

DESING AND IMPLEMENTATION OF SPATIOTEMPORAL DATABASES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AZİZ SÖZER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

JULY 2010

Approval of the thesis:

DESIGN AND IMPLEMENTATION OF SPATIOTEMPORAL DATABASES

submitted by AZİZ SÖZER in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Engineering Department, Middle East
Technical University by,

Prof.Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof.Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof.Dr. Adnan Yazıcı
Supervisor, Computer Engineering Dept., METU

Assoc.Prof.Dr. Halit Oğuztüzün
Co-Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Dept. METU

Prof. Dr. Adnan Yazıcı
Computer Engineering Dept. METU

Assoc.Prof.Dr. Dr. Ahmet Coşar
Computer Engineering Dept. METU

Asst. Prof. Dr. Pınar Şenkul
Computer Engineering Dept. METU

Asst. Prof. Dr. İbrahim Körpeoğlu
Computer Engineering Dept. Bilkent University

 Date: 02/07/2010

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Last Name : Aziz Sözer

 Signature :

iv

ABSTRACT

DESIGN AND IMPLEMENTATION OF
SPATIOTEMPORAL DATABASES

Sözer, Aziz

 Ph.D., Department of Computer Engineering

 Supervisor : Prof.Dr. Adnan Yazıcı

 Co-supervisor : Assoc.Prof.Dr. Halit Oğuztüzün

July, 2010, 163 pages

Modeling spatiotemporal data, in particular fuzzy and complex spatial objects

representing geographic entities and relations, is a topic of great importance in

geographic information systems, computer vision, environmental data management

systems, etc. Because of complex requirements, it is challenging to design a

database for spatiotemporal data and its features and to effectively query them. This

thesis presents a new approach for modeling, indexing and querying the

spatiotemporal data of fuzzy spatial and complex objects and/or spatial relations. As

a case study, we model and implement a meteorological application in an intelligent

database architecture, which combines an object-oriented database with a knowledge

base.

Keywords: Spatiotemporal Data, Object-Oriented Database, Knowledge Base,

Fuzzy Objects, Meteorological Database Application

v

ÖZ

UZAM-ZAMANSAL VERİTABANLARININ
TASARIM VE GERÇEKLEŞTİRİMİ

Sözer, Aziz

 Doktora, Bilgisayar Mühendisliği Bölümü

 Tez Yöneticisi : Prof.Dr. Adnan Yazıcı

 Ortak Tez Yöneticisi : Doç.Dr. Halit Oğuztüzün

Temmuz, 2010, 163 sayfa

Uzam-zamansal verileri, özellikle coğrafik oluşum ve ilişkileri temsil eden bulanık

ve karmaşık uzamsal nesneleri modellemek coğrafi bilgi sistemleri, bilgisayarlı

görme, çevresel veri yönetim sistemleri, vb. için çok önemli bir konudur. Karmaşık

gereksinimler nedeniyle, uzam-zamansal veriler ve özellikleri için veritabanı

tasarlamak ve etkin şekilde sorgulamak zordur. Bu tez çalışması, bulanık uzamsal ve

karmaşık nesnelerin ve/veya uzamsal ilişkilerin uzam-zamansal verilerini

modelleme, endeksleme ve sorgulama için yeni bir yaklaşım sunmaktadır. Örnek

çalışma olarak, uzam-zamansal nesnelerin modellenmesi ve sorgulanması için

nesneye dayalı veritabanı ile bilgi tabanını akıllı bir veritabanı mimarisinde

birleştiren meteorolojik veritabanı uygulaması gerçekleştirilmiştir.

Anahtar Kelimeler: Uzam-Zamansal Veri, Nesneye Dayalı Veritabanı, Bilgi

Tabanı, Bulanık Mantık, Meteorolojik Veritabanı Uygulaması

vi

To my parents, Türkan–Mustafa Sözer

and

Zeynep Selek, Salih Taşbaş

vii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof.Dr. Adnan Yazıcı and co-supervisor

Assoc.Prof.Dr. Halit Oğuztüzün for their encouragement, advice and guidance

throughout this study. Their continuous support and insight made this thesis

possible.

I would like to thank to my thesis jury members Prof. Dr. İsmail Hakkı Toroslu,

Assoc.Prof.Dr. Ahmet Coşar, Asst.Prof.Dr. Pınar Şenkul and Asst.Prof.Dr. İbrahim

Körpeoğlu for their valuable comments and guidance.

I would like to thank to Levent Yalçın, Sevcan Yalçın from the Turkish State

Meteorological Service and Cihan Şahin from European Center for Medium-Range

Weather Forecasts, who are weather forecasters and city planning experts and

helped me to have meteorological data, mapping and continuous support.

I would like to thank to my colleagues in Central Bank of Turkey for motivating me

for the success of my PhD. study. I would like to thank Burçin Bostan Körpeoğlu for

valuable comments and suggestions throughout my study.

At last, but not the least, I would like to thank to my family for their patience, love

and belief in me. I am especially grateful to my beloved wife˙Serapcan and sister

Filiz, who provided everything I needed. Without their patience, continuous

assistance and long-time friendship, I would not have had the strength to complete

this work.

viii

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ ... v

ACKNOWLEDGEMENTS... vii

TABLE OF CONTENTS ..viii

LIST OF TABLES ...xi

LIST OF FIGURES... xii

CHAPTER

1. INTRODUCTION .. 1

1.1. Scope of the Study... 1

1.2. Summary of Contributions ... 5

1.3. Organization of the Thesis ... 6

2. BACKGROUND AND RELATED WORK ... 7

2.1. Spatial Objects... 7

2.2. Spatial Data Types.. 10

2.3. Spatial Relations ... 11

2.3.1. Fuzzy Topological Relations .. 12

2.3.2. Topological Relations Between Complex Regions.................. 14

2.4. Temporal Aspects of Spatiotemporal Databases................................ 16

2.5. Spatial Indexing.. 17

2.6. Related Work.. 20

2.6.1. Modeling Spatiotemporal Data ... 20

2.6.2. Querying Spatiotemporal Data.. 22

2.6.3. Spatial Index Structures.. 24

3. A GENERIC MODEL FOR SPATIOTEMPORAL MODELING............ 26

3.1. The Fuzzy Object-Oriented Database (FOOD) Model....................... 26

3.2. The Generic Model ... 28

ix

3.2.1. C-Logic Notation.. 28

3.2.2. Alloy Notation.. 31

3.3. The Object Model ... 45

3.4. Coupling The Fuzzy Database With a Fuzzy Knowledge Base.......... 50

4. THE ARCHITECTURE OF THE SPATIOTEMPORAL

DATABASE APPLICATION ... 52

5. QUERY PROCESSING .. 55

5.1. Fuzzy Non-Spatial Query.. 56

5.2. Complex Spatial Query... 57

5.3. Fuzzy Spatiotemporal Query... 62

5.4. Nested Rule Query.. 66

5.5. Fuzzy Spatiotemporal Query... 67

6. FUZZY SPATIAL/ASPATIAL INDEXING ... 71

6.1. Enhanced R*-Tree .. 71

6.2. Building the Enhanced R*-Tree .. 74

6.3. The Visualization of the Enhanced R*-Tree 76

6.4. Querying the Enhanced R*-Tree ... 81

6.4.1. Crisp Aspatial Queries.. 81

6.4.2. Crisp Spatial Queries.. 84

6.4.3. Fuzzy Spatial/Aspatial Queries... 84

7. IMPLEMENTATION AND PERFORMANCE EVALUATION 87

7.1. Implementation... 87

7.2. An Object Oriented Database, Db4O .. 88

7.3. The Rule Engine, Jess ... 88

7.4. Crisp Queries.. 90

7.4.1. Point Query .. 91

7.4.2. Range Query .. 94

7.4.3. Circle Query... 97

7.4.4. Ring Query.. 100

7.4.5. Kth Nearest Neighbor (KNN)... 102

7.5. Fuzzy Queries.. 106

7.5.1. Fuzzy Spatial Relations Query... 106

x

7.5.2. Fuzzy Spatiotemporal Query ... 110

7.6. Fuzzy Semantic Queries... 113

7.6.1. Fuzzy Semantic Query 1 (Extreme Conditions) 113

7.6.2. Fuzzy Semantic Query 2 (Trajectory of Objects) 117

7.6.3. Fuzzy Semantic Query 3 (k Highest Measurements).............. 120

7.6.4. Fuzzy Semantic Query 4 (Agricultural Risky Zones) 122

7.6.5. Fuzzy Semantic Query 5.. 124

7.7. Experimental Evaluation.. 128

7.7.1. The Scalability of the Application ... 128

7.7.2. The Enhanced R*-Tree.. 131

7.7.3. The Effect of Third Dimension.. 135

8. CONCLUSIONS .. 141

REFERENCES .. 143

APPENDICES

A. SAMPLE METEOROLOGICAL MAPS .. 149

B. THE OBJECT MODEL SPECIFICATIONS IN ALLOY.................. 151

CURRICULUM VITAE .. 162

xi

LIST OF TABLES

TABLES

Table 1 The similarity matrix for temperature attribute.. 27

Table 2 Sample records in database ... 56

Table 3 Similarity matrix of cloudiness attribute ... 56

Table 4 Objects in the FOOD .. 59

Table 5 Computing a fuzzy topological relation for a wavy region and ferry lines . 65

Table 6 Computing a fuzzy topological relation for a windy region and ferry lines 65

Table 7 The overall fuzzy relation degrees .. 66

Table 8 The text file structure for meteorological data ... 77

xii

LIST OF FIGURES

FIGURES

Figure 1 A weather chart showing wave heights on the Mediterranean Sea 8

Figure 2 Temperature mapping on 31.12.2007 .. 9

Figure 3 Humidity mapping on 31.12.2007 ... 9

Figure 4 Spatial data types .. 10

Figure 5 Visualization of a simple fuzzy region .. 12

Figure 6 Examples of topological relations between fuzzy regions 14

Figure 7 Examples of the relations (a) disjoint and (b) nsidei 15

Figure 8 An example of R-tree.. 19

Figure 9 A fuzzy spatiotemporal model... 46

Figure 10 Meteorological application model ... 48

Figure 11 The architecture of the spatiotemporal database application 53

Figure 12 Query evaluation algorithm... 54

Figure 13 Maximum temperature regions (a) and

 Meteorological events (b) on 01.01.2008 .. 58

Figure 14 Complex topological predicate evaluation algorithm......................... 60

Figure 15 Wave height (a) and wind speed (b) over Marmara Sea..................... 62

Figure 16 Fuzzy topological predicate evaluation algorithm.............................. 64

Figure 17 Meteorological objects on 01.01.2008 (a) and 02.01.2008 (b) 67

Figure 18 The algorithm to evaluate area, speed and direction change............... 68

Figure 19 Rain object movement on 01.01.2008 (a) and 02.01.2008 (b) 69

Figure 20 The structure of Enhanced R*-tree ... 72

Figure 21 Enhanced R*-tree insertion algorithm ... 74

Figure 22 Enhanced R*-tree visualization ... 78

Figure 23 Enhanced R*-tree nodes.. 79

Figure 24 Crisp Aspatial Query Algorithm in Enhanced R*-tree 82

xiii

Figure 25 Crisp Spatial Query Algorithm in Enhanced R*-tree 83

Figure 26 Fuzzy Spatial/Aspatial Query Algorithm in Enhanced R*-tree 85

Figure 27 Database visualization by Object Manager tool 89

Figure 28 An example of rules .. 90

Figure 29 Point query input screen.. 91

Figure 30 Point query algorithm.. 92

Figure 31 Point query results .. 93

Figure 32 Range query input screen .. 94

Figure 33 Range query algorithm.. 95

Figure 34 Range query result .. 96

Figure 35 Circle query input screen... 97

Figure 36 Circle query algorithm .. 98

Figure 37 Circle query result... 99

Figure 38 Ring query input screen .. 100

Figure 39 Ring query algorithm .. 101

Figure 40 Ring query result... 102

Figure 41 KNN query input screen.. 103

Figure 42 KNN query algorithm ... 104

Figure 43 KNN query result.. 105

Figure 44 Fuzzy Spatial Relations Query input screen....................................... 107

Figure 45 Fuzzy Spatial Relations Query algorithm .. 108

Figure 46 Fuzzy Spatial Relations Query result... 109

Figure 47 Fuzzy Spatiotemporal query input screen .. 110

Figure 48 Fuzzy Spatiotemporal query algorithm.. 111

Figure 49 Fuzzy Spatiotemporal query result .. 112

Figure 50 Fuzzy Semantic query 1 (Extreme conditions) input screen............... 114

Figure 51 Fuzzy Semantic query 1 (Extreme conditions) algorithm................... 114

Figure 52 The degree of extremeness function in FKB...................................... 115

Figure 53 Fuzzy Semantic query 1 (Extreme conditions) result 117

Figure 54 Fuzzy Semantic query 2 (trajectory of objects) input screen 118

Figure 55 Fuzzy Semantic query 2 (trajectory of objects) algorithm.................. 118

Figure 56 Fuzzy Semantic query 2 (trajectory of objects) results....................... 119

xiv

Figure 57 Fuzzy Semantic query 3 (k Highest Measurements) input screen....... 120

Figure 58 Fuzzy Semantic query 3 (k Highest Measurements) algorithm 121

Figure 59 Fuzzy Semantic query 3 (k Highest Measurements) result................. 122

Figure 60 Fuzzy Semantic query 4 (Agricultural risky zones) input screen........ 123

Figure 61 Fuzzy Semantic query 4 (Agricultural risky zones) algorithm 123

Figure 62 Fuzzy Semantic query 4 (Agricultural risky zones) result................. 124

Figure 63 Fuzzy Semantic query 5 input screen .. 125

Figure 64 Fuzzy Semantic query 5 algorithm .. 125

Figure 65 Fuzzy Semantic query 5 result... 126

Figure 66 Altitude vs. meteorological parameters variations

 (a) Humidity (b) Pressure (c) Wind speed ... 127

Figure 67 The scalability of the system by Crisp Spatial Queries 129

Figure 68 The scalability of the system by Fuzzy Spatial Queries 130

Figure 69 The scalability of the system by Fuzzy Semantic Queries.................. 130

Figure 70 The primary index build time .. 131

Figure 71 The secondary index build time... 132

Figure 72 Fuzzy Spatiotemporal Query run with R*-tree and Enhanced R*-tree 133

Figure 73 Semantic Query (trajectory) run with R*-tree and Enhanced R*-tree. 134

Figure 74 Semantic Query performance of R*-tree and Enhanced R*-tree 135

Figure 75 Number of inner nodes in Enhanced R*-Tree.................................... 136

Figure 76 Number of data nodes in Enhanced R*-Tree 136

Figure 77 The nodes of three dimensional Enhanced R*-Tree........................... 137

Figure 78 Primary index building time for Enhanced R*-Tree 137

Figure 79 Secondary index building time for Enhanced R*-Tree....................... 138

Figure 80 Range Query performance of Enhanced R*-Tree (1) 138

Figure 81 Range Query performance of Enhanced R*-Tree (2) 139

Figure 82 Fuzzy Semantic Query performance of Enhanced R*-Tree (1) 139

Figure 83 Fuzzy Semantic Query performance of Enhanced R*-Tree (2) 140

Figure 84 Cloudiness mapping on 30.12.2007... 149

Figure 85 Pressure mapping on 30.12.2007... 149

Figure 86 Wind strength mapping on 30.12.2007.. 150

Figure 87 Sunshine duration mapping on 30.12.2007.. 150

1

CHAPTER 1

INTRODUCTION

1.1 Scope of the Study

Space and time are inherent notions in spatiotemporal applications. These

applications (e.g. traffic control, environmental, meteorological, etc.) include spatial

and temporal data and variations. For example, a moving car in traffic changes

position over time. The borders of a salty lake move back and forth because of

seasonal evaporation and rainfall. The size and speed of a meteorological storm may

change during its lifetime. Hence spatiotemporal databases are required to deal with

both spatial and temporal phenomena.

Modeling spatiotemporal data is difficult because of such spatial variations and

advanced data structures and techniques are needed [20, 31, 44]. In modeling

spatiotemporal data, two approaches have been widely used: field-based and object-

based modeling [33]. The field-based approach assumes the real world to have

attributes which are varying over space as a continuous function. For example,

contour lines on a map represent points of a constant value (e.g. pressure,

temperature, velocity, density) within a volume of space. On the other hand, the

object-based approach distinguishes fully definable disjunctive objects. That is, the

database for the application stores a map that consists of a collection of identifiable

objects, which refer to the partitions and fragments of information space. For

example, the temperature regions (e.g. cold, warm, etc.), and the rainy or foggy

2

areas on a weather map are reflected with their unique attributes (e.g. borders,

position, direction, etc.) in the database.

Uncertainty and fuzziness are also features of most spatiotemporal applications.

Spatial and temporal information and various relationships often involve uncertainty

and fuzziness. For example, in describing a windy and wavy region, the region’s

boundary is inherently fuzzy. In the case of estimating a moving weather object, the

need to determine its position at a certain time, or its time of arrival at a certain

location, gives rise to fuzzy estimations. The most common reasons for considering

various types of uncertainty in spatiotemporal applications are as follows:

• Some spatial information is imprecise or fuzzy. The locations of objects,

spatial relationships and various geometric and topological properties usually

involve uncertainty [47].

• Many natural phenomena have fuzzy boundaries due to the transitional

nature of variation in the phenomenon (e.g. a river’s changing line because

of floods and drought) [6, 15, 35].

• To obtain precise data is difficult and unnecessary most of the time, and we

may only be able to give a range of values in which the exact numbers would

lie. For instance, we may need the number of “cloudy” or “partly cloudy”

days for some region in a period. In this request, the user specifies cloudiness

criteria in linguistic terms instead of giving numeric degrees of cloudiness

(e.g. 4/8 or 6/8) [3].

