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ABSTRACT

PHOTOMETRIC STEREO CONSIDERING HIGHLIGHTS AND SHADOWS

Büyükatalay, Soner

Ph.D., Department of Electrical and Electronics Eng. Dept., METU

Supervisor : Prof. Dr. Uğur Halıcı

Co-Supervisor : Assist. Prof. Dr.̈Ozlem Birgül

September 2011, 130 pages

Three dimensional (3D) shape reconstruction that aims to reconstruct 3D surface of objects

using acquired images, is one of the main problems in computer vision. There are many

applications of 3D shape reconstruction, from satellite imaging to material sciences, con-

sidering a continent on earth or microscopic surface properties of a material. One of these

applications is the automated firearm identification that isan old, yet an unsolved problem in

forensic science. Firearm evidence matching algorithms rely on the fact that a firearm creates

characteristic marks on surfaces of the bullets and the cartridge cases. These marks should

be digitized unaffected from different surface material properties of evidences. Accuracy of

3D shape is one of the most important parameters affecting the overall identification per-

formance. A very high resolution, accurate 3D data have to bereconstructed in the order of

minutes. Photometric stereo (PS) method is capable of reconstructing high resolution surfaces

in a fast manner. But, the metallic material and the surface topology of the firearm evidences

generate highlights and shadows on their images that does not comply with the assumptions

of conventional PS. In the scope of this work, it is intended to design an accurate, fast and

robust 3D shape reconstruction scheme using PS consideringhighlights and shadows. These

new PS procedures to be developed here should not be limited only to the ballistic evidences
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but they also could be used for a wider range of objects reflection properties and texture. For

this purpose, masked PS methods which are quite fast when compared to other approaches,

were classified and implemented. Simple additional maskingmethods are also proposed. A

novel weighted PS method, using weighted least square estimation, is presented to eliminate

false edges created by the masks. Concurrently, the calibration processes and the illumina-

tion configuration were improved. The disturbances due to close light sources were removed

by image calibrations. From experimental tests to simulatethe light positioning problem, it

is concluded that the double zenith illumination configuration have better performance than

the optimal single zenith illumination configuration, whenthe highlights and the shadows are

considered. Double zenith illumination configuration results were further improved by the

weighted normal PS with a small additional computation cost. All the implemented methods

were tested firstly on the controlled environment using synthetic images. Later the same tests

were conducted on real objects with varying characteristics as well as the firearm evidences.

Keywords: photometric stereo, optimal illumination, highlights, shadows
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ÖZ

PARLAMA VE GÖLGELEṘI GÖZÖNÜNE ALAN FOTOMETṘIK STEREO

Büyükatalay, Soner

Doktora, Elektrik-Elektronik Müh. Bölümü

Tez Yöneticisi : Prof. Dr. Uğur Halıcı

Ortak Tez Yöneticisi : Yard. Doç. Dr.̈Ozlem Birgül

Eylül 2011, 130 sayfa

Objelerin görüntülerinden üç boyutlu (3B) şeklini geri çatma, bilgisayarlı görünün temel

problemlerinden biridir. 3B geri çatmanın, uydu görüntülemesinden malzeme bilimine, dünya

üzerindeki bir kıtadan, mikroskobik malzeme özelliklerine kadar pek çok alanda değişik

uygulamaları bulunmaktadır. Bu uygulamalardan bir taneside, eski ama daha çözülmemiş

bir adli bilim problemi olan otomatik silah tanıma sistemidir. Silah delili eşleştirme algorit-

maları, silahların kovan ve mermi çekirdekleri üzerindekarakteristik izler bıraktığı gerçeğine

dayanmaktadır. Bu izler yüzey malzeme özelliklerinden etkilenmeden sayısallaştırılmalıdır.

3B şeklin doğruluğu, bütün tanıma başarımını en çoketkileyen değişkenlerden biridir. Çok

yüksek çözünürlüklü, doğru 3B veri dakikalar içinde oluşturulmalıdır. Fotometrik stereo

(FS) yöntemi hızlı bir şekilde yüksek çözünürlüklü geri çatım yapabilmektedir. Fakat ateşli

silah delillerinin metalik malzemelerinin ve yüzey topolojilerinin ürettiği gölge ve parla-

malar, genel FS varsayımları ile uyuşmamaktadır. Bu doktora tezi kapsamında amacım,

gölge ve parlamaları göz önüne alan FS kullanarak doğru, hızlı ve güvenilir bir 3B geri

çatma akışı tasarlanması amaçlanmıştır. Bu yeni FS yönteminin, sadece balistik deliller

ile sınırlandırılmayıp, değişik yansıma ve doku özelliklerine sahip geniş bir objeler sınıfı

içinde kullanılabilecek bir geri çatım yöntemi olması amaçlanmaktadır. Bu amaçla, literatürde
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bulunan, hızlı çalışan maskeli FS yöntemleri sınıflandırılmış ve gerçekleştirilmiştir. Basit

ek maskeleme yöntemleri de önerilmiştir. Maskelerin oluşturduğu hatalı kenarları elemek

için, ağrılıklı en küçük kareler kestirimi kullanan,yeni bir ağırlıklı FS yöntemi sunulmuştur.

Aynı zamanda, kalibrasyon süreçleri ve aydınlatma konfigürasyonları geliştirilmiştir. Yakın

ışıklardan kaynaklanan bozulmalar görüntü kalibrasyonları ile temizlenmiştir. Işık kaynağı

konumlandırma problemi için yapılan testlerden, çift zenit açılı aydınlatma seçiminin gölge ve

parlamaların olduğu durumlarda, en iyi tek zenit açılı seçimden daha iyi bir başarımı olduğu

sonucu elde edilmiştir. Çift zenit aydınlatma seçiminin sonucu, az bir ek hesaplama maliyeti

ile daha da iyileştirilmiştir. Bütün yöntemler önce, sentetik görüntüler kullanan kontrollü

koşullarda test edilmiştir. Sonra aynı testler, değişen karakteristikteki gerçek objeler ve ateşli

silah delilleri üzerinde uygulanmıştır.

Anahtar Kelimeler: fotometrik stereo, en iyi aydınlatma, parlamalar, gölgeler
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contributions to this work during the endless days and nights on calibrating and testing the

hardware.
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CHAPTER 1

INTRODUCTION

1.1 3D Shape Reconstruction

3D shape reconstruction is one of the main problems in computer vision. These methods aim

to reconstruct 3D surface of the object using acquired images. Since methods focused on this

problem have similar names like “shape from shading ”or “shape from stereo ”, general name

“shape from X ”is used to define all of them.

The one of the early shape from X method was shape from shading(SFS), which was for-

mulated firstly by Horn in 1970 [5]. This method reconstructsthe surface from only a single

image [6], which is ill conditioned without restricting with some constraints [7]. Especially,

“The depth values of some singular points must be known”constraint limits the feasibility of

the method.

Binocular stereo (BS) is an other shape from X method that is also used by humans. In BS,

two or more images viewing the same scene are used to calculate the depth of a surface point.

The main problem in BS is finding conjugate pairs in two images, which is called matching.

In case of a calibrated BS system, epipolar geometry can be utilized to reduce 2 dimensional

matching problem to 1 dimensional line search problem. However matching problem still has

to be solved.

There are two main approaches to matching problem, area-based (intensity matching) ap-

proach and feature-based approach. Area-based approach tries to match pixel gray levels

of two images. It results dense depth map since matching is executed for each pixel of the

images. But this approach is very sensitive to noise. Feature-based approach searches for fea-
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tures ( usually edges or corners) to match in two images. Thisapproach is robust if features

are visible in both images. But, only depth values of features can be calculated directly, depth

values of other points must be interpolated to reconstruct the whole surface. Resolution of

depth values in the feature-based approach depends on the surface texture quality, which is a

problem for smooth textured surfaces. This resolution problem can be eliminated by using a

structured light source [8] [9].

Depth from defocus (DFD) is a fairly new shape from X method. It has similar properties with

triangulation methods like BS and motion [10]. Basic idea isthe amount of blur in the image

is directly related to the camera settings and the depth values of surface [11]. The sensitivity

of the DFD depends on the camera’s aperture diameter and practically it is not easy to select

desired aperture diameter of the camera [10].

One of the well known shape from X methods is photometric stereo that was firstly proposed

by Woodham in 1978 [12]. In photometric stereo (PS) method, still images of a surface

are captured under variable, known light sources. Intensity values of image pixels can be

related to the surface normals and the reflection propertiesof the surface. This relation can be

formulated by reflection models and different models can be selected depending on surface

reflection properties. Surface normal and albedo values arecalculated using the selected

reflection model and images under different lighting conditions.

The main advantages of PS are very high resolution output andfaster computation compared

to other 3D reconstruction methods. On the other hand, PS hassome shortcomings when

shadows and specular reflections occur. In the literature, there are two main approaches to

solve these problems. The first approach utilizes non-linear reflection equations and resulting

constraint optimization problem is to be solved. These non-linear PS solutions have good

results but work much slower than linear PS. In the second approach, pixels with shadows or

highlights (i.e. specular reflection regions) are masked out, and linear PS is applied to the rest

of pixels. This approach increases the accuracy of the results and still performs fast.

1.2 Automated Firearm Identification

Automated firearm identification is an unsolved important problem in forensic science. Bal-

listic experts use stereo microscopes capable of viewing two firearm evidences side by side
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to compare bullets or cartridge cases. This setup can compare only two bullets or cartridge

cases at a time. With the increasing number of evidences, identification problem grows geo-

metrically making it nearly impossible to solve without an automated identification system.

Identification of firearms depends on striated and impressedmarks on the metallic surfaces

of bullets and cartridge cases [13] [14]. In most cases, the useful information for evidence

comparison is the geometry information, independent of texture and reflection [13] [14]. Early

versions of automated identification systems use 2D images of cartridge cases [15]. These

systems have poor performance since the marks on the metallic surface of evidences are very

sensitive to the type and direction of light sources [13]. 3Dshape is a better choice to identify

the geometrical marks independently from illumination.

1.3 Motivation and Objective of The Thesis

Beside the automated firearm identification, the 3D shape reconstruction has many applica-

tions in industry, from satellite imaging to material sciences that may consider a continent on

earth to microscopic surface properties of a material. A very hot topic in computer vision and

pattern recognitions is three dimensional face recognition, that works on the reconstructed

3D facial data. On the other hand, 3D media consumer productsthat developed recently,

increases demand on 3D data.

This thesis work is about the 3D reconstruction of any surface topology from the images.

However the problems occurring on firearm evidences were concentrated most. The images

of the evidence metallic surfaces mainly suffer from highlights and shadows. The 3D recon-

struction problem has to be solved considering these highlights and shadows.

The two main requirements of 3D reconstruction for automated fire identification are;

• The most discriminative 3D shape should be generated.

• The method should generate 3D shape in the order of minutes.

The discriminative 3D shape is very important, since thousands of similar evidences will be

identified. The 3D generated shape should have high pixel resolution to be discriminative.

Previous systems were using 1024x1024 pixel images for 2D investigation. Higher resolution
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is needed with the growing database of evidences. This requirement limits the 3D reconstruc-

tion methods to dense 3D shape generation methods.

The feasibility of the identification system depends on the speed performance of acquisition

and comparison system. The acquisition hardware and software should reconstruct the surface

of the evidence in the order of minutes. This performance is required to handle daily work

load of the evidence acquisition system.

1.4 Contributions of The Thesis

Firstly, masked PS methods that removes highlights and shadows were implemented. Masked

PS methods depends on the fact that objects with highlights and shadows in some regions, still

have diffuse (Lambert) reflection on other parts of the surface [16]. The locations of highlights

and shadows change with lighting conditions. With proper selection of light sources, one may

acquire a set of images so that for each pixel, a subset with atleast three images satisfying

linear reflection model (Lambert) can be chosen. Pixel values at three images is necessary in

order to find out three unknowns, one is related to albedo and other two are related to surface

normal at that point.

In this study, the implemented masks are listed as follows;

• Image Masks

– Threshold Mask (Th)

– Non-Lambert Quadruple Mask (NL) [2]

• Normal Masks

– Self Shadow Mask (SS)

– Cast Shadow Mask (CS)

– Highlight Mask (Hi)

– Reflection Mask (Re) [2]

– Shadow Mask (Sh) [4]

• Subset Masks
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– Coleman and Jain Mask (CJ) [17]

– Extended Non-Lambert Quadruple Mask (xNL) [3] [18]

– RANSAC (RA) [19]

The masked methods listed above are combined within a unifiedframework that we name as

unified PS. This framework provides a platform for fair comparison among various methods.

This is achieved by using the same codes for PS calculation except the masking procedures.

Secondly, using unified PS framework, masks can be fused in different ways using logical

operations easily. Hence, different combinations can be selected and evaluated based on the

characteristics of each mask and requirements of a specific application to find the most robust

PS method.

Threshold mask, self shadow mask, cast shadow mask and highlight mask are fast, simple

and easy to implement masking methods that are not found in the literature. Also extended

Non-Lambert Quadruple Mask method for six images is generalized to any number of images

in this study. Other masking methods are taken from previousworks and implemented as they

were defined.

Secondly, weighted masked PS was introduced. The previously mentioned masks were used

as true/false flags that presents an intensity value will be used or not used in PS. This hard

decision created false edges at the boundaries of the mask, where the used intensity sets are

changed. This new weighted mask method utilizes residual errors of PS to create weights to

masks. Also smoothing masks further reduced the false edges.

Thirdly, optimal illumination configuration for PS is investigated. Most of the previous works

on optimal illumination configuration did not include any highlights or shadows while calcu-

lating optimal lighting configuration. They commonly proposed that the optimal illumination

configuration was placing lights on a single circle around the camera. This study investigated

this configuration with realistic highlights and shadows inthe synthetic images. The simu-

lations with highlights and shadows showed that it is not possible to find a single optimal

configuration for all smooth or rough surfaces. Hence, we propose to place light sources on

two circles around the camera with two zenith angles.

Lastly, usage of the double zenith light sources also produced new opportunities to reduce

highlight and shadow errors. Instead of using all light sources at once, each light sources set
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with equal zenith angles is used exclusively in PS. The resultant normal vectors are combined

with weights that were calculated based on the estimated errors. This novel weighted normal

PS approach and general weight functions are presented in this work.

The methods explained above are also tested on the real images. The calibration of the hard-

ware highly affects the performance of the reconstructed 3D shapes, thus, calibration proce-

dures were also studied in the scope of this thesis.

Since the relative positioning of the sample with respect tothe camera, determines the amount

of highlights and shadows on the images, a priori adjustmentof orientation has a potential to

improve 3D generation performance. To explore this potential a plane correction algorithm

was implemented and integrated.

As a summary, the contributions of this thesis can be groupedinto three categories;

The first group includes the PS configuration improvements onthe illumination configura-

tion and calibration processes. The optimal illumination configuration without highlights and

shadows were replaced with the double zenith configuration.Double zenith configuration re-

duced the errors due to highlights and shadows. Also surfaceillumination due to near light

sources was modeled and this effect is normalized with an additional calibration procedure.

Secondly, mask PS methods in the literature are classified and implemented in the unified

framework. This framework is capable of applying any combination of the previously imple-

mented masks. Some fast working, simple and easy to implement masking methods such as

threshold mask, self shadow mask, cast shadow mask and highlight mask were added to the

unified framework. These masks are novel methods to the best of our knowledge.

Thirdly, new weighted approaches to PS were implemented. Firstly weighted mask PS that

employs weighted least square estimation was proposed. Thepreviously implemented masks

can be weighted in this implementation. Also, weighted normal PS is proposed on double

zenith illumination configuration.
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1.5 Outline of Thesis

This thesis has been divided into eight chapters including this introduction chapter. Second

chapter describes the previous works related to this thesis. The third chapter defines the uni-

fied PS framework, masks and weighted mask PS. Chapter four proposes the novel illumina-

tion configuration and weighted normal PS method theoretically. Next three chapters explain

the tests done with the implemented methods on synthetic images, real objects and cartridge

cases, respectively. Finally, in the last chapter results are summarized and discussed.
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CHAPTER 2

BACKGROUND

2.1 Introduction

In this chapter, firstly, general definitions used throughout the thesis are explained. The image

formation theory with the reflection models and shadows is explained. PS and masked PS

methods in the literature are placed in the next section. Previous works on the optimal illu-

mination configuration for PS and resultant normal evaluation schemes like uncertainty are

defined. Lastly the error definitions used throughout the thesis are presented.

2.2 Imaging Geometry and General Definitions

The general geometry of the imaging system used in definitions through out this thesis is as

follows; the world coordinate system is defined in as camera-centered coordinate system; that

is the origin is the center of the field of view, the camera axisis placed on the+Z axis, and the

up direction of the image is parallel with+Y axis. In this definition, theX andY axis of the

imaging plane and field of view are parallel. It is generally assumed that the object is placed

faraway from the camera’s imaging plane so that the orthogonal projection assumption can be

safely used.

The general notation vectors used in this work are presentedin Fig.2.1. The camera direction

vectorv, is the optical axis of the camera and with orthogonal projection assumption it is given

as [x y z]T = [0 0 1]T all over the field of view. The unit surface normal vector is represented

with n. The light source direction is an unit vector defined from surface point to center of the

point light source and is shown withsi. The subscripti indicates the index of the light source,

8



the photometric stereo (PS) demands multiple light source.In the PS calculations, the light

directionsi is assumed to be constant, but this assumption is corrected on the real images with

the image calibration processes which will be explained in Chapter 6.

The reflection direction vectorr i is the direction where the specular reflection occurs [20].

This is defined as the symmetric vector of light source direction with respect to surface normal

and is formulated as Eq. 2.1. Since, it is a function of surface normaln and the light source

directionsi , it lies in the plane defined by them.

r i = 2(sT
i n)n − si (2.1)

The surface normals resulting a specular reflection from thelight source to the camera direc-

tion can be checked directly with specular normal directiondefined in Eq. 2.2.

ns =
s+ v
|s+ v|

(2.2)

where|.| denotes the norm of the vector.

All vectors are defined with their zenith and polar angles in this work. The zenith angle of a

vector is the positive angle between itself and+Z axis. The polar angle is measured positively

counterclockwise from+Z axis.

