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ABSTRACT

PHOTOMETRIC STEREO CONSIDERING HIGHLIGHTS AND SHADOWS

Buyukatalay, Soner
Ph.D., Department of Electrical and Electronics Eng. D&pETU
Supervisor . Prof. Dr. Ugur Halici

Co-Supervisor : Assist. Prof. DDzlem Birgiil

September 2011, 130 pages

Three dimensional (3D) shape reconstruction that aimsdonsruct 3D surface of objects
using acquired images, is one of the main problems in compig@®n. There are many
applications of 3D shape reconstruction, from satellitedging to material sciences, con-
sidering a continent on earth or microscopic surface ptmseof a material. One of these
applications is the automated firearm identification thani®ld, yet an unsolved problem in
forensic science. Firearm evidence matching algorithiysorethe fact that a firearm creates
characteristic marks on surfaces of the bullets and theidget cases. These marks should
be digitized unffected from diferent surface material properties of evidences. Accurécy o
3D shape is one of the most important parametéliscing the overall identification per-
formance. A very high resolution, accurate 3D data have teebenstructed in the order of
minutes. Photometric stereo (PS) method is capable of stemting high resolution surfaces
in a fast manner. But, the metallic material and the surfapelbgy of the firearm evidences
generate highlights and shadows on their images that ddesonmmply with the assumptions
of conventional PS. In the scope of this work, it is intendedi¢sign an accurate, fast and
robust 3D shape reconstruction scheme using PS consid@ghtights and shadows. These

new PS procedures to be developed here should not be limitgdathe ballistic evidences
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but they also could be used for a wider range of objects raflegiroperties and texture. For
this purpose, masked PS methods which are quite fast wheparethto other approaches,
were classified and implemented. Simple additional maskiethods are also proposed. A
novel weighted PS method, using weighted least square astim is presented to eliminate
false edges created by the masks. Concurrently, the didibrarocesses and the illumina-
tion configuration were improved. The disturbances duedseclight sources were removed
by image calibrations. From experimental tests to simuladight positioning problem, it

is concluded that the double zenith illumination configiarathave better performance than
the optimal single zenith illumination configuration, wée highlights and the shadows are
considered. Double zenith illumination configuration feswere further improved by the

weighted normal PS with a small additional computation .cAfitthe implemented methods

were tested firstly on the controlled environment using fsgti¢ images. Later the same tests

were conducted on real objects with varying charactesisicwell as the firearm evidences.

Keywords: photometric stereo, optimal illumination, Hights, shadows
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PARLAMA VE GOLGELER GOZONUNE ALAN FOTOMETRIK STEREO

Buyukatalay, Soner
Doktora, Elektrik-Elektronik Muh. Bolumu
Tez Yoneticisi : Prof. Dr. Ugur Halici

Ortak Tez Yoneticisi : Yard. Doc. DOzlem Birgiil

Eylul 2011, 130 sayfa

Objelerin goruntulerinden ¢ boyutlu (3B) seklinery catma, bilgisayarli goriinin temel
problemlerinden biridir. 3B geri catmanin, uydu goiilatmesinden malzeme bilimine, diinya
Uzerindeki bir kitadan, mikroskobik malzeme ozellikter kadar pek ¢ok alanda degisik
uygulamalari bulunmaktadir. Bu uygulamalardan bir tawdesieski ama daha ¢oziulmemis
bir adli bilim problemi olan otomatik silah tanima sisteinidSilah delili eslestirme algorit-

malari, silahlarin kovan ve mermi cekirdekleri Uzerir@deakteristik izler biraktigi gercegine
dayanmaktadir. Bu izler ylizey malzeme ozelliklerindédlenmeden sayisallastiriimalidir.
3B seklin dogrulugu, butun tanima basarimini en etiileyen degiskenlerden biridir. Cok
yuksek ¢cozunarluklt, dogru 3B veri dakikalar ngie olusturulmalidir. Fotometrik stereo
(FS) yontemi hizh bir sekilde yuksek cozunurlalgeri catim yapabilmektedir. Fakat atesli
silah delillerinin metalik malzemelerinin ve yiizey topjilerinin Urettigi golge ve parla-

malar, genel FS varsayimlari ile uyusmamaktadir. Bu daktezi kapsaminda amacim,
golge ve parlamalari gdz dniine alan FS kullanarak wlogrzli ve givenilir bir 3B geri

catma akisi tasarlanmasi amaclanmistir. Bu yeni F8eydinin, sadece balistik deliller
ile sinirlandiriimayip, degisik yansima ve doku 0#ddliine sahip genis bir objeler sinifi

icinde kullanilabilecek bir geri catim yontemi olmammaclanmaktadir. Bu amagla, literatirde
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bulunan, hizli calisan maskeli FS yontemleri siniflahdis ve gerceklestiriimistir. Basit
ek maskeleme yontemleri de onerilmistir. Maskelerinstlirdugu hatali kenarlari elemek
icin, agrilikh en kuguk kareler kestirimi kullanageni bir agirhkli FS yontemi sunulmustur.
Ayni zamanda, kalibrasyon strecleri ve aydinlatma kamégyonlari gelistirilmistir. Yakin
Isiklardan kaynaklanan bozulmalar goruntt kalibcegr ile temizlenmistir. Isik kaynagi
konumlandirma problemi icin yapilan testlerden, ciftiz@cil aydinlatma se¢iminin golge ve
parlamalarin oldugu durumlarda, en iyi tek zenit acibisglen daha iyi bir basarimi oldugu
sonucu elde edilmistir. Cift zenit aydinlatma secimisbnucu, az bir ek hesaplama maliyeti
ile daha da iyilestirilmigtir. Butun yontemler dnceentetik goruntuler kullanan kontrollt
kosullarda test edilmistir. Sonra ayni testler, degikarakteristikteki gercek objeler ve atesli

silah delilleri izerinde uygulanmistir.

Anahtar Kelimeler: fotometrik stereo, en iyi aydinlatmarlpmalar, golgeler
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LIST OF ABBREVIATIONS

Source Zenith Zsourcd  Light source zenith angle

Surface Zenith Zsyrtacd Surface normal zenith angle
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Highlight (Hi) Images rendered with TS reflection model
Shadow §H Cast shadows created with shadow mapping
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CHAPTER 1

INTRODUCTION

1.1 3D Shape Reconstruction

3D shape reconstruction is one of the main problems in coenpigion. These methods aim
to reconstruct 3D surface of the object using acquired imagace methods focused on this
problem have similar names like “shape from shading "or fghfiom stereo ”, general name

“shape from X "is used to define all of them.

The one of the early shape from X method was shape from sh&8iR§g), which was for-
mulated firstly by Horn in 1970 [5]. This method reconstrutis surface from only a single
image [6], which is ill conditioned without restricting Witsome constraints [7]. Especially,
“The depth values of some singular points must be known'icaims limits the feasibility of

the method.

Binocular stereo (BS) is an other shape from X method thas @sed by humans. In BS,
two or more images viewing the same scene are used to calc¢htatepth of a surface point.
The main problem in BS is finding conjugate pairs in two imagésch is called matching.

In case of a calibrated BS system, epipolar geometry caniledtto reduce 2 dimensional
matching problem to 1 dimensional line search problem. Hewmatching problem still has

to be solved.

There are two main approaches to matching problem, aresdh@stensity matching) ap-
proach and feature-based approach. Area-based appraéeghotimatch pixel gray levels
of two images. It results dense depth map since matchingeisutéaed for each pixel of the

images. But this approach is very sensitive to noise. Fediased approach searches for fea-



tures (usually edges or corners) to match in two images. dppsoach is robust if features
are visible in both images. But, only depth values of featwan be calculated directly, depth
values of other points must be interpolated to reconsthetithole surface. Resolution of
depth values in the feature-based approach depends onrfaesstexture quality, which is a
problem for smooth textured surfaces. This resolution lerakcan be eliminated by using a

structured light source [8] [9].

Depth from defocus (DFD) is a fairly new shape from X methadhaks similar properties with
triangulation methods like BS and motion [10]. Basic idethesamount of blur in the image
is directly related to the camera settings and the depttesadfisurface [11]. The sensitivity
of the DFD depends on the camera’s aperture diameter antigathgit is not easy to select

desired aperture diameter of the camera [10].

One of the well known shape from X methods is photometricestéinat was firstly proposed

by Woodham in 1978 [12]. In photometric stereo (PS) methdid, isiages of a surface
are captured under variable, known light sources. Intgnsitues of image pixels can be
related to the surface normals and the reflection propestitte surface. This relation can be
formulated by reflection models andffdirent models can be selected depending on surface
reflection properties. Surface normal and albedo values@milated using the selected

reflection model and images undeffdrent lighting conditions.

The main advantages of PS are very high resolution outpufastelr computation compared
to other 3D reconstruction methods. On the other hand, PSdrags shortcomings when
shadows and specular reflections occur. In the literatheretare two main approaches to
solve these problems. The first approach utilizes nonlirefection equations and resulting
constraint optimization problem is to be solved. These lieear PS solutions have good
results but work much slower than linear PS. In the secondoaph, pixels with shadows or
highlights (i.e. specular reflection regions) are maskddand linear PS is applied to the rest

of pixels. This approach increases the accuracy of thetseandl still performs fast.

1.2 Automated Firearm Identification

Automated firearm identification is an unsolved importarmtbem in forensic science. Bal-

listic experts use stereo microscopes capable of viewingfingarm evidences side by side
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to compare bullets or cartridge cases. This setup can cengdy two bullets or cartridge
cases at a time. With the increasing number of evidencestifidation problem grows geo-

metrically making it nearly impossible to solve without art@mated identification system.

Identification of firearms depends on striated and impressadks on the metallic surfaces
of bullets and cartridge cases [13] [14]. In most cases, Heduliinformation for evidence
comparison is the geometry information, independent déitexand reflection [13] [14]. Early
versions of automated identification systems use 2D imafeartridge cases [15]. These
systems have poor performance since the marks on the rostaiface of evidences are very
sensitive to the type and direction of light sources [13].sBlape is a better choice to identify

the geometrical marks independently from illumination.

1.3 Motivation and Objective of The Thesis

Beside the automated firearm identification, the 3D shapenstaiction has many applica-
tions in industry, from satellite imaging to material saes that may consider a continent on
earth to microscopic surface properties of a material. A Wet topic in computer vision and
pattern recognitions is three dimensional face recognitibat works on the reconstructed
3D facial data. On the other hand, 3D media consumer prodhatsdeveloped recently,

increases demand on 3D data.

This thesis work is about the 3D reconstruction of any serfexpology from the images.
However the problems occurring on firearm evidences wereesdrated most. The images
of the evidence metallic surfaces mainlyfeu from highlights and shadows. The 3D recon-

struction problem has to be solved considering these lgigtsiand shadows.

The two main requirements of 3D reconstruction for autochéite identification are;

e The most discriminative 3D shape should be generated.
e The method should generate 3D shape in the order of minutes.
The discriminative 3D shape is very important, since thodsaof similar evidences will be

identified. The 3D generated shape should have high pixelutisn to be discriminative.

Previous systems were using 162924 pixel images for 2D investigation. Higher resolution
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is needed with the growing database of evidences. Thisnageit limits the 3D reconstruc-

tion methods to dense 3D shape generation methods.

The feasibility of the identification system depends on {heesl performance of acquisition
and comparison system. The acquisition hardware and sefsteuld reconstruct the surface
of the evidence in the order of minutes. This performancedgired to handle daily work

load of the evidence acquisition system.

1.4 Contributions of The Thesis

Firstly, masked PS methods that removes highlights andosigdere implemented. Masked
PS methods depends on the fact that objects with highligtitslaadows in some regions, still
have difuse (Lambert) reflection on other parts of the surface [16§ [Bcations of highlights
and shadows change with lighting conditions. With propé&a®mn of light sources, one may
acquire a set of images so that for each pixel, a subset witraat three images satisfying
linear reflection model (Lambert) can be chosen. Pixel \&aig¢hree images is necessary in
order to find out three unknowns, one is related to albedo #ret éwo are related to surface

normal at that point.

In this study, the implemented masks are listed as follows;

e Image Masks

— Threshold Mask (Th)

— Non-Lambert Quadruple Mask (NL) [2]
e Normal Masks

— Self Shadow Mask (SS)
— Cast Shadow Mask (CS)
— Highlight Mask (Hi)

— Reflection Mask (Re) [2]

— Shadow Mask (Sh) [4]

e Subset Masks



— Coleman and Jain Mask (CJ) [17]
— Extended Non-Lambert Quadruple Mask (xNL) [3] [18]

— RANSAC (RA) [19]

The masked methods listed above are combined within a urirfietework that we name as
unified PS. This framework provides a platform for fair comgan among various methods.
This is achieved by using the same codes for PS calculatioepethe masking procedures.
Secondly, using unified PS framework, masks can be fusedfiereit ways using logical
operations easily. Hence,flirent combinations can be selected and evaluated based on th
characteristics of each mask and requirements of a spegjflication to find the most robust
PS method.

Threshold mask, self shadow mask, cast shadow mask andghighiask are fast, simple
and easy to implement masking methods that are not founceifitérature. Also extended
Non-Lambert Quadruple Mask method for six images is geizedto any number of images
in this study. Other masking methods are taken from previvarks and implemented as they

were defined.

Secondly, weighted masked PS was introduced. The preyioushtioned masks were used
as trug¢false flags that presents an intensity value will be used bused in PS. This hard

decision created false edges at the boundaries of the maskewhe used intensity sets are
changed. This new weighted mask method utilizes residuatsof PS to create weights to

masks. Also smoothing masks further reduced the false edges

Thirdly, optimal illumination configuration for PS is invgated. Most of the previous works
on optimal illumination configuration did not include anyghlights or shadows while calcu-
lating optimal lighting configuration. They commonly prgea that the optimal illumination

configuration was placing lights on a single circle aroureldamera. This study investigated
this configuration with realistic highlights and shadowgtie synthetic images. The simu-
lations with highlights and shadows showed that it is notsfids to find a single optimal

configuration for all smooth or rough surfaces. Hence, w@gse to place light sources on

two circles around the camera with two zenith angles.

Lastly, usage of the double zenith light sources also prediuew opportunities to reduce

highlight and shadow errors. Instead of using all light searat once, each light sources set
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with equal zenith angles is used exclusively in PS. The tasuhormal vectors are combined
with weights that were calculated based on the estimatedserthis novel weighted normal

PS approach and general weight functions are presentets waink.

The methods explained above are also tested on the realsmafge calibration of the hard-
ware highly d@ects the performance of the reconstructed 3D shapes, thlils;ation proce-

dures were also studied in the scope of this thesis.

Since the relative positioning of the sample with respethéccamera, determines the amount
of highlights and shadows on the images, a priori adjustrokatientation has a potential to
improve 3D generation performance. To explore this paaémtiplane correction algorithm

was implemented and integrated.
As a summary, the contributions of this thesis can be groumtedhree categories;

The first group includes the PS configuration improvementshenllumination configura-
tion and calibration processes. The optimal illuminationfiguration without highlights and
shadows were replaced with the double zenith configurabauble zenith configuration re-
duced the errors due to highlights and shadows. Also suiflaceination due to near light

sources was modeled and thieet is normalized with an additional calibration procedure

Secondly, mask PS methods in the literature are classifiddraplemented in the unified
framework. This framework is capable of applying any cormalion of the previously imple-
mented masks. Some fast working, simple and easy to impkemasking methods such as
threshold mask, self shadow mask, cast shadow mask andghighiask were added to the

unified framework. These masks are novel methods to the besat &nowledge.

Thirdly, new weighted approaches to PS were implementedstlyiveighted mask PS that
employs weighted least square estimation was proposedprékimusly implemented masks
can be weighted in this implementation. Also, weighted radr®S is proposed on double

zenith illumination configuration.



1.5 Outline of Thesis

This thesis has been divided into eight chapters includiigibtroduction chapter. Second
chapter describes the previous works related to this th&his third chapter defines the uni-
fied PS framework, masks and weighted mask PS. Chapter fopoges the novel illumina-
tion configuration and weighted normal PS method theoigtiddext three chapters explain
the tests done with the implemented methods on synthetigesmaeal objects and cartridge

cases, respectively. Finally, in the last chapter resuétsammarized and discussed.



CHAPTER 2

BACKGROUND

2.1 Introduction

In this chapter, firstly, general definitions used throudhibe thesis are explained. The image
formation theory with the reflection models and shadows @aimed. PS and masked PS
methods in the literature are placed in the next sectionvidéus works on the optimal illu-

mination configuration for PS and resultant normal evatimatchemes like uncertainty are

defined. Lastly the error definitions used throughout theithare presented.

2.2 Imaging Geometry and General Definitions

The general geometry of the imaging system used in defisitibrough out this thesis is as
follows; the world coordinate system is defined in as cancergered coordinate system; that
is the origin is the center of the field of view, the camera &xdaced on the-Z axis, and the
up direction of the image is parallel withY axis. In this definition, theX andY axis of the
imaging plane and field of view are parallel. It is generabbgumed that the object is placed
faraway from the camera’s imaging plane so that the orthalgamjection assumption can be

safely used.

The general notation vectors used in this work are preséntéig).2.1. The camera direction
vectorv, is the optical axis of the camera and with orthogonal ptajeassumption it is given
asxy 3" =[00 1]" all over the field of view. The unit surface normal vector igresented

with n. The light source direction is an unit vector defined fronfaee point to center of the

point light source and is shown with The subscript indicates the index of the light source,
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the photometric stereo (PS) demands multiple light soultc¢he PS calculations, the light
directions is assumed to be constant, but this assumption is correntéteaeal images with

the image calibration processes which will be explainedhaier 6.

The reflection direction vectar; is the direction where the specular reflection occurs [20].
This is defined as the symmetric vector of light source dioaatith respect to surface normal
and is formulated as Eq. 2.1. Since, it is a function of swfasrmaln and the light source

directions, it lies in the plane defined by them.
ri=2(s nn-s (2.1)

The surface normals resulting a specular reflection frontigihe source to the camera direc-

tion can be checked directly with specular normal directlefined in Eq. 2.2.

