
1

IMPLEMENTING AND EVALUATING THE COORDINATION LAYER AND
TIME-SYNCHRONIZATION OF A NEW PROTOCOL FOR INDUSTRIAL

COMMUNICATION NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ULAŞ TURAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2011

Approval of the thesis:

IMPLEMENTING AND EVALUATING THE COORDINATION LAYER AND

TIME-SYNCHRONIZATION OF A NEW PROTOCOL FOR INDUSTRIAL

COMMUNICATION NETWORKS

submitted by ULAŞ TURAN in partial fulfillment of the requirements for the degree of Master
of Science in Electrical and Electronics Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen
Head of Department, Electrical and Electronics Engineering

Asst. Prof. Dr. Şenan Ece Schmidt
Supervisor, Electrical and Electronics Eng. Dept.

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Şenan Ece Schmidt
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt Bazlamaçcı
Electrical and Electronics Engineering Dept., METU

Yusuf Bora Kartal
M.Sc. ASELSAN A.Ş.

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: ULAŞ TURAN

Signature :

iii

ABSTRACT

IMPLEMENTING AND EVALUATING THE COORDINATION LAYER AND
TIME-SYNCHRONIZATION OF A NEW PROTOCOL FOR INDUSTRIAL

COMMUNICATION NETWORKS

Turan, Ulaş

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Asst. Prof. Dr. Şenan Ece Schmidt

September 2011, 78 pages

Currently automation components of large-scale industrial systems are realized with dis-

tributed controller devices that use local sensor/actuator events and exchange shared events

with communication networks. Fast paced improvement of Ethernet provoked its usage in in-

dustrial communication networks. The incompatibility of standard Ethernet protocol with the

real-time requirements encouraged industry and academic researchers to provide a resolution

for this problem. However, the existing solutions in the literature suggest a static bandwidth

allocation for each controller device which usually leads to an inefficient bandwidth use. Dy-

namic Distributed Dependable Real-time Industrial Communication Protocol (D3RIP) family

dynamically updates the necessary bandwidth allocation according to the messages generated

by the control application. D3RIP is composed of two protocols; interface layer that provides

time-slotted access to the shared medium based on an accurate clock synchronization of the

distributed controller devices and coordination layer that decides the ownership of real-time

slots. In this thesis, coordination layer protocol of D3RIP family and the IEEE 1588 time

synchronization protocol is implemented and tested on the real hardware system that resem-

iv

bles a factory plant floor. In the end, we constructed a system that runs an instance of D3RIP

family with 3ms time-slots that guarantees 6.6ms latency for the real-time packets of control

application. The results proved that our implementation may be used in distributed controller

realizations and encouraged us to further improve the timing constraints.

Keywords: Industrial communication, real-time, distributed computation, Ethernet

v

ÖZ

ENDÜSTRİYEL HABERLEŞME AĞLARI İÇİN GELİŞTİRİLEN PROTOKOLÜN
KOORDİNASYON KATMANININ VE EŞZAMANLAMASININ GERÇEKLENMESİ VE

DEĞERLENDİRİLMESİ

Turan, Ulaş

Yüksek Lisans, Elektrik ve Elektronik Mühendislig̈i Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Şenan Ece Schmidt

Eylül 2011, 78 sayfa

Günümüzdeki büyük ölçekli endüstriyel sistemlerdeki otomasyon bileşenlerinde bulunan dağıtılmış

kontrolcular algılayıcı/eyleyici gibi yerel sinyallerin yanı sıra haberleşme ağları üzerinden

geçen ortak sinyaller de içermektedirler. Hızla gelişen Ethernet protokolü endüstriyel haberleşme

ağlarında da kullanılmaktadır. Standart Ethernet prokolünün gerçek zamanlı haberleşmeye

olanak sağlamadığından çeşitli önerilerle bu sorun aşılmaya çalışılmıştır. Bu konudaki mevcut

öneriler kontrol uygulamarının ağ kapasite kullanımlarını gerçek dışı varsayımlara dayandırmaktadır.

Dinamik Dağıtılmış Güvenilir Gerçek Zamanlı Endüstriyel İletişim Protokolü (D3RIP) ailesi

ağ kapasitesi tahsisini kontrol uygulamalarından gelen mesajlarla dinamik olarak güncellemektedir.

D3RIP iki protokolden oluşmaktadır: arayüz katmanı paylaşılan ortama dağıtılmış kontrolcu-

ların eşzamanlanmasını temel alarak zaman-dilimli erişimi sağlarken koordinasyon katmanı

gerçek zamanlı dilimlerin sistemdeki sahibini belirlemektedir. Bu tezde, D3RIP ailesine ait

koordinasyon katmanı ve IEEE 1588 eşzamanlama protokolü gerçekleştirilmiş ve gerçek do-

nanımlarla test edilmiştir. Son olarak oluşturduğmuz sistem 3ms zaman-dilimleriyle çalışıp

gerçek zamanlı paketler için 6.6ms altında gecikmeyi garanti etmiştir. Bu sonuçlar yaptığımız

vi

gerçekleştirmenin dağıtılmış kontrol sistemleri için kullanılanılabileceğini göstermiştir.

Anahtar Kelimeler: Endüstriyel haberleşme, gerçek zamanlılık, dağıtılmış hesaplama, Ether-

net

vii

To My Parents

viii

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor Asst. Prof. Dr. Şenan Ece

Schmidt who gave me the opportunity to do this thesis on the topic Industrial Communication

Networks. I am heartily thankful to Klaus Schmidt for his assistance throughout my work.

My special thanks goes to TÜBITAK for financing the project and providing me the chance

to visit University of Erlangen in Germany. It was a very kind of Prof. Thomas Moor from

University of Erlangen to invite me to the Control Department and assisting me to complete

the integration process. My colleague Ahmet Korhan Gözcü had great support for my thesis

study from the beginning, I am thankful for him. I would like to special reference for my

employer, ASELSAN for encouraging me to complete my studies in the university. Finally,

I would also like to thank my parents and friends who helped me a lot in finishing this thesis

work within the limited time.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGEMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS AND ACRONYMS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 REAL-TIME INDUSTRIAL COMMUNICATION PROTOCOLS 5

3 PROPERTIES OF THE CONTROL APPLICATIONS THAT MOTIVATE
THE DESIGN OF D3RIP . 11

3.1 Supervisor Synthesis in Discrete Event Systems 11

3.2 Example System Consisting of Two Supervisors: 12

3.3 Communication Model: . 13

4 D3RIP OVERVIEW . 16

4.1 Interface Layer . 17

4.1.1 Generic Interface Layer Model 17

4.1.2 Real-time Access Interface Layer (RAIL) 20

4.1.3 Time-slotted Interface Layer (TSIL) 21

4.2 Coordination Layer . 22

4.2.1 Generic Coordination Layer Model 23

4.2.2 Dynamic Allocation Real-time protocol (DART) 24

4.2.3 Urgency-Based Real-time Protocol (URT) 25

x

5 REAL-TIME OPERATING SYSTEMS and REALTIME LINUX 27

5.1 Real-Time Operating System Fundamentals 27

5.2 Measuring the Real-Time Performance: 32

5.3 Realtime Linux Operating System 32

5.3.1 Basics Of Linux Operating System 32

5.3.2 Realtime Linux Kernel 33

5.3.3 Configure and Build Realtime Linux Kernel 33

5.3.4 Programming with Realtime Linux 35

6 TIME SYNCHRONIZATION PROTOCOL IMPLEMENTATION 37

6.1 Available Time Synchronization Techniques 37

6.2 System Clock . 39

6.2.1 Hardware Clock Sources 39

6.2.2 User Space Access to Clock Source 41

6.3 IEEE 1588 Time Synchronization Protocol 42

6.3.1 Clock Servo . 44

6.3.2 Time-Stamping Mechanism 46

6.4 Time Synchronization Performance 49

6.4.1 Analyzing The Factors That Affect Synchronization Accu-
racy . 49

6.4.2 Synchronization Performance for the Overall System . . . 52

7 COORDINATION LAYER PROTOCOL IMPLEMENTATION 55

7.1 Object Oriented Design for Coordination Layer 55

7.2 Generic Coordination Layer Model 56

7.2.1 Communication with the Control Application 57

7.2.2 Communication with Interface Layer 58

7.3 DART . 59

7.4 URT . 61

7.4.1 Priority Queue . 62

8 INTEGRATING THE COMMUNICATION RELATED INFORMATION INTO
THE CONTROL APPLICATION . 64

8.1 Communication of Shared Events 64

xi

8.1.1 Integrating the Control Application With URT 65

8.1.2 Integrating the Control Application With DART 66

9 EXPERIMENTS AND RESULTS . 67

9.1 Interprocess Communication Latency Experiment 67

9.1.1 Communication Latency with Control Application Process 68

9.1.2 Communication Latency with Interface Layer 68

9.2 Complete Operation of the Distributed Controller System Experiment 70

9.2.1 Operation of The Distributed Control System Example . . 70

9.2.2 Experimental Results for the Distributed Control System
Example . 73

10 CONCLUSION . 75

REFERENCES . 77

xii

LIST OF TABLES

TABLES

Table 6.1 Synchronization Offset Values for Same System Clock Hosts, Direct Con-

nection . 50

Table 6.2 Latency Caused by the Hub . 50

Table 6.3 Synchronization Offset Values for Same System Clock Hosts, Connected

over Hub . 51

Table 6.4 Synchronization Offset Values for Different System Clocks, Direct Connection 52

Table 6.5 Synchronization Offset Values for PC1 . 53

Table 6.6 Synchronization Offset Values for PC2 . 53

Table 6.7 Synchronization Offset Values for Embedded Platform 54

Table 9.1 Latency Measurement for Real-Time Messages 73

xiii

LIST OF FIGURES

FIGURES

Figure 1.1 Implemented Part of the D3RIP Protocol Stack 3

Figure 2.1 Communication Layers in Industrial Networks 7

Figure 2.2 Real-Time Ethernet with Additional Medium Access Layer 10

Figure 3.1 Operation of a Simple Machine . 12

Figure 3.2 Logical Behavior of Supervisor G1 . 13

Figure 3.3 Logical Behavior of Supervisor G2 . 13

Figure 3.4 Communication Model for Controller G1 15

Figure 3.5 Communication Model for Controller G2 15

Figure 4.1 D3RIP Protocol Architecture . 16

Figure 4.2 Typical Time Slot . 19

Figure 4.3 IL Model as a TIOA . 19

Figure 4.4 CL Model as a TIOA . 24

Figure 5.1 Process States in RTOS . 29

Figure 5.2 Ready List . 29

Figure 5.3 Configuration I . 34

Figure 5.4 Configuration II . 35

Figure 6.1 Comparison of Time Synchronization Protocols 39

Figure 6.2 PTP Messages . 43

Figure 6.3 Clock Servo Diagram . 45

Figure 6.4 Possible Timestamp Locations . 47

xiv

Figure 6.5 Synchronization Offset Distribution for Same System Clock Hosts, Direct

Connection . 50

Figure 6.6 Synchronization Offset Distribution for Same System Clock Hosts, Con-

nected over Hub . 51

Figure 6.7 Synchronization Offset Distribution for Different System Clocks, Direct

Connection . 51

Figure 6.8 Synchronization Offset Distribution for PC1 52

Figure 6.9 Synchronization Offset Distribution for PC2 53

Figure 6.10 Synchronization Offset Distribution for Embedded Platform 53

Figure 7.1 Coordination Layer UML Class Diagram 56

Figure 7.2 Interfaces Used and Provided by Coordination Layer 57

Figure 7.3 Coordination Layer Sequence Diagram 57

Figure 7.4 Control Application Message Contents 58

Figure 7.5 Contents of the DART Message . 61

Figure 7.6 Contents of the URT Message . 62

Figure 9.1 Communication Latency with Control Application using non-RTOS 68

Figure 9.2 Communication Latency with Control Application using RTOS 69

Figure 9.3 Communication Latency with Interface Layer using non-RTOS 69

Figure 9.4 Communication Latency with Interface Layer using RTOS 69

Figure 9.5 Experimental Setup . 71

xv

LIST OF ABBREVIATIONS AND ACRONYMS

ADO Allocation Data Object

API Application Programming Interface

CL Coordination Layer

CRC Cyclic Redundancy Check

CSMA/CD Carrier sense multiple access with collision detection

D3RIP Dynamic Distributed Dependable Real-time Industrial communication Pro-

tocol family

DART Dynamic Allocation Real-time Protocol

DES Discrete Event System

FPGA Field Programmable Gate Array

HPET High Precision Event Timer

IL Interface Layer

IPC Industrial PC

IRQ Interrupt Request

ISR Interrupt Service Routine

MAC Medium Access Control

xvi

nRT non-Real Time

NIC Network Interface Controller

NTP Network Time Protocol

OSADL Open Source Automation Development Labs

OSI Open System Interconnection

PLC Programmable Logic Controller

POSIX Portable Operating System Interface for Unix

PTP Precise Time Protocol

RT Real Time

RTC Real Time

RTE Real Time Ethernet

RTOS Real Time Operating System

SM Shared Medium

TCB Task Control Block

TDMA Time Division Multiple Access

TIOA Timed Input Output Automata

TSC Time Stamp Counter

TSIL Time Slotted Interface Layer

URT Urgency-based Real-time Protocol

xvii

CHAPTER 1

INTRODUCTION

Communication networks are commonly used at all organizational levels of industrial automa-

tion systems in the process control and manufacturing industry. They enable the coordination

of the distributed supervisors with the exchange of local signals such as sensor or actuator

data on either device or machine level.

Industrial communication networks provide a transmission medium for the signals of dis-

tributed supervisors. These supervisors have to send their messages within a specified dead-

line, consequently they are identified as real-time (RT) messages. These deadlines may vary

depending on the control application needs; typically they are in the order of 10 ms and can

be under 1 ms for closed-loop control applications. In addition, non real-time (nRT) messages

may exist to serve as a diagnostic monitoring or maintenance. Those messages do not have a

strict timing constraints.

The previous implementation of industrial communication protocols are all based on propriety

fieldbuses. However, fieldbuses are not expandable and they are costly to operate as different

corporations have fieldbuses incompatible with each other. Moreover, it is not practical to

increase the network speed as the whole system has to be replaced with a new one. In con-

trast, Ethernet is a standard protocol that is highly available in home and office environments.

Currently the available data rate for Ethernet is 100Gbps and it increases periodically.

Accordingly, the current trend is to employ Ethernet for industrial communication because

of its high speed and low cost. However, the standard Ethernet (IEEE 802.3) cannot provide

a real-time response for packet transmission because of the non-deterministic carrier sense

multiple access with collision detection CSMA/CD arbitration algorithm. Therefore various

Ethernet-based solutions are proposed with an additional RT support mechanism.

1

Studies in industry and academia proposed varying approaches for the development of Real-

Time Ethernet (RTE). Those proposals are either making some modifications and additions

to the network protocol stack of the conventional Ethernet protocol or employing switches

with certain scheduling policies and traffic shaping. Most control applications requires proper

synchronization of the controllers with some synchronization algorithm such as IEEE 1588

which also runs on Ethernet. A common drawback of the solutions in first category is that

they provide real-time support on Ethernet by a static configuration of the possible sending

instants or allocation of RT-bandwidth for each networked controller device. The problem

with the switched implementation is the queueing delays in those switches, that undermines

the synchronization accuracy. The delay may even grow up by cascaded switches. Next, those

buffers in the switches have a limited capacity that may yield loss of packets in some cases.

In this thesis the implementation and experimental evaluation of Dynamic Distributed De-

pendable Real-Time Industrial communication Protocol (D3RIP) [19], an Ethernet- based in-

dustrial communication protocol is presented. It consists of an interface layer that implements

time division multiple access (TDMA) on top of the shared medium, and a coordination layer,

that decides a unique controller for RT slots. D3RIP dynamically allocates bandwidth to the

RT messages with the information enclosed in the control application messages.

The implementation of D3RIP presented in this thesis includes the coordination layer pro-

tocol family, time synchronization protocol and integration with the control application. In

Figure 1.1 shaded parts illustrate the work done on the D3RIP protocol stack. Before begin-

ning programming the specified modules, we first configured each element of our system to

run Realtime Linux with the best possible capabilities. The Linux kernel configuration was

modified to allow real-time preemption and high-resolution timers were enabled. During the

programming part, all the overheads that might be a possible source of latency were elimi-

nated. In order to enable RT performance, paging was disabled, certain processes were given

RT priorities and the use of global variables was avoided.

Coordination layer protocol implementation is carried out with an object-oriented software

design. This enables further extension of this protocol without much effort in the future. In

particular, two different versions of the coordination layer (DART and URT) were realized.

The required priority queue within the coordination layer protocol is implemented by a binary

heap structure together with a binary search algorithm which limited the computational cost of

2

queue operations to O(log(N)). Control application and the coordination layer were both re-

siding on the user-space; thus implementing the interface was straightforward with a message

queue. We used the control application libFAUDES [2] which is provided as an open-source

project. We made a collaboration with the developer of libFAUDES and integrated the control

application to send the real-time messages with required parameters for the coordination layer

protocol. Two versions of the interface layer of D3RIP (RAIL and TSIL) were developed by

Korhan [1] within the kernel space. In cooperation with Korhan, the interface layer and the co-

ordination layer were integrated. The difficulty of this step was that communication between

the user-space and the kernel-space was required. Using a character device as an interfacing

communication medium, the interprocess communication latency could be kept within the

limits of the RT operating system. The implementation of IEEE 1588 time synchronization

protocol and the clock servo that is used while accessing the system clock is based on the

open-source project [3] and I further extended it utilizing the features of real-time operating

system. There are no examples in the literature that are using a time-synchronization protocol

running on a time-slotted Ethernet implementation. This potential delay impairs the accuracy

of the resulting time synchronization. Time synchronization application sends non real-time

packets to the interface layer, thus those packets may remain on the queue for some time if

there are real-time packets to be sent. Consequently, we provide an additional interface be-

tween the IEEE 1588 application and the interface layer to make corrections on the acquired

timestamps for outgoing packets.

Ethernet PHY

Network

Ethernet MAC

Interface Layer: RAIL/TSIL

Coordination Layer:
URT/DART

IP

TCP/UDP

nRT Traffic: Other
Applications

RT Traffic: Control
application /other RT

applications
trafficzamanlı trafik

nRT Traffic: IEEE
1588

Figure 1.1: Implemented Part of the D3RIP Protocol Stack

3

The remaining of the thesis is organized as follows. In Chapter 2 we describe the communica-

tion needs for control applications and review available industrial communication protocols.

Chapter 3 reasons the design of the D3RIP from control application communication needs.

This chapter will be followed by a definition and specification of D3RIP family. Before going

into the implementation details, real-time operating systems and specifically Realtime Linux

will be discussed in Chapter 5. Implementation details of IEEE 1588 time synchronization

protocol is included in Chapter 6. Coordination layer protocol which is belonged to the D3RIP

family is implemented as given in Chapter 7. Then, we give brief implementation details for

the integration of coordination layer protocol with the communication requests contained in

the control application in Chapter 8. Chapter 9 contains the experiments and discussion about

measurement results. Finally, Chapter 10 concludes the thesis.

