
 
 
 

ANALYSIS AND CLASSIFICATION OF SPELLING PARADIGM EEG DATA 
AND AN ATTEMPT FOR OPTIMIZATION OF CHANNELS USED 

 
 
 
 
 
 
 

A THESIS SUBMITTED TO  
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES  

OF  
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 

BY 
 
 
 
 

ASĐL YILDIRIM 
 
 
 
 
 
 
 

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

ELECTRICAL AND ELECTRONICS ENGINEERING 
 
 
 
 
 
 
 
 

DECEMBER 2010 



Approval of the thesis: 

 

ANALYSIS AND CLASSIFICATION OF SPELLING PARADIGM EEG 

DATA AND AN ATTEMPT FOR OPTIMIZATION OF CHANNELS USED 

 

 

submitted by ASĐL YILDIRIM in partial fulfillment of the requirements for the 

degree of Master of Science in Electrical and Electronics Engineering 

Department, Middle East Technical University by, 

 

Prof. Dr. Canan Özgen 

Dean, Graduate School of Natural and Applied Sciences 
 

Prof. Dr. Đsmet Erkmen 

Head of Department, Electrical and Electronics Engineering 
 

Prof. Dr. Uğur Halıcı 

Supervisor, Electrical and Electronics Engineering Dept., METU 

 

Examining Committee Members: 

 

Prof. Dr. Kemal Leblebicioğlu 

Electrical and Electronics Engineering Dept., METU 
 

 Prof. Dr. Uğur Halıcı 

Electrical and Electronics Engineering Dept., METU 
 

 Prof. Dr. Nevzat Güneri Gençer 

Electrical and Electronics Engineering Dept., METU 
 

Assist. Prof. Dr. Đlkay Ulusoy 

Electrical and Electronics Engineering Dept., METU 
 

Sevda Erdoğdu, M.Sc. 

ASELSAN Inc. 
 
       Date:     



 

iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also 
declare that, as required by these rules and conduct, I have fully cited and 
referenced all material and results that are not original to this work. 

 

Name, Last name  : Asil Yıldırım 

Signature  :  



iv 

 

ABSTRACT 

ANALYSIS AND CLASSIFICATION OF SPELLING 

PARADIGM EEG DATA AND AN ATTEMPT FOR 

OPTIMIZATION OF CHANNELS USED 

 

Yıldırım, Asil 

M. Sc., Department of Electrical and Electronics Engineering  

Supervisor : Prof. Dr. Uğur Halıcı 

 

December 2010, 98 pages 

 

 

Brain Computer Interfaces (BCIs) are systems developed in order to control devices 

by using only brain signals. In BCI systems, different mental activities to be 

performed by the users are associated with different actions on the device to be 

controlled. Spelling Paradigm is a BCI application which aims to construct the 

words by finding letters using P300 signals recorded via channel electrodes attached 

to the diverse points of the scalp. Reducing the letter detection error rates and 

increasing the speed of letter detection are crucial for Spelling Paradigm. By this 

way, disabled people can express their needs more easily using this application. 

In this thesis, two different methods, Support Vector Machine (SVM) and 

AdaBoost, are used for classification in the analysis. Classification and Regression 

Trees is used as the weak classifier of the AdaBoost. Time-frequency domain 

characteristics of P300 evoked potentials are analyzed in addition to time domain 

characteristics. Wigner-Ville Distribution is used for transforming time domain 
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signals into time-frequency domain. It is observed that classification results are 

better in time domain. Furthermore, optimum subset of channels that models P300 

signals with minimum error rate is searched. A method that uses both SVM and 

AdaBoost is proposed to select channels. 12 channels are selected in time domain 

with this method. Also, effect of dimension reduction is analyzed using Principal 

Component Analysis (PCA) and AdaBoost methods. 

 

Keywords : Brain Computer Interface (BCI), Spelling Paradigm, Wigner-Ville 

Distribution, Principal Component Analysis (PCA), Support Vector Machine 

(SVM), AdaBoost. 
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ÖZ 

HECELEME PARADĐGMASI EEG VERĐSĐNĐN 

ANALĐZĐ VE SINIFLANDIRILMASI VE EN UYGUN 

KANALLARIN KULLANILMASI ÜZERĐNE BĐR 

ÇALIŞMA 

 

Yıldırım, Asil 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Uğur Halıcı 

 

Aralık 2010, 98 sayfa 

 

 

Beyin Bilgisayar Arayüzleri (BBA) sadece beyin sinyalleri kullanılarak cihazların 

kontrol edilmesi için geliştirilen sistemlerdir. BBA sistemlerinde kontrol edilecek 

cihazlardaki değişik eylemler için kullanıcı tarafından farklı zihinsel aktiviteler 

gerçekleştirilmektedir. Heceleme Paradigması, kafa derisinin çeşitli noktalarına 

tutturulmuş kanal elektrotlarıyla kaydedilen P300 sinyaller kullanılarak bulunan 

harfleri bir araya getirerek kelimeleri oluşturmayı amaçlayan bir BBA 

uygulamasıdır. Harf tanımasındaki hata oranlarının azaltılması ve harf tanıma 

hızının arttırılması Heceleme Paradigması açısından çok önemlidir. Bu şekilde 

engellilerin bu uygulamayı kullanarak isteklerini daha kolay bir biçimde ifade 

etmeleri mümkündür. 
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Bu tezde analizlerde sınıflandırma yöntemi olarak iki farklı metot, Destek Vektör 

Makinesi (DVM) ve AdaBoost, kullanılmıştır. AdaBoost zayıf sınıflandırıcısı 

olarak Sınıflandırma ve Regresyon Ağaçları kullanılmıştır. Zaman alanına ek olarak 

zaman-frekans alanında da uyarıyla tetiklenen P300 geriliminin karakteristiği analiz 

edilmiştir. Zaman alanındaki sinyallerin zaman-frekans alanına çevrilmesi için 

Wigner-Ville Dağılımı kullanılmıştır. Zaman alanında sınıflandırma sonuçlarının 

daha iyi çıktığı gözlemlenmiştir. Bundan başka, P300 sinyallerini en az hata oranı 

ile modelleyen en uygun kanal alt kümesi araştırılmıştır. Hem DVM hem de 

AdaBoost kullanan bir kanal seçme metodu önerilmiştir. Bu metot ile zaman 

alanında 12 kanal seçimi yapılmıştır. Ayrıca, Ana Bileşen Analizi (ABA) ve 

AdaBoost yöntemleri ile boyut azaltmanın etkileri incelenmiştir. 

 

Anahtar Kelimeler : Beyin Bilgisayar Arayüzü (BBA), Heceleme Paradigması, 

Wigner-Ville Dağılımı, Ana Bileşen Analizi (ABA), Destek Vektör Makinesi 

(DVM), AdaBoost. 
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CHAPTER 1  

 

INTRODUCTION 

Human being performs all voluntary movements by controlling related organs with 

the brain. Diseases may cause partial or full loss of abilities of the patients. In 

diseases such as Amyotrophic Lateral Sclerosis (ALS), all voluntary movements of 

the patient can be disabled and only cognitive abilities of the brain remain 

unaffected. So, these patients can interact with outside world only using their brain 

signals. Brain Computer Interface (BCI) is an area of research that tries to increase 

the interaction of such patients with outside world by processing activities of the 

brain and controlling external devices. For example, a cursor was moved in a two-

dimensional maze by human using signals recorded via Electroencephalography 

(EEG) in 1977 [1]. With the improvements in technology, studies on BCI are 

increased and research groups are founded over past decades. Researchers try the 

increase the applications of BCI and increase the usability of the systems developed 

([6]-[11]). 

There are two types of BCI’s according to their input types. These input types are 

endogenous and exogenous electrophysiological activities. In endogenous BCI’s, 

the subject creates control signals by imagination without any external stimulus. 

One of main methods to create these signals is imagination of muscle movement 

([2], [3]) such as imagining right and left hand movements. Another method is 

thinking abstract feelings ([4], [5]) such as stress and relaxation. In exogenous 

BCI’s, the subject creates control signals evoked by an external stimulus. For 

instance, the method developed in [17] is allowing subjects to communicate letters 
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and words using Event-Related Potentials (ERP’s). Endogenous BCI’s require 

excessive training while learning creation of control signals. However, once it is 

learned, subject can create signals on its own. On the other hand, exogenous BCI’s 

does not require too much training but it needs an external stimulus such as a 

display to create control signals. 

A laboratory environment is needed to gather data and work on BCI. Fortunately, in 

recent years, BCI research groups started to organize competitions and provide data 

sets to the competitors ([12]-[15]). These competitions aim to improve the BCI 

development process by introducing challenging problems and creating 

environment to compare different methods. Competition datasets are still available 

and can be accessed through the webpage given in [12]. So, new approaches can be 

tried on the same data set and results can be compared with previous studies.  

In this thesis, Spelling Paradigm, a specific exogenous BCI application, is studied. 

Spelling Paradigm was first introduced by Donchin et al. [17] in 1988. In 2000, a 

new version of Spelling Paradigm with increased data transformation rate was 

introduced by Donchin et al. [18]. Spelling Paradigm is an application for disabled 

people to express their thoughts by constructing words from detected letters. 

Spelling Paradigm problems exist in BCI competitions [14] and [15].  Data set is 

also available on [20] and [22]. In this thesis, time domain and time-frequency 

domain responses of P300 evoked potentials of Spelling Paradigm data set are 

analyzed. Time domain signals are transformed into time-frequency domain using 

Wigner-Ville Distribution (WVD). EEG signals are recorded using several 

electrodes attached to the scalp. Optimum electrode subset among the recorded ones 

is searched. Working on small data sets increases the speed of the process and real 

time use of the system. Effect of feature reduction methods Principal Component 

Analysis (PCA) and AdaBoost on feature vectors is analyzed. Support Vector 

Machine (SVM) and AdaBoost are used for classification throughout the process. 
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Organization of the thesis is given as: 

In Chapter 2, introductory information about Spelling Paradigm is given and 

previous studies on this problem are analyzed. 

In Chapter 3, background information about filtering, normalization, feature 

transformation, dimension reduction and classification methods are given. 