_ S+V
s+ V|

(2.2)

Ns
wherel.| denotes the norm of the vector.

All vectors are defined with their zenith and polar anglesia work. The zenith angle of a
vector is the positive angle between itself aslaxis. The polar angle is measured positively

counterclockwise from-Z axis.

2.3 Reflectance Map

Reflectance map is the relation of the image intensity with ghrface normal [16]. It is
a function of the light source radiance and the surface dxitional reflectance distribution

function (BRDF). Source radiance is simply the light powiteed to the surface of interest.

Source radiance functioiL{(x)) of a single distant point light source is given in Eq. 2.8eT
solid angle delta functiod,,, is defined as in Eq. 2.4. Heks, is the irradiance of the light

source andgis the light source direction.

Ls(X) = Egdw(X —9) (2.3)

f h(X)6., (X — Xo)dw = h(Xo) (2.4)

BRDF can be defined shortly as the ratio of the reflected lightgy from the surface to

the incident light power with respect to each income and aotylight directions. BRDF
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Camera

Light Source

urface

Figure 2.1: Vectors used in reflection models

is a function of the incident and the reflection directionfie3e directions are defined with
respect to the surface normal. BRDF is the ratio of the radiasf the reflected light at the
given reflection direction to the irradiance of incidenthlig For the surface patch, with the

surface normah, isotropic BRDF can be expressed witlfs, n, v) [16].

The surface radiance of reflected light alonig L,();
Ly(s,n,V) = f f.(x, n, v)Ls(x)max0, x" n)dw (2.5)

On the other hand, it is proved that the surface reflectiomapgrtional to image irradiance
[21]. This can be written as = kL,() wherel is the intensity value anH is the constant
of proportionality. Iflmaxis the maximum intensity value of the image, the reflectanap m
R(s, n, V) is defined as;

R(s Nn,V) = k/ImaXf f.(x, n, v)Ls(x)max0, x" n)dw (2.6)

w

In Eq. 2.6, the reflectance map of the source is related to Ri@MBand the orientation of the
surface. The BRDF will be defined later to substitute in tlyaaion. A perfectly smooth

planar surface reflects only in specular manner. All incidadiation from a point light source
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Source Direction Surface I\a ?rmal Specular Direction
Total Reflection
Forescatter Lobe
Backscatter Lobe
Normal Lobe
O |O
—— Rough Surface —

Figure 2.2: Lobes of total reflection

is reflected along this direction resulting a specular BRB&(Q. 2.7

6w(n - nS)

2.7
2s™n (2.7)

fu(s,n,v) =

On the other side, a perfectly rough planar surface refledysio diffuse manner. All incident
radiation is from a point light source is reflected uniforralpng all directions with constant
BRDF as in Eqg. 2.8.

fu(sn,v) =1/n (2.8)

The uniform BRDF value is calculated by the fact that all th@dent light is reflected by the

surface.

Most solids have a combination oftflise and specular reflection properties which is sum of
three lobes, forescatter lobe, backscatter lobe and ndofal(see Fig.2.2 ). The forescatter
lobe represents the specular reflection of the surface. Bldaie is difuse component of the
reflection map. Backscatter lobe is spread around soureetidin, most materials have very

little backscatter. Only some paints have strong baclescktbe [16].

The forescatter lobe is spread around the specular direatiol spread function purely de-
pends on the surface properties. It can be explained simpinddeling rough surface as
a collection of infinitely small perfect specular reflectoedled facets. Each facet inclined
randomly around the surface normal. Facet models also asthahsurface is isotropic that
is uniform in all orientations. The incident light is refledtfrom each facets specularly. Since
the facets inclination have a mean value around the surfaceal, forescatter lobe have a

monotonically decreasing distribution around the reftactirection.
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Normal lobe is spread around the surface normal. The bulkesitay of surface is assumed
to be the origin of the normal lobe. In the bulk scattering elpthe surface is composed of
an optically uniform material with facets in it. The scaitterin this model is analyzed using

radiative transfer function and can be approximated as leatiain.

The BRDF of a real life surface can be modeled with the sunonatf specular, normal,

forescatter and backscatter components, which is written a

fu(s,n, V) = uspecfspeds. N, V) + prscfise(S, N, V) + tnormfrorm(S, N, V) + tpscfhsds, N, v) (2.9)

whereyu’s are the weights of each component in the BRDF.

If this generalized BRDF definition in Eq. 2.9, is placed i tleflectance map Eq. 2.6,
the generalized reflectance map equation is created; howsgegeneralization is beyond
the scope of this work, and some assumptions will be madentpliéy the general prob-
lem. Firstly, the specular reflection component of the genBRDF results an unbounded
reflectance map and saturated intensity valuguspe.= O is assumed throughout this thesis.
Also rare backscatter is assumed toudpe: = O, in this context. The simplified BRDF Eq.
2.10 and corresponding derived simplified reflectance nmap f£q. 2.6 are formulated as in

Eq. 2.11;

fr(s,n,v) = piscfise(S N, V) + tnormfrorm(S N, V) (2.10)

R(S N, V) = pspec®(NiN) + pait(s'N) (2.11)

The constant termsspecandpgis ¢ in reflectance map Eq. 2.11 are called the specular forescat-

ter (specular in short) andftlise albedo values of the surface respectively.

Maximum value of a reflectance map can be 1, which corresptmtise case all the light
power from the source is reflected to camera. However, meddatensity values of the
camera are not normalized to 1 but have a gain value dependihgrdware and acquisition
configuration of the camera. Hence the intensity values armalized before any further

calculation.

The term 'reflection model’ is used for a mathematical fumetihat generates intensity values
with given surface normals and light source directions amdesadditional parameters. These

additional parameters simulate the reflection properti¢seosurface material.
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2.3.1 Lambert model

This simplest reflection model that only implements th&udie reflection of the surface is
Lambert reflection model and is formulated in Eq. 2.12. Thestant difuse BRDF is used

for this model.

li = paite(s'n) : (§N)>0 (2.12)

Lambert model is very simple and holds for many type of mateif the camera direction is
away from the forescatter lobe [2]. If the camera directimelose to the specular direction,

Phong or Torrance-Sparrow model may be used, that speefilaction is taken into account.

2.3.2 Phong model

Even though Phong model is physically not correct, sincevery fast to implement it on the
hardware shader and includes the specular reflection caanpadhis widely used in computer
graphics.

li = pspedr V)™ + pait(§TN) 1 (§'n)>0 (2.13)

The forescatter lobe is modeled by a power of cosine funadfoangle between reflection
directionr; and camera direction. Thepspecandpgis ¢ are specular andfiluse albedo values

respectively in Eq. 2.13.

2.3.3 Torrance Sparrow Reflection Model

For visible light, Torrance Sparrow model is a good appration of surfaces that can be

modeled with facets [16].

li = /Ospece_mz[arccos(];n)]2 + pairf(s'N) (2.14)
C+s

N = 2.15

=TS (2.15)

Here the intensity valué is composed of specular andffdise terms. The specular term
depends on the angle between the normal reflectipand normai direction. The normal
reflection direction is bisector of the camerand light sources directions where highlight

will occur with full power if n = ny,.
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Figure 2.3: Cross section of the surface with self shadoysa@st shadows (B) and highlights
(€).

2.3.4 Shadows

Shadows can be classified in two groups; self shadow and leadow [2] as shown in Fig.
2.3. A self shadowed pixel is shaded by itself that can be titaitad $,T n) < 0. Geometrically,
the angle between the surface normal vector and the lightsalirection is more than 90

With a single point light source, these pixels have zeraisity value.

Beside self shadows, the cast shadows may exist on image® doene other parts of the
surface that occludes the light source. AIthougT‘nQ > 0 condition holds, zero intensity

value will appear due to lack of illumination at these pixebadinates.

Theoretically, since both of these shadows results in azeemsity value, they may be rec-
ognized from intensity values. In real images, howevergdsbaegions may not have perfect
zero intensity values due to secondary illumination. Irhsteses, although self shadows may

be extracted from surface normals, cast shadows can noteaek locally.
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2.4 Photometric Stereo

In photometric stereo (PS), still images of a surface aréucag under dterent illumination

configurations [12]. Intensity values of image pixels camédated to surface normals and the
reflection properties of the surface. Various reflection et@avere proposed to formulate the
surfaces reflection properties. The ma$oeless model is Lambert reflection model since it

provides a linear solution to the PS problem.

2.4.1 Linear Photometric Stereo

Linear PS method uses simple, linear Lambert reflection mda¢his model, intensity of a

pixel, illuminated by single point light source, is definesifallows;

i = pgs'n (2.16)

s=ud s'n>0, |d=1 |n=1

In Eg. 2.16,i is the intensity valuepq is albedo,n is the unit surface normal vectajs the
illumination vector which is the multiplication of unit Iig source direction vectod, and
illumination strengthu. Intensity value is directly proportional to the cosine bé tangle
between the surface normal and the light source directidm aifactor, albedod) times the

illumination strength ).

Assuming that the illumination vector is known, Eq. 2.16 kiage unknowns; one is the
albedo and two comes from the surface normal. If three iitiemalues of the same surface
point are captured using independent light sources, tkatlirquation system can be solved

as:

| = pgSn

s
pd=I1SH n="— (2.17)
Pd

|:[i1 i2 i3]T9S:[Sl S S3]T

In Eq. 2.17,1 is intensity vector composed of the intensity valugsfrom m™ image, illu-
minated bysy. Similarly, sy, illumination vectors for each light sources are concatsh#o

form the illumination matrixS. If more than 3 images are given, the equation system can be
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solved using th&' (pseudo inverse d8) calculated as in Eq. 2.18.

S = (ST91s! (2.18)

2.4.2 Optimal lllumination For PS

In 2003, Spence and Chantler, published the first paper ooptimal illumination for three
image PS [22]. Later in 2006, they extended their work witkemse sensitivity analysis [23].

All the derivations were made with the assumption that thiéasa is Lambertian (no high-
lights) and there is no shadow. Additive, zero mean Gaussise on images, representing
CCD noise, was considered as the source of all resultantalazmor in their work. For
three images, light sources were placed with equal polaleara 120 optimally. Zenith
angles of the light sourcesZgqurce) Were the same and were chosen depending on the surface

roughness (55for the rough surfaces and ®@fbr the smooth ones).

Later, Drbohlav and Chantler further extended the previworks with more than three im-
ages PS [24]. Again only Gaussian CCD noise was modeled. Boe than three images
(n; > 3) optimal zenith angle was found to be.B4# and light sources were equally spaced
with (360/n;)° tilt angles. Besides the circular light placement with ¢ans zenith angle
Zsource they also investigated the case where one of the light ssumas at © zenith angle
position (coincide with the camera) and others are on tlodecikVith the additional Dzenith
angle light source, the optimakqrce changed, but when; goes to infinity, it converges to

the same optimal value given above.

Concurrently, Barsky and Petrou published the generagjdéssues paper for color PS, which
is an extension of their previous paper [2], [25]. The CCDseoiilllumination estimation
errors, shadows and highlights were investigated. Sindlgakane and Sato illumination
configuration was designed to minimize singular value dguasition (SVD) condition num-
ber [26]. They suggested a circle of light sources with camtszenith angles in the range®30

to 49°. This is less than the previously calculated optimal, sstt@dows were considered.

Lastly in 2007, Sun et al, showed that the orthogonal lights®is the best for 3 image case
with no highlights and no shadows exist in the images [3].0Al®e uncertainty of the results

depends on surface albedo in their work.
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Figure 2.4: Segmentation offtirent regions defined in [1]

2.4.3 Masked PS methods

The main idea of these methods is that nearly all non-Lana@meraterials behave close to
Lambertian, if the surface orientation is far from specuégyion [16]. So it is very attractive

to solve PS problem linearly, by eliminating non-Lambergts and using Lambert pixels.

In 1982, Coleman and Jain implemented the first filtered P$®odetising four images [17].

This method can filter one specular pixel among four. It agsuthat there is no shadow in
images. With some restrictions on four light source posgjdhis condition can be satisfied
easily. Their method is based on the assumption that sual@eglo is constant for any light
combination regarding there is no shadows and surface ibkgian. Three image PS is
calculated four times and four albedo values and normabvecare found. If the variance
of albedo values is less than a threshold, algorithm dediggshere is no highlight and the
average of all normals is the resultant normal vector. Omther hand, if there is a highlight

pixel then the solution with the smallest albedo is used.

Later, Solomon and Ikeuchi built up a new filtered PS methadguour images [1]. This
method can handle two shadow pixels among four. In this twage PS case, albedo is
assumed to be constant and known. Although the algorithtesstehat to do when there is a

shadow or highlight, it does not inform about how to senseithe
Algorithm applies a dferent solution for each region defined as with the shadowseafig-
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ure. Generally when there is no shadow, for a region Coledain,[17] specular detection
method is used with adaptive threshold depends on camesa.ndihen the region is shad-
owed in only one of the images, region lighted by the oppositerce has highlight. So,
two remaining lights with constant albedo are used. Wherethee two shadowed pixels,

algorithm evaluates normals with them, hoping there is gblight at the rest of the images.

In 2003, Barsky and Petrou, built new filters for PS methodd@fined by Coleman and
Jain [17]. Beside highlights also shadows can be sensed léeredi with these methods.
Method is capable of sensing one erroneous pixel among fbuo erroneous pixels may

cause filters to make false decisions that results a worsdltas using all four pixels together.

They defined three filters, non-Lambert quadruple detedilin, color diferencing highlight
filter, alternative highlight filter. Method works as follew

Non-Lambert quadruple detection filter utilizes linear eiegience of source directions which

indicates that any four vectors in three-dimensional warkllinearly dependent.

S+ +ast+ausy =0 (2.19)

If we multiply both sides with local albedo and surface ndima

a1pdif £ (SLN) + azpdit £ (S2N) + azpdif £ (S3N) + aupdit £ (san) = 0 (2.20)
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This is equivalent to;

ali+ala+aglz+asls =0

al =0 a=[aarazay] (2.21)

Vector definesa hyper plane in four dimensional space and can be computedtigifrom
source directions. If all four intensities are perfectlynitzert, above equation must hold. For
near-Lambert intensities, "Lambertian error” is definedady’. If Lambert error is less than

a threshold, all four intensities are near-Lambert.

Color differencing highlight filter employs fierent color characteristics of specular and dif-
fuse reflection. While diuse reflection has chromaticity of body color, the specwfection

has the chromaticity of illuminant.

If both illuminant and body have close colors, colofféiencing does not work. In these
cases, alternative highlight filter is used. Alternativetimd is intersection of two threshold
filters. If brightness of a pixel is high and normal vectorlsse to bisector of light source and
camera vector, it is marked as specular and other threespaxelused in PS. Error definition
in this paper is dterent from the majority of the PS literature. The count obeeously

constructed pixels (over a threshold value) instead of nmeamal error of all pixels is used.
Also a low (30, less than optimal) zenith angle light sources are useddiaceethe risk of

multiple errors for pixel.

Later, Chandraker et al, published a four or more image P8add27]. They implemented a

shadow detection filter (term light source visibility is dda paper). Shadow graphs are sim-
ilar to shadow maps (also called zffer in computer graphics), which keep the information
of visibility of each pixel from camera or from light sourceShadow graphs were employed

as constraints in integration of normals to create surfaight data.

At the same time, Sun et al, proposed a hierarchical filtesingtegy to eliminate shadows
and highlights, from 6 images [3]. They claimed that for amyex object, at minimum
6 light sources is needed to solve for entire visible surfa&dight sources are placed on a
circle with 45 zenith angle. In this illumination configuration, at mose@pecular and two

shadows can occur for each pixel on a convex surface.
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The flow chart of the algorithm is seen in Fig 2.6. Sun et al m&sthat highlight occurs

at the brightest pixel and shadows occur at the darkestgpid#ith these assumptions when
the pixels are sorted with their intensity values, 2nd, 3und dth pixels are guaranteed to
be Lambertian. Brightest one pixel and darkest two pixedstasted one-by-one with Non-

Lambert quadruple detection filter [2].

Later, Argyriou and Petrou, enhanced their previous methitid shadow mapping (z-lter)
for four images [4]. The new method includes a recursive linap gradually finds shadows
and highlights, corrects normals and heights. It starth wiiminating non-Lambert pixels
with Non-Lambert quadruple detection filter. These pixeks anreliable, so they are inter-
polated with neighbor pixels. The recursive section sezgthe non-Lambert quadruples for
shadows with shadow mapping filter. At the rest of the unip&igixels, brightest pixels
in the quadruples are classified as highlight. Shadows agtdidints are filtered and PS is

calculated again.

Here shadow mapping filter works for both cast and self shaddw find shadowed pixels,
firstly height map is generated from normal map. ZfBuof height map, which contains
closest distance value to view point, is rendered from e@gtt source view point. Simple

distance comparison is used to recognize shadowed pixels.

In 2009, Miyazaki et al, developed a median PS method [28]gusiore than four images.
This is again a recursive process that terminates when tnagels in calculated normals are
less than a convergence threshold. For each pixel, surfameahis estimated from median
candidate of all normals which each one is generated witaréint 3 light combinations. This
is said to be less sensitive to outliers compared to meanalomyiso neighbor surface nor-
mals are added to median set. At the end, median normals airevagighted with neighbors,

which is a smoothing process on normals. This is done forendliinormals converge.

Lastly, in 2010, Argyriou et al, extended their previous k&for four images to any number
of images [29]. They proposed a recursive algorithm rengviighlights and shadows by

using least squares error similar to intensity error in nisk.
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2.4.4 Non-Linear PS

In this part, relatively complex methods are presenteds@&meethods do not only reconstruct
normals and heights, but are also interested in compleacirfeflectance properties. They
employ long optimization solutions which run for hours. &klese works are generally aim to

solve only highlight problems. Shadows are discarded midsiedtime.