2.3 Reflectance Map

Reflectance map is the relation of the image intensity with the surface normal [16]. It is

a function of the light source radiance and the surface bidirectional reflectance distribution

function (BRDF). Source radiance is simply the light power emitted to the surface of interest.

Source radiance function (Ls(x)) of a single distant point light source is given in Eq. 2.3. The

solid angle delta functionδω, is defined as in Eq. 2.4. HereEo is the irradiance of the light

source ands is the light source direction.

Ls(x) = Eoδω(x − s) (2.3)
∫

ω

h(x)δω(x − xo)dω = h(xo) (2.4)

BRDF can be defined shortly as the ratio of the reflected light power from the surface to

the incident light power with respect to each income and outgoing light directions. BRDF
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Figure 2.1: Vectors used in reflection models

is a function of the incident and the reflection directions. These directions are defined with

respect to the surface normal. BRDF is the ratio of the radiance of the reflected light at the

given reflection direction to the irradiance of incident light. For the surface patch, with the

surface normaln, isotropic BRDF can be expressed withfr (s, n, v) [16].

The surface radiance of reflected light alongv is Lv();

Lv(s, n, v) =
∫

ω

fr(x, n, v)Ls(x)max(0, xTn)dω (2.5)

On the other hand, it is proved that the surface reflection is proportional to image irradiance

[21]. This can be written asi = kLv() where I is the intensity value andk is the constant

of proportionality. If Imax is the maximum intensity value of the image, the reflectance map

R(s, n, v) is defined as;

R(s, n, v) = k/Imax

∫

ω

fr(x, n, v)Ls(x)max(0, xTn)dω (2.6)

In Eq. 2.6, the reflectance map of the source is related to the BRDF and the orientation of the

surface. The BRDF will be defined later to substitute in this equation. A perfectly smooth

planar surface reflects only in specular manner. All incident radiation from a point light source
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Figure 2.2: Lobes of total reflection

is reflected along this direction resulting a specular BRDF as in Eq. 2.7

fv(s, n, v) =
δω(n − ns)

2sTn
(2.7)

On the other side, a perfectly rough planar surface reflects only in diffuse manner. All incident

radiation is from a point light source is reflected uniformlyalong all directions with constant

BRDF as in Eq. 2.8.

fv(s, n, v) = 1/π (2.8)

The uniform BRDF value is calculated by the fact that all the incident light is reflected by the

surface.

Most solids have a combination of diffuse and specular reflection properties which is sum of

three lobes, forescatter lobe, backscatter lobe and normallobe (see Fig.2.2 ). The forescatter

lobe represents the specular reflection of the surface. Normal lobe is diffuse component of the

reflection map. Backscatter lobe is spread around source direction, most materials have very

little backscatter. Only some paints have strong backscatter lobe [16].

The forescatter lobe is spread around the specular direction and spread function purely de-

pends on the surface properties. It can be explained simply by modeling rough surface as

a collection of infinitely small perfect specular reflectorscalled facets. Each facet inclined

randomly around the surface normal. Facet models also assume that surface is isotropic that

is uniform in all orientations. The incident light is reflected from each facets specularly. Since

the facets inclination have a mean value around the surface normal, forescatter lobe have a

monotonically decreasing distribution around the reflection direction.
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Normal lobe is spread around the surface normal. The bulk scattering of surface is assumed

to be the origin of the normal lobe. In the bulk scattering model, the surface is composed of

an optically uniform material with facets in it. The scattering in this model is analyzed using

radiative transfer function and can be approximated as Lambertian.

The BRDF of a real life surface can be modeled with the summation of specular, normal,

forescatter and backscatter components, which is written as;

fv(s, n, v) = µspecfspec(s, n, v) + µ f scf f sc(s, n, v) + µnormfnorm(s, n, v) + µbscfbsc(s, n, v) (2.9)

whereµ’s are the weights of each component in the BRDF.

If this generalized BRDF definition in Eq. 2.9, is placed in the reflectance map Eq. 2.6,

the generalized reflectance map equation is created; however this generalization is beyond

the scope of this work, and some assumptions will be made to simplify the general prob-

lem. Firstly, the specular reflection component of the general BRDF results an unbounded

reflectance map and saturated intensity value. Soµspec= 0 is assumed throughout this thesis.

Also rare backscatter is assumed to beµbsc = 0, in this context. The simplified BRDF Eq.

2.10 and corresponding derived simplified reflectance map from Eq. 2.6 are formulated as in

Eq. 2.11;

fr(s, n, v) = µ f scf f sc(s, n, v) + µnormfnorm(s, n, v) (2.10)

R(s, n, v) = ρspecΦ(nT
s n) + ρdi f f (sTn) (2.11)

The constant termsρspecandρdi f f in reflectance map Eq. 2.11 are called the specular forescat-

ter (specular in short) and diffuse albedo values of the surface respectively.

Maximum value of a reflectance map can be 1, which correspondsto the case all the light

power from the source is reflected to camera. However, measured intensity values of the

camera are not normalized to 1 but have a gain value dependingon hardware and acquisition

configuration of the camera. Hence the intensity values are normalized before any further

calculation.

The term ’reflection model’ is used for a mathematical function that generates intensity values

with given surface normals and light source directions and some additional parameters. These

additional parameters simulate the reflection properties of the surface material.
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2.3.1 Lambert model

This simplest reflection model that only implements the diffuse reflection of the surface is

Lambert reflection model and is formulated in Eq. 2.12. The constant diffuse BRDF is used

for this model.

I i = ρdi f f (sT
i n) : (sT

i n) > 0 (2.12)

Lambert model is very simple and holds for many type of materials if the camera direction is

away from the forescatter lobe [2]. If the camera direction is close to the specular direction,

Phong or Torrance-Sparrow model may be used, that specular reflection is taken into account.

2.3.2 Phong model

Even though Phong model is physically not correct, since it is very fast to implement it on the

hardware shader and includes the specular reflection component, it is widely used in computer

graphics.

I i = ρspec(rT
i v)m + ρdi f f (sT

i n) : (sT
i n) > 0 (2.13)

The forescatter lobe is modeled by a power of cosine functionof angle between reflection

directionr i and camera directionv. Theρspecandρdi f f are specular and diffuse albedo values

respectively in Eq. 2.13.

2.3.3 Torrance Sparrow Reflection Model

For visible light, Torrance Sparrow model is a good approximation of surfaces that can be

modeled with facets [16].

I i = ρspece
−m2[arccos(nT

h n)]2
+ ρdi f f (sTn) (2.14)

nh =
c+ s
|c+ s|

(2.15)

Here the intensity valuei is composed of specular and diffuse terms. The specular term

depends on the angle between the normal reflectionnh and normaln direction. The normal

reflection direction is bisector of the camerac and light sources directions where highlight

will occur with full power if n = nh.
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Figure 2.3: Cross section of the surface with self shadows (A), cast shadows (B) and highlights
(C).

2.3.4 Shadows

Shadows can be classified in two groups; self shadow and cast shadow [2] as shown in Fig.

2.3. A self shadowed pixel is shaded by itself that can be formulated (sT
i n) < 0. Geometrically,

the angle between the surface normal vector and the light source direction is more than 90◦.

With a single point light source, these pixels have zero intensity value.

Beside self shadows, the cast shadows may exist on images dueto some other parts of the

surface that occludes the light source. Although (sT
i n) > 0 condition holds, zero intensity

value will appear due to lack of illumination at these pixel coordinates.

Theoretically, since both of these shadows results in zero intensity value, they may be rec-

ognized from intensity values. In real images, however, shaded regions may not have perfect

zero intensity values due to secondary illumination. In such cases, although self shadows may

be extracted from surface normals, cast shadows can not be detected locally.
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2.4 Photometric Stereo

In photometric stereo (PS), still images of a surface are captured under different illumination

configurations [12]. Intensity values of image pixels can berelated to surface normals and the

reflection properties of the surface. Various reflection models were proposed to formulate the

surfaces reflection properties. The most effortless model is Lambert reflection model since it

provides a linear solution to the PS problem.

2.4.1 Linear Photometric Stereo

Linear PS method uses simple, linear Lambert reflection model. In this model, intensity of a

pixel, illuminated by single point light source, is defined as follows;

i = ρdsTn (2.16)

s= µd sTn > 0, |d| = 1, |n| = 1

In Eq. 2.16,i is the intensity value,ρd is albedo,n is the unit surface normal vector,s is the

illumination vector which is the multiplication of unit light source direction vector,d, and

illumination strength,µ. Intensity value is directly proportional to the cosine of the angle

between the surface normal and the light source direction with a factor, albedo (ρd) times the

illumination strength (µ).

Assuming that the illumination vector is known, Eq. 2.16 hasthree unknowns; one is the

albedo and two comes from the surface normal. If three intensity values of the same surface

point are captured using independent light sources, the linear equation system can be solved

as:

I = ρdSn

ρd = |S−1I | n =
S−1I
ρd

(2.17)

I = [ i1 i2 i3 ]T ,S= [ s1 s2 s3 ]T

In Eq. 2.17,I is intensity vector composed of the intensity values,im from mth image, illu-

minated bysm. Similarly, sm, illumination vectors for each light sources are concatenated to

form the illumination matrix,S. If more than 3 images are given, the equation system can be
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solved using theS† (pseudo inverse ofS) calculated as in Eq. 2.18.

S† = (STS)−1ST (2.18)

2.4.2 Optimal Illumination For PS

In 2003, Spence and Chantler, published the first paper on theoptimal illumination for three

image PS [22]. Later in 2006, they extended their work with intense sensitivity analysis [23].

All the derivations were made with the assumption that the surface is Lambertian (no high-

lights) and there is no shadow. Additive, zero mean Gaussiannoise on images, representing

CCD noise, was considered as the source of all resultant normal error in their work. For

three images, light sources were placed with equal polar angles of 120o optimally. Zenith

angles of the light sources (Zsource) were the same and were chosen depending on the surface

roughness (55o for the rough surfaces and 90o for the smooth ones).

Later, Drbohlav and Chantler further extended the previousworks with more than three im-

ages PS [24]. Again only Gaussian CCD noise was modeled. For more than three images

(ni > 3) optimal zenith angle was found to be 54.74o and light sources were equally spaced

with (360/ni )o tilt angles. Besides the circular light placement with constant zenith angle

Zsource, they also investigated the case where one of the light sources was at 0o zenith angle

position (coincide with the camera) and others are on the circle. With the additional 0o zenith

angle light source, the optimalZsourcechanged, but whenni goes to infinity, it converges to

the same optimal value given above.

Concurrently, Barsky and Petrou published the general design issues paper for color PS, which

is an extension of their previous paper [2], [25]. The CCD noise, illumination estimation

errors, shadows and highlights were investigated. Similarto Sakane and Sato illumination

configuration was designed to minimize singular value decomposition (SVD) condition num-

ber [26]. They suggested a circle of light sources with constant zenith angles in the range 30o

to 45o. This is less than the previously calculated optimal, sinceshadows were considered.

Lastly in 2007, Sun et al, showed that the orthogonal light source is the best for 3 image case

with no highlights and no shadows exist in the images [3]. Also the uncertainty of the results

depends on surface albedo in their work.
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(a) (b)
Figure 2.4: Segmentation of different regions defined in [1]

2.4.3 Masked PS methods

The main idea of these methods is that nearly all non-Lambertian materials behave close to

Lambertian, if the surface orientation is far from specularregion [16]. So it is very attractive

to solve PS problem linearly, by eliminating non-Lambert pixels and using Lambert pixels.

In 1982, Coleman and Jain implemented the first filtered PS method using four images [17].

This method can filter one specular pixel among four. It assumes that there is no shadow in

images. With some restrictions on four light source positions, this condition can be satisfied

easily. Their method is based on the assumption that surfacealbedo is constant for any light

combination regarding there is no shadows and surface is Lambertian. Three image PS is

calculated four times and four albedo values and normal vectors are found. If the variance

of albedo values is less than a threshold, algorithm decidesthat there is no highlight and the

average of all normals is the resultant normal vector. On theother hand, if there is a highlight

pixel then the solution with the smallest albedo is used.

Later, Solomon and Ikeuchi built up a new filtered PS method using four images [1]. This

method can handle two shadow pixels among four. In this two-image PS case, albedo is

assumed to be constant and known. Although the algorithm states what to do when there is a

shadow or highlight, it does not inform about how to sense them.

Algorithm applies a different solution for each region defined as with the shadows as the fig-
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Figure 2.5: General flow chart of method defined in [2]

ure. Generally when there is no shadow, for a region Coleman,Jain [17] specular detection

method is used with adaptive threshold depends on camera noise. When the region is shad-

owed in only one of the images, region lighted by the oppositesource has highlight. So,

two remaining lights with constant albedo are used. When there are two shadowed pixels,

algorithm evaluates normals with them, hoping there is no highlight at the rest of the images.

In 2003, Barsky and Petrou, built new filters for PS method [2]defined by Coleman and

Jain [17]. Beside highlights also shadows can be sensed and filtered with these methods.

Method is capable of sensing one erroneous pixel among four.Two erroneous pixels may

cause filters to make false decisions that results a worse case than using all four pixels together.

They defined three filters, non-Lambert quadruple detectionfilter, color differencing highlight

filter, alternative highlight filter. Method works as follows;

Non-Lambert quadruple detection filter utilizes linear dependence of source directions which

indicates that any four vectors in three-dimensional worldare linearly dependent.

a1s1 + a2s2 + a3s3 + a4s4 = 0 (2.19)

If we multiply both sides with local albedo and surface normal;

a1ρdi f f (s1n) + a2ρdi f f (s2n) + a3ρdi f f (s3n) + a4ρdi f f (s4n) = 0 (2.20)
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This is equivalent to;

a1I1 + a2I2 + a3I3 + a4I4 = 0

aI = 0 a= [a1a2a3a4] (2.21)

Vector definesa hyper plane in four dimensional space and can be computed directly from

source directions. If all four intensities are perfectly Lambert, above equation must hold. For

near-Lambert intensities, ”Lambertian error” is defined as(aI)2. If Lambert error is less than

a threshold, all four intensities are near-Lambert.

Color differencing highlight filter employs different color characteristics of specular and dif-

fuse reflection. While diffuse reflection has chromaticity of body color, the specular reflection

has the chromaticity of illuminant.

If both illuminant and body have close colors, color differencing does not work. In these

cases, alternative highlight filter is used. Alternative method is intersection of two threshold

filters. If brightness of a pixel is high and normal vector is close to bisector of light source and

camera vector, it is marked as specular and other three pixels are used in PS. Error definition

in this paper is different from the majority of the PS literature. The count of erroneously

constructed pixels (over a threshold value) instead of meannormal error of all pixels is used.

Also a low (30◦, less than optimal) zenith angle light sources are used to reduce the risk of

multiple errors for pixel.

Later, Chandraker et al, published a four or more image PS method [27]. They implemented a

shadow detection filter (term light source visibility is used in paper). Shadow graphs are sim-

ilar to shadow maps (also called z-buffer in computer graphics), which keep the information

of visibility of each pixel from camera or from light sources. Shadow graphs were employed

as constraints in integration of normals to create surface height data.

At the same time, Sun et al, proposed a hierarchical filteringstrategy to eliminate shadows

and highlights, from 6 images [3]. They claimed that for any convex object, at minimum

6 light sources is needed to solve for entire visible surface. 6 light sources are placed on a

circle with 45◦ zenith angle. In this illumination configuration, at most one specular and two

shadows can occur for each pixel on a convex surface.
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Figure 2.6: General flow chart of decision making, defined in [3]
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The flow chart of the algorithm is seen in Fig 2.6. Sun et al assume that highlight occurs

at the brightest pixel and shadows occur at the darkest pixels. With these assumptions when

the pixels are sorted with their intensity values, 2nd, 3rd and 4th pixels are guaranteed to

be Lambertian. Brightest one pixel and darkest two pixels are tested one-by-one with Non-

Lambert quadruple detection filter [2].

Later, Argyriou and Petrou, enhanced their previous methodwith shadow mapping (z-buffer)

for four images [4]. The new method includes a recursive loopthat gradually finds shadows

and highlights, corrects normals and heights. It starts with eliminating non-Lambert pixels

with Non-Lambert quadruple detection filter. These pixels are unreliable, so they are inter-

polated with neighbor pixels. The recursive section searches the non-Lambert quadruples for

shadows with shadow mapping filter. At the rest of the unreliable pixels, brightest pixels

in the quadruples are classified as highlight. Shadows and highlights are filtered and PS is

calculated again.

Here shadow mapping filter works for both cast and self shadows. To find shadowed pixels,

firstly height map is generated from normal map. Z-Buffer of height map, which contains

closest distance value to view point, is rendered from each light source view point. Simple

distance comparison is used to recognize shadowed pixels.

In 2009, Miyazaki et al, developed a median PS method [28] using more than four images.

This is again a recursive process that terminates when the changes in calculated normals are

less than a convergence threshold. For each pixel, surface normal is estimated from median

candidate of all normals which each one is generated with different 3 light combinations. This

is said to be less sensitive to outliers compared to mean normal. Also neighbor surface nor-

mals are added to median set. At the end, median normals are again weighted with neighbors,

which is a smoothing process on normals. This is done for while all normals converge.

Lastly, in 2010, Argyriou et al, extended their previous works for four images to any number

of images [29]. They proposed a recursive algorithm removing highlights and shadows by

using least squares error similar to intensity error in thiswork.
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Figure 2.7: Recursive flow chart of method, defined in [4]
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2.4.4 Non-Linear PS

In this part, relatively complex methods are presented. These methods do not only reconstruct

normals and heights, but are also interested in complex surface reflectance properties. They

employ long optimization solutions which run for hours. Allthese works are generally aim to

solve only highlight problems. Shadows are discarded most of the time.

Hertzmann and Seitz became the first who used a reference sphere having the same BRDF

with target object [30]. The base of method depends on orientation-consistency cue, which

is two points with the same surface orientation reflect the same light toward the viewer. So,

both reference and target are imaged at the same time. Approximate nearest neighbor search

structure finds the corresponding points between referenceand target. All the shadows are

ignored. 14 images are used at total and reported to run about5 hours of computation.

