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ABSTRACT 

FPGA IMPLEMENTATION OF GRAPH CUT METHOD 

 FOR REAL TIME STEREO MATCHING 

 
Sağlık Özsaraç, Havva 

M.S., Department of Electrical and Electronics Engineering 

Supervisor : Prof. Dr. Zafer Ünver 

Co-supervisor : Assist. Prof. Dr. İlkay Ulusoy 

 

September 2010, 74 pages 

The present graph cut methods cannot be used directly for real time stereo matching 

applications because of their recursive structure. Graph cut method is modified to 

change its recursive structure so that making it suitable for real time FPGA (Field 

Programmable Gate Array) implementation.  

The modified method is firstly tested by MATLAB on several data sets, and the 

results are compared with those of previous studies. Although the disparity results 

of the modified method are not better than other methods’, computation time 

performance is better. Secondly, the FPGA simulation is performed using real data 

sets. Finally, the modified method is implemented in FPGA with two PAL cameras 

at 25 Hz. The computation time of the implementation is 40 ms which is suitable for 

real time applications.  

Keywords: Real Time Stereo Matching, Graph Cut, FPGA 
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ÖZ 

GERÇEK ZAMANLI STEREO EŞLEME İÇİN  

ÇİZGE KESME YÖNTEMİNİN FPGA UYGULAMASI 

 

Sağlık Özsaraç, Havva 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi  : Prof. Dr. Zafer Ünver 

Ortak Tez Yöneticisi  : Yrd. Doç. Dr. İlkay Ulusoy 

 

Eylül 2010,  74 sayfa 

Günümüz çizge kesme yöntemleri özyinelemeli bir yapıya sahip olduğundan 

doğrudan gerçek zamanlı stereo eşleme uygulamalarında kullanılamazlar. Çizge 

kesme yönteminin özyineli yapısı, gerçek zamanlı FPGA(Alan Programlanabilir 

Kapı Dizisi) uygulamasına uygun olabilmesi için değiştirilmi ştir. 

Değiştirilen çizge kesme yöntemi, önce MATLAB ile çeşitli veri kümeleri üzerinde 

test edilmiş ve sonuçlar önceki çalışmalar ile karşılaştırılmıştır. Önerilen metodun 

derinlik sonuçları diğer yöntemlerinkinden iyi olmamasına rağmen  hesaplama 

zaman performansı daha yüksektir.  Doğru sonuçlar elde edildikten sonra FPGA 

benzetimi gerçek veri kümeleri ile gerçekleştirilmi ştir. Son olarak, bu yeni yöntem 

2 adet 25 Hz PAL kamera ile FPGA üzerinde gerçeklenmiştir. Uygulamanın 

hesaplama zamanı gerçek zamanlı uygulamalar için uygun olan 40 ms’dir.  

Anahtar Kelimeler: Gerçek Zamanlı Stereo Eşleme, Çizge Kesme, FPGA (Alan 

Programlanabilir Kapı Dizisi)  
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CHAPTER 1  

INTRODUCTION 

Stereo analysis is an important topic in computer vision due to its usage in many 

areas like 3D vision, 3D reconstruction, 3D object detection and robotic 

applications such as navigation, path planning, mapping and localization [9, 10]. In 

stereo analysis multiple cameras can be used to calculate 3D information. However, 

in most of the applications, only two cameras are used which provide the right and 

left images that can be used to simulate the human vision system. 

The main problem of stereo analysis is stereo matching which can be stated as 

finding corresponding pixels on the right and left images. The stereo matching 

problem is defined in Section 1.1. Section 1.2 and 1.3 explain the stereo matching 

methods. The objective of the thesis study is given in Section 1.4, and the 

organization of the thesis is provided in Section 1.5. 

1.1 Definition of the Stereo Matching Problem 

The stereo matching problem can be defined as finding depth information of the 

objects in the image. In the solution process, the right and left images are captured 

by using specially localized cameras. Then the depths are calculated according to 

some pixel intensity similarities and constraints. 

Consider the cameras and an object shown in Figure 1. 
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Figure 1: The parallel camera localization [11]. 

b is the baseline between the two cameras, and the focal length of the cameras is 

denoted by fc. (XL, YL, ZL ) and (XR, YR, ZR ) are the coordinate systems for the left 

and right cameras, respectively. PL is the projection of this object onto the left 

camera and PR is the projection onto the right camera. PL and PR are located on the 

epipolar line which may have different vertical coordinates on the left and right 

images; however, the camera locations can be arranged to make the epipolar line 

have the same vertical coordinate on both images [11].  

Disparity is the absolute horizontal coordinate difference between the 

corresponding pixels (PL, PR) on the left and right images. The disparity of object 

P(x,y,z) is defined as (xL-xR). In stereo matching, the main goal is to calculate 

disparity values of the pixels in an image.  

The camera localization shown in Figure 2 is used to derive the depth calculation 

formula.  
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Figure 2: 2D stereo camera localization. 
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In equation (1-1), the disparity (xL-xR) is inversely proportional with the depth of the 

object. Since the focal length, fc, of the cameras and the distance, b, between the 

cameras are given, the disparity is the only unknown value for the depth calculation. 

There are different stereo matching methods to calculate disparity of the pixels on 

the image. Section 1.2 gives the main features of these methods. 

1.2 Stereo Matching Methods  

Stereo matching algorithms can be put into three groups [12]: pixel-based, region-

based and feature-based. These algorithms have different approaches to calculate 

the disparity information. 
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In pixel-based methods [13], the correlation data of the pixels on the right and left 

images is used to compute disparity. Since pixel-based algorithms use all pixels in 

the image, they can produce dense disparity maps. These algorithms can be 

examined under two subtitles: local methods and global methods.  

Local pixel-based methods try to calculate the disparity values by comparing the 

pixel intensities in a finite window whose size can vary according to the approach 

of the algorithm. A reference window on the right or the left image is selected and 

every pixel in this window is compared with every pixel in the other image window. 

The total difference of the compared pixels is used to calculate the matching cost by 

different techniques: Squared Intensity Differences (SD) [14, 15], Absolute 

Intensity Differences (AD), and Sum of Absolute Differences (SAD) [12].  

Global pixel-based methods differ from the local methods in terms of matching cost 

calculation. Local methods are not interested in finding the minimum matching cost 

for the whole image. Since global methods try to reach the minimum matching cost 

by using some optimization techniques, they give better results than local matching 

algorithms [22].  Dynamic-Programming [16], Belief Propagation [17], and Graph 

Cut [1, 2, 3, 7] methods are the most studied global pixel-based methods.  

Region-based stereo matching methods [18] calculate the disparity by using the 

regions on the right and left images. Firstly, the images are divided into sub regions 

by using some segmentation techniques, and these regions are compared. According 

to the comparison results, the disparity value of the pixels in the same region is 

determined. Therefore, region-based algorithms generate dense disparity maps like 

pixel-based method. 

Feature-based stereo matching methods use some specific information in the images 

like edges and corners. Firstly, some feature detection algorithms [19, 20, 21] are 

used to find the special features in the images, and then a matching process is 

applied to find the same features in both images. Since the matching process is used 
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only for the pixels which have special features, only these pixels are assigned to 

disparity values. Therefore, feature-based methods produce sparse disparity maps.  

1.3 Stereo Matching by Graph Cut Method 

In robotic applications, many different tasks like camera calibration, video 

correction, video stabilization, 3D analysis, path planning and communication 

should be done sequentially in a certain amount of time. Since total implementation 

time is limited, each task has a very strict time constraint. 

Stereo matching is the first step of 3D analysis, and it should also be completed in a 

certain amount of time. For a real time PAL standard video, this duration is around 

40 ms. Recall that human visual system can detect latencies greater than 150 ms 

[23]. Therefore, if the stereo matching processing time increases, there can be 

discontinuities between the following frames. This can result wrong decisions and 

actions in the robot control system.  

Recent studies show that in stereo matching, graph cut method (GC) has a good 

performance when compared with other algorithms [22]. Even though, GC is not 

suitable for real time applications, because of its iterative structure, which will be 

explained in Appendices, there are new studies to implement this algorithm in real 

time; but the results do not satisfy the real time constraints yet [24, 3, 25]. 

Kolmogorov and Zabih implement α-expansion move method in [24]. They applied 

their method to 384x288 size Tsukuba image. The image is processed by 450 MHz 

Ultra SPARC II processor. Disparity range is 16 for the selected image, and the 

calculation time is 69 seconds. This shows that for a 384x288 size image, 1,769,472 

disparities can be checked within 69 seconds. Disparity estimation results are good, 

but their method can not be used in real time applications because of the limitations 
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given in [23]. {The α-expansion move method will be explained in detail in 

Appendices.} 

Zureiki, Devy and Chatila implement reduce graph method to decrease the 

calculation time [3]. They reduce the total number of possible disparities by using a 

stereo matching method like SAD, construct a graph using these disparity values 

and use the push-relabel method. They applied the method to image sets having the 

resolutions of 434x380 and 217x190. The disparities are calculated by 3 GHz 

Pentium4 processor with 512 MB of RAM. The complete graph approach for 

434x380 size images can not be implemented because of memory explosion, while 

the reduced graph method calculates the disparities in 15-50 seconds. For 217x190 

images, the complete graph approach takes 150 seconds, while the reduced graph 

method takes 4 seconds for 4 disparity range and 5 seconds for 5 disparity range. 

