

FPGA IMPLEMENTATION OF GRAPH CUT METHOD
 FOR REAL TIME STEREO MATCHING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HAVVA SAĞLIK ÖZSARAÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2010

Approval of the thesis:

FPGA IMPLEMENTATION OF GRAPH CUT METHOD
 FOR REAL TIME STEREO MATCHING

submitted by HAVVA SAĞLIK ÖZSARAÇ in partial fulfillment of the
requirements for the degree of Master of Science in Electrical and Electronics
Engineering Department, Middle East Technical University by,

Prof. Dr. Canan ÖZGEN ________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet ERKMEN ________________
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Zafer ÜNVER ________________
Supervisor, Electrical and Electronics Eng. Dept., METU

Assist. Prof. Dr. İlkay ULUSOY ________________
Co-Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Gözde BOZDAĞI AKAR ________________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Zafer ÜNVER ________________
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. İlkay ULUSOY ________________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Tolga ÇİLOĞLU ________________
Electrical and Electronics Engineering Dept., METU

Enes ERDİN M.Sc. ________________
Digital Electronic Design Group, TÜBİTAK-SAGE

Date: September 15, 2010

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last Name : Havva SAĞLIK ÖZSARAÇ

 Signature :

iv

ABSTRACT

FPGA IMPLEMENTATION OF GRAPH CUT METHOD

 FOR REAL TIME STEREO MATCHING

Sağlık Özsaraç, Havva

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Zafer Ünver

Co-supervisor : Assist. Prof. Dr. İlkay Ulusoy

September 2010, 74 pages

The present graph cut methods cannot be used directly for real time stereo matching

applications because of their recursive structure. Graph cut method is modified to

change its recursive structure so that making it suitable for real time FPGA (Field

Programmable Gate Array) implementation.

The modified method is firstly tested by MATLAB on several data sets, and the

results are compared with those of previous studies. Although the disparity results

of the modified method are not better than other methods’, computation time

performance is better. Secondly, the FPGA simulation is performed using real data

sets. Finally, the modified method is implemented in FPGA with two PAL cameras

at 25 Hz. The computation time of the implementation is 40 ms which is suitable for

real time applications.

Keywords: Real Time Stereo Matching, Graph Cut, FPGA

v

ÖZ

GERÇEK ZAMANLI STEREO EŞLEME İÇİN

ÇİZGE KESME YÖNTEMİNİN FPGA UYGULAMASI

Sağlık Özsaraç, Havva

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Zafer Ünver

Ortak Tez Yöneticisi : Yrd. Doç. Dr. İlkay Ulusoy

Eylül 2010, 74 sayfa

Günümüz çizge kesme yöntemleri özyinelemeli bir yapıya sahip olduğundan

doğrudan gerçek zamanlı stereo eşleme uygulamalarında kullanılamazlar. Çizge

kesme yönteminin özyineli yapısı, gerçek zamanlı FPGA(Alan Programlanabilir

Kapı Dizisi) uygulamasına uygun olabilmesi için değiştirilmi ştir.

Değiştirilen çizge kesme yöntemi, önce MATLAB ile çeşitli veri kümeleri üzerinde

test edilmiş ve sonuçlar önceki çalışmalar ile karşılaştırılmıştır. Önerilen metodun

derinlik sonuçları diğer yöntemlerinkinden iyi olmamasına rağmen hesaplama

zaman performansı daha yüksektir. Doğru sonuçlar elde edildikten sonra FPGA

benzetimi gerçek veri kümeleri ile gerçekleştirilmi ştir. Son olarak, bu yeni yöntem

2 adet 25 Hz PAL kamera ile FPGA üzerinde gerçeklenmiştir. Uygulamanın

hesaplama zamanı gerçek zamanlı uygulamalar için uygun olan 40 ms’dir.

Anahtar Kelimeler: Gerçek Zamanlı Stereo Eşleme, Çizge Kesme, FPGA (Alan

Programlanabilir Kapı Dizisi)

vi

To My Husband,

To My Family…

vii

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere thanks to my supervisors Prof. Dr. Zafer

ÜNVER and Assist. Prof. Dr. İlkay ULUSOY, for their supports, friendly attitude

and encouragement at each stage of this thesis study.

I would like to thank to TÜBİTAK-SAGE (The Scientific and Technological

Research Council of Turkey – Defense Industries Research and Development

Institute) for the support given throughout this study.

I would like to forward my appreciation to all colleagues for their continuous

encouragement.

I would like to present my thanks to Örsan AYTEKİN for sharing his knowledge.

I would like to thanks to my parents, Yılmaz SAĞLIK and Hadiye SAĞLIK and my

sister Hale SAĞLIK for their support and unlimited love.

Lastly, special thanks to my husband, İsmail ÖZSARAÇ for all his support,

guidance, sharing his knowledge and help in implementation and for showing great

patience during my thesis.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ...v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... x

LIST OF FIGURES .. xi

CHAPTERS

1. INTRODUCTION ... 1

 1.1 Definition of the Stereo Matching Problem ... 1

 1.2 Stereo Matching Methods .. 3

 1.3 Stereo Matching by Graph Cut Method ... 5

 1.4 Objective of the Thesis... 6

 1.5 Organization of the Thesis ... 7

2. GRAPH CUT THEORY IN STEREO MATCHING .. 8

 2.1 Graph Construction in Stereo Matching Applications 8

 2.2 Minimum Cut Calculation Methods... 13

ix

 2.3 Modified Graph Cut Method .. 14

 2.3.1 Basic Stereo Energy Calculation ... 15

 2.3.2 Modified Minimum Energy Calculation Method 17

3. IMPLEMENTATION OF THE NEW METHOD ... 20

 3.1 Computer Based Implementation in MATLAB ... 20

 3.2 Real Time Implementation in FPGA ... 24

 3.2.1 The Hardware Description .. 24

 3.2.2 Real Time Implementation .. 25

4. SIMULATION AND IMPLEMENTATION RESULTS 39

 4.1 MATLAB Implementation Results .. 41

 4.2 FPGA Implementation Results .. 47

 4.2.1 Simulation Results .. 47

 4.2.2 Hardware Results .. 50

5. CONCLUSIONS AND FUTURE WORK .. 57

 5.1 Conclusions .. 57

 5.2 Future Work ... 59

REFERENCES ... 61

APPENDICES

 A. GRAPH CUT METHODS..65

x

LIST OF TABLES

TABLES

Table 1: Comparisons of the previous stereo matching methods and proposed

method for Tsukuba image pairs. ... 47

Table 2: FPGA resource utilization ... 50

Table 3: The performance comparison of previous real time studies and proposed

method. ... 51

Table 4: Augmented path algorithm .. 67

Table 5: Push-Relabel Algorithm .. 70

Table 6: βα − swap algorithm ... 73

Table 7: α-expansion algorithm ... 74

xi

LIST OF FIGURES

FIGURES

Figure 1: The parallel camera localization [11]. .. 2

Figure 2: 2D stereo camera localization... 3

Figure 3: Stereo matching graph (R is the maximum disparity range). 9

Figure 4: The matching pixel P(x, y) and its neighbor pixels. 11

Figure 5: The functional graph of neighborhood interaction function [3]. 11

Figure 6: The functional graph of multiplying term [3]. .. 12

Figure 7: Implementation of the modified graph cut method. 14

Figure 8: Matching pixel P(x,y) and its neighbors. .. 15

Figure 9: The structure for matching energy calculation. .. 16

Figure 10: Cut on the constructed graph. ... 18

Figure 11: The flow chart of proposed minimum cut calculation method. 19

Figure 12: The block diagram of Computer Based Implementation........................ 21

Figure 13: The block diagram of Basic Energy Calculation Module. 22

Figure 14: The block diagram of Graph Cut Implementation Module. 23

Figure 15: Hardware structure. .. 25

xii

Figure 16 : The general structure of the FPGA blocks. ... 26

Figure 17: The detailed structure of Stereo Matching Block. 28

Figure 18: Frame timing signals. ... 28

Figure 19: Basic Energy Calculation Block. .. 29

Figure 20: Sub-Pixel Intensity Calculation Block. .. 30

Figure 21: Usage of sub-pixel buffers. ... 30

Figure 22: Cost Energy Calculation Block. ... 31

Figure 23: Edata Calculation Block. .. 32

Figure 24 : The Comparison Block. ... 33

Figure 25: The Structure of Graph Cut Implementation Block. 34

Figure 26: The structure of GC Main Controller Block. .. 35

Figure 27: The structure of Smooth1 Energy Calculation Block. 35

Figure 28: The structure of Smooth2 Energy Calculation Block 36

Figure 29: The structure of Smooth3 Energy Calculation Block. 37

Figure 30: The structure of GC Cost Calculation Block. ... 38

Figure 31: The structure of Comparison Block.. 38

Figure 32: Middlebury data pairs and their ground truths 40

Figure 33: The Middlebury comparison regions. .. 41

Figure 34: The effect of umax values on disparity errors. ... 43

xiii

Figure 35: Basic energy calculation module minimum matching energy disparity

results 43

Figure 36: Extensions at object boundaries by increasing umax values on Tsukuba

image. ... 44

Figure 37: Disparity results of proposed method for different umax values. 45

Figure 38: Evaluated disparity results using Middlebury stereo pairs. 46

Figure 39: The simulation environment ... 48

Figure 40: Simulation screens of the control signals. .. 48

Figure 41: A part of the simulation screen of the design. .. 49

Figure 42: Comparison of MATLAB and VHDL simulation results on Tsukuba

image. ... 49

Figure 43: FPGA design environment. .. 51

Figure 44: The real time FPGA implementation results. ... 53

Figure 45: The signal tap screen of the design. .. 55

Figure 46: The distorted image. ... 56

Figure 47: The example of minimum cut on residual graph. 68

Figure 48: Gαβ structure. ... 71

Figure 49: The possible cuts on constructed Gαβ for pixels p and q. 72

Figure 50: Constructed graph for α-expansion. ... 74

1

CHAPTER 1

INTRODUCTION

Stereo analysis is an important topic in computer vision due to its usage in many

areas like 3D vision, 3D reconstruction, 3D object detection and robotic

applications such as navigation, path planning, mapping and localization [9, 10]. In

stereo analysis multiple cameras can be used to calculate 3D information. However,

in most of the applications, only two cameras are used which provide the right and

left images that can be used to simulate the human vision system.

The main problem of stereo analysis is stereo matching which can be stated as

finding corresponding pixels on the right and left images. The stereo matching

problem is defined in Section 1.1. Section 1.2 and 1.3 explain the stereo matching

methods. The objective of the thesis study is given in Section 1.4, and the

organization of the thesis is provided in Section 1.5.

