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ABSTRACT

FPGA IMPLEMENTATION OF GRAPH CUT METHOD
FOR REAL TIME STEREO MATCHING

Salik Ozsarag, Havva
M.S., Department of Electrical and Electronics Eegring
Supervisor  : Prof. Dr. Zafer Unver
Co-supervisor : Assist. Prof. Ditkay Ulusoy

September 2010, 74 pages

The present graph cut methods cannot be usedlgifecteal time stereo matching
applications because of their recursive structGmph cut method is modified to
change its recursive structure so that makingitable for real time FPGA (Field

Programmable Gate Array) implementation.

The modified method is firstly tested by MATLAB @everal data sets, and the
results are compared with those of previous studiteough the disparity results
of the modified method are not better than othethows’, computation time
performance is better. Secondly, the FPGA simutaisoperformed using real data
sets. Finally, the modified method is implementedPGA with two PAL cameras
at 25 Hz. The computation time of the implementat®40 ms which is suitable for
real time applications.

Keywords: Real Time Stereo Matching, Graph Cut, BPG



0z

GERGEK ZAMANLI STEREO BLEME ICIN
CIZGE KESME YONTEMNIN FPGA UYGULAMASI

Salik Ozsarag, Havva
Yuksek Lisans, Elektrik ve Elektronik Mihend&IBolumu
Tez Yoneticisi : Prof. Dr. Zafer Unver

Ortak Tez Yoneticisi : Yrd. Dog. Dilkay Ulusoy

Eylul 2010, 74 sayfa

Gunumuz cizge kesme yodntemleri 6zyinelemeli bir iyapsahip oldgundan
dogrudan gercek zamanli steregleene uygulamalarinda kullanilamazlar. Cizge
kesme yonteminin 6zyineli yapisi, gercek zamanlGAFAlan Programlanabilir
Kapi Dizisi) uygulamasina uygun olabilmesi icirgg@rilmi stir.

Degistirilen ¢izge kesme yontemi, 6nce MATLAB ilegi#i veri kimeleri Gizerinde
test edilm§ ve sonuglar 6nceki camalar ile kagilastiriimistir. Onerilen metodun
derinlik sonuglari dier yontemlerinkinden iyi olmamasinagren hesaplama
zaman performansi daha yuksektir. gio sonuclar elde edildikten sonra FPGA
benzetimi gercek veri kiimeleri ile gercedtiglmistir. Son olarak, bu yeni yontem
2 adet 25 Hz PAL kamera ile FPGA lzerinde gercekigr. Uygulamanin

hesaplama zamani gercek zamanl uygulamalar igomuglan 40 ms’dir.

Anahtar Kelimeler: Gergcek Zamanl Steregldine, Cizge Kesme, FPGA (Alan

Programlanabilir Kapi Dizisi)
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CHAPTER 1

INTRODUCTION

Stereo analysis is an important topic in computsion due to its usage in many
areas like 3D vision, 3D reconstruction, 3D objedttection and robotic
applications such as navigation, path planning, pimgpand localization [9, 10]. In
stereo analysis multiple cameras can be used ¢oalat¢ 3D information. However,
in most of the applications, only two cameras aeduwhich provide the right and

left images that can be used to simulate the hunsaon system.

The main problem of stereo analysis is stereo nractvhich can be stated as
finding corresponding pixels on the right and leftages. The stereo matching
problem is defined in Section 1.1. Section 1.2 ar&lexplain the stereo matching
methods. The objective of the thesis study is giwenSection 1.4, and the

organization of the thesis is provided in Sectidn 1

1.1 Definition of the Stereo Matching Problem

The stereo matching problem can be defined asniindiepth information of the
objects in the image. In the solution process ritiet and left images are captured
by using specially localized cameras. Then the lgepte calculated according to

some pixel intensity similarities and constraints.

Consider the cameras and an object shown in Filgure
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Figure 1: The parallel camera localization [11].

b is the baseline between the two cameras, andotted fength of the cameras is
denoted byf.. (X., Y., Z4.) and(Xgr, Yr, Zr) are the coordinate systems for the left
and right cameras, respectiveR. is the projection of this object onto the left
camera andPy is the projection onto the right camePa.andPg are located on the
epipolar line which may have different vertical odioates on the left and right
images; however, the camera locations can be adatay make the epipolar line

have the same vertical coordinate on both imagHs [1

Disparity is the absolute horizontal coordinate felténce between the
corresponding pixels (P Pg) on the left and right image$he disparity of object
P(x,y,z) is defined as (xxg). In stereo matching, the main goal is to calaulat

disparity values of the pixels in an image.

The camera localization shown in Figure 2 is useddrive the depth calculation

formula.



Left Camera Axis Right Camera Axis

Figure 2: 2D stereo camera localization.

sincefe = 2 and-e =—Z_ the depth, z, of the object P(x,y,z) follows as
X, X Xg X-b

f.*b
2= (1-1)

X~ g

In equation (1-1), the disparify -xg) is inversely proportional with the depth of the
object. Since the focal length, of the cameras and the distanbbepetween the
cameras are given, the disparity is the only unknealue for the depth calculation.
There are different stereo matching methods toutatie disparity of the pixels on

the image. Section 1.2 gives the main featurebedd methods.

1.2  Stereo Matching Methods

Stereo matching algorithms can be put into threeigs [12]: pixel-based, region-
based and feature-based. These algorithms haweraiiff approaches to calculate

the disparity information.



In pixel-based methods [13], the correlation ddtéhe pixels on the right and left
images is used to compute disparity. Since pixskbaalgorithms use all pixels in
the image, they can produce dense disparity mapgeserl algorithms can be

examined under two subtitles: local methods antalmethods.

Local pixel-based methods try to calculate the aigp values by comparing the
pixel intensities in a finite window whose size caary according to the approach
of the algorithm. A reference window on the righttioe left image is selected and
every pixel in this window is compared with eveixg in the other image window.
The total difference of the compared pixels is usechlculate the matching cost by
different techniques: Squared Intensity Differeng&D) [14, 15], Absolute
Intensity Differences (AD), and Sum of Absolute fBiences (SAD) [12].

Global pixel-based methods differ from the locakimoels in terms of matching cost
calculation. Local methods are not interestedndifig the minimum matching cost
for the whole image. Since global methods try tchethe minimum matching cost
by using some optimization techniques, they givitebeesults than local matching
algorithms [22]. Dynamic-Programming [16], Beliéfopagation [17], and Graph
Cut [1, 2, 3, 7] methods are the most studied dlpbal-based methods.

Region-based stereo matching methods [18] calculaedisparity by using the

regions on the right and left images. Firstly, itnages are divided into sub regions
by using some segmentation techniques, and thgsmseare compared. According
to the comparison results, the disparity valuehaf pixels in the same region is
determined. Therefore, region-based algorithms rggé@alense disparity maps like

pixel-based method.

Feature-based stereo matching methods use somécsipdarmation in the images
like edges and corners. Firstly, some feature tlete@algorithms [19, 20, 21] are
used to find the special features in the imagesd, then a matching process is

applied to find the same features in both imagesxethe matching process is used

4



only for the pixels which have special featuresydhese pixels are assigned to

disparity values. Therefore, feature-based metpooduce sparse disparity maps.

1.3  Stereo Matching by Graph Cut Method

In robotic applications, many different tasks likkamera calibration, video
correction, video stabilization, 3D analysis, palanning and communication
should be done sequentially in a certain amoutinaé. Since total implementation

time is limited, each task has a very strict tirnastraint.

Stereo matching is the first step of 3D analysisl i should also be completed in a
certain amount of time. For a real time PAL staddadeo, this duration is around
40 ms. Recall that human visual system can detéehdies greater than 150 ms
[23]. Therefore, if the stereo matching procesdiinge increases, there can be
discontinuities between the following frames. Tb#n result wrong decisions and

actions in the robot control system.

Recent studies show that in stereo matching, gcaplmethod (GC) has a good
performance when compared with other algorithmg. [E2en though, GC is not
suitable for real time applications, because oitégtive structure, which will be
explained in Appendices, there are new studiesnfament this algorithm in real
time; but the results do not satisfy the real touastraints yet [24, 3, 25].

Kolmogorov and Zabih implementexpansion move method in [24]. They applied
their method to 384x288 size Tsukuba image. Theg@mnsa processed by 450 MHz
Ultra SPARC Il processor. Disparity range is 16 floe selected image, and the
calculation time is 69 seconds. This shows thaaf884x288 size image, 1,769,472
disparities can be checked within 69 seconds. Ditypastimation results are good,

but their method can not be used in real time appbns because of the limitations



given in [23]. {The a-expansion move method will be explained in detail

Appendices.}

Zureiki, Devy and Chatila implement reduce graphthoeé to decrease the
calculation time [3]. They reduce the total numbkpossible disparities by using a
stereo matching method like SAD, construct a graping these disparity values
and use the push-relabel method. They applied #tbad to image sets having the
resolutions of 434x380 and 217x190. The disparitdes calculated by 3 GHz
Pentium4 processor with 512 MB of RAM. The complegi@ph approach for
434x380 size images can not be implemented beadusemory explosion, while
the reduced graph method calculates the dispaiiti@s-50 seconds. For 217x190
images, the complete graph approach takes 150 dgcaile the reduced graph
method takes 4 seconds for 4 disparity range asecbnds for 5 disparity range.
This shows that for a 217x190 size image, 164,92padities can be checked
within 4 seconds. However, they have not succe¢deadn the algorithm in real

time yet. {The push-relabel method will be explaine Appendices.}

Vineet and Narayanan implement the push-relabeirithgn on the Nvidia GTX
280 Graphic Processing Unit (GPU) [25]. The remletimplementation is possible
only if 2 disparities are looked for. For examphe tcalculation time of a 640x480
size image with 2 disparities is 30-40 ms. Thisvaheohat for this image 614,400
disparities can be checked within 30-40 ms. Theetiperformance is the best
among the recent studies; but since only 2 digpardre used, the implementation
is close to image segmentation rather than steegohimg.