This shows that for a 217x190 size image, 164,920 disparities can be checked 

within 4 seconds. However, they have not succeeded to run the algorithm in real 

time yet. {The push-relabel method will be explained in Appendices.} 

Vineet and Narayanan implement the push-relabel algorithm on the Nvidia GTX 

280 Graphic Processing Unit (GPU) [25]. The real time implementation is possible 

only if 2 disparities are looked for. For example the calculation time of a 640x480 

size image with 2 disparities is 30-40 ms. This shows that for this image 614,400 

disparities can be checked within 30-40 ms. The time performance is the best 

among the recent studies; but since only 2 disparities are used, the implementation 

is close to image segmentation rather than stereo matching. 

1.4 Objective of the Thesis 

Since the graph cut algorithm in stereo matching can not be implemented in real 

time yet, a modified graph cut method is suggested in this thesis study to decrease 

the calculation time. General purpose computer (C and MATLAB) and special 
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purpose hardware (GPU) are used in previous studies. Even though GPU 

performance is better than that of general purpose computers, it can not be used for 

parallel processing applications to increase speed performance. In this thesis, FPGA 

is chosen due to its parallel processing capability which is the basic difference 

between the FPGAs and GPUs. Also ASICs can be used for parallel processing 

applications, but they can not be reconfigured. On the contrary, FPGAs can be 

reconfigured easily for the updates in algorithms. The detailed information about 

the hardware structure will be explained in Section 0. 

The proposed method can complete stereo analysis of 576x768 size images with 80 

disparity range in 40 ms in an Altera Cyclone III FPGA. This shows that 

35,389,440 disparities can be checked within 40 ms. The right and left videos are 

captured by 2 PAL cameras and processed in FPGA, and the result of the algorithm 

is displayed on DVI monitor. These steps can be done in real time.  

The disparity estimation results of the modified method is not better than the graph 

cut implementations of previous studies; but the calculation time is much better 

even for 80 disparity range. The disparity results of the modified graph cut method 

are compared with the previous studies’ listed in [22]. The results are worse than 

that of the best resultant graph cut stereo matching method [24]; however, the time 

performance of the modified method is about thousand times faster. These 

comparisons will be given in Section 4.2.2 in detail. 

1.5 Organization of the Thesis 

Chapter 2 is devoted to the theory behind the graph cut method in stereo matching 

and the modified graph cut method which is implemented in this thesis. Chapter 3 

includes the details of implementation of the modified graph cut method. Chapter 4 

discusses the results and performance comparisons of the implementation. The 

conclusions and possible future work are presented in Chapter 5. 
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CHAPTER 2  

2 GRAPH CUT THEORY IN STEREO MATCHING 

Graph cut method (GC) is used in different image processing applications such as 

segmentation and stereo matching. The common property of these applications is 

their requirement for energy minimization.   

In stereo matching, GC, a pixel-based global method, is used to calculate minimum 

matching cost energy. Minimum cost calculation is done by different methods in 

GC. Since these methods are not suitable for real time applications, a modified 

method is proposed which has a non-recursive structure.  

In the following, first the construction of a graph for stereo matching is given. Then, 

existent GC methods will be presented.   Finally, the modified graph cut method 

which is implemented in this study is discussed. 

2.1 Graph Construction in Stereo Matching Applications 

A graph is composed of vertices which are connected by edges. Row-column 

structure is used to construct a stereo matching graph as shown in Figure 3. There is 

a row of edges for every pixel on an image line and a column of edges for each 

disparity value. Vertices are located at graph row-column intersection points, and 

they represent the possible disparity values. In addition to vertices on graph rows, 

two special vertices are added: s and t. The source vertex, s, is located at the 

beginning side of the graph, and the sink vertex, t, is located at the end side of the 

graph. 
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There are two types of edges between the vertices: t-links and n-links. t-links 

connect the neighbor vertices on the same graph row, and these links represent the 

matching cost energy for the related disparity value. n-links connect the neighbor 

vertices at different graph rows, and they hold the smoothness energies between the 

connected vertices (disparities). Matching cost energy and smoothness energy will 

be explained in detail in the following sections.  

 

Figure 3: Stereo matching graph (R is the maximum disparity range). 

In Figure 3, tx(d) represents  a t-link where x shows the horizontal coordinate of the 

pixel on the image line and d shows the disparity value. n(x1,x2)(D1,D2) represents an 

n-link where x1 and x2 show the horizontal coordinates of upper and lower pixels, 

respectively, D1 is the disparity value of x1 at vertex dk and D2 is the disparity value 

of x2 at vertex dk-1. 
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There are two main types of energies in global stereo matching applications: 

matching cost and smoothness. The energy structure is a function of the assigned 

disparity values or labels denoted by f. The energy functions Edata(f) and Esmooth(f) 

represent the matching cost and the smoothness energies, respectively. In stereo 

matching, the goal is to find optimum labels , f, to minimize the total energy E (f) 

which is the sum of Edata(f) and Esmooth(f) .                    

Edata(f) is related with the pixel intensity values. The square of the intensity 

difference between the matching pixel on the left image and the corresponding pixel 

on the right image is used to calculate Edata(f). This calculation is done for all 

possible disparity values in the disparity range.  

∑
∈

=
Pp

ppdata fDfE )()(  

Dp(fp) = ( Il(p) - Ir(q) )2 where fp=xp-xq 
(2-1) 

 

 

In the above expression, P is the compared pixel set on the right and left images, p 

is the matching pixel in the left image, and q is the corresponding pixel in the right 

image. I l(p) and Ir(q)  are the intensities of pixels p and q, respectively. fp is the 

label(disparity) value of the pixel p; xp and xq are the horizontal coordinates of the 

pixels p and q, respectively. 

Esmooth(f)  is related with the labeling of the matching pixel and its neighbors. Three 

neighbors are considered for Esmooth(f) calculation. The matching pixel located at 

(x,y) and its neighbors are shown in Figure 4.  

Esmooth(f) is calculated according to the smoothness constraint which states that the 

disparity values of the pixels in the same object region should be the same, while 

the disparity values of the pixels at the boundaries should be different. The pixels 

which are in the same region have similar intensity values, but at the boundaries 
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pixels have different intensity values. Therefore, Esmooth(f) has two components: 

intensity and labeling. 

 

Figure 4: The matching pixel P(x, y) and its neighbor pixels. 

{ }
{ }
∑

∈

∗=
Nqp

qpqpsmooth ffVufE
,

, ),()(  (2-2) 

In equation (2-2), N is the neighbor pixel set and V(fp,fq) is the neighborhood 

interaction function [3] which checks the neighbor pixels for the assigned labels.  If 

p and q have different labels, this function gives high penalties. V(fp,fq) is equal to 

the absolute difference of the neighbor pixels’ labels (disparity values):          

V(fp,fq) = |fp-fq|. fp and fq are the assigned labels to the matching pixel and its 

neighbor pixel, respectively. The functional graph of neighborhood interaction 

function is shown in Figure 5. 

),( qp ffV

|| qp ff −0  

Figure 5: The functional graph of neighborhood interaction function [3]. 
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If the neighbor pixels are in the same region, the neighborhood interaction function 

prevents to assign different labels to these pixels. This is the necessary check for 

proper labeling in the same region. The neighbor pixels should have different labels 

at the boundaries; and the multiplying term u{p,q} is used to correct the 

neighborhood interaction function error for these pixels. The multiplying term is a 

decreasing function with increasing intensity difference:                                     

u{p,q} = umax * (1- |I1-I2| / 255).  umax value is the controllable variable which is 

determined after the functional tests. I1 and I2 are the intensity values of the 

neighbor pixels. At the boundaries, if the difference between the intensity values of 

the neighboring pixels goes to 255 (the upper boundary of the intensity values for 8 

bit representation), this term goes to zero. Since the neighborhood interaction 

function gives high penalties at the boundaries, the multiplying term gives lower 

values and balances the smoothness energy.  The functional graph of the 

multiplying term is shown in Figure 6. 

{ }qpu ,

|| qp II −

maxu

 

Figure 6: The functional graph of multiplying term [3]. 

After the construction of the graph, the minimum energy can be computed by the 

cut calculation. Cut can be defined as the collection of edges which hold the 

matching cost energies (t-links) or the smoothness energies (n-links). It is assumed 

that the minimum cut has the minimum total energy. There are two different 

methods for computing the minimum cut: maximum flow and swap method. These 
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methods are given in Section 2.2. The modified graph cut method which is 

implemented in this study is described in Section 2.3.  

