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ABSTRACT 

 

 

TRANSFORMING MISSION SPACE MODELS 

TO EXECUTABLE SIMULATION MODELS 

 

Özhan, Gürkan 

Ph.D., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün 

 

September 2011, 232 pages 

 

This thesis presents a two step automatic transformation of Field Artillery Mission Space 

Conceptual Models (ACMs) into High Level Architecture (HLA) Federation Architecture 

Models (FAMs) into executable distributed simulation code. The approach followed in the 

course of this thesis adheres to the Model-Driven Engineering (MDE) philosophy. Both 

ACMs and FAMs are formally defined conforming to their metamodels, ACMM and 

FAMM, respectively. ACMM is comprised of a behavioral component, based on Live 

Sequence Charts (LSCs), and a data component based on UML class diagrams. Using 

ACMM, the Adjustment Followed by Fire For Effect (AdjFFE) mission, which serves as 

the source model for the model transformation case study, is constructed. The ACM to 

FAM transformation, which is defined over metamodel-level graph patterns, is carried out 

with the Graph Rewriting and Transformation (GReAT) tool. Code generation from a FAM 

is accomplished by employing a model interpreter that produces Java/AspectJ code. The 

resulting code can then be executed on an HLA Run-Time Infrastructure (RTI). Bringing a 

fully fledged transformation approach to conceptual modeling is a distinguishing feature of 

this thesis. This thesis also aims to bring the chart notations to the attention of the mission 

space modeling community regarding the description of military tasks, particularly their 

communication aspect. With the experience gained, a set of guidelines for a domain-

independent transformer from any metamodel-based conceptual model to FAM is offered. 

 

Keywords: Domain Specific Modeling, Graph-Based Model Transformation, Field 

Artillery, High Level Architecture, Code Generation 
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ÖZ 

 

 

GÖREV UZAYI MODELLERĐNĐ 

 KOŞTURULABĐLĐR SĐMÜLASYON MODELLERĐNE DÖNÜŞTÜRME 

 

Özhan, Gürkan 

Doktora, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Halit Oğuztüzün 

 

Eylül 2011, 232 sayfa 

 

Bu tez Sahra Topçuluğu Görev Uzayı Kavramsal Modelleri’nin (ACM) Yüksek Seviye 

Mimarisi (HLA) Federasyon Mimari Modelleri’ne (FAM), onun da koşturulabilir dağıtık 

simülasyon koduna iki kademeli otomatik dönüşümünü sunmaktadır. Bu tezin seyrinde 

izlenen yaklaşım Model Güdümlü Mühendislik (MDE) felsefesiyle örtüşmektedir. ACM ve 

FAM’ların her ikisi de, sırası ile, metamodelleri olan ACMM ve FAMM ile uyumludurlar. 

ACMM, Canlı Sıralama Çizelgelerine (LSCs) dayanan bir davranış bileşeni ile, UML sınıf 

diyagramlarına dayanan bir veri bileşeninden oluşmaktadır. ACMM kullanılarak, model 

dönüşüm örnek çalışması için kaynak model teşkil eden, Tanzim Sonrası Tesir Atışı 

(AdjFFE) görevi de kurgulanmıştır. Metamodel seviyesi çizge örüntüleri üzerinden 

tanımlanan ACM’den FAM’a dönüşüm, GReAT adı verilen araç ile gerçekleştirilmiştir. 

FAM’dan kod üretilmesi, Java/AspectJ kodu üreten bir model yorumlayıcısı kullanılarak 

başarılmıştır.  Üretilen kod daha sonra bir HLA Koşma-Zamanı Altyapısı (RTI) üzerinde 

çalıştırılabilmektedir. Kavramsal modellemeye olgunlaşmış bir dönüşüm yaklaşımı 

getirmek bu çalışmanın ayırt edici bir özelliğidir. Bu tez, askeri görevlerin, iletişim yönü ön 

plana alınarak betimlenmesiyle ilgili olarak, çizelge notasyonlarını görev uzayı modelleme 

camiasının dikkatine sunmayı da hedeflemektedir. Elde edilen tecrübe ile, metamodel 

tabanlı herhangi bir kavramsal modelden FAM’a alandan bağımsız bir dönüştürücü için bir 

takım kılavuzlar ortaya konulmuştur.  

 

 Anahtar Kelimeler: Alana Özgü Modelleme, Çizge Tabanlı Model Dönüşümü, Sahra 

Topçuluğu, Yüksek Seviye Mimarisi, Kod Üretimi 
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CHAPTER I 
 
 
 

INTRODUCTION 
 
 
 
 

 The Model-Driven Engineering (MDE) approach [1] is becoming prominent in software 

and systems engineering, bringing forth a model-centric approach to the development cycle 

in contrast to today’s mostly code-centric practices. A well-known MDE initiative is the 

Model Driven Architecture (MDA) of Object Management Group (OMG). Model 

transformations are considered the heart of MDA, where the Platform Independent Model 

(PIM) of a system to be constructed, is transformed into a Platform Specific Model (PSM), 

which can be readily translated to executable code [2].   

 Model Integrated Computing (MIC) [3], an earlier manifestation of MDE, relies on 

metamodeling to define domain-specific modeling languages and model integrity 

constraints. The metamodel (also called a paradigm) is then used to automatically compose 

a domain-specific model building environment for creating, analyzing, and evolving the 

system through modeling and generation. In the MIC approach, a crucial point is 

generation, where (domain-specific) models are transformed into lower level executable or 

analysis models. Model transformation techniques and tools are essential to MIC for 

enabling the generation process. 

1.1 Motivation and Scope 

 There has been a considerable proliferation of literature on model transformations, and 

specifically on graph-based transformations during the last two decades [4]  and a  rapid 

dissemination of the MDE approach in the last decade [5][6][7][8]. As such, a recent 

interest has been shown by the modeling and simulation community [9][10]. More 

importantly, it is seen that the approach is perceived as a key ingredient in various major 

defense modeling and simulation program of works and researches [88][89][90][91][92]. 

 Up to our knowledge, in most of the related works model transformations are used as a 

facilitating step in achieving a major objective in various application areas such as semantic 

web, data mining, knowledge engineering and military. These transformations are usually 

applied among very specific, narrow domains, compromising realistic concerns and 
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restrictions [67][68][69][70][71][72]. Many of the efforts are single step source model to 

target model transformations [67][68][69][70][71][78][83][80]. Some are either done 

within the same domain (mostly operating on a single model), or between two highly 

similar, tightly coupled domains [67][80]. Finally, although model transformation works 

emphasizing either data [76][77][81][82][83][91][94], or behavior transformation 

[71][72][73][74] [79] are abundant, works equipoising both aspects in an integrated fashion 

are rare. 

 In most of the cited works, the employment of a formal metamodel for the subject model 

or metamodel usage in transformations is not a primary concern [68][70][71][81][83]. The 

usual approach is to analyze the model to obtain an abstracted form (could be comparable 

to a kind of metamodel) as a preliminary step and consult to it during the transformation 

process. Moreover, many of these transformations are not formally defined, but rather 

presented barely as algorithms or pseudo codes and usually implemented in a high level 

programming language. This nature causes these transformation efforts to be hampered by 

procedural details and lack of comprehensibility.  

 Among many of the works that exhibit a more MDA centric characteristic, it is seen that 

although apparently well thought out rules and guidelines on mapping PIM elements to 

PSM elements are present, no tool support is provided for automating model 

transformations [88][89][93][94]. The target model is built manually or guided by a GUI-

based tool from scratch based on the source model and the rules. (A comparison of related 

work on model transformations appears in Section 5.7). 

 Bringing a fully-fledged transformation approach to conceptual modeling is a 

distinguishing feature of our work. In this thesis, we put forth a formal, declarative and 

visual transformation process from Field Artillery Conceptual Model (ACM) [11] to 

Federation Architecture Model (FAM) [12]. The produced FAM is then fed into a code 

generator, packaged as a “model interpreter” in MIC parlance, to generate Java/AspectJ 

code that can be executed on a High Level Architecture (HLA) Run-Time Infrastructure 

(RTI) [13]. In this sense our work can be considered as a sequence of applications of the 

MIC approach. It is intended as an MDE-based end-to-end systems development endeavor 

from the conceptual model to executable simulation code, promoting model transformation 

usage. We treat both data and behavior on equal grounds in our transformation perspective. 

Furthermore, we assess our work in the view of a set of model transformation properties 

that are published in the literature. From the experience gained and lessons learned, we also 

offer a number of suggestions for tailoring the conceptual model of any source domain for 

the pursuit of achieving domain-independent FAM transformations. 
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 Within the scope of this thesis, the development of ACM is realized as a preliminary 

step before the ACM to FAM transformation definition work. ACM is comprised of a 

behavioral component and a data component. Both sub-metamodels are separately 

developed and seamlessly integrated with each other. Using ACM, the well known 

Adjustment Followed by Fire For Effect (AdjFFE) mission is also modeled, which is the 

source model for the model transformation case study. To the best of our knowledge, this 

work is unique in applying the LSC language for the modeling of military tasks.  

 We consider this work as a pioneering step towards introducing the overarching vision 

of model driven development advocated by the MDE into the modeling and simulation 

domain. The kind of MDE work accomplished in this thesis has been cited as a challenge in 

various publications [88][89][90][93].  

 Using our implementation a field artillery domain expert competent in modeling can 

develop his ACM, run the ACM to FAM transformer on it and obtain the corresponding 

FAM. Then applying a second transformation (i.e., running the code generator), he would 

produce the base and default aspect codes for federation execution on an HLA RTI. The 

code becomes ready for execution with a hand from a programmer after organizing it into 

an Eclipse project and weaving the hand-written computation aspect that sets the run-time 

values for the data structures. 

1.2 The Context of the Transformations 

 In order to clarify the purpose and provide a referential overview of the process, Figure 

1.1 illustrates the two-phased transformation approach in a nutshell. The first phase is a 

model-to-model transformation whereas the second is a model-to-code transformation, 

executed in sequence. We envision an HLA-based distributed simulation development 

process consisting of conceptual modeling (ACM), federation architecture modeling (FAM) 

and federate code generation, in that order.  The ACM is a PIM (or a Computation 

Independent Model (CIM) [20] from a more abstract perspective) of the real world system 

(i.e., field artillery domain) with which the simulation is concerned. The FAM is a PSM, 

where the platform is the RTI in our case. It constitutes a major portion of the federation 

design documentation. The graph-based model transformer produces a FAM from an ACM 

and the code generator produces executable code from that FAM. 

 ACMM and FAMM are the metamodels of ACMs and FAMs, respectively. Both 

metamodels (and consequently, the models) have data and behavior parts. The metamodel 

of Live Sequence Charts (LSC) and Message Sequence Charts (MSC) [14][15][12] are used 

for behavioral representation in both metamodels (referred to as BMM (Behavioral 

MetaModel) in the figure). Both data models are integrated with the behavioral model in 
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that the top level data model elements are extended from a set of designated LSC and MSC 

elements. The transformation definitions are structured accordingly, so that firstly the data 

model transformation is conducted, followed by the behavioral model transformation. In 

the second phase, the federate application code generator produces executable federate 

source codes and useful artifacts such as Federation Object Model (FOM) Document Data 

(FDD) from the FAM. 
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Figure 1.1 The view of FACM to FAM to executable code transformation 
 

 

 It may look plausible to directly produce HLA federate codes from the conceptual 

model, instead of going through two steps of model transformations. Our approach is more 

appealing in at least two ways. First, ACM rests at a higher conceptual level (corresponding 

to PIM), while federation code is at a lower, much detailed level. FAM on the other hand, is 

at an intermediary level (corresponding to PSM, where HLA defines the platform), serving 

as a bridge between the two levels. It has a clearer mapping from ACM, and to federation 

code. This makes the transformations more modular and maintainable. Second, the 

components of a FAM, that is, the HLA Object Model Template (OMT) model (a FOM or 

a Simulation Object Model (SOM)) and intra-federation behavioral model are useful 

artifacts in their own right. Furthermore, once a FAM, which is machine processible, is 

available it can be used as an input to further processing, such as optimization, tuning, 

debugging, verification and validation. 

 The tasks of modeling and metamodeling are both carried out using the Generic 

Modeling Environment (GME) [3], an open source toolkit for creating domain-specific 

modeling and program synthesis environments. GME initially serves as a metamodel 

development environment for domain analysts. Metamodels developed in GME conform to 
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MetaGME, the metamodel (in fact, meta-metamodel) provided by GME. Once a metamodel 

is registered in GME, it provides a domain-specific model building environment for model 

developers, characterized by the registered metamodel. 

 The graph-based model transformer is developed with Graph Rewriting and 

Transformation (GReAT) [6], a graph-based model transformation specification language, 

and partly hand-coded in C++. GReAT models conform to the pre-registered 

UMLModelTransformer (UMT) metamodel that comes bundled with the GME installation. 

Hence, model transformations are also defined as models developed in the GME 

environment. The transformations are defined over the metamodels of the source and target 

domains, expressed in a Unified Modeling Language (UML)-based notation. The 

metamodels are exported into the transformation model by invoking a special interpreter 

embedded in the visual editor of GME. The relationships between the models and 

metamodels mentioned above are summarized in Figure 1.2. The modeling and model 

transformation activities and products in this thesis are formally defined due to the 

conformance associations between the models and their metamodels. 

 

 

 

Figure 1.2 The three layers of modeling used in the transformations 
 

 

 Within the context of this thesis, the ACM metamodel and ACM2FAM transformation 
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respect to a set of principles published in literature for analyzing model transformation 

approaches. Finally we draw lessons learned and propose directions for further research. 

1.3 Rationale for Using Graph Transformations and GReAT 

 Graph grammars and graph transformations have been recognized as powerful devices 

for specifying and performing complex model-to-model transformations. From a 

mathematical viewpoint, models in MIC are graphs, to be more precise, vertex and edge 

labeled multi-graphs (i.e., graphs that are permitted to have edges that have the same end 

vertices), where the labels are denoting the corresponding entities in the metamodel. It has 

been proved useful to formulate the model transformation problem as a graph 

transformation problem.  

 Graph transformation offers a set of techniques and associated formalisms that are 

directly applicable to model transformation [18][19]. It is powerful and appealing in many 

ways. First, it is visual, in that the source, the target and the transformation itself can be 

expressed in a visual way. Second, it is formally founded, in that it is possible to prove 

certain properties of the transformation by resorting to graph theory. Third, it offers a clean 

semantic model to understand and specify model transformations. For example, the order of 

rule application is implicit, and the traversal of source models and creation of target models 

is implicit. This allows one to hide the procedural details of the transformation, making the 

transformations more compact and maintainable. Last, but not least, it offers mechanism for 

transformation composition. The major bottleneck associated with graph transformation is 

poor runtime performance.  

 GReAT [6] is a tool that allows users to specify graph transformations in a graphical 

form with precise formal and executable semantics. GReAT has a high-level control flow 

language built on top of the graph transformation language with sequencing, non-

determinism, hierarchy, recursion and branching constructs. GReAT is based on the use of 

UML class diagrams (and Object Constraint Language (OCL)) for representing the 

domains of the transformations, including structural integrity constraints over those 

domains. Transformations over multiple domains are supported, and cross-links among 

domains are defined at the metamodeling level. Another advantage of selecting GReAT is 

its integration with the source and target model development environment, GME [3]. A 

transformation definition is yet another model defined in GME (see sections 2.3 and 2.4). 

1.4 Organization of the Thesis 

 This dissertation is organized as follows: Chapter I points to the theoretical foundations 

that this work builds on, introduces the motivation and scope, presents the context of the 
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model transformations, explains the rationale behind the adopted approach and finally 

outlines the organization of the thesis. 

 Chapter II provides a literature overview of the concepts, techniques and tools used in 

the thesis. Specifically, the model driven approach to software development, graph 

transformations concepts, a set of prominent graph transformation tools, the field artillery 

observed fire domain and HLA domain are summarized. Additionally, GME and GReAT, 

which are respectively the modeling and graph transformation tools used, are introduced. 

Then MSC and LSC, the formalisms that ACM and FAM use in behavioral modeling are 

presented. Since FAM, the target domain of the transformations, is developed as part of 

another thesis, a brief overview of it is also provided. 

 Chapter III summarizes the entire model driven development work put forth in this 

thesis in a concise, tool and technology independent, and abstract conceptual framework. 

 Chapter IV presents the ACM metamodel in detail. First, a high level overview of ACM 

is presented, and then its realization in the GME environment is explained. The chapter also 

demonstrates the development of the source model of the transformation case study, 

namely, the AdjFFE mission model, as an ACM instance in GME. The complete AdjFFE 

mission model in graphical LSC notation is provided in Appendix A. The chapter further 

discusses the challenges encountered and provides an informal assessment of ACM and 

usage of LSC in modeling military tasks. Finally it concludes with related works on 

conceptual modeling. 

 Chapter V presents the two step automatic transformation of ACM to FAM and FAM to 

executable distributed simulation code. The ACM to FAM transformation is explained in 

two sections as data and behavior transformation. Then, the code generation mechanism 

from FAM is briefly introduced, followed by some excerpts from of the generated AdjFFE 

code and its execution on an HLA RTI. It also explains a preprocessing step required by the 

code generator, where the FAM is further refined so that every LSC containing multiple 

instances is stripped into several LSCs containing only one federate and the federation 

instances. The details of the transformation rules are delegated to Appendix B. The chapter 

further provides an analysis of ACM to FAM transformation in terms of modularity, 

internal transformation composition, staging, scope and direction. Finally, the chapter 

concludes with related works on model transformations.    

 Chapter VI is a discussions and future work chapter where we first discuss on the issues 

and lessons learned from modeling ACMM and defining ACM2FAM transformation. Then 

we discuss the formerly developed FAMM and simulation code generator within the 

context of ACM transformations. After that, a comparison of the artifacts of this thesis with 
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MDA standards is made. The chapter concludes with pointing to future research directions.  

Specifically it aims to draw the attention of the reader to a domain-independent CM 

transformer for HLA, higher order transformations and BOM usage for intra-federate 

modeling. The requirements and outline of the CM transformer, drawn from the experience 

gained in this work, is discussed in a broader context. 

 Chapter VII concludes the thesis by highlighting the major accomplishments and the 

novelties of this dissertation. It also points to the way ahead for further research efforts. 

 Appendix A presents all of the LSCs for the Adjustment Followed by Fire For Effect 

(AdjFFE) mission model in graphical notation. Each LSC is provided with a brief 

description of its purpose, execution conditions and logic. 

 Appendix B outlines the set of most prominent ACM to FAM model transformation 

blocks and rules as implemented in GReAT-configured GME.  

 Appendix C summarizes the changes made in the metamodels and the simulation code 

generator in the course of developing ACM2FAM transformation. The details of the change 

logs are documented in the accompanying thesis CD. 

 Appendix D provides hints and recommendations derived from our experience in 

realizing the ACM2FAM transformation for future model transformation developers of 

GReAT. 
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CHAPTER II 
 
 
 

BACKGROUND 
 
 
 
 

 This chapter provides a literature overview of the concepts, techniques and tools used in 

this dissertation. Specifically, the model driven approach to software development, graph 

transformations, Field Artillery (FA) domain and High Level Architecture (HLA) domain 

are summarized. The Model Driven Architecture (MDA) is OMG’s manifestation of 

model-driven software development for the future, which envisions systematic refinements, 

or technically speaking, transformations of high level domain models into platform specific 

models and finally down to executable code. Model transformation through graph 

transformation is currently one of the commonly used techniques in putting model-driven 

development into practice. There is an extensive set of graph transformation-based tools 

and environments developed in the literature, of which we present some. GReAT [6] is the 

graph transformation tool used in this thesis, which runs on top of GME, the tool that we 

have used in modeling the source and target domains, as well as defining the GReAT 

transformation model. Hence, GME and GReAT are also introduced in their own sections. 

The FA observed fire techniques and HLA constitute the domains of the source and target 

models used in this thesis. Artillery Conceptual Model (ACM) and Federation Architecture 

Model (FAM) are the metamodels of the source and target models formally developed in 

GME. Message Sequence Chart (MSC) and Live Sequence Chart (LSC), which are the 

formalisms used for behavioral modeling in both ACM and FAM are also introduced here. 

Since FAM is developed as part of another work, a brief summary of it is also provided. 

ACM is developed as part of this thesis and is the subject of Chapter 4. 

2.1 Model Driven Architecture/Engineering 

 Kleppe et al. [20] state in their MDA book that, “The Model-Driven Architecture starts 

with the well-known and long established idea of separating the specification of the 

operation of a system from the details of the way that system uses the capabilities of its 

platform”.  MDA provides an approach for, and enables tools to be provided for: 

• specifying a system independently of the platform that supports it, 
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• specifying platforms, 

• choosing a particular platform for the system, and transforming the system 

specification into one for a particular platform  

 The primary goals of MDA are portability, interoperability and reusability in the course 

of architectural separation of concerns.  The Model Driven Architecture (MDA) [21] is a 

framework for software development put forth by the Object Management Group (OMG). 

The MDA development life cycle, which is shown in Figure 2.1, does not look very 

different from the traditional life cycle in that the same phases are identified. A remarkable 

difference is the artifacts that are created during the development process. The artifacts are 

formal models that can be processed by the computers. The following three models are at 

the core of the MDA. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 MDA software development life cycle [20] 
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 MDA promises productivity, interoperability and maintainability improvements in the 

software development lifecycle. 

 Kent [22] remarks that MDA focuses on architecture, on artifacts, on models. Although 

MDA declares there might be a richer modeling space, it chooses to focus on just one 

dimension, the transformation between platform independent and platform specific models. 

 The OMG MDA strategy envisions a world where models play a more direct role in 

software production, being amenable to manipulation and transformation by machine. 

Model Driven Engineering (MDE) is wider in scope than MDA. MDE combines process 

and analysis with architecture. 

 Schmidt [1] states that MDE technology is a promising approach to address platform 

complexity. Domain-Specific Modeling Languages (DSMLs) formalize the application 

structure, behavior, and requirements within particular domains. DSMLs are described 

using metamodels, which define the relationships among concepts in a domain and 

precisely specify the key semantics and constraints associated with these domain concepts. 

Developers use DSMLs to build applications using elements of the type system captured by 

metamodels and express design intent declaratively rather than imperatively. 

 Generators and transformation engines analyze certain aspects of models and then 

produce various types of artifacts, such as source code, simulation inputs, test cases or 

alternative model representations. The ability to produce artifacts from models helps ensure 

the consistency between application implementations and analysis information associated 

with functional and quality requirements captured by models. This automated 

transformation process is often referred to as “correct-by-construction,” in place of 

conventional handcrafted “construct-by-correction” software development processes. 

 MDE tools force domain-specific constraints and perform model checking that can 

detect and prevent many errors early in the life cycle. In addition, MDE tool generators 

need not be as complicated since they can produce artifacts that map onto higher-level, 

often standardized, middleware platform APIs and frameworks, rather than lower-level 

operating system APIs. As a result, it is often much easier to develop, debug, and evolve 

MDE tools and applications created with these tools. 

 Model Integrated Computing (MIC) [3], an earlier manifestation of MDE, relies on 

metamodeling to define DSMLs and model integrity constraints. The metamodel (also 

called a paradigm) is then used to automatically compose a domain-specific model building 

environment for creating, analyzing, and evolving the system through modeling and 

generation. In the MIC approach, a crucial point is generation, where (domain-specific) 

models are transformed into lower level executable and/or analysis models. Model 
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transformation techniques and tools are essential to MIC in realizing the generation 

process. 

2.2 Graph Transformations 

 Graph grammars and graph transformations have been recognized as a powerful 

technique for specifying complex transformations. Graph grammars are an extension of 

textual grammars and they give rise to node replacement grammars [5][23] and hyperedge 

replacement grammars [24][25]. Graph transformation research is associated with various 

mathematical fields such as category theory, set theory and algebra, and applies it to graphs. 

The prominent techniques in this area are double pushout [26], single pushout [27] and 

programmed structure replacement systems [28]. A brief introduction to graph 

transformation concepts is provided in Section 2.2.1 and some of the prominent graph 

transformation tools are shortly mentioned in section 2.2.2.  

2.2.1 Graph Transformation Concepts 

 Graph transformations can be used as a computation abstraction. The basic idea is that 

the state of a computation can be represented as a graph, further steps in that computation 

can then be represented as transformation rules on that graph. Such rules consist of an 

original graph, which is to be matched to a subgraph in the complete state, and a replacing 

graph, which will replace the matched subgraph. Formally, a graph rewriting system 

consists of a set of graph rewrite rules of the form L�R , with L being called pattern graph 

(or Left-Hand Side (LHS)) and R being called replacement graph (or Right-Hand Side 

(RHS) of the rule). A graph rewrite rule is applied to the host graph by searching for an 

occurrence of the pattern graph and by replacing the found occurrence by an instance of the 

replacement graph. 

 The graph patterns can be rendered in the concrete syntax of their respective source or 

target language or in the (Meta Object Facility –MOF [16]) abstract syntax. The LHS often 

contains conditions in addition to the LHS pattern. Some additional logic (e.g., in string and 

numeric domains) is needed in order to compute target attribute values (such as element 

names). An extended form of patterns with multiplicities on edges and nodes is also 

common. In most approaches, scheduling has an external form and the scheduling 

mechanisms include non-deterministic selection, explicit condition, and iteration (including 

fixpoint iterations). Fixpoint iterations are particularly useful for computing transitive 

closures. 

 From a mathematical viewpoint models in MIC are graphs, to be more precise: vertex 

and edge labeled multi-graphs (i.e., graphs that are permitted to have edges that have the 
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same end vertices), where the labels are denoting the corresponding entities in the 

metamodel. It is plausible to formulate the model transformation problem as a graph 

transformation problem. We can then use the mathematical concepts of graph 

transformations to formally specify the intended behavior of a model transformer. 

 Many tasks in software development have been formulated using the graph 

transformation approach, including weaving of aspect-oriented programs, application of 

design patterns, and the transformation of platform-independent models into platform 

specific models (Please refer to Section 5.7 for a selective list of related works on model 

transformations). 

2.2.2 Some Prominent Graph Transformation Tools 

 AToM3 [29] is a visual Meta-Modeling tool written in Python, which supports modeling 

of complex systems, characterized by possibly large numbers of components and aspects 

whose structure as well as behavior cannot be described in a single formalism. Using the 

metamodels, AToM can automatically generate a tool to process models. Manipulations of 

models can be expressed as graph grammars, at the meta-level. Some of these 

manipulations are the behavior-preserving transformations of models between formalisms, 

optimization, code generation and simulation. 

 AGG (Attributed Graph Grammars) [30] is a rule based visual language supporting an 

algebraic approach to graph transformation. It aims at the specification and prototypical 

implementation of applications with complex graph-structured data. AGG may be used 

(implicitly in "code") as a general purpose graph transformation engine in high-level Java 

applications employing graph transformation methods. The tool environment provides 

graphical editors for graphs and rules and an integrated textual editor for Java expressions. 

Moreover, visual interpretation and validation is supported. 

 BOTL (Bidirectional Object oriented Transformation Language) [31] allows to specify 

transformations among object oriented models and to verify the desired properties of 

applicability and metamodel conformance at specification time. BOTL is proposed as a 

language for the specification of mappings between the different model layers of the MDA. 

However, BOTL can be easily extended to specify transformations on a single model. 

 VIATRA2 (VIsual Automated model TRAnsformations) [32] is framework that 

provides a general-purpose support for the entire life-cycle of engineering model 

transformations including the specification, design, execution, validation and maintenance 

of  transformations within and between various modeling languages and domains. It 

provides a transformation language with both declarative and imperative features, based 

upon popular formal mathematical techniques of graph transformation (GT) and abstract 
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state machines (ASM). It has a high performance transformation engine supporting 

incremental model transformations, trigger-driven live transformations, and handling huge 

models (e.g. of 100,000 elements). Generic and meta-transformations (type parameters, 

rules manipulating other rules) for providing reuse of transformations are amongst its other 

salient features. 

 The Atlas Transformation Language (ATL) [7] is a hybrid language (a mix of 

declarative and imperative constructions) designed to express model transformations as 

required by the MDA approach to answer the QVT RFP issued by OMG. It is described by 

an abstract syntax (a MOF meta-model), a textual concrete syntax and an additional 

graphical notation allowing modelers to represent partial views of transformation models. A 

transformation model in ATL is expressed as a set of transformation rules. ATL is 

supported by a set of development tools built on top of the Eclipse environment: a 

compiler, a virtual machine, an editor, and a debugger. There is an initial library of ATL 

transformations and number of documentation available in open source from the GMT 

Eclipse project. 

 The FUJABA (From UML to Java and Back Again) Tool Suite [8] is an open source 

tool providing developers with support for model-based software engineering and re-

engineering. It is a formal, graphical, object-oriented software system specification 

language, employing UML class diagrams and specialized activity diagrams, so called 

Story Diagrams based on graph transformations. It is capable of generating Java code based 

on the formal specification of a systems' structure and behavior which results in an 

executable system prototype. In Fujaba metamodelling is done with MOF [16] and 

transformations specified by triple graph grammars. Finally, Fujaba’s easy plug-in 

mechanism makes it a celebrated and extensible toolkit.  

2.3 Generic Modeling Environment (GME) 

 Generic Modeling Environment (GME) [3][33] is a configurable toolkit for creating 

domain-specific modeling and program synthesis environments. GME puts the MIC [3] 

vision into practice. The configuration is achieved through metamodels specifying the 

modeling language (i.e., “paradigm” in the GME vernacular) of the application domain, 

which contains the syntactic, semantic, and presentation information regarding the domain. 

The paradigm defines the family of models that can be created using the resultant modeling 

environment.  

 The metamodel for each domain-specific modeling language is defined using the UML-

based metamodeling language named MetaGME, which plays exactly the same role MOF 

[16] plays in UML2 [17].When a metamodel is registered in GME, GME provides a 
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domain-specific model building environment. The generated environment is then used to 

build and manipulate domain models. These models can serve as input to various model-

driven development activities, including model transformation and code generation. This is 

called model interpretation in GME parlance.  

 Apart from the visual model editor, GME provides a generic API, called BON2, to access 

the models by paradigm-specific interpreters. This API exposes the internal representation 

of the models, which is a network of object instances and links (associations). Using the 

API, developers are able to programmatically traverse and manipulate a GME model with 

the same set of capabilities provided by the visual GME environment. The API supports 

both C++ and Java programming languages. The federate code generator of the second 

phase transformation shown in Figure 1.1 is implemented using the Java interface. 

2.3.1 Modeling Concepts 

 The vocabulary of the domain-specific languages implemented by different GME 

configurations is based on a set of generic concepts built into GME itself. GME supports 

various concepts for building large-scale, complex models as depicted in Figure 2.2.  

 A Project contains a set of Folders. Folders are containers that help organize 

Models, just like folders on a disk help organize files. Folders contain Models. Models, 

Atoms, References, Connections and Sets are all first class objects, or FCOs for short. 

An FCO is used as the abstract base class for these elements in modeling.  

 Atoms are the elementary objects; that is, they cannot contain parts. Each kind of Atom 

is associated with an icon and can have a predefined set of attributes, whose values are user 

changeable.  

 Models are the compound objects that can have parts and inner structure. A part in a 

container Model always has a Role. The modeling paradigm determines what kind of parts 

are allowed in Models acting in which Roles, but the modeler determines the specific 

instances and number of parts a given model contains (of course, explicit constraints can 

always restrict the design space). Any element must have at most one parent, which must 

be a Model. At least one Model does not have a parent and is called a root Model.  

 A common way of expressing a relationship between two model elements in GME is 

with a Connection. Connections can be directed or undirected, and have Attributes. 

In order to make a Connection between two modeling elements they must have the same 

parent in the containment hierarchy. It is specified what kind of objects can participate in a 

given kind of Connection. Connections can further be restricted by explicit 

Constraints, such as their multiplicity. 
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Figure 2.2 GME modeling concepts [33] 
 

 

 In GME, a Reference must appear as a part in a Model. This establishes a relationship 

between the Model that contains the Reference and the referred-to object. Any FCO, 

except for a Connection, can be referred to (even References themselves). A 

Reference always refers to exactly one FCO, while a single FCO can be referred to by 

multiple References. 

 Some information does not lend itself well to graphical representation. GME provides 

the facility to augment the graphical objects with textual attributes. All FCOs can have 

different sets of Attributes among the kinds text, integer, double, boolean and 

enumerated.  

2.4 Graph Rewrite and Transformations (GReAT) 

 Graph Rewriting and Transformation (GReAT) [6] is a transformation language 

developed for model-to-model transformations and rewriting. GReAT is based on the 

theoretical work on graph grammars and transformations [4]. GReAT’s metamodel, the 

UMLModelTransformer (UMT) paradigm, comes bundled with the GME installation. By 

creating models conforming to this paradigm in GME, it is possible to define model 

transformations.  
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 GReAT defines a production (i.e. Rule in UMT terms) as the basic transformation 

entity. A production contains a pattern graph that consists of pattern vertices and edges. The 

pattern graph consists of elements from the source and target metamodels and elements that 

are newly introduced inside the transformation model (such as cross links or globals) Each 

pattern object has a bind, delete or new designation that specifies the role it plays in the 

transformation. Bind is used to match objects in the graph. Delete is also used to match 

objects in the graph, but afterwards they are deleted from the graph. New is used to create 

objects after the pattern is matched 

 The execution of a rule involves matching every pattern object marked either bind or 

delete. If the pattern matcher is successful in finding matches for the pattern, then for each 

match, the pattern objects marked delete are deleted from the match and objects marked 

new are created. 

 Sometimes the patterns by themselves are not enough to specify the exact graph parts to 

match and other, non-structural constraints on the pattern are needed. These constraints or 

pre-conditions are expressed in a Guard and are described using OCL. 

AttributeMapping elements provide values to attributes of newly created objects and/or 

modify attributes of existing object. Attribute mapping is applied to each match after the 

structural changes are completed. 

 Rules are the basic production units, specifying graph patterns in terms of the source 

and target metamodels. Rules are explicitly sequenced. Test/Case is used to specify the 

conditional execution of a transformation. Compound rules, consisting of Block and 

ForBlock, help to modularize transformation sequences and to control traversal schemes. 

They provide the means to organize rules into higher-level hierarchies. Within a Block, 

rules are chained (and thus sequenced) by passing previously matched elements from rule 

to rule. Compound rules can contain other compound rules, Rules and Tests; however, 

they have slightly different semantics inside. If we have n incoming packets in a Block 

then the all of the packets will be pushed through the first internal rule and then the next 

internal rule starts. On the other hand, with ForBlock, the first packet will be pushed 

through all its internal rules to produce output packets and then the next packet will be 

taken. ExpressionRef is a reference to a previously defined test or (compound) rule. It 

opens up the possibility for recursion and rule reuse. 

 In GReAT, parallel execution of a set of rules can be specified. The order of execution 

of these rules is non-deterministic. This is achieved by connecting the output of a rule to the 

input of more than one rule. 
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 GReAT transformations can also specify objects and associations not explicitly present 

in the input or output metamodels, including cross-metamodel associations. These entities 

are called CrossLinks and their instances exist only as the transformation is being 

performed. 

 Defining a GReAT transformation consists of, first importing the source and target 

GME metamodels, second specifying the graph rewriting rules using the imported 

metamodel objects, third defining sequencing for the rules by grouping them into rule 

blocks, and forth configuring the transformation by specifying the source and target models 

(files) and the starting rule (or rule block).  

 The model transformation language is supported through the GReAT execution engine 

as shown in Figure 2.3. The engine basically inputs the transformation definition (i.e. rules 

and sequencing) and a source model to automatically produce a corresponding target 

model. The engine uses a generic API using the model-driven reflection package called 

Universal Data Model (UDM) [34], and is thus suitable for executing any model 

transformation that is realized using GReAT. GreAT’s rule executor consists of a pattern 

matcher and an effecter that work in tandem to execute a transformation rule. The graph-

based model transformer presented in this thesis employs a user code library written using 

the UDM API for the fast execution of some complex transformation rules. 

 

 

 

 

 

 

2.5 Field Artillery Observed Fire Techniques 

 This section presents a conceptual overview on the elements and fire direction processes 

of the observed (i.e., indirect) fire techniques of the Field Artillery (FA) domain. It also 
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introduces a narration model for the adjustment followed by fire for effect mission, which is 

in the subject of the transformation case study. The content provided in this section is based 

on the public domain US Army field manuals [35][36][37], which provide comprehensive 

explanations on tactics, techniques and procedures for FA fire direction process. 

2.5.1 Elements of the Field Artillery Team 

 The Army field manual FM-50 [37] states, “The general mission of FA is to destroy, 

neutralize or suppress the enemy by cannon, rocket, and missile fires and to help integrate 

all fire support assets into combined arms operations”. FA weapons are usually located in 

defiladed areas in order to protect them from enemy detection. This nature of FA gunnery 

makes it an indirect fire problem. Observed fire, the technique that solves the indirect FA 

gunnery problem, is carried out by the coordinated efforts of the Forward Observers 

(FwdObserver), the Fire Direction Center (FDC), and firing sections of the firing unit, all 

together forming the Field Artillery Team (FAT), as related in Figure 2.4.  

 

 

 

Figure 2.4 The field artillery team [35] 
 

 

Forward Observer 

 For artillery and mortar support, fire support team personnel act as the observers, or 

“eyes”, of the FAT. Since we opt for a functional point of view and avoid tackling with 

domain details, we regard all of the personnel and equipment of the fire support team under 

the general title FwdObserver. The FwdObserver detects, locates and describes suitable 

targets and transmits this information to the FDC to request for observed fires. He strives to 

adjust fires onto targets by providing surveillance data pertaining to the fires. In this study, 
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the FwdObserver operates under the pre-designated control option, in that he is assigned to 

a particular battery from which he may request fire support. 

Fire Direction Center 

 In combat, the FA battalion provides indirect fire support to maneuver forces on the 

battlefield. Among the key components of the battalion, only the battalion FDC 

functionality is associated with our modeling concerns. The main duty of the battalion FDC 

is to provide tactical fire planning and fire control. It may also give technical fire direction 

assistance to battery FDCs as required. 

 The FA cannon battery is the firing unit within the cannon. The battery FDC is the 

control center, or “brain”, as it were, of the gunnery team. The FDC receives fire orders 

from the battalion FDC or calls for fire from observers and process that information by 

using tactical and technical fire direction procedures. Two notable key personnel within the 

battery FDC are the Fire Direction Officer (FDO) and the FDC computer. The FDO is 

responsible for all FDC operations including supervising the operation of the FDC, 

establishing Standing Operating Procedure (SOP), checking target location, announcing fire 

order, and ensuring accuracy of firing data sent to the guns. The FDC computer operates the 

primary means of computing firing data. He determines and announces fire commands.  

 Fire direction is the employment of firepower. Basically there are two types of fire 

direction methods, called tactical and technical fire direction. The primary concern of 

tactical fire direction is to determine how the target will be attacked. This is specified as a 

fire order in which information concerning the units to fire, and the type and amount of 

ammunition to be fired are included. Technical fire direction is conducted by issuing fire 

commands where the information for orienting, loading and firing a howitzer is included. 