1.1 Definition of the Stereo Matching Problem

The stereo matching problem can be defined as finding depth information of the

objects in the image. In the solution process, the right and left images are captured

by using specially localized cameras. Then the depths are calculated according to

some pixel intensity similarities and constraints.

Consider the cameras and an object shown in Figure 1.

2

Figure 1: The parallel camera localization [11].

b is the baseline between the two cameras, and the focal length of the cameras is

denoted by fc. (XL, YL, ZL) and (XR, YR, ZR) are the coordinate systems for the left

and right cameras, respectively. PL is the projection of this object onto the left

camera and PR is the projection onto the right camera. PL and PR are located on the

epipolar line which may have different vertical coordinates on the left and right

images; however, the camera locations can be arranged to make the epipolar line

have the same vertical coordinate on both images [11].

Disparity is the absolute horizontal coordinate difference between the

corresponding pixels (PL, PR) on the left and right images. The disparity of object

P(x,y,z) is defined as (xL-xR). In stereo matching, the main goal is to calculate

disparity values of the pixels in an image.

The camera localization shown in Figure 2 is used to derive the depth calculation

formula.

3

Figure 2: 2D stereo camera localization.

Since
x

z

x

f

L

c = and
bx

z

x

f

R

c

−
= , the depth, z, of the object P(x,y,z) follows as

RL

c

xx

bf
z

−
= * (1-1)

In equation (1-1), the disparity (xL-xR) is inversely proportional with the depth of the

object. Since the focal length, fc, of the cameras and the distance, b, between the

cameras are given, the disparity is the only unknown value for the depth calculation.

There are different stereo matching methods to calculate disparity of the pixels on

the image. Section 1.2 gives the main features of these methods.

1.2 Stereo Matching Methods

Stereo matching algorithms can be put into three groups [12]: pixel-based, region-

based and feature-based. These algorithms have different approaches to calculate

the disparity information.

4

In pixel-based methods [13], the correlation data of the pixels on the right and left

images is used to compute disparity. Since pixel-based algorithms use all pixels in

the image, they can produce dense disparity maps. These algorithms can be

examined under two subtitles: local methods and global methods.

Local pixel-based methods try to calculate the disparity values by comparing the

pixel intensities in a finite window whose size can vary according to the approach

of the algorithm. A reference window on the right or the left image is selected and

every pixel in this window is compared with every pixel in the other image window.

The total difference of the compared pixels is used to calculate the matching cost by

different techniques: Squared Intensity Differences (SD) [14, 15], Absolute

Intensity Differences (AD), and Sum of Absolute Differences (SAD) [12].

Global pixel-based methods differ from the local methods in terms of matching cost

calculation. Local methods are not interested in finding the minimum matching cost

for the whole image. Since global methods try to reach the minimum matching cost

by using some optimization techniques, they give better results than local matching

algorithms [22]. Dynamic-Programming [16], Belief Propagation [17], and Graph

Cut [1, 2, 3, 7] methods are the most studied global pixel-based methods.

Region-based stereo matching methods [18] calculate the disparity by using the

regions on the right and left images. Firstly, the images are divided into sub regions

by using some segmentation techniques, and these regions are compared. According

to the comparison results, the disparity value of the pixels in the same region is

determined. Therefore, region-based algorithms generate dense disparity maps like

pixel-based method.

Feature-based stereo matching methods use some specific information in the images

like edges and corners. Firstly, some feature detection algorithms [19, 20, 21] are

used to find the special features in the images, and then a matching process is

applied to find the same features in both images. Since the matching process is used

5

only for the pixels which have special features, only these pixels are assigned to

disparity values. Therefore, feature-based methods produce sparse disparity maps.

1.3 Stereo Matching by Graph Cut Method

In robotic applications, many different tasks like camera calibration, video

correction, video stabilization, 3D analysis, path planning and communication

should be done sequentially in a certain amount of time. Since total implementation

time is limited, each task has a very strict time constraint.

Stereo matching is the first step of 3D analysis, and it should also be completed in a

certain amount of time. For a real time PAL standard video, this duration is around

40 ms. Recall that human visual system can detect latencies greater than 150 ms

[23]. Therefore, if the stereo matching processing time increases, there can be

discontinuities between the following frames. This can result wrong decisions and

actions in the robot control system.

Recent studies show that in stereo matching, graph cut method (GC) has a good

performance when compared with other algorithms [22]. Even though, GC is not

suitable for real time applications, because of its iterative structure, which will be

explained in Appendices, there are new studies to implement this algorithm in real

time; but the results do not satisfy the real time constraints yet [24, 3, 25].

Kolmogorov and Zabih implement α-expansion move method in [24]. They applied

their method to 384x288 size Tsukuba image. The image is processed by 450 MHz

Ultra SPARC II processor. Disparity range is 16 for the selected image, and the

calculation time is 69 seconds. This shows that for a 384x288 size image, 1,769,472

disparities can be checked within 69 seconds. Disparity estimation results are good,

but their method can not be used in real time applications because of the limitations

6

given in [23]. {The α-expansion move method will be explained in detail in

Appendices.}

Zureiki, Devy and Chatila implement reduce graph method to decrease the

calculation time [3]. They reduce the total number of possible disparities by using a

stereo matching method like SAD, construct a graph using these disparity values

and use the push-relabel method. They applied the method to image sets having the

resolutions of 434x380 and 217x190. The disparities are calculated by 3 GHz

Pentium4 processor with 512 MB of RAM. The complete graph approach for

434x380 size images can not be implemented because of memory explosion, while

the reduced graph method calculates the disparities in 15-50 seconds. For 217x190

images, the complete graph approach takes 150 seconds, while the reduced graph

method takes 4 seconds for 4 disparity range and 5 seconds for 5 disparity range.

This shows that for a 217x190 size image, 164,920 disparities can be checked

within 4 seconds. However, they have not succeeded to run the algorithm in real

time yet. {The push-relabel method will be explained in Appendices.}

Vineet and Narayanan implement the push-relabel algorithm on the Nvidia GTX

280 Graphic Processing Unit (GPU) [25]. The real time implementation is possible

only if 2 disparities are looked for. For example the calculation time of a 640x480

size image with 2 disparities is 30-40 ms. This shows that for this image 614,400

disparities can be checked within 30-40 ms. The time performance is the best

among the recent studies; but since only 2 disparities are used, the implementation

is close to image segmentation rather than stereo matching.

1.4 Objective of the Thesis

Since the graph cut algorithm in stereo matching can not be implemented in real

time yet, a modified graph cut method is suggested in this thesis study to decrease

the calculation time. General purpose computer (C and MATLAB) and special

7

purpose hardware (GPU) are used in previous studies. Even though GPU

performance is better than that of general purpose computers, it can not be used for

parallel processing applications to increase speed performance. In this thesis, FPGA

is chosen due to its parallel processing capability which is the basic difference

between the FPGAs and GPUs. Also ASICs can be used for parallel processing

applications, but they can not be reconfigured. On the contrary, FPGAs can be

reconfigured easily for the updates in algorithms. The detailed information about

the hardware structure will be explained in Section 0.

The proposed method can complete stereo analysis of 576x768 size images with 80

disparity range in 40 ms in an Altera Cyclone III FPGA. This shows that

35,389,440 disparities can be checked within 40 ms. The right and left videos are

captured by 2 PAL cameras and processed in FPGA, and the result of the algorithm

is displayed on DVI monitor. These steps can be done in real time.

The disparity estimation results of the modified method is not better than the graph

cut implementations of previous studies; but the calculation time is much better

even for 80 disparity range. The disparity results of the modified graph cut method

are compared with the previous studies’ listed in [22]. The results are worse than

that of the best resultant graph cut stereo matching method [24]; however, the time

performance of the modified method is about thousand times faster. These

comparisons will be given in Section 4.2.2 in detail.

1.5 Organization of the Thesis

Chapter 2 is devoted to the theory behind the graph cut method in stereo matching

and the modified graph cut method which is implemented in this thesis. Chapter 3

includes the details of implementation of the modified graph cut method. Chapter 4

discusses the results and performance comparisons of the implementation. The

conclusions and possible future work are presented in Chapter 5.

8

CHAPTER 2

2 GRAPH CUT THEORY IN STEREO MATCHING

Graph cut method (GC) is used in different image processing applications such as

segmentation and stereo matching. The common property of these applications is

their requirement for energy minimization.

In stereo matching, GC, a pixel-based global method, is used to calculate minimum

matching cost energy. Minimum cost calculation is done by different methods in

GC. Since these methods are not suitable for real time applications, a modified

method is proposed which has a non-recursive structure.

In the following, first the construction of a graph for stereo matching is given. Then,

existent GC methods will be presented. Finally, the modified graph cut method

which is implemented in this study is discussed.

2.1 Graph Construction in Stereo Matching Applications

A graph is composed of vertices which are connected by edges. Row-column

structure is used to construct a stereo matching graph as shown in Figure 3. There is

a row of edges for every pixel on an image line and a column of edges for each

disparity value. Vertices are located at graph row-column intersection points, and

they represent the possible disparity values. In addition to vertices on graph rows,

two special vertices are added: s and t. The source vertex, s, is located at the

beginning side of the graph, and the sink vertex, t, is located at the end side of the

graph.

9

There are two types of edges between the vertices: t-links and n-links. t-links

connect the neighbor vertices on the same graph row, and these links represent the

matching cost energy for the related disparity value. n-links connect the neighbor

vertices at different graph rows, and they hold the smoothness energies between the

connected vertices (disparities). Matching cost energy and smoothness energy will

be explained in detail in the following sections.

Figure 3: Stereo matching graph (R is the maximum disparity range).

In Figure 3, tx(d) represents a t-link where x shows the horizontal coordinate of the

pixel on the image line and d shows the disparity value. n(x1,x2)(D1,D2) represents an

n-link where x1 and x2 show the horizontal coordinates of upper and lower pixels,

respectively, D1 is the disparity value of x1 at vertex dk and D2 is the disparity value

of x2 at vertex dk-1.

10

There are two main types of energies in global stereo matching applications:

matching cost and smoothness. The energy structure is a function of the assigned

disparity values or labels denoted by f. The energy functions Edata(f) and Esmooth(f)

represent the matching cost and the smoothness energies, respectively. In stereo

matching, the goal is to find optimum labels , f, to minimize the total energy E (f)

which is the sum of Edata(f) and Esmooth(f) .

