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ABSTRACT

BLIND CHANNEL ESTIMATION BASED ON THE LLOYD-MAX ALGORITHM I N
NARROWBAND FADING CHANNELS AND JAMMING

Dizdar, Onur
M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. AlDzdir Yiimaz

June 2011, 65 pages

In wireless communications, knowledge of the channeffaoents is required for coherent
demodulation. In this thesis, a blind channel estimation method based on theMbyd
algorithm is proposed for single-tap fading channels. The algorithm essrtaeconstella-

tion points for the received signal using an iterative least squaresagpr The algorithm is
investigated for fast-frequency hopping systems with small block lengtth®perating un-

der partial-band and partial-time jamming for both detecting the jammer and estimating the
channel. The performance of the LIoyd-Max channel estimation algoritlconmpared to the
performance of pilot-based channel estimation algorithms which also useattestpiares

approach and non-coherent demodulation and decoding.

Keywords: Lloyd-Max, blind channel estimation, jamming detectioffedential encoding,

serially concatenated convolutional code
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DARBANT SONUMLEMEL | KANAL VE KARISTICI ALTINDA LLOYD-MAX
ALGORITMASINA DAYALI K OR KANAL KESTIRIM|

Dizdar, Onur
Yuksek Lisans, Elektrik ve Elektronik Whendisl§i Bolumi

Tez Yoneticisi : Dog. Dr. Ali Ozgir Yilmaz

Haziran 2011, 65 sayfa

Kablosuz haberlesmede, faz uyumtizme islemi icin kanal katsayilarinin bilgisi gereklidir.
Bu tezde, tek tapalimimlemeli kanallar igin Lloyd-Max algoritmasina dayatirkoir kanal
kestirim metoduwnerilmistir. Algoritma, tekrarh bir eniggiik kareler yaklasimi kullanarak
alinan sinyal icin isaret lkmesi noktalarini bulur. Algoritma, hizli frekans atlayaingikk
blok uzunlguna sahip ve pargali-banth ve parcali-zamanh karistiricilar altinidgagasis-
temler isin hem karistiricly tespit etmek hem de kanall kestirmek amaciyla indgten
Lloyd-Max kanal kestirim algoritmasinin performansi pilot-temelli ve ayni zadaaen disik
kareler yaklasimini kullanan kanal kestirim algoritmalari ve faz uyumlu olmeganodilasyon

ve kod @zme performanslariyla karsilastiriimistir.

Anahtar Kelimeler: Lloyd-Max, &r kanal kestirimi, karistirici tesbiti, farksal kodlama, seri

baglanmis kodlar
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CHAPTER 1

INTRODUCTION

In wireless communications, an information signal fieeted by diferent types of distur-
bances from the moment it is transmitted into the air. These disturbancesthrertvoon-
mentally induced and human-made. Generally, there are two types of distegan a wire-

less signal. Many types of enviromentdliexts, such as reflections of the waves, shadowing
due to objects in the environment, attenuation and delays combine to causgadiston the
transmitted electromagnetic waves due to propagation. On top of these distordndom
fluctuations caused by imperfections in electrical circuits of communicatinigeteare added

to the signal, which is called th@ise The sum of these environmental distortions is referred
to aschanneleffects. A communication system has to provide reliable communication under

the dfect of these disturbances.

A widely used approach to mitigate the distortion on the transmitted signal is to de¢ect
characteristics of the main sources of distortions. This is accomplished by &sgjiine noise
statistics and, more importantly, channel parameters at the receiver.a®aceiver obtains
an estimate of the channel, it uses this estimate for extracting the transmitted itndorfram
the received signal. The quality of the channel estimate has a tremerftenioa the quality
of communication services. In order to obtain low data error rates, thanehastimate used

to resolve the transmitted data should contain small errors.

Channel estimation methods and tHEeets of the channel estimates on the system perfor-
mance are widely investigated topics in literature. The channel estimator is acoajpo-
nent in receivers. The investigated estimation methods can be classified injodups: the
methods using no previous knowledge of the received information syn@dlgthe methods

using the received symbols calledlot symbols that are known both at the transmitter and



receiver. The methods in the first group are referred toliasl methods, whereas the second

group is referred to ggilot-basedor data-aidedmethods.

The main disadvantage of pilot-based estimators is the reduced power rehdidith €fi-
ciency. The loss of power and bandwidth may be critical for systems with limibecep

or using small blocks of symbols for communication. Moreover, systems ydlinigbased
estimators are vulnerable to hostile systems, such as jammers, since larg@dstaused

by jammers on pilot symbols can disturb the communication severely. Pilots mayenot b
preferred also in order to avoid the detection of transmitted signals by algarittacking

periodicity.

In [4], a pilot-based channel estimator was derived based on the br#tes solution, which
minimizes the sum of errors between the pilots and received distorted \&ddipitots. The
least-squares approach is the simplified form efaimume-likelihoodML) estimation [1]
derived for estimating the channel using known symbols. The LS algoritimdely used in

wireless communications because of its performance and simplicity.

Beyond the environmentattects, wireless systems may be the target of jammers having the
intention of disturbing the communication. Detection of jamming is important for arsyste
since the negativefiects of the jammer has to be taken into account during the processing
of the received signal. Various methods for detectinfedent types of jamming schemes
have been proposed in [9], [10], [11], [13], and [23]. In [Yftsdecoder outputs are used to
estimate interference variance with a suboptimal approach to ML estimation. &#otsed

to enhance the estimation. In [10], SCCC witlteliential modulation is used. The channel is
AWGN channel with random phase. 8f@irent trellis are calculated at the decoder, each using
a different quantized value for the channel phase. A threshold test ugingrébmetrics is
employed to detect partial-band jamming. No pilot symbols except one retesgmbol are
used since there is no need for channel estimation. In [11], scalingptees are calculated

for jammed dwells depending on the demodulator outputs. In [13], an iteElivalgorithm

is derived for the estimation of channel and jamming parameters. The estimigtiwithen

have both pilot-based and blind versions. The phase ambiguity problem ¢hvgnsion is
solved for BPSK modulation. Jammed symbols are detected using BCJR algotitien.
shown that pilot-based and blind algorithms perform close to each other @BM@hannel.

In [23], binary pilot symbols and their hard decisions are used for jammétgction. The



algorithms in [10], [11], and [23] propose scaling for the jammed dwell®igethey are

decoded.

In this thesis, a blind channel estimation algorithm is developed for tacticalsradth fast-
frequency hopping and the capability of operating under jamming. The estmsti@ased on

the Lloyd-Max algorithm, which is an iterative quantization algorithm originallyedeped

for quantizing analog voltage levels of PCM signals [5]. The algorithm tised.S crite-

rion in its attempt to determine the best quantization points that yield the minimum dquare
guantization errors. The Lloyd-Max algorithm does not use any preiyidanown informa-

tion about the signal for the quantization procedure. The channel gdimaise variance
are estimated by this algorithm to be used for processing the received digtiais thesis,

the performance of Lloyd-Max based estimation is compared with the penfeenaf the
pilot-based LS algorithm for éierent types of receivers and under tlteet of jamming. The

outline of the thesis is as follows:

In Chapter 2, the system model is introduced. Mathematical derivatiorteddrloyd-Max
algorithm, LS channel estimator, an extension of LS estimator are presertted.eceiver
structures that will be used with the estimators are described. In Chaptiee 8hannel
estimator based on the Lloyd-Max algorithm is explained and its performainoesisigated
with the other two LS-based estimators. In Chapter 4, jamming detection algoritithtkex
performances of the estimators are given under partial-time and partiéljd@amers. The

conclusion is given in Chapter 5.



CHAPTER 2

BACKGROUND

2.1 Coherent and Non-Coherent Demodulation in Communicatin Systems

In wireless communications, communication is established between a transmitterend
ceiver through the air. The information to be sent is generated afterugapiperations (en-
coding, modulation, pulse shaping etc.) and given to the air by the transmhtetransmitted
signal is @ected by many factors as it travels through the air and arrives at theeecich
as obstacles between communicating devices, reflections from obstaelesaltmoise on
electrical components, and so on. Theffeats distort the received signal, causinfiidulties
in obtaining the transmitted information. In order to extract the transmitted informiiom
the received signal, the signal and the distortions are representedneingmatical models.
In digital communications, the received signal can be modeled using digtnetsignals and
systems [2]. This is enabled by proper filtering and sampling operations eg¢kiver on the
signals induced by the received electromagnetic waves. The recéiyed & discrete time

domain is represented by

L1
Vi = Z hiaw_i + ng (2.1)
iz0

whereyy is the sample taken from the filtered received signal at the time inskahgd s is the
duration of the information symbol and also the sampling period aqradte the information
symbols. The information symbols take values from finite symbol sets deeodithe type
of modulation. The symbolax can have real or complex values, ea.,c {+ VEs, — \/E_S}
for Binary Phase-Shift Keying (BPSK) modulationayre {+ Es, +j VEs, — VEs, —j \/E_S}
for Quadrature Phase-Shift Keying (QPSK) modulation, wit&reepresents the energy used

by the transmitter for one symbol. Each symbol repredegiiM bits, whereM is the number

4



of elements in the symbol sets.