4

CHAPTER 2

REAL-TIME INDUSTRIAL COMMUNICATION PROTOCOLS

Industrial control systems contain several components: sensors, Programmable Logical Con-

trollers (PLC), Industrial PCs (IPC) and actuators [4]. These components coordinate through

a networked communication. Increase in the demand of the industrial control applications re-

sulted in larger and more complex control systems. . Consequently, industrial communication

protocols drew more attention and it became an important industrial and academic research

topic. Several industrial communication protocols were proposed within the last two decades

[4],[5],[6],[7].

Industrial communication protocols distinguish messages for their purpose and they can be

classified as follows: (Figure 2.1)

• T1: It involves the communication of the controllers with the equipments (sensors or

actuators). Generally, the received data is periodic and requires to be delivered ac-

cording to time constraints. Example: controller receives the speed data from a speed

sensor, and sends the output current level to the actuator.

• T2: Supervisory control message provide the communication between system compo-

nents that are at different hierarchical levels according to the hierarchical organization

of the controllers and the controlled systems. These messages are usually triggered by

occurrence of some events which makes them sporadic. Supervisory control messages

require deterministic response times. For instance, a controller that controls two ma-

chines may send a message for the second machine when the first machine completes

its current job.

• T3: Diagnostic messages provide the remote coordination of the control system. These

5

messages do not need strict response times and are often generated as a consequence of

some events.

There are four requirements to realize the given communication messages:

• Real-Time traffic transfer: When a node prepares a real-time message (T1 and T2), it

should be transferred before a specified deadline.

• Synchronized communication: All nodes should be synchronized with a common time-

base to accomplish the transfer of real-time messages (T1 and T2).

• Dependability: There should be a dependability support for the possible faults or fail-

ures in the industrial control application.

• Support for non real-time traffic: These messages should be transferred over the net-

work without a degradation in the real-time messages.

While satisfying the real-time guarantees in industrial communication networks, worst case

assumptions should be considered. Similarly, dependability requirement to satisfy the given

fault rates must be based on the worst case situations. For this reasons, the calculation of

bandwidth allocation and bandwidth requirements are usually based on unrealistic assump-

tions such as transmission of all messages at the same time.

The initial communication protocols for industrial control systems are fieldbuses such as

CAN, LonWorks and Profibus are started to be used twenty years ago [8]. These fielbuses

are proprietary, costly, difficult to expand and are not compatible with other bus technologies.

On the other hand, Ethernet (IEEE 802.3) is a simple, low cost and widely available option

for the industrial communication protocols. Despite these advantages, generic Ethernet can-

not provide real-time responses for the packets arriving at the same instant. This situation

will result in a collision of packets and retransmission can be made on random time intervals.

Consequently, Ethernet fails to provide deterministic transmission of the messages and cannot

support dependable communication. In the recent years, several attempts are made as a topic

of industrial and academic studies to develop Real-time Ethernet (RTE)[6], [7] .

Time Synchronization and Dependability:

Real-time control applications have requirements like: receiving a response at restricted times,

6

5

to the model of a controller system that controls two machines, after the work finish

event of the first machine occurs it sends a message to the second machine to make it

start working. This is stated in the system model in which the message will be sent

T3) Diagnostic data and remote control oriented applications: Mostly moved as non

real time and event based communication.

Figure 2.1: Communication Layers in Industrial Networks

minimum jitter for periodic events and following the correct sequence for the events. As these

requirements exists on the whole distributed system, all of the nodes should be coordinated

with a time synchronization [6], [7]. IEEE 1588 is a recent protocol that allows time synchro-

nization for the nodes in a local area network. In this protocol a clock source is selected among

the consisting nodes. Then the exchange of several messages provides time synchronization

based on the selected clock source. There are two variants of the IEEE 1588 synchronization

protocol: software only implementation may provide accuracy around 10-100us; whereas,

including hardware modifications results in a synchronization performance in the order of

nanoseconds. [6], [7], [9], [10].

Dependability is an important concern for the industrial control applications that have crit-

ical safety constraints [11]. It involves several attributes: availablility, safety, integrity and

7

maintainability [12]. Providing a dependable industrial communication system includes the

dependability of controllers as well as the network. While designing a dependable industrial

communication network, dependable distributed synchronization and the consistency of the

information in the sent messages is crucial. Dependability problem is even more prominent

for RTE based solutions due to the nondeterministic properties of Ethernet [13]. Dependable

communication should ensure that the correct information is being sent to the right location at

the right time and in the desired sequence. Dependability support is usually provided by con-

sidering the worst case situations [7]. For instance, TDMA based protocol allocates an extra

bandwidth for each message that might be used in the case of a failure in the transmission.

That yields only half of the capacity can be used at most.

Real Time Ethernet In Industrial Communication Protocols:

Ethernet has started to be developed in 1970s and the first standard for IEEE802.3 is published

in 1985. In generic Ethernet, all nodes communicate over a shared medium; therefore, when

one node transmits all others can detect the message. With this property Ethernet inherently

provides the broadcast capabilities to the connected nodes. Ethernet node picks up the packet

only if the destination address in the message specifies that node.

Collision occurs when two nodes sends a message to the shared medium at the same time.

In order to prevent the situation, a node first listens to the medium and starts to transmit

when there is no apparent transmission on the line. In the case where two nodes start to

transmit at the same time, they will eventually stop transmission as they notice the collision.

Before doing retransmission of those packets, nodes wait for a random amount of time. That

random wait interval doubles up for each consequent collision. The random waiting interval

before a retransmission violates the deterministic communication needs for industrial control

applications.

There are essentially four practices in the literature to eliminate the non-deterministic behavior

of Ethernet. Main approaches are; using specialized network interface cards altering the

medium access behavior, minimizing collisions and increasing response times, using switches

between peer-to-peer connections and constructing a layer on top of the shared medium to

avoid collisions.

The operation of Ethercat [14], SERCOS III [15] and ProfiNet [16] protocols require special-

ized nodes and switches. Time synchronization in Ethercat and Profinet is accomplished by

8

IEEE 1588 and SERCOS III exchanges special messages for synchronization. Those three

protocols comes with specially designed dependability protocols. In EtherCat, TwinSafe

builds a protocol for dependability independent of the lower layers and the data security is

handled by CRC. In SERCOS III Safety, messages contain a sequence number and times-

tamps. Receiving nodes send a ”message received” information to the sender node. Data

security is provided by HDLC coding. Similarly, PROFIsafe enables message sequence num-

bers and timestamps for the Profinet protocol. Profinet uses CRC for data security.

MODBUS RTPS and PROFINET SRT runs at the application level to minimize the response

time for real-time messages. However, there is no guarantee for the packets to arrive on time

[7].

Switched Ethernet (IEEE 802.3x) is an option that avoids collision as it forms peer-to-peer

full-duplex connection between nodes. Nodes are connected to each other over network

switches and the multiple access to the shared medium is mapped to the queues within the

switches [6], [7], [13]. Meeting the real-time operation requires switches with the capability

of scheduling and prioritization [17]. Assigning priorities for the Ethernet packets and serving

them differently are the subject of Ethernet protocols such as 802.1p, 802.1Q and their exten-

sions. These protocols can only operate with specialized switches. Furthermore, the queues

on the switches may overflow which results in packet loss.

Avoiding collisions is also possible by building a new layer on the shared medium and allow-

ing a single node to transmit at a time. All packets either being real-time or non real-time pass

through this layer. This layer may run under TCP-UDP/IP and possibly some other protocol

as seen in Figure 2.2.

The additional protocol may regulate the access to the shared medium by Time Division

Multiple Access (TDMA), Master-Slave architecture or Token passing.

TDMA: In this scheme the time slots are usually of equal length. Each node allocates several

slots that can be used for message transmission. Thus TDMA requires a proper synchroniza-

tion between nodes. The main disadvantage of TDMA is the inefficient bandwidth utilization.

As the allocations are made statically, a node may reserve possibly unused time-slots. In addi-

tion, time slot duration should be chosen according to the variations of delays in the network

and the synchronization accuracy. Additional time-slots should be reserved in the case of

9

packet losses. TTP/C protocol is an example for these TDMA solutions.

Master-Slave Architecture: Predefined node (master) polls other nodes (slaves) if they have

a message to send. Slave nodes can only send messages if they are asked to. This technique

is useful especially when the network traffic is periodic and the number of existing nodes is

small. The throughput of the master-slave architecture depends on the time losses causes by

polling of the slave nodes. For a network that involves excess amount of sporadic messages,

the efficiency will decrease. Increasing the amount of nodes may cause an aggregate of polling

periods to exceed the worst case latency of some messages. In that case, those messages will

not be transmitted on the time. The computational latency of slave nodes is another factor

that affects the speed of polling. As the response latency to polls increases the efficiency will

decrease. In the end, execution time becomes a bottleneck instead of the network speed. Be-

sides the efficiency outcomes, master-slave architecture is not suitable for distributed systems

for single point of failure which is the master node. Sercos III and EtherCAT uses polling

technique during operation.

Token Passing: A node can only send packets when it has the token that represent the right to

transmit. The token circulates around the nodes as they send messages. Problems related with

this technique are: losing tokens, lagging in the communication because of the token passing

time and difficulty in adding new nodes to the system. TCnet protocol uses token-passing

mechanism.

!

Physical Layer

Communication
Network

Medium Access Layer

Additional Medium Access Layer

Additional
Protocol

IP

TCP/UDP

Non real-time traffic Real-time
traffic

Figure 2.2: Real-Time Ethernet with Additional Medium Access Layer

10

CHAPTER 3

PROPERTIES OF THE CONTROL APPLICATIONS THAT

MOTIVATE THE DESIGN OF D3RIP

In this section, we discuss how to extract the runtime parameters needed by Dynamic Dis-

tributed Dependable Real-Time Industrial communication Protocol (D3RIP) [19] from the

control application. For simplicity, we give a control application example that runs with two

supervisors which need to exchange some data for the proper system operation. We present

the Communication Model for those supervisors that will reveal the communication require-

ments for the system.

3.1 Supervisor Synthesis in Discrete Event Systems

Discrete event system (DES) may describe many technical systems such as: automation

plants, manufacturing systems and transport systems [20]. DES can be modeled by finite

state automata models, and DES controllers, namely supervisors, are computed based on the

automata model and a formal language specification. In most cases DES consists of several

subsystems. Therefore, during the modeling process, these smaller components are treated

separately and the overall system model required for the supervisor synthesis is computed

by combining components. Those distributed controllers that are responsible for sub-systems

synchronize with the events that are shared among different components

The decentralized controllers might be implemented with a physically distributed architecture.

For example, an automobile manufacturing plant occupies multiple factory work floors and it

imposes connected controllers to be far from each other. In this case the information about

the occurrence of shared events has to be exchanged over a communication network, that

11

connects those distributed controllers.

3.2 Example System Consisting of Two Supervisors:

Figure 3.1 illustrates a simple discrete event system that is composed of four events. This

example basically shows operation of a machine that may break and fail to operate at some

time. Initially, the machine stays idle in State 1; when it receives event op start it will

start to operate by sending op inprog event. During operation (State 3), machine can either

break down or go back to idle state once again. As long as the device operates successfully, it

can send the event op complete which tells that the device operation completed successfully.

Operation of the plant should be terminated by sending op stop signal. Event mu request

however is sent by the plant telling that there is an operational failure in the machine during

the operation. In that case, maintenance procedure is started externally by mu start event and

plant generates mu complete signal when the machine is operable once again. Finally the

maintenance procedure should be terminated by the sending mu stop event to the plant.

Figure 3.1: Operation of a Simple Machine

Simple machine given above example can be implemented by two distributed supervisors: G1

and G2. G1 operates according to Figure 3.2 such that, machine can be turned on and off by

local events op start and op stop respectively. G1 should be connected to the machine with a

serial interface so that it can send those actuator signals. In addition to that, G1 can receive

an event µ from the other supervisor in the case of operational failure via D3RIP.

12

G2 is basically responsible for sensing and repairing failures in the device operation as seen in

Figure 3.3. It receives a sensor event mu request when machine senses any malfunction during

the operation. Then it initiates the maintenance process and informs the other supervisor with

event µ that the machine is working once again. Note that there is no global naming of the

states and the state names are local to each component.

Figure 3.2: Logical Behavior of Supervisor G1

Figure 3.3: Logical Behavior of Supervisor G2

3.3 Communication Model:

Shared events are events that are assumed to happen at the same time in the model. In the

example above the supervisors are physically separate so the occurence of the shared events

must be synchronized by communication. In this thesis we make use of the automata-based

communication model that is introduced in [18].

In principle, the communication model captures both the shared events between nodes and the

13

non-shared events that is devoted to some particular node. These events can be summarized

as follows:

Shared events - Tasks: These are the events which organize the communication between

system nodes and synchronize the operation of supervisors. In the simple machine example,

G2 sends the shared event µ to G1 notifying that the machine is repaired.

Jobs: The synchronization of shared events is divided into several jobs that have to be ex-

changed among the distributed controller devices. To establish this communication, jobs are

used as a container on the shared medium. For instance, if the repairing of the machine is the

given task in the system, each message transmitted over the network to do the maintenance is

defined as a job.

Non-Shared Events: They define local events that need not to be transported to other con-

trollers. Non-shared events are generally sensor events that the controller receives from the

plant or actuator events that plant accepts from the controller. For instance, op start and

op stop events are the actuator signals that G1 can decide the machine to start or stop its

operation respectively. These events should only be sent to the machine with a dedicated

communication medium between machine and controller. Similarly, G2 realizes a malfunc-

tion in the machine by the sensor event mu request.

The communication model ensures synchronization of shared events for the distributed con-

trollers. The generated communication model CM1 for G1 is given in Figure 3.4 and for CM2

for G2 is illustrated in Figure 3.5. The jobs in both communication models are:

• ?µ: G2 sends this job to the G1 to check whether it is possible to execute the µ job in

the G1.

• !µ: After G1 receives ?µ job from G2 when it is ready to execute µ event, it replies

with !µ job telling that it can execute the specified job. However, G1 will not begin to

execute the job before receiving µ job.

• µ: After receiving !µ job from G1, G2 knows that it is possible to execute the µ event.

As a result it will send µ job to G1 to start the execution.

It is interesting to note that due to the deterministic definition of the supervisor operation it is

possible to know the sequence of communicated jobs in advance. When G2 sends ?µ to G1 it

is known that G1 replies with !µ within some specified time.

14

Figure 3.4: Communication Model for Controller G1

Figure 3.5: Communication Model for Controller G2

15

CHAPTER 4

D3RIP OVERVIEW

Dynamic Distributed Dependable Real-Time Industrial communication Protocol (D3RIP) is

proposed as a new Real-Time Ethernet protocol with an aim of increasing bandwidth utiliza-

tion [19]. This protocol is based on the fact that, the control application has the required

information about communication needs of the distributed controller devices. D3RIP uses

this information to dynamically allocate the bandwidth according to the control application

needs, and the rest of the resources can be available to all other non real-time applications.

It is distinguished from other proposals in the literature (as stated in the previous chapter)

that make statistical bandwidth allocations. D3RIP consists of an Interface Layer (IL) and a

Coordination Layer (CL) and can be implemented on conventional shared-medium Ethernet

hardware as seen in Figure 4.1. Interface layer (IL) implements TDMA to allow the deter-

ministic access of RT and nRT messages to the medium. Coordination layer (CL) lies on

top of the IL and is responsible for the momentary allocation of RT slots to particular nodes

on the network based on a distributed computation. Modeling of the IL and CL protocols is

done using Timed I/O Automata (TIOA) to describe both discrete and continuous changes in

time. There are generic IL and CL models which serve as basis for the construction of specific

protocols. 4

Ethernet MAC

RT1 RT2 RTn nRT
coordination layer (CL)

interface layer (IL)

Fig. 3. Software architecture with IL and CL.

The timed behaviour of a system can be represented
by the composition of multiple TIOA representing in-
dividual components. We consider timed systems with
many components that exhibit both discrete (i.e., instan-
taneous) and continuous changes in time. Hence, we
employ this TIOA framework to formally describe the
operation of our protocol layers and investigate their
properties.

The states of the TIOA are encoded by a set of variables.
Each variable is characterized by its static type that
defines its range of possible values and its dynamic type
that captures the possible time evolutions of the variable.
Variables can either be discrete, i.e., their dynamic type
takes the form of step functions or analog in which case
the dynamic type assumes piecewise continuous func-
tions. A valuation for a set X of variables is a function
val(X) that associates with each variable in X a value in
its static type. In turn, a trajectory is a function that maps
each time instant in a time interval starting from 0 to a
valuation of X , and hence describes the time evolution
of the variables in X .

Formally, A TIOA is a tuple A =
(X, Q, Q0, I, O, H, D, T):

• X is the set of variables
• Q ⊆ val(X) is the set of states
• Q0 ⊆ Q is the nonempty set of start states
• I is the set of input actions that describe inputs from

the environment, O is the set of output actions that
represent outputs to the environment and H is the
set of internal actions. The set of all actions is A =
I ∪ O ∪ H .

• D ⊆ Q×A×Q denotes the set of discrete transitions,
and we write q

a→ q′ for the transition (q, a, q′) ∈ D.
Discrete transitions are labeled with actions and can
be input, output or internal according to the action
that is related to the transition.

• T is the set of trajectories such that τ(t) ∈ Q for every
τ ∈ T and t in the domain of τ .

For convenience, we write E = I ∪ O for the set of ex-
ternal actions that allow interaction with the environment
and L = O ∪H for the set of locally controlled actions that
are under the control of A.

Two TIOA are compatible if they do not share any
variables, internal actions and output actions. The com-
position A = A1||A2 is defined for two compatible TIOA
Ai, i = 1, 2. The composition operation combines the
variables of A1 and A2, and identifies the shared external
actions of A1 and A2 by their common name. When

an automata in the composition performs an output
transition involving a shared external action a, the input
transitions in the other automata with the same name a
take place synchronously.

Each component can affect the other components via
its output transitions in a controlled way, whereas input
transitions are unconditional. The internal actions and
continuous trajectories of A1 and A2 evolve indepen-
dently. In addition, it holds that the composition opera-
tion for TIOA is commutative and associative.

Formally, the composition A = A1||A2 for two com-
patible TIOA Ai, i = 1, 2, is defined as follows.

