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Prof. Dr. İsmet Erkmen
Head of Department,Electrical and Electronics Engineering

Assoc. Prof. Dr. Ali Özg̈ur Yılmaz
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ABSTRACT

BLIND CHANNEL ESTIMATION BASED ON THE LLOYD-MAX ALGORITHM I N
NARROWBAND FADING CHANNELS AND JAMMING

Dizdar, Onur

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. AlïOzg̈ur Yılmaz

June 2011, 65 pages

In wireless communications, knowledge of the channel coefficients is required for coherent

demodulation. In this thesis, a blind channel estimation method based on the Lloyd-Max

algorithm is proposed for single-tap fading channels. The algorithm estimates the constella-

tion points for the received signal using an iterative least squares approach. The algorithm is

investigated for fast-frequency hopping systems with small block lengths and operating un-

der partial-band and partial-time jamming for both detecting the jammer and estimating the

channel. The performance of the Lloyd-Max channel estimation algorithm iscompared to the

performance of pilot-based channel estimation algorithms which also use the least squares

approach and non-coherent demodulation and decoding.

Keywords: Lloyd-Max, blind channel estimation, jamming detection, differential encoding,

serially concatenated convolutional code
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ÖZ

DARBANT SÖNÜMLEMELİ KANAL VE KARIŞTICI ALTINDA LLOYD-MAX
ALGORİTMASINA DAYALI K ÖR KANAL KESTİRİM İ

Dizdar, Onur

Yüksek Lisans, Elektrik ve Elektronik M̈uhendislĭgi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Özg̈ur Yılmaz

Haziran 2011, 65 sayfa

Kablosuz haberleşmede, faz uyumlu çözme işlemi için kanal katsayılarının bilgisi gereklidir.

Bu tezde, tek tapalı sönümlemeli kanallar için Lloyd-Max algoritmasına dayalı kör bir kanal

kestirim metodüonerilmiştir. Algoritma, tekrarlı bir en d̈uş̈uk kareler yaklaşımı kullanarak

alınan sinyal için işaret k̈umesi noktalarını bulur. Algoritma, hızlı frekans atlayan küçük

blok uzunlŭguna sahip ve parçalı-bantlı ve parçalı-zamanlı karıştırıcılar altında çalışan sis-

temler işin hem karıştırıcıyı tespit etmek hem de kanalı kestirmek amacıyla incelenmiştir.

Lloyd-Max kanal kestirim algoritmasının performansı pilot-temelli ve aynı zamanda en d̈uş̈uk

kareler yaklaşımını kullanan kanal kestirim algoritmaları ve faz uyumlu olmayan demod̈ulasyon

ve kod ç̈ozme performanslarıyla karşılaştırılmıştır.

Anahtar Kelimeler: Lloyd-Max, k̈or kanal kestirimi, karıştırıcı tesbiti, farksal kodlama, seri

băglanmış kodlar

v



To my family and fiancee

vi



ACKNOWLEDGEMENTS

First, I would like to thank my thesis advisor and mentor Assoc. Prof. Dr. AliÖzg̈ur Yılmaz,
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CHAPTER 1

INTRODUCTION

In wireless communications, an information signal is affected by different types of distur-

bances from the moment it is transmitted into the air. These disturbances are both environ-

mentally induced and human-made. Generally, there are two types of disturbances on a wire-

less signal. Many types of enviromental effects, such as reflections of the waves, shadowing

due to objects in the environment, attenuation and delays combine to cause distortions on the

transmitted electromagnetic waves due to propagation. On top of these distortions, random

fluctuations caused by imperfections in electrical circuits of communicating devices are added

to the signal, which is called thenoise. The sum of these environmental distortions is referred

to aschanneleffects. A communication system has to provide reliable communication under

the effect of these disturbances.

A widely used approach to mitigate the distortion on the transmitted signal is to detectthe

characteristics of the main sources of distortions. This is accomplished by estimating the noise

statistics and, more importantly, channel parameters at the receiver. Oncea receiver obtains

an estimate of the channel, it uses this estimate for extracting the transmitted information from

the received signal. The quality of the channel estimate has a tremendous effect on the quality

of communication services. In order to obtain low data error rates, the channel estimate used

to resolve the transmitted data should contain small errors.

Channel estimation methods and the effects of the channel estimates on the system perfor-

mance are widely investigated topics in literature. The channel estimator is a majorcompo-

nent in receivers. The investigated estimation methods can be classified into two groups: the

methods using no previous knowledge of the received information symbols,and the methods

using the received symbols calledpilot symbols that are known both at the transmitter and
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receiver. The methods in the first group are referred to asblind methods, whereas the second

group is referred to aspilot-basedor data-aidedmethods.

The main disadvantage of pilot-based estimators is the reduced power and bandwidth effi-

ciency. The loss of power and bandwidth may be critical for systems with limited power

or using small blocks of symbols for communication. Moreover, systems usingpilot-based

estimators are vulnerable to hostile systems, such as jammers, since large distortions caused

by jammers on pilot symbols can disturb the communication severely. Pilots may not be

preferred also in order to avoid the detection of transmitted signals by algorithms tracking

periodicity.

In [4], a pilot-based channel estimator was derived based on the least-squares solution, which

minimizes the sum of errors between the pilots and received distorted versions of pilots. The

least-squares approach is the simplified form of amaximum-likelihood(ML) estimation [1]

derived for estimating the channel using known symbols. The LS algorithm iswidely used in

wireless communications because of its performance and simplicity.

Beyond the environmental effects, wireless systems may be the target of jammers having the

intention of disturbing the communication. Detection of jamming is important for a system

since the negative effects of the jammer has to be taken into account during the processing

of the received signal. Various methods for detecting different types of jamming schemes

have been proposed in [9], [10], [11], [13], and [23]. In [9], soft decoder outputs are used to

estimate interference variance with a suboptimal approach to ML estimation. Pilotsare used

to enhance the estimation. In [10], SCCC with differential modulation is used. The channel is

AWGN channel with random phase. 8 different trellis are calculated at the decoder, each using

a different quantized value for the channel phase. A threshold test using forward metrics is

employed to detect partial-band jamming. No pilot symbols except one reference symbol are

used since there is no need for channel estimation. In [11], scaling parameters are calculated

for jammed dwells depending on the demodulator outputs. In [13], an iterativeEM algorithm

is derived for the estimation of channel and jamming parameters. The estimation algorithm

have both pilot-based and blind versions. The phase ambiguity problem in blind version is

solved for BPSK modulation. Jammed symbols are detected using BCJR algorithm.It is

shown that pilot-based and blind algorithms perform close to each other in AWGN channel.

In [23], binary pilot symbols and their hard decisions are used for jamming detection. The
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algorithms in [10], [11], and [23] propose scaling for the jammed dwells before they are

decoded.

In this thesis, a blind channel estimation algorithm is developed for tactical radios with fast-

frequency hopping and the capability of operating under jamming. The estimation is based on

the Lloyd-Max algorithm, which is an iterative quantization algorithm originally developed

for quantizing analog voltage levels of PCM signals [5]. The algorithm usesthe LS crite-

rion in its attempt to determine the best quantization points that yield the minimum squared

quantization errors. The Lloyd-Max algorithm does not use any previously known informa-

tion about the signal for the quantization procedure. The channel gain and noise variance

are estimated by this algorithm to be used for processing the received signal. In this thesis,

the performance of Lloyd-Max based estimation is compared with the performance of the

pilot-based LS algorithm for different types of receivers and under the effect of jamming. The

outline of the thesis is as follows:

In Chapter 2, the system model is introduced. Mathematical derivations forthe Lloyd-Max

algorithm, LS channel estimator, an extension of LS estimator are presented.The receiver

structures that will be used with the estimators are described. In Chapter 3,the channel

estimator based on the Lloyd-Max algorithm is explained and its performance isinvestigated

with the other two LS-based estimators. In Chapter 4, jamming detection algorithms and the

performances of the estimators are given under partial-time and partial-band jammers. The

conclusion is given in Chapter 5.
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CHAPTER 2

BACKGROUND

2.1 Coherent and Non-Coherent Demodulation in Communication Systems

In wireless communications, communication is established between a transmitter anda re-

ceiver through the air. The information to be sent is generated after various operations (en-

coding, modulation, pulse shaping etc.) and given to the air by the transmitter. The transmitted

signal is affected by many factors as it travels through the air and arrives at the receiver, such

as obstacles between communicating devices, reflections from obstacles, thermal noise on

electrical components, and so on. These effects distort the received signal, causing difficulties

in obtaining the transmitted information. In order to extract the transmitted information from

the received signal, the signal and the distortions are represented usingmathematical models.

In digital communications, the received signal can be modeled using discrete-time signals and

systems [2]. This is enabled by proper filtering and sampling operations at the receiver on the

signals induced by the received electromagnetic waves. The received signal in discrete time

domain is represented by

yi
k =

L−1
∑

i=0

hiak−i + nk (2.1)

whereyk is the sample taken from the filtered received signal at the time instancek·Ts, Ts is the

duration of the information symbol and also the sampling period, andak are the information

symbols. The information symbols take values from finite symbol sets depending on the type

of modulation. The symbolsak can have real or complex values, e.g.,ak ∈
{

+
√

Es, −
√

Es

}

for Binary Phase-Shift Keying (BPSK) modulation orak ∈
{

+
√

Es, + j
√

Es, −
√

Es, − j
√

Es

}

for Quadrature Phase-Shift Keying (QPSK) modulation, whereEs represents the energy used

by the transmitter for one symbol. Each symbol representslog2M bits, whereM is the number
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of elements in the symbol sets.

