MOLECULAR PHYLOGENETICS OF TURKISH ABIES (PINACEAE) SPECIES BASED ON matK GENE REGIONS OF CHLOROPLAST GENOME

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEVLÜDE ALEV ATEŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGY

SEPTEMBER 2011
MOLECULAR PHYLOGENETICS OF TURKISH ABIES (PINACEAE) SPECIES BASED ON matK GENE REGIONS OF CHLOROPLAST GENOME submitted by MEVLÜDE ALEV ATEŞ in partial fulfillment of the requirements for the degree of Master of Science in Biology Department, Middle East Technical University by,

Prof. Dr. Canan OZGEN

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Musa DOĞAN

Head of the Department, Biology

Prof. Dr. Zeki KAYA

Supervisor, Biology Dept., METU

Examining Committee Members

Prof. Dr Zeki KAYA
Biology Dept., METU

Prof. Dr. Musa DOĞAN
Biology Dept., METU

Assoc.Prof. Dr. Sertaç ÖNDE
Biology Dept., METU

Assoc.Prof. Dr. İrfan KANDEMİR
Biology Dept., Ankara University

Assist.Prof. Dr. Fatih TEMEL
Dept. of Forestry, Artvin Çoruh University

Date:__________________
I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: Mevlüde Alev ATEŞ

Signature :
MOLECULAR PHYLOGENETICS OF TURKISH ABIES (PINACEAE)
SPECIES BASED ON matK GENE REGIONS OF CHLOROPLAST GENOME

Ateş, Mevlüde Alev
M.Sc. Department of Biology
Supervisor: Prof. Dr. Zeki Kaya
September 2011, 60 pages

Pineacea is the largest family of conifers that includes 51 species of Abies which is the second largest genus after Pinus.

There are six native taxa in Turkey belonging to this genus. Four of these taxa (Abies cilicica subsp. isaurica, Abies nordmanniana subsp. bornmülleriana, Abies nordmanniana subsp. equi-trojani, Abies x olcayana) are endemic and considered as low risk (LR) species according to the IUCN criteria.

To determine the phylogenetic relationship in Abies spp. in Turkey, 18 populations of different taxa were collected from their natural distribution areas in Turkey. The matK gene regions of chloroplast DNA (cpDNA) were studied comparatively to reveal the genetic relationship among Turkish fir species. The available sequences from the NCBI database for the matK region of the other Abies species in the world were also investigated.
comparatively with the sequences from Turkish firs. With the matK sequence data, a phylogenetic tree was constructed for the fir species and the molecular diversity parameters such as conserved and variable sites, nucleotide diversity, and evolutionary divergence were estimated using the MEGA software.

The results indicated that there are no variable sites among Turkish firs with regard to matK regions of cpDNA. It appears that the matK region of cpDNA for Turkish firs is highly conserved.

Since sequence data for all matK regions were not available from the NCBI database, the phylogenetic analysis with the sequence data of matK were comparatively analyzed in all firs including Turkish firs. According to matK1 region, the results showed that there were three major clades. One of the clades included all Turkish fir taxa and one species from European firs, *A.numidica*; however, *A.holopylla, A.firma, A.veitchii, A.sachalinensis, A.nephrolepis, A.lasiocarpa, A.koreana, A.homolephis, A.fraseri, A.fargesii, A.sibirica and A.fabri* formed in another clade. In addition to this, *A.mariesii, A.hidalgensis, A.bracteata, A.alba* formed in different major clade. According to matK1 region the results showed that Turkish firs and European firs are closer to each other. Furthermore, based on matK2 region, the results indicated that Turkish firs formed a monophyletic group. The other fir species, with respect to matK2 regions, formed different clades from Turkish firs.

The results based on matK region suggest that all Turkish firs may have evolved from single ancestral fir species and the matK gene region appears to be highly conserved region in fir species.

Key words: *Abies*, Turkish firs, cpDNA, *matK region*, phylogenetic tree.
ÖZ

KLOROPLAST GENOMUNDAKİ matK GEN BÖLGESİNİN KARŞILAŞTIRILMASI YAPILARAK TÜRKİYE GÖKNARLARININ FİLOGENETİK ANALİZİ

Ateş, Mevlüde Alev
Yüksek Lisans, Biyoloji Bölümü
Tez Yöneticisi: Prof. Dr. Zeki Kaya
Eylül 2011, 60 sayfa

Pineacea ailesi tüm dünyada çok sayıda türle temsil edilen kozalaklı ağaçlar grubunun en yüksek türle temsil edilen ailesidir. 51 ture sahip olan Abies cinsi ise Pinus cinsinden sonra bu ailenin ikinci büyük üyesidir.

Ülkemizde bu cinse ait altı adet doğal takson saf ve karışık meşçeler halinde yer almaktadır. Bu taksonlardan dört tanesi (Abies cilicica subsp. isaurica, Abies nordmanniana subsp. bornmülleriana, Abies nordmanniana subsp. equi-trojani, Abies x olcayana) endemik olup az tehdit altında (LR: low risk) tür kategorisinde yer almaktadır.

Türkiye’de bulunan Abies türlerinin filogenetik ilişkilerini yeniden belirlenmesi amacıyla ülkelerin farklı bölgelerinden türleri temsilen 18 farklı populasyon örneklenmiştir. Türk göknar türlerine ait kloroplast DNA’sının matK gen bölgesi kullanılarak türler arasındaki genetik ilişki değerlendirilmiştir. Bunlara ek olarak tüm dünyada çalışılmış ve NCBI veri bankasında yer alan tüm

Sonuçlar Türkiye göknarlarının ortak atadan evrimleştiklerini ve matK gen bölgesinin de bu türler için korunaklı bir bölge olduğunu düşündürmektedir.

Anahtar kelimeler: Abies türleri, Türkiye Göknar türleri, cpDNA, matK, filogenetik ağaç
to my family...
ACKNOWLEDGMENTS

I would like to express my gratitude and deep appreciation to my supervisor Prof. Dr. Zeki Kaya for his guidance, positive suggestions and also for the great research environment he had provided. Next, I would like to express my thanks to all the jury members for their comments and criticism.

This work has been supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) and Ministry of Environment and Forestry, Forest Trees and Seeds Breeding Research Directorates. I would like to give my thanks all of these institutions.

I wish to express my deep appreciation to Dr. Yasemin İçgen, Dr. Burcu Çengel and Dr. Gaye Kandemir, Ercan Velioğlu for their support from Forest Tree Seeds and Tree Breeding Research Directorate.

I want to thank to Department of Biology, Plant Genetics and Tissue Culture laboratory for their great friendship and assistance.

I would like to express my appreciation to Prof.Dr.Orhan ARSLAN, Dr. Çiğdem Alev ÖZEL, my friend Funda ÖZDEMİR DEĞİRMENCİ and her lovely son and all my friends for their endless love and support who made me know that they are always there when I needed.

Finally, I would like to thank my family; my mom Leyla ATEŞ, my dad Uğur ATEŞ, my crazy sister Ayçin ATEŞ, for their love, support and patience over the years. This thesis is dedicated to them.
TABLE OF CONTENT

ABSTRACT .. iv

ÖZ ... vi

ACKNOWLEDGMENTS ... ix

TABLE OF CONTENT ... x

LIST OF TABLES ... xiii

LIST OF FIGURES ... xv

LIST OF ABBREVIATIONS ... xvii

CHAPTERS

1. **INTRODUCTION** ... 1
 1.1 General Review on Pinaceae Family and Genus *Abies* 1
 1.2. Biology of Turkish Firs ... 4
 1.2.1. Natural Distribution of Turkish Firs 4
 1.2.2. Taxonomy of *Abies* spp. in Turkey 9
 1.2.3. Botany of Turkish Firs ... 10
 1.2.4. Importance of Turkish Firs ... 11
 1.3. Molecular Markers and cpDNA of Plants 12
 1.4. Recent Studies in *Abies* spp. .. 13
 1.5. *matK* Gene .. 14
 1.6. Significance of The Study .. 16

2. **OBJECTIVES OF THE STUDY** .. 17
3. MATERIALS AND METHODS .. 18
 3.1 Plant Material .. 18
 3.2. Extraction of DNA from Seeds .. 22
 3.3. DNA Quantification .. 23
 3.4. Selection of matK Primers for The Study 25
 3.5. Optimization of PCR (Polymerase Chain Reaction) Conditions for
 Turkish Firs .. 26
 3.6. Sequencing matK Region of The Chloroplast DNA 29
 3.7. Collection and Analysis of Data ... 30
 3.8. Estimation of Molecular Diversity Parameters and Construction of
 Phylogenetic Trees for Turkish Fir Taxa 32

4. RESULTS ... 33
 4.1. Amplification of the matK Region of the Chloroplast DNA in Turkish
 firs .. 33
 4.2. Sequencing matK Region of the Chloroplast DNA of Turkish Firs . 34
 4.3. Molecular Diversity and Phylogenetic Analysis in the matK Region
 .. 34
 4.3.1. Molecular Diversity Among Abies Species With Respect to matK
 Region .. 34
 4.3.2. Phylogenetic Analysis of Fir Species in The World Based on
 matK1 Region .. 35
 4.4. Phylogenetic Trees .. 39
 4.4.1. Phylogenetic Tree of Turkish firs Based on matK Region 39
 4.4.2. Phylogenetic Tree of Fir Species in the World Based on matK
 Region .. 40

5. DISCUSSION .. 44
 5.1. Molecular Diversity in the matK Region 44
 5.2. The constructed Phylogenetic Trees by Mega 5.0 45
 5.2.1. Phylogeny of the Genus Abies 45
 5.2.2 Phylogeny of Turkish Abies and Closely Related Species 45

6. CONCLUSION .. 48
REFERENCES ... 49

APPENDIXES .. 59

A. An example of chromatogram file 59
B. An example of \textit{matK} sequence 60
LIST OF TABLES

TABLES

Table 3.1 The number of Turkish fir populations included this study. . 19
Table 3.2 Description of studied Turkish Fir populations 21
Table 3.3 Mean DNA concentrations of Turkis fir species.
 A- A. nordmanniana subsp. nordmanniana, B- A. nordmanniana
 subsp. bornmuelleriana, C- A. nordmanniana subsp. equi-trojani, D-
 A. cilicica subsp. isaurica, E- A. cilicica subsp. cilicica, F- Abies x
 olcayana .. 24
Table 3.4 Tested reaction mixtures for matK1 for optimization of PCR
 conditions.. 26
Table 3.5 Tested reaction mixtures for matK2 for optimization of PCR
 conditions.. 27
Table 3.6 Optimized PCR conditions for matK region of chloroplast
 genome of Turkish Firs .. 28
Table 3.7 Optimized thermal cycler program used for amplification of
 matK region of chloroplast genome of Turkish Firs................. 29
Table 3.8 Abies species and their gene bank accession numbers of the
 matK sequences in NCBI data bank.................................. 31
Table 4.1 Estimated molecular diversity parameters for matK gene
 region for Turkish Firs.. 35
Table 4.2 Sequence characteristics of matK1 region of Abies species in
 the world... 36
Table 4.3. Sequence characteristics of partial matK 1 region of Abies
 species in the world .. 37
Table 4.4 Sequence characteristics of partial \textit{matK} 2 region of \textit{Abies} species in the world ... 38
Table 4.5 Materials Used in the Phylogenetic Analysis of \textit{Abies} (Suyama et. al.2000) ... 43
LIST OF FIGURES