Battalion directed and autonomous modes are the two alternatives under which fire 

direction can be conducted [36]. In battalion-directed mode, the battalion FDC is the focal 

point that carries out tactical fire direction. Technical fire direction is left to the battery 

FDC. In autonomous mode, the battery FDC is the most prominent actor, being responsible 

for both tactical and technical fire direction. In this setting, the battalion FDC monitors the 

radio net and may override battery FDC’s commands, take the control over, or abort the 

mission. The presented case study assumes the autonomous mode. 

Firing Unit 

 The firing unit serves as the “brawn” of the gunnery team. It consists of the firing unit 

headquarters, firing sections and several other parts. The duty of the firing section is to 

deliver fires as directed by the FDC. Its composite organization is treated as a single entire 

unit in our modeling. 
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2.5.2 Adjustment Followed By Fire For Effect Mission 

 Observed fire is carried out by the coordinated efforts of the field artillery team, which 

is composed of the forward observer, the Fire Direction Center(s) (FDC), and several firing 

sections of the firing unit. The basic duty of the forward observer is to detect and locate 

suitable indirect fire targets within his zone of observation. In order to start an attack on a 

target, the forward observer issues a Call For Fire (CFF) request to the FDC. It contains all 

information needed by the FDC to determine the method of attack.  

 As it is unlikely to achieve a target hit in the first round of fire, the common practice is 

first to conduct adjustment on the target. Usually the central gun is selected as the adjusting 

weapon. The observer provides correction information to the battery FDC after each shot 

based on his spotting of the detonation. Once a target hit is achieved, the observer initiates 

the Fire For Effect (FFE) phase by noting this in his correction message. FFE is carried out 

by cannons firing all together with the same fire parameters as the last adjustment shot. 

After the designated number of rounds is fired, the observer sends a final correction 

including surveillance information. Based on the surveillance information, if the desired 

effect on the target is achieved, mission ends. Otherwise, the observer may request 

repetitions, or restarts the adjustment phase if deemed necessary. Figure 2.5 presents a 

simplified sketch of a typical FAT setting as well as the most common communication 

sequence among the team members. 
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Figure 2.5 Typical Field Artillery Team mission setting 
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2.6 High Level Architecture 

 The HLA related background material of this section is based on IEEE standards 

[13][38][39][40]. HLA is the common architecture that combines simulations (also called 

federates) into a larger simulation (also called a federation). It is based on the 

publish/subscribe paradigm. A federation execution is a session of a federation executing 

together. A federation has a name, and involves: 

• supporting middleware called Runtime Infrastructure (RTI) 

• a common object model for the data exchanged between federates, called FOM 

• member federates 

 A federate is a member of a federation, one point of attachment to the RTI. A federate 

may correspond to one platform, such as a cockpit simulator, or a combined simulation, 

such as an entire national air traffic control simulation. 

 Federates and the RTI are software. The Federation Object Model (FOM) is the data 

created by the federation developer typically by using a tool. The FOM states an agreement 

on the data exchanged among the participating federates. 

 The relationship between the software components is presented in Figure 2.6. Federates 

are shown in the figure as either simulations, surrogates for live players, or tools for 

distributed simulation such as data collectors and passive viewers. A federate might consist 

of several processes, possibly running on different computers. A federate might model a 

single entity, like a vehicle, or many entities, like all the vehicles in a city.  

   

 

 

Figure 2.6 Software Components in the HLA [13] 

 

 

 HLA is foremost a software architecture, rather than a particular implementation of an 

infrastructure or tools designed to work with it. The HLA standard supports a variety of 
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implementations. Therefore, it is defined not by software, but by a set of documents. The 

HLA standard has three parts: 

• Object Model Template (OMT) 

• HLA Rules 

• Interface Specification 

 At the time of this writing, there are two parallel efforts in progress for the adoption of 

HLA by standards bodies. One is through the Object Management Group (OMG), which 

has adopted version 1.3 of the HLA interface specification as “Facility for Distributed 

Simulation Systems (FDSS)”. The other is through IEEE, of whose standards are HLA 

Framework and Rules [13], Federate Interface Specification [38], and OMT [39].  

2.6.1 The Object Model Template (OMT) 

 The OMT advises the structure of all FOMs. The FOM is the vocabulary of data 

exchanged through the RTI for an execution of the federation. Hence, the FOM does not 

describe data internal to a single federate, but data that are shared with other federates. The 

main components of the OMT are interaction classes and object classes. 

 An interaction is a collection of data sent by a federate at one time through the RTI to 

other federates. An interaction may represent an occurrence or event in the simulation 

model of interest to more than one federate. An interaction may be defined to occur at a 

point in simulation time. A federate sends an interaction; other (interested) federates receive 

the interaction. The interaction is transitory in that it has no continued existence after it has 

been received. Each interaction carries with it a series of named data called parameters. 

 Objects in the RTI refer to simulated entities that are of interest to more than one 

federate. They persist or endure for some interval of simulated time. Object classes are 

comprised data fields called attributes. 

 The OMT describes the instances of the classes. Each class has a name, and defines a set 

of named data called attributes. Federates create instances of these classes, and change the 

state of an object instance in simulation time by supplying new values for its attributes. 

Federates indirectly communicate with each other in terms of interactions and objects 

through the RTI. Each federate must make some conversion from its internal representation 

of simulated entities to HLA objects as specified in the FOM. If the federate is HLA-

compliant, the translation may be straightforward; otherwise it may be more complicated. 

In short FOM represents the common, agreed vocabulary between members of a federation. 

2.6.2 HLA Rules 

 The HLA rules express design goals and constraints on HLA-compliant federates and 

federations. The first five rules deal with federations, the latter five with federates. 
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2.6.3 The Management Object Model (MOM) 

 HLA federations are typically distributed systems. Federates often run on many 

computers. Thus federations are subject to the peculiarities associated with distributed 

systems. The RTI offers facilities to maintain and manage a shared view of the federation 

as a distributed system. Management data can be described and distributed just like 

simulation data. It allows the RTI to describe and manage the state of a federation. 

 The RTI itself creates the instances and updates attribute values associated with the 

MOM. System management can be accomplished through the use of federates designed for 

this purpose. Because the MOM is the same for all federations (since it is RTI managed), 

management federates can be reused. 

 The MOM also defines a set of interactions that can be used to affect the state of other 

federates. The RTI is required to respond correctly to MOM interactions. These interactions 

are used to regulate the federation’s operation, request information, and report on federate 

activities. 

2.6.4 The HLA Services 

 HLA services fall into six groups that are defined by the commonality of interest. 

(i) Federation Management 

Federation services manage a federation in two ways: 

• By defining a federation execution in terms of existence and membership 

• By accomplishing federation-wide operations. 

 To define a federation, there are services to create a federation execution and to allow a 

federate to join the execution or resign from it. Every federate must join a federation 

execution.  

 Federation-wide operations include the coordination of federation saves and restores. 

There are also services to allow a federation to define and meet a federation-wide 

synchronization point. 

(ii) Declaration Management 

The declaration management services are the way for federates to declare their intent to 

produce (publish) or consume (subscribe to) data. The RTI uses these declarations for 

routing data, transforming data, and interest management. On the subject of routing, the 

RTI uses subscriptions to decide what federates should be informed of the creation or 

update of entities. Received data go through reduction and re-labeling in accordance with 

the federate’s subscriptions before being delivered. Finally, the RTI uses declarations to 

indicate interest to publishing federates. The RTI can tell a federate whether any other 
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federate is subscribed to data it intends to produce, so that it can stop producing when no 

other federate needs the information. 

(iii) Object Management 

Object management services are used for the actual exchange of data. A federate uses 

services from this group to send and receive interactions. These services are also used to 

register new instances of an object class and to update its attributes. Other federates will 

have services from this group invoked on them to receive interactions, discover new 

instances, and receive updates of instance attributes. Other services of this group are used to 

control how data are transported, to ask for new updates of attribute values, and to inform a 

federate whether it should expect data. 

(iv) Ownership Management 

The ownership management services in the RTI implement the HLA’s notion of 

responsibility for simulating an entity. The RTI ensures that at most one federate at a time 

owns a given instance attribute. Responsibility for simulating an entity can be shared 

between federates in two ways.  

• First, the complete modeling of an entity may be shared among federates.  

• Second, the modeling of entities may pass from one federate to another in the 

course of a federation execution.  

 Ownership management can be ignored if a federation does not need it. 

(v) Time Management 

While federates are executing in their own threads of control, the proper ordering of events 

between federates is an important problem to be solved. In HLA, ordering of events is 

expressed in “logical time”. Logical time is an abstract concept; it is not necessarily fixed to 

any representation or unit of time. The RTI’s time management services do two things: 

• They allow each federate to advance its logical time in coordination with other 

federates. 

• They control the delivery of time-stamped events so that a federate never has to 

receive events from other federates in its past. 

(vi) Data Distribution Management 

Data distribution management (DDM) services control the producer-consumer relationships 

among federates. Whereas the declaration management services manage those relationships 

in terms of interaction and object classes, DDM manages in terms of instances and abstract 

routing spaces. 

(vii) Support Services 
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Support services utilized by joined federates for performing name-to-handle and handle-to-

name transformation, setting advisory switches, manipulating regions and RTI startup and 

shutdown.  

2.7 Message Sequence Chart and Live Sequence Chart 

 LSC is the formalism used for behavior representation in both source and target models 

of this model transformation work. Since LSC is derived from MSC and share many 

similarities with it, MSC is introduced before LSC. Illustrative examples of the graphical 

MCS/LSC notations are provided in Section 4.4 along with the AdjFFE model 

demonstration. For a clearer understanding the reader is encouraged to refer to these 

examples while reading each paragraph of this section. Note that the MSC/LSC features 

that are not used in this thesis are omitted. For a more extensive coverage, see [15][14]. 

2.7.1 Message Sequence Chart 

 An MSC consists of a collection of instances. An instance represents an abstract entity 

on which events can be specified. Events are message inputs, message outputs, actions, 

conditions, timers and co-regions. An instance is denoted by a hollow box with a vertical 

line extending from the bottom. The vertical line represents a time axis where time runs 

from top to bottom. Each instance thus has its own time axis and time may progress 

independently and at different speeds on two axes.  

 An MSC can be referenced from within another MSC. This nesting and referencing 

mechanisms facilitate encapsulation and modular design principles. MSC references may 

have actual parameters that must match the corresponding parameter declarations of the 

MSC definition. MSC references must not directly or indirectly refer to their enclosing 

MSC. References are represented by rounded rectangles. 

 The gates represent the interface between the MSC and its environment. Any message or 

order relation attached to the MSC frame constitutes a gate. The message gates are used 

when references to the MSC are put in a wider context in another MSC. The actual gates on 

the MSC reference are then connected to other gates or instances. 

 Events specified on an instance are totally ordered in time, except in coregions (see 

below). An event executes instantaneously, and two events cannot take place at the same 

time. Events on different instances are ordered due to the requirement that message input by 

one instance must be preceded by the corresponding message output in another instance. 

All events in a chart form a partially ordered set. (Recall that a partial order on a set is a 

binary relation that is reflexive, anti-symmetric and transitive.)   
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 Actions are events that are local to an instance. Actions are represented by a box on the 

instance axis with an action label inside. Actions are used to specify some computation 

performed by the instance. 

 A message output/input represents the sending/reception of a message to/from another 

instance or the environment. A message exchange is represented as an arrow from the 

instance axis of the sender to the instance axis of the receiver. The arrow is labeled with a 

message identifier. Message exchange is, by default, asynchronous; that is, the message 

input is not necessarily simultaneous with the message output. 

 There are two types of conditions, namely, setting and guarding conditions. Setting 

conditions are intended to describe a current global system state, or some non-global, 

possibly shared, state. Guarding conditions restrict the behavior of an MSC by only 

allowing the execution of events in a certain part of the MSC. A condition is represented by 

a hexagon extending across the instance axes for which it holds.  

 Timers are local to an instance. The setting of a timer is represented by an hourglass 

symbol placed next to the instance time line and labeled with a timer identifier. Timer reset 

is represented by a cross linked by a horizontal line to the time line. Timer timeout is 

represented by an arrow from the hourglass symbol to the time line.  

 Coregions are parts of instance axes where the usual requirement of total ordering is 

lifted. A coregion is shown as replacing a part of the instance axis with a dashed line. 

 Inline expressions are used to compose event structures inside an MSC. The inline 

operators refer to alternative, parallel and sequential composition, iteration, exception and 

optional regions. A frame encloses the operands and the dashed lines denote operand 

separators. Extra-global inline expressions are those crossing the MSC frame and covering 

all of the instances. They are associated with the corresponding inline expressions on the 

enclosing (see below) instance. 

 For enhancing the modularity of MSCs, there is a form of hierarchical decomposition of 

complex diagrams into a collection of simpler diagrams, known as instance decomposition. 

For each decomposed instance there is a sub-MSC. The single instance that is decomposed 

is represented by more than one instance in the sub-MSC.  

 High-level MSC (HMSC) provides a means to graphically define how a set of MSCs 

can be combined together. The HMSC incorporates sequencing, conditioning and inline 

expressions that are interpreted much similar to the ones found in MSC. 

2.7.2 Live Sequence Chart 

 The most prominent feature of LSC on top of MSC is the ability to make a distinction 

between optional and mandatory behavior. This applies to several elements in charts.  
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 Universal charts specify behavior that must be satisfied by every possible run of a 

system, whereas for existential charts this restriction is relaxed to at least one run. Universal 

charts are denoted by a solid box around the chart and existential charts are denoted by a 

dashed box. 

 LSC introduces the notion of a prechart to restrict the applicability of a chart. The 

prechart is like a precondition that when satisfied activates the main chart. The prechart is 

denoted by a dashed hexagon containing zero or more events. 

 LSC allows messages to be “hot” or “cold”. A “hot” message is mandatory; that is, if it 

is sent then it must be received eventually. This is denoted by a fully drawn arrow. For a 

“cold” message reception is not required, hence it may be “lost”. This is denoted by a 

dashed arrow. A distinction is also made between a “hot” (i.e., mandatory) and a “cold” 

(i.e., optional) condition. A “hot” condition causes an illegal termination of the chart if 

evaluated to false, and the opposite (i.e., exit from the condition scope) holds for a “cold” 

condition. “Hot” and “cold” notions are further applied to the instance axes. Any point 

where an event is specified on the instance axis is called a location. A location may be 

“hot” indicating that the corresponding event must eventually take place, or “cold” 

indicating that event may never occur. A “hot” and a “cold” location is represented by the 

instance axis being fully drawn and dashed, respectively.  

 LSC further brings enhancements in the semantics of conditions and event occurrence. 

A shared condition forces synchronization among the sharing instances; that is, condition 

will not be evaluated before all instances have reached it and no instance will progress 

beyond the condition until it has been evaluated. Simultaneous regions allow grouping 

several elements, which should be observed at the same time.  

 Chronologically, the last set of enhancements to LSCs are the notion of time (and a sort 

of real time), and a notion of genericity via variables and symbolic instances [43]. 

2.8 Overview of Federation Architecture Metamodel 

 FAMM is a proposed metamodel for specifying the architecture of an HLA-compliant 

federation [12][85]. FAMM formalizes the standard Object Model and Federate Interface 

Specification. Beyond formalizing the existing HLA standard, FAMM allows the 

behavioral description of federates based on LSCs. Having the behavioral models of the 

participating federates gives us the ability to test the federation architecture by executing 

the federation. 

 Federation Architecture is a major portion of the federation design documentation in 

HLA based distributed simulations. Federation design includes the activities for: 

• Forming HLA Object Model (federation and simulation object models): 
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• Specifying the behaviors of participating federates so that they can fulfill their 

responsibilities within the federation 

 The Federation Architecture Model (FAM) for a particular federation conforms to 

FAMM. It involves the Federation Model (Federation Structure, Federation Object Model 

and related HLA Services) and the Behavior Models for each participating federate. 

 As the composition diagram in Figure 2.7 indicates, FAMM involves two main sub-

metamodels: One for specifying the observable behaviors, and the other for defining the 

HLA FOM and the HLA service interface.  

 

 

 

Figure 2.7 Federation Architecture Metamodel structure ([12]) 
 

 

 Figure 2.8 depicts the relationship between FAMM and Federation Architecture. Each 

participating federate’s behavior is modeled using the behavioral metamodel while the 

FOM is described by using the HLA Object Metamodel. HLA Object Metamodel (HOMM) 

is a formalization of HLA Object Model Template (OMT) [39]. The OMT Core folder 

includes the table contents specified in HLA OMT. 

 Federation Structure Metamodel (FSMM) represents the structural aspects of the 

federation. This metamodel allows the developer to define a federation and its participating 

federate applications, and to readily connect them to their respective FOM and SOMs. In 

this sub-metamodel, the participating federate applications are emphasized and their 
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corresponding SOMs can be specified in addition to the FOM. The FOM and SOMs that 

are referred by FSMM are prepared with HOMM. 

 

 

Figure 2.8 Relationship between a FAM and its metamodel ([12]) 
 

 

 The HLA Services Metamodel (HSMM) defines the interface of the standard services of 

Runtime Infrastructure (RTI). These management services provide a functional interface 

between federates and the RTI. These interfaces arranged into seven basic groups are as 

follows: Federation management, declaration management, object management, ownership 

management, time management, data distribution management, and support services [38].  

 Behavioral Metamodel (BMM) provides an abstract syntax for specifying the dynamic 

and the observable behaviors of a federate. Modeling the behavior of a federate can involve 

not only the HLA-specific behavior such as creating regions, but also the interactions 

between the components of the federate and the live entities (e.g., the user) in the 

environment. The observable behaviors of a federate are represented using Message 

Sequence Charts (MSCs) and Live Sequence Charts (LSCs) in the metamodel.  

 LSC is a graphical language introduced by Harel and his colleagues [14][42], as an 

extension of MSC, for specifying the patterns of interactions between components in a 

concurrent system. MSCs are widely used in the specification of telecommunication 

systems. The MSC language is standardized by ITU [41], the most recent standard being 

Recommendation Z.120 [15]. Many features of MSCs are adopted in the UML sequence 

diagrams. LSC extends MSC by providing notations for distinguishing mandatory and 

optional behavior and by promoting conditions to first class elements. 

 LSC metamodel defines basic LSC concerns such as instance, event, message, parallel, 

alternative, loop and interconnection between these concerns in the meta-level. These 

concerns are matched to the first class objects such as folder, atom, model, reference and 

connection, which are defined in the Generic Modeling Environment (GME). 
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 LSC instances can represent federation executions, federates (possibly, with their 

constituent modules), live entities such as interactive users and environments. An LSC 

document which includes one or more LSC diagrams represents a federate’s behavior. 

Federate application code is generated for the given LSC document. A federate may have 

some constituent modules whose behavior we might prefer to model explicitly. Each such 

module is represented by an instance in the LSC model, and code is generated specifically 

for it (Please refer to Section 5.5 for code generation per LSC instance). 
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CHAPTER III 
 
 
 

THE CONCEPTUAL FRAMEWORK 
 
 
 
 

 This chapter aims to provide a conceptual framework for the model-driven engineering 

work, including metamodeling and model transformation, presented in this thesis, before 

delving into the nuts and bolts of the particular application presented at length in the 

subsequent chapters. The content is abstracted away as much as possible from the details 

and jargon of the specific domains, tools and technologies used in an effort to facilitate 

comprehensibility and appeal to a broader range of readers and potential adopters. 

 We present a formal, multi-stage model transformation endeavor from a domain 

Conceptual Model (CM) to a Distributed Simulation Architecture Model (DSAM), and 

from that, to executable simulation codes and supporting artifacts. Referring to the MDA 

terminology, CM and DSAM constitute the Platform-Independent Model (PIM) and 

Platform-Specific Model (PSM) of the model transformation work, respectively. The end-

to-end transformation process is depicted in Figure 3.1 to be elaborated on in subsequent 

sections. CMs and DSAMs are formally built due to compliance with their metamodels 

CMM and DSAMM, respectively. The transformation is defined over these metamodels. 

 

 

 

Figure 3.1 The overall model transformation process 
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3.1 The Models 

This section introduces the source and target models, particularly the conceptual data 

model, the distributed simulation architecture data model and the behavioral model, which 

is employed by both of the source and target models.  

3.1.1 The Conceptual Data Model 

 The CMM’s data model, CDMM, consists of a set of domain entities called actors, 

which are able to perform computations and receive/send messages (from/to other actors 

and the environment) on a one-to-one or multi-cast basis. The multi-cast communication 

media are called nets, which are represented simply as sets of references to actors. The 

communicated messages are collections of domain information, extracted from 

authoritative sources and composed in different granularities.  

 The messages can be categorized as being durable or non-durable. This durability 

distinction facilitates the transformation definitions for target PSMs of distributed 

simulation domain, such as HLA because there, this distinction between message 

communications matters. Durable type of messages represent information that is intended 

to be kept and maintained for a duration by the receiver.  Non-durable type of messages 

represent information that is meant to be immediately used and then forgotten by the 

receiver (barring, of course, logging). 

 The upper level elements of the CDMM and their associations are sketched in the UML 

diagram of Figure 3.2. In the figure, the Model elements are the primary building blocks of 

the communicated data and can be organized recursively to accommodate for composite 

structures. The Folder elements are containers that are similar to folders found in 

computer file systems and are used to maintain model components organized. The data 

model is buildup of Messages, Actors and DurableDataStore folders. The messages, 

consisting of durable and non-durable types, are stored in the Messages folder. The 

durable data messages are further specialized into instantiation, update and delete types.  

Since the objects corresponding to durable data messages need to be maintained throughout 

system life time, they are kept in the DurableDataStore folder. An instantiation type of 

durable message contains the original copy of the durable data (i.e., persistent object) to be 

placed in the store for the first time. Subsequent update messages contain template objects 

that are used to update the effective copy residing in the store. The message indicates the 

corresponding persistent object to be deleted from the store. The Actors folder keeps the 

domain elements of type Actor and Net. Net is a special kind of Actor and is treated the 
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same as a source or destination for message communications throughout the mission 

scenarios realized in CMM. 

 

 

 

Figure 3.2 The upper level CDMM elements 
 

 

3.1.2 The Distributed Simulation Architecture Data Model 

 The DSAMM’s data model, DSADMM, consists of elements that collectively define the 

static view of a set of autonomous and loosely coupled interoperating simulations. The 

interactions are mediated via the simulation infrastructure, or middleware. The middleware 

functions as the overarching manager, knows about the identities and data exchange 

interests of the participating simulations and orchestrates all of the communication traffic, 

whether being one-to-one or one-to-many. To be more concrete, the individual simulations 

in an HLA-based distributed simulation [13][38][39] are called federates, the middleware is 

called the Run-Time Infrastructure (RTI) and all of this simulation environment, along with 

a common simulation data exchange model, are collectively called the federation The 

DSADMM defines the structure and organization of the communicated data as classes of 

simulation objects in a simulation data exchange model, categorized by having lifetimes of 

single interactions, or the whole simulation.  

 The prominent elements of the DSADMM and their associations are depicted in Figure 

3.3. In addition to Folder and Model types, the DSADMM introduces Connection 

types, which are association classes between two model elements. The simulation data 

model consists of the simulation environment, a number of simulation members, which are 
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“members of” the simulation environment and a simulation data exchange model. The data 

exchange model houses instances of simulation classes, which represent the data structures 

communicated within the overall simulation environment. The simulation class is 

specialized into simulation object and simulation interaction types, of which the former is 

intended to model persistent information and the latter is intended to model instantaneous 

events. In a similar vein, objects are associated with durable data messages and interactions 

are associated with non-durable data messages defined in CMM. The simulation classes 

contain attributes having data types defined in the specific distributed simulation domain. 

For instance, HLA has a default set of simple, enumeration, array and record data types. 

The simulation environment “manages” and has an overview of the overall communication 

taking place among the simulation members. The simulation members “use” a set of 

simulation classes, which they produce or consume in order to share data with each other. 

 

 

 

Figure 3.3 Prominent DSADMM elements 
 

 

3.1.3 The Behavioral Model 

The behavioral metamodel, BMM, is used in both of the source and target models. 

BMM is a representation of the LSC/MSC formalism, which is comparable and shares 
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many constructs with UML sequence charts. LSC is based upon MSC [41] and extends it 

with various means for distinguishing between possible, necessary and forbidden behavior 

[42][43]. The behavioral metamodel is capable of representing the discrete communication 

behavior of many practical systems, consisting of components exchanging messages, 

independently of the domain. This communication aspect of the system behavior is 

particularly emphasized from the LSC modeling perspective. A simplified illustration of the 

upper-level and outstanding elements of the BMM and their associations are provided in 

the UML class diagram of Figure 3.4. 

 

 

 

Figure 3.4 Simplified illustration of upper-level BMM elements 
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The complete behavioral specification of a system can be viewed as a global description 

of its components from the communication/interaction viewpoint. This system specification 

is captured in a single MSC document, which consists of a document head and one or two 

document bodies. The head part includes declaration lists for the instances, messages and 

timers used in the document and optionally a reference to another document that it 

“inherits” from (not shown in the figure). The body part of the document is modularized 

into a set of MSCs. Each MSC, similar to the MSC document, but pertaining to only its 

own scope, has a head and a body. LSC is the most commonly used MSC body type and is 

the primary means for representing the behavioral specification of the system being 

modeled. The LSC contains, besides others, a set of references to the instances that interact 

with each other using a rich variety of instance events. An important and relevant event 

group from a model transformation perspective is the message event, which provides the 

mechanism to exchange data between the instances in the form of LSC messages. LSC is 

recursively defined and is allowed to refer to other MSCs in order to favor better 

modularizing and componentizing big behavioral descriptions. Inline operand, which is 

defined to be specialized from LSC, is the main building block of the non-orderable, multi-

instance type of events called inline expressions. Inline expressions include constructs for 

defining loop, optional, exceptional, alternative, parallel and sequential flows in a 

behavioral specification. The language of LSC (or MSC or UML sequence diagrams, for 

that matter) is, to a great extent, expressive enough for comprehensive specification of 

systems, although in practice they are often used to represent particular use-cases, scenarios 

or traces of systems. 

3.1.4 Model Integration 

 The data and behavior models of both CMM and DSAMM are stand alone, separately 

built sub-models. LSC provides a generic infrastructure for modeling the discrete 

communication behavior of a system as a partially ordered set of events (mainly as message 

passing) between a group of instances. In the context of a specific domain, these generic 

behavioral elements need to be specialized as the domain’s entities. The specializations are 

naturally derived from instance, message and other elements of the LSC metamodel. The 

integration of the behavioral and data models is thus achieved by extending the relevant 

data model elements from the behavioral model elements in the sense of UML inheritance.  

 The integration points of the behavioral and data models of CMM and DSAMM are 

shown in Figure 3.5. Specifically, on the CMM side, Actor and Message of CDMM 

inherit from Instance and Msg of BMM, respectively. On the DSMM side, 

SimEnvironment and SimMember of DSADMM inherit from Instance of BMM, 
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SimClass of DSADMM inherits from Msg of BMM, and SimAttribute of DSADMM 

inherits from Argument of BMM. 

 

 

 

Figure 3.5 Integration of data and behavior in conceptual and simulation models 
 

 

3.2 The Model Transformations 

3.2.1 Overview of the Model Transformer 

 The graph-based model transformer, which is based on the theoretical work on graph 

grammars and transformations [4], produces a DSAM from a CM. An overview of the 

architecture of the transformer is illustrated in Figure 3.6. 

 The model transformer interprets both the CM and the DSAM as vertex and edge 

labeled multi-graphs (i.e., graphs that are permitted to have edges that have the same end 

vertices), where the labels denote the corresponding entities in the metamodels. Then the 

model transformation work is formulated as a graph transformation problem defined over 

the source and target metamodels. The model transformer defines a production (i.e., 

transformation rule) as the basic transformation entity. A production contains a pattern 

graph that consists of pattern vertices and edges, which are elements from the source and 

target metamodels (called LHS and RHS patterns in graph transformation vernacular). Each 

pattern object has a bind, delete or new designation that specifies the role it plays in the 

transformation. Bind is used to match objects in the graph. Delete is also used to match 

objects in the graph, but afterwards they are deleted from the graph. New is used to create 

objects after the pattern is matched. Sequencing is accomplished by grouping 

transformation rules into recursively defined blocks and connecting these rules and blocks 

in sequential, parallel or conditional branching organizations. 

 The execution of a rule involves matching every pattern object marked either bind or 

delete. If the pattern matcher is successful in finding matches for the pattern, then for each 
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match, the pattern objects marked delete are deleted from the match and objects marked 

new are created. Sometimes the patterns by themselves are not enough to specify the exact 

graph parts to match and other, non-structural constraints on the pattern are needed. These 

constraints or pre-conditions are expressed in special guard expressions.  

 The transformer also provides access to a programming API, that can be used further to 

manipulate and fine tune the generation, after the structural changes are completed in a rule 

execution. This extra mechanism is incorporated by invoking user code library methods 

from within transformation rules. The user code library is written to facilitate model 

transformations in terms of improved execution performance and saving from the tedium of 

graphically defining many uninteresting transformation rules.    

 

 

 

Figure 3.6 Overview of the architecture of the model transformer 
 

 

3.2.2 Key Elements of the CM to DSAM Transformation  

 Adopting a parallel design principle, the CM to DSAM transformation is essentially 

formulated around the core of data and behavior model transformations, executed in 

sequence. Before and after these core blocks, come the smaller sets of pre and post rules 

that set up and tear down the stage for the more platform specific distributed simulation 

environment. There are also preliminary transformation steps using both data and 

behavioral models that produce temporary structures to be utilized in subsequent 

transformation rules. This approach to CM-to-DSAM transformation is illustrated in Figure 

3.7. The behavioral transformation generally traverses the top-down LSC structure, starting 

from the MSC document and going down to individual LSCs and the events inside the 

LSCs (please refer to Figure 3.4 for LSC/MSC structure). Since the top-level data model 
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elements are extended from LSC elements, the LSC transformation implicitly covers the 

data model elements as well.  

 

 

 

Figure 3.7 An overview of CM to DSAM transformation 
 

 

 The set of key transformation steps are enumerated in the list below and the key 

mappings done from the CM to DSAM during the transformation process are summarized 

in Table 3.1.  

• every actor is mapped to a simulation member;  

• every non-durable message is mapped to a simulation interaction;  

• every durable data element is mapped to a simulation object;  

• the simulation environment element is brought in as a collection of communicating 

simulation members, every actor to actor non-durable message communication is 

mapped to a simulation member to simulation member communication via the 

simulation environment (running the middleware), using a pair of send/receive 

interaction messages;  

• every actor to actor instantiation type of durable message communication is 

mapped to a simulation member to simulation member communication via the 

simulation environment, using three pairs of register/discover object, 

request/provide attribute update and update/reflect attributes messages;  

• every actor to actor update type of durable message communication is mapped to a 

simulation member to simulation member communication via the simulation 

environment, using a pair of update/reflect attributes messages; 

•  every actor to actor delete type of durable message communication is mapped to a 

simulation member to simulation member communication via the simulation 

environment, using a pair of delete/remove object messages; 
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•  the default distributed simulation types (that serve simulation classes) are brought 

in; simulation environment initialization is introduced in a preliminary LSC by 

creating the environment, joining the simulation members to the environment, 

declaring simulation member data exchange interests and other sorts of simulation-

specific initializations; 

•  simulation environment shut down is brought in to the final LSC by resigning the 

registered simulation members from the simulation middleware and destroying the 

simulation environment;  

• finally, the rest of the CM LSC parts are directly (i.e., one-to-one) mapped to 

equivalent DSAM LSC parts.  

 Since the data model elements are mostly composed of hierarchically organized optional 

and mandatory parts, it is more convenient to perform the details of data transformations 

using a programming API, rather than capturing all of the possible pattern combinations in 

separate rules, if possible. 

 

 

Table 3.1 Summary of mappings from Conceptual Model to Distribted Simulation 
Architecture Model 

CM Component DSAM Component 

Actor/Net Simulation member 

Non-durable message Simulation interaction 

Durable message Simulation object 

<NA> Simulation environment 

Actor-actor non-durable comm. Sm-sEnv-sm send/receive interaction  

Actor-actor durable comm. (inst. type) 
Sm-sEnv-sm register/discover object  
+ request/provide attribute update  
+ update/reflect attributes 

Actor-actor durable comm. (upd. type) Sm-sEnv-sm update/reflect attributes 

Actor-actor durable comm. (del. type) Sm-sEnv-sm delete/remove object  

<NA> Default distributed simulation types 

<NA> 
Sim. env. init. LSC (create env., join sim. mems., 
declare data exchange interests, init. others) 

<NA> 
Sim. env. destruction LSC (resign sim. mems., 
destruct sim. env.) 

Other CM LSC components Other DSAM LSC components 
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 It is important to note that this mapping is one of many possibilities. It can be used, for 

example, to create a first-cut simulator for the modeled domain. Different design decisions 

can be effected by defining different transformation rules. We argue that for any domain 

specific conceptual model which can integrate with the presented CMM as an upper level 

model, the model transformation approach presented in this thesis can be used to 

automatically generate a corresponding distributed simulation model and code. The 

supported distributed simulation model is the Federation Architecture Meta-Model 

(FAMM) [12] which formalizes HLA. 

3.2.3 Transforming Message Communications 

 The crux of the model transformation work presented in this thesis is the transformation 

of a typical one-to-one direct communication between the actors of a CM. A simplified and 

abstracted schematic of this transformation involving a non-durable message event 

communication is illustrated in Figure 3.8. The transformation also demonstrates the 

mappings of the CM actors and messages onto DSAM counterparts. 

 The loosely coupled communication architecture of DSAMM would normally 

necessitate an actor A to B out-event transmission in a CM to be represented as (simulation) 

member A sending an out-event to the (simulation) environment first and the environment 

sending another out-event to member B. However, instead of having these two explicit outs 

(and two implicit ins), we have decided to implement one explicit out-event between 

member A and the simulation environment and an explicit in-event between member B and 

the simulation environment, employing both in and out-event types. In this setting, if the 

out-event has execution order n, the in-event is given a higher order, say n+1. This member 

centric event mapping better supports the code generator’s code generation strategy which 

considers each LSC instance (i.e. member) and its associated events individually while 

producing the member base code and computation aspect code [61].  

 

  

 

Figure 3.8 Abstracted mapping of a CM message communication to DSAM 



43 

Having explained the crucial message communication transformation, it is worthwhile 

to complement the topic with the higher level and more straightforward simulation scenario 

generation. The main flow of the transformation follows the organizational LSC/MSC 

hierarchy of the source model and creates corresponding LSC/MSC components on the 

DSAM side as progressing along the path. Indeed it would not be completely wrong to call 

the CM to DSAM transformation generally a LSC transformation. At the end of the 

transformation, the behavior exhibited in the CM is fully reflected in the produced DSAM. 

Of course, as visualized in Figure 3.7, there are transformation rules involving DSAMM 

only patterns that setup and tear down the distributed simulation environment.  

3.3 Refining the Simulation Model 

 The behavioral transformation is a one to one LSC/MSC transformation from CM to 

DSAM; that is, a corresponding element of the same type is created on the DSAM side for 

each MSC document, MSC and LSC of the CM. Furthermore, the content of an LSC is 

transformed as summarized in Sections 3.2.1 and 3.2.2. At the end of the transformation, an 

equal number of simulation members to the number of actors in a CM LSC plus one 

simulation environment instance are created in the corresponding DSAM LSC.  

 A DSAM with this structure does not fully comply with the input requirements of the 

code generator. As explained in [61], the code generator by design expects and generates 

code only for one instance (i.e., simulation member) in an LSC. The LSC instance is the 

focal element in the code generation process, and ultimately code for each LSC instance is 

generated in separate source files. (Note that the set of LSCs for the same instance type in 

an MSC document collectively describes the behavior specification of a simulation member 

corresponding to the instance type in question.) This necessitates a refinement on the 

generated DSAM, achieved through another DSAM to DSAM transformation named 

Multi2BinaryLSC. The transformation refactors every LSC that contains multiple 

simulation members and the simulation environment into as many binary LSCs as the 

number of simulation members, each containing one simulation member and the simulation 

environment. Intrinsically Multi2BinaryLSC accomplishes transformation from a global 

view of the simulation environment to the collection of local views of the simulation 

members. 

 The stripping of multi-instance LSC into binary-instance LSCs of a DSAM is depicted 

in Figure 3.9. Eventually, every binary LSC only contains its simulation member’s mutual 

communication with the simulation environment – an organization that facilitates per 

simulation member code generation. Note that the stripping process may end-up in loss of 
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event orderings in binary-LSCs that were implicitly known in their multi-LSC forms due to 

transitive chaining of events among the instances.  

3.4 Code Generation from the Simulation Model 

 A produced and refined DSAM is input to the code generator to produce simulation 

member source codes, simulation environment source code and other artifacts such as 

simulation configuration. The code generator, which is defined over DSAMM, first 

traverses a given DSAM using the programming API to generate an intermediate form that 

facilitates code generation. Then this internal representation is further processed to generate 

executable code and other products. The heart of the code generator is the generic LSC 

code generator component, which purely deals with behavior specifications from a 

communication perspective, independent of the domain concepts they describe. The code 

generator is specialized into a code generator for the specific simulation domain by way of 

integrating the underlying domain’s object model (e.g., OMT in the case of HLA). 

  An important feature worth mentioning is the multi-threaded approach taken in code 

generation. The behaviors of LSC instances that occur in multiple diagrams are handled 

through parallel threads in the generated code. The behavioral specification of a simulation 

member can be scattered in multiple LSCs within an MSC document; thus, there are 

multiple threads of code, each in a separate source file, that describe the execution of a 

simulation member.  

 Aspect Oriented Programming (AOP) [62] paradigm is adopted in generating distributed 

simulation code. The AOP approach provides the separation of cross-cutting concerns. In 

our case, this allows us to generate code so as to exercise LSCs in a computation-free 

manner. Then application-specific computational (and other non-communication) aspect 

advices are to be crafted by the simulation developer; these advices are then woven onto the 

generated base code by the aspect-oriented programming environment, such as AspectJ. 

The LSC instance is the focal element in code generation. All LSC instance codes are 

generated in individual class files and are referenced from the diagram code generated from 

the LSC itself.  
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Figure 3.9 Refining a multi-instance LSC into binary-instance LSCs 

 
 

 Figure 3.10 shows the relationship between the generated simulation code files per 

binary-instance LSC. For every LSC message out-event, a simulation middleware (e.g., 

RTI in the case of HLA) interface method call is made, and for every LSC message input 

event, a simulation member interface method callback is generated. The LSC instance 

aspect code intercepts the middleware interface method calls. It executes developer written 

computation code and then redirects the call to the middleware with the computation code 

in effect. On the middleware side, in addition to LSC, an aspect code (middleware instance 

aspect) is generated for the overall simulation environment. This aspect code catches the 

middleware callback methods and forwards them to the LSC instance (simulation member) 
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code. Then in the LSC instance aspect code, the result of the callback (with all arguments) 

is made available to the developer. The details of the code generator and the code 

generation process are presented in [61]. 