• X = X1 ∪ X2

• Q = {x ∈ val(X)|x&Xi ∈ Qi, i = 1, 2}, where x&Xi is
the restriction of x to the variables in Xi for i = 1, 2

• Q0 = {x ∈ val(X)|x&X1 ∈ Q1,0 ∧ x&X2 ∈ Q2,0}
• I = (I1 ∪ I2)− (O1 ∪O2), O = O1 ∪O2, H = H1 ∪H2

• for x, x′ ∈ Q and a ∈ A, x
a→ x′ iff for i = 1, 2

either a ∈ Ai and x&Xi
a→ x′&Xi or a)∈ Ai and

x&Xi = x′&Xi

• T = {τ ∈ trajs(X)|τ ↓ X1 ∈ T1 ∧ τ ↓ X2 ∈ T2},
where τ ↓ Xi restricts the trajectory τ to the vari-
ables in Xi for i = 1, 2

In order to model physically relevant behavior, several
practical conditions are introduced for TIOA. In partic-
ular, a TIOA has to be input action enabling, i.e., it has to
enable all inputs at any time: q ∈ Q and a ∈ I ⇒ ∃q′ ∈ Q

s.t. q
a→ q′. Furthermore, a TIOA must be time passage

enabling such that time either passes indefinitely or until
some locally controlled action happens: q ∈ Q ⇒ ∃τ ∈ T
s.t. τ.fval = q and either τ.ltime = ∞ or τ.ltime < ∞
and ∃q′ ∈ Q, l ∈ L s.t. τ.lval

l→ q′. In this expression,
τ.fval, τ.lval and τ.ltime denote the first valuation, last
valuation and last time of trajectory τ .

Each particular run of a system that is modeled by a
TIOA A is described by an execution. In this context, an
execution fragment is an (A, X)-sequence α = τ0a1τ1a2 · · ·
over the actions A and the variables X . That is, α records
all discrete and continuous state changes that happen
during a system run.

A practical property that proves useful when consid-
ering the joint behavior of multiple TIOA in the next sec-
tion is progressiveness [20]. A TIOA is progressive if there
are no locally-Zeno execution fragments, i.e., execution
fragments that have a finite limit time but contain in-
finitely many locally controlled actions. If this property is
fulfilled for a TIOA, then it is able to provide a response
to each sequence of input actions and intermediate time
passage. It is important to note that progressiveness is
preserved after composition.

Theorem 1 ([16]): Let A1 and A2 be two progressive
TIOA. Then, A1||A2 is also progressive.

4 GENERIC BROADCAST CHANNEL
We now present the TIOA description SM of a generic
broadcast channel for shared-medium networks as an
example that will later serve as our TIOA model for

Figure 4.1: D3RIP Protocol Architecture

16

4.1 Interface Layer

In this section we discuss the interface layer (IL) protocol family that provides time-slotted

operation on top of a shared-medium broadcast channel such as Ethernet and below a coor-

dination layer. It avoids possible collisions in the transmission of RT and nRT traffic by the

unique assignment of time slots to network devices based on locally stored information and

information that can be requested from the connected CL in each time slot.

4.1.1 Generic Interface Layer Model

General TIOA model of the IL (Figure 4.3) depicts the generic interface actions that are shared

with the connected protocol layers in order to enable the data exchange. This model serves as

a basis for two specific IL protocols that will be discussed next.

The TIOA model of the IL contains five characteristic parameters:

• Slot duration: dS lot ∈ R+

• Type of transmitted messages: M
• Type of a FIFO-queue of messages: Q
• Part of the time-slot that is not used for message transmission: rem
• Protocol related computations of IL: cmp

Figure 4.2 illustrates the relation between rem and cmp. Both of these parameters depends on

the implementation of the protocol therefore they are left as variables in the work frame. AIL

abstract variable is used to indicate differences in two specialized protocols of the IL.

TIOA has variables for the local information that is needed during the operation. The analog

variable nowa
i evolves with a time derivative of 1 and provides the current time information

to the nodes. Rest of the variables are all discrete. nextd
i holds the end of the current time

slot. The data structures used for the transmission and reception of the messages are TxRTd
i ,

TxnRTd
i , RxRTd

i and RxnRTd
i respectively. Structures used to store nRT messages are FIFO

queues with type Q, while buffers for the RT messages can hold one element at most. For

each time slot, RTILd
i stores the next slot type that can either be a real-time or non-real time

slot. This variable is complemented MyILd
i that holds whether the device i owns the next

time slot or not. Additional information for the protocol operation is stored in vILd
i . Internal

functions fRT , fmy, freq and fupd perform the updates of variables RTILd
i , myILd

i , reqILd
i and

vILd
i respectively.

17

After the message transmission interval completes, UPDATE computes the protocol state for

the consequent time slot. It computes vILd
i and then updates reqILd

i . If IL does not need

additional information for the next time slot (reqILd
i =false), then the slot type becomes

nRT slot (RTILd
i =false) and the ownership is determined locally. If there is a an information

request for the next time slot (reqILd
i =true), then it sends the reqrt(t)i message to the CL.

cl2ilrt(b1, b2,m)i asks the type and the ownership of the next time slot providing the current

time. CL uses the provided time information and sends the response cl2ilrt(b1, b2,m)i before

the next slot. IL updates its state variables RTILd
i , myILd

i with b1 and b2 respectively; it may

also update TxnRTd
i if there is a RT message enclosed in the cl2ilrt(b1, b2,m)i.

IL sends all messages destined to shared medium with il2sm(m)i action. It can only happen in

the beginning of next time slot and the ownership of the slot belongs to device i. Conversely,

sm2il(m) allows the message reception from the lower layer.

In each time slot, a time period dS lot − rem is reserved for message transmission/reception.

Rest of the slot duration is utilized for protocol related operations and computations. As-

suming the message exchange happens in the defined intervals, RT messages are immediately

forwarded to the upper layer. In addition, actions ap2ilNrt(m)i and il2apNrt(q)i provides the

exchange of nRT messages between IL and control application.

Collision-free operation on shared medium allows at most one interface layer to transmit in

a given time slot. As IL proceeds with a distributed computation, it has to ensure that all

protocol related parameters are the same after each update. fRT (vILd
i , b1) function determines

if the next time slot is a RT slot. CL provides b1 variable and function decides consequent

slot as a RT slot when b1 is true.

fRT (vILd
i , true) = true (4.1)

IL decides owner of a consequent slot with fmy(vILi
d, RTIL

i
d, b2, i) where b2 is provided by

the upper layer. It should avoid the case in which several nodes owning a single time-slot.

fmy(vILi
d, false,−, i) = true

⇒ (∀ j ∈ I − {i}) fmy(vILi
d, false,−, i) = false, (4.2)

fmy(vILi
d, true, b2, i) = b2 (4.3)

18

6

dSlotdSlot

dSlot − remcmp

datadata

Fig. 5. Time-slotted operation.

that is not used for message transmission. It consists of
the time cmp for protocol related computations of IL and
the time rem − cmp that is reserved for the operation of
the upper layer protocol. Our TIOA definition represents
a family of IL protocols hence we use an abstract data
type AIL. Each appropriate choice of AIL will give rise to
a member of the IL protocol family as detailed in Section
5.2 and 5.3.

Local information is recorded by the variables that
encode the TIOA states. The time evolution of each in-
dividual IL is captured by the sole analog variable nowa

i

that evolves with a time derivative of 1. The remaining
variables are all discrete: nextd

i holds the end time of the
current time slot with the length dSlot which equals the
starting time of the next time slot. The variables TxRTd

i ,
TxnRTd

i and RxRTd
i , RxnRTd

i represent the buffers for
the transmission and reception of messages, respectively.
Here, the buffers for the nRT messages are realized
as FIFO-queues with type Q, while the buffers for RT
messages can only hold one currently active message.

For each time slot, RTILd
i = true indicates that the

type of the transmitted message is RT (nRT otherwise)
and myILd

i = true indicates that slot belongs to device
i (belongs to device j, j "= i otherwise). reqILd

i = true
indicates that a request should be issued to the CL to
determine RTILd

i and myILd
i . Additonal information is

encoded in vILd
i . fRT, fmy, freq and fupd perform the up-

dates of RTILd
i , myILd

i , reqILd
i and vILd

i respectively.

UPDATE computes the protocol state for the subse-
quent time slot after the data transmission is completed
in the current time slot. It first updates vILd

i and com-
putes reqILd

i accordingly. If reqILd
i = false, then the

next time slot is a nRT slot (RTILd
i = false) and myILd

i is
locally computed. Finally, UPDATE advances the current
slot. The output transition REQRT is invoked after the
computation time cmp if reqILd

i = true. REQRT requests
an RT message and information about the ownership
of the next time slot providing the current time (nowa

i)
to CL. This timing information can be used by CL in
the response CL2ILRT (b1, b2, m)i that is expected before
the start of the next time slot. CL2ILRT determines the
new values of RTILd

i and myILd
i based on b1 and b2

respectively which are the arguments passed from CL.
If an RT message is present in CL it is also supplied to
IL as the argument m of CL2ILRT.

The interfaces defined by the actions of ILi allow
the exchange of data with the connected protocol layers
and the update of internal protocol related variables.
The output transition IL2SM(m)i governs the message
broadcast of device i. It is executed whenever the current

TIOA ILi(dSlot, rem, cmp, M , Q, AIL), where
dSlot, rem, cmp ∈ R+

Variables X

nowa
i ∈ R (dSlot)

nextd
i ∈ R (0.0)

TxRTd
i ∈ M (empty)

TxnRTd
i ∈ Q (empty)

RxRTd
i ∈ M (empty)

RxnRTd
i ∈ Q (empty)

RTILd
i ∈ B (false)

myILd
i ∈ B (false)

vILd
i ∈ AIL (InitV)

reqILd
i ∈ B (false)

Actions A

input SM2IL(m), m ∈ M
input CL2ILNRT(m)i, m∈M
input CL2ILRT(b1, b2, m)i,
m∈M , b1, b2 ∈ B
input IL2CLNRT(q)i, q ∈Q
output IL2CLRT(m, t)i, m ∈
M , t ∈ R
output IL2SM(m)i, m ∈ M
internal UPDATEi

output REQRT(t)i, t ∈ R

Transitions D

output IL2SM(m)i

precondition:

(nowa
i = nextd

i − dSlot) ∧
myILd

i

(¬(TxRTd
i empty) ∧

RTILd
i) ∨ (¬RTILd

i ∧
¬(TxnRTd

i .Top empty))

effect:

if RTILd
i

set m = TxRTd
i

set TxRTd
i empty

if ¬RTILd
i

set m = TxnRTd
i .Top

TxnRTd
i .Pop

myILd
i = false

output IL2CLRT(m,nowa
i)i

precondition:

nowa
i =next

d
i −rem

¬(RxRTd
i empty)

effect:

set m = RxRTd
i

set RxRTd
i empty

input IL2APNRT(RxnRTd
i)i

effect:

set RxnRTi empty

input AP2ILNRT(m)i

effect:

TxnRTd
i .Push(m)

input SM2IL(m)

effect:

if RTILd
i

RxRTd
i = m

else

RxnRTd
i .Push(m)

internal UPDATEi

precondition:

nowa
i =next

d
i −rem

RxRTd
i empty

effect:

vILd
i =

fupd(vILd
i ,RTILd

i)
reqILd

i = freq(vIL
d
i)

if ¬reqILd
i

RTILd
i = false

myILd
i =

fmy(vIL
d
i ,RTILd

i , b2, i)

nextd
i = nextd

i + dSlot

output REQRT(nowa
i)i

precondition:

reqILd
i = true

nowa
i = nextd

i − dSlot −
rem + cmp

effect:

reqILd
i = false

Trajectories T
stop when

nowa
i = nextd

i − dSlot ∧ myILd
i

nowa
i = nextd

i − rem(
nowa

i = nextd
i −dSlot−rem+cmp

)
∧

evolve

d(nowa
i) = 1

reqILd
i

Fig. 6: IL model as TIOA

time nowa
i equals the next starting time nextd

i and
myILd

i is true. Depending on the valuation of RTILd
i

Figure 4.2: Typical Time Slot

8

TIOA ILi(dSlot, rem, cmp, M, Q, AIL)
Variables X
nowai ∈ R (0)
nextdi ∈ R (dSlot)
TxRTdi ∈M (empty)
TxnRTdi ∈ Q (empty)
RxRTdi ∈M (empty)
RxnRTdi ∈ Q (empty)
RTILdi ∈ B (false)
myILdi ∈ B (false)
vILdi ∈ AIL (InitV)
reqILdi ∈ B (false)

Actions A
input SM2IL(m),m ∈M
input AP2ILNRT(m)i,m∈M
input CL2ILRT(b1,b2,m)i, m∈M, b1,b2 ∈ B
input IL2APNRT(q)i, q∈Q
output IL2CLRT(m, t)i, m ∈M, t ∈ R
output IL2SM(m)i, m ∈M
internal UPDATEi
output REQRT(t)i, t ∈ R

Transitions D
internal UPDATEi
precondition:
nowai=nextdi −rem
RxRTdi empty
effect:
vILdi =
fupd(vILdi ,RTIL

d
i)

reqILdi = freq(vILdi)
if ¬reqILdi
RTILdi = false
myILdi =
fmy(vILdi ,RTIL

d
i ,b2, i)

nextdi = nextdi +dSlot

output IL2CLRT(m,nowai)i
precondition:
nowai=nextdi −rem
¬(RxRTdi empty)
effect:
set m= RxRTdi
set RxRTdi empty

output REQRT(nowai)i
precondition:
reqILdi = true
nowai =nextdi −dSlot− rem+ cmp
effect:
reqILdi = false

input IL2APNRT(RxnRTdi)i
effect:
set RxnRTi empty

input SM2IL(m)
effect:
if RTILdi
RxRTdi = m

else
RxnRTdi .Push(m)

output IL2SM(m)i
precondition:
(nowai = nextdi −dSlot)∧myILdi
(¬(TxRTdi empty) ∧ RTILdi) ∨ (¬RTILdi ∧
¬(TxnRTdi .Top empty))
effect:
if RTILdi
set m= TxRTdi
set TxRTdi empty

if ¬RTILdi
set m= TxnRTdi .Top
TxnRTdi .Pop

myILdi = false
input CL2ILRT(b1,b2,m)i
effect:
RTILdi= fRT(vILdi ,b1)
myILdi =
fmy(vILdi ,RTIL

d
i ,b2, i)

TxRTdi = m

input AP2ILNRT(m)i
effect:
TxnRTdi .Push(m)

Trajectories T
stop when
nowai = nextdi −dSlot ∧myILdi
nowai = nextdi − rem(
nowai = nextdi −dSlot−rem+cmp

)
∧ reqILdi

evolve
d(nowai) = 1

Şekil 3. IL model as TIOA

Figure 4.3: IL Model as a TIOA

19

For the correct operation of IL, upper layers should satisfy several conditions. These external

requirements are as follows:

Axiom 1 (External Requirements for interface layer)

• All messages fit into the transmission window.

m.length < dS lot − rem ∀m ∈ M (4.4)

• cl2ilrti occurs exactly once after each request reqrti. The time between reqrti and

cl2ilrti is bounded by rem − cmp.

• If reqrt(t)i and reqrt(t) j i, j ∈ I, i , j occur at the same time t, then, it holds for the

next occurrence of

cl2ilrt(b1, b2,m)i and cl2ilrt(b̂1, b̂2, m̂) j that b1 = b̂1 and b2 = true⇒ b̂2 = f alse

4.1.2 Real-time Access Interface Layer (RAIL)

RAIL makes statistical slot allocations for RT and nRT messages while accessing shared

medium. The variable cyc is defined for periodic time slot allocation. RTS et ⊆ 0, 1, ..., cyc − 1

set is for real-time messages and nRTSet is for the time slots that can be used for nRT mes-

sages by the interface layer ILi. The relationship between these sets is defined as; vILd
i .RTSet∩

vILd
i .nRTSet = ∅ for i ∈ I and vILd

i .nRTSet ∩ vIL
d
j .nRTSet j = ∅ for i, j ∈ I, i , j.

The data structure vILd
i used in implementation is composed of slot counter vILi.cnt and

statical variables, vILi.cyc, vILd
i .RTSet and vILd

i .nRTSet. Those parameters are initialized

by vILi.cyc = 0, vILd
i .RTSet= RT Set and vILd

i .nRTSet = nRTS et. After the initialization,

fupd increments slot counter modulo vILi.cyc in each time slot such that the slot assignment

repeats every cyc slots and the others remain unchanged. Allocation of time-slots repeat after

each cyc. When the value of cnt is an element of RT Set, IL sends request, fupd to the CL.

If the CL decides the next slot to be RT slot (b1 = true), cl2ilrt(true,−,−)i will be received

and the internal function fRT returns true (4.1). For RT slots, owner of the slot is determined

by b2 variable received from CL, where, IL determines the owner of nRT slots by looking the

nRT Set and the slot counter value cnt.

20

14

fupd(vILdi ,RTILdi) = (vILdi .cnt+1) mod vILdi .cyc

freq(vILdi) =

true if vILdi .cnt ∈ vILdi .RTset

false otherwise

fRT(vILdi ,b1) =

true if vILdi .cnt ∈ vILdi .RTset∧b1
false otherwise

fmy(vILdi ,RTILdi ,b2, i) =

b2 if RTILdi
true if ¬RTILdi ∧vILdi .cnt ∈ vILdi .nRTSet

false otherwise.

Yapılan gerçekleme ile (1) nolu denklemden (3) nolu denkleme kadar verilen bütün gerek-

ler sağlanmaktadır.Bu sayede RAIL protokolü jenerik arayüz katman protokolünce belirtilen

bütün gerekleri, Bölüm III-B’de verilen koordinasyon katmanı tarafından sağlanması gereken

dış gereksinimler sağlandığı takdirde sağlamaktadır.

Bir düğüm arayüz katmanı üzerinden gerçek-zamanlı bir mesaj göndermek istediğinde bir

sonraki uygun, gerçek-zamanlı zaman diliminin gelmesini beklemek zorundadır. Raporun bu

kısmında n. zaman dilimine sahip olan bir düğümün beklemesi gereken zaman dilimi sayısı

(#RAIL(n)) hesaplanmaktadır. wRAIL(m,n); m. zaman diliminded n. zaman dilimine kadar geçen

zaman dilimi sayısı olarak tanımlandığında, düğümün beklemesi gereken zaman dilimi sayısı:

#RAIL(n) = max
0≤m<cyc

wRAIL(m,n). (5)

RAIL protokolünün en önemli özelliklerinden bir tanesi protokol tarafından sunulan gerçek-

zamanlı zaman dilimleri bağlı bulunan herhangi bir üst seviye protokol katmanı tarafından

istenildiği gibi kullanılabilmesi ve bazı endüstriyel protokollerde [1], [2], [3] olduğu gibi gerçek

zamanlı olan ve olmayan zaman dilimlerinin statik olarak birbirinden ayrılmasıdır. Zaman dil-

imlerinin zamanda birbirinden ayrılması ile arayüz katman protokolünün hata oluşturma olasılığı

azalmaktadır. Fakat statik zaman dilimi tahsisinin en büyük problemi kullanılan bant genişliğindeki

verimde düşme yaşanmasıdır. RAIL gerçeklemesi için uygulama tarafından ihtiyaç duyulan mak-

simum gerçek-zamanlı bant genişliği düşünülerek zaman dilimi tahsisi yapılmalıdır. Maksimum

The implemented functions satisfy all the requirements given in (4.1), (4.2) and (4.3). Thus,

RAIL exhibits all properties given in the generic interface layer as long as the upper protocol

layer fulfills the external requirements.