FIGURES

Figure 1.1 Distribution map for Abies genera (adapted from Farjon et al. 1990) ... 2

Figure 1.2 General appearance of Fir and some of its features
 A. General appearance (A. bornmuelleriana, Bolu-Kögez), B. Trunk of mature tree, C. One-year old female conelet, D. Male cone (A. nordmanniana, Şavşat-Artvin) (Forest Tree Seeds and Tree Breeding Research Directorate) ... 3

Figure 1.3 General appearance of A. bornmuelleriana and some of its features

Figure 1.4 General appearance of A. equi-trojani and some of its features

Figure 1.5 General appearance of A. cilicica and some of its features

Figure 1.6 General appearance of A. nordmanniana and some of its features

Figure 1.7 Position of matK gene region on chloroplast DNA. (Adapted from Li et al. 1997) ... 15
Figure 3.1 Fir cone (A. nordmanniana subsp. bornmuelleriana, Bolu-Kökez) (Photographs provided by the Forest Tree Seeds and Tree Breeding Research Directorate).

Figure 3.2 Map showing the distribution of Turkish firs and sampled population sites. (Abies cilicica sub.sp. isaurica, Abies cilicica subsp. cilicica, Abies nordmanniana subsp. bornmuelleriana, Abies nordmanniana subsp. equitojani, Abies nordmanniana subsp. nordmanniana, AbiesXolcayana.)

Figure 3.3 The photo showing 2% agarose gel electrophoresis of genomic DNA (pointed with an arrow).

Figure 4.1 Photograph showing the amplified DNA of two matK regions of cpDNA. A is the DNA ladder, B is matK1 with 913bp and C is matK2 with 302bp.

Figure 4.2 Phylogenetic tree was constructed by using neighbor joining method for Abies spp. in Turkey.

Figure 4.3 Phylogenetic tree was constructed by using neighbour joining method for Abies spp. based on matK1 region.

Figure 4.4 Phylogenetic tree was constructed by using neighbour joining method for Abies spp. based on matK2 region.

Figure A.1 An Example of Chromotogram Data.
LIST OF ABBREVIATIONS

- **β-ME**: Beta Mercaptoethanol
- **cpDNA**: Chloroplast DNA
- **CTAB**: Cetyl Trimethyl Ammonium Bromide
- **DNA**: Deoxyribonucleic Acid
- **dNTP**: Deoxyribonucleotide Tri-Phosphate
- **EDTA**: Ethylene Diamine Tetra Acetic acid
- **ETOH**: Ethanol
- **ITS**: Internal Transcribed Spacer Region
- **IUCN**: The World Conservation Union
- **MEGA**: Molecular Evolutionary Genetic Analysis
- **mtDNA**: Mitochondrial DNA
- **matK**: Maturase K
- **NCBI**: National Center for Biotechnology Information
- **NJ**: Neighbour-joining
- **nrDNA**: Nuclear ribosomal DNA
- **OTUs**: Operational Taxonomical Units
- **PCR**: Polymerase Chain Reaction
- **rbcL**: RuBisCo Large subunit
- **SDS**: Sodium Dodecyl Sulphate
- **TE**: Tris EDTA Buffer
- **t-RNA**: Transfer Ribonucleic Acid
- **trnK**: Lysine tRNA,
CHAPTER 1

INTRODUCTION

1.1 General Review on Pinaceae Family and Genus Abies

Pinaceae is the largest family of conifers that includes millions of individuals all over the world. This family is composed of approximately 260 species which naturally occur in temperate forests of the Northern Hemisphere. The ancestors of Pinaceae family were evolved during the Cretaceous Era according to fossil records.

In the Mediterranean Basin, conifer forests were excessively utilized for centuries. Individuals of the family are economically valuable and many species are sources of timber, paper pulp, oils and resins. In addition, some species are used as ornamentals. For that reason, materials from Abies in the Pinecea family are widely used (Esteban et al., 2010).

Abies is the second largest genus of family Pinaceae composing about 51 species, which are natural to the Northern Hemisphere. Abies species are naturally distributed in North America, Central America, Europe, and North Africa, Asia (South China, Himalaya and Taiwan). They mostly prefer the mountainous lands that are boreal and temperate regions of the northern hemisphere (Liu, 1971) (Figure 1.1).
Figure 1.1 Distribution map for Abies genera (Adapted from Farjon et al. 1990)

Abies species are significant for human utilization. Although *Abies* wood is not appropriate for general timber use, most firs’ wood is used as pulp or for the production of plywood and rough timber. Since its wood is indurability to insect or rot after logging, firs are generally used for indoor construction purposes. Nordmann Fir (*Abies nordmanniana*), Noble Fir (*Abies procera*), Fraser Fir (*Abies fraseri*) and Balsam Fir (*Abies balsamea*) are the best choices for christmas tree farming, because of their aromatic foliage and non-spilled needles on drying out. Moreover, many fir species are used in gardens as decorative trees such as, Korean Fir (*Abies koreana*) and Fraser Fir (*Abies fraseri*), due to their brightly colored cones (www.conifers.org, 2010)(Figure 1.2).
Figure 1.2 General appearance of Fir and some of its features A. General appearance (*A. bornmulleriana*, Bolu-Kökez), B. Trunk of mature tree, C. One-year old female conelet, D. Male cone (*A. nordmanniana*, Şavşat-Artvin) (Forest Tree Seeds and Tree Breeding Research Directorate)

For quite a long time, due to the great variability of morphological traits, there was a conflict about the taxonomy of the genus *Abies*. Farjon and Rushforth (1989), has made revisions by using the previous classification schemes that supplied by Liu (1971). Liu (1971) indicated that there are 39 species, 23 varieties and 8 natural hybrids between sympatric species growing in all over the world. On the other hand, more recent classification by Farjon and Rushforth (1989) revealed that *Abies* has as many as 49 species, 23 varieties and 1 natural hybrid.
1.2. Biology of Turkish Firs

1.2.1. Natural Distribution of Turkish Firs

Turkey is located in European-Siberian, Mediterranean and Iran-Turanian Plant Geographic Regions. Therefore, the ratio of the endemism in Turkey is very high. There are almost 10500 taxa and 3500 of them are endemic (Kaya and Raynal, 2001). Fir species are widely dispersed forest tree species in Turkey. Four Abies taxa are naturally found as endemic and evaluated as low risk (LR) species with respect to IUCN categories (Ekim et al., 2000).

Both in high lands in southern latitudes, and lower latitudes even if sea levels in northern latitudes, firs prefer pure or mixed stands (Kayacik 1980; Yältırık and Efe 2000). Firs comprise 3% of the total Turkish forests, covering 626647 ha natural dispersion area. Yearly, about 532913 m³ wood have been harvested from 4712, 3 ha area by approved cuttings (Anonymous 2006).

There are four endemic fir species naturally occurring in Turkey. One of them is Uludağ Fir (Abies nordmanniana (Stev.) subsp. bornmulleriana (Mattf.)(Figure 1.3). The natural range of Uludağ Fir includes both coastal types with durable to moisture (in Zonguldak-Ayancık) and in land type with highly durable to drought (in Kızılırmak-Gerede) (Saatçioğlu, 1976). Its natural distribution area includes Black Sea region from 1000 - 2000 m high and east-south of Marmara region (from Kızılırmak to Uludağ Mountain). This fir occurs as pure and mixed forests with beech, and pine in Uludağ, Köroğlu, Bolu, Ilgaz and Küre Mountains (Saatçioğlu 1976).
Kazdağı Fir (*A. nordmanniana* subsp. *equi-trojani* (Asch. et al. Sint.)) (Figure 1.4) is a narrow endemic species that only occurs in the Kazdağı Mountain in north-west of Turkey at 400 m – 1650 m high (Saatçioğlu, 1969; Vidakovic, 1991). It has a limited distribution covering 3600 ha (Gülbaba et al., 1998). Kazdağı fir naturally occurs and forms stands with different species such as *Quercus* species, Anatolian black pine (*Pinus nigra* Arnold subsp. *pallasiana* (Lamb) Holmboe) and Oriental beech (*Fagus orientalis* Lipsky) (Ata 1975). Because of its growing area and competence of growing faster than other fir
species, is the species is identified as a priority species in breeding programs as a valuable genetic resource (Kaya et al., 1997).

Figure 1.4 General appearance of *A. equi-trojani* and some of its features A. General appearance, B. Trunk of mature tree, C. Needle-like leave, D. One-year old female cone let, E. Male cone (Mamikoğlu, 2007).

Cilician Fir (*Abies cilicica*) is naturally found in Middle Anatolia (Figure 1.5), east Taurus Mountains and Amonos Mountains in Turkey at the elevational range of 1150m- 2000m (Saatçioğlu 1976; Kayacik 1980; Mayer and Aksoy 1988). Cilician fir has two subspecies; i) *Abies cilicica* subsp. *isaurica* Coode & Cullen is an endemic species and exists in western Taurus Mountains.

6

![Figure 1](image1.jpg)

Figure 1.5 General appearance of \textit{A. cili

Nordman Fir (\textit{A. nordmanniana} subsp. \textit{nordmanniana} (Stev.) Spach) (Figure 1.6) grows at 1000 -2000 m altitudes in North Eastern Mountains of Turkey (Liu 1971). This fir species often occurs as pure or mixed stands with other species such as Oriental beech (\textit{Fagus orientalis} Lipsky), Oriental spruce...
(Picea orientalis) and Scots pine (Pinus sylvestris) on southern slopes of the North Eastern Mountains in Turkey (Mattfeld 1928; Kayacik 1980).

Moreover, an exceptional endemic taxon exists in Turkey in Çataldağ area located between Susurluk (Balıkesir) and Mustafa Kemal Paşa (Bursa) at 800 – 1300 m in altitudes (Ata and Merev, 1987). This fir species grows in pure and mixed stands. Although this taxon is morphologically very similar to Kazdağı fir, its pollen characteristics and wood anatomy are different. Moreover, it grows faster than other fir species (Ata and Merev, 1987).