Later, Goldman et al, advanced the research [31] with similar constraints. They have calcu-

lated 3D and BRDF at the same time [32] in 2010. The non-linearoptimization methods run

on 12 images about 5-10 hours.

There are other methods that do not use parametric reflectance model [33] [34] [35]. They

employ non-parametric BRDF measurements from many images counting up to thousands.

2.5 Uncertainty of Normals in PS

Woodham [12] who first defined the photometric stereo method,also placed the basic restric-

tion for location of the three light sources. The illumination matrix has to be inverted; so it

must be non-singular. This means that light sources must notbe placed on a line. Besides the

condition of non-singularity, he stated that orthogonal three light sources combination will be

optimal for Lambert reflection model.

Later, Sakane and Sato [26] implemented an active PS that optimizes camera and light posi-

tions. In their work, reliability or accuracy of the solution is evaluated for any number of light

sources by singular value analysis of the illumination matrix. Lambert reflectance PS for N

images can be formulated as follows;

I = ρdi f f (STn) I = [i1 . . . iN]T S= [s1 . . . sN]T (2.22)
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Table 2.1: Condition values of different light source configurations

Light source count Zenith angle Condition value

4 5 16.1645

4 15 5.2779

4 30 2.4495

4 45 1.4142

4 60 1.2247

8 5 16.1645

8 15 5.2779

8 30 2.4495

8 45 1.4142

8 60 1.2247

In equation (2.22),I is intensity vector,S is illumination matrix,n is surface normal and

ρdi f f is local diffuse albedo of material. When singular value decomposition is applied toS,

condition value can be calculated as ratio of maximum to minimum singular values.

S= UΣVT Σ = diag(σ1σ2σ3) cond(S) =
σmax

σmin
(2.23)

If ∆n and∆I are defined as errors in normal and intensity vectors, following inequality relates

these errors with condition value.

∆n
n
<= cond(S) ∗

∆I
I

(2.24)

Therefore, if the condition value is smaller, PS solution will estimate more reliable normal

vectors with the errors in the intensities.

As an example, condition value of 4 and 8 light sources are presented in the Table 2.1. The

number of light sources does not change the condition value.Also distant light sources, with

larger zenith angles, have better condition value.

Woodham, in 1994 [36], published a real time PS that uses lookup table relating 2 or 3 in-

tensity values to surface normals. Calibration sphere withthe same target material was used

to create the lookup table of desired material for the given illumination configuration. As

a result surface gradient and distance measure to surface was outputted. With the usage of
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lookup table, he eliminated the Lambert reflectance assumption, which solves the highlight

problems. Shadow problems were not solved but a local confidence estimate was generated.

Lookup table is defined from 3D intensity space to 2D gradientspace and 1D confidence

estimate. Lookup table is created in three steps. Firstly measured intensity values and surface

gradients are stored in the table. In the second step, gaps inthe 2D gradient space are filled

by interpolation for both intensities and gradients. All the resultant table entries are direct hit,

so has a 0 confidence estimate value. In the third step, 3D intensity space is filled with closest

gradient values and distance to closest measured data is local confidence estimate.

Results of the algorithm are promising, and the algorithm ispractically easy to implement.

In 2003, Spence and Chantler [22], first published a paper optimal illumination for three

image PS. Later in 2006 [23], they extended their work with intense sensitivity analysis. All

the derivations are made with assumption that surface is Lambertian and there is no shadow.

Only Gaussian noise on images is the source of resultant normal errors. For three images,

optimally light sources placed with equal tilt angles of 120degrees. Zenith angle (term slant

angle used in the paper) depends on surface roughness and 55 degrees rough surfaces and 90

degrees for smooth ones.

In their sensitivity analysis, three light positions that minimize the sum of the variances of

each normal direction components. The ratio ofσnx variance of x component of scaled normal

vector (product of albedo and unit normal vector), toσi variance of Gaussian noise on images

is formulated as follows;

σnx

σi
=

√

(
∂nx

∂i1
)2 + (

∂nx

∂i2
)2 + (

∂nx

∂i3
)2 (2.25)

Here, partial derivatives of scaled normal with respect to intensity values are called sensitivity

expressions. There are 9 of them for three light source PS.

Followings are the figure of merits for rough and smooth surfaces;σnz/σi term is ignored for

smooth surfaces.

Mr =
σnx

σi
+
σny

σi
+
σnz

σi
Ms =

σnx

σi
+
σny

σi
(2.26)
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Sensitivity is found to be inversely proportional to sine ofzenith angle for x and y normal

components and inversely proportional to cosine of zenith angle for z normal component.

When z is ignored for smooth surfaces, sensitivity is inversely proportional to sine of zenith

angle.

Also signal to relight error ratio (SER) is defined as the error definition for real image tests.

SER= 10 log(
var(I )

var(I − I relight)
) (2.27)

Variances of pixel intensities are experimentally calculated from 10 images of same light

source. This error definition includes only CCD noise error in images.

Later, Drbohlav and Chantler [24] further extended their previous works with more than three

images PS. Again only Gaussian CCD noise is modeled. This time, the uncertainty of nor-

mals, mean value of squared distance of scaled normals to reference, are used as a figure of

merit. For three images same results are found. For more thanthree images (image count,

N ¿ 3) optimal slant angle (zenith angle) is 54.74 and light sources are equally spaced with

360/N tilt angles. Minimum uncertainty will be 9σ2/N for N images PS, with zero meanσ2

variance Gaussian noise.

Beside the circular light placement pattern with constant slant angle, they also investigated

the case that one of the light sources is at 0 slant angle position (coincide with the camera)

and others are on circular pattern. Optimal slant angle of circular lights changed, but when n

goes to infinity, slant angle converges to same optimal value.

Concurrently, Barsky and Petrou [25] published a general design issues paper for color PS that

is an extension of their previous paper [2]. Synthetic images are used to create fine control

errors. CCD noise, illumination estimation errors, shadows and highlights were investigated.

Similar to Sakane and Sato [26] illumination configuration is designed to minimize SVD con-

dition number. They suggested a circular pattern of light sources with constant slant angles in

range 30◦ to 45◦. This is less than previously calculated optimal, because increasing shadows

with increasing slant angles are considered.

Lastly in 2007, Sun et al, [3] presented a good proof showing that the orthogonal light source

is the best for 3 image case. The Lambertian reflectance and noshadows assumptions were
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used again. They insisted that uncertainty also depends on surface albedo. This was not

that obvious in the previous works related to PS, since they all use scaled normal vectors as

uncertainty value. Here dark colored surfaces will have errors compared to lighter colored

ones.

In their work, uncertainty of normals is defined as covariance matrix of normals in the pres-

ence of noise in images. Objective function for optimality is defined as the trace of the co-

variance matrix of normals.

2.6 Error Definitions

The primary output ofPS is the surface normal vectors, so the resultant performancewas

measured by considering error on normal vectors in this study. The NE is the angular deviation

of the normal vectors ofPS (nr ), from the originals (no) as in Eq. 2.28. However, for real

image tests, the original normal vectors are not known. In that case, the intensity error (IE)

definition, that is the average of the residual errors in all images, are used as in Eq. 2.29. This

definition is extended with weights to evaluate the weightedPS method as in Eq. 2.30.

NE=

∑

S ur f ace∠(nr , no)
∑

S ur f ace
(2.28)

IE =

∑

Images|I − ISS†|
∑

Images
(2.29)

IE = w1IE1 + w2IE2 (2.30)

Intensity error is defined on image intensities, and withoutsolving PS, it can be calculated

from images directly (term relight error is used for intensity error in [22]). Since only images

are used, reference 3D data is not needed to calculate it. Intensity error definition used here is

residual error of least square estimation problem.
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(a) (b)
Figure 2.8: Normal error of PS (a) and square of intensity error calculated (b).

I = ρdi f f (STn) I = [i1 . . . iN]T S= [s1 . . . sN]T (2.31)

ρ′di f f = |S
PI | n′ =

SPI
ρ′di f f

SP = (STS)−1ST

R = I − ST(ρ′di f f n
′)

R = (1− ST(STS)−1ST)I

Linear system of Lambertian reflectance equations in more than three images PS is solved

with least square estimation optimally.ρ′di f f andn′ are optimal estimations of the albedo

and the surface normal respectively. The intensity error isdefined as|R|, where|.| is column

vector norm operator that calculate norm of residual errorsof all pixels, resulting a scalar

non-negative error value for each pixel coordinate.L1, L2, L∞ vector norm definitions can be

used depending on needs.

Square of intensity error is good approximation for the trace of covariance of normal vectors.

This would be theoretically true if errors in images are independent, zero mean Gaussian

functions. In that case, covariance of normal vectors must be diagonal matrix according to

least square estimation theory.

Fig. 2.8, presents similarity of normal error and intensityerror up to a scale. The plotted

normal error image is the norm of vectorial difference of original and calculated normal.
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Notice that normal errors on sharp edges of Mozart does not exists in intensity error.

QF =
TP

TP+ FP+ FN
(2.32)

Besides the normal error and intensity error, the performance of the mask generation can be

measured by comparing the calculated masks with the initially known, synthetic shadows and

highlights. For this purpose, the quality factor (QF) givenin Eq. 2.32 is used. Here, the

number of true positives (TP) is defined as the pixel count of matching original and final

masks. The number of false negative (FN) is the pixel count of unrecognized shadows and

highlights and the false positive count (FP) is the pixel count of masked regions that are

actually not shadows and highlights. The QF is 1 if all the pixels of mask match with the

desired mask. With each false decision, the QF drops down to 0.
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CHAPTER 3

UNIFIED PHOTOMETRIC STEREO

3.1 Introduction

The masked methods listed above are combined within a unifiedframework that we name

as unified PS. Firstly, this framework provides a platform for fair comparison among various

methods. This is achieved by using the same codes for PS calculation except the masking

procedures. Secondly, using unified PS framework, masks canbe fused in different ways

using logical operations easily. Hence, different combinations can be selected an evaluated

based on the characteristics of each mask and requirements of a specific application to find

the most robust PS method.

3.2 Flow Diagram for Unified PS

The most generic flow diagram of unified PS is presented in Fig.3.1. The first step in

the flow is to calculate setup parameters and calibrate images. These calibrated images are

then fed into subset selection algorithm that forms combinations of images. Each of these

combinations will be the input of image masking stage. In thenext step, PS and normal

masks are calculated iteratively. Finally, results of previously selected subsets are fused to

create resultant normals.

1. Calculate setup parameters: These are the parameters such as pixel size of camera,

light source directions and powers. Parameters related to light sources will be used in

PS solution whereas pixel size is required for height map calculation.

2. Calibrate Images: Image calibration step corrects non-linear radiometric response of
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Figure 3.1: Flow chart of unified framework PS. Image masks work in Step 4. Normal masks
are applied in Step 6 inside the iterative loop. Subset masksare utilized in both Step 3 and
Step 7. Step 4,5,6 are executed for each subset of images.
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camera using response curve.

3. Define Subset Images: Some masking approaches suggests to solve the overdetermined

PS problem by dividing images into subsets. These subsets will be merged in later steps

after masking stages. Any combination with at least three images among calibrated

images is valid as a subset.

4. Calculate Image Masks: In this step, image pixels are masked with respect to their

intensity values. Masked pixels are not used in PS calculation.

5. Photometric Stereo (PS): PS is calculated as explained in the previous section. Illumi-

nation matrixSand intensity vectorI are formed with respect to calculated mask at that

point. The mask must leave at least three related illumination vectors inSand intensity

values inI for each point.

6. Calculate Normal Masks: At this step, the mask is generated from normal vectors

calculated in the previous PS stage. Height values of the surface may or may not be

required depending on the selected normal mask type. Once normal mask is calculated,

Step 5 and 6 can be iterated to improve mask quality, thus the normals.

7. Fuse Subset Results: PS results of subset images are merged in this step to form final

normals. The fusion (in Step 7) and define subset (in Step 3) strategy depends on the

subset mask utilized.

Some steps of unified PS can be omitted if they are not used. Forexample, Coleman et al. [17]

uses only subset masks, so Step 4 and 6 are omitted. On the other hand, Argyriou at al. [4]

method does not use subsets, thus Step 3 and 7 are omitted, butboth Step 4 and 6 are utilized.

The unified PS framework is capable of employing more than onemasks at once. These

masks are logically AND, so that if a pixel is masked with any of the utilized masks, it will

be excluded from the PS calculation. In other words, only theconsensus set of all masks are

used. The AND operation is also required since some of the masks are focused on resolving

different types of errors, like highlight errors and shadow errors.

There are some problematic cases in PS solutions. Firstly, if surface albedo is close to zero at a

pixel, all intensity values from images will be approximately zero for that pixel. Since no valid
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intensity data is acquired for those coordinates, the normal vector n can not be calculated.

Perpendicular normal vector (0, 0, 1) is used in such cases.

Although the normals can be improved with the masks, their usage may bring exceptional

cases that must be carefully handled. In order to have a solution, at least three pixels are

required. If less than three pixels remain after masking, three pixels with least error must be

used anyway. The masked pixels with least residual errors are employed to complete pixel

count to three. In these cases, the residual errors of pixelsare calculated as in Eq. 3.1

R = |I − L |

L = IS(STS)−1ST (3.1)

whereR is residual error vector, andL is Lambert intensity vector.

3.3 Masks In Unified Masked PS

Three classes of masks are defined in unified PS. These are image masks, normal masks and

subset masks.

3.3.1 Image Masks

Two image mask algorithms are implemented in Step 4. These algorithms utilize only inten-

sity values of the images and they are not iterative.

3.3.1.1 Threshold Mask (Th)

This mask estimates both highlights and shadows with respect to their intensity values. Since

the lightest and the darkest pixels of the images are probably the specular and shadowed

regions, they are masked by threshold values as in Eq. 3.2.

FTh =



































0 i < klow(imax− imin)

0 i > kup(imax− imin)

1 otherwise

(3.2)

In Eq. 3.2, threshold values are defined for each image separately, with respect to dynamic

ranges of the images, (imax− imin).
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3.3.1.2 Non-Lambert Quadruple Mask (NL)

Non-Lambert quadruple mask detects if there is either a highlight or a shadow among four [2].

Additional information is needed to indicate the specific erroneous pixel. This mask uses the

linear dependence of source directions which states that any four vectors in three-dimensional

world are linearly dependent as in Eq. 3.3.

a1s1 + a2s2 + a3s3 + a4s4 = 0 (3.3)

If both sides of Eq. 3.3 are transposed and multiplied with local diffuse albedo,ρd and surface

normal,n;

a1ρdsT
1 n + a2ρdsT

2 n + a3ρdsT
3 n + a4ρdsT

4 n = 0 (3.4)

This is equivalent to;

a1i1 + a2i2 + a3i3 + a4i4 = 0

a = [ a1 a2 a3 a4 ]

I = [ i1 i2 i3 i4 ]T

aI = 0 (3.5)

In Eq. 3.5, the vectora can be computed directly from source directions. If all fourintensi-

ties perfectly satisfy Lambert reflection model, above equation must hold. For near-Lambert

cases, ”Lambertian error” is defined as (aI)2. Non-Lambert quadruples can be detected by

comparison of the Lambertian error with a threshold value, as in Eq. 3.6.

FNL =



















0 (aI)2 > tNL

1 otherwise
(3.6)

3.3.2 Normal Masks

Normal masks use both image intensity values and calculatednormals. Since normals depend

on masks and masks depend on normals, these masks must be calculated iteratively.

3.3.2.1 Self Shadow Mask (SS)

This mask works on self shadowed pixels. Self shadows occurswhen surface normal vector

makes an angle more than 90o with respect to the source direction. This condition can be
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checked using the dot product of surface normal and source direction vectors as in Eq. 3.7.

FS S =



















0 sTn > 0

1 otherwise
(3.7)

3.3.2.2 Reflection Mask (Re)

Similar to the self shadow mask, the reflection mask uses surface normal and source direction

vectors to find highlights. If the reflection direction of thelight from the surface is close to

the camera direction, specular reflection is highly probable [2]. This principle is checked by

using a threshold value ,tRe, for the angle between surface normal vector and bisector vector

of the source direction and the camera direction as in Eq. 3.8.

FRe=























0 nT s+ c
2
< tRe

1 otherwise
(3.8)

wherec is camera direction and (s+ c)/2 term is the bisector of the source and the camera

directions.

3.3.2.3 Cast Shadow Mask (CS)

Cast shadowed pixels are in shade by a near peak that occludesthe light source. Unlike self

shadows, cast shadows are not caused by the local pixel data,hence, only local clue of a cast

shadow is its intensity value. The actual intensity value,I is compared with the expected

Lambert intensity value and if it is less than expected, the pixel is masked as a cast shadow as

in Eq. 3.9.

FCS =



















0 i − ρdsTn < kCS(imax− imin)

1 otherwise
(3.9)

where, the cast shadow threshold (tCS) is chosen to be a fraction of the image dynamic range.

3.3.2.4 Highlight Mask (Hi)

Similar to the cast shadow mask, highlight mask uses the difference of actual intensity and the

expected Lambert intensity values. If the actual intensityvalue,I is greater than the expected
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value, it is masked as highlight as in Eq. 3.10.

FHi =



















0 i − ρdsTn > kHi(imax− imin)

1 otherwise
(3.10)

Highlight mask can be used in conjunction with reflection mask to increase its accuracy.

3.3.2.5 Shadow Mask (Sh)

Shadow mask works on both cast and self shadows by using height values of the surface

that are calculated by integrating surface normal vectors [4], [37]. The shadow map, i.e. the

visibility map of a coordinate from the source position is used as explained in [38]. The

camera is positioned at the each light source and the Z-Buffer is rendered. Z-Buffer contains

distances between the camera and non-occluded points of thesurface corresponding to pixels

in the image. Later distance of the surface to the source is compared with the Z-Buffer for

each pixel coordinate. If the distance is larger than the Z-Buffer value, this means that there

is a blocking region between this coordinate and the light source, so this pixel is shadowed.

3.3.3 Subset Masks

Subset masks are applied in both Step 3 and 7. In Step 3, subsets of images are formed. Each

subset is solved with PS exclusively. The results of all subsets are fused in the Step 7 with

various methods.

