, Compute Gravitational Force, Compute Thrust Force and 

Compute Thrust Moment. Compute Aerodynamics Force, Compute Aerodynamics 

Moment are served by Aerodynamics Model, Compute Friction Force is served by 

Launcher Model, Compute Gravitational Force is served by Gravity Model and 

Compute Thrust Force and Compute Thrust Moment are served by Thruster Model. 

Some of these functions also have their own hierarchy. Compute Aerodynamic 

Forces functions which use aerodynamic coefficients, atmosphere data, physical 

properties of the munition and the dynamic model state to compute the aerodynamic 

forces are further detailed to capture different types of implementations of these 

functions as given below in Figure 28. They are classified depending on the degrees 

of freedom of the dynamics model that will use this forces and the reference frame 

in which the forces are defined. 

 

Figure 28 Compute Aerodynamic Forces Hierarchy 

Compute Commanded Acceleration is the functionality provided by Guidance 

Model. It computes the commanded acceleration of the munition using the guidance 

law. Then Compute Commanded Fin Deflections functionality that is served by 

Autopilot Model uses the commanded accelerations to compute the commanded fin 

deflections. CAS Model serves Compute Actual Fin Deflections functionality. As 

given below in Figure 29, TSONT has a sole function under this hierarchy for four 
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canard systems. The aim of this function is to compute actual fin deflections using 

commanded fin deflections. 

 

Figure 29 Compute Actual Fin Deflections Hierarchy 

Compute Atmosphere function is served by Atmosphere Model. It is used to 

provide atmospheric properties at any instant of flight depending on the height. 

These functions which are given below in Figure 30, are classified depending on the 

format that they read the metrological definition. 

 

Figure 30 Compute Atmosphere Hierarchy 

Check Termination function is served by Termination model. It computes the 

termination status using State information and a Termination Record which defines 

the termination conditions. 
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Figure 31 Compute Aerodynamics Hierarchy 

There are number of functions in the hierarchy that are served by Parameter classes 

to provide the simulation parameters. Compute Aerodynamics, Get Physicals, Get 

Solid Rocket Motor Data are some of them. Compute Aerodynamics, as an 

example, refers to the functionality provided by Aerodynamics class. It is 

responsible for computing the aerodynamic coefficients using the flight conditions. 

Its hierarchy is depicted above in Figure 31. 

Initialize Phase and Initialize Simulation functions refers to the functionalities 

served by Phase and Simulation classes to accomplish series of tasks to initialize a 

trajectory simulation or a phase of a trajectory simulation like setting the initial 

state. Likewise Compute Trajectory functionality of Trajectory Simulation class is 

responsible to compute the whole trajectory and Compute Phase Trajectory 

functionality of any Phase class is responsible to compute the trajectory of a 

particular phase. 

Below, Figure 32 is the hierarchy of Integrate Step functions captured in TSONT. 

Those functions are provided by Solver classes to integrate the differential equation 

to compute the state of the simulation in the next time step. These functions require 

state derivatives to be computed by Update State and Derivative functions whose 

hierarchy is given below in Figure 33. 
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Figure 32 Integrate Step Hierarchy 

 

Figure 33 Update State and Derivatives Hierarchy 
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4.3.4 Trajectory Simulation Quantities 

 

 

Figure 34 A Portion of Scalar Quantity Hierarchy 
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OWL classes under the Trajectory Simulation Quantity construct a subset of SUMO 

quantity. They are used to specify the quantities of trajectory simulation domain. 

Trajectory Simulation Quantity is divided into two subsets, namely Scalar 

Quantities and Vectoral Quantities. Scalar Quantities are then divided to subgroups 

using the classification given in The International System of Units [95]. Some of 

scalar quantities captured in TSONT are Density, Mass and Length. A portion of 

Scalar Quantity hierarchy is depicted above in Figure 34. 

Vectoral quantities in trajectory simulation domain are grouped as Acceleration 

Vector, Angular Acceleration Vector, Velocity Vector, Angular Velocity Vector, 

Force Vector, Moment Vector, Position Vector and Orientation Vector. Then these 

groups are detailed to capture the quantities underneath them. The hierarchy of the 

Force Vector is presented below in Figure 35, as an example. 

 

Figure 35 Force Vector Hierarchy 
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4.3.5 Trajectory Simulation Attributes 

Trajectory Simulation Attributes are a subset of SUMO attribute. Attribute is 

defined as qualities which we cannot or choose not to reify into subclasses of Object 

in SUMO [79]. Trajectory Simulation Attribute defines a set of qualities of 

Trajectory Simulation Classes and Trajectory Simulation Objects like the 

termination status of a trajectory or the ellipsoid of a location. 

4.3.6 Trajectory Simulation Composite Data 

Composite types are types whose values are composed or structured from simpler 

values [96]. They are used to group some data that forms a coherent construct. In 

developing trajectory simulation software, composite data types are widely used. 

TSONT tries to capture the composite data types that are used in the target reuse 

community. Trajectory Simulation Record and Trajectory Simulation Sequence are 

base Trajectory Simulation Composite Data types. Although these data types are 

well established in programming, Vienna Development Method Specification 

Language (VDM-SL), an ISO Standard modeling language, is referred for the sake 

of definiteness [80]. 

VDM-SL defines record as a construct, similar to the record or struct in 

programming languages that is used to model values made up of several 

components [80]. A portion of Trajectory Simulation Record is depicted below in 

Figure 36. 

Sequence is defined as ordered collection of values in VDM-SL [80]. We present 

Tuple hierarch captured in TSONT, as a part of Trajectory Simulation Sequence 

hierarchy, below in Figure 37. 
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Figure 36 A Portion of Trajectory Simulation Record Hierarchy 

 

Figure 37 Tuple Hierarchy 
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4.4 TSONT Classes 

After presenting the taxonomy of trajectory simulation concepts in the previous 

section, this section will discuss how these concepts are defined in TSONT. The 

relations among these concepts will also be given. This section will start with the 

definition of a trajectory simulation, continue with classes, services, and conclude 

with quantities and composite data. The relations of the concepts captured in 

TSONT and the structure of them will be discussed in this sequence. 

 

Figure 38 Trajectory Simulation Class 
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The structure of TSONT is devised to render concept to implementation mapping 

amenable to reuse by trajectory simulation developers. Trajectory simulations, 

which can be composed of multiple phases, are to be executed to calculate the 

trajectories of munitions. One may need to initialize a trajectory simulation by 

setting the initial conditions before running it. These facts are reflected in TSONT 

as depicted in Figure 38. Trajectory Simulation is defined by hasMunition, 

hasPhase, servesInitializeSimulation and servesComputeTrajectory properties. 

These properties formalize the definition of the trajectory simulation. 

 

Figure 39 Thrusted Phase 

Trajectory simulation phases are defined as the segments of a munition flight whose 

simulation can be performed by using a distinct set of models solved by a numeric 

solver. For example, computing the trajectory during boost phase and after motor is 

off, which is called free flight, requires a particular sets of models. Figure 39 
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presents the definition of Thrusted Phase in TSONT. This definition specifies the 

models that will be used to compute a segment of a trajectory where a type of a 

thruster is producing thrust. It also says that, one may need to initialize a phase 

before computing the phase trajectory. In addition, it states that each phase will 

require some kind of a solver to compute the numerical solutions of differential 

equations. The definitions of some of the other phases will be given in APPENDIX 

B with some other TSONT class examples. For a complete TSONT, refer to 

APPENDIX N. 

 

Figure 40 Update Thrusted Phase State and Derivatives 

Update Thrusted Phase State and Derivatives is one of two functionalities that are 

provided by a Thrusted Phase. It is a function that uses phase state and computes 
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state derivatives. This function uses number of functions from either parameter 

classes or models that were listed above to compute the state derivatives. For 

example it uses of one of Get Physicals function of Physicals classes to get the 

physical properties of the munition like reference mass or it uses one of Update 

Dynamics Models State and Derivatives function of Dynamics Model classes to get 

the Dynamics Model State Derivatives. 

TSONT captures these dependencies among the functions on trajectory simulation 

domain by means of the dependsOn property acting on all functions. As an 

example, the definition of Update Thrusted Phase State and Derivatives is presented 

above in Figure 40. 

Having discussed some functions and their dependencies, we will proceed with 

presenting models. Among Trajectory Simulation Models, the Body Fixed Six DOF 

Dynamics Model from Dynamics Model hierarchy will be discussed in detail to 

present our approach to the development of TSONT. Four different properties act 

on this class as restrictions. It should have a coordinate system, which is Body 

Coordinate System as its name indicates. It should have states and state derivatives. 

These states and state derivatives are parts of Phase State and State Derivatives 

which depicts the instantaneous system behavior. Its state is called Body Fixed Six 

DOF Dynamics Model State and its state derivatives are called Body Fixed Six 

DOF Dynamics Model State Derivatives. And the last restriction that applies is its 

service to the simulation. It means the way it is used in the execution of trajectory 

simulation. Dynamics Models are used to compute systems dynamics state 

derivatives by using the state. Then as the time passes numeric solver calculates the 

next time step’s state by using these state derivatives. So, Body Fixed Six DOF 

Dynamics Model updates body fixed six DOF dynamics model state and 

derivatives. Figure 41 is the definition of Body Fixed Six DOF Dynamics Model in 

TSONT. 
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Figure 41 Body Fixed Six DOF Dynamics Model 

If we look at the Body Fixed Six DOF Dynamics Model State, it is defined as a kind 

of Trajectory Simulation Record composed of: 

• Three dimensional translational velocity in body coordinate system  

• Angular rates in body coordinate system  

• Three dimensional position in earth coordinate system 

• Euler angles 

TSONT definition of Body Fixed Six DOF Dynamics Model State is presented 

below in Figure 42. 



 73 

 

Figure 42 Body Fixed Six DOF Dynamics Model State 

 

Figure 43 Angular Rates in Body Coordinate System 
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These records are vectors and Vectoral Quantities also have a definition in TSONT. 

For example Angular Rates in Body Coordinate System is defined in TSONT as 

depicted above in Figure 43. 

As other vectoral quantities, Angular Rates in Body Coordinate System is defined 

with its coordinate system and its column matrix. Its coordinate system is Body 

Coordinate System and its column matrix is called Angular Velocity Column 

Matrix which has a definition in TSONT as given in Figure 44. 

 

Figure 44 Angular Velocity Column Matrix 

Angular Velocity Column Matrix is a type of Tuple. It is a sequence of a kind of 

Scalar Quantity which is Angular Velocity. 

Body Coordinate System is one of the four Coordinate Systems mentioned in 

TSONT. As other coordinate systems, Body Coordinate System is also defined by 

its orientation with respect to inertial reference frame of the trajectory simulation. It 
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also serves a functionality to transform any vector defined in any coordinate system 

to itself. Below is the representation of Body Coordinate System in TSONT. 

 

Figure 45 Body Coordinate System 

If we have a look at Body Fixed Six DOF Dynamics Model State Derivatives which 

is another property of Body Fixed Six DOF Dynamics Model, we will figure out 

that it is composed of following items. 

• Three dimensional translational acceleration in body coordinate system, 

• Angular acceleration in body coordinate system, 

• Euler angle rates 

• Three dimensional translational velocity in earth coordinate system. 

Dynamics Models are used to compute the dynamics of the munition at any time 

during flight. The implementation of this expression in a continuous simulation 

domain is to compute the state derivatives which will then used to compute the state 
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of the next time step. So, dynamics model computes the angular and translational 

accelerations using the instantaneous forces and moments. Then this acceleration is 

integrated to compute the position and the orientation of the munition. Dynamics 

Models serves a functionality called Update Dynamics Model State and Derivatives 

to accomplish this task. As one will Body Fixed Six DOF Dynamics Model that we 

keep on discussing serves Update Body Fixed Six DOF Dynamics Model State and 

Derivatives functionality in this respect. 

 

Figure 46 Update Body Fixed 6 DOF Dynamics Model State and Derivatives 

TSONT models all functions in the same manner. It captures the implementation 

details, in other words the algorithms of the functions using Implementation 

property. Implementation is a data type property which points to a universal 

resource identifier to refer a DAVE-ML file. Then the restrictions starting with “in” 

refer to the input parameters of the function and those starting with “out” refer to 



 77 

the outputs of the process carried out by this functionality. The dependsOn 

restriction captures the dependencies among functions in trajectory simulation 

domain. One will figure out that this schema also applies to Update Body Fixed 

Dynamics Model State and Derivatives function whose definition is presented 

above in Figure 46. 

For the implementation details of Update Body Fixed Dynamics Model State and 

Derivatives, TSONT refers to a DAVE-ML file. As an example, consider the 

mathematical model in Update Body Fixed Dynamics Model State and Derivatives 

for one of the translational accelerations in body coordinate system:  

vrqw
m

F
u x +−=�          Eq. 1 

While it should be noted that the full contents of the DAVE-ML file for Update 

Body Fixed Dynamics Model State and Derivatives is given in APPENDIX C, in 

this file the above equation is represented as: 

    <variableDef name="udot" varID="udot" units="m/s2"> 

        <description> Body fixed tranlational acceleration in X </description> 

        <calculation> 

            <math xmlns='http://www.w3.org/1998/Math/MathML'> 

                <apply> 

                    <eq/> 

                    <ci>udot</ci> 

                    <apply> 

                        <plus/> 

                        <apply> 

                            <times/> 

                            <apply> 

                                <plus/> 

                                <ci>FAX</ci> 

                                <ci>FGX</ci> 
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                            </apply> 

                            <apply> 

                                <power/> 

                                <ci>mass</ci> 

                                <cn type='integer'>-1</cn> 

                            </apply> 

                        </apply> 

                        <apply> 

                            <times/> 

                            <ci>r</ci> 

                            <ci>v</ci> 

                        </apply> 

                        <apply> 

                            <times/> 

                            <cn type='integer'>-1</cn> 

                            <apply> 

                                <times/> 

                                <ci>q</ci> 

                                <ci>w</ci> 

                            </apply> 

                        </apply> 

                    </apply> 

                </apply> 

            </math> 

        </calculation> 

        <isOutput/> 

    </variableDef> 

 

More DAVE-ML samples are given in APPENDIX N. 

Parameters classes, as mentioned earlier, are used to supply the required properties 

of the simulated system to the related models. The way the Parameter classes are 

modeled and how they relate with Model classes will be presented over an example. 
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Figure 47 Compute Six DOF Aerodynamics Forces in Body Fixed Coordinate 

System 

Aerodynamics classes are responsible for computing the aerodynamic coefficients 

which will be used then by Aerodynamics Models to compute the aerodynamic 

forces and moments. Aerodynamics Force required above by Update Body Fixed 

Dynamics Model State and Derivatives functionality is computed by Body Fixed 

Six DOF Aerodynamics Model. It serves a functionality called Compute Six DOF 

Aerodynamics in Fixed Coordinate System which requires Six DOF Aerodynamics 

Record as an input. The definition of Compute Six DOF Aerodynamics Forces in 

Body Fixed Coordinate System is given above in Figure 47. Six DOF 

Aerodynamics Record is provided by Six DOF Aerodynamics which is a Parameter 

class. Six DOF Aerodynamics serves a functionality called Compute Six DOF 
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Aerodynamics. The definition of Compute Six DOF Aerodynamics is depicted 

below in Figure 48. 

 

Figure 48 Compute Six DOF Aerodynamics 

As the above figure represents, Six DOF Aerodynamics Record is the output of 

Compute Six DOF Aerodynamics. It is Trajectory Simulation Composite Data. 

Three different ways to represent aerodynamic coefficients for a six degrees of 

freedom trajectory simulation are captured in TSONT as subclasses of Six DOF 

Aerodynamics Record. Those representations are Ballistic, Ballistic Research Lab 

(BRL) and National Advisory Committee for Aeronautics (NACA) representations 

[17]. Each representation refers to a record definition in TSONT. The definition 
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BRL Six DOF Aerodynamics Record is presented below in Figure 49 as an example 

of three. 

 

Figure 49 BRL Six DOF Aerodynamics Record 

4.5 TSONT Individuals 

The OWL classes of TSONT create a base on which each and every application that 

is developed using this ontology based reuse infrastructure, is built on. The specific 

requirements of each application are planned to be added to the ontology as 

individuals. The domain structure and constraints modeled in TSONT define the 
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relations among these individuals. As the ontology is used in new applications the 

individuals that were created by the previous projects will also be available for 

reuse. New domain structures and constraints will be able to be identified as new 

applications are developed. This commitment adds the ontology constructive nature. 

It will develop as it is used in the trajectory simulation projects. 

Let us consider how TSONT is extended by individuals, as we define a new 

simulation, and how it guides the development of a trajectory simulation. The 

individuals of a guided rocket simulation, called Lynx, developed on MATLAB 6 

DOF Trajectory Framework (MATSIX) will be presented as the case study. 

MATSIX was developed based on the design that was obtained by transforming 

TSONT classes. Then the Lynx Simulation was developed by framework 

completion referring to the TSONT individuals. This implementation will be 

discussed in detail in CHAPTER 5.  

 

Figure 50 Lynx Simulation 
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As we created a new simulation individual, TSONT asks to define the related 

properties of the simulation. A simulation as depicted above in Figure 50, is defined 

by its munition, trajectory, its phases and the functionalities provided.  

We referred to individuals of Compute Trajectory and Initialize Simulation 

functions that are created to specify Lynx in TSONT. Lynx, as an individual of a 

MGR is set as the munition to be simulated. We defined four different phases for 

Lynx Simulation. The phases of Lynx Simulation are specified as the individuals of 

Phase, Guided Phase, Thrusted Phase and In Launcher Phase. If we consider Lynx 

Free Flight Phases, it is an individual of Phase class. It will be discussed to present 

how the phase individuals are constructed. To create a phase individual, TSONT 

forces one to specify the models, services and characteristic properties of that phase. 

Lynx Free Flight Phase is given in Figure 51. 

 

Figure 51 Lynx Free Flight Phase 
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As it can be followed from the below figure, individuals are defined for dynamics 

model, aerodynamics model, earth model, gravity model, atmosphere model and 

termination models. Lynx_Solver is defined as the individual of Runge Kutta 4 

solver for the free flight phase of Lynx simulation. And lastly, two individuals are 

defined for two functions of Lynx_Simulation which refers to the specific 

implementations of these functions. One can use different algorithms to initialize a 

trajectory simulation or to compute it. 

Lynx Aerodynamics Model will be discussed in this paragraph to create an 

understanding on how the individuals are used to link the specific trajectory 

simulation to the TSONT OWL classes. Lynx Aerodynamics Model was defined as 

an individual of a Body Fixed Six DOF Aerodynamics Model. As an individual, it 

conforms to all of the constraints of that applies on Body Fixed Six DOF 

Aerodynamics Model. As an ontology, TSONT, restricts its individuals to conform 

to their OWL Classes.  

 

Figure 52 Lynx Aerodynamics Model 
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If we look at Body Fixed Six DOF Aerodynamics Model, as depicted above in 

Figure 52, TSONT specifies how it shall be implemented. When user tries to 

specify which Coordinate System he wants to use when he computes aerodynamic 

force and moment, TSONT guides him that the coordinate system he shall use is 

Body Coordinate System. 