Figure 1.6 General appearance of A. nordmanniana and some of its features A. General appearance, B. Trunk of mature tree, C. Needle-like leave, D. One-year old female conelet, E. Male cone (Mamikoğlu, 2007).
1.2.2. Taxonomy of *Abies* spp. in Turkey

Previous studies used different approaches to classify Turkish Firs. Ata (1975) reported that naturally grown firs around Mediterranean, Europe and Anatolia indicate distinct features with regard to their habitats, external, internal and pollen morphology. For instance, although it was reported by Davis (1965) that Kazdağları fir has buds without resins while the others have resinous buds (Matfeld 1928; Gökmen 1970; Kayacık 1980).

Davis (1965) reported that *A. cilicica* and *A. nordmanniana* can only be separated from each other via their ripen cone characters. Although *A. nordmanniana* bracts are emitted between the cone scales, *A. cilicica* bracts are not. This feature is also parallel with geography. He reported that *A. cilicica* is only exists in south and *A. nordmanniana* exists only in northern Turkey. Therefore; Uludağ and Kazdağları firs are recognized as a subspecies of Nordman fir.

Davis (1965) also reported that if *A. nordmanniana* subsp. *equitrojani* is intervened between *A. nordmanniana* subsp. *bornmulleriana* and *A. cephalonica* from Greece, all replacement fir series from Caucasus to western Europe might be distinguished: *A. nordmanniana* (subsp. *nordmanniana*, -subsp. *bornmulleriana*, -subsp. *equi-trojani*) – *A. cephalonica* – *A. borisii-regis* – *A. alba*.

Moreover Davis (1965) indicated that *A. nordmanniana* species were diagnosed according to morphological characteristics. The following key was provided for diagnosis.
Furthermore Davis (1965) said that two subspecies of *A. cilicica* were identified and they are discriminated by:

1. If leaves are just a little acute; buds are not resinous; young shoots are glabrous, *Abies nordmanniana* subsp. *equi-trojani*
2. If leaves are truncate or emarginate; buds are resinous and / or shoots are hairy
 a) If shoots are hairy; buds are not resinous;.........................
 ..*Abies nordmanniana* subsp. nordmanniana.
 b) If shoots are glabrous; buds are resinous;.........................
 ..*Abies nordmanniana* subsp. bornmulleriana.

Aytuğ (1959a) reported that four species of Turkish firs have very different via internal features such as vascular rays and cell number. Identifying *Abies* species according to their morphological features is very confusing (Aytuğ 1959a; Ata 1975; Bozkuş and Çoban 2006); therefore; the internal morphological characteristics were studied extensively by many researchers (Aytuğ 1959a; Ata 1975; Ata and Merev 1987). For instance, according to Aytuğ (1959a), four fir species are very different from each other especially in terms of cell number and maximum length of vascular rays.

1.2.3. Botany of Turkish Firs

Most of fir species are morphologically alike. They are evergreen, erect, pyramidal and narrow. Except, *Abies nordmanniana*, all fir species have drooped branches. The crown of the tree is vertical. They are resistant to winds and storms. Amount of resinous of buds are changed from species to
species. Generally fir’s needles are 2-3 cm long, green and with 2 white bands underneath and their cones are cylindrical and 12-15 cm in length.

Abies nordmanniana grows about 60 m tall in the Caucasus Mountains. It is conical with a spire-like crown. Even though main branches are horizontal, lower branches are sweeping downwards. Its bark is grayish and smooth when it is young. However it is brownish and rough when it is older. Buds are not resinous, but they are conical-ovate and red-brown. Needles are 2-3 cm long, green and above with 2 white bands underneath; linear and side parallel, their tips are rounded. Cylindrical cones are 14 cm long and tip pointed.

Abies cilicica has a narrow columnar shape with a spire-like crown. Bark is beech grey and buds are not resinous, but ovoid with a conical tip. Leaves are 3 cm long and 2 mm wide and green and with 2 white bands underneath. They have a rounded tip with a tiny notch. Cones are cylindrical with noticeable tapper toward tip and 14 cm long-4 cm wide.

Abies bornmulleriana is rounded conical and broad crown. Young bark is grey and smooth though old bark is rough. Different than other Turkish firs, buds are resinous. Leaves are 2.5-3cm long and have rounded tip like other firs. Cones are 12-15 cm long and 4 cm wide and have turret shape (Warren and Johnson, 1988).

1.2.4. Importance of Turkish Firs

Fir species are very valuable because of their high utilization potential and technological features for timber industry. Their woods are used as raw material for cellulose and paper, for furniture industry since they do not have resin canal. In addition, wood of firs is very soft and light colored (Anşin and Özkan, 1997). Uludağ Fir is especially preferred by Turkish timber industry. The features of heat-treated timber of Uludağ Fir offer many utility areas for timber industry (Yaltirik and Efe, 2000).
Abies cilicica resins are traditionally used as an antiseptic, anti-inflammatory, antipyretic, antibacterial and antiviral medicine and as a chewing gum against some stomach diseases (e.g., ulcer), lip-dryness, asthma and curing wounds (Baytop, 1999).

Nordman fir has a great economical value in forest tree industry and marketing. Because of its evergreen, late scattered leaves this fir species is also used as a Christmas tree in north European countries (Nielsen 1993). Moreover, the leaves of Nordmann Fir has an important feature that they can ensure cheap source as biosorbents for toxic metal removal from natural or waste waters (Serencam et al., 2000).

1.3. Molecular Markers and cpDNA of Plants

The development of molecular markers, suitable for statistical procedures, and user-friendly computer software that applied these statistical procedures permitted the detection of molecular markers associated with quantitative trait loci (QTL) for complex traits. Marker-assisted selection was then offered as a means of exploiting markers related with QTL to develop improved cultivars (Bernardo, 2008).

Molecular marker techniques in forest genetics and tree breeding have developed rapidly. Several types of markers have been used for population genetic analyses (Neale et al., 1992).

The molecular markers are supreme to the previous performed markers which are morphological or biochemical markers. Data which are obtained from molecular analyses are based on the DNA sequences. Therefore; they are neutral to environmental conditions. The polymorphisms which are defined via DNA analyses are highly versatile (Neale et al., 1992). In order to study population genetic analyses, molecular markers are the best tools to understand genetic variability within and between tree populations (Aronen 1995).
There are three main types of DNA sequence data in plants. These are nuclear (nDNA), chloroplast (cpDNA), and mitochondrial (mtDNA) DNAs which are used for genetic studies in plants (Simpson, 2006). The nDNA is not usually utilized in systematic botany due to having mixed and highly repetitive features. Moreover, mtDNA is utilized at species level because there are quick changes in its size, configurations and gene order (Liang, 1997). On the other hand, cpDNA is generally utilized for phylogenetic studies, (Palmer, et al., 1988; Learn, et al., 1992). Typically, chloroplast genomes range in size from 120 to 170 kilobase pairs (kb), and there is a relatively high degree of conservation in size, structure, gene content, and linear order of the genes in land plants (Shaw et. al. 2007). The non-coding parts of cpDNA show high frequency of mutations. Therefore, these parts are generally used in evolutionary-relationship analyses (Taberlet et al., 1991). The cpDNA includes first single copy genes and it is relatively efficient component of plant total DNA. Therefore, it is easy to extract and analyze. Furthermore, chloroplast genome is much more conserved that is very useful in plant systematics and widely used in phylogenetic reconstructions (Liang, 1997).

1.4. Recent Studies in Abies spp.

In order to realize the phylogenetic positions and genetic structure of Abies species, different molecular markers from different genomes are used. ITS (internal transcribed spacer), trn (transfer ribonucleic acid), matK (maturase K), SSRs (Simple sequence repeats), rpoC (RNA polymerase beta prime subunit) and rbcl (ribulose-bisphosphate carboxylase gene) are the most frequently used genes and markers. However, for Turkish Abies species, studies are limited. The first studies were accomplished by Miraboğlu (1955, 1957) and Aytuğ (1958). Şimşek (1992), Gülbaba et al. (1998), Çiçek et al., (2005), Özer (2000), studied isozyme variations in different Abies spp. in Turkey. According to Şimşek (1992), there is not any relationship between Kazdağlı Fir and Uludağ Fir. Kazdağlı Fir is not a hybrid, but a separate species. Moreover, Gülbaba et al. (1998) and Çiçek et al., (2005) studied
Kazdağı Fir and reported that this species is genetically different from other Turkish Firs.

Also, Fady and Conkle (1993) reported that A. alba and A. bornmulleriana have genetically related based on 22 isozyme loci. Scaltsyoianes et al. (1999) studied nineteen natural Mediterranean Fir populations, belonging to eight species (A. alba, A. cephalonica, A. bornmulleriana, A. nordmanniana, A. equi-trojani, A. pinsapo, A. numidica, A. cilicica) and one natural hybrid (A. x borisii-regis) by using starch and polyacrylamide gel electrophoresis. The results indicated new phylogenetic relationships that high genetic similarity was seen both between the Calabrian Fir population and the one from northwest Greece, and between A. equi-trojani grown in Asia Minor and the southern Greek populations.

Some researchers studied phylogenetic relationships of Abies spp using molecular markers. These studies were done with different molecular markers such as trn, matK, rbcl regions of cpDNA and tandem repeats, microsatellites of nDNA and cp DNA (Suyama et al. 2000; Isoda et al. 2000; Kormutak et al. 2004; Ziegenhagen et al. 2005; Cremer et al. 2006; Kaya et al. 2008; Liefelt et al. 2010). Most of them found that Turkish Fir species are genetically very different from other firs. Nordmann fir is separated from three other fir species in northern parts of Turkey; furthermore, studies point out the possibility of an ancestral species.

1.5. matK Gene

There are various studies where matK (maturase K) gene sequence is used in phylogenetic analysis so far. These studies include family, genera and species levels. Previous studies found that the sequences of matK gene in cpDNA are varied among plant species. The matK gene is located in the large single copy region of the chloroplast genome, in the vicinity of one of the inverted repeat regions (Figure 1.7). Mostly, the open reading frame (ORF) of the gene is about 1,500 base pairs (bp) in length (Hilu and Barther,
In angiosperm phylogenetic studies, the *matK* gene has become one of the most used chloroplast markers. As *matK* can easily be co-amplified with the flanking non-coding intron parts, the complete *trnK* intron is increasingly used, expanding the dataset to 2400–2700 bp. Therefore, the utility of this region could be extended to the inter- and intra-species level (Müller and Borsch, 2005a; Wanke et al., 2006). For that reason, *matK* gene supplies researchers with a simple alternative way of recognizing different plant species (www.science20.com, 2011).

