

ONTOLOGY BASED REUSE INFRASTRUCTURE FOR TRAJECTORY
SIMULATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

UMUT DURAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

MECHANICAL ENGINEERING

JUNE 2007

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Doctor of Philosophy.

Prof. Dr. S. Kemal İDER

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy.

______________________________ _____________________

Assoc. Prof. Dr. Halit OĞUZTÜZÜN Prof. Dr. S. Kemal İDER

Co-Supervisor Supervisor

Examining Committee Members

Prof. Dr. M. Kemal ÖZGÖREN (METU, ME) _____________

Prof. Dr. S. Kemal İDER (METU, ME) _____________

Prof. Dr. Faruk ELALDI (Başkent Unv., ME) _____________

Assoc.Prof. Dr. Göktürk ÜÇOLUK (METU, CENG) _____________

Asst. Prof. Dr. A. Buğra KOKU (METU, ME) _____________

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last Name : Umut DURAK
 Signature :

 iv

ABSTRACT

ONTOLOGY BASED REUSE INFRASTRUCTURE FOR TRAJECTORY

SIMULATION

DURAK, Umut

Ph. D., Department of Mechanical Engineering

Supervisor: Prof. Dr. Kemal İDER

Co-Supervisor: Assoc. Dr. Halit OĞUZTÜZÜN

June 2007, 241 pages

In this research, we developed an ontology based reuse infrastructure for trajectory

simulation and investigated the use of ontologies and domain engineering practices

to develop a formalized methodology to make use of the experience and knowledge

leveraged from the past trajectory simulation projects. Trajectory simulation in this

context is a computational tool to calculate the flight path and other parameters of

munition such as its orientation or angular rates during its operation

In this thesis, engineering knowledge to simulate the trajectory of a munition is

captured in an ontology called Trajectory Simulation ONTology (TSONT).

Concepts of trajectory simulation and the relation among these concepts are

captured by using Web Ontology Language and presented as a domain model that is

available for reuse.

Using the formalized domain knowledge, reuse infrastructure specifications are

constructed to enable the reuse of software artifacts for two main programming

paradigms, which are object oriented programming and function oriented

programming. UML and application frameworks are used when constructing for

 v

object oriented paradigm. And data flow diagrams are used to formalize the design

of the function oriented simulations to compute the trajectory of munition. Object

oriented and function oriented platform independent designs are constructed to

specify the infrastructure using the knowledge captured in TSONT and made

available for reuse. With constructing two different designs for two different

paradigms by using the same domain model, evidence of knowledge reuse were

produced.

Three different case studies were carried out as infrastructure implementation. In

the first case study, an object oriented application framework was developed in

MATLAB for six degrees of freedom trajectory simulation using platform

independent object oriented design. This framework is reused to develop two

different simulations. Using the developed framework for two applications

produced evidence of code reuse. In the second case, a point mass trajectory

simulation framework is designed to be implemented in C# reusing the same

platform independent object oriented design. This case produced the evidence of

design reuse. In the last case study, a MATLAB Simulink Blockset is developed for

point mass unguided trajectory simulations and two different simulations are built

using the Blockset. By this case, we collected the evidence of code reuse also in

function oriented paradigm.

Keywords: Trajectory Simulation, Engineering Ontologies, Ontology Driven

Simulation, Simulation Reuse.

 vi

ÖZ

YÖRÜNGE BENZETİMİ İÇİN ONTOLOJİ TEMELLİ YENİDEN

KULLANIM ALTYAPISI

DURAK, Umut

Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Kemal İDER

Ortak Tez Yöneticisi: Doç.Dr. Halit OĞUZTÜZÜN

Haziran 2007, 241 sayfa

Bu çalışmada, yörünge benzetimi için ontoloji tabanlı bir yeniden kullanım altyapısı

geliştirilmiş, ontolojilerin ve alan mühendisliği yaklaşımlarının başarı ile

tamamlanmış yörünge benzetimi projelerinde elde edilen tecrübelerin aktarılması

için geliştirilmiş bir yöntem için kullanılması incelenmiştir. Bu bağlamda, yörünge

benzetimi mühimmatın uçuşu boyunca konumu, yönelimi ve açısal hızları gibi uçuş

parametrelerinin hesaplanması için kullanılan bir araç olarak tanımlanabilir.

Bu tez kapsamında, bir mühimmatın uçuş benzetiminin yapılabilmesi için gerekli

olan mühendislik bilgisi kullanılarak TSONT isimli bir ontoloji geliştirilmiştir. Ağ

Ontoloji Dili (Web Ontology Language) kullanılarak yörünge benzetimi kavramları

ve bu kavramlar arasındaki ilişkiler modellenerek, yeniden kullanılabilecek bir alan

modeli olarak kullanıcıya sunulmuştur.

Ontoloji biçiminde resmileştirilmiş alan bilgi birikimi kullanılarak, işlev yönelimli

programlama veya nesne yönelimli programlama paradigmaları kullanılarak

hazırlanan yazılım ürünlerinin yeniden kullanımına olanak sağlayacak bir yeniden

kullanım altyapısı tanımlanmıştır. Nesne yönelimli programlama paradigması için

geliştirilen yeniden kullanıp altyapısı için UML ve uygulama çerçeveleri

 vii

pratiklerinden yararlanılırken, işlev yönelimli programlama paradigması için

oluşturulan yeniden kullanım altyapısı için veri akış şemalarından yararlanılmıştır.

Bu iki paradigmanın yeniden kullanım altyapılarını tanımlamak için TSONT

kullanılarak platformdan bağımsız yazılım tasarımları geliştirilmiş ve yeniden

kullanıma sunulmuştur. Aynı alan bilgisi kullanarak iki farklı tasarım

geliştirilebilmesi, TSONT’ta modellenen bilgi birikiminin yeniden kullanılabildiği

konusunda elimize kanıtlar sunmuştur.

Yeniden kullanım altyapısının uygulaması için üç farklı çalışma yapılmıştır. İlk

çalışmada, platformdan bağımsız nesne yönelimli yazılım tasarımı temel alınarak

MATLAB ortamında altı serbestlik dereceli yörünge bezetimleri için bir uygulama

çerçevesi geliştirilmiştir. Daha sonra da bu çerçeve kullanılarak iki farklı benzetim

geliştirilmiştir. Yeniden kullanım altyapısının bir parçası olarak geliştirilen bu

uygulama çerçevesinin iki farklı benzetim geliştirmesinde kullanılması, altyapının

kod yeniden kullanımını desteklediğine dair bir kanıt olarak değerlendirilmiştir.

İkinci çalışmada gene aynı platformdan bağımsız nesne yönelimli yazılım tasarımı

kullanılara bu sefer nokta kütle yörünge benzetimi için ve farklı bir platformda, C#

dilinde geliştirilecek bir çerçeve tasarlanmıştır. Bu sayede de yeniden kullanım

altyapısının tasarım yeniden kullanımını desteklediğine dair kanıtlara ulaşılmıştır.

Son çalışmada işlev yönelimli yazılım tasarımı kullanılarak güdümsüz nokta kütle

yörünge bezetimi için bir MATLAB Simulink Blockset’i geliştirilmiştir. Daha sonra

da bu Blockset kullanılmak vasıtası ile iki farklı yörünge benzetimi geliştirilmiştir.

Bu sayede de geliştirilen yeniden kullanım altyapısının, işlev yönelimli

programlama paradigmasında da kod yeniden kullanımını desteklediği sonucuna

ulaşılmıştır.

Anahtar Kelimeler: Yörünge Benzetimi, Mühendislik Ontolojileri, Ontoloji Tabanlı

Benzetim, Simülasyon Yeniden Kullanımı.

 viii

To all who spent the best years of their lives on their doctoral studies…

 ix

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Assoc. Dr. Halit OĞUZTÜZÜN and

Prof Dr. S.Kemal İDER for their guidance and insight through out this study. Also

thanks to my previous supervisors Prof.Dr. Ömer A.ANLAĞAN and Prof.Dr.S.

Engin KILIÇ for their support and encouragement on this study.

This work has been supported by TÜBİTAK-SAGE. I would also like to convey my

thanks to the TÜBİTAK-SAGE Flight Dynamics Group members for their

assistance and understanding.

I would like to thank my colleagues Dr. Gökmen MAHMUTYAZICIOĞLU, Koray

DAYANÇ, Kadriye TİRYAKİ, Şamil KORKMAZ, Fatih GERİDÖNMEZ and

Koray KÜÇÜK for their support and for helpful discussions we have made

throughout the study.

My special thanks go to Emrah TUFAN for his endless support and friendship. I

would like to thank Rabia ÖZBAŞ for her valuable support on writing this

dissertation. I am grateful to Anıl BAŞARAN who reviewed each and every word

of this dissertation with a great patience. Thanks also go to all of my friends who

kept me motivated.

I send my special thanks to Özer ÖZDİKİŞ and Serdar GÜLER for their

cooperation and collaboration.

Finally, my deepest thanks go to my family who gave me the endless support and

love, which made this thesis possible.

 x

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ... vi

ACKNOWLEDGMENTS .. ix

TABLE OF CONTENTS... x

LIST OF TABLES .. xiv

LIST OF FIGURES ... xv

LIST OF SYMBOLS ..xxiii

CHAPTER

1. INTRODUCTION .. 1

1.1 Trajectory Simulation Domain: An Overview 1

1.1.1 What is Trajectory Simulation? ... 1

1.1.2 Purpose of Trajectory Simulations... 3

1.1.3 Essentials of Trajectory Simulation ... 7

1.2 Trajectory Simulation Reuse: Motivation ... 9

1.3 Trajectory Simulation Reuse Studies in Literature 11

1.4 Scope of the Research ... 12

1.5 Organization of Thesis .. 14

1.6 Publications ... 15

2. REUSE METHODOLOGY.. 17

2.1 Software Reuse: Overview.. 17

2.2 Domain Engineering.. 18

 xi

2.3 Ontology Based Domain Engineering... 21

2.4 Methodology Explained .. 22

3. ONTOLOGIES AND KNOWLEDGE SHARING 26

3.1 What is Ontology?... 26

3.2 Components of Ontology .. 27

3.3 Merits of Ontologies.. 27

3.4 Applications of Ontologies.. 28

3.5 Engineering Ontologies ... 29

3.6 Ontology Development ... 31

3.7 Principles of Building Ontology.. 33

3.8 How to Represent an Ontology? ... 33

3.9 DAVE-ML... 37

4. TRAJECTORY SIMULATION ONTOLOGY.. 41

4.1 TSONT: An Overview .. 41

4.2 Top Level TSONT... 42

4.3 TSONT Hierarchies... 44

4.3.1 Trajectory Simulation Objects ... 44

4.3.2 Trajectory Simulation Classes ... 46

4.3.3 Trajectory Simulation Functions.. 59

4.3.4 Trajectory Simulation Quantities ... 64

4.3.5 Trajectory Simulation Attributes.. 66

4.3.6 Trajectory Simulation Composite Data.. 66

4.4 TSONT Classes ... 68

4.5 TSONT Individuals ... 81

 xii

5. INFRASTRUCTURE SPECIFICATION AND IMPLEMENTATIONS.... 86

5.1 Object Oriented Infrastructure Specification and
Implementations ... 86

5.1.1 Object Oriented Application Frameworks 86

5.1.2 Platform Independent Trajectory Simulation Framework
Architecture.. 93

5.1.3 6 DOF Trajectory Simulation Framework in MATLAB 101

5.1.4 C# Point Mass Trajectory Simulation Framework..................... 139

5.2 Function Oriented Infrastructure Specification and
Implementation ... 142

5.2.1 Function Oriented Programming and Reuse 142

5.2.2 Platform Independent Point Mass Unguided Trajectory
Simulation Abstract Software Design.. 144

5.2.3 Design of PANTHERA.. 145

5.2.4 Notes on PANTHERA Implementation..................................... 150

5.2.5 Sample Blockset Implementations... 151

6. CONCLUSION... 154

REFERENCES... 162

APPENDICES

A. TSONT MUNITION TAXONOMY .. 175

B. SAMPLE CLASS DEFINITIONS FROM TSONT 181

C. A DAVE-ML EXAMPLE .. 194

D. SAMPLE CLASS DIAGRAMS FROM PLATFORM INDEPENDENT
FRAMEWORK ARCHITECTURE.. 201

E. TSONT TO MATSIX CODE TRACEABILITY....................................... 206

F. SAMPLE CLASS DIAGRAMS FROM MATSIX ARCHITECTURE..... 210

G. LYNX DATA ... 214

 xiii

H. LYNX SAMPLE RUNS... 219

I. PUMA DATA... 223

J. PUMA SAMPLE RUNS .. 225

K. SAMPLE DIAGRAMS AND CODE FORM C# POINT MASS
TRAJECTORY SIMULATION FRAMEWORK... 229

L. DATA FLOW DIAGRAMS... 231

M. TIGER AND JAGUAR DATA .. 233

N. COMPLETE REUSE INFRASTUCTURE .. 234

CURRICULUM VITAE .. 238

 xiv

LIST OF TABLES

TABLES

Table 1 Class Diagram Packages – Ontology Traceability.................................... 101

Table 2 ICAO Standard Atmosphere Table ... 115

Table 3 Acronyms of Ammunition Classification ... 180

Table 4 TSONT to MATSIX Code Traceability.. 206

Table 5 LYNX Data ... 214

Table 6 1st LYNX Sample Run Parameters ... 219

Table 7 2nd LYNX Sample Run Parameters .. 221

Table 8 PUMA Data... 223

Table 9 1st PUMA Sample Run Parameters... 225

Table 10 2nd PUMA Sample Run Parameters .. 227

Table 11 TIGER and JAGUAR Data... 233

 xv

LIST OF FIGURES

FIGURES

Figure 1 Hierarchy of Modeling and Simulation ... 2

Figure 2 EADSIM Physical Models .. 4

Figure 3 FMCAD – Flight Mechanics Computer Aided Design Software of
TUBİTAK - SAGE .. 5

Figure 4 Domain Engineering Methodology ... 24

Figure 5 Ontology Development Process [47]... 31

Figure 6 An Example DAVE-ML File Header .. 38

Figure 7 An Example DAVE-ML Function Definition ... 39

Figure 8 An Example DAVE-ML Variable Definition.. 40

Figure 9 TSONT Top Level Entities.. 42

Figure 10 Excerpt from TSONT Top Level... 43

Figure 11 Trajectory Simulation Object Hierarchy ... 45

Figure 12 Trajectory Simulation Class Hierarchy ... 46

Figure 13 Trajectory Simulation Phase Hierarchy... 47

Figure 14 Aerodynamics Model Hierarchy.. 49

Figure 15 Atmosphere Model Hierarchy ... 49

Figure 16 Grided Met Message in a Trajectory Simulation [89] 50

Figure 17 Computer Met Message [90] ... 51

Figure 18 CAS Model Hierarchy ... 52

Figure 19 A Portion of Dynamics Model Hierarchy.. 52

Figure 20 Earth Models [89] .. 53

 xvi

Figure 21 Earth Model Hierarchy .. 53

Figure 22 Guidance Model Hierarchy.. 54

Figure 23 Thruster Model Hierarchy ... 55

Figure 24 Solver Hierarchy.. 56

Figure 25 Parameter Hierarchy .. 57

Figure 26 Coordinate System Hierarchy.. 58

Figure 27 Trajectory Simulation Function Hierarchy.. 59

Figure 28 Compute Aerodynamic Forces Hierarchy ... 60

Figure 29 Compute Actual Fin Deflections Hierarchy .. 61

Figure 30 Compute Atmosphere Hierarchy ... 61

Figure 31 Compute Aerodynamics Hierarchy ... 62

Figure 32 Integrate Step Hierarchy.. 63

Figure 33 Update State and Derivatives Hierarchy.. 63

Figure 34 A Portion of Scalar Quantity Hierarchy .. 64

Figure 35 Force Vector Hierarchy ... 65

Figure 36 A Portion of Trajectory Simulation Record Hierarchy............................ 67

Figure 37 Tuple Hierarchy ... 67

Figure 38 Trajectory Simulation Class .. 68

Figure 39 Thrusted Phase... 69

Figure 40 Update Thrusted Phase State and Derivatives ... 70

Figure 41 Body Fixed Six DOF Dynamics Model .. 72

Figure 42 Body Fixed Six DOF Dynamics Model State ... 73

Figure 43 Angular Rates in Body Coordinate System... 73

Figure 44 Angular Velocity Column Matrix.. 74

 xvii

Figure 45 Body Coordinate System ... 75

Figure 46 Update Body Fixed 6 DOF Dynamics Model State and Derivatives 76

Figure 47 Compute Six DOF Aerodynamics Forces in Body Fixed Coordinate
System.. 79

Figure 48 Compute Six DOF Aerodynamics ... 80

Figure 49 BRL Six DOF Aerodynamics Record ... 81

Figure 50 Lynx Simulation .. 82

Figure 51 Lynx Free Flight Phase.. 83

Figure 52 Lynx Aerodynamics Model ... 84

Figure 53 Control Inversion in Frameworks [97]. ... 87

Figure 54 High-level Overview of the Relationship between an Application and the
Application Framework [97].. 88

Figure 55 Comparison between a Class Library and an Application Framework
[97]. .. 89

Figure 56 Template Method [97]. .. 89

Figure 57 Object Oriented Reuse Scenario.. 91

Figure 58 Trajectory Simulation Framework Architecture Project View................ 95

Figure 59 Top Level Class Diagram of Infrastructure Specification....................... 96

Figure 60 Physical Data Package... 97

Figure 61 Physical Data Class Diagram .. 98

Figure 62 Phase Class Diagram ... 99

Figure 63 A Portion of Trajectory Simulation Sequence Diagram........................ 100

Figure 64 MATSIX Project View.. 105

Figure 65 Aerodynamics Model of MATSIX Architecture................................... 106

Figure 66 Phases of MATSIX Architecture... 106

Figure 67 Munition Velocity Components - Side View .. 112

 xviii

Figure 68 Munition Velocity Components - Top View... 112

Figure 69 2-D Missile-Target Kinematics ... 120

Figure 70 Positive Control Surface Deflection Convention 126

Figure 71 LYNX Concept of Operation... 129

Figure 72 LYNX Simulation Class .. 129

Figure 73 Compute Trajectory Service of Trajectory Simulation Class................ 130

Figure 74 LYNX Classes ... 131

Figure 75 Plots from a Sample LYNX Simulation Run .. 132

Figure 76 PUMA Concept of Operation .. 133

Figure 77 PUMA Classes... 133

Figure 78 Plots from a Sample PUMA Simulation Run.. 134

Figure 79 LYNX Aerodynamics Class .. 135

Figure 80 LYNX CAS Class.. 135

Figure 81 LYNX Class .. 136

Figure 82 LYNX Launcher Phase Class .. 137

Figure 83 Initialize Service of LYNX Launcher Phase ... 138

Figure 84 PUMA Simulation Class.. 138

Figure 85 Trajectory Simulation Systems.. 140

Figure 86 Sample Code Snapshot From IDE... 141

Figure 87 Function Oriented Reuse Scenario .. 143

Figure 88 Compute Point Mass Phase Trajectory Data Flow Diagram................. 144

Figure 89 Some Blocks from Aerospace Blockset .. 145

Figure 90 Subsystem of PANTHERA ... 146

Figure 91 Compute Trajectory Subsystem... 147

 xix

Figure 92 Compute Point Mass Trajectory Block of PANTHERA....................... 148

Figure 93 Compute Point Mass Phase Trajectory Block 148

Figure 94 Compute Phase Point Mass State and Derivatives Block...................... 149

Figure 95 Update Point Mass Dynamic Model State and Derivatives Block 149

Figure 96 TIGER Block Diagram.. 152

Figure 97 JAGUAR Block Diagram.. 152

Figure 98 Range vs. Altitude for a Sample TIGER Run 153

Figure 99 TSONT Bomb Classification... 175

Figure 100 TSONT Missile Classification... 176

Figure 101 TSONT Ammunition Classification.. 179

Figure 102 TSONT Guided Phase ... 181

Figure 103 TSONT Propelled Phase.. 182

Figure 104 TSONT ICAO.. 183

Figure 105 TSONT METB3 .. 183

Figure 106 TSONT Four Canard Second Order CAS Model 184

Figure 107 TSONT Three DOF Dynamics Model .. 184

Figure 108 TSONT Curved Earth Model... 185

Figure 109 TSONT Constant G Body Fixed Gravity Model................................. 185

Figure 110 TSONT Guidance Model... 186

Figure 111 TSONT Termination Model .. 186

Figure 112 TSONT Solid Rocket Motor Model for Point Mass............................ 187

Figure 113 TSONT Euler Solver ... 187

Figure 114 TSONT Launcher Data.. 188

Figure 115 TSONT Point Mass Physicals ... 188

 xx

Figure 116 TSONT Point Mass Physicals Record... 189

Figure 117 TSONT Atmosphere Record ... 189

Figure 118 TSONT Three DOF Dynamics Models State Derivatives 190

Figure 119 TSONT Wind Record .. 190

Figure 120 TSONT Vectoral Quantity... 191

Figure 121 TSONT Thrust Moment in Body Coordinate System 191

Figure 122 TSONT Translational Velocity in Earth Coordinate System 192

Figure 123 TSONT Moment Column Matrix .. 192

Figure 124 TSONT Munition... 193

Figure 125 Platform Independent Coordinate System Classes 201

Figure 126 Some of Platform Independent Aerodynamics Model Classes 201

Figure 127 Platform Independent Atmosphere Model Classes.............................. 202

Figure 128 Platform Independent Dynamics Model Classes................................. 202

Figure 129 Platform Independent Earth Model Classes .. 203

Figure 130 Platform Independent Gravity Model Classes..................................... 203

Figure 131 Platform Independent Aerodynamics Data Classes............................. 204

Figure 132 Platform Independent Solver Classes .. 204

Figure 133 Platform Independent Munition Subsystem Classes 205

Figure 134 MATSIX Trajectory Simulation.. 210

Figure 135 MATSIX Coordinate System Classes ... 210

Figure 136 MATSIX Aerodynamics Model .. 211

Figure 137 MATSIX Atmosphere Model .. 211

Figure 138 MATSIX CAS Model.. 211

Figure 139 TSONT Earth Model ... 212

 xxi

Figure 140 MATSIX Launcher Model .. 212

Figure 141 MATSIX Rocket Motor Model ... 212

Figure 142 MATSIX Aerodynamics.. 213

Figure 143 MATSIX Trajectory Simulation Systems ... 213

Figure 144 1st LYNX Sample Run Trajectory Plot.. 219

Figure 1451st LYNX Sample Run Elevator Angle vs. Time Plot 220

Figure 146 1st LYNX Sample Run Elevator Angle of Attack vs. Time Plot 220

Figure 147 2nd LYNX Sample Run Trajectory Plot... 221

Figure 148 2nd LYNX Sample Run Elevator Angle vs. Time Plot 222

Figure 149 2nd LYNX Sample Run Elevator Angle of Attack vs. Time Plot 222

Figure 150 1st PUMA Sample Run Trajectory Plot ... 225

Figure 151 1st PUMA Sample Run Elevator Angle vs. Time Plot 226

Figure 152 1st PUMA Sample Run Angle of Attack vs. Time 226

Figure 153 2nd PUMA Sample Run Trajectory Plot .. 227

Figure 154 2nd PUMA Sample Run Elevator Angle vs. Time Plot........................ 228

Figure 155 2nd PUMA Sample Run Angle of Attack vs. Time Plot 228

Figure 156 Phase Hierarchy of C# Point Mass Trajectory Simulation Framework
.. 229

Figure 157 Aerodynamics Model Hierarchy of C# Point Mass Trajectory
Simulation Framework... 230

Figure 158 Automatically Generated Tube Record Code of C# Point Mass
Trajectory Simulation Framework ... 230

Figure 159 Top Level Data Flow Diagram for Function Oriented Point Mass
Trajectory Simulation Abstract Design.. 231

Figure 160 Compute Point Mass Trajectory Data Flow Diagram 231

Figure 161 Compute Point Mass Phase Trajectory Data Flow Diagram............... 232

 xxii

Figure 162 Phase State and Derivatives Data Flow Diagram................................ 232

 xxiii

LIST OF SYMBOLS

 A Maximum cross sectional area of the missile

� (,)C i j Orthonormal transformation matrix from frame j to i

, ,x y zC C C Aerodynamic force coefficients

, ,x y zC C C Aerodynamic moment coefficients

 d Diameter of the missile

D
�

 Drag force

iℑ Frame “i”

F
�

 Force vector

aF Aerodynamics force

tF Thrust force

g Gravitational acceleration

G
�

 Gravitational force

xI Axial moment of inertia

yI Transverse moment of inertia

L, M, N Components of moment acting on the missile in body

fixed reference frame

, ,a a aL M N Components of aerodynamics moment acting on the

missile in body fixed reference frame

, ,t t tL M N Components of thrust moment acting on the missile in

body fixed reference frame

 m Mass of the missile

 xxiv

 M Mach number

 p, q, r Components of angular velocity in the body fixed

reference frame with respect to the earth fixed reference

frame

 Qd Dynamic pressure

 u, v, w Body frame velocity components

vu
�

 Total velocity unit vector

V Magnitude of total velocity vector.

sV Speed of sound.

V
�

 Total velocity vector of the munition

x, y, z Axes of body fixed reference frame

 X, Y, Z Axes of earth fixed reference frame

Greek Letters

 α Angle of attack

 β Side slip angle

λ Line of site angle in vertical plane

φ Euler angle in roll plane

θ Euler angle in pitch plane

ψ Euler angle in yaw plane

 δa Effective aileron deflection

 δe Effective elevator deflection

 δr Effective rudder deflection

 δ1 ,δ2 ,δ3 ,δ4 Actual four control surface deflections

 δ1c ,δ2c ,δ3c ,δ4c Commanded four control surface deflections

 xxv

 γ Vertical plane flight path angle

η Horizontal plane flight path angle

 *γ� Commanded flight path angle in vertical plane

*η� Commanded flight path angle in horizontal plane

ρ Density

ω Column vector representation of angular velocity of the

munition in body frame with respect to earth fixed frame

ωn natural frequency of pitch and yaw autopilots

ωnr Natural frequency of the roll autopilot

ωncas Natural frequency of control actuation system dynamics

 ζ Damping ratio of the pitch and yaw autopilots

 ζr Damping ratio of the roll autopilot

 ζcas Damping ratio of the control actuation system dynamics

 1

CHAPTER 1

INTRODUCTION

1.1 Trajectory Simulation Domain: An Overview

In this chapter, first an overview of trajectory simulation domain is presented. Then

the motivation of this research is discussed before introducing the related literature.

Chapter concludes with the sections on scope of the research and the organization

of this thesis. One will also find the list of publications that presents the results of

this research at the end of this chapter.

1.1.1 What is Trajectory Simulation?

Computer simulation is defined as studying various models of real world systems

by numerical evaluation using software designed to imitate the systems operations.

Computerized models of real or proposed systems are constructed to conduct

numerical experiments to obtain a better understanding of the behavior of that

system for a given set of conditions [1]. System then can be defined as a

combination of elements or components interrelated to each other and to the whole

which act together to achieve a certain goal [2]. Model on the other hand is a

simplified representation of a system intended to enhance our ability to understand,

explain, change, preserve, predict and control the behavior of a system [3].

Trajectory simulation in this context is a computational tool to calculate the flight

path and other parameters of munition like its orientation or angular rates during its

operation. It is such a tool that implements models of various components of a

munition and their interfaces with each other and the environment. A time sequence

of the dynamic events describing the operation and the flight of a munition is the

result of any trajectory simulation run [4].

 2

Trajectory simulation is based on mathematical model of munition, and

environment which consists of equations that describe physical laws and logical

sequences. The physical laws in the trajectory simulation govern the motion of

munition and the effects of its subsystems. Basically equations of motion determine

the acceleration, velocity and position resulting from forces and moments due to

gravity, thrust and aerodynamics. There may also be other equations existing to

simulate subsystems such as control system.

Zipfel [5] defines hierarchy of modeling and simulation in military simulation at

four different levels: engineering, engagement, mission and campaign. Engineering

level provides the tools for design tradeoff at the subsystem and system level to

support the design, test and performance evaluations. In engagement level,

simulations are for determining the effectiveness of the systems as they interact in

terms of reliability, survivability, vulnerability and lethality. Mission level

simulations are to investigate how operational goals are achieved by incorporating

large number of cooperative and diverse players to the simulation. Lastly campaign

level simulations engage decision makers in broad scale conflicts like war games.

Figure 1 Hierarchy of Modeling and Simulation

 3

Through out this hierarchy depicted above in Figure 1 from bottom to up, trajectory

simulations are used for variety of purposes in a variety of ways. While different

applications require different simulation approaches, the level of sophistication of

simulations varies greatly depending on the application. These levels of

sophistication range from simple point mass models to a very detailed six-seven

degree of freedom models.

1.1.2 Purpose of Trajectory Simulations

The objectives of a trajectory simulation are greatly determined by the objectives of

the intended user. Intended user aims at obtaining an understanding of various

aspects of the performance of the munition for any of many different purposes

encountered in analysis, development, procurement and operation of munition using

trajectory simulations [4]. The U.S. Department of Defense (DoD), as an example

defines its aim for using simulations as evaluating weapon system requirements and

course of action to reduce the time line and the cost of the complex weapon

systems; conducting training; and for realistic mission rehearsal [6]. The objectives

of trajectory simulations are summarized in this section referring MIL-HDBK-1211

[4].

For the procurement of new weapon systems or the improvements in the current

weapon systems, firstly the requirements are established. In order to establish the

requirements for new weapon systems or the improvements of the current ones,

analysis are carried out to determine the number of each kind of weapons that will

be needed in the national arsenal. These analyses are done using models that cover a

spectrum from one-to-one engagements between a weapon and a target to many-to-

many engagements between multitudes of weapons of different kinds against a

multitude of targets of different kinds. By the operation of these models, particulars

of the battle are made visible so that the factors that drive the outcome can be

analyzed. Some of these factors are the quantities and locations of fire units, target

 4

search and detection system characteristics, weapon launch doctrines, fire unit

reaction times, number of munitions per unit fire, reload times, kill assessment

times, defended area coverage, munition fly out times, countermeasure capabilities,

and kill probabilities. All these efforts are for a better understanding of the

improvements needed in the existing systems and the requirements for new systems.

These analyses models, mostly named as war games, rely on munition trajectory

simulations for data on performance capabilities of various munitions under the

conditions and environments being analyzed. Again the level of detail of trajectory

simulation to be used to establish requirements varies depending on main interest

underlying the application of the simulation. For example, if the aim of the analysis

is to determine the defended area coverage, a simple trajectory simulation is

adequate; however, if the reaction of the missile seeker to specific countermeasures

is worked on, more detailed seeker simulations may be required. The Extended Air

Defense Simulation (EADSIM) of Teledyne Brown Engineering can be a good

example of this type. It is a many-on-many simulation of air, missile and space

warfare which is extensively used around the world in many agencies. Trajectory

simulations are carried out by its weapon model which is one of its physical models.

EADSIM physical models are given below in Figure 2 [7].

Figure 2 EADSIM Physical Models

 5

Trajectory simulations are extensively used starting from conceptual design to flight

tests throughout the development of weapon systems. Designers make use of

trajectory simulations starting from optimizing the external configuration to the

testing of a subsystem design or to the forecasting of a flight test results. Defense

Industry Research and Development Institute of Scientific and Technological

Research Council of Turkey (TÜBİTAK-SAGE) Flight Mechanics Computer Aided

Design Software, (FMCAD) which is given in Figure 3, is one of the examples of

this type [8].

Figure 3 FMCAD – Flight Mechanics Computer Aided Design Software of

TUBİTAK - SAGE

 6

Each new weapon system has unique characteristics that place different

requirements on simulations. Simulation capabilities also evolve within conjunction

with the development process of the system. The requirements for the simulation

realism through the lifecycle of the weapon system are not the same. During the

early development stage, for example in conceptual design, proof of concept and

source selection are dominant issues. In this phase relatively simple simulations are

mostly appropriate. During full-scale development, for example, when the system

performance under adverse combat conditions is analyzed, much more complex

simulated environments and ammunition response characteristics are needed.

Fleeman, on the other hand, in his book named “Tactical Missile Design” advices

the reader to use one to four degrees of freedom trajectory simulations through

conceptual design and six degrees of freedom trajectory simulations in the

preliminary design phase of weapon system development projects [10].

Military training is another important area where trajectory simulations are used.

Warriors of every rank make use of modeling and simulation to challenge their

skills at the tactical, operational, or strategic level through the use of realistic

synthetic environments. It is usually hard and costly to conduct exercises to engage

warriors without risking the injury, environmental damage or equipment damage.

Simulations usually enable conducting trainings in any arena, using weapons that

would be unsafe on conventional live ranges [6]. Trajectory simulations as a part of

training simulator systems, enables realistic practice and better assessment of crew

performance.

Trajectory simulations for training simulators are developed for munitions that are

fully developed and where all performance data is available. Furthermore, in most

of the cases real time operation requirements apply to trajectory simulations. Due to

these two reasons, trajectory simulations are built focusing on representing the

overall weapon performance rather than a detailed representation of subsystems.

