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ABSTRACT 

 

FACIAL SOFT TISSUE SEGMENTATION IN MRI USING UNLABELED 

ATLAS 

 

Rezaeitabar,Yousef 

 

M.Sc., Department of Biomedical Engineering 

Supervisor: Assist. Prof. Dr. Ilkay Ulusoy 

Co-Supervisor: Assoc. Prof. Dr.  Özlem Üçok 

  

August 2011, 98 pages 

Segmentation of individual facial soft tissues has received relatively little attention 

in the literature due to the complicated structures of these tissues. There is a need to 

incorporate the prior information, which is usually in the form of atlases, in the 

segmentation process. In this thesis we performed several segmentation methods 

that take advantage of prior knowledge for facial soft tissue segmentation. An atlas 

based method and three expectation maximization – Markov random field (EM-

MRF) based methods are tested for two dimensional (2D) segmentation of masseter 

muscle in the face. Atlas based method uses the manually labeled atlases as prior 

information. We implemented EM-MRF based method in different manners; 

without prior information, with prior information for initialization and with using 

labeled atlas as prior information. The differences between these methods and the 

influence of the prior information are discussed by comparing the results. Finally a 

new method based on EM-MRF is proposed in this study. In this method we aim to 

use prior information without performing manual segmentation, which is a very 

complicated and time consuming task.  
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10 MRI sets are used as experimental data in this study and leave-one-out technique 

is used to perform segmentation for all sets. The test data is modeled as a Markov 

Random Field where unlabeled training data, i.e., other 9 sets, are used as prior 

information. The model parameters are estimated by the Maximum Likelihood 

approach when the Expectation Maximization iterations are used to handle hidden 

labels. The performance of all segmentation methods are computed and compared to 

the manual segmented ground truth. Then we used the new 2D segmentation 

method for three dimensional (3D) segmentation of two masseter and two 

temporalis tissues in each data set and visualize the segmented tissue volumes.  
 
Keywords: Facial soft tissue, segmentation, prior information, Markov random 

field, atlas, unlabelled atlas 
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ÖZ 

 

YÜZ BÖLGESİ YUMUŞAK DOKUSUNUN ATLAS TEMELLİ 

SEGMENTASYONU 
 

Rezaeitabar,Yousef 

 

Yüksek Lisans, Biyomedikal Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Yrd. Doç. Dr. Ilkay Ulusoy 

Ortak Tez Yöneticisi: Doç. Dr.  Özlem Üçok                                                           

Ağustos 2011 , 98 sayfa 

 

Yumuşak yüz dokularının tek tek bölütlenmesi işi, bu dokuların karmaşık yapıları 

yüzünden, ilgili diğer konularla karşılaştırılacak olursa, literatürde şimdiye kadar 

pek rağbet görmemiş konulardan birisidir. Bu tek tek bölütleme işini başarmak için, 

genellikle atlas formunda bulunan ön bilgileri bölütleme safhasına katmak bir 

gereksinim olarak karşımıza çıkmaktadır. Bu yüzden, bu tezde,  öncelikle, yumuşak 

yüz dokuları hakkındaki ön bilgilerden faydalanan birtakım bölütleme yöntemleri 

uygulanmaktadır. Bu yöntemler, atlaslara dayanan bir metod ve EM-MRF’e 

dayanan bir metodun üç farklı şekilde uygulanmasından oluşmaktadır ve bu 

metodlar, performans ölçümü için, yüzdeki çiğneme(masseter) kasının iki boyutlu 

bölütlenmesinde test edilmektedir. Atlaslara dayanan ilk metod, ön bilgi olarak elle 

işaretlenmiş atlasları kullanmaktadır. Diğer bir yandan, EM-MRF’e dayanan metod, 

az önce bahsedildiği gibi üç farklı biçimde uygulanmaktadır: ön bilgi kullanmadan, 

sadece başlangıç için ön bilgi kullanarak ve ön bilgi olarak işaretlenmiş atlasları 

kullanarak. Testlerden sonra, tüm bu yöntemlerin sonuçları birbiriyle 
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karşılaştırılmakta ve sonuçlar arasındaki farklar ile ön bilgilerin bu sonuçlara etkisi 

tartışılmaktadır. Daha sonra, bu tezde, EM-MRF’e dayanan yeni bir metod 

önerilmektedir. Bu metodun amacı, bölütleme işini, çokça karmaşık olan ve oldukça 

zaman alan elle işaretlemeyi kullanmadan yaratılan ön bilgiyi kullanarak 

başarmaktır. 

Bu çalışmada, deneysel veri olarak 10 MRI seti kullanılmaktadır. Her bir setin 

bölütlenmesi, sadece, o seti, eğitim verisi dışında bırakarak gerçekleştirilmektedir. 

Test verisi, Markov Rassal Alanlar(Markov Random Field) olarak modellenmekte 

ve geriye kalan etiketlenmemis 9 setten oluşan eğitim verisi, ön bilgi olarak 

kullanılmaktadır. Modelin parametreleri, Azami Olabilirlik (Maximum Likelihood) 

yaklaşımı ile hesaplanmakta ve yinelemelei beklenti en iyilestirme ile gizli etiketler 

incelenmektedir.. Uygun parametreler bulunduktan sonra, bahsedilen tüm bölütleme 

algoritmalarının performansları hesaplanmakta ve bu performanslar, elle 

işaretlenmiş kesin referans(ground truth) ile karşılaştırılmaktadır. Daha sonrasında, 

bu tezde önerilen yeni iki boyutlu bölütleme yöntemi, her veri setindeki iki adet 

çiğneme(masseter) ve iki adet şakak atardamarı(temporalis) dokusunun üç boyutlu 

bölütlenmesinde kullanılmakta ve bölütlenmiş doku kısımları gösterilmektedir. 

Anahtar Sözcükler: Yumuşak yüz dokuları, ön bilgi, Markov Rassal Alanlar, atlas, 

işaretlenmemiş atlas 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

1.1. Motivation of the Thesis 
 

Recent advances in medical imaging have enabled the derivation of useful 

information about different body parts and tissues. As two major imaging 

modalities, Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) 

are commonly used as a source to extract anatomical structures. Despite CT scans 

specialize in hard tissues, such as bone, MR images are well known for good quality 

in soft tissues. Magnetic resonance imaging is a commonly preferred source of data 

for evaluating the presence and extent of the soft tissue volumes such as brain, heart, 

etc.  

Nowadays doctors and clinical specialists take the advantage of these 

imaging modalities in gathering anatomical information about a patient and are able 

to use this information in diagnosis and prognosis. The further step is to involve 

artificial intelligence to automate this diagnosis/ prognosis process. In order to be 

able to use medical images in an automatic clinical system, the first thing that 

should be done is to segment target tissues which means that the structure of the 

target tissue should be extracted in the whole image. 

Currently, there are many researches that perform segmentation in medical 

images. Most of the soft tissue segmentation methods in the literature consider 

tissues like brain, heart and lung as target tissues and there are very few works about 

Facial Soft Tissue (FST) segmentation. Considering the key role of the face in 
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human life and the huge increase in craniofacial surgeries around the world, FST 

segmentation has become more important in recent days. 

Planning before a facial surgery by performing the modifications virtually 

prior to the actual operation is very important to increase the overall success of the 

actual operation. Also, for patients seeking for surgical treatment, it would be very 

beneficial to have a means to predict the post-surgical appearance of their face. For 

these to be done, the first step is to obtain an anatomic model of the patient’s face. 

Such a complicated computer model should include segmented hard (i.e. skull) and 

soft tissues (i.e, muscles, skin and fat). Besides, each FST (e.g, a muscle) should 

also be segmented from the others when the operation has an effect on such a tissue. 

Only then, the operation can be planned realistically and even simulated on the 

computer model before the actual operation.  

 

1.2. Scope of the Thesis 
 

In this thesis, we test the accuracy of several state of art methods for FST 

segmentation and propose a new method for this purpose which requires very little 

user interaction. Soft tissue segmentation is very complicated due to the fact that 

soft tissues do not have a constant shape. Moreover, segmentation becomes more 

complicated when the soft tissues interfere with each other and this is always the 

case for FSTs. Thus, most of the soft tissue segmentation methods are not 

appropriate for FST segmentation. 

To solve these problems, additional information is needed besides image 

intensities. Prior information is commonly used in different manners to improve 

segmentation quality.  

By prior information, we mean the knowledge that we take from different 

individual MRI scans which can be used to determine prior shapes and locations of 

the target tissues. This is quite like the method when a specialist doctor extracts the 

target tissue in a new image based on his/her past experience of viewing thousands 

of similar images. The prior information is usually incorporated in the form of 

atlases, where information from many manually segmented data sets is combined to 
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construct a deterministic or probabilistic atlas. The atlas can be used in several 

manners. The standard atlas based segmentation method is to register the labeled 

atlas to the test MRI set and apply the labeling to the test set based on the 

transformation in the registration process. The atlas can also be used as the prior 

labeling information in a Markov Random Field (MRF) statistical model to optimize 

the segmentation.  

Currently these methods are tested for tissues other than FST but we 

employed these methods to segment several facial soft tissues for the first time. We 

implemented representative examples of the methods in the literature and compared 

them for the purpose of segmentation of four different FSTs (left masseter, right 

masseter, left temporalis and right temporalis). Also, we proposed a new method, 

which is very different from all these previous approaches, to perform 3D 

segmentation on these four tissues. Our method is also MRF based but we did not 

use manually labeled atlases but, instead, we used unlabeled images as hidden 

atlases for the purpose of evaluating the effect of unlabeled prior information. The 

main reason in using the unlabeled prior information is that manual labeling of tens 

of medical image data sets is a very complicated and time consuming task and is 

prone to error. 

Different from the previous approaches, the prior knowledge was used in our 

MRF structure via a novel energy function and we tried to optimize the 

segmentation results iteratively by using Expectation Maximization (EM) algorithm. 

Finally, we compared our segmentation method with the previously mentioned 

segmentation methods and evaluate the advantages and disadvantages of each of the 

methods. 

 

1.3. Thesis Outline 
 

This Thesis is organized as follows: In the 1st chapter the scope and 

motivation of the thesis are introduced. A survey of current studies in medical image 

segmentation fields is presented in the 2nd chapter. In the 3rd chapter theoretical 

aspects of the thesis are explained and the mathematical solutions for the problem 
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are presented. In the 4th chapter, used datasets, segmentation algorithms and the 

implementation of each method are explained. The performance evaluation of the 

presented methods is presented in chapter 5.  

Finally, the overall conclusion of the research and the potential future work 

are described in chapter 6. 
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CHAPTER 2 

 

 

 

LITERATURE SURVEY 

 

 

 

2.1. Soft Tissue Segmentation  
 

Today, medical imaging technologies have greatly increased knowledge of 

normal and diseased anatomy of tissues so that this information serves as the basis 

for medical diagnosis and prognosis. These imaging modalities provide specialized 

image data that can be used in different aspects of medical research and clinical 

applications. Common imaging techniques include X-RAY, Computed Tomography 

(CT), Ultrasound and Magnetic resonance imaging (MRI). CT and MRI are most 

preferred imaging modalities in anatomical researches because they provide three-

dimensional (3D) data with high contrast. CT is a sophisticated form of X-ray 

imaging that provides clear shape information about hard tissues. MRI, on the other 

hand, is a non-invasive imaging technique that provides high spatial resolution and 

contrast of human soft tissue anatomy. However, since the amount of data is too 

much for manual analysis (such as segmentation), automatic or semi-automatic 

techniques of computer-aided image analysis are necessary. 

Tissue segmentation in MRI scans is a method to extract structural 

information from the image data. Automatic segmentation of tissues can help 

clinical specialists detect the human body parts fast and precisely. The segmented 

data compared with a database of previously segmented images can also help 

doctors in detecting any tissue disorders. Different segmentation methods are 
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applied to medical images due to the variations in tissue types and desired 

objectives. These methods mainly target important soft tissues in human body such 

as brain and heart.  

 Because of the critical role of human face, morphological information about 

human Facial Soft Tissues (FST) like muscles and fats has a great importance. Once 

the structural shape of target facial tissues are segmented successfully, the resulting 

model can be used in several medical fields like diagnosis  of  craniofacial disorders 

[1] ,  the  planning  of  computer assisted  surgery (CASP) [2]and  the  prediction  of  

post-operative  facial appearance [3].  

Although there are plenty of methods that perform soft tissue segmentation 

in the literature, Facial Soft Tissue (FST) segmentation has received relatively little 

attention. Considering the visualization similarities between FST and other soft 

tissues like brain, the segmentation process can be the same theoretically but due to 

different characteristics of these tissues, such as more complicated and interfered 

structure of FSTs, they need more precise and powerful segmentation methods.  

Facial soft tissues are usually small and surrounded with other tissues that 

share the same intensity values with them [1]. Different but neighboring tissues are 

interfering with each other in some cases that makes tissue detection a hard work 

even for a specialist doctor. Other than that, unlike other tissues like brain that have 

a specific shape model, FSTs do not have a specific shape but they may have 

different shapes in different individuals. All these difficulties make the 

segmentation process a hard work and thus the requirement of additional 

information is inevitable. 