![Figure 1.7 Position of *matK* gene region on chloroplast DNA (Adapted from Li et al. 1997).](image)

Rather than any other studied chloroplast genes, the *matK* was indicated to have higher variation. Although, the variation was slightly higher at the 5'term than at the 3' region, approximately even distribution was observed throughout the entire gene. Moreover, the high ratio of transversion (altering from purine to a pyrimidine) or transition in the *matK* gene may provide high phylogenetic knowledge. Therefore, all of these features make *matK* gene be useful in molecular systematic studies (Tanaka et al., 1997). In addition to this, due to its evolutionary theme and steps, *matK* is the most useful gene that used in angiosperm phylogeny (Olmstead and Palmer, 1994; Hilu and Liang, 1997; Hilu et al., 2003). In addition to all, the *matK* gene evolves roughly three times faster than plastid genes *rbcL* and *atpB* (Hilu et al., 2003).
1.6. Significance of The Study

The taxonomic status of Turkish firs is not clear yet. There are some discrepancies that if A. equi-trojani and A. bornmulleriana are different species or subspecies of A. nordmanniana. Moreover, some researchers claim that A. equi-trojani is a hybrid among A. nordmanniana and A. cephalonica (Liu, 1971). Furthermore, A. cilica subsp. isaurica is not accepted as subspecies of A.cilicica. With taxonomic confusion and wide morphological variation, with the expectation that molecular data which has been generated by this study could provide some additional information to explain the relationships within Abies genus further. Moreover, with the advance of molecular markers, it is expected that molecular data can provide new perspectives in construction of new phylogeny. It is now possible to use DNA markers to solve the problems of conservation genetics and plant taxonomy.

This study has undertaken the challenging phylogenetic issue of the Abies taxa distributed in Turkey. Moreover, the study has aimed to shed light further on phylogenetic relationships between Turkish firs and other European, American and Asian fir species.
CHAPTER 2

OBJECTIVES OF THE STUDY

The general objective of the study is to explore the phylogenetic relationships among Turkish Firs as well as the relationship between Turkish firs and other fir species by using matK gene region of cpDNA.

The specific objectives of the study are:

- To obtain molecular diversity data from matK region of cpDNA that may help to solve taxonomic problems of Turkish Firs,
- To provide information on pattern of matK diversity with respect to Turkish firs as well as overall fir species,
- To determine the phylogenetic relationships among Turkish firs and their evolutionary divergence from other European, American and Asian fir species.
CHAPTER 3

MATERIALS AND METHODS

3.1 Plant Material

Open pollinated seeds of six *Abies* taxa (Table 3.1), which were collected from different parts of Turkey by the Forest Tree Seeds and Tree Breeding Research Directorate, Ministry of Environment and Forestry, were utilized in this study (Figures 3.1; 3.2 and 3.3). Seeds were removed from cones and hold in +4°C. These seeds are collected from 20-25 mother trees for every population. All the data that include population’s locations, types, altitude, and latitude were provided by the Forest Tree Seeds and Tree Breeding Research Directorate, Ministry of Environment and Forestry and presented on Table 3.2.
Figure 3.1 Fir cone (*A. nordmanniana* subsp. *bornmuelleriana*, Bolu-Kökez) (Photographs provided by the Forest Tree Seeds and Tree Breeding Research Directorate).

Table 3.1 The number of Turkish fir populations included this study.

<table>
<thead>
<tr>
<th>Studied Abies Species in Turkey</th>
<th>Number of Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies nordmanniana subsp. nordmanniana</td>
<td>3</td>
</tr>
<tr>
<td>Abies nordmanniana subsp. bornmuelleriana (endemic)</td>
<td>5</td>
</tr>
<tr>
<td>Abies nordmanniana subsp. equi-trojani (endemic)</td>
<td>3</td>
</tr>
<tr>
<td>Abies cilicica subsp. isaurica (endemic)</td>
<td>3</td>
</tr>
<tr>
<td>Abies cilicica subsp. cilicica</td>
<td>3</td>
</tr>
<tr>
<td>Abies x olcayana (endemic)</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 3.2 Map showing the distribution of Turkish firs and sampled population sites. ((TIM) Abies cilicica sub.sp. isaurica, Abies cilicica subsp. cilicica, Abies nordmanniana subsp. bornmulleriana, Abies nordmanniana subsp. equitrojani, Abies nordmanniana subsp. nordmanniana, AbiesXolcayana.)
Table 3.2 Description of studied Turkish Fir populations

<table>
<thead>
<tr>
<th>POPULATION CODES</th>
<th>Taxon</th>
<th>Population</th>
<th>Type</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude(m)</th>
<th>Geographic exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN1</td>
<td>A. nordmanniana subsp. nordmanniana</td>
<td>Artvin-Ortaköy</td>
<td>Seed Stand</td>
<td>41°16'37"</td>
<td>41°57'47"</td>
<td>1600</td>
<td>N</td>
</tr>
<tr>
<td>ANN2</td>
<td>A. nordmanniana subsp. nordmanniana</td>
<td>Mesudiyê-Arpaalan</td>
<td>Seed Stand</td>
<td>40°20'40"</td>
<td>37°51'40"</td>
<td>1850</td>
<td>N-NW</td>
</tr>
<tr>
<td>ANN3</td>
<td>A. nordmanniana subsp. nordmanniana</td>
<td>Artvin-Yayla</td>
<td>Seed Stand</td>
<td>41°13'25"</td>
<td>42°27'20"</td>
<td>1800</td>
<td>N</td>
</tr>
<tr>
<td>ANB1</td>
<td>A. nordmanniana subsp. bornmuelleriana</td>
<td>Uludağ Milli Parkı</td>
<td>Seed Stand</td>
<td>40°07'04"</td>
<td>29°07'35"</td>
<td>1600</td>
<td>N</td>
</tr>
<tr>
<td>ANB2</td>
<td>A. nordmanniana subsp. bornmülleriana</td>
<td>Akyazı-Dokurcun</td>
<td>Seed Stand</td>
<td>40°37'30"</td>
<td>30°51'00"</td>
<td>1300</td>
<td>SW-SE</td>
</tr>
<tr>
<td>ANB3</td>
<td>A. nordmanniana subsp. bornmuelleriana</td>
<td>Bolu-Kökez</td>
<td>Seed Stand</td>
<td>40°39'05"</td>
<td>31°36'56"</td>
<td>1300</td>
<td>N-W</td>
</tr>
<tr>
<td>ANB4</td>
<td>A. nordmanniana subsp. bornmuelleriana</td>
<td>Karabük-Sarıçiçek</td>
<td>Seed Stand</td>
<td>41°20'30"</td>
<td>32°36'24"</td>
<td>1500</td>
<td>N-NE</td>
</tr>
<tr>
<td>ANB5</td>
<td>A. nordmanniana subsp. bornmuelleriana</td>
<td>Bursa-Baraklı</td>
<td>Natural Stand</td>
<td>39°52'03"</td>
<td>28°21'10"</td>
<td>700</td>
<td>NW</td>
</tr>
<tr>
<td>ANE1</td>
<td>A. nordmanniana subsp. equi-trajani</td>
<td>Edremit-Gürgendağı</td>
<td>Seed Stand</td>
<td>39°45'48"</td>
<td>26°57'50"</td>
<td>1300</td>
<td>S</td>
</tr>
<tr>
<td>ANE2</td>
<td>A. nordmanniana subsp. equi-trajani</td>
<td>Kalkım-Eybekli (GKO)</td>
<td>Gene Conservation Forest</td>
<td>39°42'35"</td>
<td>27°07'42"</td>
<td>950</td>
<td>W</td>
</tr>
<tr>
<td>ANE3</td>
<td>A. nordmanniana subsp. equi-trajani</td>
<td>Çan-Çan (GKO)</td>
<td>Gene Conservation Forest</td>
<td>39°56'00"</td>
<td>27°05'33"</td>
<td>750</td>
<td>E</td>
</tr>
<tr>
<td>ACI1</td>
<td>A. cilicica subsp. isaurica</td>
<td>Akseki-Akseki(Kuyucak)</td>
<td>Seed Stand</td>
<td>37°06'51"</td>
<td>31°46'52"</td>
<td>1350</td>
<td>NE</td>
</tr>
<tr>
<td>ACI2</td>
<td>A. cilicica subsp. isaurica</td>
<td>Bucak-Uğurlu</td>
<td>Seed Stand</td>
<td>37°19'52"</td>
<td>30°37'41"</td>
<td>1200</td>
<td>N-W</td>
</tr>
<tr>
<td>ACI3</td>
<td>A. cilicica subsp. isaurica</td>
<td>Bucak-Y.Bademli</td>
<td>Natural Stand</td>
<td>37°19'52"</td>
<td>30°37'41"</td>
<td>1200</td>
<td>N-W</td>
</tr>
<tr>
<td>ACC1</td>
<td>A. cilicica subsp. cilicica</td>
<td>Saimbeyli-Tufanbeyli</td>
<td>Natural Stand</td>
<td>37°19'52"</td>
<td>30°37'41"</td>
<td>1200</td>
<td>N-W</td>
</tr>
<tr>
<td>ACC2</td>
<td>A. cilicica subsp. cilicica</td>
<td>Göksun-Göksun</td>
<td>Natural Stand</td>
<td>37°06'51"</td>
<td>31°46'52"</td>
<td>1350</td>
<td>NE</td>
</tr>
<tr>
<td>ACC3</td>
<td>A. cilicica subsp. cilicica</td>
<td>Tarsus-Cehennemdere</td>
<td>Natural Stand</td>
<td>37°06'51"</td>
<td>31°46'52"</td>
<td>1350</td>
<td>NE</td>
</tr>
<tr>
<td>AXO</td>
<td>Abies x olcayana (GKO)</td>
<td>MKP-Paşa</td>
<td>Gene Conservation Forest</td>
<td>39°52'03"</td>
<td>28°21'10"</td>
<td>700</td>
<td>NW</td>
</tr>
</tbody>
</table>
3.2. Extraction of DNA from Seeds

For this study, 5 parent trees were selected for each population. About 20-25 seeds per parent tree were used for every population.

For extracting DNA from seeds, Cetyl Trimethyl Ammonium Bromide (CTAB) method developed by Doyle and Doyle in 1990, was applied to embryonic tissues. The steps of DNA extraction were as follows (Figure 3.5);

1. Seeds were soaked in distilled water at 4°C for 48 hours before excising and removing seed coat and endosperm.
2. Then, the megagametophyte of each seed was carefully dissected away and preserved separately at -20°C for potential subsequent analysis.
3. After that, embryos were homogenized in 200 μl CTAB (0.1 M Tris HCl pH: 8.0, 0.1 M EDTA, 0.25 M NaCl) in 1.5 ml Eppendorf tubes. After homogenization, they were subjected to 600 μl of preheated CTAB and vortexed. Homogenized tissues were incubated for about 1 hour at 65°C in water bath.
4. As the duration of incubation gets longer, isolated DNA becomes purer since it helps solubilization of lipids and protein dissociation from DNA. The tubes were centrifuged at 14 000 rpm for 20 minutes and then, supernatant was transferred to clean microfuge tubes and mixed with 500 μl chloroform – octanol (24:1) solution to denature proteins and inactivate DNAse.
5. By the centrifugation at 14 000 rpm for 15 min, resulting solution consists of two phases; one aqueous phase which contains the DNA and a lower chloroform phase that contains some damaged proteins, lipids, and many secondary compounds. The aqueous phase, which is clear and colorless, is taken to a new centrifuge tube and 600 μl cold isopropanol solution was added to precipitate the DNA.
6. The tubes were placed at -80°C for at least 60 min.
7. After then, centrifugation at 14 000 rpm for 20 min was performed, the supernatant was discarded and the pellet was washed twice with 70% ice-cold ethanol to remove chemical residues.