Fundamentally, all fire control problems are variations of the same basic situation:

launching munition from a weapon station to hit a selected target [11]. In an

 7

engagement scenario, the target or the weapon station or both may be moving. For

all cases, fire control is the science of offsetting the direction of weapon fire from

the line of sight of the target in order to hit the target. Fire control systems make use

of trajectory simulations to estimate the trajectory of the munition at the specific

conditions of fire. Trajectory simulations may be used to generate tables or curve

fits that are used by fire control systems or they may be an integral part of fire

control systems and work online. NATO Armaments Ballistic Kernel (NABK) can

be pronounced as the contemporary example of the use of trajectory simulation for

fire control [12]. NABK is used as a part of software’s for generating firing tables to

be used manually or in fire control systems as look up tables, as well as onboard fire

control systems [13,14]. ASELSAN BAIKS2000 Fire Control System is one of the

examples that use NABK.

As in the case of training, the simulation used in fire control simulate the trajectory

of munitions that are fully developed and all the performance characteristics are

well known. Fast calculation, on the other hand, is one of the very important

requirements for the trajectory simulations that are used for fire control. So, the

models used for the fire control are extremely optimized for minimization of the

computation time.

1.1.3 Essentials of Trajectory Simulation

Trajectory simulations consist of number of models and numerical methods. The

mathematical model of the motion of the munition constructs the base of any

trajectory simulation. Subsystem and environment models aim at computing the

effect of subsystem behavior and environment on the motion of the munition. These

models are solved by making use of number of numerical methods, like numerical

solvers or interpolation algorithms. This section introduces the essentials of

trajectory simulations by basically using [4].

 8

Mathematical models that simulate the motion of the ammunition are based on

Newton’s and Euler’s laws. While Newton’s second law governs the translational

degrees of freedom, Euler’s law controls the attitude dynamics. Munition,

considered as a rigid body in space, is a dynamic system that experiences six

degrees of freedom [5]. Its motion in space is defined by six components of

velocity, three translational, three rotational. Three basic types of forces act on a

munition and are included on in almost all trajectory simulations; the forces of

gravity, propulsion and aerodynamics. In addition, the gyroscopic moments of

internal rotors are sometimes included in simulations. Due to different fidelity and

performance requirements, simplifications are made in trajectory simulations by

approximating or neglecting the degree of freedom. Some of common

simplifications are neglecting munition roll which results in a five degrees of

freedom model and approximating all three rotational degrees of freedom that

retains the three translational degrees of freedom, which is three degrees of freedom

models.

The environment interacts with ammunition in two basic ways. First, the flow of air

over the surface of the ammunition produces aerodynamic forces and moments.

Second, the ability of atmosphere or the sea to transmit electromagnetic, sonar etc.

signals impacts on the performance of the seeker. Trajectory simulations employ

tables or models of atmosphere to provide values of atmospheric properties at the

instantaneous altitude of the munition for each computational cycle.

Subsystem models incorporate subsystem behaviors to the munition motion. The

guidance models in trajectory simulation contain algorithms that model the

guidance functions; these include tracking the target and application of guidance

law. Propulsion models contain algorithms that model the burning of propellant in

terms of its effect on munitions flight by means of thrust force and inertial

properties. Weapon models incorporate the effects of weapon behavior with flights

initial conditions. Using fuze models, the characteristics of munitions fuze are

considered to terminate the trajectory.

 9

The vectors used in trajectory simulations represent factors such as forces,

moments, accelerations, velocities and positions. For the direction of a vector to

have a meaning, it must be described relative to some frame of reference. A vector

is described by its three components on axes of a coordinate system. Number of

coordinate systems may be used in a trajectory simulation. Coordinate systems are

characterized by the position of their origins, their angular orientations, and their

motions relative to inertial space. Common coordinate systems used in trajectory

simulations are earth coordinate system, body coordinate system, wind coordinate

system, guidance coordinate system, tracker coordinate system and target

coordinate system.

Differential equations that are used to compute the trajectory of a munition mostly

do not have closed form solutions [15]. These equations in trajectory simulations

are solved by making use of a number of numerical methods. Many numerical

integration methods are available to solve differential equations [16]. Selection of

appropriate numerical method is basically affected by the accuracy and performance

requirements of specific simulation. McCoy [17] in his book on exterior ballistics

states that first and second order methods are optimum solutions of the point mass

models where as for higher degree of freedom models which require higher

computational accuracy, higher order methods are suggested.

1.2 Trajectory Simulation Reuse: Motivation

Trajectory simulations, as they are being developed for any purpose discussed

before, are subject to different sets of requirements. While accuracy and the

performance requirements affect the model to be used, the platform and

programming language requirements affects the way they are developed.

Results of a flight simulation software methods survey that was carried out by

NASA among the number of facilities that are developing flight simulations showed

us that, there is wide variety of practices used in flight simulation development [18].

 10

It won’t be a mistake to extrapolate these results to trajectory simulation facilities.

Besides different practices among different facilities; single facility usually uses

number of different practices at the same time for different projects.

From our observations, it is a common practice in the industry that developments of

these simulations are carried out as isolated projects although they rely on the same

body of knowledge [19]. When the complexity of the modeled systems and

characteristics of the simulation domain is considered, the risk of failure in

trajectory simulation projects is considered to be high. Besides the risk of failure,

expenditure of intellectual labor to solve the similar problems of the same domain is

a waste. Another aspect is the quality of the products of each development. The

verification in trajectory simulation project requires great effort because the

verification of the mathematical models and developed software really demands

expert reviews and flight data which are expensive.

As other groups that develop trajectory simulations, Modeling and Simulation Team

of TÜBİTAK-SAGE suffers from the lack of any formal methodology and tools to

make use of past successful implementations of trajectory simulations.

Trajectory simulations are software systems. Then software reuse which actually

depends on a very simple idea, using the previously developed software assets in

developing new artifacts should also apply to trajectory simulation domain [20].

System development based on reusable software artifacts, in principle, should cost

less which, most of the times, means shorter schedules and contain fewer defects

because of the “tried and true” parts of which it is composed [21]. Applying

software reuse practice in trajectory simulation domain will then lead us to less

risky projects which results in high quality trajectory simulations.

The main motivation in this study is developing a reuse infrastructure that will

enable trajectory simulation developers to make use of the past successful trajectory

simulations in a structured way. Target reuse group of this study is the Modeling

and Simulation Team of TÜBİTAK-SAGE.

 11

1.3 Trajectory Simulation Reuse Studies in Literature

There have been number of efforts to make reuse work in the trajectory simulation

domain. In the early days of trajectory simulations, developed programs are tried to

be fit for multiple purposes. These general purpose trajectory simulations were

capable of simulating the flight of a wide range of munitions. These codes were

used by different end users rather than then being used as reusable assets in new

trajectory simulation projects. GTRAJ is one of the trajectory simulation examples

of this type. It is a general purpose trajectory simulation that supports point mass

and modified point mass trajectories. It is developed by Firing Tables and Ballistic

Branch of US ARDEC [22].

Besides, there are some studies in the literature for generic mathematical models to

be used in different trajectory simulations. These studies do not point a specific

implementation but introduce mathematical models to be used in variety of

implementations [23, 24, 25 and 26].

There are contemporary studies for developing reusable trajectory simulations.

These studies aim at developing reusable trajectory simulation software. NABK,

genSim, JSBSim and Aerospace Blockset are the major examples of this type.

NABK has been developed till mid 90’s as the shareable and reusable ballistic

kernel for fire control of cannon artillery, mortars and unguided rockets by various

NATO nations. It is implemented as an ADA95 class library which enables library

reuse of its operational processors. It supports point mass, modified point mass and

five degrees of freedom trajectories [12].

genSim is a generic six degrees of freedom simulation developed at Raytheon

Missile Systems. It is a library that includes all of the first level components

necessary to build missile simulations for everything from guided projectiles to long

range missiles. Program specific algorithm and hardware models can be attached

 12

plug-and-play to the genSim architecture. It also supports some interfaces to legacy

simulation code developed previously in FORTRAN or ADA [27].

JSBSim is an open source flight dynamics model in C++. It described as a batch

simulation application aimed at modeling flight dynamics and control of aircraft.

But the framework it provides is said to be handling modeling craft ranging from a

simple ball, to a missile, an aircraft, rocket, hybrid vehicle, a rotorcraft, and so on.

These crafts can feature different propulsion systems, ground reaction mechanisms,

aerodynamic characteristics, and control systems if there exists any [28].

The Aerospace Blockset enables its user to work on aerospace system design,

integration, and simulation by providing key aerospace subsystems and components

in the adaptable MATLAB Simulink block format. It has number of reusable blocks

from environmental models to equations of motion, from gain scheduling to

animation. Blockset supports it users by the core components to assemble a broad

range of large aerospace system simulations rapidly and efficiently. Trajectory

simulation is one of the application areas that Aerospace Blockset is used for [29].

1.4 Scope of the Research

In all trajectory reuse studies in literature, the aim has been either to develop a code

that can be reused by a number of projects or to develop a program that can be used

by users of different agendas. Due to the diverse requirements different trajectory

simulation projects that was discussed in the previous sections, there happens to be

no single trajectory simulation that will fit all the requirements of different users

who need a product which will facilitate one of engineering, engagement , mission

or campaign level modeling and simulation. Each study mentioned in the previous

section has its intended user group with a specific problem set and implementation

platform. As an example, while NABK has been a strong reuse candidate for fire

control systems development projects, Aerospace Blockset targets aerospace system

designers. While it is hard to use Aerospace Blockset for a distributed aircraft

 13

simulator projects, it won’t be a good choice to use NABK for a weapon system

design.

This research aims far more than code or library reuse that will inherently be

platform and problem family specific. An infrastructure that will enable knowledge,

design, code and library reuse is targeted. To develop a trajectory simulation,

domain knowledge is transformed to a software product by using the methods and

tools of software engineering. During this transformation it is aimed at enabling

reuse in different abstraction levels starting from domain knowledge through

platform independent design, platform specific design, and code.

In this research, we investigated the use of ontologies and domain engineering

practices to develop a formalized methodology to make use of experience and

knowledge leveraged from the past trajectory simulation projects. Formal

specification of trajectory simulation domain is developed as a domain model in the

form of ontology called Trajectory Simulation ONTology (TSONT) [30, 31]. This

ontology of trajectory simulation domain, TSONT, made domain knowledge

available for either automatic or manual transformation to a software design.

TSONT is then used to develop object oriented and function oriented platform

independent software designs. Other than domain knowledge that was made

available to reuse in the form of ontology, these designs are developed to be the

parts of reuse infrastructure. Every simulation built by transforming these designs is

regarded as indispensable parts of reuse infrastructure. An object oriented

framework for six degrees of freedom guided missile simulation is developed by

transforming the object oriented platform independent design. A guided surface to

surface rocket and a guided bomb simulation were built by framework completion

[19]. A point mass MATLAB Simulink Blockset was developed using the function

oriented platform independent design and number of simulations were built using

this Blockset to propose a methodology and a set of reuse artifacts for function

oriented paradigm.

 14

Collaborative research has been carried out on automatic transformation of domain

ontology to software specifications. In two different studies, two different

programming paradigms were targeted. For function oriented software

development, we succeeded automatic generation of MATLAB Simulink block

definitions from TSONT [32]. For object oriented paradigm, we have been able to

produce an abstract software design in the form of a UML class diagram from

TSONT using automatic means [33].

1.5 Organization of Thesis

The thesis comprises six chapters. In Chapter 1, a brief overview of the trajectory

simulation domain is presented with the scope and the motivation of this thesis.

In Chapter 2, ontology based reuse methodology developed is discussed. First, the

basics of software reuse are presented with some historical perspective. Then,

domain engineering is explained as the practice of software reuse. Ontology based

approach to domain engineering is given as the contemporary approach to domain

engineering. And the chapter is concluded with the section which discusses how the

ontology driven domain engineering is structured in this thesis.

In Chapter 3, ontology concept as a means of knowledge sharing is explained. After

presenting the definition of ontology in computer science, components of ontology

and the merits of ontologies are given. Applications of ontologies in general and in

engineering domain are discussed by referring the related literature. After

presenting the guidelines of building ontologies, we presented the way TSONT is

built. In the last section of this chapter, we explain the way we make benefit of

Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) effort of

National Aeronautics and Space Administration (NASA) for capturing the

mathematical models of the domain.

 15

In Chapter 4, TSONT is presented as the domain model of ontology based reuse

infrastructure that was developed in this research. After briefing the ontology, we

introduce the top level entities of the ontology followed by the hierarchies of the

domain captured in TSONT. Then the way we captured the domain entities of

trajectory simulation as OWL (Web Ontology Language) classes of TSONT is

presented. This chapter is concluded with the discussion about the individuals of

TSONT.

In Chapter 5, the specification and the implementation ontology based reuse

infrastructure is presented. This section is structured considering two programming

paradigms namely object oriented programming and function oriented

programming. Both the specification and the implementation of the reuse

infrastructure are discussed for these two different paradigms. Case studies are

presented.

In Chapter 6, the conclusions emerging from the present work are discussed. We

first discussed TSONT effort as one of the first attempts on formalizing the

mechanical engineering knowledge with the importance of ontologies in knowledge

sharing in engineering domain. Then we evaluated the ontology based trajectory

simulation reuse infrastructure. The advantages of this ontology based approach

over the past trajectory simulation reuse attempts are discussed. Finally, some

future work recommendations are made.

1.6 Publications

The material in this thesis has been previously presented in the following

publications.

• Durak, U., Anlağan, Ö., Oğuztüzün, H., Yeniden Kullanılabilir Uçuş

Benzetimi Mimarisi İçin Yol Haritası, SAVTEK 2004, Ankara, 2004.

 16

• Durak, U., Oğuztüzün, H., Mahmutyazıcıoğlu, G., Domain Analysis for

Reusable Trajectory Simulation, Euro-SIW 2005, Toulouse, FRANCE,

2005.

• Durak, U., Oğuztüzün, H., İder, K., An Ontology for Trajectory Simulation,

WinterSim06, Monterey, CA, USA, 2006.

• Durak, U., Oğuztüzün, H., İder, S.K., Ontology Based Trajectory Simulation

Framework, Journal of Computing and Information Science in Engineering

-ACCEPTED-

• Durak, U., Güler, S., Oğuztüzün, H., and İder, K., An Exercise In Ontology

Driven Trajectory Simulation with MATLAB Simulink, 21st EUROPEAN

Conference on Modelling and Simulation, Prague, Czech Republic, 2007.

 17

CHAPTER 2

REUSE METHODOLOGY

In this chapter, ontology based reuse methodology developed is discussed. First, the

basics of software reuse are presented with some historical perspective. Then,

domain engineering is explained as the practice of software reuse. Ontology based

approach to domain engineering is given as the contemporary approach to domain

engineering. Eventually, chapter is concluded with a section that discusses how the

ontology driven domain engineering is structured in this thesis.

2.1 Software Reuse: Overview

Among many other definitions, software reuse is defined in Reuse Based Software

Engineering book of Mili et al. [34] as the process whereby an organization defines

a set of systematic operating procedures to specify, produce, classify, retrieve, and

adopt software artifacts for the purpose of using them in its development activities.

As explained by Arango [35], although the concept of software reusability can be

traced back to the beginning of computer programming, it is pronounced as a

software engineering problem at the 1969 NATO Conference [36]. Little progress

was reported until mid to late 1970’s, when some organizations put to a test the

promise of productivity through reusability. The Workshop on Reusability in

Programming, in 1983, was a milestone in the process. Early research focused on

methods and mechanisms to perform reuse, on representation of reusable

components, and on organization of repositories of components.

Three main motivations of software reuse are gains in productivity, quality and

development schedules [34]. By reusing existing assets, we save the manpower

required to develop them again. When an asset is developed for reuse, larger

 18

investment is allocated to its quality and the quality increases by the feed backs of a

larger user base. And lastly, using reusable assets not only results in a decrease in

manpower but also it shortens time to market.

In the past, reuse was understood as using generalized repositories of “components”

and “parts” which can be accessed by many kinds of applications. It took several

years of failures characterized by low levels of reuse to make it clear that this

approach could not succeed. Then, the domain concept is defined and the success of

reuse is related to the use of artifacts in the context of a domain. Domain is defined

as the area in which an organization does business [37].

As Mili et al. presented, in recent years, however, it was also recognized that the

mere creation of repositories of domain oriented assets was not enough to ensure

reuse success. For a domain, it is also necessary to design a generic architecture,

known as the domain architecture, of systems in that domain. With the

identification of domain architecture, it becomes possible to develop systematically

reusable assets that fit the architecture via a suitable interconnection mechanism.

Reusable assets can be listed as compiled libraries, source code, requirements

specifications, designs, test data, documentation, and software architectures [34].

2.2 Domain Engineering

 Arango says that there exists a gap between the kinds and form of the knowledge

available about problem domains and the content and form of the items of

information that can be reused in software construction. Knowledge about the

problem domain is often implicit and informal. While reusable information is made

available to the software developer, it must be represented explicitly and formally.

The term reuse infrastructure refers to the information that is made available to the

software developer, together with auxiliary information needed to use and

manipulate it. The process of developing a reuse infrastructure from problem

domain is called domain engineering [35].

 19

Domain engineering is defined as a process for building reusable assets, which

includes activities for analyzing the domain, identifying common reusable assets,

and populating them in the repository [38]. It is presented as an activity of a

synthesis process that creates and supports a standardized application engineering

process and products in a business area [39]. In this context, application engineering

is the process that organizes and directs resources for producing and supporting a

system by applying the reuse paradigm. The process includes activities for

employing reusable assets from a repository.

It is stated that, domain engineering is carried out to addresses knowledge and asset

development, capture, and evolution for a family of systems. It is defined as the

process of identifying and recording commonalities and variables in a domain. It

aims to create reusable assets and new systems using that information. Domain

engineering activities create a "space" of solutions from which application

engineers will later draw point solutions. A domain, in this context, is an application

area containing systems that share design decisions. Domains can be classified

depending on functional capabilities, such as navigation or stores management, or

on cross functional areas; e.g., user interfaces, reliability, and security [40].

Arango and Prieto-Diaz explain domain engineering practice in [41] as follows.

They state that domain engineering is fundamentally composed of three activities:

domain analysis, infrastructure specification and infrastructure implementation.

Domain analysis is the identification, acquisition and evolution of reusable

information on a problem domain to be reused in software specification and

construction. The purpose of domain analysis is to construct the model of the

problem domain. Then domain model will then serve as:

• Unified resource of reference to solve ambiguities that may arise during the

analysis of the problems or implementation of reusable components

• Repository of shared knowledge for communication and orientation

 20

• Specification of reusable components to the application developer.

It is claimed that a domain model is not directly useful for operational reuse. There

exists a gap between the kinds and the forms of domain knowledge in a domain

model and the content and form of software assets that can be reused in software

construction. To bring this gap, a reuse infrastructure is built.

Infrastructure specification is then defined as the selection and organization of

reusable information in the model to fit the patterns of reuse in the environment of

reuser. As a result, an architecture for reusable information is specified. For

example, a library of programs, a database scheme. The infrastructure specification,

together with the semantics captured by the domain model, is input to the

infrastructure implementation step that actually produces and tests the components.

It is said that infrastructure implementation is the design and encoding of the pieces

resulting from the specification process using particular representations required by

the technology or reused: for example encoding the specified programs using

programming languages.

Among many research activities on domain engineering [42, 43], CAMP (Common

ADA Missile Packages) was the first and most famous one [44]. CAMP Project was

the first explicitly reported domain engineering experience. In this project eleven

tactical missile systems were analyzed, several common components were

identified, and grouped by their functionality. A set of general design templates was

derived in the form of Ada generics and later integrated in a design support system,

the Ada Missile Parts Engineering Expert (AMPEE). AMPEE aimed to support

component identification, component selection, and component construction [45].

There are several early efforts described in literature (see [46, 34] for a review) to

define domain engineering methods from 90’s, such as Feature-Oriented Domain

Engineering (FODA), Domain Analysis and Reuse Environment (DARE), Reuse

Library Process Model (RPLM), Organisation Domain Modeling (ODM) and

 21

Domain Specific Software Architecture (DSSA). Among these, we focused on

ontology based domain engineering approaches [47, 48, 49 and 50]. In this research

we defined a derivative of ontology driven domain engineering methodology which

we used to develop trajectory simulation reuse infrastructure [31, 32].

2.3 Ontology Based Domain Engineering

Neighbors defines the domain analysis as “the activity of identifying the objects and

operations of a class or similar systems in a particular problem domain” [51]. From

Webster, domain is “field or sphere of activity or influence” [52]. From the

software engineering point of view, domain is defined as the application area of the

field for which the software systems are developed [45]. Examples include traffic

management systems, management information systems or command and control

systems. Domains can be broad like manufacturing or narrow like arithmetic

operations. Domains on the other hand are limited by their boundaries which define

their scope. The borders of a domain define what objects, operation and relations

belong to the domain.

Diaz defines domain analysis as a process where information used in developing

software systems is identified, captured, structured, and organized for further reuse

[45]. More specifically, domain analysis is said to be dealing with the development

and evolution of an information infrastructure to support reuse. The inputs of this

process are a domain analysis methodology, custom-built for each specific domain.

And output of domain analysis is a domain model. Domain models range in level of

complexity and expressive power, from a simple domain taxonomy to functional

models to domain languages [41].

Diaz says that as the knowledge about the domain is collected during domain

analysis, the problem is representing this knowledge for ease of human

understanding and machine processability [45]. Ontology approach to knowledge

representation is utilized in this research to solve this problem.

 22

According to Uschold [53], “An ontology may take a variety of forms, but

necessarily it will include a vocabulary of terms, and some specification of their

meaning. This includes definitions and an indication of how concepts are inter-

related which collectively impose a structure on the domain and constrain the

possible interpretations of terms”. Thus, ontology consists of concepts and relations,

and their definitions, properties and constraints expressed as axioms. An ontology is

not only a hierarchy of terms, but a fully axiomatized theory about the domain [54].

In the domain engineering, it is said that ontologies can act both as a domain model

and a component in the repository [48]. Ontology based domain engineering is

interested in the use of an ontology as a domain model and how to derive

components from it.

The advantages of an ontology based approach to domain engineering are discussed

in detail by Falbo et al. in his paper “An Ontological Approach to Domain

Engineering” [47]. Briefly, ontology enables us to build a domain model

independent from the software technology and it gives a strong tool to capture the

domain conceptualization.

2.4 Methodology Explained

In our approach to trajectory simulation development with reuse, we defined an

original domain engineering methodology. We focused on two basic programming

paradigms, namely object oriented programming and function oriented

programming. For both, we envisioned to make use of model driven technologies.

Trajectory Simulation ONTology (TSONT) is treated as the domain model. It is

being developed to be a reusable knowledge library on trajectory simulations. The

basic idea behind developing an ontology as the domain model of the trajectory

simulation domain is, first, to establish a common vocabulary that is agreed among

the people working on trajectory simulations. Another main consideration is to

 23

create a backbone for systematization of knowledge on how to build a trajectory

simulation [55].

In the last decade ontologies have been used for variety of engineering applications

[56, 57, 58, 59, 60, 61, and 62]. In this research, we aim to use the ontology as a

basis for constructing trajectory simulation applications. Potential benefits of this

approach include documentation, maintenance, reliability, knowledge reuse and

interoperability of the developed applications.

For object oriented programming, we turned to software frameworks to realize the

notion of infrastructure in our domain engineering practice. Johnson and Foote state

that a framework is a set of classes that embodies an abstract design for solutions to

a family of related problems, and supports reuse at a larger granularity than classes

[63]. As noted by Fayad, frameworks enhance modularity by encapsulating

implementation details behind their interfaces and these interfaces enhance the

reusability by defining generic components that can be reapplied to create new

applications [64]. They will be discussed in detail in proceeding sections.

We find it favorable to construct new simulations by framework completion,

provided, of course, a suitable framework is available. Otherwise one needs first to

develop a framework, and then complete it for the particular application. This

approach is expected to create a collection of related frameworks addressing

different platforms and problem families.

We firstly build a platform independent framework architecture, which can be

transformed to some platform and problem family specific framework architectures.

We propose to design the platform independent framework architecture on the

domain model, so that it is traceable to the domain knowledge represented in the

ontology. We use the ontology as a guide for the specification of static structure of

the framework, behavior model and definition of the interfaces of the framework.

The taxonomy of classes of TSONT is reflected in the inheritance hierarchy of the

abstract software design. Abstract behavior model is based on the dependency

 24

relations of the functions of TSONT, and finally the framework interfaces are

designed based on the function specifications of TSONT. This is a testimony to

knowledge reuse.

Figure 4 Domain Engineering Methodology

Together with the framework architecture that targets a specific platform and

problem family, this platform independent framework architecture is regarded as

the outcome of the infrastructure specification activity of domain engineering. The

 25

platform dependent and problem family specific frameworks are then the outcome

of infrastructure implementation. This is a testimony to design reuse. Domain

engineering methodology developed is depicted below in Figure 4.

As presented above in Figure 4, for function oriented programming, reuse

infrastructure specification is built again using the knowledge captured in TSONT.

Data flow diagrams are treated as the tools for abstract function oriented design. As

presented in the famous software engineering book of Sommerville, data flow

diagrams are concerned with designing a sequence of functional transformations

that convert system inputs into the required outputs. These diagrams illustrate how

data flows through a system and how the output is derived from the input through a

sequence of functional transformations [65].

Different from our object oriented scenario, we do not propose a single abstract

design that covers whole domain. Rather we propose a collection of data flow

diagrams for different problem sets, like, point mass data flow diagrams that we

will present in the following sections or a modified point mass projectile simulation

data flow diagrams. This collection of abstract designs will be the reuse assets for

the future projects. Platform specific design will be the refinement of these abstract

designs. Reuse infrastructure is implemented in the form of function libraries or

blocksets using the platform specific designs for specific trajectory simulation

applications. Applications are suggested to be developed using the function libraries

or reusable blocks developed as the infrastructure.

In this chapter, after introducing the literature on software reuse, domain

engineering and ontology based domain engineering, ontology based reuse

methodology developed is presented. Next chapter will introduce some background

on ontologies and knowledge sharing.

 26

CHAPTER 3

ONTOLOGIES AND KNOWLEDGE SHARING

In this chapter, ontology concept as a means of knowledge sharing is explained.

After briefing the definition of the ontology, components, merits and applications of

ontologies are explained. Engineering applications of ontologies are referred to

before discussing the principles that are taken into account when constructing

TSONT. In the last section, we explain way we make benefit of Dynamic

Aerospace Vehicle Exchange Markup Language (DAVE-ML) effort of National

Aeronautics and Space Administration (NASA) for capturing the mathematical

models of the domain.

3.1 What is Ontology?

The term ontology is borrowed from philosophy, where it has the meaning of a

systematic explanation of Existence. In the Artificial Intelligence field, first Neches

defined ontology as “An ontology defines the basic terms and relations comprising

the vocabulary of a topic area as well as the rules for combining terms and relations

to define extensions to the vocabulary” [66]. Later in 1993, Gruber’s definition

“Ontology is explicit specification of conceptualization” [68] became famous.

Struder and colleagues explained Gruber’s definition. They claimed that

conceptualization refers to an abstract model of some phenomenon in the world

which identifies the relevant concepts of that phenomenon and they explained the

word “explicit” as type of concepts used, and the constraints on their use are

explicitly defined [69].

 27

3.2 Components of Ontology

According to Gruber [70], knowledge in ontologies can be formalized using five

kinds of components: concepts, relations, functions, axioms and instances.

Concepts can be anything about which something is said, and therefore, can be a

description of a task, function, action, strategy etc. Taxonomies are widely used to

organize the ontological knowledge in domain using generalization/specialization

relationship through simple/multiple inheritance. Relationships represent a type of

interaction between the concepts of the domain and functions can be regarded as a

special kind of relation. Axioms on the other hand are used to model sentences that

are always true. They are added to ontology for several purposes, such as

constraining the information contained in the ontology, verifying its correctness or

deducting new information. Instances are the terms that are used to represent the

elements of the domain. They actually represent the elements of the concepts [71].

3.3 Merits of Ontologies

Mizoguchi in his paper “Ontological Engineering: Foundations of next generation

knowledge processing” [55] lists the merits of the ontology as follows:

1. A common vocabulary: Ontology creates a vocabulary agreed among the

people involved to describe of the target world.

2. Explication of what has been often left implicit: Knowledge bases are

usually built based on an implicit conceptualization possessed by the

builder. This implicitness is one of the main causes of preventing knowledge

sharing and reuse. So the explicit representation of assumptions and

conceptualization in an ontology is a contribution to knowledge reuse and

sharing.

 28

3. Systematization of knowledge: An ontology constructs a backbone for the

systematization of knowledge by providing a well established

vocabulary/concepts that people use to describe phenomena, theories and

target things under consideration.

4. Standardization: Ontology constructs a standardization of shared

terms/concepts that enables a communication among human and computer

agents.

5. Meta-model functionality: To construct an abstraction of the target in a

model, ontology provides us concepts and relations among them to be used

as building blocks of the model. This building blocks can be regarded as a

meta-model.

3.4 Applications of Ontologies

In “An Ontological Approach to Domain Engineering” paper [47], applications of

ontologies are classified in four main categories: Neutral authoring, ontology as

specification, common access to information and ontology-based search.

Falbo et al. in the same paper explain each application group as follows [47]: “An

ontology is developed in a single language and it is translated into different formats

and used in multiple target applications.” This enables neutral authoring. “An

ontology of a given domain is created and it provides a vocabulary for specifying

requirements for one or more target applications. In this case ontology can be

viewed as domain model. The ontology is used as a basis for specification and

development for domain applications, allowing knowledge reuse.” This can be

classified as the use of ontology as a specification. For common access to

information: “Ontology is used to enable multiple target applications (or human) to

have access to heterogeneous sources of information that are expressed using

diverse vocabulary or inaccessible format ”. Ontology-based search is explained as:

 29

“An ontology is used for searching an information repository for desired resources,

improving precision and reducing the overall amount of time spent searching.”

Here among the applications of ontologies, ontology as specification is the way that

this research is focused on. The basic idea behind ontology as specification is to

author an ontology which models the application domain, and provides a

vocabulary for specifying the requirement for one or more target applications. The

richer the ontology is in expressing the meaning, the less it has the potential for

ambiguity in creating requirements. The software is based on the ontology, which

thus plays an important role in the development of the software. The benefits of this

approach include documentation, maintenance, reliability and knowledge reuse.

3.5 Engineering Ontologies

In this research, a large scale engineering ontology was developed. The first efforts

on developing engineering ontologies were in 90’s. Ontologies in engineering

domain have been developed for various purposes including specifying engineering

information systems, integration of engineering applications, supporting

engineering design and forming a conceptual foundation for engineering ontologies.

The PhysSys was one of the first engineering ontologies. It is based upon system

dynamics theory that is practiced in engineering modeling, simulation and design.

The PhysSys was developed to formally define how design engineers or the end

users of Computer Aided Engineering (CAE) systems understand their domain and

to provide a foundation for the conceptual schema for data structuring in

engineering databases, libraries and other CAE information systems [56, 57]. The

ideas formalized in PhysSys provided a base for the development of a library of

reusable models for engineering and design. This library was developed in the

European Union ESPRIT-II program Open Library for Models of mEchatronic

Components (OLMECO). The aim of the OLMECO project was to develop a

modeling and simulation environment for industrial applications [58].

 30

The KACTUS project targeted at the development of methods and tools for the

reuse of knowledge about technical systems during their life-cycle. The project was

application-driven: systems were being developed in the domains of preliminary-

ship design, oil-production processes, and electrical networks [59].

Mihai Ciocoiu and his colleagues attacked the growing complexity of

manufacturing information and the increasing need to exchange this information

among various software applications like CAD, performance analysis,

manufacturability analysis, product data management system, process planner,

production management system, scheduler, and a simulation system. As a solution

to this problem, they made use of taxonomies or ontologies of manufacturing

concepts and terms, because ontologies provide a way to make explicit the

semantics (i.e., the meaning) for the concepts used, rather than relying just on the

syntax used to encode those concepts [60].

In MIT Artificial Intelligence Laboratory, a research was carried out aiming to

develop a large scale ontology for the mechanical engineering world to support a

wide range of tasks including analysis and design. Common patterns of behavior are

tried to be identified and labeled with the terms that mechanical engineers use to

talk about mechanical devices [61].

In one of the early efforts of ontology development for engineering domain, Gruber

and Olsen described an ontology namely EngMath for mathematical modeling in

engineering. This ontology builds a conceptualization on abstract algebra and

measurement theory. It includes scalar, vector, and tensor quantities, physical

dimensions, units of measure, functions of quantities, and dimensionless quantities.

EngMath is designed for knowledge sharing purposes. It was aimed to be used as a

communication language among cooperating engineering agents, and as a

foundation for other engineering ontologies [62].

 31

3.6 Ontology Development

Currently, ontology development is a craft rather than a science. It is still a research

area. Falbo et al. defines the ontology development process as set of activities

consisting purpose identification and requirements specification, evaluation and

documentation, integration existing ontologies, ontology capture, ontology

formalization as in Figure 5 [47].

Figure 5 Ontology Development Process [47]

During purpose identification and requirements specification, the purpose of the

ontology and its intended use is identified.

Ontology capture is to capture the domain conceptualization. The relevant domain

entities (e.g. concepts, relations, properties) are identified and organized in this step.

Mostly a model represented in a graphical language is used to facilitate the

communication with the domain experts.

Ontology formalization aims to explicitly represent the conceptualization in a

formal language. This language is used to represent the elements that model the

existing domain entities in a precise and unambiguous way.

 32

It is common practice to integrate the developed ontology with existing ones to use

previously established conceptualization during ontology capture and/or

formalization.