In this chapter, we will discuss soft tissue segmentation studies that are 

related to our work and we also try to cover all segmentation methods that can be 

applied to FSTs. There are plenty of methods to segment an image, that is, to assign 

an appropriate label to each of its pixels or voxels. For different type of image 

modalities and targets, different kinds of segmentation methods should be applied. 

Simple segmentation methods like thresholding [4] or region growing  are usually 

inefficient in medical image segmentation.  Instead, improved state of art 
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segmentation methods are applied. Fuzzy clustering algorithms [5] group the image 

based on intensity similarities between the images.  

Standard fuzzy c-means method is not very successful in medical images 

because of the amount of noise present especially in soft tissue MR images. New 

studies apply some modifications to the standard methods mentioned above to deal 

with this problem. In, [6] a fuzzy c-means algorithm is applied for brain MRI 

segmentation. The objective function of the standard c-means algorithm is modified 

with weighted bias estimation to decrease the effect of intensity inhomogeneties in 

tissues. A new weighting exponent is proposed in [7] for fuzzy c-means algorithm. 

The method is tested in breast MRI segmentation. The number of clusters has a key 

role in these kind of clustering methods that makes these methods inefficient for 

FST segmentation.  

In [8], a subject-specific dynamical model (SSDM) is developed to segment 

the structural shape of the left ventricle. The starting slice is segmented manually 

and the algorithm proceeds through the slices and applies the segmentation based on 

the prediction from the previous slice. The main idea of this method is to use the 

prior information from a set of training shapes. Patterns of variations in shapes and 

spatial relationships between successive slices of the training shapes are used to 

perform the segmentation in the target slice. 

An unsupervised method for segmentation of MR images is introduced in 

[9]. The method is based on Maximization of the Evidence (ME). Two different 

models are examined for brain tissues and the model parameters are estimated using 

ME algorithm. 

These purely intensity-based segmentation and classification methods assign 

a label to each pixel in the image and require only intensity information that is 

routinely generated by the MR imaging device. However, in medical image 

segmentation, different anatomical structures may have the same intensity values or 

distributions  that cannot be distinguished from one another by looking at their 

intensity values in the image.  

In such cases, extra information should be considered and included in the 

segmentation process. Spatial information like neighborhood relationships between 



8 
 

pixels can be very useful in segmenting individual tissues. In addition to 

geometrical constraints, relationships between several different but similar data sets 

can also be considered. The additional data that is used in a segmentation process is 

called as the prior information. Soft tissue segmentation methods usually use prior 

information in different manners to improve the segmentation accuracy. The prior 

information is included mostly in the form of single or multiple atlases. An atlas can 

be presented as a single manually segmented data (2D image or 3D voxel volume or 

2D/3D sequences) or can be formed from multiple manually segmented data [10]. 

For example, 70 infant brain MRI [11], 275 brain dataset [12] and 14 cardiac image 

sequences [13] were used to construct atlases.  

Atlas can be constructed and used in the segmentation process with four 

different strategies: segmentation with one single individual atlas, segmentation with 

varying single individual atlases, segmentation with an average shape atlas, and 

simultaneous segmentation with multiple atlases [14]. A brief overview of each 

strategy is shown in Figure 2.1. Several studies show that segmentation methods 

using multi atlas outperform the ones using single atlas [15-16] .  

As the number of atlases fused increases, the average segmentation accuracy 

increases [15] . Fusion of a large number of atlases is more likely to create a smooth 

estimate of the structure. However, construction of multi atlas is very hard because 

it requires manual segmentation on tens of data. In addition, increased 

computational cost of registering large numbers of atlases to the query image is an 

immediate practical problem. There are some solutions proposed for this problem in 

literature. In [16], adaptive multi atlas is proposed where local atlas based 

operations are performed. The proposed algorithm automatically selects the most 

appropriate atlases for a target image and automatically stops registering atlases 

when no further improvement is expected.  

Another problem of multiple atlases occurs when structure can have two 

totally different shapes. When all possibilities are fused, a shape, which is not 

possible, may result in the final atlas. As a solution to this problem, a suitable atlas 

among the possible ones is used as the prior information. In [17], an appropriate 

atlas is selected based on the scale resemblance of the atlas and the query data. 
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Atlases should be registered to the query data before the segmentation 

process. Segmentations in atlases are transformed to the query data and 

subsequently fused or combined.  Fusion can be done in various ways which can be 

categorized into four groups: Simple atlas registration, atlas registration with linear 

interpolation, atlas registration based on active contours and MRF based methods. 

Studies related with each method are explained in the following section. 

Although atlas based methods proved to be powerful in soft tissue 

segmentation, making an atlas set that covers all possible shapes is a huge work and 

needs a lot of manual segmentation. 
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Figure 2.1 Atlas based segmentation strategies 
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2.2. Simple atlas registration 
 

One way of atlas registration is to transform the atlas segments to the test 

data by using nearest neighbor interpolation so that each atlas provides a discrete 

labeling for each voxel. The final label can then be decided by ‘majority vote’ [14]. 

 

2.3. Atlas registration with linear interpolator 
 

In this method, individual labels are transferred and an array of values for a 

given voxel is formed as a probabilistic estimate. The array elements represent the 

confidence levels or probabilities of the possible labels assigned to the voxel at the 

current segmentation step. Then, different rules can be used to generate a consensus 

estimate among the array elements.  

In [18], the prior information is represented by a probabilistic atlas. A 

probabilistic atlas is a structure that includes probability of each voxel to belong to 

each tissue type.  Then, maximum likelihood approach is used to assign a label to 

each voxel for brain segmentation  . 

 

2.4. Atlas registration based on active contours 
 

The third method is to integrate the statistical knowledge of intensity and 

position information of the atlas into a shape model and match the test data with this 

model, usually by active contours. An active contour model is proposed in [17] to 

perform lung segmentation for MRI scans. Gradient Vector Flow (GVF) is used to 

modify Partial Differential Equation (PDE) and attract shape contours to the actual 

shape model. The method also takes the advantage of prior information about the 

object location. In [19], an active contour scheme is developed for cardiac MRI 

segmentation. The main advantage of this method is the utilization of the region-

based information as well as the edge information to decrease the sensitivity of the 

active contour method to the initial contours. In [20], a method based on simplex 

meshes is proposed for musculoskeletal segmentation and registration. A generic 
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model is introduced initially and the prior shape information such as smoothness 

and curvature is used during segmentation. The shape and deformation of the model 

are controlled by a deformable framework. This method is one of the first attempts 

in this field and need a manual initialization and user interaction makes this method 

less automatic. In [21], a shape model is constructed for masseter muscle by the help 

of several shape determinative slices. By using shape determinative slices authors 

try to address the problem of similar intensity values of neighbor tissues in some of 

MRI slices. These slices are specified and segmented manually. Then a hybrid 

method based on B-Spline and distance map is proposed to perform interpolation of 

the shape components. This study shows that the number of determinative slices 

highly effects the segmentation accuracy. The accuracy is 83% when 5 slices are 

used and it increases to 90% when 10 slices are used. 

All these methods are highly dependent to initial shape model and initial 

contour locations. Prior knowledge is mostly introduced by manual segmentation.  

 
2.5 MRF models 
 

Fourth way is to incorporate the atlas as the initial labeling in a MRF 

(Markov Random Field) or a HMRF (Hidden Markov Random Field) model. MRF 

models are commonly used for unsupervised segmentation of medical data since 

smoothness constraint can easily be incorporated to the model by neighboring 

relations among the pixels to be segmented. The first studies of brain segmentation 

use the basic MRF-HMRF formulation where smoothness is defined based on the 

resemblance of the neighbors [22-23]. Then iterative methods like ICM (Iterated 

Conditional Model) are used to find the most probable labeling. In soft tissue 

segmentation, standard MRF modeling may not be applied directly since the 

parameters of the model need to be tuned for each new image. To improve standard 

MRF models, segmentation and registration are joined in [24]. This method aims to 

improve segmentation and registration accuracy by incorporating registered MRI 

sets in a combined MRF model and estimating the labels in a registration criterion. 

It is shown that by using this combination, the computational cost of registration is 
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reduced and there is a sizable improvement in segmentation of human brain and 

mouse heart. However this method needs the initial prior models to be set precisely.  

In [25], distributed MRF segmentation is proposed to cope with spatially 

varying intensity distributions. Three different distribution classes are defined for 

MRI brain segmentation. The main problem in this approach is to find a partition 

that only includes these three classes. A new template for infant brain and the 

corresponding probabilistic atlas is constructed in [26]. The probability of each 

voxel for each class is determined by defining a HMRF model. Then a Maximum a 

Posteriori (MAP) is achieved by alternating among the classifications. 

In [27], MRF distribution parameters are defined based on fuzzy MRF 

modeling and then the parameters of each class are estimated by using a nonlinear 

conjugate gradient method. The authors used the proposed method for detection of 

prostate cancer from MRI scans. 

However the usual way of improving the MRF performance in segmentation 

is to use parametric model where the parameters are learned from the image usually 

by EM (Expectation Maximization) algorithm [25,27,28]. A HMRF model is 

developed in [28] to segment brain MR images where the EM algorithm is used to 

estimate the HMRF model parameters by solving Maximum Likelihood (ML) 

problem. Since there is no prior information used in this method, the algorithm is 

highly sensitive to noise and therefore is not robust. A commonly preferred method 

to incorporate the prior information to the MRF models is to register the atlas to the 

test image and to define the initial segment labels of the test image by the 

transformed atlases.  

In [29], a probabilistic atlas is constructed by using manually segmented 

train images. Then this atlas is used in initialization and also in expectation step of 

the EM algorithm. In [30], each tissue type is appeared based on the transformed 

atlas to obtain the probability of each tissue type for each voxel. The initial class 

labels are assigned by choosing the maximum probability tissue type. Then the 

classification algorithm is used to locally maximize mutual information by changing 

the class of each voxel. The mutual information is defined based on Markov 
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probability density function (PDF). Initial class labels are used as the prior 

probability of the labels for brain segmentation.  

Similarly, in [16], the brain atlas represents the prior probability of each 

voxel in the test set to belong to a particular structure. Then the Maximum 

likelihood function is defined by using Bayesian formulation so that the mutual 

information between the MRF model and the intensity distribution of the labeled 

atlas is maximized. In both studies, atlases are formed by manual segmentation.  

A manually constructed probabilistic atlas is used in [13] to estimate the 

initial model parameters which are used as the priori information in the 

classification process. The segmentation algorithm incorporates spatial and temporal 

contextual information by using 4D Markov Random Fields. Finally, the 

expectation maximization (EM) algorithm is used to perform segmentation on 

cardiac MR images. In [31], atlas is used as a guide to perform population 

segmentation through population deformable registration. The atlas is registered to 

all of the test sets and the sets are deformed toward the atlas to achieve population 

segmentation. All sets are also registered and deformed to each other. The 

deformation is defined based on discrete MRF as pairwise potentials.  Different 

from these studies, in [32], a latent atlas is used as the prior information where 

spatial priors are not in the form of probabilistic atlas. The atlas is initialized by a 

manual segmentation and then  updated to be as the average of the segmentation 

result at each step of the level set segmentation. 

Graph cuts are used to solve MRF problems in recent studies. This method 

can be used in medical image segmentation with some modifications so that the 

prior information can be included. In [33], a probabilistic atlas is first constructed by 

registering manually segmented training sets. The probabilistic atlas information is 

included in the energy function of the MRF formulation. The segmentation is 

achieved by an adaptive graph cut algorithm iteratively. A similar method is used in 

[34] but the tissue model is estimated directly from the test image and a mixture of 

Gaussians model is used to model different structures in the background. Both 

methods use manually segmented atlases to classify brain MRI to four classes. 
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In the literature, using the atlas as the prior probability of the labels is the 

most commonly chosen method to incorporate the prior information to the 

segmentation. However, this requires manually segmented atlases to be prepared. In 

this study, we propose another way for this cooperation where no manually labeled 

atlas is required.  

 

2.6. Facial soft tissue segmentation 
 

All methods mentioned above perform segmentation for soft tissues such as 

brain, lungs and cardiac. Very few studies considered Facial Soft Tissue (FST) 

segmentation for MR images.  

In the literature, FST segmentation is mostly done for clinical purposes with 

manual or other simple segmentation methods where human interaction is required. 

In [35], manual segmentation of pelvic MRI scans is performed by clinical 

specialists and 3D models are reconstructed to identify pelvic disorders. Similar to 

that, in [36], extraocular muscles and corresponding cranial nerves are investigated 

with manual segmentation in patients with special forms of strabismus. Manual 

segmentation can also be combined with the help of segmentation tools as in [37-

38] where Finite Element Model(FEM) of the face is constructed from facial MRI 

scans. In [39], a clinical study is presented which performs manual segmentation to 

investigate the differences in facial soft tissues between MuSK-MG patients and 

healthy people. 

Anatomical visualization is another application of FST segmentation. In 

[40], one observer performs semi-automatic segmentation using the editor module 

of the 3D Slicer software [41] to segment lip muscles and reconstructs 3D models. 