There have been several efforts aimed at using fuzzy set theory for modeling spatial

objects and their properties [40, 41, 42, 44, 48, 59]. Schneider et. al. [40, 41, 42]

represent fuzzy spatial objects and relationships as well as complex crisp objects and

relationships by using fuzzy techniques. Tang et. al. [48] propose basic fuzzy spatial

object types based on a fuzzy topology. A fuzzy cell complex is defined for fuzzy

points, lines and regions. Zhan et.al. [59] describe how to find the resultant regions

from the topological overlay of two simple polygons with indeterminate boundaries.

The effect of three typical overlay operations – intersection, difference, and union –

3

on resultant regions is also discussed. Tao et. al. [49] study range query on

multidimensional uncertain data using a “probabilistically constrained rectangle”.

Temporality has also been studied by some researchers [34, 37, 62]. In its simplest

form, time is considered as an attribute of spatial objects in [37]. A simple time

stamping approach is adequate to obtain the states of objects at certain times.

However, to identify individual changes in objects, event-based approaches are

developed in [34]. In [62] temporal uncertainty and fuzzy timing are introduced in a

model that combines temporality and fuzziness. In this model the notions of fuzzy

time stamping, enabling time, occurrence time and delays are defined.

There are also efforts to combine spatial and temporal properties into one modeling

framework using an object-oriented modeling approach [16, 17, 50]. Tenets of

object-orientation, such as classes and instances, attributes and abstract data types,

operations and methods, classification and encapsulation, aggregation, information

hiding, inheritance, polymorphism and dynamic binding are very useful for

modeling and manipulating spatiotemporal data. Worboys [55] introduces the

concept of the spatiotemporal object and defined a spatiotemporal object as a unified

object with both spatial and temporal extents, also called a simplex. A finite set of

such spatiotemporal simplexes are then defined to form a spatiotemporal complex

on the basis of which query algebra is developed.

The object oriented modeling approach is also used to support fuzzy data. This lead

to development of fuzzy object-oriented modeling techniques for imperfect

information requirements of various complex applications. Gyseghem et. al. [18]

propose an object-oriented model that represents uncertainty and fuzzy information.

In that work, fuzzy information is presented by fuzzy sets and uncertainty by means

of generalized fuzzy sets. Bordogna et. al. [4] define a graph based fuzzy object-

oriented data model that permits attributes to take linguistic values. The association

between an object instance and instance properties are modeled through a fuzzy

reference relation. Lee et. al. [26] propose a new approach to object-oriented

modeling based on fuzzy logic to formulate fuzzy classes, fuzzy rules to describe the

4

relationship between attributes, the membership function of a fuzzy class based on

both static and dynamic properties, and uncertain fuzzy associations between

classes. Marin et. al. [29] present a set of operators to compare objects in a fuzzy

setting. Among them is a generalized resemblance degree between two fuzzy sets of

imprecise objects and to compare complex fuzzy objects. Yazici and George [56]

study a similarity based fuzzy object-oriented data model in which impreciseness at

the data level contributes to uncertainty in the class-object and class-subclass

hierarchy. In this thesis we introduce some extensions to that model for

spatiotemporal objects.

There also exist some other studies extending conceptual models for modeling fuzzy

information. For example, Geo-ER [19] is an extension of the entity-relationship

(ER) model that provides a set of concepts specific to the spatial application domain,

and attempts to capture spatial peculiarities at the conceptual level of geographic

database design. Yazici et. al. [58] use unified modeling language (UML) [2],

providing extensions to handle spatial and temporal objects. In their work, some new

special entity sets, relationships, and constructs were introduced for modeling spatial

objects.

In knowledge intensive applications, support for deduction is an important

requirement. In a spatiotemporal application, relations between objects can be very

complex. Consider, for example, a ship crossing the sea. In some parts the sea line

may be restricted for travel due to wave and wind conditions. How can we record

this information and make the deduction that the sea line is restricted? The

spatiotemporal data can be stored in databases but naturally there are relations

including some rules as well. Instead of storing all relations in a database, a

knowledge base that is capable of representing knowledge and making deductions is

preferable and very helpful for retrieving the status of the sea line. Hence, the

interaction and/or integration of database and knowledge base technologies are

important requirements for the development of knowledge intensive applications.

This is reflected in the continuing research into the development of deductive object-

oriented models since the late 1980s [9, 27].

5

1.2 Summary of Contributions

In this study, we present a new approach to model and query real world

spatiotemporal objects, in particular meteorological phenomena. The main

contributions of this thesis and our working layout can be summarized as follows:

• A generic model is introduced. Spatiotemporal objects and relations are

incorporated into the model. The types of the objects and relations can be

classified as follows:

o Complex crisp spatial objects,

o Fuzzy spatial objects,

o Crisp/fuzzy spatial relations (e.g. topological, directional and metric)

between spatial objects.

Then an application specific model is combined with the generic model. The

geographic objects (i.e. city, sea, line, etc.) and meteorological objects (i.e.

temperature, wind, waves, etc.) are included in a three dimensional space.

• The model including generic and specific parts and fuzzy spatiotemporal

querying mechanism are presented logically by C-logic [52] and

conceptually by extended UML [46]. The model is also specified formally

using Alloy and verified by Alloy analyzer [21].

• Following modeling efforts, an architecture is designed by utilizing the

Intelligent Fuzzy Object-Oriented Database (IFOOD) [25] including

components which are:

o an object oriented database,

o a knowledge base,

o a querying interface and fuzzy spatial.

• The architecture is implemented as a prototype application. Using

meteorological data some crisp and fuzzy queries are implemented to verify

the application.

6

• The queries are enhanced and diversified by adapting a spatial index

structure (R*-tree) [22, 45]. The adapted R*-tree (Enhanced R*-tree)

supports fuzzy spatiotemporal queries.

• Finally, the fuzzy semantic queries are run with real meteorological data and

the efficiency and scalability of the application is evaluated.

1.3 Organization of the Thesis

In the following chapter, we give some background information on concepts related

to fuzzy spatiotemporal database modeling, including spatial and temporal fuzziness

as well as relationships between fuzzy and complex objects. Then a comprehensive

related work summary is presented in the same chapter. In Chapter 3, we describe

how to develop a generic model for spatiotemporal database applications. We use a

meteorological database application to illustrate our approach. Chapter 4 gives

details about the architectural design of the system. In Chapter 5, we present queries

from the application domain, and discuss crucial details of their processing. The

development of a fuzzy index structure (Enhanced R*-tree) are explained in Chapter

6. Chapter 7 diversifies proof-of-concept queries in Chapter 5 by adding fuzzy index

structure and real data. The implementation details of crisp, fuzzy and semantic

queries are presented. We also evaluate the scalability and performance of the

application components. Finally, we present our conclusions and point out possible

future studies, in the last chapter.

7

CHAPTER 2

BACKGROUND AND RELATED WORK

In order to support our modeling and querying aspects, basic spatial and temporal

concepts are discussed in this chapter. The spatial objects in geographic information

systems especially in meteorological maps are presented in Section 2.1. Basic

definitions of fuzzy spatial data types are given in Section 2.2. We describe spatial

relations in general and topological relations between complex regions and fuzzy

regions in Section 2.3. The temporal requirements of a spatiotemporal application

are presented in Section 2.4. These are followed by a summary of index

requirements and R-tree/R*-tree descriptions in Section 2.5. Finally, we give a

summary of the related work in literature and our contributions in Section 2.6.

2.1 Spatial Objects

In many areas of geographic information systems, natural objects (e.g. mountains,

rivers, aridity areas, population distribution areas and meteorological phenomena

like foggy regions, wavy sea regions, etc.) and man-made objects (e.g. cadastral

divisions, administrative borders of the cities, roads and bridges etc.) are modeled,

stored and queried. The objects are defined with spatial (e.g. geometric shape,

location, boundary length, diameter etc.) and/or descriptive (e.g. name, origin etc.)

attributes [28].

8

In Figure 1, wave heights over the Mediterranean Sea are illustrated on a weather

map. According to the map, the wave heights have varying characteristics, which are

most dense in south-west of Italy and clear on the Eastern Mediterranean. The

borders of the density regions are indeterminate since the height characteristic

changes somewhat gradually.

Figure 1: A weather chart showing wave heights on the Mediterranean Sea

In Figure 2, the temperature values of Turkey on 31.12.2007 are depicted on a map

using GIS software [14]. The software groups the similar values together with close

tones of colors. So the cold and warm areas and the gradual changes are visualized

on the map.

9

Figure 2: Temperature mapping on 31.12.2007

Figure 3 is a similar map produced for the humidity measurements of Turkey at the

same date. The brown colors indicate the relatively dry regions whereas greenish

colors indicate the humid regions. Similar maps produced for different

meteorological parameters are presented in Appendix A.

Figure 3: Humidity mapping on 31.12.2007

10

In a geographic space like these maps, the objects with imprecise or vague spatial

attributes could be referred to as fuzzy spatial objects and the ones with precise or

exact attributes (e.g. country borders) could be referred to as crisp spatial objects

[40]. We define for fuzzy spatial objects, namely fuzzy points, lines and regions in

the next section.

2.2 Spatial Data Types

A fuzzy point is a point for which an exact position is not known but possible

positions are known within a certain area. In Figure 4-(a) the expected position of

such a point is shown by a black dot and the possible positions are shown by grey

dots. For instance, a ship waiting in the queue for crossing “Istanbul Bosphorus” is

supposed to be found at a certain point but may drift from that position from time to

time (e.g. move to the grey parts).

a) Fuzzy point

b) Fuzzy line

c) Fuzzy region

d) Complex region

Figure 4: Spatial data types

A fuzzy line is a line, the exact shape, position or length of which is not known, but

what is known is which area the line must reside in. In Figure 4-(b) the center line

11

shows the normal shape of a river. The actual river line can change position and

shape due to floods or droughts (hence the grey area).

A fuzzy region is a region with indeterminate boundaries. It has three parts: (1) the

core (indicated by the dark part) (2) the indeterminate boundary (grey part) and (3)

the exterior (the outer parts of indeterminate boundary) [59]. In Figure 4-(c) a

typical fuzzy region is depicted and might be used to express the gradual change

over a spatial domain for a given attribute (e.g. wave height).

Finally, a complex region is as set of regions, possibly with holes and multiple

components (see, Figure 4-(d)) [40]. Foggy regions with clear patches, for example,

can be represented as complex regions.

2.3 Spatial Relations

Spatial relationships can be one of the three kinds, namely, topological (e.g.,

overlap, inside, covers, etc.), directional (e.g., North (N), South East (SE), etc.) and

metric (e.g., "5 km away from") relationships [7].

Topological relations describe spatial relationships of objects in space. A model for

analyzing binary topological relations, known as the 9-intersection model, has been

proposed in the literature [13]. The 9-intersection model is based on the intersection

between the parts (interior, boundary, exterior) of the regions involved. The

intersections of the parts are analyzed with 3x3 matrices (total 29=512 matrices).

The model distinguishes eight meaningful (disjoint, meet, overlap, equal, contains,

inside, covers and covered by) relations for crisp regions. Later, this model was

generalized for fuzzy regions [32, 48, 59] and complex regions [11, 41]. These

generalizations are presented in the next sections.

12

2.3.1 Fuzzy Topological Relations

The topological relations between fuzzy regions are inevitably fuzzy because of the

indeterminate boundaries of the regions involved. Suppose that “A” is a set of

attributes under consideration, and that a region is a fuzzy subset defined in two

dimensional space R2 over “A”. The membership function of the fuzzy region can be

defined as []1,0: →×× AYXµ , where X and Y are the sets of coordinates defining

the region. Each point ()yx, within the region is assigned a membership value for

an attribute a in A.

A fuzzy region is illustrated in Figure 5 with the core, the indeterminate boundary,

the exterior and α-cut levels. The indeterminate boundary of the fuzzy region is an

aggregation of regions whose boundary is defined by cut−α levels, that is all

points with membership values equal to α . So, an cut−α level region is defined

as follows:

() (){ }()10,,,, <<≥= ααµα ayxayxR R (1)

Figure 5: Visualization of a simple fuzzy region

13

The degree of the fuzzy relation is measured by aggregating the cut−α level of

fuzzy regions. The basic probability assignment ()iRm α , which can be interpreted as

the probability that iRα is the true representative of R , is defined as in [12, 41, 59]:

() 1+−= iiiRm ααα (2)

for ni ≤≤1 for some Nn ∈ with 1 = 1α > 2α >…>
nα > 1+nα = 0

It is clear that ()∑
=

=
n

i

iRm
1

1α .

Let ()ji SR αατ , indicate the existence of a topological relation between two cut−α

level regions of fuzzy regions R and S (e.g. 0 or 1). Then the degree of a topological

relation between R and S can be determined by the following equation:

() () () ()
jij

n

i

m

j

i SRSmRmSR αααα ττ ,, ∑∑
= =

=
1 1

 (3)

Because ()
ji SR αατ , has a value of either 0 or 1 and () ()∑ ∑

= =

==
n

i

m

j

ji SmRm
1 1

1αα ,

()SR,τ should be in [0,1].

Here we present the formulation for the overlap relation as an example but the

remaining topological relations which are illustrated in Figure 6 can be formulated

in a similar manner:

() () () ()
jioverlapj

n

i

m

j

i SRSmRmSR αααα ττ ,, ∑∑
= =

=
1 1

 (4)

14

Disjoint Contains Inside Equal

Meet Covers Coveredby Overlap

Figure 6: Examples of topological relations between fuzzy regions.

2.3.2 Topological Relations Between Complex Regions

A complex region is the union of simple regions)(SR including, possibly, holes. Let

F and G be two simple regions with holes, that is

U
n

i

iSR FFF
1

0
=

−= and

U
m

j

jSR GGG
1

0
=

−= , (5)

where 0F and 0G are bases and iF and jG are the holes of F and G respectively.

Then, two regions are disjoint if 0F and 0G are disjoint or one region is inside of

another region’s hole. More precisely,

15

() ()

()() 













≤≤∃∨≤≤∃

∨=

j
,GFinside:mj

i
,FGinside:ni

,GFtdisjoinF,G
SR

ntdisjoi

0
1

0
1

00 (6)

, where

() ()
()

() ()()













≤≤∃∧

∨≤≤∀
∧=

ijj

j

SR
,FGinside:ni,FGinside

,GFntdisjoi:mj
,GFinsideF,Ginside

1

1

0

0

00
 (7)

F is considered to be inside G if 0F is inside 0G and if each hole jG of G is either

disjoint from 0F or inside a hole of iF . Examplary regions with holes and their

relations are illustrated in Figure 7.

Figure 7: Examples of the relations (a) disjoint and (b) nsidei

16

Other topological predicates for simple regions, possibly with holes, are defined in

the same vein. Based on these definitions, topological predicates for complex

regions are defined as follows:

Let

U
n

i

iCR FF
1=

= and U
m

j

jCR GG
1=

=

be two complex regions (CR) ,where iF and jG are simple regions with holes. Then

the topological relations are defined as follows:

() ()
jiSRCR GFntdisjoimjniGFntdisjoi ,:11, ≤≤∀≤≤∀= (8)

() ()

() ()()
jiSR

CRCR

GFmeetdisjomjni

GFntdisjoiGFmeet

,nti:11

,,

≤≤∀≤≤∀

∧¬=

() ()
jiSRCR GFinsidemjniGFinside ,:11, ≤≤∃≤≤∀= (9)

() ()FGinsideGFcontains CRCR ,, = (10)

() ()iiSRCR GFequalniGFequal ,:1, ≤≤∀= (11)

() () ()()
() ()()

jiSR

CRCR

GFequalveredBycoinsidemjni

GFequalinsideGFveredByco

,||:11

,|,

≤≤∃≤≤∀

∧= (12)

() ()FGveredBycoGFversco CRCR ,, = (13)

() () ()GFoverscveredBycoequalcontainsinsidemeettdisjoinGFoverlap
CRCR ,||||||, ¬= (14)

2.4 Temporal Aspects of Spatiotemporal Databases

Temporal aspects have been the focus of attention in the literature, and applications

often require that time information to be stored in the database. Information about

17

objects’ attributes and relationships among objects are valid when the object exits

temporally. For example, windy regions exist over the sea within a time interval and

the ships which have to cross these regions are planned to start and finish their

journeys at certain times. The windy regions and the ship routes will be expected to

relate to each other in certain ways in this interval. Temporal information is

generally stored in databases in two forms:

• the valid time is the time when the information about an object or

relationship holds in the modeled reality. For example the valid times of a

ferry route in the Marmara Sea is 08:30, 12:00 and 17:00 daily.

• the transaction time of a database entry is the time when the entry becomes a

part of the current state of the database. The time when the ferry lines’ times

are stored in the database is the transaction time of the entry.

Individual time values are termed chronons and many applications also have

duration, which can be captured by using time intervals, where a time interval [tbegin,

tend] is defined as a set of consecutive chronons. We call tbegin and tend the start and

the end chronon of the interval, respectively.

2.5 Spatial Indexing

The design of a spatiotemporal database should meet the unique requirements of

spatiotemporal data. In this section, we discuss a number of requirements at the

physical level.

A spatial object has a complex structure. It may be composed of numerous points,

line segments and polygons with holes and vague parts. It is not usually possible to

store such collections in a single relational table. Spatial objects also have dynamic

properties. The attributes like shape, position, etc. may change by the time. Data

structures used in this context should support this dynamic behavior. The complex

18

structure and the dynamic behaviors result in large databases comparatively. Finally,

the spatial operators are generally more expensive than the standard relational

operators. The spatial search operations require special support at the physical level

because of the existence of spatial attributes as well as non-spatial attributes.

Spatial index structures are designed to support such operations at physical level.

Based on the properties of spatiotemporal data, spatial index structures should be

dynamic for changing attributes, scalable for database growth, and should support

broad range of operations. There are a number of index structures which support

spatial indexing [45]. R-tree index family is widely studied [22] and we adapt one of

them, R*-tree for this study.