As presented above, new simulation setups are defined by adding individuals for 

different needs. As the ontology, TSONT, is used in new trajectory simulation 

projects, the number of individuals will increase in number. And, the reuse of these 

previously captured individuals to define new simulation setups will also be an 

opportunity. This will enhance the evolution of TSONT as a trajectory simulation 

knowledge library. 

The major motivation of this research is to guide trajectory simulation development 

efforts in all steps of trajectory simulation projects by providing formally defined 

reusable artifacts. One of the major motivations of building an ontology in this 

study was to provide a reusable domain model or trajectory simulation knowledge 

library to guide the trajectory simulation developer to construct a clear picture of 

domain concepts for a specific trajectory simulation project. TSONT, as presented 

above, can guide the trajectory simulation developer on how to construct and relate 

concepts in the trajectory simulation domain. This ability of TSONT seems to be 

fulfilling its commitment. 

In this chapter, TSONT is presented. After introducing the top level TSONT 

entities, TSONT hierarchies, classes and individuals are introduced. It would be a 

good to remember that TSONT is the domain model for the trajectory simulation 

reuse infrastructure. Specifications of trajectory simulation reuse infrastructure for 

both object oriented and function oriented paradigms are constructed upon this 

domain model. Next chapter will introduce this infrastructure. 
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CHAPTER 5  

INFRASTRUCTURE SPECIFICATION AND IMPLEMENTATIONS 

In this chapter, object oriented and function oriented reuse infrastructures are built 

using the knowledge captured in TSONT, presented in the previous chapter. For 

object oriented reuse infrastructure, first object oriented application frameworks are 

introduced, and then platform independent trajectory simulation architecture is 

discussed. Two different case studies are presented for object oriented paradigm. 

Chapter is concluded with the function oriented reuse infrastructure and its case 

study. 

5.1 Object Oriented Infrastructure Specification and Implementations 

5.1.1 Object Oriented Application Frameworks  

A common definition of a framework is the reusable design of all or a part of a 

software system that is accomplished by a set of abstract classes and a prescription 

of the way their instances interact. It can be regarded as the skeleton of an 

application that is to be developed in full by an application developer [63]. As a 

contemporary object oriented reuse technique, different from the earlier techniques 

based on class libraries, frameworks are targeted for particular application domains 

such as user interfaces or real-time avionics [64]. The history of framework 

literature goes back to 80’s. Johnson and Foote introduced many basic concepts of 

application frameworks in their article published in 1988 [63]. 

Fayad and Schmidt list the benefits of object oriented application frameworks as 

modularity, reusability, extensibility and inversion of control that they provide to 

developers [64]. They explain these benefits as follows. Modularity is enhanced by 

encapsulating volatile implementation details behind stable interfaces. This gives 
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the strength of modularity to frameworks by increasing the quality of product by 

localizing the impact of design and implementation changes which reduces the 

effort required to understand and maintain the existing code. 

Stable interfaces, furthermore, enable reusability by defining generic components 

which can be reapplied to create new applications. Leveraging domain knowledge 

of experienced developers avoids re-creating and revalidating common solutions to 

reoccurring application requirements and software design challenges. This is the 

core essence of framework reuse to enhance programmer productivity, and further 

more quality, reliability and interoperability of software. 

Extensibility is enabled in application frameworks by using hook methods. These 

hook methods decouple the interfaces and the behaviors of the application domain 

from variations required by a particular application. 

Fayad and Schmidt [64] explain the basics as follows. Frameworks are 

characterized by their run-time architectures, which is known as “inversion of 

control”. Inversion of control works as the framework dispatches related 

functionality during application processing steps to hook methods, which perform 

application-specific processing on the events.  

 

Figure 53 Control Inversion in Frameworks [97]. 

To summarize, a framework often consists of abstract classes, concrete classes, and 

predefined interaction among the classes throughout the framework. Developers can 
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then build the application on top of the framework and reduce the development 

effort through reuse of code and designs provided in the framework. Below Figure 

54 provides a high level overview on how an application framework relates to a 

domain application. 

 

Figure 54 High-level Overview of the Relationship between an Application and the 

Application Framework [97]. 

Referring to Chen’s book [97], the differences between a framework and a class 

library can be summarized as follows. A class library consists of a number of ready-

to-use components that developers can use to build an application. But, developers 

must understand the relationships between various components and write process 

flow code to wire the required components together in the application. On the other 

hand, a framework encapsulates the control of such process flow by pre-wiring 

many of its components so that developers do not have to write code to control how 

the various components interact with each other. Figure 55 illustrates the difference 

between a class library and a framework. 
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Figure 55 Comparison between a Class Library and an Application Framework 

[97]. 

Frameworks are extended using object oriented mechanisms either by inheriting 

from framework base classes or overriding pre-defined hook methods using 

patterns, such as the Template Method. The Template Method is presented in Figure 

56. 

 

Figure 56 Template Method [97]. 

As stated by Akşit et al., although a large number of successful frameworks have 

been developed during last several years, designing a high quality framework is still 

an issue. Akşit proposes modeling domain knowledge as an essential step to 
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develop a high quality framework [98]. But currently, there are no widely accepted 

standards for designing, implementing, documenting and adapting frameworks. 

Chen discusses the economics of framework development [97]. He argues that 

developing an application framework is not an easy and inexpensive effort. In order 

to develop a highly usable and extensible framework, you need first to find 

individuals who are not only expert in the application domain, but also expert in 

software design and development. It is important that those who are developing the 

framework be competent in both domain knowledge and software development. 

Without domain expertise, one cannot create the domain-specific framework layers 

for developers. Without the technical expertise in software development, it will be 

hard transfer the concept of the framework from theory to the concrete framework 

code that developers can reuse and extend. How developers can benefit from the 

services and architecture provided in the framework must be determined by the 

framework designer. Chen says that some of the work involved in creating a 

framework can be regarded as abstract and heavily relies on assumptions about how 

developers will use the framework to build the application. So, it is said that it is 

difficult to get everything right on the first try, since the designer can only guess at 

how the final application will look and how it will be built to solve the domain 

problem. So as a result, in most of the cases, it takes a series of iterations to get the 

framework right for the applications that will be built on top of it. That makes 

framework development very much an evolving task, and it demands continual 

development and support efforts to ensure its relevance. 

According to Robert and Johnson, a framework must embody a theory of the 

domain, and is always the result of domain analysis, whether the domain analysis is 

explicit and formal or implicit and informal [99]. Here in present research, we 

emphasize the use of domain engineering practices to construct a reuse 

infrastructure for trajectory simulation applications. We have an explicit and formal 

domain model in a form of an ontology. Frameworks, as stated in the previous 

paragraphs, have been standing as the most promising mechanism for enabling code 
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and design reuse in last 20 years. So, we base our object oriented reuse scenario on 

framework concepts. 

For ontology based object oriented reuse scenario, as given below in Figure 57, a 

Platform Independent Framework Architecture is proposed. It is an abstract design 

that is constructed with the guidance of TSONT. It is proposed that abstract design 

should not have any platform and problem set specific characteristics in order to 

enable design reuse for a large variety of applications on many different platforms. 

 

Figure 57 Object Oriented Reuse Scenario 

As the second step of the infrastructure specification activity of domain 

engineering, this platform independent framework architecture is proposed to be 

refined to specific platform and problem set. Frameworks, as their nature (they are 

implemented pieces of code) implies, are platform dependent. They either depend 

on a programming language like ADA95, a platform like MATLAB or another 

framework like .NET or EJB. Problem subsetting is also expected to figure in this 

step of the activity. 
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In our approach to trajectory simulation development with reuse, we find it 

favorable to construct new simulations by framework completion, provided, of 

course, a suitable framework is available. Otherwise one needs first to develop a 

framework, and then complete it for the particular application. This approach is 

expected to create a collection of related frameworks addressing different platforms 

and problem families. So as the framework is first developed in a context of a 

requirement set, it is obvious that it won’t cover the whole domain. For example, it 

is expected to have body fixed 6 DOF framework with guidance and control models 

implemented or another framework still 6 DOF but this time it is earth fixed and 

without any guidance and control models. The former can be a result of requirement 

of a guided missile development project while the latter can be a requirement of 

base-bleed artillery projectile development project. 

Here, in this research, as examples of object oriented frameworks, we worked on 

two different frameworks. The first one is 6 DOF framework, namely MATSIX, 

that was developed on MATLAB’s object oriented facilities. Two different 

applications are built upon this framework. One is LYNX which is a surface to 

surface rocket simulation and the second one is PUMA which is a guided bomb 

simulation. There will be presented in the following sections. 

The second framework is for point mass trajectory simulations. This one is not fully 

developed. The focus while developing this case study was the use of code 

generation facilities of computer aided software engineering tools in out reuse 

oriented trajectory simulation development methodology. The static structure 

captured in platform specific framework architecture is used to generate C# code for 

this framework. This activity will again be presented in the following sections. 

As new requirements arise more frameworks can be designed and developed 

refining the platform independent framework architecture, and more applications 

can be developed by framework completion. 
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5.1.2 Platform Independent Trajectory Simulation Framework Architecture 

Before going further, the first topic to be discussed is how to specify the platform 

independent trajectory simulation framework architecture. Typical definition of 

software architecture is the structure of the components of a program/system, their 

interrelationship, and the principals and the guidelines governing their design and 

evolution over time [100]. 

Referring the definition of software architecture given in previous paragraph, 

classes are regarded as the components of our object oriented framework. So the 

structure of the components of our architecture is proposed to be presented by class 

diagrams that are built depending on domain model which is ontology in our case.  

Platform independent framework architecture, as the name implies, must be free of 

any platform dependencies. It will be the base for the specific framework 

architectures. So the below constraints apply to the class diagram that represents the 

platform independent framework architecture. Class diagrams are presented to be in 

a nature below: 

Classes without 

• export level (public, protected etc.) 

• persistence 

• representation details 

Operations without 

• their export control 

• return types 

• arguments 
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Attributes without 

• type definition 

• export control 

• initial value 

• containment 

Associations only 

• generalization 

• aggregation/composition 

Software architecture, as given in the definition above should arrange the relations 

of components of the program besides the static structure given as class diagrams. 

The dynamic relations among the components for the framework are specified by 

using the UML sequence diagrams. 

As the dependency hierarchy is captured in ontology, this information is used to 

build a top level sequence diagram that will lead the platform dependent developer 

in designing and developing his simulation. 

Sequence diagram is a kind of interaction diagram that lays out the time ordering of 

messaging. Interaction diagrams in general show interaction, consisting of a set of 

objects and their relationship, including messages that may be dispatched among 

them [101]. 

Class diagrams and the sequence diagram in the present work have been developed 

by using Enterprise Architect Computer Aided Software Engineering tool of Sparx 

Systems Inc. [102] 
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UML class diagrams are constructed in such a way that there is a general view 

diagram which shows the relations among topmost classes in the generalization 

hierarchy. With this top level diagram, there are packages for each generalization 

hierarchy. Each package has another class diagram that shows the generalization 

hierarchy of the classes in that package. The project view of infrastructure 

specification is given below in Figure 58. The top level diagram is TS Class 

Diagram and the packages are the ones with folder icons. 

 

Figure 58 Trajectory Simulation Framework Architecture Project View 

This recently mentioned top level class diagram of infrastructure specification 

which is given below in Figure 59, presents trajectory simulation developer which 

top level classes will exist in his simulation framework.  
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Figure 59 Top Level Class Diagram of Infrastructure Specification

cd TS_Class_Diagram

Traj ectory_Simulation:

:Simulation

Dynamics_Model::

Dynamics_Model

Traj ectory_Simulation_Systems:

:Munition

Traj ectory_Simulation_Systems:

:Munition_Subsystem

Traj ectory_Simulation_Phases::

Phase

Traj ectory_Simulation_Systems:

:Weapon

Traj ectory_Simulation_Solv ers:

:Solv er

Termination_Model::

Termination_Model

Traj ectory_Simulation_Composite_Data::

Traj ectory

Coordinate_Systems::

Coordinate_System

Traj ectory_Simulation_Phases::

Thrusted_Phase

Traj ectory_Simulation_Phases::

In_Launcher_Thrusted_Phase
Thruster_Model::

Thruster_Model

Launcher_Model::

Launcher_Model

Autopilot_Model::Autopilot_Model

CAS_Model::CAS_Model

Guidance_Model::Guidance_Model

Sensor_Model::

Sensor_Model

Aerodynamics_Model::

Aerodynamics_Model

Earth_Model::Earth_Model

Atmosphere_Model::

Atmosphere_Model

Grav ity_Model::

Grav ity_Model

Traj ectory_Simulation_Systems:

:Autopilot

Traj ectory_Simulation_Systems:

:CAS

Traj ectory_Simulation_Systems:

:Fuze

Traj ectory_Simulation_Systems:

:Guidance_System

Traj ectory_Simulation_Systems:

:Propellant

Traj ectory_Simulation_Systems:

:Sensor

Aerodynamics_Data::

Aerodynamics_Data
Physical_Data::

Physical_Data

CAS_Data::CAS_Data

Autopilot_Data::

Autopilot_Data

Fuze_Data::Fuze_Data

Guidance_Data::

Guidance_Data

Sensor_Data::

Sensor_Data

Weapon_Data::

Weapon_Data

Traj ectory_Simulation_Phases:

:Guided_Phase
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Figure 59 also shows the aggregation/composition and generalization associations 

among these classes. Top level classes are presented in their related packages. In 

that related package’s class diagram, it is presented with its full specification 

(complete with operations and attributes) and the other classes in that package 

inherit from it. The top level associations of classes are designed to be dispatched to 

the child classes of each package at run time by making use of the polymorphism 

capability of object oriented programming. 

Two examples will be discussed here in this section to give the reader a clear idea 

about infrastructure specification. These examples will be Physical Data class 

hierarchy and Phase class hierarchy. Class diagrams of a couple of other packages 

will be given in APPENDIX D. The whole project is given in APPENDIX N.  

 

Figure 60 Physical Data Package 
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As given in Figure 60, Trajectory Simulation Parameters package has sub packages 

for each data class hierarchy. Physical Data is one of them. 

Each package has a class diagram in the name of the package. Physical Data 

diagram which is given in Figure 61 is the class diagram for Physical Data package. 

cd Physical_Data

Physical_Data

+ GetPhysicals() : Physicals_Record

Point_Mass_Physicals

+ GetPhysicals() : Physicals_Record

Six_DOF_Physicals

+ GetPhysicals() : Physicals_Record

Six_DOF_Physicals_for_Thrusted

+ GetPhysicals() : Physicals_Record

 

Figure 61 Physical Data Class Diagram 

The idea presented in this diagram is that, presented schema will be the class 

hierarch for the framework one will develop using this platform independent design. 

For a framework that supports 6 DOF simulations, framework user, who actually is 

the application engineer, will use Six DOF Physical or Six DOF Physicals for 

Thrusted to inherit his own classes.  
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In the second example we will discuss the conformance of this representation to the 

form of platform independent framework architecture that was discussed at the 

beginning of this section. The representation of Phase hierarchy in the infrastructure 

specification is given below in Figure 62. Here in this diagram, there is no platform 

dependent information. Like, classes do not have implementation details, operations 

do not have specific parameters or export levels and attributes do not have any 

export control. 

cd Traj ectory_Simulation_Phases

Phase

+ Aerodynam ics_Model:  Aerodynam ics_Model

+ Dynam ic_Model:  Dynam ics_Model

+ Earth_Model:  Earth_Model

+ Environment_Model :  Atmosphere_Model

+ Gravity_Model:  Gravity_Model

+ Ini tial_Condition:  Phase_State

- Phase_State:  Phase_State

- Phase_State_Derivatives:  Phase_State

+ Propulsion_Model:  Thruster_Model

+ Solver:  Solver

+ Tem ination_Model:  Termination_Model

+ ComputePhaseT rajectory() : T rajectory

+ Ini tial i zePhase() : void

+ UpdatePhaseStateAndDerivatives() : Phase_State_Derivatives

Guided_Phase

+ Autopi lot_Model :  Autopi lot_Model

+ CAS_Model:  CAS_Model

+ Guidance_Model:  Guidance_Model

+ Sensor_Model:  Sensor_Model

+ UpdatePhaseStateAndDerivatives() : Phase_State_Derivatives

In_Launcher_Thrusted_Phase

+ Launcher_Model:  Launcher_Model

+ UpdatePhaseStateAndDerivatives() : Phase_State_Derivatives

Thrusted_Phase

+ Thruster_Model:  Thruster_Model

+ UpdatePhaseStateAndDerivatives() : Phase_State_Derivatives

 

Figure 62 Phase Class Diagram 

These diagrams in infrastructure specification are for guiding the developer to an 

abstraction schema that was captured in the ontology. 

UML sequence diagram is added to platform independent framework architecture to 

give the user an idea about how the objects interact to accomplish a trajectory 

simulation. The whole sequence diagram is huge to be presented here in the body of 
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the dissertation. A small portion of the sequence will be presented here and the 

whole sequence diagram is given in APPENDIX N. 

The below Figure 63 illustrates that user starts a simulation by calling the service 

Compute Trajectory. This service starts a phase loop. For each phase, Compute 

Trajectory first initializes a phase by calling its Initialize Phase service. Then it calls 

Compute Phase Trajectory function to make phase compute its trajectory. Compute 

Phase Trajectory has a trajectory loop. For each time step Compute Phase 

Trajectory calls Integrate Step function of Solver. Solver integrates step by calling 

Update Phase State and Derivatives function of the Phase. To update phase state 

and derivatives, Phase first needs to access the data related to that state. It calls 

Compute Aerodynamics function of Aerodynamics Data to get the aerodynamic 

coefficients at that position and velocity of munition. This sequence then continues 

until whole trajectory of munition is computed. 

 

Figure 63 A Portion of Trajectory Simulation Sequence Diagram 

Here in this section, one will figure out that the behavior of the simulation is 

implemented in the framework. So, all the simulations that will be developed with 

framework completion will have this behavior. 
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In the platform independent framework architecture, we expect the package/class 

names mostly match the class names in the ontology. The traceability of top level 

packages/classes to OWL classes in TSONT is given below in Table 1. A more 

comprehensive traceability table is presented at APPENDIX E. This will increase 

the understanding of the model to a developer who is familiar with the ontology and 

enhance the chance of tracing back to ontology. 

Table 1 Class Diagram Packages – Ontology Traceability 

Package Name Entity In TSONT 

Coordinate System Coordinate System 

Trajectory Simulation Trajectory Simulation 

Trajectory Simulation Composite Data Trajectory Simulation Composite Data 

Trajectory Simulation Models Model 

Trajectory Simulation Parameters Parameter 

Trajectory Simulation Phases Trajectory Simulation Phase 

Trajectory Simulation Quantities Trajectory Simulation Quantity 

Trajectory Simulation Solvers Trajectory Simulation Solver 

Trajectory Simulation Systems Trajectory Simulation Object 

 

5.1.3 6 DOF Trajectory Simulation Framework in MATLAB  

5.1.3.1 MATSIX, An Introduction 

MATSIX is a 6 DOF trajectory simulation which is developed by using MATLAB. 