2.2 Minimum Cut Calculation Methods 

The main aim is to find the minimum energy value on the constructed graph. There 

are different methods in previous studies for minimum cut calculation. These 

methods search the minimum energy among all possible disparity combinations, so 

they require a recursive structure.  

In these methods, energy value is calculated for a disparity combination, then 

another energy value for a different combination is obtained. If the new energy 

value is smaller than the previous one, new disparity combination is assigned to 

pixels. These steps are done for all possible disparity combinations in the 

determined range.  

Maximum flow method assumes the graph as a water pipe net which lets the 

maximum amount of water flow from the source to the sink. In a pipe net, the 

maximum flow amount is determined by the narrowest pipes. The pipes represent 

the links of the graph. Therefore, the cost values of the pipes are the energy values 

and the narrowest ones hold the minimum energy. Since minimum energy 

represents the minimum cut, maximum flow amount is equal to the minimum cut of 

the graph. 

Swap methods check possible disparity combinations for the neighbor pixels 

recursively. They assign different labels (disparities) to the pixels and compare the 

resultant energy values with the previous ones. According to the comparisons of the 

resultant energy values, swap methods determine the final labeling. The methods 

are explained in detail in Appendices. 



 

14

In the proposed method, the main goal is to change the structure of the standard 

graph cut method to non-recursive for real time applications. The minimum energy 

of the matching pixel is calculated and added previously calculated pixels energy 

value so the minimum energy is not calculated repeatedly for all possible 

disparities. All possible disparities are contributed to each pixel’s energy value 

calculations not whole minimum energy calculation in the constructed graph. In the 

following section the modified minimum cut calculation method will be explained. 

2.3 Modified Graph Cut Method  

Graph cut methods can generate accurate disparity maps but recursive calculations 

are necessary to find the minimum matching cost energy to determine the correct 

disparity values. Because of their recursive structure, their calculation time is too 

long to be used in real time applications, e.g., a robot control system. The modified 

graph cut method is proposed to reduce the calculation time.  

The proposed method is implemented by two main functional blocks shown in 

Figure 7. 

 

Figure 7: Implementation of the modified graph cut method. 

The basic stereo energy calculation block computes the stereo matching energies by 

using a local method which uses linearly interpolated pixels [7]. It sends the 

calculated matching energy values and minimum energy disparity value to the 

graph cut implementation block which calculates the disparity map of the whole 

image. The detailed information of the first block is given in Section 2.3.1, and the 

second block is discussed in Section 2.3.2. 
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2.3.1  Basic Stereo Energy Calculation 

The matching costs are calculated by linear interpolation which is done between the 

neighbor pixels. In the proposed method, both horizontal neighbors and vertical 

neighbors contribute to the energy calculation so that 3 lines are used for the 

calculation of total energy. Smoothness energy is calculated not only for epipolar 

line (horizontal) neighbors but also for upper and lower neighbors of matching 

pixel. The matching pixel, its neighbors and interpolated pixels (sub-pixels) are 

shown in Figure 8.  

The method reduces the possible errors which results from the sampling noise [8]. 

By using the sub-pixel values the matching will be less sensitive to the sampling 

through the image.  

 

Figure 8: Matching pixel P(x,y) and its neighbors. 

The sub-pixel intensity values given below are the intensity averages of the 

matching pixel and its neighbors.  

I(x,(y-0.5))=  0.5* ( I (x,y)+  I (x,(y-1)))  (2-3) 

I (x,(y+0.5))=  0.5* ( I (x,y)+  I (x,(y+1)) ) (2-4) 

I ((x-0.5),y)=  0.5* ( I (x,y)+ I ((x-1),y) ) (2-5) 
I ((x+0.5),y)=0.5* ( I (x,y)+  I (x+1),y) )  (2-6) 
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I(x,(y-0.5)), I (x,(y+0.5)), I ((x-0.5),y) and I ((x+0.5),y) are the intensity values for the pixels     

P(x,y-0.5), P(x,y+0.5), P(x-0.5,y), and P(x+0.5,y) , respectively. 

In the matching energy calculation, a pixel pair from the disparity range is taken, 

the sub-pixel values for both are computed, and finally, the intensity differences of 

the matching pixels and their sub-pixels are calculated. The basic structure of the 

method is shown in Figure 9. 

 

Figure 9: The structure for matching energy calculation. 

The matching pixel’s and its sub-pixels’ cost calculations are given in the following 

equations.  

    cost(x,y)=|IR(x,y)-IL(x,y)|  (2-7) 
    cost(x,(y+0,5))=|IR(x,(y+0,5))-IL(x,(y+0,5))| (2-8) 
    cost(x,(y-0,5))=|IR(x,(y-0,5))-IL(x,(y-0,5))|  (2-9) 
    cost((x+0,5),y)=|IR((x+0,5),y)-IL((x+0,5),y)|  (2-10) 
    cost((x-0,5),y)=|IR((x-0,5),y)-IL((x-0,5),y)| (2-11) 

The total matching cost value is calculated by adding all cost values: 

E_data_basic(x,y)= cost(x,y)+cost(x,(y+0,5))+cost(x,(y-0,5))+                                          
cost((x+0,5),y)+ cost((x-0,5),y). (2-12) 
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The total matching cost energy is calculated for all possible disparity values. The 

matching pixel is selected and its matching cost energies are calculated for each 

possible disparity value. The minimum of them is also found. Then, the minimum 

energy disparity value and (R+1) different matching cost energies are sent to the 

graph cut implementation module. 

2.3.2 Modified Minimum Energy Calculation Method  

As explained in Section 2.1, n-links are computed by equation (2-2). The functional 

graphs (Figure 5 and Figure 6) are used for the computation of neighborhood 

interaction function and multiplying term of smoothness structure. The resultant 

formulation of smoothness energy for the modified method is given as, 

Esmooth(I1, I2, f1, f2)= C *(1- |I1-I2| / 255) * |f1-f2| (2-13) 

In the above equation, I1 and I2 are the intensity values of the matching pixel and its 

neighbor pixel, respectively, and C is the umax value. In addition, f1 and f2 are the 

label values (disparity values) of matching pixel and its neighbor pixel, 

respectively. The n-links notation (see Section 2.1) of the smoothness energy 

structure is, 

n (P(x-1,y), P(x,y))(fP(x-1), fP(x,y)) = Esmooth(IP(x-1,y), IP(x,y), fP(x-1,y), fP(x,y))  (2-14) 

After calculating all necessary t-links and n-links, the graph is ready for the 

minimum cut calculation. The minimum cut is calculated for each pixel and then 

combined with the previously calculated ones in the implementation. Figure 10 

shows the possible cut on the constructed graph. 

In Figure 10, Current Cut Index is the starting point of the cut on the graph and it is 

assumed that d2 is the computed disparity value for pixel P(x-1,y).                          

C1, C2, C3, .., CR, CR+1 are the possible cuts for the pixel P(x,y). The cut calculation 
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block computes (R+1) different possible cut energies for P(x,y). The cut energy 

includes the link energies which intersects with Cn on the graph and the smoothness 

term between P(x,y) and P(x,y+1), P(x,y-1). In equation (2-15), the general cut 

energy formula EPi is given. 

 

Figure 10: Cut on the constructed graph. 
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 (2-15) 

Here, fP(x,y-1) is  the calculated disparity value for P(x,y-1). Since it is on the previous 

line, this value has been already calculated. fP(x,y+1) is the disparity value of P(x,y+1) 

which has not been calculated yet. The output information of basic energy 

calculation (BEC) module can be used for fP(x,y+1). The BEC module gives (R+1) 

energy values and the calculated disparity value of the minimum of these energy 

values. Therefore, the calculated BEC disparity value is used for fP(x,y+1)  in the 

smoothness calculation.  

For P(x,y), there are R+1 different cut energies (EPi) which are shown in Figure 10. 

The next step is the comparison step for the calculation of minimum EPi. After that, 

the corresponding disparity for minimum EPi is assigned to the calculated disparity 
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for P(x,y). This disparity value will be the current cut index of the calculation step 

of P(x+1,y). The whole method is summarized in Figure 11: 

Is k=M? (k is 

the vertical pixel 

coordinate)

YES

NO

End of algorithm

Initialize 

current cut 

index and 

Energy

Is j=N? (j is the 

horizontal pixel 

coordinate)

Calculate 

EPi

NO

Is i=R+1? (i is the 

number of the 

current disparity 

number)

NO

YES

YESj++

k++

If 

Epi<Energy

YES

Energy=Epi

Current path index=i

i++NO

 

Figure 11: The flow chart of proposed minimum cut calculation method.  
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CHAPTER 3  

3 IMPLEMENTATION OF THE NEW METHOD 

In this chapter, the implementation steps of the modified graph cut method are 

explained. The method has been developed with two different tools: general 

purpose computer and special purpose hardware. In the first step, it is implemented 

in MATLAB because the results of the design updates can be observed quickly. 