An R-Tree is an index structure for spatial data. At the leaf node of R-Tree, an index

record refers to the spatial data. The index record is an n-dimensional rectangle and

it is the bounding rectangle of the spatial data indexed. This rectangle is also known

as minimal bounding rectangle, MBR. Non-leaf nodes contain entries (I, childnode-

pointer) where I is the MBR bounding all the rectangles in the lower nodes' entries.

Childnode-pointer is the pointer to a lower node in the R-Tree.

Figure 8 shows an example of an R-tree. In the figure, leaf nodes (LN1 to LN7) are

the enclosing rectangles of original spatial data objects in the data space. Inner nodes

(IN1 to IN3), are MBRs of corresponding leaf nodes, and they are stored in the root

of this R-tree.

19

Figure 8: An example of R-tree

R*-tree is basically different from R-tree in the insertion phase. The design of the

R*- tree introduces a policy called forced reinsert: If a node overflows, it is not split

right away but firstly p entries are removed from the node and reinserted into the

tree. The parameter p may vary; but it is suggested that p to be about 30% of the

maximal number of entries per page [1].

Another difference between R-tree and R*-tree is the node splitting policy. While R-

tree algorithms try to minimize the area that is covered by the bucket regions, the

R*-tree algorithms also take into account minimum overlap between bucket regions,

minimum region perimeters and maximum storage utilization.

20

2.6 Related Work

A recent literature survey about the topic is presented in this section. The works are

classified under the modeling, querying and indexing sections.

2.6.1 Modeling Spatiotemporal Data

In this section a number of works about modeling spatiotemporal objects are

checked and compared to our work. The fuzzy object modeling, the past and future

states of moving objects, the conceptual, logical and physical modeling are the main

topics of our survey.

In [24] finite number of crisp regions where each region is associated with a

membership value indicating the degree of belonging, forms so called a plateau

region. Thus, a fuzzy region in Figure 5 is approximated by n crisp regions. So an

implementation effort can benefit from well known crisp region algebra. The authors

define formal plateau regions and operations. In our work in the prototype system

we implemented complex regions with holes and fuzzy regions. The fuzzy region

which is used to represent wavy and windy regions over the sea is a kind of plateau

region mentioned in [24] with some differences. In that work plateau regions are

presented like complex spatial objects with multiple parts each having different

fuzzy degrees whereas in our implementation fuzzy regions of windy areas are more

crisped shape of the simple fuzzy region. So our fuzzy regions have a core region

and from core to outside some non uniform crisp rings cover the core with

decreasing memberships.

Like plateau regions, vague spatial object and topological predicates [32], fuzzy

spatial data types [40], complex crisp and simple fuzzy regions [41] and complex

spatial objects and topological predicates [42] are formalized in a number of work

21

by Schneider and co-workers. We also handled fuzzy and complex spatial objects

and the formalism presented in these papers is quite useful for our modeling efforts.

The past and future states of moving objects are modeled in [36]. The formal

definitions of moving objects with respect to their past and future movements are

provided. In our study, we used past meteorological data and hence for moving

objects. In the ferry lines example, the restrictions for the line are queried. In

weather forecasting, the future states of meteorological objects are predicted. So if

we use future data our model can be used to query for the future topological

relations (e.g. the future states of the ferry lines will be restricted can be queried).

A survey on multidimensional modeling discusses the issues about the phases of

modeling [38]. The modeling phases are described at conceptual, logical and

physical level. The conceptual modeling aims an implementation independent and

expressive schema. In literature, conceptual modeling has been searched from two

perspective, multidimensional and Extraction-Transformation-Loading (ETL)

modeling. The multidimensional modeling approaches use extensions to Entity

Relationships model, UML and ad-hoc models. The authors state that ETL is less

mature then multidimensional modeling. The logical modeling takes place after

conceptual modeling and creates a logical schema. Finally physical design phase

concerns the issues specifically related to the implementation such as indexing. In

our research effort we follow the conceptual, logical and physical modeling order.

The conceptual model is based on extended UML for spatiotemporal data. The

logical design use C-logic and Alloy for a logical schema of the model. Finally at

the physical level we used an object oriented database supported by a spatial index

structure.

A recent work on modeling and querying vague spatial objects [63] uses shapelets

which is an image decomposition technique developed in astronomy. Shapelet is as

set of functions that includes a Gaussian function and higher order terms composed

of the products of Gaussian function with a set of polynomials. The shapelets

approach is optimized especially for smoothly varying fuzzy spatial objects. The

22

arithmetic operations (add/subtract two objects), topological operations (overlap,

etc.) and metric operations are defined formally for shapelets. An extension

including shapelet class is integrated into PostgreSQL as a library. In addition,

existing R-tree support in PostgreSQL is used to index shapelets. There are a couple

of differences in our approach and this approach. We use vague spatial objects

which are formalized by fuzzy set theory and complex crisp objects whereas in this

work shapelets are used to model spatial objects especially for smoothly varying

objects. The vague spatial objects and complex crisp objects are very suitable for

modeling meteorological objects. Both work use a database (PostgreSQL and db4o)

and a spatial index structure (R-tree and R*-tree). The R-tree and R*-tree use

bounding boxes as a standard indexing mechanism. In addition to that, we adapt R*-

tree for fuzzy spatial and aspatial indexing for fuzzy and semantic queries. In

querying spatial data, in addition to topological, metric relations we implement also

fuzzy semantic queries which may require deduction defined in fuzzy knowledge

base.

Our modeling effort follows conceptual, logical and physical modeling of

spatiotemporal data. We use fuzzy set theory in modeling fuzzy data. The definitions

for the fuzzy objects and complex crisp objects which have foundations in literature

[42] are suitable for meteorological objects. So our modeling efforts are parallel

with the works above and we present a complete architecture including modeling at

three levels supported by knowledge base and fuzzy semantic querying.

2.6.2 Querying Spatiotemporal Data

In this section we briefly give an overview of recent works from literature which is

related to querying methods. The location based queries, nearest neighbor and

distance searches are mainly the subjects of these works. Also fuzzy inputs and

processing are required to process the queries.

23

The location of reference objects and the target instances in a given range are the

subject location based spatial queries (LBSP) [5]. LBSQ take a reference point and

find instance objects in a distance or a range. The distance may be specified between

minimum and maximum values. The range may be a geometrical shape like circle.

The reference point and the instance locations can be uncertain also. The range,

circle, ring, distance range, fuzzy topological (inside, overlap, etc) queries are part

of our work.

In [43], an intelligent querying tool, TreeSap is presented. The tool focuses on

qualitative fuzzy input when querying spatial data. The distance relationships

between objects can be stated ambiguously such as near, close, very close, etc.

TreeSap converts this qualitative input to a numerical form and presents the results

of the query which is in numerical form in a simple and intuitive manner.

In [23], modeling and querying uncertain location information from free text which

is obtained from newspaper or event reporting sources is studied. Uncertain

locations such as near (Building A) and event types such as ‘traffic accident’ are

extracted from text and mapped onto probability density functions (pdf). They also

analyze several types of spatial queries such as range search.

ESSE [61] system allows user to query the environmental data archives in human

linguistic terms. These terms are mapped into query language by fuzzy logic. Fuzzy

states of spatiotemporal data sources are specified as logical expressions (AND, OR,

NOT) applied to a set of linguistic terms (Large, Small, etc.) and numeric predicates

(Less than, equal, etc.). The transformation from one state to another state by the

time is also defined formally.

These works in the previous paragraphs are focused on a specific part of spatial

querying. The location, distance, topological relations are implemented in our work

as well as other fuzzy semantic queries. We use meteorological objects and data sets

although it can be implemented for other data sets. We also adapt index structure

and knowledge base for efficient fuzzy semantic querying.

24

2.6.3 Spatial Index Structures

The indexing approaches in recent literature are discussed in this section. The usage

of R-tree index family and using separate or single index structures and fuzzy query

supporting issues are the main topics of these works.

Using separate index structures for different dimensions are discussed in [30]. In the

survey for geographic information retrieval systems two separate index structures

for text and geographical scopes are planned to use. We used single index structure

for spatial and non-spatial indexing. The additional indexing is added at the data and

intermediate nodes. The advantages of our approach are firstly it is dynamic so any

number of attributes of objects at the leaf level can be indexed and secondly during a

search only one index is loaded and all indexing criteria can be found in the same

level and structure.

Another work also uses two separate index structures for video clips. The variants of

R-tree and R*-tree are adapted for a two phased retrieval algorithm in content based

multimedia system [60]. While first tree is built on the spatial objects in the scenes

of a video, the second tree stores the spatial relations between the objects in the first

tree.

The relative spatial orientation and distance relation are indexed for icons which are

a collection of labeled point features in [10]. In this approach each pairing of two

icons is represented by a single point and all pairs with same separation and relative

orientation map to same point. Given a spatial relationship or range, the database

search is performed by using R-theta index which is a variant of R-tree. In our

approach the spatial relations and orientation are calculated dynamically by fuzzy

spatial processor and/or fuzzy knowledge base together.

The U-tree is built on the multidimensional uncertain data for range search [49].

Like R*-tree’s MBRs, a U-tree uses probabilistic constrained rectangles (pcr),

where pcr(0)=MBR and pcr(0.6) is a smaller rectangle and so on. As the probability

25

of pcr increases to 1, the bounding rectangle gets smaller. A query returns all objects

that appear in search region with at least a certain or higher probability. This

approach gives probability values to rectangles so in the core part of the rectangles

the object is found most probably. In our approach we use crisp rectangles to index

objects. Nevertheless the spatial (direction, relation, etc) and aspatial fuzziness are

supported as we mentioned.

The indexing approaches in these works are mainly differentiating from our work in

some couple of ways. In summary, we use single indexing structure which may be

more costly during the built up but more efficient while querying. We put index on

each attribute of the objects including temporal data. The spatial relations are not

indexed but calculated dynamically. Since the meteorological objects change

position, shape etc. continuously we believe that our approach is more convenient.

Finally in our work, any fuzzy attribute at the leaf level is indexed in the

intermediate nodes and it is dynamic which is independent of the number of

attributes.

26

CHAPTER 3

A GENERIC MODEL FOR SPATIOTEMPORAL

MODELING

In this chapter, the components of the generic spatiotemporal model, namely, the

fuzzy object oriented database (FOOD) [57] and the fuzzy knowledge base (FKB)

[25], are presented.

3.1 The Fuzzy Object-Oriented Database (FOOD) Model

The Fuzzy Object Oriented model supports multivalued attributes and fuzzy

domains are defined for these attributes. The domain of an attribute is the set of all

possible values that the attribute can take. For example, the fuzzy domain for a

“temperature” attribute of a meteorological observation can be defined as:

{ }coldcool,moderate,warm,hot,Domain etemperatur = (15)

That is, the temperature attribute can have some combination of these values from

the domain such as {hot, warm}, {warm}, {cool, cold, moderate}. The similarity

matrix in Table 1 shows the similarity of each element with other elements in the

domain.

27

Table 1: The similarity matrix for temperature attribute

Temperature hot warm moderate cool cold

hot 1.0 0.6 0.4 0 0

warm 0.6 1.0 0.8 0.2 0

moderate 0.4 0.8 1.0 0.6 0.4

cool 0 0.2 0.6 1.0 0.8

cold 0 0 0.4 0.8 1.0

The matrix indicates that cool and cold temperatures are similar with a degree of 0.8.

In a case where the temperature value is estimated and given a threshold value of

0.8, multiple values {cool, cold} can be associated, which gives us a fuzzy

representation for temperature value. Note that the values of the similarity relations

can be defined either by domain experts or computed using various methods existing

in the literature [53].

In FOOD, attributes can take values within a range and in general, domainrange ⊆ .

The range of an attribute ai of a class C is represented by the notation rngc (ai),

where { }ni aaaa ,,, 21 K∈ , the attributes of class C. For example, the range of the

temperature attribute of a class for a “fog” object can be defined as a subset of the

temperature domain:

{ }coldcoolderatemoetemperaturrng fog ,,)(= (16)

Another type of fuzziness in FOOD takes place between classes and objects. That is,

while some objects are full members of a fuzzy class, some other objects may

belong to the class partially. The objects may still be considered as instances of this

class but with a degree of membership in [0, 1]. A formal range definition indicating

the ideal values for a fuzzy attribute is given in the class definition. However, an

attribute of an object can take any value from the related domain. Then, the degree

28

of membership of an object to its class is computed by using the similarities between

the attribute values and the range values, and the relevance of fuzzy attributes. The

relevance is given by the weight of the fuzzy attribute in determining the boundary

of a fuzzy class. Thus, the degree of membership of an object jO to a class C is

determined by the formula:

() () ()() () ()∑∑
==

×=
n

i

i

n

i

iijiCjC CaRLVCaRLVaoarngINCo
11

,,µ
 (17)

where () ()()
ijjC aoarngINC / is the inclusion value that is taking into account the

semantics of attributes and ()CaRLV i , is the relevance of attribute ai to the class C,

as given in the class definition by the class designer. All attributes, therefore, affect

membership degrees in proportion to their relevance values. For the details of the

FOOD model, including examples of the computation of inclusion values, the reader

is referred to [57].

3.2 The Generic Model

In this section, the types, operations and predicates for a generic spatiotemporal

model are specified. C-Logic and Alloy notations are used for the formal definitions

of the model. Then in the next chapter implementation details are presented.

3.2.1 C-Logic notation

We use C-Logic, which allows direct transformation of the specification into first

order formulas [54]. C-logic also allows class and subclass specification

independently, which facilitates the update of objects’ subparts. This specification

can then be easily implemented in an object oriented programming language.

29

In C-logic a class is specified as a collection of atomic properties. For example, a

“Point” is a spatial data type having a membership value to exist at a location (x, y).

[] [] [][] 0.10,,,: ≤≤⇒⇒⇒= µµ wherefloatyfloatxfloattPoin . (18)

For example, an object of type Point can be defined

as []5.5,0.3,0.1: ⇒⇒⇒= yxtPoinp µ , which indicates that the point p is located

at ()5.5,0.3 with membership value 0.1=µ . A more general specification for Point

class is given below:

{ } { } { }[]

() .,0.10

,,,,,,,,:
2

111

Ryxandwhere

yyyxxxtPoin nnn

∈≤≤

⇒⇒⇒=

µ

µµµ KKK
 (19)

The mapping ⇒ can be understood as either “containing as a subset”, if it is

followed by a collection of terms, or “containing an element”, if it is followed by a

single term. In the former case, terms with the same index are associated with each

other.

An object is defined as an instance of a class within an interval of time and specified

by a predicate is_instance:

() endbegin TTTwhereTClassObjectanceinstis ≤≤,,,_

In a spatiotemporal model, the spatial portions of objects are described with

“Geometry”, “Point”, “Line” and “Region” classes. The “Point”, “Line” and

“Region” classes are associated with each other through aggregation relation. For

example, a line can be described by an aggregation of points and similarly a region

can be represented by an aggregation of lines, and so on. A special form of

aggregation is the “whole/parts” relation between “Geometry” and part classes,

30

namely, “Point”, “Line” and “Region”. “Geometry” is formed by the combination of

more than one spatial type and expressed in “Geometry” class definition as follows:

{ } [] [] [][]
() ()

() ()
() 0,,,,,,_

,,,_,,,_

,,,_,,,_,

,,,,,,:

1

1

11

>∈

≤≤

⇒⇒⇒⇒=

kandjiofoneleastatandNkjiTntPoiPanceinstis

TegionRegRanceinstisTegionRRanceinstis

TLineLanceinstisTntPoiPanceinstisTTTwhere

PcenteregRMBRfloatsizeRLPpartsGeometry

k

jiendbegin

kji

 (20)

The other attributes of the “Geometry” class are “Minimum Bounding Rectangles

(MBR)” [8] for locating and accessing objects in space, “center” for the central

position of the object and “size” for the volume that an object occupies.

The “STObject” class is associated with the “Geometry” class from which detailed

spatial information is extracted, such as geometries and possible holes for regions as

well as the position and trajectory of an object. The “STObject” class, having

geometric and temporal attributes is defined below. Note that an “STObject” can

have at least one simple geometry with possible holes.

{ } { } []

{ } { }
()

() ()

()
1,0,1,,,

,,,_

,,,_,,,_

,,,_),,(_

,
,,,

,,,
:

≥≥≥∈≤≤













⇒⇒

⇒⇒⇒
=

kjiandNkjiTTT

TtPoinTrajanceinstis

TtPoinPosnceinstaisTGeometryHoleanceinstis

TGeometryGeonceinstaisDateTimeTanceinstis

where
TTtimesTrajtrajectory

PospositionHoleholesGeogeometry
STObject

endbegin

k

j

i

endbegink

ji

K

 (21)

A fuzzy spatial relation describes the relative positions of two fuzzy spatial objects.

The degree of relation can be computed by using the definitions in Section 2.3 and

the “Fuzzy Topological Relation algorithm” presented in Figure 16. A formal

definition is given here:

31

()

{ }
{ }

{ }
()

()TSTObjectSTObjnceinstais

TSTObjectSTObjanceinstisTTTwhere

TTT

overlapoveredBycerscontainsequalinsidemeettdisjoinTyperel

TSTObjSTObjrelationspatialfuzzy

endbegin

endbegin

n

,,_

,,,_,,

,,

,,,cov,,,,,_

,,,

:,,__

2

1

1

21

≤≤

















⇒

⇒

⇒

=

K

K µµµ

 (22)

3.2.2 Alloy notation

After the model is defined formally in C-logic, Alloy analyzer is used. Alloy is a

formal object oriented specification language and its tool can be used for specifying

properties about objects and validating them [21]. The model is first abstracted in

Alloy language and then the analyzer verifies it.

In Alloy there are two kinds of specification elements:

• Signatures: define new types and contains a set of objects. The objects can be

related by the relations, which are fields of the objects.

• Facts, functions, predicates: define constraints and true statements.