The channel gains atftierent delays are denoted bywhich reflects theféects of attenuation,
obstacles between the communicating antennas, propagation delaysflectibns of the
signal with delays small enough with respect to symbol duration for a délay gseconds. If

L > 1, the channel is calledraultipath channelThe impulse response of a multipath channel
is long enough so that when echoes of the transmitted signal are summethepeteiver
antenna, dferent symbols are added on top of each other, causing intersymboéietesé.

It should be noted that in (2.1), the channel taps are time-invariant, i.e. ateegonstant
for all received samples. In this thesis, only the channels With 1, which are also called

narrowbandchannels, are taken into consideration. Using this assumption, (2.1) b&come

Yk = hag + ng (2.2)

whereh is modeled as a zero-mean circularly symmetric complex Gaussian (ZMCS@G) ra
dom variable with variance Tk represents the additive thermal noise at the receiver with
a flat frequency spectrum (white). The thermal noise is also a ZMCS@&ona variable
with varianceNp. In order to quantify the strength of distortions on the signal, parameters
calledinstantaneous signal-to-noise power ratindaverage signal-to-noise power ratae
defined. When there is a fading chanH@ﬁ% is the instantaneous SNR and the average SNR

is defined as

(e,

=2 2.3
Ng No (2.3)

Ys =

The demodulation of the signal generally requires operations which aopgusite of those
utilized for modulation. The demodulation operation is divided into two classaiserent
and non-coherent demodulation. Thé&elience of coherent and non-coherent demodulation
is the use of channel phase in the demodulation procedure. In coluem@oidulation, the
channel phase has to be known and used for correcting the phatbesreteived samples.
This correction is important when the information is carried in the phase of tiuilatoon
symbols, e.g., M-PSK. M-PSK modulation uses constant amplitude symbols \ffithedit
phases to transmit the information. In the demodulation procedure, ewcous when the
distortions change the phase of the received sample so that the sam@esappeave the

phase of a dferent symbol. Therefore, the distortion inflicted by the channel to theeptfas

5



the symbol is corrected or taken into account in coherent demodulatiotheQwther hand,
in non-coherent demodulation, the phase of the channel is not necéssabtaining the
transmitted information from received samples. It is used for modulation tastsighere
the information is not carried in the phase of the symbols, but rather the angplitaduency

or the phase dierence between the symbols.

2.2 Partial-Time and Partial-Band Jamming

Besides the additive thermal noise and the channel, a wireless signal rmdyeatsrrupted
on purpose by hostile systems, namely jammers. A jammer is a device that c@rngts
of the frequency spectrum inféerent ways in order to distrupt communication. In practice,
there are many types of jammers trying to disturb the communication system ugare i
methods. Partial-time and partial-band jammers are two types of jammers that alewsield

in literature, because of their wide use in practice and easily handled mathalmaiubels.

Against a possible threat of jammers, a system may take some precautiodeinapro-
tect its communication. Frequency hopping is one of these precautions aely widized
especially in military communications. In frequency hopping, the carrieugeqy used for
transmitting the signal is changed according to a predetermined hoppingneequrhis re-
duces the probability of a jammer to detect and jam the signal, and forces itdgdntmming.
It also has benefits against channel fading, since fading is a fundtibe carrier frequency.
A block that contains symbols that are sent with the same carrier freqisoaifed adwell.
The length of a dwell, i.e., the number of symbols in a dwell, is a design paranegtending
on the requirements of the system. When frequency hopping is used, iaérsigdel defined

by (2.2) becomes
Yic = hig + (2.4)

wherei is the index showing the dwell number.

In partial-band jamming [9], the jammer corrupts a part of the frequenaogtismecontinu-
ously. The bandwidth of the corrupted part is expressed @ses the whole operational
spectrum of the jammer. Therefore, for a random frequency hoppstgra, the probability
that the system hops into a jammed bangd.idVhen the system hops into the jammed part

of the spectrum, it continues its operation in that part for the duration afcuéncy dwell.

6



Therefore, an entire dwell is jammed with a probabilityofThe power of the jammer over
the whole spectrum is denotedidgand the total power in the part of the spectrum where the
jammer dwells isNj/p [9], [10], [11], [12]. When there is a partial-band jammdiegting the

system, the received signal model defined by (2.4) is modified as

y, = h'al +nl +viw, (2.5)

whereva is the jammer signal which is considered to be ZMCSCG with varia{\'gceand
V' is the jamming indicator function; it is equal to one if the the dwell is jammed and zero

otherwise.

Partial-time jammers use frequency hopping to change the spectrum they aistuit.dA
frequency hopping system can be jammed by a partial-time jammer at any padtall in
time domain. Unlike in partial-band jammers, when a frequency dwell is jammedsorig

and generally consecutive symbols of the dwell are jammed.

A partial-time jammer is very often modeled by a 2-state Markov Chain [13], ed &
Gilbert-Elliot Channels in [14], [15]. The jammer is characterized by statesitian proba-

bilities which are shown in Figure 2.1.

01

10

Figure 2.1: Markov model for partial-time jammers

State-0 represents the no-jamming and State-1 represents the jamming stagelslafkibyv

chain. The probability of passing from one state to another is denotét) bwherei rep-

7



resents the previous state apcepresents the current state. The transition matrix is defined
by

Poo Po1
Pio P11

: (2.6)

where the discrete-time index is denotedrhythe states of the chain are positive recurrent,

i.e.,

D PRy =o0 and P = 2.7)
n=0 n=0

and the expected time the process returns to State-k starting from State#eif3finStates
are also aperiodic, meaning that givefy = 0 for n values which are not divisible by period
d, d = 1 for State-0 and State-1. Therefore, the State-0 and State-1 are saidrgolic. For

irreducible ergodic Markov chains; are defined as

mj = Iimn_mPi”j (2.8)
= Zm Pij (2.9)
i=0

whererj denotes the probability of being at State-j for a long observation periopl,ni?e:
P(state at time n= j). The vectorr™ is the vector of the probabilities for each state at time
n, which is calculated by

" = 7°P" (2.10)

If initial probabilitiesz® are chosen such that they satisfy (2.9), thee: 7°, andr; are called

stationary probabilities.

Using the basic information about Markov chains above, a partial-time jammeyecenod-
eled as follows: Defin@ and E {T1} as the probability of a symbol to be jammed and the
expected value of the number of consecutive symbols that are jammed il ardsmectively

[13]. In terms of Markov chain parameters= 7, and

S 1
E(Ta) = ) nPl{'(1-Pu)= (2.11)
n=1 1-Pn
The signal model under partial-time jamming is defined as
Yl = h'al +ni + viw, (2.12)

8



vL is the jamming indicator function similar to the one defined in (2.12), with offerénce

that it changes for every symbol instead of every dwell.

2.3 Channel Estimation Based on the Least Squares Method

The Least-Squares (LS) method is used for solving a set of equatiomsltthé unknown
parameters in an overdetermined system, where the number of equatioreistian the
number of unknowns. The LS solution for the unknown parameter is the vahich yields
the least sum of squared errors. A general usage for LS is data fitiimghich for a given
number of observations, a curve minimizing the sum of errors betweenithts pa the curve

and the observations is found.

In communication systems, the LS algorithm is widely used to estimate the chamaei-pa
eters &ecting the transmitted signals. In LS channel estimation, the channel estimate whic
minimizes the sum of squared errors is calculated using a number of knanlyoksy/ (pilot

symbols) and the received samples corresponding to these symbols [4].

Considering the system model defined in Section 2.1, (2.1) can also be vimittes vector

notation as
y=Ah+n (2.13)
where
h=[hohy ... hi_q]" (2.14)
is the channel cd&cients vector,
y=1[yoyr ... yn-1l', n=[non ... nnal', (2.15)

are the vector of received symbols and noise samples, respectively,

N 0 --- 0
a1 ao 0 ... 0
A=| a a a --- 0 (216)
| an-1  an-2 cee an-L |

is the matrix of known symbols\ is the number of known symbols and'( denotes the

transpose operation.



Minimizing e(f) = [ly — AR || with respect td yields
h = (AFA) Ay (2.17)

where||-|| denotes theormoperation andJ™ denotes the Hermitian operation. For single-tap

channels, (2.17) becomes

ally
NEs
witha=[agas ... ay-1]", which is basicly the average of projections of the known symbols

h= (2.18)

on the received samples.

2.4 The Lloyd-Max Algorithm

The Lloyd-Max algorithm is a quantization algorithm using Least Squarpsogpnation
[5]. The algorithm was originally developed to be used for quantizationGM Rignals. A
guantization process matches given input values to predeterminedemfatésn points. It
can be considered as a transformation from an infinite alphabet to a finitebatp When a
signal from an infinite alphabet is represented with a finite alphabet, thal sgydistorted.
This distortion is called the quantization noise. The algorithm is developed akit#os
to the problem of minimizing the quantization errors when an analog signal is-patie
modulated. For the continous voltage values of the analog signal, the Lleydalorithm
finds the close-to-optimum quantization values to be used in order to minimizefitbiedce

between the original and quantized signals.

The algorithm divides the domain of the original sigihto quantization subsets, and finds
a single representation point for each subset. Assumd@aQy, ..., Q,} are disjoint sub-
sets ofQ, and{qi, 0o, ..., q,} are the representation points, nameglanta for these subsets

respectively. Define the functigr(x) by

1, xe @
2,

Y(X) = X:E Q (2.19)
v, X € Q

After the quantization procedurers represented by
X =y(X) + z(X) (2.20)

10



wherez(x) is the quantization noise.