3.3.3.1 Coleman and Jain Mask (CJ)

This mask detects and masks out a single highlighted pixel among four pixels. In Step 3,

four triplets of 4 images are formed. These four triplets arefed to PS separately without any

masks. In Step 7, the four resultant normals are fused with respect to their albedo values.

If the standard deviation of albedo values are less than a threshold, there is no highlight in

pixels, hence resultant normals are averaged. Otherwise, the normal with the smallest albedo

is selected as the result.
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3.3.3.2 Extended Non-Lambert Quadruple Mask (xNL)

Barsky et al. [2] and Argyriou et al. [4] used Non-Lambert quadruple mask (NL) with exactly

four images defined in image masks. Non-Lambert quadruple Mask can be extended to more

than four images, eg. Sun et al. [3] used this mask with exactly six images. The six intensity

values from different images are sorted from darkest to brightest. For theirillumination con-

figuration and a convex surface, at most, a single highlight with brightest intensity, and two

shadows at the darkest two intensities can occur, leaving atleast three correct pixels for PS.

Possible erroneous pixels are eliminated with checking theNon-Lambert quadruple masks,

calculated from the sorted quadruples. Later, Argyriou et al. updated Non-Lambert quadruple

mask to arbitrary number of illuminants [29] with single highlight constraint.

This six-image approach is generalized to any number of images in this study with some addi-

tions similar to our previous work [18]. Assume that,k images are acquired to be used in PS.

For each point, brightest pixels are possible highlights and darkest ones are possible shadows.

Similar to Sun et al. intensities are sorted from darkest to brightest. For each consecutive

quadruples in the sorted intensities ”Lambertian error” iscalculated. Thus, fork sorted in-

tensities,k-3 Lambertian errors are calculated. These Lambertian errorsare compared to a

threshold to find quadruples with errors. The threshold operation produces a sequence of

binary pattern of errors. Normally, this pattern should contain consecutive true values for

Lambertian reflection pixels. The first false values indicate shadows whereas the last ones

indicate highlights. As an example, fork = 8, the binary pattern [0 1 1 0 0 ] indi-

cates that darkest one pixel is shadow and brightest two pixels are highlights. With extended

non-Lambert quadruple method, up tok-4 erroneous pixels can be detected fork images.

In some cases, due to improper selection of threshold value or image noise resultant binary

pattern may not have consecutive true values. In this case binary pattern is corrected by

checking brightest pixels with reflection mask. For example, in calculated binary pattern

[ 0 1 1 0 1 ], either the last true value or second and third true values are miscalculated.

In this case, brightest four pixels are tested with reflection mask. If any of them are highlight,

binary pattern is corrected to [0 1 1 0 0 ], else [ 0 0 0 0 1 ].
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3.3.3.3 RANSAC (RA)

The robust estimation method random sample consensus (RANSAC) [39], was first used in

PS by Mukaigawa et al. [19]. The application of RANSAC approach to PS problem can be

classified as subset mask in unified PS.

The idea behind the RANSAC method is simply as follows [40];

1. Randomly select minimal set of data from all data set. (ForPS, select 3 intensity val-

ues.)

2. Calculate residual errors of all data set.

3. Find consensus set that their residual errors are within the threshold error.

4. If the size of consensus set is greater than a threshold or maximum trial count achieved,

estimate model with all consensus set.

5. Elseselect new subset and repeat above.

For PS, each pixel should be estimated with RANSAC individually. This individual solution

results long computation times with large images. Instead of running RANSAC pixel by pixel,

the faster scheme is to apply RANSAC to whole images together. In that case, random images

subset is selected. The consensus set with the maximum size is saved for each pixel that is

every pixels may have different consensus set at the end. The algorithm stops when all the

planned random subsets are used.

It is often not necessary to select all possible subsets and calculate their consensus set. Instead

the number of subsets is chosen sufficiently high to ensure with a probability,p, that at least

one of the random subsets is free from outliers. Assume thatǫ is the probability of pixel to be

outlier, highlight or shadow. Then at leastN subsets must be used to satisfyp;

N = log(1− p)/log(1 − (1− ǫ)s) (3.11)

Usually, p = 0.99 is used and for PSs = 3. For the worst case assume that half of the pixels

are outliers that isǫ = 0.5. With these assumptions number of subsets isN = 35. If 7 images

are available to PS, all the possible triplets (C3
7 = 35) can be selected, else if more than 7

images are available, randomly selected 35 subsets will be adequate to achievep = 0.99.
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3.4 Weighted Least Square Estimation in PS

The robust estimation method, weighted least square estimation (WLSE) is used in the surface

integration [9] (2004) and in shape from shading [41] (2006). The PS problem that conven-

tionally uses least square estimation (LSE) with more than three images, was solved to WLSE

firstly in this thesis.

LSE proposes pseudo inverse solution for optimal results with the following assumptions [42];

• Mean value of the errors are zero.

• Errors must be uncorrelated (independent).

• Variance of each error must be equal.

Also the distribution of the error function must be Gaussian. But for other distribution func-

tions with same assumptions LSE still works.

In the linear PS that utilizes the Lambert model, the images contain generally three class of

errors, image noise, highlights and shadows. Actually the shadows and the highlights are not

errors, but since they are not considered in Lambert model they distort the results like outliers.

The listed assumptions hold for the thermal noise and the discretization errors. But for the

highlights and the shadows, these assumptions does not hold. Shadows and highlights in all

images are the results of the same surface topology. So they are all correlated with the same

surface and indirectly with each other. For example, the images illuminated with near light

sources will both have similar shadowed regions.

The zero mean assumption is also not valid for the highlightsand the shadows. While the

highlight errors increase intensity values and the shadowsdecrease. The amount of highlight

error is not necessarily equal to the shadow error. Similarly, the variance of the image errors

need not be equal, since there is no rule for the surface geometry, hence for the shadows and

highlights. This algorithm proposes a weighted least square estimation (WLSE) to eliminate

equal variance assumption [43].

Assume that all three errors can be represented with an additional error terme to Lambert
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model as in Eq. 3.12;

I = ρdi f f (STn) + e (3.12)

Assume that the covariance matrixW of errore is known. Then, pseudo inverse solution can

be generalized without the listed assumptions with givenW, which is WLSE.

ρdi f f = |SWI | n =
SWI
ρdi f f

(3.13)

SW = (STW−1S)−1STW−1

But sinceρdi f f andn are unknown, the additional error terme and it’s covariance matrixW

are also unknown too. Even ifW is known, it is a square matrix with image count rank, and

the inverse ofW must be calculated for each pixel. The computation cost of the inversion

operation for each pixel is very high. Instead, if the uncorrelated errors assumption is reused,

W square matrix is reduced to diagonal matrix composed of pixel variance values. These

variance values are the weights for each pixel value, and represent the reliability of that pixel.

The reliability term for each pixel can be use in two ways. First, an iterative PS can be imple-

mented with iteratively recalculating the normals, the errors and the variances. This method is

called feasible weighted least square estimation [43]. Secondly, previously calculated masks

can be weighted. Here, The aim is not to improve the resultantnumerical error but generate

smooth transitions at the boundaries of the masks. As a result, fake edges created by mask

boundaries are removed.

3.4.1 Feasible Weighted Least Square Estimation (FWLSE) PS

Iterative variance PS is an application of feasible weighted least square estimation. Steps of

calculation are;

1. Calculate the normals with LSE.

2. Render Lambert images from normals.

L = ρdi f f (STn) (3.14)

3. Define variance of a pixel as the square of difference of Lambert and real intensity (σ2
i )

40



for imagei. To guarantee non-singularW, define lower limit for the varianceσ2
min;

σi =



















I i − Li I i − Li > σmin

σmin else
(3.15)

4. Form diagonal variance matrix. Fork images;

W =





















































σ2
1 0 · · · 0

0 σ2
2 · · · 0
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0 0 · · · σ2
k





















































(3.16)

5. Calculate the inverse of variance matrix. Inverse of a diagonal matrix is simply inverse

of each diagonal element.

W−1 =





















































σ−2
1 0 · · · 0

0 σ−2
2 · · · 0
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0 0 · · · σ−2
k





















































(3.17)

6. Apply WLSE.

ρdi f f = |SWI | n =
SWI
ρdi f f

(3.18)

SW = (STW−1S)−1STW−1

7. If the difference between variance values calculated in two consecutive steps are below

a threshold, stop the iteration, else go to 2.

In other words, FWLSE PS, weights the intensities with respect to their deviations from Lam-

bert render intensities. If the real image is close to Lambert assumption, it is weighted more

than others.

3.4.2 Weighted Masks

In unified PS, the masks are applied as boolean flags to use eachimage in the PS solution. The

mask is composed of a bit pattern of total image count size. Each bit indicates that the pixel

value will be utilized in PS or not. For each bit patternS is recalculated with the used pixels
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and light sources. This masking implementation causes problems when the bit patterns of two

neighbor pixels are different. Different mask patterns means different image subsets will be

used. Different subsets possibly generate very different normals that will be discontinuous.

These discontinuous normals caused the main problem of masked PS, where sharp false edges

occurred on the boundaries of the masks.

This problem can be solved if the masks are used not as 1 or 0, rather as weights reducing

at the boundaries of the masks. WLSE that introduces weightsin the solution, was used to

solve the this problem. This approach is novel in the literature. The flow of the algorithm is

similar to FWLSE PS. The main difference is thatW is calculated once, so there is no loop in

algorithm. The variations are written bold as follows;

1. Calculate the normals with LSEwith binary masks.

2. Render Lambert images from normals.

3. Define variance of a pixel as the square of difference of Lambert and real intensity

(σ2
i ) for imagei only for masked regions. The unmasked pixels will have minimum

varianceσ2
min.

σi =



































|I i − Li | maski = 1, |I i − Li | > σmin

σmin maski = 0, |I i − Li | > σmin

σmin |I i − Li | < σmin

(3.19)

4. Form variance images from variance value of each pixel. Dilate variance images.

5. Form inverse variance images from inverse variance value ofeach pixel. Filter

inverse variance images with a smoothing Gaussian kernel.

6. Form diagonal variance matrix. Fork images;

7. Calculate the inverse of variance matrix. Inverse of a diagonal matrix is simply inverse

of each diagonal element.

8. Apply WLSE.

The key operations in weighting masks are dilation and smoothing operations done in step 4

and 5. The dilation operation in step 4, enlarges the erroneous regions and makes sure that
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(a) (b) (c) (d)
Figure 3.2: The calculated masks (a) for sphere and mozart objects are shown with green and

blue colors. The weighted masks without any dilation or smoothing (step 4 and 5 are omitted)

(b), dilated masks (step 5 is omitted) (c), and dilated, smoothed masks (d) are shown.

near boundary errors are also eliminated. Most of the false edges caused at the cast shadow

boundaries can be removed with this dilation operation. Thesmoothing filter at step 5 that

applied on weights (inverse variances), smooths the noisy results caused by binary masks.

The sizes of the dilation and Gaussian kernel should be equalto overlap them at the smoothed

transition regions of the mask boundaries. The size was selected by trial and error with the

synthetic images. The minimum standard deviation that clears the false edges is desired.

Hence, the dilation operation causes the correct pixels near the false ones to be treaded as

erroneous ones.

In Fig. 3.2, a test of weighted PS is plotted for sphere and mozart objects. The Th mask is

used as shown in Fig. 3.2(a). The weighted masks without any operations (step 4 and 5 are

omitted) is shown at Fig. 3.2(b). Other plots represents theeffect of Gaussian filters step by

step.

The detailed results of the methods explained in this Chapter will be presented on the synthetic

images in Chapter 5, on the real images in Chapter 6 and on the cartridge cases in Chapter 7.
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CHAPTER 4

DOUBLE ZENITH LIGHT SOURCES

4.1 Introduction

The performance of the light source configurations depends on the errors in the images. In

this study, three sources of error, i.e. the image noise, thehighlights and the shadows were

investigated. The image noise can be modeled with a zero mean, independent Gaussian added

on images. Independent, zero mean Gaussian noise is a well known type of error in linear sys-

tem theory and its performance analysis can be made theoretically. However, highlights and

shadows are not zero mean errors. Also they are not independent among all images, since they

all occur on the same surface topology. Since theoretical approach will be very complex for

performance analysis ofPS with highlights and shadows, simulations were made to compare

different light source configurations. These simulations are executed on a control test configu-

ration that defines light source placements, test surfaces,surface reflection parameters, image

rendering properties and error definitions.

4.2 Light Source Configurations

In single zenith light sources tests, light sources were placed on a circular ring around the

camera having the same zenith angle and equal polar distances as in Fig. 4.1a. This type of

illumination was found to be optimal in previous works [23] [44] [25] [3]. A second novel

illumination configuration is also used in the tests, that the lights are placed on two circles as

in Fig. 4.1b.

Three sombreros with 1750 (sombrero1), 3500 (sombrero2) and 7000 (sombrero3) peak val-
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(a)

(b)

Figure 4.1: 8 light sources placed around camera with (a) single zenithZsource= 45o and (b)
double zenithZ1source= 30o, Z2source= 60o illumination configurations.
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Figure 4.2: Sombrero2 ranging [−7200, 7200] with the peak 3500.

ues were used to simulate both smooth and rough surfaces. Theone with the middle peak

value is shown in Fig. 4.2.

In the tests, the synthetic images with highlights were rendered with Torrance-Sparrow reflec-

tion model given at Eq. 2.14 [16]. Uniform specular albedo (ρs = 1.0) and uniform diffuse

albedo (ρd = 1.0) were used. The uniformity condition, however, was not a precondition for

the solutions. Shininess parameterm is chosen to be 2.0, which was found to be the worst

case in our previous study [45].

The CCD noise (also known as the thermal noise) of a conventional camera was represented

with a zero mean Gaussian noise added to the intensity values. The standard deviation (noise

power) of Gaussian noise was chosen to be 5% of the image dynamic ranges.

4.2.1 Single Zenith Light Sources Configuration (1Z)

The first test was conducted to observe the effect of image countni . A typical example pre-

sented in Fig. 4.3 plotting resultant normal error ( NE ) versus image count (ni ) for both

diffuse (Di) images and images with highlight and shadow (Hi-Sh). In both cases, decrease
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Figure 4.3: Normal Error (NE) vs image count (ni ) for diffuse (Di) and highlight shadow(Hi-
Sh) images. In both cases error drop saturates with increasing image count (ni ).

in NE was saturated with increasingni . Here increasingni from 16 to 32 decreased NE from

1.44o to 1.38o, the difference being only 4% for diffuse (Di) images. For highlight shadow

images (Hi-Sh), same change inni , decreased NE from 9.34o to 9.25o, having 1% difference.

Secondly, the simulations were executed on the optimal light source configurations from the

previous works. The synthetic diffuse images without highlights and shadows were used.

Gaussian noise with 5% of dynamic range of images were added on these images. The change

of NE with respect to source zenith angle (Zsource) is plotted in Fig. 4.4 for 4, 6, 8, 12 and 16

images. Similar to the previous works, with all image countsand all sombreros,Zsource= 45o

is found to be optimum.

Later, the optimalZsourceis tested with highlights and shadows. The amount of inserted high-

light and shadow errors depends on the surface topology andZsource as seen in Fig. 4.5.

First row of images were generated from sombrero1 (smooth surface), the second from som-

brero2 and the third row were from sombrero3 (rough surface). Images were rendered with
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Figure 4.4: Normal Error (NE) vs light sources zenith angle (Zsource) for 4, 6, 8, 12 and 16
images. Images were rendered without highlight and shadow.5% gaussian noise is added to
images.
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(a) (b) (c)

Figure 4.5: Sombreros, (from top to bottom) sombrero1, sombrero2 and sombrero3 with (a)
Zsource= 30o, (b) Zsource= 45o and (c)Zsource= 60o.

Zsource= 30o for first column,Zsource= 45o for second andZsource= 60o for last column of

images. While for sombrero1, the highlights were the major problem withZsource= 30o (Fig.

4.5 upper left), for sombrero3, shadows occurred widely with Zsource= 60o (Fig. 4.5 lower

right).

Fig. 4.6 shows the change of generated intensity error (IE) from highlights, shadows for

each sombrero with changingZsource. The total IE of the images changes with both surface

topology andZsource. The NE versusZsource is plotted in Fig. 4.7 for each sombrero. At

each plot the results of diffuse (Di) and highlight shadow (Hi-Sh) images are shown. At each

case optimal value ofZsourcechanged differently. For smooth sombrero1, (see Fig. 4.7a) the
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Figure 4.6: Shadow, highlight and total errors for (a) sombrero1, (b) sombrero2 and (c) som-

brero3.
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Figure 4.7: Normal error vs light sources zenith angle with/ without shadows and highlights

for (a) sombrero1, (b) sombrero2 and (c) sombrero3.

optimalZsourcewas changed from 45o to 70o due to strong highlight errors with lowZsource.

On the other hand, for rough sombrero3, (see Fig. 4.7c) the optimal Zsourcewas still increased

but settled at 45o because of large shadow errors at highZsource.

As a result, there is no single optimal value for every surface if highlights and shadows occur

at the input images. With some estimations of the general surface topology, like smooth and

rough [22], some weak rule of thumb may be used.

4.2.2 Double Zenith Light Sources Configuration (2Z)

The previous section focused on a single zenith light sources configuration around the camera.

The main optimization parameter was the zenith angle of the light sources. This type of

illumination configuration was proved as the optimal configuration while considering only

image noise. On the other hand, when highlights and shadows presents in the images, optimal

Zsourcediffers with surface topology. In this section, light source configuration with two zenith

angles (see Fig. 4.1b) will be investigated.
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Figure 4.8: Surface zenith angles of sombrero2

When using double zenith light sources configuration, two source zenith angles (Z1sourceand

Z2source) should be decided. For this purpose, the relation between the surface topology and

NE should be considered in depth. Since surface topology is unknown, and a general solution

good for all type of surfaces is desired, surface topology issummarized with surface zenith

angles (Zsur f ace ) that is the angle between surface normal at a point and camera direction.

An example toZsur f acefor sombrero2 is presented in Fig. 4.8.