 

  

 

Figure 3.10 Relationship between generated source codes of a binary-instance LSC 

 

 

3.5 Summary 

 This thesis presents a comprehensive graph-based model transformation work from a 

Conceptual Model (CM) to an executable Distributed Simulation Architecture Model 

(DSAM). The work is undertaken to clearly understand the requirements and challenges of 

defining transformations from CM-to-DSAM, eventually executing scenarios of conceptual 

models. Both CMs and DSAMs are formally defined conforming to their metamodels, 

CMM and DSAMM, respectively. CMM and DSAMM consist of their own separate data 

models and a common behavioral model. The data components are based on UML class 

diagram and the behavioral component is based on Live Sequence Chart (LSC). The 

scenario of a conceptual model is represented by LSC diagrams and forms the kernel of the 

scenario of the corresponding simulation model generated through model transformation. 

 In CM-to-DSAM transformation, which is defined over metamodel-level graph patterns, 

data and behavior is preserved. In fact the result of the execution of the transformation rules 

is an increase in the “information content” of the models from source to target. The extra 

platform specific information required for DSAM is provided through the transformation 

rules, and a user code library. Another transformation named Multi2BinaryLSC, to be 

applied as a pre-processing step on a produced DSAM before feeding it to the code 

generator, is also developed. In essence, Multi2BinaryLSC accomplishes transformation 
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from a global view of the overall simulations to the collection of local views of the 

individual simulation members.  

  A second phase transformation is applied by a code generator to produce executable 

simulation code and other useful artifacts from a DSAM. The code generator consists of an 

intermediate form generator front-end pipelined to a source code generator back-end. The 

front-end walks through the input DSAM using the programming API and constructs an 

internal representation of the model, which is fed to the back-end module to generate source 

code files for the LSC diagram, instance, computation aspect and simulation execution 

aspect. Computation logic has to be woven onto the generated aspect codes in order to 

provide legitimate values for the data structures at runtime.  

 The presented graph-based model transformation work is powerful and appealing in that 

it is visual, formally founded (both because it is based on metamodeling and it is possible to 

state and prove certain properties of the transformations by resorting to the theory of graph 

grammars and graph transformations) and offers a mechanism for transformation 

composition. A notable downside of the transformation is its poor performance especially 

when source models get bigger. This is accountable for every rule execution boiling down 

to solving the sub-graph isomorphism problem on the input model and the match pattern. 

This burden is partially relieved by breaking rules into reasonably small chunks and 

providing as much initial binding on the match pattern as possible. Another facilitator is the 

employment of the user code library which executes faster than pattern matching and saves 

from tediously defining many similar transformation rules. 

 LSCs are particularly powerful for event-based, rather than state-based, descriptions, 

which supports the trace-view of the system behavior. This could be particularly suitable 

for trace-based applications, such as scenario specification, and course-of-action analysis. 

LSCs may not be suitable for representing the execution of tasks that require continuous 

interactions among entities.  Last, current LSC variants lack some well-known control flow 

constructs such as nested exception handling, jumping the flow to another point and global 

suspension. 

 The experience gained in this thesis is a step forward in designing a domain-independent 

model transformer for DSAM from any conceptual model that is based on LSC for 

behavioral representation and UML-like class diagrams for data modeling.  
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CHAPTER IV 
 
 
 

FIELD ARTILLERY CONCEPTUAL MODEL 
 
 
 
 

 This chapter presents a formalized conceptual model for the Field Artillery (FA) 

observed (i.e. indirect) fire domain. The structural part of the model identifies the entities in 

the FA domain along with their properties and associations. The behavioral part of the 

model is used to describe FA missions in the language of Live Sequence Charts (LSCs). 

The conceptual model is constructed as a metamodel with the Generic Modeling 

Environment (GME) toolkit. Once the FA metamodel is registered, GME automatically 

provides a customized environment to model particular FA missions. The intended 

application is to use the FA metamodel as the source for defining model transformations 

targeting FA federation architectures. Another intent is to help evaluate the power and 

limitations of chart notations for describing military tasks visually yet precisely. 

 Section 4.1 is an introduction to the chapter, clarifying what is meant by a conceptual 

model, drawing the general outline of the field Artillery Conceptual Model (ACM), 

identifying the potential benefits of it and stating where it fits in the overall study. It also 

describes the reasoning behind selecting LSC for behavioral modeling. Section 4.2 explains 

ACM’s scope, its implementation approach and its two user perspectives corresponding to 

a model builder and a software developer. Section 4.3 is an in-depth presentation of ACM’s 

implementation in GME. The data model and the integration of the data and behavioral 

models are demonstrated. The behavioral model is actually the LSC metamodel and since it 

was developed as part of another study [12][85], its modeling is not covered. Section 4.4 

presents the LSCs of the Adjustment Followed by Fire For Effect (AdjFFE) mission model 

in graphical notation. The section also shows the instance decomposition of the 

BatteryFDC model element into a lower level MSC document and the HSMC that shows 

how other mission definitions can be accessed. Section 4.5 discusses the challenges 

encountered and provides an informal assessment of ACM and usage of LSC in modeling 

military tasks. Finally Section 4.6 presents a selective set of related work of conceptual 
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modeling from the literature. Note that in the context of this thesis, the distinction between 

the terms task and mission is not important; thus, these are used interchangeably. 

4.1 Introduction 

 A Conceptual Model (CM) represents the relevant entities of a domain and the 

relationships between them, independently of implementation details. CMs are essential 

artifacts both in operational systems and simulation systems lifecycle. In this thesis CM is 

to be understood in the context of modeling and simulation. Formalization of a CM is 

achieved when we construct it in a formal language, for example, as a model conforming to 

some metamodel. A metamodel essentially defines the language in which models are 

expressed. A formal representation serves as a basis for machine processing, and supports 

automated generation of useful artifacts, such as other (specialized) models and executable 

code.  

4.1.1 Motivation 

 Robinson [44] defines a CM as "non-software-specific description of the simulation 

model that is to be developed, describing the objectives, inputs, outputs, content, 

assumptions, and simplifications of the model." He also points out that there is a significant 

need to agree on how to develop CMs and capture information formally. The need for 

formalizing task representations in military domains has been further emphasized in several 

other studies [45][46]. In another study, “Mission Space Models” are defined to be domain 

specific models that are consistent, structured and functional descriptions of real military 

operations or processes [50].  

 This chapter presents a tool supported formal model for the FA observed fire domain, 

verified and validated with a subject matter expert. Considering the definitions given in 

[44] and [50], it is necessary to underline that the modeling of military tasks by LSCs in 

this thesis constitute a part of a CM (or a mission space model), emphasizing inter-entity 

communications, rather than a complete CM (or a mission space model).  

 Formal modeling of the FA missions has many potential benefits. In the course of 

modeling one has to fill in the gaps found in the informal descriptions and clarify 

ambiguities. This helps with the clear understanding of the domain by an individual and 

shared understanding by a group of people, and facilitates processing with a computer.  

 The ACM is developed with the intention for use within the context of a model 

transformation work that aspires to produce executable distributed simulation code from 

FA mission models through a series of transformations. The purpose of the ACM is to lay 

the groundwork for a Platform Independent Model (PIM) to be utilized in (semi)automatic 



50 

model transformations to a Platform Specific Model (PSM), e.g. a Federation Architecture 

Model (FAM), where the platform is the High Level Architecture (HLA). A secondary 

objective is to assess the use of LSCs in FA mission modeling. 

4.1.2 Rationale for Using Live Sequence Charts 

 Message Sequence Chart (MSC) [15], upon which LSC is built, is a well-established 

visual formalism for the description of inter-working of processes or entities. Both the 

graphical and textual syntax as well as the formal semantics (in terms of process algebra) 

are defined for MSC [41]. The sequence diagram notation [17] of Unified Modeling 

Language (UML) 2.0 is very similar to MSC. LSC is introduced by Damm and Harel [14] 

as an extension to MSC primarily to provide the distinction between mandatory and 

optional elements.  

 The play-in/play-out mechanism proposed by Harel and Marelly [43] support what they 

call scenario-based programming. The basic idea is to play-in the desired interactions and 

use LSCs to record them. Later these records are used as behavior specifications, which 

monitor a user-guided simulation (play-out). The mechanism is realized by the Play Engine, 

developed by the authors [43]. This operational view put into practice by the play-in/out 

mechanism looks attractive for the early validation of mission models.  

 Recently a linking tool called “InterPlay” has been developed [47], which can be used to 

mix inter-object behavior given in LSCs with separate behavior given for some of the 

objects in an intra-object language, such as conventional code or statecharts [48]. Note that 

in this thesis, we are concerned with the observable behavior of a system where the system 

state is implicit, whereas statecharts emphasize the state-transition view, which may include 

unobservable behaviors (e.g., data management and computation) as well, and the state is 

represented explicitly. Enriching the models with intra-entity behavior representation, 

promised by the InterPlay tool, seems to be an appealing future study and hence, another 

reason to leverage LSCs 

4.2 Metamodel Scope, Methodology and User Perspective 

4.2.1 Scope and Assumptions 

 The ACM addresses certain aspects of technical, rather than tactical, fire direction. 

Accordingly, the focus is on the autonomous fire direction mode instead of the battalion 

directed mode. Consequently, the battery FDC becomes the most outstanding actor while 

the battalion FDC’s role diminishes to merely monitoring the mission activities and 

interceding in exceptional situations. Even if such an intervention occurs, the flow still 

keeps the autonomous mode after the battalion fire order (i.e., a new mission assignment) is 
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received. This makes sure that the missions are always executed within the context of the 

battery’s perspective. Owing to this viewpoint, massing of fires, which requires 

coordination of multiple batteries under the same battalion FDC, is omitted. 

 Ammunition preparation, fire parameter computations, ballistic conditions under which 

a projectile flies, and trajectory calculations all require computational and domain expertise. 

Such issues are considered far too technical and left out of the scope of the study. These 

processes are assumed to be transparently performed and their outcomes are readily 

provided by the infrastructure, if need arises. Moreover, the modelings of the environment 

such as geographic and man-made features are also omitted. Detailed modeling of possible 

targets, guns and ammunitions is avoided. What remains inside the scope of the model is 

the description of the firing missions from the viewpoint of message exchanges among the 

participants.  

 The metamodel is built in accordance to the relevant Army field manuals [35][36][37]. 

On the other hand, there were some routine military procedures that we judged as irrelevant 

for our modeling purposes. For example, the callee reads back whatever the caller has read 

within combat radio net conversations for verification purposes. Another example is that at 

the end of a conversation the parties may enter an authentication session. Such general 

issues are left out of scope to keep the model less cluttered. 

 There are seven kinds of FA mission types represented in the model under area and 

precision fire categories. There are many more special and ammunition specific missions 

mentioned in the field manuals. Since these seven types are probably the most widely used 

ones and they adequately serve the purpose of testing the use of LSC in the description of 

military tasks, no other mission types are modeled. Finally, the entire top level domain 

entities in the data model are specialized from NATO’s JC3IEDM (refer to Section 4.3.1). 

4.2.2 Methodology 

 The ACM is an integration of two separate sub-metamodels, namely, the behavioral and 

data models, as shown in the sample model of Figure 4.11, where the former relies upon the 

latter for the definition of domain-specific data types. The term domain is used in the sense 

of an area of interest, FA being an example.   

 The FA observed fire mission descriptions are represented by means of LSCs, 

specialized for the FA domain. Specialization is achieved by formulating FA mission 

messages as LSC messages and integrating the FA message structures as the data language 

of LSC. The LSCs in the behavioral model use the data model elements via referencing. 

Note that the behavioral metamodel is capable of representing the discrete communication 

behavior of many practical systems, consisting of components exchanging messages, 
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independently of the domain. This communication aspect of the system behavior is 

particularly emphasized from the LSC modeling perspective. 

 The data model consists of domain specific information, including actors, nets, mission 

messages, message communications and the mission hierarchy. The structures of these 

entities and relationships among them, as well as constraints are explicitly modeled. The 

structural constraints such as association, containment, attribute names and types, interface 

(via the port mechanism) and cardinality are readily defined thanks to the UML based 

notation of GME. Moreover, logical or semantic constraints are also defined either directly 

on model elements or globally (i.e., metamodel wide) in OCL. 

 The AdjFFE mission model is presented in Section 4.4. AdjFFE is one of the most 

prominent mission types of the FA observed fire and also serves well to reveal the use of 

the behavioral and data model elements together. Both ACM (metamodel) and AdjFFE 

(model) are realized using GME.  

 

 

 

Figure 4.11 A simplified sample ACM model as shown in GME model browser 

 

4.2.3 User Perspective 

 The MDA brings its own paradigm to software development as compared to the 

common state of the art approaches. In the MDA paradigm the most outstanding roles of 

development are the model and transformation rule developers. In our context, the potential 

users of the FA models are expected to be the FA domain experts who are building the 
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conceptual models and software developers who need both the source and target 

metamodels at hand in order to write model transformations.  

 A conceptual model builder has to develop the FA behavioral and data models as similar 

to Figure 4.11. Since this thesis’s focus is on inter-entity communications, the user is 

relieved from defining intra-entity processes (e.g. computations, state management). The 

user is also free of concerning with the specifics of the data types of the data model, in the 

sense of programming languages.  

 A software developer, who is a model transforming user, must have a thorough 

understanding of the source and target metamodels to write transformation rules. He has to 

deal with the lower level data type mappings between the source and target models, hence 

requiring programming language knowledge. This user should further incorporate all sorts 

of HLA specific context that cannot readily be inferred from the FA model into the 

transformation rules.  

4.3 Field Artillery Metamodel 

 This section illustrates and explains the prominent parts of the metamodel as realized in 

GME. Before moving any further, a clarification on the levels of modeling would be 

worthwhile. Object Management Group (OMG) introduces a four-layer metamodel 

hierarchy for defining modeling, metamodeling, and meta-metamodeling languages and 

activities in [17]. Table 4.2 relates the FA metamodel (field Artillery Meta-Model 

(ACMM)) to OMG’s four-layer modeling hierarchy. Please refer to List of Abbreviations 

section at the beginning of the thesis for the model element name acronyms and 

abbreviations. 

 

 

Table 4.2 FA metamodel (ACMM) correlated with OMG’s four-layer model hierarchy 

 

OMG’s Metamodel Hierarchy Related Model 

Meta-metamodel (M3 layer) GME metamodel (metaGME) 

Metamodel (M2 layer) 
FA metamodel (referred to as a “paradigm” in GME 

vernacular) - the ACMM 

Model (M1 layer) 
A particular FA mission description, e.g., AdjFFE 

(provided as the case study) - an ACM 

Run-time instance (M0 layer) 
A particular execution of a FA mission (e.g., 

exercising an AdjFFE scenario) 
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4.3.1 Data Model 

 This section elaborates on the constitution and organization of the structural part of the 

domain model. First, a brief but informative introduction to the entities is provided. Then, 

they are explained in detail, along with GME excerpts of the most important ones. 

 Actors correspond to the real world FA members, such as the personnel, the units or the 

environment. As they all take part in mission execution, they are considered the producers 

and consumers of domain information captured in messages.  

 Messages are an important part of the FA domain information. Typically, they are 

highly structured and they have many optional or conditional fields of various data types. 

There are further syntactic, semantic or cardinality constraints on the message structures, 

both on a single field and inter-field basis. These constraints are captured as OCL 

statements throughout the model.  

 Our analysis has revealed two kinds of message usage in the domain. The first kind 

includes those messages that are sent as single chunks of information independent of any 

previous ones. Every such message supplants its immediate predecessor of the same type. 

The second kind of usage is practically an accumulation of a series of communications of 

the same message type. Specifically, the current interpretation of a message at a particular 

destination is a function of all previous receptions of that message kind. In such a usage, the 

first reception of a message creates an initial copy at the destination. Subsequent message 

receptions result in updates on the original copy. The message is removed from the scope of 

the actor with the arrival of a special deletion message. In the FA domain model the 

majority of the message usages are of the first kind. 

 A single message communication typically involves the triple of a source actor, a 

destination actor and a message to be sent from the source to the destination. Often there is 

an extra “net” acting as a means to deliver the message to secondary receivers. In some 

communications, there is no particular destination actor, but only a net. 

 The net concept, which is a set abstraction of actor members, is used to serve multicast 

communication needs within the model. A net transparently relays any message that it 

receives to its members. Nets are formed according to the dictations of domain specific 

requirements, such as intra- and inter-battery and meteorological communications.  

 The mission hierarchy builds up the set of FA observed fire missions that can be 

modeled. The mission model elements themselves do not possess mission related 

information; rather they are simple atomic elements merely used as markers of mission 

types. Mission specific information is conveyed within message structures. Mission model 

elements exist as parts of some of those message structures. For each kind of mission there 



55 

is a corresponding mission definition as part of the behavioral model. In this respect, the 

mission hierarchy bridges the data and behavioral models together, establishing traceability 

from the data model to the behavioral model in that, given a mission LSC, there must be a 

message transmitted within the LSC that indicates the mission’s type by including a 

corresponding mission model element in the message. 

Actors 

 Throughout the modeling work, a functional point of view is adhered to. Hence the 

organizational structure of the military domain is not of major interest in identifying the 

actors. Accordingly, the FAT trio is modeled as the FwdObserver, the BatteryFDC and the 

FiringUnit. FwdObserver is identified as an actor due to his central role in observed fire 

missions. BatteryFDC and FiringUnit could be organized under the firing battery part of a 

cannon battery, but since they directly play important roles in missions, they are treated as 

two actors on their own.  

 BatteryFDC is further decomposed into BatteryFDO and BatteryFDCComputer. This layered 

modeling of the BatteryFDC is primarily a consequence of focusing on autonomous fire 

direction mode. In this setting, as indicated in Section 2.5.1, the BatteryFDO is responsible 

for producing fire order and fire order Standing Operating Procedures (SOP), and the 

battery computers (abstracted as the BatteryFDCComputer) participate in producing the fire 

command. As these messages lie at the heart of FA missions, their producers and 

consumers deserve to be treated explicitly. 

 In the Army field manuals [35][36], it is indicated that many important messages are 

addressed to the BatteryFDC by the other actors, such as FwdObserver, FiringUnit and 

BattalionFDC. No specific component inside the BatteryFDC is mentioned as this is not a 

concern to these exterior parties. Of course, when the focus is on the BatteryFDC itself, then 

intra BatteryFDC actors and their interactions are explicitly described. 

 The BattalionFDC is an actor outside FAT, supervising the FAT’s activities, occasionally 

intervening or taking over the control on its own accord. 

 Meteorological data in the form of a metro report is an input for technical fire direction, 

especially for the computation of fire commands. Usually a meteorology station at the army 

corps produces and distributes metro reports [36]. ACM accounts for this fact with the 

MetStation actor which distributes metro reports to the related FAT members. 

 Being the object of firing missions, Target is an obvious model entity. It is referred in 

messages such as call for fire, and refinement and surveillance. Target, however, is not 

elaborated in the model. 



56 

 All the entities and processes of FA missions are deployed in accordance to an order of 

battle. This environment is modeled using the FeatureType entity in the sense of JC3IEDM 

(see below). FeatureType specifically covers geographical and meteorological features. The 

model, however does not address environmental concerns. 

Nets 

 Within this thesis scope, the radio-net and metro-net concepts corresponding to the real-

world battlefield radio nets are modeled. An actor can join or listen to a conversation taking 

place within a net that it is a member of. By this way multicast or broadcast messages such 

as meteorology messages are handled uniformly. The BatteryRadioNet consists of references 

to the FwdObserver, BatteryFDC and BattalionFDC. The MetroNet consists of references to the 

MetStation, BatteryFDC and BattalionFDC. In both of the nets, the sole inclusion of the 

BatteryFDC implicitly assumes that the BatteryFDO and BatteryFDCComputer are also 

informed of the conversations as they are included in the BatteryFDC. Finally, it is worth 

noting that although the BatteryRadioNet is intended as a usual radio net, the MetroNet is 

merely an abstraction; it may not be an actual radio-based network. 

 Figure 4.12 sketches the organization of the FA actor and net entities. Note that there is 

a Reference to every actor (not shown in the figure) as only the references to actors are used 

in message communications and nets. All the actors and nets are modeled as GME Model 

elements and are collected in their respective folders, except the two BatteryFDC members.  

 

 

 

Figure 4.12 The actors and nets of the field artillery data model 
 

 

Messages 

 The set of messages comprises the bulk of the FA data model. There are more than 70 

messages defined, ranging from simple, single piece of command-type forms to complex, 

highly structured union forms. In order to utilize powerful modeling principles such as 
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modularity, reuse and polymorphism, families and hierarchies of messages are defined. 

There are two major abstraction layers established in the message model, namely the utility 

and the conceptual layers. The utility layer gathers most of the commonly used parts found 

in the messages, such as ammunition, measurement, date and time, location, and direction. 

The conceptual layer contains the higher level messages employed in mission descriptions. 

These elements include the relevant utility components in addition to the message-specific 

parts.  

 The family of messages defined in the metamodel, all extracted from the Army field 

manuals [35][36], has two kinds of usages as mentioned in in the beginning of this section. 

The messages of the first category include CFF, MTO, FO (of both BatteryFDC and 

BattalionFDC), FC, FiringReport, Spotting and Correction types. The messages of the second 

category are each a trio of instantiation, update and deletion messages for Ammunition, SOPs 

for FO and FC, and MetroReports. In Figure 4.13, the parts a and b present a sample for each 

category. 

 

 

    

Figure 4.13 a)Msg. for observer identification and warning   b)Msgs for FireCommandSOP 
    

  

 Both syntactic and semantic constraints on the selection and formation of message parts 

are expressed in OCL statements, which are directly bound to the messages themselves or 

are defined globally at the metamodel level. These constraints in the metamodel are 

enforced either during model development time or after model construction according to 

their priority levels. Below is a sample OCL expression for Oid_W_Msg of CFF type 

message, indicating that “Target location is only given in immediate suppression or 

immediate smoke missions”: 

 

let missionType = self.parent.connectedFCOs(“src”,MissionType) in 

missionType.name = “Supp” or missionType.name = “ISupp” 
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Message Communications 

 Message communications are the top level yield of the data model before moving into 

the behavioral model. The actors, nets and messages introduced up to this point are used in 

combinations into meaningful message communications.  

 Structurally, a message communication embodies the message, the sender and the 

receivers of the message. Apart from one or two exceptions, there is only one sender per 

message. For this reason the message communication hierarchy is based upon the senders 

of messages, which are actors. A net cannot be a sender, but only a receiver since its sole 

function is to relay an incoming message to its member actors. Figure 4.14 illustrates a 

sample branch of the message communication hierarchy.  

 Note that every member has a suggestive role name and a cardinality of 1 in its 

composition relation with the parent communication element. Another point to note is that 

the sender and the receivers are references, whereas the message is a model element itself. 

Consequently, in a series of message communications, every message must be a new 

individual, but the senders and receivers must be existent actors. In cases of multiple 

receivers, each receiver gets its own copy of the message. 

 

 

 

Figure 4.14 A message communication example 

 

 

Missions 

 A perusal of the field manuals revealed the types of observed fire missions shown in the 

mission hierarchy in Figure 4.15. In this classification, observed fire missions are grouped 

under two fire categories, namely AreaFire and PrecisionFire. This distinction is based on the 

fact that area fires are conducted with all of the guns in a battery, whereas precision fires 
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are conducted with usually one, or at most, two guns. Area fires are categorized as 

adjustment, fire for effect, suppression, immediate suppression, quick smoke, immediate 

smoke and illumination. Precision fires are destruction and precision registration.  

 The purpose of area fire is to cover the target area with dense fire so that the greatest 

possible effect on the target can be achieved [35]. Fire For Effect (FFE) is the most 

common and important of area fire missions. The observer strives for first-round FFE, 

provided that if he can locate the target accurately. If the observer cannot locate the target 

accurately enough to warrant FFE, he conducts an adjustment. Even with an accurate target 

location, if the current firing data corrections are not available, adjustment may be 

necessary [36]. In adjustment, fire from the central gun alone is step by step brought onto a 

designated adjusting point. Fire parameters are refined through observer corrections after 

each round. FFE is started by the entire battery once a satisfactory adjustment has been 

obtained. 

 

 

 

Figure 4.15 The mission hierarchy 

 

 

 Several points need clarification. First of all, adjustment may be conducted in 

conjunction with smoke and illumination missions as well. In this respect, adjustment can 

be considered as a preliminary activity rather than a standalone mission. This opens a 

debate as to discard adjustment as an area fire mission. However, due to adjustment’s 

significance, frequent application, and the field manuals’ practice of counting it as a 

mission on its own, we opted to place adjustment under area fire mission hierarchy.  
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 Second, illumination, suppression and registration missions have several variations, each 

employing different techniques. There are further variations based on special munitions 

used in the missions. These are considered out of scope of this thesis.  

 Finally, since FFE is the most common mission among the others and is usually 

preceded by an adjustment, adjustment followed by FFE (i.e., AdjFFE) mission is used as 

the case study of this work. Most of the other kinds of missions are indeed conducted 

similar to these two with special differences and/or additions. 

JC3IEDM as an Upper Level Data Model 

 JC3IEDM [53] is adopted as an upper level data model for ACM. Particularly, every 

top-level entity in the data model is specialized from a JC3IEDM element by means of the 

inheritance mechanism. A simplified hierarchy of the used JC3IEDM elements is readily 

defined in the data model for the sake of soundness and completeness. This conceptual 

traceability of the model from JC3IEDM promotes the model’s compatibility and 

recognition. Figure 4.16 shows the top-level FA domain entities (plain boxes) and their 

extension points with JC3IEDM (shaded boxes).  

 

 

  

Figure 4.16 FA domain entities as attached to JC3IEDM 

 

 

4.3.2 Composition of the Behavioral and Data Models  

 The behavioral part of the ACM is essentially the LSC metamodel [12]. As LSC is 

extended from MSC, the metamodel also covers the MSC metamodel in its core. MSC is a 

visual language for specifying the behavior of a concurrent system focusing on the 

communication among the components of the system. The metamodel covers all the 

standard MSC features [15][41] and the proposed LSC extensions [14] as a coherent whole. 
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The data model narration together with the chart samples of the graphical notation should 

suffice for having a grasp of the LSC notation for the unfamiliar reader. Also an 

introduction to the MSC and LSC specifications are provided in Section 2.7. Please refer to 

[12] for more details and examples from the HLA-based simulation domain. 

 To put it another way, the LSC metamodel provides a generic infrastructure for 

modeling the discrete communication behavior of a system as a partially ordered set of 

events (mainly as message passing) between a group of instances. In the context of a 

specific domain, these generic behavioral elements need to be specialized as the domain’s 

entities. The specializations are naturally derived from instance, message and other 

elements of the LSC metamodel. The composition of the behavioral and data models is thus 

achieved by integrating the data model to the LSC model. The integration points of the 

behavioral and data models are shown in Figure 4.17. It is seen that all of the FA actors and 

nets are inherited from LSC Instance and that the FA domain messages are inherited 

from LSC Msg.  

 GME’s being a configurable toolkit for creating domain-specific modeling 

environments comes handy in creating the ACM paradigm. The paradigm is the result of 

importing the existent LSC and FA data metamodels as libraries into GME through its 

built-in Model Integration paradigm and then defining the integration points in a separate 

paradigm sheet, as explained above and partly shown in Figure 4.17. Once the ACM is 

registered as a GME paradigm, a domain specific modeling environment capable of 

enabling domain experts to build FA mission models is obtained. 

 

 

 

 

Figure 4.17 Integration of data model to behavioral model (partial view) 

 

… …  … 

Behavioral Model 

Data Model 

… …  … 
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4.4 Adjustment Followed by Fire-for-Effect Mission Model 

 This section describes the AdjFFE mission, the source model for the model 

transformation case study, in graphical LSC notation. The model includes around 40 LSCs, 

each being about one page long and an HMSC. In this section, only a set of important 

charts will be presented. The complete set of LSCs can be found in Appendix A. Since the 

graphical notation elements are not introduced elsewhere, they will be described wherever 

they are first encountered.  

4.4.1 The Top Level Mission Model 

 Figure 4.18 fully covers the AdjFFE mission description at the topmost level and sets up 

the framework for the remaining charts.  

 

 

 

Figure 4.18 Adjustment followed by fire for effect 

 

 

 The horizontal dimension is the structural dimension and the vertical dimension 

corresponds to the time dimension. On top of the vertical axes are the instance heads, drawn 

as rectangles with instance names. Vertical lines are the instance axes and thin solid 

rectangles at the bottom indicate the syntactical end of an axis.  
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 The LSC has a superimposed pre-chart shown as a dashed elongated hexagon indicating 

that the LSC scenario takes effect, provided the pre-chart has been traversed successfully. 

The thin rounded rectangles orthogonally crossing the instance axes are references to other 

MSCs. A reference symbol contains the referenced MSC’s name and, if applicable, its 

actual parameters. If an instance is not involved in a referenced MSC, then its axis is drawn 

through the reference symbol. The consecutive arrangement of MSC references implies 

sequential ordering in time. Within the LSC, it is seen that there is a parallel inline 

expression with two operands, separated by a dashed line.   

 Finally, note that BatteryFDC is “decomposed as BatteryFDC_FFE”. The keyword 

decomposed below the instance head indicates that the instance is decomposed within at 

least one MSC to further refine its behavior. Thus an MSC document may be interpreted 

relative to its own instances only, disregarding any decomposition, or it may be interpreted 

relative to lower levels of instances by following the decomposition relations. The 

decomposed BatteryFDC is presented in Section 4.4.2. 

 The CFF chart, depicted in Figure 4.19, describes the FwdObserver’s sending of CFF 

messages to the BatteryFDC. The messages are also transmitted by the BatteryRadioNet to its 

members. We devised a simplifying convention that net transmissions are only shown as 

incoming messages to an MSC reference whose sole instance is the net, in order not to 

clutter the chart with unnecessary obvious information. The net together with its members 

are explicitly shown in the defining chart of the called MSC reference. 

 Messages are shown as directed arrows with labels drawn from the sender to the 

receiver. A message may originate from and arrive into an instance, an MSC reference or 

the exterior environment. It may get lost in transmission. A message contacts an MSC 

reference at a gate, which interfaces the MSC to the outer world. The small black circles are 

simultaneous regions, meaning that the set of events touching the circle are perceived to 

happen at the same time. An action is an atomic event represented by a rectangular box 

attached to an instance axis. The actions are treated in our study as annotations where user 

defined computations can be entered. The LSC body consists of a guarded optional inline 

expression where the condition variables being provided as MSC parameters.  

 

 



64 

 

Figure 4.19 Call for fire 

 

 

 Following the CFF and MTO message transmissions, the adjustment loop starts as shown 

in Figure 4.20. Prior to the loop start, an initial fire command must be prepared and sent, 

resulting in system state to become AdjNotDone (i.e., adjustment is not done). As long as the 

adjustment is not done, round shot, spotting observation, shot assessment through 

correction sending, and subsequent fire command preparation in the light of incoming 

correction information are executed in sequence. The preparation of correction data and 

deciding whether the adjustment is accomplished or not require domain specific 

computations. Thanks to the action mechanism these technical details are abstracted away. 

The vertical dotted line segment besides the two action events indicates a coregion meaning 

that the execution order of these two does not matter. 
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SubsFireCommand(“Adj”)
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Figure 4.20 Adjustment loop 

 

 

 Note that, concurrently with the MTO and before the initial fire command, there is a fire 

order message transmission taking place between the sub-instances of BatteryFDC. As these 

instances are defined in the lower level MSC document called FDC, the fire order message 

is shown there. For details, refer to Section 4.4.2 

 The initial fire command chart is depicted in Figure 4.21. Fire commands are prepared 

within BatteryFDC as the result of a series of detailed computations involving ballistics.  

  At this stage, only the produced commands are seen to be sent from BatteryFDC to 

FiringUnit. The decisions on selecting the specific fire commands are extensively guided by 

the dynamic instance variable metCtrl. Each instance maintains its own copy of metCtrl in 

order to keep track of its command and control state. We envision the exceptional 

CheckFiring (CF) and CeaseLoading (CL) events to occur non-deterministically. Whenever the 

FAT enters into CF or CL states, the instances in question halt in the sense that they do not 

emit any messages until the BatteryFDC sends cancellation messages for CF or CL. 
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Figure 4.21 Initial Fire Command 

 

 

 There is no restriction on the instances other than emitting messages in due course; that 

is, they may continue any other activities of their own. This situation is captured by cold 

locations represented as dashed line segments in the instance axes. A cold location has the 

semantic that execution may remain at that point indefinitely. The flow ends with an 

invocation of the ProcessFireCommand chart. 
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  The life cycle of Ammunition, from the moment it is brought into the firing position till its 

removal after detonation is reflected in the chart of Figure 4.22. Ammunition is created by the 

Environment instance and made known to the radio net members through an instantiation 

message. Then the FiringUnit fires the round and the projectile (i.e., ammunition) proceeds 

traversing its trajectory. The ammunition instantiation message event happens strictly 

before the firing action event of the FiringUnit, as shown by the dotted arrow between the 

two. If not explicitly ordered, events that occur on different instances are assumed to take 

place independently, by definition. 

 

 

FwdObserver BatteryFDCEnvironment FiringUnitBatteryRadioNet

AmmunitionInst_Msg

T3(1)

AmmunitionUpdate_Msg

AmmunitionDel_Msg
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Figure 4.22 Round shot 

 

 

 As the projectile follows its trajectory, Environment sends ammunition position update 

messages at every second until detonation. Timer events are symbolized with an hour glass 

having a time value alongside. A timer start event is a horizontal line segment between the 
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instance axis and the timer symbol. A timer stop event is an L-shaped directed line segment 

from the timer symbol to the instance axis. After the projectile is shot, a Shot_Msg is sent 

from FiringUnit to BatteryFDC and then propagated to FwdObserver and the other radio net 

members. If a warning message was requested before projectile detonation, BatteryFDC 

sends a Splash_Msg to FwdObserver five seconds prior to detonation. 

4.4.2 Instance Decomposition of BatteryFDC 

 The inner structure and behavior of an instance kind are defined through an MSC 

document with the same name as the instance kind. To indicate how the behaviors 

described at different levels of abstraction are related, the behavior of an instance inside an 

MSC diagram can be specified to be refined in an MSC of the MSC document defining the 

instance being decomposed.  

 In the figures of Section 4.4.1 the BatteryFDC instance was tagged as “decomposed” 

meaning that there is an MSC document called BatteryFDC containing further refinements of 

the charts that included BatteryFDC as an instance. There are some requirements to be met 

by the decomposition, which are best explained through exemplifying figures below. 

 Figure 4.23 illustrates the decomposed chart of AdjFEE as situated in the lower level 

MSC document refining the BatteryFDC. Note how the MSC references CFF and MTO_AI are 

refined as viewed from the BatteryFDC’s perspective. One important detail that is not present 

in the upper level chart is the production and sending of the fire order message, since fire 

orders take place only within the battery FDC scope. 

 The content of the refined version of CFF is given in Figure 4.24. In terms of inline 

expressions, the decomposition contains a corresponding inline expression of the same 

operation and operand structure as the one in the decomposed chart. The inline expression 

in the decomposition is “extra-global” (i.e., crossing the MSC frame) indicating that the 

operands are connected to other operands of similar inline expressions when interpreted 

through decomposition. The harmony between the lower and higher level charts can be 

clearly followed through the similarities in the structures of the MSC constructs. (Compare 

Figure 4.19 and Figure 4.24).  
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Figure 4.23 Adjustment followed by fire for effect in decomposed BatteryFDC instance 

 

 

  

Figure 4.24 Call for fire in decomposed Battery FDC instance 
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4.4.3 Overview of Missions via a High Level MSC 

 High-level MSC (HMSC) provides a means to graphically define how a set of MSCs are 

combined. An HMSC consists of start and end symbols, flow lines, conditions, top level 

MSC references and inline expressions. A flow line indicates sequential flow, and start and 

end symbols have the obvious role of scope marking. The latter three have much similar 

interpretations as the ones found in MSCs.  

 Figure 4.25 presents the HMSC for the ACM behavioral model. It is a top level view 

covering which mission executions are started under what conditions. This high level chart 

first sets the global system states of operation mode and mission type, and later steers the 

flow towards the desired mission execution. This thesis only covers battery directed 

operation mode and demonstrates the AdjFFE mission, but the other options are provided 

for future model extensions. Note that we allow the option for battalion directed operation 

mode, but do not provide a description for it. Mission type is to be selected among the 

seven possibilities covered by the present work.  
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Figure 4.25 High level MSC for FA behavioral model 
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4.5 Discussions  

 This section provides a discussion on challenges encountered, lessons learned, 

assessment of ACM and assessment of using LSC notation in modeling military tasks. 

4.5.1 Challenges Encountered 

 A number of difficulties had to be overcome in both modeling the FA domain and using 

the LSC metamodel in developing the AdjFFE model. The following paragraphs discuss 

the notable challenges. 

 Information on FA observed fire techniques are dispersed in a series of Army field 

manuals. The narrations of these manuals are fairly informal in that they bear traces of 

experience and insight obtained in battlefields. Moreover, they presume much background 

knowledge on the part of the reader, and sometimes even have seemingly incongruent parts. 

It took a considerable amount of effort to comprehend that content and come up with a 

coherent domain model. SME consultations also proved to be very fruitful in resolving 

ambiguities and filling in gaps. 

 The point of view taken in the manuals dictates the hierarchical chains of command and 

seniority relationships among the actors. We did not consider military hierarchy in our 

modeling practice and followed a functional modeling approach instead. Specifically, some 

of the actors represent humans (e.g., BatteryFDO), some represent units (e.g. BatteryFDC, 

FiringUnit), and even some represent a mixture of both (FwdObserver, BatteryFDCComputer). 

All of the actors are selected and organized according to their roles in the observed 

communication flows in performing FA missions. 

 Another inconvenience was met in deciding from which JC3IEDM elements to extend 

the data model elements. Sometimes there were more than one alternative, sometimes there 

was no obvious candidate and sometimes there was a JC3IEDM entity with the same name 

as an ACM entity, but having a slightly different meaning. For example, a debated decision 

was whether to extend the FwdObserver element from JC3IEDM UnitType or MilitaryPostType. 

For the no-candidate cases, we made up intermediary entities between the JC3IEDM and 

the entities in question. For the same-name cases, we put an identification tag in front of the 

entities for preventing name clashes. We used intuition in resolving such situations. 

 On the behavioral model side, while we enjoyed the convenience in representing the 

message communications between the actors, we suffered representing global state 

information. For example, the unary valued setting conditions of MSC was an obvious 

shortcoming, which we had to relax in modeling for convenience. 

 An MSC message event has a signature comprised of the message name and the 

parameter set. The types of the parameters are defined in the data language provided to the 
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MSC. On the other hand, an FA message is a coherent unit, typically with a nested 

structure; hence it is inconvenient to flatten it into a list of parameters. In order to adapt the 

FA message as an MSC message, we set the top level FA message element’s name as the 

name of the corresponding MSC message without parameters. We embed the information 

content that otherwise would be conveyed by MSC message parameters into FA message 

definitions. 

