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ABSTRACT

ANALYTICAL SOLUTIONS OF SHALLOW-WATER WAVE EQUATIONS

Aydın, Baran

Ph.D., Department of Engineering Sciences

Supervisor : Assoc. Prof. Dr. Utku Kânoğlu

June 2011, 94 pages

Analytical solutions for the linear and nonlinear shallow-water wave equations are

developed for evolution and runup of tsunamis –long waves– over one- and two-

dimensional bathymetries. In one-dimensional case, the nonlinear equations are solved

for a plane beach using the hodograph transformation with eigenfunction expan-

sion or integral transform methods under different initial conditions, i.e., earthquake-

generated waves, wind set-down relaxation, and landslide-generated waves. In two-

dimensional case, the linear shallow-water wave equation is solved for a flat ocean

bottom for initial waves having finite-crest length. Analytical verification of source

focusing is presented. The role of focusing in unexpectedly high tsunami runup ob-

servations for the 17 July 1998 Papua New Guinea and 17 July 2006 Java Island,

Indonesia tsunamis are investigated. Analytical models developed here can serve as

benchmark solutions for numerical studies.

Keywords: long waves, tsunamis, shallow-water wave equations, hodograph trans-

formation, analytical solution, wave runup/rundown, tsunami focusing
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ÖZ

SIĞ-SU DALGA DENKLEMLERİNİN ANALİTİK ÇÖZÜMLERİ

Aydın, Baran

Doktora, Mühendislik Bilimleri Bölümü

Tez Yöneticisi : Doç. Dr. Utku Kânoğlu

Haziran 2011, 94 sayfa

Sığ-su dalga denklemleri bir ve iki boyutta analitik olarak çözülmüştür. Bir boyutta,

sabit eğimli deniz tabanı üzerinde, deprem, uzun ve dar bir körfezde rüzgarın etkisi ve

deniz altı toprak kayması sonucu oluşan dalga hareketleri doğrusal olmayan denklem-

lerle, hodograf dönüşümü ve özfonksiyon açılımı ile integral dönüşüm yöntemleri

kullanılarak elde edilmiştir. İki boyutta ise, doğrusal sığ-su dalga denklemi, sabit

derinlikteki deniz tabanı üzerinde ana yayılım eksenine paralel olan eksen boyunca

sonlu uzunluktaki ilk dalga için çözülmüştür. Tsunami odaklanması olayı analitik

olarak gösterilmiş ve 17 Temmuz 1998 Papua Yeni Gine ile 17 Temmuz 2006 Java

Adası (Endonezya) tsunamileri sırasında gözlemlenen beklenmedik büyüklükteki dal-

ga tırmanmalarına olası etkisi araştırılmıştır. Geliştirilen analitik çözümler sayısal

yöntemlerin doğrulanmasında kıstas problemler olarak kullanılabilecektir.

Anahtar Kelimeler: sığ-su dalgaları, tsunamiler, sığ-su dalga denklemleri, hodograf

dönüşümü, analitik çözüm, dalga tırmanması, tsunami odaklanması
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 AN INITIAL-BOUNDARY VALUE PROBLEM FOR THE NON-
LINEAR SHALLOW-WATER WAVE EQUATIONS . . . . . . . . . 14

2.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . 15

2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Gaussian wave . . . . . . . . . . . . . . . . . . . 20

2.2.2 Solitary wave . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Isosceles N-wave . . . . . . . . . . . . . . . . . . 28

2.2.4 Generalized N-wave . . . . . . . . . . . . . . . . 29

2.2.5 Application to near-shore earthquakes . . . . . . . 31

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 WIND SET-DOWN RELAXATION . . . . . . . . . . . . . . . . . . 37

3.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 The steady-state phase . . . . . . . . . . . . . . . 38

3.1.2 Wind set-down relaxation . . . . . . . . . . . . . . 41

3.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . 44

viii



3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 PROPAGATION OF A FINITE SOURCE OVER A FLAT BASIN . . 49

4.1 General Analytical Solution . . . . . . . . . . . . . . . . . . 51

4.2 Solution for Finite-crested Initial Waves . . . . . . . . . . . 54

4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Comparison with Carrier and Yeh (2005) solution . 56

4.3.2 Propagation of an N-wave over a constant depth . . 59

4.3.3 The 17 July 1998 Papua New Guinea Tsunami . . 63

4.3.4 The 17 July 2006 Java Island Tsunami . . . . . . . 67

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

APPENDICES

A FOURIER TRANSFORM OF THE FUNCTION tanh . . . . . . . . . 84

B AN APPROXIMATE SOLUTION FOR THE FORCED NONLIN-
EAR SHALLOW-WATER WAVE EQUATIONS . . . . . . . . . . . 85

B.1 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . 85

B.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . 90

B.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 91

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ix



LIST OF TABLES

TABLES

Table 2.1 The corresponding parameters for the initial wave profiles presented

in Eqs. (2.25) and (2.27) as in Carrier et al. (2003). The extreme wave

height values –maximum runup and minimum rundown– for the cases

with/without initial velocity are also tabulated. The exact initial velocity

relation is considered in the calculations. . . . . . . . . . . . . . . . . . . 21

Table 2.2 The corresponding parameters of Eqs. (2.32), (2.34), and (2.36) for

which calculations are performed. The extreme wave height values for

the cases with/without initial velocity are also tabulated. The exact initial

velocity relation is considered in the calculations. . . . . . . . . . . . . . 31

Table 2.3 The corresponding parameters of Eq. (2.38) for which calculations

are performed. The parameter set is taken from Tinti and Tonini (2005). . . 32

x



LIST OF FIGURES

FIGURES

Figure 1.1 Definition sketch for the so-called canonical bathymetry (not to

scale). The bathymetry consists of a plane beach connected to a constant

depth basin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.1 Definition sketch (not to scale). The variables with tilde show di-

mensional quantities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.2 The initial wave profiles suggested by Carrier et al. (2003). (a)

and (b) show the positive and negative Gaussian initial waves defined by

Eq. (2.25) while (c) and (d) show the leading depression N-wave initial

profile defined by Eq. (2.27) given for two different sets of parameters.

The respective wave parameters are tabulated in Table 2.1. . . . . . . . . . 22

Figure 2.3 Time variations of (a)− (d) the shoreline positions ηs, and (e)− (h)

the shoreline velocities us for the initial waves given in Figure 2.2. Dashed

and solid lines represent the present solution with and without initial ve-

locity, respectively, while dots represent results of Kânoğlu (2004) without
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CHAPTER 1

INTRODUCTION

Long waves, also known as shallow-water waves, are sea surface gravity waves which

propagate over the sea with the wavelength L much larger than the depth of the sea d,

i.e., L � d. Typical example of long waves are tsunamis.1 A tsunami is a sequence of

waves formed on an ocean surface usually after sudden geophysical disturbances such

as underwater earthquakes, submarine or subaerial landslides. Even though they are

rare, volcanic eruptions or meteoroid impacts might also cause tsunami. The waves

usually travel over long distances, and as they reach the target coast, their wavelength

gets smaller and their height increases. When they run up over a shore, they mostly

result in heavy damage on coastal structures and human casualties.

The deadliest tsunami event in recorded history is the 26 December 2004 Indian

Ocean tsunami. After a Mw 9.3 (Stein and Okal, 2005) earthquake occurred at 00:58

UTC with epicenter 250 km south-southeast of Banda Aceh, Sumatra, Indonesia, and

hypocenter at a depth of approximately 30 km, the resulting tsunami inundated four-

teen countries across the Indian Ocean with waves reaching as far as 2 km inland in

some places. The maximum local runup was reported to be as high as 30 m. The

number of fatalities is reported to be more than 228, 000 and the economic impact

of the natural hazard is estimated as 10 billion US dollars (Bernard and Robinson,

2009).

The most recent destructive tsunami hit the north east coasts of Japan on 11 March

2011 after a Mw 9.0 earthquake occurred at 05:46 UTC with epicenter location 130km

east of Sendai, Honshu, Japan and hypocenter at an underwater depth of approxi-

1 Tsunami is a Japanese word meaning harbor (tsu) wave (nami).
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mately 32 km. It was the most powerful earthquake to have hit Japan, damaging

or destroying over 125, 000 buildings. Although Japanese people are well-educated

against earthquake and tsunami disasters, there has been more than 15, 000 victims,

more than 5, 000 people are injured and 8, 000 more are reported to be missing by the

end of May 2011. Moreover, the tsunami caused nuclear disaster. The cooling system

of the Fukushima I Nuclear Power Plant, which is established in the towns of Okuma

and Futaba of Fukushima Prefecture, is heavily damaged during the earthquake and

tsunami. Consequently, residents within a 20 km radius of the power plant were evac-

uated and more than four million households in northeastern Japan were left without

electricity. The total economical impact of the 2011 Tohoku earthquake and tsunami

is estimated to raise up to 300 billion US dollars.

A tsunami can be analyzed in three main phases: generation, propagation, and runup

(inundation). The generation phase describes the ocean surface response of the parent

geophysical activity. Classification of historically recorded tsunamis over the source

type by Gusiakov (2009) suggests that 75% of them are tectonic, i.e., earthquake-

generated tsunamis. The second most frequent source of tsunamis with 10% share

is submarine/subaerial landslides. Other rare sources of tsunamis (3%) are subaerial

slides resulting from volcanic eruptions and meteoroid impacts (Gusiakov, 2009).

While major tsunamis are produced by large shallow-focus earthquakes (having mag-

nitude greater than 7 on the Richter scale and depth less than 30 km in the earth), a

submarine landslide triggered by a smaller earthquake can also generate a destructive

tsunami, which was the case for the 17 July 1998 Papua New Guinea event (Synolakis

et al., 2002; Bernard and Robinson, 2009).

Tectonic and landslide-generated tsunamis have different generation mechanisms.

Since rupture velocity of earthquakes is much greater than the wave velocity in water,

the common practice in most modeling for tectonic tsunamis is to directly translate

the shape of bottom deformation to the ocean surface as an initial wave profile. This

approach is often referred to as the passive generation mechanism. In case of under-

water landslides, on the other hand, the time scale of the bottom dislocation should

be taken into account as the velocity of the sliding mass is comparable with the wave

velocity in water (Todorovska and Trifunac, 2001; Trifunac and Todorovska, 2002);
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the resulting generation model is now referred to as the active generation mechanism.

Comparisons of the two generation approaches are presented in several studies in con-

nection with linear and nonlinear long wave propagation models (Dutykh and Dias,

2007; Kervella et al., 2007).

Source models for tectonic tsunamis are studied extensively. Dutykh and Dias (2007)

reviewed the subject including dislocations in an entire elastic space (Volterra’s dis-

location theory) and elastic half-space (the so-called Okada’s solution; Okada, 1985),

and deformations by rectangular and curvilinear faults.

On the other hand, a comprehensive landslide wave generation theory still needs to

be established. As Synolakis and Kânoğlu (2009) state, “... the calculation of the

initial wave from a submarine landslide remains an art and is still shrouded with

controversy.” One exception is Ward (2001)’s model for production, propagation

and shoaling of landslide tsunamis using the Green’s function method. Ward tested

his theory with several real and hypothetical landslides and also included landslide

tsunami hazard assessment in his analysis.

After determining the appropriate generation model for long waves (tsunamis), ac-

cording to the geophysical source type of the sea-floor deformation, the next stage for

an accurate modeling is selection of a proper propagation model.

Formulation of water wave problems can be done in several ways, leading to different

level of approximations of the Navier-Stokes (NS) equations2 such as the Korteweg-

de Vries (KdV), Boussinesq, potential, or shallow-water wave equations, depending

if, and how, features of the flow such as dissipation, (frequency) dispersion and/or

nonlinearity are preserved. This study deals with solutions of wave flows dictated by

the shallow-water wave theory, which is a nondispersive depth-averaged approxima-

tion of the NS equations. This theory has proven to be an adequate model for long

wave propagation as the ocean medium is generally assumed to be nondispersive at

that scale. It should be noted here that flow in the swash zone and related concepts

such as formation of bores and wave breaking are beyond the scope of this thesis.3

2 The Navier-Stokes equations, which arise from Newton’s second law, are the most general equations that
govern motion of any Newtonian fluid.

3 For reference, the reader is referred to Whitham (1958) and also a series of pioneering studies by D. H.
Peregrine and colleagues, e. g. Peregrine (1966, 1967), Brocchini and Peregrine (1996), and the references
therein.
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The conventional form of the (nonlinear) shallow-water wave (SW) equations is re-

formulated by Stoker (1948) although the original derivation is credited to Adhémar

Jean Claude Barré de Saint-Venant (Saint-Venant equations). There are documents

that trace the derivation even back to Joseph Louis Lagrange, who also derived the

exact linear theory (Stoker, 1948). In the most general two-dimensional (2-D) case,4

they consist of three first order nonlinear partial differential equations (PDEs) derived

from the NS equations by first dropping the viscous terms and then averaging the

velocity terms over the flow depth, using the shallow-water approximation. The aver-

aging process together with the hydrostatic pressure assumption reduces the pressure

term from the NS equations and introduces the water elevation as a dependent vari-

able, along with the two horizontal velocity components. The resulting equations are

coupled and they form a hyperbolic set of differential equations.

The long wave propagation phenomenon in one space dimension is first analyzed

through experiments. Before late 1950’s, the main focus was to develop formulas for

a single long wave propagating over a linearly sloping beach. In their chronological

tsunami hydrodynamics review, Synolakis and Bernard (2006) cite two significant

experimental studies. The first belongs to Hall and Watts (1953), who introduced the

canonical problem, i.e., a flat basin connected to a linear slope, resembling the deep

ocean basin connected to the continental shelf (Figure 1.1). They generated in the

laboratory solitary waves on the constant depth segment and allowed them to propa-

gate through the sloping beach. They were able to relate the maximum wave runup

to the offshore wave height (H) and the beach slope (β), hence, define an empirical

runup relation. In another study, Wiegel (1955) performed experiments with a solid

box sliding down a plane beach. He did not calculate the shoreline water elevation

but he set the standard for landslide experiments.

The first, and arguably the most remarkable, analytical contribution came from Car-

rier and Greenspan (1958). They suggested an initial-value problem (IVP) solution

for the nonlinear shallow-water wave (NSW) equations by means of the so-called

hodograph transformation, now known as the Carrier-Greenspan (CG) transforma-

tion. This transformation consists of a pair of nonlinear relations introducing two new

4 In the 2-D case, both space variables are preserved in the equations together with the temporal variable,
while only one spatial variable is retained in addition to the time variable in the one-dimensional (1-D) case.
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Figure 1.1: Definition sketch for the so-called canonical bathymetry (not to scale).
The bathymetry consists of a plane beach connected to a constant depth basin.

auxiliary variables to replace the independent variables of the problem, i.e., the space

(x) and the time (t) variables. Carrier and Greenspan (1958) were able to transform

the two first order nonlinear PDEs into a single second order linear one. Furthermore,

under this transformation, the ever changing location of the shoreline tip was mapped

onto a fixed point. The solution in the hodograph plane was also straightforward. The

resulting PDE was analogous to the classical wave equation written in polar coordi-

nates, for which a solution could be given in terms of Bessel functions after applying

the Fourier-Bessel (also known as Hankel) integral transform. However, despite the

advantages listed above, Carrier and Greenspan (1958)’s study could not been bene-

fited for a long time because of the difficulty in defining geophysically realistic initial

wave profiles in the transform space.