PS is executed with single zenith light sources to analyze relation between surface zenith

(Zsur f ace) and NE. DifferentZsource values and surfaces are used. As a result, NE versus

Zsur f ace, i.e. distribution of mean NE overZsur f ace, is plotted for each solution. In Fig. 4.9 NE

versusZsur f aceof sombrero2 withZsource= 30o, 45o and 60o is shown. ForZsource= 30o, NE

is concentrated at lowZsur f ace, that are caused by highlights. ForZsource= 60o, NE gradually
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Figure 4.9: Normal Error VSZsur f acefor sombrero2 with 30o, 45o and 60o light source zenith
angles. (MaximumZsur f aceis 66o for sombrero2)

increases with increasingZsur f ace. The discontinuities aroundZsource= 40o are caused by the

cast shadows that may occur at anywhere independent of surface zenith angle. The peak at

the center of sombrero causes these cast shadows at the sameZsource = 40o because of the

circular symmetry of the shape.

This NE distribution is very similar to the intensity error (IE) distribution caused by highlights

and shadows in Fig. 4.10. The plotted intensity error can be formulated for TS as in Eq. 4.1.

The first line is the highlight term in TS model and the second line is the self shadow error,

which is not modeled in linear PS. The intensity errors caused by the cast shadows are omitted

in this equation.

IETS =



















ρse−m2[arccos(nT
h n)]2

sTn ≥ 0

−ρd(sTn) sTn < 0
(4.1)

The IE aroundZsur f ace = Zsource/2 caused by highlights whereZsource/2 is the reflection

direction where surface directly reflects light to camera. The standard deviation of IE (S TDh)
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Figure 4.10: IE distribution versus surface zenith angle (Zsur f ace)

aroundZsource/2 depends on the shininess (range that highlight occurs) of the surface. After

Zsur f ace = 90 − Zsource shadows start to occur causing increasing IE. More pixels will be

shaded with increasingZsur f ace.

With this IE ( NE) characteristics in the hand, a rule of thumbcan be suggested to select

two light source zenith angles. A general purposePS should have a constant error all over the

source that a flat NE versusZsur f aceis desired. So twoZsourceshould be selected in such a way

that two high NE peaks, i.e. caused by shadows and highlights, should not coincide. Also the

average of two zenith angles should be the optimal light source zenith for single circle sources

ZsourceOp. The Eq. 4.2 presents the general rule of thumbs for the general purpose PS.

Z1source/2+ S TDh ≈ 90− Z2source (4.2)

(Z1source+ Z2source)/2 ≈ ZsourceOp
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If S TDh = 15o andZsourceOp= 45o then,Z1source= 30o andZ2source= 60o.

4.3 Weighted Multi Zenith PS

With double zenith light sources (2Z), NE was reduced if highlights and shadows were present

in the images. But the erroneous images were still used inPS calculation. In this section, the

effect of erroneous images were tried to be reduced. Since a weighted summation of normal

vectors is used for this purpose, this method is called weightedPS (WPS).

When the single zenith sources (1Z) were used in PS, the normal error is concentrated at very

low or very high surface zenith regions. This is the main cluefor the weighted PS. In the

double zenith sources configuration, light sources can be grouped with respect to theirZsource.

The two subsets of light sources were solved exclusively resulting two normal vectors for each

pixel. Later, the two resultant normal vectors were fused with weights that are calculated from

the estimated errors of each normal vector. These weights can be rounded to 0 and 1 for binary

weighting that is selecting normal vector with small error.

The following flow presents the mathematical details of weighted PS;

1. Calculate normal vectorsn1 andn2 from illumination matricesS1 andS2. S1 is com-

posed ofZ1source = 30o light sources andS2 is composed ofZ2source = 60o light

sources.

ρ1di f f = |S
†

1I1| n1 =
S†1I1

ρ1di f f
(4.3)

ρ2di f f = |S
†

2I2| n2 =
S†2I2

ρ2di f f
(4.4)

2. With normals from (4.3) and (4.4) equation,n1 andn2 calculate Lambert images.

I1 = ρ1di f f (ST
1 n1) (4.5)

I2 = ρ2di f f (ST
2 n2) (4.6)

3. Define residual errors (e1 ande2 ) as the norm of difference of Lambert and real images.

e1 = |I1 − L1| (4.7)

e2 = |I2 − L2| (4.8)
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4. Merge two normal vectors by weights (w1 andw2 ), calculated from residual errors.

ρdi f f n = w1 ∗ (ρ1di f f n1) + w2 ∗ (ρ2di f f n2) (4.9)

Weight definitions have very important rule in the resultantperformance. The main rule in

weights definition is that their summation must be unity as inEq. 4.10. So each weight is

scaled with normalization factor,k as defined in Eq. 4.11.

w1 + w2 = 1 (4.10)

k =
1

w1 + w2
(4.11)

Weight definitions can be converted to binary as in Eq. 4.12 tosimply select the normal with

less error.

(w1,w2) =



















(0, 1) w1 < w2

(1, 0) else
(4.12)

In this work, we tested four different weight definitions.

• Weight Definition 1 (e): Weights are inversely proportional to uncertainty of normals

that is square of the residual error (e).

w1 = ke2
2 (4.13)

w2 = ke2
1

• Weight Definition 2 (eZsource) : For smooth surfaces, the sensitivity of normals are

inversely proportional to sine ofZsource [23]. Using this heuristic, weights are up-

dated with constant multiplier of sin(Zsource). Normals generated with largerZsourceare

stressed more in the resultant normals.

w1 = ksin(Z1source)e
2
2 (4.14)

w2 = ksin(Z2source)e
2
1

• Weight Definition 3 (eZsur f ace) : Another heuristic can be generated from the highlights

and shadows of images. At the regions where theZsur f ace is limited, (smooth regions)
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(a) (b) (c) (d) (e)
Figure 4.11: (a)e, (b) eZsource, (c) eZsur f ace, (d) eZsourceZsur f ace, (e) optimal weights for

minimum NE of 30 degree solution on TS rendered sphere.

the major risk is highlights. To avoid highlights, largeZsource should be employed.

Visa versa, for rough regions with largeZsur f ace, most probably, shadows will distort

the results, littleZsourceshould be weighted more. This is implemented with a sigmoid

function on theZsur f ace.

w1 = ksig(Z1sur f ace)e
2
2 (4.15)

w2 = ksig(Z2sur f ace)e
2
1

sig(x) = 1/(1+ e−10(x−0.5))

• Weight Definition 4 (eZsourceZsur f ace) : The last weighting definition is simply the com-

bination of W2 and W3, using bothZsourceandZsur f acemultipliers.

w1 = ksin(Z1source)sig(Z1sur f ace)e
2
2 (4.16)

w2 = ksin(Z1source)sig(Z2sur f ace)e
2
1

Fig. 4.11 presents the weight image ofZ1source for Hi-Sh rendered sombrero2 for each of

the weight definition given above. The weight image ofZ2source is not presented since it is

w2 = 1 − w1. Fig. 4.11e displays the weights calculated not from the estimated error but

exact NE, that is the theoretical limit ofWPS. The closest weight image to optimal weights

is found to be fourth weight definition (eZsourceZsur f ace).

Some sample normal vectors are plotted on the surface of sombrero2 in Fig. 4.12.z1, z2 (red)

are normal vectors calculated withZ1sourceandZ2sourcelight sources.w (blue) is the weighted

normal vector.r (green) is the reference normal vector. Sincew is linear combination ofz1

andz2, it is always going to be in the arc betweenz1 andz2. In general,r does neither have

to be betweenz1 andz2, nor in the same plane.
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Figure 4.12: Sample normal vectors plotted on surface.z1, z2 (red) are normal vectors cal-
culated withZ1sourceandZ2source light sources.r (green) is the reference normal vector.w
(blue) is the weighted normal vector.
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The detailed results of the methods explained in this Chapter will be presented on the synthetic

images in Chapter 5, on the real images in Chapter 6 and on the cartridge cases in Chapter 7.
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CHAPTER 5

SYNTHETIC TESTS

5.1 Introduction

The synthetic image results are presented in this chapter. Firstly, the synthetic image rendering

methods and used configurations are given. All thresholds ofthe masks are fine tunned in the

next section. Since the original ground truths are available with synthetic images, the results

of masking methods are evaluated with detailed numerical analysis under various conditions.

Also visual results, representing improvements of weighted mask PS are displayed in the

next section. Lastly, both numerical and visual results of the double zenith and the weighted

normal PS are given.

5.2 Synthetic Image Generation (Rendering)

Synthetic image generation process (rendering) is completely renewed to create realistic im-

ages for the tests. Instead of using output images of commercial 3D rendering tools, rendering

process is fully implemented in this thesis work. The main aim of renderer implementation is

to use it in PS solution as well. Secondary aim is to have complete control on generated test

images.

Following is the list of new features of the rendering process.

• External camera parameters like camera coordinate frame, (position, look at direction,

up vector) can be defined.

• Internal camera parameters like pixel size, vertical-horizontal pixel count, focal length
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can be defined.

• Cast and self shadows can be generated.

• Finite distance point light source can be used.

• Inverse square lighting power can be used.

• Perspective projection can be used.

Some of these features are implemented for future use in alternative 3D modeling process.

The most important feature for PS is shadow generation. Finite distance lighting, inverse

square lighting, and perspective projection are all implemented but have not been utilized yet.

The main steps of the rendering are as follows;

1. Generate the intensity value

(a) Calculate the intensity value for each surface coordinate using selected reflectance

model.

(b) If perspective projection is desired, use finite distance point light source.

(c) If inverse square lighting power is desired, multiply the original source power

with inverse square of the distance between the given pixel and the light source

2. Generate shadows

(a) Generate the shadow map.

(b) Modify intensity values using the shadow map.

3. Project objects in 3D to 2D images

(a) Translate the object so that the look-at position is origin.

(b) Rotate the object so that the camera direction is at z axisand camera-up vector is

at y axis.

(c) If perspective projection is desired, apply perspective deformation to the object.

(d) Use Z-Buffer for back face culling (i.e. occlusion; z-buffer will be explained later

in the text).

Above steps are explained in detail in the following part:
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(a) (b) (c)

Figure 5.1: (a) Lambert, (b) Phong and (c) Torrence-Sparrowreflection models on sphere
surface.

5.2.1 Generate the Intensity Value

Three images generated using three different types of reflection models for a constant albedo

semi sphere are shown in Fig. 5.1 . All images are projected orthogonally, illuminated with

light sources at infinity and there are no shadows. Phong model configuration has sharp

specular region. Torrance Sparrow models are more realistic with softer and wider specular

regions.

In Fig. 5.2, different Lambert illumination calculation methods are illustrated on a flat surface

at x-y plane. Fig. 5.2.1 shows the simplest case of illumination, point light source at infinity.

Since the light source is at infinity, the source direction isconstant all over the surface creating

a uniform intensity. Fig. 5.2.2 presents finite distance light source effect, i.e. the light source

direction is calculated for each surface coordinate. For a planar surface, source direction

deviates from surface normal as the distance between surface coordinate and source position

increases, resulting in decreased intensity. Light sourcepower can be modified with respect

to inverse square law, to generate a more realistic point light source illumination as in Fig.

5.2.3.

5.2.2 Generate Shadows

Cast and self shadows are created with an algorithm called shadow mapping [46]. The main

idea of shadow mapping is presented in Fig. 5.3. For example asombrero object will be

rendered with shadows in the default configuration. Fig. 5.3(a) shows the image without
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(a) (b) (c)

Figure 5.2: (a) Orthogonal, (b) Perspective and (c) Perspective and inverse square illumination
calculations.

shadows. To generate shadows, a temporary image is renderedwith the camera at the light

source as seen in Fig. 5.3(b). Since the camera and light source coincide, no shadows can

occur in the temporary image. Inverse of this is also true, i.e. invisible coordinates are all

shadowed. The matrix that contains the visibility information for each coordinate is called

the shadow map. To generate shadowed image in Fig. 5.3(c), image in Fig. 5.3a is filtered

with shadow map i.e. shadowed areas are replaced with shadowintensity, 0.

(a) (b) (c)

Figure 5.3: (a) No shadow sombrero, (b) temporary image viewed from light source and (c)
sombrero with shadows.
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Figure 5.4: Perspective projection deformation.

5.2.2.1 Z-Buffer

Visibility of a coordinate can be tested with a method calledZ-Buffer [38]. This method is

also employed for back face culling, i.e. removing occludedcoordinates from images. The

idea behind the Z-Buffer is to use an extra 2 dimensional buffer to keep the closest depth

values for each pixel. When a new coordinate is to be rendered, its depth value is checked

with the one in the Z-Buffer. If the new depth value is less than the old one, Z-Buffer is

updated with the new one. After updating Z-Buffer, in shadow mapping, old coordinate is

marked as shadowed. In back face culling, new coordinates’ intensity values overwrite old

ones.

5.2.2.2 Projections

A pin hole camera model creates an image of the real world to the 2D image plane with the

perspective projection. The ratio of real object size and its image depends on the distance of

the object to the camera center. If the variation of distances of the objects to camera are limited

the perspective projection can be further simplified to orthogonal projection that image size

to object size ratio is constant.

Before perspective projection, object is translated and rotated to the camera coordinate frame

that the camera is at+Z axis, looking at origin and up vector is parallel to+Y axis as in Fig.

5.4.

The effects of the orthogonal and perspective projections are presented in Fig. 5.5 for both
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shape and shadows. The Fig. 5.5(a) is the result of the orthogonal projection and Fig. 5.5(b)

is the render image with the perspective projection. While the camera is placed at a finite

distance in perspective image, for the orthogonal image, the camera is at the infinity. In Fig.

5.5(c) represents the orthogonal projection of the light source that the light source is at infinity.

The Fig. 5.5(d) is the render image of the same object with theperspective projection.

In the tests the perspective projection of the shape is discarded, since the variation of the

surfaceZ values are very small, compared the focal length. However this assumption is not

valid for light sources, whose distances are comparable with the surfaceZ variation.

5.3 Test Configuration

The comparison among the defined masks were conducted under acontrolled test configura-

tion. The test configuration defines light source placements, test surfaces, surface reflection

parameters, image rendering properties and error definitions.

Light sources were placed on a single circular ring around the camera with equal zenith angle

and equal polar distances as in Fig. 4.1(a). This type of illumination was found to be optimal

for noisy images [44].

Different surface topologies may create different problems that has to be solved using masks.

For a fair comparison among the masks, five sample surfaces were selected for tests as shown

in Fig. 5.6.

The amount of highlight and shadow errors depend jointly on the shape of the surface and light

source placement. If the surface slope is low, highlight problems are dominant, since they

occur on wide regions. Oppositely, shadows occur more on high slope surfaces. On the other

hand, the increasing light source zenith angle increases shadows and decreases highlights.

The variations of resultant shadows (marked with green) andhighlights (marked with blue)

were presented on the sombrero and sphere objects in Fig. 5.7. Large amount of highlight was

occurred on the low slope sombrero with 30◦ light source zenith angle as seen at upper left

image. Large shadowed area was created with high slope sphere object and 60◦ light source

zenith angle.

The amount of highlight and shadow errors are presented on sombrero and sphere with
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(a) (b)

(c) (d)

Figure 5.5: (a) Orthogonal, and (b) perspective projectionof the sombrero viewed from the
light source. The top view of the same sombrero with (c) orthogonal and (d) perspective
projections.

(a) (b) (c) (d) (e)
Figure 5.6: (a) sphere, (b) many sphere, (c) sombrero, (d) Mozart, (e) penny surfaces. Colors

indicates the depth of surface.
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(a) (b) (c)

Figure 5.7: Specular (blue) and shadowed (green) regions onsombrero (top) and sphere (bot-
tom) objects with (a) 30◦, (b) 45◦, (c) 60◦ light source zenith angles.

30◦, 45◦, 60◦ light source zenith angles in Fig. 5.8. In this figure, the sumof diffuse pixels,

where Lambert reflection equation holds, from four light sources placed around the camera

with 90◦ polar angles is plotted. The black regions indicate only twopixels are diffuse, the

grays indicate three and whites indicate all four images arefree of highlights and shadows.

Better results should be expected for the sphere with 30◦ zenith angle light sources, since more

diffuse pixels are present. On the other hand, for sombrero with 45◦ zenith angle produces

least amount of highlights and shadows.

In the tests, the synthetic images were rendered with Torrance-Sparrow reflection model given

at Eq. 2.14 [16]. Here the intensity valueI is composed of specular and diffuse terms. The

specular term depends on the angle between the light reflection directionr and the camera

directionc. In tests, uniform specular albedo (ρs = 1.0) and uniform diffuse albedo (ρd = 1.0)

were used. The uniformity condition, however, was not a precondition for the solutions.

Shininess parameterm is chosen to be 2.0, which was found to be the worst case in our

previous study [45].

In synthetic image rendering, the orthogonal projection was used for both the image and

shadow map projection processes. The depth of the test surfaces were less than 1% of the
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(a) (b) (c)

Figure 5.8: The total count of diffuse pixels, where Lambert reflection equation holds on
sombrero (top) and sphere (bottom) objects with (a) 30◦, (b) 45◦, (c) 60◦ light source zenith
angles. Black, gray and white pixel values indicate that 2, 3and 4 pixels among 4 have diffuse
intensity values.

camera and light working distance, thus, orthogonal projection can be accepted as a good

approximation.

The thermal noise of conventional camera was represented with a zero mean Gaussian noise

added to the intensity values [47]. The standard deviation (noise power) of Gaussian noise

was varied from 5% to 20% of the image dynamic ranges. The rendered images of the Mozart

with no noise and 20% Gaussian noise are shown in Fig. 5.9. Both scenes are lightened with

a single light source from the left with 45◦ zenith angle.

Image generation parameters are fixed throughout the test and can be found in Table 5.1.

Perspective projection and inverse square law are not used.

5.4 Fine Tuning Thresholds

The quality of the mask depend on the threshold values. For a fair comparison among the

masks, each individual threshold value should be tuned to minimize the resultant normal
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(a) (b)

Figure 5.9: Mozart images with 45◦ zenith angle light source from left with (a) no noise and
(b) additive Gaussian noiseσ = 20% dynamic range.