Assuming thats(t) is a stationary random process, the cumulative probability distribution

function of §(t) is
Fs(X) = P{sS(t) < X}, —o0 < X< o0 (2.21)

which is independent of timesince s(t) is a stationary process. By using the probability

distribution function, the quantization noise power can be written as

N = f . Z(X)dF(X) = n; fQ m(qm ~ X)2dF(x), -—co<t< co. (2.22)

The MMSE criterion leads to the fact that the best quaptare found by minimizindN with

respect to fixed)n,, which suggests that

fQ xdF(X)
Gn=""—" m=12...,v (2.23)
Jo dF(3)

One may note that the quantugg is the center of mass f@y,.

The best sets for fixed quanta are found independently from the bastajcalculations. It

is assumed thai, # gy for a # b since the setQ, andQy, are disjoint sets for an optimum
partitioning. From (2.22), it is observed that the noise magnitude is direabiyoptional

to (gm — X)°. This implies that, for the minimization of quantization noise, the quantum

minimizing (gm — X)? should be chosen as the quantized valur 4 that
Qa={X:(da-%?<(®p-X2% Yb=a), a=1...v (2.24)
or equivalently,

Qa:{x: (qb—qa)(x—@)w, Vb;ea}, a=1.. v (2.25)

From (2.25), it is observed that the end point of a best set is the arithmeé#in ofethe

quantum of that set and quanta of the neighbouring sets. In other words

11



Q1 = {X:—0co < X< Xq}

Q2 ={X: X1 < X< X}

Q-1 = {X: X2 < X< X1}

Qv = {X: X-1 < X< 00} s (226)
where
+
X = 01 _ 02
+
bzmz%
X, 1 = w 2.27)

andgr < o < ... < Q.

With these results, the algorithm suggests a trial-and-error method to fingtihmuon quan-

tization scheme:
Start with arbitrary initial endpoint@@l, X x'v} for the sets{Qi Qb Q'V}
Calculate the quant@y, oy, . . ., g} according to[x‘l, X x'v}
REPEAT
Calculate the endpointxy, Xo, . .., X,} according tqqs, g, . .., G}
Calculate the quant@y, gp, . . ., g,} according to{x, X2, ..., X, }
UNTIL maximum number of iterations is reached
The details of the derivations can be found in [5].
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2.5 Decision-Directed Least Squares Channel Estimation

Decision-Directed Least Squares Channel Estimation (DDLS) is an éxtetiosthe classical
LS channel estimation method. In DDLS, data symbols are also used in ¢hsstingation

in addition to pilot symbols. In DDLS, the data symbols are not used to trackhueges
in the channel. Rather, they are used to enhance the LS estimatiom. Assumiygttma is
modeled by (2.2), i.e., the channel is single-tap, the channel estimatiorsprisampleted
in two steps. In the first step, the channel is estimated over the pilots using. (&3 h, s

is calculated, hard decisions for received data symﬁ;pﬁe made, wheréy are the received

data symbols. The hard decisions are obtained by

dy = argminid - h sal?, (2.28)
e

whereAis the set of constellation points used for M-PSK modulation. For multipath etgnn

hard decisions can be obtained by equalization or other means of | Hlicdion.

Once hard decisions are available, the second step of the estimationyestdts. The hard
decisions can be utilized as pilot symbols for estimation purposes. Usingritheédeisions,
DDLS channel estimate is calculated using (2.18) again, this time using both pitbtsaad

decisions as
dy

hopLs =

whered = [ao ang Jo ... &K_l]T andK is the length of data symbols.

2.6 Serially Concatenated Convolutional Coding

The class of serially concatenated convolutional codes (SCCC) is a fahiigratively de-
coded channel codes. An SCCC encoder consists of two convoluganabtlers connected
serially with an interleaver between them. Figures 2.2 and 2.3 show the ercatldecoder

structures for SCCC, respectively.

The blocks denoted bjj and[]* are the interleaver and deinterleaver, respectively. The sub-
scriptr means that the symbols are interleaved and the subscfipheans that the symbols

are deinterleaved. Neglecting the possible termination bits for the compamsodes's, the
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Figure 2.2: SCCC Encoder
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Figure 2.3: SCCC Decoder

rate of the SCCC encoder is the product of the rates of the convolutiocadlerdRoyier = N/ P
andRinner = p/k. The interleaver lengtl is important for the performance of the code. As
the length of the interleaver increases, the bit error probability dewesite the inverse
power of it under the assumption of uniform interleaving [7]. Also, in otdeobtain a good
performance from an SCCC, the inner code should be a recursieeatithe outer code
should have the largest free distance possible [8]. The details of tleelenstructure for

recursive codes are explained in [17].

The decoders are soft-output decoders whose outputs are in theffdogrlikelihood ratics

(LLR). LLR is a probabilistic measure of a hif, to be 1 or 0, and formulated by

1= P(un = 1ly)

~ 7 P(up = 0ly)’ (2:39)

with y denoting the vector of received samples. The output of the inner anddmdeder are

denoted byl}rmer andal ., respectively, where the superscripts show the iteration number.
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The extrinsic informatior(4). _and(1') are calculated by subtracting the extrinsic

nner outer

information given by the other decoder in the previous iteration from theectioutput
’ | _ | ’ |_1 ’ | _ | ’ |_1
(/l )inner = Ainner ~ (/l”)outer (/l )outer = Aouter ~ (/ln’l)inner

In the next step(/l;rl): is fed to the outer decoder as the input @;d)'outer is fed to the

nne
inner decoder as tha priori information. Performance curves of SCCC are given in [8].
Compared to parallel concatenated convolutional codes (PCCC), S§ied slightly worse
performance at low to moderate SNR values yet perform better at highrsShiRe their error

floors are much lower than those of PCCC's.
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CHAPTER 3

CHANNEL ESTIMATION BASED ON THE LLOYD-MAX
ALGORITHM

In this chapter, the application of the Lloyd-Max algorithm to the channel estmarob-
lem in wireless communications systems will be investigated. Using this chanimeatsn

method, the performance offtBrent receiver systems are explored by simulations.

3.1 Channel Estimation with the Lloyd-Max Algorithm

As explained in Chapter 2, the Lloyd-Max algorithm is a quantization algoritheeth on
finding the best quantization points that minimize the total squared error. DByd-Max
Channel Estimator (LMCE) uses this method for the channel estimation probtemthe
received channel samples, the algorithm finds the optimum quanta. Etmehapfanta are the

constellation points observed after the scaling and rotation of the channel.

LMCE starts the channel estimation process with the unit energy M-PSK dgieabthe initial

quanta
2r-0
h=a1= eXF(JW)
2r
=a2= exmm -1)

27+ (M - 1)

) (3.1)

v = am = exX[(]

Different from the algorithm explained in Chapter 2, the Lloyd-Max algorithmhianael

estimation does not determine region boundaries for the received sarfples.loyd-Max
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channel estimator uses the received symbols as training symbols to deteramuoeaititization

points. Denote the set of indices of the received samples falling into ther@gidy

Sm={i: Vi —dml < |yi —p|. ¥Yp=m| (3.2)

with |Sy| being the cardinality o5, In Step 1, the center of mass of the pointsSip are

calculated by

Gn=—= > % m=1...M (3.3)
which corresponds to an arithmetic mean operation.

By evaluating (3.3) for eacn, a set of new quanta is found. In Step 2, the index sets are
updated with the new quanta using (3.2) again. The algorithm continuepbstieg Steps
1 and 2 one after another either until a stopping criterion is met or for aedesuimber

iterations.

In general, the Lloyd-Max algorithm does not impose a structure on thef gelanta. How-
ever, the channel estimation problem should exert a relation betweetagirzce the received
constellation is just a scaled and rotated version of the original constelldtiars, we con-

strain the quanta obtained using LMCE by

Gm = harm (3.4)

whereh corresponds to the channel estimate, though in a phase ambiguous matmeea

explained later.

The constraint formulated in (3.4) forces the channel estimation progd¢duwrse all of the
observations to estimate the channel instead of using the observations iQ.gaeperately.
This can be achieved by using the decision-directed LS structure explain@hapter 2.

Using (2.29) for a narrowband channel, the channel estimation equatitamizs

R . .
h=2 D, 2. e (35)

m=1keSy,

whereN = Zr"r"tl |ISml. As it is seen from (3.5), the hard decisions for all indikes S, are

taken to berny, which are the original constellation points.
When LMCE calculates the estimated constellation, the MSE of the receivestietiation
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can be calculated. By using the index sets defined above, the MSE caltblated as

M
G =D S - el (3.6)

m=1keSn,

It should be noted that there is a phase ambiguity in the channel esimzate the esti-
mated constellation pointg,. This is the result of the unknown phase of the chanfa¢h}.

If 1Q{h} > 2—,\jf then at the received constellation, the phase of the channel appdaes to
modzmﬁ {IQ {h}|} since the constellation points,, are points chosen on a circle such that the
distances between the phases of neighbouring ones are constarqumaio%’. For this
reasonQ {ﬁ} may be the phase of the actual channel estima?ﬁ‘fmotated versions of it for

k=1,....,M-1.