1.4  Objective of the Thesis

Since the graph cut algorithm in stereo matching mat be implemented in real
time yet, a modified graph cut method is suggestdtiis thesis study to decrease
the calculation time. General purpose computer (@ RIATLAB) and special

6



purpose hardware (GPU) are used in previous studis®n though GPU

performance is better than that of general purposeputers, it can not be used for
parallel processing applications to increase speefdrmance. In this thesis, FPGA
is chosen due to its parallel processing capabilibych is the basic difference
between the FPGAs and GPUs. Also ASICs can be feeparallel processing

applications, but they can not be reconfigured. ta contrary, FPGAs can be
reconfigured easily for the updates in algorithifilse detailed information about

the hardware structure will be explained in Sec@ion

The proposed method can complete stereo analy$86x768 size images with 80
disparity range in 40 ms in an Altera Cyclone IIPGA. This shows that
35,389,440 disparities can be checked within 40 The. right and left videos are
captured by 2 PAL cameras and processed in FPGRAthenresult of the algorithm

is displayed on DVI monitor. These steps can beedomeal time.

The disparity estimation results of the modifiedtimoel is not better than the graph
cut implementations of previous studies; but thieudation time is much better
even for 80 disparity range. The disparity resaftthe modified graph cut method
are compared with the previous studies’ listed28][ The results are worse than
that of the best resultant graph cut stereo magcimathod [24]; however, the time
performance of the modified method is about thodsséimes faster. These

comparisons will be given in Section 4.2.2 in detai

1.5 Organization of the Thesis

Chapter 2 is devoted to the theory behind the grayhmethod in stereo matching
and the modified graph cut method which is impleteénn this thesis. Chapter 3
includes the details of implementation of the miedifgraph cut method. Chapter 4
discusses the results and performance comparisbtiseocimplementation. The

conclusions and possible future work are present&hapter 5.
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CHAPTER 2

GRAPH CUT THEORY IN STEREO MATCHING

Graph cut method (GC) is used in different imagecessing applications such as
segmentation and stereo matching. The common gyopérthese applications is

their requirement for energy minimization.

In stereo matching, GC, a pixel-based global metiwdsed to calculate minimum
matching cost energy. Minimum cost calculation ae by different methods in
GC. Since these methods are not suitable for rewd tpplications, a modified

method is proposed which has a non-recursive sireict

In the following, first the construction of a grafidr stereo matching is given. Then,
existent GC methods will be presented. Finaltyg modified graph cut method

which is implemented in this study is discussed.

2.1  Graph Construction in Stereo Matching Applications

A graph is composed of vertices which are connettgdedges. Row-column

structure is used to construct a stereo matchiaghgas shown in Figure 3. There is
a row of edges for every pixel on an image line ancblumn of edges for each
disparity value. Vertices are located at graph omlnn intersection points, and
they represent the possible disparity values. bitih to vertices on graph rows,
two special vertices are addesl:andt. The sourcevertex, s, is located at the

beginning side of the graph, and @iak vertex,t, is located at the end side of the

graph.



There are two types of edges between the verticksks and n-links. t-links
connect the neighbor vertices on the same graphaod these links represent the
matching cost energy for the related disparity @afulinks connect the neighbor
vertices at different graph rows, and they holddhmothness energies between the
connected vertices (disparities). Matching costrgynand smoothness energy will

be explained in detail in the following sections.

Disparity Value

n) & we & det 4, (R-1)2E fst pirel
o Ne2(1,0)  nea(2,1)
o (1) < . 2nd pixel
WY W v v r— 14
o n
o n(z,a)(1,0)
3rd pixel
oo —
______ ' : (N-1)th pixel
NN R-2,R-1)
) @ & t(R-1) Nth pixel

Figure 3: Stereo matching graph (R is the maximispatity range).

In Figure 3,tx(d) represents &link wherex shows the horizontal coordinate of the
pixel on the image line andishows the disparity valuguix)(D1,D) represents an
n-link wherex1 andx2 show the horizontal coordinates of upper and lopeels,
respectivelyD; is the disparity value ofl at vertexds andD: is the disparity value

of X2 at vertexd.;.



There are two main types of energies in globalestematching applications:
matching cost and smoothness. The energy struiguaefunction of the assigned
disparity values or labels denoted thyrhe energy functionEgaw(f) and Esmootk(f)
represent the matching cost and the smoothnesgieserespectively. In stereo
matching, the goal is to find optimum labelf to minimize the total energly (f)
which is the sum oEgai(f) andEsmoo(f) -

Eqae(f) is related with the pixel intensity values. Thguare of the intensity
difference between the matching pixel on the lefige and the corresponding pixel
on the right image is used to calculd&g:(f). This calculation is done for all

possible disparity values in the disparity range.

Egaa(T) = 2 Dy (f)
wr (2-1)

Di(fe) = (1(p) - k(a) ¥’ wherefy=x;-%q

In the above expressioR,is the compared pixel set on the right and letiges p
is the matching pixel in the left image, amds the corresponding pixel in the right
image. li(p) andl,(q) are the intensities of pixefs anddq, respectively. f is the
label(disparity) value of the pixel ppxand % are the horizontal coordinates of the

pixels p and g, respectively.

Esmootdf) is related with the labeling of the matching piaed its neighbors. Three
neighbors are considered fBtmootff) calculation. The matching pixel located at

(x,y) and its neighbors are shown in Figure 4.

Esmoot(f) IS calculated according to the smoothness constvaiich states that the
disparity values of the pixels in the same objegion should be the same, while
the disparity values of the pixels at the boundasikeould be different. The pixels

which are in the same region have similar intengélues, but at the boundaries

10



pixels have different intensity values. TherefoEgm.of) has two components:

intensity and labeling.

P(x,y-1)

Matching pixel
P(x-1,y) .‘

P(x.y)

P(x,y+1)

Figure 4: The matching pix€&l(x, y)and its neighbor pixels.

Esmootl ) = D Uipg BV (T, fo) (2-2)
{p.afoN
In equation (2-2)N is the neighbor pixel set andfp,fq) is the neighborhood
interaction function [3] which checks the neighipotels for the assigned labels. If
p andq have different labels, this function gives higmakies.V(fp,fg) is equal to
the absolute difference of the neighbor pixels’ elab (disparity values):
V(fp,fg) = |fp-fq|. fp and fq are the assigned labels to the matching pixel iend
neighbor pixel, respectively. The functional graph neighborhood interaction

function is shown in Figure 5.

V(fp o)

/
/

/

| o fql

p

0

Figure 5: The functional graph of neighborhoodratéion function [3].
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If the neighbor pixels are in the same region,rtéghborhood interaction function
prevents to assign different labels to these pixHiss is the necessary check for
proper labeling in the same region. The neighbrelpishould have different labels
at the boundaries; and the multiplying term u{p,i¢ used to correct the
neighborhood interaction function error for thesee|s. The multiplying term is a
decreasing function with increasing intensity ditfece:
u{p,q} = Umax* (1- |l1-l2] / 255. umax Value is the controllable variable which is
determined after the functional tests.and I, are the intensity values of the
neighbor pixels. At the boundaries, if the differerbetween the intensity values of
the neighboring pixels goes to 255 (the upper baundf the intensity values for 8
bit representation), this term goes to zero. Sitiee neighborhood interaction
function gives high penalties at the boundaries, ritultiplying term gives lower
values and balances the smoothness energy. Thatioined graph of the
multiplying term is shown in Figure 6.

!

p.q
A )

>|Ip_|q|

0 255

Figure 6: The functional graph of multiplying tef8j.

After the construction of the graph, the minimunemgy can be computed by the
cut calculation. Cut can be defined as the collection of edges whictd hbe
matching cost energiesl{nks) or the smoothness energiesliaks). It is assumed
that the minimum cut has the minimum total energere are two different

methods for computing the minimum cut: maximum flamd swap method. These
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methods are given in Section 2.2. The modified lgrapt method which is

implemented in this study is described in Sectich 2

2.2  Minimum Cut Calculation Methods

The main aim is to find the minimum energy valuetlo& constructed graph. There
are different methods in previous studies for mummcut calculation. These
methods search the minimum energy among all p@sdisparity combinations, so

they require a recursive structure.

In these methods, energy value is calculated falisparity combination, then
another energy value for a different combinatiorolgained. If the new energy
value is smaller than the previous one, new dispaombination is assigned to
pixels. These steps are done for all possible digp@ombinations in the

determined range.

Maximum flow method assumes the graph as a waige pet which lets the
maximum amount of water flow from the source to #iwek. In a pipe net, the
maximum flow amount is determined by the narrowspes. The pipes represent
the links of the graph. Therefore, the cost valiethe pipes are the energy values
and the narrowest ones hold the minimum energyceSiminimum energy
represents the minimum cut, maximum flow amourmggal to the minimum cut of

the graph.

Swap methods check possible disparity combinatifmmsthe neighbor pixels
recursively. They assign different labels (dispesit to the pixels and compare the
resultant energy values with the previous onesoAting to the comparisons of the
resultant energy values, swap methods determindirthelabeling. The methods

are explained in detail in Appendices.
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In the proposed method, the main goal is to chahgestructure of the standard
graph cut method to non-recursive for real timeliappons. The minimum energy
of the matching pixel is calculated and added nesly calculated pixels energy
value so the minimum energy is not calculated resuda for all possible

disparities. All possible disparities are contrémitto each pixel's energy value
calculations not whole minimum energy calculatioriie constructed graph. In the

following section the modified minimum cut calcudat method will be explained.

2.3  Modified Graph Cut Method

Graph cut methods can generate accurate dispaapg iout recursive calculations
are necessary to find the minimum matching costggn® determine the correct
disparity values. Because of their recursive stnggttheir calculation time is too
long to be used in real time applications, e.ggket control system. The modified

graph cut method is proposed to reduce the caloaléme.

The proposed method is implemented by two main tfanal blocks shown in

Figure 7.