Table 5.1: Image generation parameters

Parameters Symbol Value
Image Size [512 512]
Pixel Intensity I
Light Source Position d ∗ (distancetoLookAt) [1 1 2]
Light Source Power µ 1.0
Illumination Vector s= µd
Reflection Direction r = 2(sTn)n− sT

Camera Position v ∗ (distancetoLookAt) [0 0 2.41]
Camera Look at Position [0 0 0]
Camera Up Direction [0 1 0]
Focal Length 1.0
Reflection Model Torrance Sparrow
Diffuse Albedo Factor ρdi f f 1.0
Diffuse Albedo Type Constant
Shininess m 2.0
Specular Albedo Factor ρspec 1.0
Specular Albedo Type Constant
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Table 5.2: Threshold values for 4, 6, 8, 12 images

Threshold Name Image Count
4 6 8 12

klow 0.02 0.06 0.06 0.08
kup 0.35 0.35 0.35 0.35
kHi 0.03 0.04 0.05 0.06
kCS -0.1 -0.1 -0.1 -0.1
tNL 0.02 0.04 0.02 0.01
tRe min(z, (90− z)/2, p)

error. In the tests, the best value found for threshold values mainly depends the noise and

number of the images.

The effect of the image noise is presented in Fig. 5.10 at the left side plots. As the noise

level increases, threshold values also increase for most cases. An exception is the reflection

threshold, such that its value seems to be less susceptible to the noise change.

In general, the amount of the image noise is not known. Hence average of the no noise, the

10% and the 20% Gaussian noise cases are used to fine tune the thresholds.

In Fig. 5.10 at the right side, the change of quality factor with respect to the threshold values

for 4, 6, 8, 12 images are shown. Noisy images with 10% and 20% were used and averaged

in these plots. In general, the threshold values increase from 4 to 12 images. This is expected,

since when more images are available for PS, masking out morepixels are tolerable.

For the reflection mask, the threshold angle should be selected such that none of the reflection

cones coincide with any other cones or shadowed regions [2].This fact is concluded with the

formula 5.1, given below, derived from surface geometry.

tRe= min(z, (90− z)/2, p) (5.1)

Herez is the zenith angle, andp is the polar angle of all light sources. The formula was

verified with synthetic image tests as seen in Fig. 5.11.

The selected threshold values of the masking methods are listed in Table 5.2.
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Figure 5.10: Change of quality factor with respect to (a) intensity lowerklow, (b) intensity

upperkup, (c) linearity tNL, (d) reflectiontRe and (e) highlightkHi thresholds. At the left side,

different noise levels, no noise (blue), the 10% (green) and the 20% (red) and at the right side,

different image counts, 4 (blue), 6 (green), 8 (red), 12 (light blue), are plotted.
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Figure 5.11: Change of normal error with reflection threshold for 30◦ (blue), 45◦ (green) and
60◦ (red) light source zenith angles.

5.5 Unified PS Results

The unified PS framework is capable of using any combination of masks in PS. In this study,

only a subset of all possible combinations are discussed to refine the amount of presented

data. The refined set includes single mask performances, masking algorithms in previous

works and combinations that masks both shadows and highlights at the same time.

The previous works that are implemented for comparison, areColeman et al. [17], Barsky et

al. [2], Sun et al. [3], Argyriou et al. [4] and Mukaigawa et al. [19]. Coleman’s method is

based on Coleman and Jain mask (CJ), that is defined in their work. Barsky’s method uses

Non-Lambert quadruple mask and reflection mask (NL-Re) for exactly four images. Sun et

al. uses the extended Non-Lambert quadruple mask (xNL) for six images and claims that it

can be generalized for any number of images. Argyriou’s method combines Non-Lambert

quadruple and shadow masks (NL-Sh). Mukaigawa et al. employs random sample consensus

(RA) on intensity values to filter outliers such as highlights and shadows.

In Table 5.3, the normal errors, elapsed times and quality factors of highlights, shadows and

total are presented. These values are the average of all objects, all light combinations and
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Table 5.3: The overall results of all mask methods, for all light sources and 4 light sources

only.

Masks Normal

Error

(◦)

Elapsed

Time

(sec)

Highlight

QF

Shadow

QF

Total

QF

All Light Sources

None 14.78 0.11 N/A N/A N/A

xNL 11.37 16.94 0.28 0.23 0.25

Th 8.63 1.67 0.74 0.56 0.64

Re 13.39 4.30 0.33 N/A 0.22

SS 14.54 3.37 N/A 0.35 0.21

Sh 12.74 12.23 N/A 0.54 0.32

Hi Re 12.80 5.60 0.48 N/A 0.28

Hi Re SS Sh 9.89 16.91 0.46 0.60 0.53

Hi Re Sh 10.53 16.31 0.47 0.54 0.51

CS 13.55 5.34 N/A 0.14 0.11

xNL Sh 11.36 28.80 0.23 0.25 0.23

xNL Re Sh 11.34 30.38 0.23 0.25 0.23

xNL Hi Sh 11.34 32.66 0.26 0.25 0.25

xNL Hi Re Sh 11.31 32.50 0.28 0.25 0.26

Th Re Sh 8.63 17.77 0.38 0.56 0.44

Th Hi Sh 9.12 22.83 0.27 0.55 0.39

Th Hi Re Sh 8.28 20.12 0.55 0.56 0.56

Th Hi Re SS Sh 8.29 20.26 0.55 0.56 0.56

RA 13.23 5.00 0.29 0.22 0.27

4 Light Sources

None 15.18 0.08 N/A N/A N/A

NL Re 12.27 1.01 0.49 0.16 0.27

Th 12.29 0.56 0.66 0.43 0.54

NL Re Sh 12.39 7.67 0.41 0.17 0.26

CJ 14.14 0.48 N/A N/A N/A

RA 17.72 0.68 0.14 0.08 0.12
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all noise levels. The overall normal error without any masks(None) is 14.78◦. Utilizing the

extended Non-Lambert quadruple mask proposed by Sun (xNL),reduced the normal error to

11.37◦. More improvement is accomplished with the addition of the shadow mask to Non-

Lambert quadruple mask (xNL-Sh) as proposed by Argyriou et al.

The threshold masks (Th) produced impressing enhancementson the normal errors. The

threshold mask reduced normal error to 8.63◦ by its own. Although the minimum normal

error (8.28◦) is achieved with the combination of threshold mask, highlight mask, reflection

mask and shadow mask, (Th-Hi-Re-Sh) the improvement with respect to the threshold mask

only case (Th) is less than a degree with the cost of eightfoldcomputation time for the cases

presented here.

At the bottom of the Table 5.3, results with only four light sources are presented to compare

Barsky’s (NL-Re) and Coleman’s (CJ) methods. For four images, Coleman and Jain (CJ)

method did not perform as good as other masking methods and Barsky’s method (NL-Re)

performed slightly better among other.

The overall results of (RA) method was 13.23◦, which was a slight improvement compared to

the others. Also, as seen at the bottom of the Table 5.3, four light sources results were even

worse than None results. These results indicates that imagecount used in PS have a great

influence on (RA) performance. With the increasing number ofimages, (RA) method may

have better results.

The maximum time elapsed for the execution of these was 32secs. The best performing

configuration (Th-Hi-Re-Sh) calculated results in 20secs. All of the tests were conducted on

a regular PC (Intel Core 2 Quad CPU) and Matlab. The native implementations ( e.g. C++ )

of these algorithms were expected to work faster than Matlabscripts.

(None), (NL), (Th), (NL-Sh) , (Th-Hi-Re-Sh) and (RA) masking combinations were selected

for in depth analysis. The average normal error versus the noise plot for the selected masks is

presented in Fig. 5.12. Obviously, with more noise on the images, normal errors increased.

For masked PS methods, the normal errors increased faster indicating that masked PS methods

are more sensitive to noise than None mask PS. Also Th mask wasfound to be less sensitive

to noise than NL mask. Oppositely, RA mask is found to be very sensitive to noise such that

the resultant error became worse than None mask PS when addedGaussian noise standard
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Figure 5.12: Normal error versus noise for the selected masks.

deviation is more than %15 of image dynamic ranges.

In Fig. 5.13, the average normal error versus the light count(image count) plot for the selected

masks is presented. For the no mask PS (None), the normal error slightly decreased with

increasing number of images for PS from 4 to 12 images. Utilization of the masks, however,

decreased normal errors more. In addition, the relative improvement in the normal error in

masked PS with respect to no mask PS increases with increasing images count. Hence, with

more images in hand, masks were able to recognize shadows andhighlights better. The most

dramatic improvement is performed by (RA) mask with the increasing image count. With

more images, consensus set of RANSAC became robust to the image noises. These results

denoted that at least 6 images should be used with RA mask and with noisy images the image

count should be further increased.

The Non-Lambert quadruple mask (NL) with 12 images performed worse than with for 12

images as seen in Fig. 5.13. This is because of low threshold value has to used for 12

images. Noise performance of the NL mask with various image counts are plotted in Fig.

5.14. Without any noise (blue), NL was able to mask with 12 images, but with 5% (green)

and 10% (red) noise, it performed worse than 8 images result.
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Figure 5.13: Normal error versus light count for the selected masks.
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(1)

(2)

(3)

(4)

(5)

(6)

(a) (b) (c) (d)
Figure 5.15: (1) Sample images with 10% Gaussian noise, illuminated from left with 45◦

zenith angle. Calculated masks are plotted on images with green forTP, with blue for FP

and with red forFN for (2) NL, (3) NL-Sh, (4) Th, (5) Th-Hi-Re-Sh, and (6) RA.
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(1)

(2)

(3)

(4)

(5)

(6)

(a) (b) (c) (d)
Figure 5.16: Resultant normal errors from 10% Gaussian noise, illuminated with 45◦ zenith

angle lights for (1) None, (2) NL, (3) NL-Sh, (4) Th, (5) Th-Hi-Re-Sh, and (6) RA.
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(1)

(2)

(3)

(4)

(5)

(6)

(a) (b) (c) (d)
Figure 5.17: Calculated normals from 10% Gaussian noise, illuminated with 45◦ zenith angle

lights. Normals are encoded in RGB for (1) None, (2) NL, (3) NL-Sh, (4) Th, (5) Th-Hi-Re-

Sh, and (6) RA.
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A sample test configuration that uses 8 images illuminated with 45◦ zenith angle light sources

with 10% Gaussian noise, is selected for the visual presentation of calculated masks. The

masks found are shown for four test surfaces (a) semisphere,(b) sombrero, (c) penny and (d)

mozart in Fig. 5.15. Calculated masks are colored with greenfor the true positives (TP), with

blue for the false positives (FP) and with red for false negatives (FN). The first row 5.15

(1) is row images where no mask is applied. The extended Non-Lambert quadruple mask in

Fig. 5.15 (2) have some shortcomings in detecting shadows. In Fig. 5.15 (3) shadowFN are

reduced with the additional shadow mask. In Fig. 5.15 (4), the threshold mask detected nearly

all the erroneous pixels with someFP. Since 8 images were used, false alerts did not ruined

the results. Blue false alerts spread all over images for theextended Non-Lambert quadruple

mask indicating the high noise sensitivity of the mask. For the threshold mask (Th), noisy

pixels, recognized asFP, are created only aroundTP. In Fig. 5.15 (5), with addition of Hi,

Re and Sh masks to Th mask, the masked regions enlarged. The major part of the error have

been removed by Th and additional masks handled the small errors at the boundaries of the

Th masks. In Fig. 5.15 (6) that represents only RA masks, the red FN regions were at self

shadowed pixels. The RA mask missed the self shadows when more than one intensity values

were shaded. The main cause is the residual errors of self shadows were lesser compared

to cast shadows and highlights. Two small outliers, the selfshadows, were included in the

consensus set of RANSAC.

In Fig. 5.16, norm of calculated and original normal vectorsare plotted. The white regions

indicate large normal errors, mainly due to the cast shadowsand highlights as seen in Fig.

5.16 (1). Cast shadow errors were accumulated around the objects while highlight errors

were on the objects. Both of the highlight and shadow errors reduced with masks. The noisy

image performance of each masks can be seen in these images assalt and paper effect on the

normal errors. The NL and RA masks at Fig. 5.16 (2, 3, 6) have these salt and paper effect

heavily. These masks are more sensitive to noise than others. Also, at the boundaries of the

masks, the normal errors changed rapidly resulting a flower like pattern in Fig. 5.16 (4a).

These mask patterns were also transfered resultant normalsin Fig. 5.17 (4a).

Lastly, in Fig. 5.17, calculated normals vectors are plotted with RGB values [r, g, b] = [(nx +

1)/2, (ny + 1)/2, nz]. In Fig. 5.17 (1), without any masks, errors due to the cast shadows

appeared around the Mozart and the sphere. These errors reduced with usage of the masks.

However, due to the noisy images used in the tests, the calculated extended Non-Lambert
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(a) (b) (c)

Figure 5.18: Normals of semisphere (a) and normals created by None PS (b) and Th PS (c)
with eight 45◦ zenith light sources.

quadruple mask is very noisy, resulting noisy normals. The threshold mask performed better

under same conditions as seen in Fig. 5.17 (4) and (5).

5.6 Weighted PS Results

The false edges generated at the boundaries of the masks was noted in the previous section.

This problem can be seen in Fig. 5.18 on semisphere with no noise. The original normals

seen in Fig. 5.18(a) is clearly better reconstructed with Thmask PS as in seen in Fig. 5.18(c).

However at the mask boundaries where utilized images set were changed, the normal vectors

are changed rapidly and caused false edges.

In this section weighted PS method that works on clearing this false edges, is explained. The

flow of the method is explained in “Weighted PS” section of Chapter 3. The weighted PS

method can be applied to any mask explain in this work. Since the used mask is not very

important, simple Th mask is used as an example. No noise added to the images to see the

false boundaries clearly. Eight light sources withZsource= 45◦ are used as PS input images.

The size of the dilation and smoothing filters depends on the error margin of the used mask.

Here dilation kernel is selected as a circular disk with 7 pixel radius. The smoothing filter is

a Gaussian with 3 standard deviation. Both kernels have 15x15 size.

The normal error images that are the norm of difference vector between original and calculated

normal vectors are presented in Fig. 5.19. The no mask results suffered from highlights and
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(a) (b) (c) (d)
Figure 5.19: None mask (a), Th mask (c), dilated Th mask (b) and dilated smoothed Th mask

(c) normal errors for semisphere, sombrero, penny and mozart.
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(a) (b) (c) (d)
Figure 5.20: None mask (a), Th mask (c), dilated Th mask (b) and dilated smoothed Th mask

(c) normals for semisphere, sombrero, penny and mozart.

shadows as seen in Fig. 5.19(a) with no mask. Th mask removed major errors as seen in

Fig. 5.19(b) but sharp false edges were created. Fig. Fig. 5.19(c) displays the dilated Th

mask results. The dilation operation enlarged the masked regions and clear the mask misses

around the threshold. The mozart normal error image have false edges at the cast shadow

boundaries, and were cleared at bottom image of Fig. 5.19(c). The left most column, Fig.

5.19(d), represents dilated and smoothed mask results thatthe sharp false edges at highlights

were smoothed. The color coded resutant normals of the same test were presented in Fig.

5.20.

The effect of weighted PS is obvious when render images of the generated normals are created
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Figure 5.21: Weighted Th mask PS (left) and Th mask PS (right)

as in Fig. 5.21. The false edges of Th mask on smooth sombrero surface can be seen right

side. The left image is rendered from the normals of weightedTh PS that have exactly same

mask but weighted, dilated and smoothed.

5.7 Multiple Zenith Results

The Table 5.4 represents the mean NE of three sombreros with various illumination configu-

rations. The illumination configuration is shown with a formula (Zsourcexni + · · ·+Zsourcexni).

For example, the formula 30◦x4 + 45◦x4 + 60◦x4 represents that four light sources were

placed on a circular ring withZsource= 30◦, Zsource= 45◦ andZsource= 60◦ and totally 12

light sources were used. Each ring of light sources placed with an polar angle offset value to

have equal polar distances between two consecutive sources.

The first part of the Table 5.4, includes samples of double zenith illumination configurations

with total 16 lights. The average value of theZsourcewas changed from 35◦ to 65◦ and empir-

ically configuration 35◦x8+65◦x8 with 50◦ average value have the minimum NE. The rule of

thumb given in Eq. 4.2 proposed the configuration 30◦x8 + 60◦x8, which is the second best

solution.

Similarly, at second part of the Table 5.4, the difference of twoZsourcehave been experimented.
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Again previously proposed 30◦x8+60◦x8 illumination configuration have the second best NE

performance. These results verified the rule of thumb in Eq. 4.2 is a good prediction to place

the double zenith light sources.

The last part of the Table 5.4 shows the results of the multiple zenith illumination configu-

rations. All the illumination configurations have 12 light sources. These light sources were

located on double, triple and quadruple circles around the camera. The triple circles illumi-

nation combination have slight performance improvement with respect to double. Others are

not better than double illumination configuration.

TheZ1source= 30◦,Z2source= 60◦ double zenith light sources configuration (2Z) is compared

with Zsource= 45◦ single zenith light sources configuration (2Z) for all three sombreros. Both

diffuse (Di) and highlight shadow (Hi-Sh) images were used. Resultant NE versus image

countni is plotted in Fig. 5.22. For diffuse images (bottom two plots), NE with 1Z was always

less than 2Z. This result was expected since 1Z is the optimal solution without highlights and

shadows. But when Hi-Sh images were used, 2Z performs better than 1Z if ni > 4. With more

images used, the difference between 1Z and 2Z increases in favor of 2Z. On this figure,WPS

is weightedPS which will be explained in the next section.

In the first two rows of Table 5.5, numerical results of this experiment are shown. By using 8

lights atZ1source= 30◦ and 8 lights atZ2source= 60◦ instead of using 16 lights atZsource= 45◦

the resultant NE is reduced 12.9%.