Next we define our model in Alloy as follows:

module systems/STModel

open alloy/models/util/ordering[LineSegment] as ordL

open alloy/models/util/ordering[Time] as ordT

open alloy/models/util/ordering[Fuzzy] as ordF

The open statements are used to access the predefined ordering module. Ordering

module gets an argument and creates a linear ordering over it. The module presents

some functions, such as which element is first in the ordering (first), or whether a

32

given element precedes another (next), and some predicates such as comparisons

(gte, lt, eq, etc.) .

//abstract fuzzy class. The implementation consists of definition of fuzzy number

// which gives degree of fuzziness between 0 and 1

abstract sig Fuzzy{}

//The Time class includes definiton of time in YYYYMMDD hh:mm

sig Time{}

// a temporal class includes temporal class and a temporal entity has

// beginning time and end time

sig Temporal{

beginTime,endTime:Time

}

// Beginnig time should be less than or equal to end time

fact TemporalFact{

all T:Temporal| ordT/lte[T.beginTime,T.endTime]

}

//a temporal object exits in a temporal interval

pred isInstance(o:Temporal,bt,et:Time){

ordT/gte[o.beginTime,bt] and ordT/lte[o.endTime,et]

}

Alloy allows the definition of abstract classes. This is similar to object oriented

abstract classes. The detailed definitions of Fuzzy and Time classes are left to

implementation. The Temporal class definition which is extended by temporal

classes is followed by a fact definition. Facts are constraints which are assumed to

be always true. In the model, TemporalFact asserts that the beginTime should be

less than or equal than the endTime. Next, we define a predicate which implies that a

33

temporal object should exist in a temporal interval. Predicates in Alloy are simply

named constraints.

// Spatialbase has common entries for spatial classess

// membership: is a fuzzy number and shows the degree of

// spatial object's belonging to a particular spatial class

// size: for fuzzy spatial object size is also fuzzy.

abstract sig SpatialBase extends Temporal{

membership:Fuzzy, //fuzzy membership

size:Fuzzy

}

// Coordinate defines an x, y location in the space.

// x, y may be float numbers

sig Coordinate{}

// Point is the basic spatial element and can be part of line segments.

sig Point extends SpatialBase {

location:Coordinate

}

// a line segment is aggregated by a set of points,

// It has a beginning and ending defined by points.

sig LineSegment extends SpatialBase{

sourceEnd:Point,

targetEnd:Point

}

// a region is aggregated by a set of line segments

sig Region extends SpatialBase{

linesegs:set LineSegment

}

34

// at least 3 line segments form a region

fact RegionConst{

all r:Region |#r.linesegs >= 3

}

The SpatialBase is a super class of spatial classes such as Point, LineSegment and

Region. Then some facts are defined which presents natural truths about geometry.

For example a line segment has two points and at least three line segments form a

region

// a geometry is formed by a set of points and/or linesegments

// and/or regions

sig Geometry extends Temporal{

points: set Point,

linesegs: set LineSegment,

regions: set Region

}

// a geometry should have at least one of the parts.

// not all of the parts can be empty sets.

// this fact does not allow empty geometry

fact GeometryFact{

all g:Geometry |

not (#g.points=0 and #g.linesegs=0 and #g.regions=0)

}

// if a geometry exists in some temporal interval so that

// its parts should exist in the same interval

fact GeometryConst{

all g:Geometry |

isInstance[g,g.beginTime,g.endTime] =>

(isInstance[g.points,g.beginTime,g.endTime] and

35

isInstance[g.linesegs,g.beginTime,g.endTime] and

isInstance[g.regions,g.beginTime,g.endTime])

}

The GeometryConst fact states that if there exists a geometric entity in some

temporal interval, so do all its parts in the same interval.

// A spatiotemporal object definition

sig STObject extends Fuzzy{

geometry:some Geometry, // an STObject has one or more Geometry

holes:set Geometry, // an STObject may have holes

trajectory:some Point, //trajectory is a non-empty set of points

spatialRelation:set RelationType // An STObject may have spatial

 // relation(s) with other STObjects

}

The STObject has fields such that geometry and holes define the geometry of the

spatiotemporal object. The trajectory show the path that object follows. The

spatialRelation field holds the object’s topological relation with other STObjects.

These relations are formally defined in Chapter 2. An Alloy specification is given

here:

// A spatial relation exists in some temporal interval

// including two STObjects and fuzzydegree that shows

// the degree of the relation

abstract sig RelationType extends Temporal{

F,G: one STObject, //two STObjects F and G

fuzzyDegree:Fuzzy //the degree of the relation which is fuzzy

}

// These are the possible types of spatial relations.

// Each one of them is a relation between two STObjects and have a degree

36

one sig Disjoint,Meet, Inside,Equal, Contains,Covers,CoveredBy,Overlap extends

RelationType{

rel:F->G->Fuzzy

}

This definition is an enumeration of RelationType class. Each relation is a triple

from one object to another and to the Fuzzy class because the degree of relation can

be fuzzy. The predicates below define these relations by giving some constraints

about about object geometries and/or holes.

// the following predicates give definitions for the spatial relations

pred disjointCR(R:RelationType){

no(R.F.geometry & R.G.geometry) and no(R.G.geometry & R.F.holes) and

no(R.F.geometry & R.G.holes) and no(R.F.holes & R.G.holes)

}

pred insideCR(R:RelationType){

some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or

((R.G.holes in R.F.geometry) and (R.G.holes in R.F.holes)))

}

pred insideCR2(R:RelationType){

some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or

((R.F.holes in R.G.geometry) and (R.F.holes in R.G.holes)))

}

pred meetCR(R:RelationType){

one (R.F.geometry & R.G.geometry) and not disjointCR[R] and

not insideCR[R] not insideCR2[R] and not equalCR[R]

}

37

pred containsCR(R:RelationType){

insideCR2[R]

}

pred equalCR(R:RelationType){

(R.F.geometry=R.G.geometry) and (R.F.holes=R.G.holes)

}

pred coversCR(R:RelationType){

insideCR2[R] and meetCR[R] and #(F.geometry & G.geometry) = 1

}

pred coversCR2(R:RelationType){

insideCR[R] and meetCR[R] and #(F.geometry & G.geometry) = 1

}

pred coveredbyCR(R:RelationType){

coversCR2[R]

}

pred overlapCR(R:RelationType, fuz:Fuzzy){

not (disjointCR[R] or meetCR[R] or insideCR[R] or containsCR[R] or

equalCR[R] or coveredbyCR[R] or coversCR[R]) and ordF/gte[R.fuzzyDegree,fuz]

}

Some assertions and consistency checks are also necessary in order to show that the

definitions are correct:

// Spatial relation asserts

assert disjoinT{ //if disjoint not any other relation

all R:RelationType, fDegree:Fuzzy | disjointCR[R] =>

 not (overlapCR[R,fDegree] or meetCR[R] or insideCR[R]

 or containsCR[R] or equalCR[R] or coveredbyCR[R] or

38

 coversCR[R]) or

 R.G.geometry in R.F.holes //a geometry may be inside the hole

}

check disjoinT

assert meeT{

all R:RelationType, fDegree:Fuzzy| meetCR[R] =>

 not disjointCR[R] and not insideCR[R] and not equalCR[R] and

 not coversCR[R] and not overlapCR[R,fDegree]

}

check meeT

assert insidE{

all R:RelationType, fDegree:Fuzzy | insideCR[R]=>

 not (disjointCR[R] or meetCR[R] or coversCR[R] or

 overlapCR[R,fDegree]) or (R.F.geometry in R.G.holes)

}

check insidE

assert coverS{

all R:RelationType, fDegree:Fuzzy | coversCR[R]=>

 not (disjointCR[R] or overlapCR[R,fDegree]) and

 insideCR2[R] and (G.holes in F.geometry)

}

check coverS

assert equaL{

all R:RelationType, fDegree:Fuzzy | equalCR[R]=>

39

 not (disjointCR[R] or overlapCR[R,fDegree]) and

 (R.G.geometry in R.F.geometry) and (R.F.holes in R.G.holes)

}

check equal

The full list of spatial assertions together with complete model in Alloy can be found

in Appendix B. So far the generic classes and related constraints, facts and

assertions are defined. The application specific classes extend the generic classes.

//application specific classes

//---------------------------------

// City may have some routes crossing and have some weather object

sig City extends STObject{

route:set Route,

weather:some MetObject

}

sig Route{

parts: some LineSegment, //route has at least one LineSegment or more

//route may be one type or a mixed type. e.g. maritimeRoute or

// territoriolRoute + MaritimeRoute

rType:some RouteType,

// some parts may be clear some parts may be restricted so it has at least

// one status but may have more than one

rStatus:some RouteStatus,

// route crosses at least one City

cities:some City,

40

// a set of vehicles use the route

vehicles:set Vehicle

}

//two consecutive line segments over a route should have one common point

//one's targetEnd equals other's sourceEnd

assert routeFact{

all R:Route, ls1,ls2:R.parts|

 (ls1!=ls2 and ordL/eq[ordL/next[ls1],ls2])=>ls1.targetEnd= ls2.sourceEnd

}

check routeFact

// route type can ben maritime, territorial or aerial

abstract sig RouteType{}

one sig MaritimeRoute,TerritorialRoute, AerialRoute extends RouteType{}

// route may be clear, wavy (for maritime route) or restricted (for all types)

abstract sig RouteStatus{}

one sig Clear,Wavy,Restricted extends RouteStatus{}

sig Vehicle{

type:VehicleType,

status:VStatusType,

route:set Route

}

//route-vehicle relation at specific time

sig Journey extends Temporal{

route: Route,

vehicle: Vehicle,

}

41

// 1-a journey has only one vehicle and one route

// 2-A vehicle is used on only one journey during the journey

assert JourneyFact{

all j1,j2:Journey, t:Temporal|

isInstance[t,j1.beginTime,j1.endTime] and

isInstance[t,j2.beginTime,j2.endTime]=>

one j1.vehicle and one j1.route and one j2.vehicle and one j2.route and

j1.vehicle != j2.vehicle

}

check JourneyFact

sig Voyage extends Journey{} //ship journey

abstract sig VehicleType{}

one sig Ship, Bus, Train, Plane extends VehicleType{}

// a voyage has a MaritimeRoute and the vehicle running should be Ship

fact voyageFact{

all vyg:Voyage|

 vyg.route.rType=MaritimeRoute and vyg.vehicle.type=Ship

}

// A vehicle may be on time, delayed or canceled

abstract sig VStatusType{}

one sig OnTime,Delayed,Canceled extends VStatusType{}

//if a journey's route is restricted vehicle is delayed or canceled

fact statusFact{

all j:Journey|

 j.route.rStatus=Restricted=>

 j.vehicle.status=Delayed or j.vehicle.status=Canceled

}

42

// a meteorological object is a spatiotemporal object

sig MetObject extends STObject{

object:MeteorType,

degree:MeteorObjectDegree

}

// the types of metorological objects are enumerated here

abstract sig MeteorType{}

one sig Temperature, Pressure, Visibility, Wind, Wave, Cloude, Precipitation

extends MeteorType{}

// The strength of Meteorological object i

abstract sig MeteorObjectDegree extends Fuzzy{}

// Here a sample is given for visibility

one sig Visible, Misty, Foggy extends MeteorObjectDegree{}

// Another sample for precipitation

one sig Drizzle, Rainy, Snowy, Thunderstorm extends MeteorObjectDegree{}

// a meteorological measurement in a City includes a number of meteorological

objects

sig Measurement extends Temporal{

metobj:some MetObject,

city:lone City

}

// two spatiotemporal objects have overlap degrees

abstract sig OverlapDegree extends Fuzzy{}

//fuzzy overlapdegrees are enumerated

one sig Less, Moderate,High extends OverlapDegree{}

43

//if city and meteorological object overlaps than the object is in the city's weather

fact weatherFact{

some M:MetObject, C:City, R:Overlap|

 (R.F=M and R.G=C and overlapCR[R,High]) => M in C.weather

}

// As an example : if a city's weather has visibility and precipitation and

// their degrees are strong enough, then the route is restricted

fact routeStatusFact{

some M:MetObject, C:City, route:Route|

 ((M.object=Visibility and M.degree=Foggy) or

(M.object =Precipitation and (M.degree=Snowy or

M.degree=Thunderstorm)) and

 M in C.weather and C in route.cities)=>route.rStatus=Restricted

}

We finally run all check commands in Alloy and have no inconsistency:

Executing "Check disjoinT"

 Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

 0 vars. 0 primary vars. 0 clauses. 140ms.

 No counterexample found. Assertion may be valid. 0ms.

Executing "Check meeT"

 Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

 0 vars. 0 primary vars. 0 clauses. 31ms.

 No counterexample found. Assertion may be valid. 0ms.

Executing "Check insidE"

 Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

 0 vars. 0 primary vars. 0 clauses. 31ms.

 No counterexample found. Assertion may be valid. 0ms.

44

Executing "Check coverS"

 Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

 0 vars. 0 primary vars. 0 clauses. 16ms.

 No counterexample found. Assertion may be valid. 0ms.

Executing "Check equaL"

 Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

 0 vars. 0 primary vars. 0 clauses. 15ms.

 No counterexample found. Assertion may be valid. 0ms.

Executing "Check routeFact"

 Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

 0 vars. 0 primary vars. 0 clauses. 16ms.

 No counterexample found. Assertion may be valid. 0ms.

Executing "Check JourneyFact"

 Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

 0 vars. 0 primary vars. 0 clauses. 16ms.

 No counterexample found. Assertion may be valid. 0ms.

7 commands were executed. The results are:

 #1: No counterexample found. disjoinT may be valid.

 #2: No counterexample found. meeT may be valid.

 #3: No counterexample found. insidE may be valid.

 #4: No counterexample found. coverS may be valid.

 #5: No counterexample found. equaL may be valid.

 #6: No counterexample found. routeFact may be valid.

 #7: No counterexample found. JourneyFact may be valid.

These definitions and consistency checks in Alloy show that the model is sound and

can be transformed into a programming language. In the next section we present the

model in a UML notation.

45

3.3 The Object Model

In Section 3.1 the object model is formalized using C-logic and verified using Alloy.

In this section this modeling approaches are visualized using UML. The object

model in Figure 9 consists of the objects and relationships between objects for the

generic part of our model. The second part in Figure 10 consists of meteorological

application specific objects and relations.

The “Temporal” class is extended by classes having temporal data. The temporal

class is made up of the “Time” class including beginning/end times and the type of

the time record (valid or transaction). The temporal dependency of a class is shown

by “T” on the upper right-hand side of the entities and the spatiotemporal

dependency by “ST”. This is one of the extensions to UML that we used for the

specific requirements of the fuzzy spatiotemporal application [58].

The Fuzzy class is an abstract class and provides range definitions, relevance values

and class-object membership values for other inheriting classes. The fuzzy

constructor, indicated by the tag U to the left-hand side of the name of the class, is

used to indicate the existence of class attributes having fuzzy values, such as the

degree of a spatial relation.

The SpatialBase is a super class for spatial classes. The membership attribute in

spatial classes stores a membership value to describe a proximity to a certain fixed

space. So, spatial objects may belong to a class fully (i.e. with a degree of 1) or

partially (i.e. with a membership degree between 0 and 1). As an extension to UML,

a fuzzy class constructor, indicated by a double-square placed on the upper-left hand

side of the spatial class, explicitly represents the fuzzy instances. The spatial classes

(Point, LineSegment and Region) have an aggregation relation in between which is

shown by a diamond symbol. The Point class is defined with a Coordinate which

includes x and y values in R2 and z as a third dimension represents the altitude value.

46

Figure 9: A fuzzy spatiotemporal model

47

Point, LineSegment and Region are parts of Geometry and a whole-part relation

exists with Geometry, in which the whole is aggregated by different kinds of parts.

The whole/part relation is indicated by a double diamond symbol. The STObject can

have some geometry with a set of holes, follow a trajectory and have a set of

relations with other STObjects. A spatial relation between two STObjects can be

enumerated by eight topological relations (i.e. Disjoint, Meet, Inside … etc.) defined

in Section 2.3.2.

Under the generic model, meteorological application classes (e.g. MetObject, Route,

Measurement, Vehicle and City) exist inheriting the STObject and Temporal and

LineSegment classes. The model is shown in Figure 10.

According to application model the classes and some relations or constraints

between them are defined. For example, a MetObject is aggregated by numerous

Measurement observed by meteorological stations in the cities. A City may be on the

way of some Routes used by Vehicles. A Route is formed by consecutive line

segments. There may be different route types such as Maritime, Territorial, Aerial,

etc. A route crossing the multiple cities may be also used by multiple vehicles. A

vehicle using a route in some temporal interval forms a Journey. A journey refers to

a route which may be a real one like a river, a railway, or a virtual route like the

route of a ferry (a Voyage) or a plane.

This modeling approach should satisfy most practical requirements for

spatiotemporal applications. For example, the changes of spatial and temporal

attributes are captured by collecting all the related Geometry and Temporal objects.

The relations between the objects are calculated dynamically.

48

Figure 10: Meteorological application model

49

The generic model and the object model using are finalized with example class

definitions in Java. We show a few typical class definitions since the other classes

can be created similarly.

public class Geometry{

 Point p; //point reference

 LineSegment l; //line reference

 Region r; //polygon reference

 Temporal temporal; //temporal reference

 Fuzzy size;

}

public abstract class STObject extends Fuzzy{

 Geometry gset []; //geometries

 Geometry hset []; //holes

 int ngset, nhset; //number of geometries and holes

 Point tset []; //trajectory

}

public class City extends STObject{

 String name;

 int population;

 HashSet<Measurement> measurements; //a set of measurements

 Route route;

}

The Geometry class contains the references for the parts of the geometry (i.e. Point,

LineSegment and Region). The geometries, holes, position and time are some fields

of the STObject. Finally, the City definition which is a spatiotemporal object is

presented. The HashSet<Measurement> represents a set of elements (unordered

and not duplicated) of type Measurement.