Hertzmann and Seitz became the first who used a referenceespénéng the same BRDF
with target object [30]. The base of method depends on @iiemt-consistency cue, which
is two points with the same surface orientation reflect thmeeshght toward the viewer. So,
both reference and target are imaged at the same time. Appatenearest neighbor search
structure finds the corresponding points between referandetarget. All the shadows are

ignored. 14 images are used at total and reported to run &bduuirs of computation.

Later, Goldman et al, advanced the research [31] with sirodastraints. They have calcu-
lated 3D and BRDF at the same time [32] in 2010. The non-liogéimization methods run

on 12 images about 5-10 hours.

There are other methods that do not use parametric reflectandel [33] [34] [35]. They

employ non-parametric BRDF measurements from many imagegtiog up to thousands.

2.5 Uncertainty of Normals in PS

Woodham [12] who first defined the photometric stereo methtsd, placed the basic restric-
tion for location of the three light sources. The illumimatimatrix has to be inverted; so it
must be non-singular. This means that light sources mudigptaced on a line. Besides the
condition of non-singularity, he stated that orthogonatéhlight sources combination will be

optimal for Lambert reflection model.

Later, Sakane and Sato [26] implemented an active PS thatiaps camera and light posi-
tions. In their work, reliability or accuracy of the solutids evaluated for any number of light
sources by singular value analysis of the illumination imattambert reflectance PS for N

images can be formulated as follows;

| = paitf(S'N) | =[i1...in]" S=[s1...5n]" (2.22)
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Table 2.1: Condition values offlierent light source configurations

Light source count | Zenith angle | Condition value
4 5 16.1645
4 15 5.2779
4 30 2.4495
4 45 1.4142
4 60 1.2247
8 5 16.1645
8 15 5.2779
8 30 2.4495
8 45 1.4142
8 60 1.2247

In equation (2.22)] is intensity vector,S is illumination matrix,n is surface normal and
pdift is local difuse albedo of material. When singular value decomposii@pplied taS,

condition value can be calculated as ratio of maximum to mimn singular values.

S=UsV" 3 =diag(oioa0s) cond(S) = 1 (2.23)

O min

If An andAl are defined as errors in normal and intensity vectors, fatigunequality relates

these errors with condition value.
An Al
7 <= COI’]d(S) % I_ (224)

Therefore, if the condition value is smaller, PS solutiofl estimate more reliable normal

vectors with the errors in the intensities.

As an example, condition value of 4 and 8 light sources arsemted in the Table 2.1. The
number of light sources does not change the condition vallse. distant light sources, with

larger zenith angles, have better condition value.

Woodham, in 1994 [36], published a real time PS that usesulpaéible relating 2 or 3 in-
tensity values to surface normals. Calibration sphere thighsame target material was used
to create the lookup table of desired material for the givlermination configuration. As

a result surface gradient and distance measure to surfac®wtputted. With the usage of
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lookup table, he eliminated the Lambert reflectance assampuwhich solves the highlight

problems. Shadow problems were not solved but a local cordelestimate was generated.

Lookup table is defined from 3D intensity space to 2D gradsp@ce and 1D confidence
estimate. Lookup table is created in three steps. Firstlysmed intensity values and surface
gradients are stored in the table. In the second step, gaps 2D gradient space are filled
by interpolation for both intensities and gradients. A# tiesultant table entries are direct hit,
so has a 0 confidence estimate value. In the third step, 3Bsityespace is filled with closest

gradient values and distance to closest measured datalsmtfidence estimate.
Results of the algorithm are promising, and the algorithprastically easy to implement.

In 2003, Spence and Chantler [22], first published a papdamaptillumination for three
image PS. Later in 2006 [23], they extended their work witkrise sensitivity analysis. All
the derivations are made with assumption that surface iskeatian and there is no shadow.
Only Gaussian noise on images is the source of resultantal@mors. For three images,
optimally light sources placed with equal tilt angles of I@yrees. Zenith angle (term slant
angle used in the paper) depends on surface roughness aedr&gs rough surfaces and 90

degrees for smooth ones.

In their sensitivity analysis, three light positions thainimize the sum of the variances of
each normal direction components. The ratio-gfvariance of x component of scaled normal
vector (product of albedo and unit normal vector)gtovariance of Gaussian noise on images

is formulated as follows;

On, ony 5 ony 5 ony 2
- _ M 2.25
aj \/(9|1) +(6I2) +((9I3) ( )

Here, partial derivatives of scaled normal with respechtensity values are called sensitivity

expressions. There are 9 of them for three light source PS.

Followings are the figure of merits for rough and smooth s@sar,, /o term is ignored for

smooth surfaces.

¢ 20 (2.26)



Sensitivity is found to be inversely proportional to sinezehith angle for x and y normal
components and inversely proportional to cosine of zeniifleafor z normal component.
When z is ignored for smooth surfaces, sensitivity is inglsrproportional to sine of zenith

angle.

Also signal to relight error ratio3ER) is defined as the error definition for real image tests.

var(l)

SER =101
Ogglaf(l — lrelight)

(2.27)
Variances of pixel intensities are experimentally caltadafrom 10 images of same light

source. This error definition includes only CCD noise ermomages.

Later, Drbohlav and Chantler [24] further extended the&vjwus works with more than three
images PS. Again only Gaussian CCD noise is modeled. This, ine uncertainty of nor-
mals, mean value of squared distance of scaled normalsdenefe, are used as a figure of
merit. For three images same results are found. For moretkinaa images (image count,
N ¢ 3) optimal slant angle (zenith angle) is 54.74 and lightces are equally spaced with
360N tilt angles. Minimum uncertainty will bed®/N for N images PS, with zero mear?

variance Gaussian noise.

Beside the circular light placement pattern with constdamtsangle, they also investigated
the case that one of the light sources is at 0 slant angleigogitoincide with the camera)
and others are on circular pattern. Optimal slant angleroti@r lights changed, but when n

goes to infinity, slant angle converges to same optimal value

Concurrently, Barsky and Petrou [25] published a genersibdassues paper for color PS that
is an extension of their previous paper [2]. Synthetic insagie used to create fine control
errors. CCD noise, illumination estimation errors, shaslawd highlights were investigated.
Similar to Sakane and Sato [26] illumination configuratisaésigned to minimize SVD con-
dition number. They suggested a circular pattern of lightses with constant slant angles in
range 30to 45. This is less than previously calculated optimal, becanseasing shadows

with increasing slant angles are considered.

Lastly in 2007, Sun et al, [3] presented a good proof showtiagythe orthogonal light source

is the best for 3 image case. The Lambertian reflectance astiaunws assumptions were
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used again. They insisted that uncertainty also dependsidace albedo. This was not
that obvious in the previous works related to PS, since tllaysa scaled normal vectors as
uncertainty value. Here dark colored surfaces will haversrcompared to lighter colored

ones.

In their work, uncertainty of normals is defined as covaranmatrix of normals in the pres-
ence of noise in images. Objective function for optimalgydefined as the trace of the co-

variance matrix of normals.

2.6 Error Definitions

The primary output oPS is the surface normal vectors, so the resultant performarase
measured by considering error on normal vectors in this/stlide NE is the angular deviation
of the normal vectors oPS (n,), from the originals i) as in Eq. 2.28. However, for real
image tests, the original normal vectors are not known. &b ¢lase, the intensity error (IE)
definition, that is the average of the residual errors innafiges, are used as in Eq. 2.29. This

definition is extended with weights to evaluate the weig&dmethod as in Eq. 2.30.

_ ZS urfacel(nr’ no)

NE (2.28)
ZSurface
| —ISST
IE = Zlmages| | (2.29)
Zlmages
IE = w1lE1 + W,IE> (2.30)

Intensity error is defined on image intensities, and withemlving PS, it can be calculated
from images directly (term relight error is used for intépgrror in [22]). Since only images
are used, reference 3D data is not needed to calculatedndity error definition used here is

residual error of least square estimation problem.

27



(@) (b)

Figure 2.8: Normal error of PS (a) and square of intensitgrezalculated (b).

| = paiti(STN) I =[i1...in]" S=[s1...sn]" (2.31)
, . ST _
piss =171 "= =— S"=(ST9tsT
Pit t
R=1-S" (o)

R=(1-S"(S"9) 1SN

Linear system of Lambertian reflectance equations in maae three images PS is solved
with least square estimation optimallyy;;, andn” are optimal estimations of the albedo
and the surface normal respectively. The intensity errdefsned asR|, where|.| is column

vector norm operator that calculate norm of residual erofrall pixels, resulting a scalar
non-negative error value for each pixel coordindte.L,, L., vector norm definitions can be

used depending on needs.

Square of intensity error is good approximation for thedratcovariance of normal vectors.
This would be theoretically true if errors in images are peledent, zero mean Gaussian
functions. In that case, covariance of normal vectors meaadibgonal matrix according to

least square estimation theory.

Fig. 2.8, presents similarity of normal error and intengtyor up to a scale. The plotted

normal error image is the norm of vectorialffdgrence of original and calculated normal.
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Notice that normal errors on sharp edges of Mozart does nigtisar intensity error.

TP

“TP+FP+FN (2.32)

QF

Besides the normal error and intensity error, the perfonaasf the mask generation can be
measured by comparing the calculated masks with the igitabwn, synthetic shadows and
highlights. For this purpose, the quality factor (QF) giMarEq. 2.32 is used. Here, the
number of true positivesT(P) is defined as the pixel count of matching original and final
masks. The number of false negatiWeN) is the pixel count of unrecognized shadows and
highlights and the false positive courF) is the pixel count of masked regions that are
actually not shadows and highlights. The QF is 1 if all theefsixof mask match with the

desired mask. With each false decision, the QF drops down to 0
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CHAPTER 3

UNIFIED PHOTOMETRIC STEREO

3.1 Introduction

The masked methods listed above are combined within a urfii@dework that we name
as unified PS. Firstly, this framework provides a platformféir comparison among various
methods. This is achieved by using the same codes for PSlatiédcuexcept the masking
procedures. Secondly, using unified PS framework, maskdedunsed in dierent ways
using logical operations easily. Henceffdient combinations can be selected an evaluated
based on the characteristics of each mask and requiremieatspecific application to find

the most robust PS method.

3.2 Flow Diagram for Unified PS

The most generic flow diagram of unified PS is presented in Bd.. The first step in
the flow is to calculate setup parameters and calibrate imagkese calibrated images are
then fed into subset selection algorithm that forms contlina of images. Each of these
combinations will be the input of image masking stage. Intb&t step, PS and normal
masks are calculated iteratively. Finally, results of prasly selected subsets are fused to

create resultant normals.

1. Calculate setup parametersThese are the parameters such as pixel size of camera,
light source directions and powers. Parameters relatedtibdources will be used in

PS solution whereas pixel size is required for height magudation.

2. Calibrate Images Image calibration step corrects non-linear radiomeggponse of
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camera using response curve.

. Define Subset ImageSome masking approaches suggests to solve the overdetermi
PS problem by dividing images into subsets. These subsktsewnerged in later steps
after masking stages. Any combination with at least threages among calibrated

images is valid as a subset.

. Calculate Image MasksIn this step, image pixels are masked with respect to their

intensity values. Masked pixels are not used in PS caloulati

. Photometric Stereo (PSPS is calculated as explained in the previous sectiormiu
nation matrixS and intensity vector are formed with respect to calculated mask at that
point. The mask must leave at least three related illunonatectors irS and intensity

values inl for each point.

. Calculate Normal MasksAt this step, the mask is generated from normal vectors
calculated in the previous PS stage. Height values of thacimay or may not be
required depending on the selected normal mask type. Omosahmask is calculated,

Step 5 and 6 can be iterated to improve mask quality, thusdireals.

. Fuse Subset ResultBS results of subset images are merged in this step to foah fin
normals. The fusion (in Step 7) and define subset (in Step&egly depends on the

subset mask utilized.

Some steps of unified PS can be omitted if they are not usedx@anple, Coleman et al. [17]

uses only subset masks, so Step 4 and 6 are omitted. On thehatiéy Argyriou at al. [4]

method does not use subsets, thus Step 3 and 7 are omittédthBtep 4 and 6 are utilized.

The unified PS framework is capable of employing more thanroasks at once. These

masks are logically AND, so that if a pixel is masked with afiyhe utilized masks, it will

be excluded from the PS calculation. In other words, onlyctiresensus set of all masks are

used. The AND operation is also required since some of thé&srare focused on resolving

different types of errors, like highlight errors and shadowrsrro

There are some problematic cases in PS solutions. Fifslyface albedo is close to zero at a

pixel, all intensity values from images will be approxinigiteero for that pixel. Since no valid
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intensity data is acquired for those coordinates, the nbweetor n can not be calculated.

Perpendicular normal vector,(@ 1) is used in such cases.

Although the normals can be improved with the masks, thedigesmay bring exceptional
cases that must be carefully handled. In order to have ai@ojut least three pixels are
required. If less than three pixels remain after maskinggetipixels with least error must be
used anyway. The masked pixels with least residual errerem@ployed to complete pixel

count to three. In these cases, the residual errors of paxelsalculated as in Eq. 3.1
R=|l -L|
L =IS(S'9)1sT (3.1)

whereR is residual error vector, arldis Lambert intensity vector.

3.3 Masks In Unified Masked PS

Three classes of masks are defined in unified PS. These are imagks, normal masks and

subset masks.

3.3.1 Image Masks

Two image mask algorithms are implemented in Step 4. Thegeitdms utilize only inten-

sity values of the images and they are not iterative.

3.3.1.1 Threshold Mask (Th)

This mask estimates both highlights and shadows with ré$pdiceir intensity values. Since
the lightest and the darkest pixels of the images are prghiiel specular and shadowed
regions, they are masked by threshold values as in Eq. 3.2.
0 i <kow(imax—imin)
Frhn=40 i>kup(imax—imin) (3.2)
1  otherwise

In Eq. 3.2, threshold values are defined for each image deparaith respect to dynamic

ranges of the imageSy{ax— imin)-
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3.3.1.2 Non-Lambert Quadruple Mask (NL)

Non-Lambert quadruple mask detects if there is either dihigihor a shadow among four [2].
Additional information is needed to indicate the specifimaeous pixel. This mask uses the
linear dependence of source directions which states tlybanvectors in three-dimensional
world are linearly dependent as in Eq. 3.3.

a8 + S + a3+ sy =0 (3.3)

If both sides of Eq. 3.3 are transposed and multiplied witlaldiffuse albedgyy and surface
normal,n;
T T T T _
a1pdS; N + apdS, N + agpaSy N + aypgsS, N = 0 (3.4)
This is equivalent to;
Aqi1 + agip + agig+ auis =0
a=[a a a al
=Ty ip iz ig]
al=0 (3.5)
In Eq. 3.5, the vectoa can be computed directly from source directions. If all fouensi-
ties perfectly satisfy Lambert reflection model, above ¢éiquamust hold. For near-Lambert

cases, "Lambertian error” is defined ad). Non-Lambert quadruples can be detected by

comparison of the Lambertian error with a threshold valsendq. 3.6.

0 (al)2 > tnL
FnL = . (3.6)
1 otherwise

3.3.2 Normal Masks

Normal masks use both image intensity values and calcutettedals. Since normals depend

on masks and masks depend on normals, these masks mustliatedideratively.

3.3.2.1 Self Shadow Mask (SS)

This mask works on self shadowed pixels. Self shadows oaghien surface normal vector

makes an angle more than®With respect to the source direction. This condition can be
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checked using the dot product of surface normal and soureetitin vectors as in Eq. 3.7.

0 s'n>0
Fss= _ (3.7)
1 otherwise

3.3.2.2 Reflection Mask (Re)

Similar to the self shadow mask, the reflection mask useasairiormal and source direction
vectors to find highlights. If the reflection direction of thght from the surface is close to
the camera direction, specular reflection is highly probg®]. This principle is checked by
using a threshold valuetre, for the angle between surface normal vector and bisectiore

of the source direction and the camera direction as in Eq. 3.8

s+cC
0 T — <tre
Fre= 2 (3.8)
1 otherwise
wherec is camera direction and ¢ ¢)/2 term is the bisector of the source and the camera

directions.

3.3.2.3 Cast Shadow Mask (CS)

Cast shadowed pixels are in shade by a near peak that octhelkght source. Unlike self
shadows, cast shadows are not caused by the local pixelrdatee, only local clue of a cast
shadow is its intensity value. The actual intensity valués compared with the expected
Lambert intensity value and if it is less than expected, ikeljis masked as a cast shadow as
in Eq. 3.9.

(3.9)

0 i —pdSTn < kes(imax— imin)
Fcs = .
1 otherwise

where, the cast shadow threshadigk] is chosen to be a fraction of the image dynamic range.

3.3.2.4 Highlight Mask (Hi)

Similar to the cast shadow mask, highlight mask uses tiierdnce of actual intensity and the

expected Lambert intensity values. If the actual intengitiyie,| is greater than the expected
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value, it is masked as highlight as in Eq. 3.10.

0  i-pgs'n > Kui(imax— imi
Fui = { Pd HI( max mln) (3'10)

1 otherwise

Highlight mask can be used in conjunction with reflection ktasincrease its accuracy.

3.3.2.5 Shadow Mask (Sh)

Shadow mask works on both cast and self shadows by usingtheigles of the surface
that are calculated by integrating surface normal vec#};g37]. The shadow map, i.e. the
visibility map of a coordinate from the source position i®disas explained in [38]. The
camera is positioned at the each light source and the ZeBis rendered. Z-Btier contains
distances between the camera and non-occluded points sditfaee corresponding to pixels
in the image. Later distance of the surface to the sourcengaced with the Z-Bfier for
each pixel coordinate. If the distance is larger than theufeB value, this means that there

is a blocking region between this coordinate and the lightes® so this pixel is shadowed.

3.3.3 Subset Masks

Subset masks are applied in both Step 3 and 7. In Step 3, sufsetages are formed. Each
subset is solved with PS exclusively. The results of all stshare fused in the Step 7 with

various methods.

