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ABSTRACT 

 

 

COMPETITION AND COLLABORATION IN SERVICE PARTS 

MANAGEMENT SYSTEMS 

 

 

 

Usta, Meriçcan 

M.Sc., Operational Research Program in Industrial Engineering Department 

Supervisor      : Assoc. Prof. Dr. Yaşar Yasemin Serin 

Co-Supervisor: Asst. Prof. Dr. Seçil Savaşaneril Tüfekçi  

                                       

December 2010, 126 pages 

 

 

 

Inventory management policies of two independent dealers in a service parts system 

with transshipment is studied in this thesis. Dealers can collaborate by pooling 

inventory or service. Revenue is shared in transshipment, can sometimes be contrary 

to profit maximization of one of the parties albeit sum of profits is increased. To 

assess the benefits of inventory pooling under equilibrium strategies, and the effect 

of competition on profits, a Markov Decision Process is formulated. A simpler 

variant of the optimal four-index threshold policy is used to characterize the 

production, service and transshipment related inventory decisions. A game 

theoretical approach as well as notions from policy iteration is taken to find the best 

response policy and equilibrium policies of the dealers. Numerical study is 

conducted to investigate the effect of cost, revenue and demand parameters, as well 

as dealer asymmetricities on benefit of pooling, service levels and transshipment 

flows. Analysis shows that commission schemes fairly allocating transshipment 

value to the players, high customer traffic intensities, and low transshipment costs 

are most suited environments for pooling. System centralization is beneficial when 

the inventory holding costs are high, transshipment costs are low, customer traffic 
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intensities are high or the commission structure is distracting a party. Competition, 

within the experimental settings, dampens about 45% of the benefits of pooling. 

 

 

Keywords: spare parts management, decentralized inventory pooling, centralized 

inventory pooling 
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ÖZ 

 

 

YEDEK PARÇA YÖNETİM SİSTEMLERİNDE REKABET VE İŞBİRLİĞİ 

 

 

Usta, Meriçcan 

Yük. Lisans, Endüstri Mühendisliği Bölümü Yöneylem Araştırması Programı 

Tez Yöneticisi           : Doç. Dr. Yaşar Yasemin Serin  

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Seçil Savaşaneril Tüfekçi 

 

                                        Aralık 2010, 126 sayfa 

 

 

 

Bu tezde, bir yedek parça sistemindeki iki bağımsız, birbirleriyle stok ve hizmet 

alışverişi yapabilen bayilerin stok yönetim politikaları incelenmiştir. Bayiler bu 

alışveriş ile bir bakıma işbirliği yapar. Ancak bu işbirliği, gelir paylaşımını 

gerektirdiğinden, rekabetin öngördüğü bireysel kâr eniyilemesiyle çelişebilir. Denge 

politikalar üzerinden havuzlamanın ve rekabetin sistem kârlılığına etkisinin 

bulunması amacıyla bir Markov Karar Süreci formüle edilmiştir. Üretim, servis ve 

alışveriş kararlarını karakterize etmek için 4 parametreli bir stok yönetim 

politikasının basitleştirilmiş bir formu kullanılmıştır. Oyun teorisi ve sabit nokta 

iterasyonundan yararlanılarak en iyi tepki ve denge hesaplanmıştır. Sayısal analiz 

yoluyla, maliyet, gelir, talep parametrelerinin ve bayi asimetrisinin havuzlama 

getirisine, servis düzeyine ve bayiler arası parça akışlarına olan etkisi incelenmiştir. 

Havuzlama getirisini adil dağıtan komisyonların, yüksek talep trafiğinin ve düşük 

havuzlama maliyetlerinin havuzlama için en uygun ortamlar olduğu gözlenmiştir. 

Sistem merkezileşmesinin yüksek taşıma maliyeti, havuzlama maliyeti ve 

komisyonun bayilerden birinin havuzlamaya katılımını engelleyen miktarda olması 

durumunda faydalı olduğu görülmüştür. Deney uzayındaki örnekler üzerinde, 
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rekabetten kaynaklanan kayıpların merkezi sistemde elde edilebilecek havuzlama 

kazancının yaklaşık %45 ine denk geldiği saptanmıştır. 

 

 

Anahtar Kelimeler: yedek parça yönetimi, merkezi olmayan envanter havuzlaması, 

merkezi envanter havuzlaması 
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CHAPTER 1 

 

INTRODUCTION 

 

 

After-sales services, spare parts dealership associated to it, is a very profitable 

business area for companies involved in the production of expensive and complex 

repairable equipments. Mentioned in Kim et al. (2006), General Motor’s $9B in 

after-sales revenues produced $2B in profits, which is a much higher rate of profit 

than its $150B in car sales generated over the same time period. After-sales services 

and parts contribute only 25 % of revenues across all manufacturing companies but 

are often responsible of 40 % - 50 % of profits.  

Spare parts have considerable economical implication, since the costs associated to 

these items and prices of the items are very high. Furthermore, they have strategic 

importance, due to the indispensability of the items. For example, about 10% of the 

US military aircrafts are grounded, waiting for a failed repairable-item to be replaced 

at any point of time (Jung et al., 2003). The commercial aviation industry alone has 

as much as 44 billion dollars worth of spare parts in stock (Karsten et al., 2009). 

Full utilization of this profit potential out of this strategic, high-value market is not so 

easy. Difficulties of operating a service parts vendor arise from the service level-

inventory trade-off: parts under concern are high in value and customers demand 

prompt service to cover their economic losses as soon as possible. Replenishment 

times are much more variable than it was previously due to increasing globalization 

in supply. Spare parts dealers also have the challenge to meet customer demands 

with minimal backorders in order not to face loss of goodwill, ever gaining 

importance with the fast advent of global competition. In other words, they have to 
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ensure enough part availability and hence provide high service levels. But having 

high service levels in a naïve fashion means capital wasted on unnecessary inventory. 

Moreover, the demand nature is usually very uncertain as demand is triggered 

through infrequent equipment failures from very large number of sources. Dealers 

thus face the hard task of managing their inventory effectively in an uncertain 

environment. The task of the dealer is to obtain high profits while keeping both 

goodwill losses and inventory costs low at the same time. 

Dealer networks should be designed to meet customer demand for convenience, 

which is best at many small dealers. Network designers also have some concerns to 

reduce transportation/material handling costs, lead time and hence reduce the 

inventory pipeline and corresponding safety stocks, which merely requires the dealer 

network consist of few large locations to benefit from demand aggregation and 

economies of scale. As the demand is becoming more and more geographically 

dispersed with globalization, the pressure for a dispersed dealer network is felt more. 

This makes transportation costs a critical concern in effective dealer network design.  

Interest in the subject of supply chain management (SCM) and SCM research has 

steadily increased since the 80’s with the widespread use of IT in corporate 

operations: once practically not-available information -within the relevant time 

frame- became available and communicable, search for efficient policies/strategies 

with the help of so-called decision support systems, mathematical 

models/simulations, affordable. Both with the aid of widespread use of SCM tools 

and outputs of SCM research, companies started to see new feasible ways of 

collaborative relationships within and beyond their own organization.  

Especially to cope with demand uncertainty, SCM scientists and experts started to 

propose lateral transshipments, institutionalized in the past by the airline industry
1
 as 

a way to ensure spatial flexibility and lower levels of inventories along with 

sustained service levels (Satır et al., 2010). Lateral transshipment is defined as the 

 
 
1
 Back in the 1960s there was a lot of fleet commonality between European airlines, which provided a 

foundation for two maintenance consortiums called KSSU and Atlas (Kilpi et al. [2004]). 
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redistribution of stock from retailers with stock on hand to retailers that cannot meet 

customer demands or to retailers that expect significant financial losses due to high 

supply risk (Tagaras, 1999). If retailers who are subject to long replenishment lead 

times from suppliers are located closer to each other or spend significant funds on 

construction and operation of storage facilities to prevent stock-out, a lateral 

transshipment policy can be used as an effective alternative to minimizing total cost.   

With the development of third party logistics operations, transshipment methods 

have improved in terms of speed and cost, and information systems in spare parts 

networks are enhanced. As a result, the cost of inventory and information sharing has 

been reduced and inventory pooling is becoming ever more attractive for after-sales 

service providers in spare parts networks (Satır et al., 2010). 

To remind readers from the very beginning, it shall be noted that the words inventory 

pooling, lateral transshipment and transshipment will be used synonymously 

throughout the text. 

There are quite many sound applications of lateral transshipments in practice. A 

classical example is the Saturn Corporation which re-constructed its service parts 

supply chain (Cohen et al., 2000). The key component in this process is pooling of 

the component inventories. Dealers that are in close proximity with each other are 

formed into groups such that if one of the dealers is out of stock, upon a demand 

arrival a part would be transshipped from another dealer in the group. In case of a 

lateral transshipment, a full reimbursement is made to the sending dealer. If the item 

does not exist in the group, dealer requests the part from Saturn. Pooling the 

inventory resulted in significant savings in the inventory holding costs while 

improving the service levels. Indeed, Saturn consistently ranks among the top ten 

brands of automobile manufacturers for supply-chain service, comparing favorably 

with luxury automobiles such as Lexus, Infiniti and Acura. Another example is 

ASML, an original equipment manufacturer in the semiconductor industry 

(Kranenburg and Van Houtum, 2009).  Implemented since early 2005 between 

groups of component warehouses as in Saturn, they were able to achieve up to 50% 

reduction in their spare parts provisioning costs by efficient use of lateral 

transshipments, while keeping the service at the same level. With time, ASML 
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obtained lower waiting times than it even anticipated, since actual performance 

further increased because of the lateral transshipment option being applied also 

within their upper echelon, so-called main local warehouses. A set of various other 

examples are reported by Narus and Anderson (1996). Volvo GM has contracted 

with Fed-Ex to provide its dealers with emergency transshipments: three warehouses 

were now obsolete and total inventory was reduced by about 15%, further benefits 

are accrued by demand aggregation. Japanese machine tool builder Okuma has built 

a shared information-technology system called Okumalink, keeping distributors 

informed about the location and availability of machine tools and parts in another 

and also central warehouses in Charlotte and Japan. At will, an Okuma distributor 

can contact other distributors or the central warehouses through Okumalink to 

negotiate transshipment of available parts in other distributors or can get guaranteed 

transshipments within a day.  

Dealer inventory transshipment systems similar to the Okuma’s have been 

implemented also at a number of overall equipment manufacturing/after-sales service 

companies, including Caterpillar, John Deere, General Motors, etc. (Zhao et al., 

2006). There are reportedly similar systems in Turkey as well: TOFAŞ and Borusan 

Otomotiv are also known
2
 to operate with an information system that enables all of 

its dealers throughout Turkey to see whether there are stocks on all other dealers as 

well as the central warehouse inventory: dealers are able to negotiate transshipment 

of parts.  

Systems involving independent decentralized dealers, some discussed above, share a 

common characteristic of negotiation between dealers. Dealers may act with self-

interest to deny transshipment requests at that specific time and at negotiated price 

intervals, if they believe that the given-away inventory would meet higher margin 

customer demand. They might not like to agree on receiving a part via transshipment 

if receiving an item has a very low profit margin for them. In order to encourage 

transshipment among the dealers, the manufacturer may provide monetary incentives 

 
 
2
 The information on TOFAŞ’s system is gathered through an interview with Kavaklıdere authorized 

after-sales service coordinator. Borusan’s system is learned through the Trabzon authorized service 

center manager. 
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to the transshipping dealer (Zhao et al., 2006). All in all, in the case of independent 

dealers, in other words independent companies, any individually rational company 

will only agree to pool their spare parts with other companies if doing so is 

anticipated to bring a positive net present value to it. This mere intricacy adds a layer 

of difficulty on an important portion of real-life applications of spare parts lateral 

transshipment: presence of competition might hinder some of the benefits of 

collaboration by availability of transshipment. 

1.1 MOTIVATION OF THE STUDY 

Examples above show evident attractiveness in the concept of inventory pooling and 

anticipated increasing number of practical applications of this concept in different 

types of spare parts networks. Common modes of decision making in spare parts 

dealer networks are centralized/collaborative decentralized or independent 

decentralized.  Centralized/collaborative decentralized decision making structure 

means all transshipment decisions are made under central command by a central 

decision maker maximizing system-wide profits.  

Independent decentralized decision making structure means all inventory 

management decisions as well as transshipment decisions are delegated to the dealers 

themselves that tend to maximize their sole profits. Therefore in this case, dealers 

have incentives to reject transshipment flows that would centrally be accepted. In 

other words, either of the parties can refuse transshipments that would be profitable 

from a central (i.e. sum of expected profits) perspective.  

Hence spare parts suppliers, when strategically deciding on enabling transshipment 

between dealers and if transshipments are enabled, when deciding to delegate 

transshipment-enabled dealership sales/procurement operations to their independent 

dealers or deciding to make them centrally operated, they should correctly assess the 

value eroded by competition: to what extent would the benefit of pooling erode in the 

supply chain in the long run because of dealer’s self interest? 

Independent dealers are also usually not equipped with sufficient information and/or 

decision support tools, hence can use naïve, evidently sub-optimal strategies such as 
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meeting the transshipment requests all the time or meeting them only if the stock 

level is very high, placing a request only in case of a stock-out, sharing only partial 

information on stock levels, and so on. They may not be able
3
 to share full 

information regarding their inventory levels even if they have incentive to truly 

report. 

We ignore the imperfections caused by irrational behavior and deliberate/accidental 

loss of information and assume we have rational dealers with full, common 

information all the time. Yet there are questions also regarding the dealers 

themselves: What policies should rational independent firms choose under 

equilibrium if transshipment is enabled? How should they adapt to changes in 

cost/revenue parameters, given they are acting for sole self-benefit? Suppliers would 

like to be more informed on the extent of value erosion by competition and gather 

valuable insights on the value of centralization.  

Both the dealer network designer and dealers are interested in the cost/revenue 

schemes under which either the benefits or the suggested extent of transshipment are 

considerable, both being indications to put weight on transshipment operations 

management and design. They are interested to know under which situations benefits 

of transshipment are so small that the net value can be eroded by the costs of 

implementing such schemes or the anticipated transshipment flows are so small that 

they can simply be regarded as a minor operation or a rare emergency. Thus, 

gathering insights on the benefit of pooling and long-run anticipated transshipment 

flows stands to be another interesting question. 

Dealership networks might be homogenous or heterogeneous in terms of their 

demand and supply characteristics, inventory holding costs (e.g. differences in 

opportunity cost of space) and backordering costs (e.g. drastically different customer 

bases). This dimension should also be taken into consideration. If the dealership 

network is so heterogeneous, say a very large dealer with very small others, the 

 
 

 
3
 Mismatches between calculated and real physical stock levels prevail even in reputable businesses 

that are adherents to ERP: like a business in the architectural glass processing industry in Turkey that 

the author participated in consulting. 
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transshipment relationship might be exploiting, resulting to prevailing commensalist, 

even sometimes parasitic relationships among dealers: some dealers would have very 

large benefits from pooling, some will see a very small benefit even after carefully 

prepared pooling schemes to avoid loss. Non-optimal behavior might mean some 

dealers are merely subsidizing others (Karsten et al., 2009).  

Motivated by the examples, questions and concerns above, this thesis focuses on the 

behavior of individual dealers in an even cost structure and symmetric uncertain 

demand/production timing environment. It looks upon the dynamics of the inventory 

sharing and rationing game between two dealers. Knowing that individual dealers’ 

inventory management decisions are mainly influenced by the transfer payment 

scheme (i.e. commission) and the transshipment cost this thesis focuses on the 

following issues: 

(i) How would the equilibrium policies be determined, and profitabilities, as 

well as service levels and transshipment flows be calculated? How would the 

benefits of pooling be assessed? 

(ii) How would the equilibrium policies, profitabilities, transshipment flow 

volumes, and service performances of a two independent symmetric (in terms 

of demand/supply structure and internal costs) transshipment-enabled dealer 

spare parts inventory system be affected by different cost and demand/supply 

structures? How are the benefits from transshipment dispersed through 

homogenous dealers under various commissions? 

(iii) What is the effect of asymmetricities in inventory holding costs, 

backordering costs and traffic intensities on transshipment benefits, 

equilibrium policies and transshipment flow volumes? How are the benefits 

from transshipment dispersed through heterogeneous dealers under various 

commissions? 

(iv) What is the effect of competition on profits, and how is it affected by various 

parameters (i.e. inventory holding cost, backordering cost and demand rate) 

given the fact that inventory pooling causes both collaboration –agents 

collectively increase their profitability- and competition in an independent 
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dealer context –since some of the revenue is shared (and lost due to 

transshipment costs) if inventory is transshipped-? 

1.2 OUTLINE OF THE STUDY 

There are detailed outlines in the beginning of each chapter and relevant sections for 

description of subsections. Without getting into technical detail, organization of the 

study is as follows: 

In Chapter 2, literature on inventory pooling in spare and service parts, inventory 

rationing, competition in spare parts management systems, collaboration among 

competitors in terms of spare parts supply is presented and this study is positioned in 

the literature. 

Chapter 3 (Model and Solution Approach), starts with clearly stating the 

mathematically modeled problem context and then fully describes the –numerical-

solution approach to conduct a numerical study described in Chapter 4. It also 

discusses computational results concerning the performance of the heuristic to fasten 

up the numerical solution algorithm.   

Chapter 4 (Computational Results), consists of four main sections (Sections 4.1, 4.2, 

4.3, 4.4), listing detailed findings -extensive graphs and interpretations- on the 

research focus questions stated at the end of Section 1.1. Section 4.1 introduces the 

parameter combination base of cases, as well a the performance measures on which 

the numerical results are obtained. Section 4.2 contains the findings for the 

symmetric competitive pooling –identical competing dealers-. Section 4.3 yields the 

results for the asymmetric competitive pooling -different arrival rates/traffic 

intensities, inventory holding and backordering costs are allowed-. Section 4.4 yields 

the results for centralized cooperative pooling. System-wide value is now maximized 

instead of dealers trying to give the best response maximizing their own self-interest 

given other dealer’s inventory management policy. Effect of competition is assessed 

in this section.  
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General conclusions, managerial insights and future research directions are given in 

Chapter 5. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

 

In this chapter, the studies in the literature that are related with this study are 

summarized. The subjects of the papers, research questions, their differences with the 

previous works, models built and main results are explained and this study is 

positioned in the literature. Emphasis is placed on studies that consider game theory 

applications in spare parts inventory management as well as on studies that 

characterize optimal/near-optimal policies of dealers under similar contexts. 

Under Sections 2.1, 2.2, 2.3 and 2.4, literature related to benefit of pooling is 

reviewed. Previous literature is categorized under those four headings, namely 

inventory pooling in spare parts inventory management (2.1), inventory rationing 

(2.2), collaboration among competitors in spare parts systems (2.3), and competition 

in spare parts management systems (2.4). 

Section 2.4, where the main emphasis is put upon, probes into the line of research on 

transshipment & inventory management with independent dealers. Main results of 

relevant studies are listed and discussed. It also tries to verbally describe what an 

optimal/near-optimal policy looks like for a similar, two independent dealer context 

that is studied in this thesis. In Section 2.5, this study is positioned in the cited 

literature, finalizing this chapter. 
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2.1 INVENTORY POOLING IN SPARE PARTS INVENTORY 

MANAGEMENT 

There are two crucial building blocks on the fundamentals of modern service parts 

management research area: namely the METRIC model (Sherbroke, 1968) and its 

mere modification MODMETRIC (Muckstadt, 1973). 

METRIC is a mathematical model of a two-echelon supply system in which item 

demand is compound Poisson with a mean value estimated by a Bayesian –hence an 

approximate- procedure and replenishments are done one-for-one, where 

minimization of back-order levels is aimed under a budget constraint. Muckstadt 

(1973)’s modification allows for bill of materials to be accommodated within the 

METRIC management system. Repairable parts are supplied through the upper 

echelon without transshipment. METRIC and MODMETRIC, which are well-

established, had found many applications in practice and had many modifications 

about its assumptions. A bibliography of related line of research is available in 

Muckstadt (2005) and Minner (2003a).  

 The first notable modification of METRIC model is by Lee (1987), where the author 

studies a multi-echelon system with identical retailers and transshipments for 

repairable items. If a retailer is out of stock, the demanded item is allowed to be 

sourced from another retailer within the same pooling group. Different priority rules 

for choosing the supplying retailer (random, retailer with maximum stock) are 

analyzed. Optimal stocking levels are determined subject to service level constraints 

(for the warehouse and retailers) on immediate and after transshipment fill rates.  

Axsäter (1990) extends Lee (1987) by allowing non-identical retailers. In both 

studies, time fractions where demand is backordered, met from stock or met through 

emergency transshipment are evaluated and compared to values obtained through 

numerical experiments.  

Erkip et al. (1990) have obtained general conditions under which inventory 

rebalancing (via transshipment) is required in a two-echelon system, allowing 

correlated demand. They find out that very large coefficients of variations for 
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demand and supply are needed to justify transshipments in a two-echelon, identical 

depot, discrete time setting with deterministic lead times. 