 LSC lacks some well-known utility constructs such as nested exception handling, 

jumping the flow to another point and global suspension. We strived to avoid these cases; 

however, in some cases we had to devise workarounds. There were some situations where 

LSC provided the operators, but they were either insufficient or not applicable under certain 

conditions. For example it might be the case that a timer starts inside an optional inline 

operand and timeouts somewhere outside. In this situation we allowed the timer to start 

inside the operand and go off outside. The interpretation we give is that if the optional 

operator executes the timer starts, otherwise the timer has no effect. 

4.5.2 An Informal Assessment of ACM 

 This section constitutes an evaluation of the ACM in terms of the approaches taken in 

domain modeling. Then the selection of tool and technology are critiqued. Consequently 

the assessment covers a set of recognized CM evaluation criteria such as completeness, 

traceability, modularity, layering, extensibility, reusability, composability and 

interoperability of the model. 

 ACM is a well-focused and framed artifact. Converging to the smaller scale battery level 

and a limited portion of the overall domain (i.e. observed fire techniques) enabled us to 

disregard many tactical issues peculiar to the battalion level as well as computational 

issues, yielding a more compact and comprehensible model. This tight scoping approach 

makes the model domain specific enough so as to open way for feasible model 

transformations.  

 The U.S. Army field manuals [35][36][37] are utilized as the authoritative information 

sources. In that respect we strived to make use of the original terminology from the field 

manuals for the model elements. Hence all the data model entities and their attributes can 

be traced back to the related sections of the field manuals for validation.  

 We have conducted a series of face validations with an SME. This proved to be very 

fruitful especially when dealing with the ambiguities inherent in the field manuals. 

 All of the top-level data model entities are derived from NATO JC3IEDM, establishing 

the metamodel on a mature and common formalism. This further favors the model in terms 

of compatibility and recognition. In [45] it is underlined that the Battle Management 
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Language (BML), which this work can be considered to fall in line with, must use the 

existing C2 data representations whenever possible. Extending the data model from 

JC3IEDM clearly echoes this argument. 

 A salient feature of the model is its capability to illustrate the domain at higher and 

lower abstraction levels and the seamless integration of the two. In particular, the 

interactions of the BatteryFDC to other actors and the intra BatteryFDC actors and their 

interactions are readily demonstrated. 

 In [49], Davis and Anderson emphasize the relevance of reuse and composability in 

conceptual models. The FA metamodel promotes these concepts by defining the top level 

generic model elements as FCOs to provide for easy model extension. An outstanding 

example exhibiting model reuse and composition is importing the data and behavioral 

metamodel libraries and then defining specialization relations between the relevant data 

model elements and the behavioral ones as explained in Section 4.3.2. 

 To have an overall view of all of the mission descriptions, HMSC mechanism has been 

utilized. This way, the model user finds a common interface in configuring and selecting a 

mission description. 

 On the tool side we believe that deciding on GME was appropriate. GME is a domain-

specific, model-integrated program synthesis tool for creating and evolving domain-

specific, multi-aspect system models. Due to GME’s inherent UML basis, the models are 

bolstered by being compliant with a common industry standard. (Note that GME’s UML 

support is limited to only class diagrams). This further enabled the model to utilize the 

tenets of object oriented design such as encapsulation, inheritance and polymorphism. The 

dynamic semantics of a model is not defined in GME, but this can be introduced through 

model interpreters that can be plugged into GME. Moreover, the model is capable of 

representing semantic (business) constraints both on a model element basis and globally in 

OCL. Finally, it is possible to obtain tool independent XML exports of the models, 

facilitating interoperability. By this way “silos” are avoided; that is the metamodel is 

realized in GME, but we are not restricted to GME. 

4.5.3 An Assessment of Using LSCs in Modeling of Military Tasks  

 LSCs are particularly powerful for event-based, rather than state-based, descriptions. 

The point of view is to capture the observable interactions of an entity, distinguishing 

between mandatory and optional. The observers can be other system entities or any outside 

entity, including the environment. The interactions do not have to be only the sending or 

receiving of messages. More generally, any discrete action by one entity that can be 

observed by another entity, e.g. shooting, can be modeled as an MSC/LSC message. The 
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event-based nature of LSCs supports the trace-view of the system behavior. This could be 

particularly suitable for trace-based applications, such as scenario specification, and course-

of-action analysis.  

 Use of LSC as a practical modeling notation, invariably requires a data model (static 

model) to be integrated with the action (behavioral) model. The variables, values and 

expressions communicated by the messages refer to the data model. The action boxes, then, 

represent internal computations performed on data items by individual instances. The 

description (though not the ordering) of computations falls outside the scope of LSCs. This 

issue is best handled by an algorithmic language. 

 LSCs may not be suitable for representing the execution of tasks that require continuous 

interactions among entities. Consider, for example, a maneuvering tank platoon. 

Maintaining its formation and changing the formation when ordered require the tracking of 

all team members, say, by maintaining line-of-sight, by each member continuously.  

Representing in LSC how such a task is executed is not convenient. A typical recourse 

would be to represent the team-wide start and finish conditions of the task and consider it 

done in the meantime. In the similar vein, the execution of tasks that involve a spatial 

element, such as illumination patterns, could be handled by action boxes in a way akin to a 

computational or menial task. It is, then, up to the model transformer or code generator to 

interpret such conditions and action boxes suitably.   

 Chart notations, such as MSC, LSC and UML sequence diagrams are often used by 

software developers to represent certain typical runs of the system being specified. Our 

approach, in contrast, strives for a complete specification. This explains the extensive use 

of nested control structures in our charts. With the usual trace-oriented use a much more 

flat chart structure would suffice. 

 As the state information is indirectly and implicitly represented in LSCs, they do not 

readily support system implementation. However, this does not prevent us from animating 

LSCs, say, for validation purposes, or generating executable code from LSCs, say, for 

generating prototypes.  

4.6 Related Work on Conceptual Modeling 

 This section points to a selective set of related conceptual modeling techniques, 

frameworks and approaches in literature that fall in line with the present modeling work. 

Before starting, a basic understanding of conceptual modeling, formal specification and 

perspectives from different application domains is worthwhile to provide. 

 In a broader context, Conceptual Model (CM) is defined in [95] as, “An abstract, 

idealized and symbolic description of the structure and behavior of the real system, which 
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is understandable for those from the application domain”.  Ideally, the CM provides insight 

into modeler‘s purpose-related understanding of the structure and behavior of the real 

system as well as the system knowledge used for modeling. It should also explain the 

motivation and justification of conducted abstraction, idealization, and selection of the 

model boundaries. Furthermore, providing the hierarchical organization of the sub-models 

is desirable. Generally speaking, CMs hardly feature completeness, self-consistency, 

unambiguousness, direct support for development, maintenance and reuse. Last, CMs can 

contain comprehensible natural language specifications, i.e. narration, as well as formal 

specifications in their descriptions.  

 A formal specification is a solution-oriented, unambiguous symbolic specification of the 

structure and behavior of the real system, based on a well-defined modeling formalism [95]. 

Some examples to general purpose formal specifications can be given as UML,  Queuing 

Nets, Petri Nets and DEVS.  ACMM and FAMM - the metamodels used in this thesis for 

representing the field artillery observed fire and HLA domains, are examples to formal 

specifications tailored for domain-specific modeling. Formal specification supports 

unambiguousness, efficient implementation of solution, platform independent specification, 

and automated verification and validation activities such as syntax checking, semantic 

checking (including self-consistency), control flow and data flow analysis, model checking, 

and (limited) testing. 

 There are different conceptions of conceptual modeling from different perspectives such 

as information systems development, database management systems, knowledge 

engineering, ontology and simulation. The following subsections provide more insight into 

some of these.  

4.6.1 Conceptual Models of the Mission Space 

 The Conceptual Models of the Mission Space (CMMS) effort, initiated by the U.S. 

Department of Defense (DoD), aims to facilitate the development and reuse of simulation 

models. CMMS is defined in [50] as “First abstractions of the real world that serve as a 

frame of reference for simulation development by capturing the basic information about 

important entities involved in any mission and their key actions and interactions”. CMMS 

emphasizes the implementation-independent functional descriptions of the real world 

processes, entities, environmental factors, and associated relationships and interactions 

constituting a particular set of missions, operations or tasks. An important part of CMMS 

includes the domain specific conceptual models, called “Mission Space Models”. They are 

consistent, structured and functional descriptions of real military operations or processes. 

Some recent studies, notably Defense Conceptual Modeling Framework (DCMF) [51] and 
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the conceptual modeling tool KAMA [52] have further elaborated the vision promoted by 

the CMMS. 

4.6.2 KAMA 

 KAMA is a conceptual modeling framework that incorporates a notation, a modeling 

process and a supporting tool for developing mission space conceptual models [52][106]. 

The process is based on the works of CMMS [50] and Pace [115]. The framework does not 

mandate the developer to follow the proposed process; any other process is possible, as 

long as pre-requisite relationships among the diagrams, such as an entity state diagram 

requiring an entity to be defined or a task flow diagram requiring the existence of a mission 

or a task, are satisfied. The KAMA notation is a graphical, UML-based specification that 

provides a domain specific language for conceptual modeling. It is composed of four major 

packages, namely, Foundation, Mission Space, Structure and Dynamic Behavior – an 

inspiration from UML Infrastructure specification [17], and defines seven diagrams for 

representing the structural and behavioral aspects of a model. The tool supports both the 

notation and the process and provides the developers facilities such as reusing conceptual 

models from the common repository, filtering diagrams, context-sensitive search, 

navigation, n-dimensional model viewing, versioning, custom report generation, 

verification and custom properties management of the model elements. 

The case studies conducted with KAMA have revealed that the users had difficulty of 

comprehension as the diagrams became cluttered. Model development in GME also suffers 

similar cluttering problems, but the view aspect capability of GME [3][33] allows the 

developer to group related model elements into user defined aspects so that the elements in 

the same aspect are visible and others are filtered-out when the aspect is active.  

Karagöz [52] emphasizes the great value of transforming CMs into simulation design 

models and admits that using common metamodels for both would ease the process. He 

further mentions that KAMA’s scope does not include that. In our work, we have ACMM 

and FAMM developed with the same meta-metamodel – metaGME. They also share the 

same LSC formalism for behavior representation and the ACM2FAM transformation is 

defined over the metamodels.  

The KAMA tool benefits from a common repository similar to the one in DCMF [51] 

that stores all of the published and accredited conceptual models, model elements and the 

diagrams, and a simple repository search mechanism, which GME does not (intend to) have 

support for. On the other hand it lacks two features as stated by the author, namely, 

metamodel editing and model merging.  
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4.6.3 Defense Conceptual Modeling Framework 

 The CMMS initiative was prematurely ended by DoD a few years after its sparkling. It 

was later independently continued by FOI, the Swedish Defense Research Agency. FOI has 

refined and enriched the original CMMS concepts and later has evolved its FOI-CMMS 

work into Defense Conceptual Modeling Framework (DCMF) [51].  

 A fundamental contribution of DCMF is the introduction of the Knowledge Meta Meta 

Model (KM3) [96], a meta-metamodel to capture system structures and behavior in an 

object-oriented and rule based way. The DCMF is an iterative process spanning four major 

phases governed by different roles of responsibilities. Information is first gathered within 

the Knowledge Acquisition phase. The Producer role processes unstructured knowledge 

and transforms it into represented knowledge. To accomplish this, a parsing method must 

be used. During the Knowledge Representation phase, smaller sections of this data are 

structured as Knowledge Instances (KI) and validated for storage in the repository by the 

Controller role. KIs are useful for some purposes, but they are not reusable since they are 

specific to the scenario data. To get reusable knowledge, KIs are abstracted to the type 

level, modeled as Knowledge Components (KC) and then validated in the third phase, 

called Knowledge Modeling. These components are, upon Consumer requests, composed to 

form Conceptual Models (CM) in the fourth and final phase, Knowledge Use. All the 

described artifacts are stored in a repository for use and reuse. 

 In a more recent work [97] the FOI team has investigated enriching DCMF models with 

semantics in an effort to better conceptualize and reuse knowledge. This is achieved by 

creating an ontology for Base Object Model (BOM) and producing semantically enriched 

BOMs as the outcomes of DCMF processes. 

4.6.4 Base Object Model 

 Base Object Model (BOM) is proposed by the SISO to encourage and support reuse, 

interoperability, composability, and to help enable rapid development of HLA simulations. 

Conceived in 1997, BOM was standardized by SISO in 2006 [98]. At a high level, BOMs 

are reusable packages of information representing independent patterns of simulation 

interplay and are intended to be used as building blocks in the development and extension 

of simulations. These components can also be composed in larger models (e.g., BOM 

assemblies). Additionally, interplay within a simulation or federation can be captured and 

characterized in the form of reusable patterns. These are sequences of events between 

simulation elements. Implementation of these patterns using HLA object model constructs 

is also captured in the BOM [99]. 
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 Structured in five major parts, a BOM is an XML document that encapsulates the 

information needed to describe a simulation component. The first part is Model 

Identification, where metadata about the component is stored. These facts describe the point 

of contact, what it simulates, how it can and has been used, as well as descriptions aimed 

towards helping developers find and reuse it. The second part is the Conceptual Model. 

This part includes what types of actions and events that take place in the component, and is 

described by a pattern description, a state-machine, and a listing of conceptual entities and 

events, which, when taken together, describe the flow and dependencies of events and their 

exceptions. The third part is Model Mapping, and is where conceptual entities and events 

are mapped to their HLA Object Model representations. This part bridges the Conceptual 

Model with the HLA Object Model described in the fourth part of the BOM. The fifth 

section is called Supporting Tables that contain semantic information about events and 

entities as well as actions that is specified in the Conceptual Model, and are used to provide 

a human-readable understanding of the patterns described in the BOM. 

4.6.5 Ontology as Conceptual Model 

 Ontologies are structured descriptions that categorize concepts and relationships among 

concepts within a particular knowledge domain [100]. Ontologies are, like taxonomies, 

used to classify entities within a domain, but they hold several advantages over traditional 

taxonomies in that they allow the entities to have properties and relationships. They also 

allow types of things within a particular domain to be defined as classes, and the meaning 

of a class is captured via its position within subclass-of (is-a) hierarchy as well as by its 

properties, relationships, and restrictions. Because ontologies are meant to define a domain 

and to be shared by many, the most useful ontologies are created by expert groups.  

 The use of ontologies in M&S has recently emerged as a growing area of research 

interest as evidenced by the creation of the Discrete-event Modeling Ontology (DeMO) 

[101], the evaluation of the Command and Control Information Exchange Data Model 

(C2IEDM) as an interoperability enabling ontology [102], the development of the Process 

Interaction Modeling Ontology for Discrete-event Simulations (PIMODES) [103], the 

development of the Component Simulation and Modeling Ontology (COSMO) [104] and 

the use of domain ontologies in agent-supported interoperability of simulations [105]. 

4.6.6 JC3IEDM 

 Joint Command, Control and Consultation Information Exchange Data Model 

(JC3IEDM) is the core of NATO Reference Model and is also a view model of NATO 

STANAG 5525 [53]. The data model is focused primarily on the information requirements 

that support the operations planning and execution activities of a military or civilian 
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headquarters or a command post. JC3IEDM has recently evolved from C2IEDM, or 

Command and Control Information Exchange Data Model [54] by additionally including 

and modeling new joint operational concepts. 

 There have been numerous efforts in evaluating C2IEDM as an enabling referential data 

model for semantic simulation interoperability [55][56]. The results turned out to be that 

C2IEDM could support concepts and entities very well and was sufficient for the formation 

of relationships. The extensibility of C2IEDM is noted as yet another strength. 

 Brutzman and Tolk [57] offer recommendations for a framework ensuring 

interoperability, reusability, and composability for the U.S. Air Force Joint Synthetic 

Battlespace. They propose benefiting from distributed modeling methods using Model 

Driven Architecture (MDA). They underline the use of C2IEDM as a common reference 

model on the semantic level as a promising way to obtain meaningful interoperability 

between components within joint and combined environments (i.e., system of systems). 

4.6.7 Model-Based Approaches 

 The MDE approach is becoming prominent in software and systems engineering, 

bringing forth a model-centric approach to the development cycle in contrast with today’s 

mostly code-centric practices [1][58]. A well-known MDE initiative is the MDA of Object 

Management Group (OMG), launched after the broad acceptance of the UML [17], which 

became the lingua franca for modeling over the past decade. Model transformations are 

considered the heart of MDA, where the PIM of a system to be constructed, is transformed, 

or refined, into a PSM [2][20].  Both PIM and PSM conform to their own metamodels, 

which act as grammars that define these models. Depending on the abstraction layer of the 

models, the PSM may even be the executable code. If not, it can be further transformed into 

code through another transformation. 

 Model Integrated Computing (MIC), an earlier manifestation of MDE, relies on 

metamodeling to define domain-specific modeling languages and model integrity 

constraints [3]. The language is then used to automatically compose a domain-specific 

model-building environment for creating, analyzing, and evolving the system through 

modeling and generation.  

 An exemplary MDA approach supporting Program Executive Office Soldier is 

presented in [59]. The aim is to develop a modeling federation that integrates the 

capabilities of various existing C2 systems in order to analyze the effects of a soldier on 

tactical missions. UML chart notations are used to represent the mission descriptions. 
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CHAPTER V 
 
 
 

ACM TO FAM TO CODE TRANSFORMATION 
 
 
 
 

 This chapter presents a two-step automatic transformation of a Field Artillery 

Conceptual Model (ACM) into a High Level Architecture (HLA) Federation Architecture 

Model (FAM) into executable distributed simulation code. The approach taken adheres to 

the Model-Driven Engineering (MDE) philosophy. The ACM and the FAM conform to 

their own metamodels, which are separately built with the Generic Modeling Environment 

(GME) tool. Both metamodels are composed of data and behavior parts, where the behavior 

representation in both is based on Live Sequence Charts (LSC). The ACM to FAM 

transformation is carried out with the Graph Rewriting and Transformation (GReAT) tool 

and partly hand-coded in C++. Code generation from FAM is accomplished by employing a 

Java based model interpreter that produces Java/AspectJ code. The code can then be 

executed on an HLA Run-Time Infrastructure (RTI) engine after weaving the necessary 

computational aspects. The experience gained in this work provides a step forward for the 

inspiration of a domain-independent conceptual model transformer for HLA. 

 The ACM data model defines the field artillery domain entities, and its behavior model 

defines observed fire missions in LSC form. Likewise, the FAM data model defines the 

field artillery entities as federates, the federation and HLA messages, and its behavior 

model defines the fire missions as inter-communicating federates via the RTI, again in LSC 

form. Adopting a parallel design principle, the ACM to FAM (ACM2FAM) 

transformations are essentially formulated around the core of data and behavior model 

transformations, executed in sequence. Before and after these core blocks, come the smaller 

sets of pre and post rules that set up and tear down the stage for the HLA federation 

execution. This overview is sketched in Figure 5.1. 

 Before starting the details of this lengthy transformation process, we would like to 

provide the user a grasp of how a produced FAM as the result of an ACM2FAM 

transformation looks like through a FAM LSC in graphical notation. Figure 5.2 partially 

presents the top level AdjFFE LSC diagram of the produced FAM that corresponds to the 
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same named ACM LSC of Figure 4.18. Their structural resemblance is apparent with the 

exceptions of the introduction of the instance named FieldArtilleryFed representing 

the RTI federation execution and the two LSCs at the beginning and the end for federation 

initialization and tear down, respectively. 
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Figure 5.1 An overview of ACM to FAM transformation 

Figure 5.2 Partial view of AdjFFE LSC in a produced FAM 
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5.1 Setting the Stage for Transformation 

 The separately and independently built source and target metamodels are exported into 

an empty transformation model as a preliminary step to start the development of the 

transformations. The development environment is again GME, as shown in Figure 5.3, but 

tailored using the GReAT paradigm towards model transformations. Be reminded that 

transformation development is yet another modeling activity and can therefore be realized 

in GME. The transformation model consists of source and target models, transformation 

configuration, transformation blocks and rules and other utility model elements for 

providing easy global access and cross domain associations to be used during the 

transformation. 

 The transformation configuration generally points to the source and target models and 

metamodels, and the user code library employed by some of the transformation rules. It 

also designates one of the rules as the start rule.  

 Cross-links establish cross model associations between the source and target 

metamodels. Cross-links can be defined not only between different domains but can also be 

used to extend a domain to provide some extra functionality required by the transformation. 

By using a separate package for cross-links we are able to specify a larger, heterogeneous 

domain that encompasses all the domains and cross-references. 

 

 

 

Figure 5.3 The start rule block of ACM2FAM transformation in GME/GReAT 
 

  

 A transformation step always starts pattern matching with an initial context, which is an 

initial partial binding of the pattern graph. The initial binding reduces the search complexity 

in two ways, (1) the exponential is reduced to only the unmatched pattern vertices and (2) 

only host graph elements within a distance d from the bound vertex are used for the search, 

where d is the longest pattern path from the bound pattern vertex [6]. This context is passed 

along from rule to rule via ports during the transformation, similar to parameter passing in 
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procedural languages. The main weakness of this approach is that the programmer needs to 

specify context passing through several rules, even if the context is actually used only in 

one remote, non-adjacent, step. The general idea of the global container is that the objects it 

contains have global scope; that is, they are accessible throughout the whole 

transformation, and it is not necessary to pass them along in the context. The capability of 

eliminating portions of context passing and recurring complex pattern matching is one of 

the key facilitating factors in terms of the development effort and execution performance in 

this work.  

 The transformation definition is comprised of a set of major blocks, which further 

consist of other blocks, rules, cases or expression references. Table 5.1 summarizes the 

metrics for the overall ACM2FAM transformation effort, indicating a total of 64 blocks, 4 

for-blocks, 187 rules, 13 tests (with a total of 55 cases) and 21 references to 

other rules. The DataModelTr and especially the BehavioralModelTr blocks constitute 

the core of the transformation and are further explained in the subsequent sections. 

 

 

Table 5.1 Metrics for the ACM2FAM transformation 
 

Transformation Expression Count Transformation Expression Count 

Block 64 Test 13 

ForBlock 4 Case 55 

Rule 187 Expression Reference 21 

 

 

5.2 Data Model Transformation 

 Data model transformation corresponds to the structural part of the ACM2FAM 

transformation. Looking from a FAM perspective, it aims to construct the federation object, 

the federate objects and the Federation Object Model (FOM) for the federation. The main 

DataModelTr block is shown in Figure 5.4. It is composed of two inner blocks named 

ObjectModelTr and the relatively smaller FederationStructureTr that are executed 

sequentially, in that order.  
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5.2.1 Object Model Transformation 

 Object model transformation basically transforms the set of field artillery message 

structures that are communicated among domain actors during mission executions into 

HLA classes. The field artillery messages are represented as free format UML structures 

with information content provided by the domain. On the other hand, HLA-OMT 

specification [39] puts forth a data type system. Several OMT tables (attribute, parameter, 

dimension, time representation, user-supplied tag, and synchronization) provide columns 

for data type specifications. A data type used in these tables shall be one of simple, 

enumerated, record, array, and variant record data types. OMT specifies a core set of 

default data types of basic, simple, enumerated, and array types, that correspond to 

universally recognized types such as byte, integer, float, boolean and string. The HLA-

based distributed simulation model of any domain has to use an arrangement of OMT data 

types. 

 As a preliminary step to the field artillery message to OMT class transformation, the 

DataTypes block creates all of the basic, simple, enumerated and array data types that 

make up the default, predefined HLA data set. Note that there are no default fixed and 

variant record types. Domain specific ones are later defined in the rules that create 

interaction and object classes.   

 The InitFOM rule creates containers for interaction classes and object classes and an 

empty FOM element, which is later filled with interaction and object classes. These two 

OMT classes are the key elements in FAM data model; they are used frequently throughout 

the rest of the rules in the transformation. In addition, the stubs that correspond to the other 

OMT tables are also created in the FOM, of which only dimensions and timestamps are 

maintained and used, whilst the rest left out of the scope of this thesis. 

Figure 5.4 The main DataModelTr block 
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 Then, the transformation flow splits into two parallel branches, where interaction and 

object classes are created concurrently. The crux of the data model transformation logic is 

that all non-durable (i.e., stateless, with a life span of only a message transmission period) 

messages are transformed into interaction classes and durable messages (i.e., stateful, with 

a life span of the federation execution unless deliberately deleted) are transformed into 

object classes.  

 At this point, the user code library interferes to apply operations on the bound objects 

using the Universal Data Model (UDM) API [34]. These operations range from simple 

ones, such as setting a new object’s name or position on the screen, to sophisticated graph 

traversals, object creations or deletions. In our case, the user code library realizes the actual 

field artillery message to OMT class transformations programmatically. We have identified 

and implemented three approaches for transforming an ACM message into an OMT class 

and its attributes. The library has more than 600 lines of C++ code with public entry 

methods for the three approaches and eight non-public utility methods. Please refer to [60] 

for details. 

 The InteractionClasses rule is provided in Figure 5.5 for illustrative purposes, 

where black colored model elements indicate a pattern to match, and blue colored elements 

designate the new elements to be created. The code snippet inside an AttributeMapping 

element is executed after GReAT’s pattern matcher matches the rule pattern and the 

effecter makes structural modifications on the matched model elements. The 

AttributeMapping in the figure invokes the user code library’s message transformation 

method. 

 There are two reasons why an important part of the data transformation is handled by 

means of a code library. The biggest problem is that a field artillery message is usually 

deeply structured, possibly having child objects bound to their parents in varying 

cardinalities. This makes the situation even more complicated, because in order to represent 

such combinations we would need many patterns, hence rules. For example, if a message 

can have n direct children each having zero or one composition cardinality, then we would 

need at least n parallel rules to cover all possible matched combinations of the source 

model. On the other hand, by employing the user code library, we only need one rule, no 

matter how many children with whatever cardinality a message structure may have.  

 The other reason is obtaining considerable performance gain by directly executing C++ 

code. This is much faster than first matching a graph and then calling the effecter to execute 

it. (Be reminded that the sub-graph isomorphism problem, which is involved in every 

pattern matching step, is NP-complete).  



86 

 

  

 

 

 Figure 5.6 illustrates a conceptualized sample field artillery message structure to OMT 

class transformation. On the left side is a field artillery message structure, named Msg, 

having two components, named BCmn and CProp, both of which further have a couple of 

children. Each leaf child has one attribute named val, of the type shown. It is assumed that 

BCmn is a common, shared component used by other field artillery messages, and CProp is 

a proprietary component specific to the message in question.  

 The transformation rule creates the MsgIC interaction class on the right hand side 

through sole pattern matching. The user code library programmatically creates the rest of 

the structure below MsgIC. The field artillery message structure is transformed into an 

OMT attribute having a fixed record data type, within the OMT class. Each common 

message part that is reused is transformed into a field of a record type, having further a 

fixed record data type, mimicking the common message part. All of the other non-common 

parts of the message structure are transformed into fields of the fixed record type having 

appropriate primitive/simple types, with the field name reflecting the message structure 

hierarchy. The field name consists of a string of concatenated message structure element 

names, separated by “_”, from the leaf to the root node.  

InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC"; 
ModelTransUtils::TransformNonDurableMsg2InteractionCls_Hybrid 
          (NonDurableMsg, InteractionClass, FixedRecordDataTypes); 

Figure 5.5 The InteractionClasses rule 
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5.2.2 Federation Structure Transformation 

 The federation structure transformation concludes the data model transformation part. It 

instantiates the single federation object together with a reference to the FOM that was 

previously created. It also maps every field artillery Actor and Net to a corresponding HLA 

federate along with a reference to an associated SOM. In this thesis, SOMs per federate are 

left as stubs and not developed any further. The FOM is sufficient to capture all the OMT 

objects participating in the federation execution. Indeed, FOM is what an RTI needs to run 

a federation [13]. 

 Finally, cross-domain associations establish referencing from each actor/net of the ACM 

domain to its corresponding federate of the FAM domain. These temporary associations of 

actor-federate pairs later function as a key enabler in the transformation of message 

communications among the actors in a field artillery mission to inter-federate 

communications in the behavioral model transformation step. 

 The result of the application of the federation structure transformation rules is depicted 

as a UML sketch in Figure 5.7. It shows a subset of the (hierarchically structured) actor/net 

collection inside the data model of an ACM, being transformed into their corresponding 
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Figure 5.6 A conceptualized field artillery message to OMT transformation 
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federates (flattened) inside the federation structure of a FAM. This one-to-one 

correspondence is exposed by the blue has-correspInst associations. It is further seen 

that every federate is a MemberOf the field artillery federation and that the federation has 

another association with a reference to the FOM. The naming convention employed in this 

work assigns the name FieldArtilleryFed to the federation element, and an actor/net’s 

name in the field artillery model suffixed by Fd to its corresponding federate element. 

 

  

 

 

 

 

5.3 Behavioral Model Transformation 

 Behavioral model transformation is the bigger and more challenging part of the overall 

ACM to FAM transformation. It uses the resulting objects of the data model transformation 

as the instances and message parameters in LSCs that are being produced.  

 The main block of the behavioral model transformation, BehavioralModelTr, is 

shown in Figure 5.7. AscGlobalHlaMeths gets the method library of FAM that contains 

predefined HLA methods for federation, declaration, object, ownership and time 
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Figure 5.7 Transformation of field artillery actors/nets to HLA federates and federation 
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management. The block contains rules that take copies of all the methods used in the 

transformation and associate them with the global HLA methods element so that they are 

readily accessible by the LSC transformation rules. These methods are meant to function as 

templates; hence their method parameters are left empty. Their copies in the LSCs are 

assigned parameters with appropriate HLA class instances during the transformation. A 

simplified and unified sketch of AscInstanceOfFacm is also shown in Figure 5.8. The 

block basically creates is-InstanceOf associations between the instances that stand for 

the same actor element in ACM. An actor instance in the MSC head of an MSC is an 

instance of the same type of instance in the MSC document head, which in turn is an 

instance of the canonical actor instance in the data model’s Actors folder. This chain of 

associations establishes traceability between the behavior and data sub-models of ACM and 

provides convenience in subsequent rules. A similar scheme is also applied progressively 

on the FAM side as the transformation rules construct the model. 

 

 

 

 

 

 

 The CrtBehaviorMdlFld and CrtMscDoc rules are triggered one after another for 

simply creating a FAM behavioral model folder and an MSC document underneath it, 

provided that their corresponding counterparts are matched in the ACM. A has-

correspMscDoc association is established between the ACM and FAM MSC documents, 

since there can be more than one MSC document in a source model and in such a case this 

create 
is-InstanceOf 
assocs. among 

data model, doc. 
head & doc. body 
actor/instances 

Figure 5.8 The BehavioralModelTr and AscInstanceOfFacm blocks 
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association is necessary for keeping track of MSC references in different documents and 

during instance decomposition.  

5.3.1 MSC Document Transformation  

 The MSCDocTr block is displayed in Figure 5.9. It consists of three sub-blocks, namely, 

DocumentHeadTr, DocumentBodyTr and AscReferences, executed in that order. All 

of the blocks and rules within MSCDocTr are defined so as to traverse the structure 

delineated by the MSC metamodel to create a FAM MSC document from an ACM MSC 

document.  

 

  

 

 

 

 

 To serve as a reference for the reader, part of the metamodel pertaining to the MSC 

document is reproduced in Figure 5.10. An MSC document consists of a document head 

and two document bodies of which, the defining part is mandatory and utility part is 

optional. The MSC body essentially consists of one or more MSCs. The overall LSC/MSC 

metamodel can be found in [12] in detail. The following two sub-sections describe the 

document head and body transformations, respectively. 

MSC Document Head Transformation 

 The DocumentHeadTr block handles the data definition, message declaration, instance 

declaration (i.e., the containing clause) and timer declaration parts of the document head of 

the FAM being constructed. Note also that data definition and message declaration are only 

addressed as stubs since the content related with these parts are practically provided by the 

data model.  

 The instance declaration part of the MSC document head transformation is also one of 

the key steps in the overall behavioral model transformation. Its role is basically to create 

federate objects and a federation object derived from the corresponding counterparts found 

in the federation structure portion of the FAM data model.  

 

Figure 5.9 The MSCDocTr block 
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 A derived object, which is a deep copy of another structured object, is created inside the 

attribute mapping code by invoking a UDM API method. This, at the same time creates a 

sort of inheritance association where, the attribute values of the derived object are kept in 

sync with the values of the corresponding attributes in the archetype object (i.e. the object 

that is at the farthest position within the chain of base objects; that is, the one which is not 

derived from anything) as long as they are modified only through their archetype. Once an 

attribute’s value is modified alone (i.e., directly on the derived object), the attribute 

becomes de-synched from the archetype, which means that its value is not synchronized to 

the corresponding attribute’s value in the archetype. Please refer to [34] for details. 

 This architecture is a deliberate design decision in order to have the behavior model 

content wise backed-up by the data model. With this schema, any attribute update to core 

federate objects in the data model will be automatically propagated down to the derived 

objects in the MSC document and from them to the further derived objects in the MSCs of 

the behavioral model. The benefit of this approach reveals itself when considering this 

chain of derivations. Another noteworthy choice is calling a generic (in terms of 

applicability for any type of UDM object) library method instead of employing specific (in 

terms of being per object type) pattern matching. Otherwise, the pattern matching solution 

would be bulky, time consuming to define and slower to execute. 

MSC Document Body Transformation 

 The main rule block of the document body transformation, DocumentBodyTr, basically 

transforms the utility and defining parts of an MSC document. Note that it is necessary to 

Figure 5.10 Part of the MSC document metamodel [12] 
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handle the utility part first because the MSCs of the utility part are referenced from within 

the defining part and therefore they have to exist prior to the defining part transformation.  

The MSC document body transformation essentially boils down to MSC transformation. In 

order to start the process, an empty FAM MSC is created per matched ACM MSC in the 

given document body. The cross-domain has-correspMSC association is established for 

keeping track of the paired MSCs in subsequent rules. The attribute mapping code copies 

the chart order index in addition to the name and screen position properties of the ACM 

MSC to the FAM MSC. The chart order index, although not an artifact of the MSC 

metamodel, is a crucial annotation that facilitates model interpreters and particularly the 

code generator, by providing the execution/interpretation order of the MSCs at run-time. 

Similarly, for multiple documents in a model, the order of the documents may be specified 

by the document order index [12]. The rule finally delivers both MSCs to the MSCTrans 

block for further building up of the FAM MSC. This fundamental step is elaborated in the 

following section. 

5.3.2 MSC Transformation 

 MSC transformation is handled by the mainstream MSCTrans block, shown in Figure 

5.11. Its importance is due to its incorporation of LSC transformation, which virtually is the 

heart of behavioral model transformation. MSC transformation consists of three 

consecutive steps that handle MSC head and body transformation, and initialize the 

federation after the completion of the former two. MSC body transformation essentially 

boils down to LSC transformation after an empty LSC context is created. LSC 

transformation is explained in Section 4.3.3.  

 

 

  
 

 

 

 To serve as a reference for the reader, the top level MSC metamodel is presented in 

Figure 5.12. An MSC consists of an MSC head and a body. The MSC body can be one of 

HMSC (High-level MSC), MscBody, LSC or InlineOperand. In this work we practically 

Figure 5.11 The MSCTrans block 
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use LSC as the MSC body and allow LSCs (having Prechart or Subchart role) and inline 

operands within LSCs. HMSC and MSC body are not used in this thesis.  

  

 

 
 

 

 

MSC Head Transformation  

 The head part of an MSC is transformed in a four rule block, as shown in Figure 5.13. 

The head of an MSC houses the instances referenced in the MSC’s body, besides other 

elements. The basic functionality of MSCHeadTr is to prepare the instances used in the 

FAM MSC, by looking at the instances found in the corresponding MSC. Other MSC head 

components such as offset, parameter set and its subcomponents are either provided 

explicitly inside the MSC body or considered irrelevant for the purposes of this work and 

hence, are not covered.  

Figure 5.12 Part of the MSC metamodel [12] 
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 The MSC head transformation also addresses instance decomposition. The MSC 

specification [15] states that, an instance can be viewed as an abstraction of a whole MSC 

document (representing a system component) that is participating in a higher level system, 

hence the mechanism for hierarchical decomposition. The practical outcome of this is the 

introduction of a separate MSC document per decomposed instance and a new MSC for 

every MSC in the higher level document that the decomposed instance participates in, 

which describes the MSC from that instance’s lower level perspective. The instance 

decomposition handling rules are DecomposeInst explained in this section and 

AssocDecompAsRefs block residing immediately under the top-level block. 

 

 

  
 

 

 

 

 Derived FAM MSC instances are created from the corresponding FAM document head 

instances and are associated  with the ACM MSC instances (using has-correspInst) 

and with the FAM document instance archetypes (using is-instanceOf) By this way, 

structural and one-to-one correspondences are established between and inside ACM and 

FAM MSCs. This principle is proliferated throughout MSC document, LSC, data element 

and event transformations. It is a key property of ACM to FAM transformations and 

provides for traceability and soundness.  

 If the given ACM MSC instance is defined to be decomposed and has a reference to a 

specific MSC in the decomposition document, then the FAM instance is also added a 

decomposed element and a non-assigned MSC reference. These stub references will be 

assigned later in a post-processing rule after all of the MSC document transformations are 

completed and hence the entire set of MSCs are created. The attribute mapping code copies 

property values from the matched source elements to the newly created target elements. 

 

 

Figure 5.13 The MSCHeadTr block 
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Federation Initialization  

 Before moving into LSC transformation this section makes a fast forward to explain the 

federation initialization on the FAM side. The federation initialization is done after an MSC 

document is transformed head and body-wise (see Figure 5.11). This indicates that it is a 

post processing step following the full transformation of all the LSCs in the document. 

(Recall that in a block, a child block or a rule receives input packets after all the packets 

pass through the previous child.) 

 The HLA federation initialization activities are done in the InitFederation block 

shown in Figure 5.14. This is a part of the behavioral model transformation indigenous to 

the FAM domain; that is, there are no associations in the transformation rules to ACM 

except for the identification of the instances involved. Due to the lack of such an input 

source, the information content flowing through the federation initialization part is directly 

embedded inside the transformation rule definitions. This causes the InitFederation 

block to have a substantially hard wired structure. On the other hand, it potentially lends 

itself for external configuration; that is, the hard wired content can be provided from an 

outer source, for instance, a GUI front-end, or a configuration file.  

 The InitFederation block handles four preliminary federation execution activities of 

creating a federation execution, joining federates to the federation execution, initializing 

time management and declaration management. The federation initialization events are 

gathered in a sub-chart which itself is placed inside the pre-chart of the top-level FAM 

LSC. This way, federation initialization is guaranteed to be performed right at the 

beginning. The subchart is made temperature-wise “hot”; hence, mandatory to execute [14]. 

Since there is no clue from the ACM regarding the execution order of the chart, it is read 

from a look up table in the user code library; thus, effectively delegated to external 

configuration. 