Table 5.5 presents the mean NE of all three sombreros with various image configurations and

PS solution methods. In this table, also the improvement percentages with respect to 1Z

PS are given. First thing to notice is NE was improved with double zenith (2Z), weighted

PS methods. The maximum improvement is achieved witheZsourceZsur f aceweight, that is for

each image count (ni ), angular NE is improved more than 30%. For 16 images, improvement

is 39.4%, that is much better than 12.9% 2Z PS. Secondly, the angular NE reduces with

increasingni from left to right. For 1Z, (first row) the percent improvement is about 4% from

8 images to 32 images. On the other hand, 2Z, the improvement is more than 10%, which

indicates that if many images are available for PS, double zenith lights configuration is a better

choice than squeezing them to a single circle.

The normal errors of the three sombreros (s1, s2, s3) with binary weighted and weighted
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Table 5.4: NE for various Illumination Configurations

Illumination Configuration NE

Double Zenith Average

20◦x8+ 50◦x8 5.96

25◦x8+ 55◦x8 5.83

30◦x8+ 60◦x8 5.51

35◦x8+ 65◦x8 5.33

40◦x8+ 70◦x8 5.57

45◦x8+ 75◦x8 6.21

50◦x8+ 80◦x8 7.53

Double Zenith Difference

5◦x8+ 85◦x8 13.79

10◦x8+ 80◦x8 9.37

15◦x8+ 75◦x8 6.08

20◦x8+ 70◦x8 5.16

25◦x8+ 65◦x8 4.85

30◦x8+ 60◦x8 5.01

35◦x8+ 55◦x8 5.50

40◦x8+ 50◦x8 5.86

Multi Zenith

30◦x6+ 60◦x6 5.73

30◦x4+ 45◦x4+ 60◦x4 5.72

15◦x4+ 45◦x4+ 75◦x4 6.35

15◦x3+ 35◦x3+ 55◦x3+ 75◦x3 6.27

30◦x3+ 40◦x3+ 50◦x3+ 60◦x3 5.80
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Figure 5.22: Normal Error versus image counts for single anddouble zenith angle light
sources, Lambert and TS images
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Table 5.5: NE for various image configurations andPS solution methods

8 12 16 24 32

Source Weight NE

1Z None 9.65 9.42 9.34 9.27 9.25

2Z None 9.05 8.41 8.13 7.91 7.78

2Z e 8.44 7.84 7.89 8.05 8.08

2Z eZsource 7.92 7.14 7.11 7.25 7.26

2Z eZsur f ace 7.00 6.25 6.17 6.26 6.22

2Z eZsourceZsur f ace 6.60 5.77 5.64 5.73 5.68

Source Weight % Improvement NE w.r.t. 1Z

2Z None 6.2 10.7 12.9 14.7 15.9

2Z e 12.6 16.7 15.5 13.2 12.6

2Z eZsource 17.9 24.2 23.8 21.8 21.5

2Z eZsur f ace 11.6 12.4 13.3 13.6 14.3

2Z eZsourceZsur f ace 31.6 38.7 39.6 38.2 38.6

Table 5.6: Angular NE for binary and weightedPS results for three sombreros

s1 s2 s3 Mean
Weigthed 4.08 6.12 6.74 5.65

Binary 3.39 5.19 7.00 5.19

normal vectors are shown in Table 5.6. Binary weights that simply selects the less error

normal, performed better than the weighted summation of normal vectors if only normal error

is considered. But when all normals are plotted as in Fig. 5.23, binary selection of two data

set caused the false edges. On the other hand, weights provides a smooth transition from one

data set to the other one.

In Fig. 5.24, NE images of sombrero2 are displayed for in depth investigation. In Fig. 5.24a

8 images withZsource= 30◦ and in Fig. 5.24b 8 images withZsource= 60◦ were utilized in

PS. At each case NE was concentrated at different regions due to highlights and shadows. In

Fig. 5.24c all 16 images were used in totalPS and now NE is reduced and uniform. In Fig.

5.24d the NE image resulted from weightedPS with eZsourceZsur f aceweights is shown. This
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(a) (b)

Figure 5.23: (a) False edges were occurred in binary normal vectors. (b) With weighted
summation of normals, false edges on weight transitions were smoothed.

(a) (b) (c) (d)
Figure 5.24: NE errors of sombrero2 for (a)PS,Zsource = 30◦, ni = 8, (b) PS,Zsource =

60◦, ni = 8, (c) PS,Zsource= 30◦, 60◦, ni = 16, (d)WPS,Zsource= 30◦, 60◦, ni = 16. White

pixels have IE of 20% of image dynamic range.

image is nearly union of dark regions (less NE) of Fig. 5.24a and Fig. 5.24b that indicates the

weights can effectively select the correct solution.

Fig. 5.25 displays the same result set on sombrero2 cross section. The cross section of original

sombrero2 is plotted ingreen while the calculated surface that is the surface integral ofPS

normal vectors [37] is plotted withred. The cross section of the weightedPS solution fitted

the best to cross section of original height map.

In this work, triple zenith illumination configuration and triple WPS was also tested. The

triple zenith angles was chosen to beZ1source= 30◦, Z2source= 45◦ andZ3source= 60◦. The

triple zenith configuration is compared with equal image count double zenith configuration.
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Figure 5.25: Cross sections of sombrero for (a)PS Zsource = 30◦, ni = 8, (b) PS Zsource =

60◦, ni = 8, (c) PS Zsource= 30◦, 60◦, ni = 16, (d)WPS Zsource= 30◦, 60◦, ni = 16,

The double zenith configuration resulted better than the triple zenith illumination. Also when

the triple zenith configuration was employed inWPS, the weights ofZ2source = 45◦ were

mostly very small indicating that they were nearly never used.
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CHAPTER 6

REAL IMAGE TESTS

6.1 Introduction

Before the real image tests, calibrations of the image acquisition hardware must be com-

pleted. The precise measurements of the physical placements of the hardware components

are explained. Also image disturbances due to hardware and assumptions of PS method are

corrected in this process. Later, visual results of all methods are presented on metallic surfaces

with highlights and shadows.

6.2 Hardware Components

Image acquisition hardware used in real image tests can be seen in Fig. 6.1. The hard-

ware used in the these tests was developed by BALISTIKA2010 System hardware group in

TÜBİTAK UZAY. All parts of hardware are assembled in a black opaque box to avoid sec-

ondary illumination. Camera is placed vertically at the center of lights. 16 light sources

were placed around camera pointing to field of view of camera.Detailed light source place-

ment can be seen in Fig. 6.2. Cartridge case and bullet holders were placed on a computer

controlled motorized linear X, Y, Z stages and rotational yaw, pitch, stages. Bullet could be

rotated around itself with an extra motor. Also camera focusand zoom could be controlled

with motors via serial port computer interface.

High power light emitting diodes (LED) were used as light sources. These warm white LEDs

sink 350mA rated current from computer controlled current source. They were packed with

small plastic lens, collimating light to 10◦ circular cone. Film diffusers were glued in front of
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Figure 6.1: Hardware used for image acquisition

LEDs to have homogeneous illumination distribution in the field of view.

Camera used in the setup was Prosilica GE2040 that has a 2048x2048, 12 bit monochromatic

CCD sensor. It can deliver 15 frames per second via gigabit Ethernet adapter. Camera config-

uration has done before image acquisition once, and the sameconfiguration was used during

all tests.

Navitar 12x lens was attached to the camera with appropriateadapters to have variable field

of view from 1.25x1.25mmto 15x15mmand 86mmworking distance. This lens has par-focal

zoom system that focus is not distorted by zooming operations. The lens is controlled with

two motors, one for the focus and one for the zoom. The pixel size at the image plane can be

changed with the zoom motor from 7.32µm at the minimum magnification to 0.61µm for the

maximum magnification setting.

In the real image tests, images were acquired with largest field of view and the minimum pixel

resolution. The spatial resolution of the images were 7.32µm.

Evidence holders are placed on Newport GTS70 and Newport GTS30V motorized stages.

These stages are capable of positioning the evidences with 2µm accuracy.
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Figure 6.2: (a) Imaging camera at middle and 16 LEDs placed around it

6.3 Light Source Direction Calibration

Although a special hardware was designed and produced for the light positioning, the exact

positions of the light sources were calculated with a metallic bearing ball test [48]. A specular

metallic bearing ball with 9mmdiameter was placed in the field of view and images were taken

with each light source individually. Fig. 6.3(a) displays asample image of the bearing ball

illuminated with the light source 7. The center of the highlighted region was calculated from

this image. The vector from the center of ball to the highlight was the reflection direction

and the bisector vector of the camera direction and the lightsource direction. The camera

direction was defined as [0, 0, 1] (z axis) and the light sourcedirection was calculated from

reflection direction. Light source to ball distance was measured physically and the average

distance was found to be 86mm.

6.4 Light Source Power Calibration

The PS calculation employs the illumination powers of the light sources. In the Balistika

2010 hardware, all the light sources are same model LEDs emitting equal light sources up
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Figure 6.3: Bearing ball image illuminated from the light source 7 and the calculated light
source positions looking from z, y and x axis respectively.

to 1% tolerance under same usage. However the irradiance on the target surface may not

be equal due to targeting differences of the collimators and diffusers in front of the each

LEDs. Consecutively, unbalanced illumination may occur onthe target surface. The light

source powers were calibrated with a planar white target. The test images of a planar white

target, for each light source were acquired with same cameraconfiguration. The mean values

of image intensities are directly proportional to the irradiance on the surface. Light source

power can be calculated by scaling irradiance value with solid angle of each light source that

is sin(Zsource).

If the target surface is placed horizontally (mean of the allsurface normals are [001]), and

nearly symmetric for each light sources, mean values of target images can be approximated to

illumination powers. This approximation should be used carefully. If the surface is not placed

horizontally, the resultant normals will be deformed. The cartridge cases are good example

for this type of surfaces.

6.5 Radiometric Calibration

PS method estimates the surface normals from the irradiancechanges of the surface with

changing light source positions. Instead of the irradiance, the image intensity values are em-
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(a) (b)

Figure 6.4: White calibration image and light distributionfunction.

ployed with linear camera response assumption. Secondly, uniform illumination assumption

over the whole field of view is used to simplify calculations.These assumptions are checked

and corrected with the radiometric calibration on images.

Radiometric calibration is composed of following calibration processes;

6.5.1 White image calibration

The Light sources used in image acquisition hardware do not have a uniform illumination

distribution over the field of view [13]. This calibration process measures intensity values on

a planar reference, white diffuse surface called Spectralon. Intensity values of the Spectralon

were fitted to 2 dimensional polynomial function. This lightdistribution function representing

illumination power at each pixel was used as a scale factor for each pixel. The images were

scaled with the inverse of this function to correct illumination variations. Fig. 6.4 shows a

sample of white calibration image and fitted light distribution function.

6.5.2 Gray image calibration

Radiometric response curve is the relation between the scene radiance and image intensity.

In many computer vision systems, it is assumed that the imageintensity of a point directly
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Figure 6.5: Radiometric response curve of the camera.

reflects the scene radiance of the point. However, this assumption does not hold in most cases.

Camera producers use nonlinear camera response functions in order to compress the dynamic

range of the scene to 8 bits [49]. PS algorithm uses scene radiance to reconstruct the scene in

3D. In order to calculate the scene radiance, all the images must be corrected by radiometric

response function of the camera.

Camera response function was estimated from a gray scale pattern having 9 linear gray ra-

diance values (see Fig. 6.6a). Mean intensity values of eachthese 9 gray regions is fitted to

a 6th order polynomial function resulting the graph in Fig 6.5.Itis obvious that the relation

between the scene radiance and image intensity is not linear.

6.5.3 Dark image calibration

Due to the thermal noise in CCD some pixels of the images may have relatively very high

intensity values, even if all the lights are off. When these few erroneous pixels (around 200

in 4 million) are used in PS, sometimes unacceptable peaks occurred on the 3D surface. Dark

image calibration simply detects these erroneous pixels using intensity threshold operation,

and averages them with surrounding pixels.
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(a) (b)

Figure 6.6: White calibration image and synthetic calibration image.

6.5.4 Synthetic image calibration

Since light sources were not placed at infinity, their illumination distribution will not be uni-

form over the field of view. There are two reasons of this, the illumination power reduces with

light source distance, and secondly the angle of light source changes over the surface. After

hardware assembly, planar diffuse white surface is rendered with measured light source and

camera positions. Resultant synthetic images are used to scale images same as white image

calibration. This calibration solves most of the convexityerror on 3D surfaces. Fig. 6.6b

shows a sample of the synthetic calibration image on the right.

6.6 Geometric Calibration

The camera lens combination used in the image acquisition has a very low lens distortion

which can be seen at Fig. 6.7. So, it is not necessary to model and correct it.

In order to use absolute lengths in the generated 3D surfaces, absolute length corresponding

one pixel must be calculated. For each zoom level, this calculation is done on the grid pattern

having 1x1mmcells. Left image of Fig. 6.7 has pixel size of 6.00µm and right image has

4.64µm pixel size.
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(a) (b)

Figure 6.7: Geometric calibration image for 12.3mmx12.3mm(a) and 9.5mmx9.5mm (b).

6.7 Unified PS Results

The synthetic image results presented in the previous chapter were also verified with real

images. Three metallic test surfaces, a coin, a relief of twohorses and viking statue, were

selected to present both highlights and shadows. 2048x20488 bit monochromatic images

of these test surfaces were acquired with Prosillica GE2040camera and Navitar 12x zoom

lens. Eight warm white power LEDs were placed around the camera with 62◦ zenith angles

and 45◦ polar angles. In Fig. 6.8 (1), one of the eight images illuminated from lower right

corner are shown. All eight images like these samples were filled with large shadows and

highlights, especially for two horses and viking statue. From Fig. 6.8 (2) to Fig. 6.8 (6)

calculated masks were plotted on the same images for xNL, xNL-Hi-Re-Sh, Th, Th-Hi-Re-

Sh and RA. While the green pixels represents the shadows, theblue ones stands for highlights.

The threshold values calculated in synthetic image test were utilized. The xNL masks were

not very successful due to noisy image characteristic and reduced threshold value for eight

images. On the other hand simple Th mask performed better in all three cases. The additional

Hi and Re masks also increased highlight detection performance as in Fig. 6.8 (5). The RA

mask, presented in Fig. 6.8 (6), was able to find highlights (blue) but clearly missed the

shadows. The same problem was also occurred with the synthetic images. The main cause of

this failure was the residual error magnitude difference of highlights and shadows. While the
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shadows with small errors were included in the consensus set, the highlights with large errors

were excluded.

In Fig. 6.9, encoded normals were plotted for (1) None, (2) xNL, (3) xNL-Hi-Re-Sh, (4)

Th, (5) Th-Hi-Re-Sh and (6) RA masks. Without any masks, as seen in the first row, smooth

normals were reconstructed. As seen in Fig. 6.9 (4) and (5) variation of normals increased

with the usage of masks, resulting a more contrast normal image. This improvement came

with some side effects. With the usage of the masks, the calculated normals have noisy results

at the boundaries of the masks. Especially when the masks arediscontinuous and noisy,

the resultant normals are also noisy as in 6.9 (2) xNL, 6.9(3)xNL-Hi-Re-Sh and 6.9(6) RA

masks. Weighted PS, in the next sections will be focused on the false edges and noisy look of

normals.

In Fig. 6.10, calculated normals and albedos were rendered with the same illumination in Fig.

6.8. Similar to encoded normals, the render images of Th maskresults have contrast but noisy

results.

In Fig. 6.11, render images of normals and hight values were plotted. The view angle is tilted

with 45◦ to show effect of masks on calculated hight values. The shadows around the nose of

the viking statue were found with Th and Th-Hi-Re-Sh as seen in bottom Fig. 6.8 (4) and (5).

Hence the height of the nose was calculated higher which is closer to the correct height.

6.8 Weighted PS Results

Weighted PS was tested real images with Th mask which was alsoused with the synthetic

images. Eight images withZsource = 62◦ were used in weighted PS. The resultant normals

with and without weighting is shown in Fig. 6.12. The left, Fig. 6.12(a), not weighted normals

have false edges at the helmet and the neck of the viking statue where shadows and highlights

were masked out. Normals at Fig. 6.12(b), which were calculated with weighted PS, the most

of the false edges were smoothed.

The smoothing effect of weighted PS is more obvious in the render images, presented at Fig.

6.13. Both images were rendered with diffuse surface reflection and illuminated from top.

The false edges at the helmet, at the left eye and under the beard were smoothed.
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(6) Shadow

Specular

Shadow

Specular

Shadow

Specular

(a) (b) (c)
Figure 6.8: (1) Real images with illuminated from right bottom corner with 60◦ zenith angle.

Calculated masks are plotted on images with green for shadows, with blue for highlights for

(2) xNL (3) xNL-Hi-Re-Sh (4) Th, (5) Th-Hi-Re-Sh and (6) RA.
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(6)

(a) (b) (c)
Figure 6.9: (a) Calculated normals for (1) None (2) xNL (3) xNL-Hi-Re-Sh (4) Th and (5)

Th-Hi-Re-Sh and (6) RA.
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(5)

(a) (b) (c)
Figure 6.10: (Render images for (1) None (2) xNL (3) xNL-Hi-Re-Sh (4) Th and (5) Th-Hi-

Re-Sh.
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(a) (b) (c)
Figure 6.11: Render images for (1) None (2) xNL (3) xNL-Hi-Re-Sh (4) Th and (5) Th-Hi-

Re-Sh.
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(a) (b)

Figure 6.12: Normals of Th mask PS (a) and weighted Th mask PS.

Weighted PS smooths the masks not the generated surface normals. The false edges of the

normals can also be smoothed with simple Gaussian filtering operation on the resultant nor-

mals. But this smoothing operation will also smooth the details of the reconstructed normals,

which is not desired. As seen in Fig. 6.12, the weighted PS preserved the surface details and

smoothed only the false edges and noisy look caused by the masks.

6.9 Multi Zenith Results

The synthetic image results presented up to now were also verified with the real images.

Five test surfaces, bearing ball, a coin, a relief of two horses, plastic toy face and metal toy

face were selected to present both highlights and shadows. 2048x2048 8 bit monochromatic

images of these test surfaces were acquired with ProsillicaGE2040 camera and Navitar 12x

zoom lens. 16 warm white power LEDs with diffusers were placed around the camera with

Z1source= 31◦,Z2source= 62◦ and polar distances being 45◦ as shown in Fig. 6.2.