The channel gains at different delays are denoted byhi which reflects the effects of attenuation,

obstacles between the communicating antennas, propagation delays, and reflections of the

signal with delays small enough with respect to symbol duration for a delay of k·Ts seconds. If

L > 1, the channel is called amultipath channel. The impulse response of a multipath channel

is long enough so that when echoes of the transmitted signal are summed up atthe receiver

antenna, different symbols are added on top of each other, causing intersymbol interference.

It should be noted that in (2.1), the channel taps are time-invariant, i.e., theyare constant

for all received samples. In this thesis, only the channels withL = 1, which are also called

narrowbandchannels, are taken into consideration. Using this assumption, (2.1) becomes

yk = hak + nk (2.2)

whereh is modeled as a zero-mean circularly symmetric complex Gaussian (ZMCSCG) ran-

dom variable with variance 1,nk represents the additive thermal noise at the receiver with

a flat frequency spectrum (white). The thermal noise is also a ZMCSCG random variable

with varianceN0. In order to quantify the strength of distortions on the signal, parameters

calledinstantaneous signal-to-noise power ratioandaverage signal-to-noise power ratioare

defined. When there is a fading channel,|h|2Es
N0

is the instantaneous SNR and the average SNR

is defined as

γs =
E
{

|h|2
}

Es

N0
=

Es

N0
. (2.3)

The demodulation of the signal generally requires operations which are theopposite of those

utilized for modulation. The demodulation operation is divided into two classes: coherent

and non-coherent demodulation. The difference of coherent and non-coherent demodulation

is the use of channel phase in the demodulation procedure. In coherentdemodulation, the

channel phase has to be known and used for correcting the phases ofthe received samples.

This correction is important when the information is carried in the phase of the modulation

symbols, e.g., M-PSK. M-PSK modulation uses constant amplitude symbols with different

phases to transmit the information. In the demodulation procedure, errors occur when the

distortions change the phase of the received sample so that the sample appears to have the

phase of a different symbol. Therefore, the distortion inflicted by the channel to the phase of

5



the symbol is corrected or taken into account in coherent demodulation. Onthe other hand,

in non-coherent demodulation, the phase of the channel is not necessary for obtaining the

transmitted information from received samples. It is used for modulation techniques where

the information is not carried in the phase of the symbols, but rather the amplitude, frequency

or the phase difference between the symbols.

2.2 Partial-Time and Partial-Band Jamming

Besides the additive thermal noise and the channel, a wireless signal may also be corrupted

on purpose by hostile systems, namely jammers. A jammer is a device that corruptsa part

of the frequency spectrum in different ways in order to distrupt communication. In practice,

there are many types of jammers trying to disturb the communication system using different

methods. Partial-time and partial-band jammers are two types of jammers that are widely used

in literature, because of their wide use in practice and easily handled mathematical models.

Against a possible threat of jammers, a system may take some precautions in order to pro-

tect its communication. Frequency hopping is one of these precautions and widely utilized

especially in military communications. In frequency hopping, the carrier frequency used for

transmitting the signal is changed according to a predetermined hopping sequence. This re-

duces the probability of a jammer to detect and jam the signal, and forces it to blind jamming.

It also has benefits against channel fading, since fading is a function of the carrier frequency.

A block that contains symbols that are sent with the same carrier frequencyis called adwell.

The length of a dwell, i.e., the number of symbols in a dwell, is a design parameter depending

on the requirements of the system. When frequency hopping is used, the signal model defined

by (2.2) becomes

yi
k = hi

ia
i
k + ni

k (2.4)

wherei is the index showing the dwell number.

In partial-band jamming [9], the jammer corrupts a part of the frequency spectum continu-

ously. The bandwidth of the corrupted part is expressed asρ times the whole operational

spectrum of the jammer. Therefore, for a random frequency hopping system, the probability

that the system hops into a jammed band isρ. When the system hops into the jammed part

of the spectrum, it continues its operation in that part for the duration of a frequency dwell.
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Therefore, an entire dwell is jammed with a probability ofρ. The power of the jammer over

the whole spectrum is denoted asN j and the total power in the part of the spectrum where the

jammer dwells isN j/ρ [9], [10], [11], [12]. When there is a partial-band jammer affecting the

system, the received signal model defined by (2.4) is modified as

yi
k = hiai

k + ni
k + viwi

k (2.5)

wherewi
k is the jammer signal which is considered to be ZMCSCG with variance

N j

ρ
, and

vi is the jamming indicator function; it is equal to one if the the dwell is jammed and zero

otherwise.

Partial-time jammers use frequency hopping to change the spectrum they aim to disturb. A

frequency hopping system can be jammed by a partial-time jammer at any part ofa dwell in

time domain. Unlike in partial-band jammers, when a frequency dwell is jammed, onlysome

and generally consecutive symbols of the dwell are jammed.

A partial-time jammer is very often modeled by a 2-state Markov Chain [13], as used for

Gilbert-Elliot Channels in [14], [15]. The jammer is characterized by state transition proba-

bilities which are shown in Figure 2.1.

Figure 2.1: Markov model for partial-time jammers

State-0 represents the no-jamming and State-1 represents the jamming states of the Markov

chain. The probability of passing from one state to another is denoted byPi j , wherei rep-

7



resents the previous state andj represents the current state. The transition matrix is defined

by

P =





















P00 P01

P10 P11





















, (2.6)

where the discrete-time index is denoted byn, the states of the chain are positive recurrent,

i.e.,
∞
∑

n=0

Pn
00 = ∞ and

∞
∑

n=0

Pn
11 = ∞ (2.7)

and the expected time the process returns to State-k starting from State-k is finite [3]. States

are also aperiodic, meaning that givenPn
ii = 0 for n values which are not divisible by period

d, d = 1 for State-0 and State-1. Therefore, the State-0 and State-1 are said to be ergodic. For

irreducible ergodic Markov chains,π j are defined as

π j = limn→∞Pn
i j (2.8)

=

∞
∑

i=0

πiPi j (2.9)

whereπ j denotes the probability of being at State-j for a long observation period, i.e., πn
j =

P(state at time n= j). The vector ¯πn is the vector of the probabilities for each state at time

n, which is calculated by

π̄n
= π̄0Pn (2.10)

If initial probabilitiesπ̄0 are chosen such that they satisfy (2.9), then ¯πn
= π̄0, andπ j are called

stationary probabilities.

Using the basic information about Markov chains above, a partial-time jammer can be mod-

eled as follows: Defineρ and E {T1} as the probability of a symbol to be jammed and the

expected value of the number of consecutive symbols that are jammed in a dwell, respectively

[13]. In terms of Markov chain parameters,ρ = π1 and

E {T1} =
∞
∑

n=1

nPn−1
11 (1− P11) =

1
1− P11

(2.11)

The signal model under partial-time jamming is defined as

yi
k = hiai

k + ni
k + vi

kw
i
k (2.12)
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vi
k is the jamming indicator function similar to the one defined in (2.12), with one difference

that it changes for every symbol instead of every dwell.

2.3 Channel Estimation Based on the Least Squares Method

The Least-Squares (LS) method is used for solving a set of equations to find the unknown

parameters in an overdetermined system, where the number of equations is larger than the

number of unknowns. The LS solution for the unknown parameter is the value which yields

the least sum of squared errors. A general usage for LS is data fitting,in which for a given

number of observations, a curve minimizing the sum of errors between the points on the curve

and the observations is found.

In communication systems, the LS algorithm is widely used to estimate the channel param-

eters affecting the transmitted signals. In LS channel estimation, the channel estimate which

minimizes the sum of squared errors is calculated using a number of known symbols (pilot

symbols) and the received samples corresponding to these symbols [4].

Considering the system model defined in Section 2.1, (2.1) can also be writtenin the vector

notation as

y = Ah + n (2.13)

where

h = [h0 h1 . . . hL−1]T (2.14)

is the channel coefficients vector,

y =
[

y0 y1 . . . yN−1
]T
, n = [n0 n1 . . . nN−1]T , (2.15)

are the vector of received symbols and noise samples, respectively,

A =





































































a0 0 0 · · · 0

a1 a0 0 · · · 0

a2 a1 a0 · · · 0
...

...
...

...

aN−1 aN−2 · · · aN−L





































































(2.16)

is the matrix of known symbols,N is the number of known symbols and (·)T denotes the

transpose operation.
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Minimizing e(ĥ) = ‖y − Aĥ
T‖ with respect tôh yields

ĥ = (AHA)−1AHy (2.17)

where‖·‖ denotes thenormoperation and (·)H denotes the Hermitian operation. For single-tap

channels, (2.17) becomes

ĥ =
aHy
NEs

(2.18)

with a = [a0 a1 . . . aN−1]T , which is basicly the average of projections of the known symbols

on the received samples.

2.4 The Lloyd-Max Algorithm

The Lloyd-Max algorithm is a quantization algorithm using Least Squares approximation

[5]. The algorithm was originally developed to be used for quantization of PCM signals. A

quantization process matches given input values to predetermined representation points. It

can be considered as a transformation from an infinite alphabet to a finite alphabet. When a

signal from an infinite alphabet is represented with a finite alphabet, the signal is distorted.

This distortion is called the quantization noise. The algorithm is developed as a solution

to the problem of minimizing the quantization errors when an analog signal is pulse-code

modulated. For the continous voltage values of the analog signal, the Lloyd-Max algorithm

finds the close-to-optimum quantization values to be used in order to minimize the difference

between the original and quantized signals.