Alfredsson and Verrijdt (1999) present a two-echelon centralized model with 

emergency supply like Axsäter (1990), but now it is done either directly or via 

transshipments from other retailers. If parts are not available, direct shipments from 

the central warehouse, and if even this is not possible, direct shipments from the 

external supplier are allowed, as well as transshipments. Two main findings: 

emergency supply strategy always pays off and the performance is not sensitive to 

the lead time distribution. 

Herer et al. (2006) consider a centralized supply chain, which consists of several 

retailers and one supplier. The retailers, who possibly differ in their cost and demand 

parameters, may achieve system-wide optimal profits through replenishment 

strategies and transshipments. They consider order-up-to policies. They demonstrate 

that the values of the order-up-to levels can be calculated using a sample-path-based 

optimization procedure. Given an order-up-to policy, they formulate a linear network 

flow framework to assess transshipment levels, i.e. transshipment quantities per 

demand realization in the period and inventory state. They try to assess optimal 

order-up-to policy parameters, as well as average costs of an experimental test-bed 

via numerical analysis where correlations in demands are also prevalent. 

Kranenburg et al. (2009) model a real-life inventory control problem of ASML 

consisting of main and local warehouses. In this multi-item and multi-location 

system, where each local warehouse is clustered around a main warehouse, lateral 

transshipment is allowed from chosen main warehouses only. This type of pooling 

scheme is called as the partial-pooling situation. They show that partial-pooling 

captures almost all of the profits enabled by full possibility of transshipments and 

propose a heuristic algorithm to approximate base stock levels. 

Implemented since early 2005 in between groups of (not all) component warehouses, 

ASML was able to reduce their spare parts related costs by up to 50% by the efficient 

use of lateral transshipments, while keeping the service at the same level. With time, 

ASML obtained lower waiting times than it even anticipated, since actual 
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performance further increased because of the lateral transshipment option being 

applied also within their upper echelon, so-called main local warehouses. 

The last piece of research is emphasized since it is shedding light on the optimal or 

near-optimal policy sets. In van Vijk et al. (2009), the authors consider a two stock 

point, single product centralized spare parts inventory system with Poisson demand 

arrivals and exponential repair times, fixed number of parts in circulation and infinite 

repair capacity at each stock point. Demand can either be satisfied from own stock, 

transshipped with some penalty or via an emergency procedure with some penalty 

(can also be thought as lost demand), there are no backorders. Aim is to minimize 

average system-wide costs over an infinite horizon. The problem is formulated as an 

MDP (Markov Decision Process). Through monotonicity, super-modularity and 

convexity properties of the cost function, the authors show that the optimal policy is 

threshold-type. The authors provide certain sufficient (but not necessary) conditions 

which further simplifies those policies. Their results follow:  

(I) For a given stock level at the first stock point, demand at first stock point 

is open to be transshipped for sufficiently high levels of the second stock 

points’ inventory, the second stock point serves itself below that level. 

Below a threshold level, emergency procedure is used. 

(II) For a given stock level at the second stock point, demand at the first stock 

point is met from own stock if the stock is sufficiently high, else is 

transshipped. Below a threshold level, emergency procedure is used. 

(III) Symmetric cost structure always implies a policy with a transshipment 

enabling threshold level. Complete pooling is optimal if the lateral 

transshipment penalty/emergency penalty is lower than a certain level. 

(IV) Optimal lateral transshipment policy is either a hold-back/complete 

pooling policy at both locations or a complete pooling policy for at least 

one location (other location may be neither). If the hold-back condition 

does not hold at one location, the complete pooling condition is sure to 

hold at the other location.  
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A final result follows for a situation involving symmetric cost parameters but limited 

repair capacity: Range of cost parameters yielding benefit of pooling is narrower. 

Applicability of pooling is hand-in hand with availability of repair resources. 

2.2 INVENTORY RATIONING 

Transshipment makes the dealer face with multiple customer classes with different 

immediate revenue potentials, namely own customers, customers received via 

transshipment and customers forwarded via transshipment. The dealer hence faces 

the problem of proper inventory allocation among those multiple customer classes. 

This situation brings the inventory rationing concept. A good recent review 

concerning the literary taxonomy in inventory rationing area as a whole is Teunter 

and Haneveld (2008). 

One the very first papers that studies the rationing problem is Topkis (1968). He 

analyzes problems associated with an inventory system in which demands for stock 

are of any n classes of varying importance.  Procurement is only once made at the 

beginning, nevertheless the analysis is made by dividing the time between orders into 

large enough intervals, so that demand between each period are still independent. 

Aim is to minimize future expected costs. Two cases are considered: where 

backorders are allowed and where they are not, meaning that unsatisfied demand is 

lost. The author finds out that the optimal rationing policy can be expressed as  a  

non-negative critical rationing level  associated with  each demand class  such  that  

one  should  satisfy  as much  demand  of  a  given  class  as  possible  with  existing 

stock as long as there is no unsatisfied demand of a higher class remaining and  the  

stock  level  does not  drop below  the  critical rationing level  for that  class. In  each  

interval  these  critical  levels  are non-increasing functions  of  their  associated 

demand class. Author concludes the study with analysis on some myopic policies and 

gives conditions under which the myopic policies are optimal for multi-period 

model. 

A contemporary counterpart of the Topkis’ (1968) study is Ha (1997a). He considers 

stock rationing problem of a manufacturer of single item in make-to-stock system 
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with two demand classes. Demand is lost upon customer rejection. Optimal 

production policies (i.e. whether to continue production or stop production) and 

rationing policies (i.e. whether to serve customer or reject customer of first type) are 

investigated. Results show that rationing (threshold) levels for customer types are 

non-increasing with increasing penalties associated with lost sales. He shows that 

there exists a base stock level and both base stock and rationing policies are 

stationary. The policies can now be expressed in terms of switching curves for order 

satisfaction.  

Ha (1997b) is a mere modification to Ha (1997a) with two types of products serving 

single type of customers each. Now, the policies can be expressed with added 

production switching curves (i.e. regions to produce product type one, two or do not 

produce at all) to the switching curves for order satisfaction.  

Minner et al. (2003b) suggest a heuristic decision rule for a rationing model with 

multiple types and no backorders. Their decision rule also utilizes the remaining 

delivery times for outstanding orders of each type.  

Rationing level in a transshipment context, defined as the level above which dealers 

satisfy arriving transshipment requests, may be zero or positive, i.e. the dealer may 

share all his inventory with another dealer at the same echelon level (i.e. rationing 

level is zero) or may spare some items for expected future own-customers (i.e. 

positive rationing levels). Pooling policies with positive rationing levels are called as 

partial pooling policy, as in Grahovac and Chakravarty (2001) or hold-back 

inventory policies, as in Çömez et al. (2007). Notice that, zero rationing level implies 

rationing is not actually made. Some studies do not allow for positive rationing levels 

and analyze the performance of full pooling policies vis-à-vis no pooling. On the 

other hand, in studies where positive rationing levels are allowed, strictly positive 

rationing levels may or may not be optimal depending on the cost and demand 

parameters.  

Grahovac and Chakravarty (2001) analyze the benefit of sharing and lateral 

transshipment of low-demand expensive items under no-pooling, full-pooling and 

partial pooling contexts. A two-echelon, single-item system with transshipments is 
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under consideration in order to show the benefit of inventory pooling under both 

centralized and decentralized settings.  The upper echelon and the lower echelon 

share the backordering cost generated at the retail end. Inventory management and 

transshipment policies are not claimed to be optimal. The model allows asymmetric 

retailers facing different levels of demand. Lateral orders are allowed not only for the 

stock-out situation but also for arbitrarily chosen levels of net stock (so-called 

triggering level), a partial pooling situation. In a centralized setting, they find out that 

retailer stocking levels are at least equal to and distribution center (DC) stocking 

level is at most equal to those in without lateral transshipment. 

Under decentralization and for lower emergency transshipment costs of retailers and 

higher backordering cost proportion imposed on the retailer, retailer tends to be more 

motivated for sharing and transshipment of inventory: the DC is just the opposite.  

Hence, free-riding by the distributor is prevalent in the decentralized setting, pointing 

to a moral hazard problem. Their numerical study indicates that, lateral 

transshipment policies applied to expensive low-demand items can result in a 

decrease of up to 20% for the transportation and inventory costs for both settings, but 

this does not necessarily imply a reduction in overall inventory levels. Indeed, in few 

cases, overall inventory level becomes larger with lateral transshipment. 

Çömez et al. (2007) model a centralized system of two retailers with identical 

transshipment costs to analyze transshipment rationing decisions, where emergency 

transshipment acceptance/rejection decisions are made centrally and transshipment is 

done if inventory in the source is higher than the so-called hold-back level that is 

determined as a function of periods left until next replenishment period. Time is 

divided to sub-periods where demand can be at most one. Demand is a Binomial 

process. Rejected demand is lost. Study allows for non-negative replenishment and 

positive transshipment lead times. All costs (actually dispersed through time) 

associated with transshipment are incurred at the transshipment decision, which also 

ensures the independence of the hold-back levels from number of backorders or 

number of standing transshipment requests.  
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The system manager faces the clear trade-off between transshipment costs and 

backordering costs. Therefore, it is anticipated, and proven that the hold-back levels 

increase with time. The enabling result is that the marginal benefit of having an extra 

unit of inventory is a non-increasing function of time and is bounded and 

independent of initial stocking levels in a replenishment cycle. The marginal benefit 

of keeping inventory is also non-increasing with inventory and hence a hold-back 

level policy becomes optimal. 

The optimal replenishment threshold parameters can be determined with search 

methods since the expected average cycle costs are positive. 

As expected, the hold back levels increase with transshipment cost, demand to own 

retailer and decrease with holding costs. However, an interesting result is that the 

hold-back level is insensitive to the demand probability of the other retailer. This 

result is actually a corollary of proven result of non-decreasing hold-back levels with 

time: a rejected request today is rejected thereafter, so the benefit of having inventory 

can be decoupled from demands at other retailer. If a transshipment request is 

accepted at a given time and inventory level, it is accepted at a later time at the same 

inventory level, since the benefit of transshipment at an inventory level is                      

non-decreasing with time. 

Relationship between hold back levels and backordering costs is a complex one, 

there can be situations where hold back levels are increasing or decreasing with 

backordering cost depending on cost parameters. 

An interesting result is that the order-up-to levels or replenishment quantities are not 

interacting with transshipment policies, a counter-intuitive but claimed in the study 

to be a well reported result in the literature.  

Numerical study over 21 problem instances to survey the main parameter effects has 

the following observations: 

(I) As demand increases, fewer transshipments occur as proven theoretically.  

(II) There is numerical evidence that complete pooling is more likely to occur 

under symmetric demand  
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(III) There is numerical evidence that increased holding costs motivates 

retailers to share more inventory 

(IV) There is numerical evidence that sufficiently large backordering costs 

leads to complete pooling 

(V) There is numerical evidence that transshipment costs deteriorates benefit 

of transshipment 

An average cost improvement of 5.4% over no pooling and 2% over complete 

pooling is observed, where the highest improvement over no pooling is about 17%. 

Hold-back levels under positive lead times could not be analytically expressed in the 

paper. A heuristic is developed in this case (simply add the lead time expected total 

demand per each retailer to the optimal target quantities with zero replenishment lead 

time) and compared to a lower bound cost (one with rebalancing of replenishment 

quantities) and the gap found to be less than 2% in 95% and 1.5% in 80% of the 

cases. 

2.3 COLLABORATION AMONG COMPETITORS IN SPARE PARTS 

SYSTEMS 

There is a body of literature considering collaborative decentralized spare parts 

inventory management formed as coalitions among competitors, utilizing notions 

from collaborative game theory in their contexts. Moncrief et al. (2005) give a good 

summary of real-life practical cases, as well as a compact review on this line of 

research. Another very recent and comprehensive review is Paterson et al. (2009). 

Wong et al. (2007) study a spare parts inventory system with lateral transshipments, 

where parts can be repaired and delayed lateral transshipments are possible. Using a 

game-theoretic approach, the authors show that there are cost allocation policies for 

decentralized setting which are acceptable for all participants. Four cost allocation 

policies are proposed, namely to: 
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(I) Account downtime and inventory holding costs accrued at each company to 

itself, and lateral transportation cost is always paid by the receiving  

company 

(II)  Account the inventory holding cost and lateral transportation cost based on 

the demand rate of each company and account the downtime cost accrued at 

each company to itself.  

(III) Allocate the total cost based on the demand rate of each company 

(IV)  Shapley value principle. 

 

The authors apply these four cost allocation policies to a numerical example of a 

three-company pooling problem, and all four policies above give cost allocations 

that are in the core of the game. They do not prove non-emptiness of the core. They 

don’t show that allocation policies will always have a core for any input parameters. 

There are also no explanations for the choice of these allocation policies.  

Authors give an example about how false information causes the companies to 

become worse-off to show the importance of building mutual trust between the 

cooperating companies. 

In Karsten et al. (2009), effect of inventory pooling in a decentralized setting with 

arbitrary number of independent players on an infinite time horizon is analyzed. 

Authors prove non-emptiness of the cost sharing core for generic spare parts 

inventory pooling games, where the problem environment is restricted to no 

transshipment cost and full pooling to ensure analytical tractability. There is a fixed 

number of repairable parts (i.e. is not altered even if a coalition is formed), equal to 

each other in each facility. A failure leads to a demand, which is a Poisson process 

and repairs are iid with a certain mean. There is always ample repair capacity and 

parts are perfectly repairable. If there are no parts available, an emergency 

transshipment occurs (no backorders allowed). They note Wong et al. (2007) as the 

most similar problem formulation. However, there is finite repair capacity, 

transshipments are for a fee and partial pooling is enabled. They prove that the core 

of the game is non-empty if and only if the game is balanced, meaning that if any 
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coalition of more than one member can be feasibly formed, it implies a grand 

coalition.  Following results are reported: 

(I) No transfer payments between players is in the core of symmetric base stock 

level, demand, repair and emergency cost setting (allowing for different 

inventory holding costs) 

(II) Having asymmetric emergency costs does not alter the result in (I) 

(III) Having either asymmetric base stock levels or demand rates do not alter the 

result in (I), however one can construct a case with an empty core where two 

or more of the following are different: emergency costs, demand rates and 

base stock levels are asymmetric. 

2.4 COMPETITION IN SPARE PARTS MANAGEMENT SYSTEMS 

In all cases above independent dealers have incentives to deny transshipment flows 

that would centrally (or jointly-decided) be done so: they may forfeit transshipments. 

Hence, a standpoint from non-cooperative game theory is another viable approach. 

Having an independent dealer setting, this thesis also takes this stance.  

Cachon and Netessine (2004) and Leng and Parlar (2005) are good reviews that 

include non-cooperative game theoretic applications in supply chain management as 

a whole that also considers the line of literature concerning lateral transshipments. 

Rudi et al. (2001) consider a decentralized two-location, single-echelon, single-

period, single-product, news-vendor model where the lateral transshipment price is 

negotiable. The model is claimed to be representative of the real-life problem of 

independently operating Bosch automotive parts dealers of Norway. Unique Nash 

equilibrium is shown to exist for the decentralized model and the behavior of optimal 

policy (i.e. order quantities) with respect to transshipment price is characterized. 

Obtaining, analytically characterizing and comparing optimal centralized and 

decentralized solutions, authors show that transshipment prices can always be 

uniquely adjusted to achieve the centralized solution even under correlated demand. 
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 Zhao et al. (2005) is one of the relevant studies to the thesis setting. It considers a 

two independent dealer (symmetric as well as asymmetric) decentralized model, 

dealers are assumed to make replenishment from a one-for-one replenishing 

manufacturer with constant lead times, where demand is a Poisson process. Dealers 

tend to minimize their long term expected cost rate consisting of backorder, 

inventory holding and transshipment costs minus transshipment incentives and 

subsidies. Without claiming optimality, authors conjecture that ordering and 

rationing decisions are carried through threshold base-stock and rationing policies 

that are “static”, i.e. policy levels independent of other dealer’s inventory level. The 

followings issues are analyzed: (I) The order policy of dealers under full or partial-

pooling (i.e. zero or positive rationing level) conditions, (ii) the effect of dealers’ 

decisions on each other’s profitability and the service level and (iii) manufacturer’s 

impact on dealer’s strategies, as well as system-wide profits via incentives and 

subsidies. Steady-state probabilities of dealers for inventory levels are used to 

calculate expected cost functions. Three different strategy sets are investigated, 

which are full sharing (threshold-rationing level is zero and base-stock level is the 

sole decision variable), fixed sharing (for a given arbitrary threshold-rationing level, 

base-stock level is the sole strategy parameter) and inventory rationing (for a given 

base-stock level, threshold-rationing level is the sole strategy parameter). Cost 

function cannot be shown to be always supermodular on inventory levels: violating 

the sufficient condition for the existence of pure-strategy Nash equilibria. However, 

this does not mean that there is no equilibrium solution for the games: Nash 

equilibria are checked using an extensive numerical study through a test-bed of about 

a thousand instances, no equilibrium is observed in a very little portion of cases. 

Main findings are as follows: Dealers respond to higher incentives by decreasing 

their threshold-rationing levels rather than increasing their base-stock levels, 

manufacturer subsidies increase backorders (meaning worsens customer service level 

which is against manufacturer’s interests, where it is just the reverse for incentives), 

inventory sharing in decentralized system for very expensive items increases 

backorders (for other items, backorders are decreased, as it is always the case for 

centralized system). 
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Zhao et al. (2006) is an optimal operating policy characterization study. Demand is a 

Poisson process. Production to each dealer is dedicated and one-for-one. There are 

no production lead times. A requesting (i.e. sending a request to another dealer for 

lateral transshipment) decision variable is considered: a probability variable, shown 

to be depending on the policy indices of both dealers. All transshipment requests are 

subject to acceptance from the party who receives the request. Inventory process of a 

dealer is hence modeled as a continuous time Markov chain (actually, as a 

uniformized discrete time Markov decision problem). 

Equilibrium order policy of dealers under full or partial-pooling (i.e. zero or positive 

rationing level), effect of dealers’ decisions on each other’s profitability and the 

service level and manufacturer’s impact on dealer’s strategies, as well as system-

wide profits via incentives and subsidies are analyzed. Steady-state probabilities of 

dealers for inventory levels are used to calculate expected cost functions.  

A three-index policy consisting of base-stock (S), rationing (K) and requesting levels 

(Z) with S≥K≥Z is proven to be optimal among all policies that do not depend on 

other dealer’s inventory level (e.g. static or stationary). Sufficient conditions for the 

existence of a pure-strategy Nash equilibrium could not be shown.  

Each dealer wants to minimize a long-run average individual cost function. A 

competitive game theoretic approach is used for finding a equilibrium policy set, 

where the objective function is based on steady state probabilities, proven to exist. 

Best response mapping is used to obtain equilibrium set of policies. An exhaustive 

search algorithm is run to find best response threshold policy parameters.  

An extensive numerical study comprising about a thousand scenarios (used 

parameters not explicitly shown) is used for two dealers case and four different non-

optimal policy types are investigated for all scenarios, including  optimal rationing 

and requesting policy under centralized network. Therefore, the authors could 

characterize benefits of optimal pooling and centralization. 

The key findings are as follows: With increasing transshipment cost, dealers stock 

more and share less, where high-demand dealers are more sensitive to the increase. 
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An increased transshipment incentive makes dealers to decrease both stocking and 

rationing levels. The dealers are sensitive even the incentive is very small, which is 

meaningful in practice. Including a requesting threshold policy index to the base-

stock and rationing policy in a decentralized network makes costs, stocks and 

backorders less.  

Finally, settings with infinitely many dealers are analyzed. When there is a large 

number of dealers, the effects of the actions of one dealer on others is negligible, so 

other dealers’ actions are considered as exogenous constants. Hence, dynamic 

programming is used for the case with infinitum of dealers for optimal policy 

determination. They find out that an increased transshipment incentive makes dealers 

to increase base stock-levels and decrease rationing levels. 

Zhao et al. (2008) is another study that aims to characterize the optimal operating 

policies in a centralized dealer network. A centralized network with two dealers 

which are linked to dedicated production facilities is assumed. An expected long-

term discounted (not average) system cost is minimized. All other system settings are 

the same as in Zhao et al. (2006), except the proxy probability parameter for 

transshipment acceptance is omitted. Only other minor difference is that lateral 

transshipments are allowed both after production completion and after demand 

realization in this study. Structure of the optimal policy is proven again to be S≥K≥Z 

type, namely order-up-to level (S), production transshipment (K) and demand-filling 

transshipment (Z). The authors show that aforementioned policy levels dynamically 

change depending on the inventory level at the other dealer, with the increasing 

inventory level of one dealer, other dealer’s order-up-to level is non-increasing, 

while other control variables increase. Optimal values of control variables are found 

(i.e. the optimal policy is defined) by an exhaustive search algorithm; a newsvendor 

heuristic is proposed for finding good values of control variables. 

Two competing dealers that maximize their individual profits and collaborate 

through lateral transshipments are studied in Çömez et al. (2009). In a decentralized, 

two location, unit-by-unit transshipment and demand setting, the expected revenue 

maximizing retailers first decide on their initial stocking level and then, until the end 
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of sales horizon (at the end of which all remaining units are salvaged with a salvage 

value), use this inventory but are allowed to transship if they are stocked-out. These 

independent retailers can accept/reject transshipment requests.  