3.3.3.1 Coleman and Jain Mask (CJ)

This mask detects and masks out a single highlighted pixengnfiour pixels. In Step 3,
four triplets of 4 images are formed. These four tripletsfateto PS separately without any
masks. In Step 7, the four resultant normals are fused wipee to their albedo values.
If the standard deviation of albedo values are less thanestibid, there is no highlight in
pixels, hence resultant normals are averaged. Othenkiseydrmal with the smallest albedo

is selected as the result.
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3.3.3.2 Extended Non-Lambert Quadruple Mask (XNL)

Barsky et al. [2] and Argyriou et al. [4] used Non-Lambert dugle mask (NL) with exactly
four images defined in image masks. Non-Lambert quadrupkkMan be extended to more
than four images, eg. Sun et al. [3] used this mask with exactlimages. The six intensity
values from dfferent images are sorted from darkest to brightest. For itheirination con-
figuration and a convex surface, at most, a single highligtt brightest intensity, and two
shadows at the darkest two intensities can occur, leavitepat three correct pixels for PS.
Possible erroneous pixels are eliminated with checking\tbe-Lambert quadruple masks,
calculated from the sorted quadruples. Later, Argyriod.atpdated Non-Lambert quadruple

mask to arbitrary number of illuminants [29] with single hiight constraint.

This six-image approach is generalized to any number of @magthis study with some addi-
tions similar to our previous work [18]. Assume thiaimages are acquired to be used in PS.
For each point, brightest pixels are possible highlights darkest ones are possible shadows.
Similar to Sun et al. intensities are sorted from darkestrightest. For each consecutive
guadruples in the sorted intensities "Lambertian errortagulated. Thus, fok sorted in-
tensities,k-3 Lambertian errors are calculated. These Lambertian eam@sompared to a
threshold to find quadruples with errors. The threshold afjmar produces a sequence of
binary pattern of errors. Normally, this pattern should tegm consecutive true values for
Lambertian reflection pixels. The first false values indécaihadows whereas the last ones
indicate highlights. As an example, fer= 8, the binary patternp 1 1 0 0] indi-
cates that darkest one pixel is shadow and brightest twdspixe highlights. With extended

non-Lambert quadruple method, upki@l erroneous pixels can be detectedKamages.

In some cases, due to improper selection of threshold valimage noise resultant binary
pattern may not have consecutive true values. In this casabipattern is corrected by
checking brightest pixels with reflection mask. For examjpiecalculated binary pattern
[0 1 1 0 1] eitherthe lasttrue value or second and third true valtesiscalculated.

In this case, brightest four pixels are tested with reflectimsk. If any of them are highlight,

binary patternis correctedtod 1 1 0 0J].,else[o0 0 0 0 1]
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3.3.3.3 RANSAC (RA)

The robust estimation method random sample consensus (RBNB9], was first used in
PS by Mukaigawa et al. [19]. The application of RANSAC apjioto PS problem can be

classified as subset mask in unified PS.

The idea behind the RANSAC method is simply as follows [40];

1. Randomly select minimal set of data from all data set. yselect 3 intensity val-

ues.)
2. Calculate residual errors of all data set.
3. Find consensus set that their residual errors are witthreshold error.

4. If the size of consensus set is greater than a threshold or maxirial count achieved,

estimate model with all consensus set.

5. Elseselect new subset and repeat above.

For PS, each pixel should be estimated with RANSAC indiMigud his individual solution
results long computation times with large images. Instdadrming RANSAC pixel by pixel,
the faster scheme is to apply RANSAC to whole images togethdénat case, random images
subset is selected. The consensus set with the maximumssszeéd for each pixel that is
every pixels may have fierent consensus set at the end. The algorithm stops whereall t

planned random subsets are used.

Itis often not necessary to select all possible subsetsalndlate their consensus set. Instead
the number of subsets is chosefffiiently high to ensure with a probability, that at least
one of the random subsets is free from outliers. Assumectisathe probability of pixel to be

outlier, highlight or shadow. Then at leddtsubsets must be used to satigfy
N = log(1 - p)/log(1 — (1 - €)®) (3.11)

Usually, p = 0.99 is used and for PS= 3. For the worst case assume that half of the pixels
are outliers that ig = 0.5. With these assumptions number of subsel$ is 35. If 7 images
are available to PS, all the possible triple¢3§(: 35) can be selected, else if more than 7

images are available, randomly selected 35 subsets willlbgLeate to achievp = 0.99.
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3.4 Weighted Least Square Estimation in PS

The robust estimation method, weighted least square dstim@VLSE) is used in the surface
integration [9] (2004) and in shape from shading [41] (200B&)e PS problem that conven-
tionally uses least square estimation (LSE) with more thagetimages, was solved to WLSE

firstly in this thesis.

LSE proposes pseudo inverse solution for optimal resulis tive following assumptions [42];

o Mean value of the errors are zero.

e Errors must be uncorrelated (independent).

e Variance of each error must be equal.

Also the distribution of the error function must be GaussiBot for other distribution func-

tions with same assumptions LSE still works.

In the linear PS that utilizes the Lambert model, the imagegain generally three class of
errors, image noise, highlights and shadows. Actually Heelews and the highlights are not

errors, but since they are not considered in Lambert modgldistort the results like outliers.

The listed assumptions hold for the thermal noise and thaatigation errors. But for the
highlights and the shadows, these assumptions does not 8b&tiows and highlights in all
images are the results of the same surface topology. So theflaorrelated with the same
surface and indirectly with each other. For example, theggsalluminated with near light

sources will both have similar shadowed regions.

The zero mean assumption is also not valid for the highliginid the shadows. While the
highlight errors increase intensity values and the shadmgscase. The amount of highlight
error is not necessarily equal to the shadow error. Singjlgne variance of the image errors
need not be equal, since there is no rule for the surface gegrhence for the shadows and
highlights. This algorithm proposes a weighted least sggatimation (WLSE) to eliminate

equal variance assumption [43].
Assume that all three errors can be represented with ani@ualiterror terme to Lambert
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model as in Eq. 3.12;

| = paifr(S'n) +e (3.12)

Assume that the covariance matix of erroreis known. Then, pseudo inverse solution can

be generalized without the listed assumptions with gié&nwhich is WLSE.

sV
pagitt = 1SMI| n=— (3.13)
pdif f

W — (sTwlgtsTw?

But sincepgis andn are unknown, the additional error terand it's covariance matrixV

are also unknown too. Even\¥ is known, it is a square matrix with image count rank, and
the inverse oW must be calculated for each pixel. The computation cost @firtliersion
operation for each pixel is very high. Instead, if the unelated errors assumption is reused,
W square matrix is reduced to diagonal matrix composed ofl pixg¢ance values. These

variance values are the weights for each pixel value, an@sept the reliability of that pixel.

The reliability term for each pixel can be use in two waysstian iterative PS can be imple-
mented with iteratively recalculating the normals, th@esand the variances. This method is
called feasible weighted least square estimation [43]of&dy, previously calculated masks
can be weighted. Here, The aim is not to improve the resuitanterical error but generate
smooth transitions at the boundaries of the masks. As atrdéaké edges created by mask

boundaries are removed.

3.4.1 Feasible Weighted Least Square Estimation (FWLSE) PS

Iterative variance PS is an application of feasible weidhéast square estimation. Steps of

calculation are;

1. Calculate the normals with LSE.
2. Render Lambert images from normals.
L = pait(S'N) (3.14)

3. Define variance of a pixel as the square d@fedtence of Lambert and real intensityizo
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for imagei. To guarantee non-singulsy, define lower limit for the variance?2,

min’

li — L li — Li > omi
o = | | | | min (315)
O min else

4. Form diagonal variance matrix. Foimages;

_o-% o --. o_
0 U% ... 0

W = ) o ) (3.16)
0 0 - o

5. Calculate the inverse of variance matrix. Inverse of galial matrix is simply inverse

of each diagonal element.

0'12 0 0
0 o5° 0
wl= g (3.17)
0 0 0';2
6. Apply WLSE.
sV
paitt = 1SV n=— (3.18)
pdif f

SW — (STw—ls)—lsTw—l

7. If the difference between variance values calculated in two conge@i@ps are below

a threshold, stop the iteration, else go to 2.

In other words, FWLSE PS, weights the intensities with respetheir deviations from Lam-
bert render intensities. If the real image is close to Lamassumption, it is weighted more

than others.

3.4.2 Weighted Masks

In unified PS, the masks are applied as boolean flags to uséneagé in the PS solution. The
mask is composed of a bit pattern of total image count sizeh bé indicates that the pixel

value will be utilized in PS or not. For each bit patt&is recalculated with the used pixels
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and light sources. This masking implementation causedgmrabwhen the bit patterns of two
neighbor pixels are éierent. Diferent mask patterns meansfdient image subsets will be
used. Ditferent subsets possibly generate veiffedent normals that will be discontinuous.
These discontinuous normals caused the main problem ofedd®®, where sharp false edges

occurred on the boundaries of the masks.

This problem can be solved if the masks are used not as 1 oth@rras weights reducing
at the boundaries of the masks. WLSE that introduces weightse solution, was used to
solve the this problem. This approach is novel in the liteeat The flow of the algorithm is
similar to FWLSE PS. The mainfiierence is thatV is calculated once, so there is no loop in

algorithm. The variations are written bold as follows;

1. Calculate the normals with LSEith binary masks.
2. Render Lambert images from normals.

3. Define variance of a pixel as the square dfatence of Lambert and real intensity

(0.i2) for imagei only for masked regions The unmasked pixels will have minimum

H 2
variance o2,
Ili-Ll  mask=1, [li = Lil = omin
i =\ Omin mask = 0, [li = Lil = o"min (3.19)
O min [li = Lil < o'min

4. Form variance images from variance value of each pixel. Dil variance images.

5. Form inverse variance images from inverse variance value oéach pixel. Filter

inverse variance images with a smoothing Gaussian kernel.
6. Form diagonal variance matrix. Floimages;

7. Calculate the inverse of variance matrix. Inverse of galial matrix is simply inverse

of each diagonal element.

8. Apply WLSE.

The key operations in weighting masks are dilation and shiogtoperations done in step 4

and 5. The dilation operation in step 4, enlarges the erumeegions and makes sure that
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(a) (b) (c) (d)

Figure 3.2: The calculated masks (a) for sphere and mozgettstare shown with green and
blue colors. The weighted masks without any dilation or stiiog (step 4 and 5 are omitted)

(b), dilated masks (step 5 is omitted) (c), and dilated, shesbmasks (d) are shown.

near boundary errors are also eliminated. Most of the falge® caused at the cast shadow
boundaries can be removed with this dilation operation. dreothing filter at step 5 that

applied on weights (inverse variances), smooths the nemylts caused by binary masks.

The sizes of the dilation and Gaussian kernel should be ¢goakrlap them at the smoothed
transition regions of the mask boundaries. The size wastseldy trial and error with the

synthetic images. The minimum standard deviation thatrglé@e false edges is desired.
Hence, the dilation operation causes the correct pixels theafalse ones to be treaded as

erroneous ones.

In Fig. 3.2, a test of weighted PS is plotted for sphere andamawbjects. The Th mask is
used as shown in Fig. 3.2(a). The weighted masks without payations (step 4 and 5 are
omitted) is shown at Fig. 3.2(b). Other plots representseffext of Gaussian filters step by
step.

The detailed results of the methods explained in this Chaypliebe presented on the synthetic

images in Chapter 5, on the real images in Chapter 6 and orattr@lge cases in Chapter 7.
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CHAPTER 4

DOUBLE ZENITH LIGHT SOURCES

4.1 Introduction

The performance of the light source configurations depend&® errors in the images. In
this study, three sources of error, i.e. the image noisehitjidights and the shadows were
investigated. The image noise can be modeled with a zero,limelependent Gaussian added
on images. Independent, zero mean Gaussian noise is a \welhkgpe of error in linear sys-
tem theory and its performance analysis can be made theaihgtiHowever, highlights and
shadows are not zero mean errors. Also they are not indepeadi®ng all images, since they
all occur on the same surface topology. Since theoretigaioageh will be very complex for
performance analysis &S with highlights and shadows, simulations were made to coepa
different light source configurations. These simulations agewgrd on a control test configu-
ration that defines light source placements, test surfacefce reflection parameters, image

rendering properties and error definitions.

4.2 Light Source Configurations

In single zenith light sources tests, light sources wereguleon a circular ring around the
camera having the same zenith angle and equal polar distasde Fig. 4.1a. This type of
illumination was found to be optimal in previous works [23}] [25] [3]. A second novel

illumination configuration is also used in the tests, thatltbhts are placed on two circles as

in Fig. 4.1b.
Three sombreros with 1750 (sombrerol), 3500 (sombrera2)@a0 (sombrero3) peak val-

44



'z

i ©source

(@)

(b)

Figure 4.1: 8 light sources placed around camera with (@leizenithZsoyce = 45° and (b)
double zenitiZ1soyrce= 3P, Z250urce = 6C° illumination configurations.
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Figure 4.2: Sombrero2 ranging 720Q 7200] with the peak 3500.

ues were used to simulate both smooth and rough surfacesorghwith the middle peak

value is shown in Fig. 4.2.

In the tests, the synthetic images with highlights were eead with Torrance-Sparrow reflec-
tion model given at Eq. 2.14 [16]. Uniform specular albedg £ 1.0) and uniform difuse
albedo pq = 1.0) were used. The uniformity condition, however, was notexpndition for
the solutions. Shininess parameiriis chosen to be.Q, which was found to be the worst

case in our previous study [45].

The CCD noise (also known as the thermal noise) of a convaailticamera was represented
with a zero mean Gaussian noise added to the intensity vallresstandard deviation (noise

power) of Gaussian noise was chosen to be 5% of the image dymnanges.

4.2.1 Single Zenith Light Sources Configuration {2)

The first test was conducted to observe tifect of image count;. A typical example pre-
sented in Fig. 4.3 plotting resultant normal error ( NE ) uergnage count {y ) for both

diffuse (Di) images and images with highlight and shadow (Hi-®fmboth cases, decrease
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Figure 4.3: Normal Error (NE) vs image cour;() for diffuse (Di) and highlight shadow(Hi-
Sh) images. In both cases error drop saturates with inaigasiage count ;).

in NE was saturated with increasimg Here increasingy from 16 to 32 decreased NE from
1.44° to 1.38°, the diference being only 4% for fiuse (Di) images. For highlight shadow

images (Hi-Sh), same changenin decreased NE from.84° to 9.25°, having 1% diference.

Secondly, the simulations were executed on the optimal §ghrce configurations from the
previous works. The syntheticftlise images without highlights and shadows were used.
Gaussian noise with 5% of dynamic range of images were add#tese images. The change
of NE with respect to source zenith anglBsfrce) is plotted in Fig. 4.4 for 4, 6, 8, 12 and 16
images. Similar to the previous works, with all image cowartd all sombrero<Zsoyrce = 45°

is found to be optimum.

Later, the optimakgourceis tested with highlights and shadows. The amount of inddrigh-
light and shadow errors depends on the surface topologyZasgte as seen in Fig. 4.5.
First row of images were generated from sombrerol (smoothcm), the second from som-

brero2 and the third row were from sombrero3 (rough surfateages were rendered with

47



2.5

n
A
2 Q R -
A
L ‘) _e_n:4
Z 15’ _ « f‘ |
N N » / " |_a_N=6
U ks A —
R A O Y _E,_ni—8
1r 8. B A s 'A/
A\ 2\ S S © ° ;: _e_n|_12
SN =- - _// —-n=16
O?- I I -‘»_S'Z'—‘ I I |
0 20 30 40Z 50 60 70 80
source

Figure 4.4. Normal Error (NE) vs light sources zenith anglg,(c9 for 4, 6, 8, 12 and 16
images. Images were rendered without highlight and shaB&tgaussian noise is added to
images.
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Figure 4.5: Sombreros, (from top to bottom) sombrerol, geno2 and sombrero3 with (a)
Zsource= 300, (b) Zsource= 45° and (C)Zsource= 60°.

Zsource = 30 for first column,Zsoyrce = 45° for second andgoyrce = 60° for last column of
images. While for sombrerol, the highlights were the majoblem withZggyrce = 30° (Fig.
4.5 upper left), for sombrero3, shadows occurred widel &g, rce = 60° (Fig. 4.5 lower
right).

Fig. 4.6 shows the change of generated intensity error (& fhighlights, shadows for
each sombrero with changifyo,ce The total IE of the images changes with both surface
topology andZsource The NE versugource is plotted in Fig. 4.7 for each sombrero. At
each plot the results of fiuse (Di) and highlight shadow (Hi-Sh) images are shown. Ahea

case optimal value dfsq rceChanged dterently. For smooth sombrerol, (see Fig. 4.7a) the
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Figure 4.6: Shadow, highlight and total errors for (a) scenbt, (b) sombrero2 and (c) som-

brero3.

5130 10 - 40 20 - 25
--Di-1Z --Di-1Z
-4 HiSh-1Z -4-HiSh-1Z 2

20

-e-Di-1Z
-4-HiSh-1Z|

20

15

10
10

) 20 40 60 8 0 20 20 60 80 0 20 20 60 80
ZQmIH‘B Z{nnrrn

eeeeeee

(@) (b) (©)

Figure 4.7: Normal error vs light sources zenith angle withithout shadows and highlights

for (a) sombrerol, (b) sombrero2 and (c) sombrero3.

optimal Zsource Was changed from £#50 7 due to strong highlight errors with 10&soyrce
On the other hand, for rough sombrero3, (see Fig. 4.7c) thmajZsq,rceWas still increased

but settled at 45because of large shadow errors at highyrce

As a result, there is no single optimal value for every swfidtighlights and shadows occur
at the input images. With some estimations of the generéaaitopology, like smooth and

rough [22], some weak rule of thumb may be used.