Edata(f) is related with the pixel intensity values. The square of the intensity

difference between the matching pixel on the left image and the corresponding pixel

on the right image is used to calculate Edata(f). This calculation is done for all

possible disparity values in the disparity range.

∑
∈

=
Pp

ppdata fDfE)()(

Dp(fp) = (Il(p) - Ir(q))2 where fp=xp-xq
(2-1)

In the above expression, P is the compared pixel set on the right and left images, p

is the matching pixel in the left image, and q is the corresponding pixel in the right

image. I l(p) and Ir(q) are the intensities of pixels p and q, respectively. fp is the

label(disparity) value of the pixel p; xp and xq are the horizontal coordinates of the

pixels p and q, respectively.

Esmooth(f) is related with the labeling of the matching pixel and its neighbors. Three

neighbors are considered for Esmooth(f) calculation. The matching pixel located at

(x,y) and its neighbors are shown in Figure 4.

Esmooth(f) is calculated according to the smoothness constraint which states that the

disparity values of the pixels in the same object region should be the same, while

the disparity values of the pixels at the boundaries should be different. The pixels

which are in the same region have similar intensity values, but at the boundaries

11

pixels have different intensity values. Therefore, Esmooth(f) has two components:

intensity and labeling.

Figure 4: The matching pixel P(x, y) and its neighbor pixels.

{ }
{ }
∑

∈

∗=
Nqp

qpqpsmooth ffVufE
,

,),()((2-2)

In equation (2-2), N is the neighbor pixel set and V(fp,fq) is the neighborhood

interaction function [3] which checks the neighbor pixels for the assigned labels. If

p and q have different labels, this function gives high penalties. V(fp,fq) is equal to

the absolute difference of the neighbor pixels’ labels (disparity values):

V(fp,fq) = |fp-fq|. fp and fq are the assigned labels to the matching pixel and its

neighbor pixel, respectively. The functional graph of neighborhood interaction

function is shown in Figure 5.

),(qp ffV

|| qp ff −0

Figure 5: The functional graph of neighborhood interaction function [3].

12

If the neighbor pixels are in the same region, the neighborhood interaction function

prevents to assign different labels to these pixels. This is the necessary check for

proper labeling in the same region. The neighbor pixels should have different labels

at the boundaries; and the multiplying term u{p,q} is used to correct the

neighborhood interaction function error for these pixels. The multiplying term is a

decreasing function with increasing intensity difference:

u{p,q} = umax * (1- |I1-I2| / 255). umax value is the controllable variable which is

determined after the functional tests. I1 and I2 are the intensity values of the

neighbor pixels. At the boundaries, if the difference between the intensity values of

the neighboring pixels goes to 255 (the upper boundary of the intensity values for 8

bit representation), this term goes to zero. Since the neighborhood interaction

function gives high penalties at the boundaries, the multiplying term gives lower

values and balances the smoothness energy. The functional graph of the

multiplying term is shown in Figure 6.

{ }qpu ,

|| qp II −

maxu

Figure 6: The functional graph of multiplying term [3].

After the construction of the graph, the minimum energy can be computed by the

cut calculation. Cut can be defined as the collection of edges which hold the

matching cost energies (t-links) or the smoothness energies (n-links). It is assumed

that the minimum cut has the minimum total energy. There are two different

methods for computing the minimum cut: maximum flow and swap method. These

13

methods are given in Section 2.2. The modified graph cut method which is

implemented in this study is described in Section 2.3.

2.2 Minimum Cut Calculation Methods

The main aim is to find the minimum energy value on the constructed graph. There

are different methods in previous studies for minimum cut calculation. These

methods search the minimum energy among all possible disparity combinations, so

they require a recursive structure.

In these methods, energy value is calculated for a disparity combination, then

another energy value for a different combination is obtained. If the new energy

value is smaller than the previous one, new disparity combination is assigned to

pixels. These steps are done for all possible disparity combinations in the

determined range.

Maximum flow method assumes the graph as a water pipe net which lets the

maximum amount of water flow from the source to the sink. In a pipe net, the

maximum flow amount is determined by the narrowest pipes. The pipes represent

the links of the graph. Therefore, the cost values of the pipes are the energy values

and the narrowest ones hold the minimum energy. Since minimum energy

represents the minimum cut, maximum flow amount is equal to the minimum cut of

the graph.

Swap methods check possible disparity combinations for the neighbor pixels

recursively. They assign different labels (disparities) to the pixels and compare the

resultant energy values with the previous ones. According to the comparisons of the

resultant energy values, swap methods determine the final labeling. The methods

are explained in detail in Appendices.

14

In the proposed method, the main goal is to change the structure of the standard

graph cut method to non-recursive for real time applications. The minimum energy

of the matching pixel is calculated and added previously calculated pixels energy

value so the minimum energy is not calculated repeatedly for all possible

disparities. All possible disparities are contributed to each pixel’s energy value

calculations not whole minimum energy calculation in the constructed graph. In the

following section the modified minimum cut calculation method will be explained.

2.3 Modified Graph Cut Method

Graph cut methods can generate accurate disparity maps but recursive calculations

are necessary to find the minimum matching cost energy to determine the correct

disparity values. Because of their recursive structure, their calculation time is too

long to be used in real time applications, e.g., a robot control system. The modified

graph cut method is proposed to reduce the calculation time.

The proposed method is implemented by two main functional blocks shown in

Figure 7.

Figure 7: Implementation of the modified graph cut method.

The basic stereo energy calculation block computes the stereo matching energies by

using a local method which uses linearly interpolated pixels [7]. It sends the

calculated matching energy values and minimum energy disparity value to the

graph cut implementation block which calculates the disparity map of the whole

image. The detailed information of the first block is given in Section 2.3.1, and the

second block is discussed in Section 2.3.2.

15

2.3.1 Basic Stereo Energy Calculation

The matching costs are calculated by linear interpolation which is done between the

neighbor pixels. In the proposed method, both horizontal neighbors and vertical

neighbors contribute to the energy calculation so that 3 lines are used for the

calculation of total energy. Smoothness energy is calculated not only for epipolar

line (horizontal) neighbors but also for upper and lower neighbors of matching

pixel. The matching pixel, its neighbors and interpolated pixels (sub-pixels) are

shown in Figure 8.

The method reduces the possible errors which results from the sampling noise [8].

By using the sub-pixel values the matching will be less sensitive to the sampling

through the image.

Figure 8: Matching pixel P(x,y) and its neighbors.

The sub-pixel intensity values given below are the intensity averages of the

matching pixel and its neighbors.

I(x,(y-0.5))= 0.5* (I (x,y)+ I (x,(y-1))) (2-3)

I (x,(y+0.5))= 0.5* (I (x,y)+ I (x,(y+1))) (2-4)

I ((x-0.5),y)= 0.5* (I (x,y)+ I ((x-1),y)) (2-5)
I ((x+0.5),y)=0.5* (I (x,y)+ I (x+1),y)) (2-6)

16

I(x,(y-0.5)), I (x,(y+0.5)), I ((x-0.5),y) and I ((x+0.5),y) are the intensity values for the pixels

P(x,y-0.5), P(x,y+0.5), P(x-0.5,y), and P(x+0.5,y) , respectively.

In the matching energy calculation, a pixel pair from the disparity range is taken,

the sub-pixel values for both are computed, and finally, the intensity differences of

the matching pixels and their sub-pixels are calculated. The basic structure of the

method is shown in Figure 9.

Figure 9: The structure for matching energy calculation.

The matching pixel’s and its sub-pixels’ cost calculations are given in the following

equations.

 cost(x,y)=|IR(x,y)-IL(x,y)| (2-7)
 cost(x,(y+0,5))=|IR(x,(y+0,5))-IL(x,(y+0,5))| (2-8)
 cost(x,(y-0,5))=|IR(x,(y-0,5))-IL(x,(y-0,5))| (2-9)
 cost((x+0,5),y)=|IR((x+0,5),y)-IL((x+0,5),y)| (2-10)
 cost((x-0,5),y)=|IR((x-0,5),y)-IL((x-0,5),y)| (2-11)

The total matching cost value is calculated by adding all cost values:

E_data_basic(x,y)= cost(x,y)+cost(x,(y+0,5))+cost(x,(y-0,5))+
cost((x+0,5),y)+ cost((x-0,5),y). (2-12)

17

The total matching cost energy is calculated for all possible disparity values. The

matching pixel is selected and its matching cost energies are calculated for each

possible disparity value. The minimum of them is also found. Then, the minimum

energy disparity value and (R+1) different matching cost energies are sent to the

graph cut implementation module.

2.3.2 Modified Minimum Energy Calculation Method

As explained in Section 2.1, n-links are computed by equation (2-2). The functional

graphs (Figure 5 and Figure 6) are used for the computation of neighborhood

interaction function and multiplying term of smoothness structure. The resultant

formulation of smoothness energy for the modified method is given as,

Esmooth(I1, I2, f1, f2)= C *(1- |I1-I2| / 255) * |f1-f2| (2-13)

In the above equation, I1 and I2 are the intensity values of the matching pixel and its

neighbor pixel, respectively, and C is the umax value. In addition, f1 and f2 are the

label values (disparity values) of matching pixel and its neighbor pixel,

respectively. The n-links notation (see Section 2.1) of the smoothness energy

structure is,

n (P(x-1,y), P(x,y))(fP(x-1), fP(x,y)) = Esmooth(IP(x-1,y), IP(x,y), fP(x-1,y), fP(x,y)) (2-14)

After calculating all necessary t-links and n-links, the graph is ready for the

minimum cut calculation. The minimum cut is calculated for each pixel and then

combined with the previously calculated ones in the implementation. Figure 10

shows the possible cut on the constructed graph.

In Figure 10, Current Cut Index is the starting point of the cut on the graph and it is

assumed that d2 is the computed disparity value for pixel P(x-1,y).

C1, C2, C3, .., CR, CR+1 are the possible cuts for the pixel P(x,y). The cut calculation

18

block computes (R+1) different possible cut energies for P(x,y). The cut energy

includes the link energies which intersects with Cn on the graph and the smoothness

term between P(x,y) and P(x,y+1), P(x,y-1). In equation (2-15), the general cut

energy formula EPi is given.

Figure 10: Cut on the constructed graph.