 The replenishment period is divided into sub periods where the demand can be 

meaningfully at most one. 

 When demand arrives, it chooses its retailer (can be with different retail prices, 

where the gap should be less than transportation cost to avoid arbitrage) with a 

certain probability, and is satisfied if there is an item on that retailer. If the retailer is 

stocked-out, it requests transshipment from the other retailer. Accepted, demand is 

again satisfied, the retailer pays the freight and a transshipment commission (at least 

the salvage value, at most its sales revenue minus freight) to the other retailer. 

Rejected, the customer may go to the other retailer with some probability (called 

overflow probability) or is lost forever. Therefore the decision problem retailer faces 

when a transshipment request arrives reflects the trade-off between the benefit of 

having one extra inventory and the ability to directly or indirectly (e.g. via overflown 

customer) getting revenues versus the revenues imposed by transshipment. 

The study also includes a discussion on optimal transshipment prices relying on 

retailer powers dependent on demand scheme or exogenous bargaining powers, but 

assumes those prices fixed or exogenously assigned through the rest of the study. 

Authors show that if the overflow probability is equal to one, then the retailers reject 

all transshipment requests. Thus if geographical proximity and intensity of 

competition can be represented with high overflow probability, the benefit of pooling 

becomes limited; an analogous result is that the bargaining solution for transshipment 

prices yields no utility for the requester side. 

The study proves monotonicity (with respect to time and inventory level) and 

boundedness (both above and below) of the marginal benefit (independent of 

stocking levels) with respect to inventory and remaining periods. Since the benefit by 

transshipment is assumed as exogenous, the transshipment acceptance/rejection 

decision can be represented via a single inventory hold back parameter above which 
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transshipment requests are accepted. This level is decreasing as time goes by, as the 

benefit of having an extra inventory diminishes. 

For sufficiently low overflows, a complete pooling strategy over the entire horizon 

can be optimal, further it might be optimal not to pool any inventory as the overflow 

probability approaches one. Further the hold-back level cannot decrease by more 

than one in each period because maximum demand in each period is bounded by one.  

Another important proof states the quasi-concavity of profit functions with respect to 

initial stocking levels when fractional initial stocking levels are embedded into the 

profit function with a linear interpolation scheme. Therefore, pure-strategy Nash 

equilibria always exist when fractional values of the initial inventory are allowed. 

It is proven that hold-back levels increase with demand and demand overflow 

probability, sales price and salvage value.  As expected, hold-back levels decrease 

with the transshipment price charged by that retailer. Keeping the market size (i.e. 

sum of probabilities) constant, the hold-back levels are shown to still increase at the 

retailer where the demand probability increases.  

A numerical study of 21 experimental settings to observe main effects is reported. 

3000 randomly generated problem sets are also solved to show confidence bounds on 

results. Authors state that a low demand retailer coupled with a high demand retailer, 

retailer with limited salvage value or high ordering costs or low transportation costs 

or low overflows from other retailer are observed to have the highest relative benefit 

from transshipment. 

Taking  expected total sales and lost sales as proxy to the performance of the 

manufacturer where retailers order their parts from, the total sales of the 

manufacturer is numerically observed to be higher (lost sales lower) if the salvage 

prices are higher, transportation cost is higher or the purchase cost is lower, at the 

expense of manufacturer profits. It is also shown that, if overflow probability is 

relatively small, expected lost sales under complete pooling are lesser than that with 

no pooling.  
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A study contributing Zhao’s line of studies is Satır et al. (2010). The study has 

similar setting to Zhao et al. (2006), namely a single-echelon, single-product, 

dedicated production, one-for-one production and demand, lateral transshipment. 

Demand is a Poisson process and production times are exponentially distributed. In 

line with Zhao et al. (2006), customers are exchangeable and hence backorders can 

be transferred in addition to on-hand, physical inventory.  

Unlike Zhao et al. (2006), each dealer has full and common information on costs, 

profit functions and inventory levels. A discounted profit function instead of a cost 

function is used: incentives and subsidies for transshipment are replaced by 

commission payment (which the consigner receives and the consignee pays) and 

transshipments are assumed to take place without any cost.  

This study proves the optimality of a threshold S, K, Z policy parameters that depend 

on other dealer’s inventory (i.e. dynamic) for the centralized case and as a best 

response for the decentralized case. It then establishes a numerical analysis of benefit 

of inventory/backorder pooling under optimal operating policies where S, K, Z is 

dynamic and static. Full and no pooling strategies are also assessed.  

Decentralized setting is merely best response assessments to an exogenous dealer, 

however: not the long-run expected rational behavior, i.e. equilibrium strategy/Nash 

equilibrium.  

Under this setting, dealers are found to form a conflict of interest by choosing two 

opposite extremes of the commission payments (i.e. 0 and retail price) for 

themselves.  

Out of 1,684 instances (out of 1,800) the benefit of dynamic policy over static policy 

is found out to be less than 1.5%, and the benefit obtained under dynamic policy is 

bounded above by 4%. Hence, a static 3-index policy captures most of the benefits 

obtainable via transshipment. 

It is reported in Satır et al. (2010) that decentralized and centralized systems have 

opposite trends for pooling threshold control variables with inventory level. As the 

inventory level of the other dealer decreases, authors find numerical evidence that the 
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dealer under consideration shares more of his inventory under centralized system in 

order to achieve a better system-wide profit, while under competition, the dealer 

shares less to prevent profit deterioration via giving away inventory that might 

possibly serve own customers. Although existence of the optimal threshold policies 

can be analytically proven as a best response and in the centralized setting, 

monotonicity properties, unlike Zhao et al. (2008) and Çömez et al. (2009) does not 

necessarily hold in the decentralized setting. Monotonicity holds in the centralized 

setting. A few non-monotonic instances are found to occur during instances run 

through numerical study, one is shown in the study.   

Other main results are reported as follows: An inappropriately designed pooling 

system, such as full-pooling, can be worse than no-pooling system. Under certain 

parameter values, full-pooling profit is observed to be less than half of the non-

pooling profit, examples are shown.  Diminishing marginal returns on profit over 

customer arrival rate of dealer under consideration is observed, whereas for customer 

arrival rate of the other dealer, effect on the profit of the dealer under concern 

depends on the commission. 

2.5 POSITIONING OF THE STUDY IN CITED LITERATURE 

Four of the studies in the literature discussed up to this point are closer to this study 

than the others in terms of its modeling aspects, namely Zhao et al. (2006), Zhao et 

al. (2008), Çömez et al. (2009) and Satır et al. (2010). These studies, as well as this 

thesis analyze an inventory management model and consider a cost/profit function 

optimization scheme under a system of two-locations with continuous inventory 

review, single echelon, single-item, multi-period, multiple types of customer, 

endogenous lateral transshipments, centralized/decentralized decision making, 

exponentially distributed inter-demand time and production time under S,K,Z type 

threshold-level-type control policies with full information (except Zhao et al. [2006]) 

about both dealers’ inventory.  
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To refer to relevant Supply Chain Management taxonomies, Kennedy et al. (2002) is 

a good example along with Teunter and Haneveld (2008). Paterson et al. (2009) was 

already mentioned earlier. 

The demand structure is like Satır (2010), unlike Çömez et al. (2009) which consider 

demand overflows: there are no demand overflows in this thesis. Like Satır et al. 

(2010), production times and demand time intervals are exponentially distributed and 

inventory is continuously reviewed, whereas Çömez et al. (2009) consider a periodic 

review model. 

Policy parameters in Satır (2010), Çömez et al. (2009) and Zhao et al. (2008) are 

adopted for the model in this thesis except that there is an additional rejection 

parameter T with positive customer rejection cost
4
. Çömez et al. (2009) does not 

consider a non-zero transshipment request level, Z. 

In line with Zhao et al. (2006) and Satır et al. (2010), customers are exchangeable 

and hence backorders can be transferred in addition to on-hand, physical inventory.  

Unlike the works cited in this section, there is also a positive cost of transshipment is 

incurred by the consignee of transshipment in this study. This is paid even under 

centralized authority as a transactional cost. 

Also, a heuristic is developed to find best response strategies; the extent of 

exhaustive search as in Zhao et al. (2006) and Zhao et al. (2008) is hence conjectured 

to be avoided. 

This thesis, like Çömez et al. (2009) and Zhao et al. (2006), focuses its attention on 

the long-term, equilibrium behavior of individual dealers. Emphasis of this thesis is 

more numerical: it includes extensive numerical experimentation and observations. 

This numerical emphasis is felt in all studies, but is stronger in Zhao et al. (2006) and 

Satır et al. (2010). Zhao et al. (2006) and Satır et al. (2010) have parts to prove the 

 

 
4
 Existence and monotonicity of the base stock level, in the optimal policy, if can be proven, 

automatically and trivially guarantees that of customer rejection under non-trivial cost parameters like 

negative inventory holding costs. 



29 
 

optimality of policy parameters for some, if not all, of their settings, unlike this 

thesis. 

This thesis looks upon and tries to infer from the dynamics of the inventory sharing 

and rationing game between two dealers by choosing a symmetric cost/demand 

environment as its base case and focuses on numerical studies to study the impact of 

main demand/cost parameters, as well as decentralization on dealer profitability, 

system profitability, policies, inventory/backorder levels and customer service levels. 

Benefit of pooling is assessed and studied like in all four studies. Impact of 

asymmetricities, cited in Çömez et al. (2009) and Satır et al. (2010) are also studied. 

Like Zhao et al. (2006) and Satır et al. (2010), impact of decentralization on policies 

and profits is assessed and studied. It should be noted that Satır et al. (2010) does not 

assess equilibrium behavior whereas this thesis does. 

All in all, this thesis can be considered as an extensive numerical application of the 

sum of all findings and a mere, extensive numerical complement of all of those four 

aforementioned studies with a strong, but previously less touched emphasis on 

characterizing decentralized equilibrium behavior, benefits of pooling and impact of 

decentralization.  

 

However, there stand the differences from the individual works cited in this section 

and our motivation to conduct this research. Zhao et al. (2008) study a centralized 

model with information sharing whereas we study a decentralized model with 

information sharing albeit policies are simpler. Satır et al. (2010) study a 

decentralized model with information sharing, but strategic interaction between the 

dealers is not under consideration. Zhao et al. (2006) consider a decentralized system 

with strategically interacting dealers but there is no information sharing, information 

on other dealer is approximate. Çömez et al. (2009) is a periodic review model that 

does not decide on Z and T levels. In their model, the base-stock level is determined 

only once and for a finite number of periods. We do consider the effect of limited 

production capacity on the performance measures through traffic intensity.  
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This thesis tries to look upon interactions between cost/demand parameters rather 

than only on main effects. It also proposes a viable heuristic to find best response 

strategies in a more efficient manner like in Zhao et al. (2008).   

Table 2.1 tries to clarify the comparison between assessments of this thesis and those 

closely related pieces of literature. A dynamic policy means that threshold policies 

depend on the inventory level of the other dealer. 

 

 

 

Table 2.1 Comparison of the study with closely related literature 

 

Study S,K,Z,(T) 

Policies 

considered 

What kind of 

pooling strategies 

are considered? 

Is benefit of 

pooling 

assessed? 

Authority types 

assessed 

Çömez 

et al. 

(2009) 

Dynamic Optimal, complete 

and non pooling 

Analyzed under 

optimal policies 

Decentralized 

equilibrium, no 

arguments for benefit 

of centralization 

Zhao et 

al. 

(2006) 

Static Four different 

settings: S,K,Z 

policy not claimed 

to be optimal 

 

Not analyzed Decentralized 

equilibrium, 

Centralized 

Zhao et 

al. 

(2008) 

Dynamic and 

static 

Optimal dynamic, 

static and no  

pooling also some 

heuristic policies 

Analyzed under 

optimal policies 

Centralized 

Satır et 

al. 

(2010) 

Dynamic and 

static 

Optimal dynamic, 

static and no 

pooling 

Analyzed under 

optimal policies 

Decentralized best 

response and 

centralized 

MS 

Thesis 

Static Static and no 

pooling. S,K,Z, T 

policy not claimed 

to be optimal 

Analyzed under 

optimal policies 

derived from 

Satır et al. (2010) 

Decentralized 

equilibrium and 

centralized 
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CHAPTER 3 

 

MODEL AND SOLUTION APPROACH 

 

 

This chapter is comprised of four sections. In 3.1 the problem context is introduced. 

Models under decentralized and centralized systems are described. 

Section 3.2 describes the solution approach for the decentralized setting to compute 

the performance measures of interest. A heuristic aimed to fasten up the numerical 

solution algorithm is embedded as a stage of the algorithm.  

In Section 3.3, a centralized setting is formulated to assess the impacts of 

decentralization.  

This chapter finalizes with section 3.4 where the solution approach is discussed and 

computational results concerning the performance of the algorithm stage described in 

sections 3.2 and 3.3 are presented.  

3.1 PROBLEM CONTEXT 

A single echelon, single product, two-dealer inventory management system is 

modeled to address the research questions in Section 1.1. 

Single-item demand to Dealer i follows Poisson distribution with a demand rate, i . 

Single-item production times (i.e. production is capacitated and one at a time) have 

exponential distribution with a dedicated production line for each dealer, Dealer i 

with production rate i . Therefore, the inventory levels constitute a Markov process. 
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Customers arrive to either dealer, requesting a single part. This is called the customer 

demand event. The dealer can either accept this request, meaning that the demand is 

satisfied from dealer’s own stock (or backordered), or can deny service, issue a 

Denial of Service (DoS), i.e. reject the customer and make the demand lost or can 

place a transshipment request to the other dealer and meet the demand from the 

other dealer provided that other dealer is also willing to transship (if there is no 

physical stock at the other dealer and this dealer is still willing to transship, this 

demand is backordered at the dealer requesting the transshipment
5
). 

A dealer is subject to transshipment requests from the other dealer. This is called as 

the transshipment request event. The request can either be accepted, meaning that 

the demand of the other dealer is satisfied from own stock (or backordered) or can be 

rejected, meaning that the dealer is not willing to fulfill other dealer’s request. 

Dedicated production lines to each dealer feed them with single-item replenishments. 

At any time, the dealer can either make a new product request (production on), 

continuing the replenishment process or can stop production (production off), 

making the replenishment process idle. 

Dealers are subject to
6
 revenues generated by each satisfied demand (R per unit), 

commissions paid by the requesting dealer to the other dealer if a transshipment 

request is fulfilled (r per unit) and transshipment costs paid by the requesting dealer 

if the request is fulfilled (tr per unit). If a transshipment request is fulfilled, fulfilling 

dealer gets r, requesting dealer gets R-r-tr. Otherwise, no immediate revenues/costs 

are incurred.  

 
 
5
 Hence, it is implicitly assumed that the customer is informed whether his part is satisfied via 

transshipment or not in case of inventory deficiency in the other dealer and the customer appreciates 

this situation as a service deficiency in the requested dealer. 

 
6
 Relevancy of a production cost: although it cannot be said that production cost does not have an 

impact on control variables, we may assume that production cost is embedded in R and is incurred at 

the time of sale. 
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Dealers are also subject to inventory holding costs (ch per unit per unit time), 

backordering costs (cl per unit per unit time) and goodwill costs associated to 

rejected (DoS) customers (py per unit).  

Independent dealers want to maximize their expected discounted infinite horizon 

individual profits. A centralized authority would rather like to maximize the system-

wide profit. Since commissions are within-system payments, it is irrelevant for the 

centralized authority. 

A dealer knows the net inventory level of itself and the other dealer. All demand and 

cost parameters, as well as profit functions are also common knowledge. Assessment 

of the value of working with policies which is a function of the real-time inventory 

information is left untouched in this piece of research. 

3.2 SOLUTION APPROACH: DECENTRALIZED PROBLEM 

In this thesis, the benefit of pooling for independent dealers as well as the effect of 

competitive behavior of the dealers on profits is aimed to be assessed. It is assumed 

that the dealers are having strategic interactions, hence operating under equilibrium 

policies and thus equilibrium policies and equilibrium profits are claimed to be 

determined. Performance measures such as service levels or part flow rates between 

the dealers are determined under the equilibrium policies. 

First the problem of one dealer given an exogenous other dealer is analyzed. Then it 

is assumed that dealers get engaged in a game where in each turn a dealer gives his 

best response to the other dealer’s decision. Iterating between dealers’ best-

responses, equilibrium set of policies for the dealers are obtained. If the iterations 

yield a singleton set of policies, that policy set is pure-strategy Nash equilibrium. 

There might be multiple pure strategy Nash equilibria or no pure strategy Nash 

equilibrium (a mixed strategy Nash equilibrium instead).  

Rest of the argument for the mathematical models is made in terms of Dealer 1 and 

problem of Dealer 1 against an exogenous Dealer 2. This is stated without any loss of 
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generality because Dealer 2’s problem against an exogenous Dealer 1 will be shown 

to be easily obtained by swapping the relevant dealer indices. 

The independent two dealer system can be represented as a Markov chain with 

inventory levels at the dealers, Dealer 1 and 2, (i, j), -i for Dealer 1 (D1) and j for 2- 

as its state variables. Exponential distributed interarrival/production times enable the 

state transitions to possess the Markov property.  

The problem of one dealer given an exogenous dealer is to maximize the discounted 

profits for infinite horizon. Under the modeling properties and event descriptions 

listed in Section 3.1, a Markov Decision Process (MDP) is formed to model the 

problem. Actions are defined as possible decisions on each event: 

Customer Arrival: accept, Denial of Service (DoS), send transshipment request 

Transshipment Request: accept, reject 

Production: New product request (production on), stop production (production off) 

Dealer 2 (D2) is assumed to have an exogenous fixed (S2, K2, Z2, T2) policy (where 

S2 ≥ K2 ≥ Z2 ≥ T2) and acts as explained in Figure 3.1: 

 

  D2's Inventory/Queue Level, j 

EVENT j≥S2 S2>j>K2 K2≥j>Z2 Z2≥j>T2 j≤T2 

production off on 

transshipment req. accept deny 

customer demand accept req. first DoS 

 

Figure 3.1 Policy of D2 for the decentralized model 

 

 

In the figure, “Req. First” means, a transshipment request is made. If D1 rejects this 

request, the demand is satisfied by its own resources.  

For Dealer 1 (D1), the corresponding optimality equation is (3.1) 
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where 

 i
+
 and i

-
 denotes max {0, i} and max {0,-i} respectively,  

β is the sum of rates on the dealer system (i.e. β=λ1+λ2+μ1+μ2), used for 

uniformization of the MDP (see Lippman [1975]: Uniformization leads a uniform 

transition rate and the infinite horizon continuous time decision process is converted 

into a discrete time decision process), 

α is the continuous discount rate accounting for time value of money,  

λi is the customer demand rate on dealer i,  

μi is the production rate on dealer i, and each  Φ-operator (3.2)-(3.5) is tied to each 

event explained below.  

Φ1  accounts for actions associated with customer arrivals to D1:                  

2 2

1
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( , )
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  

               (3.2) 

D1 can accept, ask from D2 or DoS if the other dealer is willing to accept the 

transshipment request, otherwise the D1 can accept or DoS. 

Φ2 accounts for actions associated with customer arrivals to D2: 

2

2 2

*( , )

( , ) *( , 1)

max{ *( 1, ) , *( , 1)} /

v i j T j

i j v i j Z j

v i j r v i j o w




   
                                                      (3.3)

 

D1 can accept or reject transshipment requests from D2 if the other dealer is willing 

to make transshipments. 

Φ3 accounts for actions associated with production in D1: 

3( , ) max{ *( , ), *( 1, )}i j v i j v i j  
                                                                       (3.4)
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D1 can either stop production or initiate a new replenishment.  

Φ4 accounts for actions associated with production in D2: 

  

 
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2

4

                                                                  (3.5)

 

Let S1(j) , K1(j) , Z1(j) , T1(j) define action thresholds as in Figure 3.1 for D1 

depending on the inventory level j in D2. It could not be shown (see Satır et al. 

[2010]) that the D1’s best response has a S1(j) ≥ K1(j) ≥ Z1(j) ≥ T1(j) type structure 

under general settings, but it is known through Satır et al. (2010) that it will hold if v 

is concave in i and sub-modular in i,j. It was shown in Satır et al. (2010) that sub-

modularity fails to hold for a number of settings. Nevertheless, we work with the 

space of this type of responses. 

These level-type structures, if exist, are indeed defined with indifference equations 

(3.6) between event-related actions, given the threshold nature of the policies: 
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In almost every cost structure, policy levels that monotonically descend with j are 

observed for a given S2, K2, Z2, T2-policy, as sketched in Figure 3.2. Note for 

instance that no transshipment occurs in the highlighted region (i.e. Z1 (j) < i ≤ K1 (j) 

and Z2 < j ≤ K2 ) of the state space. 
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Figure 3.2 A possible best response policy of D1 vis-à-vis policy of D2 in Figure 3.1 

 

 

 

For few instances there is slightly non-monotonic behavior, i.e. trendlines in the 

figure may not be always descending, depending on properties of the cost structure. 

This thesis will work with inventory levels independent of the inventory level of the 

other dealer, i.e. under the set of static policies. This will eliminate the requirement 

for real-time inventory information to be directly incorporated in choosing every 

action. Even if such information would be available, reaching equilibrium would be 

hard since every action changes the current state and each action is dependent on the 

state.  