4.2.2 Double Zenith Light Sources Configuration 2Z)

The previous section focused on a single zenith light seuroafiguration around the camera.
The main optimization parameter was the zenith angle of itite kources. This type of
illumination configuration was proved as the optimal confagion while considering only
image noise. On the other hand, when highlights and shadmgsipts in the images, optimal
Zsourcediffers with surface topology. In this section, light sourcefiumation with two zenith

angles (see Fig. 4.1b) will be investigated.
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Figure 4.8: Surface zenith angles of sombrero2

When using double zenith light sources configuration, twor@® zenith anglesZ(lsgyrceand
Z2s0urcd Should be decided. For this purpose, the relation betweesurface topology and
NE should be considered in depth. Since surface topologykisawn, and a general solution
good for all type of surfaces is desired, surface topologguimmarized with surface zenith
angles (Zsurface) that is the angle between surface normal at a point and eadiesction.

An example taZg,rfacefor sombrero2 is presented in Fig. 4.8.

PS is executed with single zenith light sources to analylaioa between surface zenith
(Zsurfacd @and NE. Diferent Zgource Values and surfaces are used. As a result, NE versus
Zsurtace I-€. distribution of mean NE ovels,tace iS plotted for each solution. In Fig. 4.9 NE
VersusZsyrfaceOf sombrero2 wittZsqyrce= 30°, 45° and 6@ is shown. FOZsgyrce= 30°, NE

is concentrated at lowgtace that are caused by highlights. Fy,rce= 60°, NE gradually
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Figure 4.9: Normal Error VZgyrtacefor sombrero2 with 3% 45° and 60 light source zenith
angles. (MaximunZgy,faceiS 66° for sombrero2)

increases with increasirdyrface The discontinuities arount,, e = 40° are caused by the
cast shadows that may occur at anywhere independent otewémith angle. The peak at
the center of sombrero causes these cast shadows at theZsqune= 40P because of the

circular symmetry of the shape.

This NE distribution is very similar to the intensity errdEJ distribution caused by highlights
and shadows in Fig. 4.10. The plotted intensity error carobadlated for TS as in Eq. 4.1.
The first line is the highlight term in TS model and the secand is the self shadow error,
which is not modeled in linear PS. The intensity errors cdumethe cast shadows are omitted

in this equation.

pee larccosiml?  oTpy 5
o (4.1)

—pg(s'n) s'n<0
The IE aroundZsyriace = Zsourcd2 Caused by highlights wher@squrce/2 is the reflection

direction where surface directly reflects light to camerae $tandard deviation of IES(T )
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Figure 4.10: IE distribution versus surface zenith anglg¢aco

aroundZsource/ 2 depends on the shininess (range that highlight occurs)eo$trface. After
Zsurface = 90 — Zsource Shadows start to occur causing increasing IE. More pixelkbai

shaded with increasingsyrtace

With this IE ( NE) characteristics in the hand, a rule of thuoam be suggested to select
two light source zenith angles. A general purpB&should have a constant error all over the
source that a flat NE versdg,faceiS desired. So twdsqyrceshould be selected in such a way
that two high NE peaks, i.e. caused by shadows and highlightaild not coincide. Also the
average of two zenith angles should be the optimal lighta®renith for single circle sources

Zsourceop The Eq. 4.2 presents the general rule of thumbs for the geperpose PS.

Zlsourcd2+ STDh = 90— Z250urce (4.2)

(Z1source+ Z2s0urcd /2 ~ ZsourceOp
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If STD1 = 150 andZsourceop: 450 then,zlsource: 303 andZZSource: 603

4.3 Weighted Multi Zenith PS

With double zenith light sourcesZ2, NE was reduced if highlights and shadows were present
in the images. But the erroneous images were still us&Sicalculation. In this section, the
effect of erroneous images were tried to be reduced. Since dtedigummation of normal

vectors is used for this purpose, this method is called we®RS (WPS).

When the single zenith sourceZ{iwere used in PS, the normal error is concentrated at very
low or very high surface zenith regions. This is the main dluethe weighted PS. In the
double zenith sources configuration, light sources candapgd with respect to thefisource

The two subsets of light sources were solved exclusivelyltiag two normal vectors for each
pixel. Later, the two resultant normal vectors were fuseth wieights that are calculated from
the estimated errors of each normal vector. These weightseeounded to 0 and 1 for binary

weighting that is selecting normal vector with small error.

The following flow presents the mathematical details of wigd PS;

1. Calculate normal vectors; andn, from illumination matricesS; andS,. S; is com-

posed 0fZ1source = 30° light sources ands, is composed 0%Z244yce = 60° light

sources.
, S
puditt = ISl ny=— (4.3)
P1dif f
SUP
padift = IShl2l Nz = —2 (4.4)
p2dif f

2. With normals from (4.3) and (4.4) equation, andn, calculate Lambert images.

11 = padit£(S] N1) (4.5)

12 = padit£(Sy N2) (4.6)
3. Define residual errorsef ande, ) as the norm of dference of Lambert and real images.

e =l - L4 4.7)

e =|l2-Ly (4.8)
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4. Merge two normal vectors by weightsv{ andws, ), calculated from residual errors.

PdiffN = Wy * (p1dif N1) + Wa * (02dif £ N2) (4.9)

Weight definitions have very important rule in the resultpatformance. The main rule in
weights definition is that their summation must be unity agén 4.10. So each weight is

scaled with normalization factok,as defined in Eq. 4.11.

Wy +wo =1 (4.10)
1
= (4.11)
W1 + W»o

Weight definitions can be converted to binary as in Eq. 4.1tply select the normal with

less error.

(Wa, Wp) = { QL w<v, (4.12)
(1,0) else

In this work, we tested four €fierent weight definitions.

e Weight Definition 1 (e) Weights are inversely proportional to uncertainty of nafsn

that is square of the residual err@).(
wy = k& (4.13)
Wo = ké
e Weight Definition 2 (edurcd : For smooth surfaces, the sensitivity of normals are
inversely proportional to sine dfgource [23]. Using this heuristic, weights are up-

dated with constant multiplier of siBi{ourcd. Normals generated with larg&eqyrceare

stressed more in the resultant normals.

Wy = KSiNEZLsourcd €5 (4.14)
Wp = kSin(Zzsourcéei

e Weight Definition 3 (edrtacd : Another heuristic can be generated from the highlights

and shadows of images. At the regions wherezfigsaceis limited, (smooth regions)
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(a) (b) (c) (d) (e)
Figure 4.11: (a)e, (b) €Zsource (C) €Zsurface (d) €Zsourcesurface (e) Optimal Weights for

minimum NE of 30 degree solution on TS rendered sphere.

the major risk is highlights. To avoid highlights, lar@gource Should be employed.
Visa versa, for rough regions with largartace most probably, shadows will distort
the results, littleZsourceShould be weighted more. This is implemented with a sigmoid

function on th&Zgyrface

Wi = kSig(leurfacé% (4.15)
Wy = kSig(Zzsurfacéei

sig(x) = 1/(1 + e 10¢03))

e Weight Definition 4 (edurcesurface : The last weighting definition is simply the com-

bination of W2 and W3, using bothsg rceaNdZgyr facemultipliers.

Wy = kSin(zj-souchSig(leurfac&% (4.16)

W2 = k Sin(leourCQSig(Zzsur f ac&e%

Fig. 4.11 presents the weight image &5,y for Hi-Sh rendered sombrero2 for each of
the weight definition given above. The weight imageZ@f, cciS not presented since it is
wy, = 1—w;. Fig. 4.11e displays the weights calculated not from thenedéd error but
exact NE, that is the theoretical limit 9/ PS The closest weight image to optimal weights

is found to be fourth weight definitioreZsourceZsur face-

Some sample normal vectors are plotted on the surface ofrepabin Fig. 4.1271, 22 (red)
are normal vectors calculated witl oy rce@NdZ2s0urcelight sourcesw (blue) is the weighted
normal vector.r (green) is the reference normal vector. Simces linear combination ofl
andz2, it is always going to be in the arc betwednandz2. In generaly does neither have

to be betweenzl andz2, nor in the same plane.
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Figure 4.12: Sample normal vectors plotted on surfadez2 (red) are normal vectors cal-
culated withZ1source and Z240urce light sources.r (green) is the reference normal vector.
(blue) is the weighted normal vector.
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The detailed results of the methods explained in this Chagptiebe presented on the synthetic

images in Chapter 5, on the real images in Chapter 6 and orattr@lge cases in Chapter 7.
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CHAPTER 5

SYNTHETIC TESTS

5.1 Introduction

The synthetic image results are presented in this chaptstlyi-the synthetic image rendering
methods and used configurations are given. All thresholdseofnasks are fine tunned in the
next section. Since the original ground truths are availalith synthetic images, the results
of masking methods are evaluated with detailed numericalysis under various conditions.
Also visual results, representing improvements of weighteask PS are displayed in the
next section. Lastly, both numerical and visual resulthefdouble zenith and the weighted

normal PS are given.

5.2 Synthetic Image Generation (Rendering)

Synthetic image generation process (rendering) is corlpletnewed to create realistic im-
ages for the tests. Instead of using output images of comah8i2 rendering tools, rendering
process is fully implemented in this thesis work. The main af renderer implementation is
to use it in PS solution as well. Secondary aim is to have cetefontrol on generated test

images.
Following is the list of new features of the rendering praces
e External camera parameters like camera coordinate frgmsitipn, look at direction,
up vector) can be defined.
¢ Internal camera parameters like pixel size, vertical#zwrtal pixel count, focal length
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can be defined.

Cast and self shadows can be generated.

Finite distance point light source can be used.

Inverse square lighting power can be used.

Perspective projection can be used.

Some of these features are implemented for future use imattee 3D modeling process.
The most important feature for PS is shadow generation.te~distance lighting, inverse

square lighting, and perspective projection are all imgetad but have not been utilized yet.

The main steps of the rendering are as follows;

1. Generate the intensity value
(a) Calculate the intensity value for each surface cootdinging selected reflectance
model.
(b) If perspective projection is desired, use finite diseapoint light source.
(c) If inverse square lighting power is desired, multiple tariginal source power
with inverse square of the distance between the given pinattize light source

2. Generate shadows

(@) Generate the shadow map.

(b) Modify intensity values using the shadow map.
3. Project objects in 3D to 2D images

(a) Translate the object so that the look-at position isiorig

(b) Rotate the object so that the camera direction is at zeadscamera-up vector is

at y axis.
(c) If perspective projection is desired, apply perspectieformation to the object.

(d) Use Z-Biffer for back face culling (i.e. occlusion; z-fier will be explained later

in the text).

Above steps are explained in detail in the following part:
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@) (b) ©)

Figure 5.1: (a) Lambert, (b) Phong and (c) Torrence-Spameflection models on sphere
surface.

5.2.1 Generate the Intensity Value

Three images generated using threfedent types of reflection models for a constant albedo
semi sphere are shown in Fig. 5.1 . All images are projectdwgonally, illuminated with
light sources at infinity and there are no shadows. Phong humddiguration has sharp
specular region. Torrance Sparrow models are more realisth softer and wider specular

regions.

In Fig. 5.2, diferent Lambert illumination calculation methods are illastd on a flat surface
at x-y plane. Fig. 5.2.1 shows the simplest case of illunndmatpoint light source at infinity.
Since the light source is at infinity, the source directioodsstant all over the surface creating
a uniform intensity. Fig. 5.2.2 presents finite distancétligpurce &ect, i.e. the light source
direction is calculated for each surface coordinate. Folaagy surface, source direction
deviates from surface normal as the distance between swtardinate and source position
increases, resulting in decreased intensity. Light sopoveer can be modified with respect
to inverse square law, to generate a more realistic poiht Bgurce illumination as in Fig.
5.2.3.

5.2.2 Generate Shadows

Cast and self shadows are created with an algorithm callediosh mapping [46]. The main
idea of shadow mapping is presented in Fig. 5.3. For exampglengbrero object will be

rendered with shadows in the default configuration. Fig.(&§.8hows the image without
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Figure 5.2: (a) Orthogonal, (b) Perspective and (c) Petsgeand inverse square illumination
calculations.

shadows. To generate shadows, a temporary image is rendéhethe camera at the light
source as seen in Fig. 5.3(b). Since the camera and lightes@aincide, no shadows can
occur in the temporary image. Inverse of this is also true, invisible coordinates are all
shadowed. The matrix that contains the visibility inforioatfor each coordinate is called
the shadow map. To generate shadowed image in Fig. 5.3(apeinm Fig. 5.3a is filtered

with shadow map i.e. shadowed areas are replaced with shatknsity, O.

Figure 5.3: (a) No shadow sombrero, (b) temporary image etefrom light source and (c)
sombrero with shadows.
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Figure 5.4: Perspective projection deformation.

5221 Z-Bdfer

Visibility of a coordinate can be tested with a method calleBuffer [38]. This method is
also employed for back face culling, i.e. removing occludedrdinates from images. The
idea behind the Z-Bfier is to use an extra 2 dimensionalfieu to keep the closest depth
values for each pixel. When a new coordinate is to be rendésedepth value is checked
with the one in the Z-Bfier. If the new depth value is less than the old one, ZF&uis
updated with the new one. After updating Z4Bar, in shadow mapping, old coordinate is
marked as shadowed. In back face culling, new coordinatéshsity values overwrite old

ones.

5.2.2.2 Projections

A pin hole camera model creates an image of the real worlda@ihimage plane with the
perspective projection. The ratio of real object size asdhitage depends on the distance of
the object to the camera center. If the variation of distardéhe objects to camera are limited
the perspective projection can be further simplified to agtimal projection that image size

to object size ratio is constant.

Before perspective projection, object is translated atated to the camera coordinate frame
that the camera is atZ axis, looking at origin and up vector is parallel+d axis as in Fig.

5.4.
The dfects of the orthogonal and perspective projections areepted in Fig. 5.5 for both

63



shape and shadows. The Fig. 5.5(a) is the result of the attabgprojection and Fig. 5.5(b)
is the render image with the perspective projection. WHike ¢amera is placed at a finite
distance in perspective image, for the orthogonal imagec#émera is at the infinity. In Fig.
5.5(c) represents the orthogonal projection of the lightse that the light source is at infinity.

The Fig. 5.5(d) is the render image of the same object witlpérepective projection.

In the tests the perspective projection of the shape is misda since the variation of the
surfaceZ values are very small, compared the focal length. Howevusradsumption is not

valid for light sources, whose distances are comparable té surface& variation.

5.3 Test Configuration

The comparison among the defined masks were conducted ucdatralled test configura-
tion. The test configuration defines light source placemédeass surfaces, surface reflection

parameters, image rendering properties and error defigitio

Light sources were placed on a single circular ring arouectdimera with equal zenith angle
and equal polar distances as in Fig. 4.1(a). This type ahilhation was found to be optimal

for noisy images [44].

Different surface topologies may creatffatient problems that has to be solved using masks.
For a fair comparison among the masks, five sample surfacessgkected for tests as shown

in Fig. 5.6.

The amount of highlight and shadow errors depend jointlyhershape of the surface and light
source placement. If the surface slope is low, highlighbfmms are dominant, since they
occur on wide regions. Oppositely, shadows occur more dm $iimpe surfaces. On the other
hand, the increasing light source zenith angle increasadosis and decreases highlights.
The variations of resultant shadows (marked with green)haglklights (marked with blue)
were presented on the sombrero and sphere objects in Fid.&ge amount of highlight was
occurred on the low slope sombrero with°3@ht source zenith angle as seen at upper left
image. Large shadowed area was created with high slopeespbfct and 60light source

zenith angle.
The amount of highlight and shadow errors are presented obrewo and sphere with
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(d)

Figure 5.5: (a) Orthogonal, and (b) perspective projectibthe sombrero viewed from the
light source. The top view of the same sombrero with (c) aitimal and (d) perspective
projections.

(a) (b) (c) (d) (e)
Figure 5.6: (a) sphere, (b) many sphere, (c) sombrero, (dako(e) penny surfaces. Colors

indicates the depth of surface.
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Figure 5.7: Specular (blue) and shadowed (green) regiossmibrero (top) and sphere (bot-
tom) objects with (a) 3Q (b) 45, (c) 6C light source zenith angles.

307, 45°,60° light source zenith angles in Fig. 5.8. In this figure, the safrdiffuse pixels,
where Lambert reflection equation holds, from four lightrees placed around the camera
with 90° polar angles is plotted. The black regions indicate only pixels are difuse, the
grays indicate three and whites indicate all four imagedrae of highlights and shadows.
Better results should be expected for the sphere witlz&8ith angle light sources, since more
diffuse pixels are present. On the other hand, for sombrero \witlzénith angle produces

least amount of highlights and shadows.

In the tests, the synthetic images were rendered with Toer&parrow reflection model given
at Eq. 2.14 [16]. Here the intensity valliégs composed of specular andidise terms. The
specular term depends on the angle between the light refledifectionr and the camera
directionc. In tests, uniform specular albede;(= 1.0) and uniform difuse albedody = 1.0)
were used. The uniformity condition, however, was not a @mddion for the solutions.
Shininess parameten is chosen to be .9, which was found to be the worst case in our

previous study [45].

In synthetic image rendering, the orthogonal projectiors waed for both the image and

shadow map projection processes. The depth of the testearfaere less than 1% of the
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Figure 5.8: The total count of filuse pixels, where Lambert reflection equation holds on
sombrero (top) and sphere (bottom) objects with (&) 8) 45, (c) 60 light source zenith
angles. Black, gray and white pixel values indicate thatén®@4 pixels among 4 havefilise
intensity values.

camera and light working distance, thus, orthogonal ptijeccan be accepted as a good

approximation.

The thermal noise of conventional camera was representifdawiero mean Gaussian noise
added to the intensity values [47]. The standard deviatmisé power) of Gaussian noise
was varied from 5% to 20% of the image dynamic ranges. Thesreddmages of the Mozart
with no noise and 20% Gaussian noise are shown in Fig. 5.% &mtnes are lightened with

a single light source from the left with 4zenith angle.

Image generation parameters are fixed throughout the testam be found in Table 5.1.

Perspective projection and inverse square law are not used.