After observing satisfactory results, the implementation is tested on Altera Cyclone 

III Development Board by using Cyclone III FPGA. The computer based 

implementation details are explained in Section 0, and the real time implementation 

is described in Section 0. 

3.1 Computer Based Implementation in MATLAB 

Basic structure of the computer based implementation is shown in Figure 12. 

The images obtained from cameras are in gray scale image format. However, the 

sample images (Tsukuba, Venus, Cone, etc…) that are used in test process can be in 

RGB (Red, Green, Blue) image format. Therefore, the RGB to Gray Scale 

Converter Block is used in the implementation. For this reason, ‘rgb2gray’ function 

of MATLAB is used to convert the image format from RGB to gray scale.  

The left and right images are captured from cameras and they are read with the 

‘ imread’ function of MATLAB. The output of this function is MxN dimensional 

data array for gray scale image format where M is the number of pixels in the same 

column and N is the number of pixels in the same row. Size of the images are 
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determined and sent to the following blocks. The left and right MxN dimensional 

images are converted to 1xN dimensional arrays, because energy calculation is done 

with pixels located on the same line. Basic Energy Calculation Module takes the 

left and right 1xN dimensional images with the image sizes and produces the 

disparity energies for all disparities in the range (R). The detailed block diagram of 

the Basic Energy Calculation Module is shown in Figure 13. 

 

Figure 12: The block diagram of Computer Based Implementation. 

The 1xN dimensional left and right arrays enter the Sub-pixel Intensity Calculation 

Block where the intensity values of the sub-pixels are calculated by the equations    

(2-3), (2-4), (2-5), (2-6). The number of calculated sub-pixel intensities for the left 

image is four, since the matching pixel is selected from this image (see Figure 9). 
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Figure 13: The block diagram of Basic Energy Calculation Module. 

The number of calculated sub-pixel intensities for the right image depends on the 

disparity range, since the matching pixel is compared with all pixels in the disparity 

range. The calculated intensity values contribute to the energy calculation. In the 

Energy Calculation Block, the cost values are computed one by one using equations 

(2-7), (2-8), (2-9), (2-10), (2-11); and then the total matching cost value is 

calculated using equation (2-12). Each disparity value has a corresponding 

calculated energy value. These energy values are formed as outputs of the         

Basic Energy Calculation Module and used as inputs to the Graph Cut 

Implementation Module. In Figure 14, the detailed internal structure of this module 

is shown. 



 

23

 

Figure 14: The block diagram of Graph Cut Implementation Module. 

The Graph Cut Implementation Module is the main calculation and comparison 

module of the proposed method. The links of the graph structure and the minimum 

disparity energy are computed in this module. At the last step, the disparity map is 

formed and the disparity image is shown on the screen. 

After the 1xN dimensional left arrays enter the Graph Cut Implementation Module, 

the smoothness energies are calculated according to equation (2-2). The relation 

between the matching pixel and its neighbor which is located on the same line (y) is 

calculated in the Smoothness Calculation-1 Block. In Figure 8, these neighbor 

pixels are displayed as P(x-1,y) and P(x,y). Left image line pixel value, current 

disparity value and umax1 are necessary inputs to calculate the smoothness energy-1. 

The relation between the matching pixel and its upper neighbor (y-1) is calculated 

in the Smoothness Calculation-2 Block. In Figure 8, this neighbor pixel is displayed 

as P(x,y-1). The left image y-coordinate line pixel value, the left image                  
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(y-1)-coordinate line pixel value, the calculated disparity value of the upper line 

pixel and umax2 are necessary inputs to calculate the smoothness energy-2. 

The relation between the matching pixel and its lower neighbor (y+1) is calculated 

in the Smoothness Calculation-3 Block. In Figure 8, this neighbor pixel is displayed 

as P(x,y+1). The left image y-coordinate line pixel value, the left image           

(y+1)-coordinate line pixel value, the minimum energy disparity value which is 

calculated in the Basic Energy Calculation Module and umax3 are necessary inputs to 

calculate the smoothness energy-3. 

The calculated smoothness energy-1, smoothness energy-2, smoothness energy-3 

and disparity energies are inputs to the Summation Block where the cost energies 

are calculated as in equation (2-15). The energy disparity indexes (0, 1,…, R) and 

their total cost energies are sent to the Comparison Block.  

In the Comparison Block, the minimum disparity energy is found by comparing all 

cost energies. The disparity values which have the minimum energies of pixels form 

the disparity map of corresponding images.  This disparity map is sent to the Write 

Image Block to be shown on the screen.  

3.2 Real Time Implementation in FPGA 

3.2.1 The Hardware Description 

The hardware is composed of three cards. The main processing card is             

Altera Cyclone III Development Board which includes Cyclone III EP3C120 FPGA 

and DDR2-SDRAM memories. FPGA is used for the video processing application 

and DDR2-SDRAM memories are used for frame buffering. Other cards are       

Bitec HSMC (High Speed Mezzanine Card) daughter cards that are plugged to the 

main board. HSMC Quad Video is used to capture the right and left analog videos. 
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This card contains a video decoder that digitizes the analog video and sends to the 

FPGA. HSMC DVI is used to display outputs of the processing block on the 

monitor. The general hardware structure is shown in Figure 15. 

 

Figure 15: Hardware structure. 

3.2.2 Real Time Implementation  

The necessary signals, hardware blocks and pipelining for the real time 

implementation of the proposed method are described in this section. The general 

structure of the FPGA blocks is shown in Figure 16. All these blocks are coded in 

VHDL (Very high speed integrated circuit Hardware Description Language). For 

stereo matching application two cameras are used providing PAL video at 25Hz. 

The videos are captured by the video decoder on the HSMC Quad Video and sent to 

the Video Input Block in FPGA. This block makes the necessary decomposition of 
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the video signals and outputs the active pixels in the video frame. In this block also 

YCbCr to Y decomposition is done. Cb and Cr are the chrominance (color) part of 

the video and Y is the luminance (intensity) part. The Stereo Matching Block uses 

only the intensity values for the calculations.  

Video Input

Analog 

video read

YCbCr to Y 

converter

Video Input

Analog 

video read

YCbCr to Y 

converter

DDR2-SDRAM

interface

DDR2-SDRAM

Right 

buffer1

Right 

buffer2

Left 
buffer1

Left 
buffer2

DDR2-SDRAM

interface

Video read

Video read

Stereo

Matching

DDR2-SDRAM

interface

DDR2-SDRAM

interface

Disparity

buffer

Video

output

FPGA

Right 

Video

Left 

Video

DVI

 

Figure 16 : The general structure of the FPGA blocks. 

The captured video frames are written to the DDR2 SDRAM memory by         

DDR-SDRAM Interface Block. In this memory, there are two frame buffers for each 

of the left and right video. This double buffering is used to eliminate the frame 

latencies between the video frames. The right and left camera power up timings 

may be different and there can be frame latencies between the left and right frames. 

These latencies may result in faulty calculations in the Stereo Matching Block.  
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The Video Read block reads the right and left video frame buffers which contains 

the last incoming video frames. Then, these video frames are sent to the Stereo 

Matching Block which process on the video frames and calculates the disparity 

values. The calculated disparity values are written to DDR2 SDRAM for the Video 

Output Block. Finally, the Video Output Block reads the disparity values from the 

memory and sends to the HSMC DVI to display on the monitor. 

The main block of this real time implementation is Stereo Matching. The proposed 

modified graph cut method is realized in this block. The detailed structure of this 

block is shown in Figure 17. The Stereo Matching Block is composed of two main 

blocks: Basic Energy Calculation and Graph Cut Implementation. The Basic 

Energy Calculation Block computes the matching cost energies for every disparity 

value in the range. These matching energies are used by the Graph Cut 

Implementation Block to compute GC disparity value of the related pixel.  

The video lines are written to the FIFO’s (First In First Out) by using the frame 

timing signals. The general description of the frame timing signals is shown in 

Figure 18. The frame valid signal indicates a new video frame, the line valid signal 

shows the change of the video lines and the pixel valid signal is used to capture the 

active pixels in the video line.  

The received video lines (Right and Left) are firstly written to the Plus Line FIFO’s 

(Right and Left). Then the pixel data in Plus Line FIFO is transferred to the Line 

FIFO when a new active video line starts and the pixel data in the Line FIFO is 

written to the Minus Line FIFO. After the three active video lines, the Plus Line 

FIFO contains line(y+1), the Line FIFO contains line(y) and the Minus Line FIFO 

holds line(y-1). Since all the necessary lines are ready, the Basic Energy 

Calculation Block can start to calculate the matching cost energies. The structure of 

the Basic Energy Calculation Block is shown in Figure 19. 
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Figure 17: The detailed structure of Stereo Matching Block. 