When a node has a RT message to send, it has to wait for its next available RT slot. We will

compute the number of time slots #RAIL(n) that the device has to wait, assuming that it owns

the n-th nearest RT slot. For this purpose, we introduce wRAIL(m, n): the known number of

time slots that pass until the n-th RT slot is reached starting with the time slot counter value

m. Number of time slot that a node has to wait is:

#RAIL(n) = max
0≤m<vILi.cyc

wRAIL(m, n). (4.5)

One of the most important characteristics of the RAIL is it that, upper layer protocols may

use RT slots freely, while the separation of RT and nRT slots is made statically. The statical

separation of time-slots eliminates possible sources of error while making time-slot type deci-

sion. Major drawback of such static separation is the reduced efficiency of the bandwidth use.

RAIL assigns a RT bandwidth to control application any time has to be assigned however, it

might not be necessary at all times.

4.1.3 Time-slotted Interface Layer (TSIL)

Time-slotted Interface Layer (TSIL) enables coordination layer to decide the next slot-type as

RT or nRT dynamically. We define the decision variables vILd
i .cnt, vIL

d
i .cyc and vILd

i .nRTSet

similar to RAIL. However, slot count only increments on nRT slots and freq always returns

21

true such that the upper layer can always determine next-slot type using fRT. fmy is again

uses the variable b2 of upper layer to decide owner of RT slots, while the ownership of nRT

slots is locally decided by TSIL.

9

RT bandwidth that is required by the networked control
application at any time has to be assigned although it is
not necessarily required at all times.1 In the next section,
we define a second member of the IL protocol family that
circumvents this problem.

5.3 Time-slotted Interface Layer
The time-slotted interface layer (TSIL) allows the connected
upper layer to dynamically decide about the type (RT or
nRT) of each time slot. To this end, we introduce the
decision variables vILd

i with the components vILd
i .cnt,

vILd
i .cyc and vILd

i .nRTSet similar to RAIL. However,
different from RAIL, the slot counter is only updated
by fupd in nRT slots, and freq always returns true such
that the upper layer can always decide about the slot
type using fRT. The function fmy is defined such that the
ownership of RT slots is determined by the upper layer,
while the ownership of nRT slots is locally decided by
TSIL.

fupd(vILd
i ,RTILd

i).cnt =

vILd
i .cnt if RTILd

i

(vILd
i .cnt+ 1)

mod vILd
i .cyc otherwise

freq(vIL
d
i) = true

fRT(vILd
i , b1) =

{
true if b1 = true
false otherwise

fmy(vIL
d
i ,

RTILd
i , b2, i)

=

b2 if RTILd
i = true

true if ¬RTILd
i ∧ vILd

i .cnt
∈ vILd

i .nRTSet
false otherwise.

Again, the internal requirements in (1) to (3) are
fulfilled. Since the slot type is dynamically decided by
the connected upper layer, TSIL can better adapt to
the instantaneous RT communication requirements of
control applications. In particular, a device that wants
to use the n-th closest slot as an RT slot will be able to
transmit in the n-th closest slot. Hence, we define

#TSIL(n) = n. (7)

No further configuration is required for the RT
traffic on TSIL. Targeting an equal distribution of
nRT slots, we choose vILd

i .cyc = 4 for i ∈
{DevS, DevR, DevC, DevPD} and vILd

DevS.nRTSet =
{0}, vILd

DevR.nRTSet = {1}, vILd
DevC.nRTSet = {2},

vILd
DevPD.nRTSet = {3}. Hence, the slots that are not

designated as RT slots can be used by the next controller
device in line for nRT messages.

6 COORDINATION LAYER PROTOCOL FAMILY
In this section, we develop the coordination layer (CL)
protocol family that can be connected to IL. CL is defined
to fulfill the external requirements of IL in Axiom 1
and in turn relies on the time-slotted medium access

1. Note that this bandwidth is usually still much smaller than the
bandwidth required by a conventional industrial Ethernet protocol.

offered by IL. Considering its basic operation, the CL
of each device processes and broadcasts information
from the control application to the other devices via RT
messages. Accordingly, the CLs of the different devices
can adjust their RT behavior during operation based on a
distributed computation that is carried out in all devices
on the network.

6.1 Coordination Layer Model
6.1.1 TIOA model
The coordination layer TIOA CLi for each device i is
shown in Fig. 8. It is parametrized with a processing
delay value deli, the message type M that offers M.data
for message data and M.par for protocol related param-
eters, the FIFO-queue of messages with type Q and the
type V that represents a vector of messages with type M .
Moreover, there is again an abstract data type ACL that
varies for different members of the CL protocol family.

The CL stores messages in the discrete variables Txd
i

and Rxd
i . The coordination layer of each device should

support the transmission of messages for different chan-
nels of connected applications. Each channel is identified
by the tuple (b, c) where b indicates the device number
and c indicates the channel number for that device. Txd

i

is realized as a vector of message buffers, where each
entry can hold the current message for one channel.
Information about the ownership of RT slots is encoded
in the boolean state variables RTCLd

i and myCLd
i and

in the channel variable chd
i . Similar to the IL, the up-

date of these variables depends on decision variables
vCLd

i ∈ ACL. The only analog variable is senda
i that

describes the passage of time after a request was issued
from the IL.

The purpose of the CL is to decide if the next time slot
is an RT slot upon request from IL. CL also determines a
unique sender device for such RT slots by a distributed
computation. This computation is based on the decision
variables vCLd

i , reqCLd
i , RTCLd

i , myCLd
i , chd

i as well as
timing information t and the RT message parameters
m.par that are provided by the IL.

Whenever a request is issued by the IL (REQRT(t)i),
the CL updates the status RTCLd

i and the ownership
(myCLd

i ,chd
i) of the subsequent time slot. After a com-

putation time senda
i that is bounded by deli, this

slot information is supplied to the IL via the action
CL2ILRTi(RTCL

d
i ,myCLd

i , m). Here, each device i can only
provide non-empty message data if it is the unique
sender device with myCLd

i = true. Note that CL does not
explicitly depend on the evolution of time. The variable
senda

i is only used to formally model that the action
CL2ILRTi occurs at most deli time units after REQRTi,
where it is assumed that deli < rem − cmp.2

The CL obtains RT messages via the actions AP2CLi

and IL2CLRTi from the control application and the IL,
respectively. In the first case, the message in Txd

i [ch] is

2. The variables rem and cmp are defined in Section 5.1.1.

By the implementation details given above, the equations 4.1, 4.2 and 4.3 are all fulfilled.

As the upper layer protocol dynamically decides on the slot types, TSIL can better adapt to

the instantaneous RT communication requirements of control applications. Actually, a device

that wants to use the n-th closest slot as an RT slot will be able to send message in the n-th

nearest slot.

#TSIL(n) = n. (4.6)

Operation of TSIL does not require any additional configuration. Slots that are not allocated

for the RT messages can be used by nRT messages during the operation, hence RAIL imple-

mentation increases the efficiency in bandwidth utilization especially for nRT messages.

4.2 Coordination Layer

This section will describe the coordination layer (CL) protocol family that can work on top

of the IL. In this manner, CL has to fulfill the external requirements of IL in Axiom 1 and

relies on the time-slotted medium access provided by IL. During its operation, the CL of each

device processes and broadcasts information from the control application to the other devices

using RT messages. Accordingly, the CLs of the different devices can adjust their RT behavior

during operation based on a distributed computation.

22

4.2.1 Generic Coordination Layer Model

The coordination layer TIOA CLi for each device i is shown in Figure 4.4. Its parameters are:

• Processing delay value: deli
• Message type M that offers M.data for message data and M.par for protocol related

parameters
• FIFO-queue of messages with type Q and the type V that represents a vector of mes-

sages with type M
• Abstract data type: ACL varies for different members of the CL protocol family

The CL stores all messages in either of the discrete variables Txd
i and Rxd

i . It has to support the

transmission of messages for different channels. Txd
i is realized as a vector of message buffers,

where each entry can hold the current message for one channel. The ownership of RT slots is

stored in the boolean variables RTCLd
i and myCLd

i and in the channel variable chd
i . Update of

these variables depends on decision variables vCLd
i ∈ ACL. The only analog variable is senda

i

and it is used to store the elapsed time after a request was issued from the IL.

CL builds a decision mechanism for subsequent time-slots upon receiving request from IL.

While doing so, CL also computes a unique sender for RT slots to avoid collision. During

computation, CL utilizes the decision variables vCLd
i , reqCLd

i , RTCLd
i , myCLd

i , chd
i as well as

timing information t and the RT message parameters m.par that are provided by the IL.

When the CL receives a request from IL (reqrt(t)i) it updates the status RTCLd
i and the owner-

ship (myCLd
i , ch

d
i) of the subsequent time slot. If the computation time senda

i does not exceed

deli, this slot information is transmitted to IL with the action cl2ilrti(RTCLd
i , myCL

d
i ,m). Each

device i can only provide non-empty message data if it is the unique sender device with

myCLd
i = true. The operation of CL is independent from the evolution of time. The variable

senda
i is only used to formally model that the action cl2ilrti occurs at most deli time units

after reqrti, where it is assumed that deli < rem − cmp

CL receives RT messages from upper layer by ap2cli and from lower layer by il2clrti ac-

tions. In the first case, the message in Txd
i [ch] is prepared for transmission from the data dat

and the protocol parameters par. In the latter case, the message is stored in Rxd
i and the deci-

sion variables are updated based on the protocol parameter information m.par and the timing

information t received from the IL. The control application can reach message data with the

action cl2api.

23

The definition of CL in Figure 4.4 is based on the functions gupd, gRT and gmy that determine

the current values of the decision variables vCLd
i , the slot type RTCLd

i and the slot ownership

with the corresponding channel (myCLd
i , ch

d
i), respectively. The requirement is that CLi can

only use RT slots whose ownership is uniquely determined among the coordination layers

CLi, i ∈ I.

gmy(vCLd
i , false, t, i) = (false, 0),

gmy(vCLd
i , true, t, i) = (true, ch)

⇒ gmy(vCLd
i , true, t, j) = (false, 0) for all j ∈ I − {i}

11

TIOA CLi(deli, M, Q, V , ACL, InitCL), deli ∈ R
Variables X
sendai ∈ R (deli)
Txdi ∈V (empty)
Rxdi ∈ Q (empty)
RTCLdi ∈ B (false)
myCLdi ∈ B (false)
chdi ∈ N (0)
reqCLdi ∈ B (false)
vCLdi ∈ ACL (InitCL)

Actions A
input AP2CL(dat, p,ch)i, dat ∈ M.data, p ∈
M.par, ch ∈ N
input CL2AP(q)i, q ∈ Q
input IL2CLRT(m, t)i, m ∈M, t ∈ R
input REQRT(t)i, t ∈ R
output CL2ILRT(RTCLdi ,myCLdi ,m)i

Transitions D
input AP2CL(dat, p,ch)i
effect:
Txdi [ch].data = dat
Txdi [ch].par = p
input REQRT(t)i
effect:
RTCLdi =
gRT (vCLdi ,RTCL

d
i , t)

(myCLdi ,ch
d
i) =

gmy(vCLdi ,RTCLdi , t, i)
sendai = 0
reqCLdi = true
input CL2AP(Rxdi)i
effect:
set Rxdi empty

input IL2CLRT(m, t)i
effect:
Rxdi .Push(m)
vCLdi = gupd(vCLdi , m.par, t)
output CL2ILRT(RTCLdi ,myCLdi ,m)i
precondition:
reqCLdi ∧ (sendai ≤ deli)
effect:
if myCLdi
set m= Txdi [ch

d
i]

set Txdi [chdi] empty
else
set m empty

reqCLdi = false

Trajectories T
stop when
(sendai = deli)∧reqCLi

evolve
d(sendai) = 1

Şekil 4. TIOA for the CL protocol layer.

Arayüz katmanından bir istek geldiği durumda (REQRT(t)i) koordinasyon katmanı bir son-

raki zaman diliminin tipini (RTCLdi), kanal numarasını (chdi) ve hangi düğüme ait olduğu bil-

gisini (myCLdi) üretmektedir. deli değişkeni ile sınırlanmış olan bir işlem süresi (sendai) son-

rasında bu bilgi CL2ILRTi(RTCLdi ,myCLdi ,m) aksiyonu ile arayüz katmanına gönderilmektedir.

Burada kullanılan varsayım, bir sonraki zaman dilimine sahip olan düğümün (myCLdi = true) boş

mesaj göndermeyeceğidir. Koordinasyon katman modeli çalışması zaman akışına (time evolution)

doğrudan bağımlı değildir. sendai değişkeni yalnızca CL2ILRTi aksiyonunun REQRTi isteği geldik-

ten sonra deli süre içersinde çalışmasını formal olarak modellemek amacı ile kullanılmaktadır.

Figure 4.4: CL Model as a TIOA

4.2.2 Dynamic Allocation Real-time protocol (DART)

In dynamic allocation real-time (DART) protocol the variables are stored in the form of allo-

cated RT slots that are assigned to specific controller devices. This information is dynamically

updated by the parameters received from control application. The decision variables contain

24

a cycle variable vCLd
i .cyc and an RT slot counter vCLd

i .cnt. In addition, the allocation data

object (ado) is introduced with the parameters ado.num ∈ N, ado.slots ⊆ {0, . . . , cyc − 1},

ado.used ∈ N × N. ado.num describes the number of RT slots allocated per cyc RT slots,

ado.slots holds an ordered list of ado.num allocated RT slots and ado.used is a tuple that in-

dicates the device that currently uses the allocation data object and its channel Id ((0, 0) if

it has no usage). Each CLi contains a vector vCLd
i .alloc of allocation data objects. The us-

age of those slots should be mutually exclusive at different nodes. Thus, It has to hold that

alloc[k].slots , alloc[l].slots for k , l.

In DART, the parameters of the message received from control application should consist two

fields: par.free and par.new. The first one is used to free the allocated time-slot resources that

are found in the alloc[k].used list. Control application indicates the requirement to allocate

new channels by triple (a, b, c) ∈ N × N × N. In here, the first element a tells the required

amount of slots for the node b at channel c. Update functions for DART are:

gupd(vCLd
i ,m.par, t)) =(vCLd

i .cnt + 1) mod vCLd
i .cyc

gRT(vCLd
i , RTCL

d
i , t) =

true if vCLd

i .cnt ∈ vCLd
i .alloc[k].slots

for some k

false otherwise

gmy(vCLd
i , RTCLi, t, i) =

(true, c) if vCLd

i .cnt ∈ vCLd
i .alloc[k].slots

∧vCLd
i .alloc[k].used = (i, c)

(false, 0) otherwise

In addition, gupd(vCLd
i ,m.par, t) updates the allocation data objects such that each entry in

m.par.free is removed from the list ado.used whereas we add new ones to the same list ac-

cording to the m.par.new.

4.2.3 Urgency-Based Real-time Protocol (URT)

Urgency-based real-time protocol (URT) stores the control application parameters in the form

of communication requests. The only element of the decision variable will be priority queue

vCLd
i .PQ and it holds the communication requests in the form of a 4-tuple (b, c, eT, dT) in

which b denotes a device, c is a channel, eT is an eligibility time and dT is a deadline measured

relative to the time instant where the request is issued. The communication request indicates

25

that, device b can send the next message of the channel c after time eT and must send the

next message before dT . Consistently, control application message contains set of requests

m.par.req as its protocol parameter. After receiving a control application message, the requests

are pushed into vCLd
i .PQ, i ∈ I, ordered by eligibility time and deadline such that in each time

slot, the device with the most urgent eligible request gets access to the medium. It is seen that

urgency of the requests are determined by control application.

Update functions for URT are defined as follows; if gupd(vCLd
i ,m.par, t) is called and RTCLd

i =

true, the first request is popped from vCLd
i .PQ if a RT message is received. If no RT message

appears, the first request reenters vCLd
i .PQ to provide transmission in the following time-slots.

In addition, requests in par.req are inserted in vCLd
i .PQ after the current time t is added to the

relative times in each request. The remaining function definitions are:

gRT(vCLi, RTi, t) =

 true if vCLi.PQ.Top.eT ≤ t

false otherwise

gmy(vCLi, RTi, t, i) =

(true, a) if PQi.Top.b = i ∧ RTi

= true ∧ PQi.Top.c = a

(false, 0) otherwise

URT can be used with both TSIL and RAIL. For TSIL, it holds that every time slot can be

used as an RT slot if required. It is shown in [18] that every request meets its deadline if,

dS lot ≤
dTmin − eTmax

PQmax + 1
, (4.7)

where dTmin is the minimum request deadline, eTmax is the maximum eligibility time and

PQmax is the maximum length of the priority queue. For RAIL, it has to be considered that

each slot is not available for RT traffic. Using the result in (4.5), the above equation will be,

dS lot ≤
dTmin − eTmax

(PQmax + 1) · #RAIL(PQmax)
, (4.8)

26

CHAPTER 5

REAL-TIME OPERATING SYSTEMS and REALTIME LINUX

Implementing the D3RIP protocol on the target hosts requires real-time guarantees. While

programming real-time software, one has to know the abilities and capabilities of Realtime

Operating System that is being used. This section begins with distinctions between Real-

Time Operating System (RTOS) and daily-use operating systems. Next, we discuss the proper

metrics for measuring RTOS performance and Realtime Linux is covered afterwards.

5.1 Real-Time Operating System Fundamentals

As the daily-use operating systems are developed for providing the best performance for the

general case, they fail to offer deadlines for real-time software. This is why RTOSs are de-

signed: to serve real-time applications on time. RTOS serve applications within some guar-

anteed time bounds. They build a framework for the real-time processes to meet timing con-

straints. A RTOS must provide deterministic responses to unpredictable concurrent events.

An application that runs on a RTOS does not necessarily obey the real-time constraints. Meet-

ing the deadlines and response times needs a careful design. The RTOS and the processes

should run in a harmony. The designer should know the limits of the RTOS and also be aware

of the running real-time processes during the system operation. Embedded processors are

generally the target platform to run RTOS, however, it is possible to run some RTOSs on

desktop processors such as Intel x86 family. RTOS share some common properties with the

standard operating systems, however several characteristics make the distinction. Essentially,

they provide the desired abstraction between the hardware and upper level application layer.

RTOSs offer the following services similar to the general-usage operating systems:

• File Systems

27

• Networking

• Device Drivers

• Security

What makes an RTOS special is the difference in the essentials of the operating system that

may cause unbounded latencies. RTOS has significantly different approach in the following

services:

• Process Management

• Scheduling

• Context Switching

• Interprocess Communication

• Interrupt Handling

• Memory Management

Before going into the details of the RTOS, it is intuitive to cover RTOS classification. RTOSs

are divided into two sub-categories according to their reaction to real-time constraints. Soft-

RTOSs are designed to meet the deadlines most of the time and the processing performance

is generally an important concern for this type. Percentage of missed deadlines is a possible

metric for benchmarking. Hard-RTOSs specify deterministic response times and meet them

on the long run. Context switching time and interrupt latencies are among the performance

metrics for Hard-RTOS. If missing any deadlines causes a system to fail, then hard-real time

OS will definitely be the choice.

Process Management: Central processing unit (CPU) is able to perform one instruction of

any process at a time. In modern operating systems, such as Linux and Microsoft Windows,

several processes may reside in the memory and wait for the CPU to perform their instructions.