The estimation procedure can be visualized by examining the constellation pbthtsre-
ceived samples and the channel estimation output. Assuming QPSK modulaticeceived
scatterplot for 50 symbols with instantaneous SENy = 10dB is seen as in Figure 3.1.
The Lloyd-Max algorithm makes 10 iterations to estimate the constellation poingsorigi-

nal, rotated and estimated constellations are given in Figure 3.2.

To have a better understanding of the performance of the algorithm, thesgaared error
(MSE) value of the estimation error is given in Figure 3.3. The channel gstiofathe
Lloyd-Max algorithm is obtained in a genie-aided manner. This means thatoihe that
has the minimum distance to the perfectly known channel among the points ditilmated
constellation is chosen to be the channel estimate output the Lloyd-Max algaaiid the
MSE is calculated using the chosen point to avoid gross errors. Thisxaxoted byE,/No

shows the instantaneous SNR values.

A lower bound for the channel estimation MSE for narrowband chanael®e derived using
the LS algorithm. The noise process is white, i.e., the cross-correlationfereat samples

are zero. Data symbols are independent and identically distributed. Senceide and data
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whereN is the number of pilot symbols, and expectation is taken over the ensemblatof d

and noise.
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In Figure 3.3, MSE of the LMCE algorithm is depicted with respect téedent number of
received samples used for estimation. The bounds for each lengthleméats=d as if all
samples that are used were pilot symbols and LS estimation was employederAB@a

the figure, the LS performance is achieved around an instantaneousehRof 8dB. Since
LMCE is a blind algorithm, its estimations may carry high errors if the samples used in
estimation are not reliable, i.e., the noise leviketing the samples is high. For LMCE,
the samples are considered as reliable starting from 8dB SNR. Therparfoe of LMCE
changes with the number of LMCE iterations. THeeet of the number of iterations on the
performance of the estimator is given in Figure 3.4 for 50 symbols in a dwedl.olbserved

in Figure 3.4 that the LMCE reaches its capability with nearly 10 iterations. eftwe, for

the rest of the thesis, the Lloyd-Max algorithm makes 10 iterations unlesd sthirwise.

Another important issue to examine is the comparison of MSE of LMCE with oth#tods

defined in Sections 2.3 and 2.5. Figure 3.5 shows this comparison. The estinsatial-
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Figure 3.2: Original, channel output and estimated constellations
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Figure 3.3: MSE of Lloyd-Max channel estimate foftdrent block lengths

culated over dferent number of pilot symbols for LS and DDLS, and 50 data symbols for
DDLS and LMCE. The pilot symbols of LS and DDLS are chosen from thénag pilot
sequences obtained for LS channel estimation in [4]. It is seen fromid=8)6 that LMCE
performs very close to LS bound for SNR values greater than 6dB. Dir®rms close to
LMCE for pilot lengths of 5 and 10. It should be noted that the gain obtaireed DDLS
when pilot number is increased to 10 from 5 is not significant. LS estimatidorpes close

to LMCE and DDLS for lower SNR values but LMCE and DDLS outperforn& ds SNR

increases.

As SNR exceeds 10dB, LMCE and DDLS have exactly the same estimation MShey
satisfy the LS bound. This is the result of the similarity of LMCE and DDLS ingi$iard-
decision symbols for channel estimation. LMCE makes hard-decisionsmtigeration with
respect to the latest channel estimate, and DDLS makes hard-decisiongsydtt to the

channel estimate obtained from pilot symbols only. At high SNR values, #reneth samples
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10

Figure 3.4: MSE of Lloyd-Max channel estimate foffdrent number of iterations (50 sym-
bols in a dwell)

used as hard-decisions are so reliable that there isffevelce between using hard-decisions

and known symbols for channel estimation.

Choosing the correct channel estimate from the output quanta of LMCEgga problem
that has to be dealt with. In Sections 3.2 and 3.3, twiedEnt approaches for this problem

will be discussed.

22



= @ - LS estimation (3 pilot symbols)
@ LS estimation (5 pilot symbols)
—— LS estimation (10 pilot symbols)

- © = DDLS estimation (3 pilot symbols)
107%] 'O+ DDLS estimation (5 pilot symbols)
—6— DDLS estimation (10 pilot symbols)
—¥— Lloyd—Max (10 iterations)

—— LS Bound (50 symbols) :

0 2 4 6 8 10 12 14 16
E, /N, (dB)

Figure 3.5: MSE of Lloyd-Max, LS, and DDLS channel estimates
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3.2 Pilot-Aided LMCE

Among the output quantay, calculated by LMCE, one quantum has to be chosen to be the
channel estimate. This choice can be made by using a reference poinbnipaidng the
reference to the quanta, the quantum that has the minimum distance to tle@cefean be
chosen as the channel estimation. Defining this method, a question arigedo&® one find
a reference point? It is clear that the best reference point is the ehiéself, which was
defined as the genie-aided method in Section 3.1. Since the perfect thi@mt@énformation
is obviously not available, an estimate of the channel can be used. This testarabe

obtained from LS or DDLS estimation methods using a small number of pilot symbols

The performance of LMCE aided by LS or DDLS can be examined by chgdkie error
rates. The channel model to be used in the simulations is the narrowbaleigRading
channel model[16]. The channel estimates of LS and DDLS are calcwdatedplained in
Chapter 2. The channel estimates of LMCE aided by LS or DDLS are ctdduby

- T 2

himce = arg_min |his/ppLs — 0| (3.8)

mel,.. .M

whereqy, are the constellation points calculated by LMCE. The noise variance estimate of

LMCE is obtained by (3.9). The noise variance estimates of LS and DDL$®eabtained

in a similar way by

19 .
Fn? = N Z Iyic — hLS/DDLS|2- (3.9
k=1

The transmitter uses convolutional channel coding with a bit interleavewfiolipthe encoder.
The coded and interleaved bits are passed through the modulator. Fontitegti®ns, channel
coding is performed by a rate = % convolutional code with generator polynomigld] =
(33)% and g[0] = (23)s in octal form [17]. The channel interleaver is a uniform random

interleaver for which the probabilities of each bit to be sent in a specifititote equal.

The convolutional decoder at the receiver is a soft-output decwileg the BCJR [18] algo-
rithm. A decoder with the BCJR algorithm calculates the output LLR’s of theriinédion

bits as
P(um = 1ly)
P(um = 0ly)

whereuy, is them™ information bit andyis the vector of received samples. A BCJR (MAP)

A(um) =1n (3.10)
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decoder uses threeftirent probabilities in its calculations, which are given by

ak(p) = P(Pk = p.r <) (3.11)
BK(Q) = P(r-kPks1 = Q) (3.12)
¥k(p. Q) = P(Pks1 = 0, 1k[Pk = P) (3.13)

ak(p), Bx(Q), andyk(p, q) are the forward, backward, and transition probabilities, respectively
The variable¥y is the state variable of the trellis at tinkeand p and q denote diferent
states. Using the Max-Log-MAP approximation to Log-MAP algorithm [19§ tbrward

and backward probabilities of the decoder are given by

Ax1(0) = In (ak+1(0))

M-1
=In [Z ax(P)yi(p, q)]

p=1
M-1
= In[z exHAK(P) + Tk(p, q))]
p=1
~ MaXe(o,1,...M-1) (A(p) + Tk(p, ) (3.14)

and
Bk(p) = In (Bk(p))
M-1
=In [Z Br+1(A) k(P OI)]
1

M-1
= In[ ex(By:1(a) + Tk(p, Q))]
g=1

~ MaXeo1,...M-1) (B (d) + Ti(p, d)) - (3.15)
The state transition probability gamma is
Ti(p. @) = In(yk(p. )

=In [;exﬂ—w) n P(Cnk = En(p, Q))]

276 n? 2
N o
N 1 _|Yk—ha(p,OI)| +1In 1—[ ﬂ (P (o) /2
N 202 L1y et
. : Yk —ha(p, ) a
~ k(@) + kel (cm,k))—|2—| ch(p, G (aag)
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whereuny is the nh information bit that is encoded and carried at tiknim the symbolay,
Un(p, 0) is thent™ input bit for encoder to change its state frgrto g, &(p, q) is the the output
symbol when the encoder changes its state fto g, andK is the number of input bits
that are encoded together at a single time instance. The constant kgltfig?, ka(1' (Un)),
s lha(p.a)|

202" 20702

calculated. Therefore, the branch metric used in the decoder is

and can be ignored, since they are eliminated when the likelihood-ratios are

R{y:ha(p.a)] X '(Un
{kA—z} + Z Un(p, Q)/l (; L

I'k(p,q) = : (3.17)

n=1

Instead of using received symbagisin (3.17), the LLR’s of coded bits calculated frofcan
be used. Calculation of coded bit LLR’s froyp[24] is done by

S P(un,k = 1|yk)

£ 7 3.18
P = B (U = O (549

Eqgn. (3.18) can be approximated as
Zogc ~ miny, [y — P un)|” = miny [y — P (uo)|” (3.19)

whereu; is the set of groups dbg>M bits having then™ element ag, anda(uj) are the

modulation symbols used to represent the bit groups.itsing (3.19), (3.17) is modified to

. (3.20)

Rz z m(pa)) & (U
O il o VLG SPRARIC

2 i 2

with Z,(p, g) asn®" the output symbol when the encoder changes its state frtow. When
the decoder uses (3.20) instead of (3.17), the decoder inputs ara@aftoits instead of
modulation symbols. This enables the transmitter to use bit interleaving betwesrctiging
and modulation operations when modulations with- 2 are used. The estimateg? andh

are the calculated by LS, DDLS, or the Lloyd-Max algorithm.