The algorithm divides the domain of the original signalQ into quantization subsets, and finds

a single representation point for each subset. Assume that{Q1,Q2, . . . ,Qν} are disjoint sub-

sets ofQ, and{q1,q2, . . . ,qν} are the representation points, namelyquanta, for these subsets

respectively. Define the functionγ(x) by

γ(x) =























































1, x ∈ Q1

2, x ∈ Q2

...

ν, x ∈ Qν

(2.19)

After the quantization procedure,x is represented by

x = γ(x) + z(x) (2.20)
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wherez(x) is the quantization noise.

Assuming thats(t) is a stationary random process, the cumulative probability distribution

function ofs(t) is

Fs(x) = P {s(t) ≤ x} , −∞ < x < ∞ (2.21)

which is independent of timet sinces(t) is a stationary process. By using the probability

distribution function, the quantization noise power can be written as

N =
∫ ∞

−∞
z2(x)dF(x) =

ν
∑

m=1

∫

Qm

(qm− x)2dF(x), −∞ < t < ∞. (2.22)

The MMSE criterion leads to the fact that the best quantaqm are found by minimizingN with

respect to fixedQm, which suggests that

qm =

∫

Qm
xdF(x)

∫

Qm
dF(x)

, m= 1,2, . . . , ν. (2.23)

One may note that the quantumqm is the center of mass forQm.

The best sets for fixed quanta are found independently from the best quanta calculations. It

is assumed thatqa , qb for a , b since the setsQa andQb are disjoint sets for an optimum

partitioning. From (2.22), it is observed that the noise magnitude is directly proportional

to (qm − x)2. This implies that, for the minimization of quantization noise, the quantum

minimizing (qm− x)2 should be chosen as the quantized value ofx so that

Qa =
{

x : (qa − x)2 < (qb − x)2, ∀b , a
}

, a = 1, . . . , ν (2.24)

or equivalently,

Qa =

{

x : (qb − qa)(x− qa + qb

2
) < 0, ∀b , a

}

, a = 1, . . . , ν. (2.25)

From (2.25), it is observed that the end point of a best set is the arithmetic mean of the

quantum of that set and quanta of the neighbouring sets. In other words,

11



Q1 = {x : −∞ < x ≤ x1}

Q2 = {x : x1 < x ≤ x2}
...

Qν−1 = {x : xν−2 < x ≤ xν−1}

Qν = {x : xν−1 < x ≤ ∞} , (2.26)

where

x1 =
q1 + q2

2

x2 =
q2 + q3

2
...

xν−1 =
qν−1 + qν

2
(2.27)

andq1 < q2 < . . . < qν.

With these results, the algorithm suggests a trial-and-error method to find the optimum quan-

tization scheme:

Start with arbitrary initial endpoints
{

xi
1, x

i
2, . . . , x

i
ν

}

for the sets
{

Qi
1,Q

i
2, . . . ,Q

i
ν

}

Calculate the quanta{q1,q2, . . . ,qν} according to
{

xi
1, x

i
2, . . . , x

i
ν

}

REPEAT

Calculate the endpoints{x1, x2, . . . , xν} according to{q1,q2, . . . ,qν}

Calculate the quanta{q1,q2, . . . ,qν} according to{x1, x2, . . . , xν}

UNTIL maximum number of iterations is reached

The details of the derivations can be found in [5].
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2.5 Decision-Directed Least Squares Channel Estimation

Decision-Directed Least Squares Channel Estimation (DDLS) is an extension to the classical

LS channel estimation method. In DDLS, data symbols are also used in channel estimation

in addition to pilot symbols. In DDLS, the data symbols are not used to track the changes

in the channel. Rather, they are used to enhance the LS estimatiom. Assuming thesystem is

modeled by (2.2), i.e., the channel is single-tap, the channel estimation process is completed

in two steps. In the first step, the channel is estimated over the pilots using (2.18). After ĥLS

is calculated, hard decisions for received data symbolsd̃k are made, wheredk are the received

data symbols. The hard decisions are obtained by

d̃k = argmin
α∈A
|dk − ĥLSα|2, (2.28)

whereA is the set of constellation points used for M-PSK modulation. For multipath channels,

hard decisions can be obtained by equalization or other means of ISI cancellation.

Once hard decisions are available, the second step of the estimation procedure starts. The hard

decisions can be utilized as pilot symbols for estimation purposes. Using the hard decisions,

DDLS channel estimate is calculated using (2.18) again, this time using both pilots and hard

decisions as

ĥDDLS =
dHy

(N + K)Es
(2.29)

whered =
[

a0 . . . aN−1 d̃0 . . . d̃K−1

]T
andK is the length of data symbols.

2.6 Serially Concatenated Convolutional Coding

The class of serially concatenated convolutional codes (SCCC) is a family of iteratively de-

coded channel codes. An SCCC encoder consists of two convolutionalencoders connected

serially with an interleaver between them. Figures 2.2 and 2.3 show the encoder and decoder

structures for SCCC, respectively.

The blocks denoted by
∏

and
∏−1 are the interleaver and deinterleaver, respectively. The sub-

scriptπ means that the symbols are interleaved and the subscriptπ−1 means that the symbols

are deinterleaved. Neglecting the possible termination bits for the component encoders, the
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Figure 2.2: SCCC Encoder

Figure 2.3: SCCC Decoder

rate of the SCCC encoder is the product of the rates of the convolutional encodersRouter = n/p

andRinner = p/k. The interleaver lengthN is important for the performance of the code. As

the length of the interleaver increases, the bit error probability decreases with the inverse

power of it under the assumption of uniform interleaving [7]. Also, in order to obtain a good

performance from an SCCC, the inner code should be a recursive code and the outer code

should have the largest free distance possible [8]. The details of the encoder structure for

recursive codes are explained in [17].

The decoders are soft-output decoders whose outputs are in the formof log-likelihood ratios

(LLR). LLR is a probabilistic measure of a bitun to be 1 or 0, and formulated by

λ = ln
P(un = 1|y)
P(un = 0|y)

. (2.30)

with y denoting the vector of received samples. The output of the inner and outer decoder are

denoted byλi
inner andλi

outer respectively, where the superscripts show the iteration number.
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The extrinsic information
(

λ
′)i

inner
and
(

λ
′)i

outer
are calculated by subtracting the extrinsic

information given by the other decoder in the previous iteration from the current output

(

λ
′)i

inner
= λi

inner −
(

λ
′
π

)i−1

outer

(

λ
′)i

outer
= λi

outer−
(

λ
′

π−1

)i−1

inner

In the next step,
(

λ
′

π−1

)i

inner
is fed to the outer decoder as the input and

(

λ
′
π

)i

outer
is fed to the

inner decoder as thea priori information. Performance curves of SCCC are given in [8].

Compared to parallel concatenated convolutional codes (PCCC), SCCC’s yield slightly worse

performance at low to moderate SNR values yet perform better at high SNR’s since their error

floors are much lower than those of PCCC’s.
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CHAPTER 3

CHANNEL ESTIMATION BASED ON THE LLOYD-MAX

ALGORITHM

In this chapter, the application of the Lloyd-Max algorithm to the channel estimation prob-

lem in wireless communications systems will be investigated. Using this channel estimation

method, the performance of different receiver systems are explored by simulations.

3.1 Channel Estimation with the Lloyd-Max Algorithm

As explained in Chapter 2, the Lloyd-Max algorithm is a quantization algorithm based on

finding the best quantization points that minimize the total squared error. The Lloyd-Max

Channel Estimator (LMCE) uses this method for the channel estimation problem.For the

received channel samples, the algorithm finds the optimum quanta. Each ofthe quanta are the

constellation points observed after the scaling and rotation of the channel.

LMCE starts the channel estimation process with the unit energy M-PSK symbols as the initial

quanta

q1 = α1 = exp( j
2π · 0

M
)

q2 = α2 = exp( j
2π
M
· 1)

...

qM = αm = exp( j
2π · (M − 1)

M
). (3.1)

Different from the algorithm explained in Chapter 2, the Lloyd-Max algorithm in channel

estimation does not determine region boundaries for the received samples.The Lloyd-Max
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channel estimator uses the received symbols as training symbols to determine the quantization

points. Denote the set of indices of the received samples falling into the region Qm by

Sm =
{

i : |yi − qm| ≤
∣

∣

∣yi − qp

∣

∣

∣ , ∀p , m
}

(3.2)

with |Sm| being the cardinality ofSm. In Step 1, the center of mass of the points inSm are

calculated by

qm =
1
|Sm|
∑

i∈Sm

yi , m= 1, . . . ,M (3.3)

which corresponds to an arithmetic mean operation.

By evaluating (3.3) for eachm, a set of new quanta is found. In Step 2, the index sets are

updated with the new quanta using (3.2) again. The algorithm continues by repeating Steps

1 and 2 one after another either until a stopping criterion is met or for a desired number

iterations.

In general, the Lloyd-Max algorithm does not impose a structure on the setof quanta. How-

ever, the channel estimation problem should exert a relation between quanta since the received

constellation is just a scaled and rotated version of the original constellation.Thus, we con-

strain the quanta obtained using LMCE by

qm = ĥαm (3.4)

whereĥ corresponds to the channel estimate, though in a phase ambiguous manner as to be

explained later.

The constraint formulated in (3.4) forces the channel estimation procedure to use all of the

observations to estimate the channel instead of using the observations in each Qm seperately.

This can be achieved by using the decision-directed LS structure explained in Chapter 2.

Using (2.29) for a narrowband channel, the channel estimation equation becomes

ĥ =
1

EsN

M
∑

m=1

∑

k∈Sm

yk(αm)∗ (3.5)

whereN =
∑M

m=1 |Sm|. As it is seen from (3.5), the hard decisions for all indicesk ∈ Sm are

taken to beαm, which are the original constellation points.