CPU serves those processes at some intervals determined by the operating system. In this way,

multiple processes may be executed at a particular time instant. Operating systems that are

capable of concurrently executing several processes are known as multi-tasking operating

systems. It increases the processor utilization over the single-tasking operating systems in

which CPU may lay idle considerable amount of time. Figure 5.1 illustrates the process states

and transitions in a multitasking RTOS [21].

28

Figure 5.1: Process States in RTOS

When a user creates and starts a process, it will initially be in the Ready state. Each process

will have corresponding Task Control Block (TCB) indicating the related information about

the particular process (process identifier, register values, etc.). Process in the Ready state

resides on a linked list so-called Ready-List as seen in Figure 5.2 which stores multiple pro-

cesses in order that are waiting to execute their instructions [21]. A process is at Running state

when CPU executes its instruction. Waiting process stays blocked until it receives a timer in-

terrupt, a message or a signal. After any of the interrupts wakes the process up, it immediately

enters into the Ready List. Process in the Dormant state resides in memory inactively.

list as shown in figure 3 is that the kernel may have to go through the whole list in order
to insert a low priority TCB. This actually happens every time a high priority task
preempts a lower priority task. Linked lists are only used here for purpose of illustration.
There are actually better techniques to insert and remove TCBs from a list instead of
using linked lists. This is, however, a topic that is beyond the scope of this paper.

0Ready List

TCB TCB TCB TCB TCB

Highest priority Lowest priority

Figure 3

EVENT MANAGEMENT

 The kernel provides services to allow a task to suspend execution until an event
occurs. The most common type of event to wait for is the semaphore. A semaphore is
used to either control access to a shared resource (mutual exclusion), signal the
occurrence of an event or allow two tasks to synchronize their activities. A semaphore
generally consist of a value (an unsigned 16-bits variable) and a waiting list (see figure
4).

TCB TCB TCB

0List Pointer

Highest priority Lowest priorityValue == 0

Semaphore Tasks waiting on semaphore

Figure 4

 The semaphore must be initialized to a value through a service provided by the
kernel before it can be used. Because the kernel provides multitasking, a resource such
as a printer must be protected from simultaneous access by two or more tasks. Because
you only have one printer, you initialize the semaphore with a value of 1. A task desiring
access to the printer performs a WAIT operation on the semaphore. If the semaphore
value is 1, the semaphore value is decremented to 0 and the task continues execution. At
this point, the task ‘owns’ the printer. If another task needs access to the printer, it must

Figure 5.2: Ready List

Scheduling: In general-purpose operating systems, processes are executed fairly. That means

a process in the Running state grasps the CPU for a fixed time-slice. It may end up its exe-

cution before time-slice when it finishes up its instructions or needs another system resource

to continue. The scheduler is generally implemented with a round-robin algorithm with time-

slice. This type of scheduling may cause the real-time processes to miss their deadlines for

the sake of fairness. RTOS resolves this problem by introducing the Preemption Policy to

29

the scheduler. In this case, scheduler may preempt a lower-priority task in the Running state

and put a higher priority one instead. RTOS continuously polls the Ready List to check if

there is a higher priority task waiting in the queue. It is against the fairness principle of the

general-purpose operating systems and it may cause degradation in the overall processing per-

formance of the system. There are several scheduling algorithms available for RTOS such as

Liu and Layland Rate-Monotonic scheduling algorithm and Earliest Deadline Priority (EDF)

algorithm [22]. Rate-monotonic scheduling is the common choice for preemptive schedul-

ing. This scheduling requires processes to have static priorities based on the execution length.

EDF algorithm dynamically assigns process priorities according to the deadlines.

Context Switching: It refers to the series of actions that happen when the computational re-

sources transfer from Running process to the one in the Ready List. As the Running process

changes its state, it immediately saves its registers to the TCB. It allows the process to restore

its former execution state when it owns CPU once again. Context switching time is an im-

portant concern for RTOS as it happens more than often. This timeout depends on operating

system TCB data structure as well as the processor architecture.

Interrupt Handling: Interrupt Request (IRQ) notifies the operating system for occurrences

of external events. If the interrupts are not disabled, CPU polls for IRQ at the end of each

instruction. When there is an IRQ available, processor terminates its current execution and

identifies received interrupt signal. Then processor starts to service the interrupt. Operating

systems treats incoming interrupts with a corresponding routine called Interrupt Service Rou-

tine (ISR). IRQ has the higher priority than the highest priority process. Therefore RTOS has

to make ISR as short as possible and return back to the execution of processes. Interrupt la-

tency is the elapsed time after receiving an interrupt signal until the start of the corresponding

ISR.

Interprocess Communication: Processes running on the multitasking system may need to

communicate with each other. Data structures within the operating system should be made

available to only one process at any time. Otherwise, processes may end up using them incon-

sistently. Operating system maintains the consistency by allowing just one process to reach

the data. Disabling interrupts temporarily or using binary semaphores are two possible ap-

proaches for the resolution. In the first method, a process disables all system interrupts during

its execution. Therefore, it can safely reach the data structure without as nothing can interfere

30

its execution. One should never disable interrupts (even temporarily) without considering the

interrupt latency of the RTOS. Long execution times with the masked interrupts will add-up to

the worst-case latency because RTOS looses its control over the processes. It is usage is thus

limited to tasks that have few instructions to complete. Using binary semaphore namely mutex

is more secure but costly alternative. When a process needs resources in the critical section it

informs the RTOS. Operating system will continue to have the control while processes are in

the critical section, which means that RTOS may continue to provide real-time behavior. As

the processes notify the RTOS, it takes more processing power to retain the critical sections

in this way. While using mutexes, lower priority processes may lock the resources and higher

priority process that needs those resources will not be able to continue its execution. In this

situation, when a medium priority task starts it will preempt low priority task. In the end,

medium priority task will run before the high priority task. This situation is called priority-

inversion and should be avoided in RTOS. It can be accomplished with priority-inheritance;

such that, lower priority process assumes the priority of higher priority process and contin-

ues its execution. Whenever it releases resources of the higher priority process it restores its

original priority level.

Memory Management: Operating systems provide memory management service to control

the portions of physical memory required by the processes. Memory management unit allo-

cates programs requested memory and frees up unused portions. General-purpose operating

systems provide the separation of process memory blocks by using virtual memory. Virtual

memory is an abstraction layer between the physical memory and the process. It maps data

structure used by processes to the locations in the physical memory. A process reaches its

data through virtual memory. This isolation allows memory protection. Virtual memory has a

demand paging utility. Demand paging dynamically exchanges the memory blocks between

physical memory and the main storage unit. It stores the recently used memory blocks on the

physical memory, whereas the formerly used portions are transferred to the storage unit. This

procedure will suspend the process for an indefinite amount of time. Although virtual mem-

ory builds the proper abstraction to achieve memory security, it should be not be preferred in

RTOS to avoid I/O latencies.

31

5.2 Measuring the Real-Time Performance:

In real-time multi tasking systems, several concurrent processes run in the same context.

As the computational load on the operating system increases, it becomes harder to meet the

required deadlines. A non-real time operating system may serve applications faster under idle

condition; yet, RTOS continues to satisfy the requirements even if the system load increases.

Thus it is not a practical way to obtain measurements under no load situations for a real-time

behavior. While doing experiments on real-time processes, we applied computational load on

the system by building a kernel configuration. The most important aspect of a real-time system

is its predictability not the performance. Real-time system design should address worst-case

situations and careful insight should be made for those assumptions. There is more than single

method to measure the real-time performance. Interrupt latency and context switching time

are the most common ones. In our implementation, the communication between different

layers of protocols are provided by sending and receiving software interrupts. The receiver

process will not wake up until it receives an interrupt from the sender process; therefore

our measurement will include the sum of interrupt latency and the context switching time.

We discuss communication latencies between processes for both: RTOS and non RTOS in

Chapter 9.

5.3 Realtime Linux Operating System

5.3.1 Basics Of Linux Operating System

Linux operating system is free and open-source software that is widely used today in many

platforms including personal computers, servers, mobile devices, and game consoles. It is

distributed with GNU General public license that makes it so popular and is the main reason

behind its rapid evolution in the past decades. GNU General Public License allows Linux

source code to be freely used, modified and distributed with anyone either commercial or not

[25]. Like in many modern operating systems, Linux separates virtual memory into Kernel

Space and User Space. Core operating system functionalities are found in the Linux Kernel.

It consists of a task manager, a file system manager, and the hardware access manager [26].

Some drivers for the hardware components are built into the kernel while others reside as

Loadable Kernel Modules (LKM). LKMs extend base kernel when the corresponding func-

32

tionality is required at runtime. Through the insertion and removal of those modules, efficient

usage of memory is achieved. User Space hosts to all of the software that is necessary for

better user experience. User Space programs interact with the kernel space when needed. The

separation of Kernel Space and User Space provides the efficient and safe use of resources.

5.3.2 Realtime Linux Kernel

Standard Linux Kernel is not suitable for real-time operation because it is designed to improve

the common case performance. Realtime Linux kernel has a modified scheduler that supports

Preemption. Existence of Big Kernel Lock (BKL) in Linux Kernel avoids Preemption of pro-

cesses at the kernel space. In Realtime Linux Kernel, BKL is eliminated in all possible places.

In addition, high-resolution timers are utilized in the Realtime Kernel to have system timer

accuracy under 1µs. One of the biggest advantages of using Realtime Linux is, there is no

need to use a specialized API for real-time processes. Ingo Molnar and Thomas Gleixner have

great contribution for the existence of Realtime Linux. Currently, Open Source Automation

Development Lab (OSADL) supports Realtime Linux; they organize conferences, measure

and monitor the performance of latest kernel with a variety of hardware architectures and

assist open source developers online [24].

5.3.3 Configure and Build Realtime Linux Kernel

Realtime Kernels emerge from some mainline Linux Kernels. Realtime Linux kernel is han-

dled by patching the corresponding mainline kernel with the real-time patch. The latest main-

line kernel for which the real-time patches are being developed is 2.6.33.7, though currently

2.6.39.2 is available. The latest stable kernel and the RT-Preempt patches are available online

[27],[28]. After downloading kernel and its real-time patch, the user should extract and patch

the mainline kernel with the following commands.

33

cd / usr / src / kernels

wget www . kernel . org / pub / linux / kernel / v2 . 6 / linux 2 . 6 . 3 3 . 7 . tar . bz2

tar −jxf linux− 2 . 6 . 3 3 . 7 . tar . bz2

mv linux 2 . 6 . 3 3 . 7 linux 2 . 6 . 3 3 . 7 . 2 −rt30

cd linux 2 . 6 . 3 3 . 7 . 2 −rt30

wget www . kernel . org / pub / linux / kernel / projects / rt / older / patch 2 . 6 . 3 3 . 7 . 2 −rt30 . bz2

bzip2 −d patch− 2 . 6 . 3 3 . 7 . 2−rt30 . bz2

patch −p1 patch− 2 . 6 . 3 3 . 7 . 2−rt30

Before building real-time patched kernel, several changes should be made to the kernel con-

figuration file. The user should open the configuration file and make the following changes.

make menuconfig

Enable HPET Timer Support and select Preemption Mode as Complete Preemption (Real-

Time) shown in Figure 5.3. Disable tickless kernel and enable the High Resolution Timers as

in Figure 5.4.

Figure 5.3: Configuration I

34

Figure 5.4: Configuration II

The new kernel is compiled, linked and installed as follows:

make

make modules install install

Then linux bootloader (GRUB) should be updated to recognize the new kernel while booting

up.

update grub

5.3.4 Programming with Realtime Linux

POSIX.1b API of Realtime Linux includes real-time extensions that provides Priority schedul-

ing, Real-time signals, Clocks and Timers, Interprocess Communication and so on. In order

to use these functionalities, programmers should link their projects with the real-time library

using the option -lrt.

There are two critical things to do while programming real-time processes with Realtime

Linux. Firstly, paging should be eliminated with the command mlockall to eliminate latency

35

while accessing secondary storage unit as described in Chapter 5.1. MCL FUTURE option pro-

vides dynamic memory allocation at runtime will also reside on RAM and notifies if there is

no space available. In addition to disabling paging, we should set priorities of the processes

with sched setscheduler command. Lowest priority process has a priority of 1 and for the

highest process it is 99.

int main (int argc , char ∗∗argv) {

mlockall (MCL CURRENT MCL FUTURE) ; / ∗Lock process memory pages in RAM∗ /

struct sched param scheduling parameters ;

scheduling parameters . sched priority = sched get priority max (SCHED FIFO) ;

sched setscheduler (0 , SCHED FIFO , scheduling parameters) ;

/ / user code goes here . . .

munlockall () ; / unlock process memory pages in RAM /

}

We included above statements while implementing IEEE 1588 time synchronization proto-

col(Chapter 6) and the coordination layer protocol (Chapter 7). All threads of the imple-

mented modules will be running with the highest available priority level which is 99. As

the protocol implementation has to run on generic platforms, the code was written using the

realtime extension of POSIX API.

36

CHAPTER 6

TIME SYNCHRONIZATION PROTOCOL

IMPLEMENTATION

Our implementation of real-time industrial communication protocol relies on a synchronous

time-slotting mechanism for medium access to achieve collision avoidance and avoid the non

deterministic CSMA/CD behavior of IEEE 802.3. We employ a widely used IEEE 1588 pro-

tocol for the time synchronization of the nodes . It can be ported to any system in the IEEE

802.3 network topology. This portability provides us the ability to include synchronization

software in any node without much effort. This section first compares and contrasts avail-

able time synchronization techniques to reason why we have chosen the IEEE 1588 protocol.

Then we discuss several possible system clock types to choose the most suitable one during

synchronization. Finally, we give the implementation details and the experimental results for

the IEEE 1588 protocol.

6.1 Available Time Synchronization Techniques

There are several available time synchronization methods for different purposes. Figure 6.1

illustrates available synchronization methods and their inherent characteristics. To begin with,

GPS devices provides time synchronization accuracy less than a microsecond. GPS receiver

gathers clock information from the extremely precise atomic clocks. It provides the clock

information to outside world with a Pulse Per Second (PPS) signal with a dedicated output

pin. PPS signal creates an impulse with a duration of typically several microseconds at each

second. A device that needs to be synchronized with a GPS time should process the PPS

signal and adjust its local clock accordingly. A problem with the synchronization along with

37

a GPS receiver is, it imposes hardware dependability. In addition, these devices may fail to

provide target accuracy at indoor operations.

Network Time Protocol is a standardized (RFC 2030) way of time synchronization applicable

to devices with an internet connection. A local host updates its clock after receiving a NTP

packet over the network. This packet contains the time server clock information along with

some other controlling data. Considering the unpredictability of the latency between the time

server and the local host, NTP may only provide synchronization accuracy in the order of

hundred milliseconds. NTP is widely utilized on legacy data networks but our system needs

much higher accuracy.

There are a number of synchronization methods that are using a propriety buses for cyclic

communication. Sercos (IEC 61491) is an example to such synchronization technique. Proper

clock source in this protocol is the decided master node. It sends time synchronization mes-

sage with some millisecond intervals. Usage of separate bus for the synchronization increases

the cost and expanding the system might not be easy.

Precise Time Protocol (PTP) is aimed to provide time-synchronization for the systems of local

area network. IEEE defined the initial version of PTP in IEEE 1588-2002. Second version of

PTP is announced in IEEE 1588-2008 standard. The revised version improves accuracy and

performance especially when used with compatible network equipments. PTP is aimed to be

used in relatively localized systems that may be of industrial automation or test and measure-

ment environments. Although the proposed communication medium for PTP is Ethernet, it is

also possible to run the protocol on any network that support multicast communications. PTP

runs on the local area without a need for an administration. It decides the clock hierarchy

during operation, therefore adding or removing nodes will not need a reconfiguration. Includ-

ing an additional hardware for the NIC is proposed for higher synchronization accuracy (ie.

<100ns). Software only implementation is an inexpensive and practical alternative that guar-

antees time synchronization in the order of microseconds. The prominent advantage of PTP

is, it requires a little computational footprint. Therefore it is even possible to run this protocol

on low-end embedded platforms. Running the software on a 66MHz m68 processor causes a

CPU utilization less than 1% [10]. Furthermore, it imposes a little load to the network traffic

during operation. Application of IEEE 1588 is announced by several organizations dealing

with Real-time Ethernet concepts, such as: ETHERNET Powerlink, EtherCAT, CIPSync and

38

Profinet.

!"""#$%&& '() *)+ +",-.+

!"##$%&'()&"% *+),"-. /%)+-%+) 0()+11&)+ 2$3

04%'56''$-('4 73 #3 73 73

8(-9,(-+5:+;+%9(%) <"-5=&>=+3)5(''$-('4 *" ?@05-+'+&A+-5(%95;-"'+33"- B+3

C;9()+5&%)+-A(1 D53+'"%93 0+A+-(153+'"%93 E53+'"%9 F('=5G:H65'4'1+

6;;1&'()&"%56-+(<+,50$I%+)3 J&9+56-+(J&9+56-+(<+,50$I%+)3

Figure 6.1: Comparison of Time Synchronization Protocols

It is also possible to implement a NTP server within a local area network without an internet

connection. This will result time-synchronization performance similar to that of the software

only implementation of IEEE 1588. However, we preferred to implement IEEE 1588 protocol

in order to be able to include hardware assisted 1588 network interface cards in the future.

6.2 System Clock

System clock serves the operating system and applications to indicate the time instant and

generating timer events. System clock is critical while dealing with distributed real-time ap-

plications. Time synchronization performance is directly related to the system clock accuracy.

PTP application should use a proper system clock to gather accurate timestamps. The same

application makes corrections on system clock of slave nodes by resetting the clock to a new

value and/or adjusting the frequency of system clock. Therefore, system timer should have a

support for both of these operations. Precision of the system clock depends on the hardware

clock source and the driver that lets user space to reach it. Operating system may use one or

more of the available hardware clock sources.

6.2.1 Hardware Clock Sources

There are several alternatives that might be chosen as clock sources. A clock source often

contains a hardware oscillator and a counter.

RTC (Real Time Clock)

Real time clocks are battery-powered chips that maintain the current time even if the related

39

device is off. They can only provide a clock resolution up to few milliseconds. Furthermore

it takes quite a bit of I/O to read the clock. In modern computers, their main usage is for

determining the system time on the startup and storing the current clock value just before shut

down.

HPET (High Precision Event Timer)

High precision event timers are found on recent chipsets and they provide 10MHz 64-bit

counters. It provides clock through an internal oscillator with a resolution of 1ns. The internal

oscillator quality determines the accuracy of the clock. Variations in environment conditions,

specifically the temperature, may cause intrinsic frequency instability in poor oscillators [31].

Non-deterministic clock drift will be observed under such conditions. Cost for reading a time

from user-space application is around 1µs. HPET has been available for Linux operating

system for 2.6 kernel versions with a POSIX interface.

