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ABSTRACT 
 
 

IN SITU, IN VITRO AND IN VIVO EVALUATION OF EFFECTIVENESS OF NEW 

TREATMENT APPROACHES INVOLVING CONTROLLED DRUG DELIVERY 

SYSTEMS IN CARTILAGE DEGENERATIONS 

 
 
 

    Aydın, Özlem 

Ph. D., Department of Engineering Sciences 

Supervisor      : Assist. Prof. Dr. Dilek Keskin 

Co-Supervisor: Assoc. Prof. Dr. Ayşen Tezcaner 

 
 

July 2011, 163 pages 
 
 
 
 

Osteoarthritis (OA) is a degenerative joint disease which has yet no complete treatment 

with medication. Doxycycline, a well-known antibiotic, has been shown to prevent 

matrixmetallopreoteinases-MMPs, indicating potency on OA treatment. However, long 

term systemic use can cause side effects on other tissues. This study aimed to develop 

controlled drug delivery systems of doxycycline/doxycycline-chondroitin sulfate (D/D-

CS) in the form of PCL microspheres for providing a better and new treatment approach 

via local application. After optimization studies for size, loading efficiency, 

surface/structure and release properties, microspheres of low Mw PCL (14 kDa) was 

decided to be more suitable than those of high Mw (65 kDa). The release profile of 

former was also more compatible with diffusion model than that of latter. The bio-

effectiveness of the microspheres was evaluated with three-dimensional in vitro model; 

osteoarthritic-rabbit chondrocytes embedded in agarose and subjected to interleukin-1β 

throughout incubations. In vitro treatments with D/D-CS microspheres showed 

significant reduction in MMP-13 activity compared with untreated OA controls for 15 and 

24-day incubations. Although collagen and GAG analysis results showed no 

enhancement of synthesis with MS treatments, significant decrease in GAG and 

collagen release from D/D-CS MS treated groups and from D MS treated ones 



 

v 

respectively. Overall evaluations of the efficacy using in vivo rabbit OA model showed 

better radiographic scores and histological outcomes for D/D-CS MS groups compared 

to only hyaluronan injected and/or untreated controls in 8 weeks. The ex-vivo 

biomechanical properties of cartilages demonstrated improved hardness with values 

comparable to healthy group upon application of D-CS MS.  

 
 
 
Keywords: PCL, doxycycline, chondroitin sulfate, drug delivery, interleukin 1-β, 

osteoarthritis  
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ÖZ 
 
 

KONTROLLÜ İLAÇ SALIM SİSTEMLERİ İLE KIKIRDAK HASARLARININ TEDAVİSİNE 

YÖNELİK YENİ YAKLAŞIMLARIN ETKİNLİĞİNİN İN SİTU, İN VİTRO VE İN VİVO 

DEĞERLENDİRİLMESİ 

 
 
 

    Aydın, Özlem 

Doktora, Mühendislik Bilmleri Bölümü 

Tez Yöneticisi          : Yrd. Doç. Dr. Dilek Keskin 

Ortak Tez Yöneticisi: Doç. Dr. Ayşen Tezcaner 

 
 

Temmuz 2011, 163 sayfa 
 
 
 
 

Osteoartrit, henüz ilaçlar ile tam tedavisi olmayan bir dejeneratif eklem hastalığıdır. Çok 

iyi bilinen bir antibiyotik olan doksisiklinin (D) matriks metalloproteinazları-MMP’leri 

engellediği gösterilmiş ve bu ilacın OA tedavi potansiyalinin olduğunu belirtmiştir. 

Ancak, doksisiklinin uzun süreli sistemik kullanımı diğer dokularda yan etkiye sebep 

olabilmektedir. Bu çalışmada doksisiklin/doksisiklin-kondroitin sulfat (D/D-CS) içeren 

kontrollü ilaç salım sistemlerinin PCL mikroküreler formunda geliştirilerek lokal 

uygulanmasıyla daha iyi ve yeni bir tedavi yaklaşımı sağlanması hedeflenmiştir. Boyut, 

yükleme etkinliği, yüzey/yapı ve salım özellikleri için yapılan optimizasyon çalışmaları 

sonrasında, düşük molekül ağırlıklı PCL (14 kDa) ile hazırlanan mikrokürelerin yüksek 

molekül ağırlıklı PCL’e (65 kDa)  göre daha uygun olduğuna karar verilmiştir. Bu 

mikrokürelerin salım profilinin difüzyon modeli ile daha uyumlu olduğu da görülmüştür. 

Mikrokürelerin biyolojik etkinliği, üç boyutlu in vitro modelde değerlendirilmiştir. Bu 

modelde osteoartritik-tavşan kondrositleri agarose gömülmüş ve inkübasyonlar boyunca 

interlökin 1-β’ya maruz bırakılmıştır. 15 ve 24 günlük in vitro uygulamalar, D/D-CS 

mikrokürelerle tedavilerin MMP-13 aktivitesini tedavi edilmemiş kontrollere göre anlamlı 

derecede azalttığını göstermiştir. Collagen ve GAG analiz sonuçları MS tedavilerinin bu 

moleküllerin sentezlerini arttırmadığını göstermiş olmasına rağmen, D/D-CS 



 

vii 

mikrokürelerinin ve sadece D mikrokürelerinin sırasıyla salınan GAG ve kollajen 

miktarlarını azaltığı gözlenmiştir. In vivo tavşan OA modeliyle yapılan, 8 haftalık 

araştırmaların tüm değerlendirmeleri sonucunda D/D-CS mikroküre gruplarının 

radyografik skorları ve histolojik bulgularının hiyaluronan enjekte edilmiş ve/veya tedavi 

edilmemiş kontrollere göre daha iyi olduğunu göstermiştir. Çıkarılan eklemlerdeki 

kıkırdağın biyomekanik özelliklerinin D-CS mikrokürelerle tedavi sonrasında sağlıklı 

gruplara benzer sertlik değerlerine ulaştığı belirtmiştir. 

 
 
 
Anahtar sözcükler: PCL, doksisiklin, kondroitin sülfat, ilaç salımı, interlökin-1 β, 

osteoartrit 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1. Controlled Drug Delivery Systems 

Controlled release technology has become one of the most important topics in the 

pharmaceutical sciences since 1980s. Polycaprolactone (PCL), polylactide (PLA) 

and poly (lactide-co-glycolide) (PLGA) gained interest at the same time for 

development of bone implants using polymers. Nowadays, use of these polymers in 

investigations of new dosage forms is the new trend in this technology. Controlled 

drug delivery aims to supply drugs (or other bioactive agents) within biocompatible 

carriers to the living system either by controlling the site and/or controlling the rate of 

drug released. Control on the application site can be achieved by drug targeting 

(passive or active) to the injured region of the body. In literature, there are many 

researches on polymeric drug delivery systems (Slots and Rams, 1990; Sendil et al, 

1999; Keskin et al., 2005; Dhanaraju, et al., 2006; Shukla et al., 2007; Hnaien et al; 

2011; Jiang et al., 2011). The form of drug delivery systems can be sphere, capsule, 

rod, membrane, slab etc. Their size may vary from nano, micro or to milli levels 

depending on the aim. 

Three mechanisms are involved in the release of bioactive agents from controlled 

release formulations: “Fickian diffusion through the polymer matrix, diffusion through 

pores in the matrix and drug liberation by polymer erosion.” (Jeong, et al., 2003). 

However, it is difficult to provide a general exact release profile/rate for these 

systems since it depends on several system related factors; namely polymer and 

drug properties and proportions, size and form. Polymer related factors are 

molecular weight, crystallinity, and hydrophilicty etc. Factors that depend on drug 

are solubility of the drug, molecular weight polymer-drug interactions, and etc. 

Among the system associated factors are drug loading efficiency, physical state of 

the drug in the matrix, particle size and distribution, porosity and internal structure of 

the particles (Jeong, et al., 2003). 
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“Controlling the release is an attainable and desirable characteristic for drug delivery 

systems. The factors affecting the drug release rate revolve around the structure of 

the matrix where the drug is contained and the chemical properties associated with 

both the polymer and the drug “(Freiberg and Zhu, 2004). Controlled release dosage 

form is the most important concept of the issue. Drug property, route of 

administration, delivery vehicle property, drug release mechanism, targeting ability 

and biocompatibility determine the drug release dosage (Figure 1.1). Apart from 

drugs, delivery systems can be designed for gene and protein delivery purposes. An 

ideal gene delivery requires more specific cellular targeting than other forms of 

drugs (Park and Mrsny; 2000). Because, genes should not be released till they 

arrive at the target cell and tissue.  

In drug delivery studies, polymers, generally regarded as safe (GRAS), are used. 

Food and Drug Administration (FDA) approved use of a limited number of polymers 

in clinical studies. 

Important classes of drugs have to benefit from advances in drug delivery 

technology to enhance or facilitate the action of their therapeutic agents. Choosing 

the suitable delivery systems is important to maximize the potential therapeutic 

impact of each drug candidate.   
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steady-state level of the drug could be maintained to minimize the side effects 

through reducing fluctuations in drug level (Langer, 1993)   

1.2. PCL 

Polycaprolactone (PCL) was synthesized by the Carother’s group in the early 1930s 

(Woodruff and Hutmacher 2010). This biodegradable polymer can be prepared from 

ring-opening polymerization of ε-caprolactone using either anionic, cationic and co-

ordination catalysts or free radicals such as 2-methylene-1-3-dioxepane). PCL is a 

hydrophobic, semi-crystalline polymer whose crystallinity decreases with increasing 

molecular weight. Glass transition temperature (Tg) of PCL is about -60°C. Because 

of this, in body temperature it is expected to be at rubbery stage. Melting point (Tm) 

is between 59 and 64 °C. These properties of PCL enable easy shapeability at low 

temperatures.  

During 1970s and 1980s, PCL and its copolymers were extensively used as drug 

delivery devices due to numerous advantages of PCL. Among these advantages 

tailorable degradation kinetics and mechanical properties, flexible shaping 

characteristics, high biocompatibility, and ease of adding functional groups for 

rendering the polymer more hydrophilic can be given. PCL degradation rate is 

slower than other frequently used polymers such as polyglycolide (PGA), poly D,L-

lactide (PDLA) and also its copolymers. Its slow degradation property allows PCL to 

be used in long-term delivery devices, especially for applications lasting more than 1 

year (Woodruff and Hutmacher, 2010). It has hydrolytically labile aliphatic ester 

linkages. Hydrolytic degradation makes degradation rate slow. It takes approx. 2-3 

years in aqueous environment for complete degradation. Although its mechanical 

properties are not strong, copolymerization and blending with other polymers 

enhance this property of PCL (Sinha et al, 2004). During biodegradation, PCL is 

known not to produce an acidic environment. Thus, it is suitable to use as drug 

carrier in synovial area of the joint cartilage. PCL is the most widely used polymer in 

bone and cartilage repairs due to several advantages on uses in bulk amounts such 

as stability, low price and availability (Luciani, et al., 2008 and Hutmacher, 2000). 

PCL also can be used in blends to improve several properties such as crack 

resistance, adhesion, and etc. It can be blended with cellulose propionate, cellulose 

acetate butyrate, polylactic acid and polylactic acid-co-glycolic acid for modifying the 

drug release rate of microparticles (Woodruff and Hutmacher, 2010). 
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used as a perfect carrier for contraceptive hormone release as mentioned above 

(Dhanaraju et al., 2003; Dhanaraju et al., 2004). Levonorgestrel and ethinyl estradiol 

were encapsulated into PCL and this formulation was found suitable in contraceptive 

therapy (Dhanaraju, et al., 2005). PCL microspheres were also loaded with different 

anticancer drugs to minimize the severe side effects of the drugs like etoposide 

used for malignant lymphoma, brain stem gliomas, small cell lung carcinoma and 

ovarian cancer (Vivek et al., 2007), felodipine (Kim et al., 2005a) and disodium 

norcantharidate (DSNC) for primary hepatic carcinoma, breast cancer and 

abdominal caner (Wang et al., 2008a).  

 In long-term therapy, tamoxifen, a selective estrogen receptor modulator (SERM; 

Jordan, 1998), has some major side effects such as endometrial cancer (Johnston, 

1997; Munster and Hudis, 1999; Osborne and Fuqua, 1994). Due to the side effects, 

targeted delivery to the site of tumor is needed. Tamoxifen was entrapped in PCL 

nanoparticles (Chawla and Amiji, 2002) and the ratio of absorbed tamoxifen by the 

tumor was improved by the selectivity of the treatment.  

In recent years, protein-loaded polymeric structures have gained attraction. Cheng 

and his co-workers (2010) entrapped lysozyme inside PCL particles. With other 

polyester based systems, protein / peptide release usually continuous one to four 

months (Jiang et al., 2005). However, fast degradation of PLGA and acidic 

environment during degradation were reported as a disadvantage. Sustained 

release of proteins using PCL rather than PLGA is suitable due to these advantages 

(Sinha et al., 2004; Tang et al, 2007). Myoglobin was encapsulated into PCL as a 

model protein for evaluation of conformational changes upon encapsulation and to 

compare with BSA and lysozyme (Hnaien et al, 2011).  
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also shown that it acts as an inhibitor of MMPs in wound healing (Chin et al., 2003, 

Shanmuganathan et al., 2008).  

For slow release formulations, the suitability of this drug was proven (Honnorat-

Benabbou, et al., 2001). For septic arthritis therapy doxycycline hyclate was 

encapsulated into PLGA microspheres and slow release system was developed for 

infected joints of horses and cattle (Haerdi-Landerer, et al., 2008; Haerdi-Landerer 

et al., 2007). Another slow release treatment approach with doxycycline was applied 

for periodontitis (Patel et al., 2008). Chitosan microspheres were also loaded with 

this drug by ionic gelation method and KOH was used for crosslinking. In a recent 

study, Doxycycline was encapsulated into PCL microspheres and then coated with 

collagen for periodontal studies (Aishwarya et al., 2008). In another study for 

treatment of human periodontal pocket application PLGA/PCL blends was used in 

preparing microspheres for doxycycline release (Mundargi et al., 2007). 

1.4. Chondroitin Sulfate 

Chondroitin sulfate is a glycosaminoglycan, which is naturally found in the 

extracellular matrix of articular cartilage. It is composed of long unbranched 

polysaccharide chains with a repeating structure of glucuronic acid and N-

acetylgalactosamine (Nerucci et al., 2000). High solubility in water is an important 

property of chondroitin sulfate. In clinical studies, CS is in use for treating 

osteoarthritis (OA). Benefits of CS treatment for OA can be listed in three main 

mechanisms, namely promoting the production of cartilage extracellular matrix, 

alleviating the inflamatory cytokines such as interleukin-1, and inhibition of cartilage 

matrix degradation (Jiang et al., 2011).  

CS was encapsulated into PLGA with double emulsion method. The research 

reported that these microspheres were capable of treating osteoarthritis (OA) in vitro 

and in vivo (Jiang et al., 2011). In this study it was used to accelerate the diffusion of 

water into the microspheres thereby modifying the release properties of PCL 

microspheres as well as its disease modifying potential.  
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1.5. Theory of Mathematical Modelling 

1.5.1. Mathematical Modeling of Release Kinetics of Drug Loaded 

Microspheres  

For decades, polymeric systems have been used for pharmaceutical applications, 

especially to provide controlled release of drugs. Drug–polymer systems may also 

be useful in protecting the drug from biological degradation prior to its release. The 

development of this device starts with the use of non-biodegradable polymers and 

subsequently progresses to the use of biodegradable polymers. Based on the 

physical or chemical characteristics of the polymer, drug release mechanisms from 

a polymer matrix can be categorized in accordance with three main processes 

(systems): 

1. Drug diffusion from the non-degraded polymer (diffusion-controlled system). 

2. Enhanced drug diffusion due to polymer swelling (swelling-controlled system). 

3. Drug release due to polymer degradation and erosion (erosion-controlled 

system). 

In all three systems, diffusion is always involved. For a non-biodegradable polymer 

matrix, drug release is due to the concentration gradient by either diffusion or matrix 

swelling (enhanced diffusion). For biodegradable polymer matrix, release is normally 

controlled by the hydrolytic cleavage of polymer chains that lead to matrix erosion, 

even though diffusion may be still dominant when the erosion is slow. This 

categorization allows mathematical models to be developed in different ways for 

each type of system. In our system, the degradation of PCL was assumed to be 

negligible for the 3 months release period due to slow degredation property of PCL. 

Mathematical modeling of drug release provides insights concerning mass transport 

and chemical processes involved in drug delivery system as well as the effect of 

design parameters, such as the device geometry and drug loading, on drug release 

mechanism. (Peppas et al, 1989) 

The main mechanism determining the drug release profile from polymer matrix is 

diffusion. Drug dissolution or dispersion models are the other factors. Each of these 

models represents the release of a drug by a single mechanism that is either by 

dissolution or dispersion. Diffusion-dissolution or diffusion-dispersion combination 
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models can be possible. However, the verification of a complex model involving both 

mechanisms would be problematic; generally two simpler models are formulated 

(Crank 1956, Polakovic et al, 1999, Jo et al, 2004, Arifin et al, 2006).  

