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ABSTRACT

DESIGN AND IMPLEMENTATION OF
SPATIOTEMPORAL DATABASES

Sozer, Aziz
Ph.D., Department of Computer Engineering
Supervisor  : Prof.Dr. Adnan Yazici

Co-supervisor : Assoc.Prof.Dr. Halit Oguztiiziin

July, 2010, 163 pages

Modeling spatiotemporal data, in particular fuzzy and complex spatial objects
representing geographic entities and relations, is a topic of great importance in
geographic information systems, computer vision, environmental data management
systems, etc. Because of complex requirements, it is challenging to design a
database for spatiotemporal data and its features and to effectively query them. This
thesis presents a new approach for modeling, indexing and querying the
spatiotemporal data of fuzzy spatial and complex objects and/or spatial relations. As
a case study, we model and implement a meteorological application in an intelligent
database architecture, which combines an object-oriented database with a knowledge

base.

Keywords: Spatiotemporal Data, Object-Oriented Database, Knowledge Base,

Fuzzy Objects, Meteorological Database Application
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UZAM-ZAMANSAL VERITABANLARININ
TASARIM VE GERCEKLESTIRIMIi

Sozer, Aziz
Doktora, Bilgisayar Miihendisligi Boliimii
Tez YoOneticisi : Prof.Dr. Adnan Yazici

Ortak Tez Yoneticisi : Do¢.Dr. Halit Oguztiiziin

Temmuz, 2010, 163 sayfa

Uzam-zamansal verileri, 6zellikle cografik olusum ve iligkileri temsil eden bulanik
ve karmagik uzamsal nesneleri modellemek cografi bilgi sistemleri, bilgisayarli
gorme, cevresel veri yonetim sistemleri, vb. i¢in cok onemli bir konudur. Karmagik
gereksinimler nedeniyle, uzam-zamansal veriler ve oOzellikleri i¢in veritabam
tasarlamak ve etkin sekilde sorgulamak zordur. Bu tez ¢caligmasi, bulanik uzamsal ve
karmagik nesnelerin ve/veya uzamsal iligkilerin uzam-zamansal verilerini
modelleme, endeksleme ve sorgulama igin yeni bir yaklasim sunmaktadir. Ornek
calisma olarak, uzam-zamansal nesnelerin modellenmesi ve sorgulanmasi icin
nesneye dayali veritabani ile bilgi tabanim akilli bir veritabam1 mimarisinde

birlestiren meteorolojik veritabani1 uygulamasi gerceklestirilmistir.

Anahtar Kelimeler: Uzam-Zamansal Veri, Nesneye Dayali Veritabani, Bilgi

Tabani, Bulanik Mantik, Meteorolojik Veritaban1 Uygulamasi
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CHAPTER 1

INTRODUCTION

1.1 Scope of the Study

Space and time are inherent notions in spatiotemporal applications. These
applications (e.g. traffic control, environmental, meteorological, etc.) include spatial
and temporal data and variations. For example, a moving car in traffic changes
position over time. The borders of a salty lake move back and forth because of
seasonal evaporation and rainfall. The size and speed of a meteorological storm may
change during its lifetime. Hence spatiotemporal databases are required to deal with

both spatial and temporal phenomena.

Modeling spatiotemporal data is difficult because of such spatial variations and
advanced data structures and techniques are needed [20, 31, 44]. In modeling
spatiotemporal data, two approaches have been widely used: field-based and object-
based modeling [33]. The field-based approach assumes the real world to have
attributes which are varying over space as a continuous function. For example,
contour lines on a map represent points of a constant value (e.g. pressure,
temperature, velocity, density) within a volume of space. On the other hand, the
object-based approach distinguishes fully definable disjunctive objects. That is, the
database for the application stores a map that consists of a collection of identifiable
objects, which refer to the partitions and fragments of information space. For

example, the temperature regions (e.g. cold, warm, etc.), and the rainy or foggy



areas on a weather map are reflected with their unique attributes (e.g. borders,

position, direction, etc.) in the database.

Uncertainty and fuzziness are also features of most spatiotemporal applications.
Spatial and temporal information and various relationships often involve uncertainty
and fuzziness. For example, in describing a windy and wavy region, the region’s
boundary is inherently fuzzy. In the case of estimating a moving weather object, the
need to determine its position at a certain time, or its time of arrival at a certain
location, gives rise to fuzzy estimations. The most common reasons for considering

various types of uncertainty in spatiotemporal applications are as follows:

e Some spatial information is imprecise or fuzzy. The locations of objects,
spatial relationships and various geometric and topological properties usually
involve uncertainty [47].

e Many natural phenomena have fuzzy boundaries due to the transitional
nature of variation in the phenomenon (e.g. a river’s changing line because
of floods and drought) [6, 15, 35].

e To obtain precise data is difficult and unnecessary most of the time, and we
may only be able to give a range of values in which the exact numbers would
lie. For instance, we may need the number of “cloudy” or “partly cloudy”
days for some region in a period. In this request, the user specifies cloudiness
criteria in linguistic terms instead of giving numeric degrees of cloudiness

(e.g. 4/8 or 6/8) [3].

There have been several efforts aimed at using fuzzy set theory for modeling spatial
objects and their properties [40, 41, 42, 44, 48, 59]. Schneider er. al. [40, 41, 42]
represent fuzzy spatial objects and relationships as well as complex crisp objects and
relationships by using fuzzy techniques. Tang et. al. [48] propose basic fuzzy spatial
object types based on a fuzzy topology. A fuzzy cell complex is defined for fuzzy
points, lines and regions. Zhan et.al. [59] describe how to find the resultant regions
from the topological overlay of two simple polygons with indeterminate boundaries.

The effect of three typical overlay operations — intersection, difference, and union —



on resultant regions is also discussed. Tao et. al. [49] study range query on

multidimensional uncertain data using a “probabilistically constrained rectangle”.

Temporality has also been studied by some researchers [34, 37, 62]. In its simplest
form, time is considered as an attribute of spatial objects in [37]. A simple time
stamping approach is adequate to obtain the states of objects at certain times.
However, to identify individual changes in objects, event-based approaches are
developed in [34]. In [62] temporal uncertainty and fuzzy timing are introduced in a
model that combines temporality and fuzziness. In this model the notions of fuzzy

time stamping, enabling time, occurrence time and delays are defined.

There are also efforts to combine spatial and temporal properties into one modeling
framework using an object-oriented modeling approach [16, 17, 50]. Tenets of
object-orientation, such as classes and instances, attributes and abstract data types,
operations and methods, classification and encapsulation, aggregation, information
hiding, inheritance, polymorphism and dynamic binding are very useful for
modeling and manipulating spatiotemporal data. Worboys [55] introduces the
concept of the spatiotemporal object and defined a spatiotemporal object as a unified
object with both spatial and temporal extents, also called a simplex. A finite set of
such spatiotemporal simplexes are then defined to form a spatiotemporal complex

on the basis of which query algebra is developed.

The object oriented modeling approach is also used to support fuzzy data. This lead
to development of fuzzy object-oriented modeling techniques for imperfect
information requirements of various complex applications. Gyseghem et. al. [18]
propose an object-oriented model that represents uncertainty and fuzzy information.
In that work, fuzzy information is presented by fuzzy sets and uncertainty by means
of generalized fuzzy sets. Bordogna et. al. [4] define a graph based fuzzy object-
oriented data model that permits attributes to take linguistic values. The association
between an object instance and instance properties are modeled through a fuzzy
reference relation. Lee et. al. [26] propose a new approach to object-oriented

modeling based on fuzzy logic to formulate fuzzy classes, fuzzy rules to describe the



relationship between attributes, the membership function of a fuzzy class based on
both static and dynamic properties, and uncertain fuzzy associations between
classes. Marin et. al. [29] present a set of operators to compare objects in a fuzzy
setting. Among them is a generalized resemblance degree between two fuzzy sets of
imprecise objects and to compare complex fuzzy objects. Yazici and George [56]
study a similarity based fuzzy object-oriented data model in which impreciseness at
the data level contributes to uncertainty in the class-object and class-subclass
hierarchy. In this thesis we introduce some extensions to that model for

spatiotemporal objects.

There also exist some other studies extending conceptual models for modeling fuzzy
information. For example, Geo-ER [19] is an extension of the entity-relationship
(ER) model that provides a set of concepts specific to the spatial application domain,
and attempts to capture spatial peculiarities at the conceptual level of geographic
database design. Yazici et. al. [58] use unified modeling language (UML) [2],
providing extensions to handle spatial and temporal objects. In their work, some new
special entity sets, relationships, and constructs were introduced for modeling spatial

objects.

In knowledge intensive applications, support for deduction is an important
requirement. In a spatiotemporal application, relations between objects can be very
complex. Consider, for example, a ship crossing the sea. In some parts the sea line
may be restricted for travel due to wave and wind conditions. How can we record
this information and make the deduction that the sea line is restricted? The
spatiotemporal data can be stored in databases but naturally there are relations
including some rules as well. Instead of storing all relations in a database, a
knowledge base that is capable of representing knowledge and making deductions is
preferable and very helpful for retrieving the status of the sea line. Hence, the
interaction and/or integration of database and knowledge base technologies are
important requirements for the development of knowledge intensive applications.
This is reflected in the continuing research into the development of deductive object-

oriented models since the late 1980s [9, 27].



1.2 Summary of Contributions

In this study, we present a new approach to model and query real world

spatiotemporal objects, in particular meteorological phenomena. The main

contributions of this thesis and our working layout can be summarized as follows:

A generic model is introduced. Spatiotemporal objects and relations are
incorporated into the model. The types of the objects and relations can be
classified as follows:

o Complex crisp spatial objects,

o Fuzzy spatial objects,

o Cirisp/fuzzy spatial relations (e.g. topological, directional and metric)

between spatial objects.

Then an application specific model is combined with the generic model. The
geographic objects (i.e. city, sea, line, etc.) and meteorological objects (i.e.
temperature, wind, waves, etc.) are included in a three dimensional space.
The model including generic and specific parts and fuzzy spatiotemporal
querying mechanism are presented logically by C-logic [52] and
conceptually by extended UML [46]. The model is also specified formally
using Alloy and verified by Alloy analyzer [21].
Following modeling efforts, an architecture is designed by utilizing the
Intelligent Fuzzy Object-Oriented Database (IFOOD) [25] including
components which are:

o an object oriented database,

o aknowledge base,

o aquerying interface and fuzzy spatial.
The architecture is implemented as a prototype application. Using
meteorological data some crisp and fuzzy queries are implemented to verify

the application.



e The queries are enhanced and diversified by adapting a spatial index
structure (R*-tree) [22, 45]. The adapted R*-tree (Enhanced R*-tree)
supports fuzzy spatiotemporal queries.

¢ Finally, the fuzzy semantic queries are run with real meteorological data and

the efficiency and scalability of the application is evaluated.

1.3 Organization of the Thesis

In the following chapter, we give some background information on concepts related
to fuzzy spatiotemporal database modeling, including spatial and temporal fuzziness
as well as relationships between fuzzy and complex objects. Then a comprehensive
related work summary is presented in the same chapter. In Chapter 3, we describe
how to develop a generic model for spatiotemporal database applications. We use a
meteorological database application to illustrate our approach. Chapter 4 gives
details about the architectural design of the system. In Chapter 5, we present queries
from the application domain, and discuss crucial details of their processing. The
development of a fuzzy index structure (Enhanced R*-tree) are explained in Chapter
6. Chapter 7 diversifies proof-of-concept queries in Chapter 5 by adding fuzzy index
structure and real data. The implementation details of crisp, fuzzy and semantic
queries are presented. We also evaluate the scalability and performance of the
application components. Finally, we present our conclusions and point out possible

future studies, in the last chapter.



CHAPTER 2

BACKGROUND AND RELATED WORK

In order to support our modeling and querying aspects, basic spatial and temporal
concepts are discussed in this chapter. The spatial objects in geographic information
systems especially in meteorological maps are presented in Section 2.1. Basic
definitions of fuzzy spatial data types are given in Section 2.2. We describe spatial
relations in general and topological relations between complex regions and fuzzy
regions in Section 2.3. The temporal requirements of a spatiotemporal application
are presented in Section 2.4. These are followed by a summary of index
requirements and R-tree/R*-tree descriptions in Section 2.5. Finally, we give a

summary of the related work in literature and our contributions in Section 2.6.

2.1 Spatial Objects

In many areas of geographic information systems, natural objects (e.g. mountains,
rivers, aridity areas, population distribution areas and meteorological phenomena
like foggy regions, wavy sea regions, etc.) and man-made objects (e.g. cadastral
divisions, administrative borders of the cities, roads and bridges etc.) are modeled,
stored and queried. The objects are defined with spatial (e.g. geometric shape,
location, boundary length, diameter etc.) and/or descriptive (e.g. name, origin etc.)

attributes [28].



In Figure 1, wave heights over the Mediterranean Sea are illustrated on a weather
map. According to the map, the wave heights have varying characteristics, which are
most dense in south-west of Italy and clear on the Eastern Mediterranean. The
borders of the density regions are indeterminate since the height characteristic

changes somewhat gradually.

Wave Height (ma ter)

Figure 1: A weather chart showing wave heights on the Mediterranean Sea

In Figure 2, the temperature values of Turkey on 31.12.2007 are depicted on a map
using GIS software [14]. The software groups the similar values together with close
tones of colors. So the cold and warm areas and the gradual changes are visualized

on the map.



Figure 2: Temperature mapping on 31.12.2007

Figure 3 is a similar map produced for the humidity measurements of Turkey at the
same date. The brown colors indicate the relatively dry regions whereas greenish
colors indicate the humid regions. Similar maps produced for different

meteorological parameters are presented in Appendix A.

50 60 70 80 90 100%

Figure 3: Humidity mapping on 31.12.2007



In a geographic space like these maps, the objects with imprecise or vague spatial
attributes could be referred to as fuzzy spatial objects and the ones with precise or
exact attributes (e.g. country borders) could be referred to as crisp spatial objects
[40]. We define for fuzzy spatial objects, namely fuzzy points, lines and regions in

the next section.

2.2 Spatial Data Types

A fuzzy point is a point for which an exact position is not known but possible
positions are known within a certain area. In Figure 4-(a) the expected position of
such a point is shown by a black dot and the possible positions are shown by grey
dots. For instance, a ship waiting in the queue for crossing “Istanbul Bosphorus™ is

supposed to be found at a certain point but may drift from that position from time to

time (e.g. move to the grey parts).

.5 NN . .

a) Fuzzy point b) Fuzzy line ¢) Fuzzy region  d) Complex region

Figure 4: Spatial data types

A fuzzy line is a line, the exact shape, position or length of which is not known, but

what is known is which area the line must reside in. In Figure 4-(b) the center line

10



shows the normal shape of a river. The actual river line can change position and

shape due to floods or droughts (hence the grey area).

A fuzzy region is a region with indeterminate boundaries. It has three parts: (1) the
core (indicated by the dark part) (2) the indeterminate boundary (grey part) and (3)
the exterior (the outer parts of indeterminate boundary) [59]. In Figure 4-(c) a
typical fuzzy region is depicted and might be used to express the gradual change

over a spatial domain for a given attribute (e.g. wave height).

Finally, a complex region is as set of regions, possibly with holes and multiple
components (see, Figure 4-(d)) [40]. Foggy regions with clear patches, for example,

can be represented as complex regions.

2.3 Spatial Relations

Spatial relationships can be one of the three kinds, namely, topological (e.g.,
overlap, inside, covers, etc.), directional (e.g., North (N), South East (SE), etc.) and

metric (e.g., "5 km away from") relationships [7].

Topological relations describe spatial relationships of objects in space. A model for
analyzing binary topological relations, known as the 9-intersection model, has been
proposed in the literature [13]. The 9-intersection model is based on the intersection
between the parts (interior, boundary, exterior) of the regions involved. The
intersections of the parts are analyzed with 3x3 matrices (total 2°=512 matrices).
The model distinguishes eight meaningful (disjoint, meet, overlap, equal, contains,
inside, covers and covered by) relations for crisp regions. Later, this model was
generalized for fuzzy regions [32, 48, 59] and complex regions [11, 41]. These

generalizations are presented in the next sections.

11



2.3.1 Fuzzy Topological Relations

The topological relations between fuzzy regions are inevitably fuzzy because of the
indeterminate boundaries of the regions involved. Suppose that “A” is a set of
attributes under consideration, and that a region is a fuzzy subset defined in two
dimensional space R? over “A”. The membership function of the fuzzy region can be

defined as u#: X XY XA — [0,1] , where X and Y are the sets of coordinates defining

the region. Each point (x,y) within the region is assigned a membership value for

an attribute a in A.

A fuzzy region is illustrated in Figure 5 with the core, the indeterminate boundary,
the exterior and a-cut levels. The indeterminate boundary of the fuzzy region is an
aggregation of regions whose boundary is defined by « —cut levels, that is all
points with membership values equal to . So, an @ —cut level region is defined

as follows:

R, ={(x,y.a)| e (x,y,a) 2 a}0 < @ <1) (1)

.,

) !
Og 75 level 0

Figure 5: Visualization of a simple fuzzy region
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The degree of the fuzzy relation is measured by aggregating the « — cutlevel of

fuzzy regions. The basic probability assignmentm(Rm ), which can be interpreted as

the probability that R, is the true representative of R, is defined as in [12, 41, 59]:

m(Rm ) =a—-a, ()

for 1<i<n forsome ne Nwith 1 =¢,>a,>..>0,>,,=0

It is clear that Zn:m(Rm. ): 1.

i=1
Let T(Rm. Sy j) indicate the existence of a topological relation between two & — cut

level regions of fuzzy regions R and S (e.g. 0 or 1). Then the degree of a topological

relation between R and S can be determined by the following equation:

n m

T(R:S):sz(Rm)m(Saj )Z-(Rm"Saj) (3)

i=l j=l

Il
2
9%}

2
—
|
—_

Because T(Rm.,Sa j) has a value of either 0 or 1 and im(Rm.)

i=1 j=1

7(R,S) should be in [0,1].

Here we present the formulation for the overlap relation as an example but the
remaining topological relations which are illustrated in Figure 6 can be formulated

in a similar manner:

n LU

T(R: S) = ' m(Rm' )m(Saj )z-averlap (Rai ’ Saj ) “4)

S

13



Disjoint Contains Inside Equal

o @ o @
Meet Covers Coveredby Overlap

Figure 6: Examples of topological relations between fuzzy regions.

2.3.2 Topological Relations Between Complex Regions

A complex region is the union of simple regions (SR) including, possibly, holes. Let

F and G be two simple regions with holes, that is

Fg =F,—|JF, and

i=1

Gy =G, -JG,. (5)

Jj=1

1

where FjandG, are bases and F, and G are the holes of F and G respectively.

Then, two regions are disjoint if F, and G, are disjoint or one region is inside of

another region’s hole. More precisely,

14



disjoint ¢ (F,G )= disjoin t(FO,G 0 v

1<i<n:inside\G,,F.|)v|31< j<m:inside| F,,,G . ©
d 0" i 0
, Where
V1< j<m:disjoint\F,,G.)v
inside o (F,G )= inside (F,,G,)A| [ . / / (_ 0 ’.)_ _ (7)
(lnszde (Gj,FO)/\ 31 <i< n:inside (Gj,Fl. ))

F'is considered to be inside G if F; is inside G,and if each hole G; of G is either
disjoint from F, or inside a hole of F,. Examplary regions with holes and their

relations are illustrated in Figure 7.