Carrier (1966) extended the CG transformation to more general bottom configura-

tions, including underwater ridges, and has drawn several important conclusions re-

lated to the physics of tectonic tsunamis. First, he argued that far from the initial

shoreline the nonlinear effects are small. Second, he showed that effects of dissipa-

tion and the remaining bottom topography are minimal on tsunami runup, compared

to the angle of the sloping beach. Third, he presented another justification of the fact

that the first wave of a tsunami is not the largest wave in amplitude. These results

were promising, but Carrier (1966)’s analysis did not include an important feature of

wave propagation, namely reflection off the beach.

5



Meanwhile, the evolution of periodic waves propagating over the canonical bathyme-

try was modeled by Keller and Keller (1964) with the linear shallow-water wave

(LSW) equations. By matching the respective solutions at the toe of the beach (point

x = x0 in Figure 1.1), Keller and Keller (1964) was able to define the amplification of

waves on the slope in terms of the initial height (H) of the waves on the flat region.

These results have provided significant progress but they lacked geophysics as they

were disjointed to the dynamics of the source event. Ben-Menahem and Rosenman

(1972) provided the connection. They managed to calculate, using the linear theory,

the two-dimensional radiation of the tsunami energy from a deforming source. Their

calculations showed that the associated wave energy follows a path that is perpendic-

ular to the rupturing fault. In another study, Tuck and Hwang (1972) calculated the

state of the free-surface resulted by a deforming sea-floor by proposing a solution for

the forced NSW equations; the time-dependent bottom deformation was implemented

into the continuity equation as a forcing term. Although their aim was to capture off-

shore wave evolution and there were no results for shoreline motion, the solution

of Tuck and Hwang (1972) constructed a basis for analytical models of underwater

landslides.

Refined nonlinear analytical solution including reflection has been achieved by Syn-

olakis (1986). He solved the NSW equations over the canonical bathymetry as a

boundary-value problem (BVP) by using the Carrier-Greenspan transformation. In

order to circumvent the previously mentioned difficulty experienced by Carrier and

Greenspan (1958), Synolakis (1986) proceeded with the solution as Keller and Keller

(1964) did, i.e., by imposing the linear solution as boundary data at the toe of the

beach (x = x0, see Figure 1.1). He justified this approach using the argument pro-

posed by Carrier (1966), i.e., the negligibly small nonlinear effects far from the shore.

In this way, he calculated the evolution of a solitary wave over the slope during both

the runup and rundown phases. He compared his analytical results with non-breaking

and breaking solitary waves created in the laboratory and he derived a breaking cri-

terion. Furthermore, performing an asymptotic analysis and utilizing contour inte-

gration techniques, Synolakis (1986) derived analytical formula for the runup of a

solitary wave over a sloping beach, known as the runup law. The form of the relation

he found analytically is quite similar to the one proposed by Hall and Watts (1953)
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from experimental data. This relation is now accepted as a standard analytical bench-

mark for numerical long wave propagation models (Synolakis et al., 2008). Synolakis

(1986) was also able to show the runup invariance between the linear and nonlinear

theories. This invariance affirms that, although linear and nonlinear waves evolve

quite differently through the flow field, both will assume the same maximum runup.

Consequently, the ultimate goal until the end of 1980’s was determination of the flow

field and the runup characteristics of a solitary wave, initially placed on the constant

depth, as it climbs onto the linear slope and reflects back. By the end of 1980’s all

aspects of solitary wave propagation were identified. Experimental (Hall and Watts,

1953; Synolakis, 1986), numerical (Pedersen and Gjevik, 1983), and analytical (Syn-

olakis, 1986) solutions were available, and associated runup law and breaking cri-

terion were defined. However, a series of tsunamis occurred in early 1990’s chal-

lenged the solitary wave paradigm. The decade 1990-2000 was the tsunami decade,

as named by Synolakis and Bernard (2006), due to high number of events. Only dur-

ing the period 1992-1994, at least six major tsunamis occurred, i.e., 1 September 1992

Nicaragua, 12 December 1992 Flores Island (Indonesia), 12 July 1993 Hokkaido-

Nansei-Oki (Japan), 2 June 1994 East Java (Indonesia), 2 October 1994 Kuril Islands

(Russia), and 11 November 1994 Mindoro Island (Philippines) tsunamis. After each

of these events, International Tsunami Survey Teams (ITSTs) surveyed the regions

affected by the tsunamis. During these surveys, almost all eyewitnesses reported

withdrawal of the shoreline before wave attacks, which questioned the convenience

of the solitary wave as an initial condition.

Tadepalli and Synolakis (1994) responded this paradigm change by introducing a cer-

tain class of dipolar waves, called N-waves, to serve as more realistic initial form of

tsunamis. They defined two particular waveforms: a wave with a trough followed by

a crest, called leading depression N-wave (LDN), and a wave having a crest followed

by a trough, called leading elevation N-wave (LEN). Using the solution methodology

of Synolakis (1986), Tadepalli and Synolakis (1994) were able to obtain the evolution

of LDN and LEN over the canonical bathymetry, and to define analogous runup laws,

by performing asymptotic analysis. They showed that LDNs produce higher runup

values than equivalent LENs, and LENs produce higher runup values than equivalent

solitary waves. Tadepalli and Synolakis (1996) later proved the stability of N-waves,
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which had been interrogated while they first suggested. So, Tadepalli and Synolakis

(1994, 1996) settled the N-wave model as a geophysically realistic model for long

wave propagation.

A more realistic model than the canonical bathymetry in terms of ocean basin profile

is suggested by Kânoğlu (1998). He modeled the continental shelf and slope regions

by piecewise linear slopes. Kânoğlu (1998)’s analytical formulation involves a matrix

multiplication method inferred from optics, through which he eliminated the coeffi-

cients of the periodic wave solution at slope interfaces; hence, Kânoğlu (1998) was

able to relate the wave reflection coefficient at the shoreline directly to the height of

the initial wave defined over the constant depth. He then extended his solution to cal-

culate the maximum runup of solitary waves over composite beaches. His asymptotic

analysis revealed that the runup depends only on the slope closest to the shoreline

for a composite beach and, if there is a vertical wall at the shoreline, runup primarily

depends on the depth at the wall. Kânoğlu (1998) confirmed his analytical results

through comparisons with laboratory data. The solution procedure is described by

Kânoğlu and Synolakis (1998) in detail.

The new challenge is soon brought with the 17 July 1998 Papua New Guinea tsunami.

At first, it appeared to be a minor tsunami event triggered by a relatively small earth-

quake. But it was realized after the field survey that there were extraordinary runup

measurements, reaching as high as 15 m, i.e., the initial tectonic tsunami assumption

was not enough to explain the high runup values in most of the influenced areas. The

event is discussed in detail by Synolakis et al. (2002). Okal (2003b) proposed that the

earthquake triggered a submarine landslide, with an argument based on hydroacous-

tic signals recorded in the region. Indeed, several hydrographic surveys identified a

slump located 25 km offshore (Synolakis and Bernard, 2006). The landslide is now

accepted as the real cause of the PNG tsunami. Numerical simulations of the event,

together with results from the field survey, is presented in Lynett et al. (2003). The

later events of the tsunami decade, namely the 17 August 1999 İzmit (Turkey), 13

September 1999 Fatu Hiva (Marquesas, French Polynesia) and 26 November 1999

Vanuatu tsunamis are all initiated from landslides and they have motivated further

investigation of landslide tsunamis.
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Liu et al. (2003) proposed an analytical model for landslide-generated long waves.

They modeled a time-dependent bottom disturbance by the so-called Gaussian (bell-

shaped) volume sliding over a linear slope. They applied a change of variables to

the LSW equation and solved the resulting IVP by Hankel integral transform. They

compared their solution with a nonlinear numerical solution and identified the runup

distribution for different beach slope and sliding mass parameters.

Carrier et al. (2003) revisited the hodograph transformation solution of Carrier and

Greenspan (1958). They formulated an IVP and proposed a solution for the NSW

equations in terms of the Green’s function. They presented maximum runup/minimum

rundown results for Gaussian initial profiles. However, their solution has drawbacks

such as evaluation of elliptic integrals, known to be highly singular, or unnecessary

linearizations of dependent variables such as the initial velocity.

These issues are soon addressed by Kânoğlu (2004). He devised a method for defin-

ing the initial data in the hodograph plane. He first linearized the transformation at

initial time (t = 0) in the absence of initial velocity, without affecting the nonlinear-

ity of the subsequent waves. This approach led to nonsingular integral solutions for

the entire flow field as well as for the shoreline quantities. Kânoğlu (2004) also ex-

tended his analysis beyond the idealized Gaussian wave, incorporating solitary wave

and isosceles and generalized N-wave profiles into his analysis, and presenting the

associated runup and shoreline velocity distributions. Later, Kânoğlu and Synolakis

(2006) complemented Kânoğlu (2004) by solving the general IVP with nonzero initial

velocity condition.

Tinti and Tonini (2005) contributed to the one-dimensional shallow-water wave the-

ory by analyzing in detail the runup of long waves caused by near-shore earthquakes.

Considering a generic initial wave which accounts for different tectonic configura-

tions, they identified the parameters those have significant effect on tsunami runup.

They introduced a parameter called amplification factor, defined as the ratio of the

maximum vertical excursion of the wave measured at the coast and the initial wave

height. Tinti and Tonini (2005) exposed that the amplification factor, which ranges

between one and two, increases as the epicenter of the earthquake moves from in-

land towards the sea bed. In other words, they showed that tsunamis induced by
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earthquakes occurring under the sea amplify more than those induced by earthquakes

having an epicenter inland.

Antuono and Brocchini (2007) solved the BVP for the NSW equations. They assigned

appropriate boundary conditions, transformed them to the hodograph space together

with the governing equations, and sought an approximate solution via perturbation

methods. They assumed periodic and Gaussian shaped data with small height at the

seaward boundary and successfully compared their solution with existing laboratory

measurements. Their solution is advantageous as it is possible to monitor the interac-

tion of incoming and outgoing waves at the seaward boundary.

Later, Antuono and Brocchini (2010) applied the same solution technique, namely the

perturbation expansion, to the original equations, i.e., equations in the physical space.

Besides comparing with their previous benchmark boundary profiles, they presented

results for the solitary wave and derived analytical breaking conditions. Their results

reveal that the first order perturbation solution in the physical space is comparable to

the second order solution evaluated in the hodograph space.

The number of analytical models for the shallow-water wave equations involving two

space dimensions, on the other hand, is quite few compared to the one-dimensional

case. Carrier and Noiseux (1983) calculated the reflection of obliquely-incident waves

from a plane beach using the LSW theory. They defined a relation which combines

the temporal variable, the longshore5 space variable, and the angle of wave incidence.

They treated this relation as an independent variable, i.e., as a coordinate, and Car-

rier and Noiseux (1983) were consequently able to reduce the number of independent

variables by one. Using the Fourier integral transform method, they solved the result-

ing one-dimensional equation over the canonical bathymetry and they matched the

two solutions to obtain the reflection coefficient.

In an attempt to obtain flow properties in the swash zone, Brocchini and Peregrine

(1996) presented a weak solution for the two-dimensional NSW equations as an ex-

tension of the CG transformation for the 1-D equations, again for waves propagating

towards a plane beach with a small angle of incidence, as in Carrier and Noiseux

5 In the terminology of the two-dimensional propagation, the onshore variable refers to the space variable that
is normal to the shoreline, which is considered as the main propagation direction, and the longshore variable is
the horizontal space variable that is assumed to be parallel to the shoreline.
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(1983). Following a similar strategy, they defined a new variable which they call

pseudo-time, by combining the temporal and longshore spatial variables, which led

to two decoupled problems for onshore and longshore propagation. They were able to

solve the onshore problem with the CG transformation and represent the solution of

the longshore problem in terms of the onshore solution. The two solutions, computed

for the same value of the temporal variable, construct the 2-D flow field.

Kânoğlu and Synolakis (1998) computed the runup of solitary wave around a conical

island. They started with the 2-D LSW equation. Using the rotational invariance of

the bathymetry, they reduced the dimension of the governing equation, and solved the

reduced equation for cylindrical sills, with which they approximated the bathymetry

around the island. They matched the solutions at each sill interface using the matrix

method introduced by Kânoğlu (1998) and they obtained the maximum runup of a

solitary wave around the conical island. They also compared their analytical solution

with results of several laboratory experiments.

Carrier and Yeh (2005) developed an analytical solution based on a methodology

previously defined by Carrier (1990) to evaluate propagation of finite-crest length

sources over a flat bathymetry. Carrier and Yeh (2005) made use of the unidirection-

ality of the bathymetry, as in Kânoğlu and Synolakis (1998), and converted the 2-D

LSW equations into the wave equation written in cylindrical coordinates. They called

this problem the axisymmetric problem, for which they formulated a Green’s func-

tion solution using the IVP approach of Carrier et al. (2003). They obtained solution

for a 2-D Gaussian initial wave having finite-crest length in the longshore direction.

However, their analytical solution is not exact as it has drawbacks6 similar to the Car-

rier et al. (2003) solution, briefly mentioned above. Nonetheless, their solution still

allowed here for discussion of the directivity of finite-crested initial tsunami sources.

Sammarco and Renzi (2008) provided an analytical solution for two-dimensional

landslide-generated tsunamis propagating along a plane beach. They assumed Gaus-

sian sea-floor disturbance and they were able to express the solution in terms of La-

guerre polynomials after transforming the forced NSW equations with the Fourier

cosine transform. They also validated their solution by comparing with experimental

6 A detailed analysis of Carrier and Yeh (2005) solution is presented in Section 4.3.1.
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data.

Renzi and Sammarco (2010) solved the landslide problem around a conical island.

They analyzed the problem via the separation of variables and Laplace transform

methods and expressed the solution, again for a Gaussian landslide, in terms of special

functions, namely the confluent Heun functions. They discussed the differences in

the physical features of subsequent waves propagating around an island and along a

straight coast in view of their previous model (Sammarco and Renzi, 2008).

The shortly summarized achievements in analytical modeling of the shallow-water

wave theory over more than last fifty years, along with the ones that are not mentioned

here because they are beyond the scope of this study, has definitely been vital in better

understanding of the physics of long waves (tsunamis), besides their indispensable

role in validation of the state-of-the-art numerical models (Synolakis et al., 2008). In

this study, new solutions of linear and nonlinear shallow-water wave equations are

developed.