This effort aims to present an example on implementation of the platform 

independent framework architecture that was presented in the previous section. So 

rather than developing new models, efforts from different researches are leveraged. 
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Mathematical models of this simulation framework are mostly based on the 

research that was carried out by Tiryaki [92]. Beyond most of the models, launcher 

dynamics is based on efforts of Mahmutyazıcıoğlu, atmosphere tables are from 

Public Domain Aeronautical Software web site and thrust model is based on 

STANAG. 4355 [93, 103 and 23]. 

This simulation framework supports trajectory simulations with: 

• Standard atmosphere models with no wind profile 

• Constant gravitational acceleration 

• In launcher and 6 DOF dynamics models for munitions with a rotational 

symmetry 

• Cubic, parabolic and 2D proportional navigation guidance models 

• A specific autopilot model from [92]. 

• Canard control 

• Round earth and flat earth 

• Non rotating earth 

• Solid rocket motors  

• Launched from either a rocket launchers or an aircraft 

While referring the related publications, implementations of significant models are 

discussed below in Notes on MATSIX Implementation section. 

5.1.3.2 MATLAB Object Oriented Facilities 

MATLAB is a high-performance language for technical computing. It integrates 

computation, visualization, and programming in an easy-to-use environment where 
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problems and solutions are expressed in familiar mathematical notation [104]. 

Object oriented programming among other approaches can be a way to develop 

software in MATLAB. Short advocacy of object oriented development in 

MATLAB product documentation says, when using well-designed classes, object-

oriented programming can significantly increase code reuse and make your 

programs easier to maintain and extend.  

Programming with classes and objects differs from ordinary structured 

programming in some important ways. These differences are listed in MATLAB 

product documentation [104] as follows:  

Function and operator overloading. Existing MATLAB functions can be 

overridden. One should call such a function with user-defined object as an 

argument. Then MATLAB first checks to see if there is a method defined for the 

object's class. If there is, MATLAB calls it, rather than the normal MATLAB 

function.  

Encapsulation of data and methods. One can not access object properties from the 

command line. They are only accessible within class methods.  

Inheritance. One can create class hierarchies in MATLAB. The child class inherits 

data fields and methods from the parent. Single inheritance (A child class can 

inherit from one parent) or multiple inheritance (A child class can inherit from 

many parents) is supported. Using inheritance, sharing common parent functions 

and enforcing common behavior among all child classes is possible.  

Aggregation. An object can contain other objects. This is called aggregation, which 

is also supported by MATLAB.  

Although these definition seems to be very similar to common definition of object 

oriented there are some differences in the implementation of the methodology in 

MATLAB. These differences are listed in MATLAB product documentation [104] 

as follows: 
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• Method dispatching is not syntax based in MALAB. MATLAB uses the left-

most object to select the method to call, when the argument list contains 

objects of equal precedence.  

• There is no equivalent to a destructor method in MATLAB. One should use 

the clear function to remove an object from the workspace.  

• MATLAB data types are constructed at runtime rather than compile time. 

To register an object as belonging to a class, one should call the class 

function.  

• The inheritance relationship is established in the child class by creating the 

parent object, and then calling the class function in MATLAB.  

• The child object contains a parent object in a property with the name of the 

parent class in MATLAB.  

• There is no passing of variables by reference in MATLAB. One should pass 

back the updated object and use an assignment statement to write methods 

that update an object.  

• There is no equivalent to an abstract class in MATLAB.  

• There is no equivalent to the C++ scoping operator in MATLAB.  

• There is no virtual inheritance or virtual base classes in MATLAB.  

• There is no equivalent to C++ templates in MATLAB. 

5.1.3.3 MATSIX Architecture 

Framework architecture of MATSIX implementation is a part of infrastructure 

implementation. This design is based on the abstract design that is presented in the 

Platform Independent Framework Architecture. The platform specific constraints 

are applied on this abstract design and a detailed design is constructed. Meanwhile 



 105 

this MATSIX Architecture is subset of Platform Independent Trajectory Simulation 

Framework Architecture since it only concentrates on 6 DOF trajectory simulations 

and specifically the models presented in the previous section. 

 

Figure 64 MATSIX Project View 

The project view is very similar to the one in platform independent framework 

architecture. There is again a top level class diagram and packages with distinct 

class diagrams inside. Figure 64 gives the MATSIX project view. Here in this 

section, only Aerodynamics Model and Trajectory Simulation Phases will be 

introduced. Couple of other class diagrams will be given in APPENDIX F. The 

whole MATSIX Project and implementation are given in APPENDIX N. 
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cd Aerodynamics_M odel

aerodynamics_model

- Coordinate_System :  cs

+ aerodynamics_model() : aerodynamics_m odel

+ Com puteAerodynam icForce(aerodynamics_m odel, aerodynamics_record, physicals_record, atm osphere_record, dynamics_m odel_state) : aerodynamic_force

+ Com puteAerodynam icsM om ent(aerodynam ics_model, aerodynam ics_record, physicals_record, atmosphere_record, dynam ics_model_state) : aerodynam ics_moment

+ get() : void

+ set() : void

 

Figure 65 Aerodynamics Model of MATSIX Architecture 

As depicted in Figure 65, there is only one Aerodynamics Model class in MATSIX 

Architecture. This is due to the fact that the platform, this time MATLAB, does not 

support abstract classes. So the hierarchy defined in abstract design hasn’t been 

implemented, rather updated considering the constraints of the platform. 

cd Traj ectory_Simulation_Phases

phase

- aerodynamics_m odel :  aerodynamics_model

- atm osphere_m odel :  atm osphere_m odel

- dynam ics_model :  dynam ics_model

- earth_model:  earth_m odel

- gravity_model :  gravity_model

- ini tial ized:  boolean

- phase_state:  phase_state

- phase_state_derivatives:  phase_state

- phase_term ination_record:  termination_record

- tem ination_model :  Term ination_M odel

+ ComputePhaseT rajectory(phase, muntion) : T rajectory

+ get() : void

+ GetPhaseStateAsArray(phase) : y

+ GetStateDerivativesAsArray(phase) : dy

+ Ini tial ize(phase, phase_state) : phase

+ phase() : phase

+ set() : void

+ SetStateDerivativesfromArray(phase, dy) : phase

+ SetStateFromArray(phase, y) : phase

+ UpdatePhaseStateAndDerivatives(time, y, phase, muntion) : dy

in_launcher_thrusted_phase

- Launcher_Model :  launcher_m odel

+ get() : void

+ GetPhaseStateAsArray(in_launcher_thrusted_phase) : y

+ GetStateDerivativesAsArray(in_launcher_thrusted_phase) : dy

+ Ini tial ize(in_launcher_thrusted_phase, Phase_State) : phase

+ set() : void

+ SetStateDerivativesfromArray(in_launcher_thrusted_phase, dy) : phase

+ SetStateFromArray(in_launcher_thrusted_phase, y) : phase

+ UpdatePhaseStateAndDerivatives(T ime, y, in_launcher_thrusted_phase, Muni tion) : dy

thrusted_phase

- T hruster_Model:  rocket_motor_m odel

+ get() : void

+ GetPhaseStateAsArray(thrusted_phase) : y

+ GetStateDerivativesAsArray(thrusted_phase) : dy

+ Ini tial ize(thrusted_phase, Phase_State) : phase

+ set() : void

+ SetStateDerivativesfromArray(thrusted_phase, dy) : phase

+ SetStateFromArray(thrusted_phase, y) : phase

+ thrusted_phase() : thrusted_phase

+ UpdatePhaseStateAndDerivatives(T ime, y, thrusted_phase, Muni tion) : dy

guided_phase

- Autopilot_Model:  autopilot_model

- CAS_Model :  CAS_M odel

- Guidance_Model :  guidance_model

- Sensor_Model:  Sensor_Model

+ get() : void

+ GetPhaseStateAsArray(guided_phase) : y

+ GetStateDerivativesAsArray(guided_phase) : dy

+ guided_phase() : guided_phase

+ Ini tia l ize(phase, phase_state) : guided_phase

+ set() : void

+ SetStateDerivativesfromArray(guided_phase, dy) : guided_phase

+ SetStateFrom Array(guided_phase, y) : phase

+ UpdatePhaseStateAndDerivatives(T im e, y, guided_phase, Muni tion) : dy

 

Figure 66 Phases of MATSIX Architecture 
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When the diagram given in Figure 66 is considered, one will figure out that the 

classes involve implementation details like export levels, arguments and return 

types. 

All attributes are private. This is another MATLAB constraint. So all classes have 

“get” and “set” functions to enable the class users manipulate the private attributes.  

MATLAB requires all classes to have a constructer in the name of the class. As an 

example, guided phase has a guided phase service that returns a guided phase 

object. 

There is no parameter passing by reference in MATLAB. As one of the 

consequence of this, services that change the state of an object have objects as one 

of its return value. 

The design for MATSIX Architecture mentioned above was implemented. The 

framework involves 48 classes, which amount to 3579 SLOC (source lines of code). 

5.1.3.4 Notes on MATSIX Implementation 

This section presents some of the significant model implementations in MATSIX 

framework. Coordinate systems, dynamics model, aerodynamics model, guidance 

models, autopilot model and thruster model are mentioned below. Rather than the 

derivations of the equations, only the implemented results are given. Further details 

about the models can be found in the related references. 

5.1.3.4.1 Coordinate Systems 

MATSIX uses two different right handed and orthogonal coordinate frames. The 

first one is the earth fixed reference frame, ),,( ZYXEℑ . Its origin is fixed to the 

earth’s surface with its X axis pointing towards north, Y axis pointing towards east 

and Z axis pointing towards down to the centre of the earth. Non-rotating earth 

assumption is used. Hence the earth fixed reference frame is taken to be inertial. 
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The second reference frame ),,( zyxBℑ  is the munition body frame. Its origin is at 

the centre of gravity of the munition. Its x axis points from the centre of gravity to 

the nose of the munition, y axis points towards the right of the munition looking 

from rear, z axis points down, forming a right handed orthogonal coordinate system.  

Vector quantities are represented as a column vector with a coordinate system. The 

coordinate system transformations are carried out by using a transformation matrix.  

)(),()( ˆ bbaa rCr =          Eq. 2 

Coordinate systems are defined by their Euler angles which are ψ , θ  and φ  (yaw 

angle, pitch angle and roll angle respectively) with respect to the inertial frame of 

the simulation. 3-2-1 rotated frame based Euler transformation sequence are used 

for rotational transformations. The transformation matrix from any (X) frame to the 

inertial frame (I) is obtained as: 

( , )ˆ I X

c c s s c c s c s c s s

C c s s s s c c c s s s c

s s c c c

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

− + 
 = + − 
 − 

      Eq. 3 

where ‘c’ denotes the cosine and ‘s’ denotes the sine of the angle.  

5.1.3.4.2 Dynamics Model 

MATSIX dynamics model consists of equations of motion which relate the forces 

and moments which are being applied to the munition to the translational and 

rotational accelerations. Two different dynamics modeling is used in MATSIX. The 

first one models the equations of motion of a munition in launcher and the second 

one is the six degrees of freedom equations of motion of the munition in three 

dimensional space. 
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5.1.3.4.2.1 In Launcher Dynamics Model 

The launcher is modeled as straight rail that reinforces no spin to the rocket. 

Launcher constraints the motion of the munition by forcing its elevation and 

azimuth during in launcher phase [93]. 

xF
u

m
=�           Eq. 4 

0v =�            Eq. 5 

0w =�            Eq. 6 

where; 

x ax tx xF F F mg= + +         Eq. 7 

and 

0p =�            Eq. 8 

0q =�            Eq. 9 

0r =�            Eq. 10 

Using the body to earth transformation matrix ( , )ˆ E BC , body frame translational 

velocity components can be related to earth frame velocity components as follows: 

















=

















w

v

u

C

Z

Y

X
BE ),(ˆ

�

�

�

         Eq. 11 
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Here wvu ,, are the translational velocity components in the munition body frame. 

ZYX ,, are the coordinates of the centre of gravity of the munition in the earth 

frame. 

It is assumed that no angular rates can be introduced to the munition in launcher, so 

the rotational kinematic equations implemented are as follows:  

0ψ =�            Eq. 12 

0θ =�            Eq. 13 

0φ =�            Eq. 14 

5.1.3.4.2.2 Six DOF Dynamics Model 

Six degrees of freedom equations of motion are implemented as follows; 

vrqw
m

F
u x +−=�          Eq. 15 

pwur
m

F
v y

+−=�          Eq. 16 

pvuq
m

F
w z −+=�          Eq. 17 

where; 

x ax tx xF F F mg= + +         Eq. 18 

y ay ty yF F F mg= + +         Eq. 19 

z az tz zF F F mg= + +         Eq. 20 
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and 

xILp /=�           Eq. 21 

yxyy IIIprIMq /).(./ −+=�        Eq. 22 

yyxy IIIqpINr /).(./ −+=�        Eq. 23 

where; 

a tL L L= +          Eq. 24 

a tM M M= +          Eq. 25 

a tN N N= +          Eq. 26 

Here, note that z yI I=  due to rotational symmetry of the munition. 

Body frame translational velocity components are related to earth frame velocity 

components as follows: 
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         Eq. 27 

The rotational kinematics equations implemented are as follows:  

( )sin cos cosψ q. r. / θφ φ= +�        Eq. 28 

cos sinθ q. r.φ φ= −�          Eq. 29 

( )sin cos tanp q. r. . θφ φ φ= + +�        Eq. 30 
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5.1.3.4.3 Aerodynamics Model 

Aerodynamic model of MATSIX concentrates on the determination of aerodynamic 

forces and moments acting on a munition which are produced by the relative motion 

of the munition with respect to the air and depend on the orientation of the munition 

with respect to the airflow.  

The orientation angles are the angle of attack (α ) and the sideslip angle ( β ). These 

angles are expressed as follows: 

)(tan 1

u

w−=α           Eq. 31 

)(sin 1

V

v−=β           Eq. 32 

 

Figure 67 Munition Velocity Components - Side View 

 

Figure 68 Munition Velocity Components - Top View 



 113 

The aerodynamic forces and moments acting on the munition are expressed in 

column representation as: 
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dQ  is the free stream dynamic pressure. It is expressed as: 

2

2

1
VQd ρ=           Eq. 35 

ρ  is the air density.V  is the velocity of the munition and implemented as following 

regarding the no wind case: 

2 2 2V u v w= + +         Eq. 36 

“A” is the reference area. It is the maximum cross sectional area of the munition. 

“d”, on the other hand, is the diameter of the munition. 

5.1.3.4.4 Aerodynamics Parameters 

Aerodynamic coefficients are defined as; xC , axial force coefficient, yC , side force 

coefficient, zC , normal force coefficient, lC , rolling moment coefficient, mC , 

pitching moment coefficient and nC , yawing moment coefficient. 

These coefficients are expressed as a function of angle of attack, sideslip angle, 

control surface deflections (for guided munition), and Mach number. The effective 
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control surface deflections are said to be are δδδ ,,  for the pitch, yaw and roll planes 

respectively. Mach number is defined as: 

sV

V
M =           Eq. 37 

Where V  is the total velocity of the munition and sV  is the local speed of sound  

Force and moment coefficients are implemented as following in MATSIX referring 

the assumptions from Tiryaki’s work [92]. 

Force Coefficients: 

)(0 MCC xx =           Eq. 38 

V

d
rMCMCMCC

ryryyy
2

)()()( ++= δβ
δβ

     Eq. 39 

V

d
qMCMCMCC

qzezzz
2

)()()( ++= δα
δα

     Eq. 40 

Moment Coefficients: 

V

d
pMCMCC

plall
2

)()( += δ
δ

       Eq. 41 

V

d
qMCMCMCC

qmemmm
2

)()()( ++= δα
δα

     Eq. 42 

V

d
rMCMCMCC

rnrnnn
2

)()()( ++= δβ
δβ

     Eq. 43 

Equalities due to rotational symmetry: 

z yC Cα β=           Eq. 44 
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z yC Cδ δ=           Eq. 45 

zq yrC C= −           Eq. 46 

m nC Cα β= −           Eq. 47 

m nC Cδ δ= −           Eq. 48 

mq nrC C=           Eq. 49 

5.1.3.4.5 Atmosphere Model 

Table 2 ICAO Standard Atmosphere Table 

Altiture Temperature Pressure Density Speed of Sound

km K N/sq.m kg/cu.m m/s

-2 301.2 1.28E+05 1.48E+00 347.9

0 288.1 1.01E+05 1.23E+00 340.3

2 275.2 7.95E+04 1.01E+00 332.5

4 262.2 6.17E+04 8.19E-01 324.6

6 249.2 4.72E+04 6.60E-01 316.5

8 236.2 3.57E+04 5.26E-01 308.1

10 223.3 2.65E+04 4.14E-01 299.5

12 216.6 1.94E+04 3.12E-01 295.1

14 216.6 1.42E+04 2.28E-01 295.1

16 216.6 1.04E+04 1.67E-01 295.1

18 216.6 7.57E+03 1.22E-01 295.1

20 216.6 5.53E+03 8.89E-02 295.1

22 218.6 4.05E+03 6.45E-02 296.4

24 220.6 2.97E+03 4.69E-02 297.7

26 222.5 2.19E+03 3.43E-02 299.1

28 224.5 1.62E+03 2.51E-02 300.4

30 226.5 1.20E+03 1.84E-02 301.7

32 228.5 8.89E+02 1.36E-02 303

34 233.7 6.63E+02 9.89E-03 306.5

36 239.3 4.99E+02 7.26E-03 310.1

38 244.8 3.77E+02 5.37E-03 313.7

40 250.4 2.87E+02 4.00E-03 317.2

42 255.9 2.20E+02 3.00E-03 320.7

44 261.4 1.70E+02 2.26E-03 324.1

46 266.9 1.31E+02 1.71E-03 327.5

48 270.6 1.02E+02 1.32E-03 329.8

50 270.6 7.98E+01 1.03E-03 329.8  
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Standard atmosphere model of MATSIX is implemented in this case study as a 

simple table look up. The values represent the ICAO standard atmosphere. The 

values listed above in Table 2 are obtained from the web site of Public Domain 

Aeronautical Software (PDAS) [103]. 

5.1.3.4.6 Guidance Model 

5.1.3.4.6.1 Cubic Guidance 

Cubic Guidance Law is one of three guidance laws implemented in MATSIX. In 

Cubic Guidance Law, flight path angle rate commands are computed in order to 

keep the munition on a cubic trajectory [92]. This trajectory is regarded to be 

tangent to the instantaneous munition velocity vector. It will have two end points, 

munition’s centre of mass and the target point. One can use four conditions to 

express a cubic polynomial. In addition to satisfying three of them given above, one 

more condition can be defined on the cubic trajectory. This condition is taken to be 

the impact angle of the munition.  