Similarly in [42], the correlation between jaw muscle volume and vertical 

craniofacial dimensions are investigated. In this study Masseter and Medial 

Pterygoid (facial muscles) volumes and surfaces are segmented by semi-automatic 

segmentation tools. 

Other than manual methods, there are some other automatic or semi-

automatic methods studied for FST segmentation. Atlas based segmentation is a 
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method commonly used for brain segmentation and classification. There are several 

articles that use this method to segment other soft tissues. In [43], quadrates 

lumborum (QL) muscle(near pelvic) is segmented with an atlas based method. First 

an average atlas is constructed by affine registration of the sets and manual 

segmentation. Then atlas is registered to the test set by a non rigid registration 

technique and Kmeans classification algorithm is used to classify the image to 

different classes and the target tissue is segmented.  

The main problem with classification algorithms in FST segmentation is the 

presence of several tissue types in one MRI slice. These tissue types may be 

different in the same slices from different individuals MRI. Therefore, the 

segmentation may result in wrong results or too many manual interactions are 

needed.   Another atlas based method is used in [44] for prostate segmentation. The 

method is similar to [28] but an atlas selection strategy is used to select atlases that 

match the test data. The mutual information is selected as a metric to select the best 

matching atlases. 

In [45], a novel method is proposed that uses an optimal path finding 

algorithm for facial nerve and chorda tympani (in ear) segmentation. The algorithm 

uses intensity and manually segmented atlas as feature values. The complete 

segmentation is performed using  geometric deformation model.  

Ng et al. [46-49] have tested several methods for FST segmentation based on 

prior knowledge. The main steps are similar in all of their studies. The process starts 

with manual segmentation of the training sets. Then registration from training sets 

to the test set is applied. The training images are transformed according to the 

difference between the shape of the head and the target tissue in each image and 

also tissue surface similarity. A tissue template is defined based on the transformed 

labeling. The muscle template is employed by the morphological operators to obtain 

an initial estimate of the muscle boundary. The muscle boundary then serves as the 

input contour to the gradient vector flow that snake iterates to the final 

segmentation. An improved method is proposed in [47] that shape determinative 

slices are used as a guide in 3D segmentation. A similar method is used in [46] with 
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a new method for determining the dominant slices of three human masticatory 

muscles (masseter, lateral andmedial pterygoids). 

All these methods needs user interaction in several steps during the 

segmentation process. Also a thresholding method is used to exclude bone and fat 

that makes the method less automatic. 

The complete and automatic segmentation of facial soft tissues still remains 

as an unsolved problem. In this work, we aim to investigate some of the methods 

which have been tested in segmentation of other soft tissues and try to modify them 

to be used in FST segmentation. 
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CHAPTER 3 

 

 

 

THEORETICAL BACKGROUND 

 

 

 

3.1. Introduction 
 

In this chapter we provide the theoretical information about the methods that 

we used in this thesis. We start with the segmentation problem in medical images 

and explain the Markov Random Field theory and its application in image 

segmentation. Several statistical models are discussed for image target tissue 

modeling and the solutions for estimating the model parameters and performing 

labeling are reviewed. The role of prior information is also included in MRF 

modeling. At the end, several optimization methods for parameter estimation are 

explained. 

Since we fused an MRF modeling with hidden atlas in our study, the 

concepts and procedures of atlas based methods are also discussed in this chapter. 

Since the first step of an atlas based method is the registration of the atlas and the 

test data, basic information about the registration is also mentioned at the end of this 

chapter after the explanation of the atlas based segmentation. 
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3.2. Labeling and Neighborhood Definition 

An image segmentation problem is specified in terms of assigning a label to 

each member in the set of sites (pixels). Let S be a rectangular lattice for a 2D image 

of size n × n 

                                               }n   j , i 1 | j) {(i, = S ≤≤ .                                   (3.1) 

Each element of S corresponds to a pixel such that the location in the image 

space is specified by the indices i  and j . In MRF models sites are normally treated 

as an unordered set but when a 2D image is modeled then ji,  are ordered pixel 

locations 

   m}{1,...,=S ,                                                 (3.2) 

where m is the number of pixels in the image and is equal to 2n . Let L be a discrete 

set of M  labels.  

  M} , ··· {1, = L                                               (3.3) 

Segmentation process is defined as assigning a unique value to each site in S  in a 

way that whole domain of S  is supported. So it’s a mapping from S  to L , that is 

LS : f → .                                                    (3.4) 

Then the set of labeling for all sites in S  is shown as 

}F,...,{F=F m1 .                                                (3.5) 

As a result of segmentation, the image is partitioned into mutually exclusive 

regions where each region has a different label and all pixels in one region share the 

same label.  

In this study we don’t consider the whole image S , but we are interested to 

segmenting only a part of the image named as “the region of interest (ROI)” for 

which the definition and explanation are given in part 4.5.2 step 4. This ROI is 

segmented into two: target tissue and others (background). Thus, we define only two 

labels in L for the ROI. The background image is assigned by label 0 and the target 

tissue is assigned by 1. The total number of possible labelings for S  becomes m2  

in this case. 
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Markov random field (MRF) is a probabilistic theory that represents the 

dependencies inside a physical phenomena [50]. It is used in visual labeling and 

probabilistic presentation of the labels in this study. Within a MRF model, sites are 

related to each other via a neighborhood system. A neighborhood system for S  is 

defined as 

{ }SiNN i ∈∀= .                                                (3.6) 

The neighborhood system can be defined in several ways. Some three 

dimensional (3D) neighboring systems are shown in figure 3.1 for a pixel i  and iN . 

In (a), 6 nearest neighbors in 3D space is shown. 8 nearest neighbors in one slice 

and the neighbors in upper and lower slices are selected as neighbors in (b). In (c) 

our proposed neighboring system is introduced where the neighbors are not only 

from the current 3D image but also from the images of other training sets. In this 

system, the corresponding voxels in the training sets are assumed as neighbors for 

the current voxel and affect the labeling of this voxel. Training set is a 2 

dimensional image that is registered to the test set by an affine registration so both 

images share the same coordinates. The registration process is explained in part 

3.6.3. 

 

 

 

 
Figure 3.1 Neighboring systems with a) 6 neighbors, b) 10 neighbors, c) 19 

neighbors     
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 A clique is a group of voxels which are fully connected. A double clique c  

for S  and N is defined as a subset of sites S  which has 2 neighboring sites. 

c2 = i, ′i{ } ′i ∈ Ni , i ∈ S{ }                                           (3.7) 

Cliques have different cites but only single and pair-wise cliques are considered in 

this study. 

 

3.3. Markov Random Field and Gibbs distribution 

3.3.1. Markov Random Field 

 

Let  Fm}{F1,...,=F be a family of random variables defined on the set S , 

each iF  takes a value if  in L . We call the family F a random field.  ii fF =  refers 

to the event where iF  takes the value if  and the donation  )f=F,...,f=(F mm11  is 

used to denote the joint event. For simplicity, a joint event is shown as fF = .  The 

probability that random variable iF  takes the value if  is abbreviated as )( ifP , and 

the joint probability is denoted and abbreviated as )( fP . Random field F  is said to 

be MRF on S  with neighborhood system N  if and only if: 

1. FffP ∈∀> ,0)(                                           (3.8) 

                                                     2. )()( }{ iNiiSi ffPffP =−                              

An MRF is said to be homogeneous if )(
iNi ffP  is regardless of the relative 

position of site i  in S . 
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3.3.2. Gibbs Random Field 

 

A set of random variables F  is said to be a Gibbs random field (GRF) with 

respect to N  if and only if its configurations obey a Gibbs distribution. A Gibbs 

distribution takes the following form 

)(1
1)(

fU
TeZfP

−− ×= ,                                        (3.9) 

where T  is a constant named temperature, and )( fU  is the energy function. Z is 

the normalization term that is defined as 

∑
∈

−
=

Ff

fU
TeZ

)(1

.                                              (3.10) 

The energy function is the sum of clique potentials )( fVc over all possible cliques. 

∑
∈

=
Cc

c fVfU )()(                                             (3.11) 

When )( fVc  is independent of the relative position of the clique c  in S , the GRF is 

said to be homogeneous and when cV is independent of the orientation of c , it is 

said to be isotropic. 

For discrete labeling problems, if ),,( iiic ffff ′′′=  be the local configuration 

on a triple-clique },{ iiic ′′′= , then )( fVc  can be specified by a finite number of 

parameters and cf  takes a finite number of states. 

A Markov Random Field is characterized by its local property whereas a 

Gibbs Random Field is characterized by its global property. The Hammersley-

Clifford theorem [51]  gives necessary and sufficient conditions under which the 

equivalence of these two types of properties can be achieved. It states that F  is an 

MRF on S  with respect to N  if and only if F  is a GRF on S  with respect to N . 

Then the energy function of the Gibbs distribution can be expressed as the sum of 

several terms. Each term is described by the cliques of a certain size. 

                       ...),,(),()()(
321 },,{
3

},{
2

}{
1 ∑∑∑

∈′′′
′′′

∈′
′

∈

+++=
Ciii

iii
Cii

ii
Ci

i fffVffVfVfU        (3.12) 

And the conditional probability can be written as follows: 
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)( .                                (3.13) 

Different MRF models are introduced for modeling image properties like 

auto models, multi-level logistic model and hierarchical GRF Model. Auto models 

are simple and have low computational cost. An auto-model is used in this study for 

modeling image properties and general information about auto models are 

introduced next. 

 

3.4. MRF Models 

3.4.1. Auto-Models  

 

Auto-models are encoded in the Gibbs energy as clique potentials of up to 

two sites. Then the energy function is defined as 

∑∑∑
∈ ∈′

′
∈

+=
Si Ni

ii
Si

i
i

ffVfVfU ),()()( 21 .                              (3.14) 

This energy function involves up to pair-site cliques and called a second order 

energy. In the above formulation ∑
∈Si

is equal to ∑
∈ 1}{ Ci

 and ∑∑
∈ ∈′Si Ni i

is equal to 

∑
∈′ 2},{ Cii

. 

Let (.)iG  be an arbitrary function and ii ′,β be a constant reflecting the pair-site 

interaction between i  and i′ . Then if )()(1 iiii fGffV =  and iiiiii ffffV ′′′ = ,2 ),( β , 

the energy function becomes 

∑∑
∈′

′′
∈

+=
21 },{

,
}{

)()(
Cii

iiii
Ci

iii fffGffU β .                             (3.15) 

This model is called auto-models. If if 's take on values in the discrete label set 

}1.0{=L , the auto-model is said to be an auto-logistic model and the corresponding 

energy function becomes as follows 
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∑∑
∈′

′′
∈

+=
21 },{

,
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)(
Cii

iiii
Ci

ii ffffU βα .                                    (3.16) 

When N  is the nearest neighborhood system on a lattice, the auto-logistic model is 

reduced to the Ising model. 

If the if 's take on values in the label set }1,...,1,0{ −M and every if  has a 

conditionally binomial distribution of M  trails and success probability of q , the 

auto-model is said to be an auto-binomial model. 

ii

i

fMf

i
Ni qq

f
M

ffP −−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= 1)1(

1
)( ,                             (3.17) 

where 
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iiNi iii
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e
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1
β
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.                                           (3.18) 

Then the corresponding energy function for auto-binomial model takes the 

following form 

ii
Cii

ii
Ci

ii
Ci i

fffa
f

M
fU ′
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1
ln)( β .             (3.19) 

When 1=M , it reduces to auto-logistic model. 

When the label set L  is the real line and the joint distribution is multivariate 

normal, the auto-model is called auto-normal model or Gaussian MRF. In this case 

the p.d.f is defined as 
2

,2 )]([
2

1

22

1)(
∑

= ∈′ ′′′ −−−−
iNi iiiiii

i

ff

Ni effP
μβμ

σ

πσ
 .                  (3.20) 

The mean and variance parameters for this normal distribution are 

)()( ,∑ −−= ∈′ ′′′ii Ni iiiiiNi fffE μβμ ,                           (3.21) 

2)var( σ=
iNi ff .                                             (3.22) 

The joint probability is a Gibbs distribution 

22
)()(

2 )2(

)det(
)( σ

μμ

πσ

−−
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e
B

fP ,                             (3.23) 
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where ][ ,iibB ′= is the mm× interaction matrix whose elements are unity and off-

diagonal element at ),( ii ′ is iiiiiiii bei ′′′′ −=− ,,,, ., βδβ  with 0, =iiβ . Then the single 

site and pair site clique potential functions become in the following form 
22

1 2/)()( σμ iii ffV −=                                       (3.24) 

and 
2

,2 2/))((),( σμμβ iiiiiiii ffffV ′′′′ −−=                      (3.25) 

 

3.4.2 Observation Models 

 

An observation },...,{ 1 mddd = is a rectangular array of pixel values in low 

level vision problems. In this case, each pixel in the observation set d  takes a value 

in set D . D  is usually in 8 bit form that takes the following values 

}255,...,1,0{=D , i.e., gray level pixel values. 