Ontologies are checked whether the ontology satisfies the specification

requirements or not in the evaluation step. Ontologies are evaluated against the

ontology competence and some design quality criteria.

Purpose, requirements, textual description of conceptualization, and the formal

ontology must be documented, including. This activity is done in the documentation

step.

TSONT is being developed considering the guidelines Fablo defined. The purpose

of the TSONT was identified in the proposal of this research. Protégé is used as the

ontology development environment. It is a tool developed by Stanford University. It

enables a graphical environment to facilitate the communication with the domain

experts besides enabling an integrated formalization of the captured

conceptualization while constructing graphical representation of ontology [67].

TSONT is formalized using Web Ontology Language which will be presented in the

proceeding sections. We did not integrate TSONT with other ontologies but we

aligned TSONT using Suggested Upper Merged Ontology (SUMO) of IEEE in

order to enable painless integration with other mid level ontologies like TSONT.

This thesis is being regarded as the documentation of ontology developed. We do

not regard the ontology development process to be completed. TSONT is planned to

be continuously maintained and enhanced as the reuse infrastructure is used. With

the experience gained by new projects, it will become more mature and more

complete.

 33

3.7 Principles of Building Ontology

Ontologies are actually designed. One chooses how to represent something in an

ontology by making design decisions. Following guidelines defined by Gruber [68]

was taken into account when developing TSONT.

Clarity: To make TSONT effectively communicate the intended meaning of defined

terms, definitions are stated objectively and independent of social or computational

context.

Coherence: To make TSONT coherent, the definitions are checked against logical

consistency.

Extendibility: TSONT is designed to encourage the use of the shared vocabulary.

One can either expand TSONT or add individuals to define new terms for special

uses based on the existing vocabulary.

Minimal encoding bias: The conceptualization in TSONT is specified at the

knowledge level. We do not use any particular symbol-level encoding.

Minimal ontological commitment: TSONT has ontological commitment on

trajectory simulation developments that is sufficient to support trajectory simulation

development knowledge sharing activities.

3.8 How to Represent an Ontology?

Early attempts on representation systems resulted to several languages. Some

examples are Ontolingua, OKBC, OCML, Loom, and FLogic. Contemporary

studies in representation systems resulted to web languages like OIL, DAML,

DAML+OIL and OWL for building ontologies [71].

 34

Web Ontology Language (OWL) was developed to be the standardized and broadly

acceptable ontology language of the Semantic Web by World Wide Web

Consortium (W3C) Web Ontology Working Group [72, 73, 74]. Considering the

current support to this language in terms of tools and publications, OWL is selected

as the language to represent TSONT.

The requirements of OWL were well-defined syntax, well-defined semantics,

efficient reasoning support, sufficient expressive power and convenience of

expressions. The requirement of a well defined syntax is necessary condition for

machine processing of information. Formal semantics describes precisely the

meaning of knowledge. “Precisely” here means that the semantics is not subjective

and it is open to different interpretations by different people or machines.

Reasoning support on the other hand is necessary to check the consistency of the

ontology and knowledge. These requirements leaded W3C’s Web Ontology

Working Group to define a language as powerful as a combination of Resource

Description Framework (RDF) Schema with a full logic [75]. They then defined

OWL as three sub languages, each of which is geared towards fulfilling different of

these requirements:

OWL Full: The entire language is called OWL Full. It uses all the OWL languages

primitives.

OWL DL: For computational efficiency, OWL DL (short for: Description Logic) is

a sublanguage of OWL Full is defined. It restricts the way in which the constructors

from OWL and RDF can be used.

OWL Lite: With further restrictions, OWL DL is limited to a subset of the language

constructors. For example, OWL Lite excludes enumerated classes, disjointness

statements and arbitrary cardinality (among others). The advantage of this is a

language that, it is easier to grasp for users and easier to implement for tool

builders. The disadvantage is, as one would expect, its restricted expressivity.

 35

OWL is built on RDF and RDF Schema (RDFS) and uses RDF’s Extensible

Markup Language (XML) syntax. OWL documents are usually called OWL

Ontologies. They are also RDF documents.

An OWL ontology starts with a collection of assertion for housekeeping purposes.

The assertions are grouped under owl:Ontology element which contains comments,

version control and inclusions of other ontologies. For Example:

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology</rdfs:comment>

<owl:priorVersion rdf:resource="http://www.mydomain.org/spacecraft"/>

<owl:imports rdf:resource="http://www.mydomain.org/aircraft"/>

<rdfs:label>Spacecraft Ontology</rdfs:label>

</owl:Ontology>

Classes are defined by using owl:Class element. For example we can define a

ramjet as:

<owl:Class rdf:ID="Ramjet">

<rdfs:subClassOf rdf:resource="#Thruster"/>

</owl:Class>

OWL has the definitions for disjoint classes and equivalent classes as

owl:disjointWith and owl:equivalanetClass. There are two predefined classes,

owl:Thing and owl:Nothing. Thing is the most general class. Nothing on the other

hand is the empty class.

OWL has two kinds of properties. Object properties relate objects to objects and

datatype properties relate the objects to datatype values. Rdfs:subClassOf is used to

define inheritance restriction. owl:allValuesFrom is used to specify the class of

possible values of the property specified by owl:onProperty. owl:hasValue states a

specific value that the property, specified by owl:onProperty must have. Cardinality

relations can be given using owl:cardinality, owl:minCardinality and

owl:maxCardinality. Some properties of the elements can be defined directly:

 36

• owl:TransitiveProperty defines a transitive property, such as “has better

sound than”.

• owl:SymmetricProperty defines a symmetric property, such as “has same

height as”.

• owl:FunctionalProperty defines a property that has at most one unique value

for each object, such as “weight”.

• owl:InverseFunctionalProperty defines a property for which two different

objects cannot have the same value

Boolean combinations e.g. union, intersection of classes can also be defined by

using owl. owl:oneOf element, on the other hand, is used for enumerations and is

used to define a class by listing all its elements.

Instances of classes are declared as in RDF. Unique names assumption is not

adopted by OWL. Thus, just because two instances have different name, does not

imply they are different individuals.

OWL does not allow derived data types, although XML Schema provides

mechanism for derived data types. OWL document just consists of data types that

are most frequent used ones like strings, integer, boolean, time and date.

When the layered structure of the language is considered, in OWL Full, one can use

all the language constructors as long as the result is legal RDF. When one needs to

use OWL DL, the constraints to be obeyed are as following; Any resource in OWL

DL is allowed to be either class, a datatype, a datatype property, an object property,

an individual, a data value or a part of built in vocabulary. All resources must be

partitioned, and this partitioning must be stated explicitly. Furthermore, no

cardinality restriction can be applied on transitive properties. And lastly anonymous

classes are only allowed in the domain and range of owl:equivalentClass and

owl:disJointWith and rdfs:subClassOf. Each OWL Lite ontology must be and OWL

 37

DL ontology. For OWL Lite, it must further obey the following constraints.

owl:OneOf, owl:disjointWith, owl:unionOf, owl:ComplementOf and owl:hasValue

are not allowed. Furthermore, cardinality statements can only be made on values 0

and 1. And lastly owl:equivalentClass statements cannot be made between

anonymous classes, but only between class identifiers.

One should decide upon the sub-language to use before starting working on an

ontology. There are simple rules of thumb when deciding upon a sub language,

formulated as follows by Horridge et al. [76].

• The choice between OWL-Lite and OWL-DL is better to be based upon

whether the simple constructs of OWL-Lite are sufficient or not.

• The choice between OWL-DL and OWL-Full is better to be based upon

whether to carry out automated reasoning on the ontology or to be able to

use highly expressive and powerful modeling facilities is important.

In this study, what we want to do is to capture as much knowledge from the domain

as possible to lead us to some software architecture. So we selected to use the most

expressive one, OWL-Full, in order not to be constrained by the language.

3.9 DAVE-ML

Trajectory simulation domain involves mathematical models that account for some

kind of behavior or some law. Capturing these models in a systematic way and

representing them as an integrated part of the ontology is an important concern. At

this juncture, the Dynamic Aerospace Vehicle Exchange Markup Language

(DAVE-ML) effort of National Aeronautics and Space Administration (NASA) for

the benefit of flight modeling and simulation community has been leveraged [77].

DAVE-ML is a proposed standard to interchange of aerospace dynamic models. It

is aimed to provide a programming language independent representation of

 38

aerodynamics, mass/inertia, propulsion and guidance, navigation and control laws

of a vehicle. DAVE-ML is XML-based. It uses MathML to describe mathematical

relations. MathML is an XML-based language for describing mathematics for

machine to machine communication. We take advantage of DAVE-ML to

incorporate mathematical models into our ontology TSONT.

DAVE-ML is being regarded as the way to document the mathematical model

implementations in TSONT. DAVE-ML’s intentions is defined as to allow a

programming language independent representation of the aerodynamic,

mass/inertia, propulsion, guidance navigation and control laws for trajectory

simulations [78].

Figure 6 An Example DAVE-ML File Header

 39

There is only one basic element in DAVE-ML. It is DAVEFunc. It is used to

describe static models such as aerodynamic and inertia/mass models. It is composed

of data tables and equations for a particular model. It has five components: a file

header, variable definitions, breakpoint definitions, table definition and a function

definition. File header is used to give a background and reference data for the

represented model. A file header example is given above in Figure 6.

Breakpoints define a list of monotonically increasing floating point values. Function

table definitions generally contain the data points for aerodynamic coefficients as a

function of one or more parameter like mach, angle of attack, control surface

deflections. Function definitions as given below in Figure 7; connect the data tables

to breakpoints to define how an output should vary with one or more input.

Figure 7 An Example DAVE-ML Function Definition

Variables are used to capture inputs, calculations and outputs for a model. Variables

can be regarded as the signal routes in a block diagram or the parameters in the

computer program. They can be either inputs of the models, constants used in the

models, intermediate results or outputs of the models. MathML is used to represent

the mathematical relation of input variables and outputs. An example is presented

above in Figure 8.

 40

Figure 8 An Example DAVE-ML Variable Definition

This chapter introduced the basic concepts of ontologies and knowledge sharing.

First the definition of ontology is given. Then the components, merit and

applications of ontologies are explained. Ontology development efforts in

engineering domain in the literature are reviewed. After presenting the basic

practices of ontology construction, DAVE-ML effort of NASA is presented. In the

next chapter, we will introduce Trajectory Simulation Ontology that was built as the

domain model of trajectory simulation reuse infrastructure.

 41

CHAPTER 4

TRAJECTORY SIMULATION ONTOLOGY

In this chapter, Trajectory Simulation ONTology (TSONT) is being presented.

After an overview, top level entities, the hierarchies, classes and individuals of

TSONT are discussed.

4.1 TSONT: An Overview

Trajectory Simulation Ontology, abbreviated as TSONT, is being developed as the

domain model of Trajectory Simulation Reuse Infrastructure. It is being developed

as a reusable knowledge library on trajectory simulations for trajectory simulation

developers.

As mentioned earlier, ontologies are designed. For each artifact, the goal of its

design is to conform to its requirements. The aim of developing TSONT as the

domain model of the Trajectory Simulation Reuse Infrastructure is first to establish

a common vocabulary that is agreed among people working on trajectory

simulations and to create a backbone for systematization of knowledge on how to

build a trajectory simulation. Considering these two requirements, TSONT design

tried to capture common vocabulary of trajectory simulation and to present the

entities and the relation among the entities in a trajectory simulation in a way to

drive the design and development of simulation software.

There can be many other ways to capture and systemize or formalize the knowledge

about trajectory simulation development. While there is no barrier for any team that

is developing trajectory simulation to use TSONT as a domain model, TSONT is

being developed for Modeling and Simulation Team of TUBITAK-SAGE. So,

although the literature about trajectory simulation development is widely used to

 42

construct TSONT, it is being peer reviewed by the target reuse group in order to

make it capture the shared vocabulary and the conceptualization of the people

participating in that group.

Once TSONT is presented in the proceeding sections, one will see that some of the

hierarchies are not complete and some knowledge about some classes is missing.

The current state tries to capture the shared vocabulary and experienced

conceptualization as related to ongoing projects rather than all available in the

literature. As TSONT will be used as the domain model of the reuse infrastructure,

it will be enhanced with the new experiences of the group. In this manner TSONT

can be regarded as the knowledge base that is serving the gained experience in a

formal way in order to be used in the future projects.

4.2 Top Level TSONT

Top level entities of TSONT are Trajectory Simulation Attribute, Trajectory

Simulation Class, Trajectory Simulation Function, Trajectory Simulation Object,

Trajectory Simulation Quantity, Trajectory Simulation Record and Trajectory

Simulation Sequence, as shown in Figure 9.

Figure 9 TSONT Top Level Entities

 43

These top level entities of TSONT agree with those of SUMO (Suggested Upper

Merged Ontology). By reusing SUMO, we promote interoperability with other

domain ontologies. SUMO is an upper level ontology proposed by the Standard

Upper Ontology Working Group, an IEEE-sanctioned working group of

collaborators from the fields of engineering, philosophy, and information science.

The SUMO provides definitions for general-purpose terms and acts as a foundation

for more specific domain ontologies [79].

Figure 10 Excerpt from TSONT Top Level

Trajectory Simulation Attribute can be regarded as the subclass of SUMO Attribute.

It is defined as qualities in trajectory simulation domain which we cannot or prefer

not to reify into subclasses of an object. Similarly, Trajectory Simulation Class is

regarded as a subclass of SUMO Class and Trajectory Simulation Function as a

subclass of SUMO Function. Trajectory Simulation Object, again a subclass of

 44

SUMO Object, corresponds roughly to the class of ordinary physical objects in

Trajectory Simulation domain. Trajectory Simulation Quantity is defined as any

specification of how many or how much of something in Trajectory Simulation

domain; it is a subclass of SUMO Quantity.

Trajectory Simulation Record and Trajectory Simulation Sequence are Trajectory

Simulation Composite Data types that can be used for developing trajectory

simulation codes. Although these data types are well established in programming,

we refer to Vienna Development Method Specification Language (VDM-SL), an

ISO Standard modeling language, for the sake of definiteness [80].

Figure 10 presents an excerpt from TSONT to show how these top level entities are

inherited down to concepts of trajectory simulation domain. Trajectory Simulation

can be a Scalar Quantity or a Vectoral Quantity. Acceleration Vector, Angular

Acceleration Vector, Angular Velocity Vector, Force Vector, Moment Vector,

Orientation Vector, Position Vector and Velocity Vector are all types of Vectoral

Quantity. Further, Aerodynamic Force, Gravitational Force and Thrust Force are all

derived from the Force Vector.

4.3 TSONT Hierarchies

4.3.1 Trajectory Simulation Objects

Trajectory Simulation Objects are the physical entities whose behavior is simulated.

SUMO has a parallel definition for objects which corresponds objects roughly to the

class of ordinary objects such as normal physical objects.

Munition, munition subsystems and weapon are said to be trajectory simulation

objects. Munition is defined as a complete device charged with explosives,

propellants, pyrotechnics, initiating composition, or nuclear, biological, or chemical

material for use in military operations, including demolitions [81]. Munition

 45

subsystems are the parts of munition which affects its simulation, like guidance

system, propellant or autopilot. Weapon is defined as the launch platform of

munition. The hierarchy of Trajectory Simulation Object is given below in Figure

11.

Figure 11 Trajectory Simulation Object Hierarchy

The munition classification is carried out in this domain analysis effort in order to

scope the target group of system whose flight will be simulated by the trajectory

simulations that will be developed by using the reuse infrastructure. There is no best

classification or the correct classification for munitions. There can be number of

ways to classify. There is no “one” classification in the literature that classifies all

types of munition. Different classifications are unified in TSONT.

Three different sources are used to capture the taxonomy. The first one is AOP 29,

“NATO Indirect Fire Ammunition Interchangeability” [82]. It is used for the

classification of ammunitions, particularly the projectiles. The second one is DoD

 46

101, “An Introduction to Military” which is published through Federation of

American Scientists web site [83]. DoD 101 is used for the classification of bombs.

The last one is DoD 4120.14-L, dated May, 12th, 2004 [84]. The Appendix 2 of this

document is “Approved Mission Design Series Designators and Symbols for

Guided Missiles, Rockets, Probed, Boosters, and Satellites”. This section is used for

the classification of the missiles. These three classifications with their examples are

presented in APPENDIX A. Besides, TSONT is given in APPENDIX N.

4.3.2 Trajectory Simulation Classes

Figure 12 Trajectory Simulation Class Hierarchy

Trajectory Simulation Classes are subsets of the SUMO class. They are the abstract

entities of trajectory simulation domain which are used to compute a trajectory.

 47

This abstraction does not rely on any literature rather tried to capture the agreed

conceptualization of trajectory simulation problem among the co-workers who will

use the trajectory reuse infrastructure. The top level classes are Coordinate System,

Model, Parameter, Solver, Trajectory Simulation and Trajectory Simulation Phase

as given above in Figure 12.

Trajectory Simulation is defined as a tool to compute the flight path and other

parameters of munition as it leaves the launcher and engages to a target based on

mathematical model of munition, its subsystems and environment which consist of

equations that describe physical laws and logical sequences [4].

Trajectory Simulation Phase is used to define some number of generic trajectory

phases. These phases are defined considering the set of models they require to

compute the trajectory throughout any instance of them. TSONT phase hierarch is

depicted below in Figure 13.

Figure 13 Trajectory Simulation Phase Hierarchy

Phase captures the basic models, such as Aerodynamics Model or Dynamics Model.

Thrusted Phase, Guided Phase and Propelled Phase capture the related models.

Trajectory Simulation Phase stands for trajectory simulation phases which are

neither guided nor propelled or thrusted. Trajectory Simulation Phase has an

Aerodynamics Model (to compute aerodynamic forces and in some cases

moments), Dynamics Model (to compute accelerations), Earth Model, Atmosphere

 48

Model and Gravity Model. Propelled Phase stands for the trajectory simulation

phases for the munitions which are propelled from a gun by a charge. So this phase

has a propellant model in addition to the standard phase definition. Guided Phase

stands as a class for guided munition trajectory phases. It extends the standard phase

definition by adding Autopilot Model, CAS Model, Guidance Model and Sensor

Model to calculate any guided trajectory segments. Thrusted Phase is added to

represent the trajectory segments in which the thruster is working. It adds thruster

model to standard phase definition. In Launcher Phase is a kind of Thrusted Phase

where launcher model is used to consider the affects of launcher on trajectory.

Some phases have hybrid characteristics. In a trajectory phase both guidance and

thruster might be active. E.g. Air-to-air missile simulation. In this case, that phase is

derived both from guided phase and thrusted phase definitions so it has all the

characteristics of both.

Model refers to logical or mathematical models of the actors that affect the flight of

the munition. They encapsulate the approximations and assumptions, both structural

and quantitative, about the affects of these actors to trajectory [1]. Aerodynamics

Model, Atmosphere Model, Autopilot Model, CAS Model, Dynamics Model, Earth

Model, Gravity Model, Guidance Model, Launcher Model, Propellant Model,

Sensor Model, Termination Model, Terrain Model and the Thruster Model are the

ones currently captured by TSONT.

Aerodynamics Model incorporates the effects of aerodynamic flow over munition

body on its flight. This model is for computing the aerodynamics forces and

moments acting on the munition. The classification is presented belove in Figure

14. The first level taxonomy divides the model into two as Point Mass

Aerodynamics Model and Rigid Body Aerodynamics Model. Point Mass

Aerodynamics Models only deal with the force but the Rigid Body Models also

compute moments. Then the taxonomy is detailed to capture different aerodynamic

models for different dynamic representations of munitions which affect the number

 49

of forces and moments computed. The last level in the taxonomy captures the

reference frames that these forces and moments are computed.

Figure 14 Aerodynamics Model Hierarchy

Atmosphere Model is assigned to provide the required meteorological conditions to

the models which require them in order to incorporate the effects of atmospheric

conditions to the munitions flight.

Figure 15 Atmosphere Model Hierarchy

TSONT captures four different representations of atmospheric conditions for

trajectory simulations. These include Grided Met Message (METGM) [85],

 50

Computer Met Message (METCM) [86], Ballistic Met Message (METB3) [87] and

standard atmosphere (ICAO) [88].

Although there are few different standard atmosphere definitions, the definition of

International Civil Aviation Organisation which is widely used, is captured in

TSONT. Grided Met Message is a pretty new concept. Technology development

and validation efforts are still in progress. It provides atmosphere state at points in

three dimensional space at a time. Below is a figure presenting use of METGM in a

trajectory simulation.

Figure 16 Grided Met Message in a Trajectory Simulation [89]

Ballistic met messages and computer met message are coded messages that report

the atmospheric conditions in selected layers starting at the surface and extending to

an altitude that will normally include the maximum ordinate of trajectory. Ballistic

met message used in manual computations in which the weather conditions existing

in one layer or zone are weighted against the conditions in lower layers and reported

as percentages of standard. Computer met message on the other hand reports actual

average wind direction, wind speed, air temperature, and pressure in each layer. The

computer met message is designed to be used by the computer system in the

computation of the equations of motion. An example of computer met message

from Field Manual 6-40, is given below in Figure 17 [90].

 51

Figure 17 Computer Met Message [90]

Autopilot Model stands for mathematical models that transform the guidance

commands to control commands. Autopilots are actually control systems, which

produce control action commands for the missile to track the commands coming

from the guidance subsystem. They work as a translator between the guidance

system and the control actuation system. There are a number of different autopilot

implementations in literature [91]. Autopilot itself, receives instructions from the

guidance subsystem about the strategy for how to steer the munition to intercept,

and it translates these instructions into appropriate control of the munition [92].

Autopilot Model class of TSONT captures the basic functionality of mentioned

above. As different autopilot models will be simulated by using TSONT, the

Autopilot Model taxonomy of TSONT will be enhanced.

Control Actuation System Model represents the behavior of control actuation

system of munition. It models how the commanded fin deflections are converted to

actual fin deflections. Currently on a second order system model is captured in

TSONT as given below in Figure 18 [92].

 52

Figure 18 CAS Model Hierarchy

Dynamics Model employ the equations of motion, which describe the relationships

between the forces and moments acting on the munition and the resulting motion

[4]. Dynamics Models uses forces and moments to compute the dynamic model’s

state derivatives, namely velocity and acceleration of the munition.

Figure 19 A Portion of Dynamics Model Hierarchy

Dynamics Models can be classified into two, as Point Mass and Rigid Body

Dynamics Models in the first place considering the abstraction of the munition in

the space. Besides these two, In Launcher Model represents a specific type of

Dynamics Model where launcher constraints apply on the munition. Variable Mass

Dynamics Models on the other hand stands for the dynamics models that thrust

forces are also in consideration. The taxonomy is then detailed further considering

 53

the degrees of freedom and the reference frame. Figure 19 depicts a portion of

Dynamics Model Hierarchy.

Figure 20 Earth Models [89]

Earth Model represents the model of the Earth on which the munition flies. This

effects how the altitude of the munition in its flight is computed as given above in

Figure 20 [23]. Two fundamental approaches are captured in TSONT. Those Earth

Models are Flat Earth Model and Round Earth Model. Earth Model Hierarchy is

presented below in Figure 21.

Figure 21 Earth Model Hierarchy

During the engagement process of a guided munition, number sensors measures one

or more parameters of the path of the missile relative to the target. The logical

process to determine the required flight path corrections based on the sensor

 54

measurements, is called a guidance law. The objective of a guidance law is to cause

the munition to come as close as possible to the target. Guidance laws usually can

be expressed in mathematical terms and are implemented through a combination of

electrical circuits and mechanical control functions [4]. Guidance Models model the

guidance laws of munitions which compute commanded accelerations using the

relative target and munition motion. Rather than all guidance methods in the

literature, TSONT captures the Guidance Models that have been experienced by

target reuse group. Those are Proportional Navigation Guidance Model, Polynomial

Guidance Model and Command Line of Sight Guidance Model.

Figure 22 Guidance Model Hierarchy

Figure 22 presents the Guidance Model Hierarchy captured in TSONT. Proportional

navigation guidance law computes acceleration commands, perpendicular to the

munition and the target line of sight, which are proportional to line of sight rate and

closing velocity [15]. Command Line of Sight (CLOS) guidance attempts to keep

the missile within a guidance beam transmitted from the ground [4]. Polynomial

guidance on the other hand, is based on generating the necessary commands on

either the rates of the flight path angles or the normal acceleration components that

keep the missile on a polynomial trajectory. The polynomial definition of the

trajectory can be second or third order [92].

Launcher Model stands to represent the interactions of the munition and the

launcher such as tip off rates and friction [23, 92].

 55

For the projectiles that are launched by using a propellant charge, the muzzle

velocity depends on factors like propellant type and propellant temperature.

Propellant Models computes the muzzle velocity using the propellant properties

[89].

In order to guide a munition for a successful intercept a target, it is vital to get the

correct information about the motion of the target and munition itself during the

flight. That information is provided by various sensors, such as inertial sensors,

seekers, radar altimeters and GPS [92, 94]. The Sensor Model of TSONT includes

the models of these sensors.

Termination Model is used to identify the end of either a phase or the whole

trajectory. This logical model uses the phase termination conditions or the fuze data

of the munition to determine the end of a trajectory phase or the trajectory itself.

Terrain Model represents the terrain the munition flies over. This model is

responsible to provide the height of the terrain from sea level.

Figure 23 Thruster Model Hierarchy

Above is the Thruster Model Hierarchy Several types of thrusters are used to propel

the munition. Thruster Models are responsible to compute the thrust force and

moment, and the mass of the thruster during the flight of the munition. Presently,

 56

solid propellant rocket motors, liquid propellant rocket motors and airbreathers are

captured in TSONT. Based on the experience gained in the previous trajectory

simulation projects, Solid Rocket Motors are further detailed in the hierarchy..

Solid Rocket Motor Models compute the thrust force depending on the design of the

propellant which results in a specific impulse and the instantaneous ambient

atmospheric pressure acting on an area equivalent to the exit area of the rocket

nozzle. Liquid Rocket Motor models are essentially the same as Solid Rocket Motor

Models unless the potential for throttle control is exploited in the design of the

liquid system. Airbreather Models compute performance as a function of throttle

control setting, Mach number, and ambient atmospheric properties [4].

Figure 24 Solver Hierarchy

Above, Figure 24 depicts the solver hierarchy in TSONT. The differential equations

frequently encountered in trajectory simulations cannot be solved by classical

analytical methods. A large number of numerical integration methods have been

developed to solve these equations using computers. Numeric solvers are classified

as one-step and multi-step methods in TSONT. A one-step solver uses the value of

the dependent variable only at the current integration step to compute the value at

the succeeding step. A multi-step solver on the other hand uses values of the

 57

dependent variable at the current integration step and also at one or more preceding

steps. One-step difference equations are self-starting, and multi step processes

depend on a self-starting method to calculate the first few integration intervals.

Euler’s and the Runge-Kutta solvers are examples of one step solvers Milne’s and

the Adams solvers are examples of multi-step solvers [4].

Munition and its subsystems like motor, fuze or sensor, are represented by a set of

parameters in the trajectory simulations. Parameter classes refer to the group of

classes responsible to provide simulation parameters to the Model classes that

simulate the behavior.

Aerodynamics and Physicals are the parameters of the munition itself. Subsystem

parameters, Autopilot Data, CAS Data, Charge Data, Fuze Data, Guidance Data,

Sensor Data, Solid Rocket Motor Data and Weapon Data are also captured in

TSONT. This parameter class hierarchy is further detailed considering the set of

data provided.

Figure 25 Parameter Hierarchy

 58

The hierarchy of Parameter classes is presented above in Figure 25.Aerodynamics

class for example is classified into Point Mass Aerodynamics and Rigid Body

Aerodynamics. Then Rigid Body Aerodynamics class is further classified to classes

like Five DOF Aerodynamics and Modified Point Mass Aerodynamics.

Vectors in three-dimensional space are widely used in trajectory simulation to

represent factors such as forces, accelerations, velocities, positions, moments,

angular accelerations, and angular rates. A vector has a meaning when it is

described relative to some frame of reference. Right-handed, orthogonal coordinate

systems are commonly used as frames of reference. A vector is described by its

three components on the axes of a coordinate system. A number of different

coordinate systems maybe used in a trajectory simulation. Coordinate systems are

characterized by the positions of their origins, their angular orientations, and their

motions relative to inertial space or relative to other specified systems. A vector can

then be described by its coordinates in any of the coordinate systems [4]. Number

coordinate systems are captured in TSONT, such as Body Coordinate System and

Earth Coordinate System. The Coordinate System hierarchy is depicted below in

Figure 26.

Figure 26 Coordinate System Hierarchy

 59

4.3.3 Trajectory Simulation Functions

Figure 27 Trajectory Simulation Function Hierarchy

Trajectory Simulation Functions are a subset of SUMO function. Trajectory

Simulation Function hierarchy captures the functionalities served by classes

underneath the Trajectory Simulation Class hierarchy presented in the previous

section. The list of functions captured in TSONT is given above in Figure 27.

Forces and moments acting on the munition during its flight are computed by using

functions Compute Aerodynamics Force, Compute Aerodynamics Moment,

 60

Compute Friction Force, Compute Gravitational Force, Compute Thrust Force and

Compute Thrust Moment. Compute Aerodynamics Force, Compute Aerodynamics

Moment are served by Aerodynamics Model, Compute Friction Force is served by

Launcher Model, Compute Gravitational Force is served by Gravity Model and

Compute Thrust Force and Compute Thrust Moment are served by Thruster Model.

Some of these functions also have their own hierarchy. Compute Aerodynamic

Forces functions which use aerodynamic coefficients, atmosphere data, physical

properties of the munition and the dynamic model state to compute the aerodynamic

forces are further detailed to capture different types of implementations of these

functions as given below in Figure 28. They are classified depending on the degrees

of freedom of the dynamics model that will use this forces and the reference frame

in which the forces are defined.

Figure 28 Compute Aerodynamic Forces Hierarchy

Compute Commanded Acceleration is the functionality provided by Guidance

Model. It computes the commanded acceleration of the munition using the guidance

law. Then Compute Commanded Fin Deflections functionality that is served by

Autopilot Model uses the commanded accelerations to compute the commanded fin

deflections. CAS Model serves Compute Actual Fin Deflections functionality. As

given below in Figure 29, TSONT has a sole function under this hierarchy for four

 61

canard systems. The aim of this function is to compute actual fin deflections using

commanded fin deflections.

Figure 29 Compute Actual Fin Deflections Hierarchy

Compute Atmosphere function is served by Atmosphere Model. It is used to

provide atmospheric properties at any instant of flight depending on the height.

These functions which are given below in Figure 30, are classified depending on the

format that they read the metrological definition.

Figure 30 Compute Atmosphere Hierarchy

Check Termination function is served by Termination model. It computes the

termination status using State information and a Termination Record which defines

the termination conditions.

 62

Figure 31 Compute Aerodynamics Hierarchy

There are number of functions in the hierarchy that are served by Parameter classes

to provide the simulation parameters. Compute Aerodynamics, Get Physicals, Get

Solid Rocket Motor Data are some of them. Compute Aerodynamics, as an

example, refers to the functionality provided by Aerodynamics class. It is

responsible for computing the aerodynamic coefficients using the flight conditions.

Its hierarchy is depicted above in Figure 31.

Initialize Phase and Initialize Simulation functions refers to the functionalities

served by Phase and Simulation classes to accomplish series of tasks to initialize a

trajectory simulation or a phase of a trajectory simulation like setting the initial

state. Likewise Compute Trajectory functionality of Trajectory Simulation class is

responsible to compute the whole trajectory and Compute Phase Trajectory

functionality of any Phase class is responsible to compute the trajectory of a

particular phase.

Below, Figure 32 is the hierarchy of Integrate Step functions captured in TSONT.

Those functions are provided by Solver classes to integrate the differential equation

to compute the state of the simulation in the next time step. These functions require

state derivatives to be computed by Update State and Derivative functions whose

hierarchy is given below in Figure 33.

 63

Figure 32 Integrate Step Hierarchy

Figure 33 Update State and Derivatives Hierarchy

 64

4.3.4 Trajectory Simulation Quantities

Figure 34 A Portion of Scalar Quantity Hierarchy

 65

OWL classes under the Trajectory Simulation Quantity construct a subset of SUMO

quantity. They are used to specify the quantities of trajectory simulation domain.

Trajectory Simulation Quantity is divided into two subsets, namely Scalar

Quantities and Vectoral Quantities. Scalar Quantities are then divided to subgroups

using the classification given in The International System of Units [95]. Some of

scalar quantities captured in TSONT are Density, Mass and Length. A portion of

Scalar Quantity hierarchy is depicted above in Figure 34.

Vectoral quantities in trajectory simulation domain are grouped as Acceleration

Vector, Angular Acceleration Vector, Velocity Vector, Angular Velocity Vector,

Force Vector, Moment Vector, Position Vector and Orientation Vector. Then these

groups are detailed to capture the quantities underneath them. The hierarchy of the

Force Vector is presented below in Figure 35, as an example.

Figure 35 Force Vector Hierarchy

 66

4.3.5 Trajectory Simulation Attributes

Trajectory Simulation Attributes are a subset of SUMO attribute. Attribute is

defined as qualities which we cannot or choose not to reify into subclasses of Object

in SUMO [79]. Trajectory Simulation Attribute defines a set of qualities of

Trajectory Simulation Classes and Trajectory Simulation Objects like the

termination status of a trajectory or the ellipsoid of a location.