The mathematical formulation of cubic guidance law is expressed as follows:  

The trajectories for xx f −<< ξ0  is expressed below as: 

yyyy DCBAxy +++=+ ξξξξ 23)(        Eq. 50 

zzzz DCBAxz +++=+ ξξξξ 23)(        Eq. 51 

In order to find four unknowns which are the coefficients of the cubic polynomials, 

we need four conditions on these equations. These conditions will be taken as: 

• Starting point condition 

• Starting slope condition 
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• Hit point condition 

• Hit slope condition 

By using four conditions presented above, these coefficients are found to be; 

i

i
y

i

Y
S

X
=
�

�
          Eq. 52 

i

i
y

i

Z
S

X
=
�

�
          Eq. 53 

yD y=           Eq. 54 

zD z=            Eq. 55 

iz zC S=           Eq. 56 

tan
fy fS η=           Eq. 57 

tan /cos
fz f fS γ η= −          Eq. 58 

2)(

3))(2(

xx

yxxSS
B

f

fyy

y
if

−

+−+
−=        Eq. 59 

2)(

3))(2(

xx

zxxSS
B

f

fzz

z
if

−

+−+
−=       Eq. 60 

Desired rates are 

ηγη 3* coscos2 VBy=�         Eq. 61 

ηηγηγγ sincoscos2coscos2 3323* VBCVB yzz +−=�     Eq. 62 

where,  
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arctan( )
iySη =          Eq. 63 

arctan( cos )
izSγ η= −          Eq. 64 

5.1.3.4.6.2 Parabolic Guidance 

Parabolic Guidance Law as the second guidance algorithm of MATSIX generates 

the necessary commands on either the rates of the flight path angles or the normal 

acceleration components that keep the munition on a parabolic trajectory [92]. This 

trajectory is kept tangent to the munition’s current velocity vector and pass through 

the munition’s centre of mass and the target point at all instants. 

The trajectories for xx f −<< ξ0  is expressed below as: 

2/)( 2ξξξ yyy ABCxy −+=+       Eq. 65 

2/)( 2ξξξ zzz ABCxz −+=+       Eq. 66 

Instantaneous parabolic trajectories are described by these equations. Three 

unknowns in these equations which are the coefficients of the second order 

polynomials are solved by three conditions which are: 

• Starting point condition 

• Starting slope condition 

• Hit point condition 

By using three conditions presented above, these coefficients are found to be; 

yC y=          Eq. 67 

zC z=           Eq. 68 
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tanyB η=          Eq. 69 

tan

coszB
γ

η
= −          Eq. 70 

2)(

))(tan(2

xx

xxy
A

f

f

y
−

−+
=

η
       Eq. 71 

2

2( (tan / cos )( ))

( )

f

z

f

z x x
A

x x

γ η− −
=

−
      Eq. 72 

Desired rates are 

ηγη 3* coscosVAy−=�        Eq. 73 

* 2( cos sin sin ) (cos cos )z yA A Vγ γ γ η γ η= +�      Eq. 74 

where,  

arctan( )
iySη =          Eq. 75 

arctan( cos )
izSγ η= −          Eq. 76 

5.1.3.4.6.3 Proportional Navigation in 2D 

The last guidance law that we implemented in MATSIX is Proportional Navigation 

in 2D. Proportional navigation guidance as one of the first guidance laws developed 

for tactical missiles is popular by its simplicity, effectiveness and ease of 

implementation [15]. 

Proportional navigation guidance law generates acceleration command which is 

proportional to the line of sight rate and the closing velocity. Mathematically it can 

be expressed as [92]: 
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c c
n N Vλ= �          Eq. 77 

where, N is a unitless effective navigation, λ�  is the line of sight rate, cV  is the 

closing velocity and cn  is the command acceleration. 

 

Figure 69 2-D Missile-Target Kinematics 

,,,,,, tttmmm zyxzyx  tztytxmzmymx VVVVVV ,,,,,  as basic missile and target parameters, 

are presented in Figure 69. 

2 2

( )( ) ( )( )

( ) ( )

t m ty my t m tx mx

t m t m

x x V V y y V V

x x y y
λ

− − − − −
=

− + −
�     Eq. 78 

2 2

( )( ) ( )( )

( ) ( )

t m tx mx t m ty my

c

t m t m

x x V V y y V V
V

x x y y

− − + − −
= −

− + −
    Eq. 79 
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5.1.3.4.7 Autopilot Model 

5.1.3.4.7.1 Pitch Autopilot 

The aim of pitch autopilot model is to find the commanded fin deflections to 

stabilize the longitudinal dynamics and keep *γγ �� = , where *γ� is the command rate 

provided by the guidance law. 

Pitch autopilot of MATSIX is implemented using equations work that follow [92]: 

/( )z tdb Q AC MassV
αγα = −         Eq. 80 

/( )tzdb Q AC MassVγδ δ=         Eq. 81 

/q m ydb Q AdC Iα α=          Eq. 82 

/ yq mdb Q AdC Iδ δ= −          Eq. 83 

q q qB b b b bδ δ γα α γδ= −          Eq. 84 

3
0 nd µω=           Eq. 85 

2
1 (1 2 ) nd ξµ ω= +          Eq. 86 

2 (2 ) nd ξ µ ω= +          Eq. 87 

cos /g qf b g Vα γ=          Eq. 88 

0 1 2 0( / ( / )* ) /( ( / )*( ) ( / )* )q q q q q q q q q qk b B b b B b d b B b b d b B dγδ δ δ δ δ α α δ δ γδ δ δ= − + + + − −   Eq. 89 

1 2 0( ) / qk d b k bγα δ= − −          Eq. 90 

3 0 0( ) /q qk d b k Bα δ= +          Eq. 91 
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2 3 0 1k k k k= −           Eq. 92 

3 0 / qc d B δ=           Eq. 93 

1 1 3( ) /q qc d b c Bδ δ= −          Eq. 94 

2 3 0 1c c k c= −           Eq. 95 

3 0 / qh k B δ=           Eq. 96 

1 3(1 ) /q qh b h Bδ δ= −          Eq. 97 

2 3 0 1h h k h= −           Eq. 98 

*

1 1 1e g
k q c h fδ γ′ = − + −�          Eq. 99 

( ) ( ) ( )
e e e

s s sδ δ δ′ ″= +          Eq. 100 

*

0 2 2 2e e g
k k q c h fδ δ γ″ ″+ = − + −� �        Eq. 101 

5.1.3.4.7.2 Yaw Autopilot 

The aim of yaw autopilot model is to find the commanded fin deflections to 

stabilize the yawing dynamics and keep *ηη �� ≅ , where *η�  is the commanded 

horizontal flight path angle rate by the guidance law. The following set of equations 

are implemented in MATSIX to simulate the yaw autopilot [92]. 

/( )z tdb Q AC MassV
αηβ = −         Eq. 102 

/( )tzdb Q AC MassVηδ δ= −         Eq. 103 
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. . . /m yr db Q A d C Iαβ = −          Eq. 104 

. . . / yr mdb Q A d C Iδ δ= −          Eq. 105 

r r rB b b b bηδ δ ηβ β δ= −          Eq. 106 

3
0 nd µω=           Eq. 107 

2
1 (1 2 ) nd ξµ ω= +          Eq. 108 

2 (2 ) nd ξ µ ω= +         Eq. 109 

cos /g qf b g Vα γ=          Eq. 110 

0 1 2 0( / ( / ) ) /( ( / )( ) ( / ) )r r r r r r r r r rk b B b b B b d b B b b d b B dηβ δ δ δ δ β β δ δ ηβ δ δ= − + + + − −   Eq. 111 

1 2 0( ) / rk d b k bηβ δ= − −          Eq. 112 

3 0 0( ) /r rk d b k Bβ δ= −          Eq. 113 

2 3 0 1k k k k= −           Eq. 114 
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3 0 / rc d B δ=           Eq. 115 

1 1 3( ) /r rc d b c Bδ δ= −          Eq. 116 

2 3 0 1*c c k c= −           Eq. 117 

3 0 / rh k B δ=           Eq. 118 

1 3(1 ) /r rh b h Bδ δ= −          Eq. 119 

2 3 0 1h h k h= −           Eq. 120 

″
+

′
= rrr δδδ          Eq. 121 

*
11 ηδ �crkr +−=

′          Eq. 122 

*
220 ηδδ �� crkk rr +−=

″
+

″         Eq. 123 
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5.1.3.4.7.3 Roll Autopilot 

The autopilot model is used to keep 0≅p  so that the lateral autopilots can work 

properly. Implemented roll autopilot model of MATSIX is as follows [92]: 

( /(2 )) /( )p d lp t tL Q AC d V MassV=         Eq. 124 

/d l xL Q AdC Iδ δ=          Eq. 125 

(2 ) /p r nr pK ξ L Lδω= +          Eq. 126 

2 /nrK Lφ δω=           Eq. 127 

a pK p Kφδ φ= − −          Eq. 128 

5.1.3.4.7.4 CAS Model 

MATSIX supports the simulation of canard-controlled guided munition with four 

control surfaces that are 90° apart from each other. A rear view of the munition with 

the body frame axes on it is seen in Figure 70. 



 126 

 

Figure 70 Positive Control Surface Deflection Convention 

The positive deflections are as follows. For 2δ  and 4δ  right hand rotations about (-

y) and (+y) axis and for 1δ  and 3δ  right hand rotations about the (-z) and (+z) axes 

of body frame respectively. 

 (elevator) ,  (rudder)and  (aileron)e r aδ δ δ  are the apparent control surface 

deflections. These deflections are defined in terms of the control surface deflections 

4321 ,,, δδδδ  as follows [92]: 

2
42 δδ

δ
−

=e           Eq. 129 

2
31 δδ

δ
−

=r           Eq. 130 

4
4321 δδδδ

δ
+++

=a         Eq. 131 

Autopilot is modeled to send pitch, yaw, roll commands defined to the actuators. 

They are separated into individual fin commands as follows: 

rac
δδδ +=1           Eq. 132 
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eac
δδδ +=2           Eq. 133 

rac
δδδ −=3          Eq. 134 

eac
δδδ −=4          Eq. 135 

The values indicated above as the fin commands cδ  to the control actuation system 

are converted into an actual surface deflection δ . Here the response of the fin 

actuator is modeled by a second order transfer function with natural frequency of 

casnω  and damping casξ  as follows: 
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Then the actual control surface deflections will be the outcomes of the following 

differential equation. 

ccascascas ininincasi δωδωδωξδ 222 =++ ���                         4,3,2,1=i    Eq. 137 

5.1.3.4.8 Thruster Model 

Thrust model of MATSIX is responsible to compute the thrust force and thrust 

moment acting on the rocket at any time of boost phase. Mass flow values are 

supplied to the model for any instant of time and thrust force and thrust moment are 

computed using the following equations [23, 93]. 

( )t sp ref ExitF mI P P A= + −�          Eq. 138 

1costx tF F δ=           Eq. 139 

1 2sin sinty tF F δ δ= −          Eq. 140 
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1 2sin costz tF F δ δ= −          Eq. 141 

0tL =            Eq. 142 

( )t y cgM T l X= − −          Eq. 143 

( )t z cgN T l X= −           Eq. 144 

where 1 2,δ δ  are thrust misalignments. 

During boost phase, inertia and the center of gravity of the munition change with 

respect to time due to the burning or the propellant. Below model is used to 

approximate the instantaneous center of gravity and the inertia [93]. 
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5.1.3.5 MATSIX Applications 

5.1.3.5.1 LYNX – A Surface to Surface Guided Rocket Simulation 

LYNX is a surface to surface guided rocket simulation. The operation concept of 

the simulated system is designed as given below in Figure 71. The fictive rocket 

system that was used for simulation is fired from a launcher. It has a solid rocket 

motor so flies through a boost phase. After boost, guidance system does not start till 

a predefined range in trajectory. This phase of the flight is called free flight. The 

last phase is guided flight. 
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Figure 71 LYNX Concept of Operation 

 

Figure 72 LYNX Simulation Class 

This operational concept together with the data used to represent the rocket system 

is used to develop the simulation by framework completion. LYNX has been 
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implemented by adding 20 new classes, all derived from framework classes, with 

1137 SLOC. The implementation is given in APPENDIX N. 

The code that is given above in Figure 72 shows how the operation of the rocket 

system is reflected to code while completing the framework. One just derives a new 

simulation class from the base trajectory simulation class and defines the phases and 

the sequence of phases. The computation of trajectory is implemented in the 

Trajectory Simulation class beforehand. Once the application engineer inherits a 

new simulation class from Trajectory Simulation, he owes all the trajectory 

simulation mechanism. Below in Figure 73, code that simulates the flight of the 

munition though all phases, is given. It is the Compute Trajectory service of 

Trajectory Simulation class. 

 

Figure 73 Compute Trajectory Service of Trajectory Simulation Class 
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Figure 74 LYNX Classes 

The list of the derived classes for LYNX simulation is given above in Figure 74. 

There will be a section on how the framework is completed with these classes to 

develop LYNX. 

LYNX simulation uses simulation parameters that define the surface to surface 

guided rocket system that it simulates. This data includes physicals like its mass and 

reference area, its aerodynamic coefficients, its motor properties and so on. This 

data used in LYNX Simulation is given in APPENDIX G.  

Number of sample simulation runs was done with the developed code. Below is 

presents the results of one of them with 711 mills elevation. More plots from the 

sample runs of LYNX Simulation are given in APPENDIX H. 
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Figure 75 Plots from a Sample LYNX Simulation Run 

5.1.3.5.2 PUMA – An Air to Ground Guided Bomb Simulation 

PUMA is a guided bomb simulation. The concept bomb that was used for 

simulation is released from a bomber aircraft. Its guidance system does not operate 

for the first short period after release for a safe separation. Then guidance and 

control system starts to navigate the bomb. A number different guidance laws are 

used as the guidance algorithm. The operation concept of this system is designed as 

given below in Figure 76. 
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Figure 76 PUMA Concept of Operation 

Like LYNX, PUMA was also developed by completing the MATLAB 6DOF 

Trajectory Simulation Framework. PUMA has been implemented by adding 16 new 

classes, all derived from framework classes, with 733 SLOC. The list of the derived 

classes for PUMA simulation is given below in Figure 77. The implementation is 

given in APPENDIX N. 

 

Figure 77 PUMA Classes 
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The data used in PUMA Simulation is given in APPENDIX I. Sample runs were 

carried out using the developed system. Below is from the results of a sample for a 

release from 1100m height with 250m/s True Air Speed. More plots from the 

sample runs of PUMA Simulation are given in APPENDIX J. 

 

Figure 78 Plots from a Sample PUMA Simulation Run 

5.1.3.6 Framework Completion Process 

In this section, we will investigate how we complete the framework in detail. While 

completing the framework, one basically follows the steps listed below; 
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1. Derive you data classes from related base data classes and implement the 

mechanism to read data. Below, Figure 79 is a part of LYNX Aerodynamics 

class code. This class is derived form Aerodynamics class. Aerodynamic 

coefficients are hard coded in LYNX simulation. 

 

Figure 79 LYNX Aerodynamics Class 

2. Derive your munition sub system classes from related base classes and 

implement the association of subsystem classes with their data classes.  

 

Figure 80 LYNX CAS Class 
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As an example LYNX CAS class code is presented in Figure 80. This class 

is derived form CAS class of the framework. As seen in line 7 LYNX CAS 

class is associated with LYNX CAS data class. 

3. Derive your munition class from the base munition class and implement the 

association of munition with its data and its subsystems. Below LYNX class 

is given as an example in Figure 81. Here as you see, all the sub systems and 

the related data are associated with LYNX class that derived from munition 

base class.  

 

Figure 81 LYNX Class 
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4. Derive required phase classes from the base phase classes, implement the 

initialization services of the derived phases and specify the models that will 

be used during simulation and the phase termination conditions. LYNX 

Launcher Phase class and its Initialize service are presented below in Figure 

82 and Figure 83 as an example of this step. In the class definition related 

models and phase termination conditions are associated with the class. 

Initialize service on the other hand implements how the initial phase state is 

set. 

 

Figure 82 LYNX Launcher Phase Class 
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Figure 83 Initialize Service of LYNX Launcher Phase 

 

Figure 84 PUMA Simulation Class 
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5. Finally, derive your simulation class from the base Trajectory Simulation 

class and specifying the phases and their order. PUMA class is presented 

above in Figure 84 as an example. 

5.1.4 C# Point Mass Trajectory Simulation Framework 

After presenting a full scale ontology based reuse infrastructure development and its 

use by means of framework development and framework completion for MATLAB 

platform, we would like to present another case for basically two reasons. First we 

would like to exercise to design a framework for a different platform. Then we 

would like to present the use of code generation capabilities of computer aided 

software engineering tools with ontology based trajectory simulation reuse 

infrastructure. We selected .NET platform of Microsoft. C# was chosen as the 

language to develop this framework.  

In this case study, we designed a platform specific framework architecture and 

generated source code from this design specification. Full implementation of the 

framework and framework completion for specific applications is planned to be 

carried out by different developers from the target reuse group. This will be a step 

towards institutionalization of the ontology based reuse infrastructure development 

process in TUBITAK-SAGE. 

Platform and the language will not be discussed in detail here but it will be good to 

give a brief background. C# is said to be designed to provide a simple, safe, 

modern, object-oriented, internet-centric, high performance language for .NET 

development. It is a new language, but it is said to be drawing on the lessons 

learned over the past three decades. C# influences from Java, C++, Visual Basic 

(VB), and other languages. The .NET platform on the other hand is, in essence, a 

new development framework that provides a fresh application programming 

interface (API) to the services and APIs of classic Windows operating systems, 

especially Windows 2000, while bringing together a number of cutting edge 
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technologies that emerged from Microsoft during the late 1990s. Currently, the 

.NET Framework consists of: 

• Four official languages: C#, VB .NET, Managed C++, and JScript .NET 

• The Common Language Runtime (CLR), an object-oriented platform for 

Windows and web development that all these languages share 

• A number of related class libraries, collectively known as the Framework 

Class Library (FCL) [105]. 

 

Figure 85 Trajectory Simulation Systems 

Above is a design schema from platform specific framework architecture As we 

have done in MATLAB framework architecture design, here we take the platform 

independent framework architecture and subset it for point mass trajectory 
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simulation supporting guided and thrusted munitions. Then we applied the platform 

specific design constraints on that subset and generated a platform specific 

framework architecture.. 

 

Figure 86 Sample Code Snapshot From IDE 

Enterprise Architect of Sparx Systems is being used as the computer aided software 

engineering tool for forward and reverse engineering during development of this 

framework. Using this tool’s forward engineering capabilities, code generation 

process was executed. About 2600 SLOC was produced automatically. Visual 
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Studio Team System is being used as the IDE (Integrated Development 

Environment). Above, an example code snapshot from this produced code is 

presented in Figure 86. More sample diagrams from this platform specific 

framework design and sample code snapshots will be provided in APPENDIX K. 

Besides, APPENDIX N presents the model and code projects. 

5.2 Function Oriented Infrastructure Specification and Implementation 

5.2.1 Function Oriented Programming and Reuse 

Function oriented programming as stated by Sommerville relies on decomposing 

the system into a set of interacting functions with a centralized system state shared 

by these functions. Function-oriented design has been used informally since the 

programming has begun. Programs have been decomposed into subroutines which 

were functional in nature [65]. 

One way to develop reuse infrastructure for function oriented paradigm is to 

develop a function library in a structured language like Fortran or C. Numerical 

Recipes is an example of such a function library. It is one of the most famous 

function libraries in scientific computing society [106 and 107]. The other way is to 

use MATLAB Simulink and develop a function oriented blocksets. We selected to 

do this one since such an ontology based blockset reuse practice using MATLAB 

Simulink is more likely to be used by target reuse group then a Fortran or C 

function library approach. 