For the simulations, a frame length of 5 dwells, and a dwell length of 50 datacdymith
QPSK modulation are used. Channels and noise at each dwell are iddepefihe noise
power N is assumed to be unknown, therefore, it has to be estimated if needede Bigur
shows the bit error rate performance and Figure 3.7 shows the fraoneas performance of
LMCE when the channel estimate is obtained by the reference of LS or [@baBnel esti-

mates. The performances are compared with decoding with pelfaohel state information
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(CSI), which means that decoding is done with perfectly known chanmmehaise parame-
ters. The x-axes of the graphs show the average SNR values for¢bdedinformation bits
in dB scale. The extra energy needed for the pilots are taken into adoydidtributing the

energy of pilots over data bits. Since rate of the channel R)de% and the modulation is

QPSK,
O ON#L 1
=Y TN RlogM

(3.21)

wherelL is the number of data symbols ahdis the number of pilot symbols in a dwell.
The pilot symbols of LS and DDLS are chosen from the optimal pilot secgseas stated in
Section 3.1. The simulations are run until 50 frame errors occur for ddBhvalue. It should

be noted that the simulation parameters given here are valid for all simulatrongkiout this

thesis.
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Figure 3.6: BER performance with convolutional code

Using Max-Log-MAP algorithm with the channel estimates may yieltedent results than

other realization methods of BCJR algorithm. Max-Log-MAP is an approximésitime Log-
MAP realization of the BCJR algorithm, and the robustness of these algorithessiteation

errors may dier. Figure 3.7 shows the frame error rate performances of the estimatmn alg
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Figure 3.7: FER performance with convolutional code

rithms with a soft-output decoder employing Log-MAP algorithm. It is shownigufe 3.8
that the channel estimate errors have simiféeas on both algorithms, therefore Max-Log-

MAP algorithm is used for the rest of the simulations in this thesis.

It is seen that the error performance of DDLS and LS are slightly bettertMCE. From
Figure 3.5, itis known that MSE’s of DDLS and LS are larger than or Eqpud SE of LMCE,

so it is expected that their error performances also show the sametehistars. The reason
DDLS and LS perform better than LMCE is the wrong reference probleMCE chooses

its channel estimate among all quanta using the reference that DDLS or LS calculates.
If there is excessive noise on the DDLS or LS channel estimate, thenefepoint may be
closer to a neighbouring quantum instead of the actual channel estimatiouan such a
situation, the LMCE channel estimate becomes a phase shifted version ctulécnannel
estimate, and the phase shift is on the ordeﬁofThis phase shift causes major decreases in
the error performance. On the other hand, DDLS and LS performanagsiot be fected

as much as LMCE, since the phase shifts of DDLS or LS do not have to theander of2t
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Figure 3.8: FER performance with convolutional code (Log-MAP algorithm)

for causing erronuous decisions for LMCE. To validate this hypoth#dsisperformance of

genie-aided LMCE can be compared with the performances of DDLS and LS

Figure 3.9 and Figure 3.10 suggest that the performance decreasedi isvtaused by the
noisy reference points. From Figures 3.9 and 3.10, it is seen that thalbeus a 1dB loss
between decoding with perfect channel state information and genie-débedliing even at
SNR values greater than 10dB. Figure 3.3 shows that the MSE of LMCihehastimation

is around X1072 at this SNR level. Since this error is negligible, it is expected that the
genie-aided LMCE would perform almost identical to the perfect CSl.cdsevever, under
Rayleigh fading channels, the instantaneous SNR is generally not eghal awerage SNR.
Therefore, the MSE of the estimations may be much larger tixa0 3 even if the average
SNR is 10dB.

It is important for LMCE to have good reference points. Noisy refeegomints may cause
phase-shifts on the order % and dfect the error performance severely. It can be concluded
that obtaining a single channel estimate from LMCE using more noisy refeguints per-

forms poorer than using the more noisy reference point directly. Weopeoa solution to this
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Figure 3.10: FER performance of genie-aided LMCE
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problem in the following section.

3.3 Differential Encoding with LMCE

3.3.1 Encoding

The output quanta of the LMCE is usually quite close to the actual chantelags or its
phase-shifted replicas. In Section 3.2, it was shown that trying to find dtuelachannel
estimate by using more noisy references is not fiacéve approach. It also require the
use of pilot symbols for calculating references for LMCE. Instead, ragipproaches such
as diferential demodulation or decoding that work well with phase ambiguity mayupeod

better results.

Differential Phase Shift Keying (DPSK) modulation is a modulation technique irhvahad-
ulation is performed based on the phas@edences of consecutive symbols [2]. In DPSK,
instead of transmitting the M-PSK symbols directly, the symbol-by-symbol summeaitibe

phases of the M-PSK symbols are transmitted, such that

d = di_18k (3.22)

whereay is an M-PSK symboldy anddy_; are DPSK symbols which take values from the

alphabet{ejz”vo,ejz"v'l, ...,e &‘(ufl)}. Another representation for DPSK modulation is in the

form of mod Msummation.

A = (dk_1 + &)modm (3.23)

In this representatioak'anddk take values from the alphabg}, 1,..., M — 1}, where each
element represents = logoM bits. Therefore, a dierential modulator can also be consid-
ered as aate = Iﬁ recursive encoder, which is given in Figure 3.11. The mapping to the

constellation can be done using natural or Gray coding.

Since diferential modulation can be expressed as convolutional encodinjeeedtial mod-
ulated signal can be decoded coherently as a convolutional codeifférewtial decoding is
a coherent procedure, since the soft-output decoders requineahaformation. However,

coherent dierential decoding is robust against the phase ambiguity in the channeltestima
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Figure 3.11: Diferential encoder

when the ambiguity is on the order of symbol phadedénces. This situation can be un-
derstood more clearly with the help of dfeérential decoder trellis given in Figure 3.12. For

simplicity, only the transitions from two states are shown.

00/00

Figure 3.12: Diferential trellis

Figure 3.12 shows the trellis of a Gray-coded QPSKedential encoder. The states of the
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trellis are actually the outputs of the trellis branches coming into that state. foregréne
output QPSK symbols are matched to the states of the trellis. The inputs causisigtin
transitions are parallel, e.g., transition from state 0O to state 1, state 1 to state 2, tetatate

3, and state 3 to state 0 are all the results of the iffpiljt When the most probable states are
decided, it is not important that the channel or channel with a phas%iﬁused, since the
same amount of shift in all phases of the trellis path yield the same output asrthetdrellis
path. An advantage of choosing coherertiadfiential decoding over noncoherentteiential
modulation is that an SCCC code forms by using a convolutional encodee asiter code
and the diferential encoder as the inner code [6]. By this method, coding gain carbals

obtained without increasing the overall coding rate.

In a frequency hopping system, the transmitter and receiver structum@syeng an SCCC
code are given in Figure 3.13 and Figure 3.14 where the inner encaéitisrential encoder

and the outer a convolutional one.

51 Z =1
iny 1721 Differential c Symbol al
n 21 Encoder Mapper
;) s =2 a2
v Zfr] T2 Differential c Symbol L..
27 Encoder Mapper
X Convolutional | < | |
Encoder 1
ZN :Z'M 4 —N = N
Tl TN Differential ¢ Symbol a
HZN Encoder Mapper

Figure 3.13: Diferential SCCC encoder

Interleaving is performed in two stages. In the first stage, the bits are etedeusing a
block interleaver [19]. A block interleaver writes the input bits to the rowthefinterleaver
matrix and reads the columns of the matrix to form the interleaved output. This mxst$ple

consecutive bits into étierent dwells. In the second stage, bitwise random interleaving is
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Figure 3.14: Diferential SCCC decoder

done in each dwell. Using block interleaving followed by random interleawingeases the
distance between the consecutive bits which increases the diversity2@hinHach path in
Figure 3.14 with an interleaver and an encoder corresponds to a siagleefrcy dwell sent

in a carrier frequency dierent than others.

3.3.2 Decoding

The soft-output decoders for bothidirential and convolutional codes use the Max-Log-MAP
algorithm. From (2.31), the extrinsic output of theéfdrential and convolutional decoders is

given by
N : /N\i—1 N i roi-1
(/l ):ﬂff - /lldiff a (/l”)lconv’ (/l )lconv= Agonv— (/lﬂ’l)ldiff ’

For simplicity, ther subscripts that denote the interleaving and deinterleaving will be ignored.
A" are the outputs of the Max-Log-MAP algorithm explained in Section 3.2. Khénsic

differential decoder output can be written as
J— ’ I_l ’ |_1
P(unm,k = 1|yk ’ (A )COHV/ (/l unm,k))con\)

_ N . i1
P(unm,k = Oly™ (A )ICO%‘V/ (/l (unm,k))con\)

(L @m)y,, =n (3.24)

where superscriph denotes the number of the dwell, a@ti)';v/ (2 (z:mk))ic_oivdenotes the
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vector of all LLR outputs of convolutional decoder in the previous iteragiwcept the LLR
of the bitu?,. The diferential decoder calculates the output LLR’s using (3.14) and (3.15) fo
the forward and backward metrics, respectively. The state transition matacalculated by

(3.17) since there is no bit interleaving between tHeedential decoder and modulator.