4.3.6 Trajectory Simulation Composite Data

Composite types are types whose values are composed or structured from simpler

values [96]. They are used to group some data that forms a coherent construct. In

developing trajectory simulation software, composite data types are widely used.

TSONT tries to capture the composite data types that are used in the target reuse

community. Trajectory Simulation Record and Trajectory Simulation Sequence are

base Trajectory Simulation Composite Data types. Although these data types are

well established in programming, Vienna Development Method Specification

Language (VDM-SL), an ISO Standard modeling language, is referred for the sake

of definiteness [80].

VDM-SL defines record as a construct, similar to the record or struct in

programming languages that is used to model values made up of several

components [80]. A portion of Trajectory Simulation Record is depicted below in

Figure 36.

Sequence is defined as ordered collection of values in VDM-SL [80]. We present

Tuple hierarch captured in TSONT, as a part of Trajectory Simulation Sequence

hierarchy, below in Figure 37.

 67

Figure 36 A Portion of Trajectory Simulation Record Hierarchy

Figure 37 Tuple Hierarchy

 68

4.4 TSONT Classes

After presenting the taxonomy of trajectory simulation concepts in the previous

section, this section will discuss how these concepts are defined in TSONT. The

relations among these concepts will also be given. This section will start with the

definition of a trajectory simulation, continue with classes, services, and conclude

with quantities and composite data. The relations of the concepts captured in

TSONT and the structure of them will be discussed in this sequence.

Figure 38 Trajectory Simulation Class

 69

The structure of TSONT is devised to render concept to implementation mapping

amenable to reuse by trajectory simulation developers. Trajectory simulations,

which can be composed of multiple phases, are to be executed to calculate the

trajectories of munitions. One may need to initialize a trajectory simulation by

setting the initial conditions before running it. These facts are reflected in TSONT

as depicted in Figure 38. Trajectory Simulation is defined by hasMunition,

hasPhase, servesInitializeSimulation and servesComputeTrajectory properties.

These properties formalize the definition of the trajectory simulation.

Figure 39 Thrusted Phase

Trajectory simulation phases are defined as the segments of a munition flight whose

simulation can be performed by using a distinct set of models solved by a numeric

solver. For example, computing the trajectory during boost phase and after motor is

off, which is called free flight, requires a particular sets of models. Figure 39

 70

presents the definition of Thrusted Phase in TSONT. This definition specifies the

models that will be used to compute a segment of a trajectory where a type of a

thruster is producing thrust. It also says that, one may need to initialize a phase

before computing the phase trajectory. In addition, it states that each phase will

require some kind of a solver to compute the numerical solutions of differential

equations. The definitions of some of the other phases will be given in APPENDIX

B with some other TSONT class examples. For a complete TSONT, refer to

APPENDIX N.

Figure 40 Update Thrusted Phase State and Derivatives

Update Thrusted Phase State and Derivatives is one of two functionalities that are

provided by a Thrusted Phase. It is a function that uses phase state and computes

 71

state derivatives. This function uses number of functions from either parameter

classes or models that were listed above to compute the state derivatives. For

example it uses of one of Get Physicals function of Physicals classes to get the

physical properties of the munition like reference mass or it uses one of Update

Dynamics Models State and Derivatives function of Dynamics Model classes to get

the Dynamics Model State Derivatives.

TSONT captures these dependencies among the functions on trajectory simulation

domain by means of the dependsOn property acting on all functions. As an

example, the definition of Update Thrusted Phase State and Derivatives is presented

above in Figure 40.

Having discussed some functions and their dependencies, we will proceed with

presenting models. Among Trajectory Simulation Models, the Body Fixed Six DOF

Dynamics Model from Dynamics Model hierarchy will be discussed in detail to

present our approach to the development of TSONT. Four different properties act

on this class as restrictions. It should have a coordinate system, which is Body

Coordinate System as its name indicates. It should have states and state derivatives.

These states and state derivatives are parts of Phase State and State Derivatives

which depicts the instantaneous system behavior. Its state is called Body Fixed Six

DOF Dynamics Model State and its state derivatives are called Body Fixed Six

DOF Dynamics Model State Derivatives. And the last restriction that applies is its

service to the simulation. It means the way it is used in the execution of trajectory

simulation. Dynamics Models are used to compute systems dynamics state

derivatives by using the state. Then as the time passes numeric solver calculates the

next time step’s state by using these state derivatives. So, Body Fixed Six DOF

Dynamics Model updates body fixed six DOF dynamics model state and

derivatives. Figure 41 is the definition of Body Fixed Six DOF Dynamics Model in

TSONT.

 72

Figure 41 Body Fixed Six DOF Dynamics Model

If we look at the Body Fixed Six DOF Dynamics Model State, it is defined as a kind

of Trajectory Simulation Record composed of:

• Three dimensional translational velocity in body coordinate system

• Angular rates in body coordinate system

• Three dimensional position in earth coordinate system

• Euler angles

TSONT definition of Body Fixed Six DOF Dynamics Model State is presented

below in Figure 42.

 73

Figure 42 Body Fixed Six DOF Dynamics Model State

Figure 43 Angular Rates in Body Coordinate System

 74

These records are vectors and Vectoral Quantities also have a definition in TSONT.

For example Angular Rates in Body Coordinate System is defined in TSONT as

depicted above in Figure 43.

As other vectoral quantities, Angular Rates in Body Coordinate System is defined

with its coordinate system and its column matrix. Its coordinate system is Body

Coordinate System and its column matrix is called Angular Velocity Column

Matrix which has a definition in TSONT as given in Figure 44.

Figure 44 Angular Velocity Column Matrix

Angular Velocity Column Matrix is a type of Tuple. It is a sequence of a kind of

Scalar Quantity which is Angular Velocity.

Body Coordinate System is one of the four Coordinate Systems mentioned in

TSONT. As other coordinate systems, Body Coordinate System is also defined by

its orientation with respect to inertial reference frame of the trajectory simulation. It

 75

also serves a functionality to transform any vector defined in any coordinate system

to itself. Below is the representation of Body Coordinate System in TSONT.

Figure 45 Body Coordinate System

If we have a look at Body Fixed Six DOF Dynamics Model State Derivatives which

is another property of Body Fixed Six DOF Dynamics Model, we will figure out

that it is composed of following items.

• Three dimensional translational acceleration in body coordinate system,

• Angular acceleration in body coordinate system,

• Euler angle rates

• Three dimensional translational velocity in earth coordinate system.

Dynamics Models are used to compute the dynamics of the munition at any time

during flight. The implementation of this expression in a continuous simulation

domain is to compute the state derivatives which will then used to compute the state

 76

of the next time step. So, dynamics model computes the angular and translational

accelerations using the instantaneous forces and moments. Then this acceleration is

integrated to compute the position and the orientation of the munition. Dynamics

Models serves a functionality called Update Dynamics Model State and Derivatives

to accomplish this task. As one will Body Fixed Six DOF Dynamics Model that we

keep on discussing serves Update Body Fixed Six DOF Dynamics Model State and

Derivatives functionality in this respect.

Figure 46 Update Body Fixed 6 DOF Dynamics Model State and Derivatives

TSONT models all functions in the same manner. It captures the implementation

details, in other words the algorithms of the functions using Implementation

property. Implementation is a data type property which points to a universal

resource identifier to refer a DAVE-ML file. Then the restrictions starting with “in”

refer to the input parameters of the function and those starting with “out” refer to

 77

the outputs of the process carried out by this functionality. The dependsOn

restriction captures the dependencies among functions in trajectory simulation

domain. One will figure out that this schema also applies to Update Body Fixed

Dynamics Model State and Derivatives function whose definition is presented

above in Figure 46.

For the implementation details of Update Body Fixed Dynamics Model State and

Derivatives, TSONT refers to a DAVE-ML file. As an example, consider the

mathematical model in Update Body Fixed Dynamics Model State and Derivatives

for one of the translational accelerations in body coordinate system:

vrqw
m

F
u x +−=� Eq. 1

While it should be noted that the full contents of the DAVE-ML file for Update

Body Fixed Dynamics Model State and Derivatives is given in APPENDIX C, in

this file the above equation is represented as:

 <variableDef name="udot" varID="udot" units="m/s2">

 <description> Body fixed tranlational acceleration in X </description>

 <calculation>

 <math xmlns='http://www.w3.org/1998/Math/MathML'>

 <apply>

 <eq/>

 <ci>udot</ci>

 <apply>

 <plus/>

 <apply>

 <times/>

 <apply>

 <plus/>

 <ci>FAX</ci>

 <ci>FGX</ci>

 78

 </apply>

 <apply>

 <power/>

 <ci>mass</ci>

 <cn type='integer'>-1</cn>

 </apply>

 </apply>

 <apply>

 <times/>

 <ci>r</ci>

 <ci>v</ci>

 </apply>

 <apply>

 <times/>

 <cn type='integer'>-1</cn>

 <apply>

 <times/>

 <ci>q</ci>

 <ci>w</ci>

 </apply>

 </apply>

 </apply>

 </apply>

 </math>

 </calculation>

 <isOutput/>

 </variableDef>

More DAVE-ML samples are given in APPENDIX N.

Parameters classes, as mentioned earlier, are used to supply the required properties

of the simulated system to the related models. The way the Parameter classes are

modeled and how they relate with Model classes will be presented over an example.

 79

Figure 47 Compute Six DOF Aerodynamics Forces in Body Fixed Coordinate

System

Aerodynamics classes are responsible for computing the aerodynamic coefficients

which will be used then by Aerodynamics Models to compute the aerodynamic

forces and moments. Aerodynamics Force required above by Update Body Fixed

Dynamics Model State and Derivatives functionality is computed by Body Fixed

Six DOF Aerodynamics Model. It serves a functionality called Compute Six DOF

Aerodynamics in Fixed Coordinate System which requires Six DOF Aerodynamics

Record as an input. The definition of Compute Six DOF Aerodynamics Forces in

Body Fixed Coordinate System is given above in Figure 47. Six DOF

Aerodynamics Record is provided by Six DOF Aerodynamics which is a Parameter

class. Six DOF Aerodynamics serves a functionality called Compute Six DOF

 80

Aerodynamics. The definition of Compute Six DOF Aerodynamics is depicted

below in Figure 48.

Figure 48 Compute Six DOF Aerodynamics

As the above figure represents, Six DOF Aerodynamics Record is the output of

Compute Six DOF Aerodynamics. It is Trajectory Simulation Composite Data.

Three different ways to represent aerodynamic coefficients for a six degrees of

freedom trajectory simulation are captured in TSONT as subclasses of Six DOF

Aerodynamics Record. Those representations are Ballistic, Ballistic Research Lab

(BRL) and National Advisory Committee for Aeronautics (NACA) representations

[17]. Each representation refers to a record definition in TSONT. The definition

 81

BRL Six DOF Aerodynamics Record is presented below in Figure 49 as an example

of three.

Figure 49 BRL Six DOF Aerodynamics Record

4.5 TSONT Individuals

The OWL classes of TSONT create a base on which each and every application that

is developed using this ontology based reuse infrastructure, is built on. The specific

requirements of each application are planned to be added to the ontology as

individuals. The domain structure and constraints modeled in TSONT define the

 82

relations among these individuals. As the ontology is used in new applications the

individuals that were created by the previous projects will also be available for

reuse. New domain structures and constraints will be able to be identified as new

applications are developed. This commitment adds the ontology constructive nature.

It will develop as it is used in the trajectory simulation projects.

Let us consider how TSONT is extended by individuals, as we define a new

simulation, and how it guides the development of a trajectory simulation. The

individuals of a guided rocket simulation, called Lynx, developed on MATLAB 6

DOF Trajectory Framework (MATSIX) will be presented as the case study.

MATSIX was developed based on the design that was obtained by transforming

TSONT classes. Then the Lynx Simulation was developed by framework

completion referring to the TSONT individuals. This implementation will be

discussed in detail in CHAPTER 5.

Figure 50 Lynx Simulation

 83

As we created a new simulation individual, TSONT asks to define the related

properties of the simulation. A simulation as depicted above in Figure 50, is defined

by its munition, trajectory, its phases and the functionalities provided.

We referred to individuals of Compute Trajectory and Initialize Simulation

functions that are created to specify Lynx in TSONT. Lynx, as an individual of a

MGR is set as the munition to be simulated. We defined four different phases for

Lynx Simulation. The phases of Lynx Simulation are specified as the individuals of

Phase, Guided Phase, Thrusted Phase and In Launcher Phase. If we consider Lynx

Free Flight Phases, it is an individual of Phase class. It will be discussed to present

how the phase individuals are constructed. To create a phase individual, TSONT

forces one to specify the models, services and characteristic properties of that phase.

Lynx Free Flight Phase is given in Figure 51.

Figure 51 Lynx Free Flight Phase

 84

As it can be followed from the below figure, individuals are defined for dynamics

model, aerodynamics model, earth model, gravity model, atmosphere model and

termination models. Lynx_Solver is defined as the individual of Runge Kutta 4

solver for the free flight phase of Lynx simulation. And lastly, two individuals are

defined for two functions of Lynx_Simulation which refers to the specific

implementations of these functions. One can use different algorithms to initialize a

trajectory simulation or to compute it.

Lynx Aerodynamics Model will be discussed in this paragraph to create an

understanding on how the individuals are used to link the specific trajectory

simulation to the TSONT OWL classes. Lynx Aerodynamics Model was defined as

an individual of a Body Fixed Six DOF Aerodynamics Model. As an individual, it

conforms to all of the constraints of that applies on Body Fixed Six DOF

Aerodynamics Model. As an ontology, TSONT, restricts its individuals to conform

to their OWL Classes.

Figure 52 Lynx Aerodynamics Model

 85

If we look at Body Fixed Six DOF Aerodynamics Model, as depicted above in

Figure 52, TSONT specifies how it shall be implemented. When user tries to

specify which Coordinate System he wants to use when he computes aerodynamic

force and moment, TSONT guides him that the coordinate system he shall use is

Body Coordinate System.

As presented above, new simulation setups are defined by adding individuals for

different needs. As the ontology, TSONT, is used in new trajectory simulation

projects, the number of individuals will increase in number. And, the reuse of these

previously captured individuals to define new simulation setups will also be an

opportunity. This will enhance the evolution of TSONT as a trajectory simulation

knowledge library.

The major motivation of this research is to guide trajectory simulation development

efforts in all steps of trajectory simulation projects by providing formally defined

reusable artifacts. One of the major motivations of building an ontology in this

study was to provide a reusable domain model or trajectory simulation knowledge

library to guide the trajectory simulation developer to construct a clear picture of

domain concepts for a specific trajectory simulation project. TSONT, as presented

above, can guide the trajectory simulation developer on how to construct and relate

concepts in the trajectory simulation domain. This ability of TSONT seems to be

fulfilling its commitment.

In this chapter, TSONT is presented. After introducing the top level TSONT

entities, TSONT hierarchies, classes and individuals are introduced. It would be a

good to remember that TSONT is the domain model for the trajectory simulation

reuse infrastructure. Specifications of trajectory simulation reuse infrastructure for

both object oriented and function oriented paradigms are constructed upon this

domain model. Next chapter will introduce this infrastructure.

 86

CHAPTER 5

INFRASTRUCTURE SPECIFICATION AND IMPLEMENTATIONS

In this chapter, object oriented and function oriented reuse infrastructures are built

using the knowledge captured in TSONT, presented in the previous chapter. For

object oriented reuse infrastructure, first object oriented application frameworks are

introduced, and then platform independent trajectory simulation architecture is

discussed. Two different case studies are presented for object oriented paradigm.

Chapter is concluded with the function oriented reuse infrastructure and its case

study.

5.1 Object Oriented Infrastructure Specification and Implementations

5.1.1 Object Oriented Application Frameworks

A common definition of a framework is the reusable design of all or a part of a

software system that is accomplished by a set of abstract classes and a prescription

of the way their instances interact. It can be regarded as the skeleton of an

application that is to be developed in full by an application developer [63]. As a

contemporary object oriented reuse technique, different from the earlier techniques

based on class libraries, frameworks are targeted for particular application domains

such as user interfaces or real-time avionics [64]. The history of framework

literature goes back to 80’s. Johnson and Foote introduced many basic concepts of

application frameworks in their article published in 1988 [63].

Fayad and Schmidt list the benefits of object oriented application frameworks as

modularity, reusability, extensibility and inversion of control that they provide to

developers [64]. They explain these benefits as follows. Modularity is enhanced by

encapsulating volatile implementation details behind stable interfaces. This gives

 87

the strength of modularity to frameworks by increasing the quality of product by

localizing the impact of design and implementation changes which reduces the

effort required to understand and maintain the existing code.

Stable interfaces, furthermore, enable reusability by defining generic components

which can be reapplied to create new applications. Leveraging domain knowledge

of experienced developers avoids re-creating and revalidating common solutions to

reoccurring application requirements and software design challenges. This is the

core essence of framework reuse to enhance programmer productivity, and further

more quality, reliability and interoperability of software.

Extensibility is enabled in application frameworks by using hook methods. These

hook methods decouple the interfaces and the behaviors of the application domain

from variations required by a particular application.

Fayad and Schmidt [64] explain the basics as follows. Frameworks are

characterized by their run-time architectures, which is known as “inversion of

control”. Inversion of control works as the framework dispatches related

functionality during application processing steps to hook methods, which perform

application-specific processing on the events.

Figure 53 Control Inversion in Frameworks [97].

To summarize, a framework often consists of abstract classes, concrete classes, and

predefined interaction among the classes throughout the framework. Developers can

 88

then build the application on top of the framework and reduce the development

effort through reuse of code and designs provided in the framework. Below Figure

54 provides a high level overview on how an application framework relates to a

domain application.

Figure 54 High-level Overview of the Relationship between an Application and the

Application Framework [97].

Referring to Chen’s book [97], the differences between a framework and a class

library can be summarized as follows. A class library consists of a number of ready-

to-use components that developers can use to build an application. But, developers

must understand the relationships between various components and write process

flow code to wire the required components together in the application. On the other

hand, a framework encapsulates the control of such process flow by pre-wiring

many of its components so that developers do not have to write code to control how

the various components interact with each other. Figure 55 illustrates the difference

between a class library and a framework.

 89

Figure 55 Comparison between a Class Library and an Application Framework

[97].

Frameworks are extended using object oriented mechanisms either by inheriting

from framework base classes or overriding pre-defined hook methods using

patterns, such as the Template Method. The Template Method is presented in Figure

56.

Figure 56 Template Method [97].

As stated by Akşit et al., although a large number of successful frameworks have

been developed during last several years, designing a high quality framework is still

an issue. Akşit proposes modeling domain knowledge as an essential step to

 90

develop a high quality framework [98]. But currently, there are no widely accepted

standards for designing, implementing, documenting and adapting frameworks.

Chen discusses the economics of framework development [97]. He argues that

developing an application framework is not an easy and inexpensive effort. In order

to develop a highly usable and extensible framework, you need first to find

individuals who are not only expert in the application domain, but also expert in

software design and development. It is important that those who are developing the

framework be competent in both domain knowledge and software development.

Without domain expertise, one cannot create the domain-specific framework layers

for developers. Without the technical expertise in software development, it will be

hard transfer the concept of the framework from theory to the concrete framework

code that developers can reuse and extend. How developers can benefit from the

services and architecture provided in the framework must be determined by the

framework designer. Chen says that some of the work involved in creating a

framework can be regarded as abstract and heavily relies on assumptions about how

developers will use the framework to build the application. So, it is said that it is

difficult to get everything right on the first try, since the designer can only guess at

how the final application will look and how it will be built to solve the domain

problem. So as a result, in most of the cases, it takes a series of iterations to get the

framework right for the applications that will be built on top of it. That makes

framework development very much an evolving task, and it demands continual

development and support efforts to ensure its relevance.

According to Robert and Johnson, a framework must embody a theory of the

domain, and is always the result of domain analysis, whether the domain analysis is

explicit and formal or implicit and informal [99]. Here in present research, we

emphasize the use of domain engineering practices to construct a reuse

infrastructure for trajectory simulation applications. We have an explicit and formal

domain model in a form of an ontology. Frameworks, as stated in the previous

paragraphs, have been standing as the most promising mechanism for enabling code

 91

and design reuse in last 20 years. So, we base our object oriented reuse scenario on

framework concepts.

For ontology based object oriented reuse scenario, as given below in Figure 57, a

Platform Independent Framework Architecture is proposed. It is an abstract design

that is constructed with the guidance of TSONT. It is proposed that abstract design

should not have any platform and problem set specific characteristics in order to

enable design reuse for a large variety of applications on many different platforms.

Figure 57 Object Oriented Reuse Scenario

As the second step of the infrastructure specification activity of domain

engineering, this platform independent framework architecture is proposed to be

refined to specific platform and problem set. Frameworks, as their nature (they are

implemented pieces of code) implies, are platform dependent. They either depend

on a programming language like ADA95, a platform like MATLAB or another

framework like .NET or EJB. Problem subsetting is also expected to figure in this

step of the activity.

 92

In our approach to trajectory simulation development with reuse, we find it

favorable to construct new simulations by framework completion, provided, of

course, a suitable framework is available. Otherwise one needs first to develop a

framework, and then complete it for the particular application. This approach is

expected to create a collection of related frameworks addressing different platforms

and problem families. So as the framework is first developed in a context of a

requirement set, it is obvious that it won’t cover the whole domain. For example, it

is expected to have body fixed 6 DOF framework with guidance and control models

implemented or another framework still 6 DOF but this time it is earth fixed and

without any guidance and control models. The former can be a result of requirement

of a guided missile development project while the latter can be a requirement of

base-bleed artillery projectile development project.

Here, in this research, as examples of object oriented frameworks, we worked on

two different frameworks. The first one is 6 DOF framework, namely MATSIX,

that was developed on MATLAB’s object oriented facilities. Two different

applications are built upon this framework. One is LYNX which is a surface to

surface rocket simulation and the second one is PUMA which is a guided bomb

simulation. There will be presented in the following sections.

The second framework is for point mass trajectory simulations. This one is not fully

developed. The focus while developing this case study was the use of code

generation facilities of computer aided software engineering tools in out reuse

oriented trajectory simulation development methodology. The static structure

captured in platform specific framework architecture is used to generate C# code for

this framework. This activity will again be presented in the following sections.

As new requirements arise more frameworks can be designed and developed

refining the platform independent framework architecture, and more applications

can be developed by framework completion.

 93

5.1.2 Platform Independent Trajectory Simulation Framework Architecture

Before going further, the first topic to be discussed is how to specify the platform

independent trajectory simulation framework architecture. Typical definition of

software architecture is the structure of the components of a program/system, their

interrelationship, and the principals and the guidelines governing their design and

evolution over time [100].

Referring the definition of software architecture given in previous paragraph,

classes are regarded as the components of our object oriented framework. So the

structure of the components of our architecture is proposed to be presented by class

diagrams that are built depending on domain model which is ontology in our case.

Platform independent framework architecture, as the name implies, must be free of

any platform dependencies. It will be the base for the specific framework

architectures. So the below constraints apply to the class diagram that represents the

platform independent framework architecture. Class diagrams are presented to be in

a nature below:

Classes without

• export level (public, protected etc.)

• persistence

• representation details

Operations without

• their export control

• return types

• arguments

 94

Attributes without

• type definition

• export control

• initial value

• containment

Associations only

• generalization

• aggregation/composition

Software architecture, as given in the definition above should arrange the relations

of components of the program besides the static structure given as class diagrams.

The dynamic relations among the components for the framework are specified by

using the UML sequence diagrams.

As the dependency hierarchy is captured in ontology, this information is used to

build a top level sequence diagram that will lead the platform dependent developer

in designing and developing his simulation.

Sequence diagram is a kind of interaction diagram that lays out the time ordering of

messaging. Interaction diagrams in general show interaction, consisting of a set of

objects and their relationship, including messages that may be dispatched among

them [101].

Class diagrams and the sequence diagram in the present work have been developed

by using Enterprise Architect Computer Aided Software Engineering tool of Sparx

Systems Inc. [102]

 95

UML class diagrams are constructed in such a way that there is a general view

diagram which shows the relations among topmost classes in the generalization

hierarchy. With this top level diagram, there are packages for each generalization

hierarchy. Each package has another class diagram that shows the generalization

hierarchy of the classes in that package. The project view of infrastructure

specification is given below in Figure 58. The top level diagram is TS Class

Diagram and the packages are the ones with folder icons.

Figure 58 Trajectory Simulation Framework Architecture Project View

This recently mentioned top level class diagram of infrastructure specification

which is given below in Figure 59, presents trajectory simulation developer which

top level classes will exist in his simulation framework.

96

F
igure 59 T

op L
evel C

lass D
iagram

 of Infrastructure S
pecification

Figure 59 Top Level Class Diagram of Infrastructure Specification

cd TS_Class_Diagram

Traj ectory_Simulation:

:Simulation

Dynamics_Model::

Dynamics_Model

Traj ectory_Simulation_Systems:

:Munition

Traj ectory_Simulation_Systems:

:Munition_Subsystem

Traj ectory_Simulation_Phases::

Phase

Traj ectory_Simulation_Systems:

:Weapon

Traj ectory_Simulation_Solv ers:

:Solv er

Termination_Model::

Termination_Model

Traj ectory_Simulation_Composite_Data::

Traj ectory

Coordinate_Systems::

Coordinate_System

Traj ectory_Simulation_Phases::

Thrusted_Phase

Traj ectory_Simulation_Phases::

In_Launcher_Thrusted_Phase
Thruster_Model::

Thruster_Model

Launcher_Model::

Launcher_Model

Autopilot_Model::Autopilot_Model

CAS_Model::CAS_Model

Guidance_Model::Guidance_Model

Sensor_Model::

Sensor_Model

Aerodynamics_Model::

Aerodynamics_Model

Earth_Model::Earth_Model

Atmosphere_Model::

Atmosphere_Model

Grav ity_Model::

Grav ity_Model

Traj ectory_Simulation_Systems:

:Autopilot

Traj ectory_Simulation_Systems:

:CAS

Traj ectory_Simulation_Systems:

:Fuze

Traj ectory_Simulation_Systems:

:Guidance_System

Traj ectory_Simulation_Systems:

:Propellant

Traj ectory_Simulation_Systems:

:Sensor

Aerodynamics_Data::

Aerodynamics_Data
Physical_Data::

Physical_Data

CAS_Data::CAS_Data

Autopilot_Data::

Autopilot_Data

Fuze_Data::Fuze_Data

Guidance_Data::

Guidance_Data

Sensor_Data::

Sensor_Data

Weapon_Data::

Weapon_Data

Traj ectory_Simulation_Phases:

:Guided_Phase

 97

Figure 59 also shows the aggregation/composition and generalization associations

among these classes. Top level classes are presented in their related packages. In

that related package’s class diagram, it is presented with its full specification

(complete with operations and attributes) and the other classes in that package

inherit from it. The top level associations of classes are designed to be dispatched to

the child classes of each package at run time by making use of the polymorphism

capability of object oriented programming.

Two examples will be discussed here in this section to give the reader a clear idea

about infrastructure specification. These examples will be Physical Data class

hierarchy and Phase class hierarchy. Class diagrams of a couple of other packages

will be given in APPENDIX D. The whole project is given in APPENDIX N.

Figure 60 Physical Data Package

 98

As given in Figure 60, Trajectory Simulation Parameters package has sub packages

for each data class hierarchy. Physical Data is one of them.

Each package has a class diagram in the name of the package. Physical Data

diagram which is given in Figure 61 is the class diagram for Physical Data package.

cd Physical_Data

Physical_Data

+ GetPhysicals() : Physicals_Record

Point_Mass_Physicals

+ GetPhysicals() : Physicals_Record

Six_DOF_Physicals

+ GetPhysicals() : Physicals_Record

Six_DOF_Physicals_for_Thrusted

+ GetPhysicals() : Physicals_Record

Figure 61 Physical Data Class Diagram

The idea presented in this diagram is that, presented schema will be the class

hierarch for the framework one will develop using this platform independent design.

For a framework that supports 6 DOF simulations, framework user, who actually is

the application engineer, will use Six DOF Physical or Six DOF Physicals for

Thrusted to inherit his own classes.

 99

In the second example we will discuss the conformance of this representation to the

form of platform independent framework architecture that was discussed at the

beginning of this section. The representation of Phase hierarchy in the infrastructure

specification is given below in Figure 62. Here in this diagram, there is no platform

dependent information. Like, classes do not have implementation details, operations

do not have specific parameters or export levels and attributes do not have any

export control.

cd Traj ectory_Simulation_Phases

Phase

+ Aerodynam ics_Model: Aerodynam ics_Model

+ Dynam ic_Model: Dynam ics_Model

+ Earth_Model: Earth_Model

+ Environment_Model : Atmosphere_Model

+ Gravity_Model: Gravity_Model

+ Ini tial_Condition: Phase_State

- Phase_State: Phase_State

- Phase_State_Derivatives: Phase_State

+ Propulsion_Model: Thruster_Model

+ Solver: Solver

+ Tem ination_Model: Termination_Model

+ ComputePhaseT rajectory() : T rajectory

+ Ini tial i zePhase() : void

+ UpdatePhaseStateAndDerivatives() : Phase_State_Derivatives

Guided_Phase

+ Autopi lot_Model : Autopi lot_Model

+ CAS_Model: CAS_Model

+ Guidance_Model: Guidance_Model

+ Sensor_Model: Sensor_Model

+ UpdatePhaseStateAndDerivatives() : Phase_State_Derivatives

In_Launcher_Thrusted_Phase

+ Launcher_Model: Launcher_Model

+ UpdatePhaseStateAndDerivatives() : Phase_State_Derivatives

Thrusted_Phase

+ Thruster_Model: Thruster_Model

+ UpdatePhaseStateAndDerivatives() : Phase_State_Derivatives

Figure 62 Phase Class Diagram

These diagrams in infrastructure specification are for guiding the developer to an

abstraction schema that was captured in the ontology.

UML sequence diagram is added to platform independent framework architecture to

give the user an idea about how the objects interact to accomplish a trajectory

simulation. The whole sequence diagram is huge to be presented here in the body of

 100

the dissertation. A small portion of the sequence will be presented here and the

whole sequence diagram is given in APPENDIX N.

The below Figure 63 illustrates that user starts a simulation by calling the service

Compute Trajectory. This service starts a phase loop. For each phase, Compute

Trajectory first initializes a phase by calling its Initialize Phase service. Then it calls

Compute Phase Trajectory function to make phase compute its trajectory. Compute

Phase Trajectory has a trajectory loop. For each time step Compute Phase

Trajectory calls Integrate Step function of Solver. Solver integrates step by calling

Update Phase State and Derivatives function of the Phase. To update phase state

and derivatives, Phase first needs to access the data related to that state. It calls

Compute Aerodynamics function of Aerodynamics Data to get the aerodynamic

coefficients at that position and velocity of munition. This sequence then continues

until whole trajectory of munition is computed.

Figure 63 A Portion of Trajectory Simulation Sequence Diagram

Here in this section, one will figure out that the behavior of the simulation is

implemented in the framework. So, all the simulations that will be developed with

framework completion will have this behavior.

 101

In the platform independent framework architecture, we expect the package/class

names mostly match the class names in the ontology. The traceability of top level

packages/classes to OWL classes in TSONT is given below in Table 1. A more

comprehensive traceability table is presented at APPENDIX E. This will increase

the understanding of the model to a developer who is familiar with the ontology and

enhance the chance of tracing back to ontology.

Table 1 Class Diagram Packages – Ontology Traceability

Package Name Entity In TSONT

Coordinate System Coordinate System

Trajectory Simulation Trajectory Simulation

Trajectory Simulation Composite Data Trajectory Simulation Composite Data

Trajectory Simulation Models Model

Trajectory Simulation Parameters Parameter

Trajectory Simulation Phases Trajectory Simulation Phase

Trajectory Simulation Quantities Trajectory Simulation Quantity

Trajectory Simulation Solvers Trajectory Simulation Solver

Trajectory Simulation Systems Trajectory Simulation Object

5.1.3 6 DOF Trajectory Simulation Framework in MATLAB

5.1.3.1 MATSIX, An Introduction

MATSIX is a 6 DOF trajectory simulation which is developed by using MATLAB.

This effort aims to present an example on implementation of the platform

independent framework architecture that was presented in the previous section. So

rather than developing new models, efforts from different researches are leveraged.

 102

Mathematical models of this simulation framework are mostly based on the

research that was carried out by Tiryaki [92]. Beyond most of the models, launcher

dynamics is based on efforts of Mahmutyazıcıoğlu, atmosphere tables are from

Public Domain Aeronautical Software web site and thrust model is based on

STANAG. 4355 [93, 103 and 23].

This simulation framework supports trajectory simulations with:

• Standard atmosphere models with no wind profile

• Constant gravitational acceleration

• In launcher and 6 DOF dynamics models for munitions with a rotational

symmetry

• Cubic, parabolic and 2D proportional navigation guidance models

• A specific autopilot model from [92].

• Canard control

• Round earth and flat earth

• Non rotating earth

• Solid rocket motors

• Launched from either a rocket launchers or an aircraft

While referring the related publications, implementations of significant models are

discussed below in Notes on MATSIX Implementation section.

5.1.3.2 MATLAB Object Oriented Facilities

MATLAB is a high-performance language for technical computing. It integrates

computation, visualization, and programming in an easy-to-use environment where

 103

problems and solutions are expressed in familiar mathematical notation [104].