A basic solution technique utilizing the CG transformation is developed for calcu-

lation of the shoreline velocity and the maximum runup of a wide class of initial

waveforms having zero and nonzero initial velocity distributions. This technique is

then used to calculate the wind-triggered nonlinear oscillations in a gulf, in an effort

to exhibit the applicability of the hodograph-type transformations to practical coastal

engineering problems.

In two space dimensions, propagation of a finite-crest length initial source over a flat

ocean is obtained by using the LSW theory. The idea was to model the initial wave re-

sulting from a finite fault rupture. The Fourier integral transform over space variables

is used as the solution method. Different initial source configurations including soli-

tary and N-wave profiles are analyzed. The focusing of plus-minus sources (sources

having a crest-trough configuration, i.e., N-waves), first suggested by Marchuk and

Titov (1989) in a numerical study, is shown analytically. The unexpected localized

maximum runup values observed during several recent tsunami events are also re-

examined in view of the source focusing phenomenon.

Flow field generated by a sliding mass on ocean bottom is also modeled with the NSW
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equations together with the hodograph transformation and presented in Appendix B.

For this purpose, a Gaussian bottom profile perturbing over a linearly sloping beach

is considered. This problem has nonhomogeneous governing differential equations

(the forced NSW equations) due to the bottom forcing; hence, the solution is given

as the sum of two components, a particular solution obtained by using the approach

of Liu et al. (2003), and a homogeneous solution obtained through the Fourier-Bessel

(Hankel) integral transform technique.
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CHAPTER 2

AN INITIAL-BOUNDARY VALUE PROBLEM FOR THE

NONLINEAR SHALLOW-WATER WAVE EQUATIONS

Majority of the hodograph transformation solutions of the one-dimensional nonlinear

shallow-water wave (NSW) equations described in Chapter 1 are obtained through

integral transform techniques such as Fourier or Fourier-Bessel (Hankel) transforms.

However, as already summarized in the previous chapter, the original formulation of

Carrier and Greenspan (1958) and its variant Carrier et al. (2003) involve evaluation

of elliptic integrals. Since elliptic integrals are highly singular, this solution method-

ology requires either approximation of the associated integrands by smooth functions

or selection of regular initial/boundary data. It should be noted that Kânoğlu (2004)

partly resolves this issue by simplifying the resulting integrals in closed form.

In this section, the hodograph transform approach is coupled with the classical eigen-

function expansion method rather than integral transform techniques and a new an-

alytical model for nonlinear long wave propagation over a plane beach is derived.

In contrast to classical initial- or boundary-value problem solutions, here, the NSW

equations are formulated to yield an initial-boundary value problem (IBVP) solution.

In general, initial wave profile with nonzero initial velocity distribution is assumed

and the flow variables are given in the form of Fourier-Bessel series. The results re-

veal that the developed method allows accurate estimation of the spatial and temporal

variation of the flow quantities, i.e., free-surface height and depth-averaged velocity,

with much less computational effort compared to the integral transform techniques

such as Carrier et al. (2003) and Kânoğlu (2004).
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Figure 2.1: Definition sketch (not to scale). The variables with tilde show dimensional
quantities.

2.1 Mathematical Formulation

The one-dimensional NSW equations in nondimensional form can be written as

ηt + [(h + η) u]x = 0, (2.1a)

ut + u ux + ηx = 0, (2.1b)

where 0 ≤ x ≤ XL, 0 ≤ t, and η(x, t), u(x, t), and h(x) = x represent the free-surface

elevation, the depth-averaged velocity, and the undisturbed water depth, respectively

(Figure 2.1). The subscripts denote derivative with respect to that variable. Here, the

nondimensional variables are defined as

x =
x̃
l0
, (h, η) =

(h̃, η̃)
l0 tan β

, u =
ũ√

g l0 tan β
, t =

t̃√
l0/(g tan β)

, (2.2)

where l0, g, and β represent the characteristic length scale, the gravitational accelera-

tion, and the beach angle with horizontal, respectively. Here, XL is specified in such a

way that initial wave profile could entirely be defined in the interval 0 ≤ x ≤ XL and

reflected wave1 from the boundary x = XL will not reach the shoreline to contaminate
1 The solution method described below results in wave reflection from the seaward boundary as explained in

detail later in this section.
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the solution.

The general initial conditions are a prescribed initial wave profile with a correspond-

ing nonzero velocity distribution,

η(x, t = 0) = η0(x), (2.3a)

u(x, t = 0) = u0(x) , 0. (2.3b)

The hodograph transformation

σ =
√

x + η, (2.4a)

λ = t − u, (2.4b)

is introduced following Carrier and Greenspan (1958). These two relations replace

the independent variables of the problem (x, t) with the respective auxiliary variables

(σ, λ). The advantages of the hodograph transformation are two-fold. First, the gov-

erning differential equations can be linearized with the help of Eqs. (2.4). Second,

the instantaneous shoreline tip (x = −η) in the physical coordinates is mapped onto a

fixed point (σ = 0) in the hodograph space through Eq. (2.4a). Eqs. (2.4) transform

Eqs. (2.1) into

(σ2u)σ + 2σ (η +
u2

2
)λ = 0, (2.5a)

2σ uλ + (η +
u2

2
)σ = 0, (2.5b)

in the hodograph (σ, λ)-space. Further defining a potential function as

ϕ = η +
u2

2
, (2.6)

the velocity u can be eliminated in between Eqs. (2.5) after some algebra. The re-

sulting equation is a second-order linear differential equation expressed in terms of ϕ,

i.e.,

4ϕλλ −
1
σ

(σϕσ)σ = 0. (2.7)

The next step is to define the initial conditions in the hodograph space, which is

achieved by substituting the linearized form of Eq. (2.4a), i.e., x ≈ σ2, into the phys-

ical initial conditions (2.3), as in Kânoğlu (2004). So, the interval 0 ≤ x ≤ XL is
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mapped onto 0 ≤ σ ≤ σL =
√

XL and the initial conditions in the hodograph space

are given as

η(x, t = 0) ≈ η(σ, λ = λ0) ≡ η0(σ), (2.8a)

u(x, t = 0) ≈ u(σ, λ = λ0) ≡ u0(σ). (2.8b)

At this point, it should be noted that a nonzero initial velocity, Eq. (2.3b), implies

from Eq. (2.4b) that λ = λ0 , 0 at t = 0. In the absence of initial velocity, i.e., u ≡ 0,

this relation simply gives λ = 0 corresponding to t = 0. This is discussed in Kânoğlu

and Synolakis (2006) in detail. The initial conditions (2.8) can be rewritten in terms

of ϕ as

ϕ(σ, λ = λ0) = η0(σ) +
u2

0(σ)
2
≡ P(σ), (2.9a)

ϕλ(σ, λ = λ0) = −u0(σ) −
σ

2
u′0(σ) ≡ F(σ), (2.9b)

from Eqs. (2.6) and (2.5a), respectively.

In terms of boundary conditions, the solution at the shoreline tip (σ = 0) is required

to be bounded. A well-posed IBVP in the hodograph space requires a boundary con-

dition in terms of the potential function ϕ at the seaward boundary, σ = σL (corre-

sponding to x = XL in the physical space). Since ϕ is defined as ϕ = η + u2/2, this

condition will involve both η and u in the physical space. An absorbing boundary at

x = XL requires

η(x = XL, t) = 0 and u(x = XL, t) = 0, (2.10)

derived from the characteristics (Riemann invariants) of the NSW equations (Gustafs-

son and Kreiss, 1979). Titov (1997) used this condition in the numerical solution of

the NSW equations, i.e., Eqs. (2.1). In terms ϕ, Eqs. (2.10) yield through Eq. (2.6)

the condition ϕ(σ = σL, λ) = 0. Therefore, the necessary boundary conditions in the

hodograph space are

ϕ(σ = 0, λ) = finite, (2.11a)

ϕ(σ = σL, λ) = 0. (2.11b)

Even if Eq. (2.10) is an absorption condition, calculations performed in the next sec-

tion suggest that the right-going wave reflects from the boundary x = XL, as also ex-

plained by Antuono and Brocchini (2007). Nevertheless, the aim of providing basic
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formulas that explain properties of waves at the shoreline only requires the calcula-

tions carried out up to a threshold time; so, appropriate choice of XL can prevent the

reflected wave from reaching the shoreline, i.e., Eq. (2.11b) can be used as an open

sea boundary condition.

The IBVP formulated above is suitable for a solution with the classical separation of

variables method. Writing ϕ(σ, λ) = F(σ) G(λ), Eq. (2.7) gives

4
G

d2G
dλ2 =

1
F

(
d2F
dσ2 +

1
σ

dF
dσ

) = −κ2, (2.12)

with a real constant κ. Eq. (2.12) yields the ordinary differential equations

σ2F′′ + σF′ + κ2σ2F = 0, (2.13a)

G′′ +
κ2

4
G = 0. (2.13b)

The differential equation for F(σ) is the Bessel’s equation of order zero and it has the

general solution

F(σ) = c1J0(κσ) + c2Y0(κσ), (2.14)

where J0(z) and Y0(z) are the Bessel functions of the first and the second kind of order

zero, respectively, and c1 and c2 are arbitrary constants. Boundness condition at the

shoreline, Eq. (2.11a), requires c2 = 0. The open sea condition ϕ(σ = σL, λ) = 0

implies F(L) = 0. The eigenvalues of the problem are determined from this condition

as the positive zeros of J0(z).

The general solution of the differential equation given in Eq. (2.13b) is

G(λ) = c3 cos
κ

2
λ + c4 sin

κ

2
λ, (2.15)

and the solution of the IBVP can be constructed by the superposition of Eq. (2.14)

and Eq. (2.15) as

ϕ(σ, λ) =

∞∑
n=1

J0(2αnσ) [ An cosαnλ + Bn sinαnλ ], (2.16)

denoting αn = zn/2σL where zn are the zeros of J0(z), following from Eq. (2.11b)2.

In order to calculate the unknown coefficients An and Bn (n ≥ 1), the initial conditions

given in Eqs. (2.9) are considered. The final formulas for An and Bn are,

An =
2

αn σL J2
1(zn)

[αn Pn cosαnλ0 − Fn sinαnλ0 ], (2.17a)

2 The first few zeros of the function J0(z) are: z1 = 2.405, z2 = 5.520, z3 = 8.654, . . . .

18



Bn =
2

αn σL J2
1(zn)

[αn Pn sinαnλ0 + Fn cosαnλ0 ], (2.17b)

where λ0 = −u0(σ) and Pn

Fn

 =

∫ σL

0
σ

 P(σ)

F(σ)

 J0(znσ) dσ. (2.18)

Here, P(σ) and F(σ) are given by Eqs. (2.9a) and (2.9b), respectively. This completes

the solution (2.16) of the IBVP defined for the potential function ϕ.

The depth-averaged velocity u(σ, λ) follows from Eq. (2.5b) as

u(σ, λ) =
1
σ

∞∑
n=1

J1(2αnσ) [ An sinαnλ − Bn cosαnλ ]. (2.19)

Given ϕ(σ, λ) and u(σ, λ) in the hodograph space, the necessary information to invert

the hodograph solution to the physical space is now available. The solution in (x, t)-

space can be calculated through the inversion algorithm

η(σ, λ) = ϕ(σ, λ) −
u2(σ, λ)

2
, (2.20a)

x(σ, λ) = σ2 − η(σ, λ), t(σ, λ) = λ + u(σ, λ), (2.20b,c)

following directly from Eqs. (2.6) and (2.4), respectively. Spatial distribution of the

wave height at any time t = t∗ or temporal variation at any location x = x∗ can be

evaluated through the Newton-Raphson iteration scheme (Synolakis, 1987; Kânoğlu,

2004).

The wave dynamics at the shoreline is obtained by substituting σ = 0 in Eqs. (2.16),

(2.19) and (2.20). The singularity of Eq. (2.19) at σ = 0 can easily be handled with

the use of

lim
z→0

J1(ξz)
z

=
ξ

2
, (2.21)

and the shoreline velocity becomes

us(λ) =

∞∑
n=1

αn [ An sinαnλ − Bn cosαnλ ]. (2.22)

So, the temporal variation of the shoreline position is obtained from Eqs. (2.20b,c) as

xs(λ) = u2
s(λ)/2 − ϕ(0, λ), (2.23)

corresponding to

ts(λ) = λ + us(λ). (2.24)
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2.2 Applications

In this section, the solution method described in the previous section is applied to

a number of initial wave profiles and the results are compared with existing solu-

tions given by Carrier et al. (2003) and Kânoğlu (2004). Comparison with the solu-

tion given by Tinti and Tonini (2005) for initial waveforms resulting from near-shore

earthquakes is also performed. In summary, it is shown that the method presented

here is flexible in terms of initial conditions and it is possible to obtain the shoreline

motion details of physically realistic initial waveforms with much less computational

effort.

2.2.1 Gaussian wave

A Gaussian wave (single hump) is defined by

η(x, t = 0) = η0(x) = h1 e−c1(x−x1)2
. (2.25)

The parameters h1, x1, and c1 determine the initial height, the location, and the steep-

ness of the profile, respectively. Using the Hankel integral transform, time evolu-

tion of shoreline wave heights and velocities are computed by Carrier et al. (2003)

and Kânoğlu (2004) for positive (h1 > 0) and negative (h1 < 0) initial waves (Fig-

ures 2.2(a,b)), with parameters taken from Carrier et al. (2003) (Table 2.1, cases 1 and

2). The translation of the Gaussian wave to the hodograph space is achieved by using

the approach of Kânoğlu (2004), i.e., Eq. (2.4a) is linearized by neglecting η, so that

x ≈ σ2. This relation is then substituted into Eq. (2.25) and the initial condition in the

hodograph space is obtained as

η0(σ) = h1 e−c1 (σ2−σ2
1)2
, (2.26)

where σ1 =
√

x1.

A waveform having depression followed by elevation, also called leading depression

N-wave, can also be constructed by combining two Gaussian waves as

η0(x) = h1 e−c1(x−x1)2
− h2 e−c2(x−x2)2

. (2.27)
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Figure 2.2: The initial wave profiles suggested by Carrier et al. (2003). (a) and (b)
show the positive and negative Gaussian initial waves defined by Eq. (2.25) while (c)
and (d) show the leading depression N-wave initial profile defined by Eq. (2.27) given
for two different sets of parameters. The respective wave parameters are tabulated in
Table 2.1.

Again, the parameters used by Carrier et al. (2003) is employed (Table 2.1, cases

3 and 4, and Figures 2.2(c,d)). This leading depression N-wave is translated into

hodograph space as

η0(σ) = h1 e−c1 (σ2−σ2
1)2
− h2 e−c2 (σ2−σ2

2)2
, (2.28)

where, again, σ1 =
√

x1 and σ2 =
√

x2. The shoreline wave height ηs(λ) and the

shoreline velocity us(λ) for the waves defined in Eqs. (2.25) and (2.27) under zero

initial velocity assumption, i.e., u0 ≡ 0, are successfully compared in Figure 2.3 with

those of Kânoğlu (2004).