1.5.2. Mathematical Models of Drug Release from Polymeric Systems 

1.5.2.1. Diffusion Model 

The release of the drug from the polymeric matrix generally follows Fick’s second 

law of diffusion. The concentration gradient of the spherical particles  follows the 

form 

                                                                        (1.1) 

where c is the local drug concentration at time t and at the distance, r, from the 

centre of the particle and D is the diffusion coefficient of the drug in the polymeric 

matrix.  

The initial condition is   

                                                                           (1.2) 

The boundary conditions are  

                                                    (1.3) 

                                                         (1.4) 

 

V is the bulk liquid volume of the surrounding medium, Vs is the total volume of the 

particles.  

After several steps of calculation, the resulting equation is (Crank, 1956): 
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                                       (1.5) 

 

1.5.2.2. Dissolution Profiles 

Drug release and/ dissolution from solid pharmaceutical dosage forms have been 

the subject of intense and beneficial scientific developments. Whenever a new solid 

dosage form is developed, it is important to ensure that drug dissolution occurs at an 

appropriate rate. The quantitative analysis of the values obtained in dissolution 

and/or release tests is easier when mathematical formulas which express the 

dissolution results as a function of some parameters of the dosage forms are used. 

In some cases, these mathematical models are derived from the theoretical analysis 

of the occurring process. In most of the cases the theoretical concept does not exist 

and some empirical equations have proved to be more suitable.  

The kind of the drug, its polymorphic form, crystallinity, particle size, solubility and 

amount in the pharmaceutical dosage form can influence the release kinetic (Costa 

and Lobo, 2001). A water-soluble drug incorporated in a matrix is mainly released by 

diffusion, while for a low water-soluble drug the self-erosion of the matrix will be the 

principal release mechanism.  

Some of the most relevant and more commonly used mathematical models 

describing the dissolution curves are shown in Table 1.1. 
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Table 1.1. Mathematical models used to describe drug dissolution curves (Model-
dependent methods) 

Zero Order                    

First Order                        

Second Order  

Hixson-Crowell  

Weibull 
 

Higuchi  

Baker-Lonsdale 
 

Korsmeyer-Peppas  

Quadratic*  

Logistic*  

Gompertz*  

Hopfenberg 
 

*: less used models                                            (Costa and Lobo, 2001) 
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1.6. Articular Cartilage 

Articular cartilage is a specialized, avascular, aneural connective tissue that covers 

the osseous components of diarthroidal joints. It serves as a load-bearing material 

that absorbs impact and sustains shearing forces (Martel-Pelletier et al., 2008). In 

cartilage matrix, collagen and proteoglycans (aggrecan) are the main components. 

Cartilage has 4 different zones. These zones are layered from surface to the 

deepest layers of the cartilage as superficial, middle or transitional, deep or radial 

and calcified cartilage layers (Figure 1.5).  

Superficial part is the thinnest part of the cartilage and also has lower proteoglycan 

content than the other layers. Synovial fluid is in contact with this layer. This layer 

also enables cartilage to resist shear, tension and compression (Martel-Pelletier et 

al., 2008). Middle part is the main part of the total cartilage in terms of size. This part 

is formed by proteoglycans and thicker collagen fibrils. The chondrocytes have 

round shape and have low density in this zone (Martel-Pelletier et al., 2008). In the 

deep zone of cartilage, chondrocytes have the same morphology and low density 

but they are aligned perpendicular to the articular surface in this layer. There is a 

radial arrangement of the thick collagen fibrils and this layer’s aggrecan content is 

the highest in cartilage (Martel-Pelletier et al., 2008). The calcified cartilage is 

divided from the other parts by the “tide mark”. This part separates the hyaline 

cartilage from the subchondral bone. In this zone, cell population is low and 

chondrocytes are hypertropic. The main function of this part is to attach the cartilage 

to the bone (Martel-Pelletier et al., 2008).  

 

  



 

 

Figure 1.5
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1.7. Osteoarthritis 

Joints are complex composites of connective tissue including bone, cartilage 

surfaces, ligaments and the joint capsule. These tissues come together to allow the 

motion of the body. Joint degeneration occurs after trauma like intensive sport 

activities or accidents, and also upon aging.  

Osteoarthritis (OA) is a non-inflammatory, degenerative joint disease. Not only 

articular cartilage, but also subchondral bone is damaged during stages of OA. In 

Figure 6, healthy and osteoarthritic joints are compared. The tissue breakdown 

occurs with pain and joint stiffness, which are the main symptoms of OA. Loss of 

articular cartilage, subchondral bone sclerosis, osteophyte formation, changes in the 

synovial membrane and increased volume of synovial fluid with decrease in 

viscosity are the results of osteoarthritis of the joints (Gerwin, et al., 2006). The 

clinical stage of this disease is usually accompanied with chronic inflammation of the 

synovial membrane (Martel-Pelletier et al., 2008). In the United States, 

approximately 30 million people suffer from OA.  

Osteoarthritic cartilage is weaker than the normal cartilage in terms of mechanical 

properties. Degenerated cartilage tissue has less stiffness and less pulling strength 

than normal cartilage. The initial symptoms of matrix degeneration in cartilage with 

arthritis are increased water permeability and water holding capacity of the tissue. 

The basic reason of this is the high osmotic pressure created by the interaction of 

water with negatively charged proteoglycans. Normally, the water holding capacity is 

controlled by collagens within the tissue. However, with degradation of collagens in 

osteoarthiritis, this control is lost.  

Collagen network integrity also has important implications on the tribological 

functions of cartilage tissue. Cartilage samples with physical disruption of the 

collagen network in the superficial zone have been shown to exhibit higher friction 

levels compared to native cartilage. Enzymatic degradation of the collagen network 

has also been shown to increase the friction levels of cartilage. However, this effect 

occurs mostly through adversely affecting the proteoglycan and water contents of 

the cartilage tissue. A physical disruption of the collagen network can quickly 

exacerbate the wear of cartilage towards irreparable damage under in vivo 

conditions, due to the very high and repetitive loads involved. In OA and RA 

cartilages, proteoglycan loss results in a reduction of cartilage stiffness (Bonassar, 
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Il-1, therefore, has been implicated in the progression of arthritis. In vitro stimulation 

of explanted cartilage with IL-1 has demonstrated utility as a model of the catabolic 

events leading to cartilage resorption (Wilson, et al, 2007).  

In vitro studies have shown that IL-1 contributes to the accelerated damage of 

articular tissue and amplify the inflammatory response. The ability of IL-1 to promote 

tissue degradation appears to be intimately associated with its ability to stimulate the 

synthesis of matrix metalloproteinases (MMPs) such as collagenase and 

stromelysin. Thus, it was also reported that IL-1 not only induces tissue destruction, 

but also inhibits tissue repair (Blumenfeld, et al, 1999). It is well known that IL-1 is 

synthesized as an inactive precursor and must be activated by an enzyme to be 

released in the active form (Martel-Pelletier, 2004).  

Matrix metalloproteinases (MMPs) are enzymes that degrade the cartilage and bone 

in an arthritic joint. They are divided into two groups: (1) aggrecanases (2) matrix 

metalloproteinases. They can cleave collagen type II, the major component of the 

cartilage. MMPs are prompted from inflammatory cytokines such as interlukin-1 (IL-

1). The collagenases play role in collagen type II degradation includes collagenases 

1, 2 and 3 (MMPs 1, 8, and 13, respectively) (Goldring, 2000). MMP-1 and MMP-13 

are important in OA development (Kim, et al., 2005; Huh, et al., 2009). Among these 

enzymes, MMP-13, firstly found in human in breast cancer, is present in human 

bone and cartilage tissues. Collagen type II is the dominant type of collagen in 

cartilage tissue. MMP-13 breaks collagen type 2 more efficient than collagen type 1 

(Fosang and Pelletier, 1996). Furthermore, the same collagenase breaks the basic 

matrix material called proteoglycan and a different form of collagen called gelatin 

(Greenwald, 1991, and Aigner, et.al., 2003). 

The degradation steps are accompanied with chondrocyte death, tissue fibrillation 

and finally erosion (Huh, et al., 2009; Lark, MW. et al., 1997). At an early stage of 

the disease, aggrecanases start to degrade proteoglycans and at the late stage, 

MMPs finally degrade the aggrecan core protein, proteoglycan and collagen network 

(Huh, J.E., et al., 2009). Understanding the elements involved in the regulation of 

these two (IL-1 and IL-6) proinflammatory cytokines will therefore provide a better 

insight into therapeutic strategy. These cytokines are able (i) to increase the enzyme 

synthesis, (ii) to inhibit the synthesis of the major physiological inhibitors of these 

enzymes, and (iii) to inhibit the synthesis of the matrix constituents, such as collagen 



19 
 

and proteoglycans. These actions make these two cytokines prime targets for 

therapeutic approaches.  

1.7.2. Treatments of OA 

The clinical treatment regimes provide relief to the patient and may increase the 

quality of patients’s lives nowadays. However, the effective cure of OA has not been 

found yet. Treatments with oral drugs have various side effects and shortcomings 

especially in long terms. In addition no blood circulation to the joint area makes it 

difficult to supply the drug to the joint efficiently. Therefore, intraarticular (IA) drug 

injection has developed as new treatment method in recent years. Localized nature 

of the disease makes it possible to apply glucocorticoid and hyaluronic acid (HA) 

formulations intraarticularly. However, these appoaches only make short-term pain 

relief to the patient.  

In early phases, treatment regimes heal the inflammation of the joint (Kutsal G., 

1999, 2003). For this purpose, anti-inflammatory drugs are used for decreasing 

prostaglandin production of the body. Most anti-inflammatory drugs are analgesic 

and painkiller when taken at low dosages. In general, for arthritis treatment, anti-

inflammatory drugs should be used for long periods and at high dosages. Non-

steroidal anti-inflammatory drugs (NSAIDs) can be used for pain and inflammation 

modulation. The most common anti-inflammatory drug is aspirin. However, the most 

powerful anti-inflammatory drugs are corticosteroids. Corticosteroids are generally 

used during blazing up period to stop the pain within short durations (Kutsal G., 

1999, 2003). Most arthritis patients need not to undergo an operation. At later 

stages of the disease, operation might be needed to stop the pain and increase the 

mobility of the patient.  

Tetracycline and its analogs have collagenase enzyme activity inhibition property as 

shown by many researches with in vitro studies.  Doxycycline as one of these 

analogs is known for its negative effects on bone and teeth tissue. Besides that, this 

drug has antibacterial property restricting its systemic use. Researches on 

doxycycline analogs that inhibit MMPs in cartilage but not in other tissues or with 

non-antibiotic effect continue all over the world (Greenwald, 1998, Golub, 1991).  
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1.8. OA Models 

1.8.1. In Vitro Models 

There are several chondrocyte cell sources used for in vitro studies of OA (i.e., 

human, rabbit, rat, calf etc). Two-dimensional (2-D) or three dimensional (3-D) 

models can be established using these cell sources. In 3-D models, cells are either 

embedded in hydrogels like agarose, alginate, agar or imbibed into porous 

polymeric scaffolds in order to mimick the native cartilage environment. Another 

approach for constructing such models is the use of explant culture in which thin 

slices of cartilage are cultured in tissue culture media. By this approach, the integrity 

of 3D architecture of cartilage is maintained. However, the longevity of these 

explants is not very long and it is not easy to achieve.  

Traumatic mechanical injury induces chondrocyte death, disrupts the collagen 

network, and causes glycosaminoglycan (GAG) release from articular cartilage. An 

in vitro study of the kinetics of GAG release found that one third of the GAG 

released within the first 24 h occurred during the first 4 h of culture, and remained 

significantly higher than controls at 24 h (DiMicco et al., 2004). The same study also 

found a 50–60% reduction in the incorporation of 35S-sulfate and 3H-proline, 

indicative of decreased GAG and collagen synthesis, in articular cartilage 

specimens subjected to injurious compression at a strain rate of 1/s. Furthermore, 

impact level has been found to correlate with tissue damage, demonstrating that 

there is a direct relationship between the degree of articular cartilage breakdown 

and the peak stress stress rate, and energy delivered by the impact (Ewers et al., 

2001; Jeffrey et al., 1997; Milentijevic and Torzilli, 2005; Torzilli et al., 1999). A study 

by DiMicco et al. (2004) found that GAG release between 1 and 7 days post-injury 

was markedly reduced using an MMP inhibitor compared to no treatment case. 

In Table 1.2, some of the in vitro OA Models are summarized. The model 

development of OA was done by using a chemical stimulator like IL-1. However, 

TNF-α, Oncostatin M and Azo-C are among the other widely used chemical 

stimulators (Kavas, et al., 2010; Little, et al., 2005; Cawston, et al., 1998). 

The interaction between  hyaluronan and CD44 has been shown to reduce IL-1β-

induced MMP-1, MMP-3 and MMP-13 production in normal and OA explant cultures 

(Julovi SM, et al., 2002) and MMP-1 in chondrocyte monolayer cultures (Tanaka M. 

Et al., 2006). 
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Nerucci, F et al. (2000) have tested the effects of IL-1 and CS in the presence and 

absence of pressurization cycles on the morphology and metabolism of in vitro 

human chondrocytes. These tests confirmed the findings obtained with in vitro 

experimental models. It is currently accepted that IL-1 is an important mediator in 

cartilage destruction. IL-1 is a primary up-regulator of metalloproteinase (MMP) 

gene expression by chondrocytes, and it also down-regulates the production of the 

endogenous inhibitor of MMPs, the TIMPs (tissue inhibitor of metalloproteinases) as 

well as the synthesis of PG (proteoglycans) and collagens (Nerucci, F et al., 2000). 

The experiments have shown that the addition of IL-1 causes a reduction in the 

concentration of the PG in the culture medium; this could be the result of the event 

that cytokine induces an inhibition of PG synthesis by the chondrocytes. When the 

cells were cultivated in the presence of IL-1+CS there was a restoration of PG 

concentration in the culture medium. This fact confirms the protective role played by 

this substance which counteracts the IL-1 induced effects and might be used by 

the chondrocyte as a substratum for the synthesis of PG (Nerucci, F et al., 2000). 
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Table 1.2. In Vitro OA Models 

  

M
od

el
So

ur
ce

Re
fe

re
nc

e
m

inc
ed

 ca
rti

lag
e 

inc
ub

at
ed

 w
ith

 co
lla

ge
na

se
 ty

pe
 II

ra
bb

it
Ka

m
ar

ul,
 T

. (
20

08
); 

Ka
m

ar
ul,

 T
. (

20
11

)
co

lla
ge

na
se

 (g
ra

de
 C

LS
)+

 a
ga

ro
se

 e
m

be
dd

ing
ch

ick
 e

m
br

yo
Br

uc
kn

er
, P

.(1
98

9)
co

lla
ge

na
se

 +
 co

at
ing

 w
ith

 ty
pe

 I 
co

lla
ge

n
ra

t
Yo

rim
its

u,
M

. (
20

08
)

hu
m

an
 ca

rti
lag

e 
ex

pla
nt

s c
ult

ur
e 

+ 
IL

-1
hu

m
an

Ju
lov

i, S
.M

. (
20

04
);F

er
na

´n
de

z, 
P.

 (2
00

4)
 ; 

Yu
do

h,
 K

. (
20

07
); 

Hu
h,

 J.
E.

 (2
00

9)
ra

bb
it c

ho
nd

ro
cy

te
s +

 IL
 1

be
ta

ra
bb

it
Ak

as
ak

i, Y
. (

20
09

)
ce

ll c
ult

ur
e 

sy
ste

m
 o

f c
ho

nd
ro

cy
te

s+
IL

-1
alp

ha
bo

vin
e

Za
ina

l, Z
. (

20
09

)
ca

rti
lag

e 
ex

pla
nt

+ 
IL

 1
 a

lph
a

ra
bb

it
Ch

oi,
 J.

H.
  (

20
02

)
ce

ll c
ult

ur
e 

sy
ste

m
 ch

on
dr

oc
yte

s i
n 

ag
ar

os
e+

IL
-1

be
ta

do
g

Ku
ro

ki,
 K

. (
20

01
);D

vo
ra

k, 
D.