Left

—image»| Basic stereo Edata

energy

Graph cut Disgaritx'

Right : map

—_y, | calculation
image

implementation

Figure 7: Implementation of the modified graph megthod.

The basic stereo energy calculation block compiltestereo matching energies by
using a local method which uses linearly interpadapixels [7]. It sends the
calculated matching energy values and minimum eneligparity value to the
graph cut implementation block which calculates dmgparity map of the whole
image. The detailed information of the first blaskgiven in Section 2.3.1, and the

second block is discussed in Section 2.3.2.
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2.3.1 Basic Stereo Energy Calculation

The matching costs are calculated by linear infetfmm which is done between the
neighbor pixels. In the proposed method, both lootal neighbors and vertical
neighbors contribute to the energy calculation Isat t3 lines are used for the
calculation of total energy. Smoothness energyalsutated not only for epipolar
line (horizontal) neighbors but also for upper dader neighbors of matching
pixel. The matching pixel, its neighbors and intégbed pixels (sub-pixels) are

shown in Figure 8.

The method reduces the possible errors which sefdin the sampling noise [8].
By using the sub-pixel values the matching willlbss sensitive to the sampling

through the image.

P(x,y-1)

P(x-1,y) P(x+1,y)

P(x-0.5,y) P(x+0.5,y)

P(x,y+1)

Figure 8: Matching pixeP(x,y)and its neighbors.

The sub-pixel intensity values given below are theensity averages of the

matching pixel and its neighbors.

lxy-0.5)7 0.5 (T eyt | oxy-2)) (2-3)
| xy+05)= 0.5 (1 xy+ | x(y+1) ) (2-4)
| (x0.59= 0.5 (T xy* 1 enp) (2-5)
| (x+0.5)=0-5 (T xyt Ty ) (2-6)
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05 | xy+05) | (x05y and lx+os5yy are the intensity values for the pixels

Pex.y0.5% Pxy+0.5, Px05y), and Rx+osy), respectively.

In the matching energy calculation, a pixel paomirthe disparity range is taken,
the sub-pixel values for both are computed, andllfinthe intensity differences of
the matching pixels and their sub-pixels are caked. The basic structure of the

method is shown in Figure 9.

Prxy-1) cost(x,y+0.5) Puicy-1)

0. > P Matching Pixel
Pr(x-1,9) “, 05, Pu(x+0.5y) Puty)

cost(x-0.5,y) cost(x+0.5,y)

Figure 9: The structure for matching energy calioia

The matching pixel’s and its sub-pixels’ cost cdtions are given in the following

equations.
cost,y)=[Ir(X.y)-1L (X, (2-7)
cost,(y+0,5))=|k(x,(y+0,5)}H(x,(y+0,5)) (2-8)
costi,(y-0,5))=[k(x,(y-0,5)}I.(x,(y-0,5)) (2-9)
cost(+0,5).y)=[Ir((x+0,5)y)-1.((x+0,5)y)| (2-10)
cost(k-0,5)y)=[Ir((x-0,5)y)-1.((x-0,5)y)| (2-11)

The total matching cost value is calculated by agl@ill cost values:

E_data_basifx,y)= costk,y)+costk,(y+0,5) ) costk,(y-0,5)r+

cost(k+0,5),y)+ cost(k-0,5)y). (2-12)
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The total matching cost energy is calculated fompaksible disparity values. The
matching pixel is selected and its matching cosirgies are calculated for each
possible disparity value. The minimum of them isoalound. Then, the minimum
energy disparity value andR¢1) different matching cost energies are sent to the

graph cut implementation module.

2.3.2 Modified Minimum Energy Calculation Method

As explained in Section 2.h;links are computed by equation (2-2). The functional
graphs (Figure 5 and Figure 6) are used for thepctation of neighborhood
interaction function and multiplying term of smooéss structure. The resultant

formulation of smoothness energy for the modifiegtmod is given as,

Esmooti(lla |2, fl, f2): C *(1' ||1'|2| / 255) * |fl'f2| (2'13)

In the above equatioly, andl; are the intensity values of the matching pixel aad
neighbor pixel, respectively, ar@ is theumax value. In additionf; andf, are the
label values (disparity values) of matchingxel and its neighbor pixel,
respectively. The n-links notation (see Section) 2l the smoothness energy

structure is,

N ex-1.y), Py (FP1)s frixy)) = Esmooti(IP-1.y)s 1Py fPix-1.y)s TPixy) (2-14)

After calculating all necessaritlinks and n-links, the graph is ready for the
minimum cut calculation. The minimum cut is caldath for each pixel and then
combined with the previously calculated ones in ittn@lementation. Figure 10

shows the possible cut on the constructed graph.

In Figure 10Current Cut Indexs the starting point of the cut on the graph and i
assumed thatd, is the computed disparity value for pixel xPy).

Ci, G, G, .., G, Cr+1 are the possible cuts for the pixek§). The cut calculation
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block computesR+1) different possible cut energies forxB{. The cut energy
includes the link energies which intersects v@thon the graph and the smoothness
term between R(y) and Pxy+1), P(x,y-1). In equation (2-15), the general cut

energy formuld&p; is given.

Current Cut
Index

P(x-1,y)

> P(xy)

sink

source

Figure 10: Cut on the constructed graph.

E. =D Energy valuesof thelink onthe path (t - links and n - links)

Op

f (2-15)

f

f
f

+ Esmooth(l P(x,y)? I P(x,y-1)? P(x,y—l))

+ Eqnoonl oy !

smooth \" P(x,y)?’

P(x.y)?

P(xy+l)r T P(xy) " " P(x,y+l)

Here,fpyy1) IS the calculated disparity value fx,y-1). Since it is on the previous
line, this value has been already calculatggy. is the disparity value of Rfy+1)
which has not been calculated yet. The output informatidnbasic energy
calculation (BEC) module can be used fggy+1). The BEC module givesRf+1)
energy values and the calculated disparity valughefminimum of these energy
values. Therefore, the calculated BEC disparityu@als used foffpyy+1) in the

smoothness calculation.

For Pk,y), there ardR+1 different cut energie€f;) which are shown in Figure 10.
The next step is the comparison step for the catiicui of minimumEg;. After that,
the corresponding disparity for minimup; is assigned to the calculated disparity
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for P(,y). This disparity value will be the current cut indefkthe calculation step

of P(x+1,y). The whole method is summarized in Figure 11:

Is k=M? (k is
the vertical pixel
coordinate)

End of algorithm YES

NO

v

Initialize
current cut
index and

Energy

Is j=N? (j is the
horizontal pixel
coordinate)

~YES-p| k++

NO

Is i=R+17? (i is the
number of the
current disparity
number)

J** |« YES

NO

v

Calculate
Epi

If
Epi<Energy

NO—p  i++

YES
v

Energy=Epi
Current path index=i

Figure 11: The flow chart of proposed minimum caitalation method.
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CHAPTER 3

IMPLEMENTATION OF THE NEW METHOD

In this chapter, the implementation steps of thedified graph cut method are
explained. The method has been developed with tiffereht tools: general

purpose computer and special purpose hardwaréelfirst step, it is implemented
in MATLAB because the results of the design updai@s be observed quickly.
After observing satisfactory results, the implenaéion is tested on Altera Cyclone
[l Development Board by using Cyclone Il FPGA. éhcomputer based
implementation details are explained in Sectioar@ the real time implementation

is described in Section 0.

3.1 Computer Based Implementation in MATLAB

Basic structure of the computer based implememtasishown in Figure 12.

The images obtained from cameras are in gray scage format. However, the
sample images (Tsukuba, Venus, Cone, etc...) thatsse in test process can be in
RGB (Red, Green, Blue) image format. Therefore, R@B to Gray Scale
Converter Bock is used in the implementation. For this reasmb2gray function

of MATLAB is used to convert the image format fré®GB to gray scale.

The left and right images are captured from camarab they are read with the
‘imread function of MATLAB. The output of this functionsi MxN dimensional
data array for gray scale image format where Mhésrtumber of pixels in the same

column and N is the number of pixels in the same. i1Bize of the images are
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determined and sent to the following blocks. THe dad right MxN dimensional
images are converted to 1xN dimensional arrayssusscenergy calculation is done
with pixels located on the same lirgasic Energy Calculation Modulekes the
left and right 1xN dimensional images with the imagizes and produces the
disparity energies for all disparities in the rariBg The detailed block diagram of

theBasic Energy Calculation Module shown in Figure 13.

Left Right
Image Image
Read Read
Image Image
Left Right
image image
(MxNxC) (MxNxC)
A 4 A 4
Image
RGB to Gray RGB to Gray Size(M.N)
Image Converter Converter
Size(M,N)
Left Right
Image image
(MxN) (MxN)
A A 4
Frame-Line Frame-Line
Converter Converter
Left Right
(1xN) (1xN)
\ 4 vy A 4 A\ 4
Minimum Energy -
Disparity «
. N P Value(MxN)
Calculated Disparity < :
" Value(MxN) Graph Cut Basic Engrgy
| Implementation Calculation User Defined
< Disparity Range(R)
Disparity
Energy(MxNxR)

Figure 12: The block diagram of Computer Based ém@ntation.

The 1xN dimensional left and right arrays enter $ld-pixel Intensity Calculation
Block where the intensity values of the sub-pixels aeutated by the equations
(2-3), (2-4), (2-5), (2-6). The number of calcuth®ub-pixel intensities for the left

image is four, since the matching pixel is seledtenh this image (see Figure 9).
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Left Right

(1xN) (1%N)
BEC disparity
Energy Calculation
v v
Sub Pixel Disparit
Intensity Sub Pixel Intensity Calculation < Range(F‘{)
Calculation
SESESES FIEEE =5 F (F
El I N CI A O z 1 [s |5
O N Sols 1B |e R (O O
SIS R
YVYyVvVvy vY [Tvy s v v

Energy Calculation

Disparity
. Energy(MxNxR)
Comparison |«
Minimtim Energy Dis:)'an'ty
Disparity
Value(MxN) Energy(MxNxR)

Figure 13: The block diagram of Basic Energy Calttah Module.