The vector of extrinsic dierential decoder outputs obtained from each frequency @wG)LI:;V

are then passed through the first and second deinterleavers to foinpthéo the convolu-
tional decoder. Like the fierential decoder, the convolutional decoder also uses the Max-
Log-MAP algorithm. However, it uses (3.20) to calculate the transition metiosge the
inputs to the convolutional decoder are not channel observationsitbut® values. The
convolutional decoder also cannot wsprioriinformation since there is no other information

source in the system [8].

The convolutional encoder uses trellis termination after the encoding ofbitatéss com-
pleted [17]. Trellis termination enables the receiver to have the knowledge ast state of
the encoder. Therefore, the backward metric of the decoder is initialized @(n (1) for
Max-Log-MAP decoder) for state-0 and a large negative numbép) for Max-Log-MAP
decoder) for the other states. Termination can also be done inftkeeditial encoder in the
same manner. However,filirential encoder termination does not yield a significant gain in
the performance of systems using coherent decoding [21]. Moresinee the system using
LMCE does not have the exact information about the phase of the dhandéhe states of the
differential decoder are also the symbols transmitted through the channel, tHzatitias

of the last backward metric and the first forward metric are not possiblefiist forward and

last backward metrics of fierential decoder are given equal probabilitiles(%)).

The disadvantage of using equal-probability initialization dfedential decoder is that in
the first iteration, the backward metrics do not make any contribution to theitoutgR
calculations. To explain this, first it is assumed that at a time instRBge; () + I'k(S1, $)
has the largest value among Bi;1(q) + T'k(p, g), wheres, are the diferential encoder states
andp,q € {s1,%,...,Su}. Using (3.15), allBk(p) values yield the same resB,1(S) +
I'k(s1, ), since each statp has a branch to the stage. Having no a priori information
in the first iteration, the backward metri&(p) are the same for eadh If the forward
metrics cannot be initialized either, tha@l) forl = 1,...,logoM yield no information

in the first iteration. Therefore, there occurs an information lode@M bits for the outer
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decoder. To overcome this probleheg,M pilot bits can be added in front of the input
bits of the diferential encoder, which causes the encoder to make 1 state transitioa befo
encoding the input bits. Then, the fite),M LLR outputs of the dierential decoder, which
carry no information, are the output LLR’s of these pilots. Since, the pil@sat related

to the convolutional encoder, their probabilities are not used at the kdioral decoder.
Therefore, the information loss is prevented. One may note that this traimmadspilot

symbols corresponds to the reference symbol usedtierdntial encoding.

3.3.3 Numerical Results

The error curves with LMCE, LS, and DDLS channel estimator with SC@3yasen in the
following figures. The simulation parameters in Section 3.2 are used, ekegpio pilots are
used in the system with LMCE but a single arbitrary symbol is transmitted at tfierieg

of the dwells for diferential encoding with LMCE. In Figures 3.15 and 3.16, the bit error and
frame error performances of LS channel estimation witfedént training lengths are given.
As stated in Section 3.2, the SNR values on the x-axes of the figures dédmotagrage SNR
per data bit.

It is seen from Figures 3.15 and 3.16 that increasing the number of pilotsreothem 5 sym-
bols does not make a significant improvement in the error performanceigltliodecreases
the MSE of the channel estimate as shown in Figures 3.5. In Figures 3.Br18)dhe bit er-
ror and frame error performances of DDLS channel estimation withrént training lengths

are given.

Figures 3.17 and 3.18 show that the error performance of DDLS ddespmve after pilot
lengths of 3 symbols. Finally, the performances of LMCE, LS, and DDLS ®@CC are
compared in Figure 3.19 and 3.20. It is also possible to use non-coldemodulation with
soft-output decoders and a channel estimator. Therefore, the fraivimtarror performances

of differential demodulation are also given in the figures.

As seen from Figures 3.19 and 3.20, the performances of all threaehestimation methods
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Figure 3.16: FER performance of LSCE with SCCC
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are very close to each other. LMCE, being a blind algorithm, obtains a peafare as good

as pilot-aided algorithms with 5 pilot symbols. It should be noted that the rate cfystem
using LMCE is almost 10% higher than the rate of the systems using LS or DbBasnel
estimator. The algorithms are about 1dB away from perfect CSI decodimigh uses the
perfect channel cdgcients and noise power of each dwell for decoding. The performance
of non-coherent demodulation with convolutional decoding and pe@8ttis also given in

the figures. The convolutional decoder is provided Withas the channel estimate since the

output of the diferential demodulator is given by

Mk = YkYi_1 (3.25)
= [h[? Esax + hdeny_; + h*dy_jng + neng_. (3.26)

The sum of the termlsvdkn’l;_1 + h*dl*(_lnk + Nk _4 form the noise on the demodulator output.
The decoder was provided withftirent noise estimate values to observe tfiece of the
noise variance knowledge on the performance, and no significBetatice was observed
between dierent noise variance values aNgl or Ng. We note that the decoder does not take

the correlation in noise into account.

Differential demodulation with perfect CSI decoding falls 3dB away in framar @erfor-
mance from the performance offi#irential decoder with perfect CSI. However, the bit error
performance of dferential demodulation is close to the performances of other estimators.
The reason of this is the fiérence between the error correction capabilities of the two sys-
tems. The distribution for the number of bit errors in a block solved by the y8tems is
given in Figures 3.21 and 3.22. An SCCC decoder either corrects thie wedweived block

or makes a large number of bit errors. The system witHfemintial demodulator and a con-
volutional decoder generally generates a smaller number of bit errarsSGEC but more

blocks contain errors.
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Figure 3.21: Bit error distribution for the SCCC decoder
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CHAPTER 4

PERFORMANCE UNDER JAMMING

4.1 Partial-Band Jamming Detection by LMCE

4.1.1 Detection Methods

When a communication system is jammed by a partial-band jammer, the noise power in th
affected dwells increases. These dwells should be detected and trefiéedndithan the
others in order to minimize the damage on the system. In literature, the output sffthe
output decoders or the channel estimation algorithms are used to detechtherjf9], [10],

[13]). Using a similar approach, we propose to utilize LMCE for jammer detectio

As explained in Chapter 3, LMCE also finds the MSE value of the receigathkes with
respect to its channel estimate. This MSE value is considered as the toti@rgriee power
and can be used for jamming detection. However, in Figure 3.3, it was sti@atithe per-
formance of LMCE is unreliable below some SNR values depending on théhlefdghe
dwell. Since LMCE finds estimates which minimize the overall error, the estimatiensoar
the ones closest to the actual parameters for low SNR values but the ahesrihmize the
overall error. Therefore, the MSE calculated using the channel estimat@ot represent the

actual interference power at low SNR values.

Similar to the assumptions in Chapter 3, the thermal noise power, the jammer paiviiea
channel gain are assumed to be unknown at the receiver. Considse avhen there is only
noise in the received signal, and the total average power of the rdcgiyeal is normalized
to a constant level at the receiver for each dwell. Even if there existietextable signal in

the environment, in other words the jammer is much stronger than the recejnatigower,
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LMCE still finds a channel estimate and an MSE for the received samplesteMgl shows
the values and the distribution of the MSE values calculated by LMCE whea thanly
additive white Gaussian noise as the input. The average input powernsliwed to 1 to

ensure that MSE values are independent of the noise power.

Percentage (%)

0.2 0.25 0.3 0.35 0.4 0.45
Squared Error

Figure 4.1: MSE calculated by LMCE for noise only

To detect partial-band jamming, the MSE of each dwell can be compared witleshtid
value, and the dwells failing the test are then considered as jammed. Thieoldrgalue
should be chosen according to both signal and noise powers. Sincerredithese parameters
are known, the signal power is normalized to a constant at the recemat. iWWhen this
normalization is applied, there is no need to have a priori knowledge of tke and channel
powers, since the dwells with high SNR will always yield small MSE values coetp® the
ones with low SNR, even if they have the same thermal noise power. The gveddisig MSE
values larger than the threshold are either jammedfected by fading so that the channel
estimate error is large. Therefore, not only the jammed dwells but also thés dwih low

SNR'’s are detected by the threshold test.