In Chapter 4, details of implemented methods are given. 

In Chapter 5, experimental results about feature transformation methods, optimum 

channel selection results, effect of dimension reduction and classification methods 

are given. 

In Chapter 6, results are discussed and thesis is concluded. 
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CHAPTER 2  

 

SPELLING PARADIGM 

Spelling Paradigm is a BCI application which aims to detect the words by finding 

letters from brain activities of the person. It is introduced by Farewell and Donchin 

[17]. In this chapter, first, Spelling Paradigm experimental setup and data set is 

described in detail. Then, previous studies on this topic are summarized. Finally, 

implemented methodologies are discussed. 

2.1 Spelling Paradigm Definition 

The goal of the spelling paradigm is to give an interface to construct words by using 

only the electrical activity of the brain. 6 by 6 matrix which is composed of ASCII 

characters is displayed on a screen (Figure 2.1). Subject is requested to focus on a 

character in the matrix. Then, rows and columns of the matrix are successively and 

randomly intensified. There are total 12 rows and columns and only 2 of them 

contain the focused character. From now on, rows and column intensifications that 

contain desired character will be named as target intensifications and rows and 

column intensifications that do not contain desired character will be named as non-

target intensifications.  
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Figure 2.1 Spelling Paradigm character matrix that is displayed to user is given in 
(a) and row and column number assignments of the matrix is given in (b), [20] 

Response of the brain against target and non-target intensifications is different and 

their responses are similar to the P300 evoked potentials reported by Farewell and 

Donchin [17]. The P300 evoked potential is the reaction of the subject to the 

stimulus. Its occurrence is not related with the physical attributes of a stimulus. It is 

a positive deflection in voltage with latency (delay between stimulus and response) 

of roughly 300 to 600 milliseconds. In spelling paradigm, P300 evoked potentials 

are elicited using the Oddball Paradigm [23]. The oddball paradigm is a technique 

used in evoked potential research in which trains of stimuli that are usually auditory 

or visual are used to assess the neural reactions to unpredictable but recognizable 

events. In this case, low-probability target intensifications are inter-mixed with 

high-probability non-target (or "standard") intensifications. The subject’s reaction to 

the target intensifications elicits the P300 evoked potentials (Figure 2.2). 

 

                      (a)                                                         (b) 
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Figure 2.2 P300 evoked potentials, standard is the response of the non-target 
intensification and oddball is the response of the target intensification, [20] 

To get more accurate results while predicting the character, row/column 

intensifications are repeated. For instance, in [20] and [22], row/column 

intensifications are repeated 15 times for each character. Since row/column 

intensification consists of 12 intensifications, there are total 180 intensifications for 

each character. A single intensification is completed in 175 ms, so character 

intensification lasts 31.5 seconds. So, there is a trade off between time and 

accuracy. It is important to use less number of repetitions and still predict the 

character accurately. 
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2.2 Spelling Paradigm Solution Approach 

Spelling paradigm is separated into three main steps. These steps are extracting 

samples, creating features and classifying features.  

First step is extracting relevant information from recorded EEG signals. EEG 

signals consist of multiple channel data which are recorded using electrodes placed 

on different points of the skull. Using less number of channels reduces the 

computational effort. However, relevant information must be kept by selecting 

proper set of channels. Part of the EEG signal that contains relevant information 

must be extracted. P300 evoked potential characteristics are taken into account 

while determining the duration of the signal after the stimulus. Then, extracted 

signals can also be filtered to suppress noise. 

Second step is extracting features from the preprocessed signals which are the 

output of the first step. Time domain signals can be transformed into other domains 

and transformed channels are concatenated to create features. Then, features can be 

normalized and size of the features can be reduced. 

Final step is the classification of the features. First, each intensification is classified 

separately and then character decision is done using the repetitions. 

2.3 Previous Studies on Spelling Paradigm 

Studies on spelling paradigm are encouraged by competitions [20] and [22]. Data 

set is provided by the organizers of results are evaluated. By this way, effect of 

different algorithms can tested on same data and results can be compared.  

7 competitors attended to the competition [20] and 5 of them managed to classify all 

the words correctly using all 15 repetitions. Other than success rate, using less 

number of repetitions is also an evaluation criterion of the performance. All words 

are correctly classified using only 5 repetitions by Kaper [24]. 
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10 competitors attended to the competition [22], and Rakotomamonjy [30] won the 

competition by achieving %96.5 accuracy with 15 repetitions and %73.5 accuracy 

with 5 repetitions.  

Studies are continued after the completion of the competition. For instance, 

Erdoğan successfully implemented Wiener filter in his thesis study and gave the 

results in [29]. 

Previous solution attempts on Spelling Paradigm are evaluated in terms of their 

methods on three main steps, preprocessing signals, extracting features and 

classifying features. 

2.3.1 Preporcessing Signals 

In preprocessing step, a channel subset is decided and a signal portion is extracted 

from these channel sets after intensification. Filtering and downsampling are other 

methods applied at this step.  

Kaper [24], used 10 channels in his study, used a bandpass filter with cutoff 

frequencies (0.5 – 30) and extracted signals of interval 0-600 ms after stimulus. 

Erdoğan [29] used same channel subset and the same time interval after stimulus 

with [24]. But he applied the adaptive Wiener filter instead of standard filters. 

Rakotomamonjy [30] did not use fixed channels. Instead, channels are selected 

automatically among the whole channel set with elimination. So, an adaptive 

channel selection method is applied. Then signals are filtered with (0.1 – 10 Hz) 

bandpass filter and downsampled to 20 Hz. 0-667 ms signals are extracted after 

stimulus. Bostanov [25] used all channels, a 10 Hz lowpass filter and a logarithmic 

downscaling. One second interval after stimulus is extracted. Xu [26] used all 

channels, 2-8 Hz bandpass filter and 0-650 ms interval. Hoffmann [32] used the 

same 10 channels given in [24]. 0-9 Hz filter, 0-600 ms time interval after stimulus 

and downsampling is used. Yang [31] used 55 channels selected with F-score, 0.1 – 

20 Hz bandpas filter, 0-667 ms time interval after stimulus and downsampled 
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signals to 20 Hz. Rivet [33] used 1-20 Hz bandpass filter with 1 second interval 

after stimulus.  

2.3.2 Feature Extraction 

Preprocessed signals are transformed into feature spaces and used channels are 

concatenated to create feature vectors. Dimension of the feature vectors are also 

reduced in this step. 

Kaper [24], Erdoğan [29], Rakotomamonjy [30], Yang [31], Hoffmann [32], 

concatenated preprocessed signals without transforming or reducing its size. 

Bostanov [25] transformed signals using Continuous Wavelet Transform and 

Student’s two-sample t statistics. Xu [26] used Principal Component Analysis 

(PCA) and Independent Component Analysis (ICA) for both transforming signals 

into feature space and reducing dimension. Rivet [33] used xDAWN algorithm, a 

spatial filter, to transform signals.  

2.3.3 Classification 

Feature vectors are classified with learning methods at final step.  

Kaper [24], Erdoğan [29], Rakotomamonjy [30], Yang [31], used SVM in their 

studies. Hoffmann [32] used gradient boosting, Bostanov [25] used Linear 

Discriminant Analysis (LDA), and Rivet [33] used Bayesian LDA for classification. 

2.4 Conclusion 

Although the classification methods in most of the previous studies are similar to 

each other, performances of the systems are different. So, pre-processing and 

feature extraction steps distinguish the performance of the systems. Filtering, is 

generally applied to enhance the performance of the system. Downsampling is also 

preferred after filtering. Channel selection varies significantly between methods. 

Methods can use all channels and then reduces data size at feature extraction or 
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select a subset of channels and create already reduced number of features at the end 

of preprocessing step. Time domain is generally preferred for P300 analysis. 
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CHAPTER 3  

 

BACKGROUND 

3.1 Wigner-Ville Distribution 

Wigner-Ville Distribution (WVD) transforms time signals into time-frequency 

domain. WWD of a signal s(t) is given in equation (3-1). 

ττπττ d
fj

etstsftW
2

)2/(*)2/(),(
−−

∞+

∞−

+= ∫  (3-1) 

WWD satisfies the marginal conditions given in equations (3-2) and (3-3) for the 

signal s(t), defined for t between 0 and t1 and f between 0 and f1. 

)(

0

),(
1

fESD

t

dtftW =∫   (3-2) 

2
1

)(

0

),( ts

f

dfftW =∫   (3-3) 

where ESD(f) is the energy spectral density of the signal (the intensity of energy per 

unit frequency), and 
2

)(ts  is the signal power at time t. 
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For a time-series x(n), the expression of the discrete-time Wigner-Ville distribution, 

W(n,f) is: 

∑
∞

−∞=

−−+=
k

kfj
eknxknxkhfnW N

π4
)(*)()(22),(  (3-4) 

where )(khN  is a data-window, which performs a frequency smoothing.  

3.2 Principal Component Analysis 

Principal Component Analysis (PCA) is an orthogonal linear transformation method 

that transforms the data to a new basis according to variance of the data. The axes 

of the new coordinate system (principal components) are ordered with decreasing 

variance. That is, the greatest variance direction is the first axis (first principal 

component) and smallest variance direction is the last axis. PCA is commonly used 

for reducing dimensionality of the data set. Possibly correlated variables are also 

eliminated while projecting data to the lower dimensional space. 

PCA Example: 

In Figure 3.1, data is sampled from noisy y = x line is plotted. Principal components 

for the data set are also plotted. 
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Figure 3.1 Principal components (drawn with red lines) for data set that sampled 
from noisy y = x line is given in (a). PCA transformation for data is given in (b). 

(b) 

(a) 
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Table 3.1 Principal components’ eigenvectors and eigenvalues for the data set given 
in Figure 3.1 

 Principal Component 1 Principal Component 2 

Eigenvector [0.7002 0.7139] [-0.7139 0.7002] 

Eivenvalue 18.2577 0.2394 

 

Assumptions and Limitations of PCA: 

• PCA is based on mean vector and covariance matrix of the data. If 

distribution of the data can not be characterized by these attributes, PCA is not 

useful.  