The wave dynamics at the shoreline is obtained under nonzero initial velocity condi-

tion as well. An exact nonlinear initial velocity relation, Eq. (2.29), can be derived

22



from the NSW equations (Kânoğlu and Synolakis, 2006).3 It is observed that, if the

initial velocity distribution for the Gaussian wave, i.e., Eq. (2.25) or Eq. (2.27), is

assumed as in Eq. (2.29), then the maximum wave runup increases more than 85%

compared to the zero initial velocity case (Table 2.1). Similarly, the lowest increase

for the minimum rundown is 82%.

The effect of different initial velocity assumptions on wave height is also investigated.

Three initial velocity assumptions are considered. The first one is the exact nonlinear

relation

u0(x) = 2
√

x − 2
√

x + η0(x). (2.29)

Due to difficulties encountered in computations, Carrier et al. (2003) replaced the

exact relation with the linear velocity approximation given by

u0(x) ≈ −
η0(x)
√

x
. (2.30)

On the other hand, Prichard and Dickinson (2007) has suggested

u0(x) ≈ −η0(x), (2.31)

in their asymptotic near-shore analysis of the problem. In Figure 2.4 the shoreline

wave heights (left insets) and the shoreline velocities (right insets) are compared for

the three different approximations of initial velocity. It is observed that, while the

exact and the linear velocity assumptions produce almost identical results, also iden-

tified by Kânoğlu and Synolakis (2006), the asymptotic relation used by Prichard and

Dickinson (2007) produces slightly higher runup values.

In Figures 2.5 and 2.6, spatial variations of the free-surface elevation η for the positive

Gaussian initial wave given in Figure 2.2(a) under the exact initial velocity condition

(2.29) are compared with spatial variations of the same wave having zero initial ve-

locity. Initial wave is splitted into two waves –shoreward and offshore going waves–

in the absence of initial velocity (Figure 2.5(b)), as expected. In the calculations,

the seaward boundary XL is chosen at enough distance so that the reflection does not

contaminate the solution near the shoreline.

3 Comparison of the cases with and without initial velocity is also discussed in Kânoğlu and Synolakis (2006).
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Figure 2.3: Time variations of (a) − (d) the shoreline positions ηs, and (e) − (h) the
shoreline velocities us for the initial waves given in Figure 2.2. Dashed and solid lines
represent the present solution with and without initial velocity, respectively, while
dots represent results of Kânoğlu (2004) without velocity. The initial wave parameters
and the maximum runup/minimum rundown heights are tabulated in Table 2.1.
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Figure 2.4: Comparison of the variation of (a) − (d) the shoreline wave heights, and
(e) − (h) the shoreline wave velocities for the three different initial velocity relations.
Solid lines represent results for the exact nonlinear value, Eq. (2.29), while dots and
dashed lines stand for the results of the linear and the asymptotic velocity approx-
imations, i.e., Eqs. (2.30) and (2.31), respectively. The initial wave parameters are
presented in Table 2.1.
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Figure 2.5: Spatial variations of the free-surface elevation of the Gaussian wave given
in the case 1 of Table 2.1 (Figure 2.2(a)). Dashed and solid lines represent the solution
with and without initial velocity, respectively, and thick lines represent the linearly
sloping beach. In the absence of initial velocity, splitted wave propagates away from
the shore as seen, for example, in inset (b). The seaward boundary is at XL = 50 so
that the reflected wave does not reach the shoreline.
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Figure 2.6: Continued from Figure 2.5.
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2.2.2 Solitary wave

A solitary wave with initial height H located at x = x1 is defined as

η0(x) = H sech2 γs(x − x1), (2.32)

where γs =
√

3H/4. This wave transforms to

η0(σ) = H sech2 γs (σ2 − σ2
1), (2.33)

in the hodograph space. Evolution of a solitary wave with H = 0.03 and x1 = 30 is

given in Figure 2.7. The initial wave is plotted in Figure 2.7(a) and the corresponding

nonlinear initial velocity obtained from Eq. (2.29) is shown in Figure 2.7(b). The tem-

poral variations of the shoreline wave height and the velocity of the solitary wave are

given in Figures 2.7(c,d), respectively. The maximum runup and minimum rundown

values for the cases with and without velocity are tabulated in Table 2.2 (case 1). It

is observed that the presence of the initial velocity results in approximately twice the

shoreline wave height compared to the no initial velocity case.

2.2.3 Isosceles N-wave

Tadepalli and Synolakis (1994) introduced two dipolar waveforms as more realistic

initial profiles for the initial surface response of seafloor displacements. The first one

is the isosceles N-wave profile is defined as

η0(x) =
3
√

3
2

H sech2 γi(x − x1) tanh γi(x − x1), (2.34)

with γi = (3/2)
√

H
√

3/4. This profile, given in Figure 2.8(a) for H = 0.03 and center

point x1 = 30, is a leading-depression N-wave (LDN) with identical depression and

elevation heights. When translated to the hodograph space, Eq. (2.34) becomes

η0(σ) =
3
√

3
2

H sech2 γi(σ2 − σ2
1) tanh γi(σ2 − σ2

1). (2.35)

The temporal variations of the shoreline wave height and the wave velocity of the

isosceles N-wave are plotted in Figures 2.8(e,f), respectively. As seen from Table 2.2

(case 2), the initial wave having velocity creates approximately two times the maxi-

mum shoreline wave height compared to the wave without initial velocity.
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Figure 2.7: (a) The solitary wave with initial height H = 0.03 located at x1 = 30; (b)
the associated initial velocity distribution, u0(x). The corresponding temporal varia-
tions of the shoreline wave height ηs and the shoreline wave velocity us are presented
in insets (c) and (d), respectively. Solid and dashed lines represent the cases u0(x) ≡ 0
and u0(x) = 2

√
x − 2

√
x + η0(x), respectively.

2.2.4 Generalized N-wave

The other dipolar profile defined by Tadepalli and Synolakis (1994), which produces

uneven positive and negative disturbances, is the so-called generalized N-wave pro-

file,

η0(x) = εH (x − x2) sech2 γg(x − x1), (2.36)

with γg =
√

3H/4. ε is a scaling parameter which is used to ensure that the initial

height of the wave is H. Eq. (2.36) is translated to the hodograph space as

η0(σ) = H (σ2 − σ2
2) sech2 γg(σ2 − σ2

1). (2.37)
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Figure 2.8: (a) The isosceles N-wave profile with H = 0.03 and x1 = 30; (b) the
associated initial velocity distribution, u0(x). The corresponding temporal variations
of the shoreline wave height ηs and the shoreline wave velocity us are presented in
insets (e) and ( f ), respectively. (c) The generalized N-wave profile with H = 0.06,
x1 = 30, and x2 = 29. The scaling parameter is chosen as ε = 0.1827 so that the wave
has a maximum initial height of 0.03. (d) The associated initial velocity distribution,
u0(x). The corresponding temporal variations for ηs and us are presented in insets
(g) and (h), respectively. Solid and dashed lines represent the cases u0(x) ≡ 0 and
u0(x) = 2

√
x − 2

√
x + η0(x), respectively.
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Table 2.2: The corresponding parameters of Eqs. (2.32), (2.34), and (2.36) for
which calculations are performed. The extreme wave height values for the cases
with/without initial velocity are also tabulated. The exact initial velocity relation is
considered in the calculations.

Maximum runup / minimum rundown
Wave parameters without velocity with velocity

Case H x1 x2 ηmax ηmin ηmax ηmin

1 Figure 2.7(a) 0.03 30.0 - 0.0930 −0.0437 0.1916 −0.0813
2 Figure 2.8(a) 0.03 30.0 - 0.2480 −0.1234 0.4939 −0.2659
3 Figure 2.8(c) 0.06 30.0 29.0 0.1829 −0.0589 0.3658 −0.1207

An LDN with parameters H = 0.06, x1 = 30, and x2 = 29 is given in Figure 2.8(c)

for reference. The scaling parameter is chosen as ε = 0.1827 so that the wave has a

maximum initial height of 0.03. The temporal variations of the shoreline wave height

and the wave velocity for Eq. (2.36) are given in Figures 2.8(g,h), respectively. The

same effect of the initial velocity on the maximum wave height at the shoreline as

in the solitary and isosceles N-wave cases can also be observed for the generalized

N-wave (Table 2.2, case 3).

2.2.5 Application to near-shore earthquakes

Tinti and Tonini (2005) obtained an analytical solution for propagation and runup of

long waves resulting from earthquakes that occur in the vicinity of the initial shore-

line. They solved the NSW equations as an IVP after utilizing the hodograph and the

Hankel integral transformations. Tinti and Tonini (2005) assumed zero initial velocity

and an initial wave of the form

η0(σ) =

3∑
k=0

ck(1 + σ2)−(k+3/2), (2.38)

in the hodograph space. First, they calculated the initial sea surface vertical dis-

placement for a coastal earthquake with prescribed parameters from Okada’s dislo-

cation model (Okada, 1985, 1992). Then, they approximated the surface profile with

Eq. (2.38) and computed the coefficients ck using curve fitting.
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Table 2.3: The corresponding parameters of Eq. (2.38) for which calculations are
performed. The parameter set is taken from Tinti and Tonini (2005).

Case c0 c1 c2 c3

1 Figure 2.9 2.00e − 03 −2.10e − 03 5.53e − 07 1.75e − 07
2 Figure 2.10 9.98e − 04 6.60e − 03 −1.58e − 02 8.20e − 03
3 Figure 2.11 7.40e − 04 9.60e − 03 −2.23e − 02 1.17e − 02
4 Figure 2.12 7.10e − 03 −1.44e − 02 2.80e − 04 6.90e − 03

Tinti and Tonini (2005) produced spatial and temporal distributions for the subsequent

waves in the form of Eq. (2.38), initiated from four different near-shore earthquake

configurations. The first three configurations correspond to displacements from ver-

tical dip-slip faults that are located inland (case 1), under the shoreline (case 2), and

slightly offshore (case 3). The last configuration (case 4) is associated with a fault

system consisting of oblique inverse and normal faults. The details can be found in

Tinti and Tonini (2005). The parameter set for each case is taken from Tinti and

Tonini (2005) and tabulated in Table 2.3. In Figures 2.9-2.12, the results of Tinti and

Tonini (2005) are reproduced and compared with the results of the method presented

in Section 2.1. Exact agreement is observed.

2.3 Conclusions

The analytical solution developed here provides accurate estimate for temporal vari-

ations of shoreline wave height and velocity distributions of shallow-water waves

propagating over a sloping beach. The general initial-boundary value problem of the

NSW equations, i.e., with and without initial velocity, is considered and a wide class

of initial wave profiles are analyzed.

The eigenfunction expansion method presented here appears simpler than existing

solution methods; unlike previous integral transform techniques, the present method

does not involve evaluation of singular elliptic integrals and hence, it requires mini-

mum computational effort. The method can serve as an analytical benchmark solution

for numerical solutions in addition to the ones presented in Synolakis et al. (2008).
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Figure 2.9: (a)-(f ) Spatial variations of wave height for the case 1 of Tinti and Tonini
(2005) at times t̃ = 0, 1, 3, 4, 6, and 10 minutes. (g) Time variations of the shoreline
position (solid line) and shoreline velocity (dashed line). Markers represent results
of Tinti and Tonini (2005). Dimensional quantities are calculated and plotted using a
characteristic length of l∗ = 50 km and a beach slope of tan β = 1/25 as in Tinti and
Tonini (2005), so that the characteristic depth becomes l∗ tan β = 2000 m.
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Figure 2.10: (a)-(f ) Spatial variations of wave height for the case 2 of Tinti and Tonini
(2005) at times t̃ = 0, 1, 2, 4, 6, and 10 minutes. (g) Time variations of the shoreline
position (solid line) and shoreline velocity (dashed line). Markers represent results
of Tinti and Tonini (2005). Dimensional quantities are calculated and plotted using a
characteristic length of l∗ = 50 km and a beach slope of tan β = 1/25 as in Tinti and
Tonini (2005), so that the characteristic depth becomes l∗ tan β = 2000 m.
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Figure 2.11: (a)-(f ) Spatial variations of wave height for the case 3 of Tinti and Tonini
(2005) at times t̃ = 0, 1, 2, 4, 6, and 10 minutes. (g) Time variations of the shoreline
position (solid line) and shoreline velocity (dashed line). Markers represent results
of Tinti and Tonini (2005). Dimensional quantities are calculated and plotted using a
characteristic length of l∗ = 50 km and a beach slope of tan β = 1/25 as in Tinti and
Tonini (2005), so that the characteristic depth becomes l∗ tan β = 2000 m.
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Figure 2.12: (a)-(f ) Spatial variations of wave height for the case 4 of Tinti and Tonini
(2005) at times t̃ = 0, 1, 2, 3, 6, and 10 minutes. (g) Time variations of the shoreline
position (solid line) and shoreline velocity (dashed line). Markers represent results
of Tinti and Tonini (2005). Dimensional quantities are calculated and plotted using a
characteristic length of l∗ = 50 km and a beach slope of tan β = 1/25 as in Tinti and
Tonini (2005), so that the characteristic depth becomes l∗ tan β = 2000 m.
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CHAPTER 3

WIND SET-DOWN RELAXATION1

In Chapter 2, a solution technique utilizing the hodograph transformation is intro-

duced for modeling of nonlinear shallow-water wave propagation over a beach having

constant slope. As a coastal engineering application of this technique, in this chapter,

the subsequent wave motion resulted by the relaxation of wind stress along a long-

narrow basin is modeled analytically. The Gulf of Suez, Gulf of Elat (also known as

the Gulf of Aqaba) or Baja California are examples of a such basin. Examination of

their geometry suggests neglection of the wave dynamics in the cross-basin direction

as well as the Coriolis force (Csanady, 1982).

In the presence of a moderate wind blowing in the seaward direction, the sea surface

over the basin will assume a steady-state shape resulted by the balance of the wind

stress at the top of the water column with the vertical pressure gradient. This is called

the wind set-down. This sea surface state is preserved as long as the wind blows in

the same direction. If the wind suddenly calms down, however, water accelerates in

the shoreward direction under the pressure gradient since the wind stress is zero now,

and water shows oscillatory behavior. This is the relaxation of the wind set-down.

Nof and Paldor (1992) solved the wind set-down problem governed by the balance

described above and found an implicit analytical solution to this steady-state problem.

They applied their solution to the Gulf of Suez at the northern end of the Red Sea.