The number of calculated sub-pixel intensitiestfo right image depends on the
disparity range, since the matching pixel is coragawith all pixels in the disparity
range. The calculated intensity values contribotéhe energy calculation. In the
Energy Calculation Blogkhe cost values are computed one by one usingtiegs
(2-7), (2-8), (2-9), (2-10), (2-11); and then thatat matching cost value is
calculated using equation (2-12). Each disparityue&vahas a corresponding
calculated energy value. These energy values ammefb as outputs of the
Basic Energy Calculation Moduleand used as inputs to th@&raph Cut
Implementation Moduldn Figure 14, the detailed internal structureha$ module

is shown.
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Left line -(y,x) Left line -(y) Left line -(y-1) Leftling {(y) Leftline -(y+1)

Umaxt — (1xn) (1XN) (MxN)  Umax (1XN) (xN)  Umax3
Calculated Graph Cut implementation
Disparity
Valug(1xN)
A 4 A 4 A 4 A 4 A 4 Y A 4 ) 4
Minimum Energy
Smoothness Smoothness Smoothness Disparity
Current Calculation-1 Calculation-2 Calculation-3 Valug(MxN)
Disparity Value
Smoothness Energy1 Smoothness Energy2 Smoothness Energy3
Energy Disparity > o
Index(R) o Write Disparity|
R Ee— Summation Comparison —D'SPa—”tY-r | Image Ly,
Disparity Total Map(MxN Image
Energy(MxNxR) Energy(R)

Figure 14: The block diagram of Graph Cut Impleragoh Module.

The Graph Cut Implementation Modulis the main calculation and comparison
module of the proposed method. The links of thelgrstructure and the minimum
disparity energy are computed in this module. At st step, the disparity map is

formed and the disparity image is shown on theestre

After the 1xN dimensional left arrays enter tReaph Cut Implementation Modyle
the smoothness energies are calculated accordimgyuation (2-2). The relation
between the matching pixel and its neighbor whiclocated on the same line (y) is
calculated in theSmoothness Calculation-1 Blockh Figure 8, these neighbor
pixels are displayed as ¥{y) and Px,y). Left image line pixel value, current

disparity value and.; are necessary inputs to calculate the smoothnesg\ef.

The relation between the matching pixel and itsenpeighbor y-1) is calculated
in the Smoothness Calculation-2 Blodk Figure 8, this neighbor pixel is displayed

as Pxy-1). The left image y-coordinate line pixel valude left image
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(y-1)-coordinate line pixel value, the calculatedpdisty value of the upper line

pixel andu,., are necessary inputs to calculate the smoothmesgye?2.

The relation between the matching pixel and itseioweighbor y+1) is calculated
in the Smoothness Calculation-3 Blodk Figure 8, this neighbor pixel is displayed
as Pxy+l). The left image y-coordinate line pixel valuthe left image
(y+1)-coordinate line pixel value, the minimum enemjgparity value which is
calculated in th@asic Energy Calculation Modukndu,,.z are necessary inputs to

calculate the smoothness energy-3.

The calculated smoothness energy-1, smoothnesgyeResmoothness energy-3
and disparity energies are inputs to Sieammation Blockvhere the cost energies
are calculated as in equation (2-15). The energpadity indexeg0, 1,..., R)and

their total cost energies are sent to@wnparison Block

In the Comparison Blockthe minimum disparity energy is found by comparail
cost energies. The disparity values which havertimmum energies of pixels form
the disparity map of corresponding images. Thépality map is sent to th&'rite

Image Blocko be shown on the screen.

3.2 Real Time Implementation in FPGA

3.2.1 The Hardware Description

The hardware is composed of three cards. The maotepsing card is
Altera Cyclone Il Development Board which includegclone Il EP3C120 FPGA
and DDR2-SDRAM memories. FPGA is used for the vigeacessing application
and DDR2-SDRAM memories are used for frame bufteri®ther cards are
Bitec HSMC (High Speed Mezzanine Card) daughtedscénat are plugged to the

main board. HSMC Quad Video is used to captureaitgid and left analog videos.
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This card contains a video decoder that digitibesanalog video and sends to the
FPGA. HSMC DVI is used to display outputs of theogassing block on the
monitor. The general hardware structure is showkigare 15.

HSMC Quad Cyclone lll HSMC DVI

Video Development Video
Board

Figure 15: Hardware structure.

3.2.2 Real Time Implementation

The necessary signals, hardware blocks and pipglinior the real time

implementation of the proposed method are describdHlis section. The general
structure of the FPGA blocks is shown in Figure Ab.these blocks are coded in
VHDL (Very high speed integrated circuit Hardwaredoription Language). For
stereo matching application two cameras are usedding PAL video at 25Hz.

The videos are captured by the video decoder or8MC Quad Video and sent to
the Video Input Blockn FPGA. This block makes the necessary decomposuf
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the video signals and outputs the active pixekh@video frame. In this block also
YCDbCr to Y decomposition is done. Cb and Cr aredim®minance (color) part of
the video and Y is the luminance (intensity) pahe Stereo Matching Blockises

only the intensity values for the calculations.

DDR2-SDRAM
FPGA ¢ ¢
Video Input
Right Right
Right » Anal YCbCrto Y DDR2-SDRAM buffert bufer2
H » nalog > rto . -
Video video read converter . interface
Video Input * *
Left Anal YCbCrto Y DDR2-SDRAM Left Left
- nalog rto > -
Video video read converter g interface buffer1 buffer2
<—@:
Stereo
Matching
<—@:
.| DDR2-SDRAM .| Disparity
l interface 1 buffer —‘
. DvI Video P
- output l

Figure 16 : The general structure of the FPGA tdock

The captured video frames are written to the DDR2RSM memory by
DDR-SDRAM Interfac8lock In this memory, there are two frame buffers facle
of the left and right video. This double bufferilg used to eliminate the frame
latencies between the video frames. The right aftdcemera power up timings
may be different and there can be frame laten@ésden the left and right frames.
These latencies may result in faulty calculationtheStereo Matchindlock

26



The Video Readlock reads the right and left video frame buffetsch contains
the last incoming video frames. Then, these vidamés are sent to tHgtereo
Matching Block which process on the video frames and calculdiesdisparity
values. The calculated disparity values are writeBDR2 SDRAM for theVideo
Output Block Finally, theVideo Output Blockeads the disparity values from the
memory and sends to the HSMC DVI to display onnttomitor.

The main block of this real time implementatiorSiereo MatchingThe proposed
modified graph cut method is realized in this blotke detailed structure of this
block is shown in Figure 17. Ti&tereo Matching Blocks composed of two main
blocks: Basic Energy Calculatiorand Graph Cut ImplementationThe Basic
Energy Calculation Blockomputes the matching cost energies for everyadiyp
value in the range. These matching energies arel Uge the Graph Cut

Implementation Blocko compute GC disparity value of the related pixel

The video lines are written to the FIFO’s (FirstHirst Out) by using the frame
timing signals. The general description of the featiming signals is shown in
Figure 18. The frame valid signal indicates a néte® frame, the line valid signal
shows the change of the video lines and the piakdisignal is used to capture the

active pixels in the video line.

The received video lines (Right and Left) are Krstritten to thePlus Line FIFOS5

(Right and Left). Then the pixel data Rlus Line FIFOis transferred to theine

FIFO when a new active video line starts and the pix¢adn theLine FIFO is

written to theMinus Line FIFQ After the three active video lines, tRdus Line
FIFO contains lingg+1), theLine FIFO contains linef) and theMinus Line FIFO
holds lineg-1). Since all the necessary lines are ready, Basic Energy
Calculation Blockcan start to calculate the matching cost ener@ies.structure of
theBasic Energy Calculation Bloak shown in Figure 19.
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Leftpixel  Right pixel Pixel Line Frame
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Write signal STEREO MATCHING
Right Image Plus Line [~ |
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> FIFO
»| Interface
o ] Right pixels(7.0)
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valid valid  valid % 5 2 s
Ex 23 £%
=3 = g <
8 5§ <
A 4 A 4
Cost data valid GC disparity
Edata for disparity 0 valid
Right Line Control signals |
FIFO(liney) |/ L— | : GC disparity
 EEEEE—— . value(6..0) [
Right Minus Line Control signals :
FIFO(liney-1) | L— 1 Edata for disgaﬂ% 79:
Disparity valid »
Left Line Control signals Basic Energy Calculation | Disparity value(6.0) _ Graph Cut
FIFO(liney) |/ L— | - implementation
Pixel valid >
Left Minus Line FIFO Control signals | Left Pixel value(7 Q)]
(iney-1y|,/L— I E—

Figure 17: The detailed structure of Stereo MatglBiock.

FRAME VALID__| L
LINE VALID | L _ L
PIXELVALID | LNE unez [ LINE (1) LINE M

Figure 18: Frame timing signals.

The FIFO Control Interfacecontrols the FIFO signals to arrange the readéwrit
sequences between the FIFO’s. It sends the pitaltdaheArithmetic Calculation
Blockfor the calculations of the matching cost energiesach disparity value. The

Arithmetic Calculation Blockontains two sub-blocks. The first block calcudatee
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sub pixel intensity values, and the second bloagkmates the cost energies using

these values. The structure for sub-pixel intercsgulation is shown in Figure 20.

Basic Energy Calculation Module
Pixel valid

=
S >
g Left Pixel value(7..0) N
>
4
Left minus line
pixel value(7..0)
Left line Cost(x,y) |Disparity 79
pixel value(7..0) Costixy) | Dwartr 78 Edata for disparity O Disparity N
Left plus line Cost(x,y-05) Edata for disparity 1 Valid >
I —
pixel value(7..0) | Costix,y) | Disparty 1 v ! Disparity Ly
{——| [ Costix,y) | Disparity0 I | comparison | Value®.0
Cost(x,y-0.5) H
FIFO control ithmeti Cost(x.y+05) | Edata for disparity 0 |,

i Cost(x-0.5,
interface Right minus line 0stx-0.5)

pixel value(7..0) Cost(x+0.5,y)

Edata for disparity 1
Vv

Right line

Cost data valid
pixel value(7..0)

Yy

Edata for disparity O
T

Right plus line
pixel value(7..0)

'
'
Edata for disparity 79 _1

v

FIFO Control signals

Figure 19: Basic Energy Calculati&hock.