(a) (b)

Figure 7: Examples of the relations (a) disjoint and (b) inside
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Other topological predicates for simple regions, possibly with holes, are defined in
the same vein. Based on these definitions, topological predicates for complex

regions are defined as follows:

Let

Fer =LnJFi and G, szJGj
i=1

j=1

be two complex regions (CR) ,where F; and G are simple regions with holes. Then

the topological relations are defined as follows:

disjoint . (F,G)=V1<i <n V1< j<m:disjoint o (F,,G,) (8)

meet ., (F,.G)= —disjoint (F.G)A
(Vl <i<nVI<j<m: (disjoint‘meet)SR (F,.,G_/ ))

inside ., (F,G)=V1<i<n31< j<m:insideg, (E,Gj) )]

CONtains ., (F,G) =inside (G, F) (10)
equal . (F,G)=V1<i<n:equalg(F,,G,) (11)
coveredBy ., (F, G) = ((inside | equal)CR (F, G)) A (12)

(Vl <i<n3< j<m:(inside| coveredBy| equal)SR (E,Gj ))
covers (F, G) = coveredBy .4 (G, F) (13)

overlap,, (F, G) = —(disjoirt | meet | inside| contains| equall coveredBy| covers)CR (F, G) (14)

2.4 Temporal Aspects of Spatiotemporal Databases

Temporal aspects have been the focus of attention in the literature, and applications

often require that time information to be stored in the database. Information about

16



objects’ attributes and relationships among objects are valid when the object exits
temporally. For example, windy regions exist over the sea within a time interval and
the ships which have to cross these regions are planned to start and finish their
journeys at certain times. The windy regions and the ship routes will be expected to
relate to each other in certain ways in this interval. Temporal information is

generally stored in databases in two forms:

o the valid time is the time when the information about an object or
relationship holds in the modeled reality. For example the valid times of a
ferry route in the Marmara Sea is 08:30, 12:00 and 17:00 daily.

e the transaction time of a database entry is the time when the entry becomes a
part of the current state of the database. The time when the ferry lines’ times

are stored in the database is the transaction time of the entry.

Individual time values are termed chronons and many applications also have
duration, which can be captured by using time intervals, where a time interval [tpegin,
tena] 1s defined as a set of consecutive chronons. We call tyegin and teng the start and

the end chronon of the interval, respectively.

2.5 Spatial Indexing

The design of a spatiotemporal database should meet the unique requirements of
spatiotemporal data. In this section, we discuss a number of requirements at the

physical level.

A spatial object has a complex structure. It may be composed of numerous points,
line segments and polygons with holes and vague parts. It is not usually possible to
store such collections in a single relational table. Spatial objects also have dynamic
properties. The attributes like shape, position, etc. may change by the time. Data

structures used in this context should support this dynamic behavior. The complex
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structure and the dynamic behaviors result in large databases comparatively. Finally,
the spatial operators are generally more expensive than the standard relational
operators. The spatial search operations require special support at the physical level

because of the existence of spatial attributes as well as non-spatial attributes.

Spatial index structures are designed to support such operations at physical level.
Based on the properties of spatiotemporal data, spatial index structures should be
dynamic for changing attributes, scalable for database growth, and should support
broad range of operations. There are a number of index structures which support
spatial indexing [45]. R-tree index family is widely studied [22] and we adapt one of

them, R*-tree for this study.

An R-Tree is an index structure for spatial data. At the leaf node of R-Tree, an index
record refers to the spatial data. The index record is an n-dimensional rectangle and
it is the bounding rectangle of the spatial data indexed. This rectangle is also known
as minimal bounding rectangle, MBR. Non-leaf nodes contain entries (I, childnode-
pointer) where I is the MBR bounding all the rectangles in the lower nodes' entries.

Childnode-pointer is the pointer to a lower node in the R-Tree.

Figure 8 shows an example of an R-tree. In the figure, leaf nodes (LN; to LN7) are
the enclosing rectangles of original spatial data objects in the data space. Inner nodes
(IN; to IN3), are MBRs of corresponding leaf nodes, and they are stored in the root

of this R-tree.
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Figure 8: An example of R-tree

R*-tree is basically different from R-tree in the insertion phase. The design of the
R*- tree introduces a policy called forced reinsert: If a node overflows, it is not split
right away but firstly p entries are removed from the node and reinserted into the
tree. The parameter p may vary; but it is suggested that p to be about 30% of the

maximal number of entries per page [1].

Another difference between R-tree and R*-tree is the node splitting policy. While R-
tree algorithms try to minimize the area that is covered by the bucket regions, the

R*-tree algorithms also take into account minimum overlap between bucket regions,

minimum region perimeters and maximum storage utilization.
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2.6 Related Work

A recent literature survey about the topic is presented in this section. The works are

classified under the modeling, querying and indexing sections.

2.6.1 Modeling Spatiotemporal Data

In this section a number of works about modeling spatiotemporal objects are
checked and compared to our work. The fuzzy object modeling, the past and future
states of moving objects, the conceptual, logical and physical modeling are the main

topics of our survey.

In [24] finite number of crisp regions where each region is associated with a
membership value indicating the degree of belonging, forms so called a plateau
region. Thus, a fuzzy region in Figure 5 is approximated by n crisp regions. So an
implementation effort can benefit from well known crisp region algebra. The authors
define formal plateau regions and operations. In our work in the prototype system
we implemented complex regions with holes and fuzzy regions. The fuzzy region
which is used to represent wavy and windy regions over the sea is a kind of plateau
region mentioned in [24] with some differences. In that work plateau regions are
presented like complex spatial objects with multiple parts each having different
fuzzy degrees whereas in our implementation fuzzy regions of windy areas are more
crisped shape of the simple fuzzy region. So our fuzzy regions have a core region
and from core to outside some non uniform crisp rings cover the core with

decreasing memberships.
Like plateau regions, vague spatial object and topological predicates [32], fuzzy

spatial data types [40], complex crisp and simple fuzzy regions [41] and complex

spatial objects and topological predicates [42] are formalized in a number of work
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by Schneider and co-workers. We also handled fuzzy and complex spatial objects

and the formalism presented in these papers is quite useful for our modeling efforts.

The past and future states of moving objects are modeled in [36]. The formal
definitions of moving objects with respect to their past and future movements are
provided. In our study, we used past meteorological data and hence for moving
objects. In the ferry lines example, the restrictions for the line are queried. In
weather forecasting, the future states of meteorological objects are predicted. So if
we use future data our model can be used to query for the future topological

relations (e.g. the future states of the ferry lines will be restricted can be queried).

A survey on multidimensional modeling discusses the issues about the phases of
modeling [38]. The modeling phases are described at conceptual, logical and
physical level. The conceptual modeling aims an implementation independent and
expressive schema. In literature, conceptual modeling has been searched from two
perspective, multidimensional and Extraction-Transformation-Loading (ETL)
modeling. The multidimensional modeling approaches use extensions to Entity
Relationships model, UML and ad-hoc models. The authors state that ETL is less
mature then multidimensional modeling. The logical modeling takes place after
conceptual modeling and creates a logical schema. Finally physical design phase
concerns the issues specifically related to the implementation such as indexing. In
our research effort we follow the conceptual, logical and physical modeling order.
The conceptual model is based on extended UML for spatiotemporal data. The
logical design use C-logic and Alloy for a logical schema of the model. Finally at
the physical level we used an object oriented database supported by a spatial index

structure.

A recent work on modeling and querying vague spatial objects [63] uses shapelets
which is an image decomposition technique developed in astronomy. Shapelet is as
set of functions that includes a Gaussian function and higher order terms composed
of the products of Gaussian function with a set of polynomials. The shapelets

approach is optimized especially for smoothly varying fuzzy spatial objects. The
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arithmetic operations (add/subtract two objects), topological operations (overlap,
etc.) and metric operations are defined formally for shapelets. An extension
including shapelet class is integrated into PostgreSQL as a library. In addition,
existing R-tree support in PostgreSQL is used to index shapelets. There are a couple
of differences in our approach and this approach. We use vague spatial objects
which are formalized by fuzzy set theory and complex crisp objects whereas in this
work shapelets are used to model spatial objects especially for smoothly varying
objects. The vague spatial objects and complex crisp objects are very suitable for
modeling meteorological objects. Both work use a database (PostgreSQL and db40)
and a spatial index structure (R-tree and R*-tree). The R-tree and R*-tree use
bounding boxes as a standard indexing mechanism. In addition to that, we adapt R*-
tree for fuzzy spatial and aspatial indexing for fuzzy and semantic queries. In
querying spatial data, in addition to topological, metric relations we implement also
fuzzy semantic queries which may require deduction defined in fuzzy knowledge

base.

Our modeling effort follows conceptual, logical and physical modeling of
spatiotemporal data. We use fuzzy set theory in modeling fuzzy data. The definitions
for the fuzzy objects and complex crisp objects which have foundations in literature
[42] are suitable for meteorological objects. So our modeling efforts are parallel
with the works above and we present a complete architecture including modeling at

three levels supported by knowledge base and fuzzy semantic querying.

2.6.2 Querying Spatiotemporal Data

In this section we briefly give an overview of recent works from literature which is
related to querying methods. The location based queries, nearest neighbor and
distance searches are mainly the subjects of these works. Also fuzzy inputs and

processing are required to process the queries.
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The location of reference objects and the target instances in a given range are the
subject location based spatial queries (LBSP) [5]. LBSQ take a reference point and
find instance objects in a distance or a range. The distance may be specified between
minimum and maximum values. The range may be a geometrical shape like circle.
The reference point and the instance locations can be uncertain also. The range,
circle, ring, distance range, fuzzy topological (inside, overlap, etc) queries are part

of our work.

In [43], an intelligent querying tool, TreeSap is presented. The tool focuses on
qualitative fuzzy input when querying spatial data. The distance relationships
between objects can be stated ambiguously such as near, close, very close, etc.
TreeSap converts this qualitative input to a numerical form and presents the results

of the query which is in numerical form in a simple and intuitive manner.

In [23], modeling and querying uncertain location information from free text which
is obtained from newspaper or event reporting sources is studied. Uncertain
locations such as near (Building A) and event types such as ‘traffic accident’ are
extracted from text and mapped onto probability density functions (pdf). They also

analyze several types of spatial queries such as range search.

ESSE [61] system allows user to query the environmental data archives in human
linguistic terms. These terms are mapped into query language by fuzzy logic. Fuzzy
states of spatiotemporal data sources are specified as logical expressions (AND, OR,
NOT) applied to a set of linguistic terms (Large, Small, etc.) and numeric predicates
(Less than, equal, etc.). The transformation from one state to another state by the

time is also defined formally.

These works in the previous paragraphs are focused on a specific part of spatial
querying. The location, distance, topological relations are implemented in our work
as well as other fuzzy semantic queries. We use meteorological objects and data sets
although it can be implemented for other data sets. We also adapt index structure

and knowledge base for efficient fuzzy semantic querying.
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2.6.3 Spatial Index Structures

The indexing approaches in recent literature are discussed in this section. The usage
of R-tree index family and using separate or single index structures and fuzzy query

supporting issues are the main topics of these works.

Using separate index structures for different dimensions are discussed in [30]. In the
survey for geographic information retrieval systems two separate index structures
for text and geographical scopes are planned to use. We used single index structure
for spatial and non-spatial indexing. The additional indexing is added at the data and
intermediate nodes. The advantages of our approach are firstly it is dynamic so any
number of attributes of objects at the leaf level can be indexed and secondly during a
search only one index is loaded and all indexing criteria can be found in the same

level and structure.

Another work also uses two separate index structures for video clips. The variants of
R-tree and R*-tree are adapted for a two phased retrieval algorithm in content based
multimedia system [60]. While first tree is built on the spatial objects in the scenes
of a video, the second tree stores the spatial relations between the objects in the first

tree.

The relative spatial orientation and distance relation are indexed for icons which are
a collection of labeled point features in [10]. In this approach each pairing of two
icons is represented by a single point and all pairs with same separation and relative
orientation map to same point. Given a spatial relationship or range, the database
search is performed by using R-theta index which is a variant of R-tree. In our
approach the spatial relations and orientation are calculated dynamically by fuzzy

spatial processor and/or fuzzy knowledge base together.

The U-tree is built on the multidimensional uncertain data for range search [49].
Like R*-tree’s MBRs, a U-tree uses probabilistic constrained rectangles (pcr),

where pcr(0)=MBR and pcr(0.6) is a smaller rectangle and so on. As the probability
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of pcr increases to 1, the bounding rectangle gets smaller. A query returns all objects
that appear in search region with at least a certain or higher probability. This
approach gives probability values to rectangles so in the core part of the rectangles
the object is found most probably. In our approach we use crisp rectangles to index
objects. Nevertheless the spatial (direction, relation, etc) and aspatial fuzziness are

supported as we mentioned.

The indexing approaches in these works are mainly differentiating from our work in
some couple of ways. In summary, we use single indexing structure which may be
more costly during the built up but more efficient while querying. We put index on
each attribute of the objects including temporal data. The spatial relations are not
indexed but calculated dynamically. Since the meteorological objects change
position, shape etc. continuously we believe that our approach is more convenient.
Finally in our work, any fuzzy attribute at the leaf level is indexed in the
intermediate nodes and it is dynamic which is independent of the number of

attributes.
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CHAPTER 3

A GENERIC MODEL FOR SPATIOTEMPORAL
MODELING

In this chapter, the components of the generic spatiotemporal model, namely, the
fuzzy object oriented database (FOOD) [57] and the fuzzy knowledge base (FKB)

[25], are presented.

3.1 The Fuzzy Object-Oriented Database (FOOD) Model

The Fuzzy Object Oriented model supports multivalued attributes and fuzzy
domains are defined for these attributes. The domain of an attribute is the set of all
possible values that the attribute can take. For example, the fuzzy domain for a

“temperature” attribute of a meteorological observation can be defined as:

Domain = {hot, warm, moderate, cool, cold } (15)

temperatur e

That is, the temperature attribute can have some combination of these values from
the domain such as {hot, warm}, {warm}, {cool, cold, moderate}. The similarity
matrix in Table 1 shows the similarity of each element with other elements in the

domain.
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Table 1: The similarity matrix for temperature attribute

Temperature | hot warm moderate | cool cold
hot 1.0 0.6 0.4 0 0
warm 0.6 1.0 0.8 0.2 0
moderate 0.4 0.8 1.0 0.6 0.4
cool 0 0.2 0.6 1.0 0.8
cold 0 0 0.4 0.8 1.0

The matrix indicates that cool and cold temperatures are similar with a degree of 0.8.
In a case where the temperature value is estimated and given a threshold value of
0.8, multiple values {cool, cold} can be associated, which gives us a fuzzy
representation for temperature value. Note that the values of the similarity relations
can be defined either by domain experts or computed using various methods existing

in the literature [53].

In FOOD, attributes can take values within a range and in general, range C domain .
The range of an attribute a; of a class C is represented by the notation rng. (a;),
where a, € {al,az,...,a”}, the attributes of class C. For example, the range of the

temperature attribute of a class for a “fog” object can be defined as a subset of the

temperature domain:

rng ,,. (temperature) = {moderate, cool,cold } (16)

Another type of fuzziness in FOOD takes place between classes and objects. That is,
while some objects are full members of a fuzzy class, some other objects may
belong to the class partially. The objects may still be considered as instances of this
class but with a degree of membership in [0, 1]. A formal range definition indicating
the ideal values for a fuzzy attribute is given in the class definition. However, an

attribute of an object can take any value from the related domain. Then, the degree
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of membership of an object to its class is computed by using the similarities between
the attribute values and the range values, and the relevance of fuzzy attributes. The
relevance is given by the weight of the fuzzy attribute in determining the boundary

of a fuzzy class. Thus, the degree of membership of an object O; to a class C is

determined by the formula:

lLlC(Oj): 2INC(rngc(ai)/0j(ai))xRLV("[’C)/Zn:RLV(ai»c)

=1 (17)

where INC (rng C(a j)/ 0 j(ai)) is the inclusion value that is taking into account the

semantics of attributes and RLV(a,. ,C ) is the relevance of attribute a; to the class C,

as given in the class definition by the class designer. All attributes, therefore, affect
membership degrees in proportion to their relevance values. For the details of the
FOOD model, including examples of the computation of inclusion values, the reader

is referred to [57].

3.2 The Generic Model

In this section, the types, operations and predicates for a generic spatiotemporal
model are specified. C-Logic and Alloy notations are used for the formal definitions

of the model. Then in the next chapter implementation details are presented.

3.2.1 C-Logic notation

We use C-Logic, which allows direct transformation of the specification into first
order formulas [54]. C-logic also allows class and subclass specification
independently, which facilitates the update of objects’ subparts. This specification

can then be easily implemented in an object oriented programming language.
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In C-logic a class is specified as a collection of atomic properties. For example, a

“Point” is a spatial data type having a membership value to exist at a location (X, y).
Point = [u = [float |, x = [float |, y = [float ]|, where 0 < u <1.0. (18)

For  example, an object of type Point can be  defined
asp = Point[/l =1.0,x=3.0,y=> 5.5], which indicates that the point p is located
at (3.0,5.5) with membership value z =1.0. A more general specification for Point

class is given below:

Point = [/1:> {ﬂl,...,ﬂn},x:>{x1,...,xn},y :{yl,...,yn}]

(19)
where 0 < u <1.0 and (x,y)e R’.

The mapping = can be understood as either “containing as a subset”, if it is
followed by a collection of terms, or “containing an element”, if it is followed by a
single term. In the former case, terms with the same index are associated with each

other.

An object is defined as an instance of a class within an interval of time and specified

by a predicate is_instance:

is _instance(Object,Class,T) ,where T, . <T <T

begin end

In a spatiotemporal model, the spatial portions of objects are described with
“Geometry”, “Point”, “Line” and “Region” classes. The “Point”, “Line” and
“Region” classes are associated with each other through aggregation relation. For
example, a line can be described by an aggregation of points and similarly a region
can be represented by an aggregation of lines, and so on. A special form of

aggregation is the “whole/parts” relation between “Geometry” and part classes,
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namely, “Point”, “Line” and “Region”. “Geometry” is formed by the combination of

more than one spatial type and expressed in “Geometry” class definition as follows:

Geometry = lparts = {Pi L, R, }, size = [ ﬂoat], MBR = [Regl], center = [P1 ]L

where T, <T<T,,, is_ instance(R , Point, T), s _ instance(L i Line,T),

begin

s _ instance(Rk ,Region, T), s _ instance(Reg1 , Region, T),

is_instance(Pl,Point,T) i,j,ke N,and at least one of i, j and k >0

(20)

The other attributes of the “Geometry” class are “Minimum Bounding Rectangles
(MBR)” [8] for locating and accessing objects in space, “center” for the central

position of the object and “size” for the volume that an object occupies.

The “STObject” class is associated with the “Geometry” class from which detailed
spatial information is extracted, such as geometries and possible holes for regions as
well as the position and trajectory of an object. The “STObject” class, having
geometric and temporal attributes is defined below. Note that an “STObject” can

have at least one simple geometry with possible holes.

geometry = {Geoi }, holes = {Hole i }, position = [Pos],

STObject = } ,where

trajectory = {Traj . }, times = {T,,egin yeees L,y
is _instance(T , DateTime),is _ instance(Geoi ,Geometry, T),
is_ instance(Hole ;j»Geometry, T), is _ instance(Pos, Point, T),
is_ instance(Traj » Point, T),

T, <T<T .,i,jjke Nandi>1,j=>20,k=>1

begin end *

1)

A fuzzy spatial relation describes the relative positions of two fuzzy spatial objects.
The degree of relation can be computed by using the definitions in Section 2.3 and
the “Fuzzy Topological Relation algorithm” presented in Figure 16. A formal

definition is given here:
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fuzzy _ spatial _ relation(S TObj,,STObj,, T) =
L=,

rel _Type = {disjoim‘, meet,inside,equal,contains,cov ers,coveredBy, overlap},
T =TT}

,where T, <T<T,,,is_ instance(STObj,, STObject,T),

is_ instance(S T0bj,,STObject, T)

(22)

3.2.2 Alloy notation

After the model is defined formally in C-logic, Alloy analyzer is used. Alloy is a
formal object oriented specification language and its tool can be used for specifying
properties about objects and validating them [21]. The model is first abstracted in

Alloy language and then the analyzer verifies it.