When LMCE calculates the estimated constellation, the MSE of the received constellation
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can be calculated. By using the index sets defined above, the MSE can be calculated as

σ̂n
2
=

1
N

M
∑

m=1

∑

k∈Sm

|yk − qm|2 . (3.6)

It should be noted that there is a phase ambiguity in the channel estimateĥ and the esti-

mated constellation pointsqm. This is the result of the unknown phase of the channel,Ω {h}.

If |Ω {h}| > 2π
M , then at the received constellation, the phase of the channel appears tobe

mod2π
M
{|Ω {h}|} since the constellation pointsαm are points chosen on a circle such that the

distances between the phases of neighbouring ones are constant and equal to 2π
M . For this

reason,Ω
{

ĥ
}

may be the phase of the actual channel estimate or2πk
M rotated versions of it for

k = 1, . . . ,M − 1.

The estimation procedure can be visualized by examining the constellation pointsof the re-

ceived samples and the channel estimation output. Assuming QPSK modulation, the received

scatterplot for 50 symbols with instantaneous SNREb/N0 = 10dB is seen as in Figure 3.1.

The Lloyd-Max algorithm makes 10 iterations to estimate the constellation points. The origi-

nal, rotated and estimated constellations are given in Figure 3.2.

To have a better understanding of the performance of the algorithm, the mean-squared error

(MSE) value of the estimation error is given in Figure 3.3. The channel estimate of the

Lloyd-Max algorithm is obtained in a genie-aided manner. This means that the point that

has the minimum distance to the perfectly known channel among the points of the estimated

constellation is chosen to be the channel estimate output the Lloyd-Max algorithm and the

MSE is calculated using the chosen point to avoid gross errors. The x-axis denoted byEb/N0

shows the instantaneous SNR values.

A lower bound for the channel estimation MSE for narrowband channels can be derived using

the LS algorithm. The noise process is white, i.e., the cross-correlations of different samples

are zero. Data symbols are independent and identically distributed. Since the noise and data
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Figure 3.1: Received channel samples
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∣
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∣

∣

∣

∣

∣

2
















=
1

N2E2
s

N
∑

k=1

E
{

|nk|2
}

E
{

|ak|2
}

=
1

N2E2
s
· N0NEs =

N0

NEs
(3.7)

whereN is the number of pilot symbols, and expectation is taken over the ensembles of data

and noise.
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In Figure 3.3, MSE of the LMCE algorithm is depicted with respect to different number of

received samples used for estimation. The bounds for each length are calculated as if all

samples that are used were pilot symbols and LS estimation was employed. As seen from

the figure, the LS performance is achieved around an instantaneous SNRvalue of 8dB. Since

LMCE is a blind algorithm, its estimations may carry high errors if the samples used in

estimation are not reliable, i.e., the noise level affecting the samples is high. For LMCE,

the samples are considered as reliable starting from 8dB SNR. The performance of LMCE

changes with the number of LMCE iterations. The effect of the number of iterations on the

performance of the estimator is given in Figure 3.4 for 50 symbols in a dwell. Itis observed

in Figure 3.4 that the LMCE reaches its capability with nearly 10 iterations. Therefore, for

the rest of the thesis, the Lloyd-Max algorithm makes 10 iterations unless stated otherwise.

Another important issue to examine is the comparison of MSE of LMCE with other methods

defined in Sections 2.3 and 2.5. Figure 3.5 shows this comparison. The estimation is cal-
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Figure 3.2: Original, channel output and estimated constellations
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Figure 3.3: MSE of Lloyd-Max channel estimate for different block lengths

culated over different number of pilot symbols for LS and DDLS, and 50 data symbols for

DDLS and LMCE. The pilot symbols of LS and DDLS are chosen from the optimal pilot

sequences obtained for LS channel estimation in [4]. It is seen from Figure 3.5 that LMCE

performs very close to LS bound for SNR values greater than 6dB. DDLSperforms close to

LMCE for pilot lengths of 5 and 10. It should be noted that the gain obtainedfrom DDLS

when pilot number is increased to 10 from 5 is not significant. LS estimation performs close

to LMCE and DDLS for lower SNR values but LMCE and DDLS outperforms LS as SNR

increases.

As SNR exceeds 10dB, LMCE and DDLS have exactly the same estimation MSE and they

satisfy the LS bound. This is the result of the similarity of LMCE and DDLS in using hard-

decision symbols for channel estimation. LMCE makes hard-decisions at every iteration with

respect to the latest channel estimate, and DDLS makes hard-decisions withrespect to the

channel estimate obtained from pilot symbols only. At high SNR values, the channel samples
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Figure 3.4: MSE of Lloyd-Max channel estimate for different number of iterations (50 sym-
bols in a dwell)

used as hard-decisions are so reliable that there is no difference between using hard-decisions

and known symbols for channel estimation.

Choosing the correct channel estimate from the output quanta of LMCE is amajor problem

that has to be dealt with. In Sections 3.2 and 3.3, two different approaches for this problem

will be discussed.
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3.2 Pilot-Aided LMCE

Among the output quantaqm calculated by LMCE, one quantum has to be chosen to be the

channel estimate. This choice can be made by using a reference point. By comparing the

reference to the quanta, the quantum that has the minimum distance to the reference can be

chosen as the channel estimation. Defining this method, a question arises: how does one find

a reference point? It is clear that the best reference point is the channel itself, which was

defined as the genie-aided method in Section 3.1. Since the perfect channel state information

is obviously not available, an estimate of the channel can be used. This estimate can be

obtained from LS or DDLS estimation methods using a small number of pilot symbols.

The performance of LMCE aided by LS or DDLS can be examined by checking the error

rates. The channel model to be used in the simulations is the narrowband Rayleigh fading

channel model[16]. The channel estimates of LS and DDLS are calculatedas explained in

Chapter 2. The channel estimates of LMCE aided by LS or DDLS are calculated by

ĥLMCE = arg min
m∈1,...,M

∣

∣

∣ĥLS/DDLS − qm

∣

∣

∣

2
(3.8)

whereqm are the constellation points calculated by LMCE. The noise variance estimate of

LMCE is obtained by (3.9). The noise variance estimates of LS and DDLS canbe obtained

in a similar way by

σ̂n
2
=

1
N

N
∑

k=1

∣

∣

∣yk − ĥLS/DDLS

∣

∣

∣

2
. (3.9)

The transmitter uses convolutional channel coding with a bit interleaver following the encoder.

The coded and interleaved bits are passed through the modulator. For the simulations, channel

coding is performed by a rateR = 1
2 convolutional code with generator polynomialsg[1] =

(33)8 and g[0] = (23)8 in octal form [17]. The channel interleaver is a uniform random

interleaver for which the probabilities of each bit to be sent in a specific location is equal.

The convolutional decoder at the receiver is a soft-output decoder using the BCJR [18] algo-

rithm. A decoder with the BCJR algorithm calculates the output LLR’s of the information

bits as

λ(um) = ln
P(um = 1|y)
P(um = 0|y)

(3.10)

whereum is themth information bit and ¯y is the vector of received samples. A BCJR (MAP)
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decoder uses three different probabilities in its calculations, which are given by

αk(p) = P (Ψk = p, r<k) (3.11)

βk(q) = P (r>k|Ψk+1 = q) (3.12)

γk(p,q) = P (Ψk+1 = q, rk|Ψk = p) (3.13)

αk(p), βk(q), andγk(p,q) are the forward, backward, and transition probabilities, respectively.

The variableΨk is the state variable of the trellis at timek and p and q denote different

states. Using the Max-Log-MAP approximation to Log-MAP algorithm [19], the forward

and backward probabilities of the decoder are given by

Ak+1(q) = ln (αk+1(q))

= ln



















M−1
∑

p=1

αk(p)γk(p,q)



















= ln



















M−1
∑

p=1

exp(Ak(p) + Γk(p,q))



















≈ maxp∈{0,1,...,M−1} (Ak(p) + Γk(p,q)) (3.14)

and

Bk(p) = ln (βk(p))

= ln



















M−1
∑

q=1

βk+1(q)γk(p,q)



















= ln



















M−1
∑

q=1

exp(Bk+1(q) + Γk(p,q))



















≈ maxq∈{0,1,...,M−1} (Bk+1(q) + Γk(p,q)) . (3.15)

The state transition probability gamma is

Γk(p,q) = ln(γk(p,q))

= ln



















1
√

2πσ̂n
2
exp(−

∣

∣

∣yk − ĥá(p,q)
∣

∣

∣

2

2σ̂n
2

)
K
∏

n=1

P(cn,k = ćn(p,q))



















= ln


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









1
√

2πσ̂n
2















−
∣

∣

∣yk − ĥá(p,q)
∣

∣

∣

2

2σ̂n
2

+ ln

















K
∏

n=1















e−λ
′
(cn,k)/2

1+ e−λ
′ (cn,k)















ećn(p,q)λ
′
(cn,k)/2

















= k1(σ̂n
2) + k1(λ

′
(cm,k)) −

∣

∣

∣yk − ĥá(p,q)
∣

∣

∣

2

2σ̂n
2

+

K
∑

n=1

ćn(p,q)
λ
′
(cn,k)
2
, (3.16)
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whereun,k is thenth information bit that is encoded and carried at timek in the symbolak,

ún(p,q) is thenth input bit for encoder to change its state fromp to q, á(p,q) is the the output

symbol when the encoder changes its state fromp to q, andK is the number of input bits

that are encoded together at a single time instance. The constant valuesk1(σ̂n
2), k2(λ