Time Stamp Counter (TSC)

Time stamp counter is a CPU register already available in the widely-used Intel Pentium

processor. It has a 64-bit cycle counter letting it to offer nanoseconds accuracy. Contrary to

HPET which uses an internal oscillator, TSC increments the counter register at each processor

cycle. Its time resolution depends on the processor speed; for high speed CPUs it may yield

higher resolution than the HPET. For instance, a processor that is running at 2.2GHz will

have a resolution of 1
2.2GHz = 0.45ns. Furthermore, the time required to access the TSC

register is much less than that of reading the HPET clock. RDTSC instruction reads the TSC

register usually less than 50 CPU cycles. However, there are some reliability issues when

using TSC. Multi-core CPUs contain a TSC registers corresponding to each of its cores and

each may hold different values. In addition, power saving features of processor may cause

CPU frequency scaling. As the CPU frequency changes, so does the increment rate of the

TSC register. Lastly the portability is a problem with the TSC approach; as it relies on a

specific processor registers.

Using TSC as a clock source instead of a HPET is shown to have a better synchronization

accuracy [32]. Keeping the problems (especially, portability problem) associated with the

TSC in mind, we use HPET in clock synchronization. By making this decision, we admit

some degradation in synchronization accuracy. Nonetheless, we will be able to port our work

without being constrained to a single processor family. Diminishing the frequency instability

40

in HPET oscillators by using better internal oscillators will provide better synchronization

accuracy.

6.2.2 User Space Access to Clock Source

The standard Linux timers measure the time by just looking at the jiffies, which is the duration

of the one tick in the system interrupt. HZ variable, which is contained in the kernel config-

uration file, lets the user to specify frequency of the system tick at the build time. Possible

values for HZ are 100Hz, 250Hz and 1000Hz. It can be set at most 1000Hz that yields a tick

resolution of 1 ms. This value is insufficient for most of the real-time applications. In order to

provide more accurate time measurement, High Resolution Timers (HRT) are proposed. HRT

eliminates the tick dependency (jiffies) of the time-keeping. The HRT framework has been

introduced to the Linux system with the 2.6.21 kernel. HRT has accuracy up to 1ns depend-

ing on the timer hardware which is discussed in the previous part. It can be activated after

setting the line CONFIG HIGH RES TIMERS=y for configuration file in the kernel source

directory before building the kernel. Then the High Resolution Timer API will be available

for the user space through the POSIX interface.

POSIX.1b library defines real-time clock methods for clock gettime(clockid t clk id,

struct timespec *tp) and clock settime(clockid t clk id, const struct timespec

*tp) for retreiving current time and resetting it to a new value respectively. These methods

are defined in the library time.h which should be linked against librt (-lrt option). Unix time

value is represented in timespec structure, that is defined as:

struct timespec {

time t tv sec ; / ∗ seconds ∗ /

long tv nsec ; / ∗ nanoseconds ∗ /

} ;

Clock interface functions take clockid t as parameter which may either be CLOCK MONOTONIC

or CLOCK REALTIME. CLOCK MONOTONIC provides frequency-stable monotonically

increasing counter. It is not affected by the changes made to the system clock; it starts as

the system boots and runs straight indefinitely. CLOCK REALTIME represents basically the

wall-clock of the system. Although CLOCK MONOTONIC often provides better accuracy,

41

we use CLOCK REALTIME option as we adjust the system clocks of the slave nodes while

synchronizing with the clock source.

Our protocol will run on different systems and each them may have systems clock with dif-

ferent oscillator characteristics. IEEE 1588 protocol makes adjustments to the frequency of

system clock on slave nodes to match the frequency of the master nodes oscillator. We use

adjtimex(struct timex *buf) function to change the frequency of a system clock.

6.3 IEEE 1588 Time Synchronization Protocol

Our implementation of relative clock synchronization will be based on PTP version 2 (IEEE1588-

2008). Relative clock synchronization focuses on time difference between nodes in local area

network whereas in global synchronization, the aim is to achieve minimum offset from the

absolute time. In the latter case there is a need for a source of a absolute time that can be

provided by a GPS receiver. However, we will not need absolute time synchronization as our

overall system will be closed loop and does not need an absolute time reference. PTP version

2 introduces the concept of transparent clock which is associated with the IEEE1588-2008

compatible network equipments. Transparent clock modifies the timestamp values in PTP

messages according to the time spent while passing through the network device. Using a

transparent clocks requires three additional protocol messages:PDelay Req, PDelay Resp,

PDelay RespFollowUp. We will not be using IEEE1588-2008 compatible network equip-

ments, therefore we will not need those protocol messages.

We implement the following IEEE1588-2008 protocol messages.

• Announce

• Sync

• Follow Up

• Delay Req

• Delay Resp

Announcemessages are send by each node along with sending nodes’ clock properties. IEEE

1588 defines the following properties of clock: stratum number, priority and identifier. Best

42

master clock (BMC) algorithm determines the most accurate clock among connected nodes

with this information. Announce messages drives BMC algorithm to make computations

periodically on each node. It must produce consistent results in all nodes. In other words,

every node has to decide the same node as the master node after executing the algorithm.

Master node will be a reference clock for slave nodes to synchronize their system time. PTP

is self-organizing such that, BMC algorithm may determine a new master node when the

former clock source leaves the network or a superior clock introduces to the network.

After settling on a clock hiercharcy, clock consumers synchronize with the clock source with

the Sync, Follow Up, Delay Req and Delay Respmessages. Figure 6.2 shows the exchange

of protocol messages between two connected hosts.

Figure 6.2: PTP Messages

PTP master multicasts Sync message typically in each second. It is followed by Follow Up

message that contains timestamp (t1) taken by master node while sending Sync message.

Slave nodes will take a timestamp (t2) at the instant they receiveSync message. After receiv-

ing a Follow Up, masters’ timestamp can be extracted. Consequently, slaves will be able to

43

calculate master to slave delay by taking the time difference.

tms = t2 − t1 (6.1)

Slave nodes send Delay Req messages to the master node on random intervals uniformly

distributed between 2 and 30 Sync periods. The idea behind sending at random intervals

is to avoid burst network traffic directed to the master node. Slave nodes take a timestamp

(t3) while sendingDelay Req packets. Then master node takes timestamp (t4) on receiving

Delay Req and sends back this information in the Delay Respmessage to those slaves. Slave

to master delay can be calculated after receiving Delay Resp message.

tsm = t4 − t3 (6.2)

The following two relations assume that one way delay is symmetric between master and

slave.

tms = one way delay + o f f set f rom master (6.3)

tsm = one way delay − o f f set f rom master (6.4)

Using (6.3) and (6.4) slave node can determine offset from master. These data’s should be

used with a care while adjusting the system clock. Slave nodes update tms more frequently

than the tsm. Therefore we will assume that tsm remains the same where tms may be updated

several times. It may lead us to wrong clock adjustments if either of them is erroneous. We

make corrections to the system clock through the clock servo unit proposed in [10]. Not only

it decides how to make fine adjustments to the system clock; but also it detects and diminishes

jumps in the feed.

6.3.1 Clock Servo

This module is not a part of the IEEE 1588 protocol specifications, yet it is essential while

making fine adjustments to the system clock. Follow Up and Delay Resp messages dynam-

ically update clock servo variables. We have to record previous readings and use them in the

44

future as there might be misleading results at times. Figure 6.3 depicts the clock servo that is

utilized while synchronizing with the master node [10].

Figure 6.3: Clock Servo Diagram

Follow Up messages trigger an update for the offset from master. Nodes take the average of

previous two offset from master calculations to reduce the impact of unexpected jumps in the

end. Actually, it is a basic two sample average FIR filter. We calculate the one way delay just

after receiving the Delay Resp packets. As the one way depends on many factors including

the current network load, a more complex filter is introduced to predict the one way delay.

It is a variable cutoff low-pass, infinite impulse response (IIR) filter that diminishes the short

term fluctuations. Difference equation of the IIR filter is [10] :

s ∗ y[n] − (s − 1) ∗ y[n − 1] =
x[n] + x[n − 1]

2
(6.5)

In equation 6.5 x[n] and y[n] represents the most recent input and output of the filter whereas

x[n-1] and y[n-1] are the previous values. In the same equation, variable s is stiffness and

increasing it lowers the cut-off frequency of the filter. During the beginning of synchronization

the value of s is set to be one and incremented gradually with each sample until it reaches to

a predefined value.

Slaves make delay calculations less frequently than the offset calculations as they receive cor-

responding packets so. While calculating offset from master, we assume that one way delay

stays the same till the next delay calculation. If a clock consumer node calculates an offset

greater than 1 second, it will reset its clock with a new value calculated by subtracting off-

set from the current time. When the offset is less than a second, then slave node speeds up

or slows down its oscillator to match the oscillator frequency of the clock source. In order

to avoid aggressive changes to the clock frequency, we include a Proportional Integral (PI)

45

controller to mediate the clock frequency adjustment output. PI controller has the following

difference equation [10] :

y[n] =
y[n] − x[n]

Ap
+ a[n] (6.6)

a[n] =
y[n] − x[n]

Ai
+ a[n − 1] (6.7)

In equations 6.6 and 6.7 we represent recent filter input with x[n] and recent output as y[n].

The proportional gain (Ap) and integral gain (Ai) constants are used to determine the output

characteristics of the controller. Default values for Ap and Ai are 1.

The clock servo that we use is described and its response is tested in a previous work [10].

It has been shown that employing clock servo with a maximum stiffness value of 6 (s =

6) attenuated most of the high frequency noise that causes unwanted impulses in the off-

set from master measurement.

6.3.2 Time-Stamping Mechanism

Timestamp accuracy for the PTP packets mostly determines synchronization accuracy. It is

up to the requirements of the system to determine a suitable time-stamping method. Accuracy

depends on the location where the timestamp has been taken in the network protocol stack.

The error rate increases as the timestamp is taken at higher layers in the OSI model. Fig-

ure 6.4 illustrates possible locations for timestamp. There are several approaches for taking

timestamp, though, highest accuracy can only be achieved with an additional hardware.

There are two alternatives for taking the timestamp if we are limited to the software only im-

plementation. The first alternative will be taking the timestamp at the user-space simply after

the socket receive or send routine returns. This approach will impose an aggregated latency

and jitter of the underlying protocol stack. Superior timestamp accuracy is possible by tak-

ing timestamps at Network Driver level. In this method, timestamps for incoming packets are

taken at the Network-Layer when the corresponding Interrupt Service Routine (ISR) is started

for that packet. NIC modules provide receive ISR and in order to take a stamp in the begin-

ning of the ISR one needs to modify the module and rebuild it against the kernel. Finally, the

new module should be inserted to the system. It is not an elegant way to take timestamps with

46

Figure 6.4: Possible Timestamp Locations

this method; as different manufacturers may have different drivers and kernel module pro-

gramming needs lots of care. In addition, driver module should provide a separate interface

to the user-space to deliver the timestamp values. Considering those problems, Linux kernel

developers included SO TIMESTAMP feature to the network stack. Linux mainline kernels

of version greater than 2.6.30 have this feature. It allows user-space applications to access

received timestamp information from the kernel without altering any driver modules. Times-

tamps for outgoing packets are taken by enabling loop-back by IP MULTICAST LOOP op-

tion and time-stamping the loop-back packets. Timestamp values are compensated by adding

inbound and outbound latencies at the nodes. The main source of the error in this approach is

caused by the operating systems’ ISR latency.

Taking more accurate timestamps is only possible by including an additional hardware either

at Media Independent Interface (MII), resides between MAC and PHY, or Physical layer. A

time-stamp unit can be connected to the MII interface. This unit consists of FPGA and IEEE

1588 clock [29]. All packets traversing the IP stack also pass through this unit in parallel.

Achievable synchronization accuracy is less than 100ns in a network of two hosts connected

to a hub [30]. The second alternative is, using a PHY transceiver together with an IEEE 1588

clock. That newly developed transceiver allows taking timestamps with the lowest possible

errors. The results have shown that 8ns synchronization accuracy is possible by using this chip

47

[33]. However in order to use DP83640, a suitable micro controller is needed. The problem in

hardware modifications is that, timestamps are not taken with the system clock. System-clock

should either be synchronized with IEEE 1588 clock or we have to use that clock instead of

system-clock. PPS output signal of the IEEE 1588 clock can be used to synchronize system-

clock. Using IEEE 1588 clock (monitor and adjust) in the application layer is possible by

implementing a ioctl() command allowing clock operations .

Considering these methods, we decide to take timestamp from the NIC driver without making

changes in the hardware. Accuracy of this method directly depends on the operating system

behavior for the interrupts. Using a non-RTOS cannot avoid long durations of time when

interrupts are disabled. Furthermore, bursty CPU or interrupt loads will cause delayed execu-

tions. These two factors contribute to the timestamp error as experimented in previous work

[10]. As we are using Realtime Linux, the ISR latency will be limited. It will minimize the

unexpected jumps for the execution of drivers’ receive interrupt.

Synchronization protocol will run the on time-slotted medium which is provided by the Inter-

face Layer of D3RIP stack as illustrated in Figure 1.1. Synchronization packets are non-real

time packets that are sent with the highest priority. Interface Layer may delay synchroniza-

tion packets in the favor of real-time packets. However, D3RIP protocol gives the real-time

traffic higher priority than non-real time traffic. Hence, the outgoing packet timestamp values

acquired from the network driver will not be accurate while running on top of the Interface

Layer as the sending be delayed after taking the timestamp. Therefore IL informs PTP ap-

plication to correct the acquired timestamps for sent packets by telling the time duration for

synchronization packets waiting in the IL send queue. IL sends the delay of the sent packet af-

ter it is sent to network interface card driver then PTP uses this to have the correct time stamp

(time of exiting the MAC driver). As the IL resides on the kernel-space this communication

is provided by ioctl function.

There are two occasions that needs this correction. The IL in the master node corrects the

Sync message timestamp before sending a Follow Up message. After acquiring the correc-

tion from Interface layer, Master node sends the corrected Sync timestamp.

ioctl (rtOpts− >ILDeviceFile , IOCTL SYNC CORRECTION ,

&ptpClock− >syncCorrectionOffset . nanoseconds)

48

Similarly the ILs in the slave nodes correct theDelay Req timestamp. This will increase the

accuracy in slave to master calculations.

ioctl (rtOpts− >ILDeviceFile , IOCTL DELAYREQ CORRECTION ,

&ptpClock− >delayRequestCorrectionOffset . nanoseconds) > 0) ;

6.4 Time Synchronization Performance

In this part, we discuss experimental results while running software only implementation

of IEEE 1588 version 2. Synchronization accuracy has a direct consequence in the D3RIP

protocol family. It determines the time-slot duration as we have to put guard periods within

the time slots to compensate the amount of error in the synchronization of nodes. We will first

analyze the effect of system clock and network equipments on synchronization performance.

Then, we run time synchronization protocol on our target system. Because of the clock servo,

it takes several minutes to synchronize with the clock source in the order of microseconds. In

order to let the clock servo to settle down, we collected offset from master data five minutes

after running PTP application.

6.4.1 Analyzing The Factors That Affect Synchronization Accuracy

We devote this section to reveal possible causes that may undermine synchronization accu-

racy. For simplicity, we run PTP application on two systems at a time. Each system operates

on real-time patched linux kernel: Linux 2.6.33.7-rt30. The priority for the PTP application is

set to be 99 which is the highest available real-time task priority. We configure Syncmessage

period to be 1 second.

First we make a reference synchronization experiment consisting of two systems with the

same manufacturers’ system clock. We establish a direct connection with a crossover cable.

After ten minutes of run, slave host’s clock offset stabilized in the order of microseconds. The

distribution of the offset from master node the related statistical data are illustrated in Figure

6.5 and Table 6.1.

49

0	
5	

10	
15	
20	
25	
30	
35	
40	
45	

-‐50	 -‐40	 -‐30	 -‐20	 -‐10	 0	 10	 20	 30	 40	 50	

%
	 o
cc
ur
en

ce
	

Offset(µs)	

Offset	 From	 Clock	 Source	

Figure 6.5: Synchronization Offset Distribution for Same System Clock Hosts, Direct Con-
nection

Table 6.1: Synchronization Offset Values for Same System Clock Hosts, Direct Connection

Min: -30.896µs
Max: 33.456µs
Average: -0.2339µs
Deviation: 6.4053µs

Next, we connect the same PCs over Surecom 508T 10Mbps 10 port Ethernet Hub. To predict

the influence of this Hub on the synchronization packets, we prepared a set-up with Spirent

AX4000 Network Analyzer and simulated PTP traffic prior to the experiment. We produced

a PTP traffic over the Hub by sending UDP packets (size=66 bytes) twice at a second. After

running simulation for an hour we obtained the results for the specified Hub as seen in Table

6.2.

Table 6.2: Latency Caused by the Hub

Average Delay: 8.07us
Min Delay: 6.45us
Max Delay: 9.77us

Then we made an actual PTP synchronization with a duration of one hour over this Hub. The

results are depicted in 6.6 and Table 6.3.

50

0	
5	

10	
15	
20	
25	
30	
35	
40	
45	

-‐50	 -‐40	 -‐30	 -‐20	 -‐10	 0	 10	 20	 30	 40	 50	

%
	 o
cc
ur
en

ce
	

Offset(µs)	

Offset	 From	 Clock	 Source	

Figure 6.6: Synchronization Offset Distribution for Same System Clock Hosts, Connected
over Hub

Table 6.3: Synchronization Offset Values for Same System Clock Hosts, Connected over Hub

Min: -36.696µs
Max: 34.316µs
Average: 0.25151µs
Deviation: 7.1574µs

Lastly we run PTP application on hosts that have different manufacturers’ system clocks.

They are connected to each other with a cross-cable to isolate the latency caused by the Hub.

Figure 6.7 and Table 6.4 shows the synchronization accuracy for this case.

0	

5	

10	

15	

20	

25	

30	

35	

-‐60	 -‐50	 -‐40	 -‐30	 -‐20	 -‐10	 0	 10	 20	 30	 40	 50	 60	

%
	 o
cc
ur
en

ce
	

Offset(µs)	

Offset	 From	 Clock	 Source	

Figure 6.7: Synchronization Offset Distribution for Different System Clocks, Direct Connec-
tion

51

Table 6.4: Synchronization Offset Values for Different System Clocks, Direct Connection

Min: -46.610µs
Max: 55.270µs
Average: 0.81231µs
Deviation: 10.389µs

Hosts that have the same system clock model have superior synchronization performance.

The result is quite acceptable as the different oscillators have different drift rates. Including

a 10 Mbps Hub instead of a direct connection between hosts, does not affect synchronization

accuracy much. However in a network of burst network traffic, 10Mbps Hub may not be a

sufficient and the synchronization accuracy will definitely decrease. For such cases, we should

try using a faster Hub (eg.: 100Mbps), however these Hubs can be rarely found on the market

currently.

6.4.2 Synchronization Performance for the Overall System

In this section, we give the results of the experiment that investigates the synchronization ac-

curacy of our target system. We build a connection consisting of following nodes: 2 Desktop

PCs, 1 Embedded Platform and 1 Industrial PC (IPC). They are all running the latest available

realtime patched linux kernel version 2.6.33.7-rt30 and are connected to the network with the

Hub. Duration of the experiment is 1 hour and we start collecting the synchronization error

data after 5 minutes of the run. In this experiment, Best Master Clock algorithm of the PTP

decided Industrial PC to be the master node.