An observation is usually not equal to the exact reality. It is a transformed 

version of an MRF realization f . The transformation is due to random factors like 

noise. The conditional distribution or the likelihood of f  can be determined 

considering these factors. We can define a general model for observation by use of a 

blurring factor B , a linear or nonlinear transformation ϕ  and a sensor noise ε . The 

general observation model then has the form of 

εϕ o))(( fBd =                                             (3.26) 

where o is an operation of addition or multiplication. This model can be simplified 

to 

iii fd εϕ += )(                                                (3.27) 

where there assumed to be no blurring, linear transformation and independent 

additive Gaussian  noise. Then the likelihood of f  or the probability distribution of 

d  given f  is 
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,                            (3.28) 

where the likelihood energy )|( fdU  is  

∑
∈

−=
Si

iii dffdU ]2/[))(()|( 22 σϕ                           (3.29) 

This is a simplified version of Gibbs distribution where energy is due purely to 

single-site cliques in the zero-th order neighborhood system and the clique 

potentials are ]2/[])([ 22
iii df σϕ − . 

 

3.4.3. The Smoothness Prior 

 

By introducing smoothness we assume that physical properties in a 

neighborhood of space present some coherence and generally do not change 

abruptly. Smoothness constraints are often expressed as the prior probability or 

equivalently an energy term )( fU  in MRF models. For discrete case, when the 

solution f  is locally smooth on c , that means that all labels cf  on a clique c  take 

the same value, they come over a negative clique potential (cost); otherwise, they 

incur a positive potential in the energy term )( fU . 

 

3.4.4 MRF Prior for Piecewise Constant Surfaces  

 

For piecewise constant surfaces modeling, Multi level logistic models can be 

used. For more than one-site cliques, the clique potential is defined as 

⎩
⎨
⎧

=
otherwise

labelsamethehavecinsitesallif
fV

c
c ζ

0
)(                  (3.30) 

Here, cζ is a negative constant dependent on c . 

Clique potentials depend only on the label assigned to the site for single site cliques 

diic LlfiffVfV ∈=== 11 )()( α                          (3.31) 
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where 1α is a value that controls the labeling l. The higher 1α  causes the percentage 

of sites that have l labeling, to decrease. 

When cV  is nonzero only for the pair-site cliques, the clique potentials become as 

0)( =fVc          for #c > 2                                     (3.32) 

)](1[),()( 202 iiiic ffffVfV ′′ −−== δυ                          (3.33) 

where (.)δ  is the Kronecker delta function and 20υ  is the parameter against non-

equal labels on two-site cliques. The prior energy is defined as the sum of all clique 

potentials as follows 

∑ ∑∈ ∈′ ′−−=
Si Ni ii

i
fffU )](1[)( 20 δυ .                        (3.34) 

 

3.4.5 MRF Texture Model 

 

MRF texture models can be defined by the use of joint probability )( fP . 

)( fP is the probability of the texture pattern f to occur. Different MRF models are 

used for texture modeling. For example, in the MLL model, the clique potential 

functions are used to define the probability of the texture pattern f . If all the clique 

potentials other than pair-wise are non-zero, the clique potential equation is as 

below 

⎩
⎨
⎧ ∈=′

−
=′ otherwise

labelsamethehaveCciionsitesif
ffV

c

c
ii

2
2

},{
),(

β
β

  (3.35) 

where 2C is a set of pair-size cliques and cβ is the parameter that specifies the MRF 

model. When all ββ =c , the MRF model is anisotropic and tends to generate 

texture like patterns. If cβ  is different for different clique sets, it generates blob-like 

regions. By increasing the cβ , the selected region becomes larger and has more 

smooth boundaries.  The clique potential function above is used to calculate the 

probability )( fP using the corresponding Gibbs distribution. 
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For Gaussian model we assume that the observation id  follows a Gaussian 

distribution with parameters },{ lli σμθ = . When the class label lf i = , the 

probability of id  becomes 

)
2

)(
(

2

2

2

2

1)|( l

lid

l

ii efdP σ
μ

πσ

−
−

=                                    (3.36) 

 

3.5. Optimization 

In computer vision process, there is a various amount of uncertainties like 

noise and other degradation factors. For this reason, an exact solution for vision 

problems is nearly impossible and most of them are formulated as optimization 

problems. Each optimization process in computer vision has three basic issues that 

should be considered: problem representation, objective function definition and 

optimization algorithms. The problem representation concerns how to represent 

image features and also how to represent the solution. For example in our case 

(image segmentation), locations of voxels represent the solution. 

The objective function measures the quality of the solution in terms of some 

goodness or cost to a real number. In our MRF model, the energy function defined 

for this model is the objective function that needs to be optimized. The energy 

function has two important roles in optimization based vision problems: one is to 

measure of the global quality of the solution and the other is to guide the optimal 

solution searching. In this regard, proper formulation of the energy function is 

essential in finding the correct solution. The third issue is how to optimize the 

objective function to the best solution. In the following subsections we will discuss 

some solutions for optimization issues. 
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3.5.1. Iterated Conditional Modes  

 
Iterated conditional modes (ICM) is a deterministic algorithm which 

maximizes local conditional probabilities sequentially. The algorithm updates each 
k

if  into 1+k
if , by maximizing the posterior probability ),|( }{iSi fdfP −  with respect 

to if . The point of ICM is to maximize ),|( k
Nii i

fdfP beside )|( dfP . Maximizing 

),|( }{iSi fdfP − is equivalent to minimizing the corresponding posterior potential as 

following 

),|(minarg1 k
Nii

f

k
i i

i

fdfVf ←+                                  (3.37) 

where 
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Ni

ii
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ii
k

Nii fdVffVfdfV )|()|(),|(                      (3.38) 

For discrete L , posterior potential is evaluated for each Lfi ∈  and the label causing 

the minimum value is chosen as the 1+k
if . In a cycle of ICM the above is applied to 

each i . This process continues iteratively until the convergence. 

 
3.5.2 Bayes Estimation 

 

Bayes theory states that when both the prior distribution and the likelihood 

function of a pattern are known, the best solution that can be estimated is the Bayes 

labeling. For Bayes estimation, the posterior probability can be computed from the 

prior distribution and the likelihood. 

)(
)()|()|(

dP
fPfdPdfP =                                    (3.39) 

where )|( fdP is the conditional p.d.f of the observations d and )( fP is the prior 

probability of labelings f . Also )(dP is the density of d . Minimizing the Bayes 

risk is equal to maximizing the posterior probability so the minimal Bayes risk of 

estimate ∗f is equivalent to 
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)|(maxarg dfPf Ff∈
∗ = .                                (3.40) 

Above function is known as the MAP estimate. When d  is constant, )|( dfP  is 

proportional to the joint distribution. 

)()|(),()|( fPfdPdfPdfP =∝ .                       (3.41) 

Then the MAP estimate can be found by 

)}()|({maxarg fPfdPf Ff∈
∗ = .                          (3.42) 

 

The MAP-MRF labeling for segmentation problem can be summarized in 

the following steps: 

1. Define the appropriate MRF representation of the problem. 

2. Define the neighborhood system, the set of cliques, clique potentials and the 

likelihood energy. 

3. Find the posterior energy. 

4. Find the MAP solution from the posterior energy 

 

3.5.3. MRF Parameter Estimation 

 

After selection of the functional form of the MRF model, if the parameters 

are known the optimized labeling can be estimated by the optimization methods 

explained in the previous section. But if the involved parameters are not known and 

should be specified, then optimization algorithms should be involved both to 

estimate the model parameters and the labeling. 

The estimation problem is defined as estimating the parameters, θ , of a 

single MRF, F , from the observed data d  which is due to a clean realization, f , of 

that MRF. When noise exists in the image, the unknown noise parameters should be 

estimated too and this increases the complexity. Also existence of multiple textures 

in the image increases the complexity as well because a separate MRF should be 

used for each texture model. Sometimes, the number of the underlying MRFs is 

unknown and should be determined which makes the problem even more 

complicated.  
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If the parameter estimation is done when data is already labeled, this is 

called as the supervised estimation. Otherwise it is unsupervised. 

 

3.5.4. Supervised Estimation with Labeled Data 

 

When data corresponds to a previously segmented image, i.e. the labels of 

the image pixels are known, the parameter estimation is done supervised. In this 

case, the set of parameters, θ , for each MRF model, F , are estimated using the 

data which is a clean realization, f , of that MRF. Maximum Likelihood (ML) 

method is a supervised method that is widely used in literature for medical image 

segmentation.  

When realization f of an MRF model is known, the maximum likelihood 

(ML) tries to find the maximum value for conditional probability )|( θfP , which is 

the likelihood of θ , or its log likelihood )|(ln θfP . 

)|(maxarg θθ
θ

fP=∗

                                       
(3.43)

 
or 

θ∗ = argmax
θ

ln P( f |θ )
                                      

(3.44) 

For a homogeneous and isotropic auto-logistic MRF model with the 4-

neighborhood system and the parameters },{ βαθ = , the global energy function and 

the local conditional probability can be defined as follows: 
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The likelihood function is in the Gibbs form 

)|(

)(
1)|( θ

θ
θ fUe

Z
fP −×=                                   (3.47) 

with the partition function 

∑
∈

−=
Ff

fUeZ )|()( θθ                                        (3.48) 
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Here )(θZ  is also a function of θ . To maximize )|( θfP  we need to compute 

)(θZ , but evaluation of )(θZ  is intractable because of the combinatorial number of 

elements in the configuration space F . Because of this difficulty, maximum 

likelihood cannot be solved directly but approximate solutions are used to solve this 

problem. Pseudo-likelihood is one of the frequently used approximate methods. 

 

3.5.5. Pseudo-Likelihood 

 

For approximation, the energy function can be written in the following form 

where each node i  is treated as being independent of the others given its neighbors. 

This is a valid assumption for a MRF: 

∑
∈

=
Si

Nii i
ffUfU ),()(                                          (3.49) 

Here ),(
iNii ffU  is based on the configuration of the cliques between i  and iN . For 

only single- and pair-site cliques, energy function and conditional probability can be 

written as 

∑
∈′′
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iiiNii ffVfVffU
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},{:
21 ),()(),(                            (3.50) 

and 

P( fi | fNi
) = e−Ui ( fi , fNi )

e
−Ui ( fi , fNi )

fi
∑

                                      (3.51) 

            P( f |θ ) = e
− Ui ( fi , fNi )

i∑

e
− Ui ( fi , fNi )

i∑

fi∈L
∑

                                     (3.52) 

 
Then the pseudo-likelihood is defined as  

PL( f )= P( fi | fNi
) =

i∈S−∂S
∏ e−Ui ( fi , fNi )

e
−Ui ( fi , fNi )

fi
∑i∈S−∂S

∏                        (3.53) 

where S∂  is the set of boundary points of S  in the neighbor system N . By using 

the conditional probability (3.46) in the equation above, the pseudo-likelihood 
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approximation for a homogeneous and isotropic auto-logistic model can be achieved 

as follows: 

∏
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which is not related to the normalization term Z . In general, pseudo-likelihood is 

not the true likelihood function because of the dependency between if  and 
iNf  but 

it a solvable approximation. 

As an example for maximum pseudo-likelihood (MPL) estimation, consider 

the homogeneous and isotropic auto-logistic model described before. The logarithm 

of  (3.54) is 
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Then, the MPL estimation },{ βα  is obtained by solving 

0),|(ln
=

∂
∂

α
βαfPL                                           (3.56) 

0),|(ln
=

∂
∂

β
βαfPL                                           (3.57) 

 

3.5.6. Mean Field Approximations 

 

Mean field approximation can be used to approximate the behavior of MRFs 

in equilibrium. In general, the mean of a random variable X  is given by 

∑= X
XXpX )( . So the mean field f  can be defined by the mean values 

∑ ∑
∈

−−==
Ff f

fU
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iii efZFPff
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1)(                             (3.58) 

In this method, the following assumption is made to calculate if : The actual 

influence of )( iif i ≠′′  is approximated by the influence of if ′ . When the field is 

in equilibrium, this assumption is reasonable. The equation (3.50) can be 

approximated by the mean field local energy expressed as follows: 
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and the conditional probability approximation takes the form of 
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where iZ ′ is called the mean field local partition function and defined as 
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The mean field approximation of the joint probability can be shown as the product 

of the mean field local probabilities 
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Similarly, the mean field partition function can be shown as the product of the mean 

field local partition functions    
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                (3.63) 

Unlike the pseudo-likelihood, in the mean field approximation, the mean values and 

the mean field conditional probabilities are computed iteratively. 

Another approximation method for MRF parameter estimation is to use a 

least squares (LS) fit procedure that is explained with details in [50, 52].   

 
3.5.7. Unsupervised Estimation with Unlabeled Data 

 

In image segmentation, our data is an observation from underlying MRFs, 

which is initially unlabelled. To find the MRF parameters, we should use the 

realization of only that MRF so the image should be segmented. However to 

segment the image, the parameters of that MRF model should be available. So the 

problem is to choose between segmentation and estimation. 

One strategy to solve this problem is to perform segmentation using some 

other techniques like clustering and then to estimate the MRF parameters from the 
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resulting labeling. This method may not result in the optimum solution because the 

labeling is performed without using the correct parameter values. 