• Principal components with larger variance contain more information about 

data set. 

• Principal components are selected as orthogonal to reduce the computational 

complexity. So, it only rotates the coordinate system. 

 

3.3 Normalization 

Normalization is a standardization of collected data in order to recover errors of the 

repeated measurements. Variety of normalization methods exist, which are using 

the properties of each sample or statistical properties of the whole data set. 

Collected samples are assumed to be in vector form. 

Scaling magnitude, which is called as simple normalization, is one of the most 

common and easy normalization methods. In simple normalization, properties of a 

single vector are sufficient to apply normalization. Minimum and maximum 

magnitude values of the vector are used while normalizing the vector. Using these 

properties, vector is scaled to the predefined range. 
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For a vector x , where maximum value of x  is )max(x  and minimum value of x  

is )min(x , formula that maps x  into the region [ )max(),min( xx ] is given in (3-5). 

)min())min((
)min()max(

)min()max(
xxx

xx

xx
x +−×

−
−

=  (3-5) 

Scaling mean and standard deviation of the signals, which is called Gaussian 

normalization, is another normalization method. Mean and standard deviation are 

statistical properties of data set. So, whole data set is required to calculate these 

properties. Mean is normalized to zero and standard deviation is normalized to unity 

at Gaussian normalization.  

Gaussian normalization formula is given in equation (3-6) for the vector x , where 

xµ and xσ  are mean and standard deviation respectively. 

x

xx
x

σ
µ−

=   (3-6) 

3.4 Kernel Methods 

Kernel Methods (KMs) map the data into a higher dimensional space. This space is 

called feature space and each coordinate of the feature space corresponds to a 

feature of the data. Non-linear models in the input space can be solved by linear 

models in the feature space. Transformation from the input space to the feature 

space is done by the help of kernel functions. Kernel functions enable to operate in 

the feature space without even computing the coordinates of the data in that space. 

Instead, inner products between the images of all pairs of data are computed in the 

feature space, which is generally less complex than the explicit computation of the 

coordinates. Various methods such as SVM, Fisher’s Linear Discriminant Analysis 

(LDA) and Principal Component Analysis (PCA) are capable of operating with 

kernels. 
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A kernel function K is non-negative, real valued and integrable. Kernel function 

satisfies the following the requirements: 

• 
∫
+∞

∞−

= 1)( duuK

  (3-7) 

• u of  valuesallfor  )()( uKuK =−   (3-8) 

Examples of kernel functions: 

Linear Kernel: 

yxyxK .),( =   (3-9) 

Polynomial Kernel: 

Control parameter is polynomial degree d. 

( )dyxyxK 1.),( +=   (3-10) 

Radial Basis Function: 













 −−
=

2

2

2
exp),(

σ

yx
yxK

  (3-11) 

Exponential Kernel: 










 −−
=

22
exp),(

σ

yx
yxK

  (3-12) 

3.5 Support Vector Machine 

Support Vector Machine (SVM), which is introduced by Vapnik in 1963, is a 

supervised learning method, which analyzes the input-output relation of the training 

data to predict the outputs for the new input data. When the outputs are discrete, 
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prediction is called classification of the input data. SVM is a linear classifier, which 

uses hyperplane to separate data into classes. SVM is originally applied to two class 

classification problems. There are various solutions to separate linearly separable 

two classes given in Figure 3.2. SVM is aimed to find the maximum margin 

hyperplane while separating data into two classes (see Figure 3.3). 

 

Figure 3.2 Lines (1 dimensional hyperplane) that are separating two classes in two 
dimensional space 
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Figure 3.3 SVM solution for maximum-margin line (1 dimensional hyperplane) 
separating two classes for the data set given in Figure 3.2 

Suppose that data set consists of p-dimensional n samples x belonging to linearly 

separable two classes c. The aim is to find the p-1 dimensional hyperplane which 

separates the classes with maximum margin. Labels }1,1{ −=c will be used for two 

classes. Mathematical form of a hyperplane is 

,0=−⋅ bxw    (3-13) 

where w is the normal vector and b is the bias vector. Hyperplanes passing through 

the margins of the classes can be chosen as 

1±=−⋅ bxw    (3-14) 

Since samples belonging to two classes have to be the outside of the hyperplanes 

defining the margin, 
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 ,1≥−⋅ bxw i   (3-15) 

where xi belongs to class labeled with {1} and 

 ,1−≤−⋅ bxw i   (3-16) 

where xi belongs to class labeled with {-1}. 

( ) nibxwc ii ≤≤≥−⋅ 1 allfor  ,1   (3-17) 

The aim is to maximize the margin between two classes. The distance between two 

hyperplanes given in (3-14) is
w

2
. So, minimizing w , the norm of w, will 

maximize the distance between two classes. Using the quadratic programming 

2

2

1
w will be minimized while satisfying (3-17). 

The optimization problem can be constructed with the Lagrange multipliers 

technique: 

( )[ ],1
2

1
),,(

1

2
−+⋅−=Λ ∑

=

bxwcwbwL ii

n

i

iλ  (3-18) 

 where },...,{ 1 nλλ=Λ  is the vector of non-negative Lagrange multipliers 

corresponds to the constraints in (3-17). The Lagrangian given in (3-18) is 

minimized with respect to w and b and maximized with respect to 0≥Λ . 

The solution of the problem can be expressed as a linear combination of training 

vectors: 

ii

n

i

i xcw ∑
=

=
1

λ   (3-19) 

So, maximum margin hyperplane is found by solving the optimization problem 

given in the Lagrangian dual form:  
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 (3-20) 

The training vectors that have coefficients satisfying 0>λ are called support 

vectors. Support vectors satisfy the equation 1)( =−⋅ bxwc ii . So, b can be 

calculated using any support vector.  

Decision function becomes: 

( ) 







+⋅= ∑

=

bxxcsignxf ii

n

i

i

1

)( λ   (3-21) 

Soft Margin Hyperplane 

Train vectors can not be separated by a hyperplane due to mislabeled data in Figure 

3.4. SVM is modified [27] to handle linearly inseparable classes by introducing Soft 

Margin method.  
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Figure 3.4 SVM solution for soft margin line (1 dimensional hyperplane) for C=100 

Soft Margin method introduces slack variables iξ that measure the amount of 

violation of the constraints. A penalty coefficient is added to the optimization 

problem with regularization parameter C: 

( )
n1,...,ifor          ,0                                    

,...,1ifor    ,1     subject to

2

1
 Minimize

i

1

2
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=−≥−⋅
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iii

n

i

i

 (3-22) 

The modified optimization problem can be constructed with the Lagrange 

multipliers technique: 

( )[ ] ,1
2

1
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111
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iiiii
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i CbxwcwbwL ξξγξλ  (3-23) 
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 where },...,{ 1 nλλ=Λ  and },...,{ 1 nγγ=Γ  are the vector of non-negative Lagrange 

multipliers corresponds to the constraints in (3-22). The Lagrangian given in (3-23) 

is minimized with respect to w, Ξ and b and maximized with respect 

to 0≥Λ and 0≥Γ . 

Maximum margin hyperplane is found by solving the optimization problem given in 

the Lagrangian dual form:  

n1,...,ifor  0C                   
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 (3-24) 

Decision function becomes: 

( ) 




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
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bxxcsignxf ii

n

i

i

1

)( λ   (3-25) 

where bias b is calculated from the equation: 

( )[ ] nbxwc iii ,...,1ifor   0 1 i ==+−−⋅ ξλ    (3-26) 

There are constraints in the equation (3-26) coming from (3-22) that limits the value 

of the λi to C<< i0 λ . 0 i >λ is valid for only the support vectors. C<i λ is valid 

for only correctly classified vectors. So, only correctly classified support vectors 

can be used for calculation of bias b. Note that there can be multiple solutions for b. 

Common approach is to solve all equations and then take the averages of the results: 

, 
1

1
i

N

i

i

SV

cxw
N

b
SV

∑
=

−⋅=   (3-27) 

where xi are correctly classified support vectors and NSV is the number of xi. 
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Non-Linear Decision Surfaces 

As it is stated in KMs, SVM are also used for classifying non-linear data set by 

transforming it into higher dimensional feature space where data can become 

linearly separable. In (3-25), decision function depends on dot product of vectors 

which defines hyperplanes for decision boundaries. If the dot product is changed 

with a kernel function, non-linear decision surfaces are obtained for decision 

boundaries. This is called kernel trick.  

Decision function becomes: 

( ) 







+⋅= ∑

=

bxxKcsignxf ii

n

i

i

1

)( λ   (3-28) 

3.6 AdaBoost 

AdaBoost is an adaptive boosting algorithm which is introduced in 1995 by Freund 

and Schapire [28]. AdaBoost constructs a strong classifier as a linear combination 

of weak classifiers. 

Suppose that train set consists of m elements ( ) ( ) }1,1{,;,...,11 +−∈∈ iimm yXxyxyx . 

Then, pseudo code of the AdaBoost algorithm is: 

Initialize 

 miD 1)(1 =   (3-29) 

For  Tt ,...,1=  

• Train weak classifier using the distribution Dt 

• Get weak hypothesis  }1,1{: +−→Xht  with error  
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24 

• Choose  
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• Update:  
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 (3-32) 

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution). 

• Output the final hypothesis: 

∑
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=
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t

tt xhxH
1

)()( α
  (3-33) 

In (3-31), αt is inversely proportional with εt. That is, having a larger αt coefficient 

means that the corresponding weak hypothesis classifies more accurately. The 

distribution Dt(i) is updated such that weight of the correctly classified samples are 

decreased and weight of the misclassified samples are decreased in the next cycle. 

By this way, algorithm focuses on the misclassified samples in next cycles. 

3.6.1 Classification and Regression Trees 

Classification and Regression Trees (CART) is used as the weak classifier of the 

AdaBoost. Decision tree consists of nodes and leaves. Tree is tracked from root to 

leaves to find out the class of the corresponding input.  