Once the dwells with large MSE’s are detected, the decoder has to take secaitipns
in order to improve the performance. The information extracted from jammedldhave
less reliability than information from clean dwells. Therefore, the decodsrth take this

reliability difference into consideration during the decoding procedure. [23] dfjgf@pose
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a decoding strategy for the jammed dwells. In [23], hard decisions arala&d for the
received pilot symbols in a dwell and they are compared to the known vefuid® pilot
symbols. If an error occurs, the SNR level is declared adflicgent (or the dwell may be
jammed by a jammer), and the rest of the dwell is multiplied by a constant & 1. In [11],

A is calculated using demodulator outputs. Whea 0, the dwell is completely erased and
whena = 1, the dwell is passed to the decoder with the same reliability as other dwells. The
parameterl can be chosen as a design parameter or a function of the demodulatafiand s
decoder outputs. The results in [23] show that using a congtar@.5 provide a performance

very close to using adaptive

The method in [23] can be used with LMCE in a similar way. Jamming is detected in a
completely blind way using the Lloyd-Max algorithm, unlike the pilot-aided appgraaf23].
When jamming is detected, the jammed dwell can be weightettbyreduce the reliability

at the input of the soft-input soft-output convolutional decoder, whiglans that the output

of the diferential decoder for the jammed dwells are multipliediby

4.1.2 Numerical Results

Figure 4.2 and Figure 4.3 show the frame error performances of LMCdifferent threshold
values under partial-band jammers with= 0.1 andp = 0.3, respectively. The power of the
input signal is normalized to 1 in each dwell.is chosen as constant and equal #. 0rhe
averagssignal-to-jammer poweratio, SJR, is defined as
E{?Es N+L 1
1IN, TN RiogM

(4.1)

and average SNRs = 20dB in the figure.

The results in Figures 4.2 and 4.3 suggest that the best performancairseadlfor the thresh-
old value of 028. Even at very lowy; levels, the systems do not see errors in every frame
(FER< 1) since the partial-band jammer does not jam all dwells in the frames. Itislkiso o
served that the performance of the decoder with perfect CSl alsasesavhen a threshold
value of 2dB is used, which yields the best result among other threshlolglsvarhis &ect

of scaling the extrinsic information on the performance of iterative desdues been investi-

gated in [22]. Therefore, scaling the extrinsic information from dwells witthh 8NR values
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Figure 4.2: LMCE performance under partial-band jamming wit0.1

improve the performance even for the perfect CSI case. One may n@dhad using an
MSE threshold may cause the dwells with small instantaneous SNR values tosidered
as jammed even if they are not. Since these dwells have small instantaneousBbR&
the estimates obtained for them are also not as reliable as the estimates of thinetihe

Therefore, a smaller weighting given to such dwells increases the pemoe.

The approach explained above can also be used with LS and DDL Satlestimation meth-
ods. The thresholds for these methods are obtained through exhaestied by simulations.
The frame and bit error performances of Lloyd-Max, LS and DDLShdleh estimators for
o = 0.1 andp = 0.3 are given in Figures 4.4 - 4.7. The channel characteristics and frame
structures are the same as the ones used for LMCE in Figures 4.2 anxté 3t that the pilot

length is 5 symbols.
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Figure 4.3: LMCE performance under partial-band jamming wit0.3

As seen from the Figures 4.4 - 4.7, performances déint estimation methods are close to
each other, similar to the results obtained in Chapter 3. There is about 2Bnp&nce loss

in comparison to the perfect CSI decoding, where all channel and jamraiagneters are
perfectly known. It should be noted that, the approach of scaling the jaraymaldols at the
output of the diferential decoder is also used in perfect CSI decoding. All three estimation
methods areféected in the same way from the partial-band jamming, since the jammer jams
pilots and data symbols together, which simply reduces ffexteve SNR of the jammed

dwell for each estimation method.
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4.2 Partial-Band Jamming Detection by LMCE Under No Jamming

It is stated in Section 4.1 that the threshold test used to detect the dwells jamntied by
partial-band jammer also causes the dwells that are not jammed but have staatbineous
SNR’s to be considered as jammed. It is shown that the threshold test intheoeeror rate
performance, since the estimates obtained for the dwells failing the test sireliable than
the ones obtained from other dwells, whether they are actually jammed or hetefdre,
the threshold test designed for partial-band detection can also be udeditate the dwells
with small instantaneous SNR’s when there is no jamming. In this sectionfféeseof the
threshold test on the performance of the system under no jamming will beigatesl. As
the performance bound, the perfect CSI case is used, as in Chaptevedghting operation
should also be considered for the perfect CSl case for low SNR vaines the outputs of the
differential decoder are less reliable when the instantaneous SNR is low glierciiannel

parameters are perfectly known.

When there is no partial-band jamming, the frame error rate performancelGELfor dif-

ferent threshold values is given in Figures 4.8.

10 ¢ ! !

—— LMCE (no threshold)
—¥— LMCE (threshold = 0.35)
—©— LMCE (threshold = 0.28)
—o— LMCE (threshold = 0.21) 4
Perfect CSI (no threshold) ]
—¢— Perfect CSI (threshold = 0dB)| - ]

|
6 8 10 12 14 16 18
y, (dB)

Figure 4.8: FER performance of LMCE with weighting for dwells
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As it is seen from the Figure 4.8, the MSE threshold test improves the pafawe of the
system even when there is no jamming. A similar performance enhancemepeigexx for
DDLS and LS estimators. Figures 4.9 and 4.10 show the frame error penfice of DDLS

and LS estimators, respectively.

10 ¢ T \ T
—— DDLSCE (5 pilot symbols, no threshold) ]
—— DDLSCE (5 pilot symbols, threshold = 0.35)] |
—6— DDLSCE (5 pilot symbols, threshold = 0.28)| |
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—— Perfect CSlI (threshold = 0dB) ]

[ad _
w10 °F J
(TR ]
10_3 o 3
10‘4 ! ! ! ! !
6 8 10 12 14 16 18
y, (@B)

Figure 4.9: FER performance of DDLS with weighting for dwells

Finally, Figures 4.11 and 4.12 show the performances of the three estirtagetker. As it

was seen in Chapter 3, the performances are very close to each ath&b@urt 1dB worse

than the perfect CSI case.
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Figure 4.10: FER performance of LS with weighting for dwells
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4.3 Partial-Time Jamming Detection by LMCE

4.3.1 Detection Methods

As in partial-band jamming, partial-time jamming should be detected in order to improve
the error performance. In partial-time jamming, the received symbols areasegénto two
groups depending on whether they are jammed or not. The purpose oép@saton is to
eliminate the jammed symbols and use the rest of the symbols to obtain a good estimate of
the channel. The main challenge here is to decide on which symbols are jammesl tHgin
noise level and the transition probabilities of the jammer are not known to teegcdeter-
mining the jammed symbols is not a straightforward process. Using LMCE, twaonhetre
proposed for partial-time jammer detection. Method 1 uses only LMCE outpdtMathod

2 uses LMCE outputs and soft-outputs of th&etiential decoder to seperate the jammed

symbols from others.

In Method 1, detection is based on the errors of the received symbols egect to the
estimated constellation points. The detection procedure starts with operati@ lavi the
whole dwell to obtain an estimate of the received constellation. Using this estinthtbe
distances of each received sample to the nearest constellation point, aaimstais SNR

is calculated for each sample. The samples are then sorted according togtaitaneous
SNR values. Theg samples with the smallest SNR are considered as jammed by the jammer,
wherexg is an arbitrarily chosen number which is small with respect to the dwell length. A
average SNR valug? is calculated over the samples excludiggsamples with the smallest
SNR values. Using the constellation estimate once again, the instantaneowsl8BkRof all
samples are calculated and the samples having an SNR smalle%tlaw also considered

as jammed. LMCE is operated once again to obtain a second constellation edtimdbae
using only the samples that are not jammed. Using this estimate, the processrtoirtete
the jammed samples is repeated and the final decision about the locations ahtheda
samples is given. Theflierential decoder is provided with the second estimate for decoding.
The noise estimates for jammed and clean symbol groups are calculated bypEheflthe
related groups with respect to the second constellation estimate. It shontitdubthat the
number of symbols that are marked as jammed may be moreqgHaut cannot be less than

it when the algorithm performs these operations. This will rfééc the performance of
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the system severely if there are no jammed symbols in the dwell. The MSE vathesaf
symbols will be close to MSE of clean symbols as they are given to therelntial decoder
and scaling extrinsic information afy symbols at the dierential decoder output do natect
the convolutional decoder performance sirges small compared to the dwell length. This
can be shown using the partial-band jammer case as an example. Congstenagperating
under partial-band jamming with the detection algorithm described in Sectiomdatidition

to this detection algorithm, 10 symbols with the smallest SNR’s are considerethia@ein
each dwell and the noise variance estimates given to fhereintial decoder and fierential
decoder outputs for these symbols are treated as described by Methbéther the dwell is
jammed or not. The frame error performance of this system employing LMCé&mpared
with the system described in Section 4.1 in Figure 4.13. Figure 4.13 provesotisidering

a small number (compared to the dwell length) of symbols with small SNR’s as jarimrmed

clean dwells does nofiact the performance of decoding severely.

-1

10 '

FER

—&— LMCE (threshold = 0.28)
—&— LMCE (threshold = 0.28, 10 symbols are scaled for each dwell)
—p— Perfect CSI (threshold = 2dB)

10 |

Figure 4.13: FER performance of the system scaling constant numbanbbss in jammed
and clean dwells
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Method 2 operates in a similar way to Method 1. The constellation estimates an&atzdc

as explained for Method 1. Using the second estimate and the noise estimati#$etbntial
decoder decodes the dwell and calculates the bit LLR’s as the outputoiiteerd, backward

and transition metrics of the decoder can be used to obtain soft estimateg fac#ived
samples. In [24], the dlierential decoder outputs are used to calculate soft estimates of the
symbols in the codeword. The calculation is done by finding the expecteel eftlie symbols
using the probabilities at the output of the decoder. The soft estimatesreiiiged symbols

can be used to interpret symbol reliabilities by observing their Euclidien distato the

constellation points.