An improved method is to perform labeling-estimation iteratively. The basic idea is 

to choose initial labeling by using some scheme and estimate the parameters based 

on this labeling. The estimated parameters are then used to find a hopefully better 

labeling, and so on. A simultaneous segmentation and estimation scheme is 

explained below. 

Assume that },...,1{ ML∈  is the possible labels and f represents a 

segmentation or labeling with Lfi ∈  indicating the label of pixel i . The data space 

S  is partitioned into M  different labels by the segmentation f . In our case, M  is 

known and equal to 2. This means that the image includes only the target tissue and 

the background. In completely unsupervised methods, M  is also unknown and 

should be estimated. 

In terms of the MAP principles, the problem can be formulated as 

)|,,(maxarg),,(
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dfPf df
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θθθθ
θθ

=∗∗∗

,                             
(3.64) 

where d  is the observation model, fθ is a set of MRF parameters and dθ  is a set of 

observation parameters. Assuming that fθ  and dθ  are both uniformly distributed,  

there is no prior knowledge about their distributions. When fθ and dθ  are 

independent of each other, the above equation is reduced to 
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(3.65) 

Maximization of the above problem is generally intractable. However this 

problem is solvable when dθ  can be expressed as a function ),( dfdθ . 

Assume that the observation model is iii fd εϕ += )(  where )( ifϕ  is the gray level 

for type ifI = , for example the mean of pixels labeled as I , and iε  is additive 

identical independent zero-mean Gaussian noise. The image space is assumed to be 

composed of piecewise constant valued regions that are governed by an MRF 
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model. Then the noise variance for type I  regions can be estimated as a function of 

f  and d  
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Here )(# IS is the total number of pixels in type I  region. When dθ  is given 

as a function of f  and d , the (3.65) is reduced to 
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The minimization is still a difficult problem. The solution can be found by dividing 

the problem into two sub-problems 

f ∗ = argmax
f

P(d | f ,θd
∗( f , d))P( f |θ f

∗ )
                            

(3.68) 

θ f
∗ = argmax

θ
P(d | f ,θd

∗( f ∗, d))P( f ∗ | d,θ f )
                        

(3.69) 

The estimate ),( ∗∗
ff θ  thus can be found by iteratively alternating between the two 

equations. There are several methods for solving this problem such as simulated 

annealing (SA) [53], heuristic ICM and Pseudo-likelihood. The general technique 

for finding maximum likelihood estimate with incomplete data is expectation-

maximization algorithm [54]. This method will be completely explained in the 

following subsection. 

 

3.5.8. Expectation-maximization 

 

The expectation-maximization (EM) estimate is obtained from the complete 

data by maximizing the likelihood function 

)|(lnmaxarg θθ
θ

comdP=∗

                                    
(3.70) 

The complete data is assumed to consist of two parts, }ˆ,{ hidobscom ddd = , where 

obsd is the observed data and hidd̂ is the hidden data. EM procedure attempts to solve 

the following ML estimation problem with using only the observed data 

 )|(lnmaxarg θθ
θ

obsdP=∗

                                    
(3.71) 
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This problem is more general than the classic ML. Starting from some initialization 

for hidd̂ and θ , EM algorithm iterates between the following two steps until 

convergence: 

(1) Estimate the hidden data, using the current θ  and use it to form the complete 

dataset comd . 

(2) Estimate the parametersθ , by using comd  and maximizing the complete-data log 

likelihood )|,ˆ(ln θobshid ddP . 

The log likelihood function above is a random function of the hidden 

variables f and we cannot work directly with this function. So EM algorithm tends 

to use the complete-data log likelihood )]|,ˆ([ln θobshid ddPE  which formalizes the 

procedure above. The hidden data for MRF model parameter estimation is the 

unobservable labeling f  and the observed data is the given data d . At each 

iteration, the EM algorithm consists of the following two steps: 

(1) The expectation step (E-step): The following conditional expectation of the log 

likelihood is computed 

 ∑
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                     (3.72) 

(2) The maximization step (M-step): )|( )(tQ θθ  is maximized to obtain the next 

estimate 

)|(maxarg )()1( tt Q θθθ
θ

=+

                                   
(3.73) 

In the expectation step the conditional expectation of the hidden labels f , 

given the observed data d  and the current estimate )(tθ , is computed. Then the 

labels are substituted with the new ones. In the maximization step, maximum 

likelihood estimation is performed assuming that the data is complete, i.e., as hidden 

data had been filled in by the expectations. 

For the Gaussian MRF model case, the intensity distribution function, given the 

parameter set θ , is 
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Here, )|(
iNflp  is the locally dependent probability of lf i = and the parameter set 

is }|,{ Llll ∈= σμθ . 

Then the Q-function becomes 

{ }∑∑
∈ ∈

+=
Si Ll

i
t CWdlPQ )|()(                                   (3.75) 

where 

2

2
)(

2
)(

ln)|(ln
l

li
lN

t d
flpW

i σ
μ

σ
−

−−=                           (3.76) 

and 

)2ln(5.0 π−=C                                                 (3.77) 

The model parameters can be obtained by applying EM algorithm 
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It is shown that the EM estimates converge to the ML estimates at least 

locally under some conditions . 

 

3.6. Atlas based segmentation 
 

Prior information is an important concept in medical image segmentation. 

Atlas is the most preferred framework to include prior information to a 

segmentation task. An atlas is usually referred to as a mapping LRA n →: from n-

dimensional spatial coordinates to labels from a set of classes L . To segment a new 

image S , using an atlas A , a transform between them should be computed. To find 

the accurate transformation, two images should be registered to each other. The 
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registration from the atlas image to the target image should be non-rigid not only to 

change the image linearly, but also to change the shape of the objects in the atlas in 

a nonlinear way so that they can fit well to the corresponding objects in the target 

image. Important concepts in an atlas based segmentation are listed as follows and 

each is detailed in the following text. 

- Atlas construction 

- Atlas selection 

- Image registration 

 

3.6.1. Atlas construction 

 

An atlas is usually generated by manual segmentation of training images. 

The atlas can be constructed from a single image or average of many images. Thus, 

construction of atlases is very time consuming and prone to error. For average atlas 

construction, all of the images should be registered to a reference image so that the 

corresponding objects in the image will share the same locations. This is done by an 

affine registration that is explained in the next chapter. For atlas construction the 

registration applies linear transformation to the images so it wouldn't affect the 

shape of the objects in the image. 

 

3.6.2. Atlas selection 

 

Different atlas selection methods are proposed and evaluated in the 

literature. Four important atlas selection strategies are shown in the figure 3.2. 
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Figure 3.2 Atlas based segmentation strategies. 

 

 

Segmentation with a fixed, single individual atlas is the most straight 

forward strategy for selection of an atlas. In this method, a single atlas is selected 

mostly randomly to perform segmentation. Usually there is a single atlas and thus 

atlas construction is simple and fast but it may result in a wrong segmentation if the 

objects in the atlas and the test images are very different from each other. 
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Another method is to select the most similar atlas to the test image. But the problem 

with this approach is that the correct segmentation for an un-segmented image is 

unknown. So the best atlas is usually selected by some similarity measures that may 

result in wrong answers. 

Segmentation with an average shape atlas is performed by averaging several 

manually segmented atlases. This method considers different images with different 

shapes so that it decreases the risk an individual being an outlier in the population. 

But high amount of manual segmentation and registration increases the time and 

also the computational cost. 

Multi atlas segmentation is done by performing segmentation for the test 

image with different atlases and then generating the resultant segmentation by 

combining all individual results. The simplest way to combine the individual 

segmentations is averaging. However, the success of the method depends on the 

performance of the fusion strategy, which could be different than only averaging. 

 

3.6.3. Image registration 

 

In addition to a spatial map of labels, the actual atlas also allows us to access 

to the corresponding realization of the image modality. So the registration is 

performed between two real images. 

Image registration is to overlay two or more images with a linear or non-

linear geometrical alignment. In medical image registration, input images can be 

images with different modalities from the same person. Such registration is done to 

obtain more complete information about the patient. Or they can be images from 

different individuals but with the same modality. Such registration is usually done to 

obtain average atlases from the training sets, which are then used as the prior 

knowledge in test image analysis. In this study, we consider images from different 

individuals but having the same imaging modality, i.e., imaging sensors and 

viewpoint of imaging. 

The registration can be grouped into two general categories: rigid and non-

rigid registration. Rigid registration is performed by a rigid transform with 6 degrees 
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of freedom (3 for rotation and 3 for translation). Affine registration is an improved 

form of rigid registration with 9 degrees of freedom that incorporates shearing into 

registration process. In rigid registration, the distance between the points remains 

constant. However, in non-rigid registration, the local deformation between the 

images is allowed involving a much larger number of degrees of freedom. A simple 

visualization of rigid and non-rigid registration is shown in Figure 3.3. 

 

 

 

 
Figure 3.3 Rigid and non-rigid registration 

 

 

Registration algorithms can be categorized in three groups: 

 

• Landmark based registration: In this method, a group of landmark points 

are selected in both images by the user and mapping is computed between 

these corresponding points. 

• Feature based registration: Some features, such as edges, corners or 

regions, are detected from both images mostly automatically and matching 

between these points are estimated. The mapping is computed between the 

corresponding points. 

• Intensity based registration: Registration is performed by minimizing the 

intensity differences over the entire images. 
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Although landmark based registration may result in a more accurate 

transform, a large amount of human interaction is needed and the registration 

performance is directly related to the number of landmarks. For feature-based 

registration, some image features like edges and surfaces should be computed and 

matching between these should be estimated before the registration. When these are 

done automatically, performance is not very high. Manually segmented structures 

may be used as features for accuracy improvement but this decreases the 

automaticity of the method. Intensity based registration involves calculating the 

registration transformation by optimizing some measures computed directly from 

the voxel values. Choosing the proper similarity measure depends on the image 

modality. The most successful similarity measure for medical images is mutual 

information [55]. 

The mutual information of two discrete random variable YX , is defined as 

follows: 

I (X,Y) = P(x, y)log P(x, y)
P1(x)P2 (x)

⎡

⎣
⎢

⎤

⎦
⎥

x∈X
∑

y∈Y
∑                         (3.80) 

The registration is performed in a way that maximizes the mutual information 

between two images. Several optimization strategies have been proposed for mutual 

information maximization [56]. Some important multi resolution gradient- and non-

gradient-based methods are Powell, simplex, steepest-descent, conjugate-gradient, 

quasi-Newton and Levenberg–Marquardt methods. 

One of the efficient and robust intensity based registration techniques is 

demons registration [57]. In demons registration, the optical flow equation is used to 

find small deformations in image sequences. Let p  be a point in reference image 

F , f  be the intensity and m  be the intensity in the moving image M . Then 

),( yx uuu = is defined as the estimated displacement required for point p  to match 

the corresponding point M . 
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=                                      (3.81) 
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Where f∇  is the gradient of the reference image. Displacement u is based on local 

approximation so to register two images, so it should be solved iteratively. Mutual 

information can be used as similarity measure to optimize the registration. 
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CHAPTER 4 

 

 

 

MATERIALS AND METHODS 
 

 

 

4.1. Intro 
 

In this chapter, the materials and methods that we used in this study are 

discussed. Our aim in this thesis is to investigate the role of prior information in 

medical image segmentation. For this purpose, we apply several present 

segmentation methods for two dimensional (2D) segmentation of target facial soft 

tissues. These methods are chosen because they are the representatives in the 

previous literature, which use prior information in some way or the other. A 

comparison between these methods will clarify different aspects of prior knowledge 

based segmentation methods. These methods are: 

Method a. Atlas based segmentation, 

Method b. MRF based segmentation with initials from region growing 

algorithm, 

Method c. MRF based segmentation with initials from region growing 

algorithm using prior information, 

Method d. MRF based segmentation using labeled atlas.  

Then our newly proposed segmentation method, MRF based segmentation using 

unlabeled prior information (Method e), will be introduced and applied to the same 

image sets for 2D segmentation.  
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At the end, we propose a new framework that performs 2D segmentation for 

all of the slices of the data sets for the target tissue. As a result of this process a 

segmented three dimensional (3D) shape of target tissues are constructed with our 

proposed method.The methods are implemented using Matlab 7.10.0 on a computer 

with Intel Xeon 3.2 GHz (2 processors) CPU and 8 GB of RAM. 

 

4.2. Target tissues 
 

Four different facial soft tissues (FST) are selected as target tissues in this 

study: right Masseter (RM), left Masseter (LM), right temporalis (RT) and left 

Temporalis (LT). 

Masseter is a strong and large muscle, responsible for jaw motion. An axial 

view of both right and left masseter muscles in an MR image is shown in figure 4.1. 

The muscle borders are specified in green. Temporalis is also a large facial muscle 

that assists in elevation of the mandible. Borders of Temporalis muscle is shown in 

Figure 4.2 in green. 

We performed 2D segmentation for finding right masseter tissue with our 

method and other previous methods mentioned before and compared our results 

with them. We also performed 3D segmentation for 10 different MRI sets belonging 

to different individuals to find the four target tissues mentioned above. 
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Figure 4.1 The target masseter tissues are shown by green. 