′
(un,k)),

|yk|2
2σ̂n

2 , and |ĥá(p,q)|2
2σ̂n

2 can be ignored, since they are eliminated when the likelihood-ratios are

calculated. Therefore, the branch metric used in the decoder is

Γk(p,q) =
ℜ
{

y∗kĥá(p,q)
}

σ̂n
2

+

K
∑

n=1

ún(p,q)
λ
′
(un,k)
2
. (3.17)

Instead of using received symbolsyk in (3.17), the LLR’s of coded bits calculated fromyk can

be used. Calculation of coded bit LLR’s fromyk [24] is done by

zn,k ,
P
(

un,k = 1|yk
)

P
(

un,k = 0|yk
) (3.18)

Eqn. (3.18) can be approximated as

zn,k ≈ minu1

∣

∣

∣yk − ĥα (u1)
∣

∣

∣

2 −minu0

∣

∣

∣yk − ĥα (u0)
∣

∣

∣

2
(3.19)

whereu j is the set of groups oflog2M bits having thenth element asj, andα
(

u j

)

are the

modulation symbols used to represent the bit groups inu j . Using (3.19), (3.17) is modified to

Γk(p,q) =
ℜ
{

∑log2M
n=1 z∗n,kźn(p,q)

}

2
+

K
∑

n=1

ún(p,q)
λ
′
(un,k)
2
. (3.20)

with źn(p,q) asnth the output symbol when the encoder changes its state fromp to q. When

the decoder uses (3.20) instead of (3.17), the decoder inputs are softinput bits instead of

modulation symbols. This enables the transmitter to use bit interleaving between theencoding

and modulation operations when modulations withM > 2 are used. The estimates ˆσn
2 andĥ

are the calculated by LS, DDLS, or the Lloyd-Max algorithm.

For the simulations, a frame length of 5 dwells, and a dwell length of 50 data symbols with

QPSK modulation are used. Channels and noise at each dwell are independent. The noise

powerN0 is assumed to be unknown, therefore, it has to be estimated if needed. Figure 3.6

shows the bit error rate performance and Figure 3.7 shows the frame error rate performance of

LMCE when the channel estimate is obtained by the reference of LS or DDLSchannel esti-

mates. The performances are compared with decoding with perfectchannel state information
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(CSI), which means that decoding is done with perfectly known channel and noise parame-

ters. The x-axes of the graphs show the average SNR values for the uncoded information bits

in dB scale. The extra energy needed for the pilots are taken into accountby distributing the

energy of pilots over data bits. Since rate of the channel codeR = 1
2 and the modulation is

QPSK,

γb = γs ·
N + L

N
· 1

Rlog2M
(3.21)

whereL is the number of data symbols andN is the number of pilot symbols in a dwell.

The pilot symbols of LS and DDLS are chosen from the optimal pilot sequences as stated in

Section 3.1. The simulations are run until 50 frame errors occur for each SNR value. It should

be noted that the simulation parameters given here are valid for all simulations throughout this

thesis.
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Figure 3.6: BER performance with convolutional code

Using Max-Log-MAP algorithm with the channel estimates may yield different results than

other realization methods of BCJR algorithm. Max-Log-MAP is an approximationto the Log-

MAP realization of the BCJR algorithm, and the robustness of these algorithms toestimation

errors may differ. Figure 3.7 shows the frame error rate performances of the estimation algo-
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Figure 3.7: FER performance with convolutional code

rithms with a soft-output decoder employing Log-MAP algorithm. It is shown in Figure 3.8

that the channel estimate errors have similar effects on both algorithms, therefore Max-Log-

MAP algorithm is used for the rest of the simulations in this thesis.

It is seen that the error performance of DDLS and LS are slightly better than LMCE. From

Figure 3.5, it is known that MSE’s of DDLS and LS are larger than or equal to MSE of LMCE,

so it is expected that their error performances also show the same characteristics. The reason

DDLS and LS perform better than LMCE is the wrong reference problem. LMCE chooses

its channel estimate among all quantaqm using the reference that DDLS or LS calculates.

If there is excessive noise on the DDLS or LS channel estimate, the reference point may be

closer to a neighbouring quantum instead of the actual channel estimate quantum. In such a

situation, the LMCE channel estimate becomes a phase shifted version of the actual channel

estimate, and the phase shift is on the order of2π
M . This phase shift causes major decreases in

the error performance. On the other hand, DDLS and LS performancesmay not be affected

as much as LMCE, since the phase shifts of DDLS or LS do not have to be onthe order of2πM
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Figure 3.8: FER performance with convolutional code (Log-MAP algorithm)

for causing erronuous decisions for LMCE. To validate this hypothesis,the performance of

genie-aided LMCE can be compared with the performances of DDLS and LS.

Figure 3.9 and Figure 3.10 suggest that the performance decrease in LMCE is caused by the

noisy reference points. From Figures 3.9 and 3.10, it is seen that there isabout a 1dB loss

between decoding with perfect channel state information and genie-aideddecoding even at

SNR values greater than 10dB. Figure 3.3 shows that the MSE of LMCE channel estimation

is around 2x10−3 at this SNR level. Since this error is negligible, it is expected that the

genie-aided LMCE would perform almost identical to the perfect CSI case. However, under

Rayleigh fading channels, the instantaneous SNR is generally not equal tothe average SNR.

Therefore, the MSE of the estimations may be much larger than 2x10−3 even if the average

SNR is 10dB.

It is important for LMCE to have good reference points. Noisy reference points may cause

phase-shifts on the order of2π
M and affect the error performance severely. It can be concluded

that obtaining a single channel estimate from LMCE using more noisy reference points per-

forms poorer than using the more noisy reference point directly. We propose a solution to this
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Figure 3.9: BER performance of genie-aided LMCE
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Figure 3.10: FER performance of genie-aided LMCE
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problem in the following section.

3.3 Differential Encoding with LMCE

3.3.1 Encoding

The output quanta of the LMCE is usually quite close to the actual channel estimate or its

phase-shifted replicas. In Section 3.2, it was shown that trying to find the actual channel

estimate by using more noisy references is not an effective approach. It also require the

use of pilot symbols for calculating references for LMCE. Instead, other approaches such

as differential demodulation or decoding that work well with phase ambiguity may produce

better results.

Differential Phase Shift Keying (DPSK) modulation is a modulation technique in which mod-

ulation is performed based on the phase differences of consecutive symbols [2]. In DPSK,

instead of transmitting the M-PSK symbols directly, the symbol-by-symbol summationof the

phases of the M-PSK symbols are transmitted, such that

dk = dk−1ak (3.22)

whereak is an M-PSK symbol,dk anddk−1 are DPSK symbols which take values from the

alphabet
{

ej 2π·0
M ,ej 2π·1

M , . . . ,ej 2π·(M−1)
M

}

. Another representation for DPSK modulation is in the

form of modMsummation.

d́k = (d́k−1 + ák)modM. (3.23)

In this representation ´ak and d́k take values from the alphabet{0,1, . . . ,M − 1}, where each

element representsk = log2M bits. Therefore, a differential modulator can also be consid-

ered as arate = k
k recursive encoder, which is given in Figure 3.11. The mapping to the

constellation can be done using natural or Gray coding.

Since differential modulation can be expressed as convolutional encoding, a differential mod-

ulated signal can be decoded coherently as a convolutional code. The differential decoding is

a coherent procedure, since the soft-output decoders require channel information. However,

coherent differential decoding is robust against the phase ambiguity in the channel estimate
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Figure 3.11: Differential encoder

when the ambiguity is on the order of symbol phase differences. This situation can be un-

derstood more clearly with the help of a differential decoder trellis given in Figure 3.12. For

simplicity, only the transitions from two states are shown.

Figure 3.12: Differential trellis

Figure 3.12 shows the trellis of a Gray-coded QPSK differential encoder. The states of the
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trellis are actually the outputs of the trellis branches coming into that state. Therefore, the

output QPSK symbols are matched to the states of the trellis. The inputs causing the state

transitions are parallel, e.g., transition from state 0 to state 1, state 1 to state 2, state 2 to state

3, and state 3 to state 0 are all the results of the input[01]. When the most probable states are

decided, it is not important that the channel or channel with a phase shift2πk
4 is used, since the

same amount of shift in all phases of the trellis path yield the same output as the correct trellis

path. An advantage of choosing coherent differential decoding over noncoherent differential

modulation is that an SCCC code forms by using a convolutional encoder as the outer code

and the differential encoder as the inner code [6]. By this method, coding gain can also be

obtained without increasing the overall coding rate.

In a frequency hopping system, the transmitter and receiver structures employing an SCCC

code are given in Figure 3.13 and Figure 3.14 where the inner encoder isa differential encoder

and the outer a convolutional one.

Figure 3.13: Differential SCCC encoder

Interleaving is performed in two stages. In the first stage, the bits are interleaved using a

block interleaver [19]. A block interleaver writes the input bits to the rows ofthe interleaver

matrix and reads the columns of the matrix to form the interleaved output. This multiplexes

consecutive bits into different dwells. In the second stage, bitwise random interleaving is
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Figure 3.14: Differential SCCC decoder

done in each dwell. Using block interleaving followed by random interleavingincreases the

distance between the consecutive bits which increases the diversity gain [20]. Each path in

Figure 3.14 with an interleaver and an encoder corresponds to a single frequency dwell sent

in a carrier frequency different than others.

3.3.2 Decoding

The soft-output decoders for both differential and convolutional codes use the Max-Log-MAP

algorithm. From (2.31), the extrinsic output of the differential and convolutional decoders is

given by
(

λ
′)i

di f f
= λi

di f f −
(

λ
′
π

)i−1

conv
,
(

λ
′)i

conv
= λi

conv−
(

λ
′

π−1

)i−1

di f f
.