Suppose that x is an n dimensional input, where xi is the value of the i’th dimension 

of x, and y is the binary classification output which is an element of {-1, +1}.  Then, 

leaf of the tree contains the predicted class label y and node of the tree contains the 

relational condition which compares xi with a threshold value. Decision tree is 
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constructed at training phase by choosing the dimension variable i and threshold 

value of the node and class label of the leaf. A sample CART is given in Figure 3.5. 

 

Figure 3.5 Classification and Regression Tree example, xi is the i'th dimension 
value of x and y is the class label  

3.7 Cross Validation 

In predictive models, if the validation set used for testing the parameters of the 

model is selected from the training set, model parameters may become quite 

dependant on the training data. Thus, model’s prediction performance on unseen 

data may not be as satisfactory as if it is on the train data. This is called overfitting 

problem. To overcome this problem, cross-validation is used. Cross-validation is a 

method to evaluate the accuracy of the predictive model. Train set is divided into 

two subsets. One subset is used for training and the other subset is used for 

validating the model. It prevents overfitting problem since training and validation 

data sets are constructed from different subsets of the training set. 
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In k-fold cross-validation, training data is divided into k partitions and k-1 partitions 

are used for training and 1 partition is used for testing the model. This cross-

validation process is repeated k times such that at each round, another partition is 

used for testing the model. While creating partitions, data can be also stratified to 

have a better representation of the whole data. Stratification ensures that samples of 

each class are equally distributed into each fold. That is, each fold is composed of 

equally sized members of the whole classes. 
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CHAPTER 4  

 

IMPLEMENTATION 

EEG signals are processed in three steps. First, relevant part of the signal is 

extracted from data. Then, signals are transformed into feature space and dimension 

of the feature vector is reduced. Finally, classification is performed using the 

extracted features. Spelling Paradigm data set provided in [20] is used to test the 

proposed methods. 

4.1 Preprocessing EEG Signals 

The whole activity of the brain is recorded by the electrodes while collecting data 

during the intensifications. However, only the part related with the stimulus is 

needed for processing. To remove irrelevant information, collected data is 

preprocessed. Preprocessing consists of three steps. First one is selecting signal 

portion related with stimulus and second one is filtering the selected portion of the 

signal to suppress noise and third one is downsampling data. 

4.1.1 Extracting Data 

EEG signals for 64 channels, row/column number (or stimulus code), 

intensification’s start time are available in data set provided in [20]. Besides, 

character labels for train data set are also given. Since competition is over, test 

labels of the data set are also available. To increase the flexibility of the analysis, 

channel subset, signal duration, and number of repetitions are made configurable in 
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the system. By this way, different setups are easily established. Stimulus code is 

used for separating rows and columns in next steps. Number of repetitions used is 

also adjustable to analyze the prediction results for less number of repetitions.  

For each target intensification, there are 5 non-target intensifications in train data 

set. Number of target and non-target intensifications need to be equalized to obtain 

a well-balanced train data set. For each target row and column, a non-target row and 

column is selected randomly. A sample for a single target and non-target 

intensifications are given in Figure 4.1. 

 

Figure 4.1 Randomly selected target and non-target intensifications extracted 0-800 
ms after stimulus 

Target and non-target intensifications for train and test data set is extracted for 800 

ms duration after the stimulus and averaged plots are given in Figure 4.2, Figure 
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4.3, Figure 4.4, and Figure 4.5 for channels 1-16, 17-32, 33-48 and 49-64 

respectively. 
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Figure 4.2 Averaged target and non-target intensifications for train and test data set 
extracted 0-800 ms after stimulus, channels 1-16 
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Figure 4.3 Averaged target and non-target intensifications for train and test data set 
extracted 0-800 ms after stimulus, channels 17-32 
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Figure 4.4 Averaged target and non-target intensifications for train and test data set 
extracted 0-800 ms after stimulus, channels 33-48 
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Figure 4.5 Averaged target and non-target intensifications for train and test data set 
extracted 0-800 ms after stimulus, channels 49-64 
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P300 evoked potentials are observed approximately 300 ms after the stimulus. It is 

seen from 4 figures, Figure 4.2, Figure 4.3, Figure 4.4, and Figure 4.5, that 

extracting signals [100-600] ms after stimulus keeps all of the information related 

with P300 evoked potentials. 

4.1.2 Filtering 

When 4 figures, Figure 4.2, Figure 4.3, Figure 4.4, and Figure 4.5, are investigated, 

it is seen that P300 evoked potentials contain the information in low frequency 

components. Since signals are sampled at 240 Hz, high frequency components are 

filtered to reduce the effect of noise. Characteristics of 8th order Chebyshev Type-I 

bandpass filter with cut-off frequencies 0.1-10 Hz is given in Figure 4.6. This filter 

was used by Rakotomamonjy at al. [30]. 
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Figure 4.6 8th order bandpass Chebyshev Type I filter with cut-off frequencies 0.1 
Hz and 10 Hz 

Effect of the filtering with Chebyshev Type-I filter given in Figure 4.6 on the target 

and non-target signals of Figure 4.1 are given in Figure 4.7 and Figure 4.8 

respectively. 
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Figure 4.7 Effect of filtering with 8th order 0.1 – 10 Hz bandpass Chebyshev Type-I 
filter on a target intensification 
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Figure 4.8 Effect of filtering with 8th order 0.1 – 10 Hz bandpass Chebyshev Type-I 
filter on a non-target intensification 

4.1.3 Downsampling 

Downsampling is the last method that is applied in the preprocessing step. Signals 

are generally sampled at frequencies higher than the interest. Filtering suppresses 

frequency components that are out of interest. However, it does not change the 

sampling rate. Since signals sampled at high frequency rates are filtered, sampling 

rate of the signal can be reduced by representing a group of samples with a single 

sample. By this way, size of the signal is also reduced and thus process speed of the 

next steps is increased. Downsampling is done by averaging samples with non-

overlapping windows. That is, signal is partitioned into pieces and each piece is 

represented with the average of samples in it. Length of each piece is determined by 

the window length parameter. New sampling frequency becomes original sampling 

frequency divided by the window length. Window length is adjustable and if it is 
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selected to be 1, downsampling is skipped. When the window length is greater than 

1, high frequency noise components are also suppressed with averaging consecutive 

samples in addition to dimension reduction. 

4.2 Feature Extraction 

Feature vectors are extracted after relevant part of the recorded brain signals are 

extracted from data. While extracting feature vectors, each channel is transformed 

into the feature space and then all channels are concatenated. Time and time-

frequency domains are used as feature spaces in this study. Feature vectors are 

normalized with simple or Gaussian normalization methods to minimize the effect 

of time varying offset and amplitude of the signal. That is, dependency on sampling 

time and subject is reduced by normalizing features. Samples are extracted from 

time interval [100-600] ms after stimulus unless otherwise it is stated. 

4.2.1 Time Domain Features 

No transformation is done in time domain. Channel outputs are directly 

concatenated to obtain feature vectors. Average feature vectors extracted without 

filtering and normalization for a single channel are given in Figure 4.9. 
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Figure 4.9 Average time domain feature vectors of target (oddball) and non-target 
(standard) classes for channel 11 

Simple normalization and Gaussian normalization methods are applied to channel 

11 data and results are given in Figure 4.10 and Figure 4.11 respectively. 
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Figure 4.10 Average time domain simple normalized (mapped to [-1, 1]) feature 
vectors of target (oddball) and non-target (standard) classes for channel 11 
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Figure 4.11 Average time domain Gaussian normalized feature vectors of target 
(oddball) and non-target (standard) classes for channel 11 

4.2.2 Time-Frequency Domain Features 

Wigner-Ville Distribution (WVD) is used to create time-frequency features of the 

system. Before starting the analysis in time-frequency domain, energy of the signal 

is investigated. Because, integral of WVD over frequency gives energy distribution 

over time and keeping the information that distinguishes target and non-target 

classes while transforming signal into energy domain is the key point for creating 

time-frequency features successfully. 

4.2.2.1 Energy Analysis 

Energy of a Discrete-Time Signal is: 
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As it is seen from (4-1), square operation is involved in energy calculation. Square 

operation causes loss of sign information and thus the signal and its absolute value 

becomes equivalent to each other. Effect of absolute value operation on channel 11 

is given in Figure 4.12. The average feature vectors given in Figure 4.12 are 

distorted compared to the ones given in Figure 4.9.  

 

Figure 4.12 Average time domain feature vectors of target (oddball) and non-target 
(standard) classes obtained by the absolute value of the signals for channel 11 

Figure 4.13 shows the normalized energy distribution over time. Normalization of 

the energy is done by dividing energy distribution to total energy. That is, each 

signal has total energy of 1 after normalization. Distortion of the absolute value 

operation is also seen in Figure 4.13. 
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Figure 4.13 Average time domain feature vectors of target (oddball) and non-target 
(standard) classes obtained by the normalized energy distribution of the signals for 

channel 11 

To get rid of the distortion due to absolute value operation, offset is applied to set 

minimum value of the signal to 0. After the offset trick, normalized energy 

distribution is given in Figure 4.14. Distortion due to absolute value operation is 

recovered and average feature vector characteristics obtained in this way are similar 

to the ones given in Figure 4.9. 
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Figure 4.14 Average time domain feature vectors of target (oddball) and non-target 
(standard) classes obtained by the normalized energy distribution of the signals with 

offset trick for channel 11 

4.2.2.2 Wigner-Ville Distribution 

Integral of WVD over time and frequency gives total energy of the signal. WVD is 

also normalized to make total energy of signal equal to 1. In Figure 4.15, all 

frequency components of the WVD are summed to get energy distribution over 

time. Offset trick is applied to signals before calculating WVD. 
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Figure 4.15 Average time domain feature vectors of target (oddball) and non-target 
(standard) classes obtained by the sum of all frequency components in WVD for 

channel 11. 

4.2.2.3 Creating Time-Frequency Domain Features  

WVD gives time-frequency analysis of the signals. These signals are converted into 

features by dividing WVD into sections and taking averages of each section to 

create features. Frequency band is divided according to types of the brain waves.  
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Table 4.1 Brain waves 

Type Frequency (Hz) Activity 

Delta: ∆ 0.5 – 3.5 Prepare to Motion 

Theta: Θ 3.5 – 8 Memory 

Alpha (mü): α (µ) 8 – 13 Sensor Idling 

Beta: β 13 – 22 Motor Idling 

Gamma: γ 22 - 40 Property Fusion 

Mean value of each band is calculated to reduce frequency band into 5 components.  