The sub-pixel intensity values are calculated wiith matching pixel R(y) and its
neighbors. Firstly the matching pixel and its néigh pixel intensity values are
added. Then sum is divided by two to get the aweragFigure 20, th&ight Shift
Operatoris used for the division by two. The left imagehs reference image, so
the matching pixel values for the right image arelcalated. Since the
implementation works in a pipeline order, the chlted sub-pixel values can be
used for the next matching cost energy calculafldm previous sub-pixel values in
the buffers are kept and used for the next calicuiaFigure 21 shows the main idea
of sub-pixel buffer usage. In this figuR{x) andL(x) represent the right and left

image pixels, respectively, add is used for the calculated disparity.
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Arithmetic calculation 1
Irisy )(0) ey (1) Iry)(79)
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Figure 20: Sub-Pixel Intensity Calculation Block.
d79 d78 d1 do
| R(x-79) | R(x-78) - ------ | R(x-1) | R(x) |
— 3 P(xy)
L(x)
d79 d78 d1 do
| R(x-78) | R(x-77) | - ------ | R(x) | R(x+1) |
—pP(x+1y)

Figure 21: Usage of sub-pixel buffers.
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Having the sub-pixel intensity values, the matchtogt energies are calculated by
the second block irArithmetic Calculation.The general structure for th€ost

Energy Calculationis shown in Figure 22.

A h A h

Cost0 (x-0.5,) Cost79 (x-0.5,y) Cost0 (x+0.5,y) Cost79 (x+0.5,y)

x minus left | Absolute > Absolute x plus left 5| Absolute » Absolute
buffer ¥ difference | 7 "7 771 difference buffer 7| difference | T "7 difference

xminusright | X minus right xplusright | x plus right
buffer0 buffer79 buffer0 buffer79
Y rrgz;:rleﬂ x left buffer
A 4

CostO (x,y)

5 Absolute

| Cost0 (xy-0.5) | apsolute | ¥ minus right EOR D > difference -
il difference [ buffer0

¢— Arithmetic Calculation 2

]

L
Cost79 (x,y-0.5)

Cost79 (x,
< Absolute y minus right X ight buffer79 Absolute xy) >
- difference buffer79 difference
yplusright | y plus right
buffer0 buffer79

y plus left , | Absolute Absolute
buffer ¥ difference | P T T T T T difference
Cost (x,y+0.5) Cost79 (x,y+0.5)
v v

Figure 22: Cost Energy Calculation Block.

The matching cost energies of the matching pixel smb-pixels are sent to the
Edata Calculationblock. In this block, matching cost energies aildeal and the
total cost energies for the disparities are catedlaFigure 23 shows the general

structure ofEdata Calculatiorblock.
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Figure 23: Edata Calculation Block.

The calculatedEdata values are compared i€omparison Blockto find the
disparity value with minimum cost energy. This Kocomputes the minimum
energy in 3 stages. There are sub-blocks that@apare 5 values at the same time.
So, 80 cost energies compared and 16 values aamett 15 of these values are
compared and 3 values are obtained. In the lagestthhese 3 values and the
16" value from the previous stage are compared, aadiigparity value with the

minimum cost energy is calculated. TBemparisorBlockis shown in Figure 24.
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Figure 24 : The Comparison Block.

The calculated Edata values of each disparity, nagcpixel value and its BEC

disparity value are transferred to lB€ implementation Blocwhich calculates the

disparity values as explained in Section 2.3.2. détailed structure of this block is

shown in Figure 25.

The Edata values are transferred fromBiC to theGC modulewith valid signal.

By using this valid signal, these energies aretenito the internal FIFO’s d&C

Implementation BlockThe GC Main Controller Blockeads Edata values from the

internal FIFO’s during the GC cost energy calcolati

The main process of GC implementation is controbgdhe GC Main Controller

Block All FIFO read/write operations are arranged drel&C disparity results are
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calculated by this main controller block. The stane of theGC Main Controller

Blockis shown in Figure 26.

Graph Cut Implementation
Cost FIFO8
Cost FIFO3
CostFIFO2 g
| Costdatavalid Cost FIFO1 N
Ld
A
Edata for disparity 0 |
Ll 1"
, Ld
Edata for disparity 79, L] 4
Ld ]
»| Minus Line Disparity FIFO
Disparity valid Plus line disparity FIFO P GC Main Controller ;
Disparity value(6..0)
> Minus Line pixel FIFO
|
Ld
Plus line pixel FIFO I &
Pixel valid N <
Left Pvelvalue(7.0) <
L4
» Line pixel FIFO > GC disparity valid R
[ Ld Lg
Ld Iy A
Ld
GC disparity value(6..0)

Figure 25: The Structure of Graph Cut ImplementaBtock.

The Smoothl Energy Calculation Blockads from the line FIFO to calculate the
neighboring relation energy between pixelx,jJ(and P(x-1),y). In this block,
equation (2-13) is implemented. The ter@¢|fp-fq|” is calculated in th&moothl
Look-up Tableln this implementation, the termax: is used instead & andk is
used instead dfp-fq|. Thek*unaxa terms are computed for all the disparity values in
the range and transferred to ®moothl Energy Calculation Blockhe structure of

this block is shown in Figure 27.
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Figure 27: The structure of Smoothl Energy CalautaBlock.
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The data read from the line FIFO is savedpgsixel value. In addition, thigp pixel
value is copied to thig pixel value to be used as thel)th pixel intensity value
for the next smoothl calculation. The absoluteed#iice between thip andlq
values are calculated and transferred to Nhatipliers Block k*umax values are
multiplied with |Ip-lg| value in this block, and the results are senh&Atbsolute
Differences Block This block computes thi*Umax-kK*umax*|Ip-lq|| values and
transfers the results to ti8ebit Right Shift Operator Blockhich is used to divide
the inputs by 256. After division, Smoothl-EnerggsRBlts are ready for cost energy

calculation.

The Smooth2 Energy Calculation Bloekd theSmooth3 Energy Calculation Block
calculate the energy values in parallel with 8reoothl Energy Calculation Black
All the smooth energies become ready for the catmn of cost energies at the

same time. The structure of tBenooth2 Calculation Bloak shown in Figure 28.

Smooth Calculation 2

fg*umax2*|lp-1q|(0),
Lgd

Minus line FIFO data > Absolute Multipliers Absolute

difference | differences
fq*umax2*fip-lq|(79).
Ll

A 4
v

Ip((x)th pixel)

A

- Smooth2_dif(0)fF ===~ ==~ Smooth2_dif(79)

Line FIFO data | lg((x-1)th pixel) A\ 4 A\ 4

8-bit Right shift operator

v v Y
Esmoot2_ 0 Egmoanz_79 SMooth2
valid

Figure 28: The structure of Smooth2 Energy CaloauhaBlock

The structure oBmooth2 Calculatiomlock is similar to the structure &moothl
Calculationblock. One of the difference is smoothl is relatéth the neighboring

relation between R(y) and P(%-1),y) but smooth?2 is related with the neighboring
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relation between R(y) and Pxy-1). The other difference is the look-up tables. In

addition, smooth2 reads pixel data from Line andudiLine FIFO’s.

The structure ofSmooth3 Calculatioris shown in Figure 29. This structure is
similar to the structure omooth2 Calculatiorblock. One of the difference is
smooth?2 is related with the neighboring relatiomwsen PX,y) and PX,y-1) but
smooth3 is related with the neighboring relatiommeen PX,y) and PX,y+1). In

addition, smooth3 reads pixel data from Line angsRline FIFO'’s.

Smooth Calculation 3

faq*umax3(Q fq*umax3(79) fq*umax3(0; fq*umax3(79)
4 {

A 4 A 4 A

fq*umax3+{Ip-lg| (O
7 >
]

Multipliers !

Absolute
differences

Absolute .
difference g

——Elusli Ip((x)th pixel)

v

[}
ifq*umax3*jip-lq|(79).
Ll

A

v Smooth3_dif(0ﬁ ————————— Smooth3_dif(79)

Line FIFO data : Iq((x-1)th pixel) v J

8-bit Right shift operator

Figure 29: The structure of Smooth3 Energy CaloutaBlock.

The calculatedEsmooinValues are transferred tioe GC Cost Calculation Blockrhe
valid signals are used for synchronization. Thedtre of theGC Cost Calculation

Blockis shown in Figure 30.

The Smooth ready signals are used to enable thegyersglders ofGC Cost
Calculation Block All the smooth energies are added with respecthé¢orelevant
disparities and the cost energies are obtainedtdtakecost energies are transferred
to Comparison BlockThe structure of th€omparison Blocks shown in Figure 31.
The task ofComparison Blocks similar to theBEC Comparison Blockxcept the
inputs and outputs. After the GC disparity values @lculated, they are written to
the DDR2-SDRAM with DDR2-SDRAM Interface to displayp a monitor.
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CHAPTER 4

SIMULATION AND IMPLEMENTATION RESULTS

This chapter discusses the disparity results of MAB and FPGA
implementations of the proposed method. The MATLABplementation and
FPGA simulation results are evaluated by Middleb&tgreo pairs which are
Tsukuba, Venus, TedddndCones FPGA implementation results are evaluated by

dedicated hardware.

The MATLAB and FPGA simulation results are compangth theground truthof
Middlebury stereo pairs. The ground truth contdims accurate pixel disparity
results. The Middlebury stereo pairs and theiugbtruths are given in Figure 32.