For simplicity, theπ subscripts that denote the interleaving and deinterleaving will be ignored.

λi are the outputs of the Max-Log-MAP algorithm explained in Section 3.2. The extrinsic

differential decoder output can be written as

(

λ
′
(um

n,k)
)i

di f f
= ln

P(um
n,k = 1|ȳk

m,
(

Λ
′)i−1

conv
/
(

λ
′
(um

n,k)
)i−1

conv
)

P(um
n,k = 0|ȳk

m,
(

Λ
′)i−1

conv/
(

λ
′(um

n,k)
)i−1

conv
)

(3.24)

where superscriptm denotes the number of the dwell, and
(

Λ
′)i−1

conv
/
(

λ
′
(zl

n,k)
)i−1

conv
denotes the
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vector of all LLR outputs of convolutional decoder in the previous iterationexcept the LLR

of the bitum
n,k. The differential decoder calculates the output LLR’s using (3.14) and (3.15) for

the forward and backward metrics, respectively. The state transition metrics are calculated by

(3.17) since there is no bit interleaving between the differential decoder and modulator.

The vector of extrinsic differential decoder outputs obtained from each frequency dwell
(

Λ
′)i−1

conv

are then passed through the first and second deinterleavers to form theinput to the convolu-

tional decoder. Like the differential decoder, the convolutional decoder also uses the Max-

Log-MAP algorithm. However, it uses (3.20) to calculate the transition metrics,since the

inputs to the convolutional decoder are not channel observations but bit LLR values. The

convolutional decoder also cannot usea priori information since there is no other information

source in the system [8].

The convolutional encoder uses trellis termination after the encoding of databits is com-

pleted [17]. Trellis termination enables the receiver to have the knowledge of the last state of

the encoder. Therefore, the backward metric of the decoder is initialized tobe 0 (ln (1) for

Max-Log-MAP decoder) for state-0 and a large negative number (ln (0) for Max-Log-MAP

decoder) for the other states. Termination can also be done in the differential encoder in the

same manner. However, differential encoder termination does not yield a significant gain in

the performance of systems using coherent decoding [21]. Moreover, since the system using

LMCE does not have the exact information about the phase of the channel, and the states of the

differential decoder are also the symbols transmitted through the channel, the initializations

of the last backward metric and the first forward metric are not possible. The first forward and

last backward metrics of differential decoder are given equal probabilities (ln
(

1
M

)

).

The disadvantage of using equal-probability initialization of differential decoder is that in

the first iteration, the backward metrics do not make any contribution to the output LLR

calculations. To explain this, first it is assumed that at a time instancek,Bk+1(s2) + Γk(s1, s2)

has the largest value among allBk+1(q) + Γk(p,q), wheresn are the differential encoder states

and p,q ∈ {s1, s2, . . . , sM}. Using (3.15), allBk(p) values yield the same resultBk+1(s2) +

Γk(s1, s2), since each statep has a branch to the states2. Having no a priori information

in the first iteration, the backward metricsBk(p) are the same for eachk. If the forward

metrics cannot be initialized either, thenλ(zn
l,1) for l = 1, . . . , log2M yield no information

in the first iteration. Therefore, there occurs an information loss oflog2M bits for the outer
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decoder. To overcome this problem,log2M pilot bits can be added in front of the input

bits of the differential encoder, which causes the encoder to make 1 state transition before

encoding the input bits. Then, the firstlog2M LLR outputs of the differential decoder, which

carry no information, are the output LLR’s of these pilots. Since, the pilots are not related

to the convolutional encoder, their probabilities are not used at the convolutional decoder.

Therefore, the information loss is prevented. One may note that this transmission of pilot

symbols corresponds to the reference symbol used in differential encoding.

3.3.3 Numerical Results

The error curves with LMCE, LS, and DDLS channel estimator with SCCC are given in the

following figures. The simulation parameters in Section 3.2 are used, exceptthat no pilots are

used in the system with LMCE but a single arbitrary symbol is transmitted at the beginning

of the dwells for differential encoding with LMCE. In Figures 3.15 and 3.16, the bit error and

frame error performances of LS channel estimation with different training lengths are given.

As stated in Section 3.2, the SNR values on the x-axes of the figures denotesthe average SNR

per data bit.

It is seen from Figures 3.15 and 3.16 that increasing the number of pilots to more than 5 sym-

bols does not make a significant improvement in the error performance although it decreases

the MSE of the channel estimate as shown in Figures 3.5. In Figures 3.17 and3.18, the bit er-

ror and frame error performances of DDLS channel estimation with different training lengths

are given.

Figures 3.17 and 3.18 show that the error performance of DDLS does not improve after pilot

lengths of 3 symbols. Finally, the performances of LMCE, LS, and DDLS withSCCC are

compared in Figure 3.19 and 3.20. It is also possible to use non-coherentdemodulation with

soft-output decoders and a channel estimator. Therefore, the frame and bit error performances

of differential demodulation are also given in the figures.

As seen from Figures 3.19 and 3.20, the performances of all three channel estimation methods

36



6 7 8 9 10 11 12 13 14 15 16

10
−4

10
−3

10
−2

10
−1

γ
b
 (dB)

B
E

R

 

 

LSCE (3 pilot symbols)
LSCE (5 pilot symbols)
LSCE (10 pilot symbols)
Perfect CSI

Figure 3.15: BER performance of LSCE with SCCC
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Figure 3.16: FER performance of LSCE with SCCC
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Figure 3.17: BER performance of DDLSCE with SCCC
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Figure 3.18: FER performance of DDLSCE with SCCC
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Figure 3.19: BER performance with differential SCCC
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Figure 3.20: FER performance with differential SCCC
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are very close to each other. LMCE, being a blind algorithm, obtains a performance as good

as pilot-aided algorithms with 5 pilot symbols. It should be noted that the rate of the system

using LMCE is almost 10% higher than the rate of the systems using LS or DDLS channel

estimator. The algorithms are about 1dB away from perfect CSI decoding, which uses the

perfect channel coefficients and noise power of each dwell for decoding. The performance

of non-coherent demodulation with convolutional decoding and perfectCSI is also given in

the figures. The convolutional decoder is provided with|h|2 as the channel estimate since the

output of the differential demodulator is given by

rk = yky
∗
k−1 (3.25)

= |h|2 Esak + hdkn
∗
k−1 + h∗d∗k−1nk + nkn

∗
k−1. (3.26)

The sum of the termshdkn∗k−1 + h∗d∗k−1nk + nkn∗k−1 form the noise on the demodulator output.

The decoder was provided with different noise estimate values to observe the effect of the

noise variance knowledge on the performance, and no significant difference was observed

between different noise variance values andN0 or N2
0. We note that the decoder does not take

the correlation in noise into account.

Differential demodulation with perfect CSI decoding falls 3dB away in frame error perfor-

mance from the performance of differential decoder with perfect CSI. However, the bit error

performance of differential demodulation is close to the performances of other estimators.

The reason of this is the difference between the error correction capabilities of the two sys-

tems. The distribution for the number of bit errors in a block solved by the two systems is

given in Figures 3.21 and 3.22. An SCCC decoder either corrects the whole received block

or makes a large number of bit errors. The system with a differential demodulator and a con-

volutional decoder generally generates a smaller number of bit errors than SCCC but more

blocks contain errors.
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Figure 3.21: Bit error distribution for the SCCC decoder
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Figure 3.22: Bit error distribution for the differential demodulator and convolutional decoder
pair
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CHAPTER 4

PERFORMANCE UNDER JAMMING

4.1 Partial-Band Jamming Detection by LMCE

4.1.1 Detection Methods

When a communication system is jammed by a partial-band jammer, the noise power in the

affected dwells increases. These dwells should be detected and treated different than the

others in order to minimize the damage on the system. In literature, the output of thesoft-

output decoders or the channel estimation algorithms are used to detect the jammer ([9], [10],

[13]). Using a similar approach, we propose to utilize LMCE for jammer detection.

As explained in Chapter 3, LMCE also finds the MSE value of the received samples with

respect to its channel estimate. This MSE value is considered as the total interference power

and can be used for jamming detection. However, in Figure 3.3, it was shownthat the per-

formance of LMCE is unreliable below some SNR values depending on the length of the

dwell. Since LMCE finds estimates which minimize the overall error, the estimations are not

the ones closest to the actual parameters for low SNR values but the ones that minimize the

overall error. Therefore, the MSE calculated using the channel estimatemay not represent the

actual interference power at low SNR values.

Similar to the assumptions in Chapter 3, the thermal noise power, the jammer power and the

channel gain are assumed to be unknown at the receiver. Consider a case when there is only

noise in the received signal, and the total average power of the received signal is normalized

to a constant level at the receiver for each dwell. Even if there exists nodetectable signal in

the environment, in other words the jammer is much stronger than the received signal power,
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LMCE still finds a channel estimate and an MSE for the received samples. Figure 4.1 shows

the values and the distribution of the MSE values calculated by LMCE when there is only

additive white Gaussian noise as the input. The average input power is normalized to 1 to

ensure that MSE values are independent of the noise power.
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Figure 4.1: MSE calculated by LMCE for noise only

To detect partial-band jamming, the MSE of each dwell can be compared with a threshold

value, and the dwells failing the test are then considered as jammed. The threshold value

should be chosen according to both signal and noise powers. Since neither of these parameters

are known, the signal power is normalized to a constant at the receiver input. When this

normalization is applied, there is no need to have a priori knowledge of the noise and channel

powers, since the dwells with high SNR will always yield small MSE values compared to the

ones with low SNR, even if they have the same thermal noise power. The dwellsyielding MSE

values larger than the threshold are either jammed or affected by fading so that the channel

estimate error is large. Therefore, not only the jammed dwells but also the dwells with low

SNR’s are detected by the threshold test.