 

 

 

 Figure 5.14 The InitFederation block 
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5.3.3 LSC Transformation 

 The LSC transformation is the heart of ACM2FAM behavioral model transformation. It 

is the place where the nuts and bolts of the evolution of field artillery inter-entity 

communications to federate interactions, mediated through the HLA RTI, are defined. The 

HLA RTI is represented by the federation entity specifically introduced in FAM. The 

LSC transformation process is carried out in the LSCTrans block, as overviewed in Figure 

5.15. Each pass of the block inputs an ACM LSC and an empty (i.e., stub) FAM LSC, and 

step by step constructs the FAM LSC as the transformation proceeds through the internal 

blocks.  

 The execution order of the sub-blocks does not matter except for the second and the last 

blocks. The InstanceRefTr is a reusable block that has already been utilized in 

federation initialization. It creates the necessary federate instances (i.e., references) in the 

FAM LSC by inspecting the ones found in the corresponding ACM LSC. Since these 

instances are used in the graph patterns of most of the subsequent rules, InstanceRefTr 

must be executed before them. The last block, SpecialConnsTr, create associations 

between two instance events [12] within the LSC and thus need to be executed after 

ensuring all such events have been created. The activation condition is a boolean condition, 

which expresses the activation point for a chart [12]. Activation condition transformation is 

performed in the ActivationConditionTr block. There is a simple one-to-one 

correspondence and equivalence between ACM and FAM activation conditions. The 

definition of the LSC transformation blocks are generally based on the instance event type 

categorization of the child elements to be processed in the LSC. These blocks are briefly 

explained in the rest of the section. 

 

  

 

 

 

 

Figure 5.15 The LSCTrans block 
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Prechart and Subchart Transformation  

 Precharts and subcharts are actually child LSCs that have special role names on the 

containment associations with their parents. The PreSubChartTr block, shown in Figure 

5.16, handles the transformation of precharts and subcharts of an LSC. The 

CreateSubSchart rule creates a subchart under the current FAM LSC with the 

Subchart composition role for every subchart of the corresponding ACM LSC. The 

CreatePreChart rule is defined similarly. A notable statement in attribute mapping code 

(partly shown in the figure) is the call to the SetInstRefAssocs4LSCChildren method 

of the user code library. This method is invoked for all LSC child creations of type LSC 

(pre/subchart) and multi instance event, including inline expressions (Loop, Opt, Exc, Par, 

Alt and Seq), references, conditions, otherwise clauses, and LSC idioms [12]. It handles 

the routine task of creating associations between an LSC’s child elements and the relevant 

instances in the LSC programmatically. This extensively used method could be 

implemented with transformation rules, but that would require as many rules as the LSC 

child types listed above and take longer to execute considering the execution speeds of 

pattern matching vs. direct C++ invocation. 

  

 

  
 

 

 

 

 The role of DispPreSubchart test is to direct the execution flow to one of the attached 

rules based on the child element type of the input ACM LSC being a prechart or a subchart. 

After a child pre/subchart is created under the given FAM LSC, the block ends with a 

recursive call to the LSCTrans block to continue the transformation for the child element, 

which is yet another LSC.  

ModelTransUtils::SetInstRefAssocs4LSCChildren 
   (FamSubchart,FacmSubchart, FamLSC); 

Figure 5.16 The PreSubChartTr block 
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Multi-Instance Event Transformation  

 This section explains the transformation of multi-instance events, which constitute a set 

of frequently used elements, including conditions, otherwises, inline expressions and 

references (to MSCs). The top-level block, MultiInstanceEventTr, is depicted in 

Figure 5.17. Initially, a child multi instance event of the ACM LSC is matched and 

dispatched to one of the three alternative transformers together with the FAM LSC.  

 The CreateCondition and CreateOw rules perform condition and otherwise 

transformations, respectively. These rules simply create FAM elements that directly 

correspond to matched ACM elements. The other types of multi instance events form the 

family of reference identifications and are handled in the RefIdentTr block, also shown in 

the figure. Reference identification types are inline expressions and reference. The 

CreateReference and CreateMSCRef rules simply create a FAM Reference element 

and a reference to an MSC under that, respectively.  

 The inline expressions are transformed in the InlineExpTrans block. The block 

initially directs the execution flow to one of the nine inline expression creator rules based 

on the input ACM inline expression type. Six of these create alt, par, opt, loop, exc 

and seq elements [15], and three of them create if-then-else, while-do and repeat-

until idioms [12]. These rules simply create FAM inline expressions for the given ACM 

inline expressions and link them together using the has-correspInlExp cross-domain 

association. The attribute mapping codes copy the element properties. 

 

 

 
 

 

 
Figure 5.17 The MultiInstanceEventTr and RefIdentTr blocks 
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 Every inline expression by definition contains one or more inline operands. After the 

creation of inline expressions, the execution flow joins into a single path to create inline 

operands. Inline operand is defined to be specialized from LSC [12], in the sense of UML 

inheritance. The only addition brought in by inline operand is the operand order index 

property that specifies the order of the operand with respect to the other peer operands 

within the inline expression. Finally, paired inline operands are recursively handed over to 

the LSCTrans rule for further processing as LSCs. 

 The RefIdentCommonTr is the last, sink block of the RefIdentTr block that creates 

gate, top, bottom and time interval components common for all reference identification type 

of elements. Time interval transformations further specialize into measurement, singular 

time and bounded time transformations. All of these rules are quite intuitive and perform 

ACM to FAM attribute value copying in a straightforward manner. 

Orderable Event Transformation  

 Orderable events are generally the most frequently used set of events in the behavioral 

model of field artillery scenarios. They form the mechanism for the actual communication 

among the instances (i.e., actors in ACM terms). The top level OrderableEventTr block 

is shown in Figure 5.18. The block starts by matching and dispatching a LSC contained 

ACM orderable event to the appropriate rule or block to create its FAM counterpart. The 

kinds of orderable events handled are action, create, timer event, method event, and 

message event. Once these events are transformed in their specifics, any general orderings 

(i.e., before and after) imposed on them are applied in the final block GeneralOrderTr.  

 The HandleAction rule is also provided in the figure as an example to explain how a 

typical orderable event rule works. For any given ACM action, a new FAM action is 

created in the given parent FAM LSC. Also, the ACM instance that is in association with 

the matched action is identified. From that, the corresponding FAM instance reference is 

obtained using the cross-domain association, has-correspInstRef. Then a similar 

association is established between the new FAM action and the FAM instance reference. 

Finally, the matched ACM action and the created FAM action are passed to the next rule in 

line. 

 The timer events, consisting of start timer, stop timer and timeout, form a sub-category 

of orderable events. The TimerEventTr block performs the transformation of timer 

events. The block initially dispatches a matched ACM timer event and a FAM LSC to one 

of the three timer event creator rules. After the event creations, instance reference - timer 

event associations are established in the same manner shown in HandleAction rule of 
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Figure 5.18. Timer events contain references to timer elements. Finally, the references to 

timers are set for the FAM timer events. In LSC metamodel [12], timer objects are stored in 

the timer list of the document head of the MSC document. Since the document head is 

processed before the LSCs, all of the timers should be readily available.  

 The MethEventTr block handles the transformation of call, receive, replyout and 

replyin events that constitute method call event category. These transformations are quite 

straightforward and handled similar to the HandleAction rule explained above. 

 

  

 
 

 

 

 

Message Event Transformation  

 Message events are the most common and important group of orderable events that 

represent the inter instance (i.e., actor in ACM and federate in FAM terms) 

communications. Their role is so crucial that message event transformations can be 

regarded as the crux of this ACM2FAM transformation work. Except for the HLA 

federation specific initialization and tear-down rules (see Section 4.3.2), most of the other 

types of transformations are generally dominated by same type of LSC element creating 

Figure 5.18 The OrderableEventTr block 
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and value copying in the FAM being constructed per matched LSC element in ACM. On 

the other hand, message event transformations are more sophisticated in that there are one-

to-many event creations that go beyond simple copying of ACM content into FAM. 

Moreover, these transformations are driven by conditions that take into consideration the 

type and structure of the ACM data being communicated. This is the primary part where 

platform (i.e. HLA) specific content is introduced. Because of these, message event rules 

are more complex and bigger than the other rules. 

 The main message event transformation block, MsgEventTr, is displayed in Figure 

5.19. It distributes the incoming packets according to the type of the matched ACM 

message event. Out and in events are the two kinds message events and are the conjugate of 

each other in that for two interacting instances A and B, every out-event from A to B 

implies a corresponding  in-event sourced B and targeted A, sequenced in that order [15]. 

We assume that the transmission of an out-event and its implied in-event are atomic and 

instantaneous in time, occurring immediately one after another. Because of these, we have 

conventionally modeled source ACMs having out-events as the sole message event type.  

   

  

 
 

 

 

 

 On the other hand, the situation is different in a FAM, in that, any federate to federate 

communication has to be mediated via the HLA RTI (the federation execution, to be more 

specific), as dictated by the HLA specification [13]. This loosely coupled communication 

architecture would normally necessitate an actor A to B out-event transmission in an ACM 

Figure 5.19 The MsgEventTr and OutMsg2HLAMeth blocks 
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to be represented as federate A sending an out-event to the federation first and the 

federation sending another out-event to federate B. However, instead of having these two 

explicit outs (and two implicit ins), we have decided to implement one explicit out-event 

between federate A and the federation and an explicit in-event between federate B and the 

federation, explicitly employing both in and out-event types. In this setting, if the out-event 

has order n, the in-event is given order n+1. (Note that ordering is implemented by 

incrementing a counter). The approach is diagrammatically illustrated in Figure 5.20. This 

federate centric event mapping better supports the code generator’s code generation 

strategy which considers each LSC instance (i.e. federate) and its associated events 

individually while producing the federate base code and computation aspect code [61].  

 The OutMsg2HLAMeth block, also shown in Figure 5.19, handles the transformation of 

out-events. Within the block, both ACM and FAM input packets are fed to two for-blocks 

in parallel that are specialized in out-event transformations based on the ACM message 

payload type. Non-durable message out-events are transformed inside 

OutNonDurableMsg2HLAMeth for-block and durable message out-events are transformed 

inside OutDurableMsg2HLAMeth for-block. Non-durable message transformation is 

relatively simpler than the durable, because a non-durable message transmission in ACM 

maps to two HLA message transmissions in FAM, whereas a durable message transmission 

can map up to six. 

 Since there are no in-events used in source ACMs, there is no practical need for an in-

event transformer counterpart. Therefore the InMsg2HLAMeth block is created for the sake 

of completeness, but left as a stub. The collection of all in-events on the FAM side are 

created only as a result of out-event transformation as explained above and shown in Figure 

5.20. 

 

  

 

Figure 5.20 ACM out event to FAM out/in event federation execution 
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 Before moving into non-durable and durable message transformations, it is worth to 

clarify that, the durability and non-durability of ACM message structures is not imposed by 

a standard or field manual, but is introduced in ACMM at the end of our field artillery 

domain analysis as a convenience for providing a correspondence to FAM object and 

interaction classes. Please refer to Section 4.2.1 and [11] for details. 

Non-durable Message Transformation 

 The OutNonDurableMsg2HLAMeth block that handles non-durable ACM out-message 

transformation is sketched in Figure 5.21. The initial rule, GetNDMsg, matches and delivers 

the ACM out-event, non-durable message and FAM LSC to the next rule, and in the 

meantime, programmatically creates a copy of SendInteraction and ReceiveInteraction 

HLA methods using the attribute mapping code. The template HLA methods have already 

been created at a preliminary step, and associated with the global root element for quick 

access (see Section 4.1). The original methods do not contain any arguments, but their 

copied instances will have theirs assigned (such as HLA classes and federate references) as 

the transformation proceeds.  

 

 

 

 

 

 

 The CreateIntCls rule creates a new interaction class corresponding to the ACM 

non-durable message in the FAM FOM. It also sets both of the HLA methods to refer to the 

new interaction class inside their supplied arguments. Finally, it assigns the name of the 

non-durable message suffixed by “IC” as the name of the new interaction class, and 

invokes the user code library to build the interaction class from the non-durable message.  

 The SendRecvIntClsSrc rule of Figure 5.22 is one of the most crowded rules in the 

transformation that actually define the federate-to-federate HLA method transmissions via 

the federation. It first creates a message out-event and associates it with the source instance 

Figure 5.21 The OutNonDurableMsg2HLAMeth bock 
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(i.e., federate) using an ordered connection. Then it associates the out-event to the send 

interaction method using a special connection. Finally, it associates the send interaction 

method to the federation instance using an address connection.  

 After that, a similar set of activities start for the receive interaction method from the 

federation to the target federate. First the receive interaction method is associated to the 

federation instance using an address connection. Then an in-event message is created and 

associated to the receive interaction method using a special connection.  

 The last part of the out-event transformation is done by one of the two parallel rules 

SendRecvIntClsDstInst and SendRecvIntClsDstRef. They similarly associate the 

new FAM in-event to a target instance or an MSC Reference, respectively. 

 

  

 

 

 

 

 The outcome of the non-durable message transformation process is illustrated in Figure 

5.23, showing the partial view of an ACM LSC and its corresponding FAM LSC (in 

abstract syntax) produced as the result of executing OutNonDurableMsg2HLAMeth 

transformation block. The model element stereo-types are tagged in the figure. In the source 

LSC is seen an Oid_W message out-event sent from FwdObserver to BatteryFDC. On 

the produced LSC, this corresponds to two HLA message event transmissions. The figure 

Figure 5.22 The SendRecvIntClsSrc rule 
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shows the FwdObserver federate sending a message out-event of SendInteraction to 

the field artillery federation, and BatteryFDC federate receiving the corresponding 

message in-event of ReceiveInteraction from the federation. Sequencing (i.e., 

precedence attribute) information of the message transmissions are annotated in the callout 

boxes of the figure. The precedence value of the ACM message event is copied to the initial 

FAM message event, and its auto-incremented value is assigned to the second event. The 

algorithm used ensures a conflict-free generation of ordering values throughout the FAM 

LSC. Both of the HLA methods have references to the same interaction class of 

Oid_W_MsgIC type, which corresponds to the transformed ACM message, as their supplied 

arguments (not shown in the figure). 

  

 

 

 

 

Durable Message Transformation 

 Durable message transformation is the most complicated of the LSC instance event 

transformations. Figure 5.24 displays the big OutDurableMsg2HLAMeth bock. It is 
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Figure 5.23 Partial view of non-durable message transformation and its result in FAM 
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defined methodologically similar to OutNonDurableMsg2HLAMeth block, most notably 

being about three times in size. Therefore it is regarded redundant to explain the 

transformation in detail, but appropriate to provide an overview of the differences.  

 The durable messages in ACM are defined to be of three types; namely, instantiation, 

update and deletion (please refer to Section 4.2.1 and [11]). There are three parallel courses 

of transformations that address message out-events of each durable message type. An ACM 

instantiation type message out-event maps to six FAM HLA message out-events. The 

mapping cardinalities of an out-event for update and delete types are both one to two.  

 

 

 

Figure 5.24 The OutDurableMsg2HLAMeth bock 
 

 

 The outcome of the instantiation type of durable message transformation process is 

illustrated in Figure 5.25, showing the partial view of an ACM LSC and its corresponding 

FAM LSC (in abstract syntax) produced as the result of executing 

OutDurableMsg2HLAMeth transformation block. The model element stereo-types are 

tagged in the figure. The source LSC has a single FireCommandSOPInst message sent 

from the BatteryFDC to the FiringUnit. On the produced LSC, this corresponds to six 

HLA message out-event transmissions. The figure shows the BatteryFDC federate 

sending a message out-event of RegisterObjectInstance to the field artillery 

federation, and the FiringUnit federate receiving a following message in-event of 

DiscoverObjectInstance from the federation. Then the FiringUnit federate sends a 

message out-event of RequestAttributeValueUpdate to the field artillery federation, 

and the BatteryFDC federate receives a following message in-event of 

ProvideAttributeValueUpdate from the federation. Finally, the BatteryFDC 
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federate sends a message out-event of UpdateAttributeValues to the field artillery 

federation, and then the FiringUnit federate receives a message in-event of 

ReflectAttributeValues from the federation. Ordering information of the message 

transmissions are annotated in the callout boxes of the figure and are produced similarly to 

non-durable message transformation case explained above. Both of the HLA methods in 

each of the three message event transmissions have references to the same object class of 

FireCommondSOPInst_MsgOC type, which corresponds to the transformed ACM 

message, as their supplied arguments (not shown in the figure). 

 

 

 
 

 

 

 

Non-orderable Event Transformation  

 The non-orderable events constitute the set of instance events that do not require an 

explicit ordering of execution. A relative execution order among the events of an instance is 

implicit along the axis line of an instance; that is, the events that are attached higher up 
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Figure 5.25 Partial view of (instantiation type) durable message transformation and its 
result in FAM 
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along the axis execute before the ones attached lower. However, no claim can be made 

about the execution order of two disjoint events on separate instance axes without using 

explicit ordering [15]. The NonorderableEventTr block performs the transformation of 

non-orderable events. The block matches and dispatches the input packets to one of the 

handler rules according to the type of the ACM non-orderable event. The block is defined 

similar to the OrderableEventTr block in Figure 5.18 and its handler rules are defined 

similar to the simple rules shown there. The handler rules perform the transformation of 

method, end-method, concurrent, end-concurrent, suspension, end-suspension, stop, end-

instance, invariant, end-invariant and simultaneous region. 

Special Associations Formation 

 Most of the LSC transformation blocks and rules are related with instance event 

transformations, which generally involve associations between instance events and 

instances. This top down instance event driven approach successfully addresses the 

majority of the LSC transformation spectrum. However, there is a small set of LSC 

structures not covered up to now that does not involve instances, such as special 

associations pertaining only to events. The SpecialConnsTr block placed at the end of 

the LSC transformation path, is responsible for the transformation of those parts. It is 

deliberately positioned as the last LSC transformation block because it requires all of the 

FAM LSC entities to be already created and available by the time it starts execution; 

otherwise, it is likely to miss the transformation of some special associations. 

 Figure 5.26 shows the SpecialConnsTr block, which is the transformer for special 

associations. There are three kinds of special connections used in this work, namely, the 

ones that associate simultaneous regions to instance events, timer starts to timer events and 

general order elements to ordered events. An in-depth examination of the LSC specification 

and the metamodel might reveal some more special association types, but they are out of 

the scope of this work and indeed are rarely used in practice. The figure additionally shows 

the AscSimRegToInstEv rule as an illustrative example. For any ACM simultaneous 

region that is specially associated with an instance event, the rule matches their 

corresponding FAM simultaneous region and the instance event by utilizing their cross-

links to FAM. Then a similar kind of special association is established between the two 

FAM elements. The other two special connection transformations are defined with the same 

approach. 
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Figure 5.26 The SpecialConnsTr block 
 

 

5.4 Multiple Instance LSC to Binary Instance LSC Transformation of FAM 

 The behavioral transformation of ACM2FAM is a one to one MSC transformation from 

ACM to FAM; that is, a corresponding element of the same type is created on the FAM 

side for each MSC document, MSC and LSC of ACM. Furthermore, the content of an LSC 

is transformed as described in Section 5.3 in detail. At the end of the transformation, an 

equal number of federates to the number of actors in an ACM LSC plus one federation 

instance are created in the corresponding FAM LSC.  

 However, a FAM with this structure does not fully comply with the input requirements 

of the code generator. As explained in [61], the code generator by design expects and 

generates code only for one instance (i.e., federate application) in an LSC. If there are more 

than one instances, exercises have shown that code is generated only for the first one and 

the others are simply ignored. The LSC instance is the focal element in the code generation 

process, and ultimately all LSC instances are generated in separate class files and they are 

declared and used in the diagram code generated from the LSC diagram. Instance codes 

drive the simulation and each instance runs in its own thread.  

 Under these circumstances, a generated FAM has to be refactored into an organization 

completely processible by the code generator. In simplest terms, every LSC that contains 
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multiple federate applications has to be stripped down into as many binary LSCs as the 

number of federate applications, each containing one federate application and the 

federation. This process is depicted in Figure 5.27. In this way, every binary LSC only 

contains its federate’s mutual communication with the federation – a closer organization 

towards a local, federate-oriented view. Note that the stripping process may end-up in loss 

of event orderings in binary LSCs that were implicitly known in multi LSCs due to 

transitive chaining of events among the instances. 
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Figure 5.27 Stripping a multi-instance FAM LSC into binary-instance LSCs 
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 In an effort to adapt a FAM produced as the result of an ACM2FAM transformation for 

code generation, we have developed yet another GReAT transformation that refines a FAM 

having multiple instance LSCs into another FAM having two instance (i.e., one for the 

federate and one for the federation) LSCs. The following sub-sections elaborate on this 

transformation, named Multi2BinaryLSC. 

5.4.1 Initializing Multi2BinaryLSC Transformation 

 The Multi2BinaryLSC is configured first to create a copy of the input model and then 

perform the transformation on that copied model. The start block is shown in Figure 5.28. It 

consists of the bigger Multi2BinaryTr that handles the transformation without handling 

the MSC references. The last block, AscMSCRefs_M2B, is a kind of post-processing step 

that binds the unbound MSC references among each other. 

 The Multi2BinaryTr block consists of two rules, one block and one rule defined in 

sequence. The first rule creates temporary associations between the MSC document, 

federation and environment elements for easy referencing in subsequent rules. The second 

rule simply matches each MSC in an MSC document and passes it to the main block. The 

last rule deletes all of the multi instance MSCs after they are stripped down. 

 

 

 

Figure 5.28 The Start and Multi2BinaryTr blocks 
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5.4.2 Creating Binary MSCs and LSCs per Federate 

 The main transformation block is expounded in Figure 5.29. It consists of an initializer 

rule, InitBinaryMSCLSC, and a reference to the LSC transformer block. 

InitBinaryMSCLSC is a crucial rule where the crux of the multi-to-binary stripping is 

done. It matches every federeate application in the multi-MSC and creates a binary MSC 

and LSC for each. It also creates a new MSC head and instance list for the binary MSC and 

creates a new federate application inside the instance list corresponding to the matched 

federate of the multi-MSC. 

 

 

 

Figure 5.29 Multi2BinaryMainTr block and InitBinaryMSCLSC rule 

 

 

 The attribute mapping code of InitBinaryMSCLSC rule is presented in Table 5.2. The 

naming convention for binary MSC (and LSC) name is the concatenation of the multi MSC 

(and LSC) name with the name of the federate application in question. Another issue to 

resolve during the stripping process is to calculate the positions in terms of coordinates and 

the chart order index properties of the binary MSCs inside the document body. Chart order 

index specifies the execution order of an MSC with respect to others in the containing MSC 
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document. Every invocation of the GetNextChartOrderIndex() method of the user 

code library returns an ever increasing relative offset value that initially starts from 0, and is 

reset per multi MSC. Finally, the activation modes and quantifications of the binary LSC 

are copied from the multi LSC. 

 

Table 5.2 AttributeMapping code of InitBinaryMSCLSC rule 

bMSC.name()=(std::string)mMSC.name()+"_"+(std::string)mFederateApplication.name(); 
bLSC.name()=(std::string)mLSC.name()+"_"+(std::string)mFederateApplication.name(); 
bFederateApplication.name()=mFederateApplication.name(); 
bMscHead.name()=mMscHead.name(); 
bInstanceList.name()=mInstanceList.name(); 
int chartOrderIndCnt=ModelTransUtils::GetNextChartOrderIndex(); 
int yPos = 100*(1+chartOrderIndCnt); 
char yPosStr[10]; 
_itoa_s(yPos, yPosStr, 10); 
bMSC.position()="(100,"+string(yPosStr)+")"; 
bMSC.ChartOrderIndex()=(__int64)mMSC.ChartOrderIndex()+chartOrderIndCnt; 
bLSC.position()=mLSC.position(); 
bMscHead.position()="(100,100)"; 
bLSC.ActivationMode()=mLSC.ActivationMode(); 
bLSC.Quantification()=mLSC.Quantification(); 

 

 

5.4.3 Multi to Binary LSC Transformation 

 The bulk of the transformations consist of multi to binary LSC transformations, 

collected under the LSCTrans_M2B block which is presented in Figure 5.30. The block is 

generally organized in a similar structure with ACM2FAM’s LSC transformation as 

explained in Section 5.3.3. Differences of special interest are emphasized in this section. 

Note that within this and all of its subordinate blocks, the LHS context is the multiLSC and 

the RHS context is the binaryLSC, as input by the blue ports and output by the red ports. 

 

 

 

Figure 5.30 LSCTrans_M2B block 
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 A unique approach is in setting the instance references in a binary LSC to their 

corresponding federate applications in the instance list of the binary MSC, as shown in 

Figure 5.31. The key facilitator is the temporary has-correspInst association that has 

already been established in a previous InitBinaryMSCLSC rule execution. The attribute 

mapping code (not shown in the figure) copies the name and position values of the multi 

instance reference to the binary instance reference. 

 

 

 

Figure 5.31 InstRefTr_M2B block and CreateInstRef rule 

 

 

 Another interesting rule to demonstrate is the binary subchart creator rule depicted in 

Figure 5.32. The originality here is not in the rule pattern, which is more or less the same as 

its ACM2FAM counterpart, but in the employment of a new temporary association and a 

guard expression. The srcLscMsc-dstLscMsc association is used to maintain a direct 

link from every subordinate LSC type; that is, prechart, subchart or inline operand, to its 

MSC ancestor, eliminating the need for the commonly used and expensive GetMSC4LSC 

block, which is explained in Section 6.5.2 and shown in Figure B.59 with details. The 

ifHasCorrespInstRef() method checks whether the given multiSubchart contains an 

instance reference that has a corresponding instance reference inside the given binaryLSC. 

It acts as a filter to uniquely identify the binaryLSC inside which to create a binarySubchart 

that corresponds to the multiSubchart. The guard is extensively used in the rest of the 

LSCTrans_M2B rules. 
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Figure 5.32 PreSubChartTr_M2B block and CreateSubchart rule 

 

 

 The attribute mapping code is the same as its ACM2FAM counterpart, associating 

instance references of the parent binary LSC to the child binary subchart and copying 

activation mode and quantification values from multiSubchart to binarySubchart. 

 The final representative rule set is the blocks that handle out and in message events to 

and from federates and the federation. HandleOut block and FederationOutFederate 

rule are shown in Figure 5.33. In the figure it is seen that for every out message event from 

the federation reference that sends an HLA method to a federate in the multiLSC, a similar 

out message event and HLA method are created from the corresponding federation 

reference to the corresponding federate in the binaryLSC. The other message event 

handling rules are defined similarly. A newly introduced user code library method is 

DeepCopyMgaObject() that traverses the Mga object provided as the second parameter 

and creates a copy of its structure in the stub object given as the first parameter. This is an 

alternative to the CreateInstance() UDM API method that is extensively used in the 

ACM2FAM transformation with a difference in usage context and parameter preparation. 

ModelTransUtils::SetInstRefAssocs4LSCChildren(bSubchart,mSubchart, bLSC); 
bSubchart.ActivationMode()=mSubchart.ActivationMode(); 
bSubchart.Quantification()=mSubchart.Quantification(); 

return ModelTransUtils::ifHasCorrespInstRef(mSubchart,bLSC); 
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Figure 5.33 HandleOut block and FederationOutFederate rule 

 

5.5 FAM-to-Simulation Code Generation and Execution 

 Referring back to Figure 1.1, the content presented up to this point constitutes the first 

phase of the overall transformation process, where ACM-to-FAM transformation is 

explained in detail. In the second phase, the produced FAM is fed to the code generator to 

produce federate source codes, federation source code and useful artifacts such as FOM 

Document Data (FDD). The details of the code generation are presented in [61].  

 Aspect Oriented Programming (AOP) [62] paradigm is adopted in generating HLA-

based distributed simulation code. The AOP approach provides the separation of cross-

cutting concerns. In our case, this allows us to generate code so as to exercise LSCs in a 

computation-free manner. Then application-specific computational (and other non-

communication) aspect advices are hand woven onto the generated base code. On the other 

hand, HLA-specific portions of the code are automatically woven into the base code 

generated from the LSC. 

ModelTransUtils::DeepCopyMgaObject 
                (bHLAMethod,mHLAMethod); 
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 The LSC instance is the focal element in code generation. The federation and the 

federates are all specialized from the LSC instance element. All LSC instances are 

generated in separate class files and they are declared and used in the diagram code 

generated from the LSC diagram.  A snapshot of the generated source code folders with the 

source files per binary-instance LSC is presented in Figure 5.34. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.35 depicts the static structure of the generated federate application. Each 

instance runs in its own thread. For every LSC message out-event, an RTI ambassador 

method call is made, and for every LSC message input event, a federate ambassador 

method callback is generated. The LSC instance aspect code intercepts the RTI ambassador 

method calls. It executes developer written computation code (e.g., modifying method 

arguments and value of arguments) and then redirects the call to the RTI with the 

computation code in effect. On the RTI side, in addition to LSC, an aspect code (RTI 

Instance Aspect) is generated for every federation execution. This aspect code catches the 

RTI callback methods and forwards them to the LSC Instance (federate application) code. 

Then in the LSC instance aspect code, the result of a callback (with all arguments) is made 

available to the developer. 

 The code generator creates an Eclipse project and stores the generated Java and AspectJ 

codes in the project root folder. We use an AOP-enabled Eclipse installation to weave the 

aspects and run the simulation code. (Eclipse gains AOP capability by installing AspectJ 

Development Tools software on it. AspectJ [63] is an aspect-oriented extension for the Java 

programming language.) An Eclipse screenshot of the generated code from the FAM model 

of an AdjFFE mission scenario [11] of the field artillery domain is displayed in Figure 5.36. 

The details of code generation for the AdjFFE case study are presented in [84]. 

…  … …  
 

Figure 5.34 Sample generated source code folders and files view 
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Figure 5.35 Static structure of a generated federate application [61] 
 

 

 

 

Figure 5.36 A screenshot of the generated AdjFFE mission code in Eclipse 
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 After the aspect codes are written and the source is compiled the simulation is run for 

execution. Currently the code generator supports the RTI implementation developed by 

Pitch Technologies (certified for IEEE-1516), named pRTI. A pRTI screenshot of an 

AdjFFE simulation execution is shown in Figure 5.37. 

 

 

 

Figure 5.37 A screenshot of an AdjFFE simulation execution in pRTI 
 

 

5.6 Analysis of the Transformations 

 Wijngaarden and Visser [64] identify three fundamental aspects of transformation 

mechanics, namely, scope, staging and direction. Although these aspects are intended for 

evaluating transformation approaches in a broader sense, it can still be referred in assessing 

this specific transformation work. Besides these, modularity is recognized as a key aspect 

to achieve reusable and adaptable transformation definitions [65]. Internal transformation 

composition [66] is an issue which is closely related to modularity. Composition of 

transformation definitions requires a proper modular construct, providing a composition 

operator, such that separate transformation definitions can be created as composable units. 

In this section we analyze our two phased transformation work from the points of view of 

modularity, internal transformation composition, staging, scope and direction.   
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5.6.1 Modularity Analysis 

 Modularity is a key factor in developing reusable and maintainable transformation 

definitions. Through a modular construct, decomposition and composition are possible. 

Transformation reusability is facilitated if a transformation unit has a specification, so that 

the developer only needs to know what is transformed into what, but not how the 

transformation is done. ACM2FAM transformations clearly comply with this principle 

because Section 5.2.1 explains which parts of the ACM data model are transformed into 

which parts of the FAM data model, and Section 5.3.3 does the same for the behavioral 

models. These statements are made prior to how the transformations are actually explained 

in detail. Figure 5.1 provides an overview of the modular breakdown of the ACM2FAM 

transformation. Following this breakdown, the whole transformation is defined as a set of 

hierarchical transformation blocks, down to individual transformation rule level. Moreover, 

the use of expression references for recurring transformations provide us transformation 

rule and block reuse. 

5.6.2 Internal Transformation Composition Analysis 

 The behavior representation formalism LSC/MSC provides a comprehensive instance 

decomposition construct [15]. The inner structure and behavior of an instance kind is 

defined through an MSC document with the same name as the instance kind. To indicate 

how the behaviors described at different levels of abstraction are related, the behavior of an 

instance inside an MSC diagram can be specified to be refined in an MSC of the MSC 

document defining the instance being decomposed.  

 In this thesis, BatteryFDC is a decomposed instance that is further refined into another 

MSCDocument of its own, which models the internal organization and workflow of the fire 

direction center of a battery. Work is under way to complete the BatteryFDC 

transformation. From a vertical perspective, we perform ACM2FAM and 

BatteryFDC2FAM transformations in composition. From a lateral perspective, the two 

phased end to end transformation presented in this paper is logically a composition of 

ACM2FAM and FAM2Code in sequence. Moreover, at a finer level, data and behavior 

model transformations within ACM2FAM are also performed as a composition of the two. 

The horizontal and vertical internal transformation compositions performed in this work are 

summarized in Figure 5.38. As a final remark, GReAT does not provide a composition 

operator in the sense of [66]. The closest construct can be the expression reference [15] that 

is used to invoke another transformation rule or block, but this not the same as invoking a 

separate, independent transformation. 
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Figure 5.38 Horizontal and vertical internal transformation compositions 
 

 

5.6.3 Staging Analysis 

 Staging is the ability of a transformation tool to split a transformation definition into 

several stages. Usually, model transformation languages are single-stage tools, that is, the 

transformation execution consists of applying the transformation rules as a whole. In 

contrast, a multi-stage generate approach allows a transformation definition to be split into 

several independent stages, each one generating a part of the target model, and then one or 

more final merging stages connect the results of the previous stages.  

 This aspect is inherent in our two-phased transformation mechanism, as seen in Figure 

1.1. The first phase transforms an ACM into FAM and the second phase transforms the 

generated FAM to simulation code. Note that in this thesis, the stages are literally loose in 

that, the first phase is a GReAT transformation, while the second is actually a model 

interpretation over the FAM model. The only constraint is that ACM2FAM transformation 

must precede FAM2Code and that the output of the former is the input of the latter. It is 

necessary to note that GReAT itself is a single-stage tool, but our end-to-end mechanism is 

a staged approach. Finally, we do not have the so called final merging stage. 

5.6.4 Scope Analysis 

 Scope is the area of a model (either source or target) covered by a single transformation 

step, where a transformation step is usually a single rule application. The pivot of a 

transformation step is defined as the main source element from which a rule resolves. Four 

main types of transformation steps can be identified between a piece of source model and a 

piece of target model, namely local (source) to local (target scope), local to global, global to 

local and global to global transformations.  
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 In a local to local transformation step, a source element can be directly translated to a 

target element. All the information needed to create the target element is accessible (i.e. can 

be easily reached) from the source element. Many of the transformation rules in this work 

are of local to local type. Especially, most of the LSC transformation rules are local to 

local, except for the ones associated with the payloads of the communicated messages. This 

is not surprising since the LSC metamodel is used for behavior modeling of both domains 

and we would generally expect behavior preservation across domains. After all, a 

simulation model is a representation of the real world in a different formalism. 

 In a local to global transformation step, a source element is transformed into several 

target elements. Usually, one of these target elements is part of the piece of target model 

being generated by the rule, while the other target elements need to be allocated in a 

different part of the target model. These target elements are referred to as non-local results. 

A considerable amount of rules in this work are of this type. This is mostly due to the fact 

of transforming a PIM into a PSM which require the introduction of model elements 

regarding the platform and other target domain specific aspects. Examples to this category 

on data model transformation side include rules that initialize HLA data types, FOM and its 

sub-container elements, rules that create and populate interaction and object classes and 

rules that create the federation structure elements. On the behavioral model transformation 

side are the rules that create federation initialization and tear-down, and especially, the 

orderable event transformation rules for durable and non-durable messages, which are the 

most complex and platform specific content adding rules, are typical examples. 

 In a global to local transformation step, additional information is needed to create a 

target element from a source element. This additional information is not easily accessible 

from the source element being transformed (i.e. the pivot), but a complex query is needed. 

This kind of situations stemmed frequently in this work. GReAT has two handy 

mechanisms in easing this burden, called “global container” and “cross-links”. Global 

container contains elements that have global scope; that is, they are accessible throughout 

the whole transformation, and it is not necessary to pass them along in the context. Cross-

links establish cross model associations between the source and target metamodels (see 

Section 5.1 for both constructs). Many rules spread throughout the data and behavior 

transformations employ cross-links or global containers, and thus are examples of global to 

local transformation step.  

 Global to global transformation is a combination of the previous two situations. They 

usually involve complicated rules. We have tried to avoid such cases as much as possible 

since pattern matching is an expensive operation. Our approach was to divide the 
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transformation into a set of serial and/or parallel smaller rules, each exhibiting a local to 

local or local to global pattern. In spite of our efforts, the orderable event transformation 

rules for durable and non-durable messages are still quite complex and are global to global 

type of transformations. 

 An interesting aspect of ACM2FAM transformations related with the scope topic is the 

employment of the user code library. This library that we’ve written in C++ is invoked 

from within various transformation rules to complement the graph based transformations 

with a high level programming language support. It utilizes the flexible and powerful UDM 

API [34] to manipulate the GReAT transformation model to completely handle or partially 

assist a number of the transformation rules. This resulted in a reduction in the number and 

complexity of the transformation rules (i.e., simplify global-to-global rules into local-to-

global, or global-to-local and the like).  

5.6.5 Direction Analysis 

 Finally, direction refers to whether a transformation is controlled by the structure of the 

source model (source-driven) or by the structure of the target model (target-driven). Since 

this is a characteristic of the underlying transformation language, there is not much to 

discuss on this topic here. It should be enough to state that GReAT is a source-driven 

transformation language and thus, so is the ACM2FAM transformation. 

5.7 Related Work on Model Transformations  

 Although there is a wide range of works in the literature that are focused on behavioral 

or data model transformations, to our knowledge, the transformation of a fully-fledged 

conceptual model to an executable model has not been reported before. We treat both data 

and behavior on equal grounds in our transformation perspective and put forth a two-

phased transformation framework for PIM-to-PSM and PSM-to-executable code 

transformations. The section starts with transformations targeting simulation models, which 

are the ones that adopt similar approaches to this work, and continues, in decreasing 

relevance, with others. 

5.7.1 Transformations Targeting Simulation 

 The past few years have seen the publication of ontologies for a large number of 

domains. The modeling and simulation community is beginning to see potential for using 

these ontologies in the modeling process. There is a group researchers who tend to 

formulate CMs as ontologies and then follow a transformation path towards (executable) 

simulation models. Silver et al. [107] suggests a tool called Ontology Driven Simulation 

(ODS) that establishes relationships between domain ontologies and a modeling ontology 
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and then uses the relationships to instantiate a simulation model as ontology instances. 

Then, translating these instances into XML based markup languages and then into 

executable models for various software packages are also possible. As a case study, they 

map Problem-oriented Medical Records Ontology (PMRO) [108], which represents a 

hospital emergency department, to the Discrete Event Modeling Ontology (DeMO) [101], 

which describes a discrete event simulation from state, event, activity, and process oriented 

world views. The DeMO instances were then translated into to Extensible Process 

Interaction Markup Language (XPIML) [109], which then could be translated by the tool 

into executable models for either JSIM or ARENA tools. This work is principally similar to 

ours in that it employs a multi-phased transformation technique from a domain model down 

to code. Yet, the source domain ontology to DeMO and DeMO to XPIML transformations 

are not done automatically, but manually with the help of GUI supported mapping tools.  