()

()
())1,(),()1,(),(

)1,(),()1,(),(

,,,

,,,

++

−−

∀

+

+

−−= ∑

yxPyxPyxPyxPsmooth

yxPyxPyxPyxPsmooth

p
Pi

ffIIE

ffIIE

linksnandlinkstpaththeonlinktheofvaluesEnergyE

 (2-15)

Here, fP(x,y-1) is the calculated disparity value for P(x,y-1). Since it is on the previous

line, this value has been already calculated. fP(x,y+1) is the disparity value of P(x,y+1)

which has not been calculated yet. The output information of basic energy

calculation (BEC) module can be used for fP(x,y+1). The BEC module gives (R+1)

energy values and the calculated disparity value of the minimum of these energy

values. Therefore, the calculated BEC disparity value is used for fP(x,y+1) in the

smoothness calculation.

For P(x,y), there are R+1 different cut energies (EPi) which are shown in Figure 10.

The next step is the comparison step for the calculation of minimum EPi. After that,

the corresponding disparity for minimum EPi is assigned to the calculated disparity

19

for P(x,y). This disparity value will be the current cut index of the calculation step

of P(x+1,y). The whole method is summarized in Figure 11:

Is k=M? (k is

the vertical pixel

coordinate)

YES

NO

End of algorithm

Initialize

current cut

index and

Energy

Is j=N? (j is the

horizontal pixel

coordinate)

Calculate

EPi

NO

Is i=R+1? (i is the

number of the

current disparity

number)

NO

YES

YESj++

k++

If

Epi<Energy

YES

Energy=Epi

Current path index=i

i++NO

Figure 11: The flow chart of proposed minimum cut calculation method.

20

CHAPTER 3

3 IMPLEMENTATION OF THE NEW METHOD

In this chapter, the implementation steps of the modified graph cut method are

explained. The method has been developed with two different tools: general

purpose computer and special purpose hardware. In the first step, it is implemented

in MATLAB because the results of the design updates can be observed quickly.

After observing satisfactory results, the implementation is tested on Altera Cyclone

III Development Board by using Cyclone III FPGA. The computer based

implementation details are explained in Section 0, and the real time implementation

is described in Section 0.

3.1 Computer Based Implementation in MATLAB

Basic structure of the computer based implementation is shown in Figure 12.

The images obtained from cameras are in gray scale image format. However, the

sample images (Tsukuba, Venus, Cone, etc…) that are used in test process can be in

RGB (Red, Green, Blue) image format. Therefore, the RGB to Gray Scale

Converter Block is used in the implementation. For this reason, ‘rgb2gray’ function

of MATLAB is used to convert the image format from RGB to gray scale.

The left and right images are captured from cameras and they are read with the

‘ imread’ function of MATLAB. The output of this function is MxN dimensional

data array for gray scale image format where M is the number of pixels in the same

column and N is the number of pixels in the same row. Size of the images are

21

determined and sent to the following blocks. The left and right MxN dimensional

images are converted to 1xN dimensional arrays, because energy calculation is done

with pixels located on the same line. Basic Energy Calculation Module takes the

left and right 1xN dimensional images with the image sizes and produces the

disparity energies for all disparities in the range (R). The detailed block diagram of

the Basic Energy Calculation Module is shown in Figure 13.

Figure 12: The block diagram of Computer Based Implementation.

The 1xN dimensional left and right arrays enter the Sub-pixel Intensity Calculation

Block where the intensity values of the sub-pixels are calculated by the equations

(2-3), (2-4), (2-5), (2-6). The number of calculated sub-pixel intensities for the left

image is four, since the matching pixel is selected from this image (see Figure 9).

22

Figure 13: The block diagram of Basic Energy Calculation Module.

The number of calculated sub-pixel intensities for the right image depends on the

disparity range, since the matching pixel is compared with all pixels in the disparity

range. The calculated intensity values contribute to the energy calculation. In the

Energy Calculation Block, the cost values are computed one by one using equations

(2-7), (2-8), (2-9), (2-10), (2-11); and then the total matching cost value is

calculated using equation (2-12). Each disparity value has a corresponding

calculated energy value. These energy values are formed as outputs of the

Basic Energy Calculation Module and used as inputs to the Graph Cut

Implementation Module. In Figure 14, the detailed internal structure of this module

is shown.

23

Figure 14: The block diagram of Graph Cut Implementation Module.

The Graph Cut Implementation Module is the main calculation and comparison

module of the proposed method. The links of the graph structure and the minimum

disparity energy are computed in this module. At the last step, the disparity map is

formed and the disparity image is shown on the screen.

After the 1xN dimensional left arrays enter the Graph Cut Implementation Module,

the smoothness energies are calculated according to equation (2-2). The relation

between the matching pixel and its neighbor which is located on the same line (y) is

calculated in the Smoothness Calculation-1 Block. In Figure 8, these neighbor

pixels are displayed as P(x-1,y) and P(x,y). Left image line pixel value, current

disparity value and umax1 are necessary inputs to calculate the smoothness energy-1.

The relation between the matching pixel and its upper neighbor (y-1) is calculated

in the Smoothness Calculation-2 Block. In Figure 8, this neighbor pixel is displayed

as P(x,y-1). The left image y-coordinate line pixel value, the left image

24

(y-1)-coordinate line pixel value, the calculated disparity value of the upper line

pixel and umax2 are necessary inputs to calculate the smoothness energy-2.

The relation between the matching pixel and its lower neighbor (y+1) is calculated

in the Smoothness Calculation-3 Block. In Figure 8, this neighbor pixel is displayed

as P(x,y+1). The left image y-coordinate line pixel value, the left image

(y+1)-coordinate line pixel value, the minimum energy disparity value which is

calculated in the Basic Energy Calculation Module and umax3 are necessary inputs to

calculate the smoothness energy-3.

The calculated smoothness energy-1, smoothness energy-2, smoothness energy-3

and disparity energies are inputs to the Summation Block where the cost energies

are calculated as in equation (2-15). The energy disparity indexes (0, 1,…, R) and

their total cost energies are sent to the Comparison Block.

In the Comparison Block, the minimum disparity energy is found by comparing all

cost energies. The disparity values which have the minimum energies of pixels form

the disparity map of corresponding images. This disparity map is sent to the Write

Image Block to be shown on the screen.

3.2 Real Time Implementation in FPGA

3.2.1 The Hardware Description

The hardware is composed of three cards. The main processing card is

Altera Cyclone III Development Board which includes Cyclone III EP3C120 FPGA

and DDR2-SDRAM memories. FPGA is used for the video processing application

and DDR2-SDRAM memories are used for frame buffering. Other cards are

Bitec HSMC (High Speed Mezzanine Card) daughter cards that are plugged to the

main board. HSMC Quad Video is used to capture the right and left analog videos.

25

This card contains a video decoder that digitizes the analog video and sends to the

FPGA. HSMC DVI is used to display outputs of the processing block on the

monitor. The general hardware structure is shown in Figure 15.

Figure 15: Hardware structure.

3.2.2 Real Time Implementation

The necessary signals, hardware blocks and pipelining for the real time

implementation of the proposed method are described in this section. The general

structure of the FPGA blocks is shown in Figure 16. All these blocks are coded in

VHDL (Very high speed integrated circuit Hardware Description Language). For

stereo matching application two cameras are used providing PAL video at 25Hz.

The videos are captured by the video decoder on the HSMC Quad Video and sent to

the Video Input Block in FPGA. This block makes the necessary decomposition of

26

the video signals and outputs the active pixels in the video frame. In this block also

YCbCr to Y decomposition is done. Cb and Cr are the chrominance (color) part of

the video and Y is the luminance (intensity) part. The Stereo Matching Block uses

only the intensity values for the calculations.

Video Input

Analog

video read

YCbCr to Y

converter

Video Input

Analog

video read

YCbCr to Y

converter

DDR2-SDRAM

interface

DDR2-SDRAM

Right

buffer1

Right

buffer2

Left
buffer1

Left
buffer2

DDR2-SDRAM

interface

Video read

Video read

Stereo

Matching

DDR2-SDRAM

interface

DDR2-SDRAM

interface

Disparity

buffer

Video

output

FPGA

Right

Video

Left

Video

DVI

Figure 16 : The general structure of the FPGA blocks.

The captured video frames are written to the DDR2 SDRAM memory by

DDR-SDRAM Interface Block. In this memory, there are two frame buffers for each

of the left and right video. This double buffering is used to eliminate the frame

latencies between the video frames. The right and left camera power up timings

may be different and there can be frame latencies between the left and right frames.

These latencies may result in faulty calculations in the Stereo Matching Block.

27

The Video Read block reads the right and left video frame buffers which contains

the last incoming video frames. Then, these video frames are sent to the Stereo

Matching Block which process on the video frames and calculates the disparity

values. The calculated disparity values are written to DDR2 SDRAM for the Video

Output Block. Finally, the Video Output Block reads the disparity values from the

memory and sends to the HSMC DVI to display on the monitor.

The main block of this real time implementation is Stereo Matching. The proposed

modified graph cut method is realized in this block. The detailed structure of this

block is shown in Figure 17. The Stereo Matching Block is composed of two main

blocks: Basic Energy Calculation and Graph Cut Implementation. The Basic

Energy Calculation Block computes the matching cost energies for every disparity

value in the range. These matching energies are used by the Graph Cut

Implementation Block to compute GC disparity value of the related pixel.

The video lines are written to the FIFO’s (First In First Out) by using the frame

timing signals. The general description of the frame timing signals is shown in

Figure 18. The frame valid signal indicates a new video frame, the line valid signal

shows the change of the video lines and the pixel valid signal is used to capture the

active pixels in the video line.

The received video lines (Right and Left) are firstly written to the Plus Line FIFO’s

(Right and Left). Then the pixel data in Plus Line FIFO is transferred to the Line

FIFO when a new active video line starts and the pixel data in the Line FIFO is

written to the Minus Line FIFO. After the three active video lines, the Plus Line

FIFO contains line(y+1), the Line FIFO contains line(y) and the Minus Line FIFO

holds line(y-1). Since all the necessary lines are ready, the Basic Energy

Calculation Block can start to calculate the matching cost energies. The structure of

the Basic Energy Calculation Block is shown in Figure 19.

28

L
e
ft
 p
lu
s
 f
if
o

re
a
d
 s
ig
n
a
l

R
ig
h
t
p
lu
s
 f
if
o

re
a
d
 s
ig
n
a
l

L
e
ft
 p
lu
s
 f
if
o

d
a
ta
(7
..
0
)

R
ig
h
t
p
lu
s
 f
if
o

d
a
ta
(7
..
0
)

Figure 17: The detailed structure of Stereo Matching Block.

Figure 18: Frame timing signals.