In Satır et al. (2010), a test-bed of 1,684 instances (out of 1,800) the benefit of 

dynamic policy over static policy (static policies are even not claimed to be the best 

static policies) is found out to be less than 1.5%, and the benefit obtained under 

dynamic policy is bounded above by 4%. Hence, a static 3-index policy was found to 

capture most of the benefits obtainable via transshipment. Therefore we conjecture 

that there will be a minor loss from optimality in our setting too, noted deviations 

from the model in Satır et al. (2010), since model formulations are similar, albeit 

some differences like existence of T-level and transshipment cost. 
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3.2.1 HEURISTIC FOR DETERMINING A STATIC POLICY: 

DECENTRALIZED PROBLEM 

When determining a static best-response policy for D1 (and then iteratively for D2), 

the following approach is taken. First a candidate static policy is constructed out of 

the dynamic policy obtained through the optimality equations. Then a local search, 

based on the steepest ascent method, is performed around that candidate static policy. 

Finally, a static policy for D2 is determined. Since D1’s best response facing an 

exogenous static policy for D2 is stated as a static policy, it is clear D2’s best 

response for the stated static best response of D1 can be easily obtained by swapping 

the relevant indices. 

First, it will be described how a candidate static policy is determined through a so-

called Policy Iteration phase. Consider a dynamic policy for D1 as represented in 

Figure 3.2. Given a dynamic policy, the parameter values at highest possible 

inventory levels of D2 are selected
7
 for the relevant policy level. Let us define x  y 

as x is inferred from the x(y) function at j=y. Hence, S1 S2 , K1 Z2 –highest level 

to send a transshipment request-, Z1  S2 –highest level to receive a transshipment 

request- and T1K2 –highest level for being not eligible to receive a transshipment-.  

The best response dynamic policy of a dealer could be solved through a large scale 

MIP formulation, but it is a computationally very costly way. An iterative method, 

policy iteration, starting from an initial candidate, can be sought to reduce the 

computational burden.  

This method enjoys the fact that a S1, K1, Z1, T1, S2, K2, Z2, T2 policy yields v(i, j) 

values that can be evaluated through a series of simultaneous equations (3.7) and 

these v(i,j) values are expected to imply a S1(j)-K1(j)-Z1(j)-T1(j) dynamic policies 

defined as in Section 3.2 that has a better objective.  

From this dynamic policy, it was discussed that a static policy is obtained by 

grabbing the policy levels at highest possible inventory levels of D2 relevant for the 

 
 

7
 This merely arbitrary choice is fortified by the property stated in the computational analysis: the 

initial mass is placed at (i, j)=(S1, S2), i.e., the highest possible levels of inventory.  
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decision. This policy can be different than the S1, K1, Z1, T1 levels previously 

evaluated. This policy is used as a better candidate for the best response and so on. 

If the sole, implied dynamic policy would be evaluated in each turn, it would be 

exact policy iteration and it is known to be improving. However, the number of 

parameters to be tuned each iteration will be very huge. An LP formulation and 

solution per iteration can be viable under this context, but it is computationally costly 

and will very likely offset the benefits of the policy iteration phase in terms of 

computer time. We still anticipate that there will be significant gains by iterating 

through the transformed static policies. All in all, iterations are terminated if it is 

non-improving.  

Since these iterations are inspired by the method of policy iteration, this phase of the 

heuristic is called the Policy Iteration phase. We expect a very good candidate for the 

best response to be yielded at the termination of the phase. 

Since actions are fixed if S1, K1, Z1, T1, S2, K2, Z2, T2 is given, the one-step transition 

matrix, P can be easily constructed. Further, since the actions are fixed, the expected 

immediate profit in each stage are also fixed and can be given as the C vector. The 

ratio 
 




 is the one-uniformized step discount factor. 

C can be explicitly written as follows: 

1
1 2 2 1 2 2

1 2 1 1 2 2

( , ) h lc i c i
C i j R if i T and Z j K or if i Z and K j S

or if i T and j T or if T i K and T j Z



    

      
          

    

     

1
1 1 2 2( , ) ( )h lc i c i

C i j R r tr if T i Z and K j S


    

      
          

    
 

1 2
1 1 2 2( , ) h lc i c i

C i j R r if K i S and T j Z
 

     

      
         

    
 

1
1̀),( Tiifpy

icic
jiC lh 




































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Also, P can be explicitly written as follows: 

1
1

(( , ), ( 1, ))

0 /

if i S
P i j i j

o w








  

  

2
1

(( , ), ( , 1))

0 /

if j S
P i j i j

o w








  



 

1
1 2 2 1 2 2

1 2 1 1 2 2

(( , ), ( 1, ))P i j i j if i T and Z j K or if i Z and K j S

or if i T and j T or if T i K and T j Z




       

       

1 2
1 1 2 2(( , ), ( 1, ))

(( , ), ( 1, )) 0 /

P i j i j if K i S and T j Z

P i j i j o w

 

 
      

 

 

2
2 1 1 2 1 1

2 1 2 2 1 1

(( , ), ( , 1))P i j i j if j T and Z i K or if j Z and K i S

or if j T and i T or if T j K and T i Z




       

       

1 2
2 2 1 1(( , ), ( , 1))

(( , ), ( , 1)) 0 /

P i j i j if K j S and T i Z

P i j i j o w

 

 
      

 

 

(( , ), ( , )) 1 (( , ), ( 1, ))

(( , ), ( , 1)) (( , ), ( 1, )) (( , ), ( , 1))

P i j i j P i j i j

P i j i j P i j i j P i j i j

  

     
 

(( , ),( , )) 0 /P i j k l o w  

Hence, the expected profit as well as the value functions corresponding to the static 

policy defined above is obtained from equation set (3.7) as follows: 

V

VPVC









                                                                                                          (3.7)
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Where V is the vector of the value functions v*(i, j), δ is the initial probability 

distribution among states and π denotes the expected discounted infinite horizon 

individual profit. The process is assumed to start in state (S1, S2). S and T levels for 

both dealers yield the natural truncation points of the state space (i.e. it is impossible 

to go beyond T levels and go above S levels); hence the state space is always finite. 

Note further that ( )I P matrix is invertible, therefore CPIV 1)(    

By the Policy Iteration Phase, we anticipate a reduction of the number of iterations 

for the next phase, the steepest ascent neighborhood search algorithm in the space of 

static policies, which guarantees a local optimal solution. Once the best response is 

found, players are swapped to find the best response of D2 to new policies of D1 and 

so on. It is implicitly conjectured that local search sufficiently ensures the best 

response to the opponent’s choice of a static policy. 

The solution procedure to find the equilibrium (i.e. best responses of two dealers in 

terms of profit) S1, K1, Z1, T1, S2, K2, Z2, T2 policy levels for two independent dealers 

has two phases to find the best response and a player interchange (i.e. best response 

mapping algorithm) for this two person non-constant sum game.  

 Policy Iteration Phase  

 Starts with any fixed S1, K1, Z1, T1, S2, K2, Z2, T2 policy.  

 Actions are fixed for every state, v(i, j) can be solved through a linear 

system of equations 

 v(i, j)’s imply S1(j)-K1(j)-Z1(j)-T1(j) dynamic policy parameters. These 

are found.            

 Transform the dynamic policy to a static S1,K1,Z1,T1 policy through 

highest j values
8
 

 Continue until the phase does not improve or converges to the same 

policy 

 
 
8
 Since S and T can go beyond the evaluation boundaries for the following iterations, the state space 

for D1 is kept 5 (arbitrarily chosen) below and above than current levels in each iteration of the policy 

iteration phase. 
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 Steepest Ascent Phase 

 Search the whole neighborhood of the policy (+1, 0, -1 combinations 

for all policy parameters) where   S1 ≥ K1≥ Z1 ≥ T1 is satisfied. 

 Go to the policy with most improvements. Stop when no such 

direction is available 

 Best response S1 ≥ K1≥ Z1 ≥ T1 found given S2, K2, Z2, and T2. Switch 

dealers. Proceed until best response mapping stops at a fixed point or loops at 

a set of equilibrium policies. 

The solution algorithm is coded in MATLAB environment and run under single core 

of an Intel® Core 2 Duo™ 2.5GhZ CPU. Appendix A can be visited to see the 

workspace definition, a detailed pseudocode and the modules. Both pseudo-codes 

and MATLAB codes guided with the pseudo-code are available for each module. 

3.3 SOLUTION APPROACH: CENTRALIZED PROBLEM 

The aim is now to maximize the expected discounted infinite-horizon system-wide 

profit. Necessary modifications to the arguments for the decentralized problem do 

hence follow. Please refer to the “Solution Approach: Decentralized Problem”, 

section 3.2 for the relevant arguments. 

The state space representation and the events are still the same as in the decentralized 

problem. So are the relevant costs except commissions. Commissions are now 

irrelevant since the dealer system is centrally operated.  

The aim of the centralized MDP is to maximize the expected total discounted profit 

under infinite horizon. The corresponding optimality equation is (3.8), as follows: 

1
1

2 1 2
2 3 4

( ) ( )
*( , ) [ *( , )

*( , ) *( , ) *( , )]

h lc i j c i j
v i j v i j

v i j v i j v i j



    

  

  

        
   

  

     

                                       (3.8) 

Where j
+
 and j

-
 denotes max {0, j} and max {0,-j} respectively. 
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The most important change arises within the definition of the Φ-operators                        

(3.9)-(3.12) and the definition of policy management levels since the revenue 

function is changed.              

Φ1 accounts for actions associated with customer arrivals to D1                     

1( , ) max{ *( 1, ) , *( , 1) ( ), *( , ) }i j v i j R v i j R tr v i j py       
                                    (3.9)

 

D1 can accept, transship from D2 or DoS an arriving customer.  

Φ2 accounts for actions associated with customer arrivals to D2 

2( , ) max{ *( 1, ) ( ), *( , 1) , *( , ) }i j v i j R tr v i j R v i j py       
                                (3.10)

 

D2 can transship from D1, accept or make DoS an arriving customer. 

Φ3 accounts for actions associated with production in D1 

3( , ) max{ *( , ), *( 1, )}i j v i j v i j  
                                                                           (3.11)

 

Φ4 accounts for actions associated with production in D2 

4( , ) max{ *( , ), *( , 1)}i j v i j v i j  
                                                                           (3.12) 

With supporting arguments stated in Satır et al. (2010) as well as Zhao et al. (2008) 

proving the existence of the threshold policy parameters and the fact that three index 

policy under non-trivial (i.e. not considering trivial cases like commissions exceeding 

revenues, negative penalty cost, negative backorder and inventory holding costs) cost 

and revenue structures exist, dealers are supposed to have a S1(j) ≥ K1(j)  ≥ Z1 (j) ≥ 

T1(j)  and S2(i) ≥ K2(i) ≥ Z2(i) ≥ T2(i) structure. Dealers are supposed to act in line 

with Figure 3.3, Table 3.1 and Table 3.2 if such a policy occurs.  

Note that A, DoS and T correspond to accept, Denial of Service (DoS) and send 

transshipment request actions in case of the customer demand event, respectively. 

AC and RJ correspond to accept and reject actions in case of a transshipment request 

event, in that order. Finally, N and S corresponds to new product request and stop 

production actions, respectively. 
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Table 3.1 Regions of dealers for each action, regions as in Figure 3.3 and Table 3.2 

 

Dealer Action Region Dealer Action Region 

D1 

A 1,2,3,4,5,6,7,8 and 

along T2 line 

D2 

A 2,3,4,5,6,7,8,9 and 

along T1 line 

DoS Along T1 line DoS Along T2 line 

T 9 T 1 

AC 1,2,3 AC 3,6,9 

RJ 4,5,6,7,8,9 and along 

T1 and T2 lines 

RJ 1,2,4,5,7,8 and along 

T1 and T2 lines 

N         Except S1 line N  Except S2 line 

S Along S1 line S Along S2 line 

 

 

 

 
Figure 3.3 Policy regions of dealers for the centralized model 
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Table 3.2 Region descriptions in inventory levels of both dealers 

 

Region Description Region Description 

1 K1<i≤S1, T2<j≤Z2 6 Z1<i≤K1,K2<j≤S2 

2 K1<i≤S1, Z2<j≤K2 7 T1<i≤Z1,T2<j≤Z2 

3 K1<i≤S1, K2<j≤S2 8 T1<i≤Z1,Z2<j≤K2 

4 Z1<i≤K1,T2<j≤Z2 9 T1<i≤Z1,K2<j≤S2 

5 Z1<i≤K1,Z2<j≤K2 Along T1-line i=T1 

 Along T2-line j=T2 

Along S1-line i=S1 

Along S2-line j=S2 

 

 

 

The S1(j),K1(j),Z1(j),T1(j),S2(i),K2(i),Z2(i),T2(i) levels, (3.13)-(3.14) are defined 

explicitly as follows, given the threshold nature of the policies: 

1

1

1

1

( ) min{ | ( 1, ) ( , ) 0}

( ) min{ 1| ( , 1) ( 1, ) ( , ) ( 1, ) }

( ) max{ | ( 1, ) ( , 1) ( , ) ( , 1) }

( ) max{ | ( , ) ( 1, ) ( , ) ( , 1)

S j i v i j v i j

K j i v i j v i j tr v i j v i j R py tr

Z j i v i j v i j tr v i j v i j R py tr

T j i v i j v i j R py v i j v i j R p

   

            

           

          }y tr            (3.13)

 

And similarly, 

2

2

2

2

( ) min{ | ( , 1) ( , ) 0}

( ) min{ 1| ( 1, ) ( , 1) ( , ) ( , 1) }

( ) max{ | ( , 1) ( 1, ) ( , ) ( 1, ) }

( ) max{ | ( , ) ( , 1) ( , ) ( 1, )

S i j v i j v i j

K i j v i j v i j tr v i j v i j R py tr

Z i j v i j v i j tr v i j v i j R py tr

T i j v i j v i j R py v i j v i j R p

   

            

           

          }y tr            (3.14)

 

3.3.1 HEURISTIC FOR DETERMINING A STATIC POLICY: 

CENTRALIZED PROBLEM 

When determining the static best policies for dealers, the following approach is 

taken. First a candidate static policy for both dealers is constructed out of the 

dynamic policy obtained through the optimality equations. Then a local search, based 

on the steepest ascent method, is performed around that candidate static policy.  

First, it will be described how a candidate static policy is determined through a so-

called Policy Iteration phase. A static policy from the policies as in Figure 3.3 is 

obtained by grabbing the policy levels at highest possible inventory levels of D1 and 
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D2 relevant for the decision, like in Section 3.2.1. Defined x  y as x is inferred 

from the x(y) function at j=y, S1 S2, K1 Z2 –highest level to send a 

transshipment request-, Z1  S2 –highest level to receive a transshipment request- 

and T1  K2 –highest level for being not eligible to receive a transshipment-.   

Similarly, S2 S1, K2 Z1, Z2  S1, T2  K1. 

The best dynamic policies of dealers could be solved through a large scale MIP 

formulation, but it is a computationally very costly way. An iterative method, policy 

iteration, starting from an initial candidate, can be sought to reduce the 

computational burden.  

This method enjoys the fact that a S1, K1, Z1, T1, S2, K2, Z2, T2 policy yields v(i, j) 

values that can be evaluated through a series of simultaneous equations (3.7) and 

these v(i,j) values are expected to imply S1(j)-K1(j)-Z1(j)-T1(j)-S2(i)-K2(i)-Z2(i)-T2(i) 

dynamic policy defined as in Section 3.3 that has a better objective.  

As a S1, K1, Z1, T1, S2, K2, Z2, T2 policy is evaluated, v(i, j) values can be obtained 

through equations (3.7), these imply a S1(j)-K1(j)-Z1(j)-T1(j)-S2(i)-K2(i)-Z2(i)-T2(i) 

dynamic policy. From this, it is discussed that a static policy can be obtained by 

grabbing the policy levels at highest possible inventory levels of D1 and D2 relevant 

for the decision. This policy can be different than the S1, K1, Z1, T1, S2, K2, Z2, T2 

levels evaluated. Evaluating this policy will be usually improving.  

If the sole, implied dynamic policy would be evaluated in each turn, it would be 

exact policy iteration and it is known to be improving. However, the number of 

parameters to be tuned each iteration will be very huge. An LP formulation and 

solution per iteration can be viable under this context, but it is computationally costly 

and will very likely offset the benefits of the policy iteration phase in terms of 

computer time. We still anticipate that there will be significant gains by iterating 

through the transformed static policies. All in all, iterations are terminated if it is 

non-improving. However we still anticipate that there will be significant gains by 

iterating through the transformed static policies.  
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Since these iterations are inspired by the method of policy iteration, this phase of the 

heuristic is called the Policy Iteration phase. We expect a very good candidate for the 

best policy set to be yielded at the termination of the phase. 

Since actions are fixed if S1, K1, Z1, T1, S2, K2, Z2, T2 is given, the one-step transition 

matrix, P can be easily constructed. Further, since the actions are fixed, the expected 

immediate profits in each stage are also fixed and can be given as the C vector.  

C can be explicitly written as follows: 

),(),(),( 21 jiCjiCjiC  , where 

1
1 1 2 2 1 2 2

1 2 1 1 2 2

( , ) h lc i c i
C i j R if i T and Z j K or if i Z and K j S

or if i T and j T or if T i K and T j Z



    

      
          

    

       

1
1 1 1 2 2( , ) ( ) ( , )h lc i c i

C i j R r tr T i Z K j S


    

      
          

    
 

1 2
1 1 1 2 2( , ) ( , )h lc i c i

C i j R r K i S T j Z
 

     

      
         

    
 

1
1 1( , ) h lc i c i

C i j py if i T


    

      
     

    
 

and 

2
2 2 1 1 2 1 1

2 1 2 2 1 1

( , ) h lc j c j
C i j R if j T and Z i K or if j Z and K i S

or if j T and i T or if T j K and T i Z



    

      
          

    

       

2
2 2 2 1 1( , ) ( )h lc j c j

C i j R r tr if T j Z and K i S


    

      
          

      

 

2 1
2 2 2 1 1( , ) h lc j c j

C i j R r if K j S and T i Z
 

     

      
         

    
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2
2 2( , ) h lc j c j

C i j py if j T


    

      
     

    
 

P is exactly the same as in pg. 40. 

Hence, the set of equations, equation set (3.7) follows. The initial mass is again 

placed at (i, j) equal to (S1, S2). Since ( )I P matrix is invertible, the system of 

equations (3.7) is guaranteed to have a unique solution for a finite state space system. 

S and T levels for both dealers yield the natural truncation points of the state space 

(i.e. it is impossible to go beyond T levels and go above S levels); hence the state 

space is always finite.  

By the Policy Iteration Phase, we anticipate a reduction of the number of iterations 

for the next phase, the steepest ascent neighborhood search algorithm in the space of 

static policies, which guarantees a local optimal solution. It is implicitly conjectured 

that local search sufficiently ensures the best response to the opponent’s choice of a 

static policy. 

Policy iteration phase is now done for the whole 8 parameters, and then the implied 

static policy (as discussed in pg. 38) is found, another step is done and so on until the 

same static policy is implied or the objective does not improve. Then, the best static 

policy with the highest objective is estimated by steepest ascent neighborhood 

search, which is guaranteed to give a local optimal solution.   

Policy Iteration Phase  

 Starts with any S1, K1, Z1, T1, S2, K2, Z2, T2 policy.  

 Actions are fixed for every state, v(i, j) can be solved through a linear 

system of equations 

 v(i, j)’s imply S1(j)-K1(j)-Z1(j)-T1(j)-S2(i)-K2(i)-Z2(i)-T2(i) dynamic 

policy parameters. These are found.            

 Transform new S1,K1,Z1,T1,S2,K2,Z2,T2 values from highest i and j 

values
9
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 Continue until the phase does not improve or converges to the same 

policy 

 Steepest Ascent Phase 

 Search the whole neighborhood of the policy (+1,0,-1 combinations 

for all policy parameters S1,K1,Z1,T1,S2,K2,Z2,T2) where                               

S1 ≥ K1≥ Z1 ≥ T1 and S2 ≥ K2≥ Z2 ≥ T2 is satisfied. 

 Go to the policy set with most improvements. Stop when no such 

direction is available 

 

Therefore, it is implicitly conjectured that local search sufficiently ensures the 

optimal centralized solution. 

The solution algorithm is coded in MATLAB environment and run under single core 

of an Intel® Core 2 Duo™ 2.5GhZ CPU. 

3.4 PERFORMANCE OF THE POLICY ITERATION PHASE 

S(.),K(.),Z(.),T(.) policies imposed by v(i,j) are dynamic, i.e. policy levels of one 

dealer is a function of the inventory level of the other dealer. The Policy Iteration 

phase was not exact because a static policy was arbitrarily obtained from these 

dynamic policies.  

Given the range of S(.),K(.),Z(.),T(.) functions, this arbitrarily obtained static policy 

is only one of such alternatives. Chances of choosing a good static policy out of a 

dynamic policy by such an arbitrary choice deteriorates as the ranges of policies are 

enlarged, e.g. when holding cost decreases or when customer traffic increases so that 

the S and T ranges are enlarged.  