In Alloy there are two kinds of specification elements:
* Signatures: define new types and contains a set of objects. The objects can be
related by the relations, which are fields of the objects.

e Facts, functions, predicates: define constraints and true statements.
Next we define our model in Alloy as follows:
module systems/STModel
open alloy/models/util/ordering[LineSegment] as ordL
open alloy/models/util/ordering[Time] as ordT
open alloy/models/util/ordering[ Fuzzy] as ordF
The open statements are used to access the predefined ordering module. Ordering
module gets an argument and creates a linear ordering over it. The module presents

some functions, such as which element is first in the ordering (first), or whether a
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given element precedes another (next), and some predicates such as comparisons

(gte, It, eq, etc.) .

/fabstract fuzzy class. The implementation consists of definition of fuzzy number
// which gives degree of fuzziness between 0 and 1

abstract sig Fuzzy{}

//The Time class includes definiton of time in YYYYMMDD hh:mm
sig Time{}

// a temporal class includes temporal class and a temporal entity has
// beginning time and end time

sig Temporal{

beginTime,endTime:Time

/

// Beginnig time should be less than or equal to end time
fact TemporalFact{
all T:Temporall ordT/lte[T.beginTime,T.endTime]

/

//a temporal object exits in a temporal interval

pred islnstance(o:Temporal, bt et:Time){
ordT/gte[o.beginTime,bt] and ordT/lte[o.endTime,et]
/

Alloy allows the definition of abstract classes. This is similar to object oriented
abstract classes. The detailed definitions of Fuzzy and Time classes are left to
implementation. The Temporal class definition which is extended by temporal
classes is followed by a fact definition. Facts are constraints which are assumed to
be always true. In the model, TemporalFact asserts that the beginTime should be

less than or equal than the endTime. Next, we define a predicate which implies that a
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temporal object should exist in a temporal interval. Predicates in Alloy are simply

named constraints.

// Spatialbase has common entries for spatial classess

// membership: is a fuzzy number and shows the degree of
// spatial object's belonging to a particular spatial class
// size: for fuzzy spatial object size is also fuzzy.

abstract sig SpatialBase extends Temporal{
membership: Fuzzy, //fuzzy membership

size:Fuzzy

/

// Coordinate defines an x, y location in the space.
// x, y may be float numbers

sig Coordinate(}

// Point is the basic spatial element and can be part of line segments.
sig Point extends SpatialBase {

location: Coordinate

/

// a line segment is aggregated by a set of points,
// It has a beginning and ending defined by points.
sig LineSegment extends SpatialBase{
sourceEnd:Point,

targetEnd:Point

/

// a region is aggregated by a set of line segments
sig Region extends SpatialBase{

linesegs:set LineSegment

/
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// at least 3 line segments form a region
fact RegionConst{

all r:Region |#r.linesegs >= 3

/

The SpatialBase is a super class of spatial classes such as Point, LineSegment and
Region. Then some facts are defined which presents natural truths about geometry.
For example a line segment has two points and at least three line segments form a

region

// a geometry is formed by a set of points and/or linesegments
// and/or regions

sig Geometry extends Temporal{

points: set Point,

linesegs: set LineSegment,

regions: set Region

/

// a geometry should have at least one of the parts.

// not all of the parts can be empty sets.

// this fact does not allow empty geometry

fact GeometryFact{

all g:Geometry |

not (#g.points=0 and #g.linesegs=0 and #g.regions=0)
/

//if a geometry exists in some temporal interval so that
// its parts should exist in the same interval

fact GeometryConst{

all g:Geometry |

isInstance[g,g.beginTime,g.endTime] =>

( islnstance[g.points,g.beginTime,g.endTime] and
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isInstance[g.linesegs,g.beginTime,g.endTime] and

isInstance[g.regions,g.beginTime,g.endTime])

/

The GeometryConst fact states that if there exists a geometric entity in some

temporal interval, so do all its parts in the same interval.

// A spatiotemporal object definition
sig STObject extends Fuzzy{
geometry:some Geometry, // an STObject has one or more Geometry
holes:set Geometry, // an STObject may have holes
trajectory:some Point, //trajectory is a non-empty set of points
spatialRelation:set RelationType // An STObject may have spatial

// relation(s) with other STObjects

The STObject has fields such that geometry and holes define the geometry of the
spatiotemporal object. The trajectory show the path that object follows. The
spatialRelation field holds the object’s topological relation with other STObjects.
These relations are formally defined in Chapter 2. An Alloy specification is given

here:

// A spatial relation exists in some temporal interval

// including two STObjects and fuzzydegree that shows

// the degree of the relation

abstract sig RelationType extends Temporal{

F,G: one STObject, //two STObjects F and G
fuzzyDegree:Fuzzy //the degree of the relation which is fuzzy

/

// These are the possible types of spatial relations.

// Each one of them is a relation between two STObjects and have a degree
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one sig Disjoint,Meet, Inside, Equal, Contains, Covers,CoveredBy,Overlap extends
RelationType{

rel:F->G->Fuzzy

/

This definition is an enumeration of RelationType class. Each relation is a triple
from one object to another and to the Fuzzy class because the degree of relation can
be fuzzy. The predicates below define these relations by giving some constraints

about about object geometries and/or holes.

// the following predicates give definitions for the spatial relations

pred disjointCR(R:RelationType){

no(R.F.geometry & R.G.geometry) and no(R.G.geometry & R.F.holes) and
no(R.F.geometry & R.G.holes) and no(R.F.holes & R.G.holes)

/

pred insideCR(R:RelationType){
some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or
((R.G.holes in R.F.geometry) and (R.G.holes in R.F.holes)))

/

pred insideCR2(R:RelationType){
some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or
((R.F.holes in R.G.geometry) and (R.F.holes in R.G.holes)))

/

pred meetCR(R:RelationType){
one (R.F.geometry & R.G.geometry) and not disjointCR[R] and
not insideCR[R] not insideCR2[R] and not equalCR[R]

/
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pred containsCR(R:RelationType){
insideCR2[R]
/

pred equal CR(R:RelationType){
(R.F.geometry=R.G.geometry) and (R.F.holes=R.G.holes)

/

pred coversCR(R:RelationType){

insideCR2[R] and meetCR[R] and #(F.geometry & G.geometry) = 1
/

pred coversCR2(R:RelationType){

insideCR[R] and meetCR[R] and #(F.geometry & G.geometry) = 1

/

pred coveredbyCR(R:RelationType){
coversCR2[R]
/

pred overlapCR(R:RelationType, fuz:Fuzzy){
not (disjointCR[R] or meetCR[R] or insideCR[R] or containsCR[R] or
equalCR[R] or coveredbyCR[R] or coversCR[R]) and ordF/gte[R.fuzzyDegree,fuz]

/

Some assertions and consistency checks are also necessary in order to show that the

definitions are correct:

// Spatial relation asserts

assert disjoinT{ //if disjoint not any other relation

all R:RelationType, fDegree:Fuzzy | disjointCR[R] =>
not (overlapCR[R,fDegree] or meetCR[R] or insideCR[R]
or containsCR[R] or equalCR[R] or coveredbyCR[R] or
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coversCR[R]) or
R.G.geometry in R.F.holes //a geometry may be inside the hole

check disjoinT

assert meeT{

all R:RelationType, fDegree: Fuzzyl meetCR[R] =>
not disjointCR[R] and not insideCR[R] and not equalCR[R] and
not coversCR[R] and not overlapCR[R,fDegree]

check meeT

assert insidE{

all R:RelationType, fDegree:Fuzzy | insideCR[R]=>

not (disjointCR[R] or meetCR[R] or coversCR[R] or

overlapCR[R,fDegree]) or (R.F.geometry in R.G.holes)

check insidE

assert coverS{

all R:RelationType, fDegree:Fuzzy | coversCR[R]=>

not (disjointCR[R] or overlapCR[R,fDegree]) and

insideCR2[R] and (G.holes in F.geometry)

check coverS

assert equal{

all R:RelationType, fDegree:Fuzzy | equal CR[R]=>
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not (disjointCR[R] or overlapCR[R,fDegree]) and
(R.G.geometry in R.F.geometry) and (R.F.holes in R.G.holes)

check equal

The full list of spatial assertions together with complete model in Alloy can be found
in Appendix B. So far the generic classes and related constraints, facts and

assertions are defined. The application specific classes extend the generic classes.

/application specific classes

Y

// City may have some routes crossing and have some weather object
sig City extends STObject{

route:set Route,

weather:some MetObject

/

sig Route{

parts: some LineSegment, //route has at least one LineSegment or more

//route may be one type or a mixed type. e.g. maritimeRoute or
// territoriolRoute + MaritimeRoute

rType:some RouteType,

// some parts may be clear some parts may be restricted so it has at least
// one status but may have more than one

rStatus:some RouteStatus,

// route crosses at least one City

cities:some City,
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// a set of vehicles use the route

vehicles:set Vehicle

/

//two consecutive line segments over a route should have one common point
//one's targetEnd equals other's sourceEnd
assert routeFact{
all R:Route, Isl,ls2:R.parts|
(Isl!=Is2 and ordL/eq[ordL/next[lsl],Is2])=>Isl.targetEnd= Is2.sourceEnd
/

check routeFact

// route type can ben maritime, territorial or aerial
abstract sig RouteType{}

one sig MaritimeRoute, TerritorialRoute, AerialRoute extends RouteType{}

// route may be clear, wavy (for maritime route) or restricted (for all types)
abstract sig RouteStatus{}

one sig Clear,Wavy,Restricted extends RouteStatus{}

sig Vehicle{
type:VehicleType,
status:VStatusType,

route:set Route

/

//route-vehicle relation at specific time
sig Journey extends Temporal{
route: Route,

vehicle: Vehicle,

/
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// 1-a journey has only one vehicle and one route

// 2-A vehicle is used on only one journey during the journey

assert JourneyFact{

all j1,j2:Journey, t:Temporall

isInstance(t,jl.beginTime,jl.endTime] and
isInstance[t,j2.beginTime,j2.endTime |=>

one jl.vehicle and one jl.route and one j2.vehicle and one j2.route and

jl.vehicle != j2.vehicle

/

check JourneyFact

sig Voyage extends Journey{} //ship journey
abstract sig VehicleType{}
one sig Ship, Bus, Train, Plane extends VehicleType(}

// a voyage has a MaritimeRoute and the vehicle running should be Ship
fact voyageFact{
all vyg:Voyagel

vyg.route.rType=MaritimeRoute and vyg.vehicle.type=Ship

// A vehicle may be on time, delayed or canceled
abstract sig VStatusType{}
one sig OnTime,Delayed,Canceled extends VStatusType{}

//if a journey's route is restricted vehicle is delayed or canceled
fact statusFact{
all j:Journey!

j.route.rStatus=Restricted=>

J.vehicle.status=Delayed or j.vehicle.status=Canceled
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// a meteorological object is a spatiotemporal object
sig MetObject extends STObject{
object:MeteorType,

degree:MeteorObjectDegree

/

// the types of metorological objects are enumerated here
abstract sig MeteorType{}
one sig Temperature, Pressure, Visibility, Wind, Wave, Cloude, Precipitation

extends MeteorType{}

// The strength of Meteorological object i

abstract sig MeteorObjectDegree extends Fuzzy{)

// Here a sample is given for visibility

one sig Visible, Misty, Foggy extends MeteorObjectDegree{}

// Another sample for precipitation

one sig Drizzle, Rainy, Snowy, Thunderstorm extends MeteorObjectDegree{}

// a meteorological measurement in a City includes a number of meteorological
objects

sig Measurement extends Temporal{

metobj:some MetObject,

city:lone City

/

// two spatiotemporal objects have overlap degrees

abstract sig OverlapDegree extends Fuzzy{}

//fuzzy overlapdegrees are enumerated

one sig Less, Moderate,High extends OverlapDegree{}
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//if city and meteorological object overlaps than the object is in the city's weather
fact weatherFact{
some M:MetObject, C:City, R:Overlap|

(R.F=M and R.G=C and overlapCR[R,High]) => M in C.weather

// As an example : if a city's weather has visibility and precipitation and
// their degrees are strong enough, then the route is restricted
fact routeStatusFact{
some M:MetObject, C:City, route:Routel
( (M.object=Visibility and M.degree=Foggy) or
(M.object =Precipitation and (M.degree=Snowy or
M.degree=Thunderstorm)) and

M in C.weather and C in route.cities)=>route.rStatus=Restricted

We finally run all check commands in Alloy and have no inconsistency:

Executing "Check disjoinT"
Solver=satdj Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20
0 vars. 0 primary vars. 0 clauses. 140ms.

No counterexample found. Assertion may be valid. Oms.

Executing "Check meeT"”
Solver=satdj Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20
0 vars. 0 primary vars. 0 clauses. 3Ims.

No counterexample found. Assertion may be valid. Oms.

Executing "Check insidE"
Solver=satdj Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20
O vars. 0 primary vars. 0 clauses. 31ms.

No counterexample found. Assertion may be valid. Oms.
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Executing "Check coverS"
Solver=satdj Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20
O vars. 0 primary vars. 0 clauses. 16ms.

No counterexample found. Assertion may be valid. Oms.

Executing "Check equal"
Solver=satdj Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20
O vars. 0 primary vars. 0 clauses. 15ms.

No counterexample found. Assertion may be valid. Oms.

Executing "Check routeFact"
Solver=satdj Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20
0 vars. 0 primary vars. 0 clauses. 16ms.

No counterexample found. Assertion may be valid. Oms.

Executing "Check JourneyFact"
Solver=satdj Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20
O vars. 0 primary vars. 0 clauses. 16ms.

No counterexample found. Assertion may be valid. Oms.

7 commands were executed. The results are:
#1: No counterexample found. disjoinT may be valid.
#2: No counterexample found. meeT may be valid.
#3: No counterexample found. insidE may be valid.
#4: No counterexample found. coverS may be valid.
#5: No counterexample found. equal. may be valid.
#6.: No counterexample found. routeFact may be valid.

#7: No counterexample found. JourneyFact may be valid.
These definitions and consistency checks in Alloy show that the model is sound and

can be transformed into a programming language. In the next section we present the

model in a UML notation.
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3.3 The Object Model

In Section 3.1 the object model is formalized using C-logic and verified using Alloy.
In this section this modeling approaches are visualized using UML. The object
model in Figure 9 consists of the objects and relationships between objects for the
generic part of our model. The second part in Figure 10 consists of meteorological

application specific objects and relations.

The “Temporal” class is extended by classes having temporal data. The temporal
class is made up of the “Time” class including beginning/end times and the type of
the time record (valid or transaction). The temporal dependency of a class is shown
by “T” on the upper right-hand side of the entities and the spatiotemporal
dependency by “ST”. This is one of the extensions to UML that we used for the

specific requirements of the fuzzy spatiotemporal application [58].

The Fuzzy class is an abstract class and provides range definitions, relevance values
and class-object membership values for other inheriting classes. The fuzzy
constructor, indicated by the tag U to the left-hand side of the name of the class, is
used to indicate the existence of class attributes having fuzzy values, such as the

degree of a spatial relation.

The SpatialBase is a super class for spatial classes. The membership attribute in
spatial classes stores a membership value to describe a proximity to a certain fixed
space. So, spatial objects may belong to a class fully (i.e. with a degree of 1) or
partially (i.e. with a membership degree between 0 and 1). As an extension to UML,
a fuzzy class constructor, indicated by a double-square placed on the upper-left hand
side of the spatial class, explicitly represents the fuzzy instances. The spatial classes
(Point, LineSegment and Region) have an aggregation relation in between which is
shown by a diamond symbol. The Point class is defined with a Coordinate which

includes x and y values in R’ and z as a third dimension represents the altitude value.
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Figure 9: A fuzzy spatiotemporal model
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Point, LineSegment and Region are parts of Geometry and a whole-part relation
exists with Geometry, in which the whole is aggregated by different kinds of parts.
The whole/part relation is indicated by a double diamond symbol. The STObject can
have some geometry with a set of holes, follow a trajectory and have a ser of
relations with other STObjects. A spatial relation between two STObjects can be
enumerated by eight topological relations (i.e. Disjoint, Meet, Inside ... etc.) defined

in Section 2.3.2.

Under the generic model, meteorological application classes (e.g. MetObject, Route,
Measurement, Vehicle and City) exist inheriting the STObject and Temporal and

LineSegment classes. The model is shown in Figure 10.

According to application model the classes and some relations or constraints
between them are defined. For example, a MetObject is aggregated by numerous
Measurement observed by meteorological stations in the cities. A City may be on the
way of some Routes used by Vehicles. A Route is formed by consecutive line
segments. There may be different route types such as Maritime, Territorial, Aerial,
etc. A route crossing the multiple cities may be also used by multiple vehicles. A
vehicle using a route in some temporal interval forms a Journey. A journey refers to
a route which may be a real one like a river, a railway, or a virtual route like the

route of a ferry (a Voyage) or a plane.

This modeling approach should satisfy most practical requirements for
spatiotemporal applications. For example, the changes of spatial and temporal
attributes are captured by collecting all the related Geometry and Temporal objects.

The relations between the objects are calculated dynamically.
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Figure 10: Meteorological application model
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The generic model and the object model using are finalized with example class
definitions in Java. We show a few typical class definitions since the other classes

can be created similarly.

public class Geometry{
Point p; //point reference
LineSegment [; //line reference
Region r; //polygon reference
Temporal temporal; //temporal reference
Fuzzy size;
/
public abstract class STObject extends Fuzzy{
Geometry gset []; //geometries
Geometry hset []; //holes
int ngset, nhset; //number of geometries and holes

Point tset []; //trajectory

public class City extends STObject{
String name;
int population;
HashSet<Measurement> measurements; //a set of measurements

Route route;

The Geometry class contains the references for the parts of the geometry (i.e. Point,
LineSegment and Region). The geometries, holes, position and time are some fields
of the STObject. Finally, the City definition which is a spatiotemporal object is
presented. The HashSet<Measurement> represents a set of elements (unordered

and not duplicated) of type Measurement.
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3.4 Coupling the Fuzzy Database with a Fuzzy Knowledge Base

In order to achieve an intelligent application, a knowledge base (KB) is integrated to
the object-oriented database. We utilize the Intelligent Fuzzy Object Oriented
Database (IFOOD) [25], which provides flexible and powerful querying
mechanisms for complex data and knowledge with uncertainty in both database and

knowledge base.

The knowledge base (KB) used in the IFOOD architecture includes rules and
intelligent objects having fuzzy attributes. In addition, it features a fuzzy inference
method used for deduction of fuzzy conclusions. It gets the rules and facts/objects as
input, tries to satisfy rules by comparing them with facts, and produces a conclusion

from the satisfied rules.

The IFOOD language is an object-oriented database language extended with
declarative rules to define predicates. We illustrate this with an example: sea traffic
is prohibited in the Istanbul Strait due to conditions of wind, visibility, and waves,
etc. In the knowledge base, the combination of rules and the objects attributes fire
the maritime lines are prohibited conclusion. The fuzzy rules are defined using

linguistic values as follows:

if city.visibility is badsight or underAverage
and city.wind is windy or gust

then city.route is restricted.

The rule given below exemplifies the fuzzy if-then rules utilized in the IFOOD

language formally.

defrule X.Status([prohibited],Y, Z,threshold ) > Route(X ), City(Y),
Y .visibility([badsight, underAverage], threshold ), Y wind ([windy, gust], threshold),
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where o.a(v, [ threshold,,g(a) | ) is an object term, where o is an object ID, a is an

object attribute, v is an attribute value, and threshold,,4(a) is the threshold level

defined for the attribute a. For more details of the IFOOD inference engine and

language the reader is referred to [25].
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CHAPTER 4

THE ARCHITECTURE OF THE SPATIOTEMPORAL
DATABASE APPLICATION

The architecture of the proposed environment for spatiotemporal data modeling is
illustrated in Figure 11. The FOOD system acts as a database server for data
management and the FKB system acts as a knowledge server for knowledge
management. Additionally, the fuzzy spatial predicates are determined by the fuzzy
spatial processor (FSP). The communication and interaction between the database
system, the knowledge base system and the fuzzy spatial processor is performed by
the bridge interface (BI). At the higher level, there is a single user interface that
provides a unified environment for both data and knowledge management and
allows users the capability of query processing independently from the physical

structure of the architecture.