5 test objects were used in the real image tests as seen in Fig.6.14. Plastic and metallic

toy faces were good examples for diffuse and specular surfaces. Coin, horses, bearing ball

and metal toy face were selected to have changing amount shadow and highlights on their

surfaces.
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Figure 6.13: Render images of normals of Th mask PS (a) and weighted Th mask PS.

Figure 6.14: The real objects used in tests. Left to right, plastic toy face, metal toy face, coin

25 kurus, bearing ball and horses.
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Fig. 6.15 displays the test images of the metal toy face afterthe calibration process that

linearized CCD gain characteristics. The images at left most two columns are taken with

Z1source= 31◦, and the ones at right most two columns are taken withZ2source= 62◦ light

sources. Wide highlighted regions can be seen at the left ones. The right ones suffer from

shadows, especially around the nose of the metal toy face.

The weights used inWPSare presented in Fig. 6.16. The sum of two weight images adds up

to 1.0 all over the image. The white intensity values indicate heavy weights that it’s normal

vector will influence more to the final normal vector. The normals of the slanted regions, for

example, around the nose, have less error when calculated with Z1source= 31◦ lights, hence

Z2source= 62◦ lights generated many shadows at these regions. The weightsaround the nose

were calculated as desired, i.e. reduced NE, as in Fig. 6.16.

In Fig. 6.17, the intensity error images ofPS andWPSsolution are shown. The IE of the

slanted regions decreased with the proposedWPS.

Fig. 6.18 displays the color coded normal vectors ofPS and WPS solutions. While the

normals calculated withPS (see Fig. 6.18a) have a limited range, the normals ofWPSmethod

(see Fig. 6.18b) ranged larger.

Lastly, real and render images of the metal toy face is presented in Fig. 6.19 from different

angles. Left most images (see Fig. 6.19a ) were acquired withan ordinary digital camera. Fig.

6.19b and 6.19c are render images ofPS andWPS. As seen the Fig. 6.19b bottom image,

the nose of the metal toy face could not be reconstructed withPS. It was much smoother than

the real image. But this error reduced in Fig. 6.19c indicating thatWPSworked better in the

presence of shadows.

Table 6.1 lists the percent intensity errors (IE) of all testsurfaces with 8 and 16 images con-

figuration. In both cases, IE is reduced significantly with the WPSmethod, compared to the

ordinary PS method. The minimum IE was achieved with only residual error(e) weights.

This is because of the similarity of the definition of IE ande. Other weights disturbed the

results with additional informations other thane. But from the synthetic image results, it was

shown thateZsourceZsur f aceweights have the better NE performance.

Table 6.2 presents the average elapsed time of thePS andWPSwith 8 and 16 lights configu-

rations. The computation cost ofWPSis about 3 times of the ordinary PS. The computational
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Z1source= 31◦ Z2source= 62◦

Figure 6.15: 16 calibrated images of metal toy face used inPS tests.
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(a) (b)

Figure 6.16: Weights of metal toy face (a)Z1source= 31◦ and (b)Z2source= 62◦.

(a) (b)

Figure 6.17: Intensity error images of metal toy face with (a) PS method and (b)WPS
method. White pixels have IE of 20% of image dynamic range.
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(a) (b)

Figure 6.18: Normal vectors of the metal toy face with (a)PS method and (b)WPSmethod.

(a) (b) (c)
Figure 6.19: (a) real (b)PS render and (c)WPS render images of the metal toy face from

front (top) and from right (bottom). The nose was calculatedas smooth peak in PS. But this

error is reduced inWPS.
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Table 6.1: Intensity Error (% ofNone)

bearing

ball

coin 25

kurus

horses metal

toy face

plastic

toy face

Overall

Average of IE light 30 4 60 4

None 100.0 100.0 100.0 100.0 100.0 100.0

e 49.8 55.5 38.8 61.1 54.4 50.5

eZsource 49.5 55.7 38.6 65.1 58.9 51.9

eZsur f ace 53.3 52.9 41.3 68.3 72.9 56.0

eZsourceZsur f ace 52.2 52.3 40.1 70.1 76.7 56.3

Average of IE light 30 8 60 8

None 100.0 100.0 100.0 100.0 100.0 100.0

e 64.7 92.0 62.0 70.6 59.9 68.4

eZsource 63.6 90.2 60.5 77.6 65.9 70.0

eZsur f ace 68.5 82.7 62.3 81.1 87.9 75.0

eZsourceZsur f ace 67.2 80.5 60.5 86.2 94.0 76.1

cost increase is mainly caused by the weight calculation. This cost is still much lower than

non-linearPS methods.

Table 6.2: Average elapsed time (Normalized w.r.t 2Z).

Weight light 30 4 60 4 light 30 8 60 8

None 1.00 1.00

e 2.89 2.65

eZsource 2.91 2.62

eZsur f ace 3.06 2.68

eZsourceZsur f ace 3.06 2.69
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CHAPTER 7

FIREARM EVIDENCES

Firearm identification is the matching problem of the firearmevidences from the striation and

impressed marks left by the firearm [13]. Traditionally, thematching operation is executed

with a microscope by the trained experts. Each couple of evidences are placed under the

microscope side by side and are investigated by eye. The sideby side comparison operation

have to be done for each new evidence with every one in the database outnumbering thou-

sands. Automated firearm identification systems helps experts to overcome this cumbersome

task of comparisons.

The firearm evidences are mainly the cartridge cases and the bullets as seen in Fig 7.1. The

cartridge case is full of gun powder and the bullet is attached in front of it. The mechanism

of the gun, the firing pin, hits on the soft metal part of the cartridge case, the breech face to

ignite the gun powder inside the case. The powder burns very fast creating very high heat

and pressure. The pressure forces the bullet to exit from thebarrel with a speed of 300m/sec

for an ordinary firearm. In modern firearms, inside the barrel, there are helical grooves that

spins the bullet around its motion direction. Later, the cartridge case is ejected from gun

automatically. These firing process deforms the metallic surface of the cartridge case and the

bullet. The deformation is firearm specific, so that surface topology of the firearm is impressed

and striated on the evidences.

The cartridge cases mostly have impression marks on its bottom. The firearm identification

system, acquires the images of the bottom of the cartridge case, shown in Fig. 7.1(a). There

are three important regions at the bottom of the case that areinvestigated by experts separately.

The ejector mark is created by the firearm ejector pin that pushes the cartridge case out of the

gun after firing. This mark usually has a small area and is difficult to match but it indicates
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(a) (b)

Figure 7.1: The regions of a cartridge case (a) and a bullet (b).

Figure 7.2: Test spend cartridge cases with various calibertype and material

the orientation of the cartridge case inside the gun. The breech face is the soft part of the case

where gun’s firing pin strikes on it and create firing pin mark.These marks on the deformable

thin metal contains majority of the characteristic marks ofthe gun.

The bullets are usually composed of two parts the heavy soft core that is made of lead and the

harder brass shell. This type of bullet is called “full metaljacket”. While bullet travels inside

the barrel, the helical grooves of the barrel spin the bulletand create strained marks on the

bullet. Even after hitting to the target, these groove markscan be used to identify the firing

gun. Usually there are four to six groove marks on a bullet as seen in Fig. 7.1(b).

The cartridge cases used in the tests are presented in Fig. 7.2. The cartridge cases with

different metals having a variety of colors and reflection properties are selected. Also different
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Figure 7.3: 16 raw images of cartridge case 3.

caliber types used by guns and rifles exist in the test set. The3rd and 5th from the left are

“sister cartridge cases” that have been fired from the same gun. The results of these two cases

will be presented in this chapter.

The 16 raw images acquired by the BALISTIKA2010 System are presented in Fig. 7.3. The

images have 2048x2048 pixels with 8 bit gray scale intensity value. The field ofview is

10mmx10mm. The spatial resolution of the acquired images were 4.9µm. The camera’s ex-

posure was set to the same value for all images. This common exposure value was selected

considering the mean value of all intensity values to be around 75. The dark ones are illu-

minated byZsource= 62◦ light sources and bright ones are byZsource= 31◦. Highlights and
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Figure 7.4: The calibrated images of cartridge case 3.

shadows were present in this ordinary cartridge case.

Fig. 7.4 displays the resultant images of the calibration process. The 8 bit images are con-

verted to floating point images before calibration. The calibrated images that will be used in

PS, are also in floating point intensity images.

The masks that yielded best results in the synthetic images were applied to the cartridge cases

as seen in Fig. 7.5. The green pixels are shadows and the bluesare the highlights. Although

the outside of the cartridge case was marked as shadows, these regions are discarded in the

next steps. The images withZsource = 31◦ mainly have highlights indicated with blue. On
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ShadowSpecular

Figure 7.5: The Th-Hi-Re-Sh masks calculated on the cartridge case 3.
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(a) (b)

Figure 7.6:Zsource= 31◦ (a) andZsource= 62◦ (b) weights of the firing pin of the cartridge
case 3.

the other hand, the images withZsource= 62◦ have both highlights and shadows on the case

especially on the critical firing pin mark. Considering the real height map of the cartridge

case, the highlights and shadows masks are calculated successfully. Note that many pixels

from the concave firing pin was masked out, leaving few pixelsto be used in PS. These masks

may be used both as a binary mask or can be weighted to obtain smooth mask edges.

The weighted normal PS was also tested on these cartridge cases. Fig. 7.6 presents the

calculated weights for each normals with (a)Zsource= 31◦ and (b)Zsource= 62◦ where white

pixels indicate high weight values. The most of the resultant normals were calculated with

images illuminated byZsource = 62◦ light sources. On the other hand, when the shadows

occurred at the walls of the firing pin,Zsource= 31◦, the light sources have greater influence

on the resultant normals. These masks yielded satisfactoryresults from the synthetic image

results.

The render images of two reconstructed sister cartridge cases, cartridge case 3 (left) and car-

tridge case 5 (right), are shown in Fig. 7.7. The top images are tilted 3D view of the cases,

and bottom images are breech face close view. The orientation of the cases were matched as

much as possible so that the characteristic surface deformations can be seen in the place in

the images. The horizontal short line close to the middle of the firing pin center and diagonal

long lines on the breech face are characteristic marks of this gun as commented by ballistic
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Figure 7.7: Render images of cartridge case 3 (left) and cartridge case 5 (right)
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experts. They also suggested that the number of characteristic marks are very good that these

two can be easily identified as sisters.

The resultant normals of cartridge case 3 (a) and case 5 (b), generated using different methods

are shown in Fig. 7.8. The sisters are placed side by side to present the matched characteristic

marks for each PS method. The first row of normals are generated without any masks. The

second row, Fig. 7.8(2), presents the binary Th-Hi-Re-Sh masks results where more details

at the walls of the firing pin are visible. Some of these are mask false edges. In Fig. 7.8(3),

the false edges are removed when weighted PS compared to Fig.7.8(2). The bottom row, the

results weighted normal PS, were the smoothest normals among all.

Lastly, the render images are displayed in Fig. 7.9. These images are captured from the

screens of the BALISTIKA2010 Identification System. For each row, two sisters were identi-

fied by the ballistic experts easily.
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(2)

(3)

(4)
(a) (b)

Figure 7.8: Normals of the cartridge case 3 (a) and 5 (b) for (1) None, (2) Th-Hi-Re-Sh (3)
weighted Th-Hi-Re-Sh (4) and weighted normal PS.
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(1)

(2)

(3)

(4)

Figure 7.9: Render images of the cartridge case 3 (a) and 5 (b)for (1) None, (2) Th-Hi-Re-Sh
(3) weighted Th-Hi-Re-Sh (4) and weighted normal PS.
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CHAPTER 8

CONCLUSION

8.1 Summary

Following tasks were completed in this thesis;

• Masked PS methods in the literature and simple new masking methods like threshold

mask were classified and implemented on a unified framework.

• The weighted PS method, using weighted least square estimation (WLSE), is suggested

and developed to eliminate false edges created by the masks.

• The calibration processes were investigated. The disturbances due to close light sources

were removed by image calibrations.

• Different illumination configurations including double zenithillumination configura-

tion, were suggested and tested.

• Double zenith illumination configuration results were further improved by the weighted

normal PS.

• The synthetic image generation codes were implemented. Controlled tests were con-

ducted to fine tune the masks.

• The methods were tested on real objects with varying characteristics as well as the

firearm evidences.
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8.2 Discussion

Firstly, this thesis proposed the unified PS framework and weighted PS, which is capable

of utilization of any implemented mask combinations. The unified PS has the key role to

make a fair comparison among masks. The unified PS was justified by achieving similar

enhancements with the previous works in literature. Novel weighted PS is integrated to the

unified PS framework to weight masks and remove side effects of masking operations.

In addition to some masks proposed earlier in the literature, new simple masks were also

proposed. Also, widely used NL method is further extended from 6 images to any number of

images. The masking threshold values were optimized with the synthetic images for various

image counts. With the test configuration stated in this thesis, the normal error was reduced

from 14.78o to 8.63o (44% improvement) with simple fast working Th mask. This simple

yet powerful masking method was combined with highlight, reflection and shadow masks to

achieve the best improvement.

Without masks, increasing image count slightly reduces thenormal error because new images

bring more highlights and shadows and without masks the improvement is limited. One of the

most significant findings to emerge from this thesis is that with simple masks, normal errors

can be further decreased with a reasonable computation cost.

This thesis showed that the normal errors increased faster with the masked PS methods than

no mask PS, indicating that masked PS is more sensitive to noise. Among all the masks

implemented in this thesis, NL mask was the most noise sensitive method with increasing

image count. This is caused by the small threshold value usedfor many images. The threshold

value have to be reduced for increasing image count to have a discriminating mask with the

closer light source illumination directions.

The experiments on the synthetic image test were also testedon objects with metallic surfaces.

The real image results supported earlier conclusions derived from synthetic cases. In real

object cases threshold (TH) and threshold highlight reflection and shadow (Th-Hi-Re-Sh)

mask combination produced the most detailed normals and height values.

The masked PS methods have a side effect that disturbs the results. The boundary patterns

of the masks were transfered to the normals. This false edge disturbance was caused by the
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change in the input image combinations at the neighboring pixels. If the calculated masks do

not have well defined boundaries, this results in noisy normals.

The false edges at the masked boundaries were handled with the novel weighted PS method,

using weighted least square estimation. Instead of binary masks, continuous weights were

used in this method. The weight of each pixel was inversely proportional to the square of the

intensity error. Later, the mask boundaries were dilated and smoothed on the weight images.

The false edges and noisy normals caused by discontinuous masks were also smoothed. This

method only filters out the false edges and noisy normals. Therest of the details at the normals

were not affected.

Secondly, a better illumination configuration consideringnot only the image noise, but also

highlights and shadows was investigated. Realistic highlights and shadows were rendered on

synthetic surfaces. It is experimentally shown that there is no single optimal illumination con-

figuration for every surface with highlights and shadows. However, placing the light sources

on two circles around the camera with different zenith angles reduced the resultant normal

error. Also with the double zenith sources configuration, NEwas more evenly distributed

over the surface which may be a desired feature. For aPS setup to reconstruct a variety of

shapes with highlights and shadows, results suggests to place the light sources on two circles

with 30o and 60o zenith angles if more than 8 of sources are available.

With the double zenith illumination configuration, weighted normal PS that uses double zenith

light sources, was proposed. In this method the light sources are grouped with their zenith

angles and two subsets are solved exclusively. The two resultant normal vectors for each

pixel was weighted with respect to their estimated errors. Different weighting methods were

considered. The weighted normal PS improved normal error more than 30% compared to

single zenith light sources and ordinary PS. The cost of using weighted normal PS is the

overhead of weight computation and weighting operation. With the same volume of input

data, the elapsed time of weighted normal PS is about 3 times of the PS on the average. This

cost is still much lower than non-linear PS methods using iterative error minimizations.

The results of the firearm evidences were also presented in this thesis. The breech face of the

cartridge case is a planar region with shallow characteristics marks on it. These planar parts

usually do not create highlights or shadows. Most of the problems occurred at the concave

firing pin mark, which is a very important region including most of the characteristics marks
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of the cartridge. The mask combination with best synthetic image performance was used.

The masks and the weights were calculated properly. The 3D shapes were investigated by

ballistic examiners and concluded that all the proposed methods create easy to identify results.

Generally the ordinary PS was enough to reconstruct a discriminative normals, since surface

topology is simple to solve for PS. On the other hand, some marks at the firing pin walls can

be better reconstructed by masks.

Both of the synthetic and the real images were have 8 bit intensity values. These integer

intensity values were converted to 32 bit floating point values normalized to have maximum

value one. The resultant normal vectors were also have 32 bitfloating point values. The

calculated normal maps have the same pixel resolution with the input images, 2048x2048.

For the test objects 7.32µm spatial resolution normal and height maps were calculated.The

cartridge cases and bullet grooves were placed at the scene to have the best resolution. For

cartridge cases, spatial resolution is around 4.9µm, and for bullet grooves spatial resolution

can be reduced down to 1.0µm.

For the 16 synthetic images with 512x512 pixel resolution, the maximum time elapsed for the

execution of the masked PS algorithm was 32secs. The best performing masked PS calculated

results in 20secs. All of the tests were conducted on a regular PC and Matlab. The native

implementations ( e.g. C++ ) of these algorithms were expected to work faster than Matlab

scripts.

8.3 Future Works

The concave shape of the firing pin causes another important problem, which is secondary

reflection. The illuminated region reflects light inside thefiring pin creating secondary reflec-

tions. The secondary illumination is not solved in this thesis and remained as future work.

A mask working similar to the ray tracing algorithm in the computer graphics may be im-

plemented. The ray tracing can be executed quickly up to two or three reflections. The back

reflections to the camera may be identified as secondary reflections. Since the removal of

these back reflecting pixels will change the normals and surface topology, the ray tracing

should be executed again. Hence, secondary reflection mask will be an iterative normal mask

in unified PS.
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Another improvement can be achieved by the implementation of multi view PS, that is the

fusion of binocular stereo and PS. This method would be very useful when creating 3D shape

of complex topologies like bullets. Detailed PS results canbe fused to form a single real 3D

shape of the bullet.
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