As presented below in Figure 87, in a function oriented reuse scenario as in the 

object oriented scenario, we still propose a platform independent abstract design as 

the first step of the infrastructure specification activity of domain engineering.  
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Figure 87 Function Oriented Reuse Scenario 

Data flow diagrams are treated as the tools for abstract function oriented design. As 

presented in the famous software engineering book of Sommerville, data flow 

diagrams are concerned with designing a sequence of functional transformations 

that convert system inputs into the required outputs. These diagrams illustrate how 

data flows through a system and how the output is derived from the input through a 

sequence of functional transformations [65]. 

Different from our object oriented scenario, we do not propose a single abstract 

design that covers whole domain. Rather, we propose a collection of data flow 

diagrams for different problem sets, like, point mass data flow diagrams that we 

will present in the following sections or a modified point mass projectile simulation 

data flow diagrams. This collection of abstract designs will be the reuse assets for 

the future projects. 

Platform specific design will be the refinement of these abstract designs. We, in our 

case study, refined or transformed the data flow diagrams to the block diagrams of 

MATLAB. 
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5.2.2 Platform Independent Point Mass Unguided Trajectory Simulation 

Abstract Software Design 

The functions with their functionalities and their interfaces are captured in the 

ontology. Besides, dependencies of these functions are also being captured in 

TSONT. Here in this case study, we tried to show how ontology is helpful when the 

software development paradigm changes from object oriented to function oriented. 

We used function definitions in the ontology to draw our data flow diagrams. 

Below, in Figure 88, data flow diagram of Compute Point Mass Phase Trajectory 

service is given. Here in the data flow, the functions to be executed to compute the 

point mass phase’s trajectory and the data flow among functions are captured in 

abstract fashion. The whole set of data flow diagrams are attached at APPENDIX L 

and APPENDIX N. 
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Figure 88 Compute Point Mass Phase Trajectory Data Flow Diagram 
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5.2.3 Design of PANTHERA 

PANTHERA is a function oriented MATLAB Simulink blockset for point mass 

unguided trajectory simulation. Models used in PANTHERA are kept as simple as 

possible. The aim of this case study is to present the use of ontology based reuse 

infrastructure in function oriented software development paradigm. 

We, in this research used MATLAB Simulink in a function oriented fashion. Blocks 

are used to represent the functions and their ports are used to represent function 

interfaces. Blocksets are set of blocks. Blocks are the elements from which 

MATLAB Simulink models are built. One can model virtually any dynamic system 

by creating and interconnecting blocks in appropriate ways.  

 

Figure 89 Some Blocks from Aerospace Blockset 

Aerospace system modeling and simulation community is familiar with Aerospace 

Blockset of Mathworks Inc. The way the Aerospace Blockset is constructed can be 

named as actor-oriented approach [108]. It contains the basic actors in an aerospace 

simulation as blocks and hides the functionality of the actors underneath block 

interfaces. Above in Figure 89, some blocks from Aerospace Blockset are 

presented. 
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In our approach, we defined the blocks regarding the functionality they serve. 

Platform Independent Point Mass Unguided Trajectory Simulation Abstract 

Software Design that is presented in the previous section is used to structure the 

blockset. It will be good to be reminded that the definitions of functions with their 

interfaces and dependencies modeled in Platform Independent Point Mass 

Unguided Trajectory Simulation Abstract Software Design are based on TSONT. 

By structuring the MATLAB Simulink blocks of PANTHERA for representing 

functions and their dependencies, this approach is classified as the function oriented 

use of MATLAB Simulink. Subsystems of PANTHERA are presented below. 

 

Figure 90 Subsystem of PANTHERA 
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Problem set is selected as simple as possible since the aim of this case is not to 

develop a fully functional large and complex blockset but rather to show that 

MATLAB Simulink Blocksets are opportunities to enable a function oriented reuse 

scenario starting from TSONT. 

Subsystems in the left most column of the blockset are data sources. Mid column 

has the computation oriented subsystems and the right most column has the 

aggregate subsystems that use left two columns to accomplish their task. 

 

Figure 91 Compute Trajectory Subsystem 

Compute Trajectory Subsystem only has Compute Point Mass Trajectory block. 

This block has only one output port which is trajectory as defined in data flow 

diagrams. 

When we look under the mask of Compute Point Mass Trajectory block, we will 

see that Initialize Point Mass Simulation Service initializes the simulation by the 

data it obtained from Get Point Mass Weapon Data and Get Point Mass Data 

services. Check Trajectory Termination, on the other hand, checks the termination 

condition on the state of the simulation computed by Compute Point Mass Phase 

Trajectory block. 



 148 

 

Figure 92 Compute Point Mass Trajectory Block of PANTHERA 

Compute Point Mass Phase Trajectory block has only two blocks. One computes 

the phase state derivatives and the second one integrates the step. To compute the 

state derivatives, Compute Point Mass Phase State and Derivatives block computes 

forces and use forces to compute the accelerations.  

 

Figure 93 Compute Point Mass Phase Trajectory Block 
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Figure 94 Compute Phase Point Mass State and Derivatives Block 

All the blocks used in the blockset are MATLAB Embedded Function Blocks. They 

are implemented by developing functions in MATLAB Scripting language. These 

functions conform to the interface requirements. 

 

Figure 95 Update Point Mass Dynamic Model State and Derivatives Block 
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As an example let us look at Update Point Mass Dynamic Model State and 

Derivatives block. The implemented code in MATLAB m file is given above in 

Figure 95. One can have a look the whole implementation which is given in 

APPENDIX N. 

5.2.4 Notes on PANTHERA Implementation 

PANTHERA uses an earth fixed reference frame, ),,( ZYXEℑ . Its origin is taken to 

be fixed to the earth’s surface with its X axis pointing towards north, Y axis 

pointing toward up and Z axis pointing towards east. Non-rotating and flat earth 

assumptions are used. Hence the earth fixed reference frame is assumed to be 

inertial. 

Update Point Mass Dynamics Model State and Derivatives implements a point mass 

dynamics model. Acceleration of the munition is computed as follows [4]: 

F
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Σ
=

�
�
�          Eq. 147 

where 

F D GΣ = +
�� �

         Eq. 148 

Only aerodynamics and gravitational forces are taken into account. Compute Point 

Mass Aerodynamics Force computes a drag force. Drag force is computed using the 

following equation. 
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        Eq. 149 
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         Eq. 150 
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The gravitational force is computed by Compute Point Mass Gravitational Force 

block assuming constant gravitational acceleration as follows: 

G mg=
� �

         Eq. 151 

where 

0

9.81

0

g

 
 = − 
  

�
         Eq. 152 

The initial state of the simulation is set by using Get Point Mass Weapon Data 

block which provides initial position, elevation and the azimuth of fire and Get 

Point Mass Charge Data that provides the muzzle velocity to the simulation. 

Standard ICAO atmosphere is supported by this Blockset. ICAO atmosphere is 

implemented by Compute ICAO Atmosphere block uses the values presented in 

Table 2. 

5.2.5 Sample Blockset Implementations 

To show how one can use PANTHERA to develop a simulation, we will present 

two examples. TIGER and JAGUAR. They both use the same data set but the way 

they use the block set differs. The data used for these simulations will be given in 

APPENDIX M. The implementations are given in APPENDIX N. 

TIGER uses the top most block to develop the simulation. MATLAB Simulink 

block diagram is given below. 
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Figure 96 TIGER Block Diagram 

JAGUAR on the other hand uses the low level function blocks to implement the 

same simulation. Besides, some functionality in JAGUAR is developed by the 

developer like Get Jaguar Weapon Data service. Figure 97 depicts the block 

diagram of JAGUAR. 

 

Figure 97 JAGUAR Block Diagram 
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The data set used for TIGER and JAGUAR is based on 81mm mortar. Below is a 

range versus altitude graph from a sample run of TIGER for 800 mils elevation.  

 

Figure 98 Range vs. Altitude for a Sample TIGER Run 

This chapter presented trajectory simulation reuse infrastructure that was developed 

for the object oriented and function oriented programming paradigms. Platform 

independent reusable designs are discussed and the platform and problem family 

specific designs and reusable codes are introduced as case studies. Sample 

applications built upon these reusable codes are introduced. Next chapter will 

consist of discussions on the results of this reseach. 
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CHAPTER 6  

CONCLUSION 

In this research, we developed an ontology based reuse infrastructure for trajectory 

simulations and investigated the use of ontologies and domain engineering practices 

to develop a formalized methodology to make use of the experience and knowledge 

leveraged from the past trajectory simulation projects. Trajectory simulation is 

defined as a computational tool to calculate the flight path and other parameters of 

munition like its orientation or angular rates during its operation. To develop a 

trajectory simulation, one requires mechanical engineering, modeling and 

simulation and software engineering body of knowledge. In this thesis, engineering 

knowledge in the mentioned areas that is needed to simulate the trajectory of a 

munition is captured in an ontology called TSONT. TSONT consists of the 

concepts of trajectory simulation and the relation among these concepts. Then 

TSONT is presented as a knowledge library that is available for reuse. It is the 

domain model of the reuse infrastructure. 

After formalizing the domain knowledge for reuse, we concentrated on building an 

infrastructure to enable the reuse of software artifacts. Two main programming 

practices were considered when developing an infrastructure. Object oriented 

programming and function oriented programming. We used “platform independent 

model” and “platform specific model” concepts to present the specification of the 

reuse infrastructure. It enabled us to present a specification of trajectory simulation 

in a platform independent fashion to enable reuse for different platforms like 

MATLAB or Java and in a platform specific way to construct a detailed design for a 

specific platform. We make use of UML and application frameworks when 

constructing an object oriented infrastructure. First, a platform independent 

framework architecture is constructed. Then, two different trajectory simulation 
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frameworks are designed using this abstract design. The same abstract design is 

reused by two different platform specific designs. This is presented as evidence of 

abstract design reuse enabled by the infrastructure. MATSIX, which is one of these 

two frameworks, is developed. Then, two different trajectory simulations are 

developed using framework completion which is a formal reuse practice of 

application frameworks. This showed the code reuse capabilities of the 

infrastructure. With these two simulations, we presented all the way through from 

knowledge reuse to code reuse in object oriented paradigm. 

Data flow diagrams are used to formalize the design of the function oriented 

simulations to compute the trajectory of munition. A platform independent design is 

constructed for a point mass unguided trajectory simulation using TSONT. As we 

used TSONT for both in object oriented framework design and function oriented 

simulation design, we had a chance to speak out the evidence of cross paradigm 

reuse of the knowledge captured in TSONT about how to develop trajectory 

simulations. A MATLAB Simulink Blockset is developed using the design 

presented in data flow diagrams. Point mass mortar simulations are developed using 

this Blockset as case studies. With these mortar simulations, we again presented all 

the way through from knowledge reuse to code reuse, this time in function oriented 

paradigm. 

In this research, we had the chance to show that ontologies can be a useful 

instrument for knowledge sharing and reuse. While developing TSONT, we 

experienced the construction of an ontology for a real-life industrial application. As 

we started to use TSONT for specification of reuse infrastructure, we had a chance 

to see the practical role of ontologies as mechanisms for knowledge sharing and 

reuse. 

One of the biggest challenges that we had to overcome as we developed TSONT for 

a real-life industrial application was its scale. As TSONT get bigger and bigger, it 

became harder to resolve the complex relations among the concepts of trajectory 

simulation. We used an iterative approach to ontology development which enabled 
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us to reconsider all the structure as we tried to capture new bunch of knowledge in 

TSONT. The second challenge to be mentioned here was in determining the scope 

and structuring TSONT. TSONT, as mentioned, is neither a complete nor has the 

only correct structure to capture trajectory simulation domain knowledge. It is 

scoped reflecting the experience of target reuse group. Rather than an effort to 

capture all the available knowledge on trajectory simulation in literature, it is aimed 

to formalize what is available among target reuse group. The knowledge is 

structured in a way that the target reuse group abstracts the trajectory simulation 

domain. Here another challenge arises. As the organization that uses the ontology 

for knowledge sharing evolves, the shared vocabulary and shared conceptualization 

also evolves, so ontology needs an active maintenance effort. 

To develop an ontology that will enable an organization wide knowledge sharing 

and reuse, it should be institutionalized and owned by all shareholders. During the 

development of TSONT, we tried to construct this sense of ownership by using peer 

review mechanism. As TSONT evolved during this research, peer reviews are 

handled with the target reuse group to align the conceptualization in a collaborative 

manner. 

Ontology specifies the shared conceptualization in a formal way that enable human 

and machine readability. As we practiced the role of ontologies as mechanisms for 

knowledge sharing and reuse, we used and presented the human readability of the 

TSONT. We reused ontology to construct two different abstract software designs to 

developed trajectory simulations. This reuse processes were human in the loop type. 

We read TSONT and reflected the concepts and the relations among these concepts 

captured in the ontology to software design constructs like classes and associations 

or functions and functional flows. Besides these case studies that are presented in 

this thesis, we also experienced automated means of reuse of TSONT to construct 

abstract software design. Two collaborative research efforts have been carried out 

with M.Sc. students from Computer Engineering Department on model driven 

engineering practices that will enable us to transform machine readable TSONT to a 
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software design using model transformation. One concluded with the transformation 

of TSONT to UML class diagram that represents an abstract object oriented design. 

The second one concluded with transformations of TSONT to MATLAB Simulink 

blocks. These two efforts gave us strong clues that show the promise on successful 

use of model transformation practices with this ontology based approach. 

While this research is not the first time that ontologies are used in mechanical 

engineering, it is one of the small numbers of studies going on about using 

ontologies for knowledge sharing and reuse in mechanical engineering. For its 

specific focus, this research is a frontier in using ontology in the field of trajectory 

simulation. Besides, in the field of modeling and simulation, this research is one of 

the first studies that try to formalize the domain knowledge in a form of ontology 

and make it available for developing simulations. These efforts are called ontology 

driven simulation. The extensions of this research on combining ontology driven 

simulation with model transformation practices are avant-garde. Their preliminary 

results are exciting in a way they show new horizons on automatic transformation 

of domain knowledge to executable simulations. 

Ontology based reuse infrastructure for trajectory simulations is composed of a 

domain model, an infrastructure definition and infrastructure implementations. This 

definition with the methodology used is based on domain engineering practices. Use 

of ontologies as domain model was first pronounced in early 2000’s. We based our 

approach on this literature and developed TSONT as our domain model. We 

contributed to this approach by selecting OWL as the ontology definition language. 

This enabled us to extent the domain engineering practices with integrating them to 

model driven engineering practices. It means, by using OWL, we had a chance to 

make use of the results of efforts on Ontology Definition Metamodel (ODM) and 

Model Driven Architecture (MDA) of Object Management Group (OMG). Using 

Meta Object Facility (MOF), future efforts on matching UML Metamodel and 

Ontology Definition Metamodel will be reflected to our ontology based reuse 

infrastructure. Tools for automatic transformation of domain model to infrastructure 
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definition and infrastructure implementations will be available. In this research, we 

proposed two different levels of abstractions for infrastructure specification. It is 

composed of a platform independent abstract design and a platform specific detailed 

design. By this decision, we accomplished two different goals. First of all, we 

produced an abstract software design apart from platform specific details so that it 

can be reused for different trajectory simulations that will target different platforms. 

And we matched the artifacts of reuse infrastructure with the levels of MDA that 

will enable us to leverage the future enhancements on it. Domain model is matched 

with Computation Independent Model (CIM) of MDA, platform independent 

abstract design of infrastructure specification is matched to Platform Independent 

Model (PIM) of MDA and platform specific detailed design is matched to Platform 

Specific Model (PSM) of MDA. 

Reuse attempts on trajectory simulations in literature have been focused on code 

and mathematical model reuse. With this research, we proposed knowledge reuse 

and design reuse and code reuse from the ontology based reuse infrastructure. This 

creates a distinction for this research in trajectory simulation reuse literature. 

Infrastructure, as it is, serves number of artifacts that can be reused for trajectory 

simulations like TSONT, Platform Independent Framework Architecture, MATSIX 

Framework Architecture and MATSIX Code. With these artifacts, we also proposed 

a methodology to produce reusable artifacts in future projects. As target reuse group 

gains experience with the future projects, this experience can be formalized by 

enhancing TSONT. The enhancements in TSONT can be reflected to Platform 

Independent Framework Architecture to enable design reuse. As new frameworks 

developed for different projects targeting different platforms and problem sets, 

infrastructure developed in this thesis can be expanded by adding new framework 

architectures and framework implementations. 

The scope of this thesis is bounded to focus on trajectory simulation reuse targeting 

the future projects. There is another spot that can be focused during a future 

research. That is the legacy trajectory simulations. Semantic matching of the 
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concepts and designs implemented in those simulations to TSONT seems a 

promising research objective. This semantic matching will enhance the 

interoperability of different simulations that make use of TSONT and will also 

strengthen and enhance TSONT by making it refer to legacy implementations and 

make use of the knowledge which is transformed to a product in those projects. 

Measuring reuse is as important as developing a reuse infrastructure. 

Institutionalizing the reuse infrastructure developed in this thesis, making it used in 

future projects is one of the challenges that will be handled in the post thesis period. 

As it is used in number of projects, it will be possible to measure reuse. It will 

enable us to validate the proof of the expected increase in productivity and decrease 

of the risk of the projects that depend on reuse infrastructure that is built in this 

thesis. 

TSONT captures the domain knowledge about design and development of trajectory 

simulations. Here, there is another hard question. How can we make use of TSONT 

to write the requirements of a specific trajectory simulation project? Developing 

methodologies and tools to transform the domain knowledge captured in TSONT to 

software or simulation requirements is another spot that can be listed in the future 

research agenda of this thesis. 

The reuse infrastructure in this thesis as we mentioned before focused on two main 

paradigms, namely object oriented programming and function oriented 

programming. Developing infrastructures for emerging paradigms like aspect 

oriented programming, actor oriented programming, agent based programming and 

distributed simulation can be added to future research agenda as new challenges. 

As TSONT is transformed to design and code manually, there is an arguable issue 

about the traceability of the knowledge captured in ontology to the foregoing 

artifacts. In this thesis, we prepared a table that tries to capture this traceability as 

far as possible. But as the automatic transformation of domain knowledge to design 

and code is being studied, new tool or methodologies can be developed to trace the 
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flow of the knowledge from domain to code. This is another future research 

challenge. 

This reuse infrastructure that consists of reusable domain knowledge, designs and 

code can be regarded as the foundations of a trajectory simulation software product 

line. Evolving this infrastructure to a software product line for trajectory simulation 

is another future research focuss. 

Trajectory simulation is one of the computational fields of mechanical engineering. 

It can be pronounced as an application of system dynamics. Mechanical engineering 

has a number of other computation intensive application areas on which number of 

software development is carried out. These fields include structural mechanics, 

computation fluid dynamics, computer integrated manufacturing, computer aided 

design and robotics. The methodology proposed in this thesis can be applied in 

those fields to make reuse work. So, developing reuse infrastructures for other fields 

of mechanical engineering can be proposed as a future research topic. 

Besides enabling reuse in mechanical engineering software, ontologies may work as 

a glue to enable different engineering software work together to accomplish a goal. 

Ontologies that will be developed for different computer aided engineering tools 

may enable to develop collaborative design environments and integrate the design 

and manufacturing processes seamlessly. Interoperability using ontologies in the 

field of mechanical engineering is another future research direction. 