5.4 Fine Tuning Thresholds

The quality of the mask depend on the threshold values. Fairadmparison among the

masks, each individual threshold value should be tuned tonmee the resultant normal
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Figure 5.9: Mozart images with 4zenith angle light source from left with (a) no noise and
(b) additive Gaussian noise = 20% dynamic range.

Table 5.1: Image generation parameters

Parameters Symbol Value
Image Size [512 512]
Pixel Intensity I

Light Source Position  d = (distancetoLookAt [1 1 2]

Light Source Power u 1.0
lllumination Vector S=ud

Reflection Direction r=2(s'nn-s’

Camera Position v« (distancetoLookAt [0 0 241]
Camera Look at Position [0 0 0]
Camera Up Direction [0 1 0]
Focal Length 1.0
Reflection Model Torrance Sparrow

Diffuse Albedo Factor 0Odif f 1.0
Diffuse Albedo Type Constant
Shininess m 20
Specular Albedo Factor Pspec 1.0
Specular Albedo Type Constant
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Table 5.2: Threshold values for 4, 6, 8, 12 images

Threshold Name Image Count
4 6 8 12

Kiow 0.02 0.06 0.06 0.08
Kup 0.35 0.35 0.35 0.35
Kni 0.03 0.04 0.05 0.06
kcs -0.1 -0.1 -0.1 -0.1
tNL 0.02 0.04 0.02 0.01
tRe min(z (90— 2)/2, p)

error. In the tests, the best value found for threshold wmainly depends the noise and

number of the images.

The dfect of the image noise is presented in Fig. 5.10 at the le& pldts. As the noise
level increases, threshold values also increase for masscain exception is the reflection

threshold, such that its value seems to be less susceitiie hoise change.

In general, the amount of the image noise is not known. Hewermge of the no noise, the

10% and the 20% Gaussian noise cases are used to fine tunesiteotts.

In Fig. 5.10 at the right side, the change of quality factathwespect to the threshold values
for 4, 6, 8, 12 images are shown. Noisy images with 10% and 2@ wsed and averaged
in these plots. In general, the threshold values increase 4rto 12 images. This is expected,

since when more images are available for PS, masking out pixeks are tolerable.

For the reflection mask, the threshold angle should be seletich that none of the reflection
cones coincide with any other cones or shadowed region3 [23.fact is concluded with the

formula 5.1, given below, derived from surface geometry.

tre = MIN(z (90— 2)/2, p) (5.1)

Herez is the zenith angle, angd is the polar angle of all light sources. The formula was

verified with synthetic image tests as seen in Fig. 5.11.
The selected threshold values of the masking methods &d lis Table 5.2.
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Figure 5.10: Change of quality factor with respect to (agmsity lowerkyy, (b) intensity

upperkyp, (c) linearityty, (d) reflectiontre and (e) highlighky; thresholds. At the left side,
different noise levels, no noise (blue), the 10% (green) andd¥e(Bed) and at the right side,

different image counts, 4 (blue), 6 (green), 8 (red), 12 (ligh¢hlare plotted.
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Figure 5.11: Change of normal error with reflection thredHol 30° (blue), 45 (green) and
60 (red) light source zenith angles.

5.5 Unified PS Results

The unified PS framework is capable of using any combinatfanasks in PS. In this study,
only a subset of all possible combinations are discussedfioerthe amount of presented
data. The refined set includes single mask performancesimgaalgorithms in previous

works and combinations that masks both shadows and higblagtihe same time.

The previous works that are implemented for comparisonCateman et al. [17], Barsky et
al. [2], Sun et al. [3], Argyriou et al. [4] and Mukaigawa et f19]. Coleman’s method is
based on Coleman and Jain mask (CJ), that is defined in thek. vigarsky’s method uses
Non-Lambert quadruple mask and reflection mask (NL-Re) factly four images. Sun et
al. uses the extended Non-Lambert quadruple mask (xNL)ixangges and claims that it
can be generalized for any number of images. Argyriou’s ottombines Non-Lambert
guadruple and shadow masks (NL-Sh). Mukaigawa et al. eraploydom sample consensus

(RA) on intensity values to filter outliers such as highlghnd shadows.

In Table 5.3, the normal errors, elapsed times and qualdipfa of highlights, shadows and

total are presented. These values are the average of atitgbgl light combinations and
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Table 5.3: The overall results of all mask methods, for ghtisources and 4 light sources

only.

Masks Normal | Elapsed | Highlight | Shadow | Total

Error Time QF QF QF

() (sec)

All Light Sources
None 14.78 0.11 N/A N/A N/A
XNL 11.37 16.94 0.28 0.23 0.25
Th 8.63 1.67 0.74 0.56 0.64
Re 13.39 4.30 0.33 N/A 0.22
SS 14.54 3.37 N/A 0.35 0.21
Sh 12.74 12.23 N/A 0.54 0.32
Hi Re 12.80 5.60 0.48 N/A 0.28
Hi Re SS Sh 9.89 16.91 0.46 0.60 0.53
Hi Re Sh 10.53 16.31 0.47 0.54 0.51
CS 13.55 5.34 N/A 0.14 0.11
XNL Sh 11.36 28.80 0.23 0.25 0.23
XNL Re Sh 11.34 30.38 0.23 0.25 0.23
XNL Hi Sh 11.34 32.66 0.26 0.25 0.25
XNL Hi Re Sh 11.31 32.50 0.28 0.25 0.26
Th Re Sh 8.63 17.77 0.38 0.56 0.44
Th Hi Sh 9.12 22.83 0.27 0.55 0.39
Th Hi Re Sh 8.28 20.12 0.55 0.56 0.56
ThHiReSSSh | 8.29 20.26 0.55 0.56 0.56
RA 13.23 5.00 0.29 0.22 0.27
4 Light Sources

None 15.18 0.08 N/A N/A N/A
NL Re 12.27 1.01 0.49 0.16 0.27
Th 12.29 0.56 0.66 0.43 0.54
NL Re Sh 12.39 7.67 0.41 0.17 0.26
CJ 14.14 0.48 N/A N/A N/A
RA 17.72 0.68 0.14 0.08 0.12
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all noise levels. The overall normal error without any ma@ksne) is 1478°. Utilizing the
extended Non-Lambert quadruple mask proposed by Sun (xit)ced the normal error to
11.37°. More improvement is accomplished with the addition of thadow mask to Non-

Lambert quadruple mask (xNL-Sh) as proposed by Argyriod.et a

The threshold masks (Th) produced impressing enhancementse normal errors. The
threshold mask reduced normal error t638 by its own. Although the minimum normal
error (828°) is achieved with the combination of threshold mask, higftlimask, reflection

mask and shadow mask, (Th-Hi-Re-Sh) the improvement wiheet to the threshold mask
only case (Th) is less than a degree with the cost of eightfoidputation time for the cases

presented here.

At the bottom of the Table 5.3, results with only four lightusces are presented to compare
Barsky's (NL-Re) and Coleman’s (CJ) methods. For four insageoleman and Jain (CJ)
method did not perform as good as other masking methods arskyBamethod (NL-Re)

performed slightly better among other.

The overall results of (RA) method was.23°, which was a slight improvement compared to
the others. Also, as seen at the bottom of the Table 5.3, fglir $ources results were even
worse than None results. These results indicates that i@ used in PS have a great
influence on (RA) performance. With the increasing numbemafges, (RA) method may

have better results.

The maximum time elapsed for the execution of these wae@2 The best performing
configuration (Th-Hi-Re-Sh) calculated results irs20s All of the tests were conducted on
a regular PC (Intel Core 2 Quad CPU) and Matlab. The nativéementations ( e.g. €+ )

of these algorithms were expected to work faster than Maitaiipts.

(None), (NL), (Th), (NL-Sh) , (Th-Hi-Re-Sh) and (RA) masgisombinations were selected
for in depth analysis. The average normal error versus tiee qdot for the selected masks is
presented in Fig. 5.12. Obviously, with more noise on thegiesa normal errors increased.
For masked PS methods, the normal errors increased fadiesaitimg that masked PS methods
are more sensitive to noise than None mask PS. Also Th maskowad to be less sensitive
to noise than NL mask. Oppositely, RA mask is found to be vensgive to noise such that

the resultant error became worse than None mask PS when &ides$ian noise standard
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Figure 5.12: Normal error versus noise for the selected mask

deviation is more than %15 of image dynamic ranges.

In Fig. 5.13, the average normal error versus the light cordge count) plot for the selected
masks is presented. For the no mask PS (None), the normalstigbtly decreased with

increasing number of images for PS from 4 to 12 images. @titin of the masks, however,
decreased normal errors more. In addition, the relativeorgment in the normal error in
masked PS with respect to no mask PS increases with incgeiasages count. Hence, with
more images in hand, masks were able to recognize shadowsgiights better. The most
dramatic improvement is performed by (RA) mask with the éasing image count. With

more images, consensus set of RANSAC became robust to thlyeinwses. These results
denoted that at least 6 images should be used with RA maskigmdaeisy images the image

count should be further increased.

The Non-Lambert quadruple mask (NL) with 12 images perfarwerse than with for 12
images as seen in Fig. 5.13. This is because of low threstalee \has to used for 12
images. Noise performance of the NL mask with various imagets are plotted in Fig.
5.14. Without any noise (blue), NL was able to mask with 12ges but with 5% (green)

and 10% (red) noise, it performed worse than 8 images result.
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Figure 5.14: Normal error versus light count for the NL masthwlifferent noise powers.
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Figure 5.15: (1) Sample images with 10% Gaussian noiseniilated from left with 45

zenith angle. Calculated masks are plotted on images wibngforT P, with blue for FP
and with red for=N for (2) NL, (3) NL-Sh, (4) Th, (5) Th-Hi-Re-Sh, and (6) RA.
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Figure 5.16: Resultant normal errors from 10% Gaussiarendlaminated with 45 zenith

angle lights for (1) None, (2) NL, (3) NL-Sh, (4) Th, (5) Th-4Rie-Sh, and (6) RA.
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Figure 5.17: Calculated normals from 10% Gaussian noiseniihated with 48 zenith angle
lights. Normals are encoded in RGB for (1) None, (2) NL, (3)-8h, (4) Th, (5) Th-Hi-Re-
Sh, and (6) RA.
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A sample test configuration that uses 8 images illuminatel 48 zenith angle light sources
with 10% Gaussian noise, is selected for the visual presentaf calculated masks. The
masks found are shown for four test surfaces (a) semispfigrepmbrero, (c) penny and (d)
mozart in Fig. 5.15. Calculated masks are colored with gfeetie true positivesT P), with
blue for the false positives=P) and with red for false negative& ). The first row 5.15
(1) is row images where no mask is applied. The extended Nonbert quadruple mask in
Fig. 5.15 (2) have some shortcomings in detecting shadawSigl 5.15 (3) shadow N are
reduced with the additional shadow mask. In Fig. 5.15 (4 tlineshold mask detected nearly
all the erroneous pixels with sonfieP. Since 8 images were used, false alerts did not ruined
the results. Blue false alerts spread all over images foextended Non-Lambert quadruple
mask indicating the high noise sensitivity of the mask. Fer threshold mask (Th), noisy
pixels, recognized aBP, are created only aroundP. In Fig. 5.15 (5), with addition of Hi,
Re and Sh masks to Th mask, the masked regions enlarged. Thepa of the error have
been removed by Th and additional masks handled the smaikeat the boundaries of the
Th masks. In Fig. 5.15 (6) that represents only RA masks,atdé& N regions were at self
shadowed pixels. The RA mask missed the self shadows whenthmem one intensity values
were shaded. The main cause is the residual errors of selbsisawere lesser compared
to cast shadows and highlights. Two small outliers, the stedfdows, were included in the

consensus set of RANSAC.

In Fig. 5.16, norm of calculated and original normal vectars plotted. The white regions
indicate large normal errors, mainly due to the cast shadowashighlights as seen in Fig.
5.16 (1). Cast shadow errors were accumulated around tkeetebjvhile highlight errors
were on the objects. Both of the highlight and shadow ermedsiced with masks. The noisy
image performance of each masks can be seen in these imaggsarsd paperfeect on the
normal errors. The NL and RA masks at Fig. 5.16 (2, 3, 6) haesdlsalt and papeffect
heavily. These masks are more sensitive to noise than otA&s, at the boundaries of the
masks, the normal errors changed rapidly resulting a floikergattern in Fig. 5.16 (4a).

These mask patterns were also transfered resultant noimfgig. 5.17 (4a).

Lastly, in Fig. 5.17, calculated normals vectors are ptbttth RGB valuesi], g, b] = [(ny +
1)/2,(ny + 1)/2,n;]. In Fig. 5.17 (1), without any masks, errors due to the chsdews
appeared around the Mozart and the sphere. These erroededith usage of the masks.

However, due to the noisy images used in the tests, the asdcliextended Non-Lambert
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Figure 5.18: Normals of semisphere (a) and normals creatédione PS (b) and Th PS (c)
with eight 45 zenith light sources.

guadruple mask is very noisy, resulting noisy normals. Tineshold mask performed better

under same conditions as seen in Fig. 5.17 (4) and (5).

5.6 Weighted PS Results

The false edges generated at the boundaries of the maskovteasim the previous section.
This problem can be seen in Fig. 5.18 on semisphere with reendihe original normals
seen in Fig. 5.18(a) is clearly better reconstructed witmBisk PS as in seen in Fig. 5.18(c).
However at the mask boundaries where utilized images se&t ef@nged, the normal vectors

are changed rapidly and caused false edges.

In this section weighted PS method that works on clearirgjfdise edges, is explained. The
flow of the method is explained in “Weighted PS” section of flea 3. The weighted PS
method can be applied to any mask explain in this work. Siheeused mask is not very
important, simple Th mask is used as an example. No noisedaddfie images to see the

false boundaries clearly. Eight light sources with,ce= 45° are used as PS input images.

The size of the dilation and smoothing filters depends on @ enargin of the used mask.
Here dilation kernel is selected as a circular disk with &pmadius. The smoothing filter is

a Gaussian with 3 standard deviation. Both kernels haxé4a5ize.

The normal error images that are the norm dfedience vector between original and calculated

normal vectors are presented in Fig. 5.19. The no mask sestfifered from highlights and
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(a) (b) (€) (d)
Figure 5.19: None mask (a), Th mask (c), dilated Th mask (d)diliated smoothed Th mask

(c) normal errors for semisphere, sombrero, penny and rnozar
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(a) (b) (©) (d)
Figure 5.20: None mask (a), Th mask (c), dilated Th mask (d)diiated smoothed Th mask

(c) normals for semisphere, sombrero, penny and mozart.

shadows as seen in Fig. 5.19(a) with no mask. Th mask remoegal ®rrors as seen in
Fig. 5.19(b) but sharp false edges were created. Fig. FiP(&). displays the dilated Th
mask results. The dilation operation enlarged the maskgdne and clear the mask misses
around the threshold. The mozart normal error image hage fadlges at the cast shadow
boundaries, and were cleared at bottom image of Fig. 5.19(c® left most column, Fig.
5.19(d), represents dilated and smoothed mask resultththaharp false edges at highlights
were smoothed. The color coded resutant normals of the sashevere presented in Fig.
5.20.

The dtect of weighted PS is obvious when render images of the gextenarmals are created
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Figure 5.21: Weighted Th mask PS (left) and Th mask PS (right)

as in Fig. 5.21. The false edges of Th mask on smooth sombueiace can be seen right
side. The left image is rendered from the normals of weightedS that have exactly same

mask but weighted, dilated and smoothed.

5.7 Multiple Zenith Results

The Table 5.4 represents the mean NE of three sombreros arithug illumination configu-
rations. The illumination configuration is shown with a fafa ZsourceXf + - - - + ZsourceXy)-
For example, the formula 384 + 45°x4 + 60°x4 represents that four light sources were
placed on a circular ring WitEsource = 30°, Zsource = 45° andZsource = 60° and totally 12
light sources were used. Each ring of light sources placdid avi polar angle féset value to

have equal polar distances between two consecutive sources

The first part of the Table 5.4, includes samples of doublétzdhumination configurations
with total 16 lights. The average value of thg,,.cewas changed from 330 65 and empir-
ically configuration 35x8+ 65°x8 with 50° average value have the minimum NE. The rule of
thumb given in Eq. 4.2 proposed the configuratiofix8+ 60°x8, which is the second best

solution.
Similarly, at second part of the Table 5.4, théelience of tw&Zsq,rcchave been experimented.
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Again previously proposed 388+ 60° x8 illumination configuration have the second best NE
performance. These results verified the rule of thumb in E2jida good prediction to place

the double zenith light sources.

The last part of the Table 5.4 shows the results of the maltgeith illumination configu-
rations. All the illumination configurations have 12 ligltusces. These light sources were
located on double, triple and quadruple circles around #meeca. The triple circles illumi-
nation combination have slight performance improvemett vaspect to double. Others are

not better than double illumination configuration.

TheZlsource= 30°, Z250urce = 60° double zenith light sources configuratiorZjds compared
with Zsource = 45° single zenith light sources configuratioriZ{Xor all three sombreros. Both
diffuse (Di) and highlight shadow (Hi-Sh) images were used. Re®UNE versus image
countn; is plotted in Fig. 5.22. For ¢liuse images (bottom two plots), NE witlZ vas always
less than Z. This result was expected sincg s the optimal solution without highlights and
shadows. But when Hi-Sh images were usetip@rforms better thanZlif n; > 4. With more
images used, the filerence betweenZland Z increases in favor of2 On this figure WPS

is weightedPS which will be explained in the next section.

In the first two rows of Table 5.5, numerical results of thipestment are shown. By using 8
|IghtS atzlsource: 30O and 8 |IghtS aZZSource: 60) InStead Of USIng 16 |IghtS &OUI’CE: 450

the resultant NE is reduced .920.