 Another ontology-based work is presented by Durak et al. [110], where they semi-

automatically transform the Trajectory Simulation ONTology (TSONT) [111] models to 

two different target models. Two different tools are used for two different programming 

paradigms. For object oriented programming paradigm, the OWL2UML tool transforms 

OWL ontologies to UML class diagrams with user guidance [112]. Then, Platform 

Independent Framework Architecture or trajectory simulation reuse infrastructure is 

constructed by means of user guided transformations. For function oriented programming 

paradigm, TSONT2SIM tool [110] generates MATLAB Simulink block definitions by 

transforming the trajectory simulation function definitions captured in TSONT. This double 

targeted transformation work requires man in the loop in its processes and currently does 

not produce executable code. 

 Küçükyavuz et al. [93] propose a method for transforming KAMA [52] mission space 

conceptual models into simulation space BOMs [98]. They have established mappings from 

KAMA elements and attributes to BOM elements and attributes in a tabular format. They 

have demonstrated the applicability of their approach on a radar warning receiver mission 

space model. They have discovered that there were some fields in KAMA that had no 

correspondence in BOM and vice versa and argue that this should be anticipated since 

KAMA and BOM have different concerns and abstraction levels. Unlike ours, this work 

presents sketchy mappings without any transformation automation and code generation. In 

our work, we also have partial correspondence between ACM and FAM, but we obtain a 

complete transformation from ACM to FAM thanks to the information embedded inside the 

transformation rules. 
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 Etienne et al. [90] report on French military’s work to improve interoperability between 

their simulations. They have investigated the feasibility of two aspects of the MDE 

approach for their needs: high quality code design through a prototype of Domain Specific 

Language (DSL), and model transformation, through an HLA code generator, associated to 

the former DSL. They demonstrated a case study based on a simple tank platoon mission. 

An interesting aspect of their work is that they use the same modelling and model 

transformation tools used in this thesis, namely, GME and GReAT.  Consequently, they 

concluded that the MDE appears to be powerful in easing dialog between officers and 

engineers, and enabling short development or modification cycles through drag/drop model 

reuse and automated HMI generation, for instance. 

  The CAPSULE study [91] is another French military contracted work that aims to apply 

the MDA approach to the M&S domain to investigate the degree of portability, 

interoperability and reuse MDA can offer for their simulations. The study was conducted in 

three stages, where, in the first stage, a suitable state of the art model transformation tool is 

selected (which turned out to be MIA-Transformer). In the second stage, the feasibility of 

applying such an approach on three existing simulation “frameworks” (HLA, Escadre, 

Ligase) by using a technique they called “MOF transformation” is investigated, and in the 

final stage, the design and development of a demonstrator that addresses HLA and Ligase 

target simulation platforms is done. During the study, a meta-PIM and three meta-PSMs for 

the three target simulation platforms were created, all being in XMI format. The generated 

PSMs were opened in Rational Rose, and C++ skeleton code was generated automatically. 

Note that the reported transformations covered only data models; behaviour was not 

included.   

 Experiences of Raytheon Missile Systems on MDE are highlighted and summarized in 

[92]. For the last several years, Raytheon has been employing auto-code processes and 

tools to facilitate rapid deployment of models and algorithms into Integrated Flight 

Simulations (IFS). The paper demonstrates the concrete benefits of employing MDE 

approach at Raytheon through several benchmark charts and tables. It concludes that the 

MDE processes significantly reduces overall cost and readily allows fidelity enhancements, 

yielding better system performance assessment and characterization. They utilize MDE 

approach only for direct code generation from relatively small models; there is no usage of 

any intermediary PIM to PSM transformations. 

 The purpose of PEO Soldier Simulation Road Map study [88] is to continue to build a 

capability for Program Executive Office (PEO) Soldier to assess the platoon level 

effectiveness of different soldier equipment architectures using distributed simulation. The 
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capability is being built by means of Army’s Modeling Architecture for Technology, 

Research, and Experimentation (MATREX), which is an implementation of a unified Army 

federation to support distributed engineering-level analysis within a greater force-on-force  

environment. At its core, MATREX provides an RTI, a FOM, and a middleware 

independent capability that allows simulation developers to move with agility from 

different implementations of HLA or Test and Training Enabling Architecture (TENA). 

These capabilities are enabled by a set of components and tools. Key components include 

battle command management services which implement federation services for 

communications, situation awareness, and command and control. The Protocore tool is a 

simulation architecture development environment that allows federation developers to 

design a FOM and automatically generate source code for participating simulations that 

interact with that FOM in a middleware independent fashion. This capability is based on a 

transformation from a PIM specification, the FOM to a PSM specification, such as HLA 

1.3. In this sense, MATREX is a realization of MDA in support of federated simulation. 

Within the scope of the study, the PIM for a PEO Soldier scenario is demonstrated to be 

transformed into its corresponding PSM. They use UML sequence diagrams to describe 

their selected scenarios, whereas we use LSCs for the complete behavioral specification of 

the missions of interest. 

 Ambrogio et al. [113] introduces a model-driven approach that allows automating most 

of the activities that are traditionally carried out manually to implement a DEVS-based 

simulation from a high-level model of the system under simulation. The paper illustrates 

the set of UML profiles and model transformations that endow simulation developers with 

an automated approach that produces a significant portion of the final simulation code. As a 

case study, the production of a DEVS/SOA simulation for a basic queuing system is 

presented. The model-to-model transformations specified in ATL [7] are executed by use of 

the ATL engine provided by the Eclipse tool, while model-to-text transformations specified 

in Xpand are executed by use of the openArchitectureware tool [114]. Specific and mostly 

automated processes have been introduced to yield not only the code but also the 

configuration data for the DEVS/SOA platform, so as to produce a DEVS/SOA simulation 

ready to be executed. This work is a two-phased model transformation effort similar to 

ours, however, in its present form, the approach only produces the core skeleton of Java 

classes that implement DEVS models. Work is in progress to deal with the inclusion of 

UML-based abstract models that specify the simulation logic (i.e., behavior) as well. We 

incorporate the computational part of the simulation logic in the form of advises to be 

woven into the generated AspectJ code. 
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5.7.2 Automata, State Chart, State Diagram Transformations  

 Szemethy [67] introduces a tool that performs transformations from high-level domain-

specific models of the time-triggered language, Giotto, which is used to describe embedded 

systems, into analysis models represented in timed automata. It uses the same modeling and 

transformation tools employed in this work, namely GME and GReAT. It is an early case 

study demonstrating PIM to PSM transformations of the kind shown in this thesis. 

According to the time-triggered paradigm, all activities of the system must be strictly 

periodic, with possibly different frequencies in different modes of operation. The activities 

in our domains, on the other hand, are majorly event driven. Time triggering exists in only 

a few specific places to initiate various (sub) scenarios in a field artillery mission. Our work 

has a wider and more diverse scope in terms of the source and target models. The number 

and complexity of our transformation rules also outrange theirs. Since the concepts and 

functionality of their source and target domains are closely related, the mapping of Giotto 

entities to timed automata entities is simple and straightforward. The only sophistication in 

the course of their transformation is the generation of timed automata instruction sequences 

from Giotto timing constraints. 

 There is a body of work dealing with the translation of sequence diagrams to state 

charts, see for example, [68][69][70]. The approaches in these examples differ from 

traditional graph transformation approaches, where the transformations are specified over 

the abstract syntax. Gronmo and Pedersen [68] base their transformation on the concrete 

syntax of both domains. Ziadi et al. [69] and Sun [70] define their transformations by 

pseudo-code operating on algebraic definitions. Our transformation is defined over the 

abstract syntax of the source and target domains and hence any input model and its 

produced output model are guaranteed to be correct by construction. Owing to the 

simplicity and small size of the sequence diagrams and state charts, the set of 

transformation rules in these works are relatively smaller. In our opinion this characteristic 

facilitates defining the transformations over concrete syntax. The field artillery data model, 

HLA OMT and LSC domains, on the other hand, are much bigger and complex. In order to 

cope with this complexity, our transformation additionally incorporates a fast user code 

library that leverages the execution performance. 

 Van Amstel et al. [71] have developed a transformation from Algebra of 

Communicating Processes (ACP) into UML state machines. Using the Rhapsody tool they 

generate code to execute the produced UML state machine and the action dispatcher. By 

this way, the execution of an ACP model is simulated. On the other hand, its behavior 

preservation is limited to execution trace equivalence. In our transformation, both data and 
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behavior are preserved and this is traceable through the rule definitions. Note that we are 

performing transformation between two totally unrelated domains and our source model 

has smaller information content than the target model. Information is not lost, but increased 

and the transformation rules are where this is done. 

5.7.3 LSC to Code Transformations 

 Code generation from behavioral specifications in LSC is an ongoing challenge for 

researchers [72]. There is also a body of literature dealing with transforming LSCs to some 

executable form; in particular, state charts [73][74]. We favor executable code generation 

directly from LSC as this approach tends to yield more readable code. Harel and Marelly 

[43] propose a play-in/play-out engine to capture behavioral requirements. The Play-Engine 

automatically constructs the behavioral model in LSCs, and then provides a simulation of 

the execution of the LSC diagrams by playing out different scenarios. In contrast, our 

metamodeling approach, due to its data model integration capability, provides the 

opportunity to extend or tailor the code generator or interpreter in accordance with the data 

model.  

5.7.4 Schema Transformations  

 In software engineering, the functional requirements of the system are formally 

specified in a conceptual schema, or a conceptual (data) model. Conceptual schemas are 

described in a conceptual modeling tool/language such as GME or UML. Schema 

translation has been considered an important practical problem in the fields of databases 

and information systems [75]. The topic has nowadays gained more momentum due to the 

need for translation between ontology languages and for translation between models in the 

sense of MDA.  

 The MDA of OMG specifies three system viewpoints and three corresponding default 

system models: a CIM, PIM and a PSM. Semantics of Business Vocabulary and Business 

Rules (SBVR) defines the metamodel for documenting the semantics of business 

vocabulary, business facts and business rules. Business rules in SBVR are structured by 

logical semantic formulations, which facilitate their automation in software systems. In 

fact, SBVR specifies a metamodel to describe CIMs and UML is the standard language 

proposed by OMG to build PIMs (consequently, the conceptual schemas).  

 Raventós and Olivé [76] propose an automatic approach to translation between schemas 

modeled in UML and SBVR vocabularies and rules, and vice versa. The authors have 

formulated this translation as a particular application of the more generic problem of 

schema translation. Both the source and target schemas used in the translations are 

instances of metaschemas which are MOF-compliant [16]. The main contribution of their 
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approach is the extensive use of object-oriented concepts in the definition of translation 

mappings, particularly the use of operations (and their refinements) and invariants, both of 

which are formalized in OCL. 

 To facilitate the application of their approach, they have developed a transformation tool 

framework on top of Eclipse tool, that allows designers to model the UML context schema, 

generate the corresponding SBVR instance and finally obtain a natural language description 

of the schema (in Structured English) [77]. The UML/OCL-to-SVBR transformation is 

formalized in the ATLAS Transformation Language and the SVBR-to-text transformation 

is implemented in MOFScript. A surprising aspect of their study, is that they follow a PIM-

to-CIM and CIM-to-structured natural language transformation direction, which is the 

opposite of most MDE practices.  

5.7.5 Web Services Transformations 

 Heckel and Lohman [78] propose a model-driven approach to the development of 

reactive information systems, such as dynamic web pages or web services, modeling their 

typical request-query-update-response pattern by means of graph transformation rules. The 

transformation is carried out using story diagrams which is a graph transformation language 

based on UML and Java. With the transformations, source models in UML are transformed 

into contracts expressed in the Java Modeling Language (JML). Unlike ours, this work is a 

single step MDD effort that does not further attempt to generate executable code from the 

produced JML models.  

 Another work in the Web domain is the UML-based Web Engineering (UWE) approach 

[79], where rule-based transformations written in ATL are defined for all model-to-model 

transitions, and model-to-code transformations pertaining to web content, navigation and 

presentation. First, business process models are transformed to UML activity diagrams by 

the ATLAS transformation engine. Then a run-time environment built on top of the Spring 

framework performs direct execution of the generated activity models. In a more recent 

work [80], a graph transformation approach is taken to refine business-oriented architecture 

models to service oriented architecture models, focusing on the ability of dynamic 

reconfiguration typical for Service Oriented Architecture (SOA). The authors have formally 

defined the refinement relations from the component-based business level architectural 

style to the SOA style in UML, but the work is still under way to implement the 

transformations in Graph eXchange Language (GXL), the language supported by both the 

AGG transformation tool and CheckVML, a model checker for graph transformation 

systems.  
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5.7.6 Transformation by Example 

 A noteworthy approach to model transformation, so called transformation by example, 

is proposed in [81]. The authors view model transformation essentially as a combinatorial 

optimization problem where the transformation of a source model is obtained by finding, 

for each of its constructs, a similar transformation in an example base. Two strategies based 

on two search-based algorithms, namely particle swarm optimization and simulated 

annealing, are employed. The approach is illustrated and evaluated on the well-known case 

of transforming UML class diagrams to relational schemas. This work is unique in not 

requiring metamodels and transformation definitions for the source and target models. 

5.7.7 Miscellaneous UML-based Transformations 

 Braga [82] proposes an automatic and validated code generation process from Role-

Based Access Control (RBAC) policies into aspect code. They have developed a 

transformation from SecureUML, a RBAC policy specification language, to AAC, a simple 

abstract aspect-oriented language. Both languages are specified by metamodels defined in 

UML. The transformation essentially maps each entity and its associated RBAC policy in 

the source model to an abstract entity class and an aspect in the target model. The abstract 

class represents an interface that a concrete implementation of the controlled component 

must implement. The aspect implements the access control constraints that must hold when 

a component's method is called. As the last step, AspectJ code is generated from the 

produced AAC model. The transformation is implemented as a Java application on top of 

an OCL evaluator named ITP/OCL. This work purely takes an RBAC perspective on a 

generic entity-relationship data model formation. The metamodels and the transformation 

do not incorporate any sort of behavior representation that would capture the processes or 

workflows in a domain. 

 UML2Alloy [83] is a tool which transforms a subset of UML class diagrams and OCL 

constraints into the Alloy language, so that the generated specifications in Alloy can be 

automatically analyzed by the Alloy Analyzer, a tool used for identifying design faults in a 

software specification. This work differs from ours in that it employs transformations for 

UML model analysis with the motivation to catch design faults at earlier stages of software 

development lifecycle, whereas we are transform a conceptual domain model down to its 

executable simulation model. Another major difference is that UML2Alloy uses the SiTra 

model transformation framework, which is a minimal, Java based library that simply 

facilitates a style of programming that incorporates the concept of transformation rules. 

SiTra is a primitive tool compared to GReAT in terms of the offered transformation 

capabilities. 
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 This thesis has presented an end to end comprehensive model transformation endeavor 

from the field artillery conceptual model, ACM, to the HLA federation architecture model, 

FAM. The resulting FAM is further processed through the code generator to generate 

executable simulation code. The ACM and FAM both consist of data and behavioral parts 

and the transformations revolve around transforming the two parts in sequence. In the data 

model transformation, ACM domain actors are transformed into federates and the 

communicated message structures are transformed into HLA classes. The behavior model 

transformation is based on transforming ACM LSCs that represent domain actor 

communications to FAM LSCs that represent the corresponding HLA federate 

communications via the federation execution inside the RTI. The extra platform specific 

content and logic required for FAM is provided through the transformation rules, and the 

user code library employed by the transformation.  

6.1 Discussions on ACM Model and ACM2FAM Transformation 

 This section briefly discusses on ACM and ACM2FAM transformation. Appendix D 

provides hints and recommendations derived from our experience in realizing ACM2FAM 

transformation for future model transformation developers of GReAT. 

  Within the scope of this thesis, ACM has initially been developed in order to lay the 

groundwork for transformations. ACM’s information content is obtained from the US 

Army field manuals in the public domain. ACM’s data model is based on message formats 

and JC3IEDM, and its behavior model is based on LSC, whose metamodel was developed 

in another work together with FAM. The challenges encountered and an evaluation of 

employing LSC notation in observed fire mission modeling is shared with the community 

[11]. Another intention for developing ACM is to bring the attention of the CM community 

to the employment of chart notations in describing military tasks, which has not been done 

before in the literature. 
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 The transformation from an ACM to FAM provides the ability to exercise the resulting 

federation architecture. In a fully automated exercise, intra-federation communication will 

follow the specified patterns; the communicated values, being randomly generated, will not 

be correct. This can be regarded as a first-cut simulation of the exercise. Taking a step 

towards complete federate application generation, the developer has to weave the 

computation logic onto the generated code. 

 A notable downside of the transformation is its poor performance especially when 

source models get bigger. This is accountable for every rule execution boiling down to 

solving the sub-graph isomorphism problem on the input model and the match pattern. This 

burden is ameliorated by breaking rules into reasonably small chunks and providing as 

much initial binding on the match pattern as possible. Another facilitator is the employment 

of a C++ user code library that programmatically aid in transformations. This provides a 

two-fold gain in that, first, the execution of the code library is faster, and second, it saves 

from tediously defining many similar transformation rules.  

6.2 Discussions on FAMM and the Code Generator 

 FAMM has been developed in a previous work and tested together with the code 

generator in various exercices [85][86][87], wherein the FAMs were manually developed in 

close coordination with the code generator team. Eventually, base codes were successfully 

generated, aspects were woven and the resulting codes were successfully run on RTI. On 

the other hand, problems and unforeseen issues emerged  when we started testing FAMs 

that were automatically produced as results of ACM2FAM transfomations. Even before 

being able to test code generation for auto-produced FAMs, the FAMM itself needed 

various modifications in order for it to be used as a target (meta)model in GReAT 

transformations. In short, changes were required on both FAMM and the code generator in 

order to have the two-phased end-to-end ACM to executable code transformation vision to 

flourish in practice. This section informally asseses FAMM and the code generator for their 

usability in graph-based model transformations based on our experience, and categorically 

summarizes the required changes. The summary of changes done in FAMM and the code 

generator are provided in Appendix C. All of the new FAMM versions along with a change 

log per version as well as the modified code generator source are available through the 

thesis distribution CD. The source code also reports the changes done in comments. 

6.2.1 Discussion and Assessment of FAMM 

FAMM has been developed in GME as a metamodel for building HLA-based distributed 

simulation models [85]. Its development was closely coordinated with the development of 
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FAM to Java/AspectJ code generator [86]. Although its prospective role as the target model 

for transformations from ACM was also taken into account in its design, it was never tried 

in GReAT tool until it was fully completed. We started encountering various issues from 

the moment we have imported FAMM into GReAT for use in ACM2FAM transformation 

definition. The paragraphs below briefly explain the adaptation process of FAMM to make 

it compatible with GReAT transformations. Note that issues mentioned in this sections are 

specific to FAMM’s usage in GReAT. Otherwise, it is flawless as a GME domain model 

for HLA.  

Before starting with the issues, it is worthwhile to recall that GReAT transformation 

models (of UMLModelTransformer paradigm) are first processed by the GReAT Master 

Interpreter to generate C++ code of the metamodels and transformation definition and 

then the Graph Rewrite Engine executes this code to actually perform transformations. 

All of the connection elements that are used in associating more than one pair of 

modeling elements had to be avoided. (Because if a connection element is used more 

than one time as source-to-connector or connector-to-destination, then the code generator 

generates duplicate method definitions for those connection parts, which result in 

compile errors.) This is achieved by building a connection hierarchy so that ambiguities 

in code generation are eliminated. 

All of the modeling element, role or attribute names that are at the same time C++ 

reserved words (such as if, else, for, string, etc) had to be renamed for obvious 

reasons. Not as obvious as these were, the GReAT interpreter generating utility methods 

(such as “Create”) which had the same name with some other FAM elements. Such name 

clashes, which could only be detected by trial and error, also had to be resolved. 

 Some FAM elements in different paradigm sheets were named the same. This does not 

cause any problem as far as GME modeling is concerned; however, the GReAT interpreter 

produces duplicate class names for those elements, which result in syntax errors at compile 

time. Thus, name uniqueness had to be enforced throughout the entire FAM. 

 This last action is not taken due to an obligation, but just for convention. A reference 

that points to all of a super class’s child classes is made to refer to the super class only, in 

order to reduce redundancy.   

6.2.2 Discussion and Assessment of the Code Generator 

 Before starting the discussion on code generator, it is worthwhile to mention about a 

post-processing work that has to be done on a produced FAM, in order to comply with the 

requirements of the code generator on LSC structure. The code generator expects an LSC to 

only cover a single federate and its communication with the federation. The developers of 
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the code generator had the motivation that such a local federate view would better facilitate 

code generation. Consequently, the Multi2BinaryLSC transformer was developed in order 

to refine FAMs having multi instance LSCs into FAMs having binary instance LSCs, as 

explained in Section 5.4. 

 After FAMM was sanitized of the aforementioned issues that prevented it from being 

used in ACM2FAM transformations, we could start generating FAMs that correspond to 

various AdjFFE ACM mission models. Then these FAMs were opened in GME and the 

Code Generator (CodeGen) plug-in was run on them to generate simulation base codes. 

However, things did not go as expected again and run-time errors were thrown. The 

problems generally had to do with the imperfection of the CodeGen, because our AdjFFE 

FAMs were automatically generated and they were correct-by construction due to their 

compliance to FAMM. Note that the fixes done on the original FAMM introduced nothing 

that would have negatively affected the CodeGen’s execution. The reason for these issues, 

we think, is that the development of CodeGen was majorly steered by the samples that were 

manually created during FAM testing. The scope and representative power of those 

samples were not as far-reaching as AdjFFE FAMs. As a result, some of the permissible 

FAM structure combinations were simply missed by the CodeGen. These patterns were 

revealed during modeling with an ACM perspective and mindset. In addition to these, the 

CodeGen simply had some syntactic and semantic flaws in its code generation logic and 

shortcomings in FAM coverage that we have discovered during our exercises. The rest of 

the section summarizes the issues fixed in the CodeGen.  

 Since CodeGen traverses a given FAM to generate code, most of the modifications that 

we had to make in FAM had corresponding change requirements in CodeGen. These 

include; writing getter methods for the newly introduced connection types in FAMM, and 

calling them in appropriate places, reflecting any FAMM modeling element name change 

(either due to reserved name clash, duplicate name definition, or convention) in the code. In 

the original CodeGen, only the “DefiningPart” of an MSCDocument was processed, but the 

similar “UtilityPart” was commented out. We have opened up the comment since AdjFFE 

FAMs contained both defining and utility parts. 

  Other more serious issues include; all OrderedConnections have priority 

attributes as dictated by the MSC metamodel, which indicate relative execution order 

among the events. CodeGen processes the OrderedConnections inside a list data 

structure that is indexed by the connections’ priorities. CodeGen overlookingly assumes 

that the list index starts with one and sequentially increases in ones. This assumption might 

be valid for a manually constructed FAM, but AdjFFE FAMs are auto generated from their 
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corresponding ACMs. Even if we try to arrange the list index as required, we end up in 

non-sequentially ordered priorities in the produced FAMs, because the number of 

OrderedConncetions at least doubles due to extra HLA-RTI communications. We have 

devised more sophisticated data structures and algorithms to correctly work with a sparsely 

filled OrderedConnection list. If the code was left intact, then either no or semantically 

incorrect and missing code was generated. 

 The AStyle plug-in, which is a source code indenter, formatter, and beautifier for Java 

did not work for some reason and caused run-time error. We had to abandon its usage. 

 Occasionally, null value checks for variables were not written, causing null pointer 

exceptions at runtime. Such issues are the results of making assumptions on the input 

FAMs and quick-and-dirty coding practice. We have corrected almost all of these cases.  

 The generated code for inline operand “Opt” contained a syntax error. Opt was most 

probably never tested by the CodeGen team before. We have correctly added the “.” field 

accessor before the “coldChoices” field of the active LSC. 

    Since CodeGen was designed as a GME plug-in, there was no “main” Java method to 

launch it standalone in Eclipse environment. We have defined a main method inside the 

LSCCodeGen class that invoked the main interpreter method with the relevant parameters.  

6.3 A Comparison to MDA  

 This section explores the questions of where the artifacts used in the overall MDE 

activities of this thesis lie with respect to concepts and standards advocated by MDA and 

how our models align with MDA’s triple modeling viewpoints. 

6.3.1 Our Artifacts Associated with MDA Standards 

 Object Management Group (OMG) introduces a four-layer metamodel hierarchy for 

defining modeling, metamodeling, and meta-metamodeling languages and activities in [17]. 

Table 4.2 relates the different levels of models used in this thesis to OMG’s modeling 

hierarchy. Besides that, Figure 1.2 shows the abstraction levels of these domain and 

transformation models with respect to OMG’s hierarchy. Taking this one step further, 

Figure 6.1 associates the concepts and standards that OMG has put into its MDA vision 

with the MDE artifacts employed in this thesis. According to the figure, metaGME, the 

meta-metamodel of GME, is functionally equivalent to MOF of OMG at M3 level. ACMM 

and FAMM, the metamodels of the source and target domains of this MDE work, are 

functionally equivalent to UML of OMG at M2 level. Finally, UMT, the metamodel of the 

FACM2FAM transformation presented in this thesis, is functionally equivalent to QVT of 

OMG at M2 level. 
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6.3.2 Our Models from MDA’s Modeling Viewpoints 

 MDA establishes three different modeling viewpoints [21], called CIM, PIM and PSM. 

The highest level of abstraction is the Computation Independent Model (CIM). This is a 

conceptual model that identifies the concepts and processes important on the business level. 

This is easily mappable to the missions and means identified on the operational level. The 

main artifacts are use cases. The Platform Independent Model (PIM) capture concepts and 

processes in software engineering artifacts of class and object hierarchies, activities, 

sequences, and other means showing the roles of each component. PIMs are very close to 

conceptual models that already use vignette and scenario elements motivating the various 

possible actions and their sequencing. If this conceptual model is mapped to a concrete 

platform, e.g. the middleware to be used, the result is a Platform Specific Model (PSM). In 

the optimal case, the PSM can be used to produce code, as all information needed is 

available. 

 Considering the above definitions, ACMM can best be classified as a PIM since it 

captures the field artillery observed fire domain entities and missions in a UML-based 

notation, yet avoiding any simulation-specific details. The classification of field artillery 

messages in ACMM as durable or non-durable is not evident from the authoritative 

publications we have consulted. Yet, this distinction is free from any simulation notion and 

can even be regarded as a good modeling practice that facilitates building families of 

message structures based on usage characteristics. Eventually, this distinction promotes 

concise ACM2FAM transformations. 

  FAMM, being the HLA domain model, incorporates all the necessary details to 

represent any HLA-based distributed simulation. Similar to ACMM, it uses a UML-based 

Figure 6.1 Associating our metamodeling artifacts to OMG standards 
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notation, hence built out of software engineering artifacts. Different than ACMM, it defines 

constructs that provide interfaces to the underlying implementation platform, which is 

HLA/ RTI. It is relatively straightforward to generate executable simulation code from a 

FAM than directly from an ACM. 

 Having identified ACMM and FAMM as the PIM and the PSM, there is nothing much 

left to identify as a CIM in our work. The narrative model of the field artillery observed fire 

domain provided in Section 2.5 possesses CIM characteristics. It explains the concepts, 

processes and missions of FA concisely, at a natural language level. It incorporates use case 

information, but not in a formal way. It can serve as a (part of) user requirements 

specification of the system to be developed, built as a result of the analysis of the 

authoritative references about the FA domain. Consequently, the FA narrative model seems 

comparable to a CIM. 

6.4 Towards a Domain-Independent CM Transformer for HLA 

The experience gained in this thesis has shown that domain to domain transformations 

are doable to the degree of success in mapping the source domain’s actors and 

communicated data structures to the target domain, and in mapping each set of appropriate 

behavior elements of the source domain to the behavior elements in the target domain. The 

design of these groupings and mappings is the most challenging task of the transformations. 

The behavioral model transformation of ACM2FAM essentially being an LSC-to-LSC 

transformation brings a degree of ease to the process and opens possibility for automation. 

6.4.1 The Transformation Definition Experience 

This section presents a summary of the applied model transformation definition process 

in the course of this thesis, which has evolved based on our experience. It is intended as a 

useful reference for researchers studying graph-based model transformations (in GReAT).  

Admittedly, defining transformations for ACM2FAM in GReAT has been a manual and 

cumbersome undertaking. Working on two large source and target metamodels such as 

ACMM and FAMM surely has a major role in that. In this first experience most of the 

transformation rules have each been defined individually and separately since there were no 

artifacts at our disposal to reuse or utilize. We could start reusing some of the previous rule 

patterns in subsequent rules as we progressed through the process. Along with that, 

GReAT’s being a declarative and visual tool facilitated tackling with the burden of this 

tedious model transformation work.  

We have defined a work breakdown of the overall transformation into fundamental 

modules, such as data model transformation, behavioral model transformation, and a 
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number of others under these. We first started developing the smaller and lower level 

modules, which have already been refined into legitimate conception levels. Then we 

merged the smaller modules into larger ones, and finally connected the behavioral 

transformation module after data transformation module. Modules were represented as 

GReAT transformation blocks with varying depths, eventually ending up in rules. 

Similar to function definitions in programming languages, rules and blocks have 

explicit input and output interfaces consisting of ports. As the rules were defined, they 

were connected to one another and subsequently blocks were connected similarly. This 

development style of GReAT provided an implicit and convenient means for 

transformation sequencing. As the development continued, some rules and several 

blocks turned out to be reusable with some tweaking. The 21 references used in the 

transformation is an indication of the degree of block/rule reuse. 

We have generally adopted a spiral development approach, where blocks and rules, 

and even modules on a larger scale, were occasionally refactored after discussions among 

the research team. Since GReAT transformation rules are defined over source and target 

metamodel elements, even small changes on these could have significant effects on the 

transformation definitions. GReAT documentation [6] explains how updates to metamodels 

are reflected in the transformations. Model migration is based on internal identifiers of the 

model elements, where an old metamodel element reference in a transformation rule is 

directed to the new metamodel element that has the same id. Once the migration is done, 

the old metamodel is manually deleted from the transformation definition. For the 

unmatched model elements in the transformation definition, the associated transformation 

rule elements are left unassigned. Our experience has proved that model migration in 

GReAT is easier said than done. 

We have experienced several model updates in the course of this thesis, of which a few 

caused catastrophic effects, causing the migration process to fail unexpectedly or ending up 

part of the transformation definition being lost. Apparently some of changes in structure, 

inheritance or other type of associations of the metamodel were such that the migration 

engine of GReAT could not cope with them. In such cases, there was no way but to roll-

back changes on the metamodel controllably until the migration worked, and then modify 

the transformation definition so that it would prevent failing when the changes on the 

metamodel were reapplied. Alternatively, we could directly prune the transformation 

definition to a safe point that would tolerate model migration. Then, in any case, we had to 

redefine the pruned parts of the transformation definition in accordance with the new 

metamodel. This is really a painful process, so we advise transformation writers in GReAT 
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to invest their time and effort for obtaining well designed and stable metamodels in the 

beginning before they actually start defining the transformations. Subsequent changes at 

metamodel level end up in expensive reworks on transformation definitions and 

unnecessary skidding to bring the transformation back on tracks. 

6.4.2 The Highlights of ACM to FAM Transformation 

In this section we highlight the corresponding key elements of ACM and FAM matched 

during the transformation, in an effort to identify the points of abstraction in a CM that 

facilitates designing a domain-independent CM transformer for HLA.  

Model transformations are usually defined from more conceptual (e.g. less platform 

specific) to more implementation-oriented (e.g. more platform specific) models. This 

generally implies that many source-to-target model mappings are possible. Besides that, the 

target model is likely to have extra data elements, such as actors and message structures. 

Also, it usually has extra behavior patterns, such as system initialization, complementary 

communications via the extra actors and system shut-down, for which the source model 

provides no clues. Extra behavior patterns and all sorts of book keeping, which do not have 

direct correspondence in the source model, contribute to the level of difficulty in defining 

the transformations. 

In an effort to couple the key source and target model elements participating in 

ACM2FAM transformation in the light of the above points in a nutshell, every field 

artillery actor is mapped to a federate; every non-durable message is mapped to an 

interaction class; every durable data element is mapped to an object class; the federation 

element is brought in as a collection of communicating federates, every actor to actor non-

durable message communication is mapped to a federate to federate communication via the 

federation (executing on the HLA RTI), using a pair of send/receive interaction class 

messages; every actor to actor instantiation type of durable message communication is 

mapped to a federate to federate communication via the federation, using three pairs of 

register/discover object instance, request/provide attribute value update and update/reflect 

attribute values messages; every actor to actor update type of durable message 

communication is mapped to a federate to federate communication via the federation, using 

a pair of update/reflect attribute values messages; every actor to actor delete type of durable 

message communication is mapped to a federate to federate communication via the 

federation, using a pair of delete/remove object instance messages; the default HLA types 

(that serve HLA classes) are brought in; federation initialization is introduced in a 

preliminary LSC by creating the federation execution, joining the federates to the 

federation, initializing time management, and declaring capabilities; federation destruction 
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is brought in to the final LSC by resigning the federates from the federation and destroying 

the federation execution; finally, the rest of the FACM LSC parts are directly (i.e., one-to-

one) mapped to equivalent FAM LSC parts. 

6.4.3 Designing the Domain-Independent HLA Transformer 

Generalizing over the specific model transformation work presented, an interesting 

research question would be whether it is possible to develop a domain-independent 

transformation from any conceptual domain model to the HLA simulation model, FAM. As 

summarized in Section 6.4.2, the experience of ACM2FAM transformation has been useful 

to identify the “hot” points of FAM that would play a pivotal role in generalizing the 

transformation perspective from ACM2FAM to AnyCM2FAM. These points would be used 

in bridging the source model to FAM in defining the transformations. Once these mapping 

points are bound, we have the incentive that it is potentially viable to carry-out the model 

transformation as a domain-independent LSC-to-LSC transformation. 

A PSM is naturally expected to cover the content conveyed by its corresponding PIM 

and introduce extra, lower level, platform related information. Returning to our work, FAM 

enriches the information content with the HLA-based distributed simulation concepts, such 

as federation, declaration, object, ownership, time and data distribution management and 

HLA default data types. These extras have their places in both the data and behavioral 

models and need to be addressed during a Conceptual Model (CM) to FAM transformation. 

In this thesis, this addressing is directly done (i.e., hard coded) inside the transformation 

rules, hence preventing the use of the transformation with other source domains.  

Therefore, the first step forward in obtaining a domain-independent HLA transformer 

should be to devise a mechanism which guides the model transformer in matching the 

relevant elements of the source CM with the aforementioned points in FAM. Also, the user 

code library needs to be adapted for the parts pertaining to the new source CM. Figure 6.2 

shows the architecture of the envisioned Domain-Independent HLA Transformer (DIHT).  

DIHT would be a FAM transformation framework that provides a GUI-based front-end 

adapter to tailor a given CM towards FAM transformation. The adapter’s role would be to 

let the user graphically configure the transformation’s source domain dependent content. 

Tailoring is accomplished by fitting the conceptual model to a so-called abstract FAM-

oriented CM template, which is partly sketched in Figure 6.3 in metamodel form. This CM 

template is derived and generalized from the experience of this thesis. Fitting is used in the 

sense of hooking appropriate user-designated CM elements to the extension points in the 

template model, using an inheritance mechanism in the sense of object oriented 

programming. The framework assumes that the CM consists of actors communicating 
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stateful (i.e., durable) and/or stateless (i.e., instantaneous or volatile) data elements with 

each other. Also, the CM is supposed to use the same LSC metamodel as FAM’s for its 

behavior representation. 

 

 

 

Figure 6.2 The envisioned domain-independent HLA transformer 

 

 

 

Figure 6.3 The overview of the FAM-oriented CM template 
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The result of the adaptation process is an intermediary model which is a unification of 

the template and the given CM. This composite model is then fed to the CM-to-FAM LSC 

transformer to produce the FAM. Specifically, the CM actors and nets are mapped to HLA 

federates and the CM data elements are transformed into HLA classes by invoking the 

configured user code library methods. The LSC-to-LSC transformations are carried out 

using the template model elements, independent of the CM elements in question. This fact 

can be seen  in the LSC transformation rules of Section 5.3.3. The specific CM elements 

are only accessed inside the code library, which is effectively detached from the 

transformations. The Pre and Post HLA generation parts of the transformer are independent 

of the source model and only generate the HLA prerequisities, federation initialization and 

shut down parts of the FAM mentioned in Section 6.4.2. 

 With this architecture, obtaining an executable simulation model for another domain 

would be a matter of developing its data model and integrating the data model with the LSC 

model to obtain a complete CM of the domain. Then the DIHT would be used to adapt the 

CM for HLA through the front end tool and then the rest of the transformation would be 

performed automatically over the LSCs. 

6.5 Future Research Directions 

 This section points to three main future research directions, namely, the development of 

a domain-independent HLA transformer, investigating the possibility for higher order 

transformations, and leveraging this work with BOMs that represent intra-federate state and 

behavior. 

6.5.1 Domain-Independent HLA Transformer 

 This thesis has provided the ground laying work for a future Domain-Independent HLA 

Transformer (DIHT) that can transform any CM to FAM, provided that the CM is 

formulated as entities communicating stateful (i.e., durable) and/or stateless (i.e., non-

durable) data elements with each other, and is based on the LSC metamodel for behavior 

representation. The user needs to pre-process the CM by a front end tool to integrate it with 

the so-called FAM-oriented CM template. Then the resulting intermediate form would 

automatically be transformed to FAM. In this scheme, the specific CM elements would 

only be accessed inside the code library, which is effectively detached from the 

transformation definition (Please refer to Section 6.4 for details).  

6.5.2 Possibilities for Higher Order Transformations 

 A promising future research direction is to investigate the possibility for higher order 

transformations. The natural starting point is to identify and formulate transformation 
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patterns that emerge from this work. Then by defining higher-order transformation rules 

these patterns can be generated. These higher-order rules would potentially be reusable in 

other CM transformation tasks. The primary motivation for higher order consideration of a 

transformation component is it having potential for reuse or it being a representative of a 

large set of rules that are similar in structure, suitable for auto generation once 

parameterized or externally configured.  As a quick start, we would like to point some of 

the more obvious rules and patterns in ACM2FAM transformation that have the potential 

for being subjects of higher order transformations. 

 In data model transformation part, we make use of the default HLA methods defined by 

the IEEE1516 standard. These methods, which were created as a FAM model in a previous 

work, are imported as a library into the stub FAM whose remaining parts will be built by 

the transformation rules. Actually, this library usage is the reason why we start 

transformations with a stub FAM; otherwise, we could completely create and build the 

FAM on the fly. Later in transformations, we create deep copies of these methods into 

FAM LSCs, modify and use them in LSC message transmissions. The same case holds for 

the default HLA data types: They are also imported as a library into the stub FAM, but for 

some reason, perhaps unnecessarily, we also manually create the needed default HLA data 

types in the FederationModel folder of the root folder of the FAM, and refer them from the 

HLA attributes and parameters then on. We consider that higher order transformation rules 

can be written to generate all of the default HLA methods and data types, so that the need 

for the library import mechanism, which might not always be available, can be eliminated. 