Object oriented programming among other approaches can be a way to develop

software in MATLAB. Short advocacy of object oriented development in

MATLAB product documentation says, when using well-designed classes, object-

oriented programming can significantly increase code reuse and make your

programs easier to maintain and extend.

Programming with classes and objects differs from ordinary structured

programming in some important ways. These differences are listed in MATLAB

product documentation [104] as follows:

Function and operator overloading. Existing MATLAB functions can be

overridden. One should call such a function with user-defined object as an

argument. Then MATLAB first checks to see if there is a method defined for the

object's class. If there is, MATLAB calls it, rather than the normal MATLAB

function.

Encapsulation of data and methods. One can not access object properties from the

command line. They are only accessible within class methods.

Inheritance. One can create class hierarchies in MATLAB. The child class inherits

data fields and methods from the parent. Single inheritance (A child class can

inherit from one parent) or multiple inheritance (A child class can inherit from

many parents) is supported. Using inheritance, sharing common parent functions

and enforcing common behavior among all child classes is possible.

Aggregation. An object can contain other objects. This is called aggregation, which

is also supported by MATLAB.

Although these definition seems to be very similar to common definition of object

oriented there are some differences in the implementation of the methodology in

MATLAB. These differences are listed in MATLAB product documentation [104]

as follows:

 104

• Method dispatching is not syntax based in MALAB. MATLAB uses the left-

most object to select the method to call, when the argument list contains

objects of equal precedence.

• There is no equivalent to a destructor method in MATLAB. One should use

the clear function to remove an object from the workspace.

• MATLAB data types are constructed at runtime rather than compile time.

To register an object as belonging to a class, one should call the class

function.

• The inheritance relationship is established in the child class by creating the

parent object, and then calling the class function in MATLAB.

• The child object contains a parent object in a property with the name of the

parent class in MATLAB.

• There is no passing of variables by reference in MATLAB. One should pass

back the updated object and use an assignment statement to write methods

that update an object.

• There is no equivalent to an abstract class in MATLAB.

• There is no equivalent to the C++ scoping operator in MATLAB.

• There is no virtual inheritance or virtual base classes in MATLAB.

• There is no equivalent to C++ templates in MATLAB.

5.1.3.3 MATSIX Architecture

Framework architecture of MATSIX implementation is a part of infrastructure

implementation. This design is based on the abstract design that is presented in the

Platform Independent Framework Architecture. The platform specific constraints

are applied on this abstract design and a detailed design is constructed. Meanwhile

 105

this MATSIX Architecture is subset of Platform Independent Trajectory Simulation

Framework Architecture since it only concentrates on 6 DOF trajectory simulations

and specifically the models presented in the previous section.

Figure 64 MATSIX Project View

The project view is very similar to the one in platform independent framework

architecture. There is again a top level class diagram and packages with distinct

class diagrams inside. Figure 64 gives the MATSIX project view. Here in this

section, only Aerodynamics Model and Trajectory Simulation Phases will be

introduced. Couple of other class diagrams will be given in APPENDIX F. The

whole MATSIX Project and implementation are given in APPENDIX N.

 106

cd Aerodynamics_M odel

aerodynamics_model

- Coordinate_System : cs

+ aerodynamics_model() : aerodynamics_m odel

+ Com puteAerodynam icForce(aerodynamics_m odel, aerodynamics_record, physicals_record, atm osphere_record, dynamics_m odel_state) : aerodynamic_force

+ Com puteAerodynam icsM om ent(aerodynam ics_model, aerodynam ics_record, physicals_record, atmosphere_record, dynam ics_model_state) : aerodynam ics_moment

+ get() : void

+ set() : void

Figure 65 Aerodynamics Model of MATSIX Architecture

As depicted in Figure 65, there is only one Aerodynamics Model class in MATSIX

Architecture. This is due to the fact that the platform, this time MATLAB, does not

support abstract classes. So the hierarchy defined in abstract design hasn’t been

implemented, rather updated considering the constraints of the platform.

cd Traj ectory_Simulation_Phases

phase

- aerodynamics_m odel : aerodynamics_model

- atm osphere_m odel : atm osphere_m odel

- dynam ics_model : dynam ics_model

- earth_model: earth_m odel

- gravity_model : gravity_model

- ini tial ized: boolean

- phase_state: phase_state

- phase_state_derivatives: phase_state

- phase_term ination_record: termination_record

- tem ination_model : Term ination_M odel

+ ComputePhaseT rajectory(phase, muntion) : T rajectory

+ get() : void

+ GetPhaseStateAsArray(phase) : y

+ GetStateDerivativesAsArray(phase) : dy

+ Ini tial ize(phase, phase_state) : phase

+ phase() : phase

+ set() : void

+ SetStateDerivativesfromArray(phase, dy) : phase

+ SetStateFromArray(phase, y) : phase

+ UpdatePhaseStateAndDerivatives(time, y, phase, muntion) : dy

in_launcher_thrusted_phase

- Launcher_Model : launcher_m odel

+ get() : void

+ GetPhaseStateAsArray(in_launcher_thrusted_phase) : y

+ GetStateDerivativesAsArray(in_launcher_thrusted_phase) : dy

+ Ini tial ize(in_launcher_thrusted_phase, Phase_State) : phase

+ set() : void

+ SetStateDerivativesfromArray(in_launcher_thrusted_phase, dy) : phase

+ SetStateFromArray(in_launcher_thrusted_phase, y) : phase

+ UpdatePhaseStateAndDerivatives(T ime, y, in_launcher_thrusted_phase, Muni tion) : dy

thrusted_phase

- T hruster_Model: rocket_motor_m odel

+ get() : void

+ GetPhaseStateAsArray(thrusted_phase) : y

+ GetStateDerivativesAsArray(thrusted_phase) : dy

+ Ini tial ize(thrusted_phase, Phase_State) : phase

+ set() : void

+ SetStateDerivativesfromArray(thrusted_phase, dy) : phase

+ SetStateFromArray(thrusted_phase, y) : phase

+ thrusted_phase() : thrusted_phase

+ UpdatePhaseStateAndDerivatives(T ime, y, thrusted_phase, Muni tion) : dy

guided_phase

- Autopilot_Model: autopilot_model

- CAS_Model : CAS_M odel

- Guidance_Model : guidance_model

- Sensor_Model: Sensor_Model

+ get() : void

+ GetPhaseStateAsArray(guided_phase) : y

+ GetStateDerivativesAsArray(guided_phase) : dy

+ guided_phase() : guided_phase

+ Ini tia l ize(phase, phase_state) : guided_phase

+ set() : void

+ SetStateDerivativesfromArray(guided_phase, dy) : guided_phase

+ SetStateFrom Array(guided_phase, y) : phase

+ UpdatePhaseStateAndDerivatives(T im e, y, guided_phase, Muni tion) : dy

Figure 66 Phases of MATSIX Architecture

 107

When the diagram given in Figure 66 is considered, one will figure out that the

classes involve implementation details like export levels, arguments and return

types.

All attributes are private. This is another MATLAB constraint. So all classes have

“get” and “set” functions to enable the class users manipulate the private attributes.

MATLAB requires all classes to have a constructer in the name of the class. As an

example, guided phase has a guided phase service that returns a guided phase

object.

There is no parameter passing by reference in MATLAB. As one of the

consequence of this, services that change the state of an object have objects as one

of its return value.

The design for MATSIX Architecture mentioned above was implemented. The

framework involves 48 classes, which amount to 3579 SLOC (source lines of code).

5.1.3.4 Notes on MATSIX Implementation

This section presents some of the significant model implementations in MATSIX

framework. Coordinate systems, dynamics model, aerodynamics model, guidance

models, autopilot model and thruster model are mentioned below. Rather than the

derivations of the equations, only the implemented results are given. Further details

about the models can be found in the related references.

5.1.3.4.1 Coordinate Systems

MATSIX uses two different right handed and orthogonal coordinate frames. The

first one is the earth fixed reference frame,),,(ZYXEℑ . Its origin is fixed to the

earth’s surface with its X axis pointing towards north, Y axis pointing towards east

and Z axis pointing towards down to the centre of the earth. Non-rotating earth

assumption is used. Hence the earth fixed reference frame is taken to be inertial.

 108

The second reference frame),,(zyxBℑ is the munition body frame. Its origin is at

the centre of gravity of the munition. Its x axis points from the centre of gravity to

the nose of the munition, y axis points towards the right of the munition looking

from rear, z axis points down, forming a right handed orthogonal coordinate system.

Vector quantities are represented as a column vector with a coordinate system. The

coordinate system transformations are carried out by using a transformation matrix.

)(),()(ˆ bbaa rCr = Eq. 2

Coordinate systems are defined by their Euler angles which are ψ , θ and φ (yaw

angle, pitch angle and roll angle respectively) with respect to the inertial frame of

the simulation. 3-2-1 rotated frame based Euler transformation sequence are used

for rotational transformations. The transformation matrix from any (X) frame to the

inertial frame (I) is obtained as:

(,)ˆ I X

c c s s c c s c s c s s

C c s s s s c c c s s s c

s s c c c

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

− +
 = + −
 −

 Eq. 3

where ‘c’ denotes the cosine and ‘s’ denotes the sine of the angle.

5.1.3.4.2 Dynamics Model

MATSIX dynamics model consists of equations of motion which relate the forces

and moments which are being applied to the munition to the translational and

rotational accelerations. Two different dynamics modeling is used in MATSIX. The

first one models the equations of motion of a munition in launcher and the second

one is the six degrees of freedom equations of motion of the munition in three

dimensional space.

 109

5.1.3.4.2.1 In Launcher Dynamics Model

The launcher is modeled as straight rail that reinforces no spin to the rocket.

Launcher constraints the motion of the munition by forcing its elevation and

azimuth during in launcher phase [93].

xF
u

m
=� Eq. 4

0v =� Eq. 5

0w =� Eq. 6

where;

x ax tx xF F F mg= + + Eq. 7

and

0p =� Eq. 8

0q =� Eq. 9

0r =� Eq. 10

Using the body to earth transformation matrix (,)ˆ E BC , body frame translational

velocity components can be related to earth frame velocity components as follows:

=

w

v

u

C

Z

Y

X
BE),(ˆ

�

�

�

 Eq. 11

 110

Here wvu ,, are the translational velocity components in the munition body frame.

ZYX ,, are the coordinates of the centre of gravity of the munition in the earth

frame.

It is assumed that no angular rates can be introduced to the munition in launcher, so

the rotational kinematic equations implemented are as follows:

0ψ =� Eq. 12

0θ =� Eq. 13

0φ =� Eq. 14

5.1.3.4.2.2 Six DOF Dynamics Model

Six degrees of freedom equations of motion are implemented as follows;

vrqw
m

F
u x +−=� Eq. 15

pwur
m

F
v y

+−=� Eq. 16

pvuq
m

F
w z −+=� Eq. 17

where;

x ax tx xF F F mg= + + Eq. 18

y ay ty yF F F mg= + + Eq. 19

z az tz zF F F mg= + + Eq. 20

 111

and

xILp /=� Eq. 21

yxyy IIIprIMq /).(./ −+=� Eq. 22

yyxy IIIqpINr /).(./ −+=� Eq. 23

where;

a tL L L= + Eq. 24

a tM M M= + Eq. 25

a tN N N= + Eq. 26

Here, note that z yI I= due to rotational symmetry of the munition.

Body frame translational velocity components are related to earth frame velocity

components as follows:

=

w

v

u

C

Z

Y

X
BE),(ˆ

�

�

�

 Eq. 27

The rotational kinematics equations implemented are as follows:

()sin cos cosψ q. r. / θφ φ= +� Eq. 28

cos sinθ q. r.φ φ= −� Eq. 29

()sin cos tanp q. r. . θφ φ φ= + +� Eq. 30

 112

5.1.3.4.3 Aerodynamics Model

Aerodynamic model of MATSIX concentrates on the determination of aerodynamic

forces and moments acting on a munition which are produced by the relative motion

of the munition with respect to the air and depend on the orientation of the munition

with respect to the airflow.

The orientation angles are the angle of attack (α) and the sideslip angle (β). These

angles are expressed as follows:

)(tan 1

u

w−=α Eq. 31

)(sin 1

V

v−=β Eq. 32

Figure 67 Munition Velocity Components - Side View

Figure 68 Munition Velocity Components - Top View

 113

The aerodynamic forces and moments acting on the munition are expressed in

column representation as:

=

z

y

x

d

az

ay

ax

C

C

C

AQ

F

F

F

.. Eq. 33

=

n

m

l

d

a

a

a

C

C

C

dAQ

N

M

L

... Eq. 34

dQ is the free stream dynamic pressure. It is expressed as:

2

2

1
VQd ρ= Eq. 35

ρ is the air density.V is the velocity of the munition and implemented as following

regarding the no wind case:

2 2 2V u v w= + + Eq. 36

“A” is the reference area. It is the maximum cross sectional area of the munition.

“d”, on the other hand, is the diameter of the munition.

5.1.3.4.4 Aerodynamics Parameters

Aerodynamic coefficients are defined as; xC , axial force coefficient, yC , side force

coefficient, zC , normal force coefficient, lC , rolling moment coefficient, mC ,

pitching moment coefficient and nC , yawing moment coefficient.

These coefficients are expressed as a function of angle of attack, sideslip angle,

control surface deflections (for guided munition), and Mach number. The effective

 114

control surface deflections are said to be are δδδ ,, for the pitch, yaw and roll planes

respectively. Mach number is defined as:

sV

V
M = Eq. 37

Where V is the total velocity of the munition and sV is the local speed of sound

Force and moment coefficients are implemented as following in MATSIX referring

the assumptions from Tiryaki’s work [92].

Force Coefficients:

)(0 MCC xx = Eq. 38

V

d
rMCMCMCC

ryryyy
2

)()()(++= δβ
δβ

 Eq. 39

V

d
qMCMCMCC

qzezzz
2

)()()(++= δα
δα

 Eq. 40

Moment Coefficients:

V

d
pMCMCC

plall
2

)()(+= δ
δ

 Eq. 41

V

d
qMCMCMCC

qmemmm
2

)()()(++= δα
δα

 Eq. 42

V

d
rMCMCMCC

rnrnnn
2

)()()(++= δβ
δβ

 Eq. 43

Equalities due to rotational symmetry:

z yC Cα β= Eq. 44

 115

z yC Cδ δ= Eq. 45

zq yrC C= − Eq. 46

m nC Cα β= − Eq. 47

m nC Cδ δ= − Eq. 48

mq nrC C= Eq. 49

5.1.3.4.5 Atmosphere Model

Table 2 ICAO Standard Atmosphere Table

Altiture Temperature Pressure Density Speed of Sound

km K N/sq.m kg/cu.m m/s

-2 301.2 1.28E+05 1.48E+00 347.9

0 288.1 1.01E+05 1.23E+00 340.3

2 275.2 7.95E+04 1.01E+00 332.5

4 262.2 6.17E+04 8.19E-01 324.6

6 249.2 4.72E+04 6.60E-01 316.5

8 236.2 3.57E+04 5.26E-01 308.1

10 223.3 2.65E+04 4.14E-01 299.5

12 216.6 1.94E+04 3.12E-01 295.1

14 216.6 1.42E+04 2.28E-01 295.1

16 216.6 1.04E+04 1.67E-01 295.1

18 216.6 7.57E+03 1.22E-01 295.1

20 216.6 5.53E+03 8.89E-02 295.1

22 218.6 4.05E+03 6.45E-02 296.4

24 220.6 2.97E+03 4.69E-02 297.7

26 222.5 2.19E+03 3.43E-02 299.1

28 224.5 1.62E+03 2.51E-02 300.4

30 226.5 1.20E+03 1.84E-02 301.7

32 228.5 8.89E+02 1.36E-02 303

34 233.7 6.63E+02 9.89E-03 306.5

36 239.3 4.99E+02 7.26E-03 310.1

38 244.8 3.77E+02 5.37E-03 313.7

40 250.4 2.87E+02 4.00E-03 317.2

42 255.9 2.20E+02 3.00E-03 320.7

44 261.4 1.70E+02 2.26E-03 324.1

46 266.9 1.31E+02 1.71E-03 327.5

48 270.6 1.02E+02 1.32E-03 329.8

50 270.6 7.98E+01 1.03E-03 329.8

 116

Standard atmosphere model of MATSIX is implemented in this case study as a

simple table look up. The values represent the ICAO standard atmosphere. The

values listed above in Table 2 are obtained from the web site of Public Domain

Aeronautical Software (PDAS) [103].

5.1.3.4.6 Guidance Model

5.1.3.4.6.1 Cubic Guidance

Cubic Guidance Law is one of three guidance laws implemented in MATSIX. In

Cubic Guidance Law, flight path angle rate commands are computed in order to

keep the munition on a cubic trajectory [92]. This trajectory is regarded to be

tangent to the instantaneous munition velocity vector. It will have two end points,

munition’s centre of mass and the target point. One can use four conditions to

express a cubic polynomial. In addition to satisfying three of them given above, one

more condition can be defined on the cubic trajectory. This condition is taken to be

the impact angle of the munition.

The mathematical formulation of cubic guidance law is expressed as follows:

The trajectories for xx f −<< ξ0 is expressed below as:

yyyy DCBAxy +++=+ ξξξξ 23)(Eq. 50

zzzz DCBAxz +++=+ ξξξξ 23)(Eq. 51

In order to find four unknowns which are the coefficients of the cubic polynomials,

we need four conditions on these equations. These conditions will be taken as:

• Starting point condition

• Starting slope condition

 117

• Hit point condition

• Hit slope condition

By using four conditions presented above, these coefficients are found to be;

i

i
y

i

Y
S

X
=
�

�
 Eq. 52

i

i
y

i

Z
S

X
=
�

�
 Eq. 53

yD y= Eq. 54

zD z= Eq. 55

iz zC S= Eq. 56

tan
fy fS η= Eq. 57

tan /cos
fz f fS γ η= − Eq. 58

2)(

3))(2(

xx

yxxSS
B

f

fyy

y
if

−

+−+
−= Eq. 59

2)(

3))(2(

xx

zxxSS
B

f

fzz

z
if

−

+−+
−= Eq. 60

Desired rates are

ηγη 3* coscos2 VBy=� Eq. 61

ηηγηγγ sincoscos2coscos2 3323* VBCVB yzz +−=� Eq. 62

where,

 118

arctan()
iySη = Eq. 63

arctan(cos)
izSγ η= − Eq. 64

5.1.3.4.6.2 Parabolic Guidance

Parabolic Guidance Law as the second guidance algorithm of MATSIX generates

the necessary commands on either the rates of the flight path angles or the normal

acceleration components that keep the munition on a parabolic trajectory [92]. This

trajectory is kept tangent to the munition’s current velocity vector and pass through

the munition’s centre of mass and the target point at all instants.

The trajectories for xx f −<< ξ0 is expressed below as:

2/)(2ξξξ yyy ABCxy −+=+ Eq. 65

2/)(2ξξξ zzz ABCxz −+=+ Eq. 66

Instantaneous parabolic trajectories are described by these equations. Three

unknowns in these equations which are the coefficients of the second order

polynomials are solved by three conditions which are:

• Starting point condition

• Starting slope condition

• Hit point condition

By using three conditions presented above, these coefficients are found to be;

yC y= Eq. 67

zC z= Eq. 68

 119

tanyB η= Eq. 69

tan

coszB
γ

η
= − Eq. 70

2)(

))(tan(2

xx

xxy
A

f

f

y
−

−+
=

η
 Eq. 71

2

2((tan / cos)())

()

f

z

f

z x x
A

x x

γ η− −
=

−
 Eq. 72

Desired rates are

ηγη 3* coscosVAy−=� Eq. 73

* 2(cos sin sin) (cos cos)z yA A Vγ γ γ η γ η= +� Eq. 74

where,

arctan()
iySη = Eq. 75

arctan(cos)
izSγ η= − Eq. 76

5.1.3.4.6.3 Proportional Navigation in 2D

The last guidance law that we implemented in MATSIX is Proportional Navigation

in 2D. Proportional navigation guidance as one of the first guidance laws developed

for tactical missiles is popular by its simplicity, effectiveness and ease of

implementation [15].

Proportional navigation guidance law generates acceleration command which is

proportional to the line of sight rate and the closing velocity. Mathematically it can

be expressed as [92]:

 120

c c
n N Vλ= � Eq. 77

where, N is a unitless effective navigation, λ� is the line of sight rate, cV is the

closing velocity and cn is the command acceleration.

Figure 69 2-D Missile-Target Kinematics

,,,,,, tttmmm zyxzyx tztytxmzmymx VVVVVV ,,,,, as basic missile and target parameters,

are presented in Figure 69.

2 2

()() ()()

() ()

t m ty my t m tx mx

t m t m

x x V V y y V V

x x y y
λ

− − − − −
=

− + −
� Eq. 78

2 2

()() ()()

() ()

t m tx mx t m ty my

c

t m t m

x x V V y y V V
V

x x y y

− − + − −
= −

− + −
 Eq. 79

 121

5.1.3.4.7 Autopilot Model

5.1.3.4.7.1 Pitch Autopilot

The aim of pitch autopilot model is to find the commanded fin deflections to

stabilize the longitudinal dynamics and keep *γγ �� = , where *γ� is the command rate

provided by the guidance law.

Pitch autopilot of MATSIX is implemented using equations work that follow [92]:

/()z tdb Q AC MassV
αγα = − Eq. 80

/()tzdb Q AC MassVγδ δ= Eq. 81

/q m ydb Q AdC Iα α= Eq. 82

/ yq mdb Q AdC Iδ δ= − Eq. 83

q q qB b b b bδ δ γα α γδ= − Eq. 84

3
0 nd µω= Eq. 85

2
1 (1 2) nd ξµ ω= + Eq. 86

2 (2) nd ξ µ ω= + Eq. 87

cos /g qf b g Vα γ= Eq. 88

0 1 2 0(/ (/)*) /((/)*() (/)*)q q q q q q q q q qk b B b b B b d b B b b d b B dγδ δ δ δ δ α α δ δ γδ δ δ= − + + + − − Eq. 89

1 2 0() / qk d b k bγα δ= − − Eq. 90

3 0 0() /q qk d b k Bα δ= + Eq. 91

 122

2 3 0 1k k k k= − Eq. 92

3 0 / qc d B δ= Eq. 93

1 1 3() /q qc d b c Bδ δ= − Eq. 94

2 3 0 1c c k c= − Eq. 95

3 0 / qh k B δ= Eq. 96

1 3(1) /q qh b h Bδ δ= − Eq. 97

2 3 0 1h h k h= − Eq. 98

*

1 1 1e g
k q c h fδ γ′ = − + −� Eq. 99

() () ()
e e e

s s sδ δ δ′ ″= + Eq. 100

*

0 2 2 2e e g
k k q c h fδ δ γ″ ″+ = − + −� � Eq. 101

5.1.3.4.7.2 Yaw Autopilot

The aim of yaw autopilot model is to find the commanded fin deflections to

stabilize the yawing dynamics and keep *ηη �� ≅ , where *η� is the commanded

horizontal flight path angle rate by the guidance law. The following set of equations

are implemented in MATSIX to simulate the yaw autopilot [92].

/()z tdb Q AC MassV
αηβ = − Eq. 102

/()tzdb Q AC MassVηδ δ= − Eq. 103

 123

. . . /m yr db Q A d C Iαβ = − Eq. 104

. . . / yr mdb Q A d C Iδ δ= − Eq. 105

r r rB b b b bηδ δ ηβ β δ= − Eq. 106

3
0 nd µω= Eq. 107

2
1 (1 2) nd ξµ ω= + Eq. 108

2 (2) nd ξ µ ω= + Eq. 109

cos /g qf b g Vα γ= Eq. 110

0 1 2 0(/ (/)) /((/)() (/))r r r r r r r r r rk b B b b B b d b B b b d b B dηβ δ δ δ δ β β δ δ ηβ δ δ= − + + + − − Eq. 111

1 2 0() / rk d b k bηβ δ= − − Eq. 112

3 0 0() /r rk d b k Bβ δ= − Eq. 113

2 3 0 1k k k k= − Eq. 114

 124

3 0 / rc d B δ= Eq. 115

1 1 3() /r rc d b c Bδ δ= − Eq. 116

2 3 0 1*c c k c= − Eq. 117

3 0 / rh k B δ= Eq. 118

1 3(1) /r rh b h Bδ δ= − Eq. 119

2 3 0 1h h k h= − Eq. 120

″
+

′
= rrr δδδ Eq. 121

*
11 ηδ �crkr +−=

′ Eq. 122

*
220 ηδδ �� crkk rr +−=

″
+

″ Eq. 123

 125

5.1.3.4.7.3 Roll Autopilot

The autopilot model is used to keep 0≅p so that the lateral autopilots can work

properly. Implemented roll autopilot model of MATSIX is as follows [92]:

(/(2)) /()p d lp t tL Q AC d V MassV= Eq. 124

/d l xL Q AdC Iδ δ= Eq. 125

(2) /p r nr pK ξ L Lδω= + Eq. 126

2 /nrK Lφ δω= Eq. 127

a pK p Kφδ φ= − − Eq. 128

5.1.3.4.7.4 CAS Model

MATSIX supports the simulation of canard-controlled guided munition with four

control surfaces that are 90° apart from each other. A rear view of the munition with

the body frame axes on it is seen in Figure 70.

 126

Figure 70 Positive Control Surface Deflection Convention

The positive deflections are as follows. For 2δ and 4δ right hand rotations about (-

y) and (+y) axis and for 1δ and 3δ right hand rotations about the (-z) and (+z) axes

of body frame respectively.

 (elevator) , (rudder)and (aileron)e r aδ δ δ are the apparent control surface

deflections. These deflections are defined in terms of the control surface deflections

4321 ,,, δδδδ as follows [92]:

2
42 δδ

δ
−

=e Eq. 129

2
31 δδ

δ
−

=r Eq. 130

4
4321 δδδδ

δ
+++

=a Eq. 131

Autopilot is modeled to send pitch, yaw, roll commands defined to the actuators.

They are separated into individual fin commands as follows:

rac
δδδ +=1 Eq. 132

 127

eac
δδδ +=2 Eq. 133

rac
δδδ −=3 Eq. 134

eac
δδδ −=4 Eq. 135

The values indicated above as the fin commands cδ to the control actuation system

are converted into an actual surface deflection δ . Here the response of the fin

actuator is modeled by a second order transfer function with natural frequency of

casnω and damping casξ as follows:

22

2

2)(

)(

cascas

cas

c nncas

n

i

i

sss

s

ωωξ

ω

δ

δ

++
= Eq. 136

Then the actual control surface deflections will be the outcomes of the following

differential equation.

ccascascas ininincasi δωδωδωξδ 222 =++ ��� 4,3,2,1=i Eq. 137

5.1.3.4.8 Thruster Model

Thrust model of MATSIX is responsible to compute the thrust force and thrust

moment acting on the rocket at any time of boost phase. Mass flow values are

supplied to the model for any instant of time and thrust force and thrust moment are

computed using the following equations [23, 93].

()t sp ref ExitF mI P P A= + −� Eq. 138

1costx tF F δ= Eq. 139

1 2sin sinty tF F δ δ= − Eq. 140

 128

1 2sin costz tF F δ δ= − Eq. 141

0tL = Eq. 142

()t y cgM T l X= − − Eq. 143

()t z cgN T l X= − Eq. 144

where 1 2,δ δ are thrust misalignments.

During boost phase, inertia and the center of gravity of the munition change with

respect to time due to the burning or the propellant. Below model is used to

approximate the instantaneous center of gravity and the inertia [93].

0

0

0

()
() t

t ref ref

fuel fuel

cg cg cg cg

fuel

m m
x x x x

m

−
= + − Eq. 145

0

0

0

()
() tfuel fuel

t ref ref

fuel

m m
I I I I

m

−
= + − Eq. 146

5.1.3.5 MATSIX Applications

5.1.3.5.1 LYNX – A Surface to Surface Guided Rocket Simulation

LYNX is a surface to surface guided rocket simulation. The operation concept of

the simulated system is designed as given below in Figure 71. The fictive rocket

system that was used for simulation is fired from a launcher. It has a solid rocket

motor so flies through a boost phase. After boost, guidance system does not start till

a predefined range in trajectory. This phase of the flight is called free flight. The

last phase is guided flight.

 129

Figure 71 LYNX Concept of Operation

Figure 72 LYNX Simulation Class

This operational concept together with the data used to represent the rocket system

is used to develop the simulation by framework completion. LYNX has been

 130

implemented by adding 20 new classes, all derived from framework classes, with

1137 SLOC. The implementation is given in APPENDIX N.

The code that is given above in Figure 72 shows how the operation of the rocket

system is reflected to code while completing the framework. One just derives a new

simulation class from the base trajectory simulation class and defines the phases and

the sequence of phases. The computation of trajectory is implemented in the

Trajectory Simulation class beforehand. Once the application engineer inherits a

new simulation class from Trajectory Simulation, he owes all the trajectory

simulation mechanism. Below in Figure 73, code that simulates the flight of the

munition though all phases, is given. It is the Compute Trajectory service of

Trajectory Simulation class.

Figure 73 Compute Trajectory Service of Trajectory Simulation Class

 131

Figure 74 LYNX Classes

The list of the derived classes for LYNX simulation is given above in Figure 74.

There will be a section on how the framework is completed with these classes to

develop LYNX.

LYNX simulation uses simulation parameters that define the surface to surface

guided rocket system that it simulates. This data includes physicals like its mass and

reference area, its aerodynamic coefficients, its motor properties and so on. This

data used in LYNX Simulation is given in APPENDIX G.

Number of sample simulation runs was done with the developed code. Below is

presents the results of one of them with 711 mills elevation. More plots from the

sample runs of LYNX Simulation are given in APPENDIX H.

 132

Figure 75 Plots from a Sample LYNX Simulation Run

5.1.3.5.2 PUMA – An Air to Ground Guided Bomb Simulation

PUMA is a guided bomb simulation. The concept bomb that was used for

simulation is released from a bomber aircraft. Its guidance system does not operate

for the first short period after release for a safe separation. Then guidance and

control system starts to navigate the bomb. A number different guidance laws are

used as the guidance algorithm. The operation concept of this system is designed as

given below in Figure 76.

 133

F
re

e
 F

lig
h
t

P
h

a
s
e

G
u
id

e
d
 P

h
a
s
e

Figure 76 PUMA Concept of Operation

Like LYNX, PUMA was also developed by completing the MATLAB 6DOF

Trajectory Simulation Framework. PUMA has been implemented by adding 16 new

classes, all derived from framework classes, with 733 SLOC. The list of the derived

classes for PUMA simulation is given below in Figure 77. The implementation is

given in APPENDIX N.

Figure 77 PUMA Classes

 134

The data used in PUMA Simulation is given in APPENDIX I. Sample runs were

carried out using the developed system. Below is from the results of a sample for a

release from 1100m height with 250m/s True Air Speed. More plots from the

sample runs of PUMA Simulation are given in APPENDIX J.

Figure 78 Plots from a Sample PUMA Simulation Run

5.1.3.6 Framework Completion Process

In this section, we will investigate how we complete the framework in detail. While

completing the framework, one basically follows the steps listed below;

 135

1. Derive you data classes from related base data classes and implement the

mechanism to read data. Below, Figure 79 is a part of LYNX Aerodynamics

class code. This class is derived form Aerodynamics class. Aerodynamic

coefficients are hard coded in LYNX simulation.

Figure 79 LYNX Aerodynamics Class

2. Derive your munition sub system classes from related base classes and

implement the association of subsystem classes with their data classes.

Figure 80 LYNX CAS Class

 136

As an example LYNX CAS class code is presented in Figure 80. This class

is derived form CAS class of the framework. As seen in line 7 LYNX CAS

class is associated with LYNX CAS data class.

3. Derive your munition class from the base munition class and implement the

association of munition with its data and its subsystems. Below LYNX class

is given as an example in Figure 81. Here as you see, all the sub systems and

the related data are associated with LYNX class that derived from munition

base class.

Figure 81 LYNX Class

 137

4. Derive required phase classes from the base phase classes, implement the

initialization services of the derived phases and specify the models that will

be used during simulation and the phase termination conditions. LYNX

Launcher Phase class and its Initialize service are presented below in Figure

82 and Figure 83 as an example of this step. In the class definition related

models and phase termination conditions are associated with the class.

Initialize service on the other hand implements how the initial phase state is

set.

Figure 82 LYNX Launcher Phase Class

 138

Figure 83 Initialize Service of LYNX Launcher Phase

Figure 84 PUMA Simulation Class

 139

5. Finally, derive your simulation class from the base Trajectory Simulation

class and specifying the phases and their order. PUMA class is presented

above in Figure 84 as an example.

5.1.4 C# Point Mass Trajectory Simulation Framework

After presenting a full scale ontology based reuse infrastructure development and its

use by means of framework development and framework completion for MATLAB

platform, we would like to present another case for basically two reasons. First we

would like to exercise to design a framework for a different platform. Then we

would like to present the use of code generation capabilities of computer aided

software engineering tools with ontology based trajectory simulation reuse

infrastructure. We selected .NET platform of Microsoft. C# was chosen as the

language to develop this framework.

In this case study, we designed a platform specific framework architecture and

generated source code from this design specification. Full implementation of the

framework and framework completion for specific applications is planned to be

carried out by different developers from the target reuse group. This will be a step

towards institutionalization of the ontology based reuse infrastructure development

process in TUBITAK-SAGE.