50

3.4 Coupling the Fuzzy Database with a Fuzzy Knowledge Base

In order to achieve an intelligent application, a knowledge base (KB) is integrated to

the object-oriented database. We utilize the Intelligent Fuzzy Object Oriented

Database (IFOOD) [25], which provides flexible and powerful querying

mechanisms for complex data and knowledge with uncertainty in both database and

knowledge base.

The knowledge base (KB) used in the IFOOD architecture includes rules and

intelligent objects having fuzzy attributes. In addition, it features a fuzzy inference

method used for deduction of fuzzy conclusions. It gets the rules and facts/objects as

input, tries to satisfy rules by comparing them with facts, and produces a conclusion

from the satisfied rules.

The IFOOD language is an object-oriented database language extended with

declarative rules to define predicates. We illustrate this with an example: sea traffic

is prohibited in the Istanbul Strait due to conditions of wind, visibility, and waves,

etc. In the knowledge base, the combination of rules and the objects attributes fire

the maritime lines are prohibited conclusion. The fuzzy rules are defined using

linguistic values as follows:

if city.visibility is badsight or underAverage

and city.wind is windy or gust

then city.route is restricted.

The rule given below exemplifies the fuzzy if-then rules utilized in the IFOOD

language formally.

[]() () ()
[]() [](),,,.,,,.

,,,,,.defrule

thresholdgustwindywindYthresholdgeunderAverabadsightvisibilityY

YCityXRoutethresholdZYprohibitedStatusX f

51

where o.a(v, [thresholdrng(a)]) is an object term, where o is an object ID, a is an

object attribute, v is an attribute value, and thresholdrng(a) is the threshold level

defined for the attribute a. For more details of the IFOOD inference engine and

language the reader is referred to [25].

52

CHAPTER 4

THE ARCHITECTURE OF THE SPATIOTEMPORAL

DATABASE APPLICATION

The architecture of the proposed environment for spatiotemporal data modeling is

illustrated in Figure 11. The FOOD system acts as a database server for data

management and the FKB system acts as a knowledge server for knowledge

management. Additionally, the fuzzy spatial predicates are determined by the fuzzy

spatial processor (FSP). The communication and interaction between the database

system, the knowledge base system and the fuzzy spatial processor is performed by

the bridge interface (BI). At the higher level, there is a single user interface that

provides a unified environment for both data and knowledge management and

allows users the capability of query processing independently from the physical

structure of the architecture.

Fuzzy processors are used to handle uncertainty at both the object-oriented database

component and the knowledge base component of the system. At the user interface

level, users are able to define objects and rules having uncertain properties and to

query the system with uncertain conditions. The definitions of uncertain types,

similarity relations, and membership functions are stored in the object-oriented

database.

53

Figure 11: The architecture of the spatiotemporal database application

The FKB system processes rules taking fuzzy objects as input. We provide the

required facilities in the FKB system to access the definitions in the FOOD system.

For example, if the FKB system needs the similarity of two fuzzy terms of a special

domain, it gets this value via the fuzzy processor from the FOOD system.

The FSP module processes topological predicates between complex spatial objects

possibly with holes and fuzzy spatial objects. BI forwards the user request to FKB if

the query includes a topological predicate. FSP requests the spatial objects from

FOOD and finds the predicates and the degree of membership of the relation.

The BI component plays a coordinating role in query processing. It gets user queries,

analyzes them, sends requests to the database and/or to the knowledge base,

retrieves the results, and sends them up to the user interface. The algorithm, with

implementation steps, is as follows:

54

Query Evaluation Algorithm:

Input: Query supplied by the user

Output: Retrieved objects

Get and Parse(query);

if query is nonspatial-query then

if query is crisp-query then

Send-to-OODB(crisp-query);

else

Send-to-OODB(fuzzy-query);

end if

if query includes knowledge-base predicate(s) then

Transfer-to-knowledge-base(satisfying-objects);

Start-inference-engine-evaluation;

Return(result);

end if

Get(satisfying-objects);

else

Send-to-OODB(spatial-query);

if query includes knowledge-base predicate(s)(rule) then

Transfer-to-knowledge-base(satisfying-objects);

Transfer-to-FSP(satisfying-objects);

Apply fuzzy spatial and/or complex spatial algorithm;

Start-inference-engine-evaluation;

Return(result);

else

Transfer-to-FSP (satisfying-objects);

Apply fuzzy spatial algorithm in Figure 16 and/or complex spatial

algorithm in Figure 14;

end if

end if

Submit-to-user (selected satisfying-objects);

Figure 12: Query evaluation algorithm

55

CHAPTER 5

QUERY PROCESSING

In this chapter query processing mechanism is tested with various types of queries.

The following procedures are applied to resolve the query according to its type:

• The basic query (crisp and non-spatial): This type of query asks for crisp

data that does not have a spatial dimension. The BI sends the parsed query

expression directly to OODB. The objects that meet the query condition

are sent back to the BI.

• The fuzzy non-spatial query: This type of query asks for data that is fuzzy

but non-spatial and the BI, FKB, and OODB components are employed.

The objects retrieved by the BI are sent to the FKB component to check

whether they meet the fuzzy conditions. How these objects are checked is

illustrated in Section 5.1. Objects satisfying the conditions are sent back to

the BI.

• The complex spatial query: Complex spatial objects and their relationships

are queried in this type of query. The BI, OODB and the FSP components

are employed to fetch query results. The user asks for the objects that have

topological relations (described in Section 2.2 and 2.4) with the objects

under inquiry. Section 5.2 illustrates this type of query.

• The fuzzy spatiotemporal query: In this type query, the user asks for the

objects that meet the conditions of the predefined rules within a specified

time interval. The rules can be evaluated by an examination of topological

relations between fuzzy regions and fuzzy objects. The fuzzy

spatiotemporal queries are illustrated in Section 5.3-5.5.

56

5.1 Fuzzy Non-Spatial Query

The objects used in the example are listed in Table 2, and the similarity relation of

“cloud” is included in Table 2 and Table 3. The similarity relation of “temperature”

is already presented in Section 3.1.

Table 2: Sample records in database

ID Object

Type

Name Temperature Cloudiness Visibility DateTime

C1 City Istanbul Cool Cloudy Bad sight 01.01.2008

C2 City Edirne Moderate Partly cloudy Under average 01.01.2008

C3 City Izmit Cold Cloudy,closed Average 01.01.2008

Table 3: Similarity matrix of cloudiness attribute

Cloud Clear Partly Cloudy Closed

Clear 1.0 0.6 0 0

Partly cloudy 0.6 1.0 0.6 0.4

Cloudy 0 0.6 1.0 0.8

Closed 0 0.4 0.8 1.0

57

Query: Retrieve the cool and partly cloudy cities on 01.01.2008.

This query is formulated as follows:

select X.cityname

 from city(X)

where X.temperature([cool],0.6) and X.cloud([cloudy],0.8),

X.validtime(01.01.2008);

The query is evaluated as follows:

i. The first predicate to evaluate in this query is X.temperature([cool],0.6).

• C1.temperature is cool, and µSimilarity(cool,cool)=1.0. Therefore C1 satisfies the

temperature predicate.

• C2.temperature is moderate, and µSimilarity (cool,moderate)=0.6. Therefore C2

satisfies it.

• C3.temperature is cold, and µSimilarity (cool,cold)=0.8. Therefore C3 satisfies it.

ii. Then, the predicate X.cloud([cloudy],0.8) is evaluated.

• C1.cloud is cloudy, and µS Similarity (cloudy,cloudy)=1.0. Therefore C1 satisfies

the cloud predicate.

• C2.cloud is partly cloudy, and µSimilarity(cloudy,partly cloudy)=0.6. Therefore

C2 does not satisfy it.

• C3.cloud is cloudy or closed with

max{µSimilarity(cloudy,cloudy),µSimilarity(cloudy,closed)}= max{1.0,0.8}=1.0.

Therefore C3 satisfies it.

iii. As a result, the objects C1 and C3 satisfy the fuzzy query conditions

5.2 Complex Spatial Query

Figure 13 shows the maximum temperature regions (a) and the meteorological

events (b) as mapped by the Turkish Meteorological Office on 01.01.2008.

58

(a)

(b)

Figure 13: Maximum temperature regions (a) and

meteorological events (b) on 01.01.2008.

The temperature regions are shown in different colors (e.g. cold parts by dark blue,

cool parts by green, moderate parts by orange and warm parts by red). Temperature

regions are visualized as complex spatial objects since they have multiple

components possibly with holes. The expected meteorological events are depicted

59

with symbols and colors, e.g. rain (green drops), snow (blue stars), grey clouds,

black foggy areas and yellow patchy areas.

The spatial objects representing temperature regions and meteorological objects in

Figure 13 are inserted in the database as shown in Table 4. The temperature regions,

which are classified by their degrees (e.g. cool, cold, etc.), have different geometries

(e.g. Geo1, Geo2, etc.). According to the figure, Cold (dark blue) region has one

simple region (Geo1) and a hole (Hole1). The cool regions (green) have four simple

regions forming Geo2, and none of them has a hole.

Table 4: Objects in the FOOD

Object ObjType Degree Geometries Holes Valid Time

Met

Object
temperature

{cold, cool,

moderate,

warm}

{Geo1, Geo2,

Geo3, Geo4}

{Hole1,

Null,

Null, Null}

01.01.2008

Met

Object
fog {foggy} {Geo5} {Null} 01.01.2008

Met

Object
snow

{heavy,

rainy}
{Geo6, Geo7}

{Null,

Null}
01.01.2008

Met

Object
rain {shower} {Geo8} {Null} 01.01.2008

Met

Object
cloud

{cloudy,

partly

cloudy

{Geo9,

Geo10}

{Null,

Null}
01.01.2008

60

Query: Retrieve the cold and foggy regions and the relation on 01.01.2008.

This query is formulated as follows:

select spatial_relation(X.geometry,Y.geometry)

 from MetObject(X), MetObject(Y)

where X.ObjType([temperature]) and Y.ObjType([fog]) and

X.degree([cold],0.8) and Y.degree([foggy],0.8)

and X.validtime(01.01.08) and Y.validtime(01.01.08);

In this query, the temperature objects having the attribute value cold, and the fog

objects having the foggy degree are fetched from FOOD to BI. The user supplies a

threshold value 0.8 for temperature degree, so “cool” regions are also fetched

since [] []() 0.1, =coldcoldSµ and [] []() 8.0, =coolcoldSµ). The simple topological

relation algorithm is applied for components with holes of complex regions. After

finding simple topological predicates, the complex topological relation algorithm is

applied to determine the final topological predicate. Note that we show only the

“disjoint” case in the algorithm in Figure 14 since it occupies much space and the

other cases are handled similarly, as explained in Section 2.4:

Complex Topological Relation algorithm:

Input: Simple regions of two complex regions

Output: Sequence of topological predicates that hold between each pair of simple

regions

1. STR ←∅ //Simple Topological Relation

2. for each simple region of complex regions(F,G)

 F0 ←{Base geometry of F}

 G0 ← {Base geometry of G}

Figure 14: Complex topological predicate evaluation algorithm

61

 S ←∅ //S is a set of Simple topological relations

 if spatial_relation(F0,G0) = “disjoint” then

 simple topological relation(STR) ←”disjoint”;

 else

 for i ←1 to n //For each hole of F

 if spatial_relation(G0,Fi) = “inside” then

 simple topological relation(STR) ←”disjoint”;

 end if

 end for

 for j ←1 to m //For each hole of G

 if spatial_relation(F0,Gj) = “inside” then

 simple topological relation(STR) ←”disjoint”;

 end if

 end for

 end if

// If not disjoint do related calculations for other topological predicates

S ←S ∪ {STR};

 end for

3. for each STR in S

 if all STR are pairwise disjoint then

 complex topological relation(CTR) ←”Disjoint”;

 end if

// If not disjoint do similar calculations for other complex topological

predicates

 CTR








←
OverlapContainsoveredbyCoversC

EqualInsideMeettDisjoin

|||

||||

 end for

Figure 14: Complex topological predicate evaluation algorithm (cont’d)

62

5.3 Fuzzy Spatiotemporal Query

In this example, fuzzy spatial relations are queried. In Figure 15, wave height (a)

and wind speed (b) for “Marmara Sea” are illustrated on 31.12.2007 15:00

Greenwich Mean Time (GMT) (between 40.0-41.4 North latitudes and 26-30 East

longitudes.

(a)

(b)

Figure 15: Wave height (a) and wind speed (b) over Marmara Sea.

63

Both meteorological events are represented as fuzzy spatial objects, in which the

central parts have the highest waves and strongest winds while the coastal areas

have lower waves and calmer wind conditions. The three lines, Line1, Line2 and

Line3 represent ferry routes between the ports.

Query: Retrieve the sea lines restricted for transportation due to wind and wave

conditions on 31.12. 2007.

This query is formulated as follows:

select X

from Geo_line(X), MetObject(Y), MetObject(Z)

where X.LineType([SeaLine]) and Y.ObjType([Wave]) and

Z.ObjType([Wind]) and X.status([restricted], Y, Z, threshold_value),

X.validtime (31.12.2007);

In the query, the sea lines restricted for transportation are requested. In this case,

X.status([restricted],Y,Z,threshold) is a rule defined in the FKB as follows:

[]()
() () ()

()
();,.,.

,,.,.

,,,_

,,,.

thresholdgeometryZgeometryXoverlap

thresholdgeometryYgeometryXoverlap

ZMetObjectYMetObjectXLineGeo

thresholdZYrestrictedStatusXdefrule f

The threshold value supplied by the user gives a limit for the restriction of the sea

line. Required objects (sea wind and wave height geometries) are fetched from the

OODB, and FSP calculates the fuzzy spatial relation (overlap in this case) between

the fuzzy regions wind and wave, and crisp ferry lines using the fuzzy topological

relation algorithm in Figure 16:

64

Fuzzy Topological Relation algorithm (region vs. line):

Input: Two fuzzy object geometries

Output: The overlap degree of two objects

1. FuzzyRelation 0←

2. for each levelcut−α region Rα i – R α i+1

if the line overlaps with Rα i – R α i+1 then

FuzzyRelation ←FuzzyRelation + () ()linemregionm i ×α

end if

end for

3. Return FuzzyRelation

Figure 16: Fuzzy topological predicate evaluation algorithm

According to the meteorological forecast, the sea area is divided

into levelscutfive −α (i=5) and the ferry lines overlap some of them (see Figure

15); the calculation details are presented in Table 5 and Table 6.

The results of the fuzzy spatial relation calculations are supplied to FKB for

inference. In FKB, a rule may be composed of more than one condition. Each

condition in a rule may have its own matching degree. Therefore, we compute an

overall matching degree. Here, we use the “min” operator for combining the degree

of matching of conjunction (AND) conditions and the “max” operator for combining

the degree of matching of disjunction (OR) conditions [47].

For example, considering the rule given for “restricted sea line” above, each term is

matched with a matching degree, as shown in Table 5 and Table 6, and the overall

65

matching degree is calculated as in Table 7. According to the overall restriction

degrees in the third column, given the threshold value 0.7, “Line 1” and “Line 2 ”

will be restricted.

Table 5: Computing a fuzzy topological relation for a wavy region and ferry lines

levelscut−α

of wavy

region

overlapτ

()×iregionm α

()1linem

overlapτ

()×iregionm α

()2linem

overlapτ

()×iregionm α

()3linem

1.0 - 0.75 1 0.25 0 0.00 0 0.00

0.75 - 0.50 1 0.25 1 0.25 0 0.00

0.50 - 0.30 1 0.20 1 0.20 0 0.00

0.30 - 0.0 1 0.30 1 0.30 1 0.30

τoverlap(R, L) 1.0 0.75 0.30

Table 6: Computing a fuzzy topological relation for a windy region and ferry lines

levelscut−α

of windy

region

overlapτ

()×iregionm α

()1linem

overlapτ

()×iregionm α

()2linem

overlapτ

()×iregionm α

()3linem

1.0 - 0.65 1 0.35 1 0.35 0 0.00

0.65 - 0.30 1 0.35 1 0.35 0 0.00

0.30 - 0.20 1 0.10 1 0.10 1 0.10

0.20 - 0.0 0 0.00 1 0.20 1 0.20

τoverlap(R, L) 0.80 1.00 0.30

66

Table 7: The overall fuzzy relation degrees

Degree of overlap of

lines with wavy

Degree of overlap of

lines with windy

µoverall=Min(overlapwavy,

overlapwindy)

Line 1 1.00 0.80 0.80

Line 2 0.75 1.00 0.75

Line 3 0.30 0.30 0.30

5.4 Nested Rule Query

Due to the restrictions in the transportation lines, the vehicles’ trips are “cancelled”

or “delayed”. Following the example in Section 5.3, we find the “delayed” vehicles

for the same date.

Query: Retrieve delayed ferries on 31.12.2007.

This query is formulated as follows:

select X

from Vehicle(X), MetObject(Y), MetObject(Z), Geo_Line(L)

where X.Type([Ferry]) and X.GetLine()=L and

X.status([delayed],Y,Z,L,threshold_value) and X.validtime (31.12.2007);

The rule is defined in FKB as follows:

[]()
() []();,,,.,_),(

),(),(,,,,.defrule

thresholdZYrestrictedStatusLLLineGeoZMetObject

YMetObjectXVehiclethresholdLZYdelayedStatusX f

This rule is a nested rule as it fires another rule (Y.status[restricted],threshold), as

described in Section 5.3.

67

5.5 Fuzzy Spatiotemporal Query

In Figure 17, the meteorological objects for an interval are presented. According to

the figures the rainy areas (green drops) move to the east while decreasing in

effective size. On the other hand the cloudy areas move to the west while increasing

in effective size.

(a)

(b)

Figure 17: Meteorological objects on 01.01.2008 (a) and 02.01.2008 (b)

68

Query: Retrieve the area, direction and speed changes of meteorological events in

terms of position and effect area between 01.01.2008 and 02.01.2008 .

In the query, the directional, positional and areal changes of the objects are queried

and the algorithm in Figure 18 is applied.