Fuzzy processors are used to handle uncertainty at both the object-oriented database
component and the knowledge base component of the system. At the user interface
level, users are able to define objects and rules having uncertain properties and to
query the system with uncertain conditions. The definitions of uncertain types,
similarity relations, and membership functions are stored in the object-oriented

database.
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Figure 11: The architecture of the spatiotemporal database application

The FKB system processes rules taking fuzzy objects as input. We provide the
required facilities in the FKB system to access the definitions in the FOOD system.
For example, if the FKB system needs the similarity of two fuzzy terms of a special

domain, it gets this value via the fuzzy processor from the FOOD system.

The FSP module processes topological predicates between complex spatial objects
possibly with holes and fuzzy spatial objects. BI forwards the user request to FKB if
the query includes a topological predicate. FSP requests the spatial objects from

FOOD and finds the predicates and the degree of membership of the relation.

The BI component plays a coordinating role in query processing. It gets user queries,
analyzes them, sends requests to the database and/or to the knowledge base,
retrieves the results, and sends them up to the user interface. The algorithm, with

implementation steps, is as follows:
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Query Evaluation Algorithm:
Input: Query supplied by the user
Output: Retrieved objects
Get and Parse(query);
if query is nonspatial-query then
if query is crisp-query then
Send-to-OODB(crisp-query);
else
Send-to-OODB(fuzzy-query);
end if
if query includes knowledge-base predicate(s) then
Transfer-to-knowledge-base(satisfying-objects);
Start-inference-engine-evaluation;
Return(result);
end if
Get(satisfying-objects);
else
Send-to-OODB(spatial-query);
if query includes knowledge-base predicate(s)(rule) then
Transfer-to-knowledge-base(satisfying-objects),
Transfer-to-FSP(satisfying-objects);
Apply fuzzy spatial and/or complex spatial algorithm;
Start-inference-engine-evaluation;
Return(result);
else
Transfer-to-FSP (satisfying-objects);
Apply fuzzy spatial algorithm in Figure 16 and/or complex spatial
algorithm in Figure 14;
end if
end if
Submit-to-user (selected satisfying-objects);

Figure 12: Query evaluation algorithm
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CHAPTER 5

QUERY PROCESSING

In this chapter query processing mechanism is tested with various types of queries.

The following procedures are applied to resolve the query according to its type:

The basic query (crisp and non-spatial): This type of query asks for crisp
data that does not have a spatial dimension. The BI sends the parsed query
expression directly to OODB. The objects that meet the query condition

are sent back to the BI.

The fuzzy non-spatial query: This type of query asks for data that is fuzzy
but non-spatial and the BI, FKB, and OODB components are employed.
The objects retrieved by the BI are sent to the FKB component to check
whether they meet the fuzzy conditions. How these objects are checked is
illustrated in Section 5.1. Objects satisfying the conditions are sent back to

the BI.

The complex spatial query: Complex spatial objects and their relationships
are queried in this type of query. The BI, OODB and the FSP components
are employed to fetch query results. The user asks for the objects that have
topological relations (described in Section 2.2 and 2.4) with the objects

under inquiry. Section 5.2 illustrates this type of query.

The fuzzy spatiotemporal query: In this type query, the user asks for the
objects that meet the conditions of the predefined rules within a specified
time interval. The rules can be evaluated by an examination of topological
relations between fuzzy regions and fuzzy objects.  The fuzzy

spatiotemporal queries are illustrated in Section 5.3-5.5.
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5.1 Fuzzy Non-Spatial Query

The objects used in the example are listed in Table 2, and the similarity relation of

“cloud” is included in Table 2 and Table 3. The similarity relation of “temperature”

is already presented in Section 3.1.

Table 2: Sample records in database

ID | Object | Name | Temperature | Cloudiness Visibility DateTime
Cl| City | Istanbul Cool Cloudy Bad sight 01.01.2008
C2| City Edirne Moderate Partly cloudy | Under average | 01.01.2008
C3| City [zmit Cold Cloudy,closed Average 01.01.2008
Table 3: Similarity matrix of cloudiness attribute
Cloud Clear Partly Cloudy Closed
Clear 1.0 0.6 0 0

Partly cloudy 0.6 1.0 0.6 0.4

Cloudy 0 0.6 1.0 0.8

Closed 0 0.4 0.8 1.0
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Query: Retrieve the cool and partly cloudy cities on 01.01.2008.

This query is formulated as follows:

select X.cityname

Jrom city(X)

where X.temperature([cool],0.6) and X.cloud([ cloudy],0.8),
X.validtime(01.01.2008);

The query is evaluated as follows:

L

il.

1il.

The first predicate to evaluate in this query is X.temperature([cool],0.6).

Cl.temperature is cool, and Usimiiarin(cool,cool)=1.0. Therefore C1 satisfies the

temperature predicate.

C2.temperature is moderate, and Usimiiariry (cool,moderate)=0.6. Therefore C2

satisfies it.
C3.temperature is cold, and Usimiiariry (co0l,cold)=0.8. Therefore C3 satisfies it.
Then, the predicate X.cloud([cloudy],0.8) is evaluated.

Cl.cloud is cloudy, and ts simiariry (cloudy,cloudy)=1.0. Therefore C1 satisfies
the cloud predicate.

C2.cloud is partly cloudy, and Usimiirin(cloudy,partly cloudy)=0.6. Therefore
C2 does not satisfy it.

C3.cloud is cloudy or closed with
max{ Usimitariry(cloudy, cloudy), Usimitariry(cloudy,closed) }= max{1.0,0.8}=1.0.
Therefore C3 satisfies it.

As a result, the objects C1 and C3 satisfy the fuzzy query conditions

5.2 Complex Spatial Query

Figure 13 shows the maximum temperature regions (a) and the meteorological

events (b) as mapped by the Turkish Meteorological Office on 01.01.2008.
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Figure 13: Maximum temperature regions (a) and

meteorological events (b) on 01.01.2008.

The temperature regions are shown in different colors (e.g. cold parts by dark blue,
cool parts by green, moderate parts by orange and warm parts by red). Temperature
regions are visualized as complex spatial objects since they have multiple

components possibly with holes. The expected meteorological events are depicted
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with symbols and colors, e.g. rain (green drops), snow (blue stars), grey clouds,

black foggy areas and yellow patchy areas.

The spatial objects representing temperature regions and meteorological objects in
Figure 13 are inserted in the database as shown in Table 4. The temperature regions,
which are classified by their degrees (e.g. cool, cold, etc.), have different geometries
(e.g. Geoy, Geoy, etc.). According to the figure, Cold (dark blue) region has one

simple region (Geo;) and a hole (Hole). The cool regions (green) have four simple

regions forming Geo,, and none of them has a hole.

Table 4: Objects in the FOOD

Object | ObjType Degree Geometries Holes Valid Time
{cold, cool, {Hole,,
Met {Geo1, Geo,,
temperature | moderate, Null, 01.01.2008
Object Geos, Geoy}
warm} Null, Null}
Met
fog {foggy} {Geos} {Null} 01.01.2008
Object
Met {heavy, {Null,
Ssnow {Geog, Geoy} 01.01.2008
Object rainy } Null}
Met
rain {shower} {Geog} {Null} 01.01.2008
Object
{cloudy,
Met {Geoo, {Null,
cloud partly 01.01.2008
Object Geojp} Null}
cloudy
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Query: Retrieve the cold and foggy regions and the relation on 01.01.2008.

This query is formulated as follows:
select spatial_relation(X.geometry,Y.geometry)
Jrom MetObject(X), MetObject(Y)
where X.ObjType([temperature]) and Y.ObjType([fog]) and
X.degree([cold],0.8) and Y.degree([foggy],0.8)
and X.validtime(01.01.08) and Y.validtime(01.01.08);

In this query, the temperature objects having the attribute value cold, and the fog
objects having the foggy degree are fetched from FOOD to BI. The user supplies a
threshold value 0.8 for temperature degree, so “cool” regions are also fetched

since f ([cold ], [cold ]) =1.0and x; ([cold ], [cool]) =0.8). The simple topological

relation algorithm is applied for components with holes of complex regions. After
finding simple topological predicates, the complex topological relation algorithm is
applied to determine the final topological predicate. Note that we show only the
“disjoint” case in the algorithm in Figure 14 since it occupies much space and the

other cases are handled similarly, as explained in Section 2.4:

Complex Topological Relation algorithm:
Input: Simple regions of two complex regions
Output: Sequence of topological predicates that hold between each pair of simple

regions
1. STR « & //Simple Topological Relation
2. for each simple region of complex regions(F,G)

Fo < {Base geometry of F}
Gy < {Base geometry of G}

Figure 14: Complex topological predicate evaluation algorithm
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S« D //S is a set of Simple topological relations
if spatial_relation(Fy,Gy) = “disjoint” then
simple topological relation(STR) < "disjoint”;
else
Jori—1ton //Foreach hole of F
if spatial_relation(Gy, F;) = “inside” then
simple topological relation(STR) < "disjoint”;
end if
end for
Jor j<—1to m//For each hole of G
if spatial_relation(Fy,G;) = “inside” then
simple topological relation(STR) < "disjoint”;
end if
end for
end if
// If not disjoint do related calculations for other topological predicates
S « S U{STR};
end for

3. for each STR in S
if all STR are pairwise disjoint then
complex topological relation(CTR) < "Disjoint”;

end if

// If not disjoint do similar calculations for other complex topological

predicates
Disjoint | Meet | Inside | Equal |
CTR )
Covers | Coveredby | Contains | Overlap

end for

Figure 14: Complex topological predicate evaluation algorithm (cont’d)
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5.3 Fuzzy Spatiotemporal Query

In this example, fuzzy spatial relations are queried. In Figure 15, wave height (a)
and wind speed (b) for “Marmara Sea” are illustrated on 31.12.2007 15:00
Greenwich Mean Time (GMT) (between 40.0-41.4 North latitudes and 26-30 East

longitudes.

MARMARA SEA
Wave Height(m) Valid:31122007 1500GMT

20E 29.5E 30E

I
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Wave Height (meter)

(a)

MARMARA SEA
10 m Wind(kt) Valid:31122007 1500 GMT

20E  29.5E  30E

5 10 15 20 25 30 35 40 45 50
Wind Speed (knot)

(b)
Figure 15: Wave height (a) and wind speed (b) over Marmara Sea.
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Both meteorological events are represented as fuzzy spatial objects, in which the
central parts have the highest waves and strongest winds while the coastal areas
have lower waves and calmer wind conditions. The three lines, Line;, Line, and

Lines represent ferry routes between the ports.

Query: Retrieve the sea lines restricted for transportation due to wind and wave

conditions on 31.12. 2007.
This query is formulated as follows:

select X

Jrom Geo_line(X), MetObject(Y), MetObject(Z)

where X.LineType([SeaLine]) and Y.ObjType([Wave]) and
Z.0bjType([Wind]) and X.status([restricted], Y, Z, threshold_value),
X.validtime (31.12.2007);

In the query, the sea lines restricted for transportation are requested. In this case,

X.status([restricted],Y,Z,threshold) is a rule defined in the FKB as follows:

defrule X .Smtus([restricted ], Y,Z,threshold) >
Geo _ Line(X ), MetObject(Y ), MetObject(Z),
overlap(X .geometry,Y .geometry, threshold),
overlap(X .geometry, Z.geometry, threshold ),

The threshold value supplied by the user gives a limit for the restriction of the sea
line. Required objects (sea wind and wave height geometries) are fetched from the
OODB, and FSP calculates the fuzzy spatial relation (overlap in this case) between
the fuzzy regions wind and wave, and crisp ferry lines using the fuzzy topological

relation algorithm in Figure 16:
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Fuzzy Topological Relation algorithim (region vs. line):

Input: Two fuzzy object geometries

Output: The overlap degree of two objects

1. FuzzyRelation < 0
2. for each a — cut level region Rgi— R g+

if the line overlaps with Rgi — R 4iv; then
FuzzyRelation < FuzzyRelation + m(regionm)Xm(line)

end if
end for

3. Return FuzzyRelation

Figure 16: Fuzzy topological predicate evaluation algorithm

According to the meteorological forecast, the sea area is divided

into five o — cut levels (i=5) and the ferry lines overlap some of them (see Figure

15); the calculation details are presented in Table 5 and Table 6.

The results of the fuzzy spatial relation calculations are supplied to FKB for
inference. In FKB, a rule may be composed of more than one condition. Each
condition in a rule may have its own matching degree. Therefore, we compute an
overall matching degree. Here, we use the “min” operator for combining the degree
of matching of conjunction (AND) conditions and the “max” operator for combining

the degree of matching of disjunction (OR) conditions [47].

For example, considering the rule given for “restricted sea line” above, each term is

matched with a matching degree, as shown in Table 5 and Table 6, and the overall
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matching degree is calculated as in Table 7. According to the overall restriction
degrees in the third column, given the threshold value 0.7, “Line ;” and “Line , ”

will be restricted.

Table 5: Computing a fuzzy topological relation for a wavy region and ferry lines

a-cutlevels | z,,,,| miregion,, )X ,,.,,| miregion, )X 7,,,,| mlregion,, )
of wavy m(line,) m(line,) m(line,)
region

1.0-0.75 1 0.25 0 0.00 0 0.00
0.75-0.50 1 0.25 1 0.25 0 0.00
0.50-0.30 1 0.20 1 0.20 0 0.00
0.30-0.0 1 0.30 1 0.30 1 0.30
Toverp(R. L) 1.0 0.75 0.30

Table 6: Computing a fuzzy topological relation for a windy region and ferry lines

a-cutlevels | z,,,,| mlregion,, )X ,,,,,| miregion,, )X 7,,,,| mlregion, )
of windy m(line,) m(line,) m(line,)
region

1.0-0.65 1 0.35 1 0.35 0 0.00
0.65-0.30 1 0.35 1 0.35 0 0.00
0.30-0.20 1 0.10 1 0.10 1 0.10
0.20-0.0 0 0.00 1 0.20 1 0.20
Toverlap(R, L) 0.80 1.00 0.30
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Table 7: The overall fuzzy relation degrees

Degree of overlap of | Degree of overlap of | poyerai=Min(overlapyayy,
lines with wavy lines with windy overlapyindy)
Line 1 | 1.00 0.80 0.80
Line2 | 0.75 1.00 0.75
Line 3 | 0.30 0.30 0.30
5.4 Nested Rule Query

Due to the restrictions in the transportation lines, the vehicles’ trips are “cancelled”
or “delayed”. Following the example in Section 5.3, we find the “delayed” vehicles

for the same date.
Query: Retrieve delayed ferries on 31.12.2007.
This query is formulated as follows:
select X
Jrom Vehicle(X), MetObject(Y), MetObject(Z), Geo_Line(L)
where X.Type([Ferry]) and X.GetLine()=L and
X.status([delayed],Y,Z,L,threshold_value) and X.validtime (31.12.2007);

The rule is defined in FKB as follows:

defrule X .Status([delayed ], Y,Z, L,threshold ) > Vehicle(X ), MetObject(Y),
MetObject(Z),Geo _ Line(L), L.Status([restricted ], Y,Z,threshold),

This rule is a nested rule as it fires another rule (Y.status[restricted],threshold), as

described in Section 5.3.
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5.5 Fuzzy Spatiotemporal Query

In Figure 17, the meteorological objects for an interval are presented. According to
the figures the rainy areas (green drops) move to the east while decreasing in
effective size. On the other hand the cloudy areas move to the west while increasing

in effective size.

01.01.2005

: Ty [t | :
A f&l |

L ok
Za BT BN
Xl [ - o
A S
B . 02.01,2008

(b)

Figure 17: Meteorological objects on 01.01.2008 (a) and 02.01.2008 (b)
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Query: Retrieve the area, direction and speed changes of meteorological events in
terms of position and effect area between 01.01.2008 and 02.01.2008 .
In the query, the directional, positional and areal changes of the objects are queried

and the algorithm in Figure 18 is applied.

Fuzzy Spatiotemporal Query algorithm:
Input: A pair of geometries for a time interval
Output: Area, direction and speed change
1. for each chronon; (i=0 to n)
for each object in the chronon
TotalArea; <0
for each component of the object’s geometry
TotalArea; < TotalArea; + component’s area (CA)
end for
for each component of the object’s geometry
Get the minimum bounding rectangle(MBR)
Get the center (x,y) of the MBR
Object center (X,Y); < Weighted average of (x,y)’s
end for
end for
end for

2. for each pair of center points (X, Y);
Distance; < Sqri(Yi-Yi.1 ' +(Xi-Xi.1)*)
Speed; < Distance; /(choronon; — choronon ;_;)
Direction; < (Y-Yi  )/(Xi-Xi.1)
AreaChange; < TotalArea; - TotalArea;.;
end for

Figure 18: The algorithm to evaluate area, speed and direction change
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In order to illustrate how the algorithm works, the rain object’s spatial attribute
changes are shown in Figure 19. This complex object is made of three parts on the
first day (on the left) and four parts on the second day (on the right). The MBRs,
central points for each part and the areas are depicted in the figure. A central point
for the whole object on both days is calculated, using a weighted average
considering the proportional area of each part:

CenterX = Zn: A XX,

P

CenterY = Z A, Xy, where (23)

i=1

0< A, <1 and ZAi =land A, = Area, | Total area

i=1

Area:2700 ry
5| 3 L—ﬁ*
e LA 210,30
&) .
Area:2100
Area:5204
ea {H:I
(57,32) 5
o _ (4.34q35
|1~ =l
Area:522 (112.82) Area=1100

ﬂ} (228,103)

. -
Area:825 T
T -131

Area—4788

(b)

Figure 19: Rain object movement on 01.01.2008 (a) and 02.01.2008 (b)
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The approximated centre points for the complex object (e.g. at coordinates of (91,
77) and (228,103)) are used to calculate the directional change and the speed of the
object. The summation of the areas of each part shows the change (growth or

decrease) in the object’s effect area.
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CHAPTER 6

FUZZY SPATIAL/ASPATIAL INDEXING

In this chapter, the adaption of an index structure from R*-tree for fuzzy spatial and
aspatial data is explained. This new tree is called Enhanced R*-tree throughout our
work. We present the logical structure of enhanced R*-tree and visualize it with
meteorological data. Enhanced R*-tree is very flexible so that any data in the leaves

can be indexed and the indexed attributes are fuzzified in upper levels.

6.1 Enhanced R*-Tree

R*-tree is a variant of R-tree family that uses rectangles to organize spatial data.
While the directory nodes hold the organizing rectangles, the leaf nodes hold the
data itself. R*-tree introduces a forced reinsert policy which means that whenever a
node overflows it is not split right away but firstly p entries are removed and

reinserted into the tree.

The structure of Enhanced R*-tree is depicted in Figure 20. It basically shows three
parts in the tree: the root of the tree, the directory nodes and the data nodes. The

fields in the figure can be summarized as follows:

R*-tree: This node is the header of the whole Enhanced R*-tree and includes some
statistical data about the tree.

num_of_data: Number of stored data

num_of_dnodes: Number of data nodes

num_of_inodes: Number of directory nodes
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root_is_data: Shows if the root is a data node

root_ptr: Pointer to the root node

ER*-tree
num_of data | num of dnodes | num of inodes | root is data | root ptr

Directory Node

son_is_data level num_entries fuzzy_index[]‘ DirEntry[0] | ‘ DirEntry[capacity-1] |
Data Node
| level | num_entries ‘ fuzzy index(] | Data[0] | Data[1] | | Data[capacity-1] |

Figure 20: The structure of Enhanced R*-tree

Directory Node: Directory node implements the intermediate nodes in the tree. This
is where the organizing rectangles (MBR) are stored. The members of a directory

node are as follows:

son_is_data: Shows whether the son is a data node

level: the level of the directory node in the tree

num_entries: number of directory entries in the directory node

fuzzy_index[]: An array of fuzzy indexing values for the underlying nodes. Assume
that there are n attributes of each data record. Then i™ attribute is stored in the
following indices:

Low value of the attribute: fuzzy_index[2*i-2]

High value of the attribute: fuzzy_index[2*i-1], where 1 <i <n
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For example in our application eight attributes are stored in the following indices:

0-1: Direction of station’s location in 360°.
2-3: Altitude of the stations low and high value
4-5: Temperature low and high value

6-7: Humidity low and high value

8-9: Pressure low and high value

10-11: Precipitation low and high value

12-13: Wind Direction low and high value
14-15: Wind Speed low and high value

DirEntry []: Array of directory entries which has a pointer to another directory or
data node. Directory entries also hold a rectangle which covers all rectangles under
this directory node. The rectangle indexes the underlying nodes spatially. The
capacity of the directory node is calculated with the size of Enhanced R*-tree block

size divided by the size of each directory entry.