The FIFO Control Interface controls the FIFO signals to arrange the read/write

sequences between the FIFO’s. It sends the pixel data to the Arithmetic Calculation

Block for the calculations of the matching cost energies of each disparity value. The

Arithmetic Calculation Block contains two sub-blocks. The first block calculates the

29

sub pixel intensity values, and the second block computes the cost energies using

these values. The structure for sub-pixel intensity calculation is shown in Figure 20.
P
ix
e
l
V
a
lid

L
in
e
 V
a
lid

F
ra
m
e
 V
a
lid

Figure 19: Basic Energy Calculation Block.

The sub-pixel intensity values are calculated with the matching pixel P(x,y) and its

neighbors. Firstly the matching pixel and its neighbor pixel intensity values are

added. Then sum is divided by two to get the average. In Figure 20, the Right Shift

Operator is used for the division by two. The left image is the reference image, so

the matching pixel values for the right image are calculated. Since the

implementation works in a pipeline order, the calculated sub-pixel values can be

used for the next matching cost energy calculation. The previous sub-pixel values in

the buffers are kept and used for the next calculation. Figure 21 shows the main idea

of sub-pixel buffer usage. In this figure R(x) and L(x) represent the right and left

image pixels, respectively, and dx is used for the calculated disparity.

30

+
Right Pixel(x,y)

Right Shift

operator

x minus right

buffer0

Arithmetic calculation 1

x minus right

buffer1

x minus right

buffer79Right Pixel(x-1,y)

x right pre

buffer0

x right pre

buffer1

x right

buffer0

x right

buffer1

x right

buffer79

+
Right Pixel(x,y)

Right Shift

operator

x plus right

buffer0

x plus right

buffer1

x plus right

buffer79Right Pixel(x+1,y)

+
Right Pixel(x,y)

Right Shift

operator

y minus right

buffer0

y minus right

buffer1

y minus right

buffer79Right Pixel(x,y-1)

+
Right Pixel(x,y)

Right Shift

operator

y plus right

buffer0

y plus right

buffer1

y plus right

buffer79Right Pixel(x,y+1)

+
Left Pixel(x,y)

Right Shift

operator

x minus left

bufferLeft Pixel(x-1,y)

x left pre

buffer0

x left pre

buffer1

x left

buffer

+
Left Pixel(x,y)

Right Shift

operator

x plus left

bufferLeft Pixel(x+1,y)

+
Left Pixel(x,y)

Right Shift

operator

y minus left

bufferLeft Pixel(x,y-1)

+
Left Pixel(x,y)

Right Shift

operator

y plus left

bufferLeft Pixel(x,y+1)

IR(x,y-0.5)(0) IR(x,y-0.5)(1) IR(x,y-0.5)(79)

IL(x,y-0.5)

IL(x,y+0.5)

IL(x-0.5,y)

IL(x+0.5,y)

IL(x,y)

IR(x,y)(0) IR(x,y)(1) IR(x,y)(79)

IR(x-0.5,y)(0) IR(x-0.5,y)(1) IR(x-0.5,y)(79)

IR(x+0.5,y)(0) IR(x+0.5,y)(1) IR(x+0.5,y)(79)

IR(x,y+0.5)(0) IR(x,y+0.5)(1) IR(x,y+0.5)(79)

Figure 20: Sub-Pixel Intensity Calculation Block.

R(x-79) R(x-78) R(x-1) R(x)

L(x)

R(x-78) R(x-77) R(x) R(x+1)

L(x+1)

P(x,y)

P(x+1,y)

d0d1d78d79

d0d1d78d79

Figure 21: Usage of sub-pixel buffers.

31

Having the sub-pixel intensity values, the matching cost energies are calculated by

the second block in Arithmetic Calculation. The general structure for the Cost

Energy Calculation is shown in Figure 22.

Absolute

difference

x minus left

buffer

Cost0 (x-0.5,y)

Absolute

difference

x minus right

buffer0

x minus right

buffer79

Absolute

difference

Cost0 (x,y-0.5) y minus right

buffer0

y minus left

buffer

Absolute

difference

y minus right

buffer79

Absolute

difference

Cost0 (x,y+0.5)

y plus left

buffer
Absolute

difference

y plus right

buffer0

y plus right

buffer79

Absolute

difference
 x right buffer0

Absolute

difference
 x right buffer79

x left buffer

Cost0 (x,y)

Arithmetic Calculation 2

Cost79 (x-0.5,y)

Absolute

difference

x plus left

buffer

Cost0 (x+0.5,y)

Absolute

difference

x plus right

buffer0

x plus right

buffer79

Cost79 (x+0.5,y)

Cost79 (x,y-0.5) Cost79 (x,y)

Cost79 (x,y+0.5)

Figure 22: Cost Energy Calculation Block.

The matching cost energies of the matching pixel and sub-pixels are sent to the

Edata Calculation block. In this block, matching cost energies are added and the

total cost energies for the disparities are calculated. Figure 23 shows the general

structure of Edata Calculation block.

32

Figure 23: Edata Calculation Block.

The calculated Edata values are compared in Comparison Block to find the

disparity value with minimum cost energy. This block computes the minimum

energy in 3 stages. There are sub-blocks that can compare 5 values at the same time.

So, 80 cost energies compared and 16 values are obtained. 15 of these values are

compared and 3 values are obtained. In the last stage, these 3 values and the

16th value from the previous stage are compared, and the disparity value with the

minimum cost energy is calculated. The Comparison Block is shown in Figure 24.

33

Figure 24 : The Comparison Block.

The calculated Edata values of each disparity, matching pixel value and its BEC

disparity value are transferred to the GC implementation Block which calculates the

disparity values as explained in Section 2.3.2. The detailed structure of this block is

shown in Figure 25.

The Edata values are transferred from the BEC to the GC module with valid signal.

By using this valid signal, these energies are written to the internal FIFO’s of GC

Implementation Block. The GC Main Controller Block reads Edata values from the

internal FIFO’s during the GC cost energy calculation.

The main process of GC implementation is controlled by the GC Main Controller

Block. All FIFO read/write operations are arranged and the GC disparity results are

34

calculated by this main controller block. The structure of the GC Main Controller

Block is shown in Figure 26.

Figure 25: The Structure of Graph Cut Implementation Block.

The Smooth1 Energy Calculation Block reads from the line FIFO to calculate the

neighboring relation energy between pixels P(x,y) and P((x-1),y). In this block,

equation (2-13) is implemented. The term “C*|fp-fq|” is calculated in the Smooth1

Look-up Table. In this implementation, the term umax1 is used instead of C and k is

used instead of |fp-fq|. The k*umax1 terms are computed for all the disparity values in

the range and transferred to the Smooth1 Energy Calculation Block. The structure of

this block is shown in Figure 27.

35

Figure 26: The structure of GC Main Controller Block.

Figure 27: The structure of Smooth1 Energy Calculation Block.

36

The data read from the line FIFO is saved as Ip pixel value. In addition, this Ip pixel

value is copied to the Iq pixel value to be used as the (x-1)th pixel intensity value

for the next smooth1 calculation. The absolute difference between the Ip and Iq

values are calculated and transferred to the Multipliers Block. k*umax1 values are

multiplied with |Ip-Iq| value in this block, and the results are sent to the Absolute

Differences Block. This block computes the |k*umax1-k*umax1*|Ip-Iq|| values and

transfers the results to the 8-bit Right Shift Operator Block which is used to divide

the inputs by 256. After division, Smooth1-Energy Results are ready for cost energy

calculation.

The Smooth2 Energy Calculation Block and the Smooth3 Energy Calculation Block

calculate the energy values in parallel with the Smooth1 Energy Calculation Block.

All the smooth energies become ready for the calculation of cost energies at the

same time. The structure of the Smooth2 Calculation Block is shown in Figure 28.

Figure 28: The structure of Smooth2 Energy Calculation Block

The structure of Smooth2 Calculation block is similar to the structure of Smooth1

Calculation block. One of the difference is smooth1 is related with the neighboring

relation between P(x,y) and P((x-1),y) but smooth2 is related with the neighboring

37

relation between P(x,y) and P(x,y-1). The other difference is the look-up tables. In

addition, smooth2 reads pixel data from Line and Minus Line FIFO’s.

The structure of Smooth3 Calculation is shown in Figure 29. This structure is

similar to the structure of Smooth2 Calculation block. One of the difference is

smooth2 is related with the neighboring relation between P(x,y) and P(x,y-1) but

smooth3 is related with the neighboring relation between P(x,y) and P(x,y+1). In

addition, smooth3 reads pixel data from Line and Plus Line FIFO’s.

Figure 29: The structure of Smooth3 Energy Calculation Block.

The calculated Esmooth values are transferred to the GC Cost Calculation Block. The

valid signals are used for synchronization. The structure of the GC Cost Calculation

Block is shown in Figure 30.

The Smooth ready signals are used to enable the energy adders of GC Cost

Calculation Block. All the smooth energies are added with respect to the relevant

disparities and the cost energies are obtained. The total cost energies are transferred

to Comparison Block. The structure of the Comparison Block is shown in Figure 31.

The task of Comparison Block is similar to the BEC Comparison Block except the

inputs and outputs. After the GC disparity values are calculated, they are written to

the DDR2-SDRAM with DDR2-SDRAM Interface to display on a monitor.

38

Figure 30: The structure of GC Cost Calculation Block.

Figure 31: The structure of Comparison Block.

39

CHAPTER 4

4 SIMULATION AND IMPLEMENTATION RESULTS

This chapter discusses the disparity results of MATLAB and FPGA

implementations of the proposed method. The MATLAB implementation and

FPGA simulation results are evaluated by Middlebury Stereo pairs which are

Tsukuba, Venus, Teddy, and Cones. FPGA implementation results are evaluated by

dedicated hardware.

The MATLAB and FPGA simulation results are compared with the ground truth of

Middlebury stereo pairs. The ground truth contains the accurate pixel disparity

results. The Middlebury stereo pairs and their ground truths are given in Figure 32.

In the evaluation process, the percentage of bad pixels, which are the differences

between evaluated method and ground truth, is calculated:

∑
∈
∈

>−=
My
Nx

dGR
N

yxdyxd
P

B)),(),((
1 δ (4-1)

In this equation, PN is the total number of pixels in the image, dR(x,y) and dG(x,y)

are the calculated and the ground truth disparity values, respectively, for pixel (x,y).

δd is the disparity error tolerance which is taken as 1 in the evaluations.

The Middlebury comparisons are performed in three ways. In the first comparison,

all pixel disparity values are compared; in the second one, non-occluded pixel

disparities are evaluated; and discontinuity pixel disparities are measured in the last

one. On the contrary to the occluded region pixels, in non-occluded regions, pixels

are visible in both images, so every matching pixel in one image has the

40

corresponding pixel in the other image. Discontinuity occurs on the boundaries of

the regions in the image. Namely, discontinuity pixels are neighbor pixels which get

different disparities. The original image, its ground truth, occluded/non-occluded

and depth discontinuity regions are given in Figure 33.