The probabilities to be used in the calculation of the soft estimates are obtagmdHe
differential decoder, since the decoder calculates the probability of beiracinstate for
each symbol. Using Max-Log-MAP decoder metrics [19], the probabilityedhg at staten

at timek, or the probability of to be the constellation poinly is

P(ax = aq) = maxeo1,...M-1) {A-1(p) + T'k(p, d) + Bk(q)} (4.2)

The soft estimates of the symbols can be calculated as

-1
= ) aiP(ac = ) (43)

The Euclidien distances between the expected values and the constellatitnghmsest to

them gives a metric about the symbol reliabilities:

Mk = MiNgea |S — o (4.4)

The amplitude of the metric is inversely proportional to the reliability of the decodigputs
for a symbol. Ifr, = O for the received symbagl, it means that the transmitted hi

is perfectly extracted by decoding. The mean of the reliabiljtigsof the symbols in the
jammed group is calculated and the symbols in the clean group thatrhaveriu,; are
also placed among the jammed symbols, where€) < 1. Then, the received symbols are
given to the diferential decoder with the channel and proper noise variance estimathe fo

jammed and clean symbols.
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4.3.2 Numerical Results

The parameters used to define the characteristics of a partial-time jammeifiraee deChap-
ter 2. E{T1}, which is the expected number of consecutive jammed symbols, is taken to be

15. Solving (2.11) foPy; yieldsPyq = 1.

7?n+1 - 7P

P 1-P
[0703] =[0.703]| %

1 1

15 15

Solving (4.5) forPqg yields Pgp = 0.97143. The frame error performance of the LMCE
decoder under partial-time jamming with these parameters is given in Figures v 14

chosen as 15dB and for Method 2 is 08.

10

I
—— No detection
—6— Method 1
—6— Method 2
—&6— Perfect Erasure|
Perfect CSI

10tk
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10 "¢

Figure 4.14: FER performance of LMCE under partial-time jamming

As seen from Figure 4.14, there is a 5dB performanéemrtince between Methods 1 and 2
and perfect CSI decoding. The performance curve labeled asstR&fasure” is the perfor-

mance that is obtained by the decoder with LMCE if the locations of jammed symiwls a
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perfectly known. The performance of Perfect Erasure is 4dB bet#er khethods 1 and 2.

To understand the reason of this performandiedénce, the decoders using Method 1 and 2
are provided with the perfect knowledge of the locations of the jammed symiHolsever,

they only use this information to use the calculated large MSE value as the ao@eoe for
jammed symbols. This does ndfect the constellation or noise variance estimates but makes
the diferential decoder aware of the non-reliabilities of the jammed symbols. Time fearor

performance of this case is given in Figure 4.15.

10" T

—©— Method 1 (perfect jammer location knowledge at the decoder)
—&— Method 2 (perfect jammer location knowledge at the decoder)
—¥— Perfect Erasure

Perfect CSI

FER

-3 ! ! ! ! ! !

10

Figure 4.15: FER performance of LMCE with perfect symbol jam knowdedder partial-
time jamming

The performance of Method 1 and Method 2 are almost identical to pexfastre case if
the diferential decoder is given the correct noise variances. Therdfaanain reason of
performance loss when these methods are used is the failure offéreniial decoder when
jammed symbols are given to the decoder with the same reliability as other symlstleodv

1 and Method 2 cannot provide the decoder with the perfect locations fartireed symbols.
One major reason for the miss of a jammed symbol (a jammed symbol considefedrgss
the location of the received sample on the constellation diagram. If a jammed lsyppears
close to a constellation pointfiirent from its original one, this symbol is not considered as

jammed in either of these methods. It is intuitively expected that a decoderetamihe
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a non-reliable symbol with such condition from the previous and next st&iemations.
However, a diferential decoder cannot detect this since each state of flieeetiitial encoder
trellis is accessible from each state. This property of the trellis is the reasdhef failure
of the decoder. When a symbol jammed by the jammer falls closer to a constellatian p
different from the true constellation point, the decoder calculates the sta¢smomding to
the closer point as the most probable state. If the noise variance of tiéibkys given
equal to the symbols that are not jammed, the decoder output for that signtaitulated
as reliable as other symbols. Even if the next symbol is not jammed by the jamtheen
reliable, the decoder cannot correct the erroneous decision it mak#sefcurrent jammed
symbol. The forward, backward and transition metrics calculated for the jansyrabols
also cause the error to propagate in the trellis. Therefore, a stromgwdach can correct the
erronous decisions of theftirential decoder is required as the inner code, such as the turbo
code[19]. Turbo coding is a class of concatenated codes, which esngloyconvolutional
encoders concatenated in parallel. When the inner convolutional coeglésed by a turbo
code, which uses the same convolutional encoders that is used in SGEftarte error

performance is given in Figure 4.16.

10 ¢ T T

L —>— No erasure
—6— Method 1
—&— Method 2
—— Perfect Erasure| |
Perfect CSI

Figure 4.16: FER performance of LMCE with Turbo coding under partial-famamning
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From Figure 4.16, it is seen that also turbo decoder cannot correetriibies made by the
differential decoder. However, Method 1 and Method 2 still provide a pegoce gain for
high jammer power values. Moreover, since LMCE is a blind algorithm, it is fietted by
partial-time jammers as much as pilot-based systems, since they fail to operatéhelpdot
symbols are jammed. This can be observed from Figure 4.17, which shewsitiormances
of Lloyd-Max, LS, and DDLS channel estimators when they apply no tieteand have

perfect knowledge of the locations jammed symbols.
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Figure 4.17: FER performance of the estimators with no erasure andperésure

Asitis seen from Figure 4.17, the LS estimator yields the worst performamoag the three
esimators. This is because of the vulnerability of LS estimation to jamming when the pilo
symbols are jammed. LMCE and DDLSCE perform better than LSCE since #igiragions

are calculated from all of the received symbols. Therefore, eventtémbalgorithms than
Method 1 and Method 2 are developed for partial-time jamming, the perforn@drbe LS

estimator will never reach the performance of the Lloyd-Max or DDLS estimato
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CHAPTER 5

CONCLUSION

In this work, a blind channel estimation method, Lloyd-Max channel estimalitfCE),
is proposed for frequency hopping systems under narrowbandelzanThe performance
of LMCE is compared with the pilot-based LS algorithm and the decision dird&ed he
effect of channel coding has also been investigated by the use of conwalutimdes and se-
rially concatenated convolutional codes. The SCCC employfereintial code as the inner
code to avoid the phase ambiguity in the channel estimations and a convolultnieahs
the outer code. When used with SCCC, the results show that LMCE perstighly better
than pilot-based estimators with a number of pilots that corresponds to apjitely 10% of
dwell length. The estimator performances are compared to the performéhdbe perfect
channel-state information and it is observed that the estimator performareadout 1dB
worse than perfect CSI case when SCCC code is used. Moreovaretfeemance of the
channel estimators with SCCC are also compared with non-cohefégriedtial demodula-
tion and convolutional decoding with perfect CSI which are outperforbned 3dB margin

with regard to the frame error rate.

In addition to channel estimation, LMCE is used for partial-band and partialjimening
detection with SCCC. Under partial-band jamming, a threshold test is perfamig noise
variance estimates for the dwells and the dwells failing the test are conseejatimed. To
avoid the bad fects of the non-reliabilities of the symbols in the jammed dwells on decod-
ing, the diferential decoder outputs of these dwells are scaled by a constarg tiedgrare
used in the convolutional decoder. This method improves the performétite gystems and
the estimator performances are similar to the performance results with no jammatgpsitu

LMCE performs slightly better than the other two estimators using pilots. It is &serged
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for the case of no jamming that using the threshold test and the scaling methan/@spr
the performances of all estimators. This is due to the fact that low qualitynehastimates
and the non-reliable symbol LLR’s at low SNR’fect the performance of iterative decoders
using feedback. In partial-time jamming, two methods are proposed to detdotc#imns

of the jammed symbols. One method uses the LMCE outputs only and the othdratises
LMCE and decoder outputs. Even a small number of errors made in theidetet the
jammed symbolsféect the performance of theftirential decoder severely and the error rate
performances fall 4dB away from the perfect CSl case which includepétfect knowledge
of the jammed symbol locations. However, with the perfect knowledge of thegd sym-
bols, LMCE and the DDLS channel estimator performs better than the L$iehastimator,

since the LS estimator fails to operate when the pilots symbols are jammed.

With the results obtained under no jamming and jamming situations, it can be camclude
that the Lloyd-Max channel estimation algorithm performs well compared tpitbebased
LS and DDLS algorithms. LMCE removes the dependency of a system on, pilbish is
especially needed for systems requiring high data rates and systemngpenaer jamming.
LMCE can be used in systems with high frequency hopping rates and smlll léngths,
with intolerance to the rate loss resulting from the pilot symbols in a dwell, orrmgstéhich
have other reasons to avoid the use of pilot symbols. In addition to the sindies thesis,

the following is a list of possible research directions with respect to the tépiisothesis:

e LMCE used under partial-time jamming with a better jammer detection algorithm.

e LMCE performance and modifications to LMCE for systems with carrier feagy

offset errors.
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