M
. (

20
02

); 
Ku

ro
ki,

 K
 (2

00
3)

co
lla

ge
n 

sc
af

fo
ld+

 IL
 1

 b
et

a
ca

lf
Co

rti
al,

 D
 (2

00
6)

co
lla

ge
n 

sp
on

ge
s +

ch
on

dr
oc

yte
s o

bt
ain

ed
 b

ye
nz

ym
at

ic 
dig

es
t

bo
vin

e
Ro

ch
e,

 S
 (2

00
1)

m
ec

ha
nic

 lo
ad

+ 
IL

 1
 b

et
a

hu
m

an
Ne

ru
cc

i, F
 (2

00
0)

ca
rti

lag
e 

ex
pla

nt
+I

L 
1 

alp
ha

ca
lf

W
ils

on
, C

.G
 (2

00
7)

ca
rti

lag
e 

ex
pla

nt
 +

 IL
 1

 b
et

a
bo

vin
e

Pa
lm

er
,A

. W
. (

20
09

)



23 
 

1.8.2. In Vivo Models 

In order to investigate the development and progression of OA, various animal 

models are used. These models can be divided into four groups. They are 

spontaneous OA models, mechanical OA models, chemical models and other joint 

models (except knee). For chemical models, trypsin, papain, collagenase (type II) 

are used to develop osteoarthritis in the knee (Table 3). There are several examples 

in literature that used chemical models to test the effectiveness of potential agents 

(glucosamine, chondroitin sulfate, adiponectin, etc.) (Dodge and Jimenez, 2003; 

Homandberget al., 2006, Chen et al., 2006). 

In an experimental rabbit model, OA was induced by partial menisectomy and 

treated with NSAIDs, HA or with the combination of NSAIDs and HA over 2 weeks. 

Cartilage degeneration and the levels of matrix metalloproteases (MMP)-1, MMP-3 

and MMP-13 in synovial lavage fluid were measured at the end of the experiment. 

 In another in vitro/in vivo study, human articular chondrocytes were cultured with 

NSAIDs and HA in the presence of interleukin (IL)-1β or IL-6+ sIL-6 for 24 h. After 

culture, the production of MMPs, IL-1β, and IL-6 was measured. The levels of MMP-

1, MMP-3 and MMP-13 in synovial fluid from the NSAID-treated group were 

significantly higher than in controls. The increased production of MMPs induced by 

NSAIDs was counteracted by the concomitant administration of HA. In vitro studies 

showed that NSAIDs augmented IL-1β- and IL-6-induced production of MMPs from 

human chondrocytes, while completely inhibiting the IL-1β- and IL-6/sIL-6R-induced 

production of prostaglandin E2 (PGE2). The addition of PGE2 did not reduce the 

augmentation of MMP production. HA inhibited the promotion of cytokine-induced 

MMP and cytokine production by NSAIDs.  Data clearly showed that HA inhibited 

NSAID-accelerated MMP production which was followed by inflammatory cytokine 

production from cytokine-activated chondrocytes. The results warrant further 

evaluation of the potential chondroprotective effects of co-administration of HA with 

NSAIDs (Hashizume, M. Et al, 2009). 
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1.9. Aim of the Study 

Cartilage degenerations are widespread in our country like all over the world. 

Applied treatment methods are not able to solve the problem of joint degeneration 

completely. So, new methods are needed for treatment of the disease. In this study 

we aimed to prevent the progression of osteoarthritis occurring after trauma by 

developing a new approach for treating the disease using doxycycline, a clinically 

used antibiotic that also acts as a MMP inhibitor. For this end, we designed and 

optimized doxycycline and doxycycline/chondroitin sulfate PCL delivery systems that 

can be applied intraarticulary into the joint space to achieve local, long-term and 

more efficient treatment of OA. Diffusion-based mathematical models were used to 

fit the experimental results of in vitro release. Other benefits of this approach also 

involve reduction of the application frequency of the treatment and elimination of 

possible systemic site effects of drugs. In vitro cell culture studies were conducted 

with agarose-chondrocyte 3-D constructs to test the efficacy of the microsphere 

delivery sytems. Chondrocytes were isolated from the joints of ostoarthritic rabbits 

and were exposed to IL-1β for continuation of disease condition. In order to assess 

the treatment efficacy, the delivery systems were injected into the joints of collagen-

induced OA rabbits and the results were compared with the conventional therapy 

(hyaluronan injection) and nontreated control OA groups in terms of histological, 

radiological and mechanical properties. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

 

2.1. Materials  

Doxycycline hyclate, chondroitin-4-sulfate, Poly--caprolactone (PCL) (MW 14 kDa 

and 65kDa), Collagenase type II (Clostridium histolyticum) and Interleukin 1-β were 

supplied by Sigma-Aldrich USA. Polyvinyl alcohol (PVA) (MW 27,000) was provided 

from Fluka and gelatin (from porcine skin, type A) was purchased from Sigma, USA.  

DMEM High Glucose, RPMI-1640 p red+ w/o phenol red, Trypsin-EDTA, Foetal 

Bovine Serum (FBS) was the products of Biochrom (Germany). Penicillin/ 

Streptomycin was purchased from PAA, Austria. L-glutamine was from Sigma Brazil. 

Folic acid was obtained from Sigma, China and sodium bicarbonate was purchased 

from Sigma (USA).  

Papain and agarose, (low melting point) were purchased from Sigma Chemical 

Corporation (USA). L-cysteine, di-sodium hydrogen phosphate dihydrate and di-

potassium hydrogen phosphate anhydrous, calcium carbonate were purchased from 

Fluka Chemical GmbH (Switzerland). Sodium dihydrogen phosphate dihydrate and 

disodium hydrogen phosphate were purchased from Merck, Germany. Glycine was 

te product of Aldrich (Germany). Sodium acetate was taken from Sigma Aldrich, 

USA. Acetic acid sodium salt, citric acid (anhydrous) and ethylene diamine tetra 

acetic acid disodium salt dihydrate (~99%) was purchased from Sigma, USA. 

Chloramine-T hydrate (98%) was purchased from Aldrich, France. Trans-4-Hydro
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L-proline was purchased from Sigma, France and 4-(Dimethylamino benzaldehyde   

was purchased from Fluka, India. Sodium hydroxide, potassium hydroxide, 

potassium chloride were obtained from Riedel-de Haen Germany (Sigma-Aldrich 

Company). Sodium chloride, sodium hydroxide, sodium azide and potassium 

hydroxide were purchased from Sigma Chemical Corporation (USA).  

Trypan blue, Thiazolyl blue tetrazolium bromide (97.5% TLC cell culture tested) 

(MTT) and Deoxyribonucleic acid from calf thymus (genomic, unsheared) were 

purchased from Sigma (USA). 1,9 dimethyl methylene blue (DMMB) were obtained 

from Aldrich (Germany). Dimethyl sulfoxide (DMSO) (cell culture grade) was from 

AppliChem, Germany. Hoechst 33258 was purchased from Invitrogen, USA. MMP-

13 Elisa kit was purchased from Cusabio, USA. 

Organic solvents; Chloroform, tetrahydrofuran, methanol, acetonitrile, ethanol, 2-

propanol were (all HPLC grade) obtained from Merck. Perchloric acid was from 

Aldrich, USA.  

Alfazyne (2%, injectable) (xylazin hydrochloride) and Alfamine (10%, injectable) 

(ketamine hydrochloride) and purchased from Alfasan, Holland. Adant (25 mg/2.5 

ml, intraarticularly) (Hyaluronan) was purchased from Tedec-Meiji Farma, S.A., 

Spain. 

Haematoxylin Eosin, Massons’ trichrome, Safranin O dyes, fixative 10 percent 

formaldehyde solution in phosphate buffer, fixative 2.5 % gluteraldehyde solution in 

phosphate buffer, decalcifying Decastro solution (Chloral hydrate, ethanol, distilled 

water), paraffin embedding equipment for light microscopy,  plastic embedding 

equipment for electron microscopy, medium exchange were purchased for histology 

experiments.  
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2.2. Methods 

2.2.1. Preparation of Empty Poly--caprolactone (PCL) Microspheres 

Poly--caprolactone (PCL) microspheres were first prepared empty to optimize the 

preparation conditions for desired properties such as morphology and size. Among 

various concentrations and formulations of emulsifiers and stabilizers (Pluronic F 68, 

PVA, Gelatin, etc.) polyvinyl alcohol, (PVA) was selected for use in drug loaded 

microsphere preparation studies. Single emulsion was obtained by adding the 

polymer (PCL) solution (7% in chloroform) into PVA solution while stirring with a 

magnetic stirrer (Schott Instruments, Germany). Organic phase was then 

evaporated under hood with continued stirring at 25°C. Polymeric microspheres 

were collected by centrifugation of aqueous medium at 6000 rpm for 10 minutes 

(Hettich Zentrifugen, EBA 20, Germany). They were then washed with distilled water 

and centrifuged again. Upon overnight drying in vacuum oven (Nüve- EV060, 

Turkey), microspheres were kept in desiccator at 4°C till use. 

In order to optimize properties of PCL microspheres, such as surface properties, 

average size and shape, different concentrations and formulations of PVA and PVA-

gelatin combinations were tried in aqueous phase. The optimum temperature for 

evaporating organic phase was also adjusted considering gelatin and doxycycline 

presence in the medium.  

2.2.2. Preparation of Doxycycline Loaded Poly--caprolactone (PCL) 

Microspheres 

Doxycycline encapsulated microspheres were prepared by single emulsion-solvent 

evaporation method as described in part 2.2.1. Doxycycline powder was added into 

PCL solution at the drug:polymer ratio of 1:2 (w/w) and mixed homogeneously. This 

mixture was then added drop-wise into aqueous phase and the following preparation 

steps were the same as in the previous section. Different sets of microspheres were 

prepared using two different molecular weight (MW) PCL sources: 14 kDa and 65 

kDa.  
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2.2.3. Preparation and Optimization of Doxycycline and Chondroitin Sulfate (D-

CS) Co-Loaded Poly--caprolactone (PCL) Microspheres  

In order to provide a regenerative agent to the damaged cartilage tissue while 

modifying doxycycline release profile, chondroitin sulfate (CS) co-loading to 

doxycycline-PCL microspheres was also studied. For this purpose, preparation 

conditions for CS encapsulation into PCL microspheres were firstly optimized in the 

absence of doxycycline. Single emulsion method was applied in the microsphere 

preparation using two different aqueous phase composition; PVA (4 %) and PVA- 

gelatin (1%, each). In the organic phase chloroform was used to dissolve PCL (MW 

of 14 kDa or 65 kDa). 4-chondroitin sulfate (2 mg powder) was added to the organic 

phase and mixed homogeneously with vortex for about five minutes. This phase was 

then added drop-wise to aqueous phase and stirred at 3400 rpm with a 

homogenizer (IKA-Ultraturrax T-25, Germany) for three hours. The particle size of 

microspheres was reduced by using homogenizer. Chloroform was evaporated 

under hood at 1100 rpm overnight. To remove surfactant from microspheres’s 

surfaces, they were washed with distilled water twice and centrifuged at 6000 rpm. 

After washing steps, the microspheres were left in a vacuum oven (Nüve- EV060) 

overnight for drying.  

Considering the morphology (i.e. shape and surface properties) of chondroitin 

sulfate (CS) microspheres, 4% PVA, as the aqueous phase and low molecular 

weight polymer (PCL, 14 kDa) were selected for the preparation of D-CS co-loaded 

microspheres. Shortly, doxycycline (D) (100 mg) was added into the CS containing 

polymer phase (PCL, 7% in chloroform) and vortexed to disperse both CS and D 

homogeneously. This phase was then added drop-wise into 40 ml of aqueous 

solution and stirred at 3400 rpm with homogenizer (IKA-Ultraturrax T-25) for half an 

hour. In the following step, the volume of aqueous solution was raised to 75 ml and 

stirring was continued at 1100 rpm under hood until chloroform was evaporated. The 

microspheres were washed and dried as described before. They were stored at 4°C 

in desiccator until use.  
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2.2.4. Determination of Encapsulation Efficiency  

2.2.4.1. Determination of Encapsulation Efficiency of Doxycycline 

2.2.4.1.1. Extraction Procedure  

In order to determine the amount of doxycycline loaded into microspheres, 15 mg of 

microspheres were dissolved in tetrahydrofuran (THF)-methanol solution (1/1, v/v). 

For complete extraction of drug the mixture was stirred at 37°C for 4-5 days and 

then centrifuged for 20 min at 6000 rpm. Collected supernatant was analyzed by 

High Performance Liquid Chromatography (HPLC) for determining the doxycycline 

content of microspheres. 

2.2.4.1.2. HPLC Instrumentation and Conditions 

All samples were filtered through 0.20 m filters (PALL, USA) before analysis with a 

Shimadzu Prominence Model (Japan) HPLC System. The system consisted of a C18 

column (Inertsil ODS-3, 5 m, 250x4.6 mm; GL Sciences, Japan), degasser 

(Shimadzu model DGU-20A3), UV-Vis absorbance detector (Shimadzu model SPD-

20A) set at 275 nm, HPLC pump (Shimadzu model LC-20AT), column oven 

(Shimadzu model CTO-10ASvp), system controller (Shimadzu model CBM-20Alite) 

and an auto injector (Shimadzu model SIL-10ADvp). The injection volume was 20 

l. The mobile phase was composed of methanol, acetonitrile and THF (50:40:10, 

v/v). The flow rate was set at 1.0 ml/min. 

After determination of the doxycycline contents of extracted samples they were 

converted to drug amounts using the calibration curve of free drug in same HPLC 

system/procedure (Appendix A). Percent encapsulation efficiency and drug loading 

of microspheres were then calculated from the following equations: 

 

݃݊݅݀ܽ݋ܮ	݃ݑݎܦ	% ൌ
ݏ݁ݎ݄݁݌ݏ݋ݎܿ݅ܯ	݊݅	݃ݑݎܦ	݂݋	ݐ݄ܹ݃݅݁	

ݏ݁ݎ݄݁݌ݏ݋ݎܿ݅ܯ	݂݋	ݐ݄ܹ݃݅݁
 ሺ2.1ሻ					100ݔ

 

ݕ݂݂ܿ݊݁݅ܿ݅ܧ	ݐ݊݁݉݌ܽݎݐ݊ܧ	% ൌ
݃݊݅݀ܽ݋ܮ	݃ݑݎܦ	%

݃݊݅݀ܽ݋ܮ	݈ܽܿ݅ݐ݁ݎ݋݄݁ܶ	%
 ሺ2.2ሻ					100ݔ
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2.2.5. Determination of Drug Release Profiles of Microspheres 

The release profiles of D and D-CS from microspheres were determined by 

incubating 50 mg of microsphere placed in dialysis bags (Mw cutoff: 12 kDa) in 

phosphate buffered solution (PBS, 0.01 M,pH 7.4) (80 ml for D-CS and 100 ml for D 

loaded MS). The microspheres were placed in dialysis bags with 2 ml of the release 

medium. The two ends of dialysis bags were closed with clamps to prevent any 

microsphere loss to the external medium. The whole setup was placed into shaking 

water bath (Nüve-ST 402, Turkey) and kept at 37°C throughout the release 

experiments. Aliquots from the release medium were taken at certain time intervals. 

Absorbance of the aliquots was measured at 274 nm by using spectrophotometer 

(Hitachi, U2800A, Japan) and released doxycycline (D) amounts were determined 

from the calibration curve constructed with different concentrations of the drug 

(Appendix B). Release studies were done in triplicates and averages for released 

amounts with standard deviation were represented in the graphs. The PBS solution 

was refreshed at least once a week.  

2.2.6. Particle Size Measurements 

Particle size measurements were done with Malvern Mastersizer 2000 at Central 

Laboratory, METU.  

2.2.7. Scanning Electron Microscopy (SEM) Studies 

SEM analyses were carried out at SEM Laboratory of Department of Metallurgical 

and Materials Engineering, METU. In order to provide conductive surfaces suitable 

for SEM, microspheres were sprinkled onto the copper stub and then coated with 

gold before examination.  

2.2.8. Differential Scanning Calorimetry (DSC) Measurements 

The thermal characteristics of PCL microspheres (empty and D loaded) and 

commercial PCL were measured by using Perkin Elmer Diamond DSC in N2 

atmosphere at Central Laboratory, METU. Two temperature cycles were applied for 

commercial PCL. First run from -65°C to 100°C (40°C/min) was followed by a 

cooling step (-10°C/min) allowing to see the crystallization (Tc) and melting (Tm) 

temperatures.  
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A second run from -65°C to 100°C (40°C/min) was applied to see the glass 

transition temperature (Tg). One temperature cycle was applied for microspheres for 

observing Tm shifts and to calculate crystallinities. The measurements were carried 

out at a scan rate of 10°C/min between –40°C and 100°C. The melting point was 

determined at the maximum of the melting endotherm. Crystallinity was calculated 

assuming proportionality to the experimental heat of fusion using the reported heat 

of fusion of 139.5 J/g for the 100% crystalline PCL (Estelle´s et al, 2008).  

 

ܺ௖ሺ%ሻ ൌ
௠ܪ∆
136.5

ൈ 100																																				ሺ2.3ሻ 

 

ܺ஼	 = Crystallinity 

௠ܪ∆  = Experimental heat of fusion 

 

2.2.9. Fourier Transform Infrared (FTIR) Spectroscopy Measurements 

FTIR Spectroscopy was performed using a Bruker FTIR IFS 66/s (Germany) and 

Alpha with ATR accessories at Central Laboratory, METU. Collection and primary 

analysis of data, as well as control of the instrument were achieved using OPUS 6.5 

software. A total of 50 scans at a resolution of 4 cm-1 were averaged for each 

sample. A straight baseline was obtained in the region of 400-4000 cm-1. 