An approach that would iterate with dynamic policies could be sought, but it would 

be computationally burdensome. The number of parameters to be tuned each 

iteration will be very huge. An LP formulation and solution per iteration is viable 

                                                                                                                                                                     
 
9
 Since S and T can go beyond the evaluation boundaries for the following iterations, the state space 

for both dealers are kept 5 below and above than current levels in each iteration of the policy iteration 

phase. 
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under this context, but it is computationally costly and will very likely offset the 

benefits of the policy iteration phase in terms of computer time. Likewise, the best 

response dynamic policies could be solved through a large scale MIP formulation, 

but it is much more costly. 

Therefore, as the quality of policy iteration deteriorates, steepest ascent phase is 

anticipated to yield greater improvements to the solution obtained from the policy 

iteration phase.  

As performance of the policy iteration phase for the numerical experiments stated in 

Chapter 4 will be discussed, please refer to Section 4.1 for the definition of cases as 

well as parameter combinations. 

Policy iteration phase in the symmetric competitive case greatly reduces the required 

number of evaluations
10

, this phase finishes at up to 7 (avg. 3.03) iterations. In 

336/750 (44%) of the Symmetric Competitive case experiments, steepest ascent did 

not change the solution (indicated by the fact that steepest ascent phase only 

checking the neighbors, total number of evaluations less than or equal to total 

number of neighbors) 

Steepest Ascent Phase improves the solutions by 3.58% in average, in the range of 

0% - 59%. Independent of other parameters, when holding cost is greater than 0.1 per 

unit per unit time, the average improvement reduces to 0.10% and the range shrinks 

to 0% - 5.04%. Likewise, if traffic intensity is less than 0.6, the average is 0.02% and 

the range is 0% - 0.83%.  

For policy iteration phase in asymmetric competitive pooling case, results are even 

better in terms of average performance. Cases with significant improvements in the 

steepest ascent phase (>80%) occurs at high traffic flows to both dealers and higher 

holding and backorders costs of D1 vs. D2. Results get better with lower demand 

flows to the system and very interestingly, lower holding and especially lower 

 
 

 
10

 Recall that for each steepest ascent neighborhood search, up to 3^4=81 evaluations can be required. 
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backordering costs of D1 with respect to D2 irrespective of the traffic intensity at D2. 

Improvement is more drastic if the traffic intensity at D2 is high.  

Policy iteration phase in asymmetric case finishes at up to 8 (avg. 4.61) iterations. In 

3573/6250 (57%) of the experiments, steepest ascent did not change the solution. 

Steepest Ascent Phase improves the solutions by 0.57% in average, in the range of 

0% - 83%. Table 3.3 summarizes the average and range of improvement of the 

Steepest Ascent phase under different cost/traffic parameters. Refer to Section 4.1 for 

parameter combinations. 

 

 

 

Table 3.3 Improvement of Steepest Ascent Phase for asymmetric competitive 

pooling case under different cost/traffic parameters 

 

                                                                                          Traffic Intensity of D2 

 

All such cases 

0.3 0.9 

0.27% (0-66%) 0.87% (0-83%) 

Traffic intensity of D1< 0.6 0.17% (0-66%) 0.26% (0-40%) 

Holding cost of D1< 1 per unit per unit time 0.08% (0-22%) 0.25% (0-25%) 

Backordering cost of D1< 2 per unit per unit time 0.02% (0-1.1%) 0.04%(0-2.9%) 

 

 

 

The improvement of the steepest ascent phase in the symmetric centralized pooling 

case is higher than in other cases, but it has the best performance in the range. This is 

believed to be associated with the merely naïve solution procedure modification for 

the policy iteration phase. It is observed that greater holding costs and lower traffic 

intensities improved the results. 

Policy iteration phase in centralized case finished at up to 8 (avg. 2.91) iterations. In 

6/210 (3%) of the experiments, steepest ascent did not change the solution. Steepest 

Ascent Phase improves the solutions by 8.38% in average, in the range of 0% - 
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34.2%. When holding cost is greater than 0.1 per unit per unit time, the average 

improvement reduces to 7.95%, range is still the same. Likewise, if traffic intensity is 

less than 0.6, the average is 3.34% and the range squeezes to 0% - 15.7%.  

It can be said that a powerful method to find the game equilibriums in the case of 

independent dealers is introduced.  

The main cause of further improvement by local search was observed to be the 

process of finding good levels of static policy levels from a dynamic best response. A 

base-stock approximation to S and T levels may prove useful. Another challenge is 

to find a better performance method for the centralized system, the merely naïve 

solution procedure modification did not work as intended. 
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CHAPTER 4 

 

 

COMPUTATIONAL RESULTS 

 

 

This chapter outlines the experimental base and listing findings to the research focus 

questions stated. It consists of four sections.   

In Section 4.1, the numerical study setting, through which the computational results 

are obtained, is described: cases and parameter base of each case as well as the 

performance measures are introduced. 

In Section 4.2 the results for the symmetric competitive pooling –benchmark- case 

are presented. By “symmetric”, it is meant that all demand parameters, inventory 

holding costs and backordering costs are the same across the system. Interpretations 

are given on the effect of holding cost, transshipment cost and traffic intensity, as 

well as commissions on equilibrium policies, profits, transshipment flow volumes, 

and service performances of a two independent symmetric (in terms of 

demand/supply structure and internal costs) dealer spare parts system under the 

possibility of inventory pooling.  

In Section 4.3 the results for the asymmetric competitive pooling are presented. 

Allowing for different arrival rates/traffic intensities, inventory holding and 

backordering costs between two dealers, performance measures are examined and 

interpretations provided, notably on the impact of asymmetry in environment 

parameters on transshipment benefits, equilibrium policies and transshipment flow 

volumes. This section also aims to answer how the benefits from transshipment are 

dispersed through heterogeneous dealers under various commissions. 
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Section 4.4 yields the results for centralized cooperative pooling. The aim is to 

quantify the negative effect of competition and to observe how centralized policies 

differ from decentralized policies. The system-wide value is now maximized instead 

of dealers trying to give the best response maximizing their own self-interest given 

other dealer’s inventory management policy. Under symmetry of cost and demand 

parameters, numerical results are presented to show the effect of demand and cost 

parameters on the value of centralized inventory management in a symmetric setting 

as well as on the centrally achievable benefits of pooling. If a manufacturer aims to 

introduce incentive mechanisms to motivate the independent dealers to collaborate, 

he would benefit from this analysis. 

4.1 NUMERICAL SETTING 

This section has two subsections, 4.1.1 and 4.1.2. In 4.1.1 the three cases that are 

dealt in the study is introduced. Parameter base of each case is introduced, as well as 

the factors analyzed in each case. In 4.1.2, performance measures are expressed.  

4.1.1 CASES CONSIDERED 

Symmetric Competitive Pooling is the benchmark case. It is defined as two 

independent dealers with identical economic environments: same 

backorder/holding/penalty costs, same customer traffic intensity and production rate. 

Factors Analyzed: Traffic intensity (synonymous to demand rate since production 

rate is unity), transshipment cost, commission, holding cost attributed to both dealers 

are the factors analyzed. Table 4.1 states the numerical combinations. 
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Table 4.1 Factor combinations of symmetric competitive pooling study 

 

Demand Rate  0.3, 0.45, 0.6, 0.75, 0.9, 0.99 per unit time
 

Prod. Rate  1.0 per unit time
 

Commission  1, 3, 4.5, 6, 9 per unit
 

Trans. Cost  1,2,4,6,8 per unit
 

Sales Rev.  10 per unit
 

DoS Penalty  5 per unit
 

Inv. Hold Cost  0.1,0.5,1,2,4 per unit per unit time
 

Backordering cost   2 per unit per unit time 

TOTAL 750 Combinations 

 

 

 

Asymmetric Competitive Pooling is system with not-necessarily-identical economic 

environments: backorder/holding costs and customer traffic intensities now differ 

across the dealers. 

Transshipment cost, commission payment, holding cost of D1, backordering cost of 

D1 and customer traffic intensity (production rate is the same for both D1 and D2) 

are the factors analyzed. Table 4.2 states the numerical combinations. 
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Table 4.2 Factor combinations of asymmetric competitive pooling study 

 

Demand Rate of D1  0.3, 0.45, 0.6, 0.75, 0.9 per unit time  

Demand Rate of D2 0.3,0.9 per unit time 

Prod. Rate for both dealers 1.0 per unit time 

Commission for both dealers 1, 3, 4.5, 6, 9 per unit 

Trans. Cost for both dealers 1,2,4,6,8 per unit 

Sales Rev.  for both dealers 10 per unit 

DoS Penalty for both dealers 5 per unit 

Inv. Holding Cost for D1 0.1,0.5,1,2,4 per unit per unit time 

Inv. Holding Cost for D2 1 per unit per unit time 

Backordering cost for D1  0.2,1,2,4,8 per unit per unit time 

Backordering cost for D2 2 per unit per unit time
 

TOTAL 6250 Combinations 

 

 

 

Note that traffic intensities to D1 are either lower than or equal to the traffic intensity 

to the second dealer, or higher than or equal to that. Hence, it is convenient to recall 

half of the combinations as “low traffic intensity at D2” and the other half as “high 

traffic intensity at D2” case and treat them separately.  

Symmetric Centralized Pooling is the case with two dealers that are centrally 

operated with identical economic environments. 

Factors analyzed are transshipment cost, traffic intensity and holding cost. Note that 

commission, an in-system transfer payment, is irrelevant to this system (i.e. the 

system-wide revenue is R-tr if a customer demand is met through transshipment) are 

the factors analyzed. Table 4.3 states the numerical combinations. 
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Table 4.3 Factor combinations of symmetric centralized pooling 

 

Demand Rate  0.3, 0.45, 0.6, 0.75, 0.9, 0.99 per unit time  

Prod. Rate  1.0 per unit time 

Commission  Irrelevant  

Trans. Cost  1,2,4,6,8 per unit 

Sales Rev.  10 per unit 

DoS Penalty  5 per unit 

Inv. Holding Cost  0.1,0.5,1,2,4,8,12 per unit per unit time 

Backordering cost   2 per unit 

TOTAL 210 Combinations 

 

 

 

α, the continuous discount rate accounting for time value of money, is kept at 0.05 

for all experimental settings. 

4.1.2 PERFORMANCE MEASURES  

The benefit of pooling for the D1 (i.e. percentage added to D1 profits under pooling 

equilibrium vis-à-vis without pooling) and the effect of competition on profits.  

The (relative) benefit of pooling for D1 and D2 follows (4.1): 

100%
pooling nopooling

nopooling

 






                                                                                         (4.1)

 

Where πpooling is the profits of D1 and D2 under the centralized/decentralized model 

and πnopooling, the no-pooling profits are computed by restricting the policies to be S, 

T type and fixing K=S and Z=T and using the same algorithm under same traffic 

intensity and cost/revenue parameters.  

The (relative) benefit of centralization for the 1
st
 (2

nd
) dealer is defined as in (4.2) 

'
100%

'

centralized pooling

pooling

 






                                                                                       (4.2)
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Where π’pooling is the arithmetic average profits of D1(2) via the decentralized model 

under different commissions and πcentralized is computed under the same cost/revenue 

structure (except commission, which is irrelevant) under the centralized model. 

Note that the benefit of pooling
11

 and the benefit of centralization is always non-

negative in our modeling context, since pooling can be forfeited at will and 

centralization does transshipments that will increase system-wide profits but 

unilaterally decrease one of the dealer’s profits. 

Although the model seeks to find the best responses of each dealer solely in terms of 

their profits in the decentralized case and best system-wide profit for the centralized 

case, the total discounted expected inventory levels, the total discounted expected 

backorders, total discounted (transshipment) flow rates between dealers and the total 

discounted expected DoS rate are also assessed to fully monitor the impact of 

centralization and inventory pooling on supply chain performance.  

To calculate the remaining performance measures, total discounted expected time 

fractions in each state is obtained through equation set (4.3). 

PXX                                                                                                             (4.3) 

X is proportional to the total discounted expected time fraction up to a multiplicative 

constant, which depends only on α and β. The initial mass is placed at (i, j) = (S1, S2). 

Please, refer to Chapter 3 for the definitions of δ, ρ, β and P. 

Given X, the abovementioned performance measures can be mathematically defined. 

The total discounted expected inventory level for D1 is simply as in (4.4): 

2 1

2 1

1
( , )

S S

j T i T

i X i j
 



 


                                                                                             (4.4)

 

Where i
+
=max {0, i} 

 
 
11

 Benefit of pooling is non-negative since a dealer always has the option to unilaterally waive pooling 

in a competitive setting by setting K1=S1 and Z1=T1. 
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The total discounted expected backorders for D1 is as in (4.5): 

2 1

2 1

1
( , )

S S

j T i T

i X i j
 



 


                                                                                             (4.5)

 

Where i
-
=max {0,-i} 

The total discounted expected flow rate from D1 to D2 is as in (4.6): 

2 1

2

2 1 1 1

1
( , )

Z S

j T i K

X i j
     

 
                                                                                       (4.6)

 

 

The total discounted expected flow rate from D2 to D1 is as in (4.7): 

2 1

1

2 1 1 1

1
( , )

S Z

j K i T

X i j
     

 
                                                                                        (4.7)

 

The total discounted expected DoS rate for D1 is as in (4.8): 

2

1 1

2

1
( , )

S

j T

X T j
  


                                                                                                (4.8) 

Note that the .
b

a

 operand is null if a>b.  

4.2 SYMMETRIC COMPETITIVE POOLING RESULTS 

In this section, In Section 4.2 the results for the symmetric competitive pooling –

benchmark- case are presented. By “symmetric”, it is meant that all demand 

parameters, inventory holding costs and backordering costs are the same across the 

system.  

This section consists of 5 subsections. In subsection 4.2.1, some introductory results 

are stated on the equilibrium structure and the distribution of relative benefit of 

pooling. In the following three subsections, interpretations are given on the effect of 

transshipment cost (subsection 4.2.2), inventory holding cost (subsection 4.2.3), 

commission (subsection 4.2.4) on equilibrium policies, profitabilities, transshipment 

flow volumes, and service performances of a two independent symmetric (in terms of 

demand/supply structure and internal costs) dealer spare parts system under the 
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possibility of inventory pooling. Subsection 4.2.5 summarizes the results obtained so 

far and discusses the effect of traffic intensity on the system performance. 

4.2.1 INTRODUCTORY RESULTS 

This section has some notes on the equilibrium structures and the distribution of the 

benefit of pooling. 

The equilibrium structure is found to be mostly single, pure-strategy equilibrium. 599 

out of 750 combinations (or 79.9% of cases) indicated a single, symmetric, pure-

strategy equilibrium.  

141 of the remainder cases or 18.8% of all cases indicated multiple equilibria: a 

multitude of pure strategy equilibrium policies for the game. Due to symmetry, if   

(a, b), a ≠ b is an equilibrium policy, (b, a) is also an equilibrium policy on these 

equilibrium policy sets. We believe those equilibriums are observed since applied 

policies are restricted to be invariant of the state.  

Final 10 combinations, or 1.3% of all cases indicated a multitude of equilibrium 

policies for the game resulting from the best response mapping algorithm, no pure 

strategy equilibrium. There are more than couple of (a, b) - (b, a), a ≠ b elements in 

these equilibrium policy sets. 

The relative benefit of pooling is highly right-skewed: ranged between 0 to 16% 

(there are cases with no improvement of pooling, since the system in equilibrium 

does not involve inventory pooling), and has a mean of 3.14%. It will be clearly seen 

after subsequent sections that competition is dampening the relative benefit of 

pooling. 

4.2.2 EFFECT OF TRANSSHIPMENT COST ON PERFORMANCE 

MEASURES 

Relative benefit decreases with transshipment cost, a mere market friction. Increased 

transshipment cost acts as a barrier for requesting transshipments for both dealers, 

therefore decreasing the advent of transshipments, as well as directly decreasing the 

profit gains by pooling. The effect is more intensely felt with increasing traffic 
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intensity, where the transshipment flows get higher due to higher customer demand 

and higher demand variance (since demand is a Poisson process). Both the benefit of 

pooling and the decrease of it is minimal at the lowest traffic intensity and maximal 

at the highest. Figure 4.2.1 follows. 

 

 

 

 

Figure 4.2.1 Average relative benefit of pooling versus transshipment cost averaged 

over all of the remaining parameters 

 

 

 

This behavior (along with the behavior with traffic intensity) repeats itself also for 

the asymmetric competitive pooling case (Figure 4.3.8) for the benefit of pooling for 

D1 with low arrivals to the D2 (the trend with D1 traffic intensity is reversed when 

there are high arrivals to the D2) and the cooperative pooling case (Figure 4.4.1). 

Notice that what is dealt is a symmetric, bilateral phenomenon that has a cleared 

market at equilibrium. That fact is best embodied in the merely counterintuitive 

clause, “if it is not requested, it cannot be granted”. When transshipment is requested, 

the granting interval (i.e. S-K) also gets narrower: The dealer cannot profitably 

unilaterally widen up his sending interval because it will cause decrease in his 

revenues due to unnecessarily increased profit margin losses (e.g. receiving the 

commission instead of the full payment) and cause imbalance between supply and 
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demand. This is at best characterized with the Figure 4.2.2, average S, K, Z, T levels 

under traffic intensity of 0.9. Both S-K and Z-T margins decrease with increased 

transshipment costs. 

 

 

 

 

Figure 4.2.2 Average S, K, Z, T levels under 0.9 traffic intensity vs. transshipment 

cost over all relevant experimental runs 

 

 

 

When trends of performance measures with transshipment cost are investigated, 

averaging over all of the other factors, the following are observed: Inventory slightly 

increases, profit slightly decreases, flow between dealers decays, benefit of pooling 

decays, backorders slightly increases and DoS increases with transshipment cost.  

From this point on, it is felt necessary that numerical results should be more 

thoroughly treated to infer more through parameter interactions. 

For a low inventory holding cost (ch: 0.1 per unit per unit time), low commission (r: 

1 per unit) environment, the S,K,Z,T trend looks like in that of Figure 4.2.3 for a low 

traffic intensity and high traffic intensity combination. 
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Figure 4.2.3 S, K, Z, T levels under 0.45 (left) and 0.9 (right) traffic intensity vs. 

transshipment cost over experimental runs having inventory holding cost of 0.1 per 

unit per unit time and commission 1 per unit 

 

 

 

The increase in transportation costs decreases the propensity towards requesting from 

the other party, but does not change its inclination towards offering. Hence, the Z-T 

(requesting) region narrows down and the S-K (accepting) region enlarges. Since the 

system is expected to spend more time around S under low traffic intensities and 

around T under high traffic intensities, T is more responsive at low traffic intensities 

and S is at high. Increasing transshipment costs signify increased base stock levels 

because of increased variability of demand due to lack of pooling. Hence, lack of 

pooling results in less effective usage of capacity.  

It is to be noted that high holding cost combined with small commission tends to 

eliminate pooling unless there is enough traffic intensity (e.g. ~0.9) to justify 

pooling. At high holding costs and small commissions, dealers tend to approach a 

zero base stock, sole-source policy: small commissions do not provide enough 

incentive to exchange backorders. Policy trends on 0.9 traffic intensity look like that 

of Figure 4.2.3 (left); the low traffic pattern for a small holding cost and small 

commission.  

High holding costs combined with high commissions create a case in between: trends 

on both high and low traffic intensities look like that of Figure 4.2.3 (left); the low 

traffic pattern for a small holding cost and small commission. High holding costs 
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hinder inventory holding and the available inventory to share but high commissions 

tend to yield incentives toward sharing under this specific context.  

4.2.3 EFFECT OF COMMISSION ON PERFORMANCE MEASURES 

Each dealer’s profit is observed to be maximized at middle values of the commission 

payment. Middle values are more preferable than extremes. Refer to Figure 4.2.4.  

 

 

 

 
 

Figure 4.2.4 Average benefit of pooling vs. commission under different traffic 

intensities on D1 

 

 

 

When the other dealer would not respond to the best response of the dealer (that can 

well occur if a tiny player is exploiting a very large player or there are many 

numerous close players) profit and the transshipment benefit is maximized at either 

extremes of the commission since either the revenues from shipping or the revenues 

from receiving is higher: a finding from Satır (2010). Hence, the optimizing dealer is 

expected to choose among one of these rates and best response is reached when the 

commission is at one of the extremes.  

Therefore, under presence of gaming, opposite of what would be observed when the 

best response policy of a dealer is under consideration. 
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There is a much more interesting trend with the traffic intensity on the asymmetric 

competitive pooling case (for those who can foresee, it looks like a twisted rainbow 

twisting around middle levels of commission). 

When the dealers are symmetric, the outflow equals inflow for each dealer and hence 

commission does not affect the dealer profits directly. However, it may affect the 

policy and indirectly change the profits with change in policy. Suppose for a given 

commission, the optimal policy is symmetric, e.g. X-X: As commission increases, 

transshipment cost gains prominence. The transshipment cost acts as a transaction 

cost type market imperfection and both parties should optimize their lateral 

transshipment benefits against the transaction cost. Hence, dealers are observed to 

request less and give more, i.e. increase the S-K margin and decrease the Z-T 

margin, as can be seen on Figure 4.2.5.   