Fuzzy Spatiotemporal Query algorithm:

Input: A pair of geometries for a time interval

Output: Area, direction and speed change

1. for each chrononi (i=0 to n)

for each object in the chronon

TotalAreai ←0

for each component of the object’s geometry

TotalAreai ← TotalAreai + component’s area (CA)

end for

for each component of the object’s geometry

Get the minimum bounding rectangle(MBR)

Get the center (x,y) of the MBR

Object center (X,Y)i ←Weighted average of (x,y)’s

end for

end for

end for

2. for each pair of center points (X,Y)i

Distancei ←Sqrt((Yi-Yi-1)
2
+(Xi-Xi-1)

2
)

Speedi ← Distancei /(chorononi – choronon i -1)

Directioni ← (Yi-Yi-1)/(Xi-Xi-1)

AreaChangei ← TotalAreai - TotalAreai-1

end for

Figure 18: The algorithm to evaluate area, speed and direction change

69

In order to illustrate how the algorithm works, the rain object’s spatial attribute

changes are shown in Figure 19. This complex object is made of three parts on the

first day (on the left) and four parts on the second day (on the right). The MBRs,

central points for each part and the areas are depicted in the figure. A central point

for the whole object on both days is calculated, using a weighted average

considering the proportional area of each part:

areaTotalAreaAandAandA

whereyACenterY

xACenterX

ii

n

i

ii

n

i

ii

n

i

ii

/110

,

1

1

1

==≤<

×=

×=

∑

∑

∑

=

=

=

 (23)

Figure 19: Rain object movement on 01.01.2008 (a) and 02.01.2008 (b)

70

The approximated centre points for the complex object (e.g. at coordinates of (91,

77) and (228,103)) are used to calculate the directional change and the speed of the

object. The summation of the areas of each part shows the change (growth or

decrease) in the object’s effect area.

71

CHAPTER 6

FUZZY SPATIAL/ASPATIAL INDEXING

In this chapter, the adaption of an index structure from R*-tree for fuzzy spatial and

aspatial data is explained. This new tree is called Enhanced R*-tree throughout our

work. We present the logical structure of enhanced R*-tree and visualize it with

meteorological data. Enhanced R*-tree is very flexible so that any data in the leaves

can be indexed and the indexed attributes are fuzzified in upper levels.

6.1 Enhanced R*-Tree

R*-tree is a variant of R-tree family that uses rectangles to organize spatial data.

While the directory nodes hold the organizing rectangles, the leaf nodes hold the

data itself. R*-tree introduces a forced reinsert policy which means that whenever a

node overflows it is not split right away but firstly p entries are removed and

reinserted into the tree.

The structure of Enhanced R*-tree is depicted in Figure 20. It basically shows three

parts in the tree: the root of the tree, the directory nodes and the data nodes. The

fields in the figure can be summarized as follows:

R*-tree: This node is the header of the whole Enhanced R*-tree and includes some

statistical data about the tree.

num_of_data: Number of stored data

num_of_dnodes: Number of data nodes

num_of_inodes: Number of directory nodes

72

root_is_data: Shows if the root is a data node

root_ptr: Pointer to the root node

Figure 20: The structure of Enhanced R*-tree

Directory Node: Directory node implements the intermediate nodes in the tree. This

is where the organizing rectangles (MBR) are stored. The members of a directory

node are as follows:

son_is_data: Shows whether the son is a data node

level: the level of the directory node in the tree

num_entries: number of directory entries in the directory node

fuzzy_index[]: An array of fuzzy indexing values for the underlying nodes. Assume

that there are n attributes of each data record. Then ith attribute is stored in the

following indices:

Low value of the attribute: fuzzy_index[2*i-2]

High value of the attribute: fuzzy_index[2*i-1], where 1 ≤ i ≤ n

73

For example in our application eight attributes are stored in the following indices:

0-1: Direction of station’s location in 360°.

2-3: Altitude of the stations low and high value

4-5: Temperature low and high value

6-7: Humidity low and high value

8-9: Pressure low and high value

10-11: Precipitation low and high value

12-13: Wind Direction low and high value

14-15: Wind Speed low and high value

DirEntry []: Array of directory entries which has a pointer to another directory or

data node. Directory entries also hold a rectangle which covers all rectangles under

this directory node. The rectangle indexes the underlying nodes spatially. The

capacity of the directory node is calculated with the size of Enhanced R*-tree block

size divided by the size of each directory entry.

Data Node: Data node implements the leaf nodes in the tree. This is where the data

objects are stored. The members of the data node are as follows:

level: the level of the data node in the tree

num_entries: number of data objects in the data node

fuzzy_ index[]: An array of fuzzy indexing values for the object’s attribute values.

These attributes are same ones which are explained in directory node. The fuzzy

index of data node holds the low and high range values for the data objects’

attributes whereas in the directory nodes these are the range values for the whole

nodes underlying. As the level of the directory nodes increase the range gets bigger

and bigger. In the root directory node the fuzzy index stores the full range values for

the whole tree.

74

Data []: Array of Data objects which has spatial location and other meteorological

attribute values. The attributes in Data object are stored in the following indices:

0-3: Location – {(x1, y1)-(x2, y2)}

4: Altitude

5: Date Time

6: Station Number

7: Temperature

8: Humidity

9: Pressure

10: Precipitation

11: Wind Direction

12: Wind Speed

6.2 Building the Enhanced R*-Tree

An enhanced R*-tree is built in two steps: First the primary index is built based on

minimum bounding rectangles and then secondary index is built based on the

attributes of the objects. The creation algorithm shows how the primary and

secondary indexes are built in Figure 21.

Algorithm for Enhanced R*-tree Creation

Input: Input data file

Output: Enhanced R*-tree

While Not EOF(input data file)

 Read a line

 Parse MBR and other attributes

Figure 21: Enhanced R*-tree insertion algorithm

75

 Create Data Object

 Insert into tree recursively starting from the root pointer

 Get corresponding son

 Insert into son

 If data node capacity is full

 Calculate the center of the node

 Sort the entries by the distance to the center

 Copy the nearest %70 entries to new node

 Reinsert the last %30 entries

 Else if reinsert is applied then

 Split the node

 End if

 If Split happens in the son then

 Create a new entry to hold the new son

 Insert this entry to directory node

 End if

 If directory node splits then

 Split the directory node

 End if

End While

Build secondary index

 For each entry in the node

 Get son

 If the son is directory node then

 Build secondary index for the son

Figure 21: Enhanced R*-tree insertion algorithm (cont’d)

76

 Else

 For each attribute of Data objects

 If the attribute is less than minimum range in secondary index

 Set the minimum of index range

 End if

 If the attribute is bigger than max range in secondary index

 Set the maximum of index range

 End if

 End For

 End if

 Set the minimum value of the corresponding attribute in secondary index

 Set the max value of the corresponding attribute in secondary index

 End For

Figure 21: Enhanced R*-tree insertion algorithm (cont’d)

6.3 The Visualization of Enhanced R*-Tree

The structure of the Enhanced R*-tree is visualized with meteorological data.

Turkey’s meteorological measurements data between 30.12.2007 00:00 and

01.01.2008 21:00 in Table8 are read from a text file and inserted into the tree. The

text file has the following fields:

F0: Longitude of the meteorological station

F1: Latitude of the meteorological station

F2: Altitude of the meteorological station

F3: Date Time (yyyymmddhh)

77

F4: Station Number, an international unique code given to each meteorological

station. The first two digits are for the country code and the rest is the station

number.

F5: Temperature in Celsius

F6: Humidity as percentage

F7: Pressure in milibar

F8: Precipitation Hour

F9: Wind direction in 360° scale

F10: Wind Speed in knots

Table 8: The text file structure for meteorological data

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

41,11 31,48 248 2007123000 17018 -4,70 97 NULL 1 0 0

41,38 32,20 189 2007123000 17020 1,80 94 1029 1 0 0

41,27 31,48 118 2007123000 17022 3,30 72 1029 1 140 15

In Figure 22 the Enhanced R*-tree is depicted. There are three levels in the tree. The

smallest rectangles at level 3 show the data nodes. At level 2 and level 1 the

directory nodes group smallest rectangles. The logical structure of the Enhanced R*-

tree is seen in Figure 23. The details of the tree in general are presented in the header

of the tree:

• Number of data:1059

• Number of data nodes:116

• Number of internal (or directory) nodes:7

• Pointer to the first node

78

Figure 22: Enhanced R*-tree visualization

For the first directory node, the details are presented as follows:

• the kind of son node (i.e. data or directory node): false

• the level of the directory node:2

• number of entries in the node:6

• a fuzzy index array which shows the range values for spatial and aspatial

attributes in all data nodes which can be accessed through this directory

node. The values in the array indicate the range values in the following

order:

o lowest value for orientation of the meteorological stations under this

node in 360°: 2°

o highest value for orientation of the meteorological stations under this

node in 360°: 355°

o lowest altitude value of the meteorological stations under this node:

o highest altitude value of the meteorological stations under this node:

79

Figure 23: Enhanced R*-tree nodes

80

o minimum temperature value measured by the stations under this

node: -16.7

o maximum temperature value measured by the stations under this

node:17

o minimum humidity value measured by the stations under this node:16

o maximum humidity value measured by the stations under this

node:99

o minimum pressure value measured by the stations under this

node:990

o maximum pressure value measured by the stations under this

node:1030

o The shortest duration of precipitation in hour:1

o The longest duration of precipitation in hour:2

o The minimum angle of wind direction in 360° scale: 0°

o The maximum angle of wind direction in 360° scale: 360°

o The calmest wind speed value in knots : 0

o The strongest wind speed value in knots : 51

• An array of directory entries under this node, each of which specifies a

bounding rectangle and a pointer to the underlying node whether directory or

data node. The bounding rectangle is the minimum one which can cover all

objects underlying.

For some data node the details are presented as follows:

• the level of the data node : 0

• number of entries in the node : 9

• a fuzzy index array which shows the range values for spatial and aspatial

attributes in the data nodes. The order of the values in the array is the same

as directory node but here it shows the range values for the data node,

• An array of data objects with some attributes. Data[8] is given as an example

in Figure 23 with the following attributes:

o Bounding rectangle borders

81

o Altitude

o Valid time

o Station number

o Temperature

o Humidity

o Pressure

o Precipitation duration in hour

o Wind direction

o Wind speed

6.4 Querying the Enhanced R*-Tree

In this section the working of Enhanced R*-tree is shown for various kinds of query

types. The query types can be spatial, aspatial which may include fuzzy or crisp data

and a combination of these.

6.4.1 Crisp Aspatial Queries

Crisp and aspatial input parameter is used to fetch the object by means of Enhanced

R*-tree. For example:

Retrieve the measurements which have 5 °C temperatures.

An algorithm is presented to show the working of Enhanced R*-tree in Figure 24.

The nodes of the Enhanced R*-tree is searched for the input parameter. In our

example it is the temperature attribute and 5 °C. Whether the searched node is

directory or data node the fuzzy index is checked for the aspatial attributes. The

indices values are four for low temperature and five for the high temperature. So

fuzzy_index[4] and fuzzy_index[5] are checked and if the input is between those

ranges than the node satisfies. If the node is directory node each sub-tree under the

node is searched recursively, otherwise this should be a data node. In that case the

82

data entries are checked and this time we search for the exactly matching entries. If

any data entry satisfies the object is retrieved.

Crisp Aspatial Query Algorithm for Enhanced R*-tree:

Input: Enhanced R*-tree, aspatial parameter value

Output: The objects having exact aspatial value

 For each Enhanced R*-tree node

 Check the low and high value for input parameter in the fuzzy index

 If the input parameter is between the low and high value

 If the node is a directory node

 for each directory entry in R*-tree directory node

 Search the nodes pointed by directory entry

 end for

 else if the node is a data node

 for each Data entry in R*-tree data node

 if the Data entry’s related attribute equals input parameter

 Get the object

 end if

 end for

 end if

 end if

 end for

Figure 24: Crisp Aspatial Query Algorithm in Enhanced R*-tree

83

Crisp Spatial Query Algorithm for Enhanced R*-tree:

Input: Enhanced R*-tree, spatial parameter value

Output: The objects having exact spatial value

For each Enhanced R*-tree node

 If the input parameter is related to the MBR of the tree &&

 the input rectangle intersects (inside, overlap) the MBR of the node

 If the node is a directory node

 for each directory entry in R*-tree directory node

 Search the nodes pointed by directory entry

 end for

 else if the node is a data node

 for each Data entry in R*-tree data node

 if the Data entry’s rectangle inside the input parameter

 Get the object

 end if

 end for

 end if

 else if the input parameter is related to the fuzzy index &&

 the input parameter is between the low and high value

 //fuzzy index[0-1] for direction and fuzzy_index[2-3] for altitude

 Search sub-tree for the directory nodes or get the objects as in the if part

of this else if block

 end if

end for

Figure 25: Crisp Spatial Query Algorithm in Enhanced R*-tree

84

6.4.2 Crisp Spatial Queries

In this type of query, crisp spatial input parameter is used to find the objects. For

example:

-Fetch objects in given (x1,y1)-(x2-y2) rectangular range

-Fetch objects at 270° degree of orientation

-Fetch object at 1500 meters of altitude

An algorithm is presented to show the working of Enhanced R*-tree in Figure 25.

The primary indexing attribute in the Enhanced R*-tree is the MBR of the nodes. So

if the input is a range specified by a rectangle then the MBR of the nodes are used.

But if the input parameter is related to other spatial parameters such as orientation or

altitude then the secondary fuzzy index is searched (i.e. fuzzy_index[0-1] for

orientation and fuzzy_index[2-3] for altitude). If the node is directory node each sub-

tree under the node is searched recursively, otherwise the data entries are checked

and if any data entry satisfies the object is retrieved.

6.4.3 Fuzzy Spatial/Aspatial Queries

Fuzzy spatial or aspatial parameters are input of this query type. Some examples are

given here:

-Retrieve the measurements which have warmer than 5 °C temperature,

-Get the N - NW oriented objects,

-Find the cities higher than 1000 meters.

An algorithm is presented to show the working of Enhanced R*-tree for three fuzzy

spatial and/or aspatial criteria in Figure 26.

85

Fuzzy Spatial/Aspatial Query Algorithm for Enhanced R*-tree:

Input: Enhanced R*-tree, fuzzy spatial/aspatial parameters combination

(temperature, orientation ,altitude)

Output: The objects satisfying all three criteria

 For each Enhanced R*-tree node

 Check the low, high value for input parameter1 (>5 °C)in the fuzzy index

 Check the input parameter2, orientation (N-NW range) values of fuzzy index

 Check the input parameter3, altitude low, high value (>1000 m) values of

fuzzy index

 If all criteria is between the ranges

 If the node is a directory node

 for each directory entry in R*-tree directory node

 Search the nodes pointed by directory entry

 end for

 else if the node is a data node

 for each Data entry in R*-tree data node

 if the Data entry’s related attributes satisfies input parameters

 Get the object

 end if

 end for

 end if

 end if

 end for

Figure 26: Fuzzy Spatial/Aspatial Query Algorithm in Enhanced R*-tree

86

The input parameters are related to fuzzy index. fuzzy_index[0-1] for orientation and

fuzzy_index[2-3] for altitude and fuzzy_index[4-5] for temperature are checked for

directory nodes and data nodes. If the node is directory node each sub-tree under the

node is searched recursively, otherwise the data entries are checked and if any data

entry satisfies the object is retrieved.

87

CHAPTER 7

IMPLEMENTATION AND PERFORMANCE

EVALUATION

In Chapter 5, we implemented the proof-of-concept type queries and verified that

the application runs smoothly. It is an integrated environment that the objects are

stored and fetched from an object oriented database whereas the knowledge base

applies some rules whenever necessary and the user interface runs as a coordinator.

After the proof-of-concept type work, we believe that it is necessary to validate the

application with real data. In meteorology application there is excessive spatial data

so also an index structure adaption would be useful in querying. In the previous

work [45] several spatial index structures have been adapted and compared. In this

work, we adapt one of them, R*-tree into the spatiotemporal application and

scalability of the application is tested as the number of records grows.

7.1 Implementation

The application is developed in Java using NetBeans IDE 6.5. The other components

of the implementation environment are

• db4o 6.4 [51] for object database, which is an open source database engine,

• jess.jar [39], a rule engine for java platform

• Enhanced R*-tree [22], a spatial index structure

88

The application runs on a notebook computer with Intel Core Duo CPU T9400, 2.53

GHz, 4 GB RAM.

7.2 An Object Oriented Database, Db4O

Db4O is an open source object database that enables to store and retrieve any

application object by predefined database libraries. For example, an object is firstly

created in Java and then stored in the database with set command:

db.set(<savedObject>), where

db = Db4o.openFile(<databaseName>);

The stored objects are fetched from database by the get command:

db.get(<getObject>);

The objects in Db4O are visualized by ObjectManager tool. The objects can be

inquired and the whole object hierarchy can be seen. In Figure 27, the stored objects

like ST_Object with attributes can be seen on the left part of the screen. The other

parts of the tool are the upper part for querying and the middle part where the results

of the queries and some statistics can be seen.

7.3 The Rule Engine, Jess

Jess is a rule engine developed in Java language. By using the knowledge supplied

in the form of declarative rules, Jess is able to inference some results. It’s scripting

language allows to access to Java’s APIs so one can create Java objects, call Java

methods and implement Java interfaces. An example for the declarative rules is

given in Figure 28.

89

Figure 27: Database visualization by ObjectManager tool

The rule defines the geographic line’s status. FSP module which is a Java module is

called from FKB. So it is defined at the beginning. In the section before the double

arrow the prerequisites are written. So any GeoLine object which is put into the

queue of the FKB should satisfy some constraints. LineType should not be null and

be SeaLine. It should have an attribute as threshold. The obj refers to the object as

the final parameter.

The right side of the double arrow is applied to the objects which satisfy the

prerequisites. The geographic line’s topological relation with wave and wind objects

is checked. If any of them is above threshold value then the line status is set to

“Restricted” otherwise to “Clear”.