Using these 5 components as features causes 5 times increase in feature vector size. 

To overcome this problem, time is also divided into uniform sections.  For a time 

section of length 25 ms, feature vector size reduces 6 times. Averages of time-

frequency domain feature vectors are given in Figure 4.16 for channel 11.  
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Figure 4.16 Average time-frequency domain feature vectors of target (oddball) and 
non-target (standard) classes obtained from the WVD for channel 11. 

4.3 Dimension Reduction 

Reducing the size of the data is important to reduce memory usage and processing 

time. However, valuable information must be kept while reducing the size of the 

data. With a proper dimension reduction, even the classification performance can be 

increased by getting rid of irrelevant information. 

If same information can be obtained from different channels due to the correlation 

of data, then redundancy can be removed by dimension reduction methods. 

Correlation of data sampled from different channels at the same instant is measured 

to see that if dimension reduction is needed when multiple channel data is used. 

Measurement is done by concatenating extracted signals and keeping the 

chronological sequence.  
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Correlation coefficients of channel 11 (Cz) with all 64 channels are given in Figure 

4.17. Correlation coefficients are greater than 0.8 for neighbor channels (3, 5, 6, 9, 

10, 12, 13, 17, 18, and 19) and decreasing with the distance between two channels. 

Calculation of correlation coefficients is given in APPENDIX A. 

 

Figure 4.17 Correlation coefficients between channel 11 and other 64 channels 

Correlation matrix for channels 3, 4, 5, 10, 11, 12, 17, 18, 19 (placed near to the 

center of the skull) are given in Table 4.2. Table 4.2 also shows that channels that 

are closer to each other have higher correlation. 
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Table 4.2 Correlation Coefficient Matrix for the subset of channels 3, 4, 5, 10, 11, 
12, 17, 18, 19 

Channel 
Number 3 4 5 10 11 12 17 18 19 
3 1 0.4 0.9 0.92 0.86 0.88 0.83 0.85 0.79 
4 0.4 1 0.39 0.37 0.39 0.38 0.33 0.34 0.32 
5 0.9 0.39 1 0.88 0.86 0.93 0.81 0.86 0.84 
10 0.92 0.37 0.88 1 0.89 0.91 0.94 0.94 0.87 
11 0.86 0.39 0.86 0.89 1 0.9 0.85 0.89 0.84 
12 0.88 0.38 0.93 0.91 0.9 1 0.89 0.95 0.94 
17 0.83 0.33 0.81 0.94 0.85 0.89 1 0.96 0.9 
18 0.85 0.34 0.86 0.94 0.89 0.95 0.96 1 0.96 
19 0.79 0.32 0.84 0.87 0.84 0.94 0.9 0.96 1 

Correlation coefficient analysis shows that there is a big correlation among some 

channels and feature vector size can be reduced by eliminating redundant 

information. For this purpose, Principal Component Analysis (PCA) and AdaBoost 

are examined in this study as explained below.  

4.3.1 Dimension Reduction Using PCA 

Dimension reduction with PCA is done by first transforming features into another 

space, in which new features are ordered in decreasing variance, and then 

eliminating features with small variance. PCA does not consider differences 

between classes in data set while reducing dimension. Effect of dimension reduction 

using PCA is analyzed for data given channels given in Table 4.2. Filtering and 

normalization is not applied to data set. Average feature vectors for target and non-

target intensifications are given in Figure 4.18. 
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Figure 4.18 Average feature vectors of target (oddball) and non-target (standard) 
classes for channels 3, 4, 5, 10, 11, 12, 17, 18, 19 

All feature vectors are transformed using PCA and averages of transformed target 

and non-target feature vectors are given in Figure 4.19. Dimension reduction is not 

done after transformation. Because of that, feature vector size is equivalent with 

non-transformed feature vectors given in Figure 4.18. 
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Figure 4.19 Average PCA transformed feature vectors of target (oddball) and non-
target (standard) classes for channels 3, 4, 5, 10, 11, 12, 17, 18, 19 

Information kept while reducing the dimensionality in PCA is calculated with: 
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where λi is the eigenvalue of the i’th feature, n is the number of features and p is the 

reduced feature number. In Figure 4.20, change of r with p is shown for the feature 

vectors analyzed in Figure 4.19. 



52 

0

20

40

60

80

100

120

1 101 201 301 401 501 601 701 801 901 1001

reduced feature number, p

r

 

Figure 4.20 Percentage of information kept (r) vs. number of feature components 
included (p) for channels 3, 4, 5, 10, 11, 12, 17, 18, 19 

In Figure 4.20, dimension of the feature vector to keep 90% of the information is 

found to be the first 91 features of PCA transformed feature vectors. In Figure 4.21, 

average target and non-target PCA transformed feature vectors with 91 components 

are given. 
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Figure 4.21 Average PCA transformed and reduced feature vectors of target 
(oddball) and non-target (standard) classes for channels 3, 4, 5, 10, 11, 12, 17, 18, 

19 

4.3.2 Dimension Reduction Using AdaBoost 

AdaBoost selects features using the discriminative properties of the target and non-

target classes. AdaBoost does not transform features during selection. It only 

determines a subset of features using the information provided in training data. That 

is, dimension reduction via AdaBoost is performed by eliminating unselected 

features from feature vectors. Because of that, calculation overhead does not exist 

after system is trained. In Figure 4.22, first 30 features of channel 11 selected by 

AdaBoost with CART as the weak classifier are marked on average target and non-

target classes. Selected features are sorted according to their selection order in 

Figure 4.23. 
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Figure 4.22 30 features selected by AdaBoost from channel 11; selected features are 
marked with ‘o’ on both averages of target (oddball) and non-target (standard) 

classes 
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Figure 4.23 Averages of target (oddball) and non-target (standard) classes for the 
first 30 features selected by AdaBoost; features are given in selection order and 

selected from channel 11 

4.4 Classification 

Classification is done in two steps. In first step, binary classification is done to 

decide if the feature vectors belong to target or non-target classes. In second step, 

decision fusion is done to select a target character using binary classification results. 

4.4.1 Binary Classification 

In binary classification, each feature vector is processed independently and labeled 

as either target or non-target classes. SVM and AdaBoost binary classification 

methods are used to classify features. 5-fold CV is used in both methods to prevent 

overfitting problem. 
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4.4.1.1 Support Vector Machine 

SVM is trained using all of the train feature vectors. Soft Margin SVM is used to 

introduce a penalty or regularization parameter (C) for misclassified samples. This 

parameter is used to tune the system to increase classification performance. Also, 

Gaussian Radial Basis Function (RBF) is used as kernel. Gaussian RBF brings an 

extra control parameter σ to SVM which provides more suitable boundary selection. 

5-fold cross validation is used to tune SVM control parameters (C,σ) and prevent 

overfitting problem. Soft margin outputs of cross validation results are summed and 

label of the feature vector is decided. For every label, a label rate showing the 

strength of the guess is also provided using the summation of cross validation soft 

margin results. 

4.4.1.2 AdaBoost 

AdaBoost learns data using the whole train data set with cross validation. AdaBoost 

maximum iteration number is the only parameter that needs to be adjusted 

according to the data set. AdaBoost mislabeled target and non-target feature vectors 

rate is saturated after maximum iteration number becomes sufficiently large. So, 

once maximum iteration number is properly selected, AdaBoost can adapt to data 

set without requiring any other adjustments. CART is used as the weak classifier of 

the AdaBoost. In Figure 4.24, binary classification error of AdaBoost is given up to 

maximum iteration number 200. So, maximum iteration of 100 is sufficiently large 

to reach saturation point. Binary classification outputs of cross validation results are 

summed and label of the feature vector is decided. For every label, a label rate 

showing the strength of the guess is also provided using the summation of cross 

validation binary classification results. 
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Figure 4.24 AdaBoost Iteration number vs. error rate graphics for channels 
9,11,13,34,49,51,53,56,60,62 

4.4.2 Decision Fusion 

Target character is selected among 36 characters using binary classification results 

with a voting based decision fusion. Binary classification gives target/non-target 

classification results for 6 rows and 6 columns but only one of the rows and 

columns include the target character. To select a row and a column, repetitions of 

the target character are used. There can be up to 15 repetitions for each character. 

The possibility of being target row/column is found using the label rate of each 

binary classification. Then, repetition results are combined by summing this value 

for each row and column and the row and the column with the maximum possibility 

are selected as target row and column. Then, interception of the row and the column 

gives the target character. Note that it is important to classify target character with 

less number of repetitions to increase the usability of the system. 
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CHAPTER 5  

 

EXPERIMENTAL RESULTS 

Designed system is composed of three main steps called as preprocessing data, 

creating feature vectors and classification. Data is extracted using relevant channels 

and filtered at preprocessing step. Then, data is transformed into feature space, 

normalized, and its dimensionality is reduced to obtain feature vectors in next step. 

At final step, binary classification of the feature vectors are done and target 

character is predicted. Overview of the designed system is given in Figure 5.1.  

 

Figure 5.1 Overview of the designed system 

First, filtering and normalization methods that best fit on transformation methods 

are selected. Then, optimum channels are selected using binary classification 

methods for each transformation method. Classification performances of 

transformation methods are evaluated and channel subset, transformation method 
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and binary classification method that gives maximum classification performance is 

determined. Then, effect of dimension reduction methods on feature vectors is 

analyzed. Finally, character prediction results are analyzed with the designed 

method.  

First of all, performance measurement criteria are required while training and 

testing the system. Because of that, this chapter starts with explanation of evaluation 

criteria used while measuring performance of the methods and then continues with 

the outputs of the experimental results. 

At training step, 5-fold Cross Validation (CV) results are used as success criteria. 