Figure 32: Middlebury data pairs and their ground truths.

(a) Tsukuba, (b) Venus, (c) Teddy, (d) Cones.

41

(a) (b)

(c) (d)

Figure 33: The Middlebury comparison regions. (a) Original image; (b) Ground

truth disparity map; (c) Occluded regions(black), Non-occluded regions(white);

(d) Discontinuity regions (white).

According to these evaluation criteria, MATLAB implementation results are

discussed in Section 4.1, and FPGA implementation results are given in Section 4.2.

4.1 MATLAB Implementation Results

MATLAB implementation details are given in Chapter 3. In these implementation

steps, the only controllable parameters are umax1, umax2, and umax3 which are used in

smoothness calculation blocks. The variation in umax values affects the disparity

results of proposed method.

42

The proposed method uses the umax values for the relations between the neighbour

pixels P(x,y), P(x-1,y), P(x,y+1) and P(x,y-1). The disparity values of P(x-1,y),

P(x,y+1), and P(x,y-1) affect the graph cut result of P(x,y). P(x-1,y) and P(x,y-1)

disparity values are calculated by graph cut, on the other hand P(x,y+1) disparity

value is generated by basic energy calculation module where matching cost energies

are calculated. Firstly, all three umax variables are assigned to the same value and the

disparity results are evaluated for the image pairs Tsukuba, Venus, Teddy and

Cones. The percentage of bad pixels versus umax values are given in Figure 34.

Small umax values result in high percentage of bad pixels, because smoothness terms

give lower contribution to the total energy than matching cost term in minimum cut

calculation. Therefore, the neighbouring relations between the pixels are neglected.

When umax values are increased, smoothness terms become dominant in the total

energy and neighbouring relations affect the minimum energy calculation. Then, the

all and non-occluded pixel disparity errors decrease. On the other hand, since the

graph cut module uses matching cost energies from basic energy calculation

module, discontinuity pixel error is changing according to the basic energy

calculation module results.

In basic energy calculation module, if the matching costs are calculated correctly at

the discontinuity points, graph cut implementation module finds the correct

disparity values. Therefore, the discontinuity pixel error decreases in the case of

Venus, Teddy and Cones images. However, if the calculated matching cost energies

are incorrect, the minimum energies can not be calculated correctly at the

boundaries. Then, the discontinuity pixel error increases as in the case of Tsukuba

image.

In Figure 35, the disparity results of basic energy calculation module are given.

These results are obtained by the minimum matching cost energy disparities. In

Tsukuba image, the calculated minimum energy disparities are not correct at some

43

of object boundaries. Therefore, some deformations are observed at these

boundaries as shown in Figure 36.

Figure 34: The effect of umax values on disparity errors. (a) Tsukuba image pairs,

(b) Venus image pairs, (c) Teddy image pairs, (d) Cones image pairs.

Figure 35: Basic energy calculation module minimum matching energy disparity

results (a) Tsukuba, (b) Venus, (c) Teddy, (d) Cones.

44

Figure 36: Extensions at object boundaries by increasing umax values on Tsukuba

image.

The next step of the evaluation is giving different values to umax1, umax2, and umax3

variables. In Figure 37, the disparity results according to different umax values are

given. In sub-figure (a), since the umax1 value is larger than umax2, and umax3 and it

affects the horizontal neighboring relation, some horizontal deformations are

existed on the boundary of the objects. When the umax2 value is increased and umax1

value is decreased (See in sub-figure (b)), some vertical deformations are observed

due to umax2 usage in smooth2 calculation. The errors of sub-figure (c) are the

largest ones because of rising in umax3 value. Since, the umax3 is used for the smooth3

calculation and smooth3 calculation uses the output disparities of basic energy

calculation module, the disparity results are similar to the basic energy calculation

results which are given in Figure 35. After evaluating different combinations of umax

values and comparing the disparity results, the optimum umax values are found which

are 15 for umax1, 10 for umax2 and 5 for umax3. The disparity map results of MATLAB

implementation for optimum umax values and evaluated errors are given in

Figure 38.

45

Figure 37: Disparity results of proposed method for different umax values.

46

Figure 38: Evaluated disparity results using Middlebury stereo pairs. (a) Ground

truths, (b) Disparity results of the best resultant graph cut method in Middlebury,

(c) Disparity results of the proposed method and the percentage of bad pixels

related with these results.

The MATLAB implementation results are compared with previous methods for

Tsukuba image pairs. Although the error rate of the proposed method is larger than

other methods, time performance is much better. The comparisons of different

methods are given in Table 1.

47

Table 1: Comparisons of the previous stereo matching methods and proposed

method for Tsukuba image pairs.

Percentage of bad pixels

Tool
Computation

Time
References All

pixel

Non-

occluded
Discontinuity

Methods

Dynamic

Programming
5.04% 4.12% 12.0% CPU 1.0s [30]

Graph Cut

Method
2.01% 1.19% 6.24% CPU 69.8s [2]

SSD+min filter 7.22% 5.08% 24.1% CPU 1.1s [13]

Proposed

Method
7.08% 5.09% 18.2% FPGA 40ms This study

4.2 FPGA Implementation Results

In this section, the FPGA implementation results are evaluated. In Section 4.2.1, the

simulation results are given, and the real time hardware results are presented

in Section 4.2.2 .

4.2.1 Simulation Results

The simulation of the proposed FPGA implementation is done

by Modelsim-Altera 6.5b tool. The functional behavior of the proposed VHDL code

is simulated. Since all the FPGA blocks are operating on the real hardware, the

simulation outputs provide information about the hardware performance.

During the simulation, Tsukuba image is used. This image is converted to text file

because Modelsim can read text files as an input. Then, the pixel intensity values of

the right and left image are sent to the VHDL code (GC implementation module)

for the simulation of disparity calculation. Finally, disparity results of the

48

simulation are written to a text file and then converted to the disparity image. The

simulation environment is shown in Figure 39.

Figure 39: The simulation environment

Throughout the simulation, all necessary signals and data are examined with respect

to timing and accuracy. In FPGA hierarchy, some blocks need other blocks’ output

at certain time which is called pipeline processing. If these outputs arrive late or

early, all real time flow can be broken. Therefore, the simulation provides valuable

information about the flow in an FPGA. With this information, the VHDL code is

updated and the problems are solved.

In Figure 40, the simulation screen for frame start and graph cut disparity result is

shown. This simulation shows the synchronization of the signals with each other

and pixel clock. Figure 41 gives a part of the simulation for the whole FPGA

design.

Figure 40: Simulation screens of the control signals.

49

Figure 41: A part of the simulation screen of the design.

The VHDL simulation generates the disparity results of Tsukuba image. The results

of the VHDL simulation and MATLAB are compared which is shown in Figure 42.

There are some differences between the results. VHDL simulation results are worse

at some boundary points. The extensions are increased. Since MATLAB uses

double floating point in calculations, its accuracy is better. On the other hand,

FPGA implementation uses fix point in calculations which decrease the accuracy.

Therefore, the error in VHDL simulation is greater than the MATLAB results.

Figure 42: Comparison of MATLAB and VHDL simulation results on Tsukuba

image.

50

4.2.2 Hardware Results

VHDL codes are written by Altera Quartus-II software tool which has a free license

version for the academic studies. All VHDL blocks are connected in a top block

with their schematic representation which is very helpful for the user to debug and

analyze the whole flow. Figure 43 shows the schematic representation of the

implemented blocks in FPGA design environment.

The FPGA consist of logic elements, embedded memory bits and multipliers. Logic

elements are used for realization of the VHDL codes. In addition, these elements

make the necessary connections between the internal blocks. The data is stored in

embedded memories and the multipliers are used for the arithmetic calculations.

Table 2 shows the total dedicated FPGA resources and the usage summary of the

proposed method.

Table 2: FPGA resource utilization

FPGA Resources Available Used
Logic Element 119,088 66,123
Memory(bits) 3,981,312 1,901,632

Multiplier(9x9) 576 480

FPGA implementations of stereo matching are realized in previous studies which

use local methods. The performance of the proposed method and the other FPGA

implementations are given at Table 3.

According to Table 3, the hardware uses different types of FPGA’s. The

performance of the real-time stereo system is directly related with the FPGA type,

because each FPGA has its own maximum clock frequency, logic element and

embedded multipliers. Therefore, image resolution, maximum disparity range and

frame rate are depend on the FPGA type.

51

Figure 43: FPGA design environment.

Table 3: The performance comparison of previous real time studies and proposed

method.

Hardware
Image

Resolution
Disparity

Range
Method

Frame
per

second
References

4 x Virtex-2 256x360 20

Local Weighted
Phase Correlation

(Pixel-based,
Local)

30 [26]

Virtex-4 640x480 64
Census

(Pixel-based,
Local)

60 [27]

Virtex-2 640x480 128
SAD

(Pixel-based,
Local)

60 [28]

Virtex-2 640x480 64
SAD

(Pixel-based,
Local)

30 [29]

Cyclone III 720x576 80
Modified Graph
Cut (Pixel-based,
Local & Global)

25 This Study

52

In Figure 44, the FPGA real time implementation results are shown. These results

are captured from DVI monitor with a camera at the running time. Different objects

are used for the evaluation of the real-time system. These objects are located at

different positions and their depths are observed by the brightness on the results.

The higher brightness means that the objects are closer to the camera, whereas the

objects which are far away results lower brightness.

Some problems are encountered during the hardware implementation of the

proposed method which is related with the cameras and connections. When frames

are computed sequentially in FPGA, some distortions are occurred on disparity

map. There are two reasons for these distortions: the camera intensity variation and

camera lens optical distortion. The pixel intensity values are not similar in

sequential frames for similar scene. In Figure 45, the signal tap which is the debug

screen of the Quartus is shown. This debug tool is used to monitor the signals in an

FPGA when implementation is running. Pixel intensity variation is observed at

P(100,200). In this representation 100 is the value of pixel counter and 200 is the

value of line counter. The left pixel intensity changes from 95 to 100 and right pixel

intensity changes between 60 and 76. These variations result in distortions on the

sequential disparity frames.

The camera lenses cause the optical distortion which is larger at the lens boundaries

and smaller at the centre. Optical distortion disturbs the epipolar line geometry

which prevents accurate matching of the corresponding pixels in the right and left

image. The optical distortion of the camera lens can be seen on the top of the

library in Figure 46.