Platform and the language will not be discussed in detail here but it will be good to

give a brief background. C# is said to be designed to provide a simple, safe,

modern, object-oriented, internet-centric, high performance language for .NET

development. It is a new language, but it is said to be drawing on the lessons

learned over the past three decades. C# influences from Java, C++, Visual Basic

(VB), and other languages. The .NET platform on the other hand is, in essence, a

new development framework that provides a fresh application programming

interface (API) to the services and APIs of classic Windows operating systems,

especially Windows 2000, while bringing together a number of cutting edge

 140

technologies that emerged from Microsoft during the late 1990s. Currently, the

.NET Framework consists of:

• Four official languages: C#, VB .NET, Managed C++, and JScript .NET

• The Common Language Runtime (CLR), an object-oriented platform for

Windows and web development that all these languages share

• A number of related class libraries, collectively known as the Framework

Class Library (FCL) [105].

Figure 85 Trajectory Simulation Systems

Above is a design schema from platform specific framework architecture As we

have done in MATLAB framework architecture design, here we take the platform

independent framework architecture and subset it for point mass trajectory

 141

simulation supporting guided and thrusted munitions. Then we applied the platform

specific design constraints on that subset and generated a platform specific

framework architecture..

Figure 86 Sample Code Snapshot From IDE

Enterprise Architect of Sparx Systems is being used as the computer aided software

engineering tool for forward and reverse engineering during development of this

framework. Using this tool’s forward engineering capabilities, code generation

process was executed. About 2600 SLOC was produced automatically. Visual

 142

Studio Team System is being used as the IDE (Integrated Development

Environment). Above, an example code snapshot from this produced code is

presented in Figure 86. More sample diagrams from this platform specific

framework design and sample code snapshots will be provided in APPENDIX K.

Besides, APPENDIX N presents the model and code projects.

5.2 Function Oriented Infrastructure Specification and Implementation

5.2.1 Function Oriented Programming and Reuse

Function oriented programming as stated by Sommerville relies on decomposing

the system into a set of interacting functions with a centralized system state shared

by these functions. Function-oriented design has been used informally since the

programming has begun. Programs have been decomposed into subroutines which

were functional in nature [65].

One way to develop reuse infrastructure for function oriented paradigm is to

develop a function library in a structured language like Fortran or C. Numerical

Recipes is an example of such a function library. It is one of the most famous

function libraries in scientific computing society [106 and 107]. The other way is to

use MATLAB Simulink and develop a function oriented blocksets. We selected to

do this one since such an ontology based blockset reuse practice using MATLAB

Simulink is more likely to be used by target reuse group then a Fortran or C

function library approach.

As presented below in Figure 87, in a function oriented reuse scenario as in the

object oriented scenario, we still propose a platform independent abstract design as

the first step of the infrastructure specification activity of domain engineering.

 143

ONTOLOGY BASED TRAJECTORY SIMULATION REUSE INFRASTRUCTURE

DOMAIN ANALYSIS

TSONT

FUNCTION ORIENTED REUSE SCENARIO

APPLICATION

DEVELOPMENT

INFRASTRUCTURE

IMPLEMENTATION

PANTHERA - Point Mass
Ungided Trajectory

Simulation MATLAB

SIMULINK Blockset

XXX FORTRAN

Trajectory Simulation

Function Library

Tiger

Jaguar

XXX

INFRASTRUCTURE SPECIFICATION

Platform
Independent

Functional Design

Collection

PANTHERA -
Point Mass

Unguided

Trajectory

Simulation

MATLAB
SIMULINK

Blockset Design

XXX FORTRAN
Trajectory

Simulation Function

Library

Abstract Design
Model Refinement Infrastructure Implementation Library Reuse

Figure 87 Function Oriented Reuse Scenario

Data flow diagrams are treated as the tools for abstract function oriented design. As

presented in the famous software engineering book of Sommerville, data flow

diagrams are concerned with designing a sequence of functional transformations

that convert system inputs into the required outputs. These diagrams illustrate how

data flows through a system and how the output is derived from the input through a

sequence of functional transformations [65].

Different from our object oriented scenario, we do not propose a single abstract

design that covers whole domain. Rather, we propose a collection of data flow

diagrams for different problem sets, like, point mass data flow diagrams that we

will present in the following sections or a modified point mass projectile simulation

data flow diagrams. This collection of abstract designs will be the reuse assets for

the future projects.

Platform specific design will be the refinement of these abstract designs. We, in our

case study, refined or transformed the data flow diagrams to the block diagrams of

MATLAB.

 144

5.2.2 Platform Independent Point Mass Unguided Trajectory Simulation

Abstract Software Design

The functions with their functionalities and their interfaces are captured in the

ontology. Besides, dependencies of these functions are also being captured in

TSONT. Here in this case study, we tried to show how ontology is helpful when the

software development paradigm changes from object oriented to function oriented.

We used function definitions in the ontology to draw our data flow diagrams.

Below, in Figure 88, data flow diagram of Compute Point Mass Phase Trajectory

service is given. Here in the data flow, the functions to be executed to compute the

point mass phase’s trajectory and the data flow among functions are captured in

abstract fashion. The whole set of data flow diagrams are attached at APPENDIX L

and APPENDIX N.

Compute
Phase State

and
Derivatives

Integrate Step

Check
Termination

Conditions

State and State Derivatives

Subsequent State

State

Termination

State

StateInital State
Trajectory

State

Trajectory

Figure 88 Compute Point Mass Phase Trajectory Data Flow Diagram

 145

5.2.3 Design of PANTHERA

PANTHERA is a function oriented MATLAB Simulink blockset for point mass

unguided trajectory simulation. Models used in PANTHERA are kept as simple as

possible. The aim of this case study is to present the use of ontology based reuse

infrastructure in function oriented software development paradigm.

We, in this research used MATLAB Simulink in a function oriented fashion. Blocks

are used to represent the functions and their ports are used to represent function

interfaces. Blocksets are set of blocks. Blocks are the elements from which

MATLAB Simulink models are built. One can model virtually any dynamic system

by creating and interconnecting blocks in appropriate ways.

Figure 89 Some Blocks from Aerospace Blockset

Aerospace system modeling and simulation community is familiar with Aerospace

Blockset of Mathworks Inc. The way the Aerospace Blockset is constructed can be

named as actor-oriented approach [108]. It contains the basic actors in an aerospace

simulation as blocks and hides the functionality of the actors underneath block

interfaces. Above in Figure 89, some blocks from Aerospace Blockset are

presented.

 146

In our approach, we defined the blocks regarding the functionality they serve.

Platform Independent Point Mass Unguided Trajectory Simulation Abstract

Software Design that is presented in the previous section is used to structure the

blockset. It will be good to be reminded that the definitions of functions with their

interfaces and dependencies modeled in Platform Independent Point Mass

Unguided Trajectory Simulation Abstract Software Design are based on TSONT.

By structuring the MATLAB Simulink blocks of PANTHERA for representing

functions and their dependencies, this approach is classified as the function oriented

use of MATLAB Simulink. Subsystems of PANTHERA are presented below.

Figure 90 Subsystem of PANTHERA

 147

Problem set is selected as simple as possible since the aim of this case is not to

develop a fully functional large and complex blockset but rather to show that

MATLAB Simulink Blocksets are opportunities to enable a function oriented reuse

scenario starting from TSONT.

Subsystems in the left most column of the blockset are data sources. Mid column

has the computation oriented subsystems and the right most column has the

aggregate subsystems that use left two columns to accomplish their task.

Figure 91 Compute Trajectory Subsystem

Compute Trajectory Subsystem only has Compute Point Mass Trajectory block.

This block has only one output port which is trajectory as defined in data flow

diagrams.

When we look under the mask of Compute Point Mass Trajectory block, we will

see that Initialize Point Mass Simulation Service initializes the simulation by the

data it obtained from Get Point Mass Weapon Data and Get Point Mass Data

services. Check Trajectory Termination, on the other hand, checks the termination

condition on the state of the simulation computed by Compute Point Mass Phase

Trajectory block.

 148

Figure 92 Compute Point Mass Trajectory Block of PANTHERA

Compute Point Mass Phase Trajectory block has only two blocks. One computes

the phase state derivatives and the second one integrates the step. To compute the

state derivatives, Compute Point Mass Phase State and Derivatives block computes

forces and use forces to compute the accelerations.

Figure 93 Compute Point Mass Phase Trajectory Block

 149

Figure 94 Compute Phase Point Mass State and Derivatives Block

All the blocks used in the blockset are MATLAB Embedded Function Blocks. They

are implemented by developing functions in MATLAB Scripting language. These

functions conform to the interface requirements.

Figure 95 Update Point Mass Dynamic Model State and Derivatives Block

 150

As an example let us look at Update Point Mass Dynamic Model State and

Derivatives block. The implemented code in MATLAB m file is given above in

Figure 95. One can have a look the whole implementation which is given in

APPENDIX N.

5.2.4 Notes on PANTHERA Implementation

PANTHERA uses an earth fixed reference frame,),,(ZYXEℑ . Its origin is taken to

be fixed to the earth’s surface with its X axis pointing towards north, Y axis

pointing toward up and Z axis pointing towards east. Non-rotating and flat earth

assumptions are used. Hence the earth fixed reference frame is assumed to be

inertial.

Update Point Mass Dynamics Model State and Derivatives implements a point mass

dynamics model. Acceleration of the munition is computed as follows [4]:

F
V

m

Σ
=

�
�
� Eq. 147

where

F D GΣ = +
�� �

 Eq. 148

Only aerodynamics and gravitational forces are taken into account. Compute Point

Mass Aerodynamics Force computes a drag force. Drag force is computed using the

following equation.

20.5 D vD V C Suρ=
� �

 Eq. 149

where

v

V
u

V
=

�
�

 Eq. 150

 151

The gravitational force is computed by Compute Point Mass Gravitational Force

block assuming constant gravitational acceleration as follows:

G mg=
� �

 Eq. 151

where

0

9.81

0

g

 = −

�
 Eq. 152

The initial state of the simulation is set by using Get Point Mass Weapon Data

block which provides initial position, elevation and the azimuth of fire and Get

Point Mass Charge Data that provides the muzzle velocity to the simulation.

Standard ICAO atmosphere is supported by this Blockset. ICAO atmosphere is

implemented by Compute ICAO Atmosphere block uses the values presented in

Table 2.

5.2.5 Sample Blockset Implementations

To show how one can use PANTHERA to develop a simulation, we will present

two examples. TIGER and JAGUAR. They both use the same data set but the way

they use the block set differs. The data used for these simulations will be given in

APPENDIX M. The implementations are given in APPENDIX N.

TIGER uses the top most block to develop the simulation. MATLAB Simulink

block diagram is given below.

 152

Figure 96 TIGER Block Diagram

JAGUAR on the other hand uses the low level function blocks to implement the

same simulation. Besides, some functionality in JAGUAR is developed by the

developer like Get Jaguar Weapon Data service. Figure 97 depicts the block

diagram of JAGUAR.

Figure 97 JAGUAR Block Diagram

 153

The data set used for TIGER and JAGUAR is based on 81mm mortar. Below is a

range versus altitude graph from a sample run of TIGER for 800 mils elevation.

Figure 98 Range vs. Altitude for a Sample TIGER Run

This chapter presented trajectory simulation reuse infrastructure that was developed

for the object oriented and function oriented programming paradigms. Platform

independent reusable designs are discussed and the platform and problem family

specific designs and reusable codes are introduced as case studies. Sample

applications built upon these reusable codes are introduced. Next chapter will

consist of discussions on the results of this reseach.

 154

CHAPTER 6

CONCLUSION

In this research, we developed an ontology based reuse infrastructure for trajectory

simulations and investigated the use of ontologies and domain engineering practices

to develop a formalized methodology to make use of the experience and knowledge

leveraged from the past trajectory simulation projects. Trajectory simulation is

defined as a computational tool to calculate the flight path and other parameters of

munition like its orientation or angular rates during its operation. To develop a

trajectory simulation, one requires mechanical engineering, modeling and

simulation and software engineering body of knowledge. In this thesis, engineering

knowledge in the mentioned areas that is needed to simulate the trajectory of a

munition is captured in an ontology called TSONT. TSONT consists of the

concepts of trajectory simulation and the relation among these concepts. Then

TSONT is presented as a knowledge library that is available for reuse. It is the

domain model of the reuse infrastructure.

After formalizing the domain knowledge for reuse, we concentrated on building an

infrastructure to enable the reuse of software artifacts. Two main programming

practices were considered when developing an infrastructure. Object oriented

programming and function oriented programming. We used “platform independent

model” and “platform specific model” concepts to present the specification of the

reuse infrastructure. It enabled us to present a specification of trajectory simulation

in a platform independent fashion to enable reuse for different platforms like

MATLAB or Java and in a platform specific way to construct a detailed design for a

specific platform. We make use of UML and application frameworks when

constructing an object oriented infrastructure. First, a platform independent

framework architecture is constructed. Then, two different trajectory simulation

 155

frameworks are designed using this abstract design. The same abstract design is

reused by two different platform specific designs. This is presented as evidence of

abstract design reuse enabled by the infrastructure. MATSIX, which is one of these

two frameworks, is developed. Then, two different trajectory simulations are

developed using framework completion which is a formal reuse practice of

application frameworks. This showed the code reuse capabilities of the

infrastructure. With these two simulations, we presented all the way through from

knowledge reuse to code reuse in object oriented paradigm.

Data flow diagrams are used to formalize the design of the function oriented

simulations to compute the trajectory of munition. A platform independent design is

constructed for a point mass unguided trajectory simulation using TSONT. As we

used TSONT for both in object oriented framework design and function oriented

simulation design, we had a chance to speak out the evidence of cross paradigm

reuse of the knowledge captured in TSONT about how to develop trajectory

simulations. A MATLAB Simulink Blockset is developed using the design

presented in data flow diagrams. Point mass mortar simulations are developed using

this Blockset as case studies. With these mortar simulations, we again presented all

the way through from knowledge reuse to code reuse, this time in function oriented

paradigm.

In this research, we had the chance to show that ontologies can be a useful

instrument for knowledge sharing and reuse. While developing TSONT, we

experienced the construction of an ontology for a real-life industrial application. As

we started to use TSONT for specification of reuse infrastructure, we had a chance

to see the practical role of ontologies as mechanisms for knowledge sharing and

reuse.

One of the biggest challenges that we had to overcome as we developed TSONT for

a real-life industrial application was its scale. As TSONT get bigger and bigger, it

became harder to resolve the complex relations among the concepts of trajectory

simulation. We used an iterative approach to ontology development which enabled

 156

us to reconsider all the structure as we tried to capture new bunch of knowledge in

TSONT. The second challenge to be mentioned here was in determining the scope

and structuring TSONT. TSONT, as mentioned, is neither a complete nor has the

only correct structure to capture trajectory simulation domain knowledge. It is

scoped reflecting the experience of target reuse group. Rather than an effort to

capture all the available knowledge on trajectory simulation in literature, it is aimed

to formalize what is available among target reuse group. The knowledge is

structured in a way that the target reuse group abstracts the trajectory simulation

domain. Here another challenge arises. As the organization that uses the ontology

for knowledge sharing evolves, the shared vocabulary and shared conceptualization

also evolves, so ontology needs an active maintenance effort.

To develop an ontology that will enable an organization wide knowledge sharing

and reuse, it should be institutionalized and owned by all shareholders. During the

development of TSONT, we tried to construct this sense of ownership by using peer

review mechanism. As TSONT evolved during this research, peer reviews are

handled with the target reuse group to align the conceptualization in a collaborative

manner.

Ontology specifies the shared conceptualization in a formal way that enable human

and machine readability. As we practiced the role of ontologies as mechanisms for

knowledge sharing and reuse, we used and presented the human readability of the

TSONT. We reused ontology to construct two different abstract software designs to

developed trajectory simulations. This reuse processes were human in the loop type.

We read TSONT and reflected the concepts and the relations among these concepts

captured in the ontology to software design constructs like classes and associations

or functions and functional flows. Besides these case studies that are presented in

this thesis, we also experienced automated means of reuse of TSONT to construct

abstract software design. Two collaborative research efforts have been carried out

with M.Sc. students from Computer Engineering Department on model driven

engineering practices that will enable us to transform machine readable TSONT to a

 157

software design using model transformation. One concluded with the transformation

of TSONT to UML class diagram that represents an abstract object oriented design.

The second one concluded with transformations of TSONT to MATLAB Simulink

blocks. These two efforts gave us strong clues that show the promise on successful

use of model transformation practices with this ontology based approach.

While this research is not the first time that ontologies are used in mechanical

engineering, it is one of the small numbers of studies going on about using

ontologies for knowledge sharing and reuse in mechanical engineering. For its

specific focus, this research is a frontier in using ontology in the field of trajectory

simulation. Besides, in the field of modeling and simulation, this research is one of

the first studies that try to formalize the domain knowledge in a form of ontology

and make it available for developing simulations. These efforts are called ontology

driven simulation. The extensions of this research on combining ontology driven

simulation with model transformation practices are avant-garde. Their preliminary

results are exciting in a way they show new horizons on automatic transformation

of domain knowledge to executable simulations.

Ontology based reuse infrastructure for trajectory simulations is composed of a

domain model, an infrastructure definition and infrastructure implementations. This

definition with the methodology used is based on domain engineering practices. Use

of ontologies as domain model was first pronounced in early 2000’s. We based our

approach on this literature and developed TSONT as our domain model. We

contributed to this approach by selecting OWL as the ontology definition language.

This enabled us to extent the domain engineering practices with integrating them to

model driven engineering practices. It means, by using OWL, we had a chance to

make use of the results of efforts on Ontology Definition Metamodel (ODM) and

Model Driven Architecture (MDA) of Object Management Group (OMG). Using

Meta Object Facility (MOF), future efforts on matching UML Metamodel and

Ontology Definition Metamodel will be reflected to our ontology based reuse

infrastructure. Tools for automatic transformation of domain model to infrastructure

 158

definition and infrastructure implementations will be available. In this research, we

proposed two different levels of abstractions for infrastructure specification. It is

composed of a platform independent abstract design and a platform specific detailed

design. By this decision, we accomplished two different goals. First of all, we

produced an abstract software design apart from platform specific details so that it

can be reused for different trajectory simulations that will target different platforms.

And we matched the artifacts of reuse infrastructure with the levels of MDA that

will enable us to leverage the future enhancements on it. Domain model is matched

with Computation Independent Model (CIM) of MDA, platform independent

abstract design of infrastructure specification is matched to Platform Independent

Model (PIM) of MDA and platform specific detailed design is matched to Platform

Specific Model (PSM) of MDA.

Reuse attempts on trajectory simulations in literature have been focused on code

and mathematical model reuse. With this research, we proposed knowledge reuse

and design reuse and code reuse from the ontology based reuse infrastructure. This

creates a distinction for this research in trajectory simulation reuse literature.

Infrastructure, as it is, serves number of artifacts that can be reused for trajectory

simulations like TSONT, Platform Independent Framework Architecture, MATSIX

Framework Architecture and MATSIX Code. With these artifacts, we also proposed

a methodology to produce reusable artifacts in future projects. As target reuse group

gains experience with the future projects, this experience can be formalized by

enhancing TSONT. The enhancements in TSONT can be reflected to Platform

Independent Framework Architecture to enable design reuse. As new frameworks

developed for different projects targeting different platforms and problem sets,

infrastructure developed in this thesis can be expanded by adding new framework

architectures and framework implementations.

The scope of this thesis is bounded to focus on trajectory simulation reuse targeting

the future projects. There is another spot that can be focused during a future

research. That is the legacy trajectory simulations. Semantic matching of the

 159

concepts and designs implemented in those simulations to TSONT seems a

promising research objective. This semantic matching will enhance the

interoperability of different simulations that make use of TSONT and will also

strengthen and enhance TSONT by making it refer to legacy implementations and

make use of the knowledge which is transformed to a product in those projects.

Measuring reuse is as important as developing a reuse infrastructure.

Institutionalizing the reuse infrastructure developed in this thesis, making it used in

future projects is one of the challenges that will be handled in the post thesis period.

As it is used in number of projects, it will be possible to measure reuse. It will

enable us to validate the proof of the expected increase in productivity and decrease

of the risk of the projects that depend on reuse infrastructure that is built in this

thesis.

TSONT captures the domain knowledge about design and development of trajectory

simulations. Here, there is another hard question. How can we make use of TSONT

to write the requirements of a specific trajectory simulation project? Developing

methodologies and tools to transform the domain knowledge captured in TSONT to

software or simulation requirements is another spot that can be listed in the future

research agenda of this thesis.

The reuse infrastructure in this thesis as we mentioned before focused on two main

paradigms, namely object oriented programming and function oriented

programming. Developing infrastructures for emerging paradigms like aspect

oriented programming, actor oriented programming, agent based programming and

distributed simulation can be added to future research agenda as new challenges.

As TSONT is transformed to design and code manually, there is an arguable issue

about the traceability of the knowledge captured in ontology to the foregoing

artifacts. In this thesis, we prepared a table that tries to capture this traceability as

far as possible. But as the automatic transformation of domain knowledge to design

and code is being studied, new tool or methodologies can be developed to trace the

 160

flow of the knowledge from domain to code. This is another future research

challenge.

This reuse infrastructure that consists of reusable domain knowledge, designs and

code can be regarded as the foundations of a trajectory simulation software product

line. Evolving this infrastructure to a software product line for trajectory simulation

is another future research focuss.

Trajectory simulation is one of the computational fields of mechanical engineering.

It can be pronounced as an application of system dynamics. Mechanical engineering

has a number of other computation intensive application areas on which number of

software development is carried out. These fields include structural mechanics,

computation fluid dynamics, computer integrated manufacturing, computer aided

design and robotics. The methodology proposed in this thesis can be applied in

those fields to make reuse work. So, developing reuse infrastructures for other fields

of mechanical engineering can be proposed as a future research topic.

Besides enabling reuse in mechanical engineering software, ontologies may work as

a glue to enable different engineering software work together to accomplish a goal.

Ontologies that will be developed for different computer aided engineering tools

may enable to develop collaborative design environments and integrate the design

and manufacturing processes seamlessly. Interoperability using ontologies in the

field of mechanical engineering is another future research direction.

Formalizing mechanical engineering body of knowledge is not only helpful on

reuse and interoperability but can also be used for problem solving. Ontology based

problem solving methodologies for mechanical engineering problems seem to be an

interesting research direction.

In this thesis, we developed and used ontology in trajectory simulation problem of

mechanical engineering. There is still lot to do either for trajectory simulation

problem or other problems of the mechanical engineering by using ontologies.

 161

Besides all future research topics mentioned above, it is time to remember the quote

of J.R.R. Tolkien. “There is nothing like looking, if you want to find something.

You certainly usually find something, if you look, but it is not always quite the

something you were after.”

 162

REFERENCES

1. Kelton, W.D., Sadowski, R.P. and Sadowski D.A., Simulation with Arena,

WCB/McGraw-Hill, Boston, 1998.

2. Matko, D., Karba, R. and Zupancic, B., Simulation and Modeling of

Continious Systems – A Case Study Approach, Prentice Hall International (UK)

Ltd, New York, 1992.

3. Neelamkavil, F., Computer Simulation and Modeling, John Wiley, London,

1987.

4. MIL-HDBK 1211 Missile Flight Simulation Part One Surface-to-Air Missiles.

U.S. Department of Defense, 1995.

5. Zipfel, P.H., Modeling and Simulation of Aerospace Vehicle Dynamics,

American Institute of Aeronautics and Astronautics, Inc., Reston, 2000.

6. Modeling and Simulation – Linking Entertainment and Defense, National

Academy Press, Washington D.C., 1997.

7. EADSIM Executive Summary, URL:

http://www.eadsim.com/EADSIMExecSum.pdf, 19 June 2007.

8. Korkmaz, S., Mahmutyazicioglu, G., Tiftikci, H. and Gokhan, T., FMCAD -

Flight Mechanics Computer Aided Design Software, 37th Aerospace Sciences

Meeting and Exhibit, Reno, NV, 1999.

 163

9. Rea, M. M., Baird, A. M., Batchelder, F. E., Belrose, F. M. and Holt, W. C.,

Missile System Simulation at the Advanced Simulation Center, Technical

Report RD-82-11, Systems Simulation and Development Directorate,

Advanced Simulation Center, US Army Missile Laboratory, US Army Missile

Command, Redstone Arsenal, AL, 1982.

10. Fleeman, E.L., Tactical Missile Design, AIAA Education Series, Reston, VA,

2001.

11. MIL-HDBK 799 Fire Control Systems – General, U.S. Department of

Defense, 1996.

12. Sowa J.A., Lieske, R.F., Matts J.A. and Miller J.L., Ballistic Kernels Sharable

Fire Control and Ballistic Simulation Software, Firing Tables and

Aeroballistics Branch Information Report, FTAB-IR-32, 1997.

13. Durak,U., Dayanç, K., Elaldı, F., Anlağan, Ö., Topçu Roketlerinin Atış

Kontrol Sistemleri için Yeni Nesil Balistik Çözücü USMOS 2005, Ankara,

2005.

14. Aytar Ortaç, S., Durak, U., Kutluay, Ü., Küçük, K. and Candan, C., NABK

Based Next Generation Ballistic Table Toolkit, 23rd International Symposium

on Ballistics, Tarragona, Spain,2007.

15. Zarchan, P., Tactical and Strategic Missile Guidance, Vol. 157, Progress in

Aeronautics and Astronautics, AIAA, Washington DC, 1994.

16. Shampine, L.F., Numerical Solution of Ordinary Differential Equations,

Champman & Hall Inc., New York, 1994.

 164

17. McCoy, R.L., Modern exterior Ballistics: The Launch and Flight Dynamics of

Symetric Projectiles, Schiffer Publishing Ltd, Atglen, PA, 1999.

18. Jackson, E.B., Results of a Flight Simulation Software Methods Survey, AIAA

Flight Simulation Technologies Conference, Baltimore, MD, 1995.

19. Durak, U., Oğuztüzün, H. and İder, S.K., Ontology Based Trajectory

Simulation Framework, Journal of Computing and Information Science in

Engineering -ACCEPTED-

20. Griss, M.L.; Software Reuse: Architecture, Process and Organization for

Business Success, Technology of Object-Oriented Languages, TOOLS 26.

Proceedings, 1998.

21. Tracs, W., Confessions of a Used Program Salesman: Institutionalizing

Software Reuse, Addison Wesley Publishing Company, Reading,

Massachusetts, 1995.

22. Lieske, R.F., Reiter, M.L., Equations of Motion for a Modified Point Mass

Trajectory, Ballistic Research Laboratories, Report No.1314, 1966.

23. STANAG. 4355 The Modified Point Mass and Five Degrees Of Freedom

Trajectory Models, Draft Edition 5.0A, 2003.

24. Kaplan, J.A., Chappell, A.R. and McManus. J.W., The Analysis of a Generic

air-to-Air Missile Simulation Model. NASA TM-109057, 1994.

25. Gorecki, R.M., A Baseline 6 Degree of Freedom (DOF) Mathematical Model

of Generic Missile, DSTO System Sciences Laboratory, DSTO-TR-0931, 2003.

 165

26. Kalaver, S. A., Pritchett, A.R., Development of Generic Dynamic Models in

Aerospace Simulation, AIAA Modeling and Simulation Technologies

Conference and Exhibit, 2005.

27. McCarthy, T.R., Campbell, T.T., and Moseley, P.E., A Generic Common

Simulation Framework based Starting Point for Missile 6DOF Simulations,

AIAA Modeling and Simulation Technologies Conference and Exhibit, 2005.

28. Berndt, J.S., JSBSim: An Open Source Flight Dynamics Model in C++, AIAA

Modeling and Simulation Technologies Conference and Exhibit, 2004.

29. Aerospace Blockset User’s Guide, The MathWorks, Inc., 2005.

30. Durak, U., Oğuztüzün, H. and Mahmutyazıcıoğlu, G., Domain Analysis for

Reusable Trajectory Simulation, Euro-SIW 2005, Toulouse, France, 2005.

31. Durak, U., Oğuztüzün, H. and İder, K., An Ontology for Trajectory

Simulation, WinterSim06, Monterey, CA, USA, 2006.

32. Durak, U., Güler, S., Oğuztüzün, H., and İder, K., An Exercise In Ontology

Driven Trajectory Simulation with MATLAB Simulink, 21st EUROPEAN

Conference on Modelling and Simulation, Prague, Czech Republic, 2007.

33. Özdikiş, Ö, Oğuztüzün, H, and Durak, U., OWL to UML : Transforming

Domain Models to Framework Architectures, Manuscript.

34. Mili, M., Mili A., Yacoub, S., and Addy, E., Reuse Based Software

Engineering, John Wiley & Sons Inc., 2002.

 166

35. Arango. G., Domain Analysis: From Art to Engineering Discipline,

Proceedings of 5th International Workshop on Software Specification and

Design, 1989.

36. McIlroy, M.D., Mass-Produced Software Components, Proceedings of the

NATO Conference on Software Engineering, 1969

37. Favaro, J., Technical Report on Reuse, European Software Institute, 1995.

38. Sodhi J., Sodhi P., Software Reuse: Domain Analysis and Design Process,

McGraw-Hill, 1999.

39. Reuse-Driven Software Processes Guidebook, Tech. Report SPC-92019-

CMC, Software Productivity Consortium, Herndon, VA., 1993.

40. White, S., Edwards, M., Domain Engineering: The Challenge, Status, and

Trends, IEEE Symposium and Workshop on Engineering of Computer Based

Systems (ECBS'96), 1996.

41. Arango, G., Prieto-Diaz, R., Domain Analysis Concepts and Research

Directions, in Domain Analysis and Software Systems Modeling, IEEE

Computer Society Press, 1991.

42. Proceedings of Third International Conference on Software Reuse, Advances

in Software Reusability, IEEE Computer Society Press, Los Alamitos, CA.,

1994.

43. Systematic Reuse, Theme Issue of IEEE Software, Vol. 11, No. 5, IEEEE

Computer Society Press, Los Alamitos, CA., 1994.

 167

44. Palmer, C., A CAMP Update, AIAA-1989-3144, 7th AIAA Computers in

Aerospace Conference, Monterey, CA, 1989.

45. Diaz, R.P., Domain Analysis: An Introduction, ACMSIG Software

Engineering Notes, 1990.

46. Arango, G., Domain Analysis Methods, in Software Reusability, Editors: W.

Schaefer, R . Prieto-Diaz, and M. Matsumoto, Ellis Horwood, New York, 1994.

47. Falbo, R.A., Guizzardi, G. and Duarte. K.C., An Ontological Approach to

Domain Engineering, International Conference on Software Engineering and

Knowledge Enginnering, Ischia, Italy, 2002.

48. Falbo, R.A., Guizzardi, G., Duarte. K.C., Candida, A., and Natali, C.,

Developing Software for and With Reuse: An Ontological Approach. ACIS

International Conference on Computer Science, Software Engineering,

Information Technology, e-Business and Applications, Brazil, 2002.

49. Calero C., Ruiz, F., Piattini, M., Ontologies for Software Engineering and

Software Technology, Springer-Vergal Berlin Heidelberg, 2006.

50. Knublauch, H., Ontology-Driven Software Development in the Context of the

Semantic Web: An Example Scenario with Protégé/OWL, International

Workshop on the Model-Driven Semantic Web, Monterey, CA, 2004.

51. Neighbors, J., Software Construction Using Components, Ph.D. Thesis,

Department of Information and Computer Science, University of California,

Irvine, 1980.

52. Webster’s New World Dictionary of American English, 3rd Collage Edition,

Prentice Hall, New York, 1993.

 168

53. Uschold, M., Knowledge Level Modelling: Concepts and Terminology,

Knowledge Engineering Review, 13 (1), 1998.

54. Falbo, R.A., Menezes, C.S., and Rocha, A.R.C., A Systematic Approach for

Building Ontologies, in Proceedings of the IBERAMIA’98, Lisbon, Portugal,

1998.

55. Mizoguchi, R., Ontological Engineering: Foundations of the Next Generation

Knowledge Processing, Web Intelligence 2001, Maebashi City, Japan, 2001.

56. Borst, W.N., Akkermans, J.M., Pos, A. and Top, J. L., The PhysSys Ontology

for Physical Systems. In B. Bredeweg (Ed.), Working Papers of the Ninth

International Workshop on Qualitative Reasoning QR'95, University of

Amsterdam, 1995.

57. Borst, W. N., Akkermans, J. M., Engineering Ontologies, International

Journal of Human-Computer Studies, 46 (2/3):365-406, 1997.

58. Borst, W. N., Construction of Engineering Ontologies for Knowledge Sharing

and Reuse, Ph.D. Thesis, University of Twente, 1997.

59. Schreiber, G., Wielinga, B., and Jansweijer, W., The KACTUS View on the 'O'

Word, In Proceedings of IJCAI95 Workshop on Basic Ontological Issues in

Knowledge Sharing. Montreal, Canada, 1995.

60. Ciocoiu, M., Gruninger, M., and Nau, D.S., Ontologies for Integrating

Engineering Applications, Journal of Computing and Information Science in

Engineering, (1) 1:12-22, 2001.

61. Stahovich, T., Davis, R. and Shrobe, H., An Ontology of Mechanical Devices,

Working Notes, Reasoning about Function, AAAI-93, pp. 137-140, 1993.

 169

62. Gruber, T.R., Olsen, G.R., An Ontology for Engineering Mathematics, Fourth

International Conference on Principles of Knowledge Representation and

Reasoning, Gustav Stresemann Institut, Bonn, Germany, Morgan Kaufmann,

1994.