 

 
Figure 4.2 The target temporalis tissues are shown by green. 
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4.3. Train and test data 

 

All the images used in this work were whole head and neck 3D  MRI  sets  

which  are  obtained  from  the  Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) [58]. All image sets were axial T1 weighted sets with 1.2 mm slice 

thickness. Each set contain 256 slices with 256 x 217 pixels resolution.  Ten 

different sets are selected as experimental data. In each experiment, leave-one-out 

technique is used, that is, each set is selected as the test set and the remaining sets 

are used as the training set. This process is repeated for all sets. Total  of  four  

FSTs,  i.e.,  left  masseter,  right  masseter,  left temporalis  and  right  temporalis,  

were  selected as  target tissues to be segmented. 

 

4.4. Bias field correction 
 

Magnetic resonance images are usually degraded by intensity in-

homogeneity which is primarily because of the sensitivity profile of the radio 

frequency coil [59]. This phenomena is named intensity bias field and is 

characterized by multiplicative smooth spatial variations that modulate the intensity 

of the true image data. This causes a problem in image analysis techniques like 

segmentation and registration. To solve this problem, histogram equalization 

method is used as explained in [60]. In this method, histogram of all images are 

calculated and the average histogram is equalized. Then the intensity values of 

pixels in each slice are remapped to the new intensity value.  

 

4.5. 2D segmentation 
 

In this part we apply segmentation methods mentioned in section 4.1 for 

segmentation of masseter muscle in one single MRI slice. Each method is explained 

in this section where the result of a selected slice is also shown. Ten different MRI 

sets are selected as the experimental data. All these sets are registered in 3D by an 
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affine registration method so the slices will correspond to each other. A single slice 

is selected from each set to perform 2D segmentation, i.e., 10 slices in total. We use 

leave-one-out technique where one of the slices is selected each time as the test data 

to be segmented and the other 9 slices are selected as the training sets that are used 

as the prior information. A sample of input image for our system is shown in figure 

4.3. The visual results of each segmentation process will be shown for this particular 

image. 

 

 

 

 
 

Figure 4.3 Sample MRI slice that is used for visualization in this thesis. 
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4.5.1. Method a: Atlas based segmentation 

 

Atlas based segmentation is one of the popular methods in medical image 

analysis, especially in brain soft tissue segmentation [43, 61-62]. The basic concepts 

of this method are explained in part 3.6. An overview of this method is shown in 

figure 4.4. 
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Figure 4.4 Overview of method a. 
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The system is composed of the following steps: 

Step 1: Image registration: All MRI sets are registered to a randomly selected set 

with an affine registration. Normalized mutual information is used as similarity 

measure in the registration process. The registration is performed by using Amira 

software [63]. 

Step 2: Manual segmentation: The masseter muscle is then segmented in selected 

slices manually. The manual segmentation is performed by a professional user. 

Step 3: Non-Rigid registration: To find a mapping from each image in the training 

set to the test set, a registration from the train set to the test set should be applied. 

The applied registration method is the demon registration that is explained in section 

3.6.3. By applying the non-rigid registration, target tissue in the training set tends to 

change shape toward the shape of the tissue in the test set. This process is done for 

all of the 9 training data. 

Step 4: Transform the labels: In step 3, we obtained a transformation from each 

train set to the target set. In this step, the obtained transforms are applied to the 

corresponding labeling images. So the label image will also change the shape to fit 

the test set.   

Step 5: Averaging and majority voting: To obtain the overall segmentation of the 

test set, an average image is made from the labels produced in step 4. The average 

image is shown in figure 4.5. The bright locations that are repeated in more images 

are brighter in this image. By performing majority voting procedure on the average 

image, we select the pixels that are repeated more than 4 times out of total 9 images.  

Manual segmentation of each slice is needed for this method that is so time 

consuming and increases the overall time of segmentation. Other than that the 

average time for non-rigid registration from a training set to the test set is 189 

seconds. Without considering manual segmentation, the algorithm takes baout 1713 

seconds to perform segmentation for one slice. The segmentation result for the input 

image is shown in figure 4.6. The border of the segmented region is shown in blue. 
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Figure 4.5 Average image from manually labeled training images 

 

 
Figure 4.6 Result for the sample image by using method a. 
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4.5.2. Method b: MRF based segmentation with initials from region growing 

algorithm 

 
Markov random field framework is a favored technique to encode spatial 

information in an image through contextual constraints of neighboring pixels. We 

seek to find the maximum a posteriori estimate of the segmentation by using 

expectation maximization (EM) algorithm. The method is explained in section 3.5.8. 

A problem in MRF based segmentation of facial soft tissues is that, in MRF 

modeling, tissues with the same intensity distribution are modeled in the same 

group. This method is mostly used in classification of brain soft tissues where whole 

image can be classified into different classes. However in FST segmentation we 

want to label a single tissue without adding the other tissues with similar 

distribution. To solve this problem a rectangular region of interest (ROI) is selected 

around the target tissue and the segmentation is performed only on this ROI. The 

method by which the ROI is selected will be explained in part 4.5.2 step 4. 

In this section, we try to perform MRF based segmentation without using 

any prior information. This will help us to understand the basic MRF segmentation, 

which is considered as a baseline, and the effect of prior information, when it will 

be introduced later, in the MRF segmentation process. The segmentation process is 

like the method used in [28] that performs segmentation for brain MR images. The 

performance with this basic MRF approach is poor, because the convergence of the 

EM algorithm strongly depends on the initial labeling and parameters. Thus, 

different from [28], we use a region growing algorithm to find the initial labeling 

and compute the initial parameters from it. In this case, we mark a single pixel on 

the target tissue and we apply ordinary region growing so that an initial segment is 

obtained starting from this initial point. This segmentation is used as the initial 

labeling and then MRF is optimized to reach the final segmentation of the ROI. An 

overview of the method is shown in figure 4.7. 
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Figure 4.7 Overview of method b. 

 

 

 

Step 1: Image registration: The same registration method as used in part 4.5.1 step 

1 is also used here. 

Step 2: Initial segmentation by region growing: Region Growing (RG) is one of 

the basic methods in image segmentation. In this method, algorithm starts from a 

starting point, called the seed point, that is selected by the user. Then the neighbors 

of the selected pixel are checked to obey a criteria, i.e., to have an intensity value 

similar to the selected point’s value in this study. This process continues for the 

newly selected pixels and the difference between neighbor pixel intensity and the 

mean intensity of the selected pixels is computed and checked to be under a certain 

threshold. The process is repeated until there is no neighbor pixel left that obeys the 

criteria.  
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The threshold value is selected only once by the user but kept constant for 

the segmentation of all other slices. This constant value can be used for the 

segmentation of all slices because of the histogram equalization process that is 

applied to all of the slices prior to segmentation.  

To summarize, RG is a simple semi-automatic method that uses an initial 

seed point and a threshold to segment a region in a 2D image by using only intensity 

information. The result of this step is a binary image that includes target tissue 

pixels (labeled as 1) and background pixels (labeled 0). The output of this step is 

shown in Figure 4.8. 

Step 3: Observation model as a Gaussian: In this step, we aim to model two 

different classes of pixels for the binary image of step 3. We fit the target class and 

background class into separate Gaussian distributions and compute their parameters, 

i.e., mean and variance, 2,σμ . Together with the labeled image, this information is 

passed to  the next step where the segmentation process use them as the initial 

estimation. 

Step 4: MRF-EM segmentation: As mentioned before, the MRF-EM algorithm 

performs classification for the ROI. The ROI is selected as a rectangle 5 times 

bigger than the bounding box of the initially labeled image. This size is big enough 

to cover masseter tissue in all cases and small enough to avoid other similar tissues. 

Although there are some other neighboring tissues with the same intensity 

distribution, this is inevitable. The centroid of the ROI is selected as the centroid of 

the segmented part in the labeled image.  

The ROI is modeled as a Gaussian MRF as explained in part 3.4.1 with 

}1,0{=L . EM algorithm is used in this step to maximize the likelihood function 

defined in equation 3.29. The algorithm computes the posterior probability of the 

pixels for each class in the E-step by using initial parameters and then estimates the 

new Gaussian parameters using that probability in the M-step. The new parameters 

are used again in the E-step and this process continues until the maximum 

likelihood change between successive iterations becomes very small (i.e., less than 

0.001 in this study). 
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The energy function is defined as equation 3.35 and the 8 nearest neighbors 

in the slice are selected as the neighboring system. This process converges to a 

result that contains two classes of pixels and it is an optimized version of the initial 

labeling. This method is also applied to 10 MR images from the experimental 

dataset. The initial labeling process takes 1.3 seconds by using region growing 

algorithm. The MRF-EM segmentation process takes 6 seconds that makes the 

overall computation time of this method to be 7.3 seconds for each slice.  The final 

result for one image is shown in figure 4.9 where boundary of the target tissue is 

shown in blue.  

 

 

 
Figure 4.8 Initial segmentation result by region growing algorithm. 
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Figure 4.9 Result for the sample image by using method b. 
4.5.3. Method c: MRF based segmentation with initials from region growing 

algorithm using prior information 
 

To investigate the effect of the initial estimate in MRF based segmentation 

and also to be fair in comparison between MRF-EM method and our proposed 

method, we perform MRF based segmentation with initials obtained from a new 

modified region growing algorithm. This method is similar to the previous method 

explained in section 4.5.2 except that the region growing algorithm in this section is 

a modified version of the basic form described in the previous section. 

An overview of the algorithm is shown in figure 4.10. The method consists of the 

following steps: 
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Figure 4.10 Overview of method c. 
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Step 1: Image registration: The registration method is the same as the one applied 

earlier. 

Step 2: Initial segmentation by region growing: The region growing algorithm in 

this step is a modified version of the basic region growing method to take the 

advantage of prior information. In this case, region growing is done not only by 

considering the neighboring pixels on the same slice but by considering the 

corresponding pixels in the other data sets, i.e., training sets, although they are not 

segmented a priori. Since the training sets are registered, they share the same 

coordinates and hopefully have the same locations for target structures.  

We assume that pixels are connected to each other through the neighboring 

system shown in figure 3.1(c). This means that the current pixel is connected to the 

corresponding pixels in the upper and lower slices and 9 other training images as 

well as 8 nearest neighbors in the same slice. These 19 neighbor pixels effect the 

classification of the current pixel.  It can be said that when a pixel is being checked 

in the RG algorithm, a corresponding pixel in the training set with intensity value 

similar to the tissue mean should increase the probability of the current pixel to be 

included to already segmented region. The new criterion )U(di   is defined in a way 

that preserves the circumstances above:  

|d - d|  )Q(d ii =                                              (4.1) 

∑
∈

=
iNj

ji |d -d|  )R(d                                        (4.2) 

 )R(d )Q(d)U(d iii βα +=                                    (4.3) 

Here id  is the current pixel and jd  is the neighbor pixel from the neighboring set 

iN . d  is the intensity mean of the pixels of the already segmented region in the 

current step. The term )Q(di  represents the criteria that was used in method b 

region growing algorithm and involves the comparison of only the intensity value of 

the current pixel. The term )R(d i  represents the influence of the neighboring pixels. 

Two parameters α  and β  control the effect of each term Q  and R. α  and β  are 

set manually and kept constant throughout the experiments. The algorithm checks 
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U  for each pixel to be lower than a preset threshold and proceeds as in the original 

RG algorithm. The resultant labeling image is shown in figure 4.11. 

Step 3: Observation modeling by Gaussian: This part is similar to step 3 of 

section 4.5.2. 

Step 4: MRF-EM segmentation: This step is similar to step 4 of section 4.5.2. The 

energy function is defined only in the current slice just like the previous case and no 

prior information is used in the segmentation.  

Although prior information is not used in the segmentation process of this 

method, it is included in initialization of the model estimation. So this method can't 

be called a prior free method. The initial labeling process takes 2.2 seconds by using 

the new region growing algorithm. The MRF-EM segmentation process takes 6 

seconds that makes the overall computation time of this method to be 8.2 seconds 

for each slice.  The segmentation result is shown in figure 4.12. The boundary of the 

segmented area is shown in blue in the figure. 

 

 
Figure 4.11 Initial segmentation result by region growing using prior 

information.  
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Figure 4.12 Result for the sample image by using method c. 

 

 

4.5.4. Method d: MRF based segmentation using labeled atlas  

 

The importance of using prior information in medical image segmentation is 

discussed before. In this section we want to perform a segmentation method based 

on the maximum likelihood estimation for the MRF models, using prior 

information. The prior information is in the form of average of labeled atlases and 

EM algorithm is used for estimation of model parameters. 

The method used in this part is like [29] which use probabilistic atlas in 

MRF-EM segmentation and initialization . Different from MRF-EM model used in 

[28], in this method, prior probability is not in the form of smoothness term. The 

prior information is introduced as probabilistic atlas in the expectation step of the 

EM algorithm as follows: 
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Here, )PP(f t
Ni i

|1=  is the prior probability that is equal to probabilistic atlas as 

follows: 
atlas

i
t

Ni P)PP(f
i 1|1 ==  

 atlas
iP1  is the probability of the pixel i to have label 1. The probability is computed 

by using previously registered and mapped manually segmented train images. This 

probability is kept constant trough the segmentation.  
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Figure 4.13 Overview of method d. 
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The method can be summarized in the following steps 

Step 1: Image registration: Like the previous methods, an affine registration is 

applied to the experimental sets in the first step. 