53

Figure 44: The real time FPGA implementation results.

54

Figure 44: Continuation.

55

Figure 45: The signal tap screen of the design.

56

Figure 46: The distorted image.

57

CHAPTER 5

5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, a modified graph cut method for stereo matching is proposed. The

modification is such that the real time implementation is possible. The method is

firstly developed in MATLAB, and then realized in dedicated hardware with FPGA

to achieve the real time constraints.

The literature survey of different stereo matching methods is presented and their

advantages and disadvantages are summarized. Stereo matching methods can be put

into three groups: pixel-based, region based and feature based. Pixel-based methods

which include local and global methods are mostly used in literature. Local methods

like SAD and SD require less computational time compared with global methods,

but their accuracy is worse. On the other hand, global methods can generate

accurate stereo results, but their computation time is long.

The main aim of the proposed method is to turn the recursive structure of the

standard graph cut method (a global method) into a non-recursive structure. There

are two basic differences between the standard graph cut method and the proposed

method, namely, the computation structure and the required image lines. The

standard graph cut method is recursive, because all possible disparity combinations

are checked repeatedly. On the other hand, the proposed method is implemented in

non-recursive structure; all possible disparities are checked only for the matching

pixel and the disparity result is added to the previously calculated ones. Another

basic difference is the required line numbers of the computation. In the proposed

58

method, three lines are necessary for the implementation of the neighboring

relations whereas the standard graph cut method needs only the epipolar line. The

upper and lower line neighbors are critical for the smoothness calculation in the

proposed method.

The proposed method is implemented in two main blocks: basic energy calculation

and graph cut. In the first block, the matching cost energy values are calculated. In

the graph cut implementation block, the graph structure is constructed with

calculated matching cost energies, and the minimum cut is found according to some

smoothness constraints for neighbor pixels.

Firstly, the modified graph cut method is implemented by MATLAB. The

MATLAB results show that the smoothness constraints directly affect the disparity

results. Using different smoothness variables (umax values) generates different

disparity results. In the evaluation, firstly, all smoothness variables are kept same

and the results are compared with well known data sets from Middlebury. Using the

same value for all smoothness variables increases the percentage of bad pixel errors;

because each smoothness variable is used in smoothness calculation of different

neighbor pixels. To control the effects of smoothness, different values are assigned

to these variables. When the neighboring relation variable between the pixels P(x,y)

and P(x,y-1) is given a larger value than the others, vertical deformations are

observed in the disparity map. On the other hand, when the smoothness variable

between the pixels P(x,y) and P(x-1,y) is increased, the error at the boundaries also

increases in the horizontal direction. The last controllable smoothness variable is

between the pixels P(x,y) and P(x,y+1). When this variable is increased, the total

percentage of bad pixel errors becomes larger than the other variable combinations.

Since the disparity results of Basic Energy Calculation Module, which are mostly

incorrect, are used in this smoothness calculation, the disparity results of Graph Cut

Implementation Module are incorrect and the resultant disparity map is similar to

the output disparity map of Basic Energy Calculation Module. After evaluating

59

different smoothness variable combinations, the optimum one is obtained and used

in the FPGA implementation.

Secondly, the proposed method is implemented in a pipeline structure in FPGA. In

this structure, the VHDL blocks are connected to each other sequentially so that a

real time flow is possible. VHDL codes of the design are simulated by Modelsim

tool of Altera. The data flow is examined with respect to the real time constraints,

and the disparity results are compared with the MATLAB results. Some differences

are observed between the MATLAB and FPGA results which are mainly occurred

at boundary points. These differences are related with the used number formats.

For the real time implementation, Altera Cyclone III FPGA is used. videos, Two

PAL cameras are used for the right and left videos. The total computation time of

the FPGA graph cut implementation for 80 disparity stereo matching is 40 ms

which is suitable for real time applications. The FPGA implementation results are

displayed on a DVI monitor.

5.2 Future Work

The proposed method’s computation time (40 ms) and the disparity range (80) are

encouraging values for stereo matching applications. However, the labeling result of

the method can be improved by new additions on the basic energy calculation and

graph cut parts. The graph cut part, which uses the output of the basic energy

calculation block, can generate more accurate disparity results if the outputs of the

basic energy calculation part can be improved. Different local methods or their

fusion can be used for the basic energy calculation.

 The Graph Cut Module needs some parameters for the calculation. In FPGA

implementation, these parameters are embedded into the code. The main board does

not have a serial communication interface. A serial communication interface like

60

RS-232 can be added to the main board and the parameters can be updated during

the run time.

61

6 REFERENCES

1. Boykov Y., Veksler O.,& Zabih R., “Fast approximate energy minimization

via graph cuts.”, International Conference on Computer Vision , pp 377–

384,1999.

2. Kolmogorov V. & Zabih R., “Computing visual correspondence with

occlusions via graph cuts”, Technical Report CUCS-TR-2001-1838, Cornell

Computer Science Department, 2001.

3. Zureiki A., Devy M. & Chatila R., “Stereo matching using reduced-graph

cuts”, IEEE International Conference on Image Processing (ICIP), San

Antonio, Texas (USA), 2007.

4. Ford L. & Fulkerson D., “Flows in Networks”, Princeton University Press,

1962.

5. Boykov Y. & Kolmogorov V., “An experimental comparison of min-

cut/max-flow algorithms for energy minimization in vision”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, pp. 1124-1137,

2004.

6. Goldberg A. V. & Tarjan R. E., “A new approach to the maximum-flow

problem”, Journal of the Association for Computing Machinery (JACM),

35(4):921-940, 1988.

7. Käck J., “Robust Stereo Correspondence using Graph Cuts”, M.S. Thesis,

Royal Institute of Technology, Stockholm, Sweden, 2004.

62

8. Birchfield S. and Tomasi C., “A Pixel Dissimilarity Measure That Is

Insensitive to Image Sampling”, PAMI, Vol. 20, No. 4, 1998

9. Ude A. and Dillmann R., “Vision-Based Robot Path Planning”, Advances in

Robot Kinematics and Computational Geometry, pp. 505-512, 1994.

10. Se S., Lowe D. and Little J., “Vision-based Mobile Robot Localization And

Mapping using Scale-Invariant Features”, Proceedings of the IEEE

International Conference on Robotics & Automation (ICRA), pp. 2051-

2058, Seoul, Korea, 2001.

11. Wang J. H., Hsieh R. F., and Chiu H. C., “A Progressive Constraint Search

Approach for Disparity Matching in Stereo Vision”, Proceedings of the

National Science Council- Part A, vol.23, no.6, pp 789-798, 1999.

12. Bilgin A., “Selection and Fusion of Multiple Stereo Algorithms for Accurate

Disparity Segmentation”, M.S. Thesis, METU, 2008.

13. Scharstein D., Szeliski R., “A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms”, Intl. J. Comp. Vis., 47(1): 7–42, 2002.

14. Matthies L., Szeliski R., and Kanade T., “Kalman Filter-Based Algorithms

for Estimating Depth from Image Sequences”, International Journal of

Computer Vision, 3:209–236, 1989.

15. Hannah M. J., “Computer Matching of Areas in Stereo Images”, PhD thesis,

Stanford University,1974.

63

16. Cox I. J., Hingorani S. L., Rao S. B., Maggs B. M., “A maximum likelihood

stereo algorithm”, Computer Vision and Image Understanding, 63(3):542–

567, 1996.

17. Sun J., Zheng N. N., Shum H. Y., "Stereo Matching Using Belief

Propagation", IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 25, no. 7, pp. 787-800, Jul., 2003.

18. Cohen L., Vinet L., Sander P.T., Gagalowicz A., “Hierarchical region based

stereo matching”, Computer Vision and Pattern Recognition, Proceedings

CVPR '89., IEEE Computer Society Conference, pp. 416-421, 1989.

19. Canny J., “A Computational Approach To Edge Detection”, IEEE Trans.

Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

20. Wang H., Brady M., “Real-time corner detection algorithm for motion

estimation”, Image and Vision Computing, 13(9): 695-703, 1995.

21. Lee Y.S., Koo H.S., Jeong C.S., “A straight line detection using principal

component analysis”, Pattern Recognition Letters 27(14): 1744-1754, 2006.

22. http://vision.middlebury.edu/stereo, last accessed date: 22.07.2010.

23. Thorpe S., Fize D. & Marlot C., ”Speed of processing in the human visual

system”, Nature, Vol.381, No.6582, pp. 520-522, 1996.

24. Zabih R. & Kolmogorov V., “Graph Cut algorithms for Binocular stereo

with occlusions”, In Mathematical Models in Computer Vision: The

Handbook, 2005.

64

25. Vineet V. & Narayanan P.J. “Cuda Cuts : Fast Graph Cuts on the GPU”,

CVPR Workshop on Visual Computer Vision on GPUs, 2008

26. Darabiha A., Rose J., & MacLean W. J. “Video-Rate Stereo Depth

Measurement on Programmable Hardware”, IEEE Trans. Computer Vision

and Pattern Recognition, 1063-6919/03, 2003.

27. Jin S., Cho J., Pham X. D., Lee K. M., Park S. K., Kim M. & Jeon W. J.

“FPGA Design and Implementation of a Real-Time Stereo Vision System”,

IEEE Trans. Circuits and Systems for Video Technology, Vol. 20, No. 1,

2010.

28. Han D. & Hwang D.-H. “A Novel Stereo Matching Method for Wide

Disparity Range Detection”, International Conference on Image Analysis

and Recognition (ICIAR), pp. 643-650, 2005.

29. Yunde J., Zhang X., Li M., & An L. “A Miniature Stereo Vision Machine

(MSVM-III) for Dense Disparity Mapping”, International Conference on

Pattern Recognition (ICPR), 1051-4651/04, 2004.

65

7 APPENDIX A

GRAPH CUT METHODS

Maximum Flow Method

Suppose that G(V,E) is a directed graph where V shows the vertices and E shows the

edges. In addition to V and E, two new concepts which are capacity and flow of the

graph edges are used in maximum flow method.

Let (u,v) ∈ E and c(u,v) be the positive capacity of (u,v). It represents the maximum

amount of flow that can pass through an edge. We assume that if (u,v)∉E than

c(u,v)=0. f(u,v) is the flow representation of the (u,v). It is a real function,

f:VxV→R which must satisfy the following constraints for all (u,v):

1. Capacity constraint: The flow along an edge can be lower than its capacity.

),(),(vucvuf < (A-1)

2. Skew symmetry constraint: The flow from u to v must be the opposite of the

flow from v to u.