Later, Gelb et al. (1997) used the implicit analytical solution developed by Nof and

Paldor (1992) as an initial condition for the nonlinear shallow-water wave (NSW)

equations and they modeled the wind set-down relaxation problem numerically using

1 The results presented in this chapter is published in Aydın and Kânoğlu (2007).
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Chebyshev spectral and MacCormack finite-difference methods. The main difficulty

in solving this problem is reported to be the moving singularity at the shoreline (Gelb

et al., 1997).

Here, both the wind set-down and the wind set-down relaxation problems are solved

analytically. The solution methodology yields an initial-boundary value problem

(IBVP), even though long wave propagation problems are usually treated as initial-

or boundary-value problems. First, the steady-state wind set-down problem is solved

explicitly, employing the hodograph transformation for the spatial variable (Carrier

et al., 2003). Then, the temporal transformation is incorporated into the solution in

order to offer an analytical solution for the relaxation problem. At this stage, the

NSW equations are reduced into a single second-order linear partial differential equa-

tion, as usually is the case for the hodograph transformation. It is observed that the

application of the standard separation of variables technique to the final (reduced)

equation yields a solution in the form of a Fourier-Bessel series, as in Chapter 2. The

coefficients of the series are computed by imposing the wind set-down solution as an

initial condition. After obtaining the complete solution in the transform space, the

transformation is inverted for the physical space to evaluate physical quantities such

as free-surface elevation and water velocity.

3.1 Mathematical Model

3.1.1 The steady-state phase

Nonlinear response of the ocean to the wind blowing over a long-narrow basin (Fig-

ure 3.1) is governed by the nondimensional nonlinear equation (Csanady, 1982)

− (h + η)
dη
dx

+ γ = 0. (3.1)

in steady-state. Here h(x) = x and η = η(x) represent the undisturbed water of variable

depth and the free-surface elevation, respectively. The origin of the coordinate system

is chosen to be at the initial shoreline, with 0 ≤ x ≤ 1, increasing in the seaward

direction. Nondimensional variables in Eq. (3.1) are introduced as

x =
x̃
L̃
, (h, η) =

(h̃, η̃)
D̃

, γ =
L̃

D̃2

τ̃x

gρ̃w
, (3.2)
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Figure 3.1: Definition sketch for a long-narrow (W̃/L̃ � 1) and shallow (D̃/L̃ � 1)
basin: (a) cross section, (b) top view.
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quantities with tilde being dimensional. Here, the length of the basin L̃ and the depth

at the toe of the slope D̃ are chosen as the respective characteristic length and depth

scales. τ̃x, ρ̃w, and g are the horizontal stress component induced by the wind, the

density of the water, and the gravitational acceleration, respectively. Eq. (3.1) is

subjected to the boundary condition

η(x = 1) = 0, (3.3)

i.e., the wave height is zero at the mouth of the basin. The governing equation (3.1)

is inverted by Nof and Paldor (1992) for dx/dη. This inversion converts the nonlinear

governing equation in η(x) to a linear equation in x(η). Nof and Paldor (1992) solved

the resultant linear equation under the boundary condition (3.3) and determined the

initial sea surface height η(x) implicitly. Their solution can be rearranged into the

form

x = η(x) + (1 + γ)[1 − exp(
η(x)
γ

)], (3.4)

which requires nonlinear iterations to obtain η(x).

Using the wind set-down solution (3.4) as an initial condition, Gelb et al. (1997)

solved the wind set-down relaxation problem numerically through spectral and finite-

difference schemes. The implicit form of Eq. (3.4) does not possess a problem with

the numerical solution. However, nonexistence of an explicit analytical solution for

the wind set-down problem prevents proceeding with an analytical solution for the

relaxation problem. Here, it is shown that an explicit solution of the steady-state

problem is possible with application of the hodograph transformation to Eq. (3.1),

which will allow analytical modeling of the relaxation problem.

The governing equation, Eq. (3.1), takes the form

(σ2 + γ)ησ − 2γσ = 0, (3.5)

in the hodograph transform space, after using the transformation for the spatial vari-

able x as suggested by Carrier et al. (2003) to solve the NSW equations, i.e.,

x = σ2 − η. (3.6)

The boundary condition (3.3) can be translated into the following condition

η(σ = 1) = 0. (3.7)
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Figure 3.2: The steady-state wind set-down solution for γ = 0.01. Dots and solid
line represent the explicit analytical solution, i.e., Eq. (3.8) versus Eq. (3.6), and the
implicit analytical solution of Nof and Paldor (1992), respectively.

The transform governing equation (3.5) has the following exact solution together with

the boundary condition (3.7);

η(σ) = γ ln(
σ2 + γ

1 + γ
). (3.8)

Eq. (3.8) is an explicit transform solution for the steady-state wind set-down prob-

lem in terms of transform variable σ. It is straightforward to obtain the solution in

the physical space using the combination of Eqs. (3.6) and (3.8); Eq. (3.8) can be

evaluated for a specific σ to find η(σ) and resultant η(σ) together with σ give corre-

sponding x through Eq. (3.6). One example of such solution is presented in Figure

3.2 for γ = 0.01. As seen in Figure 3.2, even though equal increments are chosen

for σ in the hodograph transform space, conversion to the physical space generates

unequal increments for x because of the nonlinear transformation given in Eq. (3.6).

3.1.2 Wind set-down relaxation

Once wind calms down, water accelerates under the pressure gradient since there is

no balancing wind stress. It will be physically interesting to obtain the characteristics

of the motion, especially shoreline motion, after the wind calms down. The NSW
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equations defined in Chapter 2 can be used to describe the dynamics of the subsequent

motion,

ηt + [(h + η)u]x = 0, (3.9a)

ut + uux + ηx = 0. (3.9b)

Once again, in Eqs. (3.9), η(x, t) represents the surface height above still water level

and u(x, t) is the depth-averaged water velocity. Also, h(x) is the undisturbed water

depth, as in the wind set-down problem (Figure 3.1).

Nondimensional variables are defined as in Eq. (3.2), with additional nondimension-

alizations for the time and velocity variables,

t =
t̃
√

gD̃
L̃

, u =
ũ√
gD̃

. (3.10)

In order to solve Eqs. (3.9), the transformation for the spatial variable given in Eq. (3.6)

is complemented with the transformation for the temporal variable,

t = λ + u, (3.11)

(Carrier et al., 2003). Based on transformations (3.6) and (3.11), the system (3.9) is

transformed into

(σ2u)σ + 2σ (η +
1
2

u2)λ = 0, (3.12a)

2σ uλ + (η +
1
2

u2)σ = 0. (3.12b)

Further, defining a potential function ϕ(σ, λ) as

ϕ = η +
1
2

u2, (3.13)

Eqs. (3.12) can be reduced into the following single second-order linear partial dif-

ferential equation for ϕ, eliminating u;

4σϕλλ − (σϕσ)σ = 0. (3.14)

As described in Chapter 2, nonlinear hodograph transformation not only reduces the

NSW equations into a single second-order linear partial differential equation, but also

the moving shoreline is fixed to σ = 0 in the transform space.
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Now, the solution strategy introduced in Chapter 2 will be utilized and Eq. (3.14)

will be solved as an IBVP. The initial conditions are the steady-state wind set-down

solution (3.8), as the initial surface profile η(σ, 0), with corresponding zero initial

velocity, u(σ, 0) ≡ 0. Then, the following initial conditions in terms of the potential

function ϕ can be derived through Eqs. (3.12a) and (3.13), respectively;

ϕλ(σ, 0) = 0, (3.15a)

ϕ(σ, 0) = η(σ, 0). (3.15b)

In addition to these initial conditions, bounded solution requires ϕ(σ, λ) to have a

finite value at the shoreline (σ = 0) and undisturbed sea surface at the toe of the

slope, η(x = 1, t) = 0, implies that η(σ = 1, λ) = 0 in the transform (σ, λ)-space. The

importance of the requirement of an explicit solution η(σ, 0) for the steady-state wind

set-down problem is now clear to proceed with the solution of the NSW equations.

After defining proper initial and boundary conditions in the transform (σ, λ)-space,

the solution for Eq. (3.14) is now straightforward. The separation of variables tech-

nique introduced in Chapter 2 yields the Fourier-Bessel series given as

ϕ(σ, λ) =

∞∑
n=1

KnJ0(znσ) cos(
zn

2
λ), (3.16)

where zn are the positive zeros of the Bessel function of the first kind of order zero.

The coefficients Kn will be determined by applying the steady-state wind set-down

solution (3.8) as an initial condition for Eq. (3.14). Considering Eq. (3.15b) and Eq.

(3.16), the initial condition can be written as
∞∑

n=1

KnJ0(znσ) = γ ln(
σ2 + γ

1 + γ
), (3.17)

where Kn are the Bessel coefficients. Multiplication of both sides with σJ0(zmσ) and

integration from σ = 0 to σ = 1 gives (Watson, 1944)

Kn =
2γ

J2
1(zn)

∫ 1

0
σ ln(

σ2 + γ

1 + γ
)J0(znσ)dσ. (3.18)

Finally, insertion of Eq. (3.18) into Eq. (3.16) gives the complete analytical solution

for the wind set-down relaxation problem,

ϕ(σ, λ) =

∞∑
n=1

2γ
J2

1(zn)

∫ 1

0
ω ln(

ω2 + γ

1 + γ
)J0(znω)J0(znσ) cos(

zn

2
λ)dω. (3.19)
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After obtaining the solution of the IBVP for the wind set-down relaxation problem,

the whole flow field can now be resolved. Importance is given to the physical charac-

teristics of shoreline motion.

Combination of Eq. (3.12a) with Eq. (3.16) can be used to compute the water velocity

u(σ, λ) as

u(σ, λ) =
1
σ

∞∑
n=1

KnJ1(znσ) sin(
zn

2
λ). (3.20)

Once u(σ, λ) is known, η(x, t) can be evaluated through Eq. (3.13). Since σ = 0 at

the shoreline, Eq. (3.20) takes the form

us(λ) = u(0, λ) =
1
2

∞∑
n=1

znKn sin(
zn

2
λ), (3.21)

considering Eq. (2.21), i.e., limσ→0
1
σ

J1(znσ) = 1
2zn. Shoreline position is now given

as

xs(λ) = x(0, λ) =
us(λ)2

2
− ϕ(0, λ), (3.22)

with respective time

ts(λ) = t(0, λ) = λ + us(λ). (3.23)

3.2 Results and Discussions

As an application of the solution developed in Section 3.1, the Gulf of Suez is con-

sidered as in Nof and Paldor (1992). The gulf has a basin length of L̃ = 350 km with

a transition depth of D̃ = 70 m. A typical wind blowing with the speed 7 m/s gives

a stress value of τ̃x/ρ̃w = 10−4 m2/s2 for which γ = 7.28 10−4 (Csanady, 1982; Nof

and Paldor, 1992). On the other hand, an interval of 0.01 ≤ γ ≤ 0.02 is suggested

in Gelb et al. (1997) for the nondimensional parameter γ. Since it gives a chance of

comparison between the proposed analytical solution and the existing numerical so-

lution of Gelb et al. (1997), the value γ = 0.01 is used for evaluation of some physical

properties of the relaxation problem.2

The wave profile at some specific time values t∗ is obtained using the Newton-Raphson

iterations, which is proposed by Synolakis (1987) and recently used by Kânoğlu
2 Although not clearly stated in their paper, it is verified here that Gelb et al. (1997) performed the calculations

for γ = 0.01 corresponding to the wind stress τ̃x/ρ̃w = 1.37 10−3 m2/s2.
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(2004). The recursive relation

λi+1 = λi −
t∗ − t(σ, λi)
1 + uλ(σ, λi)

, (3.24)

determines the value λ∗ for which t(σ, λ∗) − t∗ = 0. A number of spatial distributions

of the water surface elevation and the depth-averaged velocity for different values of

t∗ are given in Figures 3.3(a,b), respectively. The same procedure can be utilized to

get the solution at a specific location x∗ as well (Synolakis, 1987).

Shoreline position is presented in Figure 3.4(a) and it exactly compares with Gelb

et al. (1997). Gelb et al. (1997) further analyzed the oscillatory behavior of the shore-

line position with the help of the power spectral density. Power spectral density is

defined by dk = | fk|
2 where fk is the discrete Fourier transform of the time averaged

shoreline position data,

fk =

N−1∑
j=0

(ηs, j − ηs,average) e−i 2π j k/N; k = 0, 1, . . . ,N − 1. (3.25)

The corresponding nondimensional frequency is k/N∆t with ∆t = T/N (N = 2m, m

being a positive integer, and T is the total time). Exact agreement with Gelb et al.

(1997) is obtained as presented in Figure 3.4(b).

3.3 Conclusions

The governing equation for the wind set-down problem is first transformed by us-

ing the hodograph transformation for the spatial variable and an explicit analytical

solution is obtained. This explicit solution is crucial to proceed with the analytical

solution of the wind set-down relaxation problem since the existing steady-state solu-

tion was an implicit one. Then, the hodograph transformation is complemented with

the transformation for the temporal variable in order to reduce the NSW equations,

which govern the relaxation phase, into a single second-order linear partial differ-

ential equation. An IBVP solution rather than the existing IVP and BVP solutions

is presented for the reduced linear equation as in Chapter 2. The nonhomogeneous

initial condition is extracted from the wind set-down solution. Certain physical flow-

field properties such as wave heights and velocities at specific times as well as the
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Figure 3.3: Spatial and temporal variation of (a) the free-surface elevation and (b) the
velocity at t = 0 (solid line), t = 10 (dashed line), and t = 40 (dash-dotted line) for
γ = 0.01. Insets (a) and (b) correspond to the Figure 8 for t∗ = 10 and to the Figure 9
for t∗ = 40 of Gelb et al. (1997), respectively.
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temporal variation of the free-surface and the depth-averaged velocity at the shore-

line are evaluated. The results are compared with the numerical solution of Gelb et al.

(1997) and exact agreement is obtained.
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CHAPTER 4

PROPAGATION OF A FINITE SOURCE

OVER A FLAT BASIN1

Once generated, tsunamis evolve substantially through two-dimensional spatial spread-

ing as they propagate over ocean bathymetry. Titov et al. (2005) revealed wave am-

plitudes, directionality, and global propagation patterns of the 26 December 2004

tsunami. They presented a global figure showing energy propagation –maximum

wave height observed at each computational grid point– of the 2004 Indian Ocean

tsunami calculated from the Method of Splitting Tsunamis (MOST) model (Titov,

1997; Titov and Synolakis, 1995, 1996, 1998), which was validated through exten-

sive series of benchmark analytical solutions, experimental results, and field obser-

vations identified by Synolakis et al. (2008). Titov et al. (2005) observed two main

factors affecting tsunami wave directionality: the focusing configuration of the source

region (Marchuk and Titov, 1989) and the waveguide structure of mid-ocean ridges

(Koshimura et al., 1999). Continental shelves also act as waveguides (González et al.,

1995) and are apparently responsible for alongshore propagation and persistent ring-

ing for the Pacific coasts of South and North America.