 In behavior transformation part, there are more opportunities for higher order 

transformations. The promising areas are the transformation rules that construct FAM parts 

having no direct correspondence with ACM.  Principally, almost all of the federation 

initialization and tearing down rules seems to be suitable for generation via higher order 

transformations. These include rules dealing with federation creation, joining to federation, 

initializing time management, capability declaration for federates, deleting object classes, 

resigning federation, etc.  

 We would like to draw the reader’s attention to a specific case: Currently the knowledge 

for publish/subscribe declarations of interaction classes are embedded inside transformation 

rules, requiring two blocks and two rules for each and every interaction class. The situation 

is even more complicated with object classes. Considering the amount of overhead 

involved, it can be concluded that handling capability declarations with ordinary 

transformation rules is definitely infeasible and requires an efficient delegation mechanism. 

(Currently the declarations for all of the classes are not done due to the burden). Among the 
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alternatives are, defining higher order transformation rules, employing a user code library 

to solve the problem through the UDM API and writing a preprocessing model interpreter 

that runs over the source ACM to extract these relationships, annotate the model(s), perhaps 

in crosslinks packages, so as to ease the job of subsequent rules that actually handle 

capability declarations. The overall process seems to be suitable for parameterization and 

whichever alternative is selected, it can benefit from this fact.  

  There are some transformation rules and blocks that we have reused throughout the 

transformations. These can also be considered as candidates for higher order generation. 

However, we advise a case by case analysis of generic reuse potential for each to decide 

whether it is actually worth going for higher order transformation. One suitable generic 

candidate is the “get MSC parent of a LSC” idiom (i.e., GetMSC4LSC block) that we have 

commonly used. To summarize, an LSC might happen to have more than one ancestor 

LSC, prechart, subchart, or inline operand (note that each of these “is-a” LSC). Above this 

ancestor chain comes always a parent MSC. Sometimes it necessitates accessing this parent 

MSC when only the lowest child LSC is available within the rule context; hence we invoke 

the GetMSC4LSC block. Such blocks and rules that generically work on the model 

structure in a context-free manner are good candidates for higher order transformations. 

 Finally, all of the utility UDM API methods that are invoked inside the user code library 

and some of the higher-level, user-defined ones can be delegated to higher order 

transformations. Indeed it would be an interesting exercise to work out these functionalities 

into higher order transformations. One outstanding example is the CreateInstance 

method that we commonly use to create deep copies of model elements into a given 

container. Actually, this capability is crucial for our transformations and currently this 

UDM method call is the only way to achieve it. 

6.5.3 Using BOMs for Intra-Federate Modeling 

 FAM adopts an inter-federate modeling perspective within a federation. The state, 

behavior or processes inside a federate are not emphasized. This, however, does not 

necessarily mean that it is all together impossible to model what is inside a federate with 

FAM. LSC, the behavior representation formalism that FAM uses, provides the “instance 

decomposition” mechanism just for this purpose. It allows an instance (note that federates 

are modeled as instances in FAM), to be represented as a standalone MSC document of its 

own, on a lower scale, thus “decomposed”. We have demonstrated the decomposition of 

BatteryFDC in Section 4.4.2.  An MSC document is comparable to a federation within the 

context of this thesis. The analogy to the HLA world is that a federate, depending on its 

internal organization, can behave like or is a federation on a lower scale; or reversely, a 
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federation can be wrapped as a federate in another higher scale federation. Having said 

these, the instance decomposition mechanism cannot provide the means for the co-

existence of inter-federate and intra-federate modeling of a federation. This is a crucial 

deficiency of instance decomposition.  

 BOM is an open standard that aims to encourage and support reuse, interoperability, 

composability, and to help enable rapid development of HLA simulations [98][99]. At a 

higher level, BOMs are reusable packages of information representing independent patterns 

of simulation interplay and are intended to be used as building blocks in the development 

and extension of simulations. These components can also be composed in larger models 

e.g., BOM Assemblies. The Conceptual Model part, which is one of the five parts of a 

BOM, contains information that describes the patterns of interplay of the component. This 

part includes the types of actions and events that take place in the component, and is 

described by a pattern description, a state-machine, and a listing of conceptual entities and 

events, which, when taken together, describe the flow and dependencies of events and their 

exceptions. This organization of BOM makes it a very convenient formalism to model 

intra-federate state and behavior, an issue not addressed in FAMM. 

 We support instance decomposition in this work, and have demonstrated its usage in 

graphical LSC notation during BatteryFDC modeling. The decomposition of an instance 

yields another (lower level) MSC document for the decomposed instance besides the main 

MSC document inside the BehavioralModels folder of ACM. Although there are no 

formal associations established between the main document’s and decomposed document’s 

LSCs currently, they can easily be identified by the employed naming convention, as 

advised by the MSC standard [15]. At the end of an ACM2FAM transformation, all of the 

corresponding MSC documents are generated on the FAM side. This way we have all the 

necessary information to create BOMs for the decomposed instances, hence federates. The 

code generator creates federation code per MSC document in a FAM. Therefore, the 

information in subordinate MSC documents has to be consolidated into the main document 

as BOMs. In order to achieve this, the FAMM definition must be enriched with a BOM 

metamodel in the first place. Then, a model interpreter for FAM can be written to carry the 

intra-federate knowledge embedded in decomposed MSC documents as BOM components 

inside the main MSC document. Eventually this will give the opportunity for both inter-

federate and intra-federate state and behavior being present in a federation definition. Of 

course, the code generator has also to be extended in order to process BOMs in a given 

FAM. 
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CHAPTER VII 
 
 
 

CONCLUSION 
 
 
 
 

 This thesis has presented a comprehensive graph-based model transformation work from 

the field artillery conceptual model (ACM) to HLA federation architecture model (FAM). 

The work was undertaken to understand the difficulties involved from a mission space 

model to an executable simulation model adhering to the Model-Driven Engineering 

(MDE) philosophy. Both ACMs and FAMs are formally defined conforming to their 

metamodels, ACMM and FAMM, respectively. ACMM has been developed within the 

scope of this thesis to serve as a realistic source model for the transformations. ACMM is 

comprised of a behavioral component, based on Live Sequence Charts (LSCs), and a data 

component based on UML class diagrams. Using ACMM, the Adjustment Followed by Fire 

For Effect (AdjFFE) mission, which serves as the source model for the model 

transformation case study, is constructed.  

 The ACM2FAM transformation, which is defined over metamodel-level graph patterns, 

is carried out with the Graph Rewriting and Transformation (GReAT) tool. Data and 

behavior are preserved while transforming an ACM into its corresponding FAM. In fact the 

result of the execution of the transformation rules is an increase in the “information 

content” of the models from source to target. The extra platform specific information 

required for FAM is provided through the transformation rules, and a user code library. The 

user code library is written to facilitate the model transformations in terms of improved 

execution performance and saving from the tedium of graphically defining many 

uninteresting transformation rules.  

 Another transformation named Multi2BinaryLSC is also developed, to be applied as a 

pre-processing step on a produced FAM before feeding it to the code generator. In essence, 

Multi2BinaryLSC accomplishes transformation from a global view of the federation to the 

collection of local views of the federates. Multi2BinaryLSC strips down a FAM’s LSCs 

having more one than one federate and the federation into a set of LSCs having only one 
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federate and the federation. This way code generation is also facilitated in that it can 

generate code one federate at each run. 

  A second phase transformation is applied by a code generator to produce executable 

simulation code in Java/AspectJ from a FAM. Computation logic has to be woven onto the 

generated (aspect) code in order to provide legitimate values for the data structures at 

runtime. The resulting code can then be executed on an HLA Run-Time Infrastructure.  

 The metamodels used for the domain and transformation modeling in this thesis have 

one to one correspondences with the standards advocated by the Model Driven Architecture 

(MDA) of OMG. 

 The model transformer presented in this thesis is analyzed against published model 

transformation analysis studies in literature. 

 The experience gained in this thesis is a step forward in designing a domain-independent 

model transformer for HLA from any conceptual model that is based on LSC for behavioral 

representation. As a future study, a conceptual model of another domain can be developed 

in parallel to building the domain-independent HLA model transformer in the light of the 

recommendations and guidance drawn out of this thesis. Another future research direction 

is to investigate the utility of higher order transformations; that is, developing higher level, 

declarative rules to define the recurring patterns of ordinary transformation rules. We have 

identified with justifications the parts of the transformations amenable for generation 

through higher order transformations. Finally, another interesting further study would be to 

enrich this work with BOM formalism so as to incorporate intra-federate modeling 

capability to complement the existing inter-federate modeling within a federation. 
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APPENDIX A 

 
 

ADJFFE MODEL LSCS IN GRAPHICAL NOTATION 
 
 
 

This appendix presents all of the LSCs for the Adjustment Followed by Fire For Effect 

(AdjFFE) mission model in graphical notation. Each LSC is provided with a brief 

description of its purpose, execution conditions and logic. 

Figure A.1 shows the top-level chart, AdjFFE, which provides an overall coverage of 

the mission. Its LSC activation mode is iterative and quantification is existential [14] (from 

this point on only the values of activation mode and quantification will be mentioned for 

the sake of brevity). The chart includes all of the eight instances, a prechart and a body with 

a parallel inline expression with two inline operands. The prechart consists of references to 

three MSCs and the parallel expression has references to two MSCs in its first operand and 

has a reference to one MSC in its second operand. The referred MSCs (and their contained 

LSCs) are presented in subsequent figures. 

 

 
Figure A.1 The Main LSC for AdjFFE mission LSC 
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The iterative and universal call for fire chart, CFF, is depicted in Figure A.2. It describes 

the call for fire request made by the forward observer to the battery FDC. It consists of the 

preparation and sending of one mandatory and two optional messages. The optional 

messages are sent if the mission type is given as adjustment, FFE or destruction. All 

the messages sent to the battery FDC are also simultaneously sent to the battery radio net. 

 

 

FwdObserver BatteryFDCBatteryRadioNet

decomposed as BatteryFDC-CFF

‘Prepare Oid_W_Msg 

considering missionType’

Oid_W_MsgOid_W_Msg

Opt
When (missionType=“Adj” or missionType=“FFE” or missionType=“Dest”)

‘Prepare TargetLoc_Msg’

TargetLoc_MsgTargetLoc_Msg

DT_ME_MFC_MsgDT_ME_MFC_Msg

‘Prepare DT_ME_MFC_Msg 

considering missionType’

BRN

BRN

BRN

 

 

Figure A.2 Call for fire LSC 
 

 

The iterative and universal FO_MTO_AI chart is illustrated in  

Figure A.3. It covers the messages sent by the battery FDC to the forward observer in 

response to a previous CFF request. It consists of three alternatively sent MTO, one optional 

additionalInfo and one mandatory fireOrder (not shown in the figure – sent within 

decomposed BatteryFDC) messages. All of the messages sent to the battery FDC are also 

simultaneously sent to the battery radio net.  

 

Set Oid_W_Msg.CFFWarningOrder.missionType 
to either of Adj, FFE, Supp, ISupp, ISmoke, Dest, 
PReg, QSmoke, Illum 

 

Set Oid_W_Msg.MetOfEngagement.adjType to  
   - Area if missionType=Adj or FFE 
   - Precision if missionType=Dest 
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BatteryFDC FwdObserver

MTO_AreaF_Msg

When (adjType=“Area” or (adjType=“Precision” and missionType=“Dest”))

MTO_RegKP_Msg

When (regType=“RegOnKP”)

Otherwise

MTO_RegSelByFO_MsgMTO_RegSelByFO_Msg

BatteryRadioNet

MTO_RegKP_Msg

MTO_AreaF_Msg

Alt

When (missionType=”PReg”)

Alt

BRN

BRN

BRN

AdditionalInfo_Msg

When (getIsPErSignificant() | getIsAngleTToSend() | getIsTimeOfFlightToSend())

AdditionalInfo_Msg

Opt

BRN

decomposed as BatteryFDC-FO_MTO_AI

 

 

Figure A.3 FO_MTO_AI (Fire Order, Message to Observer, Additional Information) LSC 
 

 

The iterative and existential AdjustmentLoop chart is sketched in Figure A.4. Its 

activation condition [14] is that the cannotObserve flag of the methodOfControl part 

of the CFF message be false. The chart starts with a prechart those references to an MSC 

handling the initial fire command preparation and sending. Then it loops until the 

adjustment is complete, cycling through rounds firing, spotting observation, adjustment 

correction and subsequent fire command generation steps. When the adjustment is decided 

to be done in the last loop cycle, the missionType is set to FFE. The system method 

getIsAdjNotDone()computes its value from an ObservedSp_Msg sent within the 

ObserveSpotting MSC. 

The invariant and universal ObserveSpotting chart is shown in Figure A.5. Its 

activation depends on the detonation of the ammunition. Environment tests the observed 

spotting in a four operand alternative expression and sends a spotting message accordingly. 

These 3 data language method calls compute 
their values from previous the CFF requests 
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Figure A.4 Adjustment loop LSC 

 
 

 

Figure A.5 Observe spotting LSC 
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The iterative and universal InitFireCommand chart is depicted in Figure A.6. It covers 

the generation of an initial fire command message based on value combinations of the 

method of control variable. It consists of an alternative expression with two operands. The 

second operand has two optional blocks followed by an initial fire command message 

transmission and ends with a call to an MSC that processes the fire command. All of the 

messages sent to the firing unit are also simultaneously sent to the battery radio net. 

 

 

Alt

InitFireCommand_Msg

BatteryFDC FiringUnitBatteryRadioNet

decomposed as         

BatteryFDC-InitFireCommand

Otherwise

CeaseLoading_Msg CeaseLoading_Msg

When ((metCtrl.isFO-AMC & DT_ME_MFC_Msg.MetOfCtrl.Fire) 

| metCtrl.isFDC-AMC | metCtrl.isTOT)

Fire_Msg Fire_Msg

Opt

CancelCeaseLoading_Msg CancelCeaseLoading_Msg

InitFireCommand_Msg

When (metCtrl.isCL | getIsExc(“CL”))

When (getIsCancelExc(“CL”))

metCtrl.isCL := true

metCtrl.isCL := false

CheckFiring_Msg CheckFiring_Msg

Opt

CancelCheckFiring_Msg CancelCheckFiring_Msg

When (metCtrl.isCF | getIsExc(“CF”))

When (getIsCancelExc(“CF”))

metCtrl.isCF := false

metCtrl.isCF := true

fireCommand := downcastFC 

(InitFireCommand_Msg)

ProcessFireCommand

BRN

BRN

BRN

BRN

BRN

BRN

 
Figure A.6 Initial fire command LSC 
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The iterative and universal InitFireCommand LSC is illustrated in Figure A.7. Once 

the initial fire command is received, this chart is used for managing further communication 

between the firing unit and the battery FDC. It consists of an LSC body with four optional 

blocks that are entered based on various properties of the received fire command and set 

various properties of the method of control variable based on those values. The last two 

optional blocks house Ready, Fire and Laid message transmissions. 

 

 

 
 

Figure A.7 Process fire command LSC 
 

 

The iterative and universal SubsFureCommand LSC is sketched in Figure A.8. It is 

used for managing fire commands sent after the initial one. It consists of a prechart and an 

LSC body with three-operand alternative expression. The prechart starts execution with two 

gates that input messages from the external world and relay them to two MSCs. The 

alternative expression covers the generation of a subsequent fire command message based 

on value combinations of the method of control variable. The third operand has two 
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optional blocks followed by a subsequent fire command message transmission and ends 

with a call to an MSC that processes the fire command. All of the messages sent to the 

firing unit are also simultaneously sent to the battery radio net. 

 

 

Alt

BatteryFDC FiringUnitBatteryRadioNet

decomposed as BatteryFDC-

SubsFireCommand

Otherwise

When (corrType=“Adj”)Alt

AdjustmentCorr_Msg

RefineSurveil_Msg

g1

g2

When (corrType=“RefSur” & RefineSurveil_Msg.EOM)

EOM_Msg EOM_Msg

metCtrl.isEOM := true

When ((metCtrl.isFO-AMC & corrMsg.Fire) | 

metCtrl.isFDC-AMC | metCtrl.isTOT)

Fire_Msg Fire_Msg

Otherwise

MissionComplete

CheckFiring_Msg CheckFiring_Msg

Opt

CancelCheckFiring_Msg CancelCheckFiring_Msg

CeaseLoading_Msg CeaseLoading_Msg

Opt

CancelCeaseLoading_Msg CancelCeaseLoading_Msg

When (corrMsg.CheckFiring | (!metCtrl.isCF & getIsExc(“CF”)))

When (getIsCancelExc(“CF”))

metCtrl.isCF := false

metCtrl.isCF := true

When (corrMsg.CeaseLoading | (!metCtrl.isCL & getIsExc(“CL”)))

When (getIsCancelExc(“CL”))

metCtrl.isCL := true

metCtrl.isCL := false

SubsFireCommand_MsgSubsFireCommand_Msg

fireCommand := downcastFC 

(SubsFireCommand_Msg)

ProcessFireCommand

BRN

BRN

BRN

BRN

BRN

BRN

BRN

BRN

BRN

 

Figure A.8 Subsequent fire command LSC 
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The initial and universal durable message instantiator chart, InstSOPMet, is shown in 

Figure A.9. It simply houses the preparation and transmission of battalion fire order SOP, 

fire command SOP and computer meteorology report instantiation messages. 

 

 

FiringUnit MetStationBattalionFDC BatteryRadioNetBatteryFDC

decomposed as 

BatteryFDC_InstSOPMet

MetroNet

BattalFireOrderSOPInst_Msg
BRN

FireCommandSOPInst_Msg

BRN

ComputerMetRepInst_Msg
MRN

‘Prepare BattalFire 

OrderSOPInst_Msg’

Prepare ‘Computer 

MetRepInst_Msg’

Prepare ‘FireCom 

mandSOPInst_Msg’

 
Figure A.9 Instantiation type of durable messages LSC 

 

 

The initial and universal durable message updater chart, UpdateSOPMet, is depicted in 

Figure A.10. It consists of a parallel expression with three operands that contain references 

to MSCs handling battalion fire order SOP, fire command SOP and computer meteorology 

report updating. 

The initial and universal battalion fire order SOP updater chart, BattalionFOUpdate, 

is illustrated in Figure A.11. The battalion FDC periodically prepares and sends update 

messages for the battalion fire order SOP to the battery radio net until the mission 

completes or fails. The message update period is timer based. After the while-do loop exits, 

the final message sent is deletion for the SOP. 

The initial and universal fire command SOP updater chart, FireCommandUpdate, is 

sketched in Figure A.12. The battery FDC periodically prepares and simultaneously sends 

update messages for the fire command SOP to the firing unit and the battery radio net until 

the mission completes or fails. The message update period is timer based. After the while-

do loop exits, the final message sent is deletion for the SOP. 
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Figure A.10 Overall update type of durable messages LSC 
 

 

BattalionFDC BatteryRadioNet

BattalFireOrderSOPUpdate_Msg

While do

‘Prepare BattalFireOr 

derSOPUpdate_Msg’

BRN

!(MissionComplete | MissionFailed)

BRN

T(getTime(“BtlnFO-SOP”)

BattalFireOrderSOPDel_Msg

 

Figure A.11 Battalion fire order update and delete LSC 
 

 

 

Figure A.12 Fire command update and delete LSC 
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The initial and universal meteorology report updater chart, MetRepUpdate, is shown in 

Figure A.13. The meteorology station periodically prepares and sends update messages for 

the computer meteorology report to the metro net until the mission completes or fails. The 

message update period is timer based. After the while-do loop exits, the final message sent 

is deletion for the meteorology report. 

 

 

 

Figure A.13 Metro report update and delete LSC 

 

The invariant and existential RoundShot LSC is depicted in Figure A.14. It models a 

durable ammunition object’s life cycle from the moment of its creation, to being fired, to 

being updated throughout its flight for trajectory changes, to its detonation and finally 

deletion. The fire action is explicitly ordered after the ammunition’s instantiation. The 

ammunition’s flight and its trajectory updates take place in a parallel expression. The time 

of flight and ammunition update period are both timer based, where the time of flight is 

acquired through a system variable and update period is constant. After the ammunition is 

fired, a series of two shot messages and an optional splash message are also transmitted. 

The invariant and existential VolleyShot LSC is illustrated in Figure A.15. It is very 

similar to the RoundShot LSC with the difference that VolleyShot has a three-operand 

parallel expression where the first operand’s optional expression and the second operand 

are controlled by the volleyShotType variable, which effectively makes their executions 

mutually exclusive. When  volleyShotType is initial, then the LSC behaves exactly 

as the RoundShot LSC. When it is final, a rounds complete message is sent after firing. 
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Figure A.14 Round shot LSC 
 

 

 

Figure A.15 Volley shot LSC 
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The invariant and existential VolleyFire LSC is sketched in Figure A.16. Its 

activation condition is a fire command with quadrant elevation being sent. The chart body 

starts with an initial volley shot followed by a spotting observation. If the number of 

rounds to fire is greater than 2, then rounds-2 intermediate volley shots are fired with 

observations. If the number of rounds to fire is greater than 1, then a final volley shot is 

made. Note that all of the events in this LSC are references to either VolleyShot (with a 

parameter) or ObserveSpotting MSCs. 

 

 

FwdObserver BatteryFDCEnvironment FiringUnitBatteryRadioNet

VolleyShot(“Intermediate”)

Loop <0,rnds()-2>

When (rnds()>1)

VolleyShot(“Final”)

ObserveSpotting

ObserveSpotting

ObserveSpotting

VolleyShot(“Initial”)

decomposed as 

BatteryFDC_VolleyFire

Opt

 
Figure A.16 Volley fire LSC 

 

 

The invariant and universal MetroNet LSC is shown in Figure A.17. It models all of 

the incoming meteorology report messages to the meteorology net and their distribution 

within the net members. There are instantiation, update and delete types of computer and 

ballistic meteorology reports. The LSC body loops receiving and distributing these six 

messages in an alternative expression of six operands until the mission completes or fails. 



167 

Alt

decomposed as 

BatteryFDC-MetroNet

!(MissionComplete | MissionFailed)

BattalionFDC BatteryFDCMetroNet

While do

BallisticMetRepInst_Msgg4 BallisticMetRepInst_Msg

BallisticMetRepUpdate_Msgg5 BallisticMetRepUpdate_Msg

BallisticMetRepDel_Msgg6 BallisticMetRepDel_Msg

ComputerMetRepInst_Msgg1 ComputerMetRepInst_Msg

ComputerMetRepUpdate_Msgg2 ComputerMetRepUpdate_Msg

ComputerMetRepDel_Msgg3 ComputerMetRepDel_Msg

 
Figure A.17 Metro net LSC 

 

 

The invariant and universal BatteryRadioNet LSC is depicted in Figure A.18. It 

models all of the incoming messages to the battery radio net and their distribution within 

the net members. There are 23 types of incoming messages through the gates. The LSC 

body loops receiving and distributing these messages in an alternative expression of 23 

operands until the mission completes or fails. The loop also includes a reference to the 

BattalionIntervention MSC after the alternative expression, to check whether there 

is an intervention on the mission by the battalion. One of the incoming messages is the EOM 

message. When this message is received, the global MissionComplete flag is set and the 

mission ends successfully.  

The iterative and universal BattalionIntervention LSC is shown in Figure A.19. 

This chart is not a main stream chart and is used to provide an upper command intervention 

on the mission. It consists of an optional block controlled by an external system method. If 

the block is entered the mission is aborted, variables are reset and a new fire order is issued.  
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Alt

decomposed as BatteryFDC-BRN

!(MissionComplete | MissionFailed)

BattalionFDC BatteryFDCBatteryRadioNet FwdObserver

g1

g2

Oid_W_Msg

TargetLoc_Msg

DT_ME_MFC_Msgg3

Oid_W_Msg

TargetLoc_Msg

DT_ME_MFC_Msg

MTO_AreaF_Msgg4 MTO_AreaF_Msg

MTO_RegKP_Msgg5 MTO_RegKP_Msg

MTO_RegSelByFO_Msgg6 MTO_RegSelByFO_Msg

AdditionalInfo_Msgg7 AdditionalInfo_Msg

CeaseLoading_Msgg8 CeaseLoading_Msg

metCtrl.isCL:=true metCtrl.isCL:=true

CheckFiring_Msgg9 CheckFiring_Msg

metCtrl.isCF:=true metCtrl.isCF:=true

CancelCeaseLoading_Msgg10 CancelCeaseLoading_Msg

metCtrl.isCL:=false metCtrl.isCL:=false

CancelCheckFiring_Msgg11 CancelCheckFiring_Msg

metCtrl.isCF:=false metCtrl.isCF:=false

EOM_Msgg12 EOM_Msg

metCtrl.isEOM:=true metCtrl.isEOM:=true

Fire_Msgg13 Fire_Msg

InitFireCommand_Msgg14 InitFireCommand_Msg

SubsFireCommand_Msgg15 SubsFireCommand_Msg

g16 Shot_Msg

Splash_Msgg17

Shot_Msg

Splash_Msg

RndsCmplt_Msgg18 RndsCmplt_Msg

AmmunitionInst_Msgg19 AmmunitionInst_Msg

AmmunitionUpdate_Msgg20 AmmunitionUpdate_Msg

AmmunitionDel_Msgg21 AmmunitionDel_Msg

g22 AdjustmentCorr_Msg

RefineSurveil_Msgg23

AdjustmentCorr_Msg

RefineSurveil_Msg

MissionComplete

BattalionIntervention

While do

 
Figure A.18 Battery radio net LSC 
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decomposed as 

BatteryFDC-BattalionInt

BattalionFDC BatteryFDCBatteryRadioNet FwdObserver

When (getIsBattalionIntervention())

metCtrl.opMode:=“Battalion”

BattalionFireOrder_MsgBattalionFireOrder_Msg

BattalionFireOrder_Msg

Opt

‘Reset metCtrl to defaults’

metCtrl.opMode:=“Battalion”

‘Reset metCtrl to defaults’

metCtrl.opMode:=“Battalion”

‘Reset metCtrl to defaults’

 
Figure A.19 Battalion intervention LSC 

 

 

The iterative and existential FFELoop LSC is illustrated in Figure A.20. The chart can 

be entered without a prior adjustment step, or after an adjustment that ends with a 

correction message transmission indicating that the adjustment is done and fire for effect 

can be started. The fire for effect chart models the scenario where all the guns in a battery 

fire their rounds with the same fire parameters. FFELoop starts with a prechart that issues 

an initial fire command if the mission is being performed without an adjustment. The chart 

body usually ends after a call to VolleyFire that yields a satisfactory result. If the 

outcome is accurate, but insufficient, then volley shots are repeated in a loop until a 

different result is obtained. If the result is worse; that is, inaccurate and insufficient, then 

the mission is restarted from adjustment stage. In any case, a last refinement and 

surveillance message with EOM flag set is sent into the SubsFireCommand, which in turn, 

ends the mission. 
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InitFireCommand

SubsFireCommand(“FFE”)

SubsFireCommand(“FFE”)

SubsFireCommand(“FFE”)

RefineSurveil_Msg

FwdObserver BatteryFDCEnvironment FiringUnitBatteryRadioNet

Opt

VolleyFire

FFEResult := getFFEResult()

FFEResult=“AccurateInsufficient”

When (ffeType=“WithoutAdjustment”)

VolleyShot(“Initial”)

ObserveSpotting

FFEResult := getFFEResult()

Exc When (FFEResult=“InaccurateInsufficient”)

RefineSurveil_Msg

RefineSurveil_Msg

While do

 

 
Figure A.20 Fire for effect loop LSC 

 

RefineSurveil_Msg.EOM RefineSurveil_Msg.metOfCtrl.ctrlInfo=Repeat RefineSurveil_Msg.missionType=Adj 
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APPENDIX B 
 
 

ACM TO FAM MODEL TRANSFORMATION RULES 
 
 
 

This Appendix presents the set of most prominent ACM to FAM model transformation 

blocks and rules as implemented in GReAT-configured GME. Although there are an 

abundance of blocks and rules depicted (about 130), it is still half of the total number. Only 

relevant and representative blocks and rules are included. The full set can be found in the 

transformation definition file accompanied with the thesis CD. The presented blocks and 

rules are usually compact enough and self explanatory. Overall explanations are provided at 

section heads and specifics are provided above the figures where deemed necessary. 

B.1 Start Block 

The start block is shown in Figure B.1. It presents a top-level view of the overall 

transformations. It is seen that ACM2FAM transformation consists of the global container’s 

initialization, data model transformation, behavioral model transformation and binding the 

calls to decomposed instance document’s MSCs from the main document’s MSCs. 

 

 

 

Figure B.1 Start block 

  

 

The initialization of the global container is sketched in Figure B.2. The general idea of 

the global container is that the objects it contains have global scope; that is, they are 

accessible throughout the whole transformation, and it is not necessary to pass them along 

in the context. The capability of eliminating portions of context passing and recurring 

complex pattern matching is one of the key facilitating factors in terms of the development 

effort and execution performance in this work.  
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Figure B.2 InitGlobalRoot rule 
 

 

B.2 Data Model Transformation 

 Data model transformation corresponds to the structural part of the ACM2FAM 

transformation. Looking from a FAM perspective, it aims to construct the federation object, 

the federate objects and the Federation Object Model (FOM) for the federation. The main 

DataModelTr block is shown in Figure B.3. It is composed of two inner blocks named 

ObjectModelTr and the relatively smaller FederationStructureTr that are executed 

sequentially, in that order.  

 

 

 

Figure B.3 DataModelTr block 
 

 

B.2.1 Object Model Transformation 

Object model transformation, whose top-level block is seen in Figure B.4, basically 

transforms the set of field artillery message structures that are communicated among 

domain actors during mission executions into HLA-OMT classes. The field artillery 

messages are represented as free format UML structures with information content provided 
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by the domain. On the other hand, HLA-OMT specification [39] puts forth a data type 

system. OMT specifies a core set of default data types of basic, simple, enumerated, and 

array types, that correspond to universally recognized types such as byte, integer, float, 

boolean and string.  

 

 

 

Figure B.4 ObjectModelTr block 
 

 

 

Figure B.5 DataTypes block 
 

 

 

Figure B.6 InitDataTypeFolders rule 
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Figure B.7 BasicTypes rule 
 

 

 

 

 

Figure B.8 SimpleTypes rule 

BasicDataTypes.name()="BasicDataTypes"; 
HLAfloat32BE.name()="HLAfloat32BE"; 
HLAinteger32BE.name()="HLAinteger32BE"; 
HLAoctet.name()="HLAoctet"; 

HLAByte.name()="HLAByte"; 
HLAASCIIChar.name()="HLAASCIIChar"; 
Int32.name()="Int32"; 
Real32.name()="Real32"; 
HLAByteRepRef.name()="HLAByteRepRef"; 
HLAASCIICharRepRef.name()="HLAASCIICharRepRef"; 
Int32RepRef.name()="Int32RepRef"; 
Real32RepRef.name()="Real32RepRef"; 

return (std::string)HLAoctet.name()== "HLAoctet" && 
(std::string)HLAinteger32BE.name()=="HLAinteger32BE" 
&& (std::string)HLAfloat32BE.name()=="HLAfloat32BE"; 
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Figure B.9 EnumTypes rule 

 

 

  

 

Figure B.10 ArrayTypes rule 

 

 

return std::string)HLAASCIIChar.name()=="HLAASCIIChar"; HLAASCIIString.name()="HLAASCIIString"; 
HLAASCIICharRef.name()="HLAASCIICharRef"; 
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Figure B.11 InitFOM rule 
 

 

 

 

Figure B.12 InteractionClasses rule 

InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC"; 
//ModelTransUtils class is in FADM2HOM_Utils.cpp, which is in UserCodeLib, as declared in Configurations/CodeLibrary 
ModelTransUtils::TransformNonDurableMsg2InteractionCls_Hybrid(NonDurableMsg, InteractionClass, FixedRecordDataTypes); 



177 

 

 

 

Figure B.13 ObjectClasses rule 
 

 

B.2.2 Federation Structure Transformation 

 The federation structure transformation concludes the data model transformation part. It 

instantiates the single federation object together with a reference to the FOM that was 

previously created. It also maps every field artillery Actor and Net to a corresponding 

HLA federate along with a reference to an associated SOM. In this thesis, SOMs per 

federate are left as stubs and not developed any further.  

 

 

 

Figure B.14 FederationStructureTr block 

 

 

ObjectClass.name()=(std::string)DurableData.name()+"OC"; 
//ModelTransUtils class is in FACM2FAM_Utils.cpp, which is in UserCodeLib, as declared in Configurations/CodeLibrary 
ModelTransUtils::TransformDurableData2ObjectCls_Hybrid(DurableData, ObjectClass, FixedRecordDataTypes); 
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Figure B.15 InitFOMSOMs block 

 

 

 

 

Figure B.16 FederationFOM rule 

 

 

 

Figure B.17 ActorFederateSOM block 

 

 

FederationStructureFolder.name()="FieldArtilleryFederationStructureFolder"; 
FederationStructure.name()="FieldArtilleryFederationStructure"; 
Federation.name()="FieldArtilleryFed"; 
FOMRef.name()="FieldArtilleryFOMRef"; 
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Figure B.18 GetTopLevelActors rule 

 

 

 

Figure B.19 GetFATActors rule 

 

 

 

 

 

Figure B.20 ActorFederateSOM rule 

 

 

 

string temp; Actor.GetStrValue("name", temp); temp+="Fd"; 
FederateApplication.SetStrValue("name", temp); Actor.GetStrValue("name", temp); 
temp+="SOMRef"; SOMRef.SetStrValue("name", temp); 
Arguments.name()="Variables"; 
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B.2.3 Initializing Variable Lists Per Federate 

Every HLA federate has a variable list by definition [39]. The rules in this section create 

the variable lists of the set of federates that correspond to the 8 actors and nets defined by 

ACMM. The top-level variable list creation block is illustrated in Figure B.21. Every 

federate has self specific variables of different data types. This makes the variable 

definition by transformation rules a tedious and frustrating process. The generation of these 

rules might be handy by employing higher order transformations with a text-based variable 

configuration per federate. Luckily, the variable lists of the federates are not directly used 

by the subsequent transformation rules and the code generator. Thus we have only created 

and filled-in the variable list for the BatteryFDC federate for the sake of not skipping an 

HLA defined component, and left the others as stubs. 

 

 

 

Figure B.21 FederateVarLists block 
 

 

 

Figure B.22 BatteryFDCFdVarList block 
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Figure B.23 InitVarList rule 
 

 

 

Figure B.24 OMTTime rule 

return (std::string)PersonnelSize.name()=="PersonnelSize" && 
(std::string)BatteryOpMode.name()=="BatteryOpMode"; 

TimeStamp.CreateInstance(VariableList);  
Lookahead.CreateInstance(VariableList); 
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Figure B.25 FireCommandSOP_OC rule 
 

 

B.3 Behavioral Model Transformation 

 Behavioral model transformation is the bigger and more challenging part of the overall 

ACM2FAM transformation. It uses the resulting objects of the data model transformation 

as the instances and message parameters in LSCs that are being produced. The main block 

of the behavioral model transformation, BehavioralModelTr, is shown in Figure B.26.  

 

 

 

Figure B.26 BehavioralModelTr block 
 

 

The AscGlobalHlaMeths block, as expounded in Figure B.27, gets the method 

library of FAM that contains predefined HLA methods for federation, declaration, object, 

ownership and time management. The block contains rules that take copies of all the 

FireCommandSOP_OC. 
CreateInstance(VariableList); 
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methods used in the transformation and associate them with the global HLA methods 

element so that they are readily accessible by the LSC transformation rules. These methods 

are meant to function as templates; hence their method parameters are left empty. Their 

copies in the LSCs are assigned parameters with appropriate HLA class instances during 

the transformation. 

 

 

 

Figure B.27 AscGlobalHlaMeths block 
 

 

 The AscInstanceOfFacm block and its subordinate blocks and rules are displayed in 

Figure B.28, Figure B.29, Figure B.30, Figure B.31 and Figure B.32. The block basically 

creates is-InstanceOf associations between the instances that stand for the same actor 
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element in ACM. An actor instance in the MSC head of an MSC is an instance of the same 

type of instance in the MSC document head, which in turn is an instance of the canonical 

actor instance in the data model’s Actors folder. This chain of associations establishes 

traceability between the behavior and data sub-models of ACM and provides convenience 

in subsequent rules. A similar scheme is also applied progressively on the FAM side as the 

transformation rules construct the model. 

 

 

 

Figure B.28 AscInstanceOfFacm block and DocHead_InstOf for-block 

 

 

 

 

Figure B.29 DocHeadNets_InstOf_DataModelNets rule 

 

return (std::string) FANetSrc.name()==(std::string) FANetDst.name(); 
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Figure B.30 DocHeadActors_InstOf_DataModelActors block 

 

 

 

Figure B.31 EstablishInstOf rule 

return (std::string)ActorSrc.name()==(std::string)ActorDst.name(); 
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Figure B.32 MSCHeadIns_InstOf_DocHeadIns rule 

 

 

The CrtBehaviorMdlFld and CrtMscDoc rules are triggered one after another for 

simply creating a FAM behavioral model folder and an MSC document underneath it, 

provided that their corresponding counterparts are matched in the ACM. A has-

correspMscDoc association is established between the ACM and FAM MSC documents, 

since there can be more than one MSC document in a source model and in such a case this 

association is necessary for keeping track of MSC references in different documents and 

during instance decomposition. 

 

 

 

Figure B.33 CrtBehaviorMdlFld and CrtMscDoc rules 

 

 

return (std::string)InstanceSrc.name()==(std::string)InstanceDst.name(); 
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B.3.1 MSC Document Transformation 

The MSCDocTr block is shown in Figure B.34. It consists of three sub-blocks, namely, 

DocumentHeadTr, DocumentBodyTr and AscReferences, executed in that order. All 

of the blocks and rules within MSCDocTr are defined so as to traverse the structure 

delineated by the MSC metamodel to create a FAM MSC document from an ACM MSC 

document. 

 

 

 

Figure B.34 MscDocTr block 
 

 

 The DocumentHeadTr block handles the data definition, message declaration, instance 

declaration and timer declaration parts of the document head of the FAM being constructed. 

Note also that data definition and message declaration are only addressed as stubs since the 

content related with these parts are practically provided by the data model.  

 

 

 

Figure B.35 DocumentHeadTr block 
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The instance declaration part of the MSC document head transformation is also one of 

the key steps in the overall behavioral model transformation. Its role is basically to create 

federate objects and a federation object derived from the corresponding counterparts found 

in the federation structure portion of the FAM data model.  