At each fold of CV, while 80% of data is used for training, the remaining 20% of 

data is used only for testing purpose to prevent overfitting. This is repeated 5 times, 

keeping a different 20% portion of data for validation. Success criterion is obtained 

by averaging classification results of these validation sets. For example, average 

misclassification rate of the sample CV result given in Table 5.1 is 16.79%. This 

means that %83.21 of test set labels are classified correctly. Aim is to maximize 

classification rate or minimize misclassification/error rate of the averaged CV 

results. 

Table 5.1 Sample Cross Validation misclassification rates for 5-fold cross 
validation  

CV fold-1 CV fold-2 CV fold-3 CV fold-4 CV fold-5 

16.87% 16.27% 17.66% 14.29% 18.85% 

 

Each CV result is calculated by first counting True Positive (TP), False Negative 

(FN), True Negative (TN), and False Positive (FP) samples, where meanings of TP, 

FN, TN, and FP are given as: 

True Positive (TP): Number of correctly labeled target feature vectors 

False Negative (FN): Number of mislabeled target feature vectors 
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True Negative (TN): Number of correctly labeled non-target feature vectors 

False Positive (FP): Number of mislabeled non-target feature vectors 

Then, sensitivity (True Positive Rate) given in (5-1) and specificity (True Negative 

Rate) given in (5-2) are calculated. 

FNTP

TP
TPRveRateTruePositi

+
=)(    (5-1) 

FPTN

TN
TNRveRateTrueNegati

+
=)(    (5-2) 

Finally TPR and TNR results are averaged (see (5-3)) to obtain success of the 

classification. 

2
)(

TNRTPR
SReSuccessRat

+
=    (5-3) 

Equivalently, error rate can be also obtained by using the success rate of the 

classification (see (5-4)). 

SRERErrorRate −= 1)(    (5-4) 

In train set, number of non-target samples is reduced by random selection to have 

equal number of target samples (TP + FN) and non-target samples (TN + FP). 

Overall classification performance is also evaluated using (5-4) on a separate test 

set that is not used in CV. Since character detection is done on test set, number of 

non-target samples is not reduced by random selection. Because of that, there are 5 

times more non-target samples than target samples in test set. Weight of target and 

non-target samples on success criteria is equalized by using (5-3). 

Another performance criterion, which is named as Quality Rate (5-5), is maximized 

at channel selection. 
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FNFPTP

TP
QReQualityRat

++
=)(    (5-5) 

Equivalently, Quality Error Rate (5-6) can also be minimized instead of 

maximizing (5-5). 

FNFPTP

FNFP
QRQERorRateQualityErr

++
+

=−= 1)(   (5-6) 

As it is stated before, there are 5 non-target samples for each target sample in test 

set. Because of that, importance of target feature classification is increased by 

omitting TN while evaluating the performance of the classification at channel 

selection. Equation (5-5) is also used by Rakotomamonjy [30] while selecting 

channels in his study. 5-fold cross-validation is also used at channel selection to 

prevent overfitting. 

After individual prediction of target and non-target samples, target character 

prediction is done. Character recognition performance is evaluated by dividing 

correctly classified target characters to total character numbers. 

Note that all performance evaluation formulas, (5-1), (5-2), (5-3), (5-4), (5-5) and 

(5-6), take values between 0 and 1. 

5.1 Analyzing Effects of Filtering and Normalization Methods on 

Time and Time-Frequency Domain Signals 

There are two types of filtering that are applied to data set. First one is applying a 

band-pass filter without changing the sampling rate and second one is down-

sampling data by averaging consecutive samples. Applying band-pass filter is 

optional and can be skipped. However, down-sampling, which is applied at the end 

of filtering step of Preprocess, is not optional. Data is sampled at 240 Hz. However, 

maximum frequency which is required for Time-Frequency Domain features is 40 

Hz. In order to reduce the dimension of the data and get rid of high frequency signal 

components, data is down-sampled to 40 Hz by averaging the observations with 
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non-overlapping windows. That is, at the end of filtering, each 6 sample is averaged 

and represented as a single value. So, data is both filtered and its size is reduced 6 

times by down-sampling. 

The word “filtering” represents applying band-pass filter without changing 

sampling rate. Since down-sampling is always implemented, it is excluded from 

“filtering” definition.    

First, effects of filtering and normalization on Time and Time-Frequency signals are 

analyzed to find out the best combination in terms of classification. Also, optimum 

control parameters (C,σ) for SVM are found for each combination. These decisions 

are done using reference channels used by Kaper et al. [24] and Erdoğan et al. [29] 

and all repetitions. Overview of applied method is given in Figure 5.2. 

 

Figure 5.2 Schematic of filtering and normalization analysis 

Basic settings given in Table 5.2 are applied to all channels while evaluating the 

methods. Configurable settings are summarized in Table 5.3. Results of the analysis 

are given in Table 5.4. As it is seen from the results, best performance for time 
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domain signals are obtained when filtering is applied and Gaussian normalization is 

selected. For time-frequency domain signals, highest score is reached when filtering 

is not applied and Simple normalization is selected. Note that time-frequency 

domain features are created using the frequencies up to 40 Hz. So, applying a band-

pass filter with 10 Hz cut-off frequency should also be avoided.  

Table 5.2 Basic settings that are used at evaluation of filtering and normalization on 
time and time-frequency domain signals 

Sampling Period 100-600 ms 

Selected Channels 9,11,13,34,49,51,53,56,60,62 

Repetition Number 15 

Feature Size Reduction None 

Classification SVM 

 

Table 5.3 Configurable settings that are used at evaluation of filtering and 
normalization on time and time-frequency domain signals  

Filter Type None / Chebyshev Type-I (0.1 – 10 Hz, 8th order) 

Feature Type Time Domain / Time Frequency Domain 

Normalization Gaussian / Simple 

SVM Control Parameters C,σ 
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Table 5.4 Success rates of filtering and normalization options on time and time-
frequency domain signals 

Domain Filtering Normalization C σ Success 

Time Disabled Gaussian 110 55 %82.62 

Time Enabled Gaussian 110 55 %83.21 

Time Disabled Simple 120 25 %82.66 

Time Enabled Simple 120 25 %82.9 

Time-Freq. Disabled Gaussian 110 140 %77.86 

Time-Freq. Enabled Gaussian 110 140 %77.78 

Time-Freq. Disabled Simple 110 40 %80.24 

Time-Freq. Enabled Simple 110 40 %79.01 

 

Kaper [24] and Erdoğan [29] did not use down-sampling in their studies. So, effect 

of down-sampling is also analyzed using the maximum success rate configuration 

given in Table 5.4. In this configuration, transformation domain is Time, filtering is 

enabled and Gaussian normalization is applied. SVM parameters are optimized 

independently for each configuration and results are given in Table 5.5. Note that 

down-sampling actually slightly improved success rate.  

Table 5.5 Effect of down-sampling on performance 

Down-sampling Feature Size C σ Success 

Skipped 1200 110 140 %83.02 

Applied 200 110 55 %83.21 

 

5.2 Selecting Channels  

Optimum channel subset is searched for time and time-frequency domain signals. 

Channels are selected according to their classification performances. First, the 
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channel with best classification performance is selected. Then, rest of the channels 

is considered and the one giving the best classification performance when 

concatenated to previously selected channel is selected. Channels are sorted by 

concatenating all remaining channels one by one with previously selected ones until 

32 out of 64 channels are sorted. Both SVM and AdaBoost methods are used to find 

out classification performance at channel selection. AdaBoost results are obtained 

with the weak classifier CART. Overview of the channel selection methods are 

given in Figure 5.3. 

 

Figure 5.3 Schematic of channel selection methods  

AdaBoost classification parameters do not depend on data set. However, as it is 

seen from section 5.1, SVM parameters highly depend on data set. Parameters 

obtained at section 5.1 are used for SVM classification. Error is plotted according to 

the equation given in (5-6) for each number of selected channels and optimum 

number of channels to be used is selected accordingly in the following sections.  

Channel selection completion time is also given for each configuration. PC used for 

channel selection has dual core 3.00 GHz CPU and 4 GB RAM. 
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5.2.1 Time Domain and AdaBoost Channel Selection 

AdaBoost channel selection order for Time Domain signals is given in Table 5.6. 

Completion of 32 channel selection takes 124 hours or equivalently 5.17 days. First 

10 channels are shown in Figure 5.4. 

Table 5.6 Selected channels for Time Domain and AdaBoost configuration 

Order 1 2 3 4 5 6 7 8 

Channel ID 9 56 51 60 6 17 28 18 

Order 9 10 11 12 13 14 15 16 

Channel ID 62 46 55 61 14 44 49 38 

Order 17 18 19 20 21 22 23 24 

Channel ID 7 52 21 58 27 1 20 3 

Order 25 26 27 28 29 30 31 32 

Channel ID 2 29 40 47 50 35 30 41 
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Figure 5.4 Selected 10 channels for Time Domain and AdaBoost configuration  

Figure 5.5 shows that using first 12 channels is sufficient and adding more channels 

actually does not improve the result. QER is 0.33 for first 10 channels and 0.323 for 

first 12 channels. 
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Figure 5.5 Quality Error Rate vs. number of selected channels for Time Domain and 
AdaBoost configuration 

5.2.2 Time Domain and SVM Channel Selection 

SVM channel selection order for Time Domain signals is given in Table 5.7. 

Completion of 32 channel selection takes 12 hours. First 10 channels are shown in 

Figure 5.6. 

Table 5.7 Selected channels for Time Domain and SVM configuration 

Order 1 2 3 4 5 6 7 8 

Channel ID 10 60 51 56 3 64 18 54 

Order 9 10 11 12 13 14 15 16 

Channel ID 59 63 45 49 58 61 55 42 

Order 17 18 19 20 21 22 23 24 

Channel ID 4 6 9 53 17 1 19 40 

Order 25 26 27 28 29 30 31 32 

Channel ID 12 26 34 16 46 21 48 32 
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Figure 5.6 Selected 10 channels for Time Domain and SVM configuration 

Figure 5.7 shows that using first 22 channels is sufficient. QER is 0.273 for first 10 

channels and 0.226 for first 22 channels. 
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Figure 5.7 Quality Error Rate vs. number of selected channels for Time Domain and 
SVM configuration 

5.2.3 Time-Frequency Domain and SVM Channel Selection 

SVM channel selection order for Time-Frequency Domain signals is given in Table 

5.8. Completion of 32 channel selection takes 52 hours. First 10 channels are shown 

in Figure 5.6. 