 

Figure 18: Frame timing signals. 

The FIFO Control Interface controls the FIFO signals to arrange the read/write 

sequences between the FIFO’s. It sends the pixel data to the Arithmetic Calculation 

Block for the calculations of the matching cost energies of each disparity value. The 

Arithmetic Calculation Block contains two sub-blocks. The first block calculates the 
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sub pixel intensity values, and the second block computes the cost energies using 

these values. The structure for sub-pixel intensity calculation is shown in Figure 20. 
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Figure 19: Basic Energy Calculation Block. 

The sub-pixel intensity values are calculated with the matching pixel P(x,y) and its 

neighbors. Firstly the matching pixel and its neighbor pixel intensity values are 

added. Then sum is divided by two to get the average. In Figure 20, the Right Shift 

Operator is used for the division by two. The left image is the reference image, so 

the matching pixel values for the right image are calculated. Since the 

implementation works in a pipeline order, the calculated sub-pixel values can be 

used for the next matching cost energy calculation. The previous sub-pixel values in 

the buffers are kept and used for the next calculation. Figure 21 shows the main idea 

of sub-pixel buffer usage. In this figure R(x) and L(x) represent the right and left 

image pixels, respectively, and dx is used for the calculated disparity. 
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Figure 20: Sub-Pixel Intensity Calculation Block. 
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Figure 21: Usage of sub-pixel buffers. 
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Having the sub-pixel intensity values, the matching cost energies are calculated by 

the second block in Arithmetic Calculation. The general structure for the Cost 

Energy Calculation is shown in Figure 22. 
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Figure 22: Cost Energy Calculation Block. 

The matching cost energies of the matching pixel and sub-pixels are sent to the 

Edata Calculation block. In this block, matching cost energies are added and the 

total cost energies for the disparities are calculated. Figure 23 shows the general 

structure of Edata Calculation block.  
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Figure 23: Edata Calculation Block. 

The calculated Edata values are compared in Comparison Block to find the 

disparity value with minimum cost energy. This block computes the minimum 

energy in 3 stages. There are sub-blocks that can compare 5 values at the same time. 

So, 80 cost energies compared and 16 values are obtained. 15 of these values are 

compared and 3 values are obtained. In the last stage, these 3 values and the         

16th value from the previous stage are compared, and the disparity value with the 

minimum cost energy is calculated. The Comparison Block is shown in Figure 24. 
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Figure 24 : The Comparison Block. 

The calculated Edata values of each disparity, matching pixel value and its BEC 

disparity value are transferred to the GC implementation Block which calculates the 

disparity values as explained in Section 2.3.2. The detailed structure of this block is 

shown in Figure 25. 

The Edata values are transferred from the BEC to the GC module with valid signal. 

By using this valid signal, these energies are written to the internal FIFO’s of GC 

Implementation Block. The GC Main Controller Block reads Edata values from the 

internal FIFO’s during the GC cost energy calculation.  

The main process of GC implementation is controlled by the GC Main Controller 

Block. All FIFO read/write operations are arranged and the GC disparity results are 
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calculated by this main controller block. The structure of the GC Main Controller 

Block is shown in   Figure 26. 

 

Figure 25: The Structure of Graph Cut Implementation Block. 

The Smooth1 Energy Calculation Block reads from the line FIFO to calculate the 

neighboring relation energy between pixels P(x,y) and P((x-1),y). In this block, 

equation (2-13) is implemented. The term “C*|fp-fq|”  is calculated in the Smooth1 

Look-up Table. In this implementation, the term umax1 is used instead of C and k is 

used instead of |fp-fq|. The k*umax1 terms are computed for all the disparity values in 

the range and transferred to the Smooth1 Energy Calculation Block. The structure of 

this block is shown in Figure 27. 
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Figure 26: The structure of GC Main Controller Block. 

 

Figure 27: The structure of Smooth1 Energy Calculation Block. 
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The data read from the line FIFO is saved as Ip pixel value. In addition, this Ip pixel 

value is copied to the Iq pixel value to be used as the (x-1)th pixel intensity value 

for the next smooth1 calculation. The absolute difference between the Ip and Iq 

values are calculated and transferred to the Multipliers Block. k*umax1 values are 

multiplied with |Ip-Iq| value in this block, and the results are sent to the Absolute 

Differences Block. This block computes the |k*umax1-k*umax1*|Ip-Iq||  values and 

transfers the results to the 8-bit Right Shift Operator Block which is used to divide 

the inputs by 256. After division, Smooth1-Energy Results are ready for cost energy 

calculation. 

The Smooth2 Energy Calculation Block and the Smooth3 Energy Calculation Block 

calculate the energy values in parallel with the Smooth1 Energy Calculation Block. 

All the smooth energies become ready for the calculation of cost energies at the 

same time. The structure of the Smooth2 Calculation Block is shown in Figure 28. 

 

Figure 28: The structure of Smooth2 Energy Calculation Block 

The structure of Smooth2 Calculation block is similar to the structure of Smooth1 

Calculation block. One of the difference is smooth1 is related with the neighboring 

relation between P(x,y) and P((x-1),y) but smooth2 is related with the neighboring 
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relation between P(x,y) and P(x,y-1). The other difference is the look-up tables. In 

addition, smooth2 reads pixel data from Line and Minus Line FIFO’s.  

The structure of Smooth3 Calculation is shown in Figure 29. This structure is 

similar to the structure of Smooth2 Calculation block. One of the difference is 

smooth2 is related with the neighboring relation between P(x,y) and P(x,y-1) but 

smooth3 is related with the neighboring relation between P(x,y) and P(x,y+1). In 

addition, smooth3 reads pixel data from Line and Plus Line FIFO’s. 

 

Figure 29: The structure of Smooth3 Energy Calculation Block. 

The calculated Esmooth values are transferred to the GC Cost Calculation Block. The 

valid signals are used for synchronization. The structure of the GC Cost Calculation 

Block is shown in Figure 30. 

The Smooth ready signals are used to enable the energy adders of GC Cost 

Calculation Block. All the smooth energies are added with respect to the relevant 

disparities and the cost energies are obtained. The total cost energies are transferred 

to Comparison Block. The structure of the Comparison Block is shown in Figure 31. 

The task of Comparison Block is similar to the BEC Comparison Block except the 

inputs and outputs. After the GC disparity values are calculated, they are written to 

the DDR2-SDRAM with DDR2-SDRAM Interface to display on a monitor.  
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Figure 30: The structure of GC Cost Calculation Block. 

 

Figure 31: The structure of Comparison Block. 
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CHAPTER 4  

4 SIMULATION AND IMPLEMENTATION RESULTS 

This chapter discusses the disparity results of MATLAB and FPGA 

implementations of the proposed method. The MATLAB implementation and 

FPGA simulation results are evaluated by Middlebury Stereo pairs which are 

Tsukuba, Venus, Teddy, and Cones. FPGA implementation results are evaluated by 

dedicated hardware. 

The MATLAB and FPGA simulation results are compared with the ground truth of 

Middlebury stereo pairs. The ground truth contains the accurate pixel disparity 

results.  The Middlebury stereo pairs and their ground truths are given in Figure 32. 

In the evaluation process, the percentage of bad pixels, which are the differences 

between evaluated method and ground truth, is calculated: 

∑
∈
∈

>−=
My
Nx

dGR
N

yxdyxd
P

B )),(),((
1 δ  (4-1) 

In this equation, PN is the total number of pixels in the image, dR(x,y) and dG(x,y) 

are the calculated and the ground truth disparity values, respectively, for pixel (x,y). 

δd is the disparity error tolerance which is taken as 1 in the evaluations. 

The Middlebury comparisons are performed in three ways. In the first comparison, 

all pixel disparity values are compared; in the second one, non-occluded pixel 

disparities are evaluated; and discontinuity pixel disparities are measured in the last 

one. On the contrary to the occluded region pixels, in non-occluded regions, pixels 

are visible in both images, so every matching pixel in one image has the 
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corresponding pixel in the other image. Discontinuity occurs on the boundaries of 

the regions in the image. Namely, discontinuity pixels are neighbor pixels which get 

different disparities. The original image, its ground truth, occluded/non-occluded 

and depth discontinuity regions are given in Figure 33. 

 

Figure 32: Middlebury data pairs and their ground truths.                                         

(a) Tsukuba, (b) Venus,  (c) Teddy, (d) Cones. 
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(a) (b)

(c) (d)  

Figure 33: The Middlebury comparison regions. (a) Original image; (b) Ground 

truth disparity map; (c) Occluded regions(black), Non-occluded regions(white);              

(d) Discontinuity regions (white).  

According to these evaluation criteria, MATLAB implementation results are 

discussed in Section 4.1, and FPGA implementation results are given in Section 4.2. 