Table 5.5 presents the mean NE of all three sombreros withusiimage configurations and
PS solution methods. In this table, also the improvement peeges with respect toZl
PS are given. First thing to notice is NE was improved with deubénith (Z), weighted
PS methods. The maximum improvement is achieved Wik, rcZsurfaceWeight, that is for
each image countrf ), angular NE is improved more than 30%. For 16 images, imgrmnt

is 394%, that is much better than 226 2Z PS. Secondly, the angular NE reduces with
increasingn; from left to right. For Z, (first row) the percent improvement is about 4% from
8 images to 32 images. On the other hand, the improvement is more than 10%, which
indicates that if many images are available for PS, doubig@tzéghts configuration is a better

choice than squeezing them to a single circle.

The normal errors of the three sombreros (s1, s2, s3) withrpinveighted and weighted
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Table 5.4: NE for various lllumination Configurations

lllumination Configuration NE

Double Zenith Average

20°x8 + 50°x8 5.96
25°x8 + 55°x8 5.83
30°x8 + 60°x8 5.51
35°x8 + 65°x8 5.33
40°x8 + 70°x8 5.57
45°x8 + 75°x8 6.21
50°x8 + 80°x8 7.53

Double Zenith Difference

5°x8 + 85°x8 13.79
10°x8 + 80°x8 9.37
15°x8 + 75°x8 6.08
20°x8 + 70°x8 5.16
25°x8 + 65°x8 4.85
30°x8 + 60°x8 5.01
35°x8 + 55°x8 5.50
40°x8 + 50°x8 5.86
Multi Zenith
30°x6 + 60°x6 5.73
30°x4 + 45°x4 + 60° x4 5.72
15°x4 + 45°x4 + 75° x4 6.35

15°x3+ 35°x3+ 55°x3+ 75°x3  6.27
30°x3+40°x3+50°x3 + 60°x3  5.80
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Figure 5.22: Normal Error versus image counts for single dodble zenith angle light
sources, Lambert and TS images
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Table 5.5: NE for various image configurations @@ solution methods

8 12 16 24 32

Source Weight NE

1z None 9.65 942 934 9.27 9.25
2z None 9.05 841 813 7.91 7.78
2z e 844 784 7.89 8.05 8.08
2z eZsource 7.92 714 711 7.25 7.26
2z eZsurface 7.00 6.25 6.17 6.26 6.22
2z eZsourcsurface 06.60 5.77 5.64 573 5.68
Source Weight % Improvement NE w.r.t. 1Z
2z None 6.2 10.7 129 14.7 15.9
2z e 126 16.7 155 132 126
2z €Zsource 179 242 238 21.8 215
2z eZsurface 11.6 124 133 136 14.3
2z €Zsourcsurface 31.6 38.7 39.6 38.2 38.6

Table 5.6: Angular NE for binary and weight&® results for three sombreros

sl s2 s3 Mean
Weigthed 4.08 6.12 6.74 5.65
Binary 3.39 5.19 7.00 5.19

normal vectors are shown in Table 5.6. Binary weights thaipsi selects the less error
normal, performed better than the weighted summation ahabvectors if only normal error

is considered. But when all normals are plotted as in Fig3,%hary selection of two data
set caused the false edges. On the other hand, weights @savisinooth transition from one

data set to the other one.

In Fig. 5.24, NE images of sombrero2 are displayed for intdé@ptestigation. In Fig. 5.24a

8 images withZggrce = 30° and in Fig. 5.24b 8 images withsource = 60° were utilized in
PS. At each case NE was concentrated fieént regions due to highlights and shadows. In
Fig. 5.24c all 16 images were used in to®® and now NE is reduced and uniform. In Fig.

5.24d the NE image resulted from weighte8 with eZsourcesurfaceWeights is shown. This
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(b)

Figure 5.23: (a) False edges were occurred in binary noreetovs. (b) With weighted
summation of normals, false edges on weight transitiong weroothed.

(a) (b) (c) (d)
Figure 5.24: NE errors of sombrero2 for (B, Zsource = 30, ni = 8, (b) PS, Zsource =

60°, 1 = 8, (C) PS. Zsource = 30°, 60°, 1 = 16, (d)WPS Zsource = 30°, 60°, nj = 16. White

pixels have IE of 20% of image dynamic range.

image is nearly union of dark regions (less NE) of Fig. 5.24éRig. 5.24b that indicates the

weights can fectively select the correct solution.

Fig. 5.25 displays the same result set on sombrero2 crossrsethe cross section of original
sombrero?2 is plotted igreen while the calculated surface that is the surface integré®f
normal vectors [37] is plotted witled. The cross section of the weight®&® solution fitted

the best to cross section of original height map.

In this work, triple zenith illumination configuration andple WPSwas also tested. The
triple zenith angles was chosen t0 B&soyrce = 30°, Z250urce = 45° andZ3soyrce = 60°. The

triple zenith configuration is compared with equal imagentaiouble zenith configuration.
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Figure 5.25: Cross sections of sombrero for P8 Zource = 30, N = 8, (b) PS Zource =

60°,n; = 8, (C) PS Zource= 30°,60°, n; = 16, (A)WPS Zoyrce= 30°,60°, nj = 16,

The double zenith configuration resulted better than tipgetdenith illumination. Also when
the triple zenith configuration was employedWiPS, the weights 0fZ250urce = 45° were

mostly very small indicating that they were nearly neverduse
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CHAPTER 6

REAL IMAGE TESTS

6.1 Introduction

Before the real image tests, calibrations of the image aittpn hardware must be com-
pleted. The precise measurements of the physical placeméihe hardware components
are explained. Also image disturbances due to hardware sswrgtions of PS method are
corrected in this process. Later, visual results of all rméghare presented on metallic surfaces

with highlights and shadows.

6.2 Hardware Components

Image acquisition hardware used in real image tests candreirefFig. 6.1. The hard-
ware used in the these tests was developed by BALISTIKA2QKEdeE hardware group in
TUBITAK UZAY. All parts of hardware are assembled in a black opedpox to avoid sec-
ondary illumination. Camera is placed vertically at theteerof lights. 16 light sources
were placed around camera pointing to field of view of camBetailed light source place-
ment can be seen in Fig. 6.2. Cartridge case and bullet tsoldere placed on a computer
controlled motorized linear X, Y, Z stages and rotationalypitch, stages. Bullet could be
rotated around itself with an extra motor. Also camera fomod zoom could be controlled

with motors via serial port computer interface.

High power light emitting diodes (LED) were used as lightreas. These warm white LEDs
sink 350nArated current from computer controlled current source.yMere packed with

small plastic lens, collimating light to 2@ircular cone. Film dtusers were glued in front of
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Camera: Prosilica GE2040,
2048x2048, 12 bit monochromatic
Lens: Navitar 12x (1.25mm to 15mm),
86mm working distance

Light: Warm white LED, 350mA rated,
10 degree

Bullet and cartridge case

Evidence holders: Newport GTS70,
GTS30V, 2um accuracy X,Y,Z and
rotation control

Figure 6.1: Hardware used for image acquisition

LEDs to have homogeneous illumination distribution in theddfiof view.

Camera used in the setup was Prosilica GE2040 that has aZD48 12 bit monochromatic
CCD sensor. It can deliver 15 frames per second via gigab#raet adapter. Camera config-
uration has done before image acquisition once, and the sanfiguration was used during

all tests.

Navitar 12x lens was attached to the camera with appropaidépters to have variable field
of view from 125x1.25mmto 15x15mmand 8@nmworking distance. This lens has par-focal
zoom system that focus is not distorted by zooming operstidme lens is controlled with
two motors, one for the focus and one for the zoom. The pixzel at the image plane can be
changed with the zoom motor from32um at the minimum magnification to.€1um for the

maximum magnification setting.

In the real image tests, images were acquired with largddtdferiew and the minimum pixel

resolution. The spatial resolution of the images weB2im.

Evidence holders are placed on Newport GTS70 and Newport3G¥ $notorized stages.

These stages are capable of positioning the evidences pritta2curacy.
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Figure 6.2: (a) Imaging camera at middle and 16 LEDs placedrat it

6.3 Light Source Direction Calibration

Although a special hardware was designed and produced ddigthit positioning, the exact
positions of the light sources were calculated with a miete#aring ball test [48]. A specular
metallic bearing ball with éimdiameter was placed in the field of view and images were taken
with each light source individually. Fig. 6.3(a) displaysample image of the bearing ball
illuminated with the light source 7. The center of the highted region was calculated from
this image. The vector from the center of ball to the highliglas the reflection direction
and the bisector vector of the camera direction and the Bghtce direction. The camera
direction was defined as [0, 0, 1] (z axis) and the light sodliocection was calculated from
reflection direction. Light source to ball distance was meed physically and the average

distance was found to be 86n

6.4 Light Source Power Calibration

The PS calculation employs the illumination powers of tlyhtlisources. In the Balistika

2010 hardware, all the light sources are same model LED<gieghigqual light sources up
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Figure 6.3: Bearing ball image illuminated from the lightuiste 7 and the calculated light
source positions looking from z, y and x axis respectively.

to 1% tolerance under same usage. However the irradiancheotatget surface may not
be equal due to targeting ftkrences of the collimators andfidisers in front of the each
LEDs. Consecutively, unbalanced illumination may occurtlos target surface. The light
source powers were calibrated with a planar white targee t€hkt images of a planar white
target, for each light source were acquired with same capnwriguration. The mean values
of image intensities are directly proportional to the ifeate on the surface. Light source
power can be calculated by scaling irradiance value witid soigle of each light source that

IS SiNEsource-

If the target surface is placed horizontally (mean of thesalface normals are [001]), and
nearly symmetric for each light sources, mean values oétangages can be approximated to
illumination powers. This approximation should be useeftdly. If the surface is not placed

horizontally, the resultant normals will be deformed. Thetidge cases are good example

for this type of surfaces.

6.5 Radiometric Calibration

PS method estimates the surface normals from the irradielmaeges of the surface with

changing light source positions. Instead of the irradiatioe image intensity values are em-
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Figure 6.4: White calibration image and light distributifumction.

ployed with linear camera response assumption. Seconifgrm illumination assumption
over the whole field of view is used to simplify calculatioffhese assumptions are checked

and corrected with the radiometric calibration on images.

Radiometric calibration is composed of following calitioat processes;

6.5.1 White image calibration

The Light sources used in image acquisition hardware do ae¢ la uniform illumination
distribution over the field of view [13]. This calibrationguess measures intensity values on
a planar reference, whiteftlise surface called Spectralon. Intensity values of thetGpen
were fitted to 2 dimensional polynomial function. This lighstribution function representing
illumination power at each pixel was used as a scale factoedoh pixel. The images were
scaled with the inverse of this function to correct illuntioa variations. Fig. 6.4 shows a

sample of white calibration image and fitted light distribatfunction.

6.5.2 Gray image calibration

Radiometric response curve is the relation between thees@gtiance and image intensity.

In many computer vision systems, it is assumed that the inragasity of a point directly
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Figure 6.5: Radiometric response curve of the camera.

reflects the scene radiance of the point. However, this gssomdoes not hold in most cases.
Camera producers use nonlinear camera response functiorger to compress the dynamic
range of the scene to 8 bits [49]. PS algorithm uses scenan@alio reconstruct the scene in
3D. In order to calculate the scene radiance, all the imagest be corrected by radiometric

response function of the camera.

Camera response function was estimated from a gray scatmpagaving 9 linear gray ra-
diance values (see Fig. 6.6a). Mean intensity values of dage 9 gray regions is fitted to
a 6" order polynomial function resulting the graph in Fig 6.5slbbvious that the relation

between the scene radiance and image intensity is not.linear

6.5.3 Dark image calibration

Due to the thermal noise in CCD some pixels of the images mag relatively very high
intensity values, even if all the lights aréE.oWhen these few erroneous pixels (around 200
in 4 million) are used in PS, sometimes unacceptable peaksrad on the 3D surface. Dark
image calibration simply detects these erroneous pixefgyustensity threshold operation,

and averages them with surrounding pixels.
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Figure 6.6: White calibration image and synthetic calioratmage.

6.5.4 Synthetic image calibration

Since light sources were not placed at infinity, their illaation distribution will not be uni-
form over the field of view. There are two reasons of this, lieiination power reduces with
light source distance, and secondly the angle of light bahanges over the surface. After
hardware assembly, planaritise white surface is rendered with measured light source and
camera positions. Resultant synthetic images are use@l® istages same as white image
calibration. This calibration solves most of the convexatyor on 3D surfaces. Fig. 6.6b

shows a sample of the synthetic calibration image on the.righ

6.6 Geometric Calibration

The camera lens combination used in the image acquisitisnahaery low lens distortion

which can be seen at Fig. 6.7. So, it is hot necessary to madet@rect it.

In order to use absolute lengths in the generated 3D surfabsslute length corresponding
one pixel must be calculated. For each zoom level, this lon is done on the grid pattern
having XImmcells. Left image of Fig. 6.7 has pixel size o06um and right image has

4.64um pixel size.
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Figure 6.7: Geometric calibration image for 12.3mmx12.3(ajrand 9.5mmx9.5mm (b).

6.7 Unified PS Results

The synthetic image results presented in the previous ehatre also verified with real
images. Three metallic test surfaces, a coin, a relief of hmses and viking statue, were
selected to present both highlights and shadows. 2048x804i8 monochromatic images
of these test surfaces were acquired with Prosillica GE2240era and Navitar 12x zoom
lens. Eight warm white power LEDs were placed around the camwéh 62 zenith angles
and 45 polar angles. In Fig. 6.8 (1), one of the eight images illusa from lower right
corner are shown. All eight images like these samples wdesl filith large shadows and
highlights, especially for two horses and viking statueorfiriFig. 6.8 (2) to Fig. 6.8 (6)
calculated masks were plotted on the same images for XNL;W{NRe-Sh, Th, Th-Hi-Re-
Sh and RA. While the green pixels represents the shadowklub@nes stands for highlights.
The threshold values calculated in synthetic image teséwslized. The XNL masks were
not very successful due to noisy image characteristic addcexd threshold value for eight
images. On the other hand simple Th mask performed bettdirthree cases. The additional
Hi and Re masks also increased highlight detection perfocmas in Fig. 6.8 (5). The RA
mask, presented in Fig. 6.8 (6), was able to find highlightsefbbut clearly missed the
shadows. The same problem was also occurred with the simiimgiges. The main cause of

this failure was the residual error magnitudéelience of highlights and shadows. While the
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shadows with small errors were included in the consensuhsetighlights with large errors

were excluded.

In Fig. 6.9, encoded normals were plotted for (1) None, (2L x{8) xNL-Hi-Re-Sh, (4)
Th, (5) Th-Hi-Re-Sh and (6) RA masks. Without any masks, as s the first row, smooth
normals were reconstructed. As seen in Fig. 6.9 (4) and (@ti@ of normals increased
with the usage of masks, resulting a more contrast normajémahis improvement came
with some side fects. With the usage of the masks, the calculated normadsriw@sy results
at the boundaries of the masks. Especially when the maskdiszentinuous and noisy,
the resultant normals are also noisy as in 6.9 (2) xNL, 6.2{8)-Hi-Re-Sh and 6.9(6) RA
masks. Weighted PS, in the next sections will be focused ®felbe edges and noisy look of

normals.

In Fig. 6.10, calculated normals and albedos were rendeitedtve same illumination in Fig.
6.8. Similar to encoded normals, the render images of Th messhts have contrast but noisy

results.

In Fig. 6.11, render images of normals and hight values wieitéep. The view angle is tilted
with 45° to show dfect of masks on calculated hight values. The shadows artwenalase of
the viking statue were found with Th and Th-Hi-Re-Sh as sadiottom Fig. 6.8 (4) and (5).

Hence the height of the nose was calculated higher whiclogeclo the correct height.

6.8 Weighted PS Results

Weighted PS was tested real images with Th mask which wasuaksd with the synthetic
images. Eight images withsource = 62° were used in weighted PS. The resultant normals
with and without weighting is shown in Fig. 6.12. The lefigF6.12(a), not weighted normals
have false edges at the helmet and the neck of the vikingestatere shadows and highlights
were masked out. Normals at Fig. 6.12(b), which were caledlaith weighted PS, the most

of the false edges were smoothed.

The smoothing #ect of weighted PS is more obvious in the render images, pregat Fig.
6.13. Both images were rendered witlifdse surface reflection and illuminated from top.

The false edges at the helmet, at the left eye and under tineé \weae smoothed.
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Figure 6.8: (1) Real images with illuminated from right loott corner with 60 zenith angle.

Calculated masks are plotted on images with green for shedeith blue for highlights for
(2) XNL (3) XNL-Hi-Re-Sh (4) Th, (5) Th-Hi-Re-Sh and (6) RA.
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Figure 6.9: (a) Calculated normals for (1) None (2) xNL (3)LxNi-Re-Sh (4) Th and (5)

Th-Hi-Re-Sh and (6) RA.
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Figure 6.10: (Render images for (1) None (2) XNL (3) xXNL-H28h (4) Th and (5) Th-Hi-

Re-Sh.
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Figure 6.11: Render images for (1) None (2) XxNL (3) xXNL-Hi-Bk (4) Th and (5) Th-Hi-

Re-Sh.
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Figure 6.12: Normals of Th mask PS (a) and weighted Th mask PS.

Weighted PS smooths the masks not the generated surfacalsorihe false edges of the
normals can also be smoothed with simple Gaussian filtefi@gation on the resultant nor-
mals. But this smoothing operation will also smooth the itietd the reconstructed normals,
which is not desired. As seen in Fig. 6.12, the weighted PSepved the surface details and

smoothed only the false edges and noisy look caused by tHesmas

6.9 Multi Zenith Results

The synthetic image results presented up to now were alsfiedewith the real images.
Five test surfaces, bearing ball, a coin, a relief of two asrplastic toy face and metal toy
face were selected to present both highlights and shadd8x2048 8 bit monochromatic
images of these test surfaces were acquired with ProstBiEA040 camera and Navitar 12x
zoom lens. 16 warm white power LEDs withfidisers were placed around the camera with

Z1source= 31°, Z250urce= 62° and polar distances being 4as shown in Fig. 6.2.