Atmospheric compensation was used in measurements. Background correction was 

done with KBr.  

2.2.10. Gel Permeation Chromatography (GPC) Measurements 

Gel permeation chromatography was performed to determine the molecular weight 

distributions of PCL by using Polymer Laboratories PL-GPC 220 at Central 

Laboratory, METU. GPC Columns were calibrated with polystyrene narrow 

standards. Tetrahydrofuran (THF) was used as the eluent. Column temperature was 

maintained at 30°C.  
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2.2.11. Cell Culture Studies  

2.2.11.1. In Vitro Cytotoxicity Studies 

The toxicity of the doxycycline and the biocompatibility of microspheres were 

evaluated with in vitro cytotoxicity tests using 3T3 Swiss albino mouse fibroblast cell 

line. The 3T3 fibroblast cell line was obtained from Foot-and-Mouth Disease Institute 

of Ministry of Agriculture and Rural Affairs of Turkey. The cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM high glucose-glutamine) 

supplemented with fetal bovine serum (FBS, 10 %, v/v) and penicillin/streptomycin 

(10 U/ml) at 37°C under humidified atmosphere of 5 % CO2- 95 % air in incubator 

(5215, SHEL LAB, USA). The medium was refreshed 2 times a week. When the 

cells reached 80-90 % confluency, they were passaged in 1:3 ratio after detachment 

with trypsin-EDTA (0.1 % in PBS)  

5, 10, 15 and 20 g/ml dosage Doxycycline hyclate (D) formulations were prepared 

in Dulbecco’s modified Eagle’s medium (DMEM high glucose-glutamine). 4.4 x104 

cells/well 3T3 fibroblasts cells were incubated in the presence of different 

concentrations of D (0, 5, 10, 15 and 20 g/ml) for 2 days at 37°C.  

Doxycycline loaded and D-CS combination loaded PCL microspheres were 

sterilized with gamma irradiation at a dose of 25 kGy (Dorati, R. et al, 2005). 

Irradiation process was performed at Sarayköy Nuclear Research and Education 

Center (SANAEM) with ISSLEDOVATELJ (Gamma-cell) Co60- γ irradiation source 

in air at room temperature. The dose rate of the gamma cell was 1.74 KGy/h. Empty 

and loaded, PCL (14 and 65 kDa) (5mg/well) microspheres were placed in 24 well 

plates. These wells were then seeded with cells at a density of 4.4 x104 cells/well 

and incubated for 2 days at 37°C. 

2.2.11.1.1. Microscopic Examinations 

After two days of incubations, 3T3 cells were evaluated in terms of morphological 

changes and degree of attachment by light microscopical examination (Nikon 

Eclipse TS100, China) and photographed. 
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2.2.11.1.2. MTT Cell Viability Assay 

At the end of 2-days incubation, the density of viable cells was determined with MTT 

assay. This method is based on reduction of a tetrazolium salt by mitochondrial 

dehydrogenases to a dark blue formazan product (Mossmann, 1983). The extent to 

which MTT was reduced to a formazan product has been correlated with the cell 

viability. 

Accordingly, the medium was removed and 500 µl MTT solutions (5 mg/ml in DMEM 

low glucose) was added to each well and incubated for 4 hours at 37 oC in dark. 

After removing MTT solution and washing with PBS, 500 µl dimethyl sulfoxide was 

(DMSO) added to solubilize the formazan crystals formed inside the cells. The 

absorbance was measured at 550 nm wavelength using μQuantTM Microplate 

Spectrophotometer (Biotek Instruments Inc. USA).  

Results were demonstrated in terms of percent relative viability, which was 

normalized by control (no treatment).  

2.2.12. Determination of Effectiveness of Microspheres for Treatment of 

Osteoarthritis in a Three Dimensional Osteoarthritis Model 

2.2.12.1 Isolation of Articular Chondrocytes from Rabbits  

Newborn and OA developed knee joints of adult male rabbits were used for the 

isolation of articular chondrocytes For OA development, collagenase type II 

(Clostridium histolyticum) was injected into two hind leg knee joints of rabbits. 

Injections were repeated at day 4 and the animals were awaited for 6 weeks under 

standard conditions for OA development at the injected joints (Kikuchi, 1998). Prior 

to intraarticular injection, collagenase was dissolved in saline and filtered through a 

0.22 m membrane. For all procedures, rabbits were anaesthetized by using 

Ketamine hydrochloride (10 %) (35 mg/kg) and Xylazin hydrochloride (2 %) (5 

mg/kg) combination. 

After terminating the animals, the joints were removed and immersed in ethanol (96 

%) for 3 minutes. They were then transferred into RPMI-1640 medium and 

incubated in carbon dioxide incubator for 4-5 hours. The soft tissues surrounding the 

joints were scraped off aseptically and cartilage pieces were immersed in 70 % 

ethanol solution for 1 minute. After treating with collagenase type II (100 Units/ml) 
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for 16-17 hours at 37C, the obtained cell suspension was filtered through a sterile 

100 μm cell strainer. The filtrate was centrifuged at 2000 rpm for 5 min by centrifuge 

(HettichZentrifugen, EBA 20, Germany). Viable cell counting was done with trypan 

blue staining. Chondrocytes were cultured in RPMI-1640 medium supplemented 

with 10 % foetal calf serum (FCS), 10 Units antibiotic/ml, at 37°C under 5 % CO2 in 

an incubator (SL SHEL LAB, Faster, Italy) (Salvat et al, 2005). The growth medium 

was changed every third day and the chondrocytes were passaged with trypsin-

EDTA solution (0.05 %) in a 1:3 ratio. 1st passage chondrocytes were used for cell 

culture studies.  

2.2.12.2. Establishment of Three-Dimensional In Vitro Osteoarthritis Model   

For in vitro experiments, a three dimensional (3-D) OA model was developed using 

chondrocytes of OA induced rabbits. Chondrocytes were embedded in agarose for 

mimicking the cartilaginous matrix structure. 2% low-melting agarose (gelling 

temperature 25  5 °C) (Sigma, USA) was prepared in phosphate buffer solution 

and sterilized by autoclaving (ALP CL-40M, Labomar, Turkey) at 121°C for 20 min. 

Then, equal volumes of double strength RPMI-1640 containing 20% foetal bovine 

serum (FBS) and chondrocyte suspension were mixed with 2% agarose to produce 

a chondrocyte concentration of 106 cells/ml in each well of a 24-well tissue culture 

plate. The plates were awaited at 4°C for 5-10 minutes for gelling of the agarose in 

wells. 1 ml of RPMI-1640 media with 10 % FBS and 0.1 % streptomycin was then 

added into each well. The plates were incubated at 37 °C with 5% CO2 and 95% 

humidity during the experiment. Medium was refreshed every 3 days. On the third 

day of the experiment, 20 ng/ml interleukin-1β was added into the medium to mimic 

the osteoarthritic conditions of synovial fluid. Same amount of IL-1β was added 

during media changes (Kuroki, K, et al., 2003). 

In the in vitro study, four experimental groups were used. First group was positive 

control; treatment agents were not added into the medium of 3-D construct. Second 

group, named as negative control; included only 20 ng/ml interleukin-1β. Third and 

fourth groups were 5 mg D-MS and 5 mg D-CS MS treatment groups, respectively. 

These groups were also given 20 ng/ml interleukin-1β throughout the experiments. 

D MS encodes microspheres of PCL (MW=14kDa) that encapsulated only 

doxycycline (D). D-CS MS encodes microspheres of same polymer that 

encapsulated the combination of doxycycline- chondroitin sulfate (D-CS) (Table 2.1). 
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2.2.12.3 Glycosaminoglycan (GAG) Analyses 

Total sulfated glycosaminoglycan (sGAG) amounts both in agarose-chondrocyte 

discs and in mediums were determined by using dimethylmethylene blue (DMMB) 

assay (Farndalle. et al., 1986). Discs were digested with papain at a concentration 

of 0.5 mg/ml in 100 mM sodium phosphate buffer/10mM PBE Buffer (pH 6.5 with 10 

mM L-cysteine) at 60°C for 20 hours (Ceuninck, F. et al., 2004). 50 μl of the 

supernatant of the media and papain digests of discs were mixed with 0.25 ml 

DMMB dye solution (16 μg DMMB/ml in Glycine/NaCl solution, pH 3) in a 48-well 

plate and the optical densities were determined at 525 nm with a microplate 

spectrophotometer (BioTek µQuant, USA). sGAG content of the discs was 

quantified by the calibration curve constructed with chondroitin sulfate from bovine 

trachea sodium salt type A (0-5 μg) in PBE buffer solution (Appendix D). Total 

sGAG amounts of discs were normalized with DNA amounts by using fluorimetric 

measurements as described in Part 2.2.12.5 and reported as GAG/DNA (g/g). 

GAG concentrations of liquid media were reported as g/ml (Kuroki, K. et al., 2003).  

2.2.12.4. Collagen Amount Determination 

Collagen amounts in both in agarose-chondrocyte discs and in media were 

determined by quantitating hydroxyproline (HYP) amounts. The papain digests used 

in DMMB assay and media were used for hydroxyproline assay (Kuroki, K. et al., 

2003). A 25 l aliquot of medium and papain digest of discs was mixed gently with 

equal volumes sodium hydroxide (2 N final concentration) and then hydrolyzed by 

autoclaving. After then, 450 l Chloramine-T reagent (0.056 M, pH 6.5), which was 

prepared by 50 % n-propanol and acetate-citrate was added to the hydrolyzate. At 

room temperature, this hydrolyzate was awaited for 25 minutes. 500 l Ehrlich’s 

Reagent (1 M) was added to each sample and incubated for 20 minutes at 65°C for 

color development. Optical densities were read at 550 nm with a spectrophotometer. 

Calibration curve was done with 4-hydroxyproline standard (Appendix E). (Reddy 

and Enwemeka, 1996). HYP content of discs were normalized with DNA amounts by 

using fluorimetric measurements as described in Part 2.2.12.5 and reported as 

HP/DNA (g/g).  HP concentrations of liquid media were reported as g/ml (Kuroki, 

K. et al., 2003). Collagen content was calculated from HYP:collagen converting 

factor of 1:8 (Reddy and Enwemeka,. 1996). 
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2.2.12.5. Fluorimetric Assay for DNA Quantitation 

Fluorescent dyes (e.g. Hoechst dye, DAPI, propidium iodide) can bind to DNA to 

visualize the chromatin of the cells. DNA amount of papain digested discs were 

determined by Hoechst 33258 dye (Invitrogen) with Modulus Fluorometer. Hoechst 

33258 dye excites at 350 nm and emits at 450 nm (Masuoka, et al., 2005). Calf 

thymus was used as standard to calibrate the Modulus Fluorimeter and determine 

DNA amounts quantitatively. For determining the DNA amounts, the protocol of 

Modulus Fluorimeter was used. Hoechst 33258 stock dye (1 mg/ml) was prepared 

for experiments. TNE buffer stock solution (10X) was prepared with Tris base [Tris 

(hydroxymethyl) aminomethane], EDTA disodium salt dehydrate and sodium 

chloride and pH was adjusted to 7.4. For the experiments, (1X) TNE buffer was 

used for diluting samples. Dye solution (2X) was prepared from stock solution and 

dilute with TNE (1X) buffer to obtain the concentration of 200 ng/ml. The dye 

solution and diluted sample was mixed at a 1:1 ratio in methacrylate cuvettes (10 x 

10 mm). For calibration, same procedure was followed. The calibration curve 

constructed with bovine DNA is presented in Appendix F. Diluted standard and dye 

solution were added at a ratio of 1:1 in cuvettes. The samples were measured 

according to selected unit from the fluorimetry before calibration. 

2.2.12.6. Matrix Metalooproteinase-13 (MMP -13)  

MMP-13 concentrations were quantified by enzyme linked immunosorbent assay 

(ELISA) (Cusabio, USA). The media collected and stored at -80°C were used in 

MMP-13 assay. The protocols of the kits were used in experiments. All samples 

were assayed in duplicates. MMP-13 concentrations were measured as ng/ml. 

Calibration curve was presented in Appendix G.  

2.2.13. Animal Studies  

2.2.13.1. In Vivo Tests and Establishment of Experimental Osteoarthritis.  

In vivo OA was established by collagenase type II (Clostridium histolyticum) (885 

units/ mg solid collagen, Sigma) intra-articular injection  into hind knee joints of local 

albino adult male rabbits (weighing average: 2.5 ± 3.5 kg). Animals were housed 

individually and maintained in accordance with the Helsinki Animal Rights and 

Turkish Veterinary Medicine Deontology Regulations (6343/2). The approval of 
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studying on the animals was obtained from the Animal Care and Ethics Committee 

of the Middle East Technical University.  

Rabbits were anesthetized with intramuscular injection of 10 % Ketamine 

hydrochloride (35 mg/kg) and 2 % Xylazin hydrochloride (5 mg/kg). Collagenase 

type II was dissolved in saline (4 mg/ml) and filtered through a 0.22 mm membrane 

for sterilization before the intraarticular injections. After the knee joint was shaved, 

0.5 ml collagenase solution was injected into each joint transcutaneously by an 

orthopedic surgeon experienced in intraarticular injections. The injection was 

performed at day 1 and repeated at day 4 as suggested in the literature (Kikuchi, et 

al., 1998) for establishment of OA. Cartilage degeneration was determined at X-ray 

radiographs obtained on weeks 3 and 6 after collagenase injections. The knee joints 

of rabbits were dissected at week 6 after the initiation of the injections to evaluate 

the development of OA. The evaluations were done by radiography, hardness 

(indentation testing) and histology. 

After establishment of OA, rabbits were divided into groups as presented in Table 

2.2. At 7th week, rabbits were divided into groups. As the first group, healthy rabbits 

in which OA was not developed and no medication was given were used for 

comparison of the results. The second group presented in the table had 

osteoarthritic rabbit. This rabbit did not receive any treatment and established as the 

negative control group. These rabbits were terminated at 8th week. Third and fouth 

groups were hyaluronan (25mg/ml, Adant, Tedej Meiji, Spain) injection groups. At 7th 

week after OA establishment, 0.5 ml hyaluronan was injected into joints and these 

rabbits were terminated at 4th and 8th weeks. The other groups of rabbits were 

injected with microspheres (mentioned in Table 2.1) together with hyaluronan (0.5 

ml) at 7th week after OA establishment. Microsphere treatments were used in two 

different dosage forms; 5 mg and 7.5 mg. The animals were terminated at 8th week 

after the initiation of the treatments and the joints were harvested for radiography, 

hardness (indentation testing) and histological evaluations.  
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Table 2.2. In vivo experiment groups 

Group Groups Time (week) 

1 Healthy joint (positive control) - 

2 OA no treatment  8 

3 OA HYL treatment  4 

4 OA HYL treatment  8 

5 OA 5 mg D MS injection  8 

6 OA 7.5 mg D MS injection  8 

7 OA 5 mg D-CS MS injection   8 

8 OA 7.5 mg D-CS MS injection  8 

 
 

2.2.13.2. Histological Evaluations 

2.2.13.2.1. Light microscopy 

Histological analysis was performed in Hacettepe University Faculty of Medicine 

Department of Histology and Embryology. The joint specimens were removed and 

immersed in 10 % neutral formalin solution (pH 7.0) at room temperature. All 

specimens were decalcified in De Castro solution (chloral hydrate, nitric acid, 

distilled water) and embedded in paraffin by using an automated tissue processor 

with vacuum.  Five to six micrometer thick sections were stained with hematoxylin & 

eosin (HE), Masson’s trichrome (MT) and safranin O (SO). Photomicrographs of 

each sample were generated by a light microscope (Leica, DMR) attached 

computerized digital camera (Model DFC 480, Leica Westlar Germany). Both 

Mankin and the OARSI OA cartilage histopathology scoring systems were used (1, 

2). The subcategories of the Mankin score are structure, tidemark integrity, 

proteoglycan staining, and the cellularity. The OARSI score is the multiplication of 

the grade and the stage of each sample (Tables 2.3, 2.4, 2.5). Grade is an index for 

the OA depth progression (severity). Stage is defined as the horizontal extent of 

cartilage involvement within one side of a joint compartment irrespective of the 

underlying grade. Score is defined as assessment of combined OA grade and OA 

stage. All the samples were scored by 2 blinded observers (PK and EB) and the 

averages were used. 
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Table 2.3. Mankin's Cartilage Degeneration Histology Scale (Farshid, et al, 2009) 

Structure Score 

Normal  0 

Surface irregularities 1 

Pannus 2 

Cleft to transitional zone 3 

Cleft to radial zone 4 

Cleft to calcified zone 5 

Complete disorganization 6 

Tidemark integrity   

Intact 0 

Crossed by blood vessels 1 

Proteoglycan staining   

Normal  0 

Slight reduction 1 

Moderate reduction 2 

Severe reduction 3 

No dye noted 4 

Cellularity   

Normal  0 

Diffuse hypercellularity 1 

Cloning 2 

Hypocellularity 3 
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Table 2.4. Pritzker's OARSI Cartilage Degeneration Histology Scale (Pritzker, et al, 
2006; Farshid, et al, 2009) 