In the evaluation process, the percentagbanf pixels which are the differences

between evaluated method and ground truth, is el

B=1 > (de(x y) —ds (x y)[>5,) (4-1)

I:)N XON
yom

In this equationPy is the total number of pixels in the imagi(x,y) anddg(X,y)
are the calculated and the ground truth dispaatyes, respectively, for pixek,).

dq Is the disparity error tolerance which is takerl as the evaluations.

The Middlebury comparisons are performed in thregsvIn the first comparison,
all pixel disparity values are compared; in theosekc one,non-occludedpixel
disparities are evaluated; adcontinuitypixel disparities are measured in the last
one. On the contrary to the occluded region pixelsion-occluded regions, pixels

are visible in both images, so every matching pikelone image has the
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corresponding pixel in the other image. Discontyaiccurs on the boundaries of
the regions in the image. Namely, discontinuitygtsxare neighbor pixels which get
different disparities. The original image, its gndutruth, occluded/non-occluded

and depth discontinuity regions are given in FigRBe

(b)

(©

(d)

)
v

Figure 32 Middlebury data pairs and their ground truths.
(a) Tsukuba, (b) Venus, (c) Teddy, (d) Cones.
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(d)

Figure 33: The Middlebury comparison regions. (ajgi@al image; (b) Ground
truth disparity map; (c) Occluded regions(blacklpnhbccluded regions(white);
(d) Discontinuity regions (white).

According to these evaluation criteria, MATLAB ingphentation results are

discussed in Section 4.1, and FPGA implementatsalts are given in Section 4.2.

4.1 MATLAB Implementation Results

MATLAB implementation details are given in Chap&rin these implementation
steps, the only controllable parameters &g, Unax, andumag Which are used in
smoothness calculation blocks. The variationuiax values affects the disparity

results of proposed method.
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The proposed method uses thgy values for the relations between the neighbour
pixels Pk,y), Pk-1,y), Pk,y+1) and PX,y-1). The disparity values of ®{,y),
Pk,y+1), and PX,y-1) affect the graph cut result of>x®}). Px-1,y) and Px,y-1)
disparity values are calculated by graph cut, endther hand R(y+1) disparity
value is generated by basic energy calculation meoghere matching cost energies
are calculated. Firstly, all threg,.x variables are assigned to the same value and the
disparity results are evaluated for the image pasakuba, Venus, Teddy and

Cones. The percentage of bad pixels vewmgidgvalues are given in Figure 34.

Smallumax values result in high percentage of bad pixelsabse smoothness terms
give lower contribution to the total energy thantcheng cost term in minimum cut
calculation. Therefore, the neighbouring relatibesveen the pixels are neglected.
When unax Values are increased, smoothness terms become ammthe total
energy and neighbouring relations affect the mimmanergy calculation. Then, the
all and non-occluded pixel disparity errors deceed3n the other hand, since the
graph cut module uses matching cost energies frasicbenergy calculation
module, discontinuity pixel error is changing acing to the basic energy

calculation module results.

In basic energy calculation module, if the matchiogts are calculated correctly at
the discontinuity points, graph cut implementatiorodule finds the correct
disparity values. Therefore, the discontinuity pigeror decreases in the case of
Venus, Teddy and Cones images. However, if theutatkd matching cost energies
are incorrect, the minimum energies can not be utatled correctly at the
boundaries. Then, the discontinuity pixel errorr@ases as in the case of Tsukuba

image.

In Figure 35, the disparity results of basic enecgiculation module are given.
These results are obtained by the minimum matchog} energy disparities. In

Tsukuba image, the calculated minimum energy dispsirare not correct at some
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of object boundaries. Therefore, some deformati@ne observed at these
boundaries as shown in Figure 36.
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Figure 34: The effect ofinaxvalues on disparity errors. (a) Tsukuba image pairs
(b) Venus image pairs, (c) Teddy image pairs, (@)&€3 image pairs.

|
(© (d)

Figure 35: Basic energy calculation module minimoratching energy disparity
results (a) Tsukuba, (b) Venus, (c) Teddy, (d) Gone
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(umax = 3)

(umax =11)

Figure 36: Extensions at object boundaries by Bsirg umax values on Tsukuba

image.

The next step of the evaluation is giving differgatues tOUmax, Umnaxe, andUmax
variables. In Figure 37, the disparity results adocw to differentunax values are
given. In sub-figure (a), since thrgax value is larger thanmae, andumag and it
affects the horizontal neighboring relation, somarizontal deformations are
existed on the boundary of the objects. Whenuthg value is increased ang.x
value is decreased (See in sub-figure (b)), somécaedeformations are observed
due toumae Usage in smooth2 calculation. The errors of sgbré (c) are the
largest ones because of risinguifyg value. Since, thanag is used for the smooth3
calculation and smooth3 calculation uses the outpsparities of basic energy
calculation module, the disparity results are samib the basic energy calculation
results which are given in Figure 35. After evallogdifferent combinations afax
values and comparing the disparity results, themaph u,.xvalues are found which
are 15 fotumax, 10 forumae and 5 forumas. The disparity map results of MATLAB
implementation for optimumumax values and evaluated errors are given in

Figure 38.
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Figure 37: Disparity results of proposed methoddifferent u,axvalues.
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Figure 38: Evaluated disparity results using Mithdiy stereo pairs. (a) Ground
truths, (b) Disparity results of the best resultgraph cut method in Middlebury,
(c) Disparity results of the proposed method anel plercentage of bad pixels
related with these results.

The MATLAB implementation results are compared wtevious methods for
Tsukuba image pairs. Although the error rate ofgtewosed method is larger than
other methods, time performance is much better. ddmparisons of different
methods are given in Table 1.
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Table 1: Comparisons of the previous stereo magchethods and proposed

method for Tsukuba image pairs.

Percentage of bad pixels )
Computation
All Non- Discontinuit Tool Time References
Methods pixel | occluded ¥
Pr:gyr';;mr:ing 5.04% | 4.12% 12.0% CPU 1.0s (30]
G;:;:g:t 201% | 1.19% 6.24% CPU 69.85 2]
SSD+min filter | 7.22% 5.08% 24.1% CPU 1.1s [13]
P;:;zizd 7.08% | 5.09% 182% | FPGA|  40ms This study

4.2 FPGA Implementation Results

In this section, the FPGA implementation resulesaraluated. In Section 4.2.1, the
simulation results are given, and the real timedware results are presented
in Section 4.2.2 .

4.2.1 Simulation Results

The simuléion of the proposed FPGA implementation is done
by Modelsim-Altera 6.5b tool. The functional bel@vof the proposed VHDL code
is simulated. Since all the FPGA blocks are opegatin the real hardware, the

simulation outputs provide information about thedwaare performance.

During the simulation, Tsukuba image is used. Timiage is converted to text file
because Modelsim can read text files as an infngnthe pixel intensity values of
the right and left image are sent to the VHDL c¢@€ implementation module)
for the simulation of disparity calculation. Fingll disparity results of the
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simulation are written to a text file and then certed to the disparity image. The

simulation environment is shown in Figure 39.

Right = Modelsim Simulation
Image 5 &
Z 3 - % Disparity
wMiw o RN
Left E 8 8 &
Image

Figure 39: The simulation environment

Throughout the simulation, all necessary signatsdata are examined with respect
to timing and accuracy. In FPGA hierarchy, someckdoneed other blocks’ output
at certain time which is called pipeline processitighese outputs arrive late or
early, all real time flow can be broken. Therefdhes simulation provides valuable
information about the flow in an FPGA. With thifanmation, the VHDL code is

updated and the problems are solved.

In Figure 40, the simulation screen for frame séad graph cut disparity result is
shown. This simulation shows the synchronizatiorthef signals with each other
and pixel clock. Figure 41 gives a part of the datian for the whole FPGA

design.

Start point Active pixel Right image Left image
of the frame start pixels pixels

Graph cut
disparity valid
signal

Graph cut
Disparity result

Figure 40: Simulation screens of the control signal
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Figure 41: A part of the simulation screen of tlesign.

The VHDL simulation generates the disparity resaft3sukuba image. The results
of the VHDL simulation and MATLAB are compared whits shown in Figure 42.
There are some differences between the results.\VéiDulation results are worse
at some boundary points. The extensions are inetleaSince MATLAB uses
double floating point in calculations, its accurasybetter. On the other hand,
FPGA implementation uses fix point in calculatiomSich decrease the accuracy.
Therefore, the error in VHDL simulation is greatiean the MATLAB results.

MATLAB VHDL simulation
result result

Figure 42: Comparison of MATLAB and VHDL simulatiomesults on Tsukuba

image.
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4.2.2 Hardware Results

VHDL codes are written by Altera Quartus-1l soft@dool which has a free license
version for the academic studies. All VHDL block® a&onnected in a top block
with their schematic representation which is veeipful for the user to debug and
analyze the whole flow. Figure 43 shows the schiemapresentation of the

implemented blocks in FPGA design environment.

The FPGA consist of logic elements, embedded meritsyand multipliers. Logic
elements are used for realization of the VHDL codesaddition, these elements
make the necessary connections between the intelozts. The data is stored in
embedded memories and the multipliers are useithéoarithmetic calculations.

Table 2 shows the total dedicated FPGA resourcdstla usage summary of the
proposed method.
Table 2: FPGA resource utilization

FPGA Resources Availablg Used
Logic Element 119,088 66,123
Memory(bits) 3,981,312 1,901,632
Multiplier(9x9) 576 480

FPGA implementations of stereo matching are redlireprevious studies which
use local methods. The performance of the propasettiod and the other FPGA
implementations are given at Table 3.

According to Table 3, the hardware uses differeyppes of FPGA’'s. The
performance of the real-time stereo system is thyreelated with the FPGA type,
because each FPGA has its own maximum clock frexyidogic element and
embedded multipliers. Therefore, image resolutmaximum disparity range and
frame rate are depend on the FPGA type.
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Figure 43: FPGA design environment.