5 test objects were used in the real image tests as seen in6Hig. Plastic and metallic
toy faces were good examples foffdse and specular surfaces. Coin, horses, bearing ball
and metal toy face were selected to have changing amounbwhaidd highlights on their

surfaces.

103



Figure 6.13: Render images of normals of Th mask PS (a) anghtezl Th mask PS.

Figure 6.14: The real objects used in tests. Left to riglastit toy face, metal toy face, coin

25 kurus, bearing ball and horses.
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Fig. 6.15 displays the test images of the metal toy face dftercalibration process that
linearized CCD gain characteristics. The images at lefttrhes columns are taken with
Zlsource = 31°, and the ones at right most two columns are taken ¥Rk, e = 62° light
sources. Wide highlighted regions can be seen at the left. ohke right ones gter from

shadows, especially around the nose of the metal toy face.

The weights used iV PSare presented in Fig. 6.16. The sum of two weight images aolds u
to 1.0 all over the image. The white intensity values indida¢avy weights that it's normal
vector will influence more to the final normal vector. The natsnof the slanted regions, for
example, around the nose, have less error when calculatbd o rce = 31° lights, hence
Z2s0urce = 62° lights generated many shadows at these regions. The weighiad the nose

were calculated as desired, i.e. reduced NE, as in Fig. 6.16.

In Fig. 6.17, the intensity error images BS and W PS solution are shown. The IE of the

slanted regions decreased with the propdasgeS.

Fig. 6.18 displays the color coded normal vectorsP& and WPS solutions. While the
normals calculated witRS (see Fig. 6.18a) have a limited range, the normal%/ &Smethod

(see Fig. 6.18b) ranged larger.

Lastly, real and render images of the metal toy face is pteden Fig. 6.19 from dterent
angles. Left mostimages (see Fig. 6.19a ) were acquiredanitrdinary digital camera. Fig.
6.19b and 6.19c are render imagesP& andWPS. As seen the Fig. 6.19b bottom image,
the nose of the metal toy face could not be reconstructedR&tHt was much smoother than
the real image. But this error reduced in Fig. 6.19c indigathatW PSworked better in the

presence of shadows.

Table 6.1 lists the percent intensity errors (IE) of all matfaces with 8 and 16 images con-
figuration. In both cases, IE is reduced significantly with WWiPSmethod, compared to the
ordinary PS method. The minimum IE was achieved with only residual e(edrnweights.

This is because of the similarity of the definition of IE amdOther weights disturbed the
results with additional informations other thenBut from the synthetic image results, it was

shown thatZsourceZsur faceWeights have the better NE performance.

Table 6.2 presents the average elapsed time d?$andW PSwith 8 and 16 lights configu-

rations. The computation cost@f PSis about 3 times of the ordinary PS. The computational
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leource= 3r Zzsourcez 62°

Figure 6.15: 16 calibrated images of metal toy face usdRiSitests.
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(b)

Figure 6.16: Weights of metal toy face @)source= 31° and (0)Z2source= 62°.

(b)

Figure 6.17: Intensity error images of metal toy face with P& method and (bWPS
method. White pixels have IE of 20% of image dynamic range.
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Figure 6.18: Normal vectors of the metal toy face withR& method and (bYW PSmethod.

-

(@) (b) (©)

Figure 6.19: (a) real (blPS render and (cWPSrender images of the metal toy face from

front (top) and from right (bottom). The nose was calculaasdmooth peak in PS. But this

error is reduced iWPS
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Table 6.1: Intensity Error (% dflong

bearing coin 25 horses metal plastic Overall

ball kurus toy face toy face

Average of IE light_30.4_.60_4

None 100.0 100.0 100.0 100.0 100.0 100.0
e 49.8 555 38.8 61.1 54.4 50.5
€Zsource 49.5 55.7 38.6 65.1 58.9 51.9
€Zsurface 53.3 52.9 41.3 68.3 72.9 56.0
eZsourcsurface 92.2 52.3 40.1 70.1 76.7 56.3
Average of IE light_30.8.60_8
None 100.0 100.0 100.0 100.0 100.0 100.0
e 64.7 92.0 62.0 70.6 59.9 68.4
€Zsource 63.6 90.2 60.5 77.6 65.9 70.0
€Zsurface 68.5 82.7 62.3 81.1 87.9 75.0
€Zsourcesurface 67.2 80.5 60.5 86.2 94.0 76.1

cost increase is mainly caused by the weight calculatioris @st is still much lower than

non-linearPS methods.

Table 6.2: Average elapsed time (Normalized wZ}.2

Weight light _30.4.604 light_30.8.60_8
None 1.00 1.00
e 2.89 2.65
€Zsource 291 2.62
€Zsurface 3.06 2.68
€Zsourcesurface 3.06 2.69

109



CHAPTER 7

FIREARM EVIDENCES

Firearm identification is the matching problem of the fireawidences from the striation and
impressed marks left by the firearm [13]. Traditionally, thatching operation is executed
with a microscope by the trained experts. Each couple ofeenids are placed under the
microscope side by side and are investigated by eye. Thebgid&le comparison operation
have to be done for each new evidence with every one in théastaoutnumbering thou-
sands. Automated firearm identification systems helps &xpepvercome this cumbersome

task of comparisons.

The firearm evidences are mainly the cartridge cases andutletsbas seen in Fig 7.1. The
cartridge case is full of gun powder and the bullet is attddheront of it. The mechanism
of the gun, the firing pin, hits on the soft metal part of thetridge case, the breech face to
ignite the gun powder inside the case. The powder burns \&stycieating very high heat
and pressure. The pressure forces the bullet to exit frorhdhel with a speed of 306/ sec
for an ordinary firearm. In modern firearms, inside the batredre are helical grooves that
spins the bullet around its motion direction. Later, thetridge case is ejected from gun
automatically. These firing process deforms the metallitase of the cartridge case and the
bullet. The deformation is firearm specific, so that surfapelogy of the firearm is impressed

and striated on the evidences.

The cartridge cases mostly have impression marks on itsrhotThe firearm identification

system, acquires the images of the bottom of the cartridge, &dnown in Fig. 7.1(a). There
are three important regions at the bottom of the case thatastigated by experts separately.
The ejector mark is created by the firearm ejector pin that@sighe cartridge case out of the

gun after firing. This mark usually has a small area andfiscdit to match but it indicates

110



GROOVE

(b)

Figure 7.1: The regions of a cartridge case (a) and a bullet (b

Figure 7.2: Test spend cartridge cases with various catjiperand material

the orientation of the cartridge case inside the gun. Thedbréace is the soft part of the case
where gun'’s firing pin strikes on it and create firing pin markese marks on the deformable

thin metal contains majority of the characteristic markshefgun.

The bullets are usually composed of two parts the heavy softthat is made of lead and the
harder brass shell. This type of bullet is called “full mggalket”. While bullet travels inside
the barrel, the helical grooves of the barrel spin the batet create strained marks on the
bullet. Even after hitting to the target, these groove mad be used to identify the firing

gun. Usually there are four to six groove marks on a bulleeas $n Fig. 7.1(b).

The cartridge cases used in the tests are presented in Rlg. The cartridge cases with

different metals having a variety of colors and reflection pitiggeare selected. Alsoftierent
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Figure 7.3: 16 raw images of cartridge case 3.

caliber types used by guns and rifles exist in the test set.3Thand 4" from the left are
“sister cartridge cases” that have been fired from the sameThe results of these two cases

will be presented in this chapter.

The 16 raw images acquired by the BALISTIKA2010 System aes@nted in Fig. 7.3. The
images have 2042048 pixels with 8 bit gray scale intensity value. The fieldvaw is
10mmxLOmm The spatial resolution of the acquired images we8am. The camera’s ex-
posure was set to the same value for all images. This commuosare value was selected
considering the mean value of all intensity values to beratotb. The dark ones are illu-

minated byZsource = 62° light sources and bright ones are By, rce = 31°. Highlights and
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Figure 7.4: The calibrated images of cartridge case 3.

shadows were present in this ordinary cartridge case.

Fig. 7.4 displays the resultant images of the calibratiacess. The 8 bit images are con-
verted to floating point images before calibration. Thelralied images that will be used in

PS, are also in floating point intensity images.

The masks that yielded best results in the synthetic images applied to the cartridge cases
as seen in Fig. 7.5. The green pixels are shadows and thedkiéise highlights. Although
the outside of the cartridge case was marked as shadows, riigiens are discarded in the

next steps. The images wityoyrce = 31° mainly have highlights indicated with blue. On
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Figure 7.5: The Th-Hi-Re-Sh masks calculated on the caerichse 3.
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Figure 7.6:Zsource = 31° (a) andZsource = 62° (b) weights of the firing pin of the cartridge
case 3.

the other hand, the images wiflyource = 62° have both highlights and shadows on the case
especially on the critical firing pin mark. Considering thlrheight map of the cartridge
case, the highlights and shadows masks are calculatedssfidée Note that many pixels
from the concave firing pin was masked out, leaving few pitelse used in PS. These masks

may be used both as a binary mask or can be weighted to obtaiotismmask edges.

The weighted normal PS was also tested on these cartridgs.cdsg. 7.6 presents the
calculated weights for each normals with Za)rce = 31° and (b)Zsource = 62° Where white
pixels indicate high weight values. The most of the restilteotmals were calculated with
images illuminated bysource = 62° light sources. On the other hand, when the shadows
occurred at the walls of the firing piZsource = 31°, the light sources have greater influence
on the resultant normals. These masks yielded satisfaotsoits from the synthetic image

results.

The render images of two reconstructed sister cartridgescasirtridge case 3 (left) and car-
tridge case 5 (right), are shown in Fig. 7.7. The top imagediied 3D view of the cases,
and bottom images are breech face close view. The orientafithe cases were matched as
much as possible so that the characteristic surface defimmsacan be seen in the place in
the images. The horizontal short line close to the middideffiring pin center and diagonal

long lines on the breech face are characteristic marks sfgiin as commented by ballistic
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Figure 7.7: Render images of cartridge case 3 (left) andidget case 5 (right)
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experts. They also suggested that the number of charaicteniarks are very good that these

two can be easily identified as sisters.

The resultant normals of cartridge case 3 (a) and case 5gin¢ragted using ffierent methods
are shown in Fig. 7.8. The sisters are placed side by sideetept the matched characteristic
marks for each PS method. The first row of normals are genkvetbout any masks. The
second row, Fig. 7.8(2), presents the binary Th-Hi-Re-Skkaiaesults where more details
at the walls of the firing pin are visible. Some of these areknfalse edges. In Fig. 7.8(3),
the false edges are removed when weighted PS compared t6.8(8). The bottom row, the

results weighted normal PS, were the smoothest normals@aibn

Lastly, the render images are displayed in Fig. 7.9. Thesmé®s are captured from the
screens of the BALISTIKA2010 Identification System. Forleemw, two sisters were identi-

fied by the ballistic experts easily.
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(1)

®3)

(4)

(@)

Figure 7.8: Normals of the cartridge case 3 (a) and 5 (b) fpNdne, (2) Th-Hi-Re-Sh (3)
weighted Th-Hi-Re-Sh (4) and weighted normal PS.
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(4)

Figure 7.9: Render images of the cartridge case 3 (a) andfér(f)) None, (2) Th-Hi-Re-Sh
(3) weighted Th-Hi-Re-Sh (4) and weighted normal PS.
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CHAPTER 8

CONCLUSION

8.1 Summary

Following tasks were completed in this thesis;

e Masked PS methods in the literature and simple new maskirigaue like threshold

mask were classified and implemented on a unified framework.

e The weighted PS method, using weighted least square egtim{#¥L SE), is suggested

and developed to eliminate false edges created by the masks.

e The calibration processes were investigated. The distgdzadue to close light sources

were removed by image calibrations.

e Different illumination configurations including double zenitbmination configura-

tion, were suggested and tested.

e Double zenith illumination configuration results were hatimproved by the weighted

normal PS.

e The synthetic image generation codes were implementedtrdlled tests were con-

ducted to fine tune the masks.

e The methods were tested on real objects with varying chexiatics as well as the

firearm evidences.
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8.2 Discussion

Firstly, this thesis proposed the unified PS framework andjwted PS, which is capable
of utilization of any implemented mask combinations. Thdfied PS has the key role to
make a fair comparison among masks. The unified PS was jdsbfieachieving similar

enhancements with the previous works in literature. Nowegived PS is integrated to the

unified PS framework to weight masks and remove sitlects of masking operations.

In addition to some masks proposed earlier in the literatnesv simple masks were also
proposed. Also, widely used NL method is further extendechf6 images to any number of
images. The masking threshold values were optimized wélsymthetic images for various
image counts. With the test configuration stated in thisishéise normal error was reduced
from 1478° to 8.63° (44% improvement) with simple fast working Th mask. This gien

yet powerful masking method was combined with highlightieion and shadow masks to

achieve the best improvement.

Without masks, increasing image count slightly reducesdrenal error because new images
bring more highlights and shadows and without masks theaugment is limited. One of the
most significant findings to emerge from this thesis is thah wimple masks, normal errors

can be further decreased with a reasonable computation cost

This thesis showed that the normal errors increased fastiette masked PS methods than
no mask PS, indicating that masked PS is more sensitive genohmong all the masks
implemented in this thesis, NL mask was the most noise $emsitethod with increasing
image count. This is caused by the small threshold valuefasedany images. The threshold
value have to be reduced for increasing image count to haigcendinating mask with the

closer light source illumination directions.

The experiments on the synthetic image test were also testedjects with metallic surfaces.
The real image results supported earlier conclusions elrikom synthetic cases. In real
object cases threshold (TH) and threshold highlight rélacand shadow (Th-Hi-Re-Sh)

mask combination produced the most detailed normals amghheglues.

The masked PS methods have a siffea that disturbs the results. The boundary patterns

of the masks were transfered to the normals. This false edgarlohnce was caused by the
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change in the input image combinations at the neighborirglsi If the calculated masks do

not have well defined boundaries, this results in noisy ntsma

The false edges at the masked boundaries were handled wittotlel weighted PS method,
using weighted least square estimation. Instead of binagks) continuous weights were
used in this method. The weight of each pixel was inversapgrtional to the square of the
intensity error. Later, the mask boundaries were dilatetissmoothed on the weight images.
The false edges and noisy normals caused by discontinuosissmeere also smoothed. This
method only filters out the false edges and noisy normals r@stef the details at the normals

were not &ected.

Secondly, a better illumination configuration considenrgg only the image noise, but also
highlights and shadows was investigated. Realistic higldi and shadows were rendered on
synthetic surfaces. Itis experimentally shown that thereisingle optimal illumination con-
figuration for every surface with highlights and shadowswieeer, placing the light sources
on two circles around the camera withfdrent zenith angles reduced the resultant normal
error. Also with the double zenith sources configuration, W& more evenly distributed
over the surface which may be a desired feature. HeE&etup to reconstruct a variety of
shapes with highlights and shadows, results suggestsde fila light sources on two circles

with 30° and 6@ zenith angles if more than 8 of sources are available.

With the double zenith illumination configuration, weigthteormal PS that uses double zenith
light sources, was proposed. In this method the light ssuace grouped with their zenith
angles and two subsets are solved exclusively. The twotaegulormal vectors for each
pixel was weighted with respect to their estimated errorigtebBent weighting methods were
considered. The weighted normal PS improved normal erraertian 30% compared to
single zenith light sources and ordinary PS. The cost ofgusirighted normal PS is the
overhead of weight computation and weighting operationthWhie same volume of input
data, the elapsed time of weighted normal PS is about 3 tifie &S on the average. This

cost is still much lower than non-linear PS methods usingtitee error minimizations.

The results of the firearm evidences were also presentedsithiéfsis. The breech face of the
cartridge case is a planar region with shallow charactesisharks on it. These planar parts
usually do not create highlights or shadows. Most of the l|lerob occurred at the concave

firing pin mark, which is a very important region including stef the characteristics marks
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of the cartridge. The mask combination with best synthetiage performance was used.
The masks and the weights were calculated properly. The 3peshwere investigated by
ballistic examiners and concluded that all the proposedhoustcreate easy to identify results.
Generally the ordinary PS was enough to reconstruct a digwative normals, since surface
topology is simple to solve for PS. On the other hand, somé&sredrthe firing pin walls can

be better reconstructed by masks.

Both of the synthetic and the real images were have 8 bit $itiewalues. These integer
intensity values were converted to 32 bit floating point galmormalized to have maximum
value one. The resultant normal vectors were also have 3Robiing point values. The
calculated normal maps have the same pixel resolution \wehriput images, 2042048.
For the test objects.32um spatial resolution normal and height maps were calculatdus:
cartridge cases and bullet grooves were placed at the sodra/¢ the best resolution. For
cartridge cases, spatial resolution is arour@ldh, and for bullet grooves spatial resolution

can be reduced down toQum.

For the 16 synthetic images with 5812 pixel resolution, the maximum time elapsed for the
execution of the masked PS algorithm was&®@s The best performing masked PS calculated
results in 28ecs All of the tests were conducted on a regular PC and Matlake fddtive

implementations ( e.g. &+ ) of these algorithms were expected to work faster than Matla

scripts.

8.3 Future Works

The concave shape of the firing pin causes another importabtgm, which is secondary
reflection. The illuminated region reflects light inside thimg pin creating secondary reflec-
tions. The secondary illumination is not solved in this thesd remained as future work.
A mask working similar to the ray tracing algorithm in the qauer graphics may be im-
plemented. The ray tracing can be executed quickly up to tvtbree reflections. The back
reflections to the camera may be identified as secondary tieflesc Since the removal of
these back reflecting pixels will change the normals andasartopology, the ray tracing
should be executed again. Hence, secondary reflection mkgewan iterative normal mask

in unified PS.
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Another improvement can be achieved by the implementatfanudti view PS, that is the
fusion of binocular stereo and PS. This method would be veejul when creating 3D shape

of complex topologies like bullets. Detailed PS results loariused to form a single real 3D

shape of the bullet.
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