Tsunami initiated from an underwater earthquake has a finite-crest (strip) length

where boundaries of the displaced portion of the crust can roughly be estimated from

the parent earthquake parameters (Okada, 1985). The spatial and temporal evolution

of the finger-like pattern radiated from a tsunami source of finite length is referred to

as its directivity. Ben-Menahem (1961) recognized it and defined a directivity func-

tion generated by the source length and the rupture velocity. Later, Ben-Menahem

1 The results presented in this chapter is in the process of submission as a journal article (Kânoğlu et al., in
preparation).
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and Rosenman (1972) used the linear theory to calculate the two-directional radiation

pattern from a moving source. They showed that tsunami energy radiates primarily at

a right angle to a rupturing fault. They also verified dependence of directivity on the

sea-floor rupture and wave celerity and they applied their theory to sample the path

of the 1964 Great Chilean tsunami. Okal (2003a) discussed the details of the analysis

of Ben-Menahem (1961) and the distinct difference between the directivity patterns

of earthquake- and landslide-generated tsunamis. Okal (2003a) then considered the

field observation of the 1946 Aleutian earthquake and tsunami and concluded that a

large slow earthquake and a landslide must have occurred concurrently to yield the

far-field distribution of the reported runup. One example of his work is presented

in Synolakis and Bernard (2006) for the 2004 Indian Ocean tsunami. Okal (2005,

personal communication) quickly eliminated the shorter earthquake source proposed

in the immediate aftermath of the 2004 tsunami, in favor of the larger source, based

on qualitative assessment of the radiation field on the basis of the directivity of the

source.

In addition to the two-dimensional analytical shallow-water wave models summa-

rized in Chapter 1, Kervella et al. (2007) numerically compared propagation of ini-

tial waveforms resulted from two different generation mechanisms, i.e., the sea-floor

deformation is directly translated to the ocean surface (passive approach) and the

time scale of the sea-floor deformation is taken into account (active approach). They

showed that both generation mechanisms do not always produce equivalent far-field

waveforms. Berry (2007) showed that shallower regions in the oceans can focus the

energy of tsunamis and could make tsunamis more destructive where focal regions

include sections of coasts.

One of the two-dimensional models introduced in Chapter 1 was the analytical solu-

tion of Carrier and Yeh (2005) for propagation and directivity of finite-crest length

sources over a flat bathymetry, based on Carrier (1990)’s methodology. However,

Carrier and Yeh (2005)’s solution has two drawbacks. One, their solution involves

computation of elliptic integrals, as in Carrier et al. (2003). Elliptic integrals have

singularities; therefore, Carrier and Yeh (2005) were not able to evaluate the solution

integrals for the far-field. In order not to conserve the difficulty, they developed an ap-

proximate solution using the self-similar behavior of the solution, as briefly explained
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in Section 4.3.1. Two, the analytical model proposed by Carrier and Yeh (2005) is

restrictive on the initial waveform, i.e., it can only be used to analyze finite-crested

wave profiles defined through a Gaussian (exponential) shape. However, plus-minus

sources, i.e., sources having both depression (negative displacement) and elevation

(positive displacement), are accepted as more realistic initial waveforms for tsunamis

(Tadepalli and Synolakis (1994) presented a paradigm change from solitary wave to

N-wave as discussed in Chapter 1). Even though solution for a plus-minus wave can

be obtained by combining positive and negative Gaussian waves, the difficulties men-

tioned above will persist. Therefore, analytical solution of Carrier and Yeh (2005)

is not general and generalization to more realistic waveforms is not straightforward

since it includes ad-hoc approximation.

Marchuk and Titov (1989) presented a study on the process of tsunami wave gen-

eration by rectangular plus-minus initial displacements numerically during the 1989

International Tsunami Symposium, Novosibirsk, Russia. They showed existence of

a focusing point for a combined plus-minus initial ocean surface displacement where

abnormal tsunami wave height can be registered.

In this chapter, the linear shallow-water wave (LSW) equation will be solved for

an initial wave having finite transverse crest length. First, a new general analytical

solution is developed for propagation of a finite-crest length source. The proposed

solution is first applied to the cases presented by Carrier and Yeh (2005). Then,

flexibility of the solution method in terms of initial wave profile is shown; initial

profiles having different cross-sections, i.e., Gaussian, solitary, or N-wave, can be

incorporated. Lastly, the analytical solution is applied to the cases of 17 July 1998

Papua New Guinea and the 17 July 2006 Java Island, Indonesia tsunamis to explain

some extreme runup observations.

4.1 General Analytical Solution

The two-dimensional propagation problem over an ocean basin of constant depth d

can be described by the LSW equation, given in terms of free-surface elevation η =
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η(x, y, t) as

ηtt − ηxx − ηyy = 0, (4.1)

in nondimensional form (Carrier and Noiseux, 1983). The nondimensional variables

are introduced as

(x, y) =
(x̃, ỹ)

l0
, η =

η̃

d0
, t =

t̃
t0
, (4.2)

where l0 = d0 = d and t0 = l0/
√

g d0 =
√

d/g are the characteristic length, depth, and

time scales, respectively (Figure 4.1), and g is the gravitational acceleration.

The initial conditions of the propagation problem are prescribed initial surface profile

with zero initial velocity;

η(x, y, 0) = η0(x, y), (4.3a)

ηt(x, y, 0) = 0. (4.3b)

The governing equation (4.1) transforms into

η̂tt + (k2 + l2) η̂ = 0, (4.4)

under the Fourier transform pair over the space variables (x, y),

η̂(k, l, t) =

∫ ∞

−∞

∫ ∞

−∞

η(x, y, t) e−i(kx+ly)dx dy, (4.5a)

η(x, y, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

η̂(k, l, t) ei(kx+ly)dk dl, (4.5b)

where k and l are the wave numbers in the x- and y-directions, respectively. Then, the

initial conditions given in Eqs. (4.3) transform to

η̂(k, l, 0) = η̂0(k, l), (4.6a)

η̂t(k, l, 0) = 0. (4.6b)

In the Fourier space, the solution of Eq. (4.4) under the conditions given in Eqs. (4.6)

is now straightforward;

η̂(k, l, t) = η̂0(k, l) cos t
√

k2 + l2, (4.7)

and the solution in the physical (x, y)-space is given through the back-transformation

formula (4.5b) as

η(x, y, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

η̂0(k, l) ei(kx+ly) cos t
√

k2 + l2 dk dl. (4.8)
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4.2 Solution for Finite-crested Initial Waves

The finite-crested initial waveform considered here is defined as product of two inde-

pendent functions,

η0(x, y) = f (x) g(y), (4.9)

as in Carrier and Yeh (2005). In Eq. (4.9), while g(y) represents the lateral cross-

section of the source, such as a Gaussian, solitary, or an N-wave, f (x) describes

the transverse extend of the initial wave profile (Figure 4.1). Representation of the

initial wave as in Eq. (4.9) is advantageous because it allows evaluation of the Fourier

transforms of f (x) and g(y) separately;

η̂0(k, l) =

∫ ∞

−∞

∫ ∞

−∞

f (x)g(y)e−i(kx+ly)dxdy

=

[∫ ∞

−∞

f (x)e−ikxdx
] [∫ ∞

−∞

g(y)e−ilydy
]

= f̂ (k)ĝ(l). (4.10)

Two typical examples for realistic cross-section profiles g(y) are the solitary wave

and the generalized N-wave introduced in Chapter 2, the Fourier transforms of which

are given in Synolakis (1987) and Tadepalli and Synolakis (1994), respectively. For

the sake of clarity, the equations for the solitary wave and the generalized N-wave

profiles, i.e., Eqs. (2.32) and (2.36), are recalled here. A solitary wave with initial

amplitude H located at y = y0 is described by

gs(y) = H sech2γs(y − y0), (4.11)

with γs =
√

3H/4. Its Fourier transform is evaluated by Synolakis (1987) as

ĝs(l) =
4 π
3

l e−i l y0 cosech αs l, (4.12)

with αs = π/(2γs). A generalized N-wave profile is defined by Tadepalli and Syno-

lakis (1994) as

gn(y) = εH(y − y2) sech2γn(y − y1), (4.13)

where ε is a scaling parameter which ensures that the initial wave amplitude is H.

The points y1 and y2 are used to control the locations of the depression and elevation

parts of the N-wave. The steepness parameter is defined as γn =
√

3Hp0/4, where p0

is a parameter included to be able to change the steepness of the wave. The Fourier
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transform of the generalized N-wave is evaluated by Tadepalli and Synolakis (1994)

as

ĝn(l) =
4 εH
π

α2
n e−i l y1[(y1 − y2) l + i (1 − αn l cothαn l)] cosech αn l, (4.14)

with αn = π/(2γn).

The finite-crest length profile will be given here by

f (x) =
1
2

[tanh γ(x − x0) − tanh γ(x − (x0 + L))], (4.15)

unlike Carrier and Yeh (2005) who preferred the error function (erf). The source

elongates from point x0 to x0 + L along the x-axis; so L is the transverse length of

the source, as shown in Figure 4.1. The parameter γ in Eq. (4.15) is dictated by the

lateral cross-section g(y) of the initial wave, i.e., either as γ = γs (solitary wave) or as

γ = γn (N-wave). The factor 1/2 is included so that the amplitude of f (x) is equal to

the unity in the limit L −→ +∞; in this case, the number of space variables reduces

to one and Eq. (4.9) represents an infinitely long source.

Now, the Fourier transform of f (x) is required. Given∫ ∞

−∞

tanh γx e−ikx dx = −2 iα cosech αk, (4.16)

α = π/(2γ), derivation of which is presented in Appendix A, the Fourier transform of

Eq. (4.15) takes the form

f̂ (k) = iα (e−ikL − 1) e−ikx0 cosech αk. (4.17)

Combining Eqs. (4.11) and (4.15), a two-dimensional finite-crested initial wave with

solitary wave cross-section can be given as

ηs(x, y) =
H
2

sech2γs(y − y0) [tanh γs(x − x0) − tanh γs(x − x0 − L)], (4.18)

with γs =
√

3H/4, and its Fourier transform is obtained by combining Eqs. (4.12)

and (4.17) as

η̂s(k, l) = i
4 π
3
αs l (e−ikL − 1)e−i(kx0+ly0) cosech αsk cosech αsl, (4.19)

with αs = π/(2γs). Similarly, combination of Eqs. (4.13) and (4.15) gives a finite-

crested source with N-wave cross-section,

ηn(x, y) =
εH
2

(y − y2) sech2γn(y − y1) [tanh γn(x − x0) − tanh γn(x − x0 − L)], (4.20)
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with γn =
√

3Hp0/4, and its Fourier transform is obtained by combination of Eqs. (4.14)

and (4.17) as

η̂n(k, l) = i
4 εH
π

α3
n (e−ikL − 1) e−i(kx0+ly1) [(y1 − y2) l +

+i (1 − αnl cothαnl)] cosech αnk cosech αnl, (4.21)

with αn = π/(2γn).

4.3 Results and Discussions

In this section, first, the so-called axisymmetric water wave problem analyzed by

Carrier and Yeh (2005) is revisited and some issues in their solution are addressed.

Then, geophysical implications of the solution proposed in Section 4.1 is discussed

in view of the 17 July 1998 Papua New Guinea and the 17 July 2006 Java Island

tsunamis.

4.3.1 Comparison with Carrier and Yeh (2005) solution2

In order to analyze the directivity of finite strip sources, Carrier and Yeh (2005) first

developed analytical solution for axisymmetric waves (single Gaussian hump). They

chose the characteristic length, depth, and time scales to be

l0 = W, d0 = H, t0 =
W
√

gH
, (4.22)

in which W is the initial source breadth and H is the source amplitude, respectively

(Figure 4.1). The nondimensional form of the two-dimensional LSW equation is

again as in Eq. (4.1) with these scaling parameters. Introducing the change of vari-

ables r =
√

x2 + y2, the so-called axisymmetric governing equation is obtained from

Eq. (4.1) as

ηtt −
1
r

(r ηr)r = 0, (4.23)

and the initial conditions (4.3) turn into

η(r, t = 0) = P(r), (4.24a)

ηt(r, t = 0) = 0. (4.24b)

2 Eqs. (4.22) through (4.32) are taken from Carrier and Yeh (2005) and Figures (4.2) through (4.4) are repro-
ductions of the corresponding figures of Carrier and Yeh (2005) using the methodology described in Section 4.1.
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Using a Gaussian hump,

P(r) = 2 e−r2
, (4.25)

(Figure 4.2(a)), Carrier and Yeh (2005) first developed a Hankel integral transform

solution to the governing equation (4.23);

η(r, t) =

∫ ∞

0
ρ J0(ρr) e−ρ

2/4 cos ρt dρ. (4.26)

However, they observed that the resultant integral of the axisymmetric solution be-

comes inconvenient to compute at large distances r or times t, although it is well

behaved for small values of them. Hence, following Carrier et al. (2003), Carrier and

Yeh (2005) expressed the solution in terms of the complete elliptic integral, i.e.,

η(r, t) =
∂

∂t

∫ ∞

0
P(ρ) G(ρ, r, t) dρ, (4.27)

where

G(ρ, r, t) =


2ρ

π
√

t2−(r−ρ)2
K( 4 r ρ

t2−(r−ρ)2 ) for t > r + ρ,

1
π

√
ρ

r K( t2−(r−ρ)2

4 r ρ ) for |r − ρ| < t < r + ρ,

0 for t < |r − ρ|.

(4.28)

Here, K is the complete elliptic integral of the first kind defined by

K(λ) =

∫ π/2

0

dν√
1 − λ sin2 ν

. (4.29)

Carrier and Yeh (2005) showed that the solution (4.27) of Eq. (4.23) exhibits a self-

similar behavior, i.e., t ∼ r (Figure 4.2(b)). They used the self-similarity property to

extend their axisymmetric solution to the elongated source defined as

η0(x, y) = [erf(x0 + L − x) − erf(x0 − x)] e−y2
, (4.30)

replacing the complete elliptic integral with the modified Bessel functions through

trial-and-error, i.e.,

η(x, y, t) �
1
√
π

∫ x0+L

x0

(50 t)1/2 ϕ(
y2 − t2

4 t
+

x2 − x′2

4 t
) dx′, (4.31)

where

ϕ(s) ≈ −0.0238
d
ds

 (2s2)1/4K1/4(2s2) e−2s2
for s > 0,

(2s2)1/4 [K1/4(2s2) + π
√

2 I1/4(2s2)] e−2s2
for s < 0.

(4.32)
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Here, I1/4 and K1/4 are the modified Bessel functions of first and second kind of order

1/4, respectively. The drawbacks of the Carrier and Yeh (2005) solution arise at this

point. First, their solution for elongated source is applicable only to the specific initial

condition given in Eq. (4.30) since it involves trial-and-error procedure. Second, due

to the approximation introduced in Eq. (4.32), their solution is approximate.