90

defglobal ?*fp* = (new Fsp))

(defrule geolinestatus

?p1 <- (GeoLine

 (lineType ?lT&:(and (neq ?lT nil) (eq ?lT "SeaLine")))

 (threshold ?th)

 (OBJECT ?obj))

 =>

 (bind ?result (call ?*fp* FuzzyRelation ?obj "wave" "wavy"))

 (bind ?result2 (call ?*fp* FuzzyRelation ?obj "wind" "windy"))

 (bind ?minresult (min ?result ?result2))

 (if (> ?minresult ?th) then

 (call ?obj setlineStatus "restricted")

)

 (if (< ?minresult ?th) then

 (call ?obj setlineStatus "clear")

)

 (call ?obj setOverlap ?minresult)

)

Figure 28: An example of rules

7.4 Crisp Queries

The crisp queries are basic spatial queries. They do not include fuzzy or semantic

input nor require knowledge base processing but they are used by fuzzy/semantic

queries.

91

In the next sections, the crisp queries are described by the details of input screens,

implementation algorithms and the output screens. The crisp queries which are

supported by the application are as follows:

• Point query

• Range query

• Circle query

• Ring query

• Kth Nearest Neighbor (kNN) query

7.4.1 Point Query

Point query fetches all objects at a specific point which is an input data by the user

in the form of (x, y) coordinate. In the example, the user asks all objects located at

(x=220, y=440) coordinate. The user interface gets the input coordinates and the

bridge as a coordinator applies the point query algorithm in Figure 30.

Figure 29: Point query input screen

92

Point Query Algorithm:

Input: R*-tree, a point data located at (x, y)

Output: The objects which are located at the input location

1. Create a point from input coordinates, P ← (X,Y)

2. Create an empty result list res

3. Search R*-tree nodes

If the node is a directory node

for each directory entry in R*-tree directory node

if the point P is inside of the directory node DN

 search sub-tree of DN

 end if

end for

 else if the node is a data node

for each entry in R*-tree data node

if the point P is inside the data objects’ points

 call fetch utility of object database

 insert into res

 end if

end for

 end if

4. call drawPoint

5. display output objects

Figure 30: Point query algorithm

93

Firstly a reference point, P is created at (x, y). Then, an empty list res for holding the

resulting objects is created. The search subroutine of the R*-tree is called with these

two parameters. The directory nodes are checked for whether the bounding

rectangles contain the reference point. If so the sub tree which is covered by the

directory entry is searched recursively. The algorithm reaches to a data node if the

point is inside the directory entries. The data object coordinates and reference point

are checked one by one and the matching objects are fetched from object database

by the fetch utility to append to the result list. The objects in the result list are

mapped in Figure 31.

Figure 31: Point query results.

In Figure 31 the reference point is mapped by the red colored circle. The data

objects at leaf level which intersects the reference point is also shown at the same

94

point in red. The spatial representation is detailed in a separate window above. The

attributes of the objects in the result list are presented. The details are coordinates of

the object, date time, station number, and meteorological parameters.

7.4.2 Range Query

The range query searches for the objects in a spatial range between (x1, y1) and

(x2,y2) which is an input data.

Figure 32: Range query input screen

In Figure 32, the user enters a range between (x1=200, y1=300) and (x2=400,

y2=500). The UI gets the input coordinates and the bridge fetches the spatial objects

from OODB by using the following algorithm:

95

Range Query algorithm:

Input: R*-tree, a spatial range defined by a rectangle (x1, y1) and (x2, y2)

Output: The objects which are covered by the range

1. Create a rectangle from input coordinates, MBR ← (x1, y1 ,x2, y2,)

2. Create an empty result list res

3. Search objects in the input range

If the node is a directory node

for each entry in R*-tree directory node

if the spatial relation between directory entry bounds and MBR is

INSIDE or OVERLAP

 search sub-tree of directory entry

 end if

end for

 else if the node is a data node

for each entry in R*-tree data node

if the object’s geometry and MBR intersects

 call fetch utility of object database

 insert into res

 end if

end for

 end if

4. call drawRange

5. display output objects

Figure 33: Range query algorithm

96

In the first step of the range query algorithm a rectangle is created from the input

data. Then, an empty list res for holding the resulting objects is created. The range

search subroutine of the R*-tree is called. The directory nodes are checked for

whether the bounding rectangles inside of or overlap with the input range. If so the

sub tree which is covered by the directory entry is searched recursively. If the

algorithm reaches a data node the data object coordinates and input range are

checked for overlap or inside relation. The matching objects’ details are fetched

from object database by the fetch utility and appended to the result list. The objects

in the result list are mapped in Figure 34.

Figure 34: Range query result

97

The input range is drawn as a red colored bigger rectangle in Figure 33. The objects

inside the input range at leaf level are also shown by red color. The object details are

presented in a separate window above the screen. The details are coordinates of the

object, date time, station number, and meteorological parameters.

7.4.3 Circle Query

A circle is defined with two parameters, the centre and the radius. The parameters

are entered in UI by the input screen in Figure 35:

Figure 35: Circle query input screen

The user enters a circle center at (x=400, y=420) with radius 30. The UI gets the

input and the bridge fetches the spatial objects which reside inside the reference

circle from OODB by using the following algorithm:

98

Circle Query algorithm:

Input: R*-tree, circle parameters center and radius

Output: The objects which reside inside the circle

1. Create a circle from input coordinates and the radius, Circle ← (x, y ,r,)

2. Create an empty result list res

3. Search objects in the circular area

If the node is a directory node

for each directory entry in R*-tree directory node

if directory entry bounds and circle area intersects

 search sub-tree of directory entry

 end if

end for

 else if the node is a data node

for each entry in R*-tree data node

if the object’s geometry and Circle intersects

 call fetch utility of object database

 insert into res

 end if

end for

 end if

4. call drawCircle

5. display output objects

Figure 36: Circle query algorithm

99

Circle query algorithm creates a reference circle from the center coordinates and

radius. The circular area search subroutine of the R*-tree is called with circle and

output list res parameters. The directory nodes are checked for whether the

bounding rectangles intersect with the circle. If so the sub tree which is covered by

the directory entry is searched recursively. If the algorithm reaches a data node the

data objects which reside in the circular area are fetched from database and

appended to the result list. The objects in the result list are mapped in Figure 37.

Figure 37: Circle query result

In the output screen the input circle and its radius can be seen. The objects inside the

circle at leaf level of R*-tree are also visualized by red color. The object details are

presented in a separate window above the screen. The details are coordinates of the

object, date time, station number, and meteorological parameters.

100

7.4.4 Ring Query

A ring is the difference of two circles with the same center point but different

radiuses. The ring query deals with the objects which reside inside the ring. The

ring area is obtained by subtracting small circle from bigger circle. The query

parameters are entered by UI as in Figure 38:

Figure 38: Ring query input screen

The ring in this query example is defined with center at (x=500, y=520) and the

inner circle radius (r1=40) and outer circle radius (r2=60). The UI gets the input and

the bridge fetches the spatial objects which reside inside the ring area by using the

Ring Query Algorithm in Figure 39.

In Figure 39, ring query algorithm creates two reference circles with r1 and r2 and

the same center point. The ring is obtained as the difference of two circles. The ring

area search subroutine of the R*-tree searches from upper nodes to the leaf nodes. If

the directory nodes intersect with the ring area search continues to the bottom of the

node until a data node is reached. If the algorithm reaches to a data node and the

101

Ring Query algorithm:

Input: R*-tree, ring parameters: center, radius1 and radius2

Output: The objects in the ring area

1. Create Circle1 ← (x, y ,r1)

2. Create Circle2 ← (x, y ,r2)

3. Set Ring ← Circle2 - Circle1 //Difference operation

4. Create an empty result list res

5. Search objects in the ring area via R*-tree nodes

if the node is a directory node

for each directory entry in R*-tree directory node

if directory entry bounce and the Ring intersects

 search sub-tree of directory entry

 end if

end for

 else if the node is a data node

for each entry in R*-tree data node

if the object’s geometry and ring intersects

 call fetch utility of object database

 insert into res

 end if

end for

 end if

6. call drawRing

7. display results in the main map and detail window

Figure 39: Ring query algorithm

102

data objects reside in the ring area, they are appended to the result list. The objects

in the result list are mapped in Figure 40.

Figure 40: Ring query result

In the output screen the ring area and the objects inside are visualized by red color.

The object details are presented in a separate window above the screen. The details

are coordinates of the object, date time, station number, and meteorological

parameters.

7.4.5 Kth Nearest Neighbor (KNN)

KNN query finds first nearest k entries to a reference object. In our implementation

we use the ring query to find the kth nearest neighbor of an object and the center of

the ring is accepted as the reference point. The algorithm starts with a circle and the

103

ring is the area between the center and the circle. In every loop of the algorithm

matching objects are fetched and appended to the output list. In the new run a ring is

created by increasing the circles radius so the outer circle of the previous run

becomes the inner circle of the previous run and a new outer circle is created. The

loops continue until k object is found. The parameters are entered in UI by the

following screen in Figure 41:

Figure 41: KNN query input screen

The center of the rings is (x=600, y=300), ring width is 20 and 5 nearest neighbor

are required. KNN query algorithm is described in Figure 42.

KNN query algorithm runs similar to the ring query algorithm. In every loop the

ring is searched. At the end of the loop circle1 is replaced with circle2 and a new

circle2 is created. The loop continues until k object is found.

104

KNN Query algorithm:

Input: R*-tree, reference point coordinates (x, y), number of nearest neighbors k,

ring width

Output: The k nearest objects to the reference point

1. Set r1 ←0

2. Create a circle from input coordinates and the radius, Circle1 ← (x, y, r1)

3. Create an empty result list res

4. Search objects in the ring area via R*-tree nodes

Loop until k objects are found

 Set r2 ← r1 + ring width

 Create a circle Circle2 ← (x, y, r2)

 Set Ring ← Circle2 - Circle1

 If the node is a directory node

 for each directory entry in R*-tree directory node

if the entry’s bounce and Ring intersects

 search sub-tree of directory entry

 end if

 end for

 else if the node is a data node

 for each entry in R*-tree data node

if the data geometry and Ring intersects

 call fetch utility of object database

 insert into res

 end if

 end for

Figure 42: KNN query algorithm

105

 end if

 Set r1 ←r2

 Set Circle1 ← (x, y, r1)

 end for

5. call drawRings

6. display results in the main map and detail window

Figure 42: KNN query algorithm (cont’d)

Figure 43: KNN query result

The result of the KNN query is shown in Figure 43. The innermost circles are

increased by some width and in every loop new nearest neighbors are found. In the

106

output screen the ring area and the objects inside are visualized by red color. The

object details are presented in a separate window above the screen.

7.5 Fuzzy Queries

Fuzzy queries in general are more complex queries than crisp queries. The

complexity arises since the queries include fuzzy input and also they may require

some intelligence which is achieved by some rule processing in FKB. The crisp

query algorithms can be used for fuzzy semantic queries.

In the next sections, the fuzzy semantic queries are described by the details of input

screens, implementation algorithms and the output screens. The fuzzy queries

implemented in the application are:

• Fuzzy Spatial Relations Query

• Fuzzy Spatiotemporal Query

7.5.1 Fuzzy Spatial Relations Query

Topological, directional and distance relations are combined in fuzzy spatial

relations query. A union of constraints for these relations is supplied by the user.

The constraints may be fuzzified also. For instance, if an object is not in the exact

North direction of the reference object but to some fuzzy degree we also accept that

object in the result. Similarly, we can find the degree of a topological relation so that

for instance 0.8 overlapping objects with the reference object may be fetched as the

result of the query. The parameters are entered in UI by the screen in Figure 44.

According to the input screen, the reference object is located at (x1=450, y1=517)

and (x2=350, y2=389). The distance constraint is given as a range between 0 and

107

Figure 44: Fuzzy Spatial Relations Query input screen

200. The direction constraint can be a union of 8 directions (i.e. N, NE, S, etc) with

possible fuzzy degree. In the example user asks for 0.7 degree E, SE objects. As a

last constraint, a union of 8 topological relations (i.e. Overlap, Inside, Disjoint etc.)

can be selected with possible fuzzy degree. In the example user asks for disjoint

objects compared to reference object. Getting input parameters the algorithm in

Figure 45 is applied.

108

Fuzzy Spatial Relations Algorithm:

Input: R*-tree, reference object {(x1, y1) - (x2, y2)}, minimum distance, maximum

distance, fuzzy direction degree, direction values, fuzzy topology degree, relations

Output: The objects that satisfy the constraints

1. Create a rectangle from input coordinate for the reference object,

Set Rect ← (x1, y1, x2, y2,)

2. Set direction from direction checkboxes

3. Set topology from topology checkboxes

4. Create an empty result list res

5. Call the R*-tree search subroutine

If the node is a directory node

for each entry in R*-tree directory node

if the directory entry bound is in distance range && direction

constraint satisfies fuzzy index && topology constraint satisfies

 search sub-tree of directory entry

 end if

end for

 else if the node is a data node

for each entry in R*-tree data node

if object lies in distance range && direction constraint satisfies fuzzy

index && topology constraint satisfies

 call fetch utility of object database

 insert into res

 end if

end for

 end if

6. Display results in the main map and detail window

Figure 45: Fuzzy Spatial Relations query algorithm

109

Fuzzy Spatial Relations algorithm starts with creating a reference object. Since the

user may enter more than one direction, a binary number is created and related bits

are set to 1 for selected directions. Similarly a topology bitmap is created from

selected topological relations. The distance range, topology and direction bitmaps

with fuzzy degrees are input to search subroutine. The search subroutine searches

the directory nodes, where the bounding rectangles and the reference object are

compared, and the data nodes, where objects and the reference object are compared.

The objects which satisfy all constraints are appended to the result list. The objects

in the result list are mapped in Figure 46.

In the output screen the reference object’s geometry can be seen as the big rectangle.

The data objects which are in 0-200 range, disjoint and E/SE direction are displayed.

Notice that solution includes not only exact East or South East objects but also some

North East or South objects. This is because of the fuzzy degree of direction

constraints.

Figure 46: Fuzzy Spatial Relations query result

110

7.5.2 Fuzzy Spatiotemporal Query

An object can change its position and shape during a temporal interval. For example,

a cold weather area moves, strengthen or weaken (i.e. becomes warmer or cooler).

Fuzzy spatiotemporal query finds this kind of spatial changes in temporal interval.

The object type is selected as Humidity in the input screen in Figure 47. The values

are entered as a range so the humidity values within the %70 and %80 values

measured by the meteorological stations will be queried. The spatial range specifies

the search area whereas the temporal range specifies the temporal interval (i.e.

between 30.12.2007 00:00 and 31.12.2007 00:00).

Figure 47: Fuzzy Spatiotemporal Query input screen

111

Fuzzy Spatiotemporal Query algorithm:

Input: R*-tree, Object Type, Value range, spatial range and temporal range

Output: The object’s path and the values at each position

1. Create an empty result list res

2. If the node is a directory node

for each directory entry in R*-tree directory node

if directory entry bounce and spatial range intersects &&

value range is in the directory node’s fuzzy index range

 search sub-tree of directory entries

 end if

end for

 else if the node is a data node

for each entry in R*-tree data node

if the object’s geometry and spatial range intersects &&

value range is in the data node’s fuzzy index range &&

time is in temporal interval

 call fetch utility of object database

 insert into res

 end if

end for

 end if

3. Calculate and display trajectory

for each unique temporal chronon in the result list

 Find average value of the meteorological parameter (i.e. humidity)

 Find center point of the objects

end for

Figure 48: Fuzzy Spatiotemporal Query algorithm

112

4. Display results in the main map and detail window

Display matching objects

Display each temporal chronon, position and the value

Draw trajectory between positions

Figure 48: Fuzzy Spatiotemporal Query algorithm (cont’d)

Fuzzy spatiotemporal query finds the movement of objects in a spatial and temporal

range. The value range constraint is another constraint. The three constraints are

checked in directory and data nodes. The objects satisfying the three constraints are

appended to the output list. The algorithm calculates a trajectory in step three. For

each unique temporal instance an average of values of objects from output list is

obtained. Then these instances are connected to each other to show the trajectory of

the selected object. The trajectory and output list are mapped in Figure 49.

Figure 49: Fuzzy Spatiotemporal query result

113

In Figure 49, the average values of the objects and the temporal value are displayed

as the black dots. The black lines connect the instances. In addition the red squares

show the data nodes satisfying the constraints. The bigger red square shows the

spatial range. And lastly the details of the objects are displayed in the upper window.

7.6 Fuzzy Semantic Queries

Fuzzy semantic queries are more complex queries than the crisp and fuzzy queries.

In these queries fuzzy query algorithms, FKB processing and some semantic

processing are combined.

In the next sections, the fuzzy semantic queries are described by the details of input

screens, implementation algorithms and the output screens. The fuzzy semantic

queries implemented in our application are:

• Fuzzy Semantic Query 1 (Extreme Conditions)

• Fuzzy Semantic Query 2 (Trajectory of Objects)

• Fuzzy Semantic Query 3 (k Highest Measurements)

• Fuzzy Semantic Query 4 (Agricultural Risky Zones)

• Fuzzy Semantic Query 5 (Altitude vs. Meteorological Parameters)

7.6.1 Fuzzy Semantic Query 1 (Extreme Conditions)

Semantic queries find semantic properties and/or behaviors of spatiotemporal

objects. For example meteorological warnings are very important to urban or rural

life, like floods, extreme temperatures, etc. These types of queries may be more

complicated and require some intelligence so that a knowledge base component is

used.

114

In the first semantic query, the extreme meteorological conditions are searched. The

extremeness conditions are defined in FKB by the attributes of the meteorological

values.