0	
2	
4	
6	
8	

10	
12	
14	
16	
18	
20	

-‐240	 -‐200	 -‐160	 -‐120	 -‐80	 -‐40	 0	 40	 80	 120	 160	 200	 240	

%
	 o
cc
ur
en

ce
	

Offset(µs)	

Offset	 From	 Clock	 Source	

Figure 6.8: Synchronization Offset Distribution for PC1

52

Table 6.5: Synchronization Offset Values for PC1

Min: -220.25µs
Max: 188.36µs
Average: 0.78271µs
Deviation: 39.403µs

0	
2	
4	
6	
8	

10	
12	
14	
16	
18	
20	

-‐240	 -‐200	 -‐160	 -‐120	 -‐80	 -‐40	 0	 40	 80	 120	 160	 200	 240	

%
	 o
cc
ur
en

ce
	

Offset(µs)	

Offset	 From	 Clock	 Source	

Figure 6.9: Synchronization Offset Distribution for PC2

Table 6.6: Synchronization Offset Values for PC2

Min: -176.330µs
Max: 212.744µs
Average: 0.34973µs
Deviation: 35.169µs

0	

5	

10	

15	

20	

25	

30	

-‐240	 -‐200	 -‐160	 -‐120	 -‐80	 -‐40	 0	 40	 80	 120	 160	 200	 240	

%
	 o
cc
ur
en

ce
	

Offset(µs)	

Offset	 From	 Clock	 Source	

Figure 6.10: Synchronization Offset Distribution for Embedded Platform

53

Table 6.7: Synchronization Offset Values for Embedded Platform

Min: -221.810µs
Max: 209.354µs
Average: 0.10815µs
Deviation: 30.251µs

It is seen that the synchronization performance is not as promising as the previous experi-

ment that is consisting of just two nodes. Nevertheless, it is still in the order of hundreds of

microseconds which can be tolerated with an appropriate slot duration selection.

Most of the available implementations and related experiments with the IEEE 1588 protocol

in the literature are all concerned with the hardware assisted version of the protocol. It is

reasonable to do so not only for its higher precision but also the measurements in the software

only approach are not very accurate because it involves jitter related to the network stack. The

recommended method for measuring the offset from master value is comparing the pulse per

second output of the master clock to that of the slave node with an oscilloscope. We were

unable to do this kind of measurement because we were limited with the HPET as a clock

source which does not have a pulse per second output.

54

CHAPTER 7

COORDINATION LAYER PROTOCOL IMPLEMENTATION

Coordination layer (CL) assigns each time-slot, which is provided by the interface layer (IL),

to a unique node with a distributed computation. In addition, it determines the type of the next

slot which may either be RT (for Real-time traffic) Slot or nRT Slot (for non-real-time traffic).

In the proposed protocol hierarchy, CL lies between the Control Application and IL. Essen-

tially, CL processes RT messages that are coming from the Control application and performs

a distributed calculation on the network to guarantee the delivery of the RT packets on time.

CL adopts the slot allocation according the needs of the Control Application throughout the

operation; as a result, the bandwidth is used more efficiently. CL protocol family consists of

two different protocol: Dynamic Allocation Real-time protocol (DART) and Urgency-Based

Real-time Protocol (URT) as discussed in sections 4.2.2 and 4.2.3.

7.1 Object Oriented Design for Coordination Layer

Our protocol family is developed through an object oriented approach. URT and DART extend

a generic coordination layer protocol; yet, they use different methods for the decision of the

next slot. Using a template and putting common properties together greatly enhances the code

reuse. For example, if we propose a new CL Protocol in the future, then it will only require

implementation of several functions while integrating it to the current architecture.

UML Class Diagrams [34] provide an elegant way to comprehend the structure of a system.

Figure 7.1 illustrates the UML diagram for the coordination layer. CLProtocol class is an

abstract class that controls the correct operation of the protocol and interfaces to other proto-

cols. Internal variables for CLProtocol that change during runtime are accessed through the

55

class rtOpts. DART and URT derive from the CLProtocol by implementing the necessary

functions. They have their decision variables as outlined in vCLDART and vCLURT.

Figure 7.1: Coordination Layer UML Class Diagram

As the CL protocol has real-time constraints, our implementation:

• Uses no global variables at all
• Avoids redundant use of memcpy and malloc
• Avoids paging and runs with highest available real-time priority
• Utilizes POSIX API for its reliability

7.2 Generic Coordination Layer Model

In this part, common implementation that will be used by both DART and URT will be dis-

cussed. The implementation of so called CLProtocol class will serve a basis for the under-

lying protocols. It provides an ease for the further derivation of additional protocols besides

DART and URT in the future. In addition, as this class will provide interfaces (Figure 7.2)

to the other protocols in our framework, CL can adopt for any changes in other protocols by

only doing some refinements to the CLProtocol class.

56

!"#"
$%&'()#" *+,*-./01234564*-.70

8

!"#$%&'($)*+,#-*.#-$%*/'0$%)
39/#%:;<#24;=#% 6&9/%&>2?@@>(<;/(&9

64534*-.*-64127=64170
?$564.<A170212645?$.0

Figure 7.2: Interfaces Used and Provided by Coordination Layer

Figure 7.3 shows a sequence diagram for this class which a possible sequence of events that

may happen at runtime according to the transitions as described in Chapter 4, Figure 4.1.

Events coming from the Control Application are shown as (1), (5), (6). These events may oc-

cur anytime determined by Control Application. Event (1) and (5) poll CL for the availability

of a new message from interface layer. Control Application sends (6) if its data is ready to

be sent. CL receives IL2CL and REQRT events from lower layer protocol (2), (3), (7). CL

should respond (3) and (7) with (4) and (8) respectively if and only if the elapsed time is less

than del which is defined in Chapter 4.

Figure 7.3: Coordination Layer Sequence Diagram

7.2.1 Communication with the Control Application

The transmissitted control message to the CL is regulated with a XML file in the control

application which is further explained in Chapter 8. Control Application sends the prepared

RT message to the CL by calling ap2cl(dat, p, ch)i along with the channel information and

57

the Control Message (Figure 7.4). It contains 1 Byte channel information, so that CL puts the

received Control Message to the corresponding transmit buffer (i.e.: Txd
i [ch]). One thing to

note here is that, CL Protocol Parameters change according to the underlying protocol; DART

or URT. However, Generic CL model does not need to know the parameters at this time and

puts them to the transmit buffer without extracting the CL Protocol Parameters.

Figure 7.4: Control Application Message Contents

Control Application sends cl2ap(Rxd
i)i message to the CL in order to poll for any possible

RT messages received from another node. CL receives Control Message of some other node

from IL and puts them into the receive queue Rxd
i . When CL receives cl2ap(Rxd

i)i , it has two

choices: either tell the Control Application that Rxd
i is empty or transmit the first Control mes-

sage in the Rxd
i . In both cases, a separate POSIX message queue provides the transportation

of Control Messages between Control Application and the CL.

7.2.2 Communication with Interface Layer

IL sends reqrt(t)i message to the CL in order to retrieve the next slot information. This mes-

sage includes a timestamp that represents the time message which left the IL. After receiving

a reqrt(t)i, Generic CL Protocol does the calculations for the next time slot with functions

gRealTime and gMySlot. However Generic CL Protocol itself does not contain a defini-

tion for those methods. They are defined pure virtual functions in CLProtocol class as seen

below.

virtual void gUpdate (const U8 msg , const U16 messageLength) = 0 ;

virtual SLOT TYPE gRealTime () =0;

virtual myCL TYPE gMySlot () =0;

58

Protocols that derive from Generic CL override those functions. Generic CL Model has two

internal variables RTCL and myCL; they are updated with a gRealTime and gMySlot functions

respectively. Finally, CL uses timestamp to determine whether the internal calculations has

exceeded the time interval del.

CL protocol responds with cl2ilrt(RTCLd
i , myCL

d
i ,m)i message after receiving a reqrt(t)i.

First two parameters are the updated internal variables. If the myCL variable signifies that

the current node owns the next time slot, then m parameter will contain a Control Message

stored in the corresponding Txd
i [ch] buffer.

CL receives il2clrt(m, t)i message from IL that contains Control Message coming from some

other node. After receiving a Control Message from IL, CL calls the gUpdate function with

the Control Message in the parameter. As a result, the underlying protocol that overrides the

gUpdate parses the CL Protocol Parameters and updates its current state.

Interface layer resides on the Kernel-Space; whereas, coordination layer is implemented on

User-Space. Using a POSIX message queue in this case is not possible for this reason. Instead

they share a character device and perform file operations on this device to communicate with

each other. Interface layer implements the following file operations:

static struct file operations fops = {

. read = device read ,

. write = device write ,

. open = device open ,

. ioctl = device ioctl ,

. poll = device poll ,

. release = device release

} ;

CL opens a nonblocking character device and communicates with the IL by using the corre-

sponding callbacks of the file operations.

7.3 DART

This protocol is aimed to allocate the necessary bandwidth for the RT traffic at the runtime.

DART performs this task by dynamically mapping the time-slots to the RT packets of Control

59

Application. Decision variable for the bandwidth allocation is defined in vCLDART. Essen-

tially, it consists of several Allocation Data Objects (ADO) that will share the available time-

slots. ADOs are configured before the operation regarding the co-existing communication

channels and the required deadlines. For example, if the system involves the communication

of three different nodes at the same time, then number of ADOs should be at least three. In

addition, each ADO owns number of time-slots to meet communication needs of the Con-

trol Application. This configuration is done during the initialization of the vCLDART as given

below.

ado TYPE ado [3] ;

ado [0] . num = 2 ; ado [0] . slots [0] = 0 ; ado [0] . slots [1] = 3 ;

ado [1] . num = 2 ; ado [1] . slots [0] = 1 ; ado [1] . slots [1] = 4 ;

ado [2] . num = 1 ; ado [2] . slots [0] = 2 ;

addAdo (&ado [0]) ;

addAdo (&ado [1]) ;

addAdo (&ado [2]) ;

Decision variable vCLDART stores these ADOs in the alloc array. When a node uses an

ADO then, alloc.used will be its Node Id together with the channel. Assignments of ADO to

a node happens within the gUpdate function of the DART. This function extracts the DART

Parameters in the message (Figure 7.5) and updates alloc.used accordingly. DART param-

eters are composed of number of New Channel Requests (NoN), number of Free Channel

Requests (NoF) and the request contents. New channel request tells the required number of

slots to allocate for the particular channel of a node. Considering the required number of slots,

gUpdate picks up the most suitable unused ADO and makes the assignment. Free channel

request specifies that the given node no longer uses the channel. As a result, gUpdate revises

the decision variable so that, the unused ADO will be available to other nodes.

vCLDart holds the current time-slot count in the cnt variable. It is incremented with modulo

cyc whenever the interface layer issues a reqrt(t)i message. DART makes decisions about the

next time-slot with its implementation of gRealTime and gMySlot. gRealTime returns true

if the current slot (cnt) is used by any of the ADO. In the case that there is an alloc[i] that

uses the current time-slot, then gMySlot looks at the alloc[i].used and returns true if it is

equal to the current Node Id.

60

Figure 7.5: Contents of the DART Message

7.4 URT

The operation of URT protocol is determined by the priority queue that contains communi-

cations request. vCLURT initializes the priority queue and provides the wrapper function to

add/remove elements. Initialization of the priority queue is important since the protocol may

fail to operate if it is not made properly. The priority queue might be configured as below:

getTime (&curTime) ;

comReqPtr− >nodeId = 1 ;

comReqPtr− >ch = 1 ;

comReqPtr− >initialeT = 0 ; / / in ms

comReqPtr− >initialdT = 1 0 ; / / in ms

t . nanoseconds = (comReqPtr− >initialeT)∗1000000;

comReqPtr− >eT = addTime (&curTime , &t) ;

t . nanoseconds = (comReqPtr− >initialdT) 1 0 0 0 0 0 0 ;

comReqPtr− >dT = addTime (&curTime , &t) ;

insertNodeIntoPQ (comReqPtr) ;

URT message format is depicted in the Figure 7.6. First byte in the message is the Number

of Requests (NoR) field that carries the included request count information. Communica-

tion request is a tuple that holds node, channel, eligibility time and deadline(N, ch, eT, dT).

Eligibility time and deadline values are relative and are expressed in milliseconds.

After receiving a URT message from IL, gUpdate function handles the update of the priority

queue according the the requests in the CL Protocol Parameters field. Priority queue stores

elements in the same order as communication requests. However, eT and dT values represent

61

the absolute times. Therefore before inserting an element into the priority queue, we add the

current time to eT and dT enclosed in communication request. Priority queue orders com-

munication requests according to their absolute deadlines. gUpdate function is responsible

for removing the topmost communication request when a node owning that request success-

fully transmits its Control Message. It is also possible that node has no Control Message to

transmit although it owns a communication request. It sends a dummy message with empty

CL Protocol Parameters field to inform all other nodes that it has no message to send. In that

case, gUpdate puts unused communication request into the priority queue once again with

updated eT and dT.

URT decides on the next time-slot by inspecting the priority queue momentarily. If there is

a communication request that has a eligibility time less than the current time, gRealTime

returns with real-time slot. Distributed computation of gMySlot determines the node that

owns the next real-time slot by looking at the Node Id in that communication request.

Figure 7.6: Contents of the URT Message

7.4.1 Priority Queue

Implementing a computationally efficient priority queue is essential for URT. This queue

should order the communication requests according to their deadlines as discussed previ-

ously. Our implementation of priority queue will be based on binary heap structure. It sorts

the elements according to the key values. In binary heap structure, every level is filled except

for the lowest level. Each node may have two children nodes which strictly have a lower key

than the parent node. The lowest level is composed of leave nodes which do not have any

62

children. If there is a tree of n nodes then, the depth of the binary heap will be log(n).

Removing a Node: The root node of the binary heap structure has the highest valued key

among the nodes. Therefore, the Pop command will just remove the root node and put the

rightmost leaf to this place instead. Then, the new root node for the binary heap will be

determined recursively comparing the key with the children node and doing a swap operation

if the children has a higher key. The cost of determining the new root node will be proportional

to the depth of the binary heap structure in the end.

Inserting a Node: Push command places the node in the argument to the lowest level in the

binary heap structure as a leave node. Then a recursive comparison and swap operation is

performed until its parent node has a higher key than the inserted one.

In both cases, the number of swap operations may not exceed the depth of the binary heap

structure; thus the computational complexity of both insertion and removal is O(log(n)).

63

CHAPTER 8

INTEGRATING THE COMMUNICATION RELATED

INFORMATION INTO THE CONTROL APPLICATION

In Chapter 3, we explained that jobs contain a communication requests enabling the trans-

mission of subsequent jobs on our protocol. In this chapter, we will describe how to integrate

the control application [2] with the coordination layer protocol. We continue with the simple

machine example and describe the integration process for both members of coordination layer

protocol.

8.1 Communication of Shared Events

Control application sends the available shared event(s) to the coordination layer together with

the protocol parameters as given in Figure 7.4. The information about protocol parameters and

the mapping that translates an event to a EventId is stored in the XML files created for each

controller. As there might be several events that have to be sent in a single message, the first

byte of the control application payload is occupied by total number of events to send value.

Input and output events are all identified by 1 Byte EventId field which should be consistent

in all XML files. While exchanging shared events, sender node transmits EventId and the

receiving node identifies the corresponding event by looking up the local XML file. Therefore

total number of events to send is followed by specified number of EventIds. Preperation of

CL Protocol Parameters field depends on the underlying coordination layer protocol.

64

8.1.1 Integrating the Control Application With URT

While working with the URT, XML file contains all communication requests related to the

output events. In this file, we can specify the communication requests in the format that URT

needs as described in the Section 4.2.3. We can append bunch of communication requests

to a single output event. Control application basically parses the events and the specified

parameters for the URT. Whenever a shared event is to be send to another controller, it will

set the CL Protocol Parameter field according to the specifications in the XML file. For the

simple machine example, Controller G1 has a XML file that contains the event configuration

given in Listing 8.1.

<?xml version= ” 1 . 0 ” encoding=”ISO−8859−1” standalone=”no ”?>

< ! DOCTYPE D3ripURTDevice SYSTEM ”d3ripURTdevice . dtd ”>

<D3ripURTDevice name=”ControllerG1 Net ”>

< !−− Time scale in ms / ftiu −− >

<TimeScale value=” 1 0 0 0 ” />

<EventConfiguration>

<Event name=”? mue ” iotype=”input ”>

<EventId value= ” 1 ” />

< / Event>

<Event name= ” ! mue ” iotype=”output ”>

<EventId value= ” 2 ” />

<ChannelToTransmit value= ” 1 ” />

<ParameterRecord>

<DestinationNode value= ” 2 ” />

<DestinationChannel value= ” 1 ” />

<EligibilityTime value=”2” />

<DeadlineTime value= ” 5 ” />

< / ParameterRecord>

< / Event>

<Event name=”mue ” iotype=”input ”>

<EventId value= ” 3 ” />

< / Event>

< / EventConfiguration>

< / D3ripURTDevice>

Listing 8.1: XML Event Configuration: Controller G1 for URT

65

8.1.2 Integrating the Control Application With DART

Similar to the previous section, we define XML files to extract communication needs of the

control application in the format described in Section 4.2.2. Now the XML file contains the

DART related parameters such as channels to allocate and channels to free belonged to the

output events. Whenever control application sends an output event, it will include related

protocol parameters in the CL Protocol Parameter field. Consequently, DART can progress

after receiving control application messages. Considering simple machine example, XML file

for Controller G1 should include the configuration in Listing 8.2.

<?xml version=”1 .0” encoding=”ISO−8859−1” standalone=”no ”?>

< ! DOCTYPE D3ripDARTDevice SYSTEM ”d3ripDARTdevice . dtd ”>

<D3ripDARTDevice name=”ControllerG1 N e t ”>

< !−− Time scale in ms / ftiu −−>

<TimeScale value=”1000” />

<EventConfiguration>

<Event name=”?mue ” iotype=”input ”>

<EventId value=”1” />

< / Event>

<Event name= ” ! mue ” iotype=”output ”>

<EventId value= ” 2 ” />

<ChannelToTransmit value= ” 1 ” />

<ChannelsToAllocate name>

<DestinationNode value= ” 2 ” />

<RequiredSlots value= ” 1 ” />

<DestinationChannel value= ” 1 ” />

< / ChannelsToAllocate>

<ChannelsToFree name>

<DestinationNode value= ” 1 ” />

<DestinationChannel value= ” 1 ” />

< / ChannelsToFree>

< / Event>

<Event name=”mue ” iotype=”input ”>

<EventId value= ” 3 ” />

< / Event>

< / EventConfiguration>

< / D3ripDARTDevice>

Listing 8.2: XML Event Configuration: Controller G1 for DART

66

CHAPTER 9

EXPERIMENTS AND RESULTS

This section is devoted to the experiments related to the D3RIP [19] protocol family. In the

first part, we examine communication latencies between the control application, coordination

layer and interface layer running in a single platform. It is necessary to introduce such an

experiment because coordination layer protocol has time constraints while responding control

application and the interface layer. In addition, it will verify the reasoning behind using a real-

time operating system instead of a generic operating system for D3RIP. In the second part, we

include experimental results for a complete distributed control system communicating with

D3RIP and IEEE 1588 time-synchronization protocol implementation presented in this thesis.