 

 

 

Figure B.36 CrtDocumentHead rule 

 

 

 

Figure B.37 InstanceListTrans block 
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Figure B.38 GetFedApps block and GetTopActorFedApps rule 

 

 

 

Figure B.39 CrtInstFedStr2DHInstLst and AscInstanceOfFamDH rules 
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Figure B.40 CrtFederationInst rule 

 

 

 

Figure B.41 TimerListTrans and HandleTimer rule 

 

 

 The MSC document body transformation, whose top-level block is illustrated in Figure 

B.42, essentially boils down to MSC transformation. In order to start the process, an empty 

FAM MSC is created per matched ACM MSC in the given document body. The cross-

domain has-correspMSC association is established for keeping track of the paired MSCs 
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in subsequent rules. The attribute mapping code copies the chart order index in addition to 

the name and screen position properties of the ACM MSC to the FAM MSC. The chart 

order index, although not an artifact of the MSC metamodel, is a crucial annotation that 

facilitates model interpreters and particularly the code generator, by providing the 

execution/interpretation order of the MSCs at run-time. Similarly, for multiple documents 

in a model, the order of the documents may be specified by the document order index [12].  

 

 

 

Figure B.42 DocumentBodyTr and DocumentBody-Utility blocks and InitDocBodyUtility 
rule 

 

 

 

 

FAMDocumentBody.name()=FACMDocumentBody.name(); 
FAMDocumentBody.position()=FACMDocumentBody.position()
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Figure B.43 DocBodyTrans block and InitMSC rule 

 

 

B.3.2 MSC Transformation 

 MSC transformation is handled by the mainstream MSCTrans block, shown in Figure 

B.44. Its importance is due to its incorporation of LSC transformation, which virtually is 

the heart of behavioral model transformation. MSC transformation consists of three 

consecutive steps that handle MSC head and body transformation, and initialize the 

federation after the completion of the former two. MSC body transformation essentially 

boils down to LSC transformation after an empty LSC context is created. LSC 

transformation rules are further found in Section B.3.4.  

 The head part of an MSC is transformed in a four rule block. The head of an MSC 

houses the instances referenced in the MSC’s body, besides other elements. The basic 

functionality of MSCHeadTr is to prepare the instances used in the FAM MSC, by looking 

at the instances found in the corresponding MSC. Other MSC head components such as 

offset, parameter set and its subcomponents are either provided explicitly inside the MSC 

body or considered irrelevant for the purposes of this work and hence, are not covered. The 

MSC head transformation also addresses instance decomposition.  

 

 

FamMSC.name()=FacmMSC.name(); 
FamMSC.position()=FacmMSC.position(); 
FamMSC.ChartOrderIndex()=FacmMSC.ChartOrderIndex(); 
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Figure B.44 MSCTrans and MscHeadTr blocks 

 

 

 

Figure B.45 CrtMscHead rule 
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Figure B.46 CrtDerivedFamInst rule 

 

 

 

Figure B.47 MatchFamDocMscInst rule 

 

 

 

return (std::string)FamMscInstance.name()==(std::string)FamDocInstance.name(); 

 
FamDocInstance.CreateDerived(FamMscInstanceList)
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Figure B.48 DecomposeInst rule 

 

 

 

Figure B.49 MscBodyTr block and InitMscBody-LSC rule 

 

 

 

 

FamLSC.name()=FacmLSC.name(); 
FamLSC.position()=FacmLSC.position(); 
FamLSC.ActivationMode()=FacmLSC.ActivationMode(); 
FamLSC.Quantification()=FacmLSC.Quantification(); 

 

FamDecomposed.name()=FacmDecomposed.name(); 
FamMscRef.name()=FacmMscRef.name(); 
FamDecomposed.position()=FacmDecomposed.position(); 
FamMscRef.position()=FacmMscRef.position(); 
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B.3.3 Federation Initialization 

 Before moving into LSC transformation this section makes a fast forward to explain the 

federation initialization on the FAM side. The federation initialization is done after an MSC 

document is transformed head and body-wise. This indicates that it is a post processing step 

following the full transformation of all the LSCs in the document 

 The HLA federation initialization activities are done in the InitFederation block 

sketched in Figure B.50. This is a part of the behavioral model transformation indigenous to 

the FAM domain; that is, there are no associations in the transformation rules to ACM 

except for the identification of the instances involved. Due to the lack of such an input 

source, the information content flowing through the federation initialization part is directly 

embedded inside the transformation rule definitions.  

 

 

 

Figure B.50 InitFederation block and GetTopLSCPrechart rule 

 
 

The InitFederation block handles four preliminary federation execution activities of 

creating a federation execution, joining federates to the federation execution, initializing 

time management and declaration management. The federation initialization events are 

gathered in a sub-chart which itself is placed inside the pre-chart of the top-level FAM 

LSC. This way, federation initialization is guaranteed to be performed right at the 

 

 

return ((std::string)FamMSC.name()=="AdjFFE" && 
(std::string)FamLSC.name()=="AdjFFELSC" && 
(std::string)FamPrechartLSC.name()=="PrechartAdjFFE"); 
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beginning. The subchart is made temperature-wise “hot”; hence, mandatory to execute [14]. 

Since there is no clue from the ACM regarding the execution order of the chart, it is read 

from a look up table in the user code library; thus, effectively delegated to external 

configuration. 

 

 

 

Figure B.51 CreateFedEx block and CreateFedExLSC rule 

 

 

 

Figure B.52 HandleCreateFedEx block and CopyCreateFedEx and 
UpdateCreateFedExArgs rules 

 

 

 

  

CreateFederationExecution.CreateInstance(FamLSC); 

 

 

FamSubchart.name()="InitCreateFedEx"; 
FamSubchart.position()="(700,200)"; 
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Figure B.53 SendCreateFedEx rule 

 

 

 

Figure B.54 JoinFedEx block and AscParentInst rule 

 

 

B.3.4 LSC Transformation 

 The LSC transformation is the where the nuts and bolts of the evolution of field artillery 

inter-entity communications to federate interactions, mediated through the HLA RTI, are 

defined. The LSC transformation process is carried out in the LSCTrans block, as 

overviewed in Figure B.55. Each pass of the block inputs an ACM LSC and a stub FAM 

LSC, and step by step constructs the FAM LSC as the transformation proceeds through the 

internal blocks.  

 

 

 

std::string name=(std::string)CreateFederationExecution.name(); 
__int64 p=(_int64)ModelTransUtils::GetIntegralValueForKey("Meth",name,"Precedence"); 
FamOrdCon_InsTypEl_MscInsEv.SetIntValue("Precedence",p); 
FamOrdCon_InsTypEl_MscInsEv.Temperature()="Hot"; 
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Figure B.55 LSCTrans block 
 

 

Activation condition transformation is performed in the ActivationConditionTr 

block, as illustrated in Figure B.56. There is a simple one-to-one correspondence and 

equivalence between ACM and FAM activation conditions. The definition of the LSC 

transformation blocks are generally based on the instance event type categorization of the 

child elements to be processed in the LSC.  

 

 

 

Figure B.56 ActivationConditionTr block and ActivationCondition rule 
 

 

B.3.4.1 Instance Reference Transformation 

The execution order of the sub-blocks of the LSCTrans block does not matter except for 

the second and the last blocks. The InstanceRefTr depicted in Figure B.57 creates the 

necessary federate instances (i.e., references) in the FAM LSC by inspecting the ones found 
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in the corresponding ACM LSC. Since these instances are used in the graph patterns of 

most of the subsequent rules, InstanceRefTr must be executed before them. The last 

block, SpecialConnsTr, create associations between two instance events [12] within the 

LSC and thus need to be executed after ensuring all such events have been created. 

 

 

 

Figure B.57 InstanceRefTr block 

 

 

 

Figure B.58 InstRef4ActorsNets rule 

 

FamInstanceRef.name()=(std::string)FacmInstanceRef.name()+"Fd"; 
FamInstanceRef.position()=(std::string)FacmInstanceRef.position(); 
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Figure B.59 GetMSC4LSC block and DispatchLSC rule 
 

 

 

Figure B.60 MatchParentMSC, MatchParentInlExp and MatchParentLSC rules 
 

 

 

Figure B.61 InstRef4Fed rule 

FamFedInstanceRef.name()=(std::string)Federation.name()+"Ref"; 
FamFedInstanceRef.position()=(std::string)Federation.position(); 
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B.3.4.2 Prechart and Subchart Transformation 

Precharts and subcharts are actually child LSCs that have special role names on the 

containment associations with their parents. The PreSubChartTr block, shown in Figure 

B.62, handles the transformation of precharts and subcharts of an LSC. The 

CreateSubSchart rule creates a subchart under the current FAM LSC with the 

Subchart compsition role for every subchart of the corresponding ACM LSC.  

 

 

 

Figure B.62 PreSubChartTr block 
 

 

 

Figure B.63 DispPreSubchart test and CasePrechart case 
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The CreatePreChart rule, which is sketched in Figure B.64, is defined similar to the 

CreateSubChart rule. A notable statement in attribute mapping code (partly shown in the 

figure) is the call to the SetInstRefAssocs4LSCChildren method of the user code 

library. This method is invoked for all LSC child creations of type LSC (pre/subchart) and 

multi instance event, including inline expressions, references, conditions, otherwise clauses, 

and LSC idioms [12]. It handles the routine task of creating associations between an LSC’s 

child elements and the relevant instances in the LSC programmatically.  

 

 

 

Figure B.64 The CreatePreChart rule 
 

 

B.3.4.3 Multi Instance Event Transformation 

 The top-level block, MultiInstanceEventTr, is depicted in Figure B.65. Initially, a 

child multi instance event of the ACM LSC is matched and dispatched to one of the three 

alternative transformers together with the FAM LSC. The CreateCondition (seen in 

Figure B.67) and CreateOw rules perform condition and otherwise transformations, 

respectively. These rules simply create FAM elements that directly correspond to matched 

ACM elements. The other types of multi instance events form the family of reference 

identifications and are handled in the RefIdentTr block. Reference identification types are 

inline expressions and references. The CreateReference and CreateMSCRef rules, both 

shown in Figure B.68, simply create a FAM Reference element and a reference to an 

MSC under that, respectively.  

 

 

FamPrechart.name()=FacmPrechart.name(); 
FamPrechart.position()=FacmPrechart.position(); 
FamPrechart.ActivationMode()=FacmPrechart.ActivationMode(); 
FamPrechart.Quantification()=FacmPrechart.Quantification(); 
ModelTransUtils::SetInstRefAssocs4LSCChildren 
     (FamPrechart,FacmPrechart, FamLSC); 



204 

 

Figure B.65 The MultiInstanceEventTr and RefIdentTr blocks 

 

 

 

Figure B.66 The GetMultiInstEvent rule and DispMultiInstEvents case 

 

 

 The inline expressions are transformed in the InlineExpTrans block. The block 

initially directs the execution flow to one of the nine inline expression creator rules based 

on the input ACM inline expression type. Six of these create alt, par, opt, loop, exc 

and seq elements [15], and three of them create if-then-else, while-do and repeat-

until idioms [12]. These rules simply create FAM inline expressions for the given ACM 

inline expressions and link them together using the has-correspInlExp cross-domain 

association. The attribute mapping codes copy the element properties. 
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.  

Figure B.67 The CreateCondition rule 
 

 

 

Figure B.68 The CreateReference and CreateMSCRef rules 
 

 

 

Figure B.69 The GetInlExpFromLSC rule 

FamCondition.name()=FacmCondition.name(); 
FamCondition.position()=FacmCondition.position(); 
ModelTransUtils::SetInstRefAssocs4LSCChildren 
(FamCondition,FacmCondition, FamLSC); 
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 The RefIdentCommonTr is the last, sink block of the RefIdentTr block that creates 

gate, top, bottom and time interval components common for all reference identification type 

of elements. Time interval transformations further specialize into measurement, singular 

time and bounded time transformations. All of these rules are quite intuitive and perform 

ACM to FAM attribute value copying in a straightforward manner. 

 

 

 

Figure B.70 The RefIdentCommonTr block and CreateGate rule 
 

 

B.3.4.4 Orderable Event Transformation 

 The top level OrderableEventTr block is shown in Figure B.71. The block starts by 

matching and dispatching a LSC contained ACM orderable event to the appropriate rule or 

block to create its FAM counterpart. The kinds of orderable events handled are action, 

create, timer event, method event, and message event. The HandleAction rule is also 

provided in the figure as an example to explain how a typical orderable event rule works. 

For any given ACM action, a new FAM action is created in the given parent FAM LSC. 

From the ACM instance that is in association with the matched action, the corresponding 

FAM instance reference is obtained using the cross-domain association. Then a similar 

association is established between the FAM action and the FAM instance reference.  
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Figure B.71 The OrderableEventTr block and HanleAction rule 

 

 

 

Figure B.72 The GetOrdEvent rule and DispOrdEvents case 

 

 

The timer events, consisting of start timer, stop timer and timeout, form a sub-category 

of orderable events. The TimerEventTr block, sketched in Figure B.73, performs the 
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transformation of timer events. The block initially dispatches a matched ACM timer event 

and a FAM LSC to one of the three timer event creator rules. After the event creations, 

instance reference - timer event associations are established in the same manner shown in 

HandleAction rule. Timer events contain references to timer elements. Finally, the 

references to timers are set for the FAM timer events.. 

 

 

 

Figure B.73 The TimerEventTr  block and CreateStartTimer rule 

 

 

 

Figure B.74 The InstRefTimerEvAscs rule 
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Figure B.75 The HandleTimerRef rule 

 

 

Once the orderable events are transformed in their specifics, any general orderings (i.e., 

before and after) imposed on them are finally applied in the GeneralOrderTr block, as 

expounded in Figure B.76. 

 

 

 

Figure B.76 The GeneralOrderTr block and HandleBefore rule 
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The MethEventTr block is shown in Figure B.77 where it handles the transformation 

of call, receive, replyout and replyin events that constitute the method call event 

category. These transformations are quite straightforward and handled similar to the 

HandleAction rule explained above. 

 

 

 

Figure B.77 The MethEventTr block and HandleCall rule 

 

 

B.3.4.5 Message Event Transformation 

The main message event transformation block, MsgEventTr, is displayed in Figure 

B.78. It distributes the incoming packets according to the type of the matched ACM 

message event. The OutMsg2HLAMeth block, also shown in the figure, handles the 

transformation of out events. Within the block, both FACM and FAM input packets are fed 

to two for-blocks in parallel that are specialized in out event transformations based on the 

type of the message payload of the FACM out event. Non-durable message transmitting out 

events are transformed in OutNonDurableMsg2HLAMeth for-block and durable message 

transmitting out events are transformed in OutDurableMsg2HLAMeth for-block.  
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Figure B.78 The MsgEventTr and OutMsg2HLAMeth blocks 
 

 

B.3.4.5.1 Non-Durable Message Event Transformation 

The OutNonDurableMsg2HLAMeth block that handles non-durable ACM out message 

transformation is rendered in Figure B.79.  

 

 

 

 

Figure B.79 The OutNonDurableMsg2HLAMeth block and GetNDMsg rule 

FAMM::HLAMethod sendInt = SendInteraction.CreateInstance(FamLSC);  
sendInt.name()="NewSendInteraction"; 
FAMM::HLAMethod recvInt = ReceiveInteraction.CreateInstance(FamLSC);  
recvInt.name()="NewReceiveInteraction"; 
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The initial rule, GetNDMsg, matches and delivers the ACM out event and the non-

durable message and FAM LSC to the next rule, as well as programmatically creating a 

copy of SendInteraction and ReceiveInteraction HLA methods inside FAM LSC. The 

original methods do not contain any arguments, but their copied instances will have theirs 

assigned (such as HLA classes and federate references) as the transformation proceeds. The 

method copies are tagged as “New” to differentiate and match them from the others of the 

same type in the next rule 

In the CreateIntCls rule of Figure B.80, the guard expression is used to make a name 

comparison to check whether the send and receive interaction methods are prefixed with 

“New” in their names. Once the match is there, a new interaction class corresponding to the 

ACM non-durable message is created in the FAM FOM. The interaction class references of 

the both HLA methods’ supplied arguments are made to refer to the new interaction class. 

The attribute mapping code removes the “New” tags of the HLA methods, sets the name of 

the new interaction class to the name of the non-durable message suffixed by “IC”, and 

invokes the user library code method to programmatically build the interaction class from 

the non-durable message 

 

 

 

 

 

Figure B.80 The CreateIntCls rule 

SendInteraction.name()="SendInteraction"; 
InteractionClassRef1.name()=(std::string)NonDurableMsg.name()+"_IntRef"; 
ReceiveInteraction.name()="ReceiveInteraction"; 
InteractionClassRef2.name()=(std::string)NonDurableMsg.name()+"_IntRef"; 
InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC"; 
ModelTransUtils::TransformNonDurableMsg2InteractionCls_Hybrid 

         (NonDurableMsg, InteractionClass, FixedRecordDataTypes); 
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The SendRecvIntClsSrc rule in Figure B.81 first creates an out message event and 

associates it with the source instance (i.e., federate) using an ordered connection. Then it 

associates the out event to the send interaction method using a special connection. Finally it 

associates the send interaction method to the federation instance using an address 

connection. After this, a similar complementary stage starts for the receive interaction 

method, but this time from the federation to the target federate. First it associates the 

receive interaction method to the federation instance using an address connection. Then it 

creates an in message event and associates it to the receive interaction method using a 

special connection. The attribute mapping code copies the precedence and temperature 

values from the ACM ordered connection to the FAM ordered connection. 

 

 

 

Figure B.81 The SendRecvIntClsSrc rule 

 

 

The last part of the out event transformation is done by one of the two parallel rules 

named SendRecvIntClsDstInst and SendRecvIntClsDstRef, addressing the cases of 

message event target being an instance or an MSC reference, respectively. The 

SendRecvIntClsDstInst rule is shown in Figure B.82. It matches the pattern that associates 

the ACM non-durable message to the target instance reference, and creates a corresponding 

association on the FAM side. The attribute mapping code copies the precedence and 
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temperature values from the ACM ordered connection to the FAM ordered connection with 

precedence being increased by one, since that value was already used for the other message 

event in the previous rule. The other parallel rule, SendRecvIntClsDstRef, is defined 

similarly with the only difference being the reference to an instance replaced by a reference 

to an MSC reference. 

 

 

 

Figure B.82 The SendRecvIntClsDstInst rule 

 

 

B.3.4.5.2 Durable Message Event Transformation 

Durable message transformation is the biggest of the LSC instance event 

transformations in terms of size and complexity. Figure B.83 displays the 

OutDurableMsg2HLAMeth. It is defined methodologically similar to the 

OutNonDurableMsg2HLAMeth block, only being about three times in size. Thus, it is 

redundant to explain the details of the transformation, but appropriate to provide an 

overview on the differences.  

The durable messages in ACM are defined to be of, instantiation, update and deletion 

types [11]. There are three parallel courses of transformations that address out message 
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events of each durable message type. An ACM instantiation message out event maps to six 

FAM HLA method out events. The mapping cardinalities of an out event for update and 

delete types are both one to two.  

 

 

 

Figure B.83 The OutDurableMsg2HLAMeth block 

 

 

 

Figure B.84 The CrtObjClsUpdRef rule 
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Figure B.85 The ObjClsOutInSrc rule 

 

 

 

Figure B.86 The ObjClsOutInDstInst rule 

. 

 

B.3.4.6 Non-Orderable Event Transformation 

The non-orderable events constitute the set of instance events that do not require an 

explicit ordering of execution. Figure B.87 depicts the NonorderableEventTr block that 
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handles the transformation of non-orderable events. The block initially matches and 

dispatches the input packets to one of the handler rules according to the type of the ACM 

non-orderable event. The handler rules perform the transformation of method, end method, 

concurrent, end concurrent, suspension, end suspension, stop, end instance, invariant, end 

invariant and simultaneous region. 

 

 

 

Figure B.87 The NonorderableEventTr block and GetNonOrdEvent rule 

 

 

The HandleMethod rule is provided as an example to explain how a typical non-

orderable event rule works, in Figure B.88. For any given ACM method, a new FAM 

method is created in the given parent FAM LSC. From the ACM instance that is in 

association with the matched method, the corresponding FAM instance reference is 

obtained using the cross-domain association, “has-correspInstRef”. Then a similar 

association is established between the new FAM method and the FAM instance reference. 
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Finally, a “has-correspInEv” association is established between the new FAM method and 

the ACM method. All the other non-orderable event rules are similarly defined in a 

straightforward manner. 

 

 

 

 

 

Figure B.88 The HandleMethod rule 

 

 

B.3.4.7 Special Associations Formation 

The SpecialConnsTr block, placed at the end of the LSC transformation path, is 

responsible for the transformation of those parts that do not involve instances. It is 

deliberately positioned as the last LSC transformation block because it requires all of the 

FAM LSC entities to be already created and available by the time it starts execution. 

Figure B.89 shows the SpecialConnsTr block, which is the transformer for special 

associations. There are three kinds of special connections used in this work that associate 

FamMethod.name()=FacmMethod.name(); 
FamMethod.position()=FacmMethod.position(); 
FamOrdCon_InsTypEl_MscInsEv.Precedence()=FacmOrdCon_InsTypEl_MscInsEv.Precedence(); 
FamOrdCon_InsTypEl_MscInsEv.Temperature()=FacmOrdCon_InsTypEl_MscInsEv.Temperature(); 
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simultaneous regions to instance events, timer starts to timer events and general order 

elements to ordered events. The figure additionally shows the AscSimRegToInstEv rule as 

an explicatory example. For any ACM simultaneous region that is specially associated with 

an instance event, the rule matches their corresponding FAM simultaneous region and the 

instance event by utilizing their cross-links to FAM. Then a similar kind of special 

association is established between the two FAM elements. The other two special 

connection transformations are defined with the same approach. 

 

 

 

Figure B.89 The SpecialConnsTr block and AscSimRegToInstEv rule 

message, start timer event, etc. 

 

 

B.3.5 Bind Decomposed Instance MSC References 

The last block of the start rule, AssocDecompAsRefs, is illustrated in Figure B.90. In 

the previous DecomposeInst block, new decomposed FAM MSCs were created 

corresponding to the FAM MSCs that contained decomposed-labeled instances. Such 

instances contain references to their decomposed MSCs. At the end of the transformations, 

the reference associations between the new FAM decomposed instances and MSCs are still 

not bound. The role of AssocDecompAsRefs, is to establish these bindings. 
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Figure B.90 AssocDecompAsRefs block and GetBothMSCs rule 

 

 

 

Figure B.91 GetAndBindDecomposedMSC rule 
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APPENDIX C 
 
 

CHANGES MADE IN METAMODELS AND CODE GENERATOR  
 
 
 

This appendix summarizes the changes made in ACMM, FAMM and the simulation 

Code Generator (CodeGen) in the course of developing ACM2FAM transformations. The 

change log for FAMM is especially important because it was previously developed in 

another study [12]. Although FAMM functions smoothly as a domain metamodel in GME, 

it causes some errors and issues when used as a target model for transformation rules in 

GReAT. The reason for most of these problems is that transformation definitions in GReAT 

are first interpreted into C++ code and then this code is executed to actually perform the 

transformation. C++ is a strongly typed language and has strict syntax rules. The part of the 

generated model transformation code from FAMM in its original state is not error free.  

The first part of this appendix categorically summarizes the issues revealed in the 

metamodels and the generated transformation code. The second part outlines the issues 

with the simulation code generator, which were either inherent or introduced indirectly due 

to the changes made in FAMM. The change log for the metamodels and the CodeGen are 

provided in the thesis documentation CD. 

C.1 Issues with the Metamodels 

This section summarizes the issues caused by ACMM, FAMM or their sub-metamodels 

during the ACM2FAM development and transformation code generation processes and 

describes the solutions, and sometimes, the workarounds applied to mitigate the problems. 

The changes made in between the metamodel versions together with the dependent sub-

model versions, if there are any, are documented in the accompanying thesis CD. 

C.1.1 Eliminating One-to-Many Connections 

If a connection modeling element is used more than one time as source-to-connector or 

connector-to-destination, then the code generator generates duplicate method definitions for 

those connection parts, which result in compile errors. In other words, if a model element 

E1 (e.g., InlineOperandInterfaceBase) is associated as source with more than one 

elements, say, E2 and E3 (e.g., Reference and Final) as destinations using the same 
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connection element (e.g., HmscOperandConnection), then the generated code is 

erroneous with duplicate type definitions. The specific place of the error is inside the class 

definition of E1 where duplicate association role types are defined for E2 and E3 with the 

same name as the connection element. As a result, the GR-engine or GR-debugger gives 

error. This case is simply exercised and verified in the House2OrderTest sample. The 

same problem also arises if the associations were destinations. 

Note that if the association source (or destination) role names are manually changed to 

unique names in the umt.mga file, then the above problem of method redefinition is 

resolved, but this time the metamodel header file produces an error.  

Therefore, one to many connections of the same Connection element must be avoided. 

This is achieved by building a connection hierarchy so that ambiguities in code generation 

are eliminated. 

C.1.2 Name Clashes with Reserved Words 

GReAT’s transformation code generator generates a class or method for every modeling 

element, role or attribute having either the exact element name or prefixed/suffixed by 

some tag word. In the exact name usage, the C++ compiler produces syntax errors for those 

names that are C++ keywords. These names must be altered to non-keyword forms within 

the metamodels.  

Also, there are some auto-generated utility or management methods for every generated 

First Class Object (FCO) class, such as Create(). Modeling element names must not also 

be the same with such internally used artifact names for the same reason. 

C.1.3 Non-unique FCO Names 

Some FCOs in different paradigm sheets within the same metamodel or in the unified 

ACM2FAM transformation model obtained by exporting ACMM and FAMM into the 

transformation model, may occasionally have exactly the same name. This does not cause 

any problem as far as GME modeling is concerned. However, when those modeling 

elements are used in GReAT, the transformation code generator produces duplicate class 

names, which result in syntax errors at compile time.  

Therefore, modeling element name uniqueness must be established all across the 

components in a GReAT transformation model. 

C.1.4 References Pointing to Multiple Items 

Any GME Reference that pointed to all of a super class's child classes was modified to 

refer to the super class only, in order to reduce redundancy. This resulted in an extra 

inheritance hierarchy in the model transformation definition file to pack all the child classes 
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under a generated common parent, and the reference pointing to that super class. This is just 

for the reader’s information. This modification is just an internal optimization and does not 

have any negative effect on the models or transformation definitions. 

C.2 Issues with the Simulation Code Generator 

 As in the case of FAMM usage, the simulation Code Generator (CodeGen) gave errors 

when invoked on the FAMs that were generated from AdjFFE mission ACMs. The 

problems generally had to do with the imperfection of the CodeGen. The reason for most of 

the issues, we think, is that the development of CodeGen was majorly steered by the 

samples that were manually created during FAM testing. The scope and representative 

power of those samples were not as far-reaching as AdjFFE FAMs. In addition to these, the 

CodeGen simply had some syntactic and semantic flaws in its code generation logic and 

shortcomings in FAM coverage that we have discovered during our exercises. Finally, a 

portion of the problems were introduced after changes were made to FAMM due to GReAT 

and C++ restrictions, because the CodeGen is strictly coupled to FAMM in terms of model 

element names and structures.  

 The details of the changes made to the CodeGen are provided in a separate document 

inside the accompanying thesis CD. The changes are presented in two-column tables per 

Java source file, where the first column shows the original code part and the second column 

shows the changed code part. 
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APPENDIX D 
 
 

TIPS AND PITFALLS IN DEVELOPMENT WITH GREAT 
 
 
 

This appendix provides hints and recommendations derived from our experience in 

realizing ACM2FAM transformation for future model transformation developers of 

GReAT. The GReAT version used in this thesis is 1.7.1. Although GReAT documentation 

contains a fair amount of information and samples on how to use GReAT in defining 

transformations we have found out that it was not clear enough on some crucial points or 

contained missing information. In addition to that, GReAT’s error messages are often not 

very informative and even worse, the system occasionally crashes after encountering errors. 

Thus we expect that the tips and the explanations on the pitfalls presented in here would be 

very valueble for the prospective GReAT developers. 

D.1 Defining Cross-Links 

It is often the case in model transformations that maintaining references between the 

different models is necessary. Moreover, it is usually required to maintain temporary 

information that may correspond to both source and target paradigms. Such problems are 

tackled in GReAT by using an additional domain to represent all the cross-domain links 

and temporary links. In GReAT users can create a Package for describing the cross-links. 

In the package the users can drag references to classes in other packages and create new 

association types 

Cross-links can be defined not only between different domains but can also be used to 

extend a domain to provide some extra functionality required by the transformation. By 

using a different domain/package for cross-links we are able to specify a larger, 

heterogeneous domain that encompasses all the domains and cross-references. This model 

extension capability can be very handy in defining the ACM2FAM transformation, but care 

must be spent during its usage.  

We tried to utilize the cross-links mechanism to annotate the metamodels with extra 

model elements for facilitating the transformations, but unexpected errors thrown at run-

time later proved it useless. An example to this from our case study was the introduction of 

the NonDurableMsg type to represents the whole family of durable messages in the model. 
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It was decided in ACM2FAM transformations to transform every DurableData_Msg 

messages into HLA object classes and all the other messages into interaction classes. Every 

ACMM message extends from the FAMessage abstract super type, including the 

DurableData_Msg. However, there was initially no super type to represent “Non-

Durable” messages. The existence of DurableData_Msg enabled us to produce all of the 

object classes with a simple, straightforward rule definition. On the other hand, without a 

“Non-Durable” super type, pattern matching for the production of interaction classes would 

be cumbersome, with many similar, but distinct rules. An alternative to that was a single 

rule with a fairly sophisticated guarding mechanism to distinguish among the FAMessages 

– not a better solution either.  

We introduced the NonDurableMsg abstract element, which is not part of the ACMM, 

in a new cross-links package in the ACM2FAM model to gather all the messages having 

non-durable nature under a single super type. A single transformation rule that catched any 

non-durable message sufficed to create the stubs of all the interaction classes in the target 

model, just as in the case of object class generation. Things went fine during transformation 

rule definition until it came for testing. 

When we introduced the new message type inside a class diagram that is not under the 

ACMM package (e.g., a cross-links package), then the GReAT master interpreter threw a 

“Buffer overrun error”, leading to the crash of the execution and corruption of the 

transformation file, with an abnormal exit. The sequence of error messages are presented in 

Figure D.1. 

Only after defining the element inside the ACMM package, the transformation worked. 

The new hierarchy definition then could be inside cross-links, or ACMM, it did not matter. 

What is important is that the new element must be defined under ACMM package. (We 

believe that this provides a namespace for the new element, which is mandatory for all of 

the patterns that are used in transformation definitions.). 

 Our lesson learned was to spare cross-links usage for only defining associations 

between the source and target metamodels, not introducing new model elements. After this 

incident we modified ACMM to accommodate the new NonDurableMsg element there. 

D.2 Role Names and Cardinalities in Cross-Links 

If new associations are defined as cross-links between the source and target metamodel 

elements and roles and cardinalities are given to both association ends, as seen in Figure 

D.2, then the associations have to be used with exactly the same role names (and 

cardinalities) later in rule definitions. Otherwise, the transformation crashes at runtime, 
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giving a “FACM2FAM-gr.dll don’t exist” error. This error never goes away unless the 

association usage is corrected and the GReAT Master Interpreter is re-run (to regenerate 

everything). Note that whenever we modify something in CrossLinks, we have to re-run 

GReAT Master Interpreter, since this is counted as part of metamodel. 

 

 

 

Figure D.1 Errors thrown by GR-engine when using cross-links to define model elements 
 

 

 

Figure D.2 Sample cross-links 
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D.3 Working with Globals 

In order to easily access an element not found in a rule pattern, a “Global” object is 

defined and an association between the element and the global object is created. A global 

object can directly be accessed anywhere within transformation rules. Through a global 

object other model elements can be accessed, provided that they are defined to be 

associated with the global object in a separate package, and that a CreateNew binding is 

established between them in a previous rule, before being accessed. Please refer to Figure 

D.3 and Figure D.4 for a sample global object definition and usage. 

D.3.1 Rules for Defining Global Objects 

The rules listed below should be followed in defining and using global objects: 

1. Define a package under the root folder. Set the Temporary attribute of the package 

to True. (This is mandatory for globals to work!) 

2. Define a class diagram under the package created in 1.  

3. Drag and drop an object of kind Class to the class diagram from the part browser. 

4. Create as many ClassCopy objects into the class diagram as needed. Make those 

copies refer to the necessary model elements in the source or target metamodels. 

5. Establish associations between the global class and the class copies. Make sure to 

give valid and unique role names to association ends. Also set both src and dst 

cardinalities, where 0..1 is usually what is needed. 

D.3.2 Defining Multiple Global Objects 

It is possible to define as many global objects as wished; however, there is a crucial 

point to take into consideration in doing so: Instead of defining extra class diagrams into 

the previously defined package, define a separate package and define the new class diagram 

with the new global object under the new package.  

Otherwise, GReAT mistakenly disregards at least one of the global objects that are 

under the same package, but in different class diagrams. This could be observed as an 

ERROR in the Translator.log file if the CodeGen interpreter is run, indicating that one 

of the global objects that is used in rules are unbound. (Actually, in our exercise, it was the 

first GlobalRoot, not the newly defined GlbHlaMeths). Consequently, all of the 

associated objects with the global object in question are also reported to be unbound. 

Although in this situation, GReAT execution completes, desired results are not obtained. 

We have not tried to define extra global objects in the same package and in the same 

class diagram, but have the feeling that it would most probably work correctly. However, 
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limiting oneself to a single package and class diagram would quickly clutter the diagram 

sheet and it would be impractical to define many items there. 

 

 

 

Figure D.3 Global object definition in GReAT/GME 

 

 

 

Figure D.4 GReAT rule showing two global objects and a library usage 

 

 

 

Top-level RootFolder 

RootFolder coming from library 

Global object 
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D.4 Library Usage in Models 

A previously defined model could be imported and used as a library in another newly 

defined model, provided that the latter model’s metamodel is a superset of the former 

model’s metamodel. For example a model of HOMM can be attached as a library in a 

HFMM or FAMM model. Please refer to Figure D.4 and Figure D.5 for sample library 

usages in a transformation definition and in a FAM, respectively. 

D.4.1 Rules for Attaching a Library 

The rules listed below should be followed in attaching a library to a model: 

1. Open a model in GME editor. Right click the root folder and select “Attach Library” 

menu item from the context menu. 

2. Select the .mga file of the library model from the opened file selector, and press OK. 

3. The model is seen attached, as is, under the root folder, marked with a booklet icon. 

4. Note that the library item indicated with the icon is also a (subordinate) RootFolder 

type, such as the already existing, system provided, top level RootFolder.  

5. In accessing the library’s child objects during model transformations, make sure to 

indicate (as a pattern) the root folder coming from the library under the top level root 

folder (see Figure D.4). 

 

 

 

Figure D.5 IMLib and IEEE1516_Defaults used as libraries in a FAM model 
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D.4.2 Crashing of GReAT during Library Import 

In the default GReAT/GME configuration, we receive a “Buffer Overrun” exception 

similar to the one shown in Figure D.1 if we try to attach large libraries such as LMM into, 

for example, ACMM or FAMM. We occasionally need such library updates after we 

modify the underlying libraries in the models. The solution to this problem was provided by 

the GReAT development team when we had reported the issue to them. 

There is an add-on in GME that runs in the background when a MetaGME project, such 

as ACMM or FAMM, is edited. Its role is to turn the abstract attribute of FCOs to true, 

anytime an FCO is added. This add-on called MetaMAid is causing the problem. We are 

advised to turn off that add-on while a project is open and then attach the library. The add-

on is turned off by selecting MetaMAid from the list provided by the File�Register 

Components menu item and then pressing the Toggle (Disable since GME 11) button. 

Also, the ‘Systemwide’ radio button must be selected (‘For user only’ is selected by 

default) in the Register radio group in order for the operation be effective. After the 

library is attached, we can turn back the add-on if we want to. Future releases of GME 

might solve this problem. 

 



231 

 

 

 

CURRICULUM VITAE 
 

 

PERSONAL INFORMATION  

Surname, Name: Özhan, Gürkan  
Nationality: Turkish (TC)  
Date and Place of Birth: 18 August 1976, Tarsus 
Marital Status: Married, two daughters.  
Phone: +90 532 3102067 
Email: gurkanozhan@gmail.com 
 

EDUCATION  

Degree Institution Year of Graduation  

MS METU Computer Engineering 2001 
BS METU Computer Engineering 1998 
High School Tarsus American School 1994 
 

WORK EXPERIENCE 

Year Place Enrollment 

2008-Present NATO C3 Agency Senior Scientist 
2004-2008 STM A.Ş. Software Team Leader 
2002-2004 Havelsan A.Ş. Software Engineer 
2001-2002 Cybersoft A.Ş. Software Engineer 
1998-2001 METU Computer Engineering Research Assistant 
 

FOREIGN LANGUAGES  

English, Dutch, German 
 

PUBLICATIONS 

Journals  

1 G. Özhan and H. Oguztüzün, Graph-based transformation of conceptual models to 
executable high level architecture federation models, (under review). 

2 G. Özhan, H. Oguztüzün, P. Evrensel, Modeling of field artillery tasks with Live 
Sequence Charts, The Journal of Defense Modeling and Simulation: Applications, 
Methodology, Technology (JDMS), vol. 5, no. 4, pp. 219–252, October, 2008. DOI: 
10.1177/875647930800500402. 

 



232 

International Conferences  

1. G. Özhan, H. Oguztüzün, Generating Simulation Code From Federation Models: A 
Field Artillery Case Study, in: European Simulation Interoperability Workshop, 11E-
SIW-007, The Hague, Netherlands, June, 2011. 
 

2. G. Özhan, A.C. Dinç, H. Oguztüzün, Model-integrated development of field artillery 
Federation Object Model, in: Second International Conference on Advances in System 
Simulation (SIMUL), pp.109–114, Nice, France, August, 2010. 

3. G. Özhan, H. Oguztüzün, Model-Integrated Development of HLA-Based Field 
Artillery Simulation, in: European Simulation Interoperability Workshop, 06E-SIW-
027, pp. 187-196, Stockholm, Sweden, June, 2006.  

 

National Conferences  

1. G. Özhan, H. Oguztüzün, Topçu Bataryası Đçin Kavramsal Modelleme Ve 
Uygulamaları  (Conceptual Modeling for Field Artillery Battery and Its Applications), 
in: 2. Ulusal Savunma Uygulamaları Modelleme ve Simülasyon Konferansı – 
USMOS’07 (2nd National Conference on Defense Applications of Modeling and 
Simulation), pp. 437-446, Ankara, Turkey, April, 2007. 

2. G. Özhan, H. Oguztüzün, N. E. Özdemirel, Olay Çizgeleriyle Simülasyon 
Modellemesi (Simulation Modeling with Event Graphs), in: YA/EM’01 Yöneylem 
Araştırması ve Endüstri Mühendisliği XXII. Ulusal Kongresi, p. 55, Ankara, Turkey, 
July, 2001. 

 

Thesis  

1. G. Özhan, Developing a Discrete Event Simulation Engine with Concurrent Constraint 
Programming, MSc Thesis, Department of Computer Engineering, Middle East 
Technical University (METU), Ankara, Turkey, January, 2001. 

 

HOBBIES 

Reading, traveling, swimming 

 