Data Node: Data node implements the leaf nodes in the tree. This is where the data

objects are stored. The members of the data node are as follows:

level: the level of the data node in the tree

num_entries: number of data objects in the data node

fuzzy_ index[]: An array of fuzzy indexing values for the object’s attribute values.
These attributes are same ones which are explained in directory node. The fuzzy
index of data node holds the low and high range values for the data objects’
attributes whereas in the directory nodes these are the range values for the whole
nodes underlying. As the level of the directory nodes increase the range gets bigger
and bigger. In the root directory node the fuzzy index stores the full range values for

the whole tree.
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Data []: Array of Data objects which has spatial location and other meteorological
attribute values. The attributes in Data object are stored in the following indices:
0-3: Location — {(x1, y1)-(X2, y2)}

4: Altitude

5: Date Time

6: Station Number

7: Temperature

8: Humidity

9: Pressure

10: Precipitation

11: Wind Direction

12: Wind Speed

6.2 Building the Enhanced R*-Tree

An enhanced R*-tree is built in two steps: First the primary index is built based on
minimum bounding rectangles and then secondary index is built based on the
attributes of the objects. The creation algorithm shows how the primary and

secondary indexes are built in Figure 21.

Algorithm for Enhanced R*-tree Creation
Input: Input data file
Output: Enhanced R*-tree

While Not EOF (input data file)
Read a line

Parse MBR and other attributes

Figure 21: Enhanced R*-tree insertion algorithm
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Create Data Object
Insert into tree recursively starting from the root pointer
Get corresponding son
Insert into son
If data node capacity is full
Calculate the center of the node
Sort the entries by the distance to the center
Copy the nearest %70 entries to new node
Reinsert the last %30 entries
Else if reinsert is applied then
Split the node
End if
If Split happens in the son then
Create a new entry to hold the new son
Insert this entry to directory node
End if
If directory node splits then
Split the directory node
End if
End While
Build secondary index
For each entry in the node
Get son
If the son is directory node then

Build secondary index for the son

Figure 21: Enhanced R*-tree insertion algorithm (cont’d)
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Else
For each attribute of Data objects
If the attribute is less than minimum range in secondary index
Set the minimum of index range
End if
If the attribute is bigger than max range in secondary index
Set the maximum of index range
End if
End For
End if
Set the minimum value of the corresponding attribute in secondary index
Set the max value of the corresponding attribute in secondary index

End For

Figure 21: Enhanced R*-tree insertion algorithm (cont’d)

6.3 The Visualization of Enhanced R*-Tree

The structure of the Enhanced R*-tree is visualized with meteorological data.
Turkey’s meteorological measurements data between 30.12.2007 00:00 and
01.01.2008 21:00 in Table8 are read from a text file and inserted into the tree. The

text file has the following fields:

FO: Longitude of the meteorological station
F1: Latitude of the meteorological station
F2: Altitude of the meteorological station

F3: Date Time (yyyymmddhh)
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F4: Station Number, an international unique code given to each meteorological
station. The first two digits are for the country code and the rest is the station
number.

F5: Temperature in Celsius

F6: Humidity as percentage

F7: Pressure in milibar

F8: Precipitation Hour

F9: Wind direction in 360° scale

F10: Wind Speed in knots

Table 8: The text file structure for meteorological data

FO F1 | F2 F3 F4 FS |F6| F7 |F8| F9 |F10

41,11 | 31,48 | 248 | 2007123000 | 17018 | -4,70 | 97 | NULL | 1 0 0

41,38 | 32,20 | 189 | 2007123000 | 17020 | 1,80 | 94 | 1029 | 1 | O 0

41,27 | 31,48 | 118 | 2007123000 | 17022 | 3,30 | 72 | 1029 | 1 | 140 | 15

In Figure 22 the Enhanced R*-tree is depicted. There are three levels in the tree. The
smallest rectangles at level 3 show the data nodes. At level 2 and level 1 the
directory nodes group smallest rectangles. The logical structure of the Enhanced R*-
tree is seen in Figure 23. The details of the tree in general are presented in the header
of the tree:

®  Number of data:1059

®  Number of data nodes: 116

®  Number of internal (or directory) nodes:7

e Pointer to the first node
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Figure 22: Enhanced R*-tree visualization

For the first directory node, the details are presented as follows:

the kind of son node (i.e. data or directory node): false

e the level of the directory node:2

¢ number of entries in the node:6

e a fuzzy index array which shows the range values for spatial and aspatial
attributes in all data nodes which can be accessed through this directory
node. The values in the array indicate the range values in the following

order:

o lowest value for orientation of the meteorological stations under this
node in 360°: 2°

o highest value for orientation of the meteorological stations under this
node in 360°: 355°

o lowest altitude value of the meteorological stations under this node:

o highest altitude value of the meteorological stations under this node:
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R*-tree

num_of data num_of dnodes num_of inodes root_ptr
1059 116 7 —
Directory Node
son is_data false
level 2
num_entries 6

fuzzy index|[]

{2,355.0.1822.-16.7.17.16,99.990.1053,1.2,0.360,0,51} |

DirEntry[0] | (100.243)-(265.339)
DitEntry[1] | (265.339)-(419.453)
DitEntry[2] | (252.324)-(278.360)
DitEntrv[3] | (427.921)-(239.559)
DitEntry[4] | (122.244)-(350.495)
DitEntry[5] | (253.330)-(354.513) e

Directory Node

son is_data true
level 1
num_entries 19

fuzzy index|[]

{172.210,0,350.-9.8,17.16,90,990.1030,1.2,0.360,5.36} |

DirEntry[0]
DitEntry[18] | (311.324)-(485.502) ok
Data Node
level 0
num_entries 9

fuzzy index|[]

{208.209.20,100, 3.5.16,18,85.1021,1022.1,2.0.350,5.15}

Data[0]

Da\.r;[ﬁ]

(314.324)-(485.493)

2007-12-30 00:00, 52, 17302.6.8.36.1022.1.0.5} |

Figure 23: Enhanced R*-tree nodes
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O

O

minimum temperature value measured by the stations under this
node: -16.7

maximum temperature value measured by the stations under this
node:17

minimum humidity value measured by the stations under this node:16
maximum humidity value measured by the stations under this
node:99

minimum pressure value measured by the stations under this
node:990

maximum pressure value measured by the stations under this
node:1030

The shortest duration of precipitation in hour:1

The longest duration of precipitation in hour:2

The minimum angle of wind direction in 360° scale: 0°

The maximum angle of wind direction in 360° scale: 360°

The calmest wind speed value in knots : 0

The strongest wind speed value in knots : 51

An array of directory entries under this node, each of which specifies a

bounding rectangle and a pointer to the underlying node whether directory or

data node. The bounding rectangle is the minimum one which can cover all

objects underlying.

For some data node the details are presented as follows:

the level of the data node : O

number of entries in the node : 9

a fuzzy index array which shows the range values for spatial and aspatial

attributes in the data nodes. The order of the values in the array is the same

as directory node but here it shows the range values for the data node,

An array of data objects with some attributes. Data[8] is given as an example

in Figure 23 with the following attributes:

O

Bounding rectangle borders
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o Altitude

o Valid time

o Station number

o Temperature

o Humidity

o Pressure

o Precipitation duration in hour
o Wind direction

o Wind speed

6.4 Querying the Enhanced R*-Tree

In this section the working of Enhanced R*-tree is shown for various kinds of query
types. The query types can be spatial, aspatial which may include fuzzy or crisp data

and a combination of these.

6.4.1 Crisp Aspatial Queries

Crisp and aspatial input parameter is used to fetch the object by means of Enhanced
R*-tree. For example:

Retrieve the measurements which have 5 °C temperatures.

An algorithm is presented to show the working of Enhanced R*-tree in Figure 24.
The nodes of the Enhanced R*-tree is searched for the input parameter. In our
example it is the temperature attribute and 5 °C. Whether the searched node is
directory or data node the fuzzy index is checked for the aspatial attributes. The
indices values are four for low temperature and five for the high temperature. So
fuzzy_index{4] and fuzzy_index[5] are checked and if the input is between those
ranges than the node satisfies. If the node is directory node each sub-tree under the

node is searched recursively, otherwise this should be a data node. In that case the
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data entries are checked and this time we search for the exactly matching entries. If

any data entry satisfies the object is retrieved.

Crisp Aspatial Query Algorithm for Enhanced R*-tree:
Input: Enhanced R*-tree, aspatial parameter value

Output: The objects having exact aspatial value
For each Enhanced R*-tree node
Check the low and high value for input parameter in the fuzzy index
If the input parameter is between the low and high value
If the node is a directory node
for each directory entry in R*-tree directory node
Search the nodes pointed by directory entry
end for
else if the node is a data node
Jor each Data entry in R*-tree data node
if the Data entry’s related attribute equals input parameter
Get the object
end if
end for
end if
end if
end for

Figure 24: Crisp Aspatial Query Algorithm in Enhanced R*-tree
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Crisp Spatial Query Algorithm for Enhanced R*-tree:

Input: Enhanced R*-tree, spatial parameter value

Output: The objects having exact spatial value

For each Enhanced R*-tree node
If the input parameter is related to the MBR of the tree &&
the input rectangle intersects (inside, overlap) the MBR of the node
If the node is a directory node
Jor each directory entry in R*-tree directory node
Search the nodes pointed by directory entry
end for
else if the node is a data node
Jor each Data entry in R*-tree data node
if the Data entry’s rectangle inside the input parameter
Get the object
end if
end for
end if
else if the input parameter is related to the fuzzy index &&
the input parameter is between the low and high value
/fuzzy index[0-1] for direction and fuzzy_index[2-3] for altitude

Search sub-tree for the directory nodes or get the objects as in the if part

of this else if block
end if
end for

Figure 25: Crisp Spatial Query Algorithm in Enhanced R*-tree
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6.4.2 Crisp Spatial Queries

In this type of query, crisp spatial input parameter is used to find the objects. For

example:

-Fetch objects in given (x,y1)-(x2-y2) rectangular range
-Fetch objects at 270 °degree of orientation

-Fetch object at 1500 meters of altitude

An algorithm is presented to show the working of Enhanced R*-tree in Figure 25.
The primary indexing attribute in the Enhanced R*-tree is the MBR of the nodes. So
if the input is a range specified by a rectangle then the MBR of the nodes are used.
But if the input parameter is related to other spatial parameters such as orientation or
altitude then the secondary fuzzy index is searched (i.e. fuzzy_index[0-1] for
orientation and fuzzy_index[2-3] for altitude). If the node is directory node each sub-
tree under the node is searched recursively, otherwise the data entries are checked

and if any data entry satisfies the object is retrieved.

6.4.3 Fuzzy Spatial/Aspatial Queries

Fuzzy spatial or aspatial parameters are input of this query type. Some examples are

given here:
-Retrieve the measurements which have warmer than 5 °C temperature,
-Get the N - NW oriented objects,

-Find the cities higher than 1000 meters.

An algorithm is presented to show the working of Enhanced R*-tree for three fuzzy

spatial and/or aspatial criteria in Figure 26.
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Fuzzy Spatial/Aspatial Query Algorithm for Enhanced R*-tree:

Input: Enhanced R*-tree, fuzzy spatial/aspatial parameters combination
(temperature, orientation ,altitude)

Output: The objects satisfying all three criteria

For each Enhanced R*-tree node
Check the low, high value for input parameter; (>5 °C )in the fuzzy index
Check the input parameters, orientation (N-NW range) values of fuzzy index

Check the input parameters, altitude low, high value (>1000 m) values of

fuzzy index
If all criteria is between the ranges
If the node is a directory node
Jor each directory entry in R*-tree directory node
Search the nodes pointed by directory entry
end for
else if the node is a data node
Jor each Data entry in R*-tree data node
if the Data entry’s related attributes satisfies input parameters
Get the object
end if
end for
end if
end if
end for

Figure 26: Fuzzy Spatial/Aspatial Query Algorithm in Enhanced R*-tree
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The input parameters are related to fuzzy index. fuzzy_index[0-1] for orientation and
SJuzzy_index[2-3] for altitude and fuzzy_index[4-5] for temperature are checked for
directory nodes and data nodes. If the node is directory node each sub-tree under the
node is searched recursively, otherwise the data entries are checked and if any data

entry satisfies the object is retrieved.
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CHAPTER 7

IMPLEMENTATION AND PERFORMANCE
EVALUATION

In Chapter 5, we implemented the proof-of-concept type queries and verified that
the application runs smoothly. It is an integrated environment that the objects are
stored and fetched from an object oriented database whereas the knowledge base

applies some rules whenever necessary and the user interface runs as a coordinator.

After the proof-of-concept type work, we believe that it is necessary to validate the
application with real data. In meteorology application there is excessive spatial data
so also an index structure adaption would be useful in querying. In the previous
work [45] several spatial index structures have been adapted and compared. In this
work, we adapt one of them, R*-tree into the spatiotemporal application and

scalability of the application is tested as the number of records grows.

7.1 Implementation

The application is developed in Java using NetBeans IDE 6.5. The other components
of the implementation environment are

e dbdo 6.4 [51] for object database, which is an open source database engine,

® jess.jar [39], a rule engine for java platform

e Enhanced R*-tree [22], a spatial index structure
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The application runs on a notebook computer with Intel Core Duo CPU T9400, 2.53
GHz, 4 GB RAM.

7.2 An Object Oriented Database, Db40

Db40 is an open source object database that enables to store and retrieve any
application object by predefined database libraries. For example, an object is firstly

created in Java and then stored in the database with set command:

db.set(<savedObject>), where
db = Db4o.openFile(<databaseName> ),

The stored objects are fetched from database by the get command:

db.get(<getObject>);

The objects in Db40O are visualized by ObjectManager tool. The objects can be
inquired and the whole object hierarchy can be seen. In Figure 27, the stored objects
like ST_Object with attributes can be seen on the left part of the screen. The other
parts of the tool are the upper part for querying and the middle part where the results

of the queries and some statistics can be seen.

7.3 The Rule Engine, Jess

Jess is a rule engine developed in Java language. By using the knowledge supplied
in the form of declarative rules, Jess is able to inference some results. It’s scripting
language allows to access to Java’s APIs so one can create Java objects, call Java
methods and implement Java interfaces. An example for the declarative rules is

given in Figure 28.
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'3 ObjectManager 6.4.14.8131 - D\NetBeansProjects\STMI\meteor.yap s

Eile  Manage Help

[:3“ Query history... ']
FROM 'rstartree,ST_Object’

Query: Submit

f’ﬁl Home x @ Class: rstartree.ST_Object‘(a Query 1\

= 4 ULy =
@ rstartree Observation il rConnected to dbdo Datab.
@ rstartree.5T_Geometry
@ rstartreeST Line File: DyNetBeansProjects\STMIymeteoryap
BBy e o —
B gset iz =
W Hzer B Size: 276504 bytes
B ngset
@ nhset Stored Classes
: Eh‘jrsel::;ld = Class Objects
it ava.awt.geom.Path2D
@ time ava.awt.geom.Path2D$Float
@ objMemship ava.awt.geom.Point2D
& rstartree.ST_Point ava.awt.geom.Point2D$0ouble
@ rstartree ST Polygen - ava.awt.geom.Rectangle2D
{] [T

Figure 27: Database visualization by ObjectManager tool

The rule defines the geographic line’s status. FSP module which is a Java module is
called from FKB. So it is defined at the beginning. In the section before the double
arrow the prerequisites are written. So any GeoLine object which is put into the
queue of the FKB should satisfy some constraints. LineType should not be null and
be SeaLine. It should have an attribute as threshold. The obj refers to the object as
the final parameter.

The right side of the double arrow is applied to the objects which satisfy the
prerequisites. The geographic line’s topological relation with wave and wind objects
is checked. If any of them is above threshold value then the line status is set to

“Restricted’ otherwise to “Clear”.
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defglobal ?*fp* = (new Fsp))

(defrule geolinestatus

?pl <- (GeoLine
(lineType 2IT&:(and (neq ?IT nil) (eq ?IT "SeaLine")))
(threshold ?th)

(OBJECT ?0bj))
=>

wavy"))
(bind ?result? (call ?*fp* FuzzyRelation ?obj "wind" "windy"))

(bind ?result (call ?*fp* FuzzyRelation ?0bj "wave

(bind ?minresult (min ?result ?result2))
(if (> ?minresult ?th) then
(call ?0bj setlineStatus "restricted")

)
(if (< ?minresult ?th) then

(call ?0bj setlineStatus "clear")

)

(call ?0bj setOverlap ?minresult)

Figure 28: An example of rules

7.4 Crisp Queries

The crisp queries are basic spatial queries. They do not include fuzzy or semantic
input nor require knowledge base processing but they are used by fuzzy/semantic

queries.
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In the next sections, the crisp queries are described by the details of input screens,
implementation algorithms and the output screens. The crisp queries which are
supported by the application are as follows:

¢ Point query

® Range query

e Circle query

¢ Ring query

e K™ Nearest Neighbor (kNN) query

7.4.1 Point Query

Point query fetches all objects at a specific point which is an input data by the user
in the form of (x, y) coordinate. In the example, the user asks all objects located at
(x=220, y=440) coordinate. The user interface gets the input coordinates and the

bridge as a coordinator applies the point query algorithm in Figure 30.

x

Enter coordinates of the point:

220

440

Dkl Cancel |

Figure 29: Point query input screen
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Point Query Algorithm:
Input: R*-tree, a point data located at (x, y)

Output: The objects which are located at the input location

1. Create a point from input coordinates, P« (X,Y)
2. Create an empty result list res
3. Search R*-tree nodes
If the node is a directory node
for each directory entry in R*-tree directory node
if the point P is inside of the directory node DN
search sub-tree of DN
end if
end for
else if the node is a data node
for each entry in R*-tree data node
if the point P is inside the data objects’ points
call fetch utility of object database
insert into res
end if
end for
end if
4. call drawPoint

5. display output objects

Figure 30: Point query algorithm
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Firstly a reference point, P is created at (x, y). Then, an empty list res for holding the
resulting objects is created. The search subroutine of the R*-tree is called with these
two parameters. The directory nodes are checked for whether the bounding
rectangles contain the reference point. If so the sub tree which is covered by the
directory entry is searched recursively. The algorithm reaches to a data node if the
point is inside the directory entries. The data object coordinates and reference point
are checked one by one and the matching objects are fetched from object database
by the fetch utility to append to the result list. The objects in the result list are
mapped in Figure 31.

B Query: Point - 220, 440 #PA=3 ] -1o] x|

retartree. Datai[217.1531 2271531 4304515 4494515 7123012.0 17860.0 11.9 240 1021.0 1.0 100.0 10.0
retartree. Datai[217.1531 227 1531 4304515 449 4515 7123006.0 17860.0 -0.5 77.0 10240 2.0 60.0 5.0])
retartree. Data:[217.1531 2271531 4304515 449.4515 7122000.0 17860.0 1.8 68.0 10240 1.0 80.0 1001}

[« | Bl

e e o TE [
T L R

rstartree. SortedLinList] -
retartree.Data:[217.1531 227.1531 438.4515 449.4515 T123018.0 17860.0 1.6 84.0 9999.0 2.0 350.0 5.0}

THoE pn R 2 . ;
ZEEEE—EE 1‘ I | O
3 B %Eﬁh BN 4T
1

Figure 31: Point query results.