Table 3: The performance comparison of previous tiege studies and proposed

method.
Image Disparity Frame
Hardware . Method per References
Resolution Range
second
Local Weighted
4xVitex2 | 256x360 oo | PhaseCorrelation 5, [26]
(Pixel-based,
Local)
Census
Virtex-4 640x480 64 (Pixel-based, 60 [27]
Local)
SAD
Virtex-2 640x480 128 (Pixel-based, 60 [28]
Local)
SAD
Virtex-2 640x480 64 (Pixel-based, 30 [29]
Local)
Modified Graph
Cyclone 1l 720x576 80 Cut (Pixel-based, 25 This Study
Local & Global)
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In Figure 44, the FPGA real time implementatiorutessare shown. These results
are captured from DVI monitor with a camera atrimening time. Different objects

are used for the evaluation of the real-time syst€hese objects are located at
different positions and their depths are observwedhle brightness on the results.
The higher brightness means that the objects asercto the camera, whereas the

objects which are far away results lower brightness

Some problems are encountered during the hardwamdementation of the

proposed method which is related with the camenascannections. When frames
are computed sequentially in FPGA, some distortiares occurred on disparity
map. There are two reasons for these distortibrescamera intensity variation and
camera lens optical distortion. The pixel intensitglues are not similar in

sequential frames for similar scene. In FigurethB,signal tap which is the debug
screen of the Quartus is shown. This debug toot&l to monitor the signals in an
FPGA when implementation is running. Pixel inteysrariation is observed at
P(100,200). In this representation 100 is the valupixel counter and 200 is the
value of line counter. The left pixel intensity dgas from 95 to 100 and right pixel
intensity changes between 60 and 76. These vargatiesult in distortions on the
sequential disparity frames.

The camera lenses cause the optical distortionhikitarger at the lens boundaries
and smaller at the centre. Optical distortion dissuthe epipolar line geometry
which prevents accurate matching of the correspangixels in the right and left

image. The optical distortion of the camera leas be seen on the top of the

library in Figure 46.

52



BEC Result GC Result

I
LA\

Ve
hlw“ liia\i|y I

Figure 44: The real time FPGA implementation result
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Type |Alias Hame |198\,ra|ue199“194| 1EIIB . 1EII8 , ZEIIEI 20|2 , QDI
c ] video_processing_controlinsts|frame_valic q
c ] video_processing_controlinstE|line_walid 1
c ] video_processing_controlinstE|pixel _valid 1
& [#- wideo_processing_controlinstE|line_counter 200
= [#- wideo_processing_controkinstElpixel_courter | 100 ¢ 93 99 100 % 101 4 102 K
c ] BEC_LIBEC|pizel_walid 1
&= [~ BEC_LLBEC|left_pixel_data { qs5 I T 95 % o4 @5 ¥
= [+~ BEC_LIBEC|right_pixel_data { TR ¢ mE 4 72 76 % &3 % 79
= BEC_LEBEC|disp_valid 1
=] [#- BEC_LIBECidispartty R 13 0 14 15 W 18 w17 A
Type ,q|i33| Hame ||1981ura|ue199|||194I e 188 20 2o
- video_processing_controlinsts|frame_wvalid 1
- video_processing_contralinsts|line_valid 1
- video_processing_controlinsts|pixel _valid 1
@ [+ video_processing_controlinstE|line_counter 200
) [ video_processing_controlingts|pixel_courter |{ 100 ¢ o8 % o9 100 % 101 % 102 3
c BEC_LIBEC|pixel_valid 1
&= - BEC_LEBEC|left_pixel_data { a7 92 % 89 a7 W o4 W 85
&= - BEC_LEBEC|right_pixel_data Y B0 65 % B4 B0 B3 )
] BEC_LIBEC|disp _wvalid 1
= [} BEC_LEBEC|disgrarity 1= 13 ¥ 14 15 4 16 4 17}
Type Alias| Name ||198\;a|..e199|||194I 196 188 200 oz
c ] video_processing_controlinsts|frame_valid 1
c ] video_processing_controlinstE|line_walid 1
c ] vidleo_processing_cortralinstElpixel _walid 1
o [~ video_processing_controkinstE|line_counter 200
o - video_processing_controkinstE|pixel_courter | 100 ¢ o9 o9 100 4 101 % 102 )
Fc ] BEC_LIBEC|pixel_walid 1
s [+~ BEC_LEBEC|left_pixel_data { 100 ¢ 98 ¥ oo 100 % 497 % @5
o [+~ BEC_LEBEC|right_pixel_data { B3 R B3 4 Bl % B0
o] BEC_LIBEC|disp_valid 1
= (- BEC_LEBEC|disparity i 43 47 4 13 45 15 % 5

Figure 45: The signal tap screen of the design.
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Figure 46: The distorted image.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, a modified graph cut method forestematching is proposed. The
modification is such that the real time implemeiotatis possible. The method is
firstly developed in MATLAB, and then realized iedicated hardware with FPGA

to achieve the real time constraints.

The literature survey of different stereo matchingthods is presented and their
advantages and disadvantages are summarized. 8tateloing methods can be put
into three groups: pixel-based, region based aatlife based. Pixel-based methods
which include local and global methods are mossigdin literature. Local methods
like SAD and SD require less computational time pared with global methods,
but their accuracy is worse. On the other handpajlaonethods can generate
accurate stereo results, but their computation tnheng.

The main aim of the proposed method is to turn rdmursive structure of the
standard graph cut method (a global method) inb@rarecursive structure. There
are two basic differences between the standarchgrapmethod and the proposed
method, namely, the computation structure and #wgired image lines. The
standard graph cut method is recursive, becaugmsdiible disparity combinations
are checked repeatedly. On the other hand, theopeapmethod is implemented in
non-recursive structure; all possible disparities eéhecked only for the matching
pixel and the disparity result is added to the jnesly calculated ones. Another

basic difference is the required line numbers ef ¢bmputation. In the proposed
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method, three lines are necessary for the implestient of the neighboring
relations whereas the standard graph cut methodsne@y the epipolar line. The
upper and lower line neighbors are critical for #reoothness calculation in the

proposed method.

The proposed method is implemented in two mainkspbasic energy calculation
and graph cut. In the first block, the matchingt@®ergy values are calculated. In
the graph cut implementation block, the graph s¢tmec is constructed with

calculated matching cost energies, and the miniroutis found according to some

smoothness constraints for neighbor pixels.

Firstly, the modified graph cut method is impleneehtby MATLAB. The
MATLAB results show that the smoothness constrailirtsctly affect the disparity
results. Using different smoothness variablesa.{walues) generates different
disparity results. In the evaluation, firstly, allhoothness variables are kept same
and the results are compared with well known dets som Middlebury. Using the
same value for all smoothness variables incre&segdrcentage of bad pixel errors;
because each smoothness variable is used in smegstlualculation of different
neighbor pixels. To control the effects of smoot#malifferent values are assigned
to these variables. When the neighboring relatamable between the pixelsxg()

and Px,y-1) is given a larger value than the others, vdrtdeformations are
observed in the disparity map. On the other harttenwthe smoothness variable
between the pixels Rf) and Px-1,y) is increased, the error at the boundaries also
increases in the horizontal direction. The lastti@diable smoothness variable is
between the pixels Rf) and PX,y+1). When this variable is increased, the total
percentage of bad pixel errors becomes larger ttheuother variable combinations.
Since the disparity results &asic Energy Calculation Moduleyhich are mostly
incorrect, are used in this smoothness calculatfendisparity results déraph Cut
Implementation Modul@re incorrect and the resultant disparity mapinslar to

the output disparity map dBasic Energy Calculation ModuléAfter evaluating
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different smoothness variable combinations, thémpn one is obtained and used

in the FPGA implementation.

Secondly, the proposed method is implemented iipelipe structure in FPGA. In
this structure, the VHDL blocks are connected toheather sequentially so that a
real time flow is possible. VHDL codes of the des@ye simulated by Modelsim
tool of Altera. The data flow is examined with respto the real time constraints,
and the disparity results are compared with the MAB results. Some differences
are observed between the MATLAB and FPGA resultekvlre mainly occurred

at boundary points. These differences are relatddtinve used number formats.

For the real time implementation, Altera CycloneRPGA is used. videos, Two
PAL cameras are used for the right and left vidGd® total computation time of
the FPGA graph cut implementation for 80 dispasgtgreo matching is 40 ms
which is suitable for real time applications. THeGA implementation results are
displayed on a DVI monitor.

5.2 Future Work

The proposed method’s computation time (40 ms)theddisparity range (80) are
encouraging values for stereo matching applicatibliosvever, the labeling result of
the method can be improved by new additions orb#sec energy calculation and
graph cut parts. The graph cut part, which usesotitput of the basic energy
calculation block, can generate more accurate digp&sults if the outputs of the
basic energy calculation part can be improved. ebéifit local methods or their
fusion can be used for the basic energy calculation

The Graph Cut Moduleneeds some parameters for the calculation. In FPGA
implementation, these parameters are embeddethmtwode. The main board does

not have a serial communication interface. A sezs@hmunication interface like
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RS-232 can be added to the main board and the pseesrcan be updated during

the run time.
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APPENDIX A

GRAPH CUT METHODS

Maximum Flow Method

Suppose thaB(V,E)is a directed graph whekeshows the vertices aritishows the
edges. In addition t¥ andE, two new concepts which are capacity and flowhef t

graph edges are used in maximum flow method.

Let (u,v) U E andc(u,v)be the positive capacity ¢f,v). It represents the maximum
amount of flow that can pass through an edge. Wenas that if(u,v)JE than
c(u,v)=0. f(u,v) is the flow representation of th@,v). It is a real function,

f:VxV—R which must satisfy the following constraints fdir @,v):

1. Capacity constraint: The flow along an edge calower than its capacity.
f(uv) <du,v) (A-1)

2. Skew symmetry constraint: The flow fromto v must be the opposite of the
flow from v to u.
f(u,v) =-— f(v,u) (A-2)

3. Flow conservation constraint: The sum of input autput flows of each

edge can be equal except $gsourceandt(sink).