63. Johnson, R.E., Components, Frameworks, Patterns, ACM SIGSOFT

Symposium on Software Reusability, 1997.

64. Fayad, M., Schmidt, D.C., Object-Oriented Application Frameworks.

Communications of the ACM, 40(10):32-38, 1997.

65. Sommerville, I., Software Engineering, Addison Wesley Longman Publishing,

Redwood City, CA, USA, 1995.

66. Neches, R., Fikes, R.E., Finin, T., Gruber, T.R., Senator, T. and Swartout

W.R., Enabling Technology for Knowledge Sharing, AI Magazine, 12 (3):36-

56, 1991.

67. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubzy, M.,

Eriksson, H., Noy, N.F., and Tu, S.W., The Evolution of Protégé: An

Environment for Knowledge-Based Systems Development, International Journal

of Human-Computer Studies, 58 (1):89-123, 2003

68. Gruber, T.R., Toward Principles for the Design of Ontologies Used for

Knowledge Sharing, Technical Report KSL 93-04, Knowledge Systems

Laboratory, Stanford University, 1993.

69. Struder. R., Benjamins, V.R., Fensel, D., Knowledge Engineering: Principles

and Methods, IEEE Transactions on Knowledge and Data Engineering 25 (1-

2):161-167, 1998.

 170

70. Gruber, R., A Translational Approach to Portable Ontology Specifications,

Knowledge Acquisition, 5(2), 1993.

71. Corcho, O, Perez, A.G., Evaluating Knowledge Representation and Reasoning

Capabilities of Ontology Specification Languages, ECAI'00 Workshop on

Applications of Ontologies and Problem Solving Methods. Berlin, Germany,

2000.

72. McGuinness, D., van Harmelen, F. (eds) OWL Web Ontology Overview, URL:

http://www.w3.org/TR/2003/WD-owl-features-20030331/, 19 June 2007.

73. Dean, M., Schreiber, G., (eds), van Harmelen, F., Hendler, J., Horrocks, I.,

McGuinness, D., Patel-Schneider, P. and Stein, L., OWL Web Ontology

Language Reference, URL: http://www.w3.org/TR/2003/WD-owl-ref-

20030331/, 19 June 2007.

74. Smith, M., Welty, C. and McGuinness, D., OWL Web Ontology Language

Guide, URL: http://www.w3.org/TR/2003/WD-owl-guide-20030331/, 19 June

2007.

75. Antoniou, G., van Harmelen, F., Web Ontology Language: OWL, Handbook

on Ontologies, International Handbooks on Information Systems, Springer,

2004.

76. Horridge, M., Knublauch, H., Rector, A., Stevens, R. and Wroe, C., A

Practical Guide To Building OWL Ontologies Using The Protégé - OWL

Plugin and CO-ODE Tools Edition 1.0., URL: http://www.co-

ode.org/resources/tutorials/ProtegeOWLTutorial.pdf, 19 June 2007.

77. Jackson, E., Hildreth, B., York, B. and Cleveland, W., Evaluation of a

Candidate Flight Dynamics Model Simulation Standard Exchange Format,

 171

AIAA Modeling and Simulation Technologies Conference and Exhibit,

Providence, Rhode Island, 2004.

78. AIAA Simulation Standards Working Group, Dynamic Aerospace Vehicle

Exchange Markup Language (DAVE-ML) Reference, Version 1.7b1, URL:

http://daveml.nasa.gov/DTDs/1p7b1/DAVE-ML_ref.pdf, 19 June 2007.

79. Niles, I., Pease, A., Towards a Standard Upper Ontology, In Proceedings of

the 2nd International Conference on Formal Ontology in Information Sys-tems

(FOIS-2001), Chris Welty and Barry Smith, eds, Ogunquit, Maine, 2001.

80. Fitzgerald, J., Larsen, P.G., Modelling Systems: Practical Tools and

Techniques in Software Development, Cambridge University Press, 1998.

81. DOD Department of Defense Dictionary of Military and Associated Terms,

Joint Publication 1-02, 2001.

82. AOP-29 NATO Indirect Fire Ammunition Interchangeability, Allied

Ordinance Publications 29, 1999.

83. DoD 101 – Introduction to Millitary, URL: http://www.fas.org/man/dod-

101/index.html, 19 June 2007.

84. Model Designation of Military Aerospace Vehicles, Department of Defense

Publication 4120.15-L, 2004.

85. STANAG. 6022 Adoption of a Standard Gridded Data Meteorological

Message, Draft Edition 1.0, 2007.

86. STANAG 4082 LAND Adoption of a Standard Artillery Computer

Meteorological Message, Edition No.2, 1969.

 172

87. STANAG 4061 LAND Adoption of a Standard Ballistic Meteorological

Message, Edition No.4, 2000.

88. Manual of the ICAO Standard Atmosphere (extended to 80 kilometres (262

500 feet)), ICAO Doc 7488-CD, Third Edition, 1993.

89. AOP-37 NATO Armaments Ballistic Kernel (NABK) Library, Allied

Ordinance Publications 37, 2007.

90. Tactics, Techniques and Procedures for Field Artillery Manual Gunnery,

Field Manual No. 6-40, Marine Corps Warfighting Publication No 3-1.6.19,

Headquarters Department of the Army, U.S. Marine Corps, 1996.

91. Blakelock, J. H. , Automatic Control of Aircraft and Missiles, John Wiley and

Sons Publications, 1991.

92. Tiryaki, K., Polynomial Guidance Laws and Dynamic Flight Simulation

Studies, M.Sc. Thesis, Middle East Technical University, Türkiye, 2002.

93. Mahmutyazıcıoğlu, G., Dynamics and Control Simulation of an Inertially

Guided Missile, M.Sc. Thesis, Middle East Technical University, Türkiye,

1994.

94. Özkan, B., Dynamics Modeling, Guidance and Control of Homing Missiles,

Ph.D. Thesis, Middle East Technical University, Türkiye, 2005.

95. The International System of Units, 8th Edition, Organisation

Intergouvernementale de la Convention du Mètre, 2006.

96. Watt, D.A., Programming Language Concepts and Paradigms, Prentice Hall

Series in Computer Science, 1990.

 173

97. Chen X., Developing Application Frameworks in .NET, APress, 2004.

98. Aksit, M., Marcelloni, F. and Tekinerdogan, B., Developing Object-Oriented

Frameworks Using Domain Models, ACM Computing Surveys, 2000.

99. Robert, D., Johnson, R., Evolving Frameworks: A Pattern Language for

Developing Object-Oriented Frameworks, Pattern Languages of Program

Design 3, Addison Wesley, 1997.

100. Perry, D.E., Wolf, A.E., Foundations for the Study of Software Architectures,

Software Engineering Notes, (17)40, 1992.

101. Booch, G., Rumbaugh, J. and Jakobsen, I., The Unified Modeling Language

User Guide, Addison-Wesley, Boston, 1999.

102. Enterprise Architect 6.5 Reviewer’s Guide, URL:

http://www.sparxsystems.com.au/downloads/whitepapers/Reviewers_Guide_E

A_6_5.pdf, 19 June 2007.

103. Public Domain Aeronautical Software, URL: http://www.pdas.com/m1.htm,

19 June 2007.

104. MATLAB Technical Documentation, URL:

http://www.mathworks.com/access/helpdesk/help/helpdesk.html, 19 June 2007.

105. Liberty, J., Programming C#, O’Reilly, 2002.

106. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T.,

Numerical Recipies in C: The Art of Scientific Computing, Cambridge

University Press, 1992.

 174

107. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T.,

Numerical Recipies in FORTRAN 77: The Art of Scientific Computing,

Cambridge University Press, 1992.

108. Lee, E.A., Model-Driven Development - From Object-Oriented Design to

Actor-Oriented Design, Workshop on Software Engineering for Embedded

Systems: From Requirements to Implementation, Chicago, 2003.

 175

APPENDIX A

TSONT MUNITION TAXONOMY

Figure 99 TSONT Bomb Classification

 176

Figure 100 TSONT Missile Classification

 177

The letters of the acronyms in the missile classification is as follows. The first letter

is the launch environment of the vehicle:

A - Air

B - Multiple

C - Coffin (non-hardened container)

F - Individual

G - Runway or Ground

H - Silo Stored

L - Silo Launched

M - Ground Launched, Mobile

P - Soft Pad

R - Surface Ship

S - Space

U - Underwater

Second letter is the purpose of the vehicle:

C - Transport

D - Decoy

E - Special Electronics, Communication

G - Surface Attack

I - Interception

 178

L - Launch Detection

M - Scientific Measurements, Calibration

N - Navigation

Q - Drone, UAV

S - Space Operations Support

T - Training

U - Underwater Attack

W - Weather (probes or satellites gathering and/or distributing meteorological data)

The last letter defines the type of vehicle:

B - Booster

M - Guided Missile, Drone, UAV

N - Probe (suborbital sounding rocket)

R - Rocket (unguided vehicle)

S - Satellite

 179

Figure 101 TSONT Ammunition Classification

The acronyms presented above in the taxonomy are as follows.

 180

Table 3 Acronyms of Ammunition Classification

Projectile Description

Type Subtype

HEA High Explosive Round

SMK HCE Hexa-Chlorethane

 WPH White Phosphorus

 TTC Titanium Terra Chloride

 MSP Multi-Spectral

 COL Colored

 BSP Bi-Spectral

ILL Illumination Round

CBL APL Bomblet – Antipersonnel

 ATK Bomblet – Antitank

 DUP Bomblet - Dual Purpose

CMI ATK Mines – Antitank

 APL Mines – Antipersonnel

AAT GAT Guided Antitank

 SFA Sensor Fuzed

ECM Electronic Countermeasure

LEA Leaflet

TRN Training

OTH Other type of projectiles

 181

APPENDIX B

SAMPLE CLASS DEFINITIONS FROM TSONT

Figure 102 TSONT Guided Phase

 182

Figure 103 TSONT Propelled Phase

 183

Figure 104 TSONT ICAO

Figure 105 TSONT METB3

 184

Figure 106 TSONT Four Canard Second Order CAS Model

Figure 107 TSONT Three DOF Dynamics Model

 185

Figure 108 TSONT Curved Earth Model

Figure 109 TSONT Constant G Body Fixed Gravity Model

 186

Figure 110 TSONT Guidance Model

Figure 111 TSONT Termination Model

 187

Figure 112 TSONT Solid Rocket Motor Model for Point Mass

Figure 113 TSONT Euler Solver

 188

Figure 114 TSONT Launcher Data

Figure 115 TSONT Point Mass Physicals

 189

Figure 116 TSONT Point Mass Physicals Record

Figure 117 TSONT Atmosphere Record

 190

Figure 118 TSONT Three DOF Dynamics Models State Derivatives

Figure 119 TSONT Wind Record

 191

Figure 120 TSONT Vectoral Quantity

Figure 121 TSONT Thrust Moment in Body Coordinate System

 192

Figure 122 TSONT Translational Velocity in Earth Coordinate System

Figure 123 TSONT Moment Column Matrix

 193

Figure 124 TSONT Munition

 194

APPENDIX C

A DAVE-ML EXAMPLE

<?xml version="1.0" standalone="no"?>
<!DOCTYPE DAVEfunc SYSTEM "DAVEfunc.dtd">
<!-- $Revision: 2.3 $ -->
<DAVEfunc>
 <fileHeader name="Update Body Fixed Six DOF Dynamic Model State and Derivatives">
 <author name="Umut DURAK" org="TUBITAK-SAGE" xns="@bjax"/>
 <fileCreationDate date="24/10/2005"/>
 <description> This daveml fuction defines the model to calculate state derivatives of
Six
 DOF Body Fixed Dynamics Model </description>
 <!-- ================== -->
 <!-- References -->
 <!-- ================== -->
 <reference refID="[MIL95]" author="N/A" title="MIL-HDBK 1211" accession="TÜBİTAK-SAGE
Kütüphanesi" date="1995"/>
 <modificationRecord modID="A">
 <author name="Umut DURAK" org="TUBITAK-SAGE" email="udurak@sage.tubitak.gov.tr"/>
 <description> First Creation </description>
 </modificationRecord>
 </fileHeader>
 <!-- ==================-->
 <!-- Input variables -->
 <!-- ==================-->
 <!-- ==================-->
 <!-- Ballistic Record -->
 <!-- ==================-->
 <variableDef name="Mass" varID="mass" units="kg" symbol="mass">
 <description> Mass in kg </description>
 </variableDef>
 <variableDef name="Ix" varID="Ix" units="kgm2" symbol="Ix">
 <description> Axial Moment of Inertia </description>
 </variableDef>
 <variableDef name="Iy" varID="Iy" units="kgm2" symbol="Ix">
 <description> Transverse Moment of Inertia in Y axis </description>
 </variableDef>
 <variableDef name="Iz" varID="Iz" units="kgm2" symbol="Iz">
 <description> Transverse Moment of Inertia in Z axis </description>
 </variableDef>
 <!-- ==================-->
 <!--State -->
 <!-- ==================-->
 <variableDef name="phi" varID="phi" units="rad" symbol="phi">
 <description> Roll atitude </description>
 </variableDef>
 <variableDef name="theta" varID="theta" units="rad" symbol="theta">
 <description> Pitch atitude </description>
 </variableDef>
 <variableDef name="psi" varID="psi" units="rad" symbol="psi">
 <description> Yaw atitude </description>
 </variableDef>
 <variableDef name="p" varID="p" units="rad/s" symbol="p">
 <description> Roll rate </description>
 </variableDef>
 <variableDef name="q" varID="q" units="rad/s" symbol="q">
 <description> Pitch rate </description>
 </variableDef>
 <variableDef name="r" varID="r" units="rad/s" symbol="r">
 <description> Yaw Rate </description>
 </variableDef>
 <variableDef name="u" varID="u" units="m/s" symbol="u">
 <description> Body Fixed Velocity in X </description>
 </variableDef>
 <variableDef name="v" varID="v" units="m/s" symbol="v">
 <description> Body Fixed Velocity in Y </description>
 </variableDef>
 <variableDef name="w" varID="w" units="m/s" symbol="w">
 <description> Body Fixed Velocity in Z </description>
 </variableDef>

 195

 <!-- ================== -->
 <!-- Forces and Moments -->
 <!-- ================== -->
 <variableDef name="FAX" varID="FAX" units="N" symbol="FAX">
 <description> Aerodynamic Force in X </description>
 </variableDef>
 <variableDef name="FAY" varID="FAY" units="N" symbol="FAY">
 <description> Aerodynamic Force in Y </description>
 </variableDef>
 <variableDef name="FAZ" varID="FAZ" units="N" symbol="FAZ">
 <description> Aerodynamic Force in Z </description>
 </variableDef>

 <variableDef name="FGX" varID="FGX" units="N" symbol="FGX">
 <description> Gravitational Force in X </description>
 </variableDef>
 <variableDef name="FGY" varID="FGY" units="N" symbol="FGY">
 <description> Gravitational Force in Y </description>
 </variableDef>
 <variableDef name="FGZ" varID="FGZ" units="N" symbol="FGZ">
 <description> Gravitational Force in Z </description>
 </variableDef>

 <variableDef name="LA" varID="LA" units="Nm" symbol="LA">
 <description> Aerodynamic Moment in X </description>
 </variableDef>
 <variableDef name="MA" varID="MA" units="Nm" symbol="MA">
 <description> Aerodynamic Moment in Y </description>
 </variableDef>
 <variableDef name="NA" varID="NA" units="Nm" symbol="NA">
 <description> Aerodynamic Moment in Z </description>
 </variableDef>

 <!-- ================== -->
 <!-- Output variables -->
 <!-- ================== -->
 <variableDef name="udot" varID="udot" units="m/s2">
 <description> Body fixed tranlational acceleration in X </description>
 <calculation>
 <math xmlns='http://www.w3.org/1998/Math/MathML'>
 <apply>
 <eq/>
 <ci>udot</ci>
 <apply>
 <plus/>
 <apply>
 <times/>
 <apply>
 <plus/>
 <ci>FAX</ci>
 <ci>FGX</ci>
 </apply>
 <apply>
 <power/>
 <ci>mass</ci>
 <cn type='integer'>-1</cn>
 </apply>
 </apply>
 <apply>
 <times/>
 <ci>r</ci>
 <ci>v</ci>
 </apply>
 <apply>
 <times/>
 <cn type='integer'>-1</cn>
 <apply>
 <times/>
 <ci>q</ci>
 <ci>w</ci>
 </apply>
 </apply>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
 </variableDef>

 196

 <variableDef name="vdot" varID="vdot" units="m/s2">
 <description> Body fixed tranlational acceleration in Y </description>
 <calculation>
 <math xmlns='http://www.w3.org/1998/Math/MathML'>
 <apply>
 <eq/>
 <ci>vdot</ci>
 <apply>
 <plus/>
 <apply>
 <times/>
 <apply>
 <plus/>
 <ci>FAY</ci>
 <ci>FGY</ci>
 </apply>
 <apply>
 <power/>
 <ci>mass</ci>
 <cn type='integer'>-1</cn>
 </apply>
 </apply>
 <apply>
 <times/>
 <cn type='integer'>-1</cn>
 <apply>
 <times/>
 <ci>r</ci>
 <ci>u</ci>
 </apply>
 </apply>
 <apply>
 <times/>
 <ci>p</ci>
 <ci>w</ci>
 </apply>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
 </variableDef>

 <variableDef name="wdot" varID="wdot" units="m/s2">
 <description> Body fixed tranlational acceleration in Z </description>
 <calculation>
 <math xmlns='http://www.w3.org/1998/Math/MathML'>
 <apply>
 <eq/>
 <ci>wdot</ci>
 <apply>
 <plus/>
 <apply>
 <times/>
 <apply>
 <plus/>
 <ci>FAZ</ci>
 <ci>FGZ</ci>
 </apply>
 <apply>
 <power/>
 <ci>mass</ci>
 <cn type='integer'>-1</cn>
 </apply>
 </apply>
 <apply>
 <times/>
 <ci>q</ci>
 <ci>u</ci>
 </apply>
 <apply>
 <times/>
 <cn type='integer'>-1</cn>
 <apply>
 <times/>
 <ci>p</ci>
 <ci>v</ci>
 </apply>
 </apply>

 197

 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
 </variableDef>

 <variableDef name="pdot" varID="pdot" units="rad/s2">
 <description> Body fixed angular acceleration in X </description>
 <calculation>
 <math xmlns='http://www.w3.org/1998/Math/MathML'>
 <apply>
 <eq/>
 <ci>pdot</ci>
 <apply>
 <times/>
 <apply>
 <plus/>
 <ci>LA</ci>
 <apply>
 <times/>
 <cn type='integer'>-1</cn>
 <apply>
 <times/>
 <apply>
 <plus/>
 <ci>Iz</ci>
 <apply>
 <times/>
 <cn type='integer'>-1</cn>
 <ci>Iy</ci>
 </apply>
 </apply>
 <ci>q</ci>
 <ci>r</ci>
 </apply>
 </apply>
 </apply>
 <apply>
 <power/>
 <ci>Ix</ci>
 <cn type='integer'>-1</cn>
 </apply>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
 </variableDef>
 <variableDef name="qdot" varID="qdot" units="rad/s2">
 <description> Body fixed angular acceleration in Y </description>
 <calculation>
 <math xmlns='http://www.w3.org/1998/Math/MathML'>
 <apply>
 <eq/>
 <ci>qdot</ci>
 <apply>
 <times/>
 <apply>
 <plus/>
 <ci>MA</ci>
 <apply>
 <times/>
 <cn type='integer'>-1</cn>
 <apply>
 <times/>
 <apply>
 <plus/>
 <ci>Ix</ci>
 <apply>
 <times/>
 <cn type='integer'>-1</cn>
 <ci>Iz</ci>
 </apply>
 </apply>
 <ci>p</ci>
 <ci>r</ci>
 </apply>
 </apply>

 198

 </apply>
 <apply>
 <power/>
 <ci>Iy</ci>
 <cn type='integer'>-1</cn>
 </apply>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
 </variableDef>

 <variableDef name="rdot" varID="rdot" units="rad/s2">
 <description> Body fixed angular acceleration in Z </description>
 <calculation>
 <math xmlns='http://www.w3.org/1998/Math/MathML'>
 <apply>
 <eq/>
 <ci>rdot</ci>
 <apply>
 <times/>
 <apply>
 <plus/>
 <ci>NA</ci>
 <apply>
 <times/>
 <cn type='integer'>-1</cn>
 <apply>
 <times/>
 <apply>
 <plus/>
 <ci>Iy</ci>
 <apply>
 <times/>
 <cn type='integer'>-1</cn>
 <ci>Ix</ci>
 </apply>
 </apply>
 <ci>p</ci>
 <ci>q</ci>
 </apply>
 </apply>
 </apply>
 <apply>
 <power/>
 <ci>Iz</ci>
 <cn type='integer'>-1</cn>
 </apply>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
 </variableDef>

 <variableDef name="phidot" varID="phidot" units="rad/s">
 <description> Rate of change of roll attitute </description>
 <calculation>
 <math xmlns='http://www.w3.org/1998/Math/MathML'>
 <apply>
 <eq/>
 <ci>phidot</ci>
 <apply>
 <plus/>
 <ci>p</ci>
 <apply>
 <times/>
 <apply>
 <plus/>
 <apply>
 <times/>
 <ci>r</ci>
 <apply>
 <cos/>
 <ci>phi</ci>
 </apply>
 </apply>
 <apply>

 199

 <times/>
 <ci>q</ci>
 <apply>
 <sin/>
 <ci>phi</ci>
 </apply>
 </apply>
 </apply>
 <apply>
 <tan/>
 <ci>theta</ci>
 </apply>
 </apply>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
 </variableDef>

 <variableDef name="thetadot" varID="thetadot" units="rad/s">
 <description> Rate of change of pitch attitute </description>
 <calculation>
 <math xmlns='http://www.w3.org/1998/Math/MathML'>
 <apply>
 <eq/>
 <ci>thetadot</ci>
 <apply>
 <plus/>
 <apply>
 <times/>
 <ci>q</ci>
 <apply>
 <cos/>
 <ci>phi</ci>
 </apply>
 </apply>
 <apply>
 <times/>
 <cn type='integer'>-1</cn>
 <apply>
 <times/>
 <ci>r</ci>
 <apply>
 <sin/>
 <ci>phi</ci>
 </apply>
 </apply>
 </apply>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
 </variableDef>

 <variableDef name="psidot" varID="psidot" units="rad/s">
 <description> Rate of change of yaw attitute </description>
 <calculation>
 <math xmlns='http://www.w3.org/1998/Math/MathML'>
 <apply>
 <eq/>
 <ci>psidot</ci>
 <apply>
 <times/>
 <apply>
 <plus/>
 <apply>
 <times/>
 <ci>r</ci>
 <apply>
 <cos/>
 <ci>phi</ci>
 </apply>
 </apply>
 <apply>
 <times/>
 <ci>q</ci>
 <apply>

 200

 <sin/>
 <ci>phi</ci>
 </apply>
 </apply>
 </apply>
 <apply>
 <power/>
 <apply>
 <cos/>
 <ci>theta</ci>
 </apply>
 <cn type='integer'>-1</cn>
 </apply>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
 </variableDef>

</DAVEfunc>

 201

APPENDIX D

SAMPLE CLASS DIAGRAMS FROM PLATFORM INDEPENDENT
FRAMEWORK ARCHITECTURE

cd Coordinate_Systems

Body_Coordinate_System

Coordinate_System

+ Inertial_Refererence_Frame_Euler_Angles:

+ TransfromT o(Vectoral_Quanti ty) : Vectoral_Quanti ty

Earth_Coordinate_System
Weapon_Coordinate_SytemWind_Coordinate_System

Figure 125 Platform Independent Coordinate System Classes

cd Aerodynamics_Model_Six_DOF

Body_Fixed_Six_DOF_Aerodynamics_Model

+ ComputeAerodynamicForce(Dynam ics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynam ics_Record) : Aerodynamic_Force

+ ComputeAerodynamicsMoment(Dynam ics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynam ics_Record) : Aerodynamics_M oment

Six_DOF_Aerodynamics_Model

+ ComputeAerodynam icForce(Dynamics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynam ics_Record) : Aerodynamic_Force

+ ComputeAerodynam icsMoment(Dynamics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynam ics_Record) : Aerodynamics_Moment

Aerodynamics_Model

+ Coordinate_System: Coordinate_System

+ ComputeAerodynamicForce(Dynam ics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynam ics_Record) : Aerodynamic_Force

Point_Mass_Aerodynamics_Model

+ ComputeAerodynamicForce(Dynam ics_Model_State, Atmosphere_Record, Physicals_Record, Aerodynamics_Record) : Aerodynamic_Force

Earth_Fixed_Six_DOF_Aerodynamics_M odel

+ ComputeAerodynamicForce(Dynamics_M odel_State, Atmosphere_Record, Physica ls_Record, Aerodynamics_Record) : Aerodynamic_Force

+ ComputeAerodynamicsM oment(Dynamics_M odel_State, Atmosphere_Record, Physica ls_Record, Aerodynamics_Record) : Aerodynam ics_Moment

Figure 126 Some of Platform Independent Aerodynamics Model Classes

 202

cd Atmosphere_Model

Atmosphere_Model

+ ComputeAtmosphere(Position_Vector) : Atmosphere_Record

ICAO_Atmosphere

+ ComputeAtmosphere(Position_Vector) : Atmosphere_Record

METCM

+ ComputeAtmosphere(Position_Vector) : Atmosphere_Record

METB3

+ ComputeAtmosphere(Position_Vector) : Atmosphere_Record

METGM

+ ComputeAtmosphere(Position_Vector) : Atmosphere_Record

Figure 127 Platform Independent Atmosphere Model Classes

cd Dynamics_Model

Dynamics_Model

+ CoordinateSystem: Coordinate_System

+ Dynamics_Model_State: Dynamics_Model_State

+ Dynamics_Model_State_Derivatives: Dynamics_Model_State_Derivatives

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Body_Fixed_Six_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Three_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Modified_Point_Mass_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Earth_Fixed_Six_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Earth_Fixed_Fiv e_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Body_Fixed_Fiv e_DOF_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

In_Launcher_Dynamics_Model

+ UpdateDynamicsModelStateAndDerivatives(Mass, Moment_Vector, Force_Vector[]) : Dynamics_Model_State_Derivatives

Figure 128 Platform Independent Dynamics Model Classes

 203

cd Earth_M odel

Earth_Model

+ ComputePositionInEarthCoordinates(Position_Vector) : Posi tion_Vector

Round_Earth

+ Com putePosi tionInEarthCoordinates(Position_Vector) : Position_Vector

Flat_Earth_Model

+ Com putePosi tionInEarthCoordinates(Position_Vector) : Position_Vector

Figure 129 Platform Independent Earth Model Classes

cd Grav ity_M odel

Grav ity_M odel

+ Coordinate_System: Coordinate_System

+ Com puteGravitationalForce(M ass, Posi tion_Vector) : Gravi tational_Force

Earth_Fixed_Constant_Grav ity_Model

+ ComputeGravitationalForce(Mass, Position_Vector) : Gravi tational_Force

Body_Fixed_Constant_Grav ity_Model

+ ComputeGravitationalForce(Mass, Position_Vector) : Gravi tational_Force

Figure 130 Platform Independent Gravity Model Classes

 204

cd Aerodynamics_Data

Aerodynamics_Data

+ GetAerodynamics() : Aerodynamics_Record

Six_DOF_Aerodynamics_Data

+ GetAerodynamics(Actual_Fin_Deflections, Dynamics_Model_State, Atmosphere_Record) : Aerodynamics_Record

Point_Mass_Aerodynamics_Data

+ GetAerodynamics(Dynamics_Model_State, Atmosphere_Record) : Aerodynamics_Record

Fiv e_DOF_Aerodynamics_Data

+ GetAerodynamics(Actual_Fin_Deflections, Dynamics_Model_State, Atmosphere_Record) : Aerodynamics_Record

Modified_Point_Mass_Aerodynamics_Data

+ GetAerodynamics(Dynamics_Model_State, Atmosphere_Record) : Aerodynamics_Record

Figure 131 Platform Independent Aerodynamics Data Classes

 cd Trajectory_Simulation_Solver

Solver
+ IntegrateStep(UpdateStateAndDerivatives*, Time, Phase_State_Derivatives, Phase_State*) : Void

Euler
+ IntegrateStep(UpdateStateAndDerivatives*, Time, Phase_State_Derivatives, Phase_State*) : Void

RK4
+ IntegrateStep(UpdateStateAndDerivatives*, Time, Phase_State_Derivatives, Phase_State*) : Void

RK3
+ IntegrateStep(UpdateStateAndDerivatives*, Time, Phase_State_Derivatives, Phase_State*) : Void

RK5
+ IntegrateStep(UpdateStateAndDerivatives*, Time, Phase_State_Derivatives, Phase_State*) : Void

Figure 132 Platform Independent Solver Classes

 205

 cd Trajectory_Simulation_Systems

Munition

+ Munition_Subsystem: Munition_Subsystem

+ Platform: Weapon

Munition_Subsystem

Autopilot

+ Autopilot_Data: Aerodynamics_Data

CAS
+ CAS_Data: CAS_Data

Charge

+ Charge_Data: Charge_Data

Fuze

+ Fuze_Data: Fuze_Data

Guidance_System
+ Guidance_Data: Guidance_Data

Propellant

Rocket_Motor

+ Rocket_Motor_Data: Rocket_Motor_Data

Sensor

+ Sensor_Data: Sensor_Data

Weapon

+ Weapon_Data: Weapon_Data

Figure 133 Platform Independent Munition Subsystem Classes

 206

APPENDIX E

TSONT TO MATSIX CODE TRACEABILITY

Table 4 TSONT to MATSIX Code Traceability

TSONT
Platform Independent
Framework Architecture MATSIX Architecture Code

Coordinate System Coordinate System cs @cs

Body_Coordinate_System Body Coordinate System bcs @bcs

Earth_Coordinate_System Earth Coordinate System ecs @ecs

Wind_Coordinate_System Wind Coordinate System

Weapon_Coordinate_Syste
m Weapon Coordinate System

Trajectory_Simulation Trajectory Simulation trajectory_simulation @trajectory_simulation

Trajectory_Simulation_Co
mposite_Data

Trajectory Simulation Composite
Data

Model Trajectory_Simulation_Models

Aerodynamics_Model Aerodynamics_Model

Body_Fixed_Five_DOF_A
erodynamics_Model

Body_Fixed_Five_DOF_Aerodyn
amics_Model

Body_Fixed_Six_DOF_Ae
rodynamics_Model

Body_Fixed_Six_DOF_Aerodyna
mics_Model aerodynamics_model @aerodynamics_model

Earth_Fixed_Six_DOF_Ae
rodynamics_Model

Earth_Fixed_Six_DOF_Aerodyna
mics_Model

Earth_Fixed_Five_DOF_A
erodynamics_Model

Earth_Fixed_Five_DOF_Aerodyn
amics_Model

Five_DOF_Aerodynamics_
Model Five_DOF_Aerodynamics_Model

Modified_Point_Mass_Aer
odynamics_Model

Modified_Point_Mass_Aerodyna
mics_Model

Point_Mass_Aerodynamics
_Model

Point_Mass_Aerodynamics_Mod
el

Six_DOF_Aerodynamics_
Model Six_DOF_Aerodynamics_Model

Three_DOF_Aerodynamics
_Model

Three_DOF_Aerodynamics_Mod
el

Atmosphere_Model Atmosphere_Model atmosphere_model @atmosphere_model

ICAO ICAO_Atmosphere icao_atmosphere_model @icao_atmosphere_model

METB3 METB3

METCM METCM

 207

TSONT
Platform Independent
Framework Architecture MATSIX Architecture Code

METGM METGM

Autopilot_Model Autopilot_Model autopilot_model @autopilot_model

CAS_Model CAS_Model

Four_Canard_Second_Orde
r_CAS_Model Second_Order_CAS_Model cas_model @cas_model

Dynamics_Model Dynamics_Model

Body_Fixed_Five_DOF_D
ynamics_Model

Body_Fixed_Five_DOF_Dynami
cs_Model

Body_Fixed_Six_DOF_Dy
namics_Model

Body_Fixed_Six_DOF_Dynamics
_Model dynamics_model @dynamics_model

Earth_Fixed_Five_DOF_D
ynamics_Model

Earth_Fixed_Five_DOF_Dynami
cs_Model

Earth_Fixed_Six_DOF_Dy
namics_Model

Earth_Fixed_Six_DOF_Dynamics
_Model

In_Launcher_Dynamics_M
odel In_Launcher_Dynamics_Model in_launcher_dynamics_model

@in_launcher_dynamics_mod
el

Modified_Point_Mass_Dyn
amics_Model

Modified_Point_Mass_Dynamics
_Model

Three_DOF_Dynamics_M
odel Three_DOF_Dynamics_Model

Earth_Model Earth_Model

Flat_Earth_Model Flat_Earth_Model earth_model @earth_model

Curved_Earth_Model Round_Earth round_earth_model @round_earth_model

Gravity_Model Gravity_Model

Constant_G_Body_Fixed_
Gravity_Model

Body_Fixed_Constant_Gravity_
Model

Constant_G_Earth_Fixed_
Gravity_Model

Earth_Fixed_Constant_Gravity_
Model gravity_model @gravity_model

Guidance_Model Guidance_Model guidance_model @guidance_model

Cubic_Guidance_Model Cubic_Guidance_Model cubic_guidance_model @cubic_guidance_model