Grade 0:  

surface intact, 

Cartilage morphology intact 

matrix structure is normal 

intact, uninvolved cartilage 

  

Grade 1:  

surface intact, 

Matrix:superficial zone intact, edema and/or fibrillation 

Cells: hypertrophy  death, proliferation (clusters) 

Reaction must be more than superficial fibrillation only 

  

Grade 2:  

surface discontinuity 

Matrix: Discontinuity at superficial zone 

Cationic stain matrix depletion (Safranin O or Toluidine Blue) upper 1/3 of 

 Medium zone increased focal pericondrial staining 

Disorientation of chondron columns 

Cells: hypertrophy  death, proliferation (clusters) 

  

Grade 3:  

vertical fissures 

Vertical clefts on matrix through midzone, branced fissures  

Cationic stain depletion (Safranin O or Toluidine Blue) into lower 2/3 of cartilage 

New collagen formation (polarized light microscopy, Picro Sirius Red stain) 

Cells: hypertrophy  death, proliferation (clusters) 

  

Grade 4:  

erosion 

Superficial zone delamination, Cartilage matrix loss, cyst formation within cartilage 

Mid zone excavation 

  

Grade 5: 

denudation 

Surface is sclerotic bone or reparative tissue including fibrocartilage 

Limited repair of microbrokes on bone surface  

  

Grade 6:  

deformation 

Bone remodelling Deformation of articular surface contour (more than osteophyte 

Joint margin and central osteophytes ; Includes: microfracture and repair 
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Table 2.5. OA cartilage histopathology-stage assessment (Stage=extent of joint 
movement) (Pritzker, et al, 2006) 

Stage % involvement (surface, area, volume) 

0 No OA activity seen 

1 <10 % 

2 10-25 % 

3 25-50 % 

4 > 50 % 

 

 

Table 2.6. OA score-semi quantitative method (score=grade x stage) (Pritzker, et al, 
2006) 

Grade 
Stage 

S1 S2 S3 S4 

G1 1 2 3 4 

G2 2 4 6 8 

G3 3 6 9 12 

G4 4 8 12 16 

G5 5 10 15 20 

G6 6 12 18 24 

 

 

2.2.13.3. Radiological Evaluations 

The animals were dissected at predetermined period after the initiation of the 

treatments and the same joints were harvested for radiographic and histological 

evaluations. X-ray pictures of knee joints were obtained at METU Medical Center 

with the Siemens Multix-C X-Ray Machine. The Agfa Cruix films were used in this 

application. The distance between X-Ray source and knee joints was 100 cm. The 

X-Ray machine was calibrated into 3.2 mA/s and 42KW. Radiological scoring was 

applied to see the levels of radiological values of OA. These joints were scored by 

two blinded orthopedic surgeons by using method of Kellgren-Lawrence according 

to scale given in Table 2.7.  
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Table 2.7. Kellgren-Lawrence radiographic grading scale of osteoarthritis of the 
tibiofemoral joint (Kijowski et al, 2006). 

Grade of OA Description 

0 No radiographic findings of OA 

1 Minute osteophytes of doubtful clinical significance 

2 Definite osteophytes with umimpaired joint space 

3 Definite osteophytes with moderate joint  space narrowing 

4 
Definite osteophytes with severe joint space narrowing and 
subchondral sclerosis 

 

 

2.2.13.4. Hardness Testing (Indentation) 

Hardness of the medial and lateral femoral condyle was measured using a hand-

held, self-contained material testing device, called durometer (Kori Seiki, Japan) 

immediately after termination at room temperature according to ASTM D2240 

standards (Niederauer, et al., 2004). A scale from 0 to 99 was used. On this scale 

low values represented softened cartilage. Three measurements were made at each 

condyle and the average was calculated.  

The hardness tester is known as durometer, and its measuring principle is mainly 

based on Rockwell Hardness. For rubbery and plastic materials, the used 

instrument has been applied according to various different standards such as ASTM 

D-2240, JIS K-7312.  In relation to the measuring stiffness, the probe geometry was 

changed from conical to round and flat. The measured hardness is given names as 

Shored A Hardness, Shored D Hardness, etc. For harder samples, the used probe 

should be like in Figure 2.2.  

  



 

Figure 2.2
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

 

3.1. Optimization of Empty Poly--caprolactone (PCL) Microspheres Prepared 
with Low Molecular Weight PCL (Mw=14 kDa) 

In optimization studies, empty microspheres were prepared using PCL with 14 kDa 

molecular weight. Different concentrations of PVA solutions (0.5, 1, 2, 4 and 6 %, 

w/v) were used. Scanning electron microscopy was used to examine the 

morphology of the particles formed. In Figure 3.1.a and b, SEM images of 

microspheres prepared in 0.5 % PVA solution and 1 % PVA solutions are shown. 

Accordingly, 0.5 % PVA solution did not provide a suitable aqueous environment for 

preparing microspheres, but spherical structures were obtained using 1 % PVA 

solution. However, the particle size distribution of these microspheres (Fig 3.1.a and 

b) was not homogeneous and their surfaces were quite rough. These properties 

could further be improved by increasing the PVA concentration. As shown in SEM 

images in Figure 3.1.c and d, smoother spherical structures that have diameters 

ranging between 5-100 m could be obtained by 4 % and 6 % w/v PVA solutions. 

The former group of microspheres was more homogeneous and better in terms of 

contours of the spheres than the other. SEM analysis of the microspheres also 

showed that by using low concentrations of emulsifiers (2 % PVA solution) larger 

sized particles were obtained than the high concentration cases.  
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stabilization of microsphere droplets at smaller sizes. Besides that, when the 

concentration of PVA increases the viscosity of the aqueous phase increases which 

also prevents coalesce and forms a stable emulsion with uniform droplets. On the 

contrary, it was shown that low viscosity of PVA allowed microspheres flocculate 

and form larger particles (Shukla, et al, 2007). In other words, external phase would 

prevent coalescence of droplets at high concentrations of PVA (Aishwarya, et al. 

2008). 

Aishwarya (2008) used different PVA concentrations from 1 to 5 %, w/v for 

preparing doxycycline loaded PCL microspheres and observed similar effect of PVA 

concentration with the present study. In another study, when the concentration of 

PVA was changed from 0.25 to 2.0 %, microsphere sizes also decreased (Vivek, et 

al., 2007).  

It is known that during microparticle formation, PVA stabilizes the particle surface by 

penetrating between polymer molecules. PVA is a hydrophilic polymer and high PVA 

concentration might have caused high amounts of residual PVA. Even if PVA is 

removed from the system via washing microspheres, at least 8-12 % of PVA still 

remains on the microspheres (Vivek, et al., 2007). This property limits the usage of 

PVA. Therefore, during optimization studies, the concentration of PVA was not 

further increased but gelatin was added to the aqueous phase to obtain more 

viscous emulsion.  

In order to analyze the effect of gelatin, PVA concentration was kept same and 

gelatin concentration was increased from 1 to 3 % w/v. When gelatin concentration 

was increased, evaporating organic phase became much more difficult at low 

temperatures due to gelation below 35-40°C. Considering the possible adverse 

effects of temperature on doxycycline bioactivity, the optimum temperature was 

selected as 37°C. So, it was not possible to use high gelatin concentration for 

aqueous phase. 

The properties of aqueous solution were not the only parameter in controlling 

microsphere size distribution and morphology for further optimization of 

microspheres. Stirring speed was changed and formed to have effect on particle 

size as it gives energy to disperse the organic phase more in water. To avoid 

excessive foaming at high stirring rates, the stirring rate was reduced from 1100 rpm 

to 500 rpm in preparing microspheres. Microsphere sizes decreased with increasing 
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It can be clearly seen that PCL microspheres prepared with different concentrations 

of PVA-gelatin combination appeared to have more spherical contour and smooth, 

less porous surface. The effect of gelatin concentration was investigated by various 

gelatin concentrations with stable PVA (1 %) concentration. The increased gelatin 

concentration decreased the particle size of the spheres as seen in Figure 3.2. 

Although increased concentration of gelatin produced more stable microspheres, the 

rough microspheres and aggregated gelatin around the microspheres were noticed 

(Park, et al, 2006). On the contrary, the use of gelatin protected microspheres from 

agglomeration during microsphere preparation. Stable and undistorted microspheres 

were prepared when the gelatin concentration did not exceed 1 % w/v (Park, et al, 

2006).   

The particle size measurement results supported the SEM outcomes. The higher the 

concentration of PVA solution, the lower the mean particle size of the microspheres 

were obtained (Wei, et al, 2004; Bolourrtchian et al, 2005; Kemala, et al., 2010). The 

microspheres prepared with 2 % PVA solution were found to have mean particle 

size of 100 m (Figure 3.3.a) and 90 % of microspheres were smaller than 250 m. 

Those prepared with 4% PVA solution; however had mean particle size distribution 

of 57 m, while 90 % of this group was smaller than 157 m (Figure 3.3.b). At the 

highest concentration (6 % PVA solution), microspheres had particle size distribution 

with a mean of 32 m and 79.6 m size of 90th percentile (Figure 3.3.c).  

Particle size distribution of microspheres prepared by PVA-gelatin (1 %, each) 

solution (Figure 3.3.d) was demonstrated to have a mean of 84 µm and 90th 

percentile value of 140 µm. Additionally in 1 % (PVA-gelatin) media, gelatin was 

shown to improve the  uniformity and decreased the width of the peak .  
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According to particle size and SEM results, use of 4 % w/v PVA solution in 

microsphere preparation was decided to be appropriate in terms of size, shape and 

morphology of microspheres for intraarticular applications. Below 4 % w/v, the 

microparticles were too fragile and had tendency to aggregate to each other. Above 

4 % w/v, some of the spheres disintegrated into polymer particulates. The uniform 

size distribution and homogeneity of microparticles were only seen in 4 % w/v of 

PVA solution. It was also indicated that 4 % PVA concentration enhanced the 

microparticle recovery when preparing doxycycline loaded PCL microspheres 

(Aishwarya, et al. 2008).  

SEM images confirmed the uniformity of microspheres prepared with 4 % w/v of 

PVA solution. According to particle size distribution analysis, microspheres prepared 

at 4 % w/v PVA solution was found to be the first appropriate group for release 

studies as they have more uniform and better spherical contour.  Second 

appropriate group was PVA-gelatin (1% w/v, each) combination. Indomethacin 

loaded PCL microspheres were also prepared with PVA-gelatin combination to 

obtain the desired spherical form (Park, et al, 2006).   

The doxycycline loaded microspheres were prepared with these selected groups 

and the release studies of these microspheres were evaluated. 

3.2. Results of Doxycycline Loaded PCL (Mw=14 kDa) 

In Figure 3.4, the particle sizes of doxycycline loaded microspheres are shown. 

Microspheres prepared with 4% PVA solution were found to have mean particle size 

of approximately 74 µm and the 90 % of microspheres were smaller than 152 µm. 

Those prepared with 1% PVA-gelatin solution; however had mean particle size 

distribution of approximately 90 µm, with 90 % of the group having sizes smaller 

than 149 µm.  
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by PVA (4 %).  The size of PCL (65 kDa) microspheres prepared by PVA (4 %) was 

smaller than microspheres prepared by PVA-gelatin (1 %, each).  

As seen before in doxycycline loaded and empty PCL (14 kDa) microspheres in 

Parts 3.1 and 3.2, empty microspheres were smaller than doxycycline loaded 

microspheres which were prepared with PCL (65 kDa).  

The microspheres prepared with high Mw PCL (65 kDa) was larger than those of 

low Mw PCL (14 kDa). It was indicated that the organic phase viscosity of PCL (65 

kDa) was higher than PCL (14 kDa) (Kim, et al 2005). Due to high viscosity of 

organic phase of PCL (65 kDa), particle size was increased (Hnaien, et al., 2011). 

The increase in molecular weight increased the particle size of the microspheres as 

expected (Jeong, et al., 2003). 

3.5. Optimization of Doxycycline and Chondroitin Sulfate Co-Loaded Poly--
caprolactone (PCL) Microspheres 

3.5.1. Preparation of Chondroitin Sulfate Loaded Microspheres  

Chondroitin sulfate loaded PCL (Mw of 14 kDa and 65 kDa) microspheres were 

prepared using PVA (4 %) and PVA-gelatin (1%, each) and two different molecular 

weight PCLs. Homogenization was used to set the o/w emulsion before CS diffusion 

into the aqueous phase. This step was needed due to very high reactivity of CS with 

water. Since high shear was created during homogenization, the resultant emulsion 

droplets, thus, microspheres had much smaller particle sizes than those produced 

by magnetic agitation (O’Donnell, and McGinity, 1997). 

The micrographs of the resulting microspheres demonstrated that their structure 

was not perfectly spherical but particles had quite homogenous size distribution 

(Figure 3.12a and b). SEM examination also showed that polymer particles formed 

smooth layers underneath the surface (Figure 14 c and d). There was no pores 

observable on their surfaces at 3000-4000 magnifications. The high stirring rate 

during homogenization decreased the size of the droplets and pores. The mean 

diameter of this set of microspheres was approximately 10 µm (Figure 3.12.b).  
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As a result, 4 % PVA as surfactant and low molecular weight of PCL (14 kDa)   were 

selected for the preparation of doxycycline-chondroitin sulfate co-loaded 

microspheres.  

3.5.2. Preparation of Doxycyline and Chondroitin Sulfate Co-Loaded 

Microspheres  

From the results of D and CS-PCL microsphere optimization studies, 4 % of PVA 

concentration, low molecular weight (14 kDa) PCL and stirring at 3400 rpm with a 

homogenizer (IKA-Ultraturrax T-25) for three hours were selected for formation of 

doxycycline-chondroitin sulfate (D-CS) co-loaded microspheres.   

 

 

  

 

Figure 3.15. SEM micrographs of D-CS loaded PCL (14 kDa) microspheres 
prepared by 4 % PVA   

  

  

B A 

C 



65 
 

As shown in Figure 3.15 a and b, microspheres could be formed with good spherical 

contours. However, the membrane-like formation was again present as in previous 

two sets. The individual microspheres were adhered to this structure. Further 

optimizations on doxycycline-chondroitin sulfate loaded microspheres were needed. 

For the optimum shape and surface properties of chondroitin sulfate (CS) 

microspheres, all chemical conditions were kept the same but stirring time with 

homogenizer was changed from three hours to half an hour. In the following step, 

volume of aqueous solution (using same concentration PVA solution) was raised 

from 40 ml to 75 ml after half an hour stirring at high speed 3400 rpm and then 

stirring was continued at 1100 rpm under hood until chloroform evaporated. Due to 

decrease in stirring time, the size of the microspheres increased.  

The microsphere stability was also influenced from the volume of emulsifying agent 

(aqueous phase). Excessive amounts of PVA were reported to decrease the stability 

of microspheres (Kemala, et al, 2010). Due to this reason, the initial volume of PVA 

solution was selected as 40 ml. However, when CS was added to process, polymers 

had turned into membrane-like forms rather than spheres. This was thought to be 

related with high reactivity of CS with aqueous phase thus decreasing the 

emulsifying effect of the PVA solution. Thus, to increase the emulsion stability 

increasing the volume of the PVA solution was also applied. Moreover, in the first 

group of microspheres prepared without homogenizer, the aqueous phase volume 

was set at 75 ml. In Figure 3.16., the SEM micrographs of microspheres were 

presented.  
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Table 3.2. Comparison of particle sizes of microspheres prepared with PCL (14 kDa) 

MS type d(0.1) (µm) d(0.5)(µm) d(0.9)(µm) 

PVA (4%) (empty) 16.652 57.439 143.442 

PVA (4%) (D loaded) 31.421 74.348 151.228 

PVA-Gel (1%) (empty) 49.625 84.847 137.943 

PVA-Gel (1%) (D loaded) 52.214 90.331 149.130 

 

 

Table 3.3. Comparison of particle sizes of microspheres prepared with PCL (65 kDa) 

MS type d(0.1) (µm) d(0.5)(µm) d(0.9)(µm) 

PVA (4%) (empty) 64.738 104.474 167.744 

PVA (4%) (D loaded) 46.258 94.010 369.996 

PVA-Gel (1%) (empty) 50.853 106.343 194.456 

PVA-Gel (1%) (D loaded) 41.546 121.918 341.314 

 

 

In Table 3.3, the particle size distributions of microspheres with PCL (65 kDa) are 

presented. Mean particle size of microspheres prepared with PVA solution were 

smaller than those prepared with PVA-gelatin (1%, each) solution either in the 

empty or loaded case. Mean size of Doxycycline (D) loaded microspheres were 

bigger than empty microspheres when prepared with PVA-gelatin (1%, each) 

solution but smaller in PVA (4%) case. However, the expected incease in size with 

drug loading was obvious for both conditions in size range that covers the 90 % of 

all particles. 