As commission decreases, dealers are observed to decrease the S-K margin and 

increase the Z-T margin. Since the tendency to give or offer less will be reflected on 

the overall flows between dealers which should  equalize in symmetric equilibrium, 

middle levels of commission encourage transshipment, which provides a fair 

incentive for transshipment in the case of symmetric dealers. A trend similar to that 

of Figure 4.2.4 is observed for the DoS, inventory & queue decrease vis-à-vis non-

pooling situation. 

Albeit the changes in policy parameters are characterized more generally as a 

decrease in K and Z levels (therefore widening of the S-K [accepting] gap and 

narrowing of Z-T [requesting] gap) with commission, a low holding cost/high traffic 

intensity situation may further trigger an increase in S and a high holding cost/low 

traffic intensity situation may further trigger an increase in T level. 
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Figure 4.2.5 Policy parameters versus commission for traffic intensity 0.45, 

inventory holding cost 1 per unit per unit time and transshipment cost 2 per unit
 

 

 

 

As expected, a similar trend like Figure 4.2.4 is observed with profit and flow 

between dealers.  Inventory, Queue and DoS rate:  on average, decreases and then 

increases.            

The behavior on extreme commissions is then inquired: identifying which parameter 

combinations of inventory holding, transshipment costs and traffic intensities enable 

pooling or cause it to merely diminish.   

We have a theoretical result under restrictive conditions for the no commission, r=0 

extreme: If the best response S1(j) in equilibrium is a constant function and K1(j) in 

equilibrium is a constant function, definition of S and K, along with the symmetry 

property in equilibrium establishes the fact that S=K for both dealers when the 

commission is zero. The proof is in Appendix B and it holds regardless of the 

holding, transshipment costs and traffic intensities.  

However, a similar conjecture for T & Z levels cannot be said for the commission 

equal to retail price, r=R end. Here, the presence of the rejection penalty might 

enable parties to pool even if the immediate margin (also reduced by the 

transshipment cost) of a transshipped good is negative. Numerical evidence shows 

that in almost all cases, Z=T as the commission gets sufficiently large. 
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Flow between dealers is an indicator of pooling behavior. The relative benefit of 

pooling is observed to have trends in line with the flows for the oncoming cases in 

this subsection. 

 

 

 

 

Figure 4.2.6 Flow rate between dealers versus commission for various traffic 

intensities (left) and policy parameters at traffic intensity 0.6 (right)  under inventory 

holding cost of 0.5 per unit per unit time and transshipment cost of 8 per unit 

 

 

 

In Figure 4.2.6 it is observed that under low traffic intensities there is a steady 

decrease with the commission payment. When traffic intensity is low, so is the need 

for sharing parts. As commission payment increases, the request for parts decrease 

and a decrease in pooling is observed. The flow rate between dealers is especially 

low when traffic intensity is low and transshipment cost is high. 

Note the relative robustness of S and K parameters at the lower extreme of 

commission, Z and T parameters at the higher end. The Z-T (requesting) margin is 

tweaked first, which is more effective (since low commissions provide incentives 

over requesting), then the S-K (granting) margin.  

At high traffic intensities, tendency to give away describes the pooling behavior in 

symmetric environment. Low inventory holding cost at very low commissions 

provides a reluctance to give away inventory due to high anticipated customer flow. 
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As commission payment increases, dealers are willing to share resources, give away 

inventory. However, under very high commission, the willingness starts to decrease 

due to diminishing margins of transshipment requests: firms are reluctant to request 

transshipments; therefore equilibrium behavior has lesser flow-rate. Thus, the flow 

rate is expected to increase, and then decrease with commission.  

It is also observable from Figure 4.2.6 (right) that policy parameters become more 

irresponsive to commission at the lower traffic intensity extreme (0.3).  This can be 

attributed to the fact that the transshipment flows are already small. 

When the inventory holding cost is at a high extreme, transshipment flows with 

commission are now steady decreasing for high traffic intensities and peaking around 

middle levels for middle traffic intensities, as in Figure 4.2.7. In a system with high 

inventory holding costs and high traffic intensities, inventory/service would be given 

away even at low commissions. A mere trivial fact is that high holding costs and 

high traffic intensities with low commissions do foster the tendency of parties to 

request for transshipments. Therefore, high traffic intensity environments prefer low 

commissions. Lower traffic intensity environments now prefer higher commissions 

since lower commissions do not enable enough incentives to receive costly inventory 

when the anticipated customer flow is small. Due to high transshipment costs, no 

significant transshipment is observable if traffic intensity gets too low. 
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Figure 4.2.7 Flow rate between dealers versus commission Figure for various traffic 

intensities (left) and policy parameters at traffic intensity 0.9 (right) under inventory 

holding cost of 4 per unit per unit time and transshipment cost of 8 per unit 

 

 

 

Note the relative robustness of S and K parameters at the lower extreme of 

commission, Z and T parameters at the higher end. The Z-T (requesting) margin is 

tweaked first, which is more effective (since low commissions provide incentives 

over requesting), then the S-K (granting) margin.  

Trends as in Figure 4.2.6 (for low inventory holding cost) and Figure 4.2.7 (for high 

inventory holding cost) is less clearly observed under a low transshipment cost, but 

still in its place, as can be observed in Figure 4.2.8 (right) and Figure 4.2.8 (left) 

respectively. Note that the transshipment flows are larger. 
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Figure 4.2.8 Flow rate between dealers versus commission for various traffic 

intensities and transshipment cost of 1 per unit under (left) inventory holding cost of 

4 per unit per unit time (right) inventory holding cost of 0.5 per unit per unit time
 

 

 

 

When the effect of commission payment on control parameters is analyzed, it is 

observed that different transshipment cost values affect the behavior. Note that, as 

the transshipment cost is increased, the willingness to give would not be affected. 

However, the willingness to request –high with lower commissions simply due to 

high margins- makes a counter-balance; transshipments naturally decrease with 

increasing commission due to reduced margins. Therefore, the Z-T gap more 

abruptly narrows down as commission payment increases, compared to the trend in 

Figure 4.2.6 (right) –high transshipment costs-. In other words, an increase in 

transportation cost is more likely to exhibit an increased responsiveness on the Z-T 

gap, as can be observed in Figure 4.2.9. 
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Figure 4.2.9 Policy parameters vs. commission under (left) transshipment cost of 1 

per unit and (right) transshipment cost of 8 per unit, inventory holding cost of 1                

per unit per unit time and traffic intensity 0.45 

 

 

 

4.2.4 EFFECT OF INVENTORY HOLDING COST ON PERFORMANCE 

MEASURES 

As the transshipment cost increases, equilibrium tends to no pooling. When all other 

factors are averaged out, benefit of pooling, which is more or less aligned with 

expected flows between the dealers, show an interesting characteristic with holding 

cost. Figure 4.2.10 follows.  
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Figure 4.2.10 Average relative benefit of pooling versus inventory holding cost 

 

 

 

Benefit of pooling increases with increasing holding cost at low holding costs due to 

more balanced inventory. Benefit of pooling gets to a peak and then the benefit 

slowly diminishes with increasing holding cost (diminishing effect slower with 

increased traffic intensity due to increased benefits of backorder sharing), since 

increased holding cost means firms are holding less inventory, and hence the 

effective capability of exchanging on hand inventory becomes limited.  

With increasing holding cost, gains of sharing on hand inventory decreases, whereas 

gains by sharing backorders/service gains prominence. 

The benefit eventually reaches to a limit where only queues are pooled (since there 

are no more base stocks), situation invariant of the holding cost.  It is no longer wise 

to allocate more physical inventory or backorders just for the sake of pooling.  

When trends are further investigated under parameter combinations, there will be 

combinations where pooling is forfeited with holding cost. However, we can safely 

say that under almost all cases concerned, flow rate between dealers follows Figure 

4.2.10. 
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As expected, inventory decays to zero, profit decays asymptotically to a limit, 

average number of customers waiting in the system and rejected/DoS customers 

increases asymptotically to a limit with increased holding cost.  

It will be seen on consequent sections that this behavior (along with the behavior 

with traffic intensity) repeats itself also for the cooperative pooling case (see Figure 

4.4.2) 

To gain a more comprehensive insight, the effect of inventory holding cost on the 

benefit of pooling is analyzed with respect to changes in commission and 

transshipment cost. 

The trend of policy parameters with inventory holding cost under low transshipment 

costs are generally characterized (except extremely low commissions, which disables 

transshipments) as in Figure 4.2.11: a rapid decrease in S level, followed by a slight 

decrease in K, Z and T levels to facilitate working under lower inventory. The S, 

hence K & Z levels are more responsive to the holding cost when the traffic intensity 

is higher.  
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Figure 4.2.11 Policy parameters vs. inventory holding cost under commission of 4.5 

per unit and transshipment cost of 1 per unit with (left) traffic intensity 0.9 and 

(right) with traffic intensity 0.3 

 

 

 

 

Figure 4.2.12 Relative benefit of pooling versus holding cost Figure for low 

commission of 3 per unit and high transshipment cost of 8 per unit 

 

 

 

A cost environment as in Figure 4.2.12, low commission is a disincentive for dealers 

to accept transshipment requests and high transshipment cost is a disincentive to 
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and transshipment cost are significantly lower than the averages over commission 

and transshipment cost (i.e. Figure 4.2.10) in this case.  

However, transshipments could still be done at low enough inventory holding cost 

levels to benefit from decreased variability in demand, especially when traffic 

intensity is high.  

Benefit of pooling becomes zero at high enough inventory costs under low traffic 

intensity (already low in average) almost regardless of commission if transshipment 

cost is high, this can be clearly seen through Figures 4.2.12, 4.2.13 and 4.2.14.  

Another case where no pooling is observed with high inventory holding costs are 

those with all-low commission, low transshipment cost and low traffic intensities 

(see: Figure 4.2.15). A very rapid decay of S-K gap, then a rapid decrease in Z, and 

an increase in T is observed to induce lower queue levels in an environment where 

there is no transshipment. Since the commission is low, willingness to give is also 

low. This case is also observed to occur at the other extreme of commission. At 

medium commissions however, there is still inventory sharing at high inventory 

holding costs (see: Figure 4.2.14). 

Benefit of pooling becomes zero at high traffic intensities and high enough inventory 

costs if the transshipment cost is high or commission is low (even if transshipment 

cost is low), refer to Figure 4.2.11. In this case, it is clearly unwise to accept or 

conduct transshipment requests; the opportunity cost of keeping the inventory for 

dealer’s own is high. Demand for transshipments is also very low. High enough 

commissions still justify backorder/service sharing due to high customer demand and 

hence the benefit of pooling keeps being positive even at very high inventory costs. 

Refer to Figures 4.2.11, 4.2.12, 4.2.13 as well as 4.2.15.  

A final case is under high commission and high transshipment cost regardless of 

traffic intensity. There is clearly no incentive for placing a transshipment request and 

hence there is no benefit of pooling in the equilibrium; although the retailers would 

like to accept a transshipment offer because of the high commission. 
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When averaged over all other factors, it was observed that the benefit of pooling was 

increasing, then decreasing and staying constant for low traffic intensities and 

decreasingly increasing for large traffic intensities: refer to Figure 4.2.10. However, 

this tendency can be altered with the interaction of high traffic intensity, high 

transshipment cost and high inventory holding costs. Observed in Figure 4.2.13 as 

well as Figure 4.2.14, benefit of pooling is observed to be increasing, then decreasing 

then staying constant for large traffic intensities and decreasingly increasing for 

small traffic intensities.  

A credible explanation can be that a mere “opportunity cost of inventory” is in its 

place: when the inventory holding cost is high and inventory is demanded due to 

high customer flow, reserving/expecting inventory for/from transshipment loses 

credibility due to the total transportation costs to be paid to the environment, 

especially intensified when the commission scheme is also not favorable either for 

receiving transshipments or accepting those. Note the trends in Figure 4.2.14 are 

milder than that in Figure 4.2.13 and the y-axis scales are considerably larger. 

 

 

 

 

Figure 4.2.13 Relative benefit of pooling (left) and discounted average transshipment 

flows between dealers (right) with respect to holding cost at transshipment cost of 6 

per unit and commission of 6 per unit 
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Figure 4.2.14 Relative benefit of pooling (left) and discounted average transshipment 

flows between dealers (right) with respect to holding cost at transshipment cost of 2 

per unit and commission of 6 per unit 

 

 

 

 

Figure 4.2.15  S, K, Z, T levels vs. inventory holding cost over experimental runs 

having traffic intensity (left) 0.3 and (right) traffic intensity 0.45, transshipment cost 

1 per unit, and commission 1 per unit 
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system. Actually what happens may sometimes be increased inventory and decreased 

backorder levels if holding cost is low and vice versa if holding costs are high with 

still a strictly positive benefit of pooling. Observe Figures 4.2.16, 4.2.17 and 4.2.18.  

However, all of the cases considered yet have significant decreases in the DoS rate; 

i.e. an increase in service availability/acceptance. 

 

 

 

 

Figure 4.2.16 Relative decrease in service level vs. inventory holding cost at 

commission 4.5 per unit and transshipment cost 2 per unit 

 

 

 

As can be seen in Figure 4.2.16, although in many cases pooling decreases 
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Figure 4.2.17 Relative decrease in inventory level vs. inventory holding cost at 

commission 4.5 per unit and transshipment cost 2 per unit 

 

 

 

Note that the lines are not complete. This is because there is no base stock held 

without pooling at some cases and hence the figure is undefined. As can be seen, 

there are figures slightly below zero at low inventory cost levels, indicating increase 

in inventory levels under pooling. 
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Figure 4.2.18 Relative benefit of pooling vs. DoS rate at commission of 4.5 per unit 

and transshipment cost of 2 per unit 

 

 

 

There is a drastic recovery from rejected customers and hence increased service 

capability. 
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decrease of benefit of pooling is observed with increasing traffic intensities on very 

low commission levels even if it is profitable to ask for transshipments and there is 

increasing demand for it. An increase of pooling benefits can be observed with high 

commissions. Even if the tendency to give away inventory is diminishing with traffic 

intensity, high enough commission keeps the door open for transshipment as the 

demand for transshipment requests also increase even if it is not profitable to do so. 

Figure 4.2.19 follows.  

 

 

 

 

Figure 4.2.19 Benefit of pooling versus traffic intensity under different commission 

schemes and traffic intensities and with transshipment cost 1 per unit and inventory 

holding cost 0.1 per unit per unit time 

 

 

 

 

4.3 ASYMMETRIC COMPETITIVE POOLING 
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5.11% for D2). The range is much wider:  (0%-557% for D1, 0%-101% for D2). The 

benefit of pooling for D1 is less than 4% in 56% of the cases (3519/6250), between 

4% and 20% in 34% of the cases (2128/6250) , 20%-75% in 8% of the cases  

(499/6250) and extremely large for the remainder 2% (104/6250). 
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Although some revenue opportunities are absorbed by competition, it will be seen in 

this section that pooling in asymmetric cases benefits both rational players to be 

better off by exchanging their best capabilities. The benefits are especially high since 

there is now a significant net flow of goods. For example, the dealer with low 

customer arrivals would tend to send parts to receive customers from the dealer with 

high customer arrivals or the dealer with high inventory costs tends to send parts to 

receive customers from the dealer with low inventory costs under similar traffic 

intensities, increasing the benefit of pooling under favorable commissions depending 

on the anticipated net flow of transshipment. A detailed analysis now follows for the 

benefit of pooling having identified those drivers.  

As mentioned above, benefits of pooling are impacted by the difference in traffic 

intensities. That is, when D2 faces customer arrivals at rate 0.9, it is most beneficial 

for D1 to pool when it faces a traffic intensity of 0.3, the smallest rate tested. It is just 

the vice versa when D2 faces 0.3 rate arrivals; most benefits to D1 are at D1 facing 

0.9 rate arrivals. Of cases which have more than 20% benefit of pooling for D1, 27% 

(134/603) are where D1 has a traffic intensity at the lower end (0.3) and D2 has at 

higher end (0.9), 12% (74/603) is for the case reversed, D1 has 0.9 and D2 has 0.3 

traffic intensity: whereas only 5% (34/603) are 0.3-0.3 and 7% (43/603) are 0.9-0.9.  

When the lower extreme end of the benefit distribution (≤2%) is analyzed, 73% 

(477/650) of all 0.3-0.3 cases and 24% of all (157/650) 0.9-0.9 cases are observed to 

be at this region. It can be safely said that low-low and high-high traffic intensity 

combinations, in other words symmetry, tend to lower benefits of pooling in general.  

At the higher extreme of the benefit distribution however, (Benefit of pooling to D1 

>75%) the 0.3-0.3 traffic intensity combination has 17% (18/104) weight, 

outperforming the 0.9-0.3 and 0.3-0.9 cases which have 13% (13/104) each.  

Thus, difference in holding and backordering costs do have a significant impact on 

the benefit of pooling. A large 58% (582/1000) of the cases where the inventory 

holding cost and backordering cost of D1 is strictly smaller than that of D2 (holding 

cost 0.1 or 0.5 per unit per unit time and backordering cost 0.2 or 1 per unit per unit 

time) has lower than 2% benefits for D1. Only 33 of those cases have larger than 
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20% benefits, none is having larger than 75% benefits. On the other hand, on cases 

where the costs of D1 are strictly larger (holding cost 2 or 4 and backordering cost 4 

per unit or 8 per unit): 171/1000, or only a small 17% of cases has lower than 2% 

benefits, 421 of the cases has larger than 20% benefit. All of the 104 <75% benefit 

cases are the cases where costs of D1 are strictly larger. 

Looking at the very extreme, the 556% benefit case for D1 arises at the largest 

holding and backordering cost, smallest traffic intensities (i.e. 0.3-0.3) and 

transshipment cost (1 per unit). In this case, it can be anticipated that there is a net 

flow from D2 to D1; the net stock and backorders of D1 are stored in D2. D1 would 

be expected to benefit from this situation under low commission and to have 

relatively deteriorated gains under high commission, which is the case: D1 has 556% 

benefits under commission of 1 per unit and 146% under commission of 9 per unit. 

D2 would be expected to benefit from this situation under high commission and 

deteriorated gains under low commission:  16% under commission of 9 per unit and 

2% under commission of 1 per unit. 

Figure 4.3.1 below shows the effect of commission payment on the benefit of 

pooling to D2 under D2 traffic intensity of 0.9. D1 has lower traffic intensities; D2 

tends to request and is willing to receive from D1. Under low commission, the 

benefit obtained by D2 is the highest when D1 has the lowest traffic intensity. 

 As commission increases, D2 will be less likely to place a transshipment request 

since it does not get good deals while receiving and hence it tends more towards 

sending. D2 will start to get more requests and be more willing to send units or D1 

will be more willing to share backorders when the traffic intensity to D1 increases. 

Hence, under high commission, the benefit second dealer will have is the highest 

when D1 has the highest traffic intensity. 

Among all traffic intensities, the benefit of pooling to D2 is observed to be unimodal 

in commission payment. D1 will be more willing to share when there is enough 

incentive for it to send, i.e. under high commissions. However, when the commission 

is too high, D2, facing high arrivals, will not be tending to receive, and hence the 

benefit degrades from this maximum. 
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Figure 4.3.1 Average benefit of pooling for D2 (at traffic intensity 0.9) versus lateral 

transshipment revenue.  

 

 

 

 

Figure 4.3.2 Average benefit of pooling for D2 (at traffic intensity 0.9) versus 

inventory holding cost of D1.  
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Figure 4.3.3 Benefit of pooling for D2 (at traffic intensity 0.9) versus backordering 

cost.  
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Among all traffic intensities, the graph, Figure 4.3.2, retains its convex-looking 

shape and attains a minimum when the unit holding cost of D1 and D2 are close to 

each other.  D1 will be more willing to share when there is enough incentive for him 

to send, i.e. a sufficiently high inventory holding cost difference. When the costs in 
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General trends of performance measures versus transshipment cost are similar to that 

in the symmetric competitive pooling case, except the fact that it has now variations 

due to asymmetry of traffic intensity and inventory holding/backordering costs 

between dealers.   

General trends of performance measures versus inventory backordering cost are also 

similar to that in the symmetric competitive pooling case. As expected, queue decays 

to zero, Profit decays asymptotically to a limit, inventory and DoS customer rate 

increases asymptotically to a limit with increased backordering cost. 

Some interesting results arise when the asymmetry of the inventory holding cost and 

backordering cost are analyzed. 

Figure 4.3.4 shows the effect of holding cost difference on the flows from D1 to D2 

and D2 to D1 when the customer traffic intensities and backordering costs at D1 are 

equal. Customer traffic intensities are parameters. Commission is 4.5 per 

transshipment. 