8. The pellets were left to dry at room temperature and re-suspended in 50 μl TE buffer to solve DNA.

9. The DNA samples were stored at -20°C. DNA presence was detected by 2% agarose gel electrophoresis (Figure 3.3).

After the DNA extraction, the presence and quality of extracted DNAs were checked by loading sample DNAs into %2 agarose gels. Then, quality checked DNAs were stored at -20°C in eppendorf tubes until they were used (Figure 3.3).

![Figure 3.3 The photo showing 2% agarose gel electrophoresis of genomic DNA (pointed with an arrow).](image)

3.3. DNA Quantification

Although the sample size was less than 25 in some populations, generally, about 20 to 25 DNA samples from every population of Turkish firs species were measured with Gene Quant pro RNA/DNA Calculator Spectrophotometer (manufactured by Biochrom Ltd, England, and October 2001). This instrument uses cuvettes. First, cuvette was filled 2 ml of ultra pure water and measurement was recorded and necessary calibration of the
instrument made. After the calibration, 1990 µl pure water and 10 µl DNA sample were put into cuvette for DNA quantification. The results of DNA measurements were given in Table 3.3. The DNA samples with maximum DNA concentrations were used in this study.

Table 3.3 Mean DNA concentrations of Turkis fir species. A- A. nordmanniana subsp. nordmanniana, B- A. nordmanniana subsp. bornmuelleriana, C- A. nordmanniana subsp. equi-trojani, D- A. cilicica subsp. isaurica, E- A. cilicica subsp. cilicica, F- Abies x olcayana

<table>
<thead>
<tr>
<th></th>
<th>DNA Concentration ng/µL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>A) A. nordmanniana subsp. nordmanniana</td>
<td></td>
</tr>
<tr>
<td>Sample Size</td>
<td>Mean±SD*</td>
</tr>
<tr>
<td>Artvin-Ortaköy (ORT)</td>
<td>11</td>
</tr>
<tr>
<td>Mesudiye-Arpaalan (ARP)</td>
<td>25</td>
</tr>
<tr>
<td>Artvin-Yayla (YTL)</td>
<td>14</td>
</tr>
<tr>
<td>(n=3) Total</td>
<td>50</td>
</tr>
<tr>
<td>B) A. nordmanniana subsp. bornmuelleriana</td>
<td></td>
</tr>
<tr>
<td>Sample Size</td>
<td>Mean±SD*</td>
</tr>
<tr>
<td>Uludağ Milli Parkı (UMP)</td>
<td>20</td>
</tr>
<tr>
<td>Akyazı-Dokurcun (DKC)</td>
<td>21</td>
</tr>
<tr>
<td>Bolu-Kökez (KKZ)</td>
<td>20</td>
</tr>
<tr>
<td>Karabük-Sarıçık (SCK)</td>
<td>21</td>
</tr>
<tr>
<td>Bursa-Baraklı (BRL)</td>
<td>25</td>
</tr>
<tr>
<td>(n=5) Total</td>
<td>107</td>
</tr>
<tr>
<td>C) A. nordmanniana subsp. equi-trojani</td>
<td></td>
</tr>
<tr>
<td>Sample Size</td>
<td>Mean±SD*</td>
</tr>
<tr>
<td>Edremit-Gürgendaği (GGD)</td>
<td>20</td>
</tr>
<tr>
<td>Kalkım-Eybekli (EYB)</td>
<td>25</td>
</tr>
<tr>
<td>Çan-Çan (CAN)</td>
<td>21</td>
</tr>
<tr>
<td>(n=3) Total</td>
<td>66</td>
</tr>
</tbody>
</table>
Table: 3.3 (Continue)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D)</td>
<td>A. cilicica subsp. isaurica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akseki-Akseki (AKS)</td>
<td>25</td>
<td>2665±205</td>
<td>290</td>
</tr>
<tr>
<td>Bucak-Uğurlu (UGL)</td>
<td>25</td>
<td>1811±116</td>
<td>597</td>
</tr>
<tr>
<td>Bucak-Y.Bademli (BDL)</td>
<td>25</td>
<td>3125±86</td>
<td>1213</td>
</tr>
<tr>
<td>(n=3)</td>
<td>Total</td>
<td>75</td>
<td>2534±544</td>
</tr>
</tbody>
</table>

E)	*A. cilicica* subsp. *cilicica*				
Saimbeyli-Tufanbeyli (TFB)	25	2625±82	561	4054	
Göksun-Göksun (GKS)	25	1849±119	181	4941	
Tarsus-Cehennemde (CHD)	25	2390±50	760	4181	
(n=3)	Total	75	2288±325	1849	2625

F)	*Abies x olcayana*				
MKP-Paşalar (MKP)					
(n=1)	Total	25	1426±34	652	3095

*SD=Standard deviation

3.4. Selection of matK Primers for The Study

Although many *matK* primers which were identified from different studies (Suyama et al., 2000, Gadek et al., 1996, Wang et al, 1999, Li et al., 1997), two sets of primers that were designed in Primer3 design program by Gulsoy (2010) were adapted for this study since they yielded the best DNA amplification in the PCR (Polymerase Chain Reaction).

The primer sequences are:

matK 1-Forward Primer (Fmat1) : 5' GATCCTGTATCTTTTGCCAGGA 3'
Reverse Primer (Rmat1) : 5' GAACCTTTCGTCGCTGGAT 3'
matK 2-Forward Primer (Fmat2) : 5' CTTTCCGGGACGACAATAATC 3'
Reverse Primer (Rmat2) : 5' CGAGCTTCTGTTTCCTCGTT 3'
3.5. Optimization of PCR (Polymerase Chain Reaction) Conditions for Turkish Firs

25 µl of reaction volume which included MgCl₂, dNTP (deoxyribonucleotide triphosphate) mixture, primers, and template DNA’s was used for the optimization of PCR conditions. In Table 3.4, for matK1 and Table 3.5 for matK2, the tested reaction mixture combinations were shown, respectively. The optimized conditions were indicated in bold characters in these tables.

Table 3.4 Tested reaction mixtures for matK1 for optimization of PCR conditions

<table>
<thead>
<tr>
<th>#</th>
<th>dH₂O (µl)</th>
<th>10X Buffer</th>
<th>MgCl₂ (50mM)</th>
<th>dNTP (mM)</th>
<th>Primer Pairs (10 µM)</th>
<th>Taq DNA polymerase (5u/µl)</th>
<th>DNA (5ng/µl)</th>
<th>PCR result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.5µl</td>
<td>3.0µl</td>
<td>2.0µl</td>
<td>2.0µl</td>
<td>1.0µl + 1.0µl</td>
<td>0.30µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
<tr>
<td>2</td>
<td>13.5 µl</td>
<td>3.0µl</td>
<td>2.0µl</td>
<td>2.0µl</td>
<td>1.50 µl + 1.50µl</td>
<td>0.30µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
<tr>
<td>3</td>
<td>14.20µl</td>
<td>3.0µl</td>
<td>2.5µl</td>
<td>2.0µl</td>
<td>1.0µl + 1.0µl</td>
<td>0.30µl</td>
<td>1µl</td>
<td>Good Amplification</td>
</tr>
<tr>
<td>4</td>
<td>10.50µl</td>
<td>3.0µl</td>
<td>3.0µl</td>
<td>2.0µl</td>
<td>2.50µl + 2.50µl</td>
<td>0.30µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
<tr>
<td>5</td>
<td>12.50µl</td>
<td>3.0µl</td>
<td>3.0µl</td>
<td>2.0µl</td>
<td>1.50µl + 1.50µl</td>
<td>0.30µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
<tr>
<td>6</td>
<td>16.50µl</td>
<td>3.0µl</td>
<td>2.0µl</td>
<td>1.0µl</td>
<td>0.50µl + 0.50µl</td>
<td>0.30µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
<tr>
<td>7</td>
<td>15.50µl</td>
<td>3.0µl</td>
<td>3.0µl</td>
<td>2.0µl</td>
<td>1.0µl + 1.0µl</td>
<td>0.30µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
</tbody>
</table>
Table 3.5 Tested reaction mixtures for matK2 for optimization of PCR conditions

<table>
<thead>
<tr>
<th>#</th>
<th>dH2O (µl)</th>
<th>10X Buffer (Fermentas, Ontario, Canada)</th>
<th>MgCl2 (50mM) (Fermentas, Ontario, Canada)</th>
<th>dNTP (mM)</th>
<th>Primer Pairs (10 µM)</th>
<th>Taq DNA polymerase (5u/µl)</th>
<th>DNA (5ng/µl)</th>
<th>PCR results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.80µl</td>
<td>3.0µl</td>
<td>1.5µl</td>
<td>1.0µl</td>
<td>0.75µl + 0.75µl</td>
<td>0.20µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
<tr>
<td>2</td>
<td>15.80µl</td>
<td>3.0µl</td>
<td>1.75µl</td>
<td>1.25µl</td>
<td>1.0µl + 1.0µl</td>
<td>0.20µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
<tr>
<td>3</td>
<td>14.80µl</td>
<td>3.0µl</td>
<td>2.0µl</td>
<td>1.5µl</td>
<td>1.25µl + 1.25µl</td>
<td>0.20µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
<tr>
<td>4</td>
<td>13.80µl</td>
<td>3.0µl</td>
<td>2.25µl</td>
<td>1.75µl</td>
<td>1.50µl + 1.50µl</td>
<td>0.20µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
<tr>
<td>5</td>
<td>12.80µl</td>
<td>3.0µl</td>
<td>2.50µl</td>
<td>2.0µl</td>
<td>1.75µl + 1.75µl</td>
<td>0.20µl</td>
<td>1µl</td>
<td>Good amplification</td>
</tr>
<tr>
<td>6</td>
<td>11.80µl</td>
<td>3.0µl</td>
<td>2.75µl</td>
<td>2.25µl</td>
<td>2.0µl + 2.0µl</td>
<td>0.20µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
<tr>
<td>7</td>
<td>14.30µl</td>
<td>3.0µl</td>
<td>1.25µl</td>
<td>1.5µl</td>
<td>2.25µl + 2.25µl</td>
<td>0.20µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
<tr>
<td>8</td>
<td>14.30µl</td>
<td>3.0µl</td>
<td>1.0µl</td>
<td>1.0µl</td>
<td>2.50µl + 2.50µl</td>
<td>0.20µl</td>
<td>1µl</td>
<td>No amplification</td>
</tr>
</tbody>
</table>

Because of 50µL PCR reaction volume is required for sequence analysis, the *matK* 1 and *matK2* reaction mixtures which were optimum for PCR amplification were adjusted to 50µL volume (Table 3.6). The adjusted reaction mixtures were used again for PCR in the thermal cycler (Eppendorf-Mastercycler, Eppendorf, Canada) machines to get the *matK* sequences. The PCR cycling programmes were tested and the optimized one was given in Table 3.7. Approximately 5µl of each PCR product were uploaded to %1.0 agarose gel with 5µg ethidium bromide in order to see PCR products as the DNA band. The electrophorases was carried out with 1XTBE buffer and run
at 90 volts for 30 minutes. Then, the gel product was visualized via gel imaging system (Vilbor Lourmat, France).