Table 5.8 Selected channels for Time Domain and SVM configuration 

Order 1 2 3 4 5 6 7 8 

Channel ID 11 60 18 52 56 41 62 58 

Order 9 10 11 12 13 14 15 16 

Channel ID 48 54 40 59 8 42 64 9 

Order 17 18 19 20 21 22 23 24 

Channel ID 55 61 25 17 10 51 63 1 

Order 25 26 27 28 29 30 31 32 

Channel ID 16 46 2 3 57 7 44 13 
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Figure 5.8 Selected 10 channels for Time-Frequency Domain and SVM 
configuration 

Figure 5.7 shows that using first 21 channels is sufficient. QER is 0.31 for first 10 

channels and 0.285 for first 21 channels. 
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Figure 5.9 Quality Error Rate vs. number of selected channels for Time-Frequency 
Domain and SVM configuration 

5.2.4 Time-Frequency Domain and AdaBoost Channel Selection 

Time-Frequency Domain and AdaBoost channel selection configuration is skipped 

due to the expected completion of 32 channels selection time. Length of Time-

Frequency Domain features are 5 times more than Time Domain features. AdaBoost 

channel selection linearly increases with data length. So, expected completion time 

of Time-Frequency Domain and AdaBoost channel selection is 124*5 = 620 hours, 

or equivalently 25.83 days.  

Effects of skipping Time-Frequency Domain and AdaBoost channel selection is 

analyzed in 5.2.5. 

5.2.5 Evaluation of Channel Selection Methods 

Classification performances of 10 channels used by Kaper et al. [24] and Erdoğan et 

al. [29] are used as reference while evaluating channel selection methods. 

Classification results for 10 channels and optimum number of channels are 

compared with reference results. Performances are evaluated in terms of both 
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averaged CV results on train set and classification results on test set. Error rates are 

calculated according to (5-4). Results are given in Table 5.9. 

Table 5.9 Classification results of channel selection methods 

Channel Selection 

Method 

No of 

Channels 

Domain Classifi-

cation 

Train 

Error 

Test 

Error 

Reference [24], [29] 10 Time SVM 0.1679 0.1317 

SVM & Time 10 Time SVM 0.1571 0.1214 

SVM & Time 22 Time SVM 0.127 0.1618 

Reference [24], [29] 10 Time-Freq. SVM 0.1976 0.1692 

SVM & Time-Freq. 10 Time-Freq. SVM 0.1948 0.163 

SVM & Time-Freq. 21 Time-Freq. SVM 0.1798 0.1798 

Reference [24], [29] 10 Time AdaBoost 0.2064 0.1852 

AdaBoost & Time 10 Time AdaBoost 0.2035 0.1865 

AdaBoost & Time 12 Time AdaBoost 0.1941 0.1839 

 

When 10 channel classification results are analyzed, it is seen that performance is 

improved at SVM and Time channel selection method, slightly improved at SVM 

and Time-Frequency channel selection method and not changed at AdaBoost and 

Time channel selection method with respect to reference channels. When optimum 

channel number classification results are analyzed, it is seen that train errors at all 

methods are decreased. However, test error is only decreased at AdaBoost and Time 

channel selection method. Test error is increased at the methods that use SVM. This 

shows that there is an overfitting problem for SVM that can not be prevented even 

with cross-validation. The reason for this may be due to SVM parameters (C,σ) that 

are optimized for 10 channels. When channel length is increased, SVM may not 

model the data set with the given parameters. On the other hand, AdaBoost has no 

parameter to be adjusted for data set and so less vulnerable to overfitting problem. 

To evaluate channel selection methods more accurately, train and test errors vs. 
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number of selected channels are plotted. Results are given in Figure 5.10, Figure 

5.11 and Figure 5.12. 
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Figure 5.10 Train and test error rates vs. number of channels for Time Domain and 
AdaBoost channel selection 
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Figure 5.11 Train and test error rates vs. number of channels for Time Domain and 
SVM channel selection 
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Figure 5.12 Train and test error rates vs. number of channels for Time-Frequency 
Domain and SVM channel selection 

In Figure 5.10, AdaBoost and Time channel selection method train and test error 

behaviors are similar. On the other hand, in Figure 5.11 and Figure 5.12, train and 

test error behaviors are different. Train error bottom point is around 20 channels and 
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test error bottom point is around 10 channels. Test error behavior is as expected 

since SVM parameters (C, σ) are already optimized for 10 channels. However, there 

is an overfitting problem in train set. Because of that, SVM can not be used for 

optimizing number of channels. AdaBoost is better while determining number of 

channels to be used, but its classification performance is not as good as SVM. SVM 

classification performance is measured with channels selected with AdaBoost to 

decide whether it is sufficient to use only AdaBoost channel selection method and 

results are given in Table 5.10. 

Table 5.10 Comparison of AdaBoost and SVM Classification performances 

Channel Selection 

Method 

No of 

Channels 

Domain Classification Train 

Error 

Test 

Error 

Reference [24], [29] 10 Time SVM 0.1679 0.1317 

AdaBoost & Time 10 Time AdaBoost 0.2035 0.1865 

AdaBoost & Time 10 Time SVM 0.1782 0.1404 

SVM & Time 10 Time SVM 0.1571 0.1214 

 

SVM classification performance is better than AdaBoost even with channel set 

selected with AdaBoost. But, AdaBoost and Time channel selection performance is 

worse than reference channels. So, channels selected using AdaBoost are not 

suitable for SVM. 

Considering all these, we propose the 3 step approach for channel selection:  

1 Deciding number of channels to be used via AdaBoost  

2 Optimizing SVM parameters using channels selected by AdaBoost 

3 Selecting channels with optimized SVM parameters.  

12 channels are decided to be optimum at AdaBoost and Time channel selection. 

SVM channel selection is already optimized for 10 channels, so results can be 
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directly used without reselecting channels. SVM and Time channel selection results 

for 12 channels are given in Table 5.11. SVM classification results are improved by 

using 12 channels. 

Table 5.11 Comparison of 10 and 12 channels selection performance with the 
proposed 3 step approach 

Channel Selection 

Method 

No of 

Channels 

Domain Classification Train 

Error 

Test 

Error 

Reference [24], [29] 10 Time SVM 0.1679 0.1317 

SVM & Time 10 Time SVM 0.1571 0.1214 

SVM & Time 12 Time SVM 0.1512 0.1143 

 

Another important result of Figure 5.11 and Figure 5.12 is the similarity in both 

train and test error characteristics. Main difference is the values of the error rates. 

Classification performance of Time-Frequency Domain signals is worse than Time 

Domain. Time-Frequency Domain brings extra computational cost without 

improving the performance. That is why, it is not reasonable to use this domain and 

optimum channel number search is not necessary for this domain. Note that Time-

Frequency Domain and AdaBoost channel selection method is needed only to 

determine the number of channels to be used, and it is skipped due to the reasons 

explained above. 

So, 12 channels (see Figure 5.13) selected by Time Domain and SVM channel 

selection method is used, since it gives the best performance. Channels placed on 

center and rear part of the skull are selected in this configuration. 
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Figure 5.13 12 channels selected by Time Domain and SVM channel selection 
method 

Configuration parameters that are determined up to now are summarized in Table 

5.12. 

Table 5.12 Fixed configuration parameters after channel selection 

Sampling Period 100-600 ms, 40 Hz down-sampled 

Selected Channels 3, 10, 18, 45, 49, 51, 54, 56, 59, 60, 63, 64 

Filter Type Chebyshev Type-I (0.1 – 10 Hz, 8th order) 

Feature Type Time Domain 

Normalization Gaussian 

Classification SVM (C=110,σ=55) 
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5.3 Reducing Dimension of the Features 

Feature dimension is already reduced 6 times at down-sampling. In this section, the 

effect of further reducing dimension of features is analyzed. PCA and AdaBoost 

feature selection methods are used at analysis. CART is used as the weak classifier 

of the AdaBoost. Overview of the analysis method, which uses the fixed 

configuration parameters given in Table 5.12, is given in Figure 5.14. 

 

Figure 5.14 Schematic of dimensionality reduction methods 

PCA does not reduce the number features used as input to the system when it is 

used for dimension reduction. PCA reduces the dimension through a transformation 

at an intermediate step. That is, PCA must be applied to both train and test set 

feature vectors. Also, PCA does not consider class labels in data set while reducing 

dimension. On the other hand, AdaBoost is a feature selection method. So, the 

number of features used as input to the system can be reduced by AdaBoost. That 

is, once subset of features are determined at training, train and test set features are 

easily created by getting rid of unselected features without any calculation effort. 
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Besides, AdaBoost selects features by taking into account discriminative properties 

of classes. 

5.3.1 Dimensionality Reduction Using PCA 

PCA eigenvalue ratio which is calculated according to Equation (4-2) is given in 

Figure 5.15. First 100 and 160 features contain 99.5% and %99.97 of the data 

respectively. So, there are correlated features in feature vectors.  
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Figure 5.15 Percentage of information kept (r) vs. number of feature components 
included (p) for selected 12 channels 

In Figure 5.16, train and test error rates vs. number of selected features are given. 

As expected, eigenvalue ratio and error characteristics are similar. First 160 PCA 

features contain all of the information and give same classification results with 

using all features. 
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PCA Feature Dimension Reduction
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Figure 5.16 PCA dimension reduction results 

5.3.2 Dimensionality Reduction Using AdaBoost 

AdaBoost dimension reduction results are given in Figure 5.17. Error rates are first 

decreasing and then saturating with increasing number of features. Minimum error 

rate is observed when all features are selected. So, reducing the feature number 

increases error rate. 
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AdaBoost Feature Dimension Reduction
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Figure 5.17 AdaBoost dimension reduction results 

5.3.3 Evaluation of Dimensionality Reduction 

When error rates given in Figure 5.16 and Figure 5.17 are compared, it is seen that 

AdaBoost feature selection results are better for less than 120 features and PCA 

feature selection results are better for more than 120 features. PCA assumes that 

features with larger variances contain more important information and reduces data 

with this principle. Note that PCA is a transformation method and it successfully 

eliminates correlated features. Since first 100 PCA features already contains 99.5% 

of the data variance, eliminating rest of the features removes correlation. On the 

other hand, AdaBoost selects features using discriminative properties of classes. 