4.1 MATLAB Implementation Results 

MATLAB implementation details are given in Chapter 3. In these implementation 

steps, the only controllable parameters are umax1, umax2, and umax3 which are used in 

smoothness calculation blocks. The variation in umax values affects the disparity 

results of proposed method.  
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The proposed method uses the umax values for the relations between the neighbour 

pixels P(x,y), P(x-1,y), P(x,y+1) and P(x,y-1). The disparity values of P(x-1,y), 

P(x,y+1), and P(x,y-1) affect the graph cut result of P(x,y). P(x-1,y) and P(x,y-1) 

disparity values are calculated by graph cut, on the other hand P(x,y+1) disparity 

value is generated by basic energy calculation module where matching cost energies 

are calculated. Firstly, all three umax variables are assigned to the same value and the 

disparity results are evaluated for the image pairs Tsukuba, Venus, Teddy and 

Cones. The percentage of bad pixels versus umax values are given in Figure 34. 

Small umax values result in high percentage of bad pixels, because smoothness terms 

give lower contribution to the total energy than matching cost term in minimum cut 

calculation.  Therefore, the neighbouring relations between the pixels are neglected. 

When umax values are increased, smoothness terms become dominant in the total 

energy and neighbouring relations affect the minimum energy calculation. Then, the 

all and non-occluded pixel disparity errors decrease. On the other hand, since the 

graph cut module uses matching cost energies from basic energy calculation 

module, discontinuity pixel error is changing according to the basic energy 

calculation module results.   

In basic energy calculation module, if the matching costs are calculated correctly at 

the discontinuity points, graph cut implementation module finds the correct 

disparity values. Therefore, the discontinuity pixel error decreases in the case of 

Venus, Teddy and Cones images. However, if the calculated matching cost energies 

are incorrect, the minimum energies can not be calculated correctly at the 

boundaries. Then, the discontinuity pixel error increases as in the case of Tsukuba 

image.  

In Figure 35, the disparity results of basic energy calculation module are given. 

These results are obtained by the minimum matching cost energy disparities. In 

Tsukuba image, the calculated minimum energy disparities are not correct at some 
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of object boundaries. Therefore, some deformations are observed at these 

boundaries as shown in Figure 36. 

 

Figure 34: The effect of umax values on disparity errors. (a) Tsukuba image pairs,   

(b) Venus image pairs, (c) Teddy image pairs, (d) Cones image pairs. 

 

Figure 35: Basic energy calculation module minimum matching energy disparity 

results (a) Tsukuba, (b) Venus, (c) Teddy, (d) Cones. 
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Figure 36: Extensions at object boundaries by increasing umax values on Tsukuba 

image. 

The next step of the evaluation is giving different values to umax1, umax2, and umax3 

variables. In Figure 37, the disparity results according to different umax values are 

given. In sub-figure (a), since the umax1 value is larger than umax2, and umax3  and it 

affects the horizontal neighboring relation, some horizontal deformations are 

existed on the boundary of the objects. When the umax2 value is increased and umax1 

value is decreased (See in sub-figure (b)), some vertical deformations are observed 

due to umax2 usage in smooth2 calculation. The errors of sub-figure (c) are the 

largest ones because of rising in umax3 value. Since, the umax3 is used for the smooth3 

calculation and smooth3 calculation uses the output disparities of basic energy 

calculation module, the disparity results are similar to the basic energy calculation 

results which are given in Figure 35. After evaluating different combinations of umax 

values and comparing the disparity results, the optimum umax values are found which 

are 15 for umax1, 10 for umax2 and 5 for umax3. The disparity map results of MATLAB 

implementation for optimum umax values and evaluated errors are given in        

Figure 38. 
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Figure 37: Disparity results of proposed method for different umax values. 
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Figure 38: Evaluated disparity results using Middlebury stereo pairs. (a) Ground 

truths, (b) Disparity results of the best resultant graph cut method in Middlebury,        

(c) Disparity results of the proposed method and the percentage of bad pixels 

related with these results. 

The MATLAB implementation results are compared with previous methods for 

Tsukuba image pairs. Although the error rate of the proposed method is larger than 

other methods, time performance is much better. The comparisons of different 

methods are given in Table 1. 
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Table 1: Comparisons of the previous stereo matching methods and proposed 

method for Tsukuba image pairs. 

  
Percentage of bad pixels 

Tool 
Computation 

Time 
References All 

pixel 

Non-

occluded 
Discontinuity 

Methods 

Dynamic 

Programming 
5.04% 4.12% 12.0%  CPU  1.0s  [30] 

Graph Cut 

Method 
2.01% 1.19% 6.24%  CPU 69.8s [2] 

SSD+min filter 7.22% 5.08% 24.1%  CPU 1.1s  [13] 

Proposed 

Method 
7.08% 5.09% 18.2% FPGA 40ms This study 

4.2 FPGA Implementation Results 

In this section, the FPGA implementation results are evaluated. In Section 4.2.1, the 

simulation results are given, and the real time hardware results are presented           

in Section 4.2.2 . 

4.2.1 Simulation Results 

The simulation of the proposed FPGA implementation is done                                         

by Modelsim-Altera 6.5b tool. The functional behavior of the proposed VHDL code 

is simulated. Since all the FPGA blocks are operating on the real hardware, the 

simulation outputs provide information about the hardware performance. 

During the simulation, Tsukuba image is used. This image is converted to text file 

because Modelsim can read text files as an input. Then, the pixel intensity values of 

the right and left image are sent to the VHDL code (GC implementation module) 

for the simulation of disparity calculation. Finally, disparity results of the 
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simulation are written to a text file and then converted to the disparity image. The 

simulation environment is shown in Figure 39. 

 

Figure 39: The simulation environment 

Throughout the simulation, all necessary signals and data are examined with respect 

to timing and accuracy. In FPGA hierarchy, some blocks need other blocks’ output 

at certain time which is called pipeline processing. If these outputs arrive late or 

early, all real time flow can be broken. Therefore, the simulation provides valuable 

information about the flow in an FPGA. With this information, the VHDL code is 

updated and the problems are solved. 

In Figure 40, the simulation screen for frame start and graph cut disparity result is 

shown. This simulation shows the synchronization of the signals with each other 

and pixel clock. Figure 41 gives a part of the simulation for the whole FPGA 

design. 

 

Figure 40: Simulation screens of the control signals. 
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Figure 41: A part of the simulation screen of the design. 

The VHDL simulation generates the disparity results of Tsukuba image. The results 

of the VHDL simulation and MATLAB are compared which is shown in Figure 42. 

There are some differences between the results. VHDL simulation results are worse 

at some boundary points. The extensions are increased. Since MATLAB uses 

double floating point in calculations, its accuracy is better. On the other hand, 

FPGA implementation uses fix point in calculations which decrease the accuracy. 

Therefore, the error in VHDL simulation is greater than the MATLAB results.  

 

Figure 42: Comparison of MATLAB and VHDL simulation results on Tsukuba 

image. 
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4.2.2 Hardware Results  

VHDL codes are written by Altera Quartus-II software tool which has a free license 

version for the academic studies. All VHDL blocks are connected in a top block 

with their schematic representation which is very helpful for the user to debug and 

analyze the whole flow. Figure 43  shows the schematic representation of the 

implemented blocks in FPGA design environment. 

The FPGA consist of logic elements, embedded memory bits and multipliers. Logic 

elements are used for realization of the VHDL codes. In addition, these elements 

make the necessary connections between the internal blocks. The data is stored in 

embedded memories and the multipliers are used for the arithmetic calculations. 

Table 2 shows the total dedicated FPGA resources and the usage summary of the 

proposed method. 

Table 2: FPGA resource utilization 

FPGA Resources  Available  Used  
Logic Element 119,088 66,123 
Memory(bits) 3,981,312 1,901,632 

Multiplier(9x9) 576 480 

FPGA implementations of stereo matching are realized in previous studies which 

use local methods. The performance of the proposed method and the other FPGA 

implementations are given at Table 3. 

According to Table 3, the hardware uses different types of FPGA’s. The 

performance of the real-time stereo system is directly related with the FPGA type, 

because each FPGA has its own maximum clock frequency, logic element and 

embedded multipliers. Therefore, image resolution, maximum disparity range and 

frame rate are depend on the FPGA type. 
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Figure 43: FPGA design environment. 

Table 3: The performance comparison of previous real time studies and proposed 

method. 

Hardware 
Image 

Resolution 
Disparity 

Range 
Method 

Frame 
per 

second 
References 

4 x Virtex-2 256x360 20 

Local Weighted 
Phase Correlation 

(Pixel-based, 
Local) 

30 [26] 

Virtex-4 640x480 64 
Census               

(Pixel-based, 
Local) 

60 [27] 

Virtex-2 640x480 128 
SAD                        

(Pixel-based, 
Local) 

60 [28] 

Virtex-2 640x480 64 
SAD                        

(Pixel-based, 
Local) 

30 [29] 

Cyclone III 720x576 80 
Modified Graph 
Cut (Pixel-based, 
Local & Global) 

25 This Study 
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In Figure 44, the FPGA real time implementation results are shown. These results 

are captured from DVI monitor with a camera at the running time. Different objects 

are used for the evaluation of the real-time system. These objects are located at 

different positions and their depths are observed by the brightness on the results. 