Table 3.6 Optimized PCR conditions for *matK* region of chloroplast genome of Turkish Firs

<table>
<thead>
<tr>
<th>PCR contents</th>
<th>matK1</th>
<th></th>
<th>matK2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume used in PCR (μL)</td>
<td>Final Concentration</td>
<td>Volume used in PCR (μL)</td>
<td>Final Concentration</td>
</tr>
<tr>
<td>PCR Grade Water</td>
<td>28.4</td>
<td>NA</td>
<td>25.6</td>
<td>NA</td>
</tr>
<tr>
<td>10X PCR Buffer</td>
<td>6.0</td>
<td>1X</td>
<td>6.0</td>
<td>1X</td>
</tr>
<tr>
<td>MgCl2 (50mM stock)</td>
<td>5.0</td>
<td>2.5 mM</td>
<td>5.0</td>
<td>2.5 mM</td>
</tr>
<tr>
<td>dNTP (10mM of each dNTP)</td>
<td>4.0</td>
<td>0.4 mM</td>
<td>4.0</td>
<td>0.4 mM</td>
</tr>
<tr>
<td>Forward primer (10μM)</td>
<td>2.0</td>
<td>1 μM</td>
<td>3.5</td>
<td>4 μM</td>
</tr>
<tr>
<td>Reverse primer (100μM)</td>
<td>2.0</td>
<td>1 μM</td>
<td>3.5</td>
<td>4 μM</td>
</tr>
<tr>
<td>Taq DNA polymerase (5u/μL)</td>
<td>0.6</td>
<td>0.5u</td>
<td>0.4</td>
<td>0.5u</td>
</tr>
<tr>
<td>DNA</td>
<td>2</td>
<td>10 ng/μL</td>
<td>2</td>
<td>10 ng/μL</td>
</tr>
<tr>
<td>Total Volume</td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.7 Optimized thermal cycler program used for amplification of \textit{matK} region of chloroplast genome of Turkish Firs

<table>
<thead>
<tr>
<th>\textit{matK} regions</th>
<th>Temperature (°C)</th>
<th>Duration</th>
<th>Number of Cycle</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{matK1}</td>
<td>94</td>
<td>5 minutes</td>
<td>1</td>
<td>Initial denaturation</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>1 minutes</td>
<td>30</td>
<td>Internal denaturation</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1 minutes</td>
<td></td>
<td>Annealing</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>2 minutes</td>
<td></td>
<td>Extension</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>3 minutes</td>
<td>1</td>
<td>Final Extension</td>
</tr>
<tr>
<td>\textit{matK2}</td>
<td>94</td>
<td>3 minutes</td>
<td>1</td>
<td>Initial denaturation</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>1 minutes</td>
<td>30</td>
<td>Internal denaturation</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>1 minutes</td>
<td></td>
<td>Annealing</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>2 minutes</td>
<td></td>
<td>Extension</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>7 minutes</td>
<td>1</td>
<td>Final Extension</td>
</tr>
</tbody>
</table>

3.6. Sequencing \textit{matK} Region of The Chloroplast DNA

PCR products that have amplified \textit{matK} region of cpDNA were stored at -20°C. For sequencing the \textit{matK} region, both forward and reverse primers were applied. Before analysing the sequences, PCR purification process was performed. All purification and sequencing of samples were done by Refgen Biotechnology, METU Teknokent, Ankara. In sequence analysis, ABI 310 Genetic Analyser User’s Manual was followed and sequencing was
performed using the Big Dye Cycle Sequencing Kit (Applied Biosystems) with ABI 310 Genetic Analyser (PE applied Biosystem) automatic sequencer. For purification of PCR product Nucleospin Extract Kit (Clontech Laboratories, Inc.) was used.

With the help of 4 primers, matK region was amplified as two parts. Chromotogram data of these parts were aligned visually by the help of Finch TV Version 1.4.0 developed by the Geopiza Research Team (Patterson et al., 2004-2006). After collecting all data, both forward and reverse sequences of each sample were aligned in Multiple Alignment (algorithm) and the accuracy of bases were controlled manually or with a computer program. If there is any incoherence between the two sequences, the sample has been disregarded from the analysis or replaced with the new sequences.

3.7. Collection and Analysis of Data

Molecular diversity parameter-estimations and phylogenetic analyses were conducted by using MEGA 5 (Molecular Evolutionary Genetics Analysis Version 5) (Kumar et al.2008). The sequences were converted into Fasta format and the gaps were indicated with “-“. The “N” was put for the unreadable bases. It was found that, the analysed sequences were shorter than unprocessed sequence, because the beginning and the end of the sequences were not clear enough for analyses so the both ends were trimmed. The unreliability of these parts is the reason for shortening. The quality of sequencing decreases dramatically at the beginning and at the end of the sequencing by using automatic sequencing systems.

Both matK1 and matK2 regions of Abies spp., which were studied from worldwide, were searched from NCBI (National Center for Biotechnology Information, 2011) database. Therefore, both Abies species that are found in Turkey and in the world were analysed comparatively in order to explain the relationships of Abies spp with respect to matK region in cpDNA.
The *Abies* species and their gene bank accession numbers of the *matK* sequences, which were available from the NCBI database, were as follows (Table 3.8).

Table 3.8 Abies species and their gene bank accession numbers of the matK sequences in NCBI data bank.

<table>
<thead>
<tr>
<th>Species name</th>
<th>Gene bank accession numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies alba</td>
<td>HQ619823</td>
</tr>
<tr>
<td>Abies hidalgensis</td>
<td>EU269026.1</td>
</tr>
<tr>
<td>Abies bracteata</td>
<td>AF456365.1</td>
</tr>
<tr>
<td>Abies holophylla</td>
<td>AF143441.1</td>
</tr>
<tr>
<td>Abies firma</td>
<td>AF143436.1</td>
</tr>
<tr>
<td>Abies numidica</td>
<td>AB019864.1</td>
</tr>
<tr>
<td>Abies veitchii</td>
<td>AB029669.1</td>
</tr>
<tr>
<td>Abies sibirica</td>
<td>AB029668.1</td>
</tr>
<tr>
<td>Abies sachalinensis</td>
<td>AB029667.1</td>
</tr>
<tr>
<td>Abies nephrolepis</td>
<td>AB029666.1</td>
</tr>
<tr>
<td>Abies mariesii</td>
<td>AB029665.1</td>
</tr>
<tr>
<td>Abies lasiocarpa</td>
<td>AB029664.1</td>
</tr>
<tr>
<td>Abies koreana</td>
<td>AB029663.1</td>
</tr>
<tr>
<td>Abies homolepis</td>
<td>AB029662.1</td>
</tr>
<tr>
<td>Abies fraseri</td>
<td>AB029660.1</td>
</tr>
<tr>
<td>Abies fargesii</td>
<td>AB029658.1</td>
</tr>
<tr>
<td>Abies fabri</td>
<td>AB029657.1</td>
</tr>
</tbody>
</table>
3.8. Estimation of Molecular Diversity Parameters and Construction of Phylogenetic Trees for Turkish Fir Taxa

Based on similarities and differences in genetic and physical features of species, evolutionary interrelationships of species could be revealed by constructing phylogenetic trees. Especially for genetic similarity and differences, phylogenetic trees were drawn according to some parameters. Conserved sites, variable sites, parsimony informative sites and singleton sites are the parameters that were used while drawing the phylogenetic trees. Based on these parameters tree drawing programs could draw the trees with different methods.

There are two types of phylogenetic trees that could be constructed. The first one is rooted tree which is believed that there is a common ancestor. It is shown with a unique node. The second type of phylogenetic tree is unrooted tree which the ancestor of the species is not important. Unrooted tree indicates the relationships like leaf nodes without an ancestor. Generally unrooted trees are made from rooted ones by simplifying the root part.

In bioinformatic techniques, neighbor joining (NJ) method is a bottom-up clustering method for the creation of phenetic trees. This method is created by Naruya Saitou and Masatoshi Nei (1987). It is usually used for trees based on DNA or protein sequence data. The algorithm of the method is to construct the topology of a tree. Moreover, the NJ method provides not only the topology, but also the branch lengths of the final tree. Saitou and Nei (1987) found that different than the standard algorithm for minimum-evolution trees, the NJ method minimizes the sum of branch lengths at each stage of clustering of OTUs starting with a starlike tree. Therefore, the final tree produced may not be the minimum-evolution tree among all possible trees. Their data indicated that the NJ method is quite efficient compared with other tree-making methods that produce a single parsimonious tree.

In this study the phylogenetic tree was constructed by MEGA software version 5 (Kumar et. al. 2008).
4.1. Amplification of the *matK* Region of the Chloroplast DNA in Turkish firs

The selected primers for the *matK* regions of cpDNA of Turkish firs yielded clear single and good quality bands. The fragments which were amplified by the primer pairs of *matK1* and *matK2* were chosen for sequencing (Figure 4.1).

![Figure 4.1](image)

Figure 4.1 Photograph showing the amplified DNA of two *matK* regions of cpDNA. A is the DNA ladder, B is *matK1* with 913bp and C is *matK2* with 302bp.
4.2. Sequencing \textit{matK} Region of the Chloroplast DNA of Turkish Firs

Sequencing procedure was described in chapter 3 and according to this procedure sequencing of \textit{matK} region was performed. Furthermore, the purified sequence products were run on \%2 polyacrylamide gel (Visible Genetics Automated Sequencing System). The quality of the sequence data was high. Therefore, there were no problems of determination of the DNA bases from the chromatogram data (see Appendix A).