),(),(uvfvuf −= (A-2)

3. Flow conservation constraint: The sum of input and output flows of each

edge can be equal except for s(source) and t(sink).

0),(=∑
∈Vv

vuf (A-3)

Notice that f(u,v) is a net flow from u to v. For example, there is a flow of 4 units

from u to v, and a flow of 3 units from v to u, we have f(u,v)=1 and f(v,u)=-1.

66

Maximum flow method is used to find the maximum amount that can flow on a

constructed graph. Because maximum flow amount is determined by the edges that

have lower capacities. Therefore, the maximum value of an s-t flow is equal to the

minimum capacity of an s-t cut according to the theorem of Ford & Fulkerson [4].

In literature, two basic maximum flow algorithms are found. The first is augmented

path algorithm which is developed by Ford & Fulkerson and the second is the push-

relabel algorithm.

Augmented Path Algorithm

Augmented path algorithm was introduced by Ford & Fulkerson [4] for the

minimum cut calculation. Boykov & Kolmogorov [5] implemented this algorithm

in stereo matching.

The first step of augmented path algorithm is the construction of residual graph. A

residual graph Gr(V,E) differs from the original in edge capacities. The capacities

cr(u,v) are changed in the following way[5]:

If f(u,v)<c(u,v) then (u,v)∈E and cr(u,v)=c(u,v)-f(u,v),

If f(u,v)≥0 then (v,u)∈E and cr(v,u)=f(u,v).

Therefore residual graph Gr(V,E) has duplicate edges with capacities cr(u,v) and

cr(v,u).

An augmented path which is represented by (u1, u2, ..., uk) is a path on the residual

graph from source to sink. In this context, u1 is the source and uk is the sink of the

residual graph. The important property of an augmented path is cr(ui, ui+1)>0.

The aim of this algorithm is to find the maximum flow (minimum cut) of the graph

and this is done by removing augmenting paths in the residual graph.

67

Algorithm starts with constructing the residual graph. The second step is to find the

augmented paths on the graph and then finally to remove these augmented paths

with iterations. The detailed version of this algorithm is explained in Table 4.

Table 4: Augmented path algorithm

Algorithm
steps Description

1 Construct a residual graph Gr

2 Find an augmented path a on Gr

3
Calculate capacity of augmented path:
)),(:),(min()(avuvucac rf ∈=

4

For each (u,v) Є a

),(),(

)(),(),(

vufuvf

acvufvuf f

←

+←

5 Update Gr

6
Is there an augmented path on Gr?
 YES → Return step-2
 NO → Go to step-7

7 Finish

After the residual graph is updated with no augmented path, the minimum cut can

be calculated by finding the vertices which are reachable and non-reachable from

the source. The edges between the reachable and non-reachable vertices give the

minimum cut path. In Figure 47, the updated residual graph and the minimum cut

are shown, in this figure, the red vertices are non-reachable and blue ones are

reachable vertices.

68

s

t
Min cut

Figure 47: The example of minimum cut on residual graph.

Push Relabel Algorithm

Firstly, Goldberg [6] proposed Push-relabel algorithm for the maximum flow

computation. After that Zureiki, Devy & Chatila [3] used this algorithm for stereo

correspondence problem.

The main idea of the algorithm is to find the maximum flow of the graph G(V,E) by

some operations on the graph. We should define new concepts which are height and

preflow to understand the process of the algorithm.

Height (u) is the number of total vertices between the vertex u and the t(sink). The

assumptions are,

Height(s)=V (Total number of the vertices),

Height(t)=0.

Preflow is the similar to the flow concept. The only difference is that input flow

should be larger than the output flow of the vertex. P(u,v) is the preflow

representation of the (u,v). It is a real function, P:VxV→R+ which must satisfy the

following constraints for all (u,v):

69

1. Capacity constraint: The preflow along an edge can be lower and equal to its

capacity:

EvuvucvuP ∈∀≤),(),,(),((A-4)
2. Skew symmetry constraint: The preflow from u to v must be the opposite of

the preflow from v to u:

EvuuvPvuP ∈∀−=),(),,(),((A-5)
3. Let e(u) is the excess of vertex u. It is the difference between the input flow

and output flow of u:

}{sVuvuPuvPue
EvuEuv

−∈∀≥−= ∑∑
∈∈

,0),(),()(
),(),(

 (A-6)

Two operations are used to find maximum flow which are push and relabel.

Push operation:

If you want to push a flow from vertex u to vertex v, you can send a part of excess

flow from u to v, but following three conditions must be satisfied:

1. e(u)>0: The input flow is bigger than output flow

2. c(u,v)-f(u,v)>0 : Available capacity from u to v.

3. Height(u)>Height(v) : The distance between u and t(sink) is larger than the

distance between v and t(sink).

After these three conditions are satisfied, the amount of min(e(u), c(u,v)-f(u,v))

flow can send.

 Relabel operation:

If you want to relabel a vertex u, you can increase its height until it is bigger than at

least one of the vertices which have available capacity. The necessary conditions

are:

70

1. e(u)>0: There must be an excess in the relabeling vertex u

2. Height(u)≤Height(v) ∀ v, such that: There are not any lower or equal

height vertices connected to vertex u.

After these two conditions are satisfied, the height of vertex u can increase until at

least one lowest height vertex is found.

Algorithm starts with constructing graph G(V,E). The second step is to find the

vertex which has positive excess. After that, do push operation or relabel operation

on that vertex. When there is not any positive excess vertex on the graph, the

algorithm stops. The edges that carry the maximum flow will be minimum cut

edges.

The detailed version of this algorithm is explained in Table 5.

Table 5: Push-Relabel Algorithm

Algorithm
steps Description

1 Construct a graph G(V,E)

2 Find a vertex with 0)(>ue on G(V,E)

3
Is)()(vHeightuHeight > ?
 YES → Go to step-4
 NO → Go to step-5

4
Do relabel operation

5 Do push operation

6
Is there a vertex with 0)(>ue on G(V,E)?
 YES → Return step-2
 NO → Go to step-7

7 Finish

71

Swap-Expansion Method

Swap-Expansion methods try to find the minimum match energy by changing the

pixel’s disparity values (labels). These algorithms start with an arbitrary labeling

and change the disparities until they reach optimum labeling. Swap-expansion

algorithm is discussed under two titles by Boykov, Veksler & Zabih [1].

α-β Swap Method

In α−β swap method, initial labels x’s are given to all pixels in the defined partition

P. x is selected from the disparity range, and this range includes α and β. The

objective is to find the correct labels x’ to reach minimum matching energy for the

partition P.

The constructed graph Gαβ is shown in Figure 48 [1]. The source and the sink which

are explained in the Section 2.1 are assigned to possible labels α and β. The

connection between the disparity vertices and the labels α, β is made with t-links.

As explained in section 2.1, these links hold the matching energy. n-links are used

to connect vertices which are belong to neighbor pixels and show the smoothness

energy. This graph representation is different from the defined in section 2.1,

because this graph is used to check only two possible disparity while the other one

checks all possible disparities.

),(qpn

α
qt

β
pt

α
pt

Figure 48: Gαβ structure.

72

The basic idea of this method is to try all possible disparity pairs until the optimum

labeling is reached. The labeling is done according to the cut on the constructed

graph. Cut is found by using the energy values of the links. There are many possible

energy values to be compared to calculate the cut path. Finding the minimum

energy cut means to assign the disparity value. If cut passes through tp
α, pixel p

remains its old disparity value α but if cut passes through tp
β, pixel p is assigned to

new disparity value β. The label of pixel p swaps from α to β.

),(qpn

α
pt

β
pt

α
qt

β
qt

),(qpn

α
pt

β
pt

α
qt

β
qt

),(qpn

α
pt

β
pt

α
qt

β
qt

),(qpn

α
pt

β
pt

α
qt

β
qt

Figure 49: The possible cuts on constructed Gαβ for pixels p and q.

As shown in Figure 49, cut determines the disparity values for the pixels. For

instance, Cut1 passes through tp
α, tq

α => the disparity values of p and q are α. Cut2

passes through tp
β, tq

β => the disparity values of p and q are β. Cut3 passes through

tp
α, n(p,q), tq

β => the disparity value of p is α and q is β. Since cut3 path passes

through the n-link between the neighbor pixels p and q, the disparities of these

neighbor pixels is changed. Finally, Cut4 passes through tp
β, n(p,q) , tq

α => the

disparity value of p is β and q is α.

Algorithm starts with constructing graph Gαβ. The second step is to determine the

initial labeling x and calculate the energy values with these labels. After that α, β

swap is done and new matching energy value is calculated with these new labels. If

Enew is lower than the previous energy, convert x label to new labels x’. When all

labels are tested, the algorithm stops.

73

The detailed version of this algorithm is explained in Table 6.

Table 6: βα − swap algorithm

Algorithm
steps

Description

1 Construct a graph Gαβ

2 Start with initial labeling x

3
Are all labels tested?
 YES → Go to step-8
 NO → Go to step-4

4 For each pairs of labels (α,β)

5
Do α-β swap operation (resultant label x’)

6 Calculate E(x’)

7

Is E(x’)<E(x)?
 YES → Determine x=x’
 Update Gαβ
 Return step-3
 NO → Return step-3

8 Finish

α Expansion Method

Similar to α-β swap method, α-expansion starts with an initial labeling x. This

labeling has matching cost energy EX. Then with one α-expansion of x, EX is tried to

be minimized according to the initial labeling [1].

In α-expansion method an auxiliary vertex is defined between the pixel vertices

which have different labels. The reason of adding new vertex is to decrease the cost

value of the link between the neighbor pixels which have different labels. The

auxiliary vertex assumed to be labeled with α. Figure 50 shows the constructed

graph with auxiliary node.

74

),(apn

α
qt

,
α
pt

α
pt

),(qan

,
α
at

Figure 50: Constructed graph for α-expansion.

In this method every possible labels in the range is checked for pixel p. Then

according to the new labeling, matching cost energy EX is calculated and compared

with the previous one. If the new energy value is less than the previous one, pixel p

is assigned to new label, otherwise the other label is assigned. This process

continues until all labels are checked for pixel p. The algorithm steps are given in

Table 7 .

Table 7: α-expansion algorithm

Algorithm
steps

Description

1 Construct a graph Gαά

2 Start with initial labeling x

3
Are all labels tested? YES → Go to step-8
 NO → Go to step-4

4
For every labels (α)
Set pixel label to α (resultant label x’)

5 Calculate E(x’)

6

Is E(x’)<E(x)? YES → Determine x=x’
 Update Gαά
 Return step-3
 NO → Return step-3

8 Finish