Since features with smaller variance can also contain valuable information while 

separating classes, AdaBoost is more powerful at smaller number of features. 

However, AdaBoost gains less information with increasing number features because 

it does not transform features. 

AdaBoost always loses some information because error rates are increased with 

AdaBoost dimensionality reduction. However, PCA reduces feature size by 80 

without losing performance by getting rid of correlated variables. In order not to 
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increase error rates, PCA is selected as dimensionality reduction method with 

feature size 160. 

If one needs to further reduce the dimension of the features, it can combine 

powerful sides of both methods by first applying PCA and getting rid of correlated 

data and then applying AdaBoost to further reduce data size. 

5.4 Classifying Features and Deciding Focused Characters 

Superiority of SVM over AdaBoost is already shown during channel selection. 

Because of that, only SVM is used while classifying features. Target (or focused) 

characters are selected based on voting according to soft margin outputs of SVM. 

There are total 42 characters in train set and 31 characters in test set provided in 

[20]. Trained SVM is both tested on 42 character train set and 31 character test set. 

Performance is measured by dividing correctly classified target characters to total 

character numbers. Results are given for both reference channels used by Kaper 

[24] and 12 channels selected by SVM in time domain. Performance of target 

character detection is measured for repetition numbers from 1 to all. Repetitions are 

selected in chronological order. In Figure 5.18, results of train set and reference 

channels are given. In Figure 5.19, results of train set and 12 channels selected by 

SVM are given. In Figure 5.20, results of test set and reference channels are given. 

In Figure 5.21, results of test set and 12 channels selected by SVM are given.  

When Figure 5.18 and Figure 5.19 are compared, it is seen that selected channels 

give better performance results than reference channels. Note that a character is 

always misclassified by both channel sets. Character ‘G’ is always found instead of 

‘H’ in second “HAT” word of train set. This character can be dismissed from train 

set. Erdoğan [29] already constructed train set with 39 characters and did not use 

this misclassified character.  
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Train Set Performance for Reference Channels
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Figure 5.18 Performance vs. repetition number results for reference channels on 42 
character train set 

Train Set Performance for 12 Channels Selected by SVM
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Figure 5.19 Performance vs. repetition number results for selected 12 channels on 
42 character train set 

Results given in Figure 5.20 and Figure 5.21 also show that performance of selected 

channels is better than reference channels. In Figure 5.20, a character is 

misclassified for repetitions 7, 8 and 10. Kaper [24] and Erdoğan [29] reported 
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%100 performance for these repetitions. There are numerous factors, such as 

randomly selected train set and soft margin outputs of SVM, that may affect the 

performance results. However, only variable is channel subset in the experiment 

and thus comparison of channel sets are done under same conditions. 

Test Set Performance for Reference Channels
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Figure 5.20 Performance vs. repetition number results for reference channels on 31 
character test set 
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Test Set Performance for 12 Channels Selected by SVM
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Figure 5.21 Performance vs. repetition number results for selected 12 channels on 
31 character test set 
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CHAPTER 6  

 

CONCLUSIONS  

In this thesis, Spelling Paradigm, a specific implementation of BCI, is studied. P300 

signals are collected from different parts of the brain. Using all collected data slows 

down the system and increases the noise level because P300 response does not exist 

at same intensity at all regions of the brain. Channel subset that contains relevant 

data with minimum noise is searched. AdaBoost with the weak classifier CART and 

SVM classification methods are used in this study. Besides, P300 responses are 

analyzed in time and time-frequency domains. Best subset of channels is analyzed 

for the combinations of classification and transformation domain methods. Since 

SVM parameters (C, σ) depend on data set, it needs optimization before starting the 

analysis. So, number of channels to be used and a channel subset is required before 

starting the analysis. Using a reference subset of channels can not solve this 

problem, because although SVM gives successful results around the region that its 

parameters are optimized, it loses its learning ability at other regions and can not 

model data set properly. On the other hand, AdaBoost does not require parameter 

optimization for each subset of data and suitable to detect optimum subset of 

channels. However, AdaBoost with the weak classifier CART classification 

performance is worse than the optimized SVM and so it is wise to select SVM as 

primary classification method of the system. Success of SVM classification with 

channels selected by AdaBoost is analyzed and it is seen that SVM is more 

successful if channels are also selected by SVM. So, AdaBoost is better while 

deciding number of channels to be used and SVM is better at classification. Strong 

sides of both methods are combined while selecting channels by deciding number of 



88 

channels to be used via AdaBoost channel selection method and optimizing SVM 

with the channel subset selected with AdaBoost and reselecting channels with 

optimized SVM parameters. 

P300 signals are analyzed in time and time-frequency domains. Filtering and 

normalization methods that best suits for these domains are analyzed. It is decided 

to use time domain with filtering and Gaussian normalization and time-frequency 

domain without filtering and simple normalization. Since signals already exist in 

time domain, no transformation is required for time domain analysis. To transform 

time domain signals into time-frequency domain, WVD is used. Frequency band of 

WVD output is divided according to the types of brain waves namely delta, theta, 

alpha, beta, and gamma. Averages of WVD for each brain wave type are calculated 

and results are concatenated to create feature vectors. Since there are five brain 

wave types, feature vector size is five times of the one obtained from time domain. 

After channel selection analysis is done, it is observed that time domain is both 

cheaper in terms of computational effort and better in terms of classification. So, 

time domain is preferred as the primary transformation domain.  

In time domain, AdaBoost selects 12 as the optimum number of channels to be 

used. 12 channels selected by SVM are 3, 10, 18, 45, 49, 51, 54, 56, 59, 60, 63, and 

64. Classification results are compared with 10 reference channels used by Kaper 

[24], and Erdoğan [29]. Train and test errors are found to be 0.1679 and 0.1317 

respectively for reference channels and 0.1512 and 0.1143 respectively for 12 

selected channels. So, channel selection method improved the classification 

performance of the system. 

Dimension is tried to be reduced without decreasing the success of the 

implementation. 100 – 600 ms period after intensification is used for each channel. 

Since signals are sampled at 240 Hz, there are total 120 features for each channel. 

Total feature size becomes 1440 for 12 channels. This increases training time and 

also may cause memory errors with the increasing number of samples. It is shown 

that downsampling signals to 40 Hz do not cause information loss at all. Also, PCA 

and AdaBoost with the weak classifier CART dimension reduction methods are 
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analyzed. PCA successfully eliminates correlated data. However, it is not as 

successful as AdaBoost if feature size is further reduced. This due to the fact that 

AdaBoost takes into account discriminative properties of classes, but PCA does not 

consider this information. AdaBoost dimension reduction always increases error 

rates in comparison to full set and not preferred. PCA reduces feature size up to 160 

without any information loss. So, PCA is selected as dimension reduction method. 

If further dimension reduction is needed, then information loss should be minimized 

by first getting rid of correlated features by PCA and then applying AdaBoost to the 

feature set already reduced by PCA. 

As it is stated before, SVM is used for labeling test set feature vectors due to its 

superior performance over AdaBoost with the weak classifier CART. Margin 

outputs of SVM are used while selecting target rows and columns. Then target 

character is decided combining target rows and columns. Effect of reducing 

repetition numbers on performance of system is also analyzed and it is seen that 12 

channels selected by SVM in time domain gives also better results. 

Note that since brain signals up to 40 Hz are required for time-frequency analysis, 

downsampling frequency is selected to be 40 Hz in this study. Results already show 

that time domain features are preferred against time-frequency domain signals. So, 

downsampling frequency can be further reduced and information loss can be 

analyzed. 

In this study, CART is used as the weak classifier of the AdaBoost. Different weak 

classifiers can be analyzed to improve the classification and dimension reduction 

performance of the AdaBoost. If AdaBoost with another weak classifier gives better 

classification results than SVM, then it can be used at classification step in addition 

to the decision of the number of channels to be used. That is, the necessity to use 

SVM can be eliminated by improving the classification performance of the 

AdaBoost. 

In this study, rows and columns are processed together. Effects of separating rows 

and columns while processing signals can be analyzed. 
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In this study, standard filter is used at preprocessing step. Adaptive filters such as 

Wiener filter can be implemented. 
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APPENDIX A  

 

MATHEMATICAL BACKGROUND  

Variance 

Definition:  

( )( ) ( ) ( )( )222)( XExEXEXEXVar −=−=  (A-1) 

Emprical:  
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where µx is the mean of X. 

Covariance 

Definition:  
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Emprical: 
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Covariance is measured between two dimensions. 
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Properties: 

• ( )XVarXX =),cov(  

• ( )XYYX ,cov),cov( =  

• If X and Y are uncorrelated, 0),cov( =YX . 

That is, X and Y are independent. 

• If X and Y are correlated, 0),cov( >YX . 

That is, X and Y both increase and decrease together. 

• If X and Y are anti-correlated, 0),cov( <YX . 

That is, if X is increasing, then Y is decreasing and vice versa. 

Correlation 

yx

YX
YXcor

σσ
),cov(

),( =   (A-5) 

1),(1 ≤≤− YXcor   (A-6) 

Covariance Matrix 

( )( )
jijiji

nn DimDimccC ,cov, ,, ==× ,  (A-7) 

where nnC × matrix has n rows and n columns and Dimx is the x’th dimension. 

3 dimensional data set example where x, y, z denotes a dimension: 
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Eigenvector and Eigenvalue 

Given a linear transformation A, a non-zero vector x is defined to be an eigenvector 

of the transformation if it satisfies the eigenvalue equation; 

xAx λ=   (A-9) 

for some scalar λ. In this situation, the scalar λ is called an eigenvalue of A 

corresponding to the eigenvector x. 

 