The higher brightness means that the objects are closer to the camera, whereas the 

objects which are far away results lower brightness. 

Some problems are encountered during the hardware implementation of the 

proposed method which is related with the cameras and connections. When frames 

are computed sequentially in FPGA, some distortions are occurred on disparity 

map. There are two reasons for these distortions: the camera intensity variation and 

camera lens optical distortion. The pixel intensity values are not similar in 

sequential frames for similar scene. In Figure 45, the signal tap which is the debug 

screen of the Quartus is shown. This debug tool is used to monitor the signals in an 

FPGA when implementation is running. Pixel intensity variation is observed at 

P(100,200). In this representation 100 is the value of pixel counter and 200 is the 

value of line counter. The left pixel intensity changes from 95 to 100 and right pixel 

intensity changes between 60 and 76. These variations result in distortions on the 

sequential disparity frames. 

The camera lenses cause the optical distortion which is larger at the lens boundaries 

and smaller at the centre. Optical distortion disturbs the epipolar line geometry 

which prevents accurate matching of the corresponding pixels in the right and left 

image.  The optical distortion of the camera lens can be seen on the top of the 

library in Figure 46. 
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Figure 44: The real time FPGA implementation results. 
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Figure 44: Continuation. 
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Figure 45: The signal tap screen of the design.  
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Figure 46: The distorted image. 
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CHAPTER 5  

5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this thesis, a modified graph cut method for stereo matching is proposed. The 

modification is such that the real time implementation is possible. The method is 

firstly developed in MATLAB, and then realized in dedicated hardware with FPGA 

to achieve the real time constraints.  

The literature survey of different stereo matching methods is presented and their 

advantages and disadvantages are summarized. Stereo matching methods can be put 

into three groups: pixel-based, region based and feature based. Pixel-based methods 

which include local and global methods are mostly used in literature. Local methods 

like SAD and SD require less computational time compared with global methods, 

but their accuracy is worse. On the other hand, global methods can generate 

accurate stereo results, but their computation time is long.  

The main aim of the proposed method is to turn the recursive structure of the 

standard graph cut method (a global method) into a non-recursive structure. There 

are two basic differences between the standard graph cut method and the proposed 

method, namely, the computation structure and the required image lines. The 

standard graph cut method is recursive, because all possible disparity combinations 

are checked repeatedly. On the other hand, the proposed method is implemented in 

non-recursive structure; all possible disparities are checked only for the matching 

pixel and the disparity result is added to the previously calculated ones. Another 

basic difference is the required line numbers of the computation. In the proposed 
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method, three lines are necessary for the implementation of the neighboring 

relations whereas the standard graph cut method needs only the epipolar line. The 

upper and lower line neighbors are critical for the smoothness calculation in the 

proposed method. 

The proposed method is implemented in two main blocks: basic energy calculation 

and graph cut. In the first block, the matching cost energy values are calculated. In 

the graph cut implementation block, the graph structure is constructed with 

calculated matching cost energies, and the minimum cut is found according to some 

smoothness constraints for neighbor pixels.  

Firstly, the modified graph cut method is implemented by MATLAB. The 

MATLAB results show that the smoothness constraints directly affect the disparity 

results. Using different smoothness variables (umax values) generates different 

disparity results. In the evaluation, firstly, all smoothness variables are kept same 

and the results are compared with well known data sets from Middlebury. Using the 

same value for all smoothness variables increases the percentage of bad pixel errors; 

because each smoothness variable is used in smoothness calculation of different 

neighbor pixels. To control the effects of smoothness, different values are assigned 

to these variables. When the neighboring relation variable between the pixels P(x,y) 

and P(x,y-1) is given a larger value than the others, vertical deformations are 

observed in the disparity map. On the other hand, when the smoothness variable 

between the pixels P(x,y) and P(x-1,y) is increased, the error at the boundaries also 

increases in the horizontal direction. The last controllable smoothness variable is 

between the pixels P(x,y) and P(x,y+1). When this variable is increased, the total 

percentage of bad pixel errors becomes larger than the other variable combinations. 

Since the disparity results of Basic Energy Calculation Module, which are mostly 

incorrect, are used in this smoothness calculation, the disparity results of Graph Cut 

Implementation Module are incorrect and the resultant disparity map is similar to 

the output disparity map of Basic Energy Calculation Module. After evaluating 
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different smoothness variable combinations, the optimum one is obtained and used 

in the FPGA implementation.  

Secondly, the proposed method is implemented in a pipeline structure in FPGA. In 

this structure, the VHDL blocks are connected to each other sequentially so that a 

real time flow is possible. VHDL codes of the design are simulated by Modelsim 

tool of Altera. The data flow is examined with respect to the real time constraints, 

and the disparity results are compared with the MATLAB results. Some differences 

are observed between the MATLAB and FPGA results which are mainly occurred 

at boundary points. These differences are related with the used number formats. 

For the real time implementation, Altera Cyclone III FPGA is used. videos, Two 

PAL cameras are used for the right and left videos. The total computation time of 

the FPGA graph cut implementation for 80 disparity stereo matching is 40 ms 

which is suitable for real time applications. The FPGA implementation results are 

displayed on a DVI monitor.  

5.2 Future Work 

The proposed method’s computation time (40 ms) and the disparity range (80) are 

encouraging values for stereo matching applications. However, the labeling result of 

the method can be improved by new additions on the basic energy calculation and 

graph cut parts. The graph cut part, which uses the output of the basic energy 

calculation block, can generate more accurate disparity results if the outputs of the 

basic energy calculation part can be improved. Different local methods or their 

fusion can be used for the basic energy calculation. 

 The Graph Cut Module needs some parameters for the calculation. In FPGA 

implementation, these parameters are embedded into the code. The main board does 

not have a serial communication interface. A serial communication interface like 
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RS-232 can be added to the main board and the parameters can be updated during 

the run time. 
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7 APPENDIX A 

GRAPH CUT METHODS 

Maximum Flow Method 

Suppose that G(V,E) is a directed graph where V shows the vertices and E shows the 

edges. In addition to V and E, two new concepts which are capacity and flow of the 

graph edges are used in maximum flow method. 

Let (u,v) ∈ E and c(u,v) be the positive capacity of (u,v). It represents the maximum 

amount of flow that can pass through an edge. We assume that if (u,v)∉E than 

c(u,v)=0.  f(u,v) is the flow representation of the (u,v). It is a real function, 

f:VxV→R which must satisfy the following constraints for all (u,v):  

1. Capacity constraint: The flow along an edge can be lower than its capacity.  

),(),( vucvuf <  (A-1) 

2. Skew symmetry constraint: The flow from u to v must be the opposite of the 

flow from v to u. 

),(),( uvfvuf −=  (A-2) 

3. Flow conservation constraint: The sum of input and output flows of each 

edge can be equal except for s(source) and t(sink). 

0),( =∑
∈Vv

vuf  (A-3) 

Notice that f(u,v) is a net flow from u to v. For example, there is a flow of 4 units 

from u to v, and a flow of 3 units from v to u, we have f(u,v)=1 and f(v,u)=-1. 
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Maximum flow method is used to find the maximum amount that can flow on a 

constructed graph. Because maximum flow amount is determined by the edges that 

have lower capacities. Therefore, the maximum value of an s-t flow is equal to the 

minimum capacity of an s-t cut according to the theorem of Ford & Fulkerson [4]. 

In literature, two basic maximum flow algorithms are found. The first is augmented 

path algorithm which is developed by Ford & Fulkerson and the second is the push-

relabel algorithm. 

Augmented Path Algorithm 

Augmented path algorithm was introduced by Ford & Fulkerson [4] for the 

minimum cut calculation. Boykov & Kolmogorov [5] implemented this algorithm 

in stereo matching.  

The first step of augmented path algorithm is the construction of residual graph. A 

residual graph Gr(V,E) differs from the original in edge capacities.  The capacities 

cr(u,v)  are changed in the following way[5]: 

If f(u,v)<c(u,v) then (u,v)∈E  and cr(u,v)=c(u,v)-f(u,v), 

If f(u,v)≥0  then (v,u)∈E and cr(v,u)=f(u,v). 

Therefore residual graph Gr(V,E) has duplicate edges with capacities cr(u,v) and 

cr(v,u).  

An augmented path which is represented by (u1, u2, ..., uk) is a path on the residual 

graph from source to sink. In this context, u1 is the source and uk is the sink of the 

residual graph. The important property of an augmented path is cr(ui, ui+1)>0. 

The aim of this algorithm is to find the maximum flow (minimum cut) of the graph 

and this is done by removing augmenting paths in the residual graph. 
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Algorithm starts with constructing the residual graph. The second step is to find the 

augmented paths on the graph and then finally to remove these augmented paths 

with iterations. The detailed version of this algorithm is explained in Table 4. 