PN_Guidance_Model PN_Guidance_Model pn_guidance_model @pn_guidance_model

Parabolic_Guidance_Model Parabolic_Guidance_Model parabolic_guidance_model @parabolic_guidance_model

Launcher_Model Launcher_Model

 Simple_Launcher_Model launcher_model @launcher_model

Sensor_Model Sensor_Model

Termination_Model Termination_Model termination_model @termination_model

Thruster_Model Thruster_Model

Body_Fixed_Six_DOF_Ro
cket_Motor_Model

Body_Fixed_Six_DOF_Solid_Ro
cket_Motor_Model

Center_Burning_Solid_Rocket_M
otor_Model rocket_motor_model @rocket_motor_model

Earth_Fixed_Six_DOF_Solid_Ro
cket_Motor_Model

@six_dof_rocket_motor_mode
l

 208

TSONT
Platform Independent
Framework Architecture MATSIX Architecture Code

End_Burning_Solid_Rocket_Mot
or_Model

Solid_Rocket_Motor_Mod
el_for_Point_Mass

Point_Mass_Solid_Rocket_Motor
_Model

Parameter Trajectory Simulation Parameters

Aerodynamics Aerodynamics_Data

Five_DOF_Aerodynamics Five_DOF_Aerodynamics_Data

Modified_Point_Mass_Aer
odynamics

Modified_Point_Mass_Aerodyna
mics_Data

Point_Mass_Aerodynamics Point_Mass_Aerodynamics_Data

Six_DOF_Aerodynamics Six_DOF_Aerodynamics_Data aerodynamics @aerodynamics

Autopilot_Data Autopilot_Data autopilot_data @autopilot_data

CAS_Data CAS_Data

Second_Order_CAS_Data Second_Order_CAS_Data cas_data @cas_data

Charge_Data Charge_Data

Fuze_Data Fuze_Data

Guidance_Data Guidance_Data guidance_data @guidance_system_data

Physical_Data Physical_Data

Point_Mass_Physicals Point_Mass_Physicals

Six_DOF_Physicals Six_DOF_Physicals physicals @physicals

 Six_DOF_Physicals_for_Thrusted physicals_for_thrusted @physicals_for_thrusted

 Propellant_Data

Solid_Rocket_Motor_Data Rocket_Motor_Data

Point_Mass_Solid_Rocket_
Motor_Data Point_Mass_Rocket_Motor_Data

Rigid_Body_Solid_Rocket
_Motor_Data Rigid_Body_Rocket_Motor_Data rocket_motor_data @rocket_motor_data

Sensor_Data Sensor_Data

Weapon_Data Weapon_Data weapon_data @weapon_data

Laucher_Data Laucher_Data launcher_data @launcher_data

Trajectory_Simulation_Pha
se Trajectory Simulation Phases

Phase Phase phase @phase

Guided_Phase Guided_Phase guided_phase @guided_phase

In_Launcher_Phase In_Launcher_Thrusted_Phase in_launcher_thrusted_phase @in_launcher_thrusted_phase

Thrusted_Phase Thrusted_Phase thrusted_phase @thrusted_phase

Trajectory Simulation
Quantity Trajectory Simulation Quantities

Trajectory Simulation
Solver Trajectory Simulation Solvers

 209

TSONT
Platform Independent
Framework Architecture MATSIX Architecture Code

Euler Euler

Third_Order_RK RK3

Fourth_Order_RK RK4

Fifth_Order_RK RK5

Trajectory Simulation
Object Trajectory Simulation Systems

Autopilot Autopilot autopilot @autopilot

CAS CAS cas @cas

Charge Charge

Fuze Fuze fuze @fuze

Guidance_System Guidance_System guidance_system @guidance_system

Munition Munition muntion @munition

Munition_Subsystem Munition_Subsystem

Propellant Propellant

Rocket_Motor Rocket_Motor rocket_motor @rocket_motor

Sensor Sensor

Weapon Weapon weapon @weapon

 aircraft @aircraft_data

 210

APPENDIX F

SAMPLE CLASS DIAGRAMS FROM MATSIX ARCHITECTURE

cd Traj ectory_Simulation

traj ectory_simulation

- munition: muntion

- phase_array: phase[]

- trajectory: T rajectory

+ ComputeT rajectory(trajectory_simulation) : trajectory

+ get() : void

+ Ini tial ize(trajectory_simulation) : trajectory_simulation

+ set() : void

+ trajectory_simulation() : trajectory_simulation

Figure 134 MATSIX Trajectory Simulation

cd Coordinate_Systems

bcs

+ bcs() : bcs

cs

+ Inertial_Refererence_Frame_Euler_Angles:

+ cs() : cs

+ SetEulerAngles(cs, EulerAngles) : void

+ T ransfromT o(vectoral_quanti ty, cs) : vectoral_quanti ty

ecs

+ ecs() : ecs

Figure 135 MATSIX Coordinate System Classes

 211

cd Aerodynamics_Model

aerodynamics_model

- Coordinate_System: cs

+ aerodynamics_model() : aerodynam ics_m odel

+ ComputeAerodynamicForce(aerodynamics_model , aerodynamics_record, physicals_record, atmosphere_record, dynamics_model_state) : aerodynam ic_force

+ ComputeAerodynamicsMoment(aerodynamics_model , aerodynamics_record, physicals_record, atmosphere_record, dynamics_model_state) : aerodynam ics_m oment

+ get() : void

+ set() : void

Figure 136 MATSIX Aerodynamics Model

cd Atmosphere_Model

atmosphere_model

- densi ty_array: densi ty[]

- height_array: height[]

- pressure_array: pressure[]

- speed_of_sound_array: speed_of_sound[]

- temperature_array: temperature[]

- wind_array: wind[]

+ atmosphere_model() : atmosphere_model

+ ComputeAtmosphere(atmosphere_m odel , posi tion_vector) : atmosphere_record

+ get() : void

+ set() : void

icao_atmosphere_model

+ icao_atmosphere() : icao_atmosphere_model

Figure 137 MATSIX Atmosphere Model

cd CAS_Model

cas_model

+ CAS_Model_State: cas_model_state

+ CAS_Model_State_Derivatives: cas_model_state_derivatives

+ cas_model () : cas_model

+ ComputeControlSurfaceDeflections(cas_model) : actual_fin_deflections

+ get() : void

+ set() : void

+ UpdateCASModelStateandDerivatives(cas_model , commanded_fin_deflections, cas_record) : cas_model_state_derivatives

Figure 138 MATSIX CAS Model

 212

cd Earth_Model

earth_model

+ ComputePosi tionInEarthCoordinates(posi tion_vector) : posi tion_vector

+ eath_model() : earth_m odel

round_earth_model

+ ComputePosi tionInEarthCoordinates(posi tion_vector) : posi tion_vector

+ round_earth_model() : round_earth_model

Figure 139 TSONT Earth Model

cd Launcher_Model

launcher_model

+ ComputeFrictionForce(launcher_model , gravi tational_force, weapon_record) : friction_force

+ get() : void

+ launcher_model() : launcher_model

+ set() : void

Figure 140 MATSIX Launcher Model

cd Thruster_Model

rocket_motor_model

- cs: cs

- state: rocket_motor_state

- state_derivatives: rocket_motor_state_derivatives

+ ComputeThrustForce(rocket_motor_model , rocket_motor_record, mass, pressure) : thrust_force

+ ComputeThrustMoment(rocket_motor_model, thrust_force, physicals_record) : thrust_moment

+ get() : void

+ rocket_motor_model() : rocket_motor_model

+ set() : void

+ UpdateMotorStateandDerivatives(rocket_motor_model, mass) : void

Figure 141 MATSIX Rocket Motor Model

 213

cd Aerodynamics_Data

aerodynamics

- cddata:

- cldeldata:

- clpdata:

- cmadata:

- cmddata:

- cmqdata:

- czadata:

- czddata:

- czqdata:

- machpoints:

+ aerodynamics() : aerodynamics

+ get(aerodynamics, variant) : variant

+ GetAerodynamics(aerodynamics, actual_fin_deflections, dynamics_model_state, atmosphere_record, physicals_record) : aerodynam ics_record

+ GetAutopi lotAerodynamics(aerodynamics, actual_fin_deflections, dynamics_m odel_state, atmosphere_m odel , physicals_record) : autopi lot_aero_record

+ set(aerodynam ics, variant) : aerodynamics

Figure 142 MATSIX Aerodynamics

cd Traj ectory_Simulation_Systems

muntion

- aerodynamics: aerodynamics

- autopi lot: autopi lot

- fuze: fuze

- guidance_system: guidance_system

- physicals: physicals

- thruster: thruster

+ weapon: weapon

+ get() : void

+ munition() : munition

+ set() : void

autopilot

- ap_data: autopi lot_data

+ autopi lot() : autopi lot

+ get() : void

+ set() : void

cas

- CAS_Data: cas_data

+ cas() : cas

+ get() : void

+ set() : void

fuze

- Fuze_Data: fuze_data

+ fuze() : fuze

+ get() : void

+ set() : void

guidance_system

- guidance_system_data: guidance_data

+ get() : void

+ guidance_system() : guidance_system

+ set() : void

rocket_motor

- rocket_motor_data: rocket_motor_data

+ get() : void

+ set() : void

w eapon

+ weapon_data: weapon_data

+ get() : void

+ set() : void

Figure 143 MATSIX Trajectory Simulation Systems

 214

APPENDIX G

LYNX DATA

Table 5 LYNX Data

PHYSICALS

Diameter 0.227 m

Length 2.7 m

Reference Mass 135.1 kg

Reference CG 1.7 m

Reference Inertia

Matrix

[1.16 0 0; 0 125 0; 0 0 125] kgm2

Initial CG 1.97 m

Initial Inertia Matrix [1.65 0 0; 0 165 0; 0 0 165] kgm2

AERODYNAMICS

Mach Points [0 .1 .33 .53 .71 .86 1.00 1.05 1.12 1.19 1.27 1.36 1.46

1.58 1.71 1.87 2.04 2.23 2.46 2.71 3.00]

0Cd [0 -.3471 -.3563 -.3626 -.3620 -.4187 -.6075 -.6821 -

.6427 -.5933 -.5504 -.5208 -.5010 -.4859 -.4809 -.4731 -

.4812 -.4423 -.4114 -.3819 -.3508]

Czα [0 -.2684 -.2731 -.2792 -.2852 -.2993 -.3378 -.3402 -

.3368 -.3338 -.3196 -.3110 -.2964 -.2674 -.2506 -.2361 -

.2218 -.2062 -.1914 -.1776 -.1639]

Czδ [0 .04710 .04826 .04966 .05160 .05647 .06867 .06111

.05658 .05286 .05045 .04882 .04528 .04482 .04250

.04062 .03865 .03586 .03325 .03077 .02808]

 215

Cmα [0 -.2501 -.2462 -.2425 -.2268 -.1908 -.09181 -.2532 -

.3466 -.4242 -.3229 -.3217 -.3555 -.2542 -.2178 -.1743 -

.1366 -.1065 -.08035 -.05590 -.03951]

Cmδ [0 -.2830 -.2933 -.3064 -.3206 -.3537 -.4417 -.4402 -

.4299 -.4193 -.3981 -.3715 -.3224 -.2670 -.2314 -.2045 -

.1819 -.1596 -.1406 -.1241 -.1074]

Cmq [0 27.30 29.98 33.68 39.51 30.80 27.09 27.63 26.75

25.30 17.24 16.82 16.20 14.29 13.46 12.67 12.26 11.53

10.50 9.806 9.202]

Clp [0 .02245 .02261 .02256 .02311 .02529 .02585 .01605

.01136 .007408 .007540 .009875 .01189 .01540 .01822

.02086 .02286 .02316 .02316 .02288 .02215]

Clδ [0 .01194 .01203 .01201 .01232 .01352 .01384 .007377

.004822 .002651 .002744 .004050 .005188 .007141

.008722 .01018 .01127 .01144 .01144 .01129 .01089]

AUTOPILOT DATA

Pitch and Yaw Autopilot

Wn 10

Ksi 0.707

Mu 1

Roll Autopilot

Wn 12

Ksi 0.7

LAUNCHER DATA

Friction Coefficient 0

Launcher Length 3

ROCKET MOTOR DATA

 216

Specific Impulse 2100 Ns/kg

Exit Area 0.03m2

Reference Pressure 101325.018Pa

Reference Fuel Mass 108.14595 kg

Mass Flow Data

Time(s) vs

Mass Flow (kg/s)

[0 0;

0.049 30.295908145179933;

0.099 29.502196193265007;

0.149 28.785543654157355;

0.199 28.330893118594435;

0.249 27.953301995838792;

0.299 27.614240579486783;

0.349 27.271326192494413;

0.399 26.970794482546044;

0.449 26.516143946983124;

0.499 26.215612237034755;

0.549 25.83802111427911;

0.599 25.572166140094012;

0.649 25.421900285119825;

0.699 25.15604531093473;

0.749 25.08283886876782;

0.799 25.005779455960546;

0.849 24.85551360098636;

0.899 24.778454188179087;

0.949 24.6281883332049;

0.999 24.589658626801263;

1.049 24.55498189103799;

 217

1.099 24.40086306542344;

1.149 24.289126916852894;

1.199 24.212067504045617;

1.249 24.061801649071434;

1.299 24.250597210449257;

1.349 23.950065500500884;

1.399 23.950065500500884;

1.449 23.87300608769361;

1.499 23.87300608769361;

1.549 23.834476381289974;

1.599 23.761269939123064;

1.649 23.684210526315788;

1.699 23.684210526315788;

1.749 23.684210526315788;

1.799 23.64568081991215;

1.849 23.64568081991215;

1.899 23.495414964937968;

1.949 23.456885258534328;

1.999 23.41835555213069;

2.049 23.26808969715651;

2.099 22.967557987208135;

2.149 22.9290282808045;

2.199 22.817292132233952;

2.249 22.663173306619402;

2.299 22.47437774524158;

2.349 22.362641596671033;

 218

2.399 22.362641596671033;

2.449 22.51290745164522;

2.499 22.51290745164522;

2.549 22.135316328889573;

2.599 21.00254296062264;

2.649 19.037527934037143;

2.699 16.317330661940357;

2.749 13.18486553132465;

2.799 10.726670262772597;

2.849 8.800184942590738;

2.899 7.405409570779071;

2.949 6.157047083301225;

2.999 5.324805424982661;

3.049 4.457887030900824;

3.099 3.702704785389535;

3.149 3.059258688448794;

3.199 2.45434229791169;

3.249 1.92648532018186;

3.299 1.471834784618941;

3.349 1.059566926100023;

3.399 0.678122832704015;

3.449 0.339061416352007;

3.499 0.077059412807274;

3.52 0;]

 219

APPENDIX H

LYNX SAMPLE RUNS

Table 6 1st LYNX Sample Run Parameters

Elevation 40 Deg.

Azimuth 0 Deg.

Guidance Start Range 8000 m

Target Range 25000 m

Vertical Angle of Fall 45 Deg.

Horizontal Angle of Fall 0 Deg.

Figure 144 1st LYNX Sample Run Trajectory Plot

 220

Figure 1451st LYNX Sample Run Elevator Angle vs. Time Plot

Figure 146 1st LYNX Sample Run Elevator Angle of Attack vs. Time Plot

 221

Table 7 2nd LYNX Sample Run Parameters

Elevation 55 Deg.

Azimuth 0 Deg.

Guidance Start Range 8000 m

Target Range 25000 m

Vertical Angle of Fall 45 Deg.

Horizontal Angle of Fall 0 Deg.

Figure 147 2nd LYNX Sample Run Trajectory Plot

 222

Figure 148 2nd LYNX Sample Run Elevator Angle vs. Time Plot

Figure 149 2nd LYNX Sample Run Elevator Angle of Attack vs. Time Plot

 223

APPENDIX I

PUMA DATA

Table 8 PUMA Data

PHYSICALS

Diameter 0.227 m

Length 2.7 m

Reference Mass 135.1 kg

Reference CG 1.7 m

Reference Inertia

Matrix

[1.16 0 0; 0 125 0; 0 0 125] kgm2

AERODYNAMICS

Mach Points [0 .1 .33 .53 .71 .86 1.00 1.05 1.12 1.19 1.27 1.36 1.46

1.58 1.71 1.87 2.04 2.23 2.46 2.71 3.00]

0Cd [0 -.3471 -.3563 -.3626 -.3620 -.4187 -.6075 -.6821 -

.6427 -.5933 -.5504 -.5208 -.5010 -.4859 -.4809 -.4731 -

.4812 -.4423 -.4114 -.3819 -.3508]

Czα [0 -.2684 -.2731 -.2792 -.2852 -.2993 -.3378 -.3402 -

.3368 -.3338 -.3196 -.3110 -.2964 -.2674 -.2506 -.2361 -

.2218 -.2062 -.1914 -.1776 -.1639]

Czδ [0 .04710 .04826 .04966 .05160 .05647 .06867 .06111

.05658 .05286 .05045 .04882 .04528 .04482 .04250

.04062 .03865 .03586 .03325 .03077 .02808]

Cmα [0 -.2501 -.2462 -.2425 -.2268 -.1908 -.09181 -.2532 -

.3466 -.4242 -.3229 -.3217 -.3555 -.2542 -.2178 -.1743 -

.1366 -.1065 -.08035 -.05590 -.03951]

 224

Cmδ [0 -.2830 -.2933 -.3064 -.3206 -.3537 -.4417 -.4402 -

.4299 -.4193 -.3981 -.3715 -.3224 -.2670 -.2314 -.2045 -

.1819 -.1596 -.1406 -.1241 -.1074]

Cmq [0 27.30 29.98 33.68 39.51 30.80 27.09 27.63 26.75

25.30 17.24 16.82 16.20 14.29 13.46 12.67 12.26 11.53

10.50 9.806 9.202]

Clp [0 .02245 .02261 .02256 .02311 .02529 .02585 .01605

.01136 .007408 .007540 .009875 .01189 .01540 .01822

.02086 .02286 .02316 .02316 .02288 .02215]

Clδ [0 .01194 .01203 .01201 .01232 .01352 .01384 .007377

.004822 .002651 .002744 .004050 .005188 .007141

.008722 .01018 .01127 .01144 .01144 .01129 .01089]

AUTOPILOT DATA

Pitch and Yaw Autopilot

Wn 10

Ksi 0.707

Mu 1

Roll Autopilot

Wn 12

Ksi 0.7

 225

APPENDIX J

PUMA SAMPLE RUNS

Table 9 1st PUMA Sample Run Parameters

Altitude 11000 m

Velocity 250 m/s.

Guidance Start Range 200 m

Target Range 20000 m

Figure 150 1st PUMA Sample Run Trajectory Plot

 226

Figure 151 1st PUMA Sample Run Elevator Angle vs. Time Plot

Figure 152 1st PUMA Sample Run Angle of Attack vs. Time

 227

Table 10 2nd PUMA Sample Run Parameters

Altitude 11000 m

Velocity 250 m/s.

Guidance Start Range 200 m

Target Range 10000 m

Figure 153 2nd PUMA Sample Run Trajectory Plot

 228

Figure 154 2nd PUMA Sample Run Elevator Angle vs. Time Plot

Figure 155 2nd PUMA Sample Run Angle of Attack vs. Time Plot

 229

APPENDIX K

SAMPLE DIAGRAMS AND CODE FORM C# POINT MASS
TRAJECTORY SIMULATION FRAMEWORK

cd Trajectory_Simulation_Phases

Guided_Phase

+ Autopi lot_Model: Autopi lotModel

+ CAS_Model: CAS_Model

+ Guidance_Model: GuidanceModel

+ Sensor_Model: Sensor_Model

+ Dispose() : void

+ Guided_Phase()

- ~Guided_Phase()

+ updatePhaseStateAndDerivatives(PhaseState) : PhaseStateDerivatives

In_Launcher_Thrusted_Phase

+ Launcher_Model: Launcher_Model

+ Dispose() : void

+ In_Launcher_Thrusted_Phase()

- ~In_Launcher_Thrusted_Phase()

+ updatePhaseStateAndDerivatives(PhaseState) : PhaseStateDerivatives

Phase

+ Aerodynamics_Model: AerodynamicsModel

+ Dynamic_Model: DynamicsModel

+ Earth_Model: EarthModel

+ Environment_Model: AtmosphereModel

+ Gravity_Model: Gravity_Model

+ Initial_Condition: PhaseState

+ Phase_State: PhaseState

+ Phase_State_Derivatives: PhaseState

+ Propulsion_Model: Thruster_Model

+ Solver: Solver

+ Temination_Model: TerminationModel

+ computePhaseTrajectory() : Trajectory

+ Dispose() : void

+ initial izePhase(PhaseState) : void

+ Phase()

- ~Phase()

+ updatePhaseStateAndDerivatives(PhaseState) : PhaseStateDerivatives

Thrusted_Phase

+ Thruster_Model: ThrusterModel

+ Dispose() : void

+ Thrusted_Phase()

- ~Thrusted_Phase()

+ updatePhaseStateAndDerivatives() : PhaseStateDerivatives

Figure 156 Phase Hierarchy of C# Point Mass Trajectory Simulation Framework

 230

cd Aerodynamics_Model

AerodynamicsModel

Coordinate_System: CoordinateSystem

+ AerodynamicsModel()

- ~AerodynamicsModel()

+ computeAerodynamicForce(DynamicsModelState, AtmosphereRecord, PhysicalsRecord, AerodynamicsRecord) : Aerodynamic_Force

+ Dispose() : void

PointMassAerodynamicsModel

+ computeAerodynamicForce(DynamicsModelState, AtmosphereRecord, PhysicalsRecord, AerodynamicsRecord) : Aerodynamic_Force

+ Dispose() : void

+ PointMassAerodynamicsModel()

- ~PointMassAerodynamicsModel()

Figure 157 Aerodynamics Model Hierarchy of C# Point Mass Trajectory

Simulation Framework

Figure 158 Automatically Generated Tube Record Code of C# Point Mass

Trajectory Simulation Framework

 231

APPENDIX L

DATA FLOW DIAGRAMS

Compute Point

Mass

Trajectory

Trajectory

Figure 159 Top Level Data Flow Diagram for Function Oriented Point Mass

Trajectory Simulation Abstract Design

Get Weapon

Data

Get Point Mass

Charge Data

Initialize Point

Mass

Simulation

Weapon Data

Charge Data

Compute Point

Mass Phase

Trajectory

Simulation Initial State

Trajectory

Weapon Data

Charge Data

Figure 160 Compute Point Mass Trajectory Data Flow Diagram

 232

Compute
Phase State

and

Derivatives

Integrate Step

Check
Termination

Conditions

State and State Derivatives

Subsequent State

State

Termination

State

StateInital State
Trajectory

State

Trajectory

Figure 161 Compute Point Mass Phase Trajectory Data Flow Diagram

Compute Point
Mass

Aerodynamics

Compute ICAO
Atmosphere

Get Physicals

Compute
Aerodynmamic

Force

Compute
Gravitational

Force

Update Point Mass
Dynamics Modl State

and Derivatives

State

Atmosphere Record

Atmosphere Record

Physicals

Physicals Record

Physicals Record

Aerodynamic Force

Gravitational Force

 State Derivatives

Aerodynamic Coefficients

Aerodynamics

Figure 162 Phase State and Derivatives Data Flow Diagram

 233

APPENDIX M

TIGER AND JAGUAR DATA

Table 11 TIGER and JAGUAR Data

PHYSICALS

Reference Area 0.00515 m2

Reference Mass 4.7 kg

AERODYNAMICS

Mach Points [0 0.7 0.85 0.87 0.9 0.93 0.95 1 1.09]

0Cd [0 -0.119 -0.12 -0.122 -0.126 -0.148 -0.182 -0.3 -0.5]

CHARGE DATA

Muzzle Velocity 220m/s

 234

APPENDIX N

COMPLETE REUSE INFRASTUCTURE

APPENDIX N is appended to this dissertation in an optical media. Content supplied

in the optical media is as follows:

01. TSONT

Trajectory Simulation Ontology is given in this folder. There are three sub folders

as follows:

01. TSONT\01.1 TSONT Protege OWL

This folder contains a Protégé project for TSONT and TSONT in OWL format.

01. TSONT\01.2 TSONT HTML

This folder contains OWLDoc of TSONT. It is a set of browsable web pages that

represent the ontology. One should start browsing from index.html.

01. TSONT\01.3 Sample DAVE-ML

This folder contains a set of sample DAVE-ML files.

02. Platform Independent Framework Architecture

This folder contains the platform independent trajectory simulation framework

architecture. There are two sub folders as follows:

02. Platform Independent Framework Architecture\02.1 Platform Independent

Framework Architecture EA

 235

This folder contains platform independent trajectory simulation framework

architecture as Sparx Systems Enterprise Architect 6.0 project.

02. Platform Independent Framework Architecture\02.2 Platform Independent

Framework Architecture HTML

This folder contains platform independent trajectory simulation framework

architecture as a set of browsable web pages. One should start browsing from

index.htm.

03. MATSIX Architecture

This folder contains the platform MATSIX architecture. There are two sub folders

as follows:

03. MATSIX Architecture\03.1 MATSIX Architecture EA

This folder contains MATSIX architecture as Sparx Systems Enterprise Architect

6.0 project.

03. MATSIX Architecture\03.2 MATSIX Architecture HTML

This folder contains MATSIX architecture as a set of browsable web pages. One

should start browsing from index.htm.

04. MATSIX Code

This folder contains implementation of MATSIX. We would like to remind you that

this framework is implemented by using MATLAB 7.1.

05. LYNX Code

This folder contains the implementation of LYNX simulation. It is one of the

trajectory simulations built upon MATSIX using framework completion approach

 236

so should be interpreted with MATSIX. Folder also contains a sample tester script

tester.m that runs LYNX for a sample case and plots a trajectory.

06. PUMA Code

This folder contains the implementation of PUMA simulation. It is one of the

trajectory simulations built upon MATSIX using framework completion approach

so should be interpreted with MATSIX. Folder also contains a sample tester script

tester.m that runs PUMA for a sample case and plots a trajectory.

07. C Sharp Example

This folder contains the C# point mass trajectory framework case study. There are

two sub folders as follows:

07. C Sharp Example\07.1 C Sharp Example Model

This folder contains the C# point mass trajectory framework architecture. There are

two sub folders as follows:

07. C Sharp Example\07.1 C Sharp Example Mode\07.1.1 C Sharp Example

Model EA

This folder contains C# point mass trajectory framework architecture as Sparx

Systems Enterprise Architect 6.0 project.

07. C Sharp Example\07.1 C Sharp Example Mode\07.1.2 C Sharp Example

Model HTML

This folder contains C# point mass trajectory framework architecture as a set of

browsable web pages. One should start browsing from index.htm.

07. C Sharp Example\07.2 C Sharp Example Code

 237

This folder contains the C# point mass trajectory framework code in a Microsoft

Visual Studio 2005 project.

08. PANTHERA Abstract Design

This folder contains the abstract software design for PANTHERA. There are two

sub folders as follows:

08. PANTHERA Abstract Design\08.1 PANTHERA Abstract Design Visio

This folder contains the abstract software design for PANTHERA as Microsoft

Visio 2003 document.

08. PANTHERA Abstract Design\08.2 PANTHERA Abstract Design HTML

This folder contains the abstract software design for PANTHERA as a set of

browsable web pages. One should start browsing from index.htm

09. PANTHERA

This folder contains implementation of PANTHERA. We would like to remind you

that this framework is implemented by using MATLAB 7.1 Simulink.

10. TIGER

This folder contains implementation of TIGER. We would like to remind you that

this framework is implemented by using MATLAB 7.1 Simulink.

11. JAGUAR

This folder contains implementation of JAGUAR. We would like to remind you

that this framework is implemented by using MATLAB 7.1 Simulink.

 238

CURRICULUM VITAE

PERSONAL INFORMATION :

Surname : DURAK

Name : Umut

Date of birth : 16 February1976

Place of birth : Ankara - TURKEY

Nationality : Turkish

Permanent address : 35.CAD. 7/38

 100.YIL

 Ankara ,TURKEY

 Tel: +90 (312) 285 44 07

 Mobile Tel: +90 (532) 622 04 12

Work address : TÜBİTAK-SAGE

Turkish Scientific & Technical Research Council

Defense Industries Research & Development Institute

P.K. 16, 06261 Mamak – ANKARA / TURKEY

Tel: +90 (312) 590 91 76

 Fax: +90 (312) 590 91 48-49

 E-mail: udurak@sage.tubitak.gov.tr

 umut@durakailesi.com

Marital status : Single

Profession : Mechanical Engineer

 239

EDUCATION :

School Years Diploma, Grade and Subject

Primary School

Cumhuriyet Primary School

Sındırgı, Balıkesir, TÜRKİYE

1982 – 1986

Atatürk Primary School

Sındırgı, Balıkesir, TÜRKİYE

1986 – 1987 Primary School Diploma

Secondary & High School

Sırrı Yırcalı Anatolian High

School

Balıkesir,TÜRKİYE

1987 - 1991 Secondary School Diploma

Eskişehir Fatih Science High

School

Eskişehir, TÜRKİYE

1991 - 1994 High School Diploma

University

METU

Department of Mechanical

Engineering

İnönü Blv., Ankara, TÜRKİYE

1994 - 1999 B.Sc.

METU

Department of Mechanical

Engineering

İnönü Blv., Ankara, TÜRKİYE

1999 - 2001 M.Sc. , “Tool Management in

CIM”

METU

Department of Mechanical

Engineering

İnönü Blv., Ankara, TÜRKİYE

2001 - 2007 Ph.D. , “Ontology Based Reuse

Infrastructure for Trajectory

Simulation”

 240

LANGUAGE SKILLS :

Native Language : Turkish

Other Languages : English

PUBLICATIONS:

1. Durak, U., Ünver, H.Ö., Anlağan, Ö. and Kılıç, S.E, Conceptual Design of a

Gage and Fixture Tracking System Using a Distributed Industrial Framework, 9th

International Machine Design and Production Conference, Ankara, 2000.

2. Durak, U., Ünver, H.Ö., Anlağan, Ö., Kılıç, S.E. , Atölye Kontrol Sistemleri,

Mühendis ve Makina, Şubat, 2001

3. Ünver, H.Ö., Anlağan, Ö., Kılıç, S.E. , Durak, U., Savunma Sanayiinde

İmalat Yönetim Sistemleri ve Bir Uygulama, Savunma Sanayii Sempozyumu,

Ankara, 2000.

4. Durak,U., Anlağan, O. and Demirors,O., Agent Based Shop Floor Control

System Development and Software Reuse, 12th DAAAM International Symposium:

Intelligent Manufacturing & Automation: Focus on Precission Engineering, Jena,

Germany, 2001.

5. Durak, U., Ünver, H.Ö., Anlağan,Ö., Kılıç,S.E., Tümleşik İmalat Ortamında

Takım Yönetimi, TMMOB Makine Mühendisleri Odası Konya Şubesi Makina

Tasarım ve İmalat Teknolojileri Kongresi, Konya, 2001.

6. Durak,U., Anlağan, O., ISO 9000 Applied to Software Processes in Defense

R&D Industry, Journal of Naval Science and Engineering, (1)1 ,2003

7. Durak, U., Anlağan, Ö., Oğuztüzün, H., Yeniden Kullanılabilir Uçuş

Benzetimi Mimarisi İçin Yol Haritası, SAVTEK 2004, 2004, Ankara

8. Durak,U., Dayanç, K., Elaldı, F., Anlağan, Ö., Topçu Roketlerinin Atış

Kontrol Sistemleri için Yeni Nesil Balistik Çözücü USMOS 2005, Ankara, 2005.

 241

9. Durak, U., Oğuztüzün, H. and Mahmutyazıcıoğlu, G., Domain Analysis for

Reusable Trajectory Simulation, Euro-SIW 2005, Toulouse, France, 2005.

10. Aytar Ortaç, S., Durak, U., Kutluay, Ü.,Küçük, K., Candan, C., Yeni Nesil

Balistik Çözücü’nün Farklı Uygulamalarda Kullanımı, SAVTEK 2006, Ankara,

2006

11. Durak, U., Oğuztüzün, H. and İder, K., An Ontology for Trajectory

Simulation, WinterSim06, Monterey, CA, 2006.

12. Durak, U., Oğuztüzün, H. and İder, K., Ontology Based Trajectory

Simulation Framework, Journal of Computing and Information Science in

Engineering, -ACCEPTED-

13. Aytar Ortaç, S., Durak, U., Kutluay, Ü.,Küçük, K. and Candan, C., NABK

Based Next Generation Ballistic Table Toolkit, 23rd International Symposium on

Ballistics, Tarragona, Spain, 2007.

14. Durak, U., Güler, S., Oğuztüzün, H., and İder, K., An Exercise In Ontology

Driven Trajectory Simulation with MATLAB Simulink, 21st EUROPEAN

Conference on Modelling and Simulation, Prague, Czech Republic, 2007.

15. Özdikiş, Ö, Oğuztüzün, H, and Durak, U., OWL to UML : Transforming

Domain Models to Framework Architectures, Manuscript.

WORK EXPERIENCE :

Organization

TUSAŞ ENGINE INDUSTRIES

Eskişehir, TÜRKİYE

Years

1999 – 2001

Job

Research Engineer

Organization

TÜBİTAK-SAGE

Ankara, TÜRKİYE

Years
2001-2003
2003-2007

 2007-

Job
Research Engineer

Senior Research Engineer
Head Research Engineer