In Figure 31 the reference point is mapped by the red colored circle. The data

objects at leaf level which intersects the reference point is also shown at the same
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point in red. The spatial representation is detailed in a separate window above. The
attributes of the objects in the result list are presented. The details are coordinates of

the object, date time, station number, and meteorological parameters.

7.4.2 Range Query

The range query searches for the objects in a spatial range between (x;, y;) and

(X2,y2) which is an input data.

x|
Enter coordinates of the range:
200

300
400
200

Dkl Cancel |

Figure 32: Range query input screen

In Figure 32, the user enters a range between (x;=200, y;=300) and (x,=400,

y>=500). The UI gets the input coordinates and the bridge fetches the spatial objects
from OODB by using the following algorithm:
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Range Query algorithm:

Input: R*-tree, a spatial range defined by a rectangle (x;, y;) and (x2, y2)

Output: The objects which are covered by the range

1. Create a rectangle from input coordinates, MBR < (xj, y1,X2, ¥2,)
2. Create an empty result list res
3. Search objects in the input range
If the node is a directory node
for each entry in R*-tree directory node

if the spatial relation between directory entry bounds and MBR is
INSIDE or OVERLAP

search sub-tree of directory entry
end if
end for
else if the node is a data node
for each entry in R*-tree data node
if the object’s geometry and MBR intersects
call fetch utility of object database
insert into res
end if
end for
end if
4. call drawRange

5. display output objects

Figure 33: Range query algorithm
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In the first step of the range query algorithm a rectangle is created from the input
data. Then, an empty list res for holding the resulting objects is created. The range
search subroutine of the R*-tree is called. The directory nodes are checked for
whether the bounding rectangles inside of or overlap with the input range. If so the
sub tree which is covered by the directory entry is searched recursively. If the
algorithm reaches a data node the data object coordinates and input range are
checked for overlap or inside relation. The matching objects’ details are fetched
from object database by the fetch utility and appended to the result list. The objects

in the result list are mapped in Figure 34.

|au OAric Sarnms Crrmantis Taars
ol x]
rstartree. SofedLinList( =
rstartree. Data:[276.3582 286.3552 4588.5521 498.5521 7123018.0 17952.0 2.8 56.0 9998.0 2.0 0.0 5.0}

rstartree. Data[226.3628 236.3628 4827493 4027493 7123018.0 17924.0 6.1 98.0 1020.0 2.0 90.0 0.0}
rstartree. Data:[211.89044 221.80044 406.42023 41642023 7123018.0 17897.0 4.9 79.0 9999.0 2.0 40.0 10.0])
rstartree. Data:[272.4112 282.4112 45552078 465.52078 7123018.0 17892.0 -1.9 59.0 9999.0 2.0 160.0 0.0}
rstartree.Data[265.3943 275.3043 46043085 470.42085 7123018.0 17891.0 0.0 9999.0 9999.0 2.0 250.0
rstartree Data:[261.00873 271.008732 452.8426 462.8426 7123018.0 17890.0 -0.9 6.0 9999.0 2.0 50.0 0.0]
rstartree.Data[211.89044 221.80044 454 62805 464 62805 7123018.0 17886.0 3.7 75.0 99990206000
rstartree. Data[254.43039 264 4304 443 46584 453.406884 7123018.0 17861.0 3.262.09999.02.000 5.
rstartree Data[217.1531 227.1531 439.4515 4494515 7123018.0 17860.0 1.6 84.0 9999.0 2.0 350.0 5.0
rstartree. Data[253.09184 263.00182 44882526 458 82526 7123018.0 17857.0 3.6 41.0 9299.0 2.0 80.0 5.00)
rstartree Data:[269.77985 279.77085 441.68335 451.68225 7123018.0 17855.0 0.1 60.0 9299.0 2.0 50.0 5.07)
rstartree. Data[212.320 222 320 440 34427 450.34427 7123018.0 17850.0 2.9 80.0 1022.0 2.0 160.0 0.0}
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Figure 34: Range query result
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The input range is drawn as a red colored bigger rectangle in Figure 33. The objects
inside the input range at leaf level are also shown by red color. The object details are
presented in a separate window above the screen. The details are coordinates of the

object, date time, station number, and meteorological parameters.

7.4.3 Circle Query

A circle is defined with two parameters, the centre and the radius. The parameters

are entered in Ul by the input screen in Figure 35:

X
Enter coordinates of the circle center:
400

420

Enter value of the circle radius:
30

Dkl Cancel |

Figure 35: Circle query input screen

The user enters a circle center at (x=400, y=420) with radius 30. The UI gets the
input and the bridge fetches the spatial objects which reside inside the reference

circle from OODB by using the following algorithm:
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Circle Query algorithm:

Input: R*-tree, circle parameters center and radius

Output: The objects which reside inside the circle

1. Create a circle from input coordinates and the radius, Circle < (x, y,r)
2. Create an empty result list res
3. Search objects in the circular area
If the node is a directory node
for each directory entry in R*-tree directory node
if directory entry bounds and circle area intersects
search sub-tree of directory entry
end if
end for
else if the node is a data node
for each entry in R*-tree data node
if the object’s geometry and Circle intersects
call fetch utility of object database
insert into res
end if
end for
end if
4. call drawCircle

5. display output objects

Figure 36: Circle query algorithm
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Circle query algorithm creates a reference circle from the center coordinates and
radius. The circular area search subroutine of the R*-tree is called with circle and
output list res parameters. The directory nodes are checked for whether the
bounding rectangles intersect with the circle. If so the sub tree which is covered by
the directory entry is searched recursively. If the algorithm reaches a data node the
data objects which reside in the circular area are fetched from database and

appended to the result list. The objects in the result list are mapped in Figure 37.

=loix]
rstartree. SortedLinList] =
rstartree. Data:[396.52258 406.52258 440.79062 450.78062 7123018.0 17245.0-2.272.0 9999.0 2.0 250.0 0.0

rstartree.Data:[408.80215 415.80215 401.95654 411.95654 7123018.0 17191.0-5.079.0 9999.0 2.0 310.0 5.0
rstartree. Data:[396.52258 406.52258 440.79062 45079062 7123012.0 17245.01.8 51.0 9999.0 1.0 80.0 10.0°
rstartree. Data:[408.80215 41880215 401.95654 411.95654 7123012.017191.0 2.7 52.0 9999.0 1.0 90.0 5.0}
rstartree. Data:[396.52258 406.52258 440.79062 45079062 7123006.0 17245.0-6.077.09999.0 20 2700 0.
rstartree. Data:[408.80215 418.80215 401.95654 411.95654 7123006.0 17191.0-8.988.09999.0 2.0 2500 5.
rstartree. Data:[396.52258 406.52258 440.79062 45079062 7123000.0 17245.0-5.578.01030.0 1.0 3200 0.C
rfllanree.Data:I4DS.BD215 41880215 401.95654 411.95654 7123000.017191.0-7.9 86.0 1030.0 1.0 250 0 5’. i

4

Figure 37: Circle query result

In the output screen the input circle and its radius can be seen. The objects inside the
circle at leaf level of R*-tree are also visualized by red color. The object details are
presented in a separate window above the screen. The details are coordinates of the

object, date time, station number, and meteorological parameters.
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7.4.4 Ring Query

A ring is the difference of two circles with the same center point but different
radiuses. The ring query deals with the objects which reside inside the ring. The
ring area is obtained by subtracting small circle from bigger circle. The query

parameters are entered by UI as in Figure 38:

x|
Enter coordinates of the ring center:
500
520
Enter value of the circle two radius's:
40
60
Dkl Cancel |

Figure 38: Ring query input screen

The ring in this query example is defined with center at (x=500, y=520) and the
inner circle radius (r;=40) and outer circle radius (r,=60). The UI gets the input and
the bridge fetches the spatial objects which reside inside the ring area by using the

Ring Query Algorithm in Figure 39.

In Figure 39, ring query algorithm creates two reference circles with r; and r, and
the same center point. The ring is obtained as the difference of two circles. The ring
area search subroutine of the R*-tree searches from upper nodes to the leaf nodes. If
the directory nodes intersect with the ring area search continues to the bottom of the

node until a data node is reached. If the algorithm reaches to a data node and the
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Ring Query algorithm:

Input: R*-tree, ring parameters: center, radius; and radius;

Output: The objects in the ring area

1. Create Circle; < (x, y,rj)
2. Create Circle; < (x, y,r2)
3. Set Ring < Circle; - Circle; //Difference operation
4. Create an empty result list res
5. Search objects in the ring area via R*-tree nodes
if the node is a directory node
Jor each directory entry in R*-tree directory node
if directory entry bounce and the Ring intersects
search sub-tree of directory entry
end if
end for
else if the node is a data node
for each entry in R*-tree data node
if the object’s geometry and ring intersects
call fetch utility of object database
insert into res
end if
end for
end if

6. call drawRing

7. display results in the main map and detail window

Figure 39: Ring query algorithm
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data objects reside in the ring area, they are appended to the result list. The objects

in the result list are mapped in Figure 40.

3 Query: Ring - 500, 520, 40, 60 #PA=4 i =] 3]
rstartree. SortedLinList( =
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Figure 40: Ring query result

In the output screen the ring area and the objects inside are visualized by red color.
The object details are presented in a separate window above the screen. The details
are coordinates of the object, date time, station number, and meteorological

parameters.

7.4.5 K™ Nearest Neighbor (KNN)

KNN query finds first nearest k entries to a reference object. In our implementation
we use the ring query to find the k™ nearest neighbor of an object and the center of

the ring is accepted as the reference point. The algorithm starts with a circle and the
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ring is the area between the center and the circle. In every loop of the algorithm
matching objects are fetched and appended to the output list. In the new run a ring is
created by increasing the circles radius so the outer circle of the previous run
becomes the inner circle of the previous run and a new outer circle is created. The
loops continue until k object is found. The parameters are entered in UI by the

following screen in Figure 41:

x

Enter coordinates of the reference point:
600

300

Enter value of k:

[5

Enter ring width:

|20

Dkl Cancel |

Figure 41: KNN query input screen

The center of the rings is (x=600, y=300), ring width is 20 and 5 nearest neighbor
are required. KNN query algorithm is described in Figure 42.

KNN query algorithm runs similar to the ring query algorithm. In every loop the

ring is searched. At the end of the loop circle; is replaced with circle, and a new

circle; is created. The loop continues until k object is found.
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KNN Query algorithm:
Input: R*-tree, reference point coordinates (x, y), number of nearest neighbors k,
ring width
Output: The k nearest objects to the reference point
1. Setrl<0
2. Create a circle from input coordinates and the radius, Circle;< (x,y, r;)
3. Create an empty result list res
4. Search objects in the ring area via R*-tree nodes
Loop until k objects are found
Set r, < r; + ring width
Create a circle Circle; < (x, y, 1)
Set Ring < Circle; - Circle;
If the node is a directory node
for each directory entry in R*-tree directory node
if the entry’s bounce and Ring intersects
search sub-tree of directory entry
end if
end for
else if the node is a data node
for each entry in R*-tree data node
if the data geometry and Ring intersects
call fetch utility of object database
insert into res
end if
end for

Figure 42: KNN query algorithm
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end if
Setri<r;
Set Circle; < (x, y, r1)

end for

5. call drawRings

6. display results in the main map and detail window

Figure 42: KNN query algorithm (cont’d)

ry: KNN - 600, 300, 3, 20 #PA=6

rstartree SortedLinList(

rstartree.Data:[626.7645 636.7645 303.7554 313.7554 7123000.0 17033.0 4.2 9999.0 1027.0 1.0 230.0 5.0 32.56456 0.01)
rstartree Data:[568.8751 578.86751 321.61017 331.61017 7123000.0 17087.0-2594.01028.0 1.0 330.0 5.0 43.555874 0.0])
rstartree Data:[538.4918 549.4919 270 72412 28072412 T123000.0 17622.02.298.01025.01.010.0 5.0 73.63882 0.0])
rstartree.Data:[626. 7645 636.7645 303.7554 313.7554 7123006.0 17033.0 4.2 9999.0 1026.0 2.0 0.0 0.0 32.56456 0.07)
rstartree. Data;[568.8751 578.8751 321.61017 331.61017 7123006.0 17087.0-2.0 94.09999.0 2.0 20.0 10.0 43.555874 0.01)
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Figure 43: KNN query result

The result of the KNN query is shown in Figure 43. The innermost circles are

increased by some width and in every loop new nearest neighbors are found. In the
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output screen the ring area and the objects inside are visualized by red color. The

object details are presented in a separate window above the screen.

7.5 Fuzzy Queries

Fuzzy queries in general are more complex queries than crisp queries. The
complexity arises since the queries include fuzzy input and also they may require
some intelligence which is achieved by some rule processing in FKB. The crisp

query algorithms can be used for fuzzy semantic queries.

In the next sections, the fuzzy semantic queries are described by the details of input
screens, implementation algorithms and the output screens. The fuzzy queries

implemented in the application are:

e Fuzzy Spatial Relations Query

e Fuzzy Spatiotemporal Query

7.5.1 Fuzzy Spatial Relations Query

Topological, directional and distance relations are combined in fuzzy spatial
relations query. A union of constraints for these relations is supplied by the user.
The constraints may be fuzzified also. For instance, if an object is not in the exact
North direction of the reference object but to some fuzzy degree we also accept that
object in the result. Similarly, we can find the degree of a topological relation so that
for instance 0.8 overlapping objects with the reference object may be fetched as the

result of the query. The parameters are entered in UI by the screen in Figure 44.

According to the input screen, the reference object is located at (x;=450, y;=517)

and (x,=350, y,=389). The distance constraint is given as a range between 0 and
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Figure 44: Fuzzy Spatial Relations Query input screen

200. The direction constraint can be a union of 8 directions (i.e. N, NE, S, etc) with
possible fuzzy degree. In the example user asks for 0.7 degree E, SE objects. As a
last constraint, a union of 8 topological relations (i.e. Overlap, Inside, Disjoint etc.)
can be selected with possible fuzzy degree. In the example user asks for disjoint
objects compared to reference object. Getting input parameters the algorithm in

Figure 45 is applied.
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Fuzzy Spatial Relations Algorithm:
Input: R*-tree, reference object {(x;, y1) - (X2, y2)}, minimum distance, maximum
distance, fuzzy direction degree, direction values, fuzzy topology degree, relations

Output: The objects that satisfy the constraints
1. Create a rectangle from input coordinate for the reference object,
Set Rect < (x}, y1, X2, ¥2,)
2. Set direction from direction checkboxes
3. Set topology from topology checkboxes
4. Create an empty result list res
5. Call the R*-tree search subroutine
If the node is a directory node
for each entry in R*-tree directory node

if the directory entry bound is in distance range &<& direction

constraint satisfies fuzzy index && topology constraint satisfies
search sub-tree of directory entry
end if
end for
else if the node is a data node
for each entry in R*-tree data node

if object lies in distance range && direction constraint satisfies fuzzy

index & & topology constraint satisfies
call fetch utility of object database
insert into res
end if
end for
end if

6. Display results in the main map and detail window

Figure 45: Fuzzy Spatial Relations query algorithm
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Fuzzy Spatial Relations algorithm starts with creating a reference object. Since the
user may enter more than one direction, a binary number is created and related bits
are set to 1 for selected directions. Similarly a topology bitmap is created from
selected topological relations. The distance range, topology and direction bitmaps
with fuzzy degrees are input to search subroutine. The search subroutine searches
the directory nodes, where the bounding rectangles and the reference object are
compared, and the data nodes, where objects and the reference object are compared.
The objects which satisfy all constraints are appended to the result list. The objects

in the result list are mapped in Figure 46.

In the output screen the reference object’s geometry can be seen as the big rectangle.
The data objects which are in 0-200 range, disjoint and E/SE direction are displayed.
Notice that solution includes not only exact East or South East objects but also some
North East or South objects. This is because of the fuzzy degree of direction

constraints.

B Query: Constraints query - 450, 517, 350, 389 #PA=14 -1ol x|

rstartree SortedLinList( -
rstartree. Data:[583.7861 593.7861 447.93253 457.93253 7123100.0 17255.0 0.2 9999.0 1020.0 1.0 0.0 0.0 318.17984 0.0])

240374203 413.74203 7123100.0 17193.0 -6.6 8999.0 1027.0 1.0 220 233.1301 0
321.61017 331.61017 7123100.0 17087.0 1.0 82.0 1026.0 1.0 240.0 5.0 43 0.0

45 63 303.7554 3 54 7123100.0 17033.0 3.0 9999.01025.0 1.0 180.010.0 3 56 0.00)
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Figure 46: Fuzzy Spatial Relations query result
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7.5.2 Fuzzy Spatiotemporal Query

An object can change its position and shape during a temporal interval. For example,
a cold weather area moves, strengthen or weaken (i.e. becomes warmer or cooler).

Fuzzy spatiotemporal query finds this kind of spatial changes in temporal interval.

The object type is selected as Humidity in the input screen in Figure 47. The values
are entered as a range so the humidity values within the %70 and %80 values
measured by the meteorological stations will be queried. The spatial range specifies
the search area whereas the temporal range specifies the temporal interval (i.e.

between 30.12.2007 00:00 and 31.12.2007 00:00).

x

Meteorology Object:

Humiity >

Value Range:
70

80

Spatial range:
100
600
200
600

Temporal range:
2007123000

2007123100

ﬂl Cancel |

Figure 47: Fuzzy Spatiotemporal Query input screen
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Fuzzy Spatiotemporal Query algorithm:
Input: R*-tree, Object Type, Value range, spatial range and temporal range

Output: The object’s path and the values at each position
1. Create an empty result list res
2. If the node is a directory node
for each directory entry in R*-tree directory node
if directory entry bounce and spatial range intersects & &
value range is in the directory node’s fuzzy index range
search sub-tree of directory entries
end if
end for
else if the node is a data node
for each entry in R*-tree data node
if the object’s geometry and spatial range intersects & &
value range is in the data node’s fuzzy index range &&
time is in temporal interval
call fetch utility of object database
insert into res
end if
end for
end if
3. Calculate and display trajectory
Jor each unique temporal chronon in the result list
Find average value of the meteorological parameter (i.e. humidity)
Find center point of the objects
end for

Figure 48: Fuzzy Spatiotemporal Query algorithm
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4. Display results in the main map and detail window
Display matching objects
Display each temporal chronon, position and the value

Draw trajectory between positions

Figure 48: Fuzzy Spatiotemporal Query algorithm (cont’d)

Fuzzy spatiotemporal query finds the movement of objects in a spatial and temporal
range. The value range constraint is another constraint. The three constraints are
checked in directory and data nodes. The objects satisfying the three constraints are
appended to the output list. The algorithm calculates a trajectory in step three. For
each unique temporal instance an average of values of objects from output list is
obtained. Then these instances are connected to each other to show the trajectory of

the selected object. The trajectory and output list are mapped in Figure 49.

A Query: Spatiotemporal query - Humidity:80-100between2007123000-200712 =lof x|
rstartree SortedLinList ﬂ
rstartree.Data:[355.2983 2365.2083 451.22358 471.32358 7123018.0 17927.0 2.0 72.0 9999.0 2.0 290.0 10.07)
rstartree.Data:[211.82044 221.69044 406.42023 41642023 7123018.0 17897.0-4.979.0 9999.0 20 40.010.C
rstartree Data[211.89044 221 89044 454 62805 464 62805 7123018.0 17886.0 3.7 75.0 2999.0 2.0 60.0 0.0)
rstartree. Data:[313.1969 223.1969 438.55878 44 87123018.0 17885.0-2.7 75.0 9999.0 2.0 10.0 5.0]
rstartree.Data:[318.02103 326.02103 440. 062 7123018.0 17882.0-3.272.0 9999.0 20 170.010
rstartree Data[341.70306 351.70306 442.5 7617123018.0 17865.0-5.0 72.0 9999.0 2.0 0.0 0.0])
rstartree Data:[212.220 222,320 440.24427 4 0.34427 7123018.0 17850.0 2.9 80.0 1022.0 2.0 160.0 0.0}
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Figure 49: Fuzzy Spatiotemporal query result
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In Figure 49, the average values of the objects and the temporal value are displayed
as the black dots. The black lines connect the instances. In addition the red squares
show the data nodes satisfying the constraints. The bigger red square shows the

spatial range. And lastly the details of the objects are displayed in the upper window.