Table 4: Augmented path algorithm 

Algorithm 
steps Description 

1 Construct a residual graph Gr 

2 Find an augmented path  a on Gr 

3 
Calculate capacity of augmented path: 
      )),(:),(min()( avuvucac rf ∈=  

4 

For each (u,v) Є a 

      
),(),(

)(),(),(

vufuvf

acvufvuf f

←

+←
 

5 Update Gr 

6 
Is there an augmented path on Gr? 
     YES → Return step-2 
     NO   → Go to step-7 

7 Finish 

 

After the residual graph is updated with no augmented path, the minimum cut can 

be calculated by finding the vertices which are reachable and non-reachable from 

the source. The edges between the reachable and non-reachable vertices give the 

minimum cut path. In Figure 47, the updated residual graph and the minimum cut 

are shown, in this figure, the red vertices are non-reachable and blue ones are 

reachable vertices. 
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s

t
Min cut 

 

Figure 47: The example of minimum cut on residual graph. 

Push Relabel Algorithm 

Firstly, Goldberg [6] proposed Push-relabel algorithm for the maximum flow 

computation. After that Zureiki, Devy & Chatila [3] used this algorithm for stereo 

correspondence problem. 

The main idea of the algorithm is to find the maximum flow of the graph G(V,E) by 

some operations on the graph. We should define new concepts which are height and 

preflow to understand the process of the algorithm.  

Height (u) is the number of total vertices between the vertex u and the t(sink). The 

assumptions are, 

Height(s)=V (Total number of the vertices), 

Height(t)=0. 

Preflow is the similar to the flow concept. The only difference is that input flow 

should be larger than the output flow of the vertex. P(u,v) is the preflow 

representation of the (u,v). It is a real function, P:VxV→R+ which must satisfy the 

following constraints for all (u,v): 
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1. Capacity constraint: The preflow along an edge can be lower and equal to its 

capacity:  

EvuvucvuP ∈∀≤ ),(),,(),(  (A-4) 
2. Skew symmetry constraint: The preflow from u to v must be the opposite of 

the preflow from v to u: 

EvuuvPvuP ∈∀−= ),(),,(),(  (A-5) 
3. Let e(u) is the excess of vertex u. It is the difference between the input flow 

and output flow of u:  

}{sVuvuPuvPue
EvuEuv

−∈∀≥−= ∑∑
∈∈

,0),(),()(
),(),(

 (A-6) 

Two operations are used to find maximum flow which are push and relabel. 

Push operation: 

If you want to push a flow from vertex u to vertex v, you can send a part of excess 

flow from u to v, but following three conditions must be satisfied: 

1. e(u)>0: The input flow is bigger than output flow 

2. c(u,v)-f(u,v)>0 : Available capacity from u to v. 

3. Height(u)>Height(v) : The distance between u and t(sink) is larger than the 

distance between v and t(sink).  

After these three conditions are satisfied, the amount of min(e(u), c(u,v)-f(u,v)) 

flow can send. 

 Relabel operation: 

If you want to relabel a vertex u, you can increase its height until it is bigger than at 

least one of the vertices which have available capacity. The necessary conditions 

are: 
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1. e(u)>0: There must be an excess in the relabeling vertex u 

2. Height(u)≤Height(v)   ∀ v, such that: There are not any lower or equal 

height vertices connected to vertex u. 

After these two conditions are satisfied, the height of vertex u can increase until at 

least one lowest height vertex is found. 

Algorithm starts with constructing graph G(V,E). The second step is to find the 

vertex which has positive excess. After that, do push operation or relabel operation 

on that vertex. When there is not any positive excess vertex on the graph, the 

algorithm stops. The edges that carry the maximum flow will be minimum cut 

edges.  

The detailed version of this algorithm is explained in Table 5. 

Table 5: Push-Relabel Algorithm 

Algorithm 
steps Description 

1 Construct a graph G(V,E) 

2 Find a vertex with 0)( >ue  on G(V,E) 

3 
Is )()( vHeightuHeight > ? 
   YES → Go to step-4 
    NO  → Go to step-5 

4 
Do relabel operation      
 

5 Do push operation 

6 
Is there a vertex with 0)( >ue  on G(V,E)? 
     YES → Return step-2 
     NO   → Go to step-7 

7 Finish 
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Swap-Expansion Method 

Swap-Expansion methods try to find the minimum match energy by changing the 

pixel’s disparity values (labels). These algorithms start with an arbitrary labeling 

and change the disparities until they reach optimum labeling. Swap-expansion 

algorithm is discussed under two titles by Boykov, Veksler & Zabih [1].  

α-β Swap Method 

In α−β swap method, initial labels x’s are given to all pixels in the defined partition 

P. x is selected from the disparity range, and this range includes α and β. The 

objective is to find the correct labels x’ to reach minimum matching energy for the 

partition P.  

The constructed graph Gαβ is shown in Figure 48 [1]. The source and the sink which 

are explained in the Section 2.1 are assigned to possible labels α and β. The 

connection between the disparity vertices and the labels α, β is made with t-links. 

As explained in section 2.1, these links hold the matching energy.  n-links are used 

to connect vertices which are belong to neighbor pixels and show the smoothness 

energy. This graph representation is different from the defined in section 2.1, 

because this graph is used to check only two possible disparity while the other one 

checks all possible disparities. 
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Figure 48: Gαβ structure. 
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The basic idea of this method is to try all possible disparity pairs until the optimum 

labeling is reached. The labeling is done according to the cut on the constructed 

graph. Cut is found by using the energy values of the links. There are many possible 

energy values to be compared to calculate the cut path. Finding the minimum 

energy cut means to assign the disparity value. If cut passes through tp
α, pixel p 

remains its old disparity value α but if cut passes through tp
β, pixel p is assigned to 

new disparity value β. The label of pixel p swaps from α to β. 
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Figure 49: The possible cuts on constructed Gαβ for pixels p and q. 

As shown in Figure 49, cut determines the disparity values for the pixels. For 

instance, Cut1 passes through tp
α, tq

α => the disparity values of p and q are α. Cut2 

passes through tp
β, tq

β => the disparity values of p and q are β. Cut3 passes through 

tp
α, n(p,q), tq

β => the disparity value of p is α and q is β. Since cut3 path passes 

through the n-link between the neighbor pixels p and q, the disparities of these 

neighbor pixels is changed. Finally, Cut4 passes through tp
β, n(p,q) , tq

α => the 

disparity value of p is β and q is α. 

Algorithm starts with constructing graph Gαβ. The second step is to determine the 

initial labeling x and calculate the energy values with these labels. After that α, β 

swap is done and new matching energy value is calculated with these new labels. If 

Enew is lower than the previous energy, convert x label to new labels x’. When all 

labels are tested, the algorithm stops. 
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The detailed version of this algorithm is explained in Table 6. 

Table 6: βα −  swap algorithm 

Algorithm 
steps 

Description 

1 Construct a graph Gαβ 

2 Start with initial labeling x 

3 
Are all labels tested? 
    YES → Go to step-8 
    NO   → Go to step-4 

4 For each pairs of labels (α,β) 

5 
Do α-β swap operation (resultant label x’) 
 

6 Calculate E(x’) 

7 

Is E(x’)<E(x)? 
     YES → Determine x=x’ 
                  Update Gαβ 
                  Return step-3 
     NO   → Return step-3 

8 Finish 

 

α Expansion Method 

Similar to α-β swap method, α-expansion starts with an initial labeling x. This 

labeling has matching cost energy EX. Then with one α-expansion of x, EX is tried to 

be minimized according to the initial labeling [1].  

In α-expansion method an auxiliary vertex is defined between the pixel vertices 

which have different labels. The reason of adding new vertex is to decrease the cost 

value of the link between the neighbor pixels which have different labels. The 

auxiliary vertex assumed to be labeled with α. Figure 50 shows the constructed 

graph with auxiliary node.  
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Figure 50: Constructed graph for α-expansion. 

In this method every possible labels in the range is checked for pixel p. Then 

according to the new labeling, matching cost energy EX is calculated and compared 

with the previous one. If the new energy value is less than the previous one, pixel p 

is assigned to new label, otherwise the other label is assigned. This process 

continues until all labels are checked for pixel p. The algorithm steps are given in 

Table 7 . 

Table 7: α-expansion algorithm 

Algorithm 
steps 

Description 

1 Construct a graph Gαά 

2 Start with initial labeling x 

3 
Are all labels tested? YES → Go to step-8 
                                  NO   → Go to step-4 

4 
For every labels (α) 
Set pixel label to α (resultant label x’) 

5 Calculate E(x’) 

6 

Is E(x’)<E(x)? YES → Determine x=x’ 
                                      Update Gαά 
                                      Return step-3 
                        NO   → Return step-3   

8 Finish 

 