Figure 4.3.5 shows the effect of backorder cost difference on the flows from D1 to 

D2 and D2 to D1 when the customer traffic intensities and inventory holding costs 

are equal. Customer traffic intensities are parameters. Commission is again 4.5 per 

transshipment. 
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Figure 4.3.4 Flows between dealers versus holding cost of D1 when backordering 

cost is 2 per unit per unit time 
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Figure 4.3.5 Flows between dealers versus backordering cost of D1 when holding 

cost is 1 per unit per unit time 

 

 

 

Likewise, notice that flows between dealers are equal to each other when 
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Figure 4.3.6 Benefit of pooling for D1 versus commission under (left) holding cost of 

4 per unit per unit time and backordering cost of 8 per unit for D1 and traffic 

intensity of 0.3 to D2 (right) holding cost of 0.1 per unit per unit time and 

backordering cost of 0.2 per unit per unit time  for D1 and traffic intensity of 0.9 to 

D2. Transshipment cost is held at 1 per unit.  
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of holding additional inventory at D2 (serving its own customer vis-à-vis providing 

transshipment) is low due to high customer demand there, as well as availability at 

D1. The flow-gap diminishes with the increased traffic intensity at D1, as the number 

of transshipment requests placed by D1 increases (inflow for D1, d2d1 flow) and 

satisfied transshipment requests by D1 (outflow for D1, d1d2 flow) decreases with 

traffic intensity on D1. The result is a significant decrease in outflow (d1d2 flow) and 

decrease in the benefit of pooling for the first dealer.  

When the traffic intensity to D2 is low (see: Figure 4.3.7 [right]) and that in D1 is 

high, transshipment requests will be sent much more in frequency by D1, value of 

holding additional inventory at D1 (serving its own customer vis-à-vis providing 

transshipment) is high due to high customer demand and already available inventory 

at D2. The flow-gap diminishes with the decreasing traffic intensity at D1, as the 

number of transshipment requests placed by D1 decreases (inflow for D1, d2d1 

flow). The result is a significant decrease in inflow (d2d1 flow) and corresponding 

decrease in the benefit of pooling for the first dealer. Hence, benefit of pooling 

decreases with decreasing traffic intensity at D1. 

The increase in relative benefit of pooling is felt more abrupt because the outflow 

from D1 is insignificant anyway.  

There are more flows in the 0.9-0.9 case than the 0.3-0.3 case, as can be anticipated 

through the arguments placed under the benchmark –symmetric- case analysis. 
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Figure 4.3.7 Benefit of pooling, inflow and outflow of D1 versus traffic intensity at 

D1 under (left) traffic intensity of 0.9 at D2 (right) traffic intensity of 0.3 at D2. 

Transshipment cost is 2 per unit, inventory holding costs and backordering costs are 

equal, the commission is at 6 per unit. 
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The trends in the centralized case look similar to that of symmetric competitive 

pooling, but are more robust to increases in transshipment cost and the holding cost. 

To re-characterize these trends, Figures 4.4.1 and 4.4.2 follow. Yet still, relevant 

comments on these Figures can be found under Figures 4.2.1 and 4.2.3 respectively. 

 

 

 

 

Figure 4.4.1 Average relative benefit of pooling versus transshipment cost 

 

 

 

 

Figure 4.4.2 Average relative benefit of pooling versus inventory holding cost 
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Effect of competition on relative benefit is more pronounced, as expected, at low 

transshipment cost, high inventory holding cost and large traffic intensities, where 

commissions trigger conflicts of interest and wash-off attainable profit tuples without 

competition.  

 

 

 

 

Figure 4.4.3 Average effect of competition on relative benefit versus transshipment 

cost 

 

 

 

 

Figure 4.4.4 Average effect of competition on relative benefit versus inventory 

holding cost 
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The policies under cooperative pooling generally shows a larger interval of pooling 

and a narrower interval for the non-interacting (i.e. K-Z) interval (Compare with 

Figure 4.2.2). 

 

 

 

 

Figure 4.4.5 (left). Average S, K, Z, T levels under 0.9 traffic intensity vs. 

transshipment cost 
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these cases, either inventory is raised to account for the decreased flow and benefit 

from low inventory holding cost. 

As can be seen on Figure 4.4.6 and Figure 4.4.7, increase in DoS and decrease in 

flows is more drastic when the commission is at either extreme and traffic intensity is 

low. Increase in DoS with competition is slightly more if commission is at the higher 

(rather than lower) extreme, where requesting becomes less profitable. 

 

 

 

 

Figure 4.4.6 Average increase in DoS with competition 
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Figure 4.4.7 Average decrease in flows with competition 
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Figure 4.4.8 Relative increase in inventory vs. inventory holding cost at commission  

3 per unit and transshipment cost 2 per unit 

 

 

 

 

Figure 4.4.9 Relative decrease in service level vs. inventory holding cost at 

commission 3 per unit and transshipment cost 2 per unit 
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CHAPTER 5 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

This research attempts to investigate the possible effects of competition and 

collaboration on an inventory pooling system. A large set of experimental cost/traffic 

factor combinations are run in a two-dealer, single-echelon, capacitated production 

and stochastic (Markov) customer/production arrival processes. Both a competitive 

equilibrium and a system-wide profit maximizing solution (centralized case) are 

considered. Therefore, gains of centralization and pooling as well as service levels 

and customer rejection levels could be observed under different cost environments.  

The benefit of pooling in the symmetric case, within the span of the experimental 

factor combinations regarded, varies between 0%-17% (average 2.54%), where 

higher benefits (≥10%) are obtained under high traffic intensities (≥0.6), low 

transshipment cost (≤2) and medium inventory holding costs (1,2 and 4 per unit per 

unit time). 

It can be safely said that proper commission schemes that allocate the transshipment 

value to the players fairly (e.g. at medium levels of commissions if the cost structure 

is symmetric), high customer traffic intensities, and low transshipment costs are most 

suited environments for pooling. Benefit of pooling is observed to rise with inventory 

holding cost, but then decline, under some conditions totally wipe out, if it is too 

much. 

Competition, on the average and within the span of the experimental factor 

combinations regarded, dampens about 45% of the benefits associated with pooling. 
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If the vendor system would be operated centrally, a 1.94% on the average would be 

the gain, ranging up to 13.8%.  

Further, centralization is observed to increase the extent of pooling on all cases. 

Centralized authority enables transshipments which would be otherwise not be done 

under decentralization: not requested or not accepted due to the fact that doing so is 

anticipated to decrease profits of the deciding dealer. Therefore, K and Z levels are 

anticipated to be more robust to cost parameters. 

Deterioration of the profits under competition is higher under higher unit inventory 

holding costs, lower transshipment costs, higher customer traffic intensities and the 

commission structure is distracting either the receiver or sender such that eventually -

in competitive equilibrium-, both sides become reluctant to share.  

Although some revenue opportunities are absorbed by competition, pooling with 

vendors facing different –asymmetric- cost/traffic environments benefit both rational 

players to be better off by exchanging their best capabilities. The average benefit of 

pooling is higher. Up to a mere 557% increase in profits by pooling is achieved for 

D1 (101% for D2). The benefits are especially high since there is a significant net 

flow of goods. For example, the dealer with low customer arrivals would tend to 

send parts to receive customers from the dealer with high customer arrivals or the 

dealer with high inventory costs tends to send parts to receive customers from the 

dealer with low inventory costs under similar traffic intensities, increasing the benefit 

of pooling under commissions depending on the anticipated net flow of 

transshipment. 

One would expect that the presence of pooling should increase service levels along 

with profitability. This intuition also claims that inventory/service should decrease 

vis-à-vis a no pooling situation. Profit maximization does not necessarily meet all of 

these three trends simultaneously. Actually what it does may sometimes be to 

increase inventory and decrease backorders if holding cost is low and vice versa (i.e., 

decreased inventory and increased backorders) if holding costs are high and provide 

still a non-negative benefit of pooling. Note that benefit of pooling is always non-
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negative since the dealers always have the option to forfeit pooling even in a 

competitive environment. 

A powerful heuristic method to quickly find the set of equilibrium policies in the 

competitive setting is outlined. So called a “policy iteration phase”, it drastically 

reduces the number of evaluations to find the equilibrium policy set. The main cause 

of further improvement by local search was observed to be the process of finding 

good levels of static policy levels from a dynamic best response. A base-stock 

approximation to S and T levels may prove useful. Another challenge is to find a 

better performance transformation method for the centralized system, the merely 

naïve solution procedure modification did not work as intended. 

Since the effects of cost/revenue/demand are observed to be interrelated to each other 

with seemingly high degrees of interaction, use of Experimental Design or Response 

Surface Methodologies to better express the effect of parameters might prove useful, 

despite its discussed fallacies. One way or another, a statistically reinforced picture 

clearly highlighting all statistically significant main effects, as well as interactions 

can be depicted via these methods.  

The value of information and common information on inventory levels and value of 

information and common information on cost and product/traffic intensity 

parameters are left untouched. Further, the outlying policies and performance trends 

might be different, these should also be investigated.   
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APPENDIX A 

 

 

PSEUDO-CODE AND MATLAB CODES FOR THE SYMMETRIC 

COMPETITIVE CASE SOLUTION ALGORITHM 

 

 

 

The MATLAB code has a modular structure using the same workspace (hence the 

variable pool), having the following modules: 

 main.m contains the experimental setting, includes the policy iteration stage, 

steepest ascent phase and the best response mapping algorithm. It calls all 

other modules. 

 evaluation.m builds the one-step probability matrix P and computes the 

value function V and profit π through the equation system C+ρPV=V and  

π=δV 

 xeval.m has the same structure with evaluation.m except that X, which is the 

vector measure proportional to the total discounted expected time fraction is 

computed via X=δ+ρPX. 

 

The MATLAB workspace contains the following input parameters: 

 alpha, discount factor 

 br, the revenue (per unit) 

 beta, uniformization constant (per unit time) = l1+l2+m1+m2 

 envseth, contains the set of holding costs for experimentation  (per unit per 

unit time) 

 envsetl, contains the set of traffic intensities for experimentation  (per unit 

time) 

 envsettr, contains the set of transshipment costs for experimentation (per unit) 
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 envsetsr, contains the set of commissions for experimentation (per unit) 

 h, the inventory holding cost (per unit per unit time) 

 iterlim is an upper limit for the total iterations in the best response mapping 

algorithm 

 l, the backordering cost (per unit per unit time) 

 l1, traffic intensity to D1 (per unit time) 

 l2, traffic intensity to D2 (per unit time) 

 m1, production rate at dedicated line to D1 (per unit time) 

 m2, production rate at dedicated line to D2 (per unit time) 

 py, the negative of the penalty cost (per unit) 

 rho, modified discounting factor = beta/(beta+alpha) 

 sr, the commission (per unit) 

 tr, the transshipment cost  (per unit) 

 

The workspace contains the following indices: 

 a,b,c holds the actions deducted in each state (i, j) given 

S1,K1,Z1,T1,S2,K2,Z2,T2.  

o a is the production completion event decision. a=1 means “stop 

production” and a=2 means “new product request” 

o b is the receive transshipment request event decision. b=1 means 

“reject” and b=2 means “accept” 

o c is the customer arrival event decision. c=1 means “DoS”, c=2 means 

“accept”, c=3 means “send transshipment request” 

 cycleindex holds the iteration number where the best response mapping 

loops, hence the set of equilibrium policies are found. If the set of equilibrium 

policies are singleton, i.e. cycleindex=iteration-1, a single pure-strategy 

equilibrium is output 

 expiter counts the output line to be printed for the experiment log expout 

 counter counts the experimental runs conducted so far 

 h_indx, l_indx,sr_indx,tr_indx denotes the indices to be used in the current 

experiment 
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 i,j and d,e (alias) indices hold the inventory levels of each dealer 

 ion index is an index for printed lines 

 iteration counts the number of best response calculations done in each 

experimental setting 

 k and m (alias) holds the single-dimensionalized version of (i, j) and (d, e) 

tuples 

 locsearchiter counts the iterations to exit the steepest ascent algorithm 

 policyiter counts the iterations to exit the policy iteration phase 

 

The workspace contains the following variables: 

 best holds the best objective function in policy iteration 

 bestimp has the best improvement (i.e. steepest ascent) amount for local 

search  

 cumpro is used for construction of pro. For each state,  it holds the total 

probability to the neighboring states, hence the remainder from 1 becomes the 

own-stage probability 

 d1tod2, d2tod1 has the expected discounted infinite horizon flow amounts 

between dealers computed for all equilibrium policies 

 del, initial probability distribution vector (always unit mass at S1,S2) 

 impliedbest and best has the best objective function out of the policy iteration 

search 

 improvement has the difference between the local search best solution and the 

output from policy iteration= best-impliedbest 

 inventory has the expected discounted infinite horizon inventory measure for 

the mode player 

 lostsales has the expected discounted infinite horizon number of rejections 

measure for the mode player 

 log holds the best response mapping in each iteration. The column headings 

are as in the following order: 

o 1-S1best,2-K1best,3-Z1best,4-T1best,5-S2,6-K27-,Z2,8-T2,9-mode,10-

objold 
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 mode , having value of either 1 or 2, holds the player index of whose best 

response is currently being obtained 

 obj is the profit of the mode player given S1,K1,Z1,T1,S2,K2,Z2,T2 

 objold has the profit of the mode player of the previous iteration 

 NOS contains the total number of states in the current evaluation 

 S2,K2,Z2,T2 denote the policy parameters of the other dealer 

 S1,K1,Z1,T1 denote the current policy parameter set to be evaluated 

 S1old,K1old,Z1old,T1old denote the previous policy parameter set 

 S1local,K1local,Z1local,T1local denote the initiation point for the local 

search (i.e. output from the policy iteration phase) 

 S1search,K1search,Z1search,T1search denote the result from the local 

search, i.e. the local optimal best response solution 

 S1best, K1best,Z1best,T1best  denote the policy parameter combination with 

the highest value of objective function found so far 

 swap is the variable alloted to swap players 

 pro is the one step probability matrix in k,m-index form 

 prof is the immediate profit matrix in k-index form 

 v has the value function vector in k-index form 

 waitcust has the expected discounted infinite horizon backorder measure for 

the mode player 

 x has the vector measure proportional to the total discounted expected time 

fraction in k-index form 

The workspace contains the following flags: 

 cycleflag flags whether the best response mapping has looped 

 flag flags whether there is an improving direction (flag=1) or not (flag=0) 

 out denotes the status of the experiment, out=1 means that a single 

equilibrium policy is found, out=2 means that a multitude of equilibrium 

policies are found, out=3 means that the iterlim is exceeded. 
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 redundant flags whether the local search was redundant: it did not improve 

(redundant=1) or improve (redundant=0) the best response guess by the 

policy iteration phase 

 trunc flags whether the policy iteration phase was truncated because a non-

improving solution is found 

The workspace has the following output: 

 Each line of expout has the experiment summary. The columns are arranged 

as follows: 

o 1-br,2-sr,3-h,4-l,5-py,6-tr,7-l1,8-l2,9-m1,10-m2,11-policyiter,12-

locsearchiter,13-redundant,14-trunc,15-S1,16-K1,17-Z1,18-T1,19-

S2,20-K2,21-Z2,22-T2,23-obj for D1,24- obj for D2 (25-waitcust for 

D1 (26-waitcust for D2 (27-lostsales for D1 (28-lostsales for D2,                 

29-d1tod2, 30-d1tod2 where d1 is D2 and d2 is D1, 31-d2tod1,                         

32-d2tod1 where d1 is D2 and d2 is D1, 33-inventory for D1,                      

34-inventory for D2, 35-improvement   

o Having blank entries in the columns 1-14 implies that the policy 

combination is one of the equilibrium policy tuple for the nearest 

above parameter combination. 

A.1 PSEUDO-CODES 

A.1.1 PSEUDO-CODE FOR MAIN.M 

S0. Initialize the workspace 

S1. Initialize all variables 

S2. Grab h,l,tr,sr values of the current experiment via h_indx, l_indx,sr_indx,tr_indx 

values on envseth,envsetl,envsettr,envsetsr respectively. 

S3. Compute rho and beta  

-Policy Iteration Phase 

S4. Initialize pro,prof,v,x,del,S1old,K1old,Z1old,T1old,best 

S5. Call evaluation.m 
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S6. If there is an improvement, replace S1old,K1best,Z1best,T1best with 

S1,K1,Z1,T1. Else, trunc=1, go to S11. 

S7. Update policyiter and S1old,K1old,Z1old,T1old 

S8. Compute implied policy parameters and update S1,K1,Z1,T1 via indifference 

equations inferred at D2 inventory level S2 for S1, Z2 for K1, S2 for Z1 and K2 for 

T1 

S9. Ensure that S1≥K1≥Z1≥T1  

S10. If a fixed point is found, go to S11, else revert to S5. 

S11. Record the solution out of implied policy iteration under 

S1local,K1local,Z1local,T1local and impliedbest by calling evaluation.m 

-Steepest Ascent Phase 

S12. Initialize S1old,K1old,Z1old,T1old, objold and flag=1 

S13. Update locsearchiter. Evaluate the profit of D1 in one policy neighbor with 

S1≥K1≥Z1≥T1. Call evaluation.m. Calculate imp=obj-objold 

S14. Update S1best,K1best,Z1best,T1best and bestimp if imp>bestimp. Else g oto 

S15. 

S15. Go to S13 until all neighbors are exhausted. 

S16. If there are no improving directions, go to S17 . Else, 

S1old=S1best,K1old=K1best, Z1old=Z1best, T1old=T1best and  return to S13. 

S17. Record the best response into S1search, K1search,Z1search and T1search and 

compute the improvement of local search to the objective function. Local search 

objective is stored at objold. 

S18. Determine if the local search phase did not change the best response guess 

S19. Update iteration and the best response log depending on mode 

-Best response mapping 

S20. Change mode, swap players 

S21. Check if the best response log is looping. cycleflag=1 if such a loop is found. 

S22.Return to S4 until either a set of equilibrium policies are found (i.e. 

cycleflag=1), or iterlim is exceeded by iteration 
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-Output 

S23.Determine out. out=1 if iteration-cycleindex=1, out=2 if iteration-cycleindex>1 

but iteration<iterlim, out=3 if iteration-iterlim=0. 

S24. Swap l1,l2,m1,m2 if mode=2 

S25. If out=1 or out=2, write columns 1-14 and 35 of expout. Initialize 

ion=cycleindex. Else (i.e. out=3), proceed to S35. 

S26. Take S1,K1,Z1,T1,S2,K2,Z2,T2 from respective columns of the ion line of log 

S27. Write columns 15-22 of expout 

S28.Call xeval.m  

S29. Calculate waitcust, lostsales, d1tod2,d2tod1 and inventory 

S30.Write obj, waitcust, lostsales, d1tod2, d2tod1 and inventory to relevant columns 

of expout giving D1 measures 

S31. Swap players, call xeval.m 

S32. Calculate waitcust, lostsales, d1tod2,d2tod1 and inventory 

S33. Write obj, waitcust, lostsales, d1tod2, d2tod1 and inventory to relevant columns 

of expout giving D2 measures 

S34.Update ion=ion+1. Return to S25 until all equilibrium policy tuples 

S1,K1,Z1,T1,S2,K2,Z2,T2 are exhausted  (i.e. ion=iteration-1) 

-Terminal 

S35.Update counter, expiter, h_indx, l_indx,sr_indx,tr_indx. 

S36.Return to S1 until all experimental settings are exhausted. 