Besides composition, the increase in speed of stirring is also an important factor that 

results with decrease in size of the microspheres (Wang, et al, 2008a; Radin, et al, 

2009). Jalil and Nixon (1990) also studied the variation of sphere size with respect to 

the stirring rate. Increase in stirring rate decreases the particle size. In our study, the 

4% PVA solution aqueous phases of MS was stirred at 1100 rpm, however, when 

1% PVA-gelatin solution was used the rate was 500 rpm. The small differences in 
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terms of sizes might also be caused by stirring rate difference besides difference in 

aqueous phase.  

It was reported that, when molecular weight of PCL was increased, encapsulation 

efficiency increased.  This was mainly due to the viscosity of the PCL. The viscosity 

of organic phase of PCL (65 kDa) was higher than PCL (14 kDa). Viscous organic 

phase prevented the doxycycline diffusion into the external aqueous phase before 

hardening of microspheres. In another study, felodipine loaded microspheres were 

prepared with molecular weights of 10, 65 and 80 kDa PCLs. Microspheres 

prepared with highest molecular weight PCL (80 kDa) had the most viscous organic 

phase, so the encapsulation efficiency was the highest. The second highest 

encapsulation efficiency was obtained in microspheres prepared with PCL (65 kDa) 

and the lowest encapsulation efficiency was measured for microspheres prepared 

with PCL (10 kDa) (Kim, et al 2005). In our study, when such comparison was 

made, microspheres of 14 kDa PCL encapsulated less doxycycline than those 

prepared using 65 kDa PCL.  

Dimercaptosuccinic acid (DMSA) loaded PLGA microspheres were prepared by 

using several PVA concentrations with several stirring rates. Smaller microspheres 

had higher encapsulation efficiency than larger microspheres. (Shukla, et al., 2007). 

In our study highest loading and encapsulation efficiency was obtained with PCL 65 

kDa microspheres prepared in PVA-gelatin aqueous phase, although they were 

formed at slow stirring rate and had the largest in mean particle size. Hence we may 

conclude that the effect of molecular weight overweighted the effect of other factors 

but when polymer had low Mw the composition of aqueous conditions were more 

effective on modifying encapsulation and loading results. The increase in molecular 

weight increased the particle size of the microspheres (Jeong, et al., 2003). As 

mentioned before, high molecular weight PCL increased the viscosity of the organic 

phase, thus the emulsion droplet size increased which, increased the size of 

microspheres. In addition, viscous organic phase tended to reduce the amount of 

unencapsulated drug in the external aqueous phase (Jeong, et al., 2003).       
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3.7. Drug Release Results of Microspheres 

3.7.1. Drug Release Profiles of Doxycycline Encapsulated Microspheres 

Prepared with Low Molecular Weight PCL  

In order to calculate the drug amounts of release samples optical densities were 

measured at 274 nm by using spectrophotometer (Hitachi, Japan) and they were 

converted to drug amounts using calibration curve of the drug at the same 

wavelength (Appendix B).  

Next and major step of optimization studies for a drug delivery system involves the 

characterization of drug release behavior.  Drug encapsulated in the polymer would 

be released from the system depending on many parameters of the system and the 

environmental conditions. Doxycycline is a water soluble drug that makes its 

dissolution and diffusion easier. However, PCL is a hydrophobic polymer that mostly 

retains its content for extended time period. Thus, release of the drug into 

surrounding medium is a result of combination of many factors such as drug 

dissolution and diffusion, size of microspheres, polymer to drug ratio, entrapment 

efficiency, etc.  

In order to optimize the release experiments, doxycycline encapsulated PCL 

microspheres prepared by 4% PVA were used. Figure 3.22 demonstrates the results 

of release experiments of these microspheres. At the initial stage, there was fast 

release period (burst effect) related to the drug entrapped at or close to the surface 

of the microspheres. Drug release continued more slowly. This release profile was 

caused by the delay of water penetration, thus the diffusion of the drug through the 

amorphous region into the release medium was retarded (Zalfen, et al, 2008). At the 

later stage, drug was released slowly due to low permeability of water into 

hydrophobic polymer; PCL (Figure 3.22). The mechanism of drug release from PCL 

matrix is different from PLGA matrix. PCL degrades more slowly than PLGA which is 

less hydrophobic than PCL. Drug release of PLGA matrices may depend on both 

degradation and diffusion (Vivek, et al., 2007, Jeong, et al., 2003). 
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approximately 33 % of doxycycline at the end of three months. PCL microspheres 

prepared in PVA-gelatin (1 %, each) solution, encapsulated less (10.80 %) 

doxycycline than microspheres prepared in PVA (4 %)(17.58 %). Therefore, the 

significant difference in the amount of doxycyline released, despite similar % release 

results was thought to be related with the initial amnounts of drug deposition within 

the microspheres. Besides that PCL microspheres prepared with PVA-gelatin (1 %, 

each) were larger in average diameter (90 µm) than microspheres prepared with 

PVA (4 %). This might have also contributed to faster release of the drug by first 

group.  

The solubility properties of drugs are known to influence drug loading and also the 

release profiles. p-Nitroaniline has low water solubility than rhodamine B and these 

two model drugs were encapsulated in PCL (10 kDa) in a recent study. Poorly water 

soluble drugs have higher solubility within organic phase and thus have higher 

loading percent than others. Water solubility of p-Nitroaniline and rhodamine B were 

approximately 1 and 10 mg/ml respectively. Drug loading of p-Nitroaniline was 47.14 

%, whereas that of rhodamine B was 7.84 %. Thus, p-Nitroaniline which was more 

hydrophobic can be distributed more regularly in the polymer matrix whereas 

rhodamine B being more hydrophilic was mostly distributed close to the surface of 

microspheres (Wang, et al, 2009). Wang and coresearchers (2009) reported that 

decrease in drug solubility in water increase in encapsulation efficiency and the 

initial burst amount decreased. Doxycycline is also a highly water soluble drug (50 

mg/ml) and is insoluble in organic solvents such as chloroform and ether. Thus, 

initial burst release of doxycycline was also related with drug entrapment near the 

surface due to its solubility properties.  

In another study, the drug, etoposide, which is hydrophobic in nature, was 

entrapped in different polymers such as PLGA (50:50), PLGA (75:25) and PCL. The 

highest entrapment efficiency of this drug was obtained with the most hydrophobic 

polymer (PCL) among the group. The entrapment efficiency was low as in etoposide 

loaded PLGA (50:50) microspheres. Highest initial burst release was observed when 

the most hydrophilic PLGA (50:50) microspheres were used (Vivek, et al., 2007) 

Jain et al (2000) observed a relatively high burst release of cytochrome c from 

microsphere preparations with the more hydrophilic polymer as Vivek and coworkers 

(2007) observed similar etoposide release. Hydrophobic polymers have low 

amounts of surface adsorbed drugs compared with hydrophilic polymers. 
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Burst release is a critical problem of injectable microparticles if slow release for large 

periods of time is required (Hassan, et al, 2007). Release stage following burst 

effect was very slow due to low permeability of water into. However, burst release 

might bring some advantages like establishing a certain concentration of the drug at 

the site in the initial stages of treatment where disease has established to some 

degree. This would probably provide good impact on causes of the disease before 

longer term sustained provision of the drug. Water penetration and degradation was 

low in PCL and drug release was only based on diffusion from amorphous regions of 

polymer matrix (Jeong, et al., 2003). In this study, despite the high solubility of 

doxycycline in water, hydrophobic characteristics of PCL decreased the burst effect 

compared to those observed with hydrophilic polymers such as PLGA and its 

copolymers in literature (Hassan, et al, 2007). 

3.7.2. Drug Release Profiles of Doxycycline Encapsulated Microspheres 

Prepared with High Molecular Weight PCL (Mw=65 kDa) 

The selected two emulsification conditions were used in the preparation of 

microspheres with high molecular weight polymer (PCL). Their release profiles were 

compared in Figure 3.28. Drug release was continuous throughout the release 

period for both set. Unlike low molecular weight polymer microspheres, they had 

constant release rate with similar amounts of drug being released in each time 

interval. In one month period, microspheres prepared in PVA (4 %) and 

microspheres prepared in PVA-gelatin (1 %, each) aqueous phases, released 

approximately 9 and 11 % of the drug, respectively. Hence release profile has 

changed owing to use of high molecular weight polymer (as compared with previous 

release experiments in Section 3.7.1).  

Microspheres prepared with 4% PVA released approximately 3.1 mg drug which 

was 25.39 % of the loaded amount (Figure 3.28 and 3.29). However, samples 

prepared with 1 % PVA-gelatin solution released approximately 4.3 mg drug which 

was 29.46 % of the loading.  This difference was thought to be related with most of 

the particles (given in Figure 3.9) of the second preparation method being smaller 

than those prepared by the first one (appox. 341 vs. 370 m, for 90 % of the 

distribution).  
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Figure 3.30. SEM images of doxycycline loaded PCL (65 kDa) microspheres a) 
PVA; 4 % b) PVA-gelatin; 1 %, each) after release experiments 

 

 

3.7.3. Mathematical Modelling of D Release from Low and High MW PCL 

Microspheres 

The release kinetics of doxycycline loaded PCL (14 kDa) and PCL (65 kDa) 

microspheres prepared by PVA (4 %) and PVA-gelatin (1 %) are described by 

Higuchi and Korsmeyer-Peppas models. Higuchi and Korsmeyer-Peppas model 

equations are 

ܳ௧
ܳஶ
ൗ ൌ .ுܭ  ଴.ହ,                 (3.1)ݐ

 

ܳ௧
ܳஶ
ൗ ൌ .௄௉ܭ   ௡,                   (3.2)ݐ

 

as already given in Table 1.1 in Section 1.5, respectively. Here, ܳ௧ ܳஶ
ൗ Is fractional 

release of drug in time t, KH  and ܭ௄௉, are Higuchi and Korsmeyer-Peppas constant 

characteristics of drug-polymer system, and n is diffusion exponent characteristic of 

release mechanism. 

B A 
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It was reported that suitability of some equations mainly depended on the 

cumulative released drug amount (Avachat and Kotwal, 2007). Korsmeyer-Peppas 

which is called diffusion model equation can be applied to the first 60 % of fractional 

release (Avachat and Kotwal, 2007). 

Briefly, drug release from a polymer matrix depends on properties of polymer and 

drug. For degradable systems, diffusion of drug and erosion of polymer matrix can 

be the main mechanisms of release. The importance of these mechanisms change 

for systems due to composition, molecular weight of polymer and drug, crystallinity 

percent, hydrophobicity, degradation rate, particle size, pore size and shape of the 

drug delivery system.  

The geometric shape of the system influences the diffusion exponent n. In Fickian 

diffusion, n is 0.50 for slab, 0.45 for cylinder and 0.43 for sphere. In non-Fickian 

(anomalous) diffusion, n is between the Fickian diffusion value and zero-order value 

(n=1) for non-swellable systems. For swellable systems, n is between the above and 

case-II transport (n = 1 for slab, 0.89 for cylinder and 0.85 for sphere) (Miao, et al., 

2006; Chang, et al., 2006). 

Curve fittings were performed on the data presented in Figures 3.26 and 3.28 in 

section 3.7.1 and 3.7.2 and results are presented in Tables 3.4 and 3.5 indicated 

that the kinetics of doxycycline release from PCL (14 kDa) microspheres are 

described effectively by the Higuchi Model (linear relationship of release amount 

with the square root of time), i.e., governed by Fickian diffusion. Thus a decrease in 

doxycycline (D) release over time is expected as drug is depleted in the matrix and 

the diffusion path length increases. The release rate was boosted by raising the 

drug loading in the matrix, correlating with the response of diffusing species to a 

higher concentration gradient. The values of the release exponent (n) in the 

Korsmeyer-Peppas model for doxycycline loaded PCL microspheres was found 

below 0.43 for PCL (14 kDa) microspheres, providing further support for a release 

mechanism governed by Fickian diffusion of doxycycline from PCL (14 kDa) 

matrices.  
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Table 3.4.Higuchi Model of doxycycline release from PCL microspheres 

Aqueous phase PCL (kDa) KH R2 

4% PVA 14 3.968 0.970 

1% PVA-gelatin 14 3.360 0.988 

4% PVA 65 2.081 0.936 

1% PVA-gelatin 65 2.484 0.951 

 

 

Table 3.5. Korsmeyer-Peppas model of doxycycline release from PCL microspheres 

Aqueous phase PCL (kDa) KKP n R2 

4% PVA 14 7.508 0.374 0.986 

1% PVA-gelatin 14 5.003 0.432 0.989 

4% PVA 65 1.652 0.550 0.965 

1% PVA-gelatin 65 1.652 0.600 0.988 

 

 

The verification of complex release mechanisms would be problematic. Here, 

experimental results were compared with mathematical model called diffusion 

model. Diffusion model was applied for the description of the experimental data of 

doxycycline release and for the identification of the release mechanisms for the PCL 

(14 kDa) and PCL (65 kDa) microspheres. Equation (1.5) from Section 1.5.2.1 was 

used for graphical administration of the model. 

Firstly, the estimation of diffusion coefficient was calculated from release data. 

Ritger and Peppas, (1987) simplified equation (1.5) and obtained equation (3.3) to 

calculate the diffusion coefficient for all microsphere types as 

ଵܥ
∞ܥ
ൗ ൌ 6.ඥሺߨ|ܦ. ܴଶሻ                 (3.3) 

The experimental data for burst release and after transition to a different release 

pattern were omitted to obtain linear release rate (Kurnik and Potts, 1997).Then, 

diffusion coefficients were calculated from equation (3.3) (Romero-Cano and 

Vincent, 2002).Calculated diffusion coefficients for the experiments presented in 

Figures 3.26 and 3.28 from equation (3.3) are given in Table 3.6.  



88 
 

Table 3.6.Diffusion coefficients calculated using experimental data presented in 
Figures 3.26 and 3.28 

Aqueous phase PCL (kDa) D (cm2/sec) 

4% PVA 14 1.00 x10 -9 

1%PVA-gelatin 14 1.25x10 -9 

4 % PVA 65 0.60 x10-9 

1%PVA-gelatin 65 0.90 x10-9 

 

 

Fan, et al. (2004) measured the diffusion coefficient of doxycycline in water through 

PVDF membrane as 6.59 x10-6 cm2/sec from Franz Diffusion Cell. Diffusion 

coefficients of drug from microspheres mainly depend on crystallinity of polymer, 

shape, molecular weight, pore size, and properties of microspheres. These factors 

affect the doxycycline diffusion from polymer matrix. Lidocaine loaded PLA 

nanoparticles had smaller diffusion coefficient than diffusion coefficient of lidocaine 

through PLA films (Polakovic, 1999). The estimated diffusion coefficients for 

lidocaine loaded PLA nanoparticles were in the range of 5-7x 10-20 m2/s. The 

diffusivity of an antibiotic, gentamicin sulphate in the porous PCL matrix (8.3 % 

loading) calculated as 1.5 x 10-9 cm2/s.  For comparison, the diffusion coefficient of 

solutes in water is of the order 2 x 10-5 to 1x 10-6 cm2/s (Chang, et al., 2006)    

In Figures 3.31 and 3.32, experimental release profiles were compared with 

diffusion model equation (1.5) in which the calculated diffusion coefficients were 

used. The diffusion coefficients for PCL (14 kDa) microspheres were larger than the 

ones for PCL (65 kDa) microspheres resulting the higher release rate for PCL (14 

kDa) microspheres than PCL (65 kDa) microspheres. Increase in diffusion 

coefficient accelerated the release rate (Romero-Cano and Vincent, 2002). 
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Small diffusion coefficients were mainly due to dense polymer matrix (Romero-Cano 

and Vincent, 2002). Small but significant differences were encountered while 

release period was long. Mechanism of drug release was Fickian for PCL (14 kDa) 

microspheres and non-Fickian for PCL (65 kDa) microspheres.  

The modeling results showed that in the case of high drug loadings (about 30%), 

where the whole drug or a large part of it was in the crystallized form. On the other 

hand, the drug release was diffusion-controlled at low loadings (about 10 %) where 

the solid drug was randomly dispersed in the matrix (Polakovic, et al., 1999). The 

doxycycline loaded PCL (14 kDa) microspheres had low loadings than doxycycline 

loaded PCL (65 kDa) microspheres presented at Table 3.1 in Section 3.6.1. In the 

case of doxycycline release from PCL microspheres, diffusion was found to be the 

rate controlling mechanism at low loadings. As a result, diffusion model could be 

used for description of PCL (14 kDa) microspheres due to their low loading ratio.  