7.6 Fuzzy Semantic Queries

Fuzzy semantic queries are more complex queries than the crisp and fuzzy queries.
In these queries fuzzy query algorithms, FKB processing and some semantic

processing are combined.

In the next sections, the fuzzy semantic queries are described by the details of input
screens, implementation algorithms and the output screens. The fuzzy semantic

queries implemented in our application are:

¢ Fuzzy Semantic Query 1 (Extreme Conditions)

¢ Fuzzy Semantic Query 2 (Trajectory of Objects)

e Fuzzy Semantic Query 3 (k Highest Measurements)
e Fuzzy Semantic Query 4 (Agricultural Risky Zones)

e Fuzzy Semantic Query 5 (Altitude vs. Meteorological Parameters)

7.6.1 Fuzzy Semantic Query 1 (Extreme Conditions)

Semantic queries find semantic properties and/or behaviors of spatiotemporal
objects. For example meteorological warnings are very important to urban or rural
life, like floods, extreme temperatures, etc. These types of queries may be more
complicated and require some intelligence so that a knowledge base component is

used.
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In the first semantic query, the extreme meteorological conditions are searched. The
extremeness conditions are defined in FKB by the attributes of the meteorological

values.

x|

Semantic Query 1:

Find the northern (0.7) meteorological stations having extreme (0.6) meteorological conditions

Cancel |

Figure 50: Fuzzy Semantic Query 1 (Extreme conditions) input screen

The query input parameters are displayed in Figure 50. The parameters are specified
as fuzzy spatial constraint and fuzzy semantic constraint. The fuzzy direction (0.7
North) as the fuzzy spatial constraint and extremeness (0.6 extreme) as the fuzzy

semantic constraint are input parameters of the algorithm in Figure 51.

Fuzzy Semantic Query 1 (Extreme Conditions) algorithm:
Input: R*-tree, fuzzy spatial and semantic condition

Output: The objects which satisfy both conditions
1. Create an empty result list res

2. Apply fuzzy spatial relations algorithm for direction.

Figure 51: Fuzzy Semantic query 1 (Extreme conditions) algorithm
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3. Send result list to FKB queue
4. Run FKB engine
If the object is eligible for the rule

Calculate extremeness degree of conditions using temperature, wind

speed etc.
Set object’s attribute for extremeness
end if
5. Get objects from output queue of FKB

6. Display results in the main map and detail window

Figure 51: Fuzzy Semantic query 1 (Extreme conditions) algorithm (cont’d)

The fuzzy direction parameter is already implemented in Fuzzy Spatial Relations
Query. The same algorithm is applied to filter the objects for the first constraint.
Then selected objects are put into the input queue of FKB to further filter for the
knowledge base predicate. In FKB, one of the semantic rules is invoked according to
the query type. The degree of the extremeness is calculated by a predefined function

in Figure 52.

(deffunction fuzzyM (?a)
(bind ?i 1)
(bind ?FR 0)

(foreach ?e ?a

Figure 52: The degree of extremeness function in FKB
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(if (and (eq 71 7) (< ?e 50) (> ?e -30)) then
Jtemperature
(if (< ?e 0) then
(bind ?FR (+ ?FR 0.4))

)
(if (and (eq ?i 8) (< ?e 100) (> ?e 0)) then
shumidity
(bind ?FR (+ ?FR (*(/ ?¢ 100) 0.2)))
)
(if (and (eq ?i 12) (< ?e 50) (> ?e 0)) then
;wind speed
(bind ?FR (+ ?FR (*(/ ?7¢ 40) 0.4)))
)
(bind 2i (+ ?2i 1))
)
(return ?FR)

Figure 52: The degree of extremeness function in FKB (cont’d)

FuzzyM function gets an array of meteorological parameters as input. It then
calculates an overall degree of extremeness by weighting each attribute such as
temperature, humidity and wind speed. The returned fuzzy value ?FR is set as an
attribute of the object. So when the objects are returned back to bridge the semantic
degree can be used for output. The returned objects having ?FR greater than 0.6 are

displayed as output in Figure 53.
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£ Query: Fuzzy Query 1: - Find the northern (0.7) meteorological sta avin -0l x|
rstartree. SortedLinList] &
rstartree.Data:[448.2722 458 2722 275.6342 285.6342 7123000.0 17074.0 -1.2 80.0 1029.0 1.0 180.0 .07
rstartree Data:[448.2722 458 2722 275.6342 285.6342 7123006.0 17074.0-4.9 72.0 9999.0 2.0 200.0 10.0]
rstartree. Data:[449.58786 459.58786 269.8314 279.8314 7123006.0 17618.0 -4.6 93.0 9999.0 2.0 220.0 5.
rstartree.Data:[496.95193 506.95193 315.361 325.361 7123006.0 17084.0 -7.8 95.0 1031.0 2.0 160.0 5.01)
rstartree. Data:[449 58786 459.58786 260.8314 279.8314 7123000.0 17618.0-3.8 97.0 9999.0 1.0 290.0 5.0
rstartree. Data:[449. 58786 459.55786 269.8314 270.8314 7123018.0 17618.0-6.285.0 9999020 110050 »
|
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Figure 53: Fuzzy Semantic query 1 (Extreme conditions) result

In Figure 53, three stations which measured extreme meteorological conditions are

displayed as the red squares. The measurements are displayed in the upper window.

7.6.2 Fuzzy Semantic Query 2 (Trajectory of Objects)

The trajectory of a moving object is the subject of the fuzzy semantic query 2. In
fuzzy spatiotemporal query the value ranges for meteorological measurements
defined the object. In this query the object (cold weather) is defined semantically in

FKB. The input screen is shown in Figure 54.
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x

Semantic Query 2:

Show the trajectory of cold weather between 30/12/2007 00:00 and 31/12/2007 00:00

Cancel |

Figure 54: Fuzzy Semantic query 2 (trajectory of objects) input screen

The cold weather trajectory between 30.12.2007 00:00 and 31.12.2007 00:00 is
queried. The algorithm in Figure 55is applied for temperature range (< 5).Cold
weather is not just the low temperature but wind and humidity also affect the cold
feeling. So after fuzzy spatiotemporal algorithm result is obtained some more
refinement is needed. FKB finds cold weather measurements by temperature,
temperature and wind speed, temperature and humidity. The final result from FKB is

displayed in Figure 56.

Fuzzy Semantic query 2 (trajectory of objects) algorithms:
Input: R*-tree, the spatiotemporal object type, temporal interval

Output: The trajectory of the object

1. Set temporal (30.12.2007 00:00 and 31.12.2007 00:00) and temperature interval
(<5)

2. Create an empty result list res
3. Apply fuzzy spatiotemporal algorithm for temperature

4. Send result list to FKB queue

Figure 55: Fuzzy Semantic query 2 (trajectory of objects) algorithm
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5. Run FKB engine

Fire the coldweather rule

If (temperature < 0) or

(temperature < 5 && wind speed > 20) or

(temperature < 5 && humidity > 80) then

end if

Tag measurement as cold weather

6. Get objects from output queue of FKB

7. Display trajectory in the main map and results in detail window

Figure 55: Fuzzy Semantic query 2 (trajectory of objects) algorithm (cont’d)

3 Query: Show the trajectory of cold weather b o =l
[Time: 00— Paosition(xy). 362.1828 , 374.936843 Value: -4.557813
[Time: 06— Position(xy). 357.6737 , 371.66946 Value: -5.1358786
Time: 12— Position(xy) 603.7982 , 367.26404 Value: -2.8384614
Time: 18— Position(xy) 40086957 , 373.251 Valug: -3.5234044
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Figure 56: Fuzzy Semantic query 2 (trajectory of objects) results
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In Figure 56, the cold weather data on data nodes are displayed with red squares.
The average values of the temperature measurements and the temporal value are
displayed over and below the black dots. The black lines between the dots show the
trajectory of the cold weather. In the upper window each temporal instance is
displayed in detail such as temporal instance, position and the average value of the

temperatures.

7.6.3 Fuzzy Semantic Query 3 (k Highest Measurements)

The fuzzy semantic query 3 finds the k highest measurement of a parameter from a
reference point. This might be helpful especially planning a trip. The meteorological
parameter can be flexible but in this example we concern with the temperature. The

query is defined in input screen (see Figure 57).

x|

Semantic Query 3:

Find the 5 temperature values higher than 10 C during the day closest to istanbul

Cancell

Figure 57: Fuzzy Semantic query 3 (k Highest Measurements) input screen

The input specifies Istanbul city as the reference point and inquires “5 temperature

values higher than 10 C during the day and closest to Istanbul city”.
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Fuzzy Semantic query 3 (k Highest Measurements) algorithm:

Input: R*-tree, temporal range, constraint value (10 C), reference city (Istanbul)

Output: The objects which satisfy the constraints

1. Set value(>10) , temporal (during the day->06:00 && <I18:00) and spatial

range
2. Create an empty result list res
3. Apply fuzzy spatiotemporal algorithm
4. Set p_ist<« point for Istanbul
5. for each entry in res
find distance of objects to p_ist
Add to 5 closest list
end for

6. Display results in the main map and detail window

Figure 58: Fuzzy Semantic query 3 (k Highest Measurements) algorithm

The fuzzy semantic query 3 runs fuzzy spatiotemporal query algorithm for
temperature range (> 10) and temporal interval (06:00 and 18:00) as the daytime.
The semantic part which calculates the k highest value comes in step 4. A reference
point for Istanbul city is created and the distance function is applied in the loop for 5

nearest neighbor. The results are displayed in Figure 59.
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B Query: Find the 5 temperature values higher than 10 C during the day closest t B[]
rstartree. SortedLinList( -
rstartree.Data:[217.1531 227.1531 439.4515 449.4515 ¥123012.0 17860.0 11.9 34.0 1021.0 1.0 100.0 10.07)
rstartree.Data:[166.2806 175.2806 409.09845 419.09845 ¥123012.0 17220.0 10.4 43.0 1022.0 1.0 300.0 5.0])
rstartree.Data:[146.10703 156.10703 361.33698 371.33698 7¥123012.017722.0 12.3 32.01021.0 1.0 20.0 20.07)
rstartree Data:[164.95494 174 96494 358.65878 368.65878 ¥123012.017145.0 11.2 38.0 1022.0 1.0 100.0 15.0]
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Figure 59: Fuzzy Semantic query 3 (k Highest Measurements) result

In Figure 59, five stations which measured higher than 10 C and closest to istanbul
are displayed as the red squares. The measurements details are displayed in the

upper window.

7.6.4 Fuzzy Semantic Query 4 (Agricultural Risky Zones)
Fuzzy Semantic query 4 inquires an important meteorological and agricultural
parameter that is frosty zones. The query finds the frosty zones with several severity

degrees. Input screen with details of query is displayed in Figure 60.

According to the input parameters, the algorithm in Figure 61 will find the frosty

risky zones during the night.
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Semantic Query 4

Show the agricultural frost risky zones during the night.

Cancel |

Figure 60: Fuzzy Semantic query 4 (Agricultural risky zones) input screen

Fuzzy Semantic query 4 (Agricultural risky zones) algorithm:

Input: Temperature range for frost, temporal range (>00:00 and <06:00), spatial
range

Output: The frost levels of meteorological stations are displayed

1. Create an empty list res
2. Apply spatiotemporal algorithm with input parameters
3. Put the results to the input queue of FKB
4. Apply the frost rule
Classify the frost level of each record

Set object’s attribute with frost level

W

. Display result

Display each level with different gray scale
Display legend

Display result window

Figure 61: Fuzzy Semantic query 4 (Agricultural risky zones) algorithm
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The fuzzy semantic query 4 runs fuzzy spatiotemporal query algorithm for
temperature range (< 00) and temporal interval (00:00 and 06:00) as the nighttime.
The semantic part which calculates the degree of frosty zones is performed in FKB.

FKB executes the frost rule and classifies each frost value. The results are displayed

in Figure 62.

B3 Query: Agricultural frost risks - #PA=70 1ol x|
rstartree SartedLinListi ﬂ
rstariree.Data:[234.2568 244 2568 372 49622 382.49622 7123006.0 17748.0-5.7 82.09999.0 2.0 70.0 0.0]
rstartree. Data:[218.03023 228.03023 458.199 465.199 7123006.0 17292.0 -4.394.0 1024.0 2.0 140.0 0.0])
rstariree.Data:[263.64008 273.64008 308.66547 318.66547 7123000.0 17639.0 0.1 89.0 1022.0 1.0 330.0 5.01)
rstariree.Data:[131.1961 141.1961 305.0945 315.0945 7123006.0 17632.0 -0.7 94.0 1027.0 2.0 40.0 10.01) -
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Figure 62: Fuzzy Semantic Query 4 (Agricultural risky zones) result

The frosty zones are displayed with different grayscale colors according to the frost

levels (from No Risk to Very High Risk) in Figure 62.

7.6.5 Fuzzy Semantic Query 5

In this query, the relation between meteorological parameters and the altitude is

queried. The query finds whether parameters increase or decrease in a given
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temporal and spatial interval as the altitude changes. Input screen with details of

query is displayed in Figure 63.

[£2| New Query Iﬁ

Semantic Query 5:

Show the relationship between meteorological parameters and altitude.

| Cancel |

Figure 63: Fuzzy Semantic query 5 input screen

The algorithm in Figure 64 will find the relationship between the meteorological

parameters (i.e. temperature, humidity, pressure, wind speed) and altitude.

Fuzzy Semantic query 5 algorithm:

Input: An R*-tree with altitude values and meteorological parameters loaded,
temporal range, spatial range

Output: The average value of meteorological parameter for each altitude threshold

and the average difference between levels of altitude are displayed
1. Create an empty list res

2. Apply spatiotemporal algorithm with spatial, temporal ranges given

Figure 64: Fuzzy Semantic Query 5 algorithm
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3. Find the average value of parameter for each threshold value (i.e. for each 300

meters
4. Display result
For each altitude value
Display altitude
Display average value of parameter

Display average difference

End for

Figure 64: Fuzzy Semantic Query 5 algorithm (cont’d)

.

| £ Query: Altitude vs Temperature at 30/12/2007 12:00 - #PA=93

!Altitude: 0.0-300.0 Value: 8.898667

Altitude: 300.0—-600.0 Value: 7.48

Altitude: 600.0-900.0 Value: 6.165

o [Altitude: 900.0—1200.0 Value: 6.419048

Altitude: 1200.0-1500.0 Value: 5.353848

Altitude: 1500.0-1800.0 Value: 4.9

Average Change at each 300 meters:-0.4998006057 346889

L -]

Figure 65: Fuzzy Semantic Query 5 result
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The fuzzy semantic query 5 runs fuzzy spatiotemporal query algorithm for instance
for a temperature range between -30 and +30 °C and in a spatial range (100,200)-
(400,600) to cover western part of the country and finally on 30.12.2007 12:00 time.
The results are displayed in Figure 65.

| £| Query: Altitude vs Humidity at 30/12/2007 12:00 - #PA=03

P«Ititude: 0.0-300.0 Value: 55.68

Altitude: 300.0—-600.0 Value: 47 BGEGES

Altitude: 600.0-900.0 Value: 39.9

Altitude: 900.0-1200.0 Value: 41.04762

Altitude: 1200.0-1500.0 Value: 42 384617

Altitude: 1500.0—-1800.0 Value: 43.142857

Average Change at each 300 meters:-2. 5257 14329310826

(a)
| £ Query: Altitude vs Pressure at 30/12/2007 12:00 - #PA=03 |

,l'!-.ltitude: 0.0-300.0 Value: 1023.04083

Altitude: 300.0—-600.0 Value: 10220

Altitude: 600.0—-900.0 Value: 10220

Altitude: 900.0-1500.0 Value: 1021.5

Awverage Change at each 300 meters:0.19183349609375

(b)

| £| Query: Altitude vs Wind SE at ﬂﬂf-ﬂ]ﬂ? 12:00 - #PA:%'

uhltitude: 0.0-300.0 Value: 13.197183

Altitude: 300.0-600.0 Value: 11.071428

Altitude: 600.0—-800.0 Value: 68421054

Altitude: 900.0-1200.0 Value: 7.857143

Altitude: 1200.0-1500.0 Value: 7.6923075

Altitude: 1500.0-1800.0 Value: 77777777

Average Change at each 300 meters-1.1710260936192103

(©)

Figure 66: Altitude vs. meteorological parameters variations (a)Humidity

(b)Pressure (c)Wind speed.
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The red squares in the window shows the measurements for the given spatial,
temporal and value range. The second window above shows the results. The results
indicate that temperature decreases slightly at each 300 meters on the average 0.5

°C. The other parameter variations are shown in Figure 66.

The result of the fuzzy semantic query 5 indicates that for the input parameters we
specified:

- Temperature decreases on the average 0.5 °C,

- humidity decreases % 7-8 at every 300 meters up to 900 meters then steady

- Pressure doesn’t change

- wind speed is around 13 knots up to 600 meters and then decreases to 7 knots

7.7 Experimental Evaluation

In this section, we experimentally study the effectiveness of the architecture
components. First, we observe the scalability of the system. The crisp queries and
fuzzy semantic queries are run with real meteorological data. The number of records
is as many as 80.000 records. Next we show the effect of using Enhanced R*-tree by
comparing R*-tree. Since we adapted a secondary fuzzy index some fuzzy semantic
queries are run for the performance evaluation. Finally, the effect of third dimension
on the tree is evaluated. The application is run on a laptop with Windows Vista

operating system, 4G RAM, JDK 1.6 and Net Beans 6.5.1.

7.7.1 The Scalability of the Application

The scalability of the system is tested with crisp, fuzzy and semantic queries. Firstly
the crisp spatial queries (point, range, circle, kNN and ring) are tested with the data

that belongs to fifteen days between 30.12.2007 00:00 and 15.01.2008 12:00. In

128



Figure 67, the number of node access and number of records are depicted for each

type of query as well as the average.

Crisp Spatial Queries
# of node access

200
180 —&— Point
160 / ——Range
140
120 Circle
100 Ring

80 —%— kNN

60

40 —&— Average

20

0
1000 5000 10000 20000 40000 60000 80000
# of records

Figure 67: The scalability of the system by Crisp Spatial Queries

The queries perform quite similar to each other. The performance of each query is
good even for the high number of records. So the system is scalable for the crisp

spatial queries.

Next fuzzy spatial queries are tested. Fuzzy Spatial Relation (FSR) and Fuzzy
Spatiotemporal (FST) queries are tested with the same data set. In Figure 68, the
number of node access and number of records are depicted for each type of query as

well as the average.

Both queries and the average are close and application runs smoothly for even high

number of records. Finally, fuzzy semantic queries are tested. In Figure 69, the
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number of node access and number of records are depicted for each type of semantic
query (SQ1 to SQ5) as well as the average. The details of the semantic queries are

already presented in Section 7.6.

Fuzzy Spatial Queries
# of node access
900

800 ——FSR
700 -
»

600
500 //:// —=—FST
400 /7/
300

Average
200 //
100 -

0 [\—‘/‘v""""‘v

1000 5000 10000 20000 40000 60000 80000
# of records

Figure 68: The scalability of the system by Fuzzy Spatial Queries

Fuzzy Semantic Queries

# of node access

10000 7

9000 - —+-sa1
8000 —8—SQ2
7000 -

6000 sQ3
5000 SQ4
4000 sas
3000 E—

2000 —&— Average
1000 "’_.//

0 — T T T T T ]

1000 5000 10000 20000 40000 60000 80000
# of records

Figure 69: The scalability of the system by Fuzzy Semantic Queries
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The SQ4 (Agricultural Risky Zones) has more node access, because it checks every
record and performs full scan. But the other queries are close to the average. In the
next section the Enhanced R*-tree and R*-tree are tested and the effect of adaptation

s shown.