Figure 50: Fuzzy Semantic Query 1 (Extreme conditions) input screen

The query input parameters are displayed in Figure 50. The parameters are specified

as fuzzy spatial constraint and fuzzy semantic constraint. The fuzzy direction (0.7

North) as the fuzzy spatial constraint and extremeness (0.6 extreme) as the fuzzy

semantic constraint are input parameters of the algorithm in Figure 51.

Fuzzy Semantic Query 1 (Extreme Conditions) algorithm:

Input: R*-tree, fuzzy spatial and semantic condition

Output: The objects which satisfy both conditions

1. Create an empty result list res

2. Apply fuzzy spatial relations algorithm for direction.

Figure 51: Fuzzy Semantic query 1 (Extreme conditions) algorithm

115

3. Send result list to FKB queue

4. Run FKB engine

If the object is eligible for the rule

Calculate extremeness degree of conditions using temperature, wind

speed etc.

Set object’s attribute for extremeness

 end if

5. Get objects from output queue of FKB

6. Display results in the main map and detail window

Figure 51: Fuzzy Semantic query 1 (Extreme conditions) algorithm (cont’d)

The fuzzy direction parameter is already implemented in Fuzzy Spatial Relations

Query. The same algorithm is applied to filter the objects for the first constraint.

Then selected objects are put into the input queue of FKB to further filter for the

knowledge base predicate. In FKB, one of the semantic rules is invoked according to

the query type. The degree of the extremeness is calculated by a predefined function

in Figure 52.

(deffunction fuzzyM (?a)

 (bind ?i 1)

 (bind ?FR 0)

 (foreach ?e ?a

Figure 52: The degree of extremeness function in FKB

116

 (if (and (eq ?i 7) (< ?e 50) (> ?e -30)) then

 ;temperature

 (if (< ?e 0) then

 (bind ?FR (+ ?FR 0.4))

)

)

 (if (and (eq ?i 8) (< ?e 100) (> ?e 0)) then

 ;humidity

 (bind ?FR (+ ?FR (* (/ ?e 100) 0.2)))

)

 (if (and (eq ?i 12) (< ?e 50) (> ?e 0)) then

 ;wind speed

 (bind ?FR (+ ?FR (* (/ ?e 40) 0.4)))

)

 (bind ?i (+ ?i 1))

)

 (return ?FR)

)

Figure 52: The degree of extremeness function in FKB (cont’d)

FuzzyM function gets an array of meteorological parameters as input. It then

calculates an overall degree of extremeness by weighting each attribute such as

temperature, humidity and wind speed. The returned fuzzy value ?FR is set as an

attribute of the object. So when the objects are returned back to bridge the semantic

degree can be used for output. The returned objects having ?FR greater than 0.6 are

displayed as output in Figure 53.

117

Figure 53: Fuzzy Semantic query 1 (Extreme conditions) result

In Figure 53, three stations which measured extreme meteorological conditions are

displayed as the red squares. The measurements are displayed in the upper window.

7.6.2 Fuzzy Semantic Query 2 (Trajectory of Objects)

The trajectory of a moving object is the subject of the fuzzy semantic query 2. In

fuzzy spatiotemporal query the value ranges for meteorological measurements

defined the object. In this query the object (cold weather) is defined semantically in

FKB. The input screen is shown in Figure 54.

118

Figure 54: Fuzzy Semantic query 2 (trajectory of objects) input screen

The cold weather trajectory between 30.12.2007 00:00 and 31.12.2007 00:00 is

queried. The algorithm in Figure 55is applied for temperature range (< 5).Cold

weather is not just the low temperature but wind and humidity also affect the cold

feeling. So after fuzzy spatiotemporal algorithm result is obtained some more

refinement is needed. FKB finds cold weather measurements by temperature,

temperature and wind speed, temperature and humidity. The final result from FKB is

displayed in Figure 56.

Fuzzy Semantic query 2 (trajectory of objects) algorithms:

Input: R*-tree, the spatiotemporal object type, temporal interval

Output: The trajectory of the object

1. Set temporal (30.12.2007 00:00 and 31.12.2007 00:00) and temperature interval

(< 5)

2. Create an empty result list res

3. Apply fuzzy spatiotemporal algorithm for temperature

4. Send result list to FKB queue

Figure 55: Fuzzy Semantic query 2 (trajectory of objects) algorithm

119

5. Run FKB engine

Fire the coldweather rule

 If (temperature < 0) or

 (temperature < 5 && wind speed > 20) or

 (temperature < 5 && humidity > 80) then

Tag measurement as cold weather

 end if

6. Get objects from output queue of FKB

7. Display trajectory in the main map and results in detail window

Figure 55: Fuzzy Semantic query 2 (trajectory of objects) algorithm (cont’d)

Figure 56: Fuzzy Semantic query 2 (trajectory of objects) results

120

In Figure 56, the cold weather data on data nodes are displayed with red squares.

The average values of the temperature measurements and the temporal value are

displayed over and below the black dots. The black lines between the dots show the

trajectory of the cold weather. In the upper window each temporal instance is

displayed in detail such as temporal instance, position and the average value of the

temperatures.

7.6.3 Fuzzy Semantic Query 3 (k Highest Measurements)

The fuzzy semantic query 3 finds the k highest measurement of a parameter from a

reference point. This might be helpful especially planning a trip. The meteorological

parameter can be flexible but in this example we concern with the temperature. The

query is defined in input screen (see Figure 57).

Figure 57: Fuzzy Semantic query 3 (k Highest Measurements) input screen

The input specifies Istanbul city as the reference point and inquires “5 temperature

values higher than 10 C during the day and closest to Istanbul city”.

121

Fuzzy Semantic query 3 (k Highest Measurements) algorithm:

Input: R*-tree, temporal range, constraint value (10 C), reference city (İstanbul)

Output: The objects which satisfy the constraints

1. Set value(>10) , temporal (during the day->06:00 && <18:00) and spatial

range

2. Create an empty result list res

3. Apply fuzzy spatiotemporal algorithm

4. Set p_ist ← point for İstanbul

5. for each entry in res

 find distance of objects to p_ist

 Add to 5 closest list

 end for

6. Display results in the main map and detail window

Figure 58: Fuzzy Semantic query 3 (k Highest Measurements) algorithm

The fuzzy semantic query 3 runs fuzzy spatiotemporal query algorithm for

temperature range (> 10) and temporal interval (06:00 and 18:00) as the daytime.

The semantic part which calculates the k highest value comes in step 4. A reference

point for İstanbul city is created and the distance function is applied in the loop for 5

nearest neighbor. The results are displayed in Figure 59.

122

Figure 59: Fuzzy Semantic query 3 (k Highest Measurements) result

In Figure 59, five stations which measured higher than 10 C and closest to İstanbul

are displayed as the red squares. The measurements details are displayed in the

upper window.

7.6.4 Fuzzy Semantic Query 4 (Agricultural Risky Zones)

Fuzzy Semantic query 4 inquires an important meteorological and agricultural

parameter that is frosty zones. The query finds the frosty zones with several severity

degrees. Input screen with details of query is displayed in Figure 60.

According to the input parameters, the algorithm in Figure 61 will find the frosty

risky zones during the night.

123

Figure 60: Fuzzy Semantic query 4 (Agricultural risky zones) input screen

Fuzzy Semantic query 4 (Agricultural risky zones) algorithm:

Input: Temperature range for frost, temporal range (>00:00 and <06:00), spatial

range

Output: The frost levels of meteorological stations are displayed

1. Create an empty list res

2. Apply spatiotemporal algorithm with input parameters

3. Put the results to the input queue of FKB

4. Apply the frost rule

 Classify the frost level of each record

 Set object’s attribute with frost level

3. Display result

 Display each level with different gray scale

 Display legend

 Display result window

Figure 61: Fuzzy Semantic query 4 (Agricultural risky zones) algorithm

124

The fuzzy semantic query 4 runs fuzzy spatiotemporal query algorithm for

temperature range (< 00) and temporal interval (00:00 and 06:00) as the nighttime.

The semantic part which calculates the degree of frosty zones is performed in FKB.

FKB executes the frost rule and classifies each frost value. The results are displayed

in Figure 62.

Figure 62: Fuzzy Semantic Query 4 (Agricultural risky zones) result

The frosty zones are displayed with different grayscale colors according to the frost

levels (from No Risk to Very High Risk) in Figure 62.

7.6.5 Fuzzy Semantic Query 5

In this query, the relation between meteorological parameters and the altitude is

queried. The query finds whether parameters increase or decrease in a given

125

temporal and spatial interval as the altitude changes. Input screen with details of

query is displayed in Figure 63.

Figure 63: Fuzzy Semantic query 5 input screen

The algorithm in Figure 64 will find the relationship between the meteorological

parameters (i.e. temperature, humidity, pressure, wind speed) and altitude.

Fuzzy Semantic query 5 algorithm:

Input: An R*-tree with altitude values and meteorological parameters loaded,

temporal range, spatial range

Output: The average value of meteorological parameter for each altitude threshold

and the average difference between levels of altitude are displayed

1. Create an empty list res

2. Apply spatiotemporal algorithm with spatial, temporal ranges given

Figure 64: Fuzzy Semantic Query 5 algorithm

126

3. Find the average value of parameter for each threshold value (i.e. for each 300

meters

4. Display result

 For each altitude value

 Display altitude

 Display average value of parameter

 Display average difference

 End for

Figure 64: Fuzzy Semantic Query 5 algorithm (cont’d)

Figure 65: Fuzzy Semantic Query 5 result

127

The fuzzy semantic query 5 runs fuzzy spatiotemporal query algorithm for instance

for a temperature range between -30 and +30 oC and in a spatial range (100,200)-

(400,600) to cover western part of the country and finally on 30.12.2007 12:00 time.

The results are displayed in Figure 65.

(a)

(b)

(c)

Figure 66: Altitude vs. meteorological parameters variations (a)Humidity

(b)Pressure (c)Wind speed.

128

The red squares in the window shows the measurements for the given spatial,

temporal and value range. The second window above shows the results. The results

indicate that temperature decreases slightly at each 300 meters on the average 0.5
oC. The other parameter variations are shown in Figure 66.

The result of the fuzzy semantic query 5 indicates that for the input parameters we

specified:

 - Temperature decreases on the average 0.5 oC,

 - humidity decreases % 7-8 at every 300 meters up to 900 meters then steady

 - Pressure doesn’t change

 - wind speed is around 13 knots up to 600 meters and then decreases to 7 knots

7.7 Experimental Evaluation

In this section, we experimentally study the effectiveness of the architecture

components. First, we observe the scalability of the system. The crisp queries and

fuzzy semantic queries are run with real meteorological data. The number of records

is as many as 80.000 records. Next we show the effect of using Enhanced R*-tree by

comparing R*-tree. Since we adapted a secondary fuzzy index some fuzzy semantic

queries are run for the performance evaluation. Finally, the effect of third dimension

on the tree is evaluated. The application is run on a laptop with Windows Vista

operating system, 4G RAM, JDK 1.6 and Net Beans 6.5.1.

7.7.1 The Scalability of the Application

The scalability of the system is tested with crisp, fuzzy and semantic queries. Firstly

the crisp spatial queries (point, range, circle, kNN and ring) are tested with the data

that belongs to fifteen days between 30.12.2007 00:00 and 15.01.2008 12:00. In

129

Figure 67, the number of node access and number of records are depicted for each

type of query as well as the average.

Crisp Spatial Queries

0

20

40

60

80

100

120

140

160

180

200

1000 5000 10000 20000 40000 60000 80000

of records

of node access

Point

Range

Circle

Ring

kNN

Average

Figure 67: The scalability of the system by Crisp Spatial Queries

The queries perform quite similar to each other. The performance of each query is

good even for the high number of records. So the system is scalable for the crisp

spatial queries.

Next fuzzy spatial queries are tested. Fuzzy Spatial Relation (FSR) and Fuzzy

Spatiotemporal (FST) queries are tested with the same data set. In Figure 68, the

number of node access and number of records are depicted for each type of query as

well as the average.

Both queries and the average are close and application runs smoothly for even high

number of records. Finally, fuzzy semantic queries are tested. In Figure 69, the

130

number of node access and number of records are depicted for each type of semantic

query (SQ1 to SQ5) as well as the average. The details of the semantic queries are

already presented in Section 7.6.

Fuzzy Spatial Queries

0

100

200

300

400

500

600

700

800

900

1000 5000 10000 20000 40000 60000 80000

of records

of node access

FSR

FST

Average

Figure 68: The scalability of the system by Fuzzy Spatial Queries

Fuzzy Semantic Queries

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000 5000 10000 20000 40000 60000 80000

of records

of node access

SQ1

SQ2

SQ3

SQ4

SQ5

Average

Figure 69: The scalability of the system by Fuzzy Semantic Queries

131

The SQ4 (Agricultural Risky Zones) has more node access, because it checks every

record and performs full scan. But the other queries are close to the average. In the

next section the Enhanced R*-tree and R*-tree are tested and the effect of adaptation

is shown.

7.7.2 The Enhanced R*-tree

In our implementation the R*-tree is enhanced to support fuzzy semantic

spatiotemporal queries. The basic form of R*-tree uses rectangles to organize spatial

data. In Enhanced R*-tree we adapt a secondary index which includes the range

values for all attributes at the leaf nodes. Before comparing performance of queries

using Enhanced R*-tree and basic R*-tree let’s check the building cost of R*-tree

and enhanced R*-tree. In Figure 70 and Figure 71 the elapsed times of building

times for R*-tree and Enhanced R*-tree are depicted.

Figure 70: The primary index build time

132

In Figure 71 the cost of building the Enhanced R*-tree, which uses MBRs as the

primary index is shown. The cost of insertion increases linearly. In the following

figure the cost of adapting a secondary index is shown:

Figure 71: The secondary index build time

The cost of building a secondary index in addition to the primary one seems very

negligible. While the main index takes 2 to 16 seconds to build, secondary index

built takes only 25 milliseconds for 80.000 records. This is because the secondary

index is built on already organized tree so no split or reinsert occurs and one full

scan is enough and no file I/O is required.

In performance work, we run some of the queries by using classical R*-tree and

Enhanced R*-tree. The meteorological data is obtained from Meteorology Service

for the dates between 30.12.2007 00:00 and 15.01.2008 12:00. The data is

partitioned into bulks (i.e. 1.000, 5.000, 10.000, 20.000, 40.000, 60.000 and 80.000).

133

In each run number of nodes accessed is measured. In the first query, the fuzzy

spatiotemporal query which is described in Section 7.5.2 is run with the

meteorological data sets. The input parameters are selected as follows: temperature

measurements between 10-15 oC, spatial range (100,200)-(600,600) and temporal

range 30.12.2007 00:00 to 31.12.2007 00:00. The results are depicted as a graphic in

Figure 72. The number of node access is close up to 10.000 records but the gap

increases as the number of records increases. The Enhanced R*-tree performs better

than R*-tree in general.

Fuzzy SpatioTemporal Query

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000 5000 10000 20000 40000 60000 80000

of records

of node access

R*-tree

Enhanced

R*-tree

Figure 72: Fuzzy Spatiotemporal Query run with R*-tree and Enhanced R*-tree

Next we run semantic query 2 which finds trajectory of objects that the details of the

query algorithm is shown in Section 7.6.2. The query runs for the trajectory of

humidity values between % 40-42 in the spatial range (0,0)-(1024,800) and in

temporal range 30.12.2007 00:00 to 31.12.2007 00:00. The results are depicted as a

graphic in Figure 73.

134

Semantic Query (trajectory)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000 5000 10000 20000 40000 60000 80000

of records

of node access

R*-tree

Enhanced

R*-tree

Figure 73: Semantic Query (trajectory) run with R*-tree and Enhanced R*-tree

Both index structures perform quite close up to 20.000 records. The Enhanced R*-

tree runs better after 20.000 records. On the average the Enhanced R*-tree performs

better than R*-tree.

Finally we run Fuzzy Semantic Query 3 (k-highest measurements which is described

in Section 7.6.3. The query finds five (k=5) highest temperature measurements close

to Istanbul. The resulting graphic obtained by the number of node access are shown

in Figure 74.

The graphic shows similar figures as the previous runs. So it is verified that the

Enhanced R*-tree runs better for fuzzy and semantic queries especially for the

number of records higher than 10.000-20.000.

135

Semantic Query (k Highest Measurements)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000 5000 10000 20000 40000 60000 80000

of records

of node access

R*-tree

Enhanced

R*-tree

Figure 74: Semantic Query performance of R*-tree and Enhanced R*-tree

7.7.3 The Effect of Third Dimension

The altitude data forms the third dimension in the application. Altitude data is firstly

included in the fuzzy index structure. So it is kind of other meteorological attributes

like temperature, pressure, etc. Then it is used as the primary organizing attribute in

the Enhanced R*-tree. We think that it may be implemented either as secondary or

primary index. Since our data and query types mostly belong to ground we included

in the secondary index. But we evaluate the effect of altitude usage as a third

dimension as a primary index on tree building and query run times as well.

The major effect of altitude data as the primary indexing attribute is the increasing

number of inner nodes. This is reflected in Figure 75. Since insertion algorithm

considers a third dimension more rectangles are needed to group the data. The

number data nodes are slightly affected by third dimension (see Figure 76). In

Figure 77, the increase in the inner nodes is visualized.

136

Enhanced R*-tree Number of Inner Nodes

0

100

200

300

400

500

600

700

800

1000 5000 10000 20000 40000 60000 80000

of records

Number of Nodes

2D

3D

Figure 75: Number of inner nodes in Enhanced R*-Tree

Enhanced R*-tree Number of Leaf Nodes

0

2000

4000

6000

8000

10000

12000

1000 5000 10000 20000 40000 60000 80000

of records

Number of Nodes

2D

3D

Figure 76: Number of data nodes in Enhanced R*-Tree

137

Figure 77: The nodes of three dimensional Enhanced R*-Tree

Enhanced R*-tree Primary Index Build Time

0

2000

4000

6000

8000

10000

12000

14000

1000 5000 10000 20000 40000 60000 80000

of records

Time (ms)

2D

3D

Figure 78: Primary index building time in