3.7.4. Drug Release Profile of Doxycycline-Chondroitin Sulfate (D-CS) Co-

Encapsulated Microspheres Prepared with Low Molecular Weight PCL (Mw=14 

kDa) 

Release profile of the D-CS combination loaded microspheres was given in Figure 

3.33. According to this profile, burst release was seen at first 5-8 days. The burst 

release might be related to the surface adsorbed drug particles dispersing rapidly 

from microsphere into buffer in the first few days (Huang, et al., 2009). After the 

initial burst phase, the release pattern followed gradual increase. This release profile 

is commonly observed for PCL microsphere systems and is described as “PCL 

microspheres gave an initial burst phase and then cumulative amount release 

increases over time” (Chang, et al, 2006). At day of 3, the released drug amount 

was 9.69 % of total release. The same degree of burst effect was also seen at only 

D loaded PCL (14kDa) microspheres.  
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SEM images of D-CS coloaded PCL microspheres are shown in Figure 3.35. The 

surface structure of microspheres was not notably different from those of 

microspheres before release. Hence, it was thought that release mainly depended 

on diffusion from the small pores and routes through the matrix.  

3.7.5. Gel Permeation Chromatography (GPC) Measurements 

In Appendix H, the results of Gel Permeation Chromatography (GPC) 

measurements were shown. The molecular weight changes before and after release 

experiments and the polymer (PCL) itself were measured.  

3.8. Fourier Transform Infrared (FTIR) Spectroscopy 

In this study, FTIR spectroscopy was employed to examine if there occurred any 

change in the chemistry of polymer and drug upon microsphere processing 

procedures and whether they formed a new type of observable interaction or not. In 

order to evaluate the characteristic peaks for the polymer and drug were first 

determined by their single spectra and then compared with that of microcapsules.         

FTIR spectra of commercial PCL (14 kDa, Figure 3.36) and doxycycline (Figure 3.37 

are presented.  

PCL showed its characteristic peak at about 1730 cm-1 due to C=O of ester carbonyl 

groups. The stretching band from the CL was strong and clearly detected 

(Aishwarya, et.al, 2008).  PCL (80 kDa) had the C=C stretching vibration peak and 

C-O stretching peak at 1468 and 1191 cm-1, respectively (Park, et al, 2006). 

Other characteristic absorption bands for PCl are at about 2943 cm−1 (attributed to 

the stretching of C–H) and at 1721 cm−1 (C=O stretching band). The bands at 1163 

cm−1 were attributed to the C–O stretch (Zheng et al, 2008; Ha et al, 1999).  
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Figure 3.36. FTIR spectrum of PCL (14 kDa) used in preparation of microspheres  

 

 

Doxycycline had characteristic bands of different functional groups. Band appearing 

at 3358 cm-1 was due to O-H / N-H stretching vibrations and those at 2924 and 2854 

cm-1 were due to C-H stretching vibrations. Primary amide (N-H) bending was at 

1666 cm-1 whereas aromatic N-H bending was at 1581 cm-1. Carbonyl (C-O) 

stretching vibrations were seen at 1615 cm-1. –CH2 and C-H bending vibrations were 

measured at bands of 1460 and 1329 cm-1, respectively. C-N stretching vibrations 

were seen at 1220 and 1173 cm-1 (Patel, et al, 2008). Tamimi, et al. (2007) 

compared FTIR spectra of doxycycline hyclate and doxycycline base. In the 1650 

cm-1 region, related to NH2 group, there seemed a main difference between the 

drugs. This group interacted with HCl in doxycycline hyclate and therefore the 

intensity of the 1650 cm-1 transmittance decreased in doxycycline hyclate samples. 

Conversely, doxycycline monohydrate (base) samples had a more apparent 

transmittance peak at 1650 cm-1 because of the HCl. That confirmed the fact that 

HCl has been removed from the molecular complex and doxycycline hyclate was 

converted into doxycycline monohydrate.  
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Figure 3.37. FTIR spectrum of doxycycline.  

 

 

In Figures 3.38 and 39, FTIR spectra of empty and D loaded PCL (14 kDa) 

microspheres prepared by 4% PVA and 1% PVA-gelatin were presented, 

respectively. Accordingly, there was no difference between FTIR spectra in the 

presence or absence of doxycycline. Similarly, doxycycline loaded PLGA 

microspheres and empty PLGA microspheres were compared in literature. There 

was no difference in spectra of those microspheres as in the case of this study 

(Patel, et al, 2008). Some bands of doxycycline were not distinct due to identical 

stretching of empty PCL microspheres and doxycycline loaded microspheres at the 

same bands. This indicated that doxycycline structure did not change during the 

production of microsphere (Patel, et al, 2008). This might also be due to lower 

amount of doxycycline in microspheres after loading compared to the amounts used 

in single drug FTIR analysis. 
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Figure 3.38. FTIR spectra of empty and loaded microspheres prepared by PVA 
(4%). 

 

 

 

Figure 3.39. FTIR spectra of empty and loaded microspheres prepared by PVA-
gelatin (1%, each). 
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Figure 3.40. FTIR spectra of empty microspheres prepared by PVA (4%) and PVA-
gelatin (1%, each): Doxycycline hyclate mixture (1:5)  

 

 

In order to ensure the results, empty PCL (14 kDa) microspheres were mixed with 

doxycycline hyclate (1:5) to show the doxycycline hyclate presence (Figure 3.40). It 

was observed that the structure of doxycycline hyclate was hindered by the peaks of 

the PCL structure.    

3.9. Differential Scanning Calorimetry (DSC) Measurements 

DSC experiments were carried out to determine the physical state of the polymer 

and the drug in the formulation.It was also conducted to study whether the 

interactions between the drug and polymer changed their thermal properties in 

microspheres before and after release experiments. The effects of different 

preparation conditions (such as PVA) in terms of DSC results were also evaluated. 

Chawla and coworkers (2002) indicated that Pluronic F-68 absence increased the 

melting point of tamoxifen loaded PCL nanoparticles.  

In Figures 3.41 (1) and (2), DSC thermograms of low molecular weight (and high 

molecular weight PCL (14 kDa and 65 kDa) were shown, respectively.  In order to 

determine the Tg, values of these two polymers, second heating run was applied. Tm 

and Tc values were determined and they are listed in Table 3.7. First heating run 
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values were taken in consideration.  In Figure 3.41, derivative of heat flow values 

are demonstrated as dashed lines. The exact value of Tg could not determined but it 

was estimated to be under -60°C which was the minimum temperature limit for the 

system used. Researchers also indicated that the Tg value of PCL was 

approximately -60°C and the value mainly depended on the molecular weight of the 

PCL (Acierno, et al., 2006).  

From the thermograms, it was observed that low Mw PCL (14 kDa) had higher 

crystallinity value than high Mw PCL (65 kDa). The low melting temperature, defined 

as endothermic peak during the second heating scan at 10°C/min and the 

crystallization temperature, defined as the exothermic peak during a cooling scan at 

10°C/min were 67 and 22 °C, respectively. The melting temperature measured in 

the first scan is always higher than that obtained in the second heating scan after 

crystallization (Estelle’s, et al, 2008). The melting and crystallization points obtained 

for the commercial PCL was of the same order as mentioned in the literature value 

(Estelle’s, et al, 2008).  
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Table 3.7. DSC analysis results of PCL polymer and PCL microspheres  

Sample Tm (°C) ∆Hm(J/g) Xc (%) Tc (°C) 

PCL=14 kDa 67,61 82,7449 59,3153 22,19 

PCL=65 kDa 65,16 68,1577 48,8586 9,34 

4P MS PCL=65 kDa Before R 63,30 89,2607 63,9862 34,83 

4P MS PCL=65 kDa After R 66,31 92,4464 66,2698 35,84 

4PMS  PCL=14 kDa Before R 60,11 91,2418 65,4063 36,66 

4P MS PCL=14 kDa After R 62,96 91,5989 65,6623 38,49 

1P MS PCL=14 kDa Before R 60,12 83,6474 59,9623 36,20 

1P MS PCL=14 kDa After R 64,98 97,8142 70,1177 38,38 

1P MS PCL=65 kDa Before R 63,64 81,9569 58,7505 31,85 

1P MS PCL=65 kDa After R 66,00 87,0032 62,3679 36,52 

4P PCL=14 kDa empty MS 61,31 97,1950 69,6738 37,71 

4P PCL=65 kDa empty MS 62,78 81,2764 58,2627 33,34 

1P PCL=14 kDa empty MS 61,75 86,1411 61,7499 36,02 

1P PCL=65 kDa empty MS 63,96 83,0273 59,5178 33,00 

Doxycycline 201,00 ref:Sigma Aldrich  

(Tm: melting temperature; ∆Hm(J/g): Heat of Fusion; Xc: crystallization degree; Tc: crystallization 

temperature; 4P:PVA 4%; 1P:PVA-gelatin 1%) 

 

 

When different molecular weight commercial PCL’s (14 kDa and 65 kDa) were 

compared (Table 3.6), the crystallinity degree of high molecular weight (65 kDa) was 

found to be lower than that of low molecular weight one (14 kDa). Crystallization 

temperature of high molecular weight PCL was also lower than that of low molecular 

weight. However, DSC results of microspheres did not show much difference in 

crystallinity degrees between microspheres of different molecular weight polymers 

when they were prepared in same aqueous environment. The degree of polymer 

crystallinities was found to be more in microspheres than those of original polymers 

showing that polymer chains get more ordered while being transformed into 

microsphere form. Also, microspheres after release experiment had higher 

crystallinity degrees than the latter one which is a common observation in similar 
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drug delivery studies. This observation can be explained by the loss of small 

amorphous polymer chains especially on the surface of MS during release 

experiments.  

Crystallinity strongly affects both the drug release kinetics and the degradation 

(Carcaboso, et al, 2008). When the PCL was used as a polymer in drug release 

systems, drug release behavior mainly depended on the crystalline microstructure. 

The molecular weight of polymer affected the crystallinity. When the molecular 

weight of PCL increased, the crystallinity decreased (Miyajima, et al., 1997; Jeong, 

et al., 2003). Papaverine loaded microspheres were prepared with molecular 

weights of 10, 40 and 80 kDa PCL and felodipine loaded microspheres were 

prepared with molecular weights of 10, 65 and 80 kDa PCLs. Similarly in the present 

study, it was seen that PCL (14 kDa) and its microspheres were more crystalline 

than PCL (65 kDa) and its microspheres at Table 3.6. 

In order to analyze the drug release mechanism, besides solubility, physical state of 

the drug within the microspheres was also studied. In Figure 3.42, DSC 

thermograms of empty and doxycycline loaded PCL (14 kDa) microspheres 

prepared by using PVA (4 %) were seen. Melting peak of doxycycline was absent on 

the differential scanning calorimeter thermogram of PCL microspheres containing 

doxycycline. This phenomenon was also seen at papaverine loaded PCL 

microspheres. It was estimated that the drug was dispersed in the microspheres as 

an amorphous form, not crystalline form (Jeong, et al., 2003). Moreover, 

degradation of PCL in aqueous media was very slow due to the semi-crystallinity 

and hydrophobicity (Ha et al, 1997). These facts supported the SEM and slow 

release results that drug release mechanism was not the degradation of polymer 

and it was mainly based on diffusion of drug through the polymer (Jeong, et al., 

2003). 
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Figure 3.42 also showed that doxycycline encapsulation did not change the melting 

and crystallization temperatures of these microspheres. Melting temperature of 

doxycycline was higher than 185°C. The exact value was not determined by this 

measurement. The melting temperature was taken from SigmaAldrich and it was 

201°C. It can be clearly stated that drug was in its crystalline form and there was no 

interaction between doxycycline and PCL. Finally, solvent evaporation-emulsion 

technique did not change the structure of doxycycline. Vanco-loaded chitosan 

microspheres prepared by using spray drying process and interactions were 

analyzed with DSC. Process did not change the structure of chitosan and Vanco 

(Cevher, et al., 2006).  

Crystallinity of the polymer is also very important in encapsulation of drugs. The 

crystalline phase of the polymer is impermeable to water and drug is also 

encapsulated in the amorphous phase of the polymer. So, the higher the amorphous 

phase, the higher the encapsulation efficiency (Youan et al, 1999). Kim and 

coworkers (2005a) indicated that low molecular weight PCL (10 kDa) exhibited 

higher crystallinity than higher ones (65 and 80 kDa). Therefore, the lowest 

entrapment efficiency was measured when lowest molecular weight PCL (10 kDa) 

was used. Entrapment efficiency of PCL (65 kDa) was lower than PCL (80 kDa) and 

higher than PCL (10 kDa). Youan and coworkers (1999) reported that entrapment 

efficiency was the balance between the molecular weight and the crystallinity. 

Doxycycline loaded PCL (65 kDa) microspheres were more amorphous than PCL 

(14 kDa) microspheres. Hence, they have encapsulated more drug than PCL (14 

kDa) microspheres.  

3.10. Biocompatibility Studies  

3.10.1. Effect of Microspheres on Chondrocyte Viability 

The biocompatibility of microspheres was evaluated with in vitro cytotoxicity studies 

using MTT viability assay. The results are presented in Figure 3.43 as relative 

viabilities with respect to control. All microspheres had viabilities above 85 % and 

thus, were found biocompatible.   
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It was observed that the healthy chondrocytes adhered to the tissue culture flask 

and gained elongated shape. On the contrary, osteoarthritic chondrocytes kept their 

round morphology while adhering to the flask surface as seen in image of the cells 

at 10. This characteristic morphology of the diseased cells in culture has been 

defined as‘fried egg’ structure (Omelchenko, et al, 2002). In addition, the adhesion 

period was also different from each other for healthy and OA chondrocytes. Primary 

culture of healthy cells adhered only 3 days after introducing to culture flasks, while 

osteoarthritic cartilage cells could adhere after 1 week. The proliferation stages of 

these cells were also different from each other (Figure 3.46 c and d). Adhesion 

period also affected the proliferation stage negatively; proliferation of the cells was 

low. Cell morphologies at 85 % confluency are also shown in Figure 3.46. The 

morphological differences between healthy and OA cells were more observable at 

confluency. Here, both healthy and osteoarthritic cells had their specific polygonal 

morphology. However, osteoarthritic cells were smaller than healthy cells and 

showed large zones of “fried egg” structure.  

3.11.2. Three Dimensional (3-D) Culture of Chondrocytes 

For development of in vitro OA models researchers prefer to use osteoarthritic 

human articular chodrocytes in studies.(Nerucci, et al., 2000; Julovi, et al., 2004; 

Barksby, et al., 2006; Julovi, et al., 2008). In this study, instead of human OA 

chondrocytes, osteoarthritic rabbit articular chondrocytes were used to develop a 3-

D model with agarose. While 3-D environment of the cells mimicked the natural 

environment of the cartilage, the medium took off the role of synovial fluid of the 

cartilage. Cell-agarose mixture was casted into wells of 24-well tissue culture plate 

where they gelled to 3-D form. In Figure 3.47, phase contrast photograph of agarose 

embedded chodrocytes were seen.  
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differences between IL-1β treated groups, when compared pair-wise, were not 

statistically significant. 

Similar outcomes with other time points were observed for GAG amounts of discs at 

24th day; control was statistically different from all of the IL-1β treated groups and 

there were no significant differences among IL-1β treated groups.  

When change in GAG contents of treatment groups according to sample collection 

time was considered, differences between 9th and 24th days’ results were obtained to 

be statistically significant (p<0.05). GAG analysis of 3D agarose-chondrocyte 

constructs also demonstrated that 20 ng/ml of cytokine (IL-1β) can cause 

unfavorable effects on matrix accumulation by the cells. The decrease in GAG 

content upon IL-1β application might be caused by reduced synthesis of GAG 

(Kuroki, et al, 2005). Differences in GAG content between groups might be a result 

of decreased production, increased degradation or both (Kuroki, et al., 2003). This 

result demonstrated that, established drug delivery system did not have any positive 

effects on GAG synthesis. This result was expected since there was no such 

information in literature about the effect of antibiotics on GAG synthesis. Cell culture 

studies reported and suggested therapeutic use of tetracycline group antibiotics in 

order to inhibit the collagen degradation by MMPs. During OA development, 

cytokines such as IL-1 produced by activated synoviocytes, mononuclear cells or by 

cartilage itself significantly up-regulate MMPs (Fernandes, et al., 2002). An agent 

was needed to stop this reaction (Smith, et al., 1999; Blumberg, et al., 2008).  
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cytokine activity (Little et al., 1999; Tortorella et al., 2001). In literature, similar 

results were obtained by using IL-1β (Kuroki et al, 2005; Huh et al., 2009).  

3.12.3. Hdroxyproline Assay 

Collagen is synthesized from chondrocyte cells and it influences the mechanical 

properties of cartilage tissue. In literature, osteoarthritic cartilage cells were shown 

to release collagen into cell culture media (Little, et al. 2005; Palmer, et al. 2009; 

Wilson, et al. 2006). In order to estimate the total collagen content of the agarose-

chondrocyte discs, their hydroxyproline contents were determined. Collagen content 

is found from hydroxyproline (HYP) content by taking the conversion factor of HYP 

to collagen as 8 (Reddy and Enwemeka, 1996 and Wilson, et al. 2007). HYP 

content was normalized by DNA contents as in the case of GAG results (Figure 

3.49). In Figure 3.51, HYP content of discs were shown at 9th, 15th and 24th days, 

respectively. On day 9, the difference in HYP contents of IL-1β and IL-1β+D MS 

treated groups was significant. On the other hand, HYP content of treatment groups 

and controls were not significantly different from each other on the three sample 

collection times (p<0.05). HYP contents of all IL-1β added groups showed increase 

from 9th to 15th  and  9th to 24th days were statistically significant (p<0.05). Pairwise 

comparison of HYP contents of 15th and 24th days indicated that treatment groups 

were not statistically different from each other.  
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studies suggested that at least 4 weeks culture with 50 ng/ml IL-1 applications made 

it possible to measure collagen degradation (Kozaci, et al., 1996; Ellis, et al., 1994; 

Mitcell, et al., 1994). Another prospective contributor to this result might be the 

serum contained in cell culture media. Serum has an inhibition effect on proteinases 

and it also inhibits the IL-1 stimulated degradation of collagen in cartilage (Kozaci et 

al, 1997). 