D fuy)=0 (A-3)

Vv

Notice thatf(u,v) is a net flow fromu to v. For example, there is a flow of 4 units

fromutov, and a flow of 3 units frona to u, we havd(u,v)=1 andf(v,u)=-1.

65



Maximum flow method is used to find the maximum amothat can flow on a
constructed graph. Because maximum flow amoungterthined by the edges that
have lower capacities. Therefore, the maximum valuagn s-t flow is equal to the

minimum capacity of an s-t cut according to theotkeen of Ford & Fulkerson [4].

In literature, two basic maximum flow algorithm&dound. The first is augmented
path algorithm which is developed by Ford & Fulkersand the second is the push-

relabel algorithm.
Augmented Path Algorithm

Augmented path algorithm was introduced by Ford @&lke&rson [4] for the
minimum cut calculation. Boykov & Kolmogorov [5] plemented this algorithm

in stereo matching.

The first step of augmented path algorithm is thestruction of residual graph. A
residual graplG,(V,E) differs from the original in edge capacitieshe capacities

¢(u,v) are changed in the following way[5]:

If f(u,v)<c(u,v)then(u,v)JE andc:(u,v)=c(u,v)-f(u,v)
If f(u,v>0 then(v,u)0E andc(v,u)=f(u,v)

Therefore residual grap@,(V,E) has duplicate edges with capacitegéu,v) and

cr(v,u).

An augmented path which is representedlay W, ..., W) is a path on the residual
graph from source to sink. In this conteut,is the source and is the sink of the

residual graph. The important property of an augetpath i (u;, u+1)>0.

The aim of this algorithm is to find the maximurovil (minimum cut) of the graph

and this is done by removing augmenting pathserréisidual graph.
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Algorithm starts with constructing the residualgraThe second step is to find the
augmented paths on the graph and then finally noove these augmented paths

with iterations. The detailed version of this aitfon is explained in Table 4.

Table 4: Augmented path algorithm

Algorithm Description
steps
1 Construct a residual graph Gr
2 Find an augmented pata on Gr
Calculate capacity of augmented path:
3 ¢, (8) =min(c, (u,v): (u,v) 0a)
For each(u,v)€ a
4 f(uv) « f(uv)+c,(a)
f(v,u) « f(u,v)
5 Update Gr
Is there an augmented path on Gr?
6 YES— Return step-2
NO — Go to step-7
7 Finish

After the residual graph is updated with no augmerngath, the minimum cut can
be calculated by finding the vertices which arechedole and non-reachable from
the source. The edges between the reachable anteacimable vertices give the
minimum cut path. In Figure 47, the updated redidwaph and the minimum cut
are shown, in this figure, the red vertices are-reathable and blue ones are

reachable vertices.
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Figure 47: The example of minimum cut on residuapg.

Push Relabel Algorithm

Firstly, Goldberg [6] proposed Push-relabel aldontfor the maximum flow
computation. After that Zureiki, Devy & Chatila [8fed this algorithm for stereo

correspondence problem.

The main idea of the algorithm is to find the masiimflow of the graplG(V,E)by
some operations on the graph. We should defineaoewepts which arkeightand

preflowto understand the process of the algorithm.

Height (u)is the number of total vertices between the veutexd thet(sink) The

assumptions are,

Height(s)=V(Total number of the vertices)
Height(t)=0.

Preflow is the similar to the flow concept. The only diface is that input flow
should be larger than the output flow of the vert&u,v) is the preflow
representation of th@u,v). It is a real functionP:VxV—R" which must satisfy the

following constraints for alfu,v).
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1. Capacity constraint: The preflow along an edgelmafower and equal to its
capacity:
P(uv) < duyv), Ouv)OE (A-4)
2. Skew symmetry constraint: The preflow framo v must be the opposite of
the preflow fromv to u:
P(u,v) ==-P(v,u), O(u,v)OE (A-5)
3. Lete(u)is the excess of vertex It is the difference between the input flow
and output flow ofu:

gu) = ZP(v,u)— ZP(U,V)ZO, DuDV—{s} (A-6)

(v,u)dE (u,v)OE

Two operations are used to find maximum flow whaca push and relabel.

Push operation:

If you want to push a flow from vertaxto vertexv, you can send a part of excess

flow from u tov, but following three conditions must be satisfied:

1. e(u)>C The input flow is bigger than output flow

2. ¢(u,v)-f(u,v)>0: Available capacity fronu to v.

3. Height(u)>Height(v): The distance betweanandt(sink)is larger than the
distance betweenandt(sink)

After these three conditions are satisfied, the @amhof ming(u), c(u,v)-f(u,v)

flow can send.

Relabel operation:

If you want to relabel a vertax you can increase its height until it is biggearttat
least one of the vertices which have available c&paThe necessary conditions

are:
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1. e(u)>0 There must be an excess in the relabeling vertex
2. Height(uxHeight(v) 0Ov, such that: There are not any lower or equal

height vertices connected to veriex

After these two conditions are satisfied, the hemfhvertexu can increase until at

least one lowest height vertex is found.

Algorithm starts with constructing grapB(V,E) The second step is to find the
vertex which has positive excess. After that, dehpaperation or relabel operation
on that vertex. When there is not any positive sgceertex on the graph, the
algorithm stops. The edges that carry the maximlaw fwill be minimum cut

edges.
The detailed version of this algorithm is explaimed able 5.

Table 5: Push-Relabel Algorithm

Algorithm Description
steps
1 Construct a grapB(V,E)
2 Find a vertex witheg(u) >0 onG(V,E)
IsHeight(u) > Height(v) ?
3 YES— Go to step-4
NO — Go to step-5
4 Do relabel operation
5 Do push operation
Is there a vertex witle(u) > OnG(V,E)?
6 YES— Return step-2
NO — Go to step-7
7 Finish
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Swap-Expansion Method

Swap-Expansion methods try to find the minimum inagoergy by changing the
pixel's disparity values (labels). These algorithstart with an arbitrary labeling
and change the disparities until they reach optimabeling. Swap-expansion
algorithm is discussed under two titles by BoyKgeksler & Zabih [1].

a-p Swap Method

In o= swap method, initial labebss are given to all pixels in the defined partition
P. x is selected from the disparity range, and thiggeamcludeso. and 3. The
objective is to find the correct labetsto reach minimum matching energy for the
partitionP.

The constructed grapB,; is shown in Figure 48 [1]. The source and the svhich
are explained in the Section 2.1 are assigned Ssilple labelsa and . The
connection between the disparity vertices and &helso, f is made witht-links.
As explained in section 2.1, these links hold theating energy.n-links are used
to connect vertices which are belong to neighb&elgiand show the smoothness
energy. This graph representation is different frdme defined in section 2.1,
because this graph is used to check only two plesdibparity while the other one
checks all possible disparities.

Figure 48:G,; structure.
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The basic idea of this method is to try all possithisparity pairs until the optimum
labeling is reached. The labeling is done accordinghe cut on the constructed
graph. Cut is found by using the energy valueseflinks. There are many possible
energy values to be compared to calculate the ath. gFinding the minimum
energy cut means to assign the disparity valueutfpasses through®, pixel p
remains its old disparity valuebut if cut passes throug[gf, pixel p is assigned to

new disparity valug. The label of pixep swaps fronu to S.

-~ =
a  cutl .
.tp tg .

0 n(p,q) o

ts t2

Figure 49: The possible cuts on construgglfor pixelsp andq.

As shown in Figure 49, cut determines the dispavdjues for the pixels. For
instance, Cutl passes through ty* => the disparity values gf andq area. Cut2
passes througt;;ﬁ, tq/” => the disparity values qf andq aref. Cut3 passes through
to", n(p,q) tqﬁ => the disparity value op is « andq is S. Since cut3 path passes
through then-link between the neighbor pixefs and g, the disparities of these
neighbor pixels is changed. Finally, Cut4 passesutjh tpﬂ, n(p.,q), ty" => the

disparity value op is f andq is a.

Algorithm starts with constructing gragh,;. The second step is to determine the
initial labelingx and calculate the energy values with these lal¥dtsr thata, S
swap is done and new matching energy value is leddziwith these new labels. If
Enew is lower than the previous energy, conuvettibel to new labelg’. When all

labels are tested, the algorithm stops.
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The detailed version of this algorithm is explaimed able 6.

Table 6:a — £ swap algorithm

Algorithm Description
steps
1 Construct a grapBaf
2 Start with initial labelingc
Are all labels tested?
3 YES— Go to step-8
NO — Go to step-4
4 For each pairs of labefs,f)
5 Do a-f swap operation (resultant label x)
6 CalculateE(x')
Is E(X)<E(X)?
YES— Determinex=x’
7 Updat&of
Return step-3
NO — Return step-3
8 Finish

o Expansion Method

Similar to a-f swap methodg-expansionstarts with an initial labeling. This

labeling has matching cost enefigy Then with oner-expansiorof x, Exis tried to

be minimized according to the initial labeling [1].

In a-expansionmethod an auxiliary vertex is defined between theslpvertices
which have different labels. The reason of addiegy nertex is to decrease the cost
value of the link between the neighbor pixels whiwwe different labels. The
auxiliary vertex assumed to be labeled withFigure 50 shows the constructed

graph with auxiliary node.
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In this method every possible labels in the rargyehecked for pixep. Then
according to the new labeling, matching cost enéxgig calculated and compared
with the previous one. If the new energy valueesslthan the previous one, pigel
is assigned to new label, otherwise the other labehssigned. This process
continues until all labels are checked for pigelThe algorithm steps are given in

Figure 50: Constructed graph f@rexpansion.

Table 7 .
Table 7:a-expansioralgorithm
Algorithm Description
steps
1 Construct a grapBad
2 Start with initial labelingc
3 Are all labels tested? YES Go to step-8
NO— Go to step-4
4 For every labelsa)
Set pixel label t@ (resultant label x)
5 CalculateE(x")
Is E(X')<E(X)? YES— Determinex=x’
6 Upddte.d
Return step-3
NO— Return step-3
8 Finish
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