Once the dwells with large MSE’s are detected, the decoder has to take some precautions

in order to improve the performance. The information extracted from jammed dwells have

less reliability than information from clean dwells. Therefore, the decoder has to take this

reliability difference into consideration during the decoding procedure. [23] and [11] propose
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a decoding strategy for the jammed dwells. In [23], hard decisions are calculated for the

received pilot symbols in a dwell and they are compared to the known valuesof the pilot

symbols. If an error occurs, the SNR level is declared as insufficient (or the dwell may be

jammed by a jammer), and the rest of the dwell is multiplied by a constant 0≤ λ ≤ 1. In [11],

λ is calculated using demodulator outputs. Whenλ = 0, the dwell is completely erased and

whenλ = 1, the dwell is passed to the decoder with the same reliability as other dwells. The

parameterλ can be chosen as a design parameter or a function of the demodulator and soft

decoder outputs. The results in [23] show that using a constantλ = 0.5 provide a performance

very close to using adaptiveλ.

The method in [23] can be used with LMCE in a similar way. Jamming is detected in a

completely blind way using the Lloyd-Max algorithm, unlike the pilot-aided approach in [23].

When jamming is detected, the jammed dwell can be weighted byλ to reduce the reliability

at the input of the soft-input soft-output convolutional decoder, whichmeans that the output

of the differential decoder for the jammed dwells are multiplied byλ.

4.1.2 Numerical Results

Figure 4.2 and Figure 4.3 show the frame error performances of LMCE for different threshold

values under partial-band jammers withρ = 0.1 andρ = 0.3, respectively. The power of the

input signal is normalized to 1 in each dwell.λ is chosen as constant and equal to 0.5. The

averagesignal-to-jammer powerratio, SJR, is defined as

γ j =
E
{

|h|2
}

Es

N j
· N + L

N
· 1

Rlog2M
(4.1)

and average SNRγs = 20dB in the figure.

The results in Figures 4.2 and 4.3 suggest that the best performance is obtained for the thresh-

old value of 0.28. Even at very lowγ j levels, the systems do not see errors in every frame

(FER< 1) since the partial-band jammer does not jam all dwells in the frames. It is also ob-

served that the performance of the decoder with perfect CSI also increases when a threshold

value of 2dB is used, which yields the best result among other threshold values. This effect

of scaling the extrinsic information on the performance of iterative decoders has been investi-

gated in [22]. Therefore, scaling the extrinsic information from dwells with low SNR values
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Figure 4.2: LMCE performance under partial-band jamming withρ=0.1

improve the performance even for the perfect CSI case. One may note here that using an

MSE threshold may cause the dwells with small instantaneous SNR values to be considered

as jammed even if they are not. Since these dwells have small instantaneous SNRvalues,

the estimates obtained for them are also not as reliable as the estimates of the other dwells.

Therefore, a smaller weighting given to such dwells increases the performance.

The approach explained above can also be used with LS and DDLS channel estimation meth-

ods. The thresholds for these methods are obtained through exhaustivesearch by simulations.

The frame and bit error performances of Lloyd-Max, LS and DDLS channel estimators for

ρ = 0.1 andρ = 0.3 are given in Figures 4.4 - 4.7. The channel characteristics and frame

structures are the same as the ones used for LMCE in Figures 4.2 and 4.3, except that the pilot

length is 5 symbols.
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Figure 4.3: LMCE performance under partial-band jamming withρ=0.3

As seen from the Figures 4.4 - 4.7, performances of different estimation methods are close to

each other, similar to the results obtained in Chapter 3. There is about 2dB performance loss

in comparison to the perfect CSI decoding, where all channel and jamming parameters are

perfectly known. It should be noted that, the approach of scaling the jammedsymbols at the

output of the differential decoder is also used in perfect CSI decoding. All three estimation

methods are affected in the same way from the partial-band jamming, since the jammer jams

pilots and data symbols together, which simply reduces the effective SNR of the jammed

dwell for each estimation method.

46



−4 −2 0 2 4 6 8 10

10
−2

γ
j
 (dB)

F
E

R

 

 

LMCE (threshold = 0.28)
DDLSCE (threshold = 0.21, 5 pilot symbols)
LSCE (threshold = 0.21, 5 pilot symbols)
Perfect CSI (threshold = 2dB)

Figure 4.4: FER performance of estimators under partial-band jamming withρ=0.1
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Figure 4.5: BER performance of estimators under partial-band jamming withρ=0.1
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Figure 4.6: FER performance of estimators under partial-band jamming withρ=0.3
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Figure 4.7: BER performance of estimators under partial-band jamming withρ=0.3
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4.2 Partial-Band Jamming Detection by LMCE Under No Jamming

It is stated in Section 4.1 that the threshold test used to detect the dwells jammed bythe

partial-band jammer also causes the dwells that are not jammed but have small instantaneous

SNR’s to be considered as jammed. It is shown that the threshold test improvethe error rate

performance, since the estimates obtained for the dwells failing the test are less reliable than

the ones obtained from other dwells, whether they are actually jammed or not. Therefore,

the threshold test designed for partial-band detection can also be used to eliminate the dwells

with small instantaneous SNR’s when there is no jamming. In this section, the effects of the

threshold test on the performance of the system under no jamming will be investigated. As

the performance bound, the perfect CSI case is used, as in Chapter 3.A weighting operation

should also be considered for the perfect CSI case for low SNR values, since the outputs of the

differential decoder are less reliable when the instantaneous SNR is low even ifthe channel

parameters are perfectly known.

When there is no partial-band jamming, the frame error rate performance of LMCE for dif-

ferent threshold values is given in Figures 4.8.

6 8 10 12 14 16 18
10

−4

10
−3

10
−2

10
−1

10
0

γ
b
 (dB)

F
E

R

 

 

LMCE (no threshold) 
LMCE (threshold = 0.35)
LMCE (threshold = 0.28)
LMCE (threshold = 0.21)
Perfect CSI (no threshold)
Perfect CSI (threshold = 0dB)

Figure 4.8: FER performance of LMCE with weighting for dwells
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As it is seen from the Figure 4.8, the MSE threshold test improves the performance of the

system even when there is no jamming. A similar performance enhancement is expected for

DDLS and LS estimators. Figures 4.9 and 4.10 show the frame error performance of DDLS

and LS estimators, respectively.
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Figure 4.9: FER performance of DDLS with weighting for dwells

Finally, Figures 4.11 and 4.12 show the performances of the three estimatorstogether. As it

was seen in Chapter 3, the performances are very close to each other and about 1dB worse

than the perfect CSI case.
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Figure 4.10: FER performance of LS with weighting for dwells
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Figure 4.11: BER performance under no-jamming
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Figure 4.12: FER performance under no-jamming
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4.3 Partial-Time Jamming Detection by LMCE

4.3.1 Detection Methods

As in partial-band jamming, partial-time jamming should be detected in order to improve

the error performance. In partial-time jamming, the received symbols are seperated into two

groups depending on whether they are jammed or not. The purpose of this seperation is to

eliminate the jammed symbols and use the rest of the symbols to obtain a good estimate of

the channel. The main challenge here is to decide on which symbols are jammed. Since the

noise level and the transition probabilities of the jammer are not known to the receiver, deter-

mining the jammed symbols is not a straightforward process. Using LMCE, two methods are

proposed for partial-time jammer detection. Method 1 uses only LMCE outputs and Method

2 uses LMCE outputs and soft-outputs of the differential decoder to seperate the jammed

symbols from others.

In Method 1, detection is based on the errors of the received symbols with respect to the

estimated constellation points. The detection procedure starts with operating LMCE on the

whole dwell to obtain an estimate of the received constellation. Using this estimate and the

distances of each received sample to the nearest constellation point, an instantaneous SNR

is calculated for each sample. The samples are then sorted according to theirinstantaneous

SNR values. Theκ0 samples with the smallest SNR are considered as jammed by the jammer,

whereκ0 is an arbitrarily chosen number which is small with respect to the dwell length. An

average SNR valueγ0
s is calculated over the samples excludingκ0 samples with the smallest

SNR values. Using the constellation estimate once again, the instantaneous SNRvalues of all

samples are calculated and the samples having an SNR smaller thanγ0
s

2 are also considered

as jammed. LMCE is operated once again to obtain a second constellation estimate,this time

using only the samples that are not jammed. Using this estimate, the process to determine

the jammed samples is repeated and the final decision about the locations of the jammed

samples is given. The differential decoder is provided with the second estimate for decoding.