Formalizing mechanical engineering body of knowledge is not only helpful on 

reuse and interoperability but can also be used for problem solving. Ontology based 

problem solving methodologies for mechanical engineering problems seem to be an 

interesting research direction. 

In this thesis, we developed and used ontology in trajectory simulation problem of 

mechanical engineering. There is still lot to do either for trajectory simulation 

problem or other problems of the mechanical engineering by using ontologies. 
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Besides all future research topics mentioned above, it is time to remember the quote 

of J.R.R. Tolkien. “There is nothing like looking, if you want to find something. 

You certainly usually find something, if you look, but it is not always quite the 

something you were after.” 
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APPENDIX A 

TSONT MUNITION TAXONOMY 

 

Figure 99 TSONT Bomb Classification 
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Figure 100 TSONT Missile Classification 
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The letters of the acronyms in the missile classification is as follows. The first letter 

is the launch environment of the vehicle: 

A - Air  

B - Multiple  

C - Coffin (non-hardened container)  

F - Individual  

G - Runway or Ground  

H - Silo Stored  

L - Silo Launched  

M - Ground Launched, Mobile  

P - Soft Pad  

R - Surface Ship  

S - Space  

U - Underwater 

Second letter is the purpose of the vehicle: 

C - Transport  

D - Decoy  

E - Special Electronics, Communication  

G - Surface Attack  

I - Interception  
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L - Launch Detection  

M - Scientific Measurements, Calibration  

N - Navigation  

Q - Drone, UAV  

S - Space Operations Support  

T - Training  

U - Underwater Attack  

W - Weather (probes or satellites gathering and/or distributing meteorological data) 

The last letter defines the type of vehicle: 

B - Booster  

M - Guided Missile, Drone, UAV  

N - Probe (suborbital sounding rocket)  

R - Rocket (unguided vehicle)  

S - Satellite  
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Figure 101 TSONT Ammunition Classification 

The acronyms presented above in the taxonomy are as follows. 
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Table 3 Acronyms of Ammunition Classification 

Projectile  Description 

Type Subtype  

HEA  High Explosive Round 

SMK HCE Hexa-Chlorethane 

 WPH White Phosphorus 

 TTC Titanium Terra Chloride 

 MSP Multi-Spectral 

 COL Colored 

 BSP Bi-Spectral 

ILL  Illumination Round 

CBL APL Bomblet – Antipersonnel 

 ATK Bomblet – Antitank 

 DUP Bomblet - Dual Purpose 

CMI ATK Mines – Antitank 

 APL Mines – Antipersonnel 

AAT GAT Guided Antitank 

 SFA Sensor Fuzed 

ECM  Electronic Countermeasure 

LEA  Leaflet 

TRN  Training 

OTH  Other type of projectiles 
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APPENDIX B  

SAMPLE CLASS DEFINITIONS FROM TSONT 

 

Figure 102 TSONT Guided Phase 
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Figure 103 TSONT Propelled Phase 
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Figure 104 TSONT ICAO 

 

Figure 105 TSONT METB3 
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Figure 106 TSONT Four Canard Second Order CAS Model 

 

Figure 107 TSONT Three DOF Dynamics Model 
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Figure 108 TSONT Curved Earth Model 

 

Figure 109 TSONT Constant G Body Fixed Gravity Model 
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Figure 110 TSONT Guidance Model 

 

Figure 111 TSONT Termination Model 
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Figure 112 TSONT Solid Rocket Motor Model for Point Mass 

 

Figure 113 TSONT Euler Solver 
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Figure 114 TSONT Launcher Data 

 

Figure 115 TSONT Point Mass Physicals 
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Figure 116 TSONT Point Mass Physicals Record 

 

Figure 117 TSONT Atmosphere Record 
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Figure 118 TSONT Three DOF Dynamics Models State Derivatives 

 

Figure 119 TSONT Wind Record 
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Figure 120 TSONT Vectoral Quantity 

 

Figure 121 TSONT Thrust Moment in Body Coordinate System 
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Figure 122 TSONT Translational Velocity in Earth Coordinate System 

 

Figure 123 TSONT Moment Column Matrix 
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Figure 124 TSONT Munition 
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APPENDIX C 

A DAVE-ML EXAMPLE 

<?xml version="1.0" standalone="no"?> 
<!DOCTYPE DAVEfunc SYSTEM "DAVEfunc.dtd"> 
<!-- $Revision: 2.3 $ --> 
<DAVEfunc> 
    <fileHeader name="Update Body Fixed Six DOF Dynamic Model State and Derivatives"> 
        <author name="Umut DURAK" org="TUBITAK-SAGE" xns="@bjax"/> 
        <fileCreationDate date="24/10/2005"/> 
        <description> This daveml fuction defines the model to calculate state derivatives of 
Six 
            DOF Body Fixed Dynamics Model </description> 
        <!-- ================== --> 
        <!-- References         --> 
        <!-- ================== --> 
        <reference refID="[MIL95]" author="N/A" title="MIL-HDBK 1211" accession="TÜBİTAK-SAGE 
Kütüphanesi" date="1995"/> 
        <modificationRecord modID="A"> 
            <author name="Umut DURAK" org="TUBITAK-SAGE" email="udurak@sage.tubitak.gov.tr"/> 
            <description> First Creation </description> 
        </modificationRecord> 
    </fileHeader> 
    <!-- ==================--> 
    <!-- Input variables                --> 
    <!-- ==================--> 
    <!-- ==================--> 
    <!-- Ballistic Record             --> 
    <!-- ==================--> 
    <variableDef name="Mass" varID="mass" units="kg" symbol="mass"> 
        <description> Mass in kg </description> 
    </variableDef> 
    <variableDef name="Ix" varID="Ix" units="kgm2" symbol="Ix"> 
        <description> Axial Moment of Inertia </description> 
    </variableDef> 
    <variableDef name="Iy" varID="Iy" units="kgm2" symbol="Ix"> 
        <description> Transverse Moment of Inertia in Y axis </description> 
    </variableDef> 
    <variableDef name="Iz" varID="Iz" units="kgm2" symbol="Iz"> 
        <description> Transverse Moment of Inertia in Z axis </description> 
    </variableDef> 
    <!-- ==================--> 
    <!--State                                  --> 
    <!-- ==================--> 
    <variableDef name="phi" varID="phi" units="rad" symbol="phi"> 
        <description> Roll atitude </description> 
    </variableDef> 
    <variableDef name="theta" varID="theta" units="rad" symbol="theta"> 
        <description> Pitch atitude </description> 
    </variableDef> 
    <variableDef name="psi" varID="psi" units="rad" symbol="psi"> 
        <description> Yaw atitude </description> 
    </variableDef> 
    <variableDef name="p" varID="p" units="rad/s" symbol="p"> 
        <description> Roll rate </description> 
    </variableDef> 
    <variableDef name="q" varID="q" units="rad/s" symbol="q"> 
        <description> Pitch rate </description> 
    </variableDef> 
    <variableDef name="r" varID="r" units="rad/s" symbol="r"> 
        <description> Yaw Rate </description> 
    </variableDef> 
    <variableDef name="u" varID="u" units="m/s" symbol="u"> 
        <description> Body Fixed Velocity in X </description> 
    </variableDef> 
    <variableDef name="v" varID="v" units="m/s" symbol="v"> 
        <description> Body Fixed Velocity in Y </description> 
    </variableDef> 
    <variableDef name="w" varID="w" units="m/s" symbol="w"> 
        <description> Body Fixed Velocity in Z </description> 
    </variableDef> 
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    <!-- ================== --> 
    <!-- Forces and Moments     --> 
    <!-- ================== --> 
    <variableDef name="FAX" varID="FAX" units="N" symbol="FAX"> 
        <description> Aerodynamic Force in X </description> 
    </variableDef> 
    <variableDef name="FAY" varID="FAY" units="N" symbol="FAY"> 
        <description> Aerodynamic Force in Y </description> 
    </variableDef> 
    <variableDef name="FAZ" varID="FAZ" units="N" symbol="FAZ"> 
        <description> Aerodynamic Force in Z </description> 
    </variableDef> 
     
    <variableDef name="FGX" varID="FGX" units="N" symbol="FGX"> 
        <description> Gravitational Force in X </description> 
    </variableDef> 
    <variableDef name="FGY" varID="FGY" units="N" symbol="FGY"> 
        <description> Gravitational Force in Y </description> 
    </variableDef> 
    <variableDef name="FGZ" varID="FGZ" units="N" symbol="FGZ"> 
        <description> Gravitational Force in Z </description> 
    </variableDef> 
     
    <variableDef name="LA" varID="LA" units="Nm" symbol="LA"> 
        <description> Aerodynamic Moment in X </description> 
    </variableDef> 
    <variableDef name="MA" varID="MA" units="Nm" symbol="MA"> 
        <description> Aerodynamic Moment in Y </description> 
    </variableDef> 
    <variableDef name="NA" varID="NA" units="Nm" symbol="NA"> 
        <description> Aerodynamic Moment in Z </description> 
    </variableDef> 
     
    <!-- ================== --> 
    <!--  Output variables             --> 
    <!-- ================== --> 
    <variableDef name="udot" varID="udot" units="m/s2"> 
        <description> Body fixed tranlational acceleration in X </description> 
        <calculation> 
            <math xmlns='http://www.w3.org/1998/Math/MathML'> 
                <apply> 
                    <eq/> 
                    <ci>udot</ci> 
                    <apply> 
                        <plus/> 
                        <apply> 
                            <times/> 
                            <apply> 
                                <plus/> 
                                <ci>FAX</ci> 
                                <ci>FGX</ci> 
                            </apply> 
                            <apply> 
                                <power/> 
                                <ci>mass</ci> 
                                <cn type='integer'>-1</cn> 
                            </apply> 
                        </apply> 
                        <apply> 
                            <times/> 
                            <ci>r</ci> 
                            <ci>v</ci> 
                        </apply> 
                        <apply> 
                            <times/> 
                            <cn type='integer'>-1</cn> 
                            <apply> 
                                <times/> 
                                <ci>q</ci> 
                                <ci>w</ci> 
                            </apply> 
                        </apply> 
                    </apply> 
                </apply> 
            </math> 
        </calculation> 
        <isOutput/> 
    </variableDef> 
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    <variableDef name="vdot" varID="vdot" units="m/s2"> 
        <description> Body fixed tranlational acceleration in Y </description> 
        <calculation> 
            <math xmlns='http://www.w3.org/1998/Math/MathML'> 
                <apply> 
                    <eq/> 
                    <ci>vdot</ci> 
                    <apply> 
                        <plus/> 
                        <apply> 
                            <times/> 
                            <apply> 
                                <plus/> 
                                <ci>FAY</ci> 
                                <ci>FGY</ci> 
                            </apply> 
                            <apply> 
                                <power/> 
                                <ci>mass</ci> 
                                <cn type='integer'>-1</cn> 
                            </apply> 
                        </apply> 
                        <apply> 
                            <times/> 
                            <cn type='integer'>-1</cn> 
                            <apply> 
                                <times/> 
                                <ci>r</ci> 
                                <ci>u</ci> 
                            </apply> 
                        </apply> 
                        <apply> 
                            <times/> 
                            <ci>p</ci> 
                            <ci>w</ci> 
                        </apply> 
                    </apply> 
                </apply> 
            </math> 
        </calculation> 
            <isOutput/> 
    </variableDef> 
     
    <variableDef name="wdot" varID="wdot" units="m/s2"> 
        <description> Body fixed tranlational acceleration in Z </description> 
        <calculation> 
            <math xmlns='http://www.w3.org/1998/Math/MathML'> 
                <apply> 
                    <eq/> 
                    <ci>wdot</ci> 
                    <apply> 
                        <plus/> 
                        <apply> 
                            <times/> 
                            <apply> 
                                <plus/> 
                                <ci>FAZ</ci> 
                                <ci>FGZ</ci> 
                            </apply> 
                            <apply> 
                                <power/> 
                                <ci>mass</ci> 
                                <cn type='integer'>-1</cn> 
                            </apply> 
                        </apply> 
                        <apply> 
                            <times/> 
                            <ci>q</ci> 
                            <ci>u</ci> 
                        </apply> 
                        <apply> 
                            <times/> 
                            <cn type='integer'>-1</cn> 
                            <apply> 
                                <times/> 
                                <ci>p</ci> 
                                <ci>v</ci> 
                            </apply> 
                        </apply> 
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                    </apply> 
                </apply> 
            </math> 
        </calculation> 
            <isOutput/> 
    </variableDef> 
     
    <variableDef name="pdot" varID="pdot" units="rad/s2"> 
        <description> Body fixed angular acceleration in X </description> 
        <calculation> 
            <math xmlns='http://www.w3.org/1998/Math/MathML'> 
                <apply> 
                    <eq/> 
                    <ci>pdot</ci> 
                    <apply> 
                        <times/> 
                        <apply> 
                            <plus/> 
                            <ci>LA</ci> 
                            <apply> 
                                <times/> 
                                <cn type='integer'>-1</cn> 
                                <apply> 
                                    <times/> 
                                    <apply> 
                                        <plus/> 
                                        <ci>Iz</ci> 
                                        <apply> 
                                            <times/> 
                                            <cn type='integer'>-1</cn> 
                                            <ci>Iy</ci> 
                                        </apply> 
                                    </apply> 
                                    <ci>q</ci> 
                                    <ci>r</ci> 
                                </apply> 
                            </apply> 
                        </apply> 
                        <apply> 
                            <power/> 
                            <ci>Ix</ci> 
                            <cn type='integer'>-1</cn> 
                        </apply> 
                    </apply> 
                </apply> 
            </math>             
        </calculation> 
        <isOutput/> 
    </variableDef>     
    <variableDef name="qdot" varID="qdot" units="rad/s2"> 
        <description> Body fixed angular acceleration in Y </description> 
        <calculation> 
            <math xmlns='http://www.w3.org/1998/Math/MathML'> 
                <apply> 
                    <eq/> 
                    <ci>qdot</ci> 
                    <apply> 
                        <times/> 
                        <apply> 
                            <plus/> 
                            <ci>MA</ci> 
                            <apply> 
                                <times/> 
                                <cn type='integer'>-1</cn> 
                                <apply> 
                                    <times/> 
                                    <apply> 
                                        <plus/> 
                                        <ci>Ix</ci> 
                                        <apply> 
                                            <times/> 
                                            <cn type='integer'>-1</cn> 
                                            <ci>Iz</ci> 
                                        </apply> 
                                    </apply> 
                                    <ci>p</ci> 
                                    <ci>r</ci> 
                                </apply> 
                            </apply> 



 198 

                        </apply> 
                        <apply> 
                            <power/> 
                            <ci>Iy</ci> 
                            <cn type='integer'>-1</cn> 
                        </apply> 
                    </apply> 
                </apply> 
            </math> 
        </calculation> 
        <isOutput/> 
    </variableDef> 
     
    <variableDef name="rdot" varID="rdot" units="rad/s2"> 
        <description> Body fixed angular acceleration in Z </description> 
        <calculation> 
            <math xmlns='http://www.w3.org/1998/Math/MathML'> 
                <apply> 
                    <eq/> 
                    <ci>rdot</ci> 
                    <apply> 
                        <times/> 
                        <apply> 
                            <plus/> 
                            <ci>NA</ci> 
                            <apply> 
                                <times/> 
                                <cn type='integer'>-1</cn> 
                                <apply> 
                                    <times/> 
                                    <apply> 
                                        <plus/> 
                                        <ci>Iy</ci> 
                                        <apply> 
                                            <times/> 
                                            <cn type='integer'>-1</cn> 
                                            <ci>Ix</ci> 
                                        </apply> 
                                    </apply> 
                                    <ci>p</ci> 
                                    <ci>q</ci> 
                                </apply> 
                            </apply> 
                        </apply> 
                        <apply> 
                            <power/> 
                            <ci>Iz</ci> 
                            <cn type='integer'>-1</cn> 
                        </apply> 
                    </apply> 
                </apply> 
            </math>  
        </calculation> 
        <isOutput/>         
    </variableDef> 
    
    <variableDef name="phidot" varID="phidot" units="rad/s"> 
        <description> Rate of change of roll attitute </description> 
        <calculation> 
            <math xmlns='http://www.w3.org/1998/Math/MathML'> 
                <apply> 
                    <eq/> 
                    <ci>phidot</ci> 
                    <apply> 
                        <plus/> 
                        <ci>p</ci> 
                        <apply> 
                            <times/> 
                            <apply> 
                                <plus/> 
                                <apply> 
                                    <times/> 
                                    <ci>r</ci> 
                                    <apply> 
                                        <cos/> 
                                        <ci>phi</ci> 
                                    </apply> 
                                </apply> 
                                <apply> 
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                                    <times/> 
                                    <ci>q</ci> 
                                    <apply> 
                                        <sin/> 
                                        <ci>phi</ci> 
                                    </apply> 
                                </apply> 
                            </apply> 
                            <apply> 
                                <tan/> 
                                <ci>theta</ci> 
                            </apply> 
                        </apply> 
                    </apply> 
                </apply> 
            </math> 
        </calculation> 
        <isOutput/>         
    </variableDef> 
 
    <variableDef name="thetadot" varID="thetadot" units="rad/s"> 
        <description> Rate of change of pitch attitute </description> 
        <calculation> 
            <math xmlns='http://www.w3.org/1998/Math/MathML'> 
                <apply> 
                    <eq/> 
                    <ci>thetadot</ci> 
                    <apply> 
                        <plus/> 
                        <apply> 
                            <times/> 
                            <ci>q</ci> 
                            <apply> 
                                <cos/> 
                                <ci>phi</ci> 
                            </apply> 
                        </apply> 
                        <apply> 
                            <times/> 
                            <cn type='integer'>-1</cn> 
                            <apply> 
                                <times/> 
                                <ci>r</ci> 
                                <apply> 
                                    <sin/> 
                                    <ci>phi</ci> 
                                </apply> 
                            </apply> 
                        </apply> 
                    </apply> 
                </apply> 
            </math>      
        </calculation> 
        <isOutput/>         
    </variableDef> 
     
    <variableDef name="psidot" varID="psidot" units="rad/s"> 
        <description> Rate of change of yaw attitute </description> 
        <calculation> 
            <math xmlns='http://www.w3.org/1998/Math/MathML'> 
                <apply> 
                    <eq/> 
                    <ci>psidot</ci> 
                    <apply> 
                        <times/> 
                        <apply> 
                            <plus/> 
                            <apply> 
                                <times/> 
                                <ci>r</ci> 
                                <apply> 
                                    <cos/> 
                                    <ci>phi</ci> 
                                </apply> 
                            </apply> 
                            <apply> 
                                <times/> 
                                <ci>q</ci> 
                                <apply> 
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                                    <sin/> 
                                    <ci>phi</ci> 
                                </apply> 
                            </apply> 
                        </apply> 
                        <apply> 
                            <power/> 
                            <apply> 
                                <cos/> 
                                <ci>theta</ci> 
                            </apply> 
                            <cn type='integer'>-1</cn> 
                        </apply> 
                    </apply> 
                </apply> 
            </math>  
        </calculation> 
        <isOutput/>         
    </variableDef> 
     