In contrast to Carrier and Yeh (2005), the exact solution of the axisymmetric problem

is possible with the method presented in Section 4.1. Given the Gaussian hump

P(r) = 2 e−r2
= 2 e−(x2+y2) = η0(x, y), (4.33)

its Fourier transform is computed as

η̂0(k, l) = 2 π e−(k2+l2)/4, (4.34)

and the axisymmetric wave solution becomes

η(x, y, t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

e−(k2+l2)/4ei(kx+ly) cos t
√

k2 + l2 dk dl, (4.35)

through Eq. (4.8). The temporal evolution given in Figure 4.2(b) is obtained from

Eq. (4.35). Results not only show exact comparison with Carrier and Yeh (2005),

but also no difficulty is experienced in direct numerical integration of Eq. (4.35). In

addition, Figure 4.2(b) exposes the self-similarity (t ∼ r) of the axisymmetric wave

solution, a property used by Carrier and Yeh (2005) to approximate the solution for

the elongated source (4.30), as described above.

The extension of the solution to a strip source is also straightforward. The Fourier

transform of the elongated source, Eq. (4.30), defined by Carrier and Yeh (2005) is

η̂0(k, l) = i
2
√
π

k
e−ikx0 (e−ikL − 1) e−(k2+l2)/4, (4.36)

and the associated solution through Eq. (4.8) is given by

η(x, y, t) =
i

2π3/2

∫ ∞

−∞

∫ ∞

−∞

(e−ikL − 1)
k

e−(k2+l2)/4ei[k(x−x0)+ly] cos t
√

k2 + l2 dk dl. (4.37)
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Figure 4.2: (a) The Gaussian hump defined by Eq. (4.25). (b) Evolution of the Gaus-
sian hump at times t = 0.5, 1, 2, 5, 10, 20, 30, 40, and 50. The self-similarity (t ∼ r)
of the solution (4.35) can be observed for t > 5.

Comparison of the solutions (4.31) and (4.37) reveals the simplicity of the solution

presented in Section 4.1. In Figure 4.3, an elongated source with fixed length L = 20

is considered as in Carrier and Yeh (2005). Time series of water surface elevation

is evaluated along different angular directions (θ = 0◦, 45◦, 90◦) by direct numerical

integration of Eq. (4.37).

The effect of the source length L on wave height distribution is demonstrated in Fig-

ure 4.4. Time series along directions normal (θ = 0◦) and parallel (θ = 90◦) to the

transverse x-axis are computed for varying L, as in Carrier and Yeh (2005).

4.3.2 Propagation of an N-wave over a constant depth

Now propagation of an N-wave defined by

η0(x, y) = [erf(x0 + L − x) − erf(x0 − x)] (e−(y−y1)2
− e−(y−y2)2

), (4.38)

over a constant depth is considered. This wave is constructed by adding a depression

(negative) wave in front the elevation (positive) one. As it starts propagating, this
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Figure 4.3: Temporal variations of the water surface elevation of the elongated Gaus-
sian source, Eq. (4.30), with crest length L = 20 are evaluated through Eq. (4.37) at
distances r = 20, 60, and 100 along the directions (a) θ = 0◦, (b) θ = 45◦, and (c)
θ = 90◦. Solid lines show the present analytical solution while dots show Carrier and
Yeh (2005)’s solution. The initial source Eq. (4.30) is located at (x0, y0) = (−L/2, 0)
to have one-to-one comparison with the Figure 7 of Carrier and Yeh (2005).
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Figure 4.4: Time histories of the water surface elevation are evaluated through
Eq. (4.37) for different source lengths (L = 10, 20, 40, and 60) along the direc-
tions normal (θ = 0◦) and parallel (θ = 90◦) to the major axis (x-axis) of the source.
The source is initially located at (x0, y0) = (0, 0) and the water surface variations are
recorded at the distance r = 100. This figure is a reproduction of the Figure 8 of
Carrier and Yeh (2005).
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Figure 4.5: Propagation of a plus-minus source over a constant ocean basin showing
focusing. (Lower right inset) Overall maximum amplitude for each grid point having
extreme maximum wave height (focusing point) on the leading depression side of the
propagation (Moore, personal communication).

plus-minus initial wave splits into leading depression (LDN) and leading elevation

(LEN) N-waves propagating in opposite directions.

Interesting phenomena can be observed on both sides. Elevation part of the LDN and

depression part of the LEN overshoot on sides (arrows in Figure 4.5). Overshooting

sides propagate towards the bisector line as the wave front propagates. Side waves

and the wave front then merge together on the bisector line along x-axis and create a

region in which abnormal wave height could be observed such as the region shown in

the lower right inset of Figure 4.5. In this region, there is a point along the bisector

line where wave heights reaches to a maximum. This point is called focusing point.

Focusing might explain some of the extreme runup observations in the field.

Now, two examples, the 17 July 1998 Papua New Guinea and the 17 July 2006 Java

Island, Indonesia tsunamis will be discussed in view of focusing phenomenon.

62



4.3.3 The 17 July 1998 Papua New Guinea Tsunami

As mentioned in Chapter 1, the tsunami community has long discussed unexpected

high localized tsunami runup values after the 17 July 1998 Papua New Guinea (PNG)

tsunami. The magnitude Mw 7.0 earthquake with the epicenter approximately 25 km

off the north coast of Aitape struck PNG at 08:49 UTC (18:19 local time). The earth-

quake triggered a larger-than-expected tsunami which caused more than 2,200 casu-

alties. Leaving the detailed discussion of the event to Synolakis et al. (2002), another

possible explanation for high tsunami runup is discussed here, i.e., the focusing effect.

The initial landslide source suggested by Synolakis et al. (2002) is a generalized N-

wave with approximately −18 m leading-depression followed by a +16 m elevation,

as in Figure 4.6(a). Evolution of this initial wave profile over a constant depth through

Eq. (4.8) is given in Figures 4.6(b–d). In Figure 4.7, one- and two-dimensional prop-

agation results are compared. In both cases, a leading-depression N-wave (LDN)

propagates in one direction while a leading-elevation N-wave (LEN) propagates in

the other direction. This is consistent to the field observations such as the one after

the 26 December 2004 tsunami, i.e., while in Male, Maldives, the tsunami mani-

fested itself as an LEN, as elsewhere to the west of the Sumatran subduction zone. In

Phuket, Thailand, it manifested itself as an LDN, as elsewhere to the east of the sub-

duction zone (Satake, 2007). This is also consistent to the inferences of Tadepalli and

Synolakis (1994, 1996). However, while one-dimensional propagation results show

that the initial wave splits into two waves which propagate with the same elevation

and depression heights in both directions, two-dimensional propagation results into a

propagation with different elevation and depression heights.

Figure 4.8 presents the observed maximum wave height for entire time along the

bisector line at each spatial location -maximum wave height envelope- including time

snapshots along the bisector line for the times t = 0, 5, 25, and 40. As seen from the

maximum wave height envelope, there is an increase in the maximum wave height

along the bisector line before reaching its final propagation wave height, i.e., there is

focusing on the leading-depression side.

The effects of crest length L and steepness p0 over the location of the focusing point
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Figure 4.6: Evolution of the PNG wave over a constant depth at (a) t = 0, (b) t = 2,
(c) t = 5, and (d) t = 15. PNG initial wave is defined as ηn(x, y) = f (x)gn(y) =
1
2εH[tanh γn(x − x0)-tanh γn(x − (x0 + L))](y − y2) sech2γn(y − y1) with parameters
H = 0.01, p0 = 15, L = 1, γn = 0.34, y1 = 50, y2 = y1 + 0.2 = 50.2, x0 = 49.5, and
ε = 4.93. (e) Overall maximum wave height at each grid point computed through the
numerical model MOST (from Kânoğlu et al., in preparation).
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Figure 4.7: Two-dimensional N-wave surface profile ηn(x, y) = f (x)gn(y) (solid line)
is compared with one-dimensional N-wave defined by ηn(y) = εH (y− y2) sech2γn(y−
y1) (dashed line) at (a) t = 0, (b) t = 2, (c) t = 5, and (d) t = 15. Note that the slice
of the two-dimensional surface is plotted along the bisector line in x-direction. The
scaling parameter ε for one dimensional N-wave is ε = 0.82. Refer to the caption of
Figure 4.6 for the other parameters.
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Figure 4.8: Spatial variations of water surface elevations (solid line) are plotted at
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with steepness p0 = 5. Refer to the caption of Figure 4.6 for the other parameters.
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are also investigated. As the crest length L increases, the focusing point moves further

away with increasing maximum wave height, as expected (Figure 4.9(a)). Also, final

wave heights in the leading-elevation and -depression sides are different, the latter

being higher, which is attributed to the nature of the two-dimensional propagation.

When the steepness parameter p0 decreases, i.e., the initial wave becomes less steep,

the focusing point is moves forward and maximum wave height decreases slightly

(Figure 4.9(b)).

Further analysis of the PNG event suggests that shoreline would face almost a factor

of 1.5 offshore wave height compared to the case if the shoreline was r = 50 km

away, as indicated in Figure 4.10(a). It should be noted that the runup law (Synolakis,

1987), R ∼ H5/4, results in a runup increase by factor of 1.7.

During the PNG event, Sissano Lagoon was where maximum number of casualties

were reported. The lagoon is approximately r = 25 km away from the source lo-

cation, along β = 45o direction, as indicated in Figure 4.10(b). The focusing point

locations for two different steepness parameters, p0 = 15 and p0 = 5 are shown in

Figure 4.10(b) by dots and triangles, respectively. The contours of the initial source

of the event defined by Synolakis et al. (2002) is also reconstructed in that figure.

Figure 4.10(b) indicates that, if the source proposed by Synolakis et al. (2002) had

different steepness, i.e., p0 = 5 instead of 15, the focusing would occur approximately

8.7 km closer to the lagoon.

4.3.4 The 17 July 2006 Java Island Tsunami

The magnitude Mw 7.7 earthquake with epicenter approximately 225 km northeast of

Christmas Island (355 km south of Jakarta) hit Java, Indonesia on 17 July 2006 at

08:19 UTC (15:19 local time) and generated a tsunami. Fritz et al. (2007) surveyed

the area covering 600 km of coastline. The tsunami affected over 300 km of coastline

and caused more than 600 casualties. Although overall runup values were changing

from 5 m to 7 m at surrounding areas, a locally focused runup peak exceeding 20 m

was measured at Permisan. Fritz et al. (2007) infer, following the invariants presented

by Okal and Synolakis (2004), that the focused runup height suggests a possible local

submarine slump or mass movement. Here, another possible explanation for a such
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pronounced runup is proposed.

Marchuk and Titov (1989) explained an existence of tsunami focusing for sources

having elevation and depression. As explained in Section 4.3.2, focusing point is

a point where a wave from the center of the elevation side and from sides of the

depression arrives simultaneously. For the 17 July 2006 Java event, Permisan can

be considered as the location of focusing, i.e., focal point. In Figure 4.11, reverse

tsunami travel time (RTTT) contours representing time it will take for a source over

a contour to reach the shoreline point are presented (Kânoğlu et al., in preparation).

Unit tsunami source functions from the propagation database of the NOAA (National

Oceanic and Atmospheric Administration) Center for Tsunami Research (NCTR) of

the United States are plotted over the RTTT contours. The United States Geological

Survey (USGS) finite source solution for the event is also included for reference.

Detailed explanation of the tsunami propagation database of the NCTR and applica-

tion of it can be found in Wei et al. (2008). Briefly, the NCTR is developing real time

forecasting system for the use in the Pacific and the West Coast and Alaska Tsunami

Warning Centers. Ocean base propagation is evaluated for tsunami source functions,

also called unit sources, using the Method of Splitting Tsunamis (MOST) numerical

model, which is extensively validated and verified (Synolakis et al., 2008). Tsunami

source function represents propagation from a 100 km by 50 km block source with 1 m

slip (displacement) which corresponds a 7.5 magnitude earthquake. Linearity of the

propagation in deep ocean allows linear combination of unit sources to set up larger

magnitude scenario events.

Here, among scenario events (combination of the sources), a scenario is identified

for which focusing occurs close to Permisan. Combination of the three unit sources

shown in Figure 4.11 fits the RTTT contours well, i.e., the 45–minute contour passes

approximately through the maximum elevation point and sides of the depression and

generates focusing around Permisan. The propagation of the proposed source of the

Java event over constant depth through the MOST model is presented in Figure 4.12.

In Figure 4.13, the maximum wave height contours calculated from the solution over

constant depth using the MOST model are included together with the propagation of

the proposed source over the real bathymetry. The maximum amplitude contours are
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Figure 4.12: Propagation of the proposed source of the Java event (Figure 4.11) over
a constant depth using the numerical model MOST at times (a) t = 10.6 minute, (b)
t = 13.8 minute, and (a) t = 17.0 minute. (d) Overall maximum amplitude for each
grid point (from Kânoğlu et al., in preparation).

included in order to indicate the potential focusing locations for the area.

It should be noted here that limited bathymetric and topographic data exist for the

region. Therefore, it was not possible to make satisfactory computations to evaluate

the runup distribution along the shoreline. Present model results suggested approx-

imately 5 m runup at Permisan. Arrival time is approximately 45 minutes after the

event which is consistent with the eyewitnesses accounts (Fritz et al., 2007). The com-

putations performed here clearly show that Permisan is close to the focusing point and

hence it is possible that the high runup resulted due to focusing. Therefore, it could

be suggested that the methodology presented above can be used to identify tsunami

source mechanisms considering focusing location and tsunami travel time.

4.4 Conclusions

The two-dimensional long wave propagation problem over a constant-depth basin is

solved analytically using the LSW equation. The double Fourier transform is applied
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to the governing LSW equation. The transformed equation is solved as an IVP for re-

alistic initial waveforms. The subsequent wave motion is analyzed and results of the

two-dimensional problem are compared with the one-dimensional case. Existence of

focusing point for a combined elevation and depression source is shown analytically

and extreme runup observations reported from the field surveys of the 17 July 1998

Papua New Guinea and the 17 July 2006 Java tsunamis are explained in view of fo-

cusing. The analytical solution developed here could be used as benchmark solution,

in addition to the other analytical solutions presented in Synolakis et al. (2008). Also,

it could be used to identify or to refine possible source mechanisms as it is done for

the PNG and Java events.
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CHAPTER 5

CONCLUSIONS

In this study, several analytical solutions for the linear and nonlinear shallow-water

wave equations are developed over one- and two-dimensional bathymetry.

First, brief introduction of analytical solutions for the shallow-water wave equations

is presented in Chapter 1.