The operation of the complete system will be described for each of element of coordination

layer and interface layer protocol family including the time-synchronization and non real-time

messages.

9.1 Interprocess Communication Latency Experiment

It is critical for coordination layer (CL) to meet several deadlines for the correct operation of

the system. This section will discuss the communication latency of CL with other protocols in

the framework. We run these tests on both a Realtime Linux and its non real-time counterpart.

Testing platform for this section will be a PC with Intel Core i3 550@3.20GHz Processor and

4GB of RAM. Our experiment not only contrasts the real-time performance of RTOS and

non-RTOS, but also it shows us the limits of Realtime Linux running on our system. We

use the latest available stable Realtime Linux kernel 2.6.33.7-rt30. As a generic-usage linux

distribution we will be using 2.6.35-generic kernel. We sample the maximum latency data for

a period of 50ms and tabulate the results.

67

9.1.1 Communication Latency with Control Application Process

The communication between Control Application and CL is based on POSIX message queues.

We have to determine the latency between writing to a message queue with a Control Applica-

tion process and reading of that message by the CL. For this experiment, Control Application

process generates a 200 Bytes long AP2CL message together with a send timestamp at each

millisecond and sends it to the message queue. On the receiving side, CL waits for a Control

Application message from the message queue. CL takes a receive timestamp at the instant

it receives a message and extracts the send timestamp from message contents. CL calculates

the time difference from these timestamp values to measure the communication latency in

between. Figure 9.1 shows the communication latency when operating under generic-usage

Linux whereas Figure 9.2 shows the same for Realtime Linux.

9.1.2 Communication Latency with Interface Layer

CL communicates with interface layer (IL) through a character device file. In this part, we

test the communication latency that occurs while reading commands from the opened device

file. For testing purposes, IL sends 200Bytes of message IL2CLRT message at each millisec-

ond including a send timestamp in the payload part. CL receives message and calculates the

latency by subtracting the timestamp from the instant it receives the message. Figure 9.3 and

Figure 9.4 shows the communication latency for interface layer messages for daily-use Linux

and Realtime Linux respectively.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

0	 30
	

60
	

90
	
12
0	

15
0	

18
0	

21
0	

24
0	

27
0	

30
0	

33
0	

36
0	

39
0	

42
0	

45
0	

48
0	

51
0	

54
0	

57
0	

60
0	

63
0	

66
0	

69
0	

72
0	

75
0	

78
0	

81
0	

84
0	

87
0	

90
0	

93
0	

96
0	

99
0	
10
20
	
10
50
	
10
80
	

%
	 o
cc
ur
en

ce
	

Offset(µs)	

Latency	

Figure 9.1: Communication Latency with Control Application using non-RTOS

68

0	
5	

10	
15	
20	
25	
30	
35	
40	
45	
50	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 110	

%
	 o
cc
ur
en

ce
	

Offset(µs)	

Latency	

Figure 9.2: Communication Latency with Control Application using RTOS

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

0	 30
	

60
	

90
	
12
0	

15
0	

18
0	

21
0	

24
0	

27
0	

30
0	

33
0	

36
0	

39
0	

42
0	

45
0	

48
0	

51
0	

54
0	

57
0	

60
0	

63
0	

66
0	

69
0	

72
0	

75
0	

78
0	

81
0	

84
0	

87
0	

90
0	

93
0	

96
0	

99
0	
10
20
	
10
50
	
10
80
	

%
	 o
cc
ur
en

ce
	

Offset(µs)	

Latency	

Figure 9.3: Communication Latency with Interface Layer using non-RTOS

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

%
	 o
cc
ur
en

ce
	

Offset(µs)	

Latency	

Figure 9.4: Communication Latency with Interface Layer using RTOS

69

These latency figures are important as the coordination layer has to reply reqrt message of

the interface layer in a time bounded with rem − cmp as given in Chapter 4. Ideally, there

should not be any latency while communicating between threads of different processes. The

latency here is composed of the time required to start an interrupt service routine for the

software interrupt generated by the running process and context switching time to wake-up

the sleeping process as we discuss in Chapter 5.

Using generic Linux kernel yields latencies over 1ms while reading from Control Application

or interface layer. For the Realtime patched Linux kernel, the maximum latency is 70µs when

reading from Control Application and 85µs for the interface layer. Slight increase in the latter

case is caused by copying the buffer from the kernel space to the user space. Unless we

used a RTOS, it would not be possible to achieve a bounded latency measurements in the

order of microseconds. Results of this section directly reveals the real-time performance of

the Realtime Linux running on our test platform. The performance of Realtime Linux may

change as we deploy to another PC containing a different processor. Currently, an official web

site for Realtime Linux continuously compares and contrasts timer interrupt latencies for the

most recent version of real-time kernel on varying platforms [24]. Our results in this section

are comparable to a similar system described in [24].

9.2 Complete Operation of the Distributed Controller System Experiment

In this section we further explain all the operational principles of the distributed controller

system based on the example given in the Chapter 3. Then we give experimental results for

URT protocol of coordination layer running top of the RAIL as an interface layer protocol.

9.2.1 Operation of The Distributed Control System Example

Distributed controller system example given in the Chapter 3 can be realized as given in

Figure 9.5. It is seen that Controller G1 and G2 communicate with the plant over a serial

line whereas the shared jobs between these controllers are sent over the Ethernet operated by

D3RIP.

70

Figure 9.5: Experimental Setup

During the beginning of the operation we start the IEEE 1588 protocol on both of the con-

trollers without initiating the time-slotted operation. As the controllers have their clocks syn-

chronized in the order of microseconds we start the interface layer module to operate on the

time-slotted medium. Interface layer is now ready to poll real-time packets coming from co-

ordination layer and non real-time packets from other applications. Depending on the choice

of interface layer protocol, the frequency that it polls the coordination layer changes.

Operation with RAIL: If the interface layer protocol is selected to be RAIL, then it will ask co-

ordination layer for the existence of available real-time packets at several slots periodically de-

pending on the railILSchedule. Current slot-type in the railILSchedule advances in the

end of each time-slot. RAIL asks coordination layer protocol to send real-time packets when

the current railILSchedule points to the RTSlot. If the current slot is a myNRTSlot then

RAIL transmits the non-real time packets waiting in its queue. In such case, other nodes (in

this example there is only one) should have otherNRTSlot in their current railILSchedule.

The queue for the non real-time packets is a priority queue that contains the IEEE 1588 proto-

col packets with the highest priority. Therefore time-synchronization will not be interrupted

because of the network traffic as IEEE 1588 packets are chosen to be sent before any other

non real-time packets.

71

We configure time-slot schedule of RAIL at Controller G1 to be

const unsigned short int railILSchedule [RAIL CYCLE] = {RTSlot , myNRTSlot , RTSlot ,←↩

otherNRTSlot} ;

Controller G2 has the following schedule consistent with the G1

const unsigned short int railILSchedule [RAIL CYCLE] = {RTSlot , otherNRTSlot , RTSlot ,←↩

myNRTSlot} ;

Operation with TSIL: When the TSIL is chosen as an interface layer protocol, it inquires coor-

dination layer in every time-slot for available real-time packets. Therefore, coordination layer

protocol decides the next slot type to be either real-time or non real-time. If the next slot is

determined to be non real-time slot, then TSIL lets only one node to transmit its message; this

decision is made by looking at the nRTSet variable. Once again, the selected node transmits

IEEE 1588 packets before any other non real-time packets.

In either case, coordination layer family should be ready to respond the coming requests from

the interface layer at any time. Coordination layer protocol does not have a knowledge of the

passing time until interface layer makes a request to it. For the simplicity of the example, we

will use only one channel for coordination layer protocol. It has to be noted that, depending on

the choice of coordination layer protocol, control application generates appropriate protocol

parameters for URT and DART. Controller G1 is identified as NodeId=1 and for Controller

G2, NodeId=2 by the coordination layer protocols.

Operation with URT: If we operate distributed control system with URT then we have to ini-

tialize its priority queue to contain a communication request: (2, 1, 2ms, 5ms) to let Controller

G2 transmit the first shared job ?µ. Until URT receives the ?µ job from control application, the

communication request in the priority queue will re-enter the priority queue with the updated

times triggered by the request from the underlying interface layer. When URT has ?µ ready

to send, it will be sent with the first request from the interface layer after checking that the

eligibility time for the communication request is less than the current time. The ?µ message

will contain a request: (1, 1, 2ms, 5ms) to allow Controller G1 sending the reply with !µ mes-

sage. Similarly !µ will contain a request: (2, 1, 2ms, 5ms) to allow the latest shared job µ to

72

be sent. Lastly, controller G2 sends µ with the request: (2, 1, 2ms, 5ms) and the transmission

of these 3 shared jobs starts over from the beginning. For this example, note that size of the

priority queue holding communication requests never exceeds one.

Operation with DART: We need to configure allocation data object of DART for this exam-

ple as follows: alloc[1].num = 1 alloc[1].slots=[0]. Using only one allocation data object

suffices for this case because there is at most one shared jobs to be transmitted at a time.

In the beginning, we should initialize the DART to enable Controller G2 to send ?µ by set-

ting alloc[0].used = (2, 1). Now, the real-time bandwidth will be belonged to Controller G2

until control application sends ?µ message to the DART. Then DART forwards ?µ job upon

a request from IL with the following protocol parameters: channel to allocate: (1,1,1) and

channels to free: (2,1). These parameters allow Controller G1 to transmit !µ as the bandwidth

allocation will be shifted to the Controller G1. Controller G1 transmits !µ together with chan-

nel to allocate: (2,1,1) and channels to free (1,1) when interface layers asks to do so. Finally,

Controller G2 sends µ by including following DART protocol parameters channel to allocate:

(2,1,1) and channels to free (1,1) to restart the communication of the jobs from the beginning.

9.2.2 Experimental Results for the Distributed Control System Example

In this section, we demonstrate the experimental results as we run URT protocol on top of the

RAIL. Controller G1 and G2 are connected over a Hub as in Chapter 6.4.1. These controllers

are identical PCs equipped with Intel Core i3 550@3.20GHz Processor and 4GB of RAM.

We set dS lot = 3ms, rem = 0.5ms and cmp = 0.1ms which we decided according to the

time synchronization performance in Chapter 6.4.1 and the communication latency presented

in Chapter 9.1. We generated a non real-time traffic by sending 150Bytes dummy packets in

each controller with a 10ms interval.

Measurements are taken at the control application by calculating the elapsed time between a

packet is sent to coordination layer and the coordination layer sends it to the interface layer.

The result of the observed latencies for a 24 hour experiment is as following:

Table 9.1: Latency Measurement for Real-Time Messages

Min: 486.8µs
Max: 6.573ms

73

The results are consistent with theoretical calculations. Maximum latency would expected to

be: rem+RTS lot+nRTS lots = 6.5ms in the case control application sends real-time message

to the CL just after IL sends reqrt and the next slot is a RTSlot. The minimum latency can be

rem = 0.5ms if the next slot is a RTSlot and control application sends real-time message just

before interface layer sends reqrt to the CL.

74

CHAPTER 10

CONCLUSION

The goal of this thesis is the implementation of the industrial real-time Ethernet protocol

family D3RIP that dynamically adapts to the communication needs of a distributed control

application. The main tasks performed in this thesis are:

• Coordination layer
• IEEE 1588 synchronization
• Integration of the coordination layer and an interface layer that is implemented

in the scope of another master thesis
• Integration of the coordination layer and the control application

In addition, the thesis conducts experiments in order to validate the Dynamic Distributed

Dependable Real-Time Industrial communication Protocol (D3RIP) [19] implementation.

Performance metric for the IEEE 1588 protocol was the offset from master value that stands

for the time difference between the system clocks of clock source and other nodes. First we

evaluated factors that might effect synchronization performance in Section 6.4.1. It is shown

that, synchronization accuracy drops when the systems clocks of the hosts are not identical

and it is verified that including Hubs do not have a significant affect on synchronization per-

formance. Next, the synchronization accuracy that can be achieved by our target system is

experimented in Section 6.4.2. Results of this experiment directed us to choose a suitable

time-slot duration for TDMA to tolerate errors in the synchronization accuracy.

For the coordination layer protocol family, the communication latencies with interface layer

and control application are measured. In Section 9.1.1 the communication latency between

control application and and coordination layer is shown to be under 100µs provided that a real-

time operating system is used. Similar experiment is made to measure the latency between

coordination layer and interface layer in Section 9.1.2. Results were similar to the previous

75

experiment while running real-time operating system. These experiments have shown the

capabilities of real-time operating systems as we run the same tests on non real-time operat-

ing system. It is shown that the Inter Process Communication latency for the non real-time

operating system may exceed 1ms as it is optimized to increase the average performance.

We built a distributed controller system composed of two controllers running a control ap-

plication example given in Chapter 3. The experimental results have shown that, real-time

packets of a control application can be transmitted within 6.6ms using D3RIP with 3ms time-

slots. It is possible to decrease latency for the tranmission of the real-time packets by decreas-

ing the time-slot duration. The limiting factor in determining time-slot duration is the time

synchronization performance and the Inter Process Communication latency for the real-time

operating system.

In this thesis, time synchronization was implemented by using the timestamp of clock source

included in the synchronization packets. However, as those packets traverse through the net-

work they are exposed to network jitter which decreases our accuracy in measuring synchro-

nization performance. As a possible solution to isolate the overheads caused by the network,

it is possible in future work to measure the synchronization accuracy by connecting Pulse Per

Second output pin of system clocks to an oscillator and measure the exact difference between

clocks. It was not possible to build this configuration as the system clocks of our systems did

not have such an output signal.

D3RIP has superior bandwidth utilization compared to other protocols but it has some draw-

backs too. First, it is required to employ a proper control mechanism to validate the correct

operation of the protocol at the runtime as it relies on distributed computations. In addition,

the configuration for the DART protocol is not easy for rather complex control applications.

76

REFERENCES

[1] A. K. Gözcü, Implementation and Evaluation of a Synchronous Time-Slotted Medium
Access Protocol for Networked Industrial Embedded Systems MSc. Thesis, METU Sept.
2011

[2] www.rt.eei.uni-erlangen.de/FGdes/faudes/index.html (last accessed on 29/08/2011)

[3] http://ptpd.sourceforge.net/ (last accessed on 29/08/2011)

[4] J. Baillieul, P.J. Antsaklis, Control and Communication Challenges in Networked Real-
Time Systems. Proceedings of the IEEE , vol.95, no.1, pp.9-28, Jan. 2007.

[5] J.R. Moyne, D.M.Tilbury, Control and Communication Challenges in Networked Real-
Time Systems. Proceedings of the IEEE , vol.95, no.1, pp.29-47, Jan. 2007.

[6] J. Decotignie, Ethernet-based real-time and industrial communications. Proceedings of
the IEEE, vol. 93, no. 6, pp. 1102-1117, 2005.

[7] J. Decotignie, The Many Faces of Industrial Ethernet [Past and present]. IEEE Industrial
Electronics Magazine, vol. 3, no. 1, pp. 8 - 19, 2009.

[8] J. Thomesse, Fieldbus technology in industrial automation. Proceedings of the IEEE,
vol. 93, no. 6, pp. 1073-1101, 2005.

[9] J. C. Eidson, Measurement, Control, and Communication Using IEEE 1588. 2009.

[10] Kendall Correll, Nick Barendt Michael Branicky Design Considerations for Software
Only Implementations of the IEEE 1588 Precision Time Protocol Proc. Conference on
IEEE-1588 Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems, NIST and IEEE, 2005

[11] 1st IFAC Workshop on Dependable Control of Discrete Event Systems, 2007

[12] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, Basic concepts and taxonomy of
dependable and secure computing IEEE Transactions on Dependable and Secure Com-
puting, vol. 1, no. 1, pp. 11-33, 2004.

[13] M. Felser and T. Sauter, Standardization of industrial Ethernet - The Next Battlefield?
IEEE International Workshop on Factory Communication Systems, 2004.

[14] M. Felser and T. Sauter, Real-time ethernet the EtherCAT solution, Comput. Control
Eng. J., vol. 15, no. 1, pp. 1621, Feb.Mar. 2004.

[15] E. Schemm, SERCOS to link with ethernet for its third generation, Comput. Control
Eng. J., vol. 15, no. 2, pp. 3033, Apr.May 2004

[16] Real-Time Ethernet: PROFINET IO: Proposal for a Publicly Available Specification for
Real-Time Ethernet, Doc. IEC 65C/359/NP, 2004

77

[17] L. Liu and G. Frey, Simulation approach for evaluating response times in networked
automation systems, Emerging Technologies & Factory Automation, 2007. ETFA. IEEE
Conference on , vol., no., pp.1061-1068, 25-28 Sept. 2007

[18] K. Schmidt, E. Schmidt, and J. Zaddach, Safe operation of distributed discrete-event
controllers: A networked implementation with real-time guarantees, IFAC World
Congress, 2008.

[19] K. Schmidt, E. Schmidt, and J. Zaddach, Distributed real-time protocols for industrial
control systems: Framework and examples, Submitted to IEEE Transactions on Parallel
and Distributed Systems, 2011.

[20] Christos G. Cassandras and Stephane Lafortune, Introduction to Discrete Event Systems,
Springer, 2nd edition, 2007.

[21] J. J. Labrosse, uC/OS-III, The Real-Time Kernel, or a High Performance, Scalable,
ROMable, Preemptive, Multitasking Kernel for Microprocessors, Microcontrollers &

DSPs 2009

[22] Shen, Wu, Li, Zhang, Research of The Real-time Performance of Operating System.
2009.

[23] Barr, Michael, Choosing an RTOS, Embedded Systems Programming. January 2003.

[24] http://www.osadl.org (last accessed on 29/08/2011)

[25] http://www.gnu.org/licenses/gpl.html (last accessed on 29/08/2011)

[26] Elsir, Sebastian, Voon, A RTOS for Educational Purposes

[27] www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.33.7.tar.bz2 (last accessed on
29/08/2011)

[28] www.kernel.org/pub/linux/kernel/projects/rt/older/patch-2.6.33.7.2-rt30.bz2 (last ac-
cessed on 29/08/2011)

[29] http://www.ines.zhaw.ch/en/engineering/ines/ieee-1588/hardware.html (last accessed on
29/08/2011)

[30] H. Weibel, D. Bechaz, IEEE 1588 Implementation and Performance of Time Stamping
Techniques. 2004.

[31] S. Johannessen, Time synchronization in a local area network. Control Systems Maga-
zine April. 25-28 2004

[32] G.-S. Tian, Y.-C. Tian and C. Fidge, High-Precision Relative Clock Synchronization Us-
ing Time Stamp Counters Engineering of Complex Computer Systems, 2008. ICECCS
2008.

[33] http://www.national.com/pf/DP/DP83640.html (last accessed on 29/08/2011)

[34] http://www.uml.org (last accessed on 29/08/2011)

78