4.3. Molecular Diversity and Phylogenetic Analysis in the \textit{matK} Region

4.3.1. Molecular Diversity Among \textit{Abies} Species With Respect to \textit{matK} Region

Generally, the length of the \textit{matK} region is around 1500-1800bp. In this study, partial \textit{matK} region was sequenced. In the beginning, it was expected that the primers, using in this study, would cover the sequenced of both \textit{matK1} and \textit{matK2} spacer regions. However, the amplified region from both \textit{matK} regions was 1215bp in length. The sequenced \textit{matK} region was partial in Turkish Firs since the sequenced length is less than the expected size of 1500bp.

In the sequence analyses, total length of partial \textit{matK} region is found to be 1215bp with \%35.2 GC content. According to the results, there is no difference among \textit{matK} sequences of Turkish firs. All 1215 bp site is conserved and there were no variable sites, parsimony – informative sites and singleton sites. The first part of \textit{matK} sequence (\textit{matK1}) was 913bp long while the \textit{matK2} was 302bp long in this study. The GC content of the first part is 38.7\% and the GC content of the second part of \textit{matK} region is 36\% (Table 4.1).
Table 4.1 Estimated molecular diversity parameters for matK gene region for Turkish Firs.

<table>
<thead>
<tr>
<th>Molecular diversity parameters</th>
<th>Total</th>
<th>matK 1</th>
<th>matK 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Length (bp)</td>
<td>1215</td>
<td>913</td>
<td>302</td>
</tr>
<tr>
<td>GC content (%)</td>
<td>35.2</td>
<td>38.7</td>
<td>36</td>
</tr>
<tr>
<td>Conserved sites</td>
<td>1215</td>
<td>913</td>
<td>302</td>
</tr>
<tr>
<td>Variable sites</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Singleton sites</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parsimony informative sites</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4.3.2. Phylogenetic Analysis of Fir Species in The World Based on matK1 Region

In the world, there are 51 Abies species. However, there are only 17 species in which matK1 regions were studied. The sequences for the matK1 region were obtained from the NCBI databank in order to compare the phylogenetic relationships between Turkish firs and the other fir species of the World. With the sequences from databank, molecular diversity parameters were comparatively obtained and provided Table 4.2.

The sequence lengths were not equal because there are only a few studies with complete matK region while the others had partial matK sequences. Therefore, while analysing the sequences overlapped sequences were used. After analysing the overlapped sequences, it was found that for matK1 region which was 615 bp in length, GC content of these species was 34.5. Moreover, conserved sites were 607 and variable sites were 8. There were 3 singleton sites and 5 parsimony informative sites. The, transition/transversion bias (R) was 3.279.
Table 4.2 Sequence characteristics of *matK1* region of *Abies* species in the world

<table>
<thead>
<tr>
<th>Molecular diversity parameters</th>
<th>All studied Abies species in the world (matK1 region)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Length (bp)</td>
<td>615</td>
</tr>
<tr>
<td>GC content (%)</td>
<td>34.5</td>
</tr>
<tr>
<td>Conserved sites</td>
<td>607</td>
</tr>
<tr>
<td>Variable sites</td>
<td>8</td>
</tr>
<tr>
<td>Singleton sites</td>
<td>3</td>
</tr>
<tr>
<td>Parsimony informative sites</td>
<td>5</td>
</tr>
<tr>
<td>Transitional pairs</td>
<td>21.68</td>
</tr>
<tr>
<td>Transversional pairs</td>
<td>78.32</td>
</tr>
<tr>
<td>Transition / TransversionBias(R)</td>
<td>3.279</td>
</tr>
</tbody>
</table>

When Turkish fir species compared to other species of which sequences were getting from NCBI database, it is clearly seen that Turkish firs are separated from most of other fir species according to partial *matK1* region. In Table 4.3 some features of the compared sequences were shown. Although Turkish firs are well separated from other fir species (*A.bracteate, A.fargesii, A.lasiocarpa, A.fraseri, A.hidalgensis, A.alba, A.numidica, A.holophylla, A.nephrolepis, A.homolepis, A.vetchii, A.sachalinensis, A.fabri, A.sibirica, A.firma, A.mariesii, A.koreana*) in the World, European *Abies* species seemed to be closer to Turkish firs based on partial *matK1* region. There were only 3 singleton sites between Turkish firs and European firs.
Table 4.3. Sequence characteristics of partial *matK* 1 region of *Abies* species in the world

	North America+ Turkey	Europe + Turkey A.lasiocarpa	Europe + Turkey A.fraseri	Asia+ Turkey A.alba A.hidalgensis Turkish Firs A.alba A.numidica Turkish Firs A.holophylla A.libocedrus A.libocedrus A.larbrensis A.sabina A.fabri A.sibirica A.veitchii A.sachalinensis A.fabri A.koreana Turkish Firs														
Total Length (bp)	913	615	615	615	615	615	615	615	615	615	615	615	615	615	615			
GC content (%)	36	34.6	34.5	34.4	34.4	34.4	34.4	34.4	34.4	34.4	34.4	34.4	34.4	34.4	34.4			
Conserved sites	913	610	612	608	608	608	608	608	608	608	608	608	608	608	608			
Variable sites	none	5	3	7	7	7	7	7	7	7	7	7	7	7	7			
Singleton sites	none	1	3	5	5	5	5	5	5	5	5	5	5	5	5			
Parsimony informative sites	none	4	none	2	none	2	none	2	none	2	none	2	none	2	none	2	none	2
Transitional pairs	33.33	33.48	64.56	10.53	10.53	10.53	10.53	10.53	10.53	10.53	10.53	10.53	10.53	10.53	10.53			
Transversional pairs	66.67	66.52	35.44	89.47	89.47	89.47	89.47	89.47	89.47	89.47	89.47	89.47	89.47	89.47	89.47			
When Turkish fir species compared to other species with respect to *matK2* regions, it was clearly seen that Turkish firs were separated from other fir species. However, in NCBI database, complete *matK* regions were available for only 3 *Abies* species (A.veitchii, A.firma and A.holophylla from Asia) were studied. In Table 4.3, some features of the compared sequences were shown. The overlapped sequences were 252 bp in length. Based on these sequences there were 2 variable sites, of 1 singleton and 1 parsimony informative sites.

Table 4.4 Sequence characteristics of partial *matK* 2 region of *Abies* species in the world

<table>
<thead>
<tr>
<th></th>
<th>Turkish Firs</th>
<th>A.holophylla</th>
<th>A.veitchii</th>
<th>A.firma</th>
<th>Turkish Firs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Length (bp)</td>
<td>302</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC content (%)</td>
<td>36</td>
<td>38.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conserved sites</td>
<td>302</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable sites</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singleton sites</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parsimony informative sites</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.4. Phylogenetic Trees

4.4.1. Phylogenetic Tree of Turkish firs Based on matK Region

Genetic distances among all samples of Tukish firs were computed using Mega 5.0 computer software. Since there was no diversity among samples of a given species, therefore, the phylogenetic tree was constructed by choosing only one representative individual from species. The phylogenetic tree which was constructed via neighbor joining method was given in figure 4.2. The bootstrap values and branch lengths were provided on the tree. In order to see the separation clearly, *Tsuga diversifolia* was used as outgroup from the Pinaceae family (genebank accession number is EF395589.1). All Turkish firs with the partial matK region produced a single cluster as expected.

![Phylogenetic tree](image)

Figure 4.2 Phylogenetic tree was constructed by using neighbor joining method for *Abies* spp. in Turkey
4.4.2. Phylogenetic Tree of Fir Species in the World Based on matK Region

The phlogenetic tree in Figure 4.3 that constructed via neighbor joining method with bootstrap test analyses indicated the divergence of fir species in the world based on partial matK1 region. According to this tree, it was seen that Abies species were divided into 3 major clades and Turkish firs formed a monophylogenetic group with one European species (A.numidica). Furthermore other fir species remained in other main branches.

Except Turkish firs, in the phylogenetic tree, there were 2 other main clades. The first main clade was composed of mostly Asian firs, except A.lasiocarpa and A.fraseri, from North America. In other main clade, A.mariesii , from Japan, formed one sub-clade and A.hidalgensis, A.bracteata, from North America and A.alba, from Europe, formed second sub-clade; however they remained in the same branch.

According to partial matK2 region, different phylogenetic tree (Figure 4.4) was constructed by using neighbour joining method. In this tree, it is clearly seen that Turkish firs were well separated from other Asian fir species, A.veitchii, A.firma and A.holophylla.

Farjon (1990) and Liu (1971) were classified firs differently than our phylogenetic classifications based on morphologic features (Table 4.4). According to the differences between classifications, our phylogenetic tree indicated that the distributions of Firs in the world are not important for grouping of firs in the same branch.
Figure 4.3 Phylogenetic tree was constructed by using neighbour joining method for *Abies* spp. based on matK1 region.
Figure 4.4 Phylogenetic tree was constructed by using neighbour joining method for *Abies* spp. based on *matK2* region
Table 4.5 Materials used in the phylogenetic analysis of *Abies* (Suyama *et al.*2000)

<table>
<thead>
<tr>
<th>Species</th>
<th>Section by Liu (1971)</th>
<th>Section by Farjon(1990)</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. nordmanniana subsp. nordmanniana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. nordmanniana subsp. bornmuelleriana (E)</td>
<td>Abies</td>
<td>Abies</td>
<td>Turkey</td>
</tr>
<tr>
<td>A. nordmanniana subsp. equi-trojani (E)</td>
<td>Abies</td>
<td>Abies</td>
<td></td>
</tr>
<tr>
<td>A. cilicica subsp. isaurica (E)</td>
<td>Abies</td>
<td>Abies</td>
<td></td>
</tr>
<tr>
<td>A. cilicica subsp. cilicica</td>
<td>Abies</td>
<td>Abies</td>
<td></td>
</tr>
<tr>
<td>Abies x olcayana</td>
<td>Abies</td>
<td>Abies</td>
<td></td>
</tr>
<tr>
<td>Abies alba</td>
<td>Abies</td>
<td>Abies</td>
<td>Europe</td>
</tr>
<tr>
<td>Abies fargesii</td>
<td>Elateopsis</td>
<td>Pseudopicea</td>
<td>Asia</td>
</tr>
<tr>
<td>Abies fabri</td>
<td>Elateopsis</td>
<td>Pseudopicea</td>
<td>Asia</td>
</tr>
<tr>
<td>Abies holopylla</td>
<td>Homolepides</td>
<td>Momi</td>
<td>Asia</td>
</tr>
<tr>
<td>Abies homolepis</td>
<td>Homolepides</td>
<td>Momi</td>
<td>Asia</td>
</tr>
<tr>
<td>Abies firma</td>
<td>Momi</td>
<td>Momi</td>
<td>Asia</td>
</tr>
<tr>
<td>Abies sibirica</td>
<td>Pichta</td>
<td>Balsamae</td>
<td>Asia</td>
</tr>
<tr>
<td>Abies sachalinensis</td>
<td>Elate</td>
<td>Balsamae</td>
<td>Asia</td>
</tr>
<tr>
<td>Abies veitchii</td>
<td>Elate</td>
<td>Balsamae</td>
<td>Asia</td>
</tr>
<tr>
<td>Abies koreana</td>
<td>Elate</td>
<td>Balsamae</td>
<td>Asia</td>
</tr>
<tr>
<td>Abies nephrolepis</td>
<td>Elate</td>
<td>Balsamae</td>
<td>Asia</td>
</tr>
<tr>
<td>Abies fraseri</td>
<td>Balsamae</td>
<td>Balsamae</td>
<td>North America</td>
</tr>
<tr>
<td>Abies lasiocarpa</td>
<td>Balsamae</td>
<td>Balsamae</td>
<td>North America</td>
</tr>
<tr>
<td>Abies maressii</td>
<td>Homolepides</td>
<td>Amabilis</td>
<td>Japan</td>
</tr>
<tr>
<td>Abies numidica</td>
<td>Piceaster</td>
<td>Piceaster</td>
<td>Europe</td>
</tr>
</tbody>
</table>