In Chapter 2, an analytical solution for the one-dimensional nonlinear shallow-water

wave (NSW) equations is developed for computation of shoreline motion and runup

of long waves propagating on a linearly sloping beach. The solution is given in terms

of a Fourier-Bessel series after transforming the equations with the so-called hodo-

graph transformation suggested by Carrier and Greenspan (1958). First, propagation

of Gaussian waves are analyzed under general initial conditions, i.e., a prescribed ini-

tial wave profile and nonzero initial velocity distribution, and compared with the ex-

isting integral transform solution of Carrier et al. (2003). The shoreline motion char-

acteristics of three different initial velocity assumptions, namely the exact nonlinear

(Kânoğlu and Synolakis, 2006), the linearized (Carrier et al., 2003), and the asymp-

totic (Prichard and Dickinson, 2007) initial velocity distributions are also compared.

Then, the solitary wave, the isosceles and the generalized N-wave initial profiles are

imposed and the results are analyzed for the cases with and without initial velocity.

Finally, surface profiles produced by near-shore earthquakes are obtained with the

proposed method and the results are compared with the solution of Tinti and Tonini

(2005). The solution method presented here appears advantageous over the existing

methods mentioned above, as it does not involve evaluation of singular elliptic inte-

grals and also initial profiles with nonzero velocity distribution can be incorporated
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easily.

In Chapter 3, the solution methodology developed in Chapter 2 is used in order to

obtain the subsequent evolution of wave oscillations and shoreline motion generated

in a long narrow basin after relaxation of wind stress. The problem is analyzed in

two phases: the steady-state phase in which the sea surface state under wind stress

is calculated explicitly using an appropriate balance equation, and the (unsteady) re-

laxation phase in which the resultant wave oscillations in the absence of wind are

calculated solving the NSW equations with the hodograph transformation. Success-

ful comparison with existing numerical solution of Gelb et al. (1997) is obtained.

In the framework of the NSW theory in one space dimension, an approximate an-

alytical solution for propagation of landslide-generated waves is also derived (Ap-

pendix B). Evolution of the waves resulting from a time-dependent Gaussian bottom

forcing is obtained and compared with the linear analytical solution given by Liu et al.

(2003) for certain geometric parameters. The drawback of the solution, preventing

further nonlinear analysis of the problem, is described.

In Chapter 4, an initial value problem solution for the linear shallow-water wave

equation over a two-dimensional flat ocean bottom is presented by using the Fourier

integral transform technique. The key advance is the incorporation of initial waves

having finite transverse length. Analytical verification of a phenomenon called source

focusing is provided. The role of focusing in unexpectedly high tsunami runup ob-

servations of the 17 July 1998 Papua New Guinea and the 17 July 2006 Java Island,

Indonesia tsunamis are investigated.

The analytical solutions developed here could be used as benchmark solutions for

validation of numerical models in addition to the analytical solutions presented in

Synolakis et al. (2008).
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APPENDIX A

FOURIER TRANSFORM OF THE FUNCTION tanh

To show that the relation∫ ∞

−∞

tanh γx e−ikx dx = −2 iα cosechαk, (A.1)

α = π/(2γ), holds, the integral on the left-hand side is first splitted into real and

imaginary parts as∫ ∞

−∞

tanh γx e−ikx dx =

∫ ∞

−∞

tanh γx cos kx dx − i
∫ ∞

−∞

tanh γx sin kx dx. (A.2)

The first integral on the right-hand side vanishes since the integral of an odd function

over a symmetric interval is zero. The second integral has an even integrand, hence

Eq. (A.2) reduces to∫ ∞

−∞

tanh γx e−ikx dx = −2 i
∫ ∞

0
tanh γx sin kx dx. (A.3)

The right-hand side of this equality represents the Fourier sine integral of the function

tanh γx and it is available in the integral tables, or it can easily be evaluated by using

a computer algebra system such as Mathematica. R© It reads∫ ∞

0
tanh γx sin kx dx =

π

2γ
cosech

π

2γ
k, (A.4)

under the general condition that Re γ > 0, which is satisfied for the present problem.

Hence, ∫ ∞

−∞

tanh γx e−ikx dx = −i
π

γ
cosech

π

2γ
k. (A.5)
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APPENDIX B

AN APPROXIMATE SOLUTION FOR THE FORCED

NONLINEAR SHALLOW-WATER WAVE EQUATIONS

In this part, an approximate nonlinear analytical solution is developed for calculation

of the flow field generated by a volume of mass sliding over a linearly sloping beach.

The model is a generalization of the linear analytical solution developed by Liu et al.

(2003).

B.1 Mathematical Analysis

The surface response resulting from a time-dependent bottom disturbance on a lin-

early sloping beach can be described by the forced nonlinear shallow-water wave

(NSW) equations. The bottom perturbation is implemented into the continuity equa-

tion as a forcing term and the subsequent equations are in the form of

(η − h)t + [(
tan β
µ

x − h + η) u]x = 0, (B.1a)

ut + u ux + ηx = 0, (B.1b)

where β represents the beach angle with horizontal, µ is the slide mass ratio, and h(x, t)

is the time-dependent ocean-floor forcing (Figure B.1). The parameter µ represents

the ratio of the maximum vertical thickness of the slide to its maximum horizontal

extend. Liu et al. (2003) consider slides with µ � 1 so that tan β/µ ∼ O (1), as the

shallow-water wave theory requires.
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x
η(x, t)

h(x, t)

h0(x)− h(x, t)

Figure B.1: Definition sketch. The undisturbed water depth is defined to be h0(x) =

x tan β/µ and the time-dependent bottom perturbation is represented by h(x, t).

An undisturbed initial sea surface and zero initial velocity yield the conditions

η(x, t = 0) = 0, (B.2a)

ηt(x, t = 0) = −ht(x, t = 0). (B.2b)

Below, a solution of the initial-value problem (IVP) given in Eqs. (B.1)-(B.2) will be

attempted through the Carrier-Greenspan (CG) transformation. The transform pair

q =
tan β
µ

x − h + η, (B.3a)

λ =
tan β
µ

t − u, (B.3b)

is adopted, which transforms Eqs. (B.1) into

ηλ − hλ + (qu)q + u uλ = 0, (B.4a)

uλ + u uq + ηq = uλhq + uqhλ, (B.4b)

or, in more convenient form,

(qu)q + (
u2

2
+ η − h)λ = 0, (B.5a)

uλ + (
u2

2
+ η − h)q = −2hq + uλhq + uqhλ. (B.5b)
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Further defining

σ = 2
√

q = 2

√
tan β
µ

x − h + η, (B.6)

Eqs. (B.5) can be rewritten as

(σ2u)σ + 2σ(
u2

2
+ η − h)λ = 0, (B.7a)

σuλ + 2(
u2

2
+ η − h)σ = 2 (uλhσ + uσhλ − hσ). (B.7b)

Introducing the potential function

ϕ(σ, λ) =
u2(σ, λ)

2
+ η(σ, λ) − h(σ, λ), (B.8)

and denoting

f = uλhσ + uσhλ, (B.9)

Eqs. (B.7) can be written in the form

(σ2u)σ + 2σϕλ = 0, (B.10a)

σuλ + 2ϕσ = 2( f − hσ). (B.10b)

In the present form, Eqs. (B.10) do not have a closed form solution; the unknowns

of the problem appear on both sides of Eq. (B.10b). In order to proceed with an

analytical solution, the term f is omitted, leaving

(σ2u)σ + 2σϕλ = 0, (B.11a)

σuλ + 2ϕσ ≈ −2hσ, (B.11b)

which is an approximate set of differential equations derived for nonlinear modeling

of the subsequent motion of landslide-generated waves.

Eliminating the velocity component u after cross differentiation, the following second-

order linear equation can be obtained;

σϕλλ − (σϕσ)σ ≈ (σhσ)σ. (B.12)

Linearity of the new governing equation allows a solution by standard techniques.

The initial conditions (B.2) transform under Eqs. (B.3) and (B.8) to

ϕ(σ, λ = 0) = −h(σ, λ = 0), (B.13a)

ϕλ(σ, λ = 0) = 0. (B.13b)
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To obtain Eqs. (B.13), Eq. (B.8) is first written at λ = 0, since t = 0 corresponds to

λ = 0 in the absence of initial velocity. Then, the use of

ηλ(σ, λ = 0) = hλ(σ, λ = 0), (B.14)

obtained from Eq. (B.4a) by substituting u(q, λ = 0) ≡ 0, gives the desired initial

conditions in the transform space.

Consequently, the IVP of interest now consists Eqs. (B.12)-(B.13). Since Eq. (B.12)

is nonhomogeneous, its particular and homogeneous solutions need to be evaluated

separately.

Following Liu et al. (2003), a particular solution of the form

ϕp(σ, λ) = −
1
3

[2 h(σ, λ) + σhσ(σ, λ)], (B.15)

can be identified, provided that hσσ = hλλ. In particular, the Gaussian sea-floor defor-

mation defined by

h(σ, λ) = e−(µ/ tan β)2 (σ−σ0−λ)2
, (B.16)

satisfies this condition, and hence serves as a particular solution for Eq. (B.12). In

this definition, σ0 is a parameter included to specify the initial location of the slide

center (σ = σ0 corresponds to x = x0 in the physical (x, t)-space). In other words, this

parameter allows to locate the slide as a subaerial (partly submerged) or submarine

(fully submerged) slide initially. It should be noted here that the solution in Liu

et al. (2003) does not include this parameter, i.e., they confine to subaerial landslides,

although it is straightforward to add x0 (initial location of the slide) to their solution.

The homogeneous problem, on the other hand, can be defined as

σϕh,λλ − (σϕh,σ)σ = 0, (B.17)

subject to

ϕh(σ, λ = 0) = −h(σ, λ = 0) − ϕp(σ, λ = 0), (B.18a)

ϕh,λ(σ, λ = 0) = −ϕp,λ(σ, λ = 0), (B.18b)

where ϕ(σ, λ) = ϕh(σ, λ) + ϕp(σ, λ). Eqs. (B.18) are obtained from Eqs. (B.13) by

substituting ϕ = ϕh + ϕp.
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Introducing the Hankel transform,

ϕ̄h(ω, λ) =

∫ ∞

0
σJ0(ωσ)ϕh(σ, λ) dσ, (B.19)

Eq. (B.17) transforms to

ϕ̄h,λλ + ω2ϕ̄h = 0, (B.20)

which has the general solution

ϕ̄h(ω, λ) = Ā(ω) cos(ωλ) + B̄(ω) sin(ωλ). (B.21)

The coefficients Ā(ω) and B̄(ω) will be determined from the initial conditions (B.18a)

and (B.18b), respectively. Eq. (B.18a) yields

Ā(ω) = −

∫ ∞

0
s J0(ωs) [h(s, λ = 0) + ϕp(s, λ = 0)] ds, (B.22)

and Eq. (B.18b) yields

B̄(ω) = −
1
ω

∫ ∞

0
s J0(ωs)ϕp,λ(s, λ = 0) ds. (B.23)

The complete solution of the problem (B.12)-(B.13) in the hodograph space then

becomes

ϕ(σ, λ) = ϕp(σ, λ) + ϕh(σ, λ)

= ϕp(σ, λ) +

∫ ∞

0
ω J0(ωσ) ϕ̄h(ω, λ) dω, (B.24)

after inverting the Hankel transform.

The velocity component u(σ, λ) is evaluated from Eq. (B.11a). Integrating with re-

spect to σ and differentiating with respect to λ,

u(σ, λ) =
2
3

hλ(σ, λ) +
2
σ

∫ ∞

0
ω J1(ωσ) [Ā(ω) sin(ωλ) − B̄(ω) cos(ωλ)] dω. (B.25)

After obtaining ϕ and u, the free-surface elevation η can be calculated from Eq. (B.8)

as

η = ϕ + h −
u2

2
, (B.26)

and the corresponding physical coordinates can be given by inverting Eqs. (B.3) for

(x, t);

x =
µ

tan β
(
σ2

4
+ h − η), (B.27a)

t =
µ

tan β
(λ + u). (B.27b)
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Figure B.2: Spatial distribution of the free-surface for β = 10◦, µ = 0.05, (tan β/µ =

3.53). Solid lines show the approximate nonlinear model results while dashed lines
show the linear analytical solution of Liu et al. (2003). Black and gray regions rep-
resent the sliding mass and the sloping beach, respectively, and dots represent the
undisturbed water level.

As described in Chapters 2 and 3, spatial distribution at t = t∗ or temporal variation

at x = x∗ can be computed with the help of the Newton-Raphson iterations.

B.2 Results and Discussions

A comparison of spatial distribution of water surfaces are presented in Figure B.2 for

parameters β = 10◦ and µ = 0.05 (tan β/µ = 3.53). Even though the approximate

nonlinear analytical solution seems close to the linear solution (see Liu et al. 2003), it

allows evaluation of shoreline motion following the shoreline tip unlike the linear so-
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lution, i.e., the linear solution does not provide shoreline motion. However, it should

be noted that the stability of the nonlinear model highly depends on the geometrical

parameters of the problem, i.e., the nonlinear solution can be unstable (multi-valued)

for certain values of β and µ. Stability issues are experienced in the nonlinear solu-

tion even for some of the parameters that the linear solution of Liu et al. (2003) is

calculated for. This is resulted since the slide moves with a velocity proportional to

the square root of the distance to the shoreline, causing the slide to accelerate unphys-

ically.

B.3 Conclusions

An approximate one-dimensional nonlinear analytical model is developed for long

waves propagating over a linearly sloping beach due to time-dependent ocean bottom

displacement, which is assumed to be in the form of a Gaussian wave.

The shallow-water wave theory is used together with the Carrier-Greenspan (CG)

transformation for the nonlinear analysis of the problem. The two nonlinear equa-

tions are combined into a single linear equation ignoring some nonlinear terms, and

the resulting nonhomogeneous IVP is analyzed separately for particular and homo-

geneous solutions. While a particular solution is adopted from the analogous linear

problem (Liu et al., 2003), a homogeneous solution is deduced by means of the Han-

kel integral transform technique. However, the proposed solution is not valid for

every parameter set because of the unphysical acceleration of the Gaussian bottom

movement. It should be noted that the same problem can also be solved with the

methodology presented in Chapter 2 with less computational effort.
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2.1.1.Aydın, B. and Kânoğlu, U. A new analytical solution for nonlinear shallow-

water wave equations. International Union of Geodesy and Geophysics (IUGG) XXV

General Assembly, 28 June–7 July 2011, Melbourne, Australia.
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C., and Synolakis, C. E. Preliminary modeling of tsunami generation, propagation,

and inundation in the Aegean Sea. International Union of Geodesy and Geophysics

(IUGG) XXV General Assembly, 28 June–7 July 2011, Melbourne, Australia.

2.1.3. Spillane, M., Titov, V. V., Moore, C., Aydın, B., Kânoğlu, U., and Syno-

lakis, C. E. Tsunami focusing. American Geophysical Union (AGU) 2010 Fall Meet-

ing, 13–17 December 2010, San Francisco, California, USA.
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