Step 2: Manual labeling and Probabilistic atlas: In this step, training sets are 

segmented manually and the probabilistic atlas is constructed. The constructed atlas 

is used in expectation step of the EM algorithm as prior information. 

 By applying the majority voting method the most probable label for each pixel is 

assigned. This average atlas is a binary image that has value 1 in the pixels that are 

labeled as the target tissue in more than 4 slices and has value 0 in other pixels. The 

resulting average atlas is shown in figure 4.14. This atlas is used to construct initial 

models in step 3. 

Step 3: Gaussian MRF modeling: This part is similar to step 3 in section 4.5.2. 

Initial Gaussian models are estimated from the average atlas from the previous step 

and initial Gaussian model parameters, 2,σμ , are computed.  

Step 4: Atlas based MRF-EM: Atlas based segmentation process is applied in this 

step. As you can see in equation 4.4, the only difference between this method and 

normal MRF-EM is the definition of the prior probability that includes prior 

information from a probabilistic atlas. The atlas is constructed using labeled training 

images in step 2. The algorithm iteratively estimate the new labeling and new 

Gaussian parameters, 2,σμ , until the likelihood difference becomes very small 

(less than 0.001). 

Manual labeling is used in this method that is so time consuming. Without 

considering manual segmentation time, the initial labeling process takes 0.1 seconds 

by using majority voting on previously labeled training images. The MRF-EM 

segmentation process takes 7 seconds that makes the overall computation time of 

this method to be 7.1 seconds for each slice.  The boundaries of segmentation result 

for the sample image is shown in blue in figure 4.15. 
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Figure 4.14 Initial segmentation by averaging manually segmented training 

images. 

 

 

 
Figure 4.15 Result for the sample image by using method d. 
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4.5.5. Method e: MRF based segmentation using unlabeled prior information 

 

In the previous sections we performed segmentation processes based on 

MRF-EM approach with or without using prior information. We also implemented 

the atlas based segmentation method for the same dataset. All these prior 

information based methods use atlases that are constructed from manually 

segmented images. Manual segmentation is a time consuming process especially for 

3D segmentation and also decreases the automaticity of the method. 

In this method, we try to incorporate the prior information to an MRF model 

not by using a labeled atlas but by using the original unlabeled images in the 

training set that can be called as the “latent atlas”. Prior information is not used as 

the initial labeling of the MRF model but is included to the energy function of the 

MRF model. By doing this, through the EM learning steps, the incorporation of the 

atlas and the model is updated and learned until convergence. This way of 

incorporation of many data sets has been considered in [32] where the incorporation 

is updated at every iteration step of the level set model.  

Unlike other methods that perform a MAP estimation to estimate the 

labeling and use it in pair-wise clique potential computation, we define the prior 

probability )PP(f t
Ni i

|1=  without using labels. To take advantage of un-labeled 

training images, we compute the difference between the mean of each class in the 

current step lμ  and the intensity value of the corresponding pixel i  in the 

neighboring set iN . We prefer the pixels with less difference to have higher clique 

potentials so we subtract the difference value from 1. The value 1 is the maximum 

value that the difference result can take. By performing summation over all training 

images the overall prior probability for pixel i  is computed. The prior probability is 

defined as: 

||1|1
ii Nl

t
Ni d)PP(f −−== μ                                     (4.6) 

where iN  is the neighboring system defined in section 3.2 that includes training sets 

and }1,0{∈l  is the desired label.  
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By using this feature, the average difference between the target tissue 

distribution and the training images is computed. Figure 4.16 shows the presentation 

of V  for the sample image. As can be observed from the image, the prior 

information gives a good estimate of the pixels that may be in the target tissue. This 

image is like an imaginary image that an specialist doctor may have in her/his mind 

due to seeing thousands of MRI pictures. 

 

 

 
Figure 4.16 Presentation of clique potential for the sample image in one 

segmentation step. 

 

 

 

The important point about this picture is that the target tissue is fully 

unconnected from the neighboring tissues. This feature helps the segmentation 

process a lot in the segmentation of FSTs that are generally connected to the 

neighboring tissues.  

An overview of this method is shown in figure 4.17.  
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Figure 4.17 Overview of method e. 
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The important steps in this method are: 

Step 1: Image registration: Like the previous methods, an affine registration is 

applied to the experimental sets in the first step. 

Step 2: Modified region growing: In this step, modified region growing algorithm 

described in part 4.5.3 step 2 is used to estimate the initial segmentation for the 

proposed MRF based segmentation algorithm. In the modified region growing, not 

only the pixels in the same slice but also corresponding pixels in the unlabeled 

training sets are considered. The resulting initial labeling image is just like figure 

4.11. 

Step 3: Gaussian MRF modeling: This step is similar to step 3 from part 4.5.2. 

Initial Gaussian models are estimated from the average atlas acquired in the 

previous step where initial model parameters, 2,σμ , are computed.  

Step 4: MRF-EM based segmentation: In this step, an MRF framework is 

employed to model intensity distribution of two different classes of labels in the test 

image. The initial estimate is computed in steps 2 and 3. The energy function is 

computed by using registered unlabeled train images from step 1. The segmentation 

process can be summarized in the following steps: 

1. Compute the posterior probability 
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where ),,( 11 σμidG is the Gaussian distribution for 1=l  in the step t  as defined in 

equation (3.74) and )PP(f t
Ni i

|1=  is the prior probability defined in (4.6) over S . 

2. Update the parameters 
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3. Compute likelihood difference ),,(/|),,(),,(| 1111
1

11 σμσμσμ i
t

i
t

i
t dPdPdP −− . 

If the difference is bigger than 0.001 go to the step 1 and repeat the process 

elsewhere end the algorithm.  

The initial labeling process takes 2.2 seconds by using the new region 

growing algorithm. The MRF-EM segmentation process takes 24.3 seconds that 

makes the overall computation time of this method to be 26.5 seconds for each slice.  

The result of this segmentation process is shown in figure 4.18. The boundaries of 

the segmented area are shown in blue. 

 

 
Figure 4.18 Result for the sample image by using method e. 

 

 

4.6. 3D Segmentation 
 

MRI scans consist of several 2D slices that together construct a 3D image of 

the interested area.   So, when the target  tissue  is  segmented  in  a  single  slice,  

the segmentation process can proceed  through other neighboring slices  so  that  the  

3D  shape  of  the whole  tissue  can be  extracted. In this section, we want to 

perform 3D segmentation by applying our proposed 2D segmentation method on 

each slice successively but using some additional processes.   

The experiment is applied to 10 MRI sets. Each time, one of them is selected 

as the target set while the other 9 sets are considered as the training sets. The 

starting and ending slices in a set are determined by the operator before the process 

begins.  
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The segmentation algorithm for the new slices is the same as in the 2D 

segmentation.  However, there are two initial values that the region growing 

algorithm starts with: seed point  and threshold. In 2D segmentation, these values 

are set by the user. In 3D segmentation, these values are set by the user only for the 

first slice and then for the new slices some additional processing blocks are added to 

estimate these values automatically  using  the information in the previous slice and 

the current slice.  

After setting the threshold and the seed point, no manual interaction is 

needed for segmentation and the process continues automatically until the last slice 

is segmented. The overview of the 3D segmentation system is shown in figure 4.19. 
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Figure 4.19 Overview of 3D segmentation method 

 

 

 

 

The 3D segmentation process is summarized in the following steps: 

Step 1:Image registration: All ten image sets are registered by affine registration. 

The registration process is like in the 2D method. 

Step 2: 2D segmentation: The segmentation method proposed in Section 4.5.5 is 

implemented in this step. The region growing algorithm starts from the seed point 
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and uses the threshold set by the user for the first slice. The seed points and the 

threshold values for the successive slices are estimated in steps 4 and 5. Here, 

registered images are used to perform region growing where they are also used as 

the prior information in MRF-EM method. The result of this block is a segmented 

2D binary image. 

Step 3: Decision making: In this step, algorithm checks if this is the last slice to be 

segmented or there are other slices left. It ends the segmentation in the first case and 

in the other case it proceeds to seed point and threshold estimation blocks to 

estimate these values for the successive slice and starts segmentation in the new 

slices. The starting and ending slices are set by the user at the very beginning. 

Step 4: Seed point estimation: In this step, the new seed point for the segmentation 

of the next slice is estimated. To find  the  location  of  the  new  seed  point, we  

assumed that  the centroid of  the previous segmented area coincides with the target 

area of the new slice. Because of the anatomy of the target tissues and also the 

resolution of the MRI images this is a realistic assumption and the centroid lays in 

the target area for almost all cases. 

However, because of the special characteristics of  the  FST  texture,  having  

a  high  intensity in-homogeneity,  the  centroid  may  coincide  with  one  of  these 

in-homogeneities and this halts the region growing. There may be several white 

points with high intensity in the tissue that corresponds to fats inside the muscle. 

When the region growing algorithm starts from that point, the process wouldn't be 

able to join the neighboring pixels due to the wrong initial estimate. 

To avoid this problem,  8  other  seed  point  candidates were  selected  as 

alternatives for the centroid. We define 8 extreme points  for the previously 

segmented region  as top  left,  top  right,  left  top,  right top,  left  bottom,  right  

bottom,  bottom  left  and  bottom  right. Then the new seed point candidates are 

selected on the lines between the centroid and the 8 extreme points in the region as 

shown in figure  4.20. When the  estimated  seed  point  intensity  is  abnormal 

compared  to  the  intensity model  of  the  previous  slice,  the  new seed point was 

selected from the candidates. The intensity value of the new candidate is also 
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checked to be close to the intensity model. Then the process is continued by using 

the candidate as the seed point. 

 

 

 
Figure 4.20 Seed point estimation candidates. Extreme points are shown in 

black, centroid is shown in red and the new candidates are shown in blue. 

 

Step 5: new threshold estimation: The region growing algorithm needs another 

input to start and that is the threshold value. The algorithm checks the difference 

between the energy function of the new pixel and the region mean, with this 

criterion. We use a learning algorithm to estimate the new threshold value. The 

energy values assigned to all pixels in the already segmented region are used in this 

learning method.  The standard deviation of these values are computed and selected 

as the threshold value for the new slice. Since the slices are normalized by a bias 

field correction algorithm, the tissue intensity distribution is so close for two 

neighboring slices that makes this estimation value promising. 
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A simple interpolation is used to construct 3D shape of the target tissues 

from 2D slices. The acquired models for the masseter and temporalis muscles are 

shown in figure 4.21 and 4.22. 

 

 

 

 
Figure 4.21 3D segmentation result for temporalis. a. Manual segmentation 

result, b. Segmentation result our method. 
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Figure 4.22 3D segmentation result for masseter. a. Manual segmentation 

result, b. Segmentation result our method. 
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CHAPTER 5 

 

 

 

RESULTS AND DISCUSSION 
 

 

 

5.1. Validation 
 

There are a few studies related to facial soft tissue segmentation and they do 

not include a qualitative evaluation since there is no ground truth available for these 

tissues. The validation of our segmentation method was done by comparing the 

automatic  segmentation  results  with  the manual  segmentation  results. For this 

purpose, every target tissue is segmented manually in all slices that it appears. This 

process is repeated for all 10 experimental sets and these manual segmentations are 

only used as the ground truth. More than 2700 slices are segmented manually to 

construct the ground truth. The manual segmentation is done by taking "3D 

Anatomy for Otolaryngology & Head & Neck Surgery"[64] software as reference 

and under the supervision of an expert. 

We used dice metric κ  [65] to evaluate the correspondence between the 

segmentation result and the ground truth. The metric is defined as follows: 

%1002 ×
+
∩

×=
TS
TSκ                                (5.1) 

where S  is the segmented area and T  is the ground truth. 
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5.2. 2D segmentation accuracy 

 
We performed 2D segmentation to label masseter muscle in one MRI slice 

with 5 different methods. In this part we will see the accuracy of each method using 

dice metric. We will discuss the advantages and disadvantages of each method. 

 

5.2.1. Method a: Atlas based segmentation 

 

Atlas based segmentation is known to be successful in brain tissue 

classification but as you can see in table 5.1 and figure 5.1 , the results are not very 

good for the masseter tissue. Human brain’s shape is mostly similar in different 

individuals but facial tissues like masseter may have various shapes in different 

people. This method completely depends on the atlas and when the shape and 

position of the tissue of the atlas are different from the shape and position of the 

tissue of the test data then the registration may result in wrong answer. The shape of 

the head and face are also very affective in the registration process.  

As you can see in table 5.1, the segmentation result is very poor for set 4 due 

to the difference between the tissue and head shapes of the atlas and the data set 4. If 

we exclude set 4, the average accuracy is increased about 5% and becomes 77.66 %. 

This problem can be solved either by selecting the experimental data similar to the 

atlas or by increasing the number of training images in a way that covers all the 

possible shapes. Also, some supervised methods can be used to avoid wrong 

registrations. 