*E: Endemic
5.1. Molecular Diversity in the *matK* Region

Due to the indels (insertion and deletion of bases), *matK* region of Turkish firs was obtained partially as 1215 bp in this study. For *matK* region this length is shorter than it was reported previously by others. For instance, Wang *et al.* (2000) found that *matK* region was 1551bp in length on Pinecea family. However, Suyuma *et al.* (2000) reported a partial *matK* region with 615bp in length. Due to different length of *matK* region, higher variation is possible.

In the sequence analyses, for Turkish Firs, total length of partial *matK* region is found to be 1215bp with %36 GC content. According to the results, there was no difference between sequences of Turkish firs, so there are no variable sites, conserved sites, parsimony – informative sites and singleton sites.

Although there was no divergence between Turkish firs, phylogenetic positions of Turkish firs, according to partial *matK* region, was shown in this study. Based on *matK1* region, Turkish firs were closer to European Firs; however, they were distant to Asian and North American firs. Furthermore, according to *matK2* region, Turkish firs were distant to Asian fir species.
5.2. The constructed Phylogenetic Trees by Mega 5.0

5.2.1. Phylogeny of the Genus *Abies*

Although many taxonomists have suggested different classification of *Abies*, the most recent classification was done by Liu (1971) and Farjon and Rushforth(1989) and Farjon (1990). Due to the difficulties of classifying *Abies*, the classifications differ in many aspects.

In this study, the *matK* region of the cpDNA was used in order to determine the phylogenetic relationships of the 6 *Abies* species (*A.nordmannianan subsp.nordmanniana*, *A.nordmanniana* subsp. *bornmulleriana*, *A.nordmanniana* subsp. *equi-trojani*, *A.cilicica* subsp. *isaurica*, *A. cilicica subsp. cilicica and AbiesX olcayana*) in Turkey. However, by using neighbour joining method together with bootstrap test analyses, it was apparent from the phlogenetic tree that all Turkish firs were formed a monophyletic group with no sequence divergence. This indicates that *matK* region has been well conserved among Turkish Firs, suggesting the presence of single ancestral chloroplast lineage. Results of this study were supported Şimşek (1992). Şimşek reported that there were not any difference between *A.nordmannianan subsp.nordmanniana* populations and other Turkish Firs.

5.2.2 Phylogeny of Turkish *Abies* and Closely Related Species

All the available sequences of *matK* regions of *Abies* species in the world were acquired from NCBI database (2011) and analyzed to determine the phylogenetic position of Turkish firs species within the genus.

The conventional system which was proposed by Liu (1971) and Farjon (1990) is shown in Table 4.4. One of the most important results is that the placement of Turkish fir species is in a single clade. The *matK* region data supported this that Turkish firs are forming single clade and very closely related with European *Abies* species. Fady and Conkle (1993) reported that
A. alba seemed genetically closer to A. nordmanniana subsp. bornmulleriana based on 22 loci using horizontal starch gel electrophoresis. In our phylogenetic tree, A. numidica from Europe were formed in the same clade with Turkish firs, so that our results confirm Fady and Conkle (1993) that both Turkish firs and European firs have similar genetic background.

Furthermore, Scaltsoyiannes et al. (1999) reported that 19 natural Mediterranean fir populations which belong to 8 species (A. alba, A. cephalonica, A. bornmulleriana, A. nordmanniana, A. equitrojani, A. pinsapo, A. numidica, A. cilicica) and one natural hybrid (A. X borisii-regis), had some similarities. They reported that high genetic similarity was observed between calabrian Fir population and north-west Greece as well as between A. cephalonica found in southern Greece and A. equitrojani in Asia Minor.

Suyuma et al. (2000) reported that according to rbcl sequences, A. nordmanniana, A. numidica, A. pinsapo, A. nebrodensis, and A. alba consisted in one branch with no variation. However, based on matK region those species (A. nordmanniana, A. numidica, A. nebrodensis and A. alba) were stayed in different branches that showed in Figure 4.3

Moreover, Ziegenhagen et al. (2005) reported that Western Mediterranean species were different that Eastern Mediterranean Firs. They indicated that A. bornmulleriana and A. equitrojani had similar haplotypes with A. nordmanniana and A. cephalonica according to the usage of primers nad5-4 intron region of mtDNA. Our results also supported this that there is high genetic similarity among Abies species in Turkey.

There were other studies dealing with firs. Paruducci and Szmidt (1999) found that genome of cpDNA was highly variable in their PCR-RFLP analyses in European Firs. Moreover, Isoda et. al (2000) reported that A. alba and A. nordmanniana were possessed TRT (Tandem repeat type): CB, and according to TRT, these species were different from other 16 Abies species. Due to lack of genetic variability in the matK region of Turkish Firs in our
study, our results did not support these studies based on matK region of Abies species.

Moreover, Kaya et al.(2008) reported that according to genetic similarity and distance values of Turkish Firs, those species were genetically well differentiated. In addition to Kaya et al. (2008), Hansen et al.(2005) concluded that 15 Abies nordmanniana populations which are originating from Caucasian region, were genotyped for 3 chloroplast microsatellites also one mitochondrial marker. As a result, they said that although mitochondrial marker indicated no variation, chloplast microsatellites were highly variable. In addition to these studies, Liepelt et al. (2010) also concluded that western Mediterranean A.pinsapo and A.numidica were definitely separated from each other according to chloroplast DNA markers.

Consequently, based on the DNA types (cpDNA, mtDNA, nDNA) or type of markers (rbcl, matK, trn, ITS, SSR, etc.) and length of useable sequenced regions, the different results were obtained in each study. Therefore, our results were different than other studies.
CHAPTER 6

CONCLUSION

The main goal of this study was to obtain gain genetic data from matK gene region of cpDNA of Turkish firs to provide additional information to clarify the taxonomic status of Turkish Firs.

Partial matK gene of Turkish Fir species was found to be about 1215bp in length in this study. Turkish Fir taxa had identical sequences where there were no variable sites. This is the first study using matK gene for Turkish Firs. Furthermore, it was revealed that this region is not suitable for differentiation of Turkish fir species.

Although there were no variable sites in matK region of Turkish Firs, the phylogenetic trees constructed with the matK sequences from all available fir species revealed that results were compatible with Liu (1971) and Farjon (1990)’s classification. They placed the Turkish Fir species in section Abies. However, the results further indicated that Turkish Firs differed greatly from other fir species in the world, but closer to European Firs.

Consequently, it can be said that matK region of Turkish Fir species is highly conserved. Therefore, the sequence data of matK region of Turkish firs did not help to resolve the classification problems of Abies species in Turkey, but it may be useful for phylogenetic analysis of the genus Abies. For better resolving data for classification of Abies species, more informative regions of cpDNA and nDNA should be studied in the future.
REFERENCES

Liu, T. S. 1971. A monograph of the genus Abies. Department of Forestry, College of Agriculture, National Taiwan University, Taipei, Taiwan, ROC, 608 pp.

APPENDIXES

Appendix A

An Example of Chromotogram Data

Figure A.1 An Example of Chromotogram Data
Appendix B

An Example of matK Sequence

A.nordmanniana sub.sp. nordmanniana

TTCGTTCTCTCTGTAaCGGGTCGCTGCTTTTGAGAAAAATTTTTGAAAGGTTTCTG
GACCTAATTCTCTCGGAACTACACGTATCGTACTTTTATGTATACAGGCT
AAAGTTTTAGCACATGTAATGGAATAGTATAATATTTATACGGTATAAAAACCA
TCTCGATCAAGGGAATCCACTGTAGTAATGAAAAATTTTTCCAAATTCG
ATCAGATCGATCGAGGATATCATCATCTGTTAGACTAGTCCAATACCATTT
TATAATTTGCGCCTGTGATGTCACATAATTTTTCTGTAGCCAAATAT
CCAATTTATGGTACATCGGAACTATTGGATCAATTCATCGGTAATAAG
ATCGGTAATAATAACTCATTAGTACATCGTTTTGGTGCTGACCAGAAGAGGTT
TCATCCGAACTCCCTCGGAAATAACCTAAAGAAGAGAACAATCTTTGGAT
AATTGATGAGACATACCCCTATATGTGTTGCCGAAAAGATGGAATAAAA
TTGCCGAAAATTGAAAGATGATCCTACTACATTTTTCTACTAGGAGATGAG
TACCCCTTATAGCTATAATAGATCTTTCTGCAATATCTACATAGTGAATTCC
TAGATCCTCCCTCAACGACCAAGATACATCTTTCTGTGCTTCCGATTTGCTGAGATT
CTGAATAATGTGGTAGCTTTCTGATCAAATGAGGCTGATCAGGGAAGAGA
TCCATGAGACAACGAGGTCGTTGAGAAAGATGCTTTAGAAATTGAAATTCTG
GACATTCCGATAANNNNCAATGGAACGGACCCAGGAATTTTCCTGTAGAGA
TCCGAAGGCAAGGCGATTTGGGACAAGATAAGAAATAAAATATATATATCC
GGATATTTGATTCTATATAATTTCAACAGATTTACTACCAAGGATCTC
ATTCTGCTAGGAGGAACCAAGAAAATCTTTATCCTGGCGACGGATCGCT
CTCCTGGACTCATGGGAAATCAACCTGGTCAAGTCACTATTTTACCTTTAC
ACATTTTGATCGAGTACCTAGGACTATTGCTGAGTGAATATACCCGAT
CTACTCGGGAAAAACCTCCTCGA