</DAVEfunc> 
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APPENDIX D 

SAMPLE CLASS DIAGRAMS FROM PLATFORM INDEPENDENT 
FRAMEWORK ARCHITECTURE 

cd Coordinate_Systems

Body_Coordinate_System

Coordinate_System

+ Inertial_Refererence_Frame_Euler_Angles:  

+ TransfromT o(Vectoral_Quanti ty) : Vectoral_Quanti ty

Earth_Coordinate_System
Weapon_Coordinate_SytemWind_Coordinate_System

 

Figure 125 Platform Independent Coordinate System Classes 

cd Aerodynamics_Model_Six_DOF

Body_Fixed_Six_DOF_Aerodynamics_Model

+ ComputeAerodynamicForce(Dynam ics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynam ics_Record) : Aerodynamic_Force

+ ComputeAerodynamicsMoment(Dynam ics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynam ics_Record) : Aerodynamics_M oment

Six_DOF_Aerodynamics_Model

+ ComputeAerodynam icForce(Dynamics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynam ics_Record) : Aerodynamic_Force

+ ComputeAerodynam icsMoment(Dynamics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynam ics_Record) : Aerodynamics_Moment

Aerodynamics_Model

+ Coordinate_System:  Coordinate_System

+ ComputeAerodynamicForce(Dynam ics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynam ics_Record) : Aerodynamic_Force

Point_Mass_Aerodynamics_Model

+ ComputeAerodynamicForce(Dynam ics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynamics_Record) : Aerodynamic_Force

Earth_Fixed_Six_DOF_Aerodynamics_M odel

+ ComputeAerodynamicForce(Dynamics_M odel_State, Atmosphere_Record, Physica ls_Record, Aerodynamics_Record) : Aerodynamic_Force

+ ComputeAerodynamicsM oment(Dynamics_M odel_State, Atmosphere_Record, Physica ls_Record, Aerodynamics_Record) : Aerodynam ics_Moment

 

Figure 126 Some of Platform Independent Aerodynamics Model Classes 
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cd Atmosphere_Model

Atmosphere_Model

+ ComputeAtmosphere(Position_Vector) : Atmosphere_Record

ICAO_Atmosphere

+ ComputeAtmosphere(Position_Vector) : Atmosphere_Record

METCM

+ ComputeAtmosphere(Position_Vector) : Atmosphere_Record

METB3

+ ComputeAtmosphere(Position_Vector) : Atmosphere_Record

METGM

+ ComputeAtmosphere(Position_Vector) : Atmosphere_Record

 

Figure 127 Platform Independent Atmosphere Model Classes 

cd Dynamics_Model

Dynamics_Model

+ CoordinateSystem:  Coordinate_System

+ Dynamics_Model_State:  Dynamics_Model_State

+ Dynamics_Model_State_Derivatives:  Dynamics_Model_State_Derivatives

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Body_Fixed_Six_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Three_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Modified_Point_Mass_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Earth_Fixed_Six_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Earth_Fixed_Fiv e_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Body_Fixed_Fiv e_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

In_Launcher_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

 

Figure 128 Platform Independent Dynamics Model Classes 



 203 

cd Earth_M odel

Earth_Model

+ ComputePositionInEarthCoordinates(Position_Vector) : Posi tion_Vector

Round_Earth

+ Com putePosi tionInEarthCoordinates(Position_Vector) : Position_Vector

Flat_Earth_Model

+ Com putePosi tionInEarthCoordinates(Position_Vector) : Position_Vector

 

Figure 129 Platform Independent Earth Model Classes 

cd Grav ity_M odel

Grav ity_M odel

+ Coordinate_System:  Coordinate_System

+ Com puteGravitationalForce(M ass, Posi tion_Vector) : Gravi tational_Force

Earth_Fixed_Constant_Grav ity_Model

+ ComputeGravitationalForce(Mass, Position_Vector) : Gravi tational_Force

Body_Fixed_Constant_Grav ity_Model

+ ComputeGravitationalForce(Mass, Position_Vector) : Gravi tational_Force

 

Figure 130 Platform Independent Gravity Model Classes 
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cd Aerodynamics_Data

Aerodynamics_Data

+ GetAerodynamics() : Aerodynamics_Record

Six_DOF_Aerodynamics_Data

+ GetAerodynamics(Actual_Fin_Deflections, Dynamics_Model_State, Atmosphere_Record) : Aerodynamics_Record

Point_Mass_Aerodynamics_Data

+ GetAerodynamics(Dynamics_Model_State, Atmosphere_Record) : Aerodynamics_Record

Fiv e_DOF_Aerodynamics_Data

+ GetAerodynamics(Actual_Fin_Deflections, Dynamics_Model_State, Atmosphere_Record) : Aerodynamics_Record

Modified_Point_Mass_Aerodynamics_Data

+ GetAerodynamics(Dynamics_Model_State, Atmosphere_Record) : Aerodynamics_Record

 

Figure 131 Platform Independent Aerodynamics Data Classes 

 cd Trajectory_Simulation_Solver 

Solver 
+ IntegrateStep(UpdateStateAndDerivatives*, Time, Phase_State_Derivatives, Phase_State*) : Void 

Euler 
+ IntegrateStep(UpdateStateAndDerivatives*, Time, Phase_State_Derivatives, Phase_State*) : Void

RK4 
+ IntegrateStep(UpdateStateAndDerivatives*, Time, Phase_State_Derivatives, Phase_State*) : Void

RK3 
+ IntegrateStep(UpdateStateAndDerivatives*, Time, Phase_State_Derivatives, Phase_State*) : Void

RK5 
+ IntegrateStep(UpdateStateAndDerivatives*, Time, Phase_State_Derivatives, Phase_State*) : Void 

 

Figure 132 Platform Independent Solver Classes 
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 cd Trajectory_Simulation_Systems

Munition

+ Munition_Subsystem:  Munition_Subsystem

+ Platform:  Weapon 

Munition_Subsystem

Autopilot

+ Autopilot_Data:  Aerodynamics_Data 

CAS 
+ CAS_Data:  CAS_Data 

Charge

+ Charge_Data:  Charge_Data 

Fuze

+ Fuze_Data:  Fuze_Data

Guidance_System 
+ Guidance_Data:  Guidance_Data

Propellant

Rocket_Motor

+ Rocket_Motor_Data:  Rocket_Motor_Data

Sensor

+ Sensor_Data:  Sensor_Data 

Weapon

+ Weapon_Data:  Weapon_Data 

 

Figure 133 Platform Independent Munition Subsystem Classes 
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APPENDIX E 

TSONT TO MATSIX CODE TRACEABILITY 

Table 4 TSONT to MATSIX Code Traceability 

TSONT 
Platform Independent 
Framework Architecture MATSIX Architecture Code 

Coordinate System Coordinate System cs @cs 

Body_Coordinate_System Body Coordinate System bcs @bcs 

Earth_Coordinate_System Earth Coordinate System ecs @ecs 

Wind_Coordinate_System Wind Coordinate System     

Weapon_Coordinate_Syste
m Weapon Coordinate System     

Trajectory_Simulation Trajectory Simulation trajectory_simulation @trajectory_simulation 

Trajectory_Simulation_Co
mposite_Data 

Trajectory Simulation Composite 
Data     

Model Trajectory_Simulation_Models     

Aerodynamics_Model Aerodynamics_Model     

Body_Fixed_Five_DOF_A
erodynamics_Model 

Body_Fixed_Five_DOF_Aerodyn
amics_Model     

Body_Fixed_Six_DOF_Ae
rodynamics_Model 

Body_Fixed_Six_DOF_Aerodyna
mics_Model aerodynamics_model @aerodynamics_model 

Earth_Fixed_Six_DOF_Ae
rodynamics_Model 

Earth_Fixed_Six_DOF_Aerodyna
mics_Model     

Earth_Fixed_Five_DOF_A
erodynamics_Model 

Earth_Fixed_Five_DOF_Aerodyn
amics_Model     

Five_DOF_Aerodynamics_
Model Five_DOF_Aerodynamics_Model     

Modified_Point_Mass_Aer
odynamics_Model 

Modified_Point_Mass_Aerodyna
mics_Model     

Point_Mass_Aerodynamics
_Model 

Point_Mass_Aerodynamics_Mod
el     

Six_DOF_Aerodynamics_
Model Six_DOF_Aerodynamics_Model     

Three_DOF_Aerodynamics
_Model 

Three_DOF_Aerodynamics_Mod
el     

Atmosphere_Model Atmosphere_Model atmosphere_model @atmosphere_model 

ICAO ICAO_Atmosphere icao_atmosphere_model @icao_atmosphere_model 

METB3 METB3     

METCM METCM     
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TSONT 
Platform Independent 
Framework Architecture MATSIX Architecture Code 

METGM METGM     

Autopilot_Model Autopilot_Model autopilot_model @autopilot_model 

CAS_Model CAS_Model     

Four_Canard_Second_Orde
r_CAS_Model Second_Order_CAS_Model cas_model @cas_model 

Dynamics_Model Dynamics_Model     

Body_Fixed_Five_DOF_D
ynamics_Model 

Body_Fixed_Five_DOF_Dynami
cs_Model     

Body_Fixed_Six_DOF_Dy
namics_Model 

Body_Fixed_Six_DOF_Dynamics
_Model dynamics_model @dynamics_model 

Earth_Fixed_Five_DOF_D
ynamics_Model 

Earth_Fixed_Five_DOF_Dynami
cs_Model     

Earth_Fixed_Six_DOF_Dy
namics_Model 

Earth_Fixed_Six_DOF_Dynamics
_Model     

In_Launcher_Dynamics_M
odel In_Launcher_Dynamics_Model in_launcher_dynamics_model 

@in_launcher_dynamics_mod
el 

Modified_Point_Mass_Dyn
amics_Model 

Modified_Point_Mass_Dynamics
_Model     

Three_DOF_Dynamics_M
odel Three_DOF_Dynamics_Model     

Earth_Model Earth_Model     

Flat_Earth_Model Flat_Earth_Model earth_model @earth_model 

Curved_Earth_Model Round_Earth round_earth_model @round_earth_model 

Gravity_Model Gravity_Model     

Constant_G_Body_Fixed_
Gravity_Model 

Body_Fixed_Constant_Gravity_
Model     

Constant_G_Earth_Fixed_
Gravity_Model 

Earth_Fixed_Constant_Gravity_
Model gravity_model @gravity_model 

Guidance_Model Guidance_Model guidance_model @guidance_model 

Cubic_Guidance_Model Cubic_Guidance_Model cubic_guidance_model @cubic_guidance_model 

PN_Guidance_Model PN_Guidance_Model pn_guidance_model @pn_guidance_model 

Parabolic_Guidance_Model Parabolic_Guidance_Model parabolic_guidance_model @parabolic_guidance_model 

Launcher_Model Launcher_Model     

  Simple_Launcher_Model launcher_model @launcher_model 

Sensor_Model Sensor_Model     

Termination_Model Termination_Model termination_model @termination_model 

Thruster_Model Thruster_Model     

Body_Fixed_Six_DOF_Ro
cket_Motor_Model 

Body_Fixed_Six_DOF_Solid_Ro
cket_Motor_Model     

  
Center_Burning_Solid_Rocket_M
otor_Model rocket_motor_model @rocket_motor_model 

  
Earth_Fixed_Six_DOF_Solid_Ro
cket_Motor_Model   

@six_dof_rocket_motor_mode
l 
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TSONT 
Platform Independent 
Framework Architecture MATSIX Architecture Code 

  
End_Burning_Solid_Rocket_Mot
or_Model     

Solid_Rocket_Motor_Mod
el_for_Point_Mass 

Point_Mass_Solid_Rocket_Motor
_Model     

Parameter Trajectory Simulation Parameters     

Aerodynamics Aerodynamics_Data     

Five_DOF_Aerodynamics Five_DOF_Aerodynamics_Data     

Modified_Point_Mass_Aer
odynamics 

Modified_Point_Mass_Aerodyna
mics_Data     

Point_Mass_Aerodynamics Point_Mass_Aerodynamics_Data     

Six_DOF_Aerodynamics Six_DOF_Aerodynamics_Data aerodynamics @aerodynamics 

Autopilot_Data Autopilot_Data autopilot_data @autopilot_data 

CAS_Data CAS_Data     

Second_Order_CAS_Data Second_Order_CAS_Data cas_data @cas_data 

Charge_Data Charge_Data     

Fuze_Data Fuze_Data     

Guidance_Data Guidance_Data guidance_data @guidance_system_data 

Physical_Data Physical_Data     

Point_Mass_Physicals Point_Mass_Physicals     

Six_DOF_Physicals Six_DOF_Physicals physicals @physicals 

  Six_DOF_Physicals_for_Thrusted physicals_for_thrusted @physicals_for_thrusted 

  Propellant_Data     

Solid_Rocket_Motor_Data Rocket_Motor_Data     

Point_Mass_Solid_Rocket_
Motor_Data Point_Mass_Rocket_Motor_Data     

Rigid_Body_Solid_Rocket
_Motor_Data Rigid_Body_Rocket_Motor_Data rocket_motor_data @rocket_motor_data 

Sensor_Data Sensor_Data     

Weapon_Data Weapon_Data weapon_data @weapon_data 

Laucher_Data Laucher_Data launcher_data @launcher_data 

Trajectory_Simulation_Pha
se Trajectory Simulation Phases     

Phase Phase phase @phase 

Guided_Phase Guided_Phase guided_phase @guided_phase 

In_Launcher_Phase In_Launcher_Thrusted_Phase in_launcher_thrusted_phase @in_launcher_thrusted_phase 

Thrusted_Phase Thrusted_Phase thrusted_phase @thrusted_phase 

Trajectory Simulation 
Quantity Trajectory Simulation Quantities     

Trajectory Simulation 
Solver Trajectory Simulation Solvers     
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TSONT 
Platform Independent 
Framework Architecture MATSIX Architecture Code 

Euler Euler     

Third_Order_RK RK3     

Fourth_Order_RK RK4     

Fifth_Order_RK RK5     

Trajectory Simulation 
Object Trajectory Simulation Systems     

Autopilot Autopilot autopilot @autopilot 

CAS CAS cas @cas 

Charge Charge     

Fuze Fuze fuze @fuze 

Guidance_System Guidance_System guidance_system @guidance_system 

Munition Munition muntion @munition 

Munition_Subsystem Munition_Subsystem     

Propellant Propellant     

Rocket_Motor Rocket_Motor rocket_motor @rocket_motor 

Sensor Sensor     

Weapon Weapon weapon @weapon 

    aircraft @aircraft_data 
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APPENDIX F 

SAMPLE CLASS DIAGRAMS FROM MATSIX ARCHITECTURE 

cd Traj ectory_Simulation

traj ectory_simulation

- munition:  muntion

- phase_array:  phase[]

- trajectory:  T rajectory

+ ComputeT rajectory(trajectory_simulation) : trajectory

+ get() : void

+ Ini tial ize(trajectory_simulation) : trajectory_simulation

+ set() : void

+ trajectory_simulation() : trajectory_simulation

 

Figure 134 MATSIX Trajectory Simulation 

cd Coordinate_Systems

bcs

+ bcs() : bcs

cs

+ Inertial_Refererence_Frame_Euler_Angles:  

+ cs() : cs

+ SetEulerAngles(cs, EulerAngles) : void

+ T ransfromT o(vectoral_quanti ty, cs) : vectoral_quanti ty

ecs

+ ecs() : ecs

 

Figure 135 MATSIX Coordinate System Classes 
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cd Aerodynamics_Model

aerodynamics_model

- Coordinate_System:  cs

+ aerodynamics_model() : aerodynam ics_m odel

+ ComputeAerodynamicForce(aerodynamics_model , aerodynamics_record, physicals_record, atmosphere_record, dynamics_model_state) : aerodynam ic_force

+ ComputeAerodynamicsMoment(aerodynamics_model , aerodynamics_record, physicals_record, atmosphere_record, dynamics_model_state) : aerodynam ics_m oment

+ get() : void

+ set() : void

 

Figure 136 MATSIX Aerodynamics Model 

cd Atmosphere_Model

atmosphere_model

- densi ty_array:  densi ty[]

- height_array:  height[]

- pressure_array:  pressure[]

- speed_of_sound_array:  speed_of_sound[]

- temperature_array:  temperature[]

- wind_array:  wind[]

+ atmosphere_model() : atmosphere_model

+ ComputeAtmosphere(atmosphere_m odel , posi tion_vector) : atmosphere_record

+ get() : void

+ set() : void

icao_atmosphere_model

+ icao_atmosphere() : icao_atmosphere_model

 

Figure 137 MATSIX Atmosphere Model 

cd CAS_Model

cas_model

+ CAS_Model_State:  cas_model_state

+ CAS_Model_State_Derivatives:  cas_model_state_derivatives

+ cas_model () : cas_model

+ ComputeControlSurfaceDeflections(cas_model) : actual_fin_deflections

+ get() : void

+ set() : void

+ UpdateCASModelStateandDerivatives(cas_model , commanded_fin_deflections, cas_record) : cas_model_state_derivatives

 

Figure 138 MATSIX CAS Model 
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cd Earth_Model

earth_model

+ ComputePosi tionInEarthCoordinates(posi tion_vector) : posi tion_vector

+ eath_model() : earth_m odel

round_earth_model

+ ComputePosi tionInEarthCoordinates(posi tion_vector) : posi tion_vector

+ round_earth_model() : round_earth_model

 

Figure 139 TSONT Earth Model 

cd Launcher_Model

launcher_model

+ ComputeFrictionForce(launcher_model , gravi tational_force, weapon_record) : friction_force

+ get() : void

+ launcher_model() : launcher_model

+ set() : void

 

Figure 140 MATSIX Launcher Model 

cd Thruster_Model

rocket_motor_model

- cs:  cs

- state:  rocket_motor_state

- state_derivatives:  rocket_motor_state_derivatives

+ ComputeThrustForce(rocket_motor_model , rocket_motor_record, mass, pressure) : thrust_force

+ ComputeThrustMoment(rocket_motor_model, thrust_force, physicals_record) : thrust_moment

+ get() : void

+ rocket_motor_model() : rocket_motor_model

+ set() : void

+ UpdateMotorStateandDerivatives(rocket_motor_model, mass) : void

 

Figure 141 MATSIX Rocket Motor Model 
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cd Aerodynamics_Data

aerodynamics

- cddata:  

- cldeldata:  

- clpdata:  

- cmadata:  

- cmddata:  

- cmqdata:  

- czadata:  

- czddata:  

- czqdata:  

- machpoints:  

+ aerodynamics() : aerodynamics

+ get(aerodynamics, variant) : variant

+ GetAerodynamics(aerodynamics, actual_fin_deflections, dynamics_model_state, atmosphere_record, physicals_record) : aerodynam ics_record

+ GetAutopi lotAerodynamics(aerodynamics, actual_fin_deflections, dynamics_m odel_state, atmosphere_m odel , physicals_record) : autopi lot_aero_record

+ set(aerodynam ics, variant) : aerodynamics

 