This method is simple to implement but the non-rigid registration process 

and atlas construction are time consuming. There is also a lot of human interaction 

in this method because of manual labeling. 

 

 

Table 5.1 Accuracy results for method a. 

Set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Average 

Accuracy 66.66  83.23  76.72  30.24  84.75  60.98  81.97  82.16  83.35  79.13  72.92 
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Figure 5.1 Accuracy results for 10 slices using method a. 

 

 

5.2.2. Method b: MRF based segmentation with initials from region growing 

algorithm  

 

The important concepts in MRF-EM based segmentation are defining a 

proper MRF model that fits the observed data and setting an appropriate initial 

estimation. The region growing algorithm is used to perform initial labeling in this 

method. Prior information from training sets is totally ignored in this method to see 

the influence of it on segmentation accuracy. Only a single point is marked on the 

tissue to be segmented. 

The accuracy results are shown in table 5.2 and figure 5.2. The segmentation 

is very successful in most cases, such as sets 1,2,3,8, but in some cases, such as sets 

4 and 5, segmentation results are poor. 
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Table 5.2 Accuracy results for method b. 

Set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Average 

Accuracy 88.24  86.12  88.01  49.92  19.34  75.3  68.97  92.65  82.4  68.25  71.92 

 

 

 
Figure 5.2 Accuracy results for 10 slices using method b. 

 

 

To investigate this issue, we checked the initial labeling for the worst result 

(i.e., set 5) and the best result (i.e., set 8). The region growing outcome for set 5 and 

8 are shown on the original image in figure 5.3. As you can see, the initial labeling 

is so poor in case of set 5 that ends in poor overall segmentation where case 8 starts 

with a good estimate and results in more than 92% accuracy. 
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Figure 5.3 Left. Initial labeling for the worst case (set 5) Right. Initial labeling 

for the best case (set 8). 

 

The only input information that we used in this method is the intensity 

values of the current slice. So, the region growing or MRF-EM algorithms may add 

neighbor tissues with similar intensity or may exclude some parts of the tissue 

because of intensity dissimilarity.  

 

 

5.2.3. Method c: MRF based segmentation with initials from region growing 

algorithm using prior information 

 
In this experiment, we tried to solve the problem of initial labeling where a 

modified region growing algorithm was used for initialization. As you see in table 

5.3 and  figure 5.4, there is about 12% improvement in the segmentation accuracy. 

This emphasis the importance of initial labeling in MRF-EM segmentation and also 

using prior information in region growing algorithm. The prior information used 

here is unlabeled raw training images. 

Although there is an overall improvement in the segmentation performance, 

in some cases accuracy decreases. For example, for previously investigated sets 5 

and 8, although the accuracy is improved about 59% for set 5, there is about 17% 

decrease for set 8.  
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Table 5.3 Accuracy results for method c. 

Set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Average 

Accuracy 86.87 93.33  84.18  82.86 78.9  77.56 74.38 75.68 90.71  92.89  83.74 

 

 

 
Figure 5.4 Accuracy results for 10 slices using method c. 

 

The initial labeling with modified RG for sets 5 and 8 are shown in figure 

5.5. The improvement in set 5 and decrement in set 8 are very clearly observed. The 

prior information brings improvement for set 5 where there is an intensity in-

homogeneity but it is not useful for set 8, which has a shape different than the 

training sets. However the overall improvement is noticeable and there isn't any big 

decline for different cases as can be seen in figure 5.4. 
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Figure 5.5 Left. Initial labeling for set 5 Right. Initial labeling for set 8. 

 

In this kind of segmentation methods, keeping the balance between the 

intensity information and the prior information is an important issue. Another 

important concept in using the prior information in the RG algorithm is that the 

resulting segmented regions are continuous and smooth, as can be seen in figure 5.5. 

We want to mention once more that the MRF-EM process for this method is the 

same as the previous one and the improvement is only because of initial labeling 

which includes prior information. 

 

5.2.4. Method d: MRF based segmentation using labeled atlas  

 

The accuracy results for this method is shown in table 5.4 and figure 5.6. 

Here, labeled training images are selected as prior information. Also initial 

estimation is derived from the labeled training sets. The initial labeling is the same 

for all images. Although this constant labeling makes the method so simple and fast, 

it may cause some wrong estimation in the beginning.  

As you can see in table 5.4 the segmentation performance is close to the  

MRF based segmentation with modified region growing method (Method c) but it is 

about 1% lower. Despite the large amount of manual interaction required for the 

prior information in MRF-EM part, this method shows lower accuracy than the 

previous method. This is mostly because of the initial estimation. 
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Table 5.4 Accuracy results for method d. 

Set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Average 

Accuracy 86.98 93.37  71.56  82.68 84.16 59.88 71.89 89.14 94.69  91.05  82.54 

 

 
Figure 5.6 Accuracy results for 10 slices using method d. 

 

5.2.5. Method e: MRF based segmentation using unlabeled prior information 

 
Finally, we want to discuss the results of our proposed method for masseter 

segmentation. The accuracy values are shown in table 5.5 and figure 5.7. This 

method shows the best overall performance among all tested methods. In 6 out of 

ten slices, the accuracy of this method is over 90%. The worst results are for sets 6 

and 7 which also cause poor results by using normal EM-MRF method (Method c) 

in part 4.5.3. So we can conclude that, poor initialization is the problem for these 

cases. But this comment is not true for other low accuracies for sets 2 and 4. 

The main problem is in finding a generic solution that results in a good 

accuracy for all of the images. But this requires that the training set should be big 

enough to overlap all possible shapes. Another problem is due to the affine 

registration which also may sometimes cause poor initialization. 
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However this method has acceptable overall accuracy for masseter tissue. It 

is important to note that these results are achieved without using any manual 

segmentation. The only manual interaction is the selection of a seed point and a 

threshold for region growing algorithm. The threshold value is kept constant 

because of the previousely applied histogram equalization algorithm. The rest of the 

method is fully automatic. 

 

Table 5.5 Accuracy results for method e. 

Set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Average 

Accuracy 93.07 83.74  90.03  78.39 90.67 77.23 66.49 93.4  96.11  96.07  86.52 

 

 

 
Figure 5.7 Accuracy results for 10 slices using method e. 

 

 

5.3. Overall 2D results 
 

The results of 2D segmentation for different methods are shown together in 

table 5.6, figure 5.8 and figure 5.9 for better visualization. 
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Table 5.6 Overall accuracy results for all methods. 

Set 
Atlas based 
Method 

Atlas based 
MRF 

MRF with 
normal RG 

MRF with 
our RG 

Our Method

Set 1  66.66  86.98  88.24  86.87  93.07 

Set 2  83.23  93.37  86.12  93.33  83.74 

Set 3  76.72  71.56  88.01  84.18  90.03 

Set 4  30.24  82.68  49.92  82.86  78.39 

Set 5  84.75  84.16  19.34  78.9  90.67 

Set 6  60.98  59.88  75.3  77.56  77.23 

Set 7  81.97  71.89  68.97  74.38  66.49 

Set 8  82.16  89.14  92.65  75.68  93.4 

Set 9  83.35  94.69  82.4  90.71  96.11 

Set 10  79.13  91.05  68.25  92.89  96.07 

Average  72.92  82.54  71.92  83.74  86.52 
 

 

 

 
Figure 5.8 Accuracy results using 5 different methods. 
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Figure 5.9 Comparison of accuracy between different methods.  

 

 
5.4. 3D segmentation results 
 

The same dice metric is used for performance evaluation as in equation 5.1. 

In this section, the metric measure is evaluated by comparing volumes of the 

segmented tissues and the ground truth. The results for the target tissues are shown 

in table 5.7. The average accuracy of masseter is higher than temporalis tissue. This 

is because of the uncommon shape of the temporalis muscle in most of the slices 

whereas masseter usually has a simpler shape. 
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Table 5.7 3D segmentation accuracy results for 4 different tissues. 

Set left 
temporalis 

right 
temporalis 

left 
masseter 

right 
masseter Average 

Set 1 80.63 83.56 89.35 88.84 85.595 

Set 2 71.5 81.39 82.07 82.8 79.44 

Set 3 84.9 84.35 90.3 88.36 86.9775 

Set 4 78.2 76.28 77.37 78.93 77.695 

Set 5 85.87 83.85 80.22 84.86 83.7 

Set 6 80.84 82.19 81.95 83.07 82.0125 

Set 7 82.25 81.6 85.61 80.15 82.4025 

Set 8 84.4 84.27 84.64 86.18 84.8725 

Set 9 84.62 86.98 88.98 87.01 86.8975 

Set 10 81.52 78.74 82.64 88.73 82.9075 

Average 81.473 82.321 84.313 84.893  
 

 

 

A chart of the 3D segmentation results is shown in figure 5.10. The 

accuracies of different tissues are related to each other according to the chart. So a 

set with higher masseter accuracy usually has a higher accuracy in temporalis also.  

 

 
Figure 5.10 3D segmentation accuracy results for 10 different sets. 
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CHAPTER 6 

 

 

 

CONCLUSION 

 

 

 

6.1. Conclusion 

 
In this study, we tested four different state of the art methods for 2D facial 

soft tissue segmentation on magnetic resonance images. These methods are: Atlas 

based segmentation (Method a), MRF based segmentation with initials from region 

growing algorithm (Method b), MRF based segmentation with initials from region 

growing algorithm using unlabeled atlas (Method c), MRF based segmentation 

using labeled atlas (Method d).  

 We then proposed a new segmentation method named MRF based 

segmentation using unlabeled prior information (Method e).  

Our main interest in this work was to investigate the role of prior 

information in FST segmentation by using different methods. We applied all these 

methods on 10 different MRI slices belonging to different individuals and aimed to 

segment the masseter muscle in them. The experimental MRI sets were registered 3 

dimensionally before the segmentation so the slices corresponded to each other. 

Method a is fully based on registration of labeled training images to the test 

image. The average accuracy of this method for 10 different sets is 72.92%. In the 

second method (Method b), an MRF-EM based segmentation method with initials 

from region growing is applied to perform the same work. No prior information is 
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used in this method and the acquired average accuracy is 71.92 %. Although the 

first method uses labeled prior information, the accuracy of the second method is 

very close to the first one. This shows that atlas based methods are not as successful 

as expected in segmentation of FSTs. The most important reasons for this failure are 

the variation of the tissue shape among the sets and the existence of similar tissues 

in the neighborhood of the target tissue.  

Method c is similar to Method b, except the fact that the region growing 

algorithm is improved in a way that it uses prior information in Method c. The 

accuracy is improved to 83.74 % which emphasizes the importance of initial 

estimate in MRF-EM process and also the importance of using prior information in 

initialization. 

In Method d, the similar MRF-EM framework is used but this time the 

labeled training images are implemented in segmentation and also in initial model 

estimation. The method reaches 82.54% accuracy that is close to Method d which 

doesn't use manual labeling. We may conclude that determining the target tissue 

with a seed point and a threshold (like we did in Method c) is more informative for 

MRF-EM framework than labeled atlases. 

In the end, we proposed a method that uses unlabeled prior information both 

in initial estimation and during MRF-EM optimization. This method is just like an 

experienced anatomist’s segmenting a tissue. While he is trying to segment a tissue, 

he uses all of his past experiences of observing many similar data, although they 

were not segmented. The average accuracy for this method is 86.52% which is 

better than the performance of Method d that requires extra manual labeling. The 

proposed method starts from the same initial estimates as Method c but it uses prior 

information inside the MRF-EM process that causes about 4% improvement in the 

final segmentation accuracy. The importance of using prior information can be 

shown better when we compare Method b with our proposed method where using 

prior information causes about 15% improvement. 

Finally, we used the proposed 2D segmentation method to perform 3D 

segmentation of 4 different facial soft tissues in 10 MRI sets. The sets are 

segmented slice by slice with some additional tasks such as seed point and threshold 
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estimations for the successive slices. The segmentation  process  could  also  be  

performed  three dimensionally but  it  increases  the complexity of the problem. 

This method achieved 81.47% and 82.32% accuracy results for right and left 

temporalis respectively and 84.31% and 84.89% for right and left masseter 

respectively. Considering the difficulties of 3D segmentation, these results seem to 

be acceptable for FST segmentation. 

 

6.2. Future work 
 

In the current work, we introduced an MRF framework that includes prior 

information in tissue modeling. This is like a network where the training sets are 

connected to the test set and have affect on it. In the future, we aim to add some 

other information to this network to improve the learning algorithm and make the 

system more similar to a decision making system in a specialist’s brain. These 

additional information can be anatomical such as “every muscle is connected to 

bone”,  can be morphological, “a bigger head has bigger muscles”, or it can be 

based on biomechanical interactions between the tissues. 

We also want to improve the mathematical aspects of defining the problem 

and the model that fits the desired network. 

The registration was a serious problem in the current work in most of the 

unsuccessful segmentations. The registration process needs to be improved. It can 

be changed according to the characteristics of the test images. 

The main difficulty of this work was the lack of high resolution, full head 

MRI sets. We believe that existence of high quality images will improve the 

segmentation performance. A common project with a hospital or clinical institute is 

considered to be beneficial for this purpose. 
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