7.7.2 The Enhanced R*-tree

In our implementation the R*-tree is enhanced to support fuzzy semantic
spatiotemporal queries. The basic form of R*-tree uses rectangles to organize spatial
data. In Enhanced R*-tree we adapt a secondary index which includes the range
values for all attributes at the leaf nodes. Before comparing performance of queries
using Enhanced R*-tree and basic R*-tree let’s check the building cost of R*-tree
and enhanced R*-tree. In Figure 70 and Figure 71 the elapsed times of building

times for R*-tree and Enhanced R*-tree are depicted.

Time(ms) Enhanced R*-tree Primary Index Build Time (ms)

18000
16000
14000

12000
10000
8000
6000
4000
2000

0 T

1000 5000 10000 20000 40000 60000 80000

~-Primary Index #ofrecords

Figure 70: The primary index build time
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In Figure 71 the cost of building the Enhanced R*-tree, which uses MBRs as the
primary index is shown. The cost of insertion increases linearly. In the following

figure the cost of adapting a secondary index is shown:

Time (ms) Enhanced R*-tree Secondary Index Build Time (ms)
25

20 4
15 -

10 +

0 -+

1000 5000 10000 20000 40000 60000 80000

~o—Secondary Index # of records

Figure 71: The secondary index build time

The cost of building a secondary index in addition to the primary one seems very
negligible. While the main index takes 2 to 16 seconds to build, secondary index
built takes only 25 milliseconds for 80.000 records. This is because the secondary
index is built on already organized tree so no split or reinsert occurs and one full

scan is enough and no file I/O is required.

In performance work, we run some of the queries by using classical R*-tree and
Enhanced R*-tree. The meteorological data is obtained from Meteorology Service
for the dates between 30.12.2007 00:00 and 15.01.2008 12:00. The data is
partitioned into bulks (i.e. 1.000, 5.000, 10.000, 20.000, 40.000, 60.000 and 80.000).
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In each run number of nodes accessed is measured. In the first query, the fuzzy
spatiotemporal query which is described in Section 7.5.2 is run with the
meteorological data sets. The input parameters are selected as follows: temperature
measurements between 10-15 °C, spatial range (100,200)-(600,600) and temporal
range 30.12.2007 00:00 to 31.12.2007 00:00. The results are depicted as a graphic in
Figure 72. The number of node access is close up to 10.000 records but the gap
increases as the number of records increases. The Enhanced R*-tree performs better

than R*-tree in general.

# of node access Fuzzy SpatioTemporal Query
10000

9000

8000 /

7000 / —&— R*-tree
6000 /

5000

4000
| —— Enhanced
3000 R*-tree
2000
1000 -
o0 -

1000 5000 10000 20000 40000 60000 80000

# of records

Figure 72: Fuzzy Spatiotemporal Query run with R*-tree and Enhanced R*-tree

Next we run semantic query 2 which finds trajectory of objects that the details of the
query algorithm is shown in Section 7.6.2. The query runs for the trajectory of
humidity values between % 40-42 in the spatial range (0,0)-(1024,800) and in
temporal range 30.12.2007 00:00 to 31.12.2007 00:00. The results are depicted as a
graphic in Figure 73.
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# of node access Semantic Query (trajectory)

10000
9000 /F
8000
7000 / —&— R*-tree
6000 -

5000 /k
4000 /

—i— nhance
3000 / / E*ht ’
7000 //l/ -tree

1000 4%//./

1000 5000 10000 20000 40000 60000 80000
# of records

Figure 73: Semantic Query (trajectory) run with R*-tree and Enhanced R*-tree

Both index structures perform quite close up to 20.000 records. The Enhanced R*-
tree runs better after 20.000 records. On the average the Enhanced R*-tree performs

better than R*-tree.

Finally we run Fuzzy Semantic Query 3 (k-highest measurements which is described
in Section 7.6.3. The query finds five (k=5) highest temperature measurements close
to Istanbul. The resulting graphic obtained by the number of node access are shown

in Figure 74.
The graphic shows similar figures as the previous runs. So it is verified that the

Enhanced R*-tree runs better for fuzzy and semantic queries especially for the

number of records higher than 10.000-20.000.
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# of node access Semantic Query (k Highest Measurements)
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Figure 74: Semantic Query performance of R*-tree and Enhanced R*-tree

7.7.3 The Effect of Third Dimension

The altitude data forms the third dimension in the application. Altitude data is firstly
included in the fuzzy index structure. So it is kind of other meteorological attributes
like temperature, pressure, etc. Then it is used as the primary organizing attribute in
the Enhanced R*-tree. We think that it may be implemented either as secondary or
primary index. Since our data and query types mostly belong to ground we included
in the secondary index. But we evaluate the effect of altitude usage as a third

dimension as a primary index on tree building and query run times as well.

The major effect of altitude data as the primary indexing attribute is the increasing
number of inner nodes. This is reflected in Figure 75. Since insertion algorithm
considers a third dimension more rectangles are needed to group the data. The
number data nodes are slightly affected by third dimension (see Figure 76). In

Figure 77, the increase in the inner nodes is visualized.
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Enhanced R*-tree Number of Inner Nodes
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Figure 75: Number of inner nodes in Enhanced R*-Tree
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Figure 76: Number of data nodes in Enhanced R*-Tree
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Figure 77: The nodes of three dimensional Enhanced R*-Tree

Time (ms) Enhanced R*-tree Primary Index Build Time
14000
12000 //:
10000 /
8000 / e p
6000 —a3p
4000
2000 |
0
1000 5000 10000 20000 40000 60000 80000
# of records

Figure 78: Primary index building time in Enhanced R*-Tree

Although third dimension increases the inner nodes, it doesn’t affect the building
time of Enhanced R*-Tree. While primary index building times are almost same for
two dimensional (2D) and three dimensional (3D) versions, secondary index

building times are negligible (see Figure 78 and Figure 79).
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Figure 79: Secondary index building time in Enhanced R*-Tree

Enhanced R*-Tree Range Query Node Access
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Figure 80: Range Query performance of Enhanced R*-Tree (1)

Two and three dimensional Enhanced R*-Trees are tested with crisp and fuzz
semantic queries. In Figure 80 and 81 number of node accesses and execution times
are shown for range query. In the three dimensional range query an altitude range is

also input by the user.
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Figure 81: Range Query performance of Enhanced R*-Tree (2)

Enhanced R*-Tree Fuzzy Semantic Query Node Access

# of Node Access

2500

A

2000

~

1500

1000 -

——2D

—8—3D

500

/

1000 5000 10000 20000 40000 60000 80000

# of records

Figure 82: Fuzzy Semantic Query performance of Enhanced R*-Tree (1)
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The performance of Enhanced R*-Tree nearly same for range query. In Figure 82
and Figure 83 the results of Fuzzy Semantic Query is shown. In this query, the

meteorological parameter temperature change by altitude is measured.

Enhanced R*-Tree Fuzzy Semantic Query Execution Time

Time (ms)
2500
2000
1500 | —e—2D
—=—3D

: /
/‘A'/

0 w \ ‘
1000 5000 10000 20000 40000 60000 80000

# of records

Figure 83: Fuzzy Semantic Query performance of Enhanced R*-Tree (2)

The performance of three dimensional Enhanced R*-Tree is slightly worse than two
dimensional Enhanced R*-tree. As a result, number of inner nodes increase by using
the altitude as the primary indexing attribute. This affects index building and query
execution times so that three dimensional tree executes worse than two dimensional
tree. But in terms of number of node access, two dimensional tree performs worse

than three dimensional tree.
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CHAPTER 8

CONCLUSIONS

In this study we have introduced a generic spatiotemporal data model and a querying
mechanism for spatiotemporal databases. We presented our method, designed to
handle uncertainty in spatiotemporal database applications. We used an application,
involving meteorological objects with some spatial and temporal attributes, as an
example. The proposed mechanism has been implemented as a proof-of-concept

prototype.

In the scope of this work, spatial objects, relations including temporality are
incorporated into a generic model. Based on the generic model meteorological
phenomena and geographic data are modeled as spatiotemporal objects. These
objects can move and evolve in time. In addition, the meteorological and geographic
man made objects may have spatial relations. The model and fuzzy spatiotemporal
querying mechanisms are presented formally. The crucial decision was to integrate
the model with a fuzzy knowledge base allowing a fuzzy deduction and querying
capability to handle complex data and knowledge. As a result, we are able to handle

spatiotemporal queries (position, spatial properties and spatial relationships).

We also adapted an index structure for efficient querying and verified that with
performance runs using three dimensional data. Since our queries mostly deal with
ground information we used the third dimension (altitude) in the secondary index.
For the queries related with the atmospheric data it could be better to use third

dimension as the primary index.
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Spatiotemporal data modeling and querying require further research. The model and
the method presented in this thesis should be applied to other fields, such as wireless
sensor networks and multimedia, to gain more insight into fuzzy spatiotemporal

modeling and querying.
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APPENDIX A

SAMPLE METEOROLOGICAL MAPS

Figure 84: Cloudiness mapping on 30.12.2007

Figure 85: Pressure mapping on 30.12.2007
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Figure 86: Wind strength mapping on 30.12.2007

Figure 87: Sunshine duration mapping on 30.12.2007
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APPENDIX B

THE OBJECT MODEL SPECIFICATIONS IN ALLOY

module systems/STModel

open alloy/models/util/ordering[ LineSegment] as ordL
open alloy/models/util/ordering[Time] as ordT
open alloy/models/util/ordering[ Fuzzy] as ordF

/fabstract fuzzy class. The implementation consists of definition of fuzzy number
// which gives degree of fuzziness between 0 and 1

abstract sig Fuzzy{}

//The Time class includes definiton of time in YYYYMMDD hh:mm
sig Time{}

// a temporal class includes temporal class and a temporal entity has
// beginning time and end time

sig Temporal{

beginTime,endTime:Time

/

// Beginning time should be less than or equal to end time
fact TemporalFact{
all T:Temporall ordT/lte[T.beginTime, T.endTime]

/
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//a temporal object exits in a temporal interval

pred islnstance(o:Temporal,bt,et: Time){
ordT/gte[o.beginTime,bt] and ordT/lte[o.endTime,et]
}

// Spatialbase has common entries for spatial classess

// membership: is a fuzzy number and shows the degree of
// spatial object's belonging to a particular spatial class
// size: for fuzzy spatial object size is also fuzzy.

abstract sig SpatialBase extends Temporal{
membership:Fuzzy, //fuzzy membership

size:Fuzzy

/

// Coordinate defines an x, y location in the space.

// x, y may be float numbers

sig Coordinate(}

// Point is the basic spatial element and can be part of line segments.
sig Point extends SpatialBase {

location: Coordinate

/

// a line segment is aggregated by a set of points,
// It has a beginning and ending defined by points.
sig LineSegment extends SpatialBase{
sourceEnd:Point,

targetEnd:Point

/

// a region is aggregated by a set of line segments
sig Region extends SpatialBase{

linesegs:set LineSegment

/
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// at least 3 line segments form a region
fact RegionConst{

all r:Region |#r.linesegs >= 3

/

// a geometry is formed by a set of points and/or linesegments
// and/or regions

sig Geometry extends Temporal{

points: set Point,

linesegs: set LineSegment,

regions: set Region

/

// a geometry should have at least one of the parts.

// not all of the parts can be empty sets.

// this fact does not allow empty geometry

fact GeometryFact{

all g:Geometry |

not (#g.points=0 and #g.linesegs=0 and #g.regions=0)
/

// if a geometry exists in some temporal interval so that
// its parts should exist in the same interval

Jact GeometryConst{

all g:Geometry |

isInstance[g,g.beginTime, g.endTime] =>

( islnstance[ g.points,g.beginTime,g.endTime] and
isInstance[g.linesegs,g.beginTime,g.endTime] and
isInstance[g.regions,g.beginTime,g.endTime])

/
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// A spatiotemporal object definition
sig STObject extends Fuzzy{
geometry:some Geometry, // an STObject has one or more Geometry
holes:set Geometry, // an STObject may have holes
trajectory:some Point, //trajectory is a non-empty set of points
spatialRelation:set RelationType // An STObject may have spatial

// relation(s) with other STObjects

// A spatial relation exists in some temporal interval

// including two STObjects and fuzzydegree that shows

// the degree of the relation

abstract sig RelationType extends Temporal{

F,G: one STObject, //two STObjects F and G
fuzzyDegree:Fuzzy //the degree of the relation which is fuzzy
/

// These are the possible types of spatial relations.

// Each one of them is a relation between two STObjects and have a degree

one sig Disjoint,Meet, Inside,Equal, Contains, Covers,CoveredBy,Overlap extends
RelationType(

rel:F->G->Fuzzy

/

// the following predicates give definitions for the spatial relations

pred disjointCR(R:RelationType){

no(R.F.geometry & R.G.geometry) and no(R.G.geometry & R.F.holes) and
no(R.F.geometry & R.G.holes) and no(R.F.holes & R.G.holes)

/
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pred insideCR(R:RelationType){

some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or
((R.G.holes in R.F.geometry) and (R.G.holes in R.F.holes)))

/

pred insideCR2(R:RelationType){

some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or
((R.F.holes in R.G.geometry) and (R.F.holes in R.G.holes)))

}

pred meetCR(R:RelationType){

one (R.F.geometry & R.G.geometry) and not disjointCR[R] and
not insideCR[R] not insideCR2[R] and not equalCR[R]

}

pred containsCR(R:RelationType){
insideCR2[R]
/

pred equal CR(R:RelationType){
(R.F.geometry=R.G.geometry) and (R.F.holes=R.G.holes)
}

pred coversCR(R:RelationType){
insideCR2[R] and meetCR[R] and #(F.geometry & G.geometry) = 1
}

pred coversCR2(R:RelationType){
insideCR[R] and meetCR[R] and #(F.geometry & G.geometry) = 1
/
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pred coveredbyCR(R:RelationType){
coversCR2[R]

/

pred overlapCR(R:RelationType, fuz:Fuzzy){

not (disjointCR[R] or meetCR[R] or insideCR[R] or containsCR[R] or
equalCR[R] or coveredbyCR[R] or coversCR[R]) and ordF/gte[R.fuzzyDegree,fuz]
}

// Spatial relation asserts

assert disjoinT{ //if disjoint not any other relation

all R:RelationType, fDegree:Fuzzy | disjointCR[R] =>
not (overlapCR[R,fDegree] or meetCR[R] or insideCR[R]
or containsCR[R] or equal CR[R] or coveredbyCR[R] or

coversCR[R]) or

R.G.geometry in R.F.holes //a geometry may be inside the hole
/
check disjoinT

assert meeT{

all R:RelationType, fDegree:Fuzzyl meetCR[R] =>
not disjointCR[R] and not insideCR[R] and not equal CR[R] and
not coversCR[R] and not overlapCR[R,fDegree]

/

check meeT

assert insidE{

all R:RelationType, fDegree:Fuzzy | insideCR[R]=>
not (disjointCR[R] or meetCR[R] or coversCR[R] or
overlapCR[R,fDegree]) or (R.F.geometry in R.G.holes)
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check insidE

assert coverS{

all R:RelationType, fDegree:Fuzzy | coversCR[R]=>
not (disjointCR[R] or overlapCR[R,fDegree]) and
insideCR2[R] and (G.holes in F.geometry)

check coverS

assert equal{

all R:RelationType, fDegree:Fuzzy | equal CR[R]=>
not (disjointCR[R] or overlapCR[R,fDegree]) and
(R.G.geometry in R.F.geometry) and (R.F.holes in R.G.holes)

check equaL

/fapplication specific classes

2 —

// City may have some routes crossing and have some weather object
sig City extends STObject{
route:set Route,

weather:some MetObject

/

sig Route{

parts: some LineSegment, //route has at least one LineSegment or more
//route may be one type or a mixed type. e.g. maritimeRoute or

// territoriolRoute + MaritimeRoute

rType:some RouteType,
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// some parts may be clear some parts may be restricted so it has at least
// one status but may have more than one

rStatus:some RouteStatus,

// route crosses at least one City

cities:some City,

// a set of vehicles use the route
vehicles:set Vehicle
/
//two consecutive line segments over a route should have one common point
//one's targetEnd equals other's sourceEnd
assert routeFact{
all R:Route, Isl,ls2:R.parts|
(Is1!=Is2 and ordL/eg[ordL/next[Isl1],Is2])=>Isl.targetEnd= Is2.sourceEnd
/

check routeFact

// route type can ben maritime, territorial or aerial
abstract sig RouteType{}

one sig MaritimeRoute, TerritorialRoute, AerialRoute extends RouteType{}

// route may be clear, wavy (for maritime route) or restricted (for all types)
abstract sig RouteStatus{}

one sig Clear,Wavy,Restricted extends RouteStatus{}

sig Vehicle{
type:VehicleType,
status:VStatusType,

route:set Route

/
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//route-vehicle relation at specific time
sig Journey extends Temporal{
route: Route,

vehicle: Vehicle,

/

// 1-a journey has only one vehicle and one route

// 2-A vehicle is used on only one journey during the journey

assert JourneyFact{

all j1,j2:Journey, t:Temporall

isInstance(t,jl.beginTime,jl.endTime] and
isInstance(t,j2.beginTime,j2.endTime]=>

one jl.vehicle and one jl.route and one j2.vehicle and one j2.route and

jl.vehicle != j2.vehicle

/

check JourneyFact

sig Voyage extends Journey{} //ship journey

abstract sig VehicleType{}
one sig Ship, Bus, Train, Plane extends VehicleType(}

// a voyage has a MaritimeRoute and the vehicle running should be Ship
fact voyageFact{
all vyg:Voyagel

vyg.route.rType=MaritimeRoute and vyg.vehicle.type=Ship

// A vehicle may be on time, delayed or canceled
abstract sig VStatusType{}
one sig OnTime,Delayed, Canceled extends VStatusType{}
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//if a journey's route is restricted vehicle is delayed or canceled
fact statusFact{
all j:Journey!

j.route.rStatus=Restricted=>

J.vehicle.status=Delayed or j.vehicle.status=Canceled

// a meteorological object is a spatiotemporal object

sig MetObject extends STObject{

object:MeteorType,

degree:MeteorObjectDegree

/

// the types of metorological objects are enumerated here

abstract sig MeteorType{}

one sig Temperature, Pressure, Visibility, Wind, Wave, Cloude, Precipitation

extends MeteorType{}

// The strength of Meteorological object i

abstract sig MeteorObjectDegree extends Fuzzy{)}

// Here a sample is given for visibility

one sig Visible, Misty, Foggy extends MeteorObjectDegree{}

// Another sample for precipitation

one sig Drizzle, Rainy, Snowy, Thunderstorm extends MeteorObjectDegree{}

/ a meteorological measurement in a City includes a number of meteorological
objects

sig Measurement extends Temporal{

metobj:some MetObject,

city:lone City

/
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// two spatiotemporal objects have overlap degrees

abstract sig OverlapDegree extends Fuzzy{}

//fuzzy overlapdegrees are enumerated

one sig Less, Moderate,High extends OverlapDegree{}

//if city and meteorological object overlaps than the object is in the city's weather
fact weatherFact{
some M:MetObject, C:City, R:Overlap|

(R.F=M and R.G=C and overlapCR[R,High]) => M in C.weather

// As an example : if a city's weather has visibility and precipitation and
// their degrees are strong enough, then the route is restricted
fact routeStatusFact{
some M:MetObject, C:City, route:Routel
( (M.object=Visibility and M.degree=Foggy) or
(M.object =Precipitation and (M.degree=Snowy or
M.degree=Thunderstorm)) and

M in C.weather and C in route.cities )=>route.rStatus=Restricted
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