Figure 142 MATSIX Aerodynamics 

cd Traj ectory_Simulation_Systems

muntion

- aerodynamics:  aerodynamics

- autopi lot:  autopi lot

- fuze:  fuze

- guidance_system:  guidance_system

- physicals:  physicals

- thruster:  thruster

+ weapon:  weapon

+ get() : void

+ munition() : munition

+ set() : void

autopilot

- ap_data:  autopi lot_data

+ autopi lot() : autopi lot

+ get() : void

+ set() : void

cas

- CAS_Data:  cas_data

+ cas() : cas

+ get() : void

+ set() : void

fuze

- Fuze_Data:  fuze_data

+ fuze() : fuze

+ get() : void

+ set() : void

guidance_system

- guidance_system_data:  guidance_data

+ get() : void

+ guidance_system() : guidance_system

+ set() : void

rocket_motor

- rocket_motor_data:  rocket_motor_data

+ get() : void

+ set() : void

w eapon

+ weapon_data:  weapon_data

+ get() : void

+ set() : void

 

Figure 143 MATSIX Trajectory Simulation Systems 
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APPENDIX G 

LYNX DATA 

Table 5 LYNX Data 

PHYSICALS  

Diameter 0.227 m 

Length 2.7 m 

Reference Mass 135.1 kg 

Reference CG 1.7 m 

Reference Inertia 

Matrix 

[1.16 0 0; 0 125 0; 0 0 125] kgm2 

Initial CG 1.97 m 

Initial Inertia Matrix [ 1.65 0 0; 0 165 0; 0 0 165] kgm2 

AERODYNAMICS 

Mach Points  [0 .1 .33 .53 .71 .86 1.00 1.05 1.12 1.19 1.27 1.36 1.46 

1.58 1.71 1.87 2.04 2.23 2.46 2.71 3.00] 

0Cd  [0 -.3471 -.3563 -.3626 -.3620 -.4187 -.6075 -.6821 -

.6427 -.5933 -.5504 -.5208 -.5010 -.4859 -.4809 -.4731 -

.4812 -.4423 -.4114 -.3819 -.3508] 

Czα  [0 -.2684 -.2731 -.2792 -.2852 -.2993 -.3378 -.3402 -

.3368 -.3338 -.3196 -.3110 -.2964 -.2674 -.2506 -.2361 -

.2218 -.2062 -.1914 -.1776 -.1639] 

Czδ  [0 .04710 .04826 .04966 .05160 .05647 .06867 .06111 

.05658 .05286 .05045 .04882 .04528 .04482 .04250 

.04062 .03865 .03586 .03325 .03077 .02808] 
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Cmα  [0 -.2501 -.2462 -.2425 -.2268 -.1908 -.09181 -.2532 -

.3466 -.4242 -.3229 -.3217 -.3555 -.2542 -.2178 -.1743 -

.1366 -.1065 -.08035 -.05590 -.03951] 

Cmδ  [0 -.2830 -.2933 -.3064 -.3206 -.3537 -.4417 -.4402 -

.4299 -.4193 -.3981 -.3715 -.3224 -.2670 -.2314 -.2045 -

.1819 -.1596 -.1406 -.1241 -.1074] 

Cmq  [0 27.30 29.98 33.68 39.51 30.80 27.09 27.63 26.75 

25.30 17.24 16.82 16.20 14.29 13.46 12.67 12.26 11.53 

10.50 9.806 9.202] 

Clp  [0 .02245 .02261 .02256 .02311 .02529 .02585 .01605 

.01136 .007408 .007540 .009875 .01189 .01540 .01822 

.02086 .02286 .02316 .02316 .02288 .02215] 

Clδ  [0 .01194 .01203 .01201 .01232 .01352 .01384 .007377 

.004822 .002651 .002744 .004050 .005188 .007141 

.008722 .01018 .01127 .01144 .01144 .01129 .01089] 

AUTOPILOT DATA 

Pitch and Yaw Autopilot 

Wn 10 

Ksi 0.707 

Mu 1 

Roll Autopilot 

Wn 12 

Ksi 0.7 

LAUNCHER DATA 

Friction Coefficient 0 

Launcher Length 3 

ROCKET MOTOR DATA 
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Specific Impulse 2100 Ns/kg 

Exit Area 0.03m2 

Reference Pressure 101325.018Pa 

Reference Fuel Mass 108.14595 kg 

Mass Flow Data 

Time(s) vs  

Mass Flow (kg/s) 

[0 0; 

0.049 30.295908145179933; 

0.099 29.502196193265007; 

0.149 28.785543654157355; 

0.199 28.330893118594435; 

0.249 27.953301995838792; 

0.299 27.614240579486783; 

0.349 27.271326192494413; 

0.399 26.970794482546044; 

0.449 26.516143946983124; 

0.499 26.215612237034755; 

0.549 25.83802111427911; 

0.599 25.572166140094012; 

0.649 25.421900285119825; 

0.699 25.15604531093473; 

0.749 25.08283886876782; 

0.799 25.005779455960546; 

0.849 24.85551360098636; 

0.899 24.778454188179087; 

0.949 24.6281883332049; 

0.999 24.589658626801263; 

1.049 24.55498189103799; 
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1.099 24.40086306542344; 

1.149 24.289126916852894; 

1.199 24.212067504045617; 

1.249 24.061801649071434; 

1.299 24.250597210449257; 

1.349 23.950065500500884; 

1.399 23.950065500500884; 

1.449 23.87300608769361; 

1.499 23.87300608769361; 

1.549 23.834476381289974; 

1.599 23.761269939123064; 

1.649 23.684210526315788; 

1.699 23.684210526315788; 

1.749 23.684210526315788; 

1.799 23.64568081991215; 

1.849 23.64568081991215; 

1.899 23.495414964937968; 

1.949 23.456885258534328; 

1.999 23.41835555213069; 

2.049 23.26808969715651; 

2.099 22.967557987208135; 

2.149 22.9290282808045; 

2.199 22.817292132233952; 

2.249 22.663173306619402; 

2.299 22.47437774524158; 

2.349 22.362641596671033; 
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2.399 22.362641596671033; 

2.449 22.51290745164522; 

2.499 22.51290745164522; 

2.549 22.135316328889573; 

2.599 21.00254296062264; 

2.649 19.037527934037143; 

2.699 16.317330661940357; 

2.749 13.18486553132465; 

2.799 10.726670262772597; 

2.849 8.800184942590738; 

2.899 7.405409570779071; 

2.949 6.157047083301225; 

2.999 5.324805424982661; 

3.049 4.457887030900824; 

3.099 3.702704785389535; 

3.149 3.059258688448794; 

3.199 2.45434229791169; 

3.249 1.92648532018186; 

3.299 1.471834784618941; 

3.349 1.059566926100023; 

3.399 0.678122832704015; 

3.449 0.339061416352007; 

3.499 0.077059412807274; 

3.52 0;] 
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APPENDIX H 

LYNX SAMPLE RUNS 

Table 6 1st LYNX Sample Run Parameters 

Elevation 40 Deg. 

Azimuth 0 Deg. 

Guidance Start Range 8000 m 

Target Range 25000 m 

Vertical Angle of Fall 45 Deg. 

Horizontal Angle of Fall 0 Deg. 

 

Figure 144 1st LYNX Sample Run Trajectory Plot 
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Figure 1451st LYNX Sample Run Elevator Angle vs. Time Plot 

 

Figure 146 1st LYNX Sample Run Elevator Angle of Attack vs. Time Plot 
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Table 7 2nd LYNX Sample Run Parameters 

Elevation 55 Deg. 

Azimuth 0 Deg. 

Guidance Start Range 8000 m 

Target Range 25000 m 

Vertical Angle of Fall 45 Deg. 

Horizontal Angle of Fall 0 Deg. 

 

 

Figure 147 2nd LYNX Sample Run Trajectory Plot 
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Figure 148 2nd LYNX Sample Run Elevator Angle vs. Time Plot 

 

Figure 149 2nd LYNX Sample Run Elevator Angle of Attack vs. Time Plot 
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APPENDIX I 

PUMA DATA 

Table 8 PUMA Data 

PHYSICALS 

Diameter 0.227 m 

Length 2.7 m 

Reference Mass 135.1 kg 

Reference CG 1.7 m 

Reference Inertia 

Matrix 

[1.16 0 0; 0 125 0; 0 0 125] kgm2 

AERODYNAMICS 

Mach Points  [0 .1 .33 .53 .71 .86 1.00 1.05 1.12 1.19 1.27 1.36 1.46 

1.58 1.71 1.87 2.04 2.23 2.46 2.71 3.00] 

0Cd  [0 -.3471 -.3563 -.3626 -.3620 -.4187 -.6075 -.6821 -

.6427 -.5933 -.5504 -.5208 -.5010 -.4859 -.4809 -.4731 -

.4812 -.4423 -.4114 -.3819 -.3508] 

Czα  [0 -.2684 -.2731 -.2792 -.2852 -.2993 -.3378 -.3402 -

.3368 -.3338 -.3196 -.3110 -.2964 -.2674 -.2506 -.2361 -

.2218 -.2062 -.1914 -.1776 -.1639] 

Czδ  [0 .04710 .04826 .04966 .05160 .05647 .06867 .06111 

.05658 .05286 .05045 .04882 .04528 .04482 .04250 

.04062 .03865 .03586 .03325 .03077 .02808] 

Cmα  [0 -.2501 -.2462 -.2425 -.2268 -.1908 -.09181 -.2532 -

.3466 -.4242 -.3229 -.3217 -.3555 -.2542 -.2178 -.1743 -

.1366 -.1065 -.08035 -.05590 -.03951] 
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Cmδ  [0 -.2830 -.2933 -.3064 -.3206 -.3537 -.4417 -.4402 -

.4299 -.4193 -.3981 -.3715 -.3224 -.2670 -.2314 -.2045 -

.1819 -.1596 -.1406 -.1241 -.1074] 

Cmq  [0 27.30 29.98 33.68 39.51 30.80 27.09 27.63 26.75 

25.30 17.24 16.82 16.20 14.29 13.46 12.67 12.26 11.53 

10.50 9.806 9.202] 

Clp  [0 .02245 .02261 .02256 .02311 .02529 .02585 .01605 

.01136 .007408 .007540 .009875 .01189 .01540 .01822 

.02086 .02286 .02316 .02316 .02288 .02215] 

Clδ  [0 .01194 .01203 .01201 .01232 .01352 .01384 .007377 

.004822 .002651 .002744 .004050 .005188 .007141 

.008722 .01018 .01127 .01144 .01144 .01129 .01089] 

AUTOPILOT DATA 

Pitch and Yaw Autopilot 

Wn 10 

Ksi 0.707 

Mu 1 

Roll Autopilot 

Wn 12 

Ksi 0.7 
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APPENDIX J 

PUMA SAMPLE RUNS 

Table 9 1st PUMA Sample Run Parameters 

Altitude 11000 m 

Velocity 250 m/s. 

Guidance Start Range 200 m 

Target Range 20000 m 

 

 

Figure 150 1st PUMA Sample Run Trajectory Plot 
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Figure 151 1st PUMA Sample Run Elevator Angle vs. Time Plot 

 

Figure 152 1st PUMA Sample Run Angle of Attack vs. Time 
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Table 10 2nd PUMA Sample Run Parameters 

Altitude 11000 m 

Velocity 250 m/s. 

Guidance Start Range 200 m 

Target Range 10000 m 

 

 

Figure 153 2nd PUMA Sample Run Trajectory Plot 
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Figure 154 2nd PUMA Sample Run Elevator Angle vs. Time Plot 

 

Figure 155 2nd PUMA Sample Run Angle of Attack vs. Time Plot 
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APPENDIX K 

SAMPLE DIAGRAMS AND CODE FORM C# POINT MASS 
TRAJECTORY SIMULATION FRAMEWORK 

cd Trajectory_Simulation_Phases

Guided_Phase

+ Autopi lot_Model:  Autopi lotModel

+ CAS_Model:  CAS_Model

+ Guidance_Model:  GuidanceModel

+ Sensor_Model:  Sensor_Model

+ Dispose() : void

+ Guided_Phase()

- ~Guided_Phase()

+ updatePhaseStateAndDerivatives(PhaseState) : PhaseStateDerivatives

In_Launcher_Thrusted_Phase

+ Launcher_Model:  Launcher_Model

+ Dispose() : void

+ In_Launcher_Thrusted_Phase()

- ~In_Launcher_Thrusted_Phase()

+ updatePhaseStateAndDerivatives(PhaseState) : PhaseStateDerivatives

Phase

+ Aerodynamics_Model:  AerodynamicsModel

+ Dynamic_Model:  DynamicsModel

+ Earth_Model:  EarthModel

+ Environment_Model:  AtmosphereModel

+ Gravity_Model:  Gravity_Model

+ Initial_Condition:  PhaseState

+ Phase_State:  PhaseState

+ Phase_State_Derivatives:  PhaseState

+ Propulsion_Model:  Thruster_Model

+ Solver:  Solver

+ Temination_Model:  TerminationModel

+ computePhaseTrajectory() : Trajectory

+ Dispose() : void

+ initial izePhase(PhaseState) : void

+ Phase()

- ~Phase()

+ updatePhaseStateAndDerivatives(PhaseState) : PhaseStateDerivatives

Thrusted_Phase

+ Thruster_Model:  ThrusterModel

+ Dispose() : void

+ Thrusted_Phase()

- ~Thrusted_Phase()

+ updatePhaseStateAndDerivatives() : PhaseStateDerivatives

 

Figure 156 Phase Hierarchy of C# Point Mass Trajectory Simulation Framework 
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cd Aerodynamics_Model

AerodynamicsModel

# Coordinate_System:  CoordinateSystem

+ AerodynamicsModel()

- ~AerodynamicsModel()

+ computeAerodynamicForce(DynamicsModelState, AtmosphereRecord, PhysicalsRecord, AerodynamicsRecord) : Aerodynamic_Force

+ Dispose() : void

PointMassAerodynamicsModel

+ computeAerodynamicForce(DynamicsModelState, AtmosphereRecord, PhysicalsRecord, AerodynamicsRecord) : Aerodynamic_Force

+ Dispose() : void

+ PointMassAerodynamicsModel()

- ~PointMassAerodynamicsModel()

 

Figure 157 Aerodynamics Model Hierarchy of C# Point Mass Trajectory 

Simulation Framework 

 

Figure 158 Automatically Generated Tube Record Code of C# Point Mass 

Trajectory Simulation Framework 
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APPENDIX L 

DATA FLOW DIAGRAMS 

Compute Point 

Mass 

Trajectory

Trajectory

 

Figure 159 Top Level Data Flow Diagram for Function Oriented Point Mass 

Trajectory Simulation Abstract Design 
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Figure 160 Compute Point Mass Trajectory Data Flow Diagram 
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Figure 161 Compute Point Mass Phase Trajectory Data Flow Diagram 
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Figure 162 Phase State and Derivatives Data Flow Diagram 
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APPENDIX M 

TIGER AND JAGUAR DATA 

Table 11 TIGER and JAGUAR Data 

PHYSICALS 

Reference Area 0.00515 m2 

Reference Mass 4.7 kg 

AERODYNAMICS 

Mach Points  [0 0.7 0.85 0.87 0.9 0.93 0.95 1 1.09] 

0Cd  [0 -0.119 -0.12 -0.122 -0.126 -0.148 -0.182 -0.3 -0.5] 

CHARGE DATA 

Muzzle Velocity 220m/s 
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APPENDIX N 

COMPLETE REUSE INFRASTUCTURE 

APPENDIX N is appended to this dissertation in an optical media. Content supplied 

in the optical media is as follows: 

01. TSONT 

Trajectory Simulation Ontology is given in this folder. There are three sub folders 

as follows: 

01. TSONT\01.1 TSONT Protege OWL 

This folder contains a Protégé project for TSONT and TSONT in OWL format. 

01. TSONT\01.2 TSONT HTML 

This folder contains OWLDoc of TSONT. It is a set of browsable web pages that 

represent the ontology. One should start browsing from index.html. 

01. TSONT\01.3 Sample DAVE-ML 

This folder contains a set of sample DAVE-ML files. 

02. Platform Independent Framework Architecture 

This folder contains the platform independent trajectory simulation framework 

architecture. There are two sub folders as follows: 

02. Platform Independent Framework Architecture\02.1 Platform Independent 

Framework Architecture EA 



 235 

This folder contains platform independent trajectory simulation framework 

architecture as Sparx Systems Enterprise Architect 6.0 project. 

02. Platform Independent Framework Architecture\02.2 Platform Independent 

Framework Architecture HTML 

This folder contains platform independent trajectory simulation framework 

architecture as a set of browsable web pages. One should start browsing from 

index.htm. 

03. MATSIX Architecture 

This folder contains the platform MATSIX architecture. There are two sub folders 

as follows: 

03. MATSIX Architecture\03.1 MATSIX Architecture EA 

This folder contains MATSIX architecture as Sparx Systems Enterprise Architect 

6.0 project. 

03. MATSIX Architecture\03.2 MATSIX Architecture HTML 

This folder contains MATSIX architecture as a set of browsable web pages. One 

should start browsing from index.htm. 

04. MATSIX Code 

This folder contains implementation of MATSIX. We would like to remind you that 

this framework is implemented by using MATLAB 7.1. 

05. LYNX Code 

This folder contains the implementation of LYNX simulation. It is one of the 

trajectory simulations built upon MATSIX using framework completion approach 
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so should be interpreted with MATSIX. Folder also contains a sample tester script 

tester.m that runs LYNX for a sample case and plots a trajectory. 

06. PUMA Code 

This folder contains the implementation of PUMA simulation. It is one of the 

trajectory simulations built upon MATSIX using framework completion approach 

so should be interpreted with MATSIX. Folder also contains a sample tester script 

tester.m that runs PUMA for a sample case and plots a trajectory. 

07. C Sharp Example 

This folder contains the C# point mass trajectory framework case study. There are 

two sub folders as follows: 

07. C Sharp Example\07.1 C Sharp Example Model 

This folder contains the C# point mass trajectory framework architecture. There are 

two sub folders as follows: 

07. C Sharp Example\07.1 C Sharp Example Mode\07.1.1 C Sharp Example 

Model EA 

This folder contains C# point mass trajectory framework architecture as Sparx 

Systems Enterprise Architect 6.0 project. 

07. C Sharp Example\07.1 C Sharp Example Mode\07.1.2 C Sharp Example 

Model HTML 

This folder contains C# point mass trajectory framework architecture as a set of 

browsable web pages. One should start browsing from index.htm. 

07. C Sharp Example\07.2 C Sharp Example Code 
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This folder contains the C# point mass trajectory framework code in a Microsoft 

Visual Studio 2005 project. 

08. PANTHERA Abstract Design 

This folder contains the abstract software design for PANTHERA. There are two 

sub folders as follows: 

08. PANTHERA Abstract Design\08.1 PANTHERA Abstract Design Visio 

This folder contains the abstract software design for PANTHERA as Microsoft 

Visio 2003 document. 

08. PANTHERA Abstract Design\08.2 PANTHERA Abstract Design HTML 

This folder contains the abstract software design for PANTHERA as a set of 

browsable web pages. One should start browsing from index.htm 

09. PANTHERA 

This folder contains implementation of PANTHERA. We would like to remind you 

that this framework is implemented by using MATLAB 7.1 Simulink. 

10. TIGER 

This folder contains implementation of TIGER. We would like to remind you that 

this framework is implemented by using MATLAB 7.1 Simulink. 

11. JAGUAR 

This folder contains implementation of JAGUAR. We would like to remind you 

that this framework is implemented by using MATLAB 7.1 Simulink. 
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