The noise estimates for jammed and clean symbol groups are calculated by the MSE of the

related groups with respect to the second constellation estimate. It should benoted that the

number of symbols that are marked as jammed may be more thanκ0 but cannot be less than

it when the algorithm performs these operations. This will not affect the performance of
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the system severely if there are no jammed symbols in the dwell. The MSE value ofthese

symbols will be close to MSE of clean symbols as they are given to the differential decoder

and scaling extrinsic information ofκ0 symbols at the differential decoder output do not affect

the convolutional decoder performance sinceκ0 is small compared to the dwell length. This

can be shown using the partial-band jammer case as an example. Consider a system operating

under partial-band jamming with the detection algorithm described in Section 4.1. In addition

to this detection algorithm, 10 symbols with the smallest SNR’s are considered as jammed in

each dwell and the noise variance estimates given to the differential decoder and differential

decoder outputs for these symbols are treated as described by Method 1,whether the dwell is

jammed or not. The frame error performance of this system employing LMCE is compared

with the system described in Section 4.1 in Figure 4.13. Figure 4.13 proves that considering

a small number (compared to the dwell length) of symbols with small SNR’s as jammedin

clean dwells does not affect the performance of decoding severely.
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Figure 4.13: FER performance of the system scaling constant number of symbols in jammed
and clean dwells
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Method 2 operates in a similar way to Method 1. The constellation estimates are calculated

as explained for Method 1. Using the second estimate and the noise estimates, the differential

decoder decodes the dwell and calculates the bit LLR’s as the output. Theforward, backward

and transition metrics of the decoder can be used to obtain soft estimates for the received

samples. In [24], the differential decoder outputs are used to calculate soft estimates of the

symbols in the codeword. The calculation is done by finding the expected value of the symbols

using the probabilities at the output of the decoder. The soft estimates of thereceived symbols

can be used to interpret symbol reliabilities by observing their Euclidien distances to the

constellation points.

The probabilities to be used in the calculation of the soft estimates are obtained from the

differential decoder, since the decoder calculates the probability of being in each state for

each symbol. Using Max-Log-MAP decoder metrics [19], the probability ofbeing at statem

at timek, or the probability ofak to be the constellation pointαq is

P(ak = αq) = maxp∈{0,1,...,M−1} {Ak−1(p) + Γk(p,q) + Bk(q)} (4.2)

The soft estimates of the symbols can be calculated as

sk =

M−1
∑

i=0

αiP(ak = αi) (4.3)

The Euclidien distances between the expected values and the constellation points closest to

them gives a metric about the symbol reliabilities:

rk = minα∈A |sk − α|2 (4.4)

The amplitude of the metric is inversely proportional to the reliability of the decoder outputs

for a symbol. If rk = 0 for the received symbolyk, it means that the transmitted bituk

is perfectly extracted by decoding. The mean of the reliabilitiesµr, j of the symbols in the

jammed group is calculated and the symbols in the clean group that haverk ≥ τ1µr, j are

also placed among the jammed symbols, where 0< τ1 < 1. Then, the received symbols are

given to the differential decoder with the channel and proper noise variance estimates for the

jammed and clean symbols.
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4.3.2 Numerical Results

The parameters used to define the characteristics of a partial-time jammer are defined in Chap-

ter 2. E {T1}, which is the expected number of consecutive jammed symbols, is taken to be

15. Solving (2.11) forP11 yieldsP11 =
14
15.

π̄n+1
= π̄nP

[0.7 0.3] = [0.7 0.3]
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Solving (4.5) forP00 yields P00 = 0.97143. The frame error performance of the LMCE

decoder under partial-time jamming with these parameters is given in Figures 4.14. γs is

chosen as 15dB andτ1 for Method 2 is 0.8.
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Figure 4.14: FER performance of LMCE under partial-time jamming

As seen from Figure 4.14, there is a 5dB performance difference between Methods 1 and 2

and perfect CSI decoding. The performance curve labeled as “Perfect Erasure” is the perfor-

mance that is obtained by the decoder with LMCE if the locations of jammed symbols are
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perfectly known. The performance of Perfect Erasure is 4dB better than Methods 1 and 2.

To understand the reason of this performance difference, the decoders using Method 1 and 2

are provided with the perfect knowledge of the locations of the jammed symbols. However,

they only use this information to use the calculated large MSE value as the noise variance for

jammed symbols. This does not affect the constellation or noise variance estimates but makes

the differential decoder aware of the non-reliabilities of the jammed symbols. The frame error

performance of this case is given in Figure 4.15.
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Figure 4.15: FER performance of LMCE with perfect symbol jam knowledge under partial-
time jamming

The performance of Method 1 and Method 2 are almost identical to perfecterasure case if

the differential decoder is given the correct noise variances. Therefore,the main reason of

performance loss when these methods are used is the failure of the differential decoder when

jammed symbols are given to the decoder with the same reliability as other symbols. Method

1 and Method 2 cannot provide the decoder with the perfect locations of thejammed symbols.

One major reason for the miss of a jammed symbol (a jammed symbol considered as clean) is

the location of the received sample on the constellation diagram. If a jammed symbol appears

close to a constellation point different from its original one, this symbol is not considered as

jammed in either of these methods. It is intuitively expected that a decoder can determine
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a non-reliable symbol with such condition from the previous and next state informations.

However, a differential decoder cannot detect this since each state of the differential encoder

trellis is accessible from each state. This property of the trellis is the reason for the failure

of the decoder. When a symbol jammed by the jammer falls closer to a constellation point

different from the true constellation point, the decoder calculates the state corresponding to

the closer point as the most probable state. If the noise variance of that symbol is given

equal to the symbols that are not jammed, the decoder output for that symbolis calculated

as reliable as other symbols. Even if the next symbol is not jammed by the jammer and very

reliable, the decoder cannot correct the erroneous decision it makes for the current jammed

symbol. The forward, backward and transition metrics calculated for the jammed symbols

also cause the error to propagate in the trellis. Therefore, a stronger code which can correct the

erronous decisions of the differential decoder is required as the inner code, such as the turbo

code[19]. Turbo coding is a class of concatenated codes, which employs two convolutional

encoders concatenated in parallel. When the inner convolutional code is replaced by a turbo

code, which uses the same convolutional encoders that is used in SCCC, the frame error

performance is given in Figure 4.16.
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Figure 4.16: FER performance of LMCE with Turbo coding under partial-timejamming
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From Figure 4.16, it is seen that also turbo decoder cannot correct theerrors made by the

differential decoder. However, Method 1 and Method 2 still provide a performance gain for

high jammer power values. Moreover, since LMCE is a blind algorithm, it is not affected by

partial-time jammers as much as pilot-based systems, since they fail to operate when the pilot

symbols are jammed. This can be observed from Figure 4.17, which shows the performances

of Lloyd-Max, LS, and DDLS channel estimators when they apply no detection and have

perfect knowledge of the locations jammed symbols.
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Figure 4.17: FER performance of the estimators with no erasure and perfect erasure

As it is seen from Figure 4.17, the LS estimator yields the worst performanceamong the three

esimators. This is because of the vulnerability of LS estimation to jamming when the pilot

symbols are jammed. LMCE and DDLSCE perform better than LSCE since their estimations

are calculated from all of the received symbols. Therefore, even if better algorithms than

Method 1 and Method 2 are developed for partial-time jamming, the performanceof the LS

estimator will never reach the performance of the Lloyd-Max or DDLS estimator.
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CHAPTER 5

CONCLUSION

In this work, a blind channel estimation method, Lloyd-Max channel estimation (LMCE),

is proposed for frequency hopping systems under narrowband channels. The performance

of LMCE is compared with the pilot-based LS algorithm and the decision directedLS. The

effect of channel coding has also been investigated by the use of convolutional codes and se-

rially concatenated convolutional codes. The SCCC employs a differential code as the inner

code to avoid the phase ambiguity in the channel estimations and a convolutionalcode as

the outer code. When used with SCCC, the results show that LMCE performsslightly better

than pilot-based estimators with a number of pilots that corresponds to approximately 10% of

dwell length. The estimator performances are compared to the performancewith the perfect

channel-state information and it is observed that the estimator performancesare about 1dB

worse than perfect CSI case when SCCC code is used. Moreover, theperformance of the

channel estimators with SCCC are also compared with non-coherent differential demodula-

tion and convolutional decoding with perfect CSI which are outperformedby a 3dB margin

with regard to the frame error rate.

In addition to channel estimation, LMCE is used for partial-band and partial-timejamming

detection with SCCC. Under partial-band jamming, a threshold test is performedon the noise

variance estimates for the dwells and the dwells failing the test are consideredas jammed. To

avoid the bad effects of the non-reliabilities of the symbols in the jammed dwells on decod-

ing, the differential decoder outputs of these dwells are scaled by a constant before they are

used in the convolutional decoder. This method improves the performance of the systems and

the estimator performances are similar to the performance results with no jamming situation;

LMCE performs slightly better than the other two estimators using pilots. It is also observed
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for the case of no jamming that using the threshold test and the scaling method improves

the performances of all estimators. This is due to the fact that low quality channel estimates

and the non-reliable symbol LLR’s at low SNR’s affect the performance of iterative decoders

using feedback. In partial-time jamming, two methods are proposed to detect thelocations

of the jammed symbols. One method uses the LMCE outputs only and the other usesboth

LMCE and decoder outputs. Even a small number of errors made in the detection of the

jammed symbols affect the performance of the differential decoder severely and the error rate

performances fall 4dB away from the perfect CSI case which includes the perfect knowledge

of the jammed symbol locations. However, with the perfect knowledge of the jammed sym-

bols, LMCE and the DDLS channel estimator performs better than the LS channel estimator,

since the LS estimator fails to operate when the pilots symbols are jammed.

With the results obtained under no jamming and jamming situations, it can be concluded

that the Lloyd-Max channel estimation algorithm performs well compared to thepilot-based

LS and DDLS algorithms. LMCE removes the dependency of a system on pilots, which is

especially needed for systems requiring high data rates and systems operating under jamming.

LMCE can be used in systems with high frequency hopping rates and small dwell lengths,

with intolerance to the rate loss resulting from the pilot symbols in a dwell, or systems which

have other reasons to avoid the use of pilot symbols. In addition to the studiesin this thesis,

the following is a list of possible research directions with respect to the topic of this thesis:

• LMCE used under partial-time jamming with a better jammer detection algorithm.

• LMCE performance and modifications to LMCE for systems with carrier frequency

offset errors.
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