A.1.2 PSEUDO-CODE FOR EVALUATION.M AND XEVAL.M 

S1. Convert the state k onto i,j components 

S2. Compute del value for the current state 

S3. Determine actions a,b,c given i,j 

S4. Determination of the immediate expected profits for the state (i,j) given actions 

S5.Initialize (1-own transition probability), cumpro=0 

S6. Convert the state m onto d,e components 

S7. Compute transition probabilities, deduct from own transition probability 

S8. Return to S6 until all states m are exhausted (i.e. m=NOS) 
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S9. Compute own transition probability 

S10. Return to S1 until all states k are exhausted (i.e. k=NOS) 

S11. Compute v and obj via the equation system prof+rho*pro*v=v and obj=del*v 

S12. (for xeval.m) Compute x via the equation system x=del+rho*pro*x 

A.2 MATLAB CODES 

A.2.1 MATLAB CODE FOR MAIN.M 

% S0. Initialize the workspace 

envsetsr=[1 3 4.5 6 9]; 

envseth=[0.1 0.5 1 2 4]; 

envsettr=[1 2 4 6 8]; 

envsetl=[0.3 0.45 0.6 0.75 0.9 0.99]; 

expiter=1; 

expout(1,1)=0; 

clear expout; 

counter=0; 

for sr_indx=1:length(envsetsr) 

    for h_indx=1:length(envseth) 

        for tr_indx=1:length(envsettr) 

            for l_indx=1:length(envsetl) 

% S1. Initialize all variables 

waitcust=0; 

lostsales=0; 

d1tod2=0; 

d2tod1=0; 

inventory=0; 

policyiter=0; 

locsearchiter=0; 

redundant=0; 

trunc=0; 

mode=1; 

iteration=1; 

iterlim=30; 

log(1,1)=0; 

clear log; 

cycleindex=1; 

br=10; 

l=2; 

py=-5; 

m1=1.0; 

m2=1.0; 

alpha=0.05; 
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%S1a. initial policy guess for each experiment 

S1=2; 

K1=0; 

Z1=-2; 

T1=-4; 

S2=2; 

K2=0; 

Z2=-2; 

T2=-4; 

%S1b. initialize best response mapping 

%tracking 

log(iteration,1)=S1; 

log(iteration,2)=K1; 

log(iteration,3)=Z1; 

log(iteration,4)=T1; 

log(iteration,5)=S2; 

log(iteration,6)=K2; 

log(iteration,7)=Z2; 

log(iteration,8)=T2; 

cycleflag=0; 

%S2. Grab h,l,tr,sr values of the current experiment  

% via h_indx, l_indx,sr_indx,tr_indx values on envseth, 

% envsetl,envsettr,envsetsr respectively. 

sr=envsetsr(sr_indx); 

h=envseth(h_indx); 

tr=envsettr(tr_indx); 

l1=envsetl(l_indx); 

l2=envsetl(l_indx); 

% S3. Compute rho and beta  

beta=l1+l2+m1+m2; 

rho=beta/(beta+alpha); 

while ((iteration<=iterlim) && (cycleflag==0)) 

%S4. Initialize pro,prof,v,x,del,S1old, 

%K1old,Z1old,T1old,best 

clear pro; 

clear prof; 

clear v; 

clear x; 

clear del; 

S1old=9999; 

K1old=9999; 

Z1old=9999; 

T1old=9999; 

best=-9999; 

%implied policy loop 

while (~((S1==S1old)&&(K1==K1old)&&(Z1==Z1old)&&(T1==T1old)))  
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% S5. Call evaluation.m 

NOS=31*(S2-T2+1); 

evaluation; 

%S6. If there is an improvement, replace S1old,K1best,Z1best, 

% T1best with S1,K1,Z1,T1. Else, trunc=1 go to S11. 

if (obj>best) 

    best=obj; 

    S1best=S1; 

    K1best=K1; 

    Z1best=Z1; 

    T1best=T1; 

else 

    trunc=1; 

    break; 

end;  

%S7. Update policyiter and S1old,K1old,Z1old,T1old 

S1old=S1; 

K1old=K1; 

Z1old=Z1; 

T1old=T1; 

if (iteration==1) 

    policyiter=policyiter+1; 

end; 

% S8. Compute implied policy parameters and update S1,K1,Z1,T1 

% via indifference equations inferred at D2 inventory level 

% S2 for S1, Z2 for K1, S2 for Z1 and K2 for T1 

% Determination of implied policies 

% Determination of the implied policy: S1 

for k = NOS-30:NOS-1 

if ((v(k+1)-v(k)) <= 0) 

S1 = -15+mod((k-1),31); 

break;  

end; 

end; 

% Determination of the implied policy: K1 

if ((Z2-T2)>0) 

for k = (Z2-T2+1)*31-29:(Z2-T2+1)*31     

if (v(k-31)-v(k-1) <= sr) 

K1 = -15+mod((k-2),31); 

break;  

end; 

end; 

end; 

if ((Z2-T2)==0) 

for k = (Z2-T2+2)*31-29:(Z2-T2+2)*31     

if (v(k-31)-v(k-1) <= sr) 

K1 = -15+mod((k-2),31); 
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break;  

end; 

end; 

end; 

% Determination of the implied policy: Z1 

for k = NOS:-1:NOS-29 

if (((v(k-1)-v(k-31)) <= -(sr+tr)) && (v(k)-v(k-31) <= (br-py-sr-tr))) 

Z1 = -15+mod((k-1),31); 

break;  

end; 

end; 

% Determination of the implied policy: T1 

for k = (K2-T2+1)*31-1:-1:(K2-T2+1)*31-29  

if ( v(k)-v(k-1) >= (br-py)) 

T1 = -15+mod((k-1),31); 

break;  

end; 

end; 

% S9. Ensure that S1?K1?Z1?T1  

if (K1>S1) 

    K1=S1; 

end; 

if ((Z1>K1)||(Z1>S1)) 

    Z1=K1; 

end; 

if ((T1>Z1)||(T1>K1)||(T1>S1)) 

    T1=Z1; 

end; 

%S10. If a fixed point is found, go to S11. Else, 

%revert to S5 

end; 

%S11. Record the solution out of implied policy 

%iteration under S1local,K1local,Z1local,T1local and  

%impliedbest by calling evaluation.m 

if (iteration==1) 

S1local=S1best; 

K1local=K1best; 

Z1local=Z1best; 

T1local=T1best; 

S1=S1best; 

K1=K1best; 

Z1=Z1best; 

T1=T1best; 

NOS=31*(S2-T2+1); 

evaluation; 

impliedbest=obj; 

end; 
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%S12. Initialize S1old,K1old,Z1old,T1old, 

% objold and flag=1 

S1old=S1best; 

K1old=K1best; 

Z1old=Z1best; 

T1old=T1best; 

objold=best; 

flag=1; 

while (flag==1) 

bestimp=0; 

for S1=S1old-1:S1old+1 

    for K1=K1old-1:K1old+1 

        for Z1=Z1old-1:Z1old+1 

            for T1=T1old-1:T1old+1 

            if ((S1>=K1)&&(K1>=Z1)&&(Z1>=T1)) 

% S13. Update locsearchiter.  

% Evaluate the profit of D1 in one policy neighbor.  

% with S1?K1?Z1?T1. Call evaluation.m. Calculate  

% imp=obj-objold 

                NOS=(S1-T1+3)*(S2-T2+3); 

                if (iteration==1) 

                locsearchiter=locsearchiter+1; 

                end; 

                clear pro; 

                clear prof; 

                clear v; 

                clear x; 

                clear del; 

                evaluation; 

                imp=obj-objold; 

%S14. Update best improvement if imp>bestimp. Else 

%go to S15. 

                if (imp>bestimp) 

                    bestimp=imp; 

                    S1best=S1; 

                    K1best=K1; 

                    Z1best=Z1; 

                    T1best=T1;   

                end; 

% S15. Go to S13 until all neighbors are exhausted. 

            end; 

            end; 

        end; 

    end; 

end; 
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%S16. If there are no improving directions, go to S17. Else, 

%S1old=S1best,K1old=K1best, Z1old=Z1best, T1old=T1best  

%and return to S13. 

if (bestimp<=0) 

    flag=0; 

else 

    objold=objold+bestimp; 

    S1old=S1best; 

    K1old=K1best; 

    Z1old=Z1best; 

    T1old=T1best; 

end; 

end; 

%S17. Record the best response into S1search, K1search,Z1search and  

%T1search and compute the improvement of local search to the objective  

%function. Local search objective is stored at objold. 

if (iteration==1) 

    S1search=S1best; 

    K1search=K1best; 

    Z1search=Z1best; 

    T1search=T1best; 

    improvement=objold-impliedbest; 

end; 

%S18. Determine if the local search phase did not change  

%the best response guess 

if 

((S1search==S1local)&&(K1search==K1local)&&(Z1search==Z1local)&&(T1searc

h==T1local)) 

redundant=1; 

end; 

%S19. Update iteration and the best response log  

%depending on mode 

iteration=iteration+1; 

log(iteration,9)=mode; 

log(iteration,10)=objold; 

if (mode==1) 

log(iteration,1)=S1best; 

log(iteration,2)=K1best; 

log(iteration,3)=Z1best; 

log(iteration,4)=T1best; 

log(iteration,5)=S2; 

log(iteration,6)=K2; 

log(iteration,7)=Z2; 

log(iteration,8)=T2; 

end; 

if (mode==2) 

log(iteration,1)=S2; 
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log(iteration,2)=K2; 

log(iteration,3)=Z2; 

log(iteration,4)=T2; 

log(iteration,5)=S1best; 

log(iteration,6)=K1best; 

log(iteration,7)=Z1best; 

log(iteration,8)=T1best; 

end; 

%S20. Change mode,  swap players 

    mode=(mode==1)*2+(mode==2)*1; 

    %swap l1 and l2 

    swap=l2; 

    l2=l1; 

    l1=swap; 

    %swap m1 and m2 

    swap=m2; 

    m2=m1; 

    m1=swap; 

    %swap S,K,Z,T 

    swap=S2; 

    S2=S1best; 

    S1=swap; 

    swap=K2; 

    K2=K1best; 

    K1=swap; 

    swap=Z2; 

    Z2=Z1best; 

    Z1=swap; 

    swap=T2; 

    T2=T1best; 

    T1=swap; 

%S21. Check if the best response log is looping. cycleflag=1 if such a loop 

%is found. 

if ((iteration>2)) 

for i=1:(iteration-1) 

    if (isequal (log(i,1:8),log(iteration,1:8))) 

    cycleflag=1; 

    cycleindex=i; 

    break; 

    end; 

end; 

end; 

% S22.Return to S4 until either a set of equilibrium policies are found  

%(i.e. cycleflag=1), or iterlim is exceeded by iteration 

end; 

%S23.Determine out. out=1 if iteration-cycleindex=1, out=2 if  

%iteration-cycleindex>1 but iteration<iterlim, out=3 if  
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%iteration-iterlim=0. 

if ((iteration-cycleindex)==1) 

    out=1; 

end; 

if (((iteration-iterlim)<0) && ((iteration-cycleindex)>1)) 

    out=2; 

end; 

if ((iteration-iterlim)==0) 

    out=3; 

end; 

%S24. Swap l1,l2,m1,m2 if mode=2 

if (mode==2) 

    %swap l1 and l2 

    swap=l2; 

    l2=l1; 

    l1=swap; 

    %swap m1 and m2 

    swap=m2; 

    m2=m1; 

    m1=swap; 

end; 

 

%S25. If out=1 or out=2, write columns 1-14 and 35 of expout. Initialize  

%ion=cycleindex. Else (i.e. out=3), proceed to S35. 

if ((out==1)||(out==2)) 

expout(expiter,1)=br; 

expout(expiter,2)=sr; 

expout(expiter,3)=h; 

expout(expiter,4)=l; 

expout(expiter,5)=py; 

expout(expiter,6)=tr; 

expout(expiter,7)=l1; 

expout(expiter,8)=l2; 

expout(expiter,9)=m1; 

expout(expiter,10)=m2; 

expout(expiter,11)=policyiter; 

expout(expiter,12)=locsearchiter; 

expout(expiter,13)=redundant; 

expout(expiter,14)=trunc; 

expout(expiter,35)=improvement; 

    for ion=cycleindex:(iteration-1) 

%S26. Take S1,K1,Z1,T1,S2,K2,Z2,T2 from respective columns of the ion  

%line of log 

S1=log(ion,1); 

K1=log(ion,2); 

Z1=log(ion,3); 

T1=log(ion,4); 
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S2=log(ion,5); 

K2=log(ion,6); 

Z2=log(ion,7); 

T2=log(ion,8); 

% S27. Write columns 15-22 of expout 

expout(expiter,15)=S1; 

expout(expiter,16)=K1; 

expout(expiter,17)=Z1; 

expout(expiter,18)=T1; 

expout(expiter,19)=S2; 

expout(expiter,20)=K2; 

expout(expiter,21)=Z2; 

expout(expiter,22)=T2; 

% S28.Call xeval.m  

NOS=31*(S2-T2+1); 

    clear pro; 

    clear prof; 

    clear v; 

    clear del; 

xeval; 

% S29. Calculate waitcust, lostsales, d1tod2,d2tod1 and inventory 

for k=1:NOS 

i=-15+mod((k-1),31);  

j=T2+floor((k-1)/31); 

        if ((i>=T1) && (i<0)) 

            waitcust=waitcust-i/(alpha+beta)*x(k); 

        end; 

        if ((i>=T1) && (i<=S1) && (i>0)) 

            inventory=inventory+i/(alpha+beta)*x(k); 

        end; 

        if (i==T1) 

            lostsales=lostsales+l1/(alpha+beta)*x(k); 

        end; 

        if ((i<=S1)&&(i>K1)&&(j<=Z2)&&(j>T2)) 

            d1tod2=d1tod2+l2/(alpha+beta)*x(k); 

        end; 

        if ((j<=S2)&&(j>K2)&&(i<=Z1)&&(i>T1)) 

        d2tod1=d2tod1+l1/(alpha+beta)*x(k); 

        end; 

end; 

% S30.Write obj, waitcust, lostsales, d1tod2, d2tod1 and inventory to 

% relevant columns of expout giving D1 measures 

expout(expiter,23)=obj; 

expout(expiter,25)=waitcust; 

expout(expiter,27)=lostsales; 

expout(expiter,29)=d1tod2; 

expout(expiter,31)=d2tod1; 
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expout(expiter,33)=inventory; 

% S31. Swap players, call xeval.m 

    %swap l1 and l2 

    swap=l2; 

    l2=l1; 

    l1=swap; 

    %swap m1 and m2 

    swap=m2; 

    m2=m1; 

    m1=swap; 

    %swap S,K,Z,T 

    swap=S2; 

    S2=S1; 

    S1=swap; 

    swap=K2; 

    K2=K1; 

    K1=swap; 

    swap=Z2; 

    Z2=Z1; 

    Z1=swap; 

    swap=T2; 

    T2=T1; 

    T1=swap; 

waitcust=0; 

lostsales=0; 

d1tod2=0; 

d2tod1=0; 

inventory=0; 

NOS=31*(S2-T2+1); 

    clear pro; 

    clear prof; 

    clear v; 

    clear x; 

    clear del; 

xeval; 

% S32. Calculate waitcust, lostsales, d1tod2,d2tod1 and inventory 

for k=1:NOS 

        i=-15+mod((k-1),31);  

        j=T2+floor((k-1)/31); 

        if ((i>=T1) && (i<0)) 

            waitcust=waitcust-i/(alpha+beta)*x(k); 

        end; 

        if ((i>=T1) && (i<=S1) && (i>0)) 

            inventory=inventory+i/(alpha+beta)*x(k); 

        end; 

        if (i==T1) 

            lostsales=lostsales+l1/(alpha+beta)*x(k); 



122 
 

        end; 

        if ((i<=S1)&&(i>K1)&&(j<=Z2)&&(j>T2)) 

            d1tod2=d1tod2+l2/(alpha+beta)*x(k); 

        end; 

        if ((j<=S2)&&(j>K2)&&(i<=Z1)&&(i>T1)) 

        d2tod1=d2tod1+l1/(alpha+beta)*x(k); 

        end; 

end;    

% S33. Write obj, waitcust, lostsales, d1tod2, d2tod1 and inventory to 

% relevant columns of expout giving D2 measures 

expout(expiter,24)=obj; 

expout(expiter,26)=waitcust; 

expout(expiter,28)=lostsales; 

expout(expiter,30)=d1tod2; 

expout(expiter,32)=d2tod1; 

expout(expiter,34)=inventory; 

expiter=expiter+1; 

% S34.Update ion=ion+1. Return to S25 until all equilibrium policy 

% tuples S1,K1,Z1,T1,S2,K2,Z2,T2 are exhausted  (i.e. ion=iteration-1) 

end; 

end; 

counter=counter+1; 

counter 

            end; 

        end; 

    end; 

end; 

% S35.Update counter, expiter, h_indx, l_indx,sr_indx,tr_indx. 

%S36.Return to S1 until all experimental settings are exhausted 

return; 

A.2.2 MATLAB CODE FOR EVALUATION.M AND XEVAL.M 

for k=1:NOS 

% S1. Convert the state k onto i,j components 

% Evaluation of (i,j) tuple for each loop index k     

    i=-15+mod((k-1),31);    

    j=T2+floor((k-1)/31); 

% S2. Compute del value for the current state 

% Determination of del(k), initial state probability 

    if ((j==S2) && (i==S1)) 

        del(k)=1; 

    else 

        del(k)=0; 

    end; 
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% S3. Determine actions a,b,c given i,j 

% Determination of the action set (a,b,c) for each (i,j) 

% Action a 

    if (i>=S1) 

        a=1; 

    else 

        a=2; 

    end; 

% Action b 

    if(i>K1) 

        b=2; 

    else 

        b=1; 

    end; 

% Action c 

    if(i>Z1) 

       c=2; 

    end; 

    if ((i<=Z1) && (i>T1))  

    c=3; 

    end; 

    if (i<=T1) 

    c=1; 

    end;  

% S4. Determination of the immediate expected profits for the state (i,j) 

% given actions 

if ( (i<0) && (j<=K2) && (j>Z2)) 

    prof(k) = (i*l)/(alpha+beta) +  (beta/(alpha+beta))*((3-c)*(c-1)*l1*br/beta + (2-

c)*(3-c)/2*py*l1/beta + (c-1)*(c-2)/2*l1*br/beta) ; 

        else if ( (i>=0) && (j<=K2) && (j>Z2)) 

        prof(k) = (-i*h)/(alpha+beta) +  (beta/(alpha+beta))*((3-c)*(c-1)*l1*br/beta + 

(2-c)*(3-c)/2*py*l1/beta + (c-1)*(c-2)/2*l1*br/beta) ; 

            else if ( (i<0) && (j>K2) && (j<=S2)) 

            prof(k) = (i*l)/(alpha+beta) +  (beta/(alpha+beta))*((3-c)*(c-1)*l1*br/beta + 

(c-1)*(c-2)/2*l1*(br-sr-tr)/beta + (2-c)*(3-c)/2*l1*py/beta) ;  

                else if ( (i>=0) && (j>K2) && (j<=S2)) 

                prof(k) = (-i*h)/(alpha+beta) +  (beta/(alpha+beta))*((3-c)*(c-

1)*l1*br/beta + (c-1)*(c-2)/2*l1*(br-sr-tr)/beta + (2-c)*(3-c)/2*l1*py/beta) ;  

                    else if ( (i<0) && (j<=Z2)) 

                    prof(k) = (i*l)/(alpha+beta) +  (beta/(alpha+beta))*((3-c)*(c-

1)*l1*br/beta + (2-c)*(3-c)/2*py*l1/beta + (j>T2)*(b-1)*l2*sr/beta + (c-1)*(c-

2)/2*l1*br/beta) ;  

                        else if ( (i>=0) && (j<=Z2)) 

                        prof(k) = (-i*h)/(alpha+beta) +  (beta/(alpha+beta))*((3-c)*(c-

1)*l1*br/beta + (2-c)*(3-c)/2*py*l1/beta + (j>T2)*(b-1)*l2*sr/beta + (c-1)*(c-

2)/2*l1*br/beta) ;  

                        end; 
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                    end; 

                end; 

            end; 

        end; 

     end; 

% S5.Initialize (1-own transition probability), cumpro=0 

cumpro=0; 

%Determination of the transition probabilities for the state (i,j) to (d,e) 

for m=1:NOS 

 % S6. Convert the state m onto d,e components 

    d=-15+mod((m-1),31);    

    e=T2+floor((m-1)/31);   

%S7. Compute transition probabilities, deduct from own transition  

%probability 

    if ( (d==i) && (e==j+1) && (j<S2))  

                pro(k,m) = (m2)/beta; 

                cumpro = cumpro + pro(k,m); 

  

            else if ( (d==i+1) && (e==j) ) 

            pro(k,m) = (m1*(a-1))/beta; 

            cumpro = cumpro + pro(k,m) ; 

            else if ( (d==i-1) && (e==j) && (j>Z2) && (j<=K2)) 

            pro(k,m) = ((3-c)*(c-1)+(c-1)*(c-2)/2)*l1/beta; 

            cumpro = cumpro + pro(k,m) ;  

            else if ( (d==i) && (e==j-1) && (j>Z2) && (j<=K2))                                         

            pro(k,m) = (l2)/beta; 

            cumpro = cumpro + pro(k,m) ; 

            else if ( (d==i-1) && (e==j) && (j>K2) && (j<=S2)) 

            pro(k,m) = (l1*(3-c)*(c-1))/beta;     

            cumpro = cumpro + pro(k,m) ; 

            else if ( (d==i) && (e==j-1) && (j>K2) && (j<=S2)) 

            pro(k,m) = (l1*(c-1)*(c-2)/2 + l2)/beta;             

            cumpro = cumpro + pro(k,m) ; 

            else if ( (d==i-1) && (e==j) && (j<=Z2)) 

            pro(k,m) = (l1*((3-c)*(c-1))+l1*((c-1)*(c-2)/2) + l2*(b-1)*(j>T2))/beta; 

            cumpro = cumpro + pro(k,m) ; 

            else if ( (d==i) && (e==j-1) && (j<=Z2)) 

            pro(k,m) = (l2*(2-b)*(j>T2))/beta;          

            cumpro = cumpro + pro(k,m) ;     

                else pro(k,m)=0; 

                end; 

                end; 

                end; 

                end; 

                end; 

                end; 

                end; 
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        end; 

%S8. Return to S6 until all states m are exhausted 

end; 

%S9. Compute own transition probability 

            pro(k,k)= 1-cumpro; 

%S10. Return to S1 until all states k are exhausted 

end; 

%S11. Compute v and obj via the equation system prof+rho*pro*v=v and 

%obj=del*v 

v=(eye(NOS)-rho*pro)\prof'; 

obj=del*v; 

%xeval.m has the additional S12, i.e. the line x=del*inv(eye(NOS)-rho*pro); 

return; 
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APPENDIX B 

 

 

PROOF OF NO POOLING IF THERE IS NO COMMISSION 

 

 

 

 

Suppose S1(j)=S2=S j be the level where v(S+1,j)≤v(S,j) and v(i+1,j)≥v(i,j) if i<S. 

Similarly, v(i,S+1)≤v(i,S) if j<S. The definition of K at r=0 requires v(i+1,j-1)≤v(i,j).  

Suppose that K1(j)=K2=K<S j , but then v(i+1,j-1)≥v(i+1,j)≥v(i,j) is obtained which 

is a contradiction to the above statement. Therefore, K=S should hold for both 

dealers, thus there is no possibility of pooling. 

 