3.12.4. MMP-13 Concentrations 

Several MMP members are known to be involved in OA, especially the 

collagenases; MMP-1, MMP-8 and MMP-13. The collagenase group members 

degrade type II collagen in the cartilage matrix. Inflammatory cytokines such as IL-1 

induced MMPs during cartilage degradation. MMP-3 and 13 are secreted from 

chondrocytes (Kim, et al, 2005).   

In Figure 3.53, MMP-13 concentrations of cell culture media were given. In the 9th 

day of the experiments MMP-13 concentration of IL-1β treated and non-treated 

groups were not significantly different from each other (p<0.05). However, 

numerically, IL-1β control had the highest concentration of MMP-13 (p<0.05). Yet, 

Microsphere treatments were observed to have MMP-13 amounts in between two 

controls, suggesting that released doxycycline inhibited MMP-13 activity to some 

extent. 
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microspheres, 7.5 mg microspheres dosage was also thought to be investigated in 

in vivo experiments.    

Concentrations of MMP-13 were significantly higher in groups for the OA model than 

in groups did not contain IL-1 for the first two time points of this study. In literature, 

similar results were documented for MMP-13 concentrations of negative controls. 

(Dvorak, et al., 2002). 

Finally, it can be concluded, doxycycline release inhibited the MMP-13 activity, but 

to different degrees at different time points. MS treatments were not significantly 

different from each other at any of the time points (p<0.05). Doxycycline was used to 

decrease the levels of MMP-13. It has a protective effect against experimental OA 

(Greenwald, et al, 1994). It was reported that, this effect can be through controlling 

the MMP levels. Other studies also showed that it inhibits the activity of MMP-13 

(Smith, et al., 1999).  

3.12.5. Release Profiles of Doxycycline Loaded Microspheres  

At the third day of the cell culture experiments, doxycycline loaded microspheres (D 

MS and D-CS MS) were added to see the effects of released bioactive agents on 

chondrocytes. Since release media is an important factor in modifying release 

properties of such polymeric systems, the released drug amounts in media were 

measured for cell culture experiments. In Figure 3.54, the release profiles of D MS 

and D-CS MS groups are presented. The D-CS MS microspheres had higher 

cumulative drug release than D-MS ones probably due to having smaller particle 

size and for being more hydrophilic than D-MS microspheres.  
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Figure 3.54. Release profile of doxycycline in cell culture media at the end of 24th 
day 

 

 

The activity of MMP-13 against collagen type II was inhibited upto 50-60% by 30 µM 

doxycycline application (Smith, et al, 1999). In another previous study, Golub (1991) 

indicated that 20 µM doxycycline inhibited 78% of the collagenase activity. 

According to release profile, released doxycycline amount cannot reach the 20-30 

µM level at the 9th and 15th days of the experiment. So, the inhibited MMP-13 

percent was lower than 50% at these days. Between 15th-24th day periods, D MS 

release rate got increased rapidly. However, this rapid increase did not give as high 

doxycycline amounts as D-CS MS in culture media.  

Although D-CS MS released higher than D MS, the decrease of MMP-13 content of 

these two groups were not significantly different from each other. The main reason 

of this might be the doxycycline amounts being not very high and it’s being 

replenished in each medium exchange. Thus, for the longer time period release 

together with other enhancing parameters, the designed drug delivery system would 

be more efficient in terms of this problem during in vivo conditions. 
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Radiological evaluations were carried out to support the results of histological and 

mechanical analyses of the joints. However, they were not as conclusive as 

histological findings of in vivo establishment of the OA model. This was thought to 

be related with difficulties in scoring these small joints with the limitations in the 

required degree of degenerations. Yet, in long term follow up, the positive effect of 

high dose (7.5 mg) D-CS MS on OA treatment was apparently better than other 

groups according to the radiological analyses. 

3.13.3. Indentation Testing  

The stiffness and hardness of the cartilage after these treatments were evaluated by 

using a hardness tester special for viscoelastic materials like cartilage. The 

comparison of mechanical test results of cartilages of all groups was given in 

Figures 3.66 and 67 after separate measurements of lateral and medial condyles.  

Low values are the sign of the softness of the samples. According to Figures 3.66 

and 3.67, the osteoarthritic joints that did not receive any treatment had the smallest 

mean hardness vales. Thus, osteoarthritis makes the cartilage tissue less resistant 

to indentation, or softer compared to the healthy state. The heathy cartilage has the 

highest hardness value for both parts of joints (Bae, et al., 2003, Darmanis, et al, 

2006, Niederauer et al, 2004). In another study the hardness values of heathy 

cartilage of rabbit was measured and compared with static treatment (Periosteal 

transplantation) groups. The treatment group was lower than untreated group 

(Darmanis, et al, 2006).  
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Figure 3.66. Hardness measurement results of lateral condyle of rabbit joints for all 
groups 

 

 

In Figure 3.66, hardness values of lateral condyle of joint are given. Healthy 

cartilage and 5 mg D-CS MS with HYL injected joint had the highest hardness 

values. According to Mann-Whitney U test, the hardness of healthy cartilage was 

significantly different from the hardness of cartilage of no treatment, 5 mg D MS and 

7.5 mg D-CS MS with HYL injected joints. Except 5 mg D MS and 5 mg D-CS MS 

with HYL injected values, differences between no treated joint was statistically 

insignificant (higher than) with other treatments. HYL injected joint was significantly 

lower than those of both D-CS MS injected hardness values. Microsphere injected 

joints were statistically different from each other except 5 and 7.5 mg of D MS 

values (p<0.05). According to these results, D-CS MS combination treatment was 

more effective than D MS combination.  
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Figure 3.67. Hardness measurement results of medial condyle of rabbit joints for all 
groups 

 

 

In Figure 3.67, hardness measurements of medial condyle of joints were compared. 

Healthy cartilage and 5 mg D-CS MS with HYL injected joints had the highest 

hardhess value. Healthy cartilage was significantly different from no treated, 5 mg D 

MS and 7.5 mg D-CS MS values. Non-treated cartilage was not significantly 

different from 5 and 7.5 mg D MS with HYL injections. HYL treatment was 

statistically different from 5 mg D MS and D-CS MS injected groups. MS injected 

groups were also analyzed. Differences between 5 mg and 7.5 mg D MS and 5 mg 

and 7.5 mg D-CS MS values were statistically insignificant. Other two paired groups 

were statistically significant with each other.  

The differences between hardness values were due to the lesions of the cartilage 

tissue. A representative figure for osteoarthritic cartilage of the rabbit joint is shown 

in Figure 3.68. Arrow points the cartilage lesion.  
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The 4 week hyaluronan (HYL) treatment (Mankin p=0.005, Pritzker p=0.018), D MS 

(5 mg -Mankin p=0.017, Pritzker p=not significant-and 7.5 mg-Mankin p=0.00, 

Pritzker p=0.006-) and, the D-CS MS (5 mg-Mankin p=00.00, Pritzker 0.00- and 7.5 

mg-Mankin p=0.00, Pritzker p=0.00) treatments significantly improved the 

Mankin/Pritzker scores when compared to those of the OA no treatment group 

(Figure 3.69).  

The D-CS MS treatments generally presented better scores comparing to the HYL 

only groups; but the differences were statistically significant between the HYL 4 

week group and the 7.5 mg D-CS MS group (Mankin p=0.022); HYL 4 week and the 

5 mg, 7.5 mg D-CS MS groups (for 5 mg treatment Mankin p=0.014, Pritzker 

p=0.011 and, for 7.5 mg treatment Mankin p=0.005 Pritzker p=0.003 respectively). 

The D MS and the D-CS MS groups exhibited histologically similar therapeutic 

performance with usually no statistically significant difference. The only exception 

was the significantly higher Pritzker score of the 7.5 mg D-CS MS group comparing 

to that of the 5 mg D-MS group (p=0.013) (Figure 3.70).  
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Table 3.8. Descriptive statistical data of the Mankin scores  

 

 

 

 

 

Table 3.9. Descriptive statistical data of the OARSI Pritzker scores  
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CHAPTER 4 

 

CONCLUSIONS 

 

 

Polymeric controlled drug delivery systems have many advantages over 

conventional drug therapies like reduced side effects, possibility of local or targeted 

application of the treatment and enhanced treatment potency.  

In this study, doxycycline or doxycycline-chondroitin sulfate encapsulated 

polycaprolactone (PCL) microspheres were prepared and studied for their potency 

as a new treatment approach for osteoarthritis (OA). OA is one of the joint diseases 

which have the highest negative effects on elderly people. It is widespread all over 

the world; however, its pathophysiology is not completely understood yet. 

Conventional therapies are mostly based on alleviation of symptoms like pain. Non-

steroidal anti-inflammatory drugs (NSAIDs) which are taken orally are amongst the 

common conventional therapy.  Intraarticular injection of hyaluronan is the best 

clinically applied medication treatment which still does not provide recovery from the 

degenerated cartilage. The approach developed here is different from current 

therapies for; 1) involving sustained delivery of an anti-collagenase agent 

(doxycycline) for preventing further cartilage damage by collagenases, 2) aiming a 

local-sustained treatment of OA with single application of polymeric microspheres, 

3) providing chondroitin sulfate via release system to enhance cartilage tissue 

regeneration.  

Two different molecular weights of PCL (14 and 65 kDa) were used to obtain 

desired properties in the developed systems. Modifications on MS preparation 

conditions were also carried out for this purpose. According to Higuchi and 

Korsmeyer-Peppas curve fitting models, release of microspheres prepared from 

PCL (14 kDa) were governed by Fickian diffusion. The experimental release results 

were mathematically modeled by using diffusion based model. In view of that, the 

release profile of microspheres prepared from low molecular weight PCL (14 kDa) 

was more compatible with the diffusion model than those of microspheres prepared 
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from PCL (65 kDa). Drug release of microspheres which were prepared by using 

PCL (14 kDa) was therefore diffusion-controlled. The modeling results might indicate 

that in the case of high drug loadings (25-30 %), the whole drug or a large part of it 

was in the crystallized form. As a result, the drug release was diffusion-controlled at 

low loadings (10-17 %) where the solid drug was randomly dispersed in the matrix.    

The estimated diffusion coefficients of doxycycline were calculated from 

experimental results and the values varied in range of 0.6-1.25 x10-9 cm2/s.  

Although there are many PCL microsphere studies, D MS and D-CS MS PCL (14 

kDa) microspheres have been evaluated for in vitro and in vivo OA treatment 

efficiency for the first time in literature. 

According to particle size distribution studies, doxycycline loaded microspheres with 

smallest mean diameter were prepared by PCL (14 kDa) and using PVA surfactant 

(4%). These microspheres also had higher encapsulation efficiency than PCL (14 

kDa) microspheres prepared by PVA-gelatin (1 %, each). Overall results were used 

to select optimum preparation parameters as PCL 14 kDa and 4% PVA to obtain D 

and D-CS microspheres to be used in in vitro cell culture and in vivo OA model 

experiments.   

In order to evaluate the degree of recovery in the cartilage tissue, the matrix 

structure of the cartilage before and after degeneration needs to be considered. Two 

effective microsphere groups were decided to investigate the biological efficacy in 

OA treatment. Firstly, the in vitro OA model was developed by using rabbit 

chondrocytes. Following isolation from osteoarthritic rabbits, in order to mimic the 

three dimensional structure of the cartilage, chondrocytes were embedded into 

agarose. During OA, synovial fluid has proinflammatory cytokines. In order to mimic 

the diseased synovial fluid, interleukin-1β was added to the media of the agarose-

cell constructs. The model development and treatment results were measured by 

using GAG, collagen amounts and MMP-13 analyses for days 9, 15 and 24. IL-1β 

induced OA mechanism was found to have different effects on GAG and collagen 

synthesis. IL-1β added agarose-chondrocyte discs had lower GAG content than 

control group at 9th day. GAG content of the agarose-chondrocyte discs got 

increased at 15th and 24th days due to proliferation of chondrocytes. This result 

demonstrated that, established drug delivery system did not have any positive 

effects on GAG synthesis. Although, GAG amounts released into media at 9th day 

were similar for all groups, 15th and 24th days, IL-1β group was higher than D MS 
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and D-CS MS treatment groups and IL-1 β untreated one indicating the 

doxycycline’s contribution in preventing GAG degradation. This outcome might be 

suggested to occur by reduction of aggrecanase activity by doxycycline. 

Hydoxyproline assays for evaluation of collagen amounts of the samples indicated 

that the GAG and collagen degradation processes were not regulated by the same 

mechanism. IL-1β alone was found to be not sufficient to result in detectable levels 

of collagen degradation by MMPs. Thus, IL-1β treated and untreated controls did 

not show a significant difference in terms of collagen results. This was thought to be 

related with insufficiency of either studied dose of this cytokine or the time period of 

follow up for collagen degradation process. On the other hand, in vitro bioefficacy of 

the released drug in terms of preventing matrix metalloproteinases was observable 

at enzymatic level with MMP-13 activity decrease. Doxycycline release inhibited the 

MMP-13 activity, but to different degrees at different time points. While MS 

treatments were not significantly different from each other at any of the time points, 

for both groups, the inhibition level of MMP-13 decreased between 20-24th days of 

the culture. This might be suggested to be owing to washout of the accumulated 

released drug with replacement of the cell culture media and drug release rate 

getting  slower in time. 

Considering the in vitro results, same groups of PCL microspheres were used in 

vivo treatment groups but at two different amounts of MS (5 and 7.5 mg). 

Osteoarthritis in vivo model was established by using collagenase enzyme. The 

effectiveness of the treatments was measured by radiography and histology 

analyses. Biomechanic test was performed by using a special hardness tester called 

durometer. According to histological analysis, treatment with D or D-CS MS groups 

improved the recovery from OA compared with untreated OA and/or hyaluronan 

injection treated groups. The two MS groups: D and D-CS exhibited histologically 

similar therapeutic performance with usually no statistically significant difference. 

The only exception was the significantly higher Pritzker score of the 7.5 mg D-CS 

MS group comparing to that of the 5 mg D MS group (p=0.013). Biomechanical 

properties of cartilages demonstrated improved hardness values upon application of 

CS together with doxycycline in MS. This effect was also observed in radiological 

scoring results at 8th week. Therefore, D/D-CS MS were thought to have potential for 

developing OA treatment strategy via local controlled release system.  
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APPENDIX D 

 

 

 

Figure D1. Calibration curve used for determination of GAG amounts  

  

y = 0,0313x + 0,1386
R² = 0,9636

0,10

0,15

0,20

0,25

0,30

0,35

0 1 2 3 4 5 6

an
so

rb
an

ce

chondroitin sulfate (µg)



 

Figure E1
experimen

 

Figure E2
experimen

 

 

.Calibration
nt groups of

. Calibration
nt groups of

n curve used
f agarose-c

n curve use
f liquid med

 

16

APPEN

d for determ
chondrocyte

ed for determ
dia of agaros

0 

NDIX E 

mination of 
e discs  

mination of 
se-chondro

hydroxypro

hydroxypro
cyte discs 

 

oline amoun

 

oline amoun

nts in the 

nts in the 



 

Figure F1

 

 

. Calibrationn curve for D

 

16

APPEN

DNA amou

1 

NDIX F 

nts of agaro

 

ose-chondro

 

ocyte discs. 



 

Figure G1

 

. Calibration curve for

 

162

APPEN

MMP-13  

2 

DIX G 

MMP-13 



163 
 

APPENDIX H 

 

 

Table H1.  GPC values of PCL and PCL microspheres before and after release 

No Sample Mp Mn Mw Dispersity

1 PCL=14 kDa 17466 9582 20943 2,18562 

2 PCL=65 kDa 37816 18847 44942 2,38452 

3 PCL=14 kDa PVA 4% Before R 15675 8347 18936 2,2686 

4 PVA 4% After R 21409 10964 24558 2,23973 

5 PVA-gel 1% Before R 15962 8451 19239 2,27644 

6 PVA-gel 1% After R 13805 7059 17044 2,41433 

7 PCL=65 kDa PVA 4% Before R 50390 24129 58969 2,44388 

8 PVA 4% After R 33160 16283 37392 2,29632 

9 PVA-gel 1% Before R 40370 20071 47035 2,34347 

10 PVA-gel 1% After R 27624 7351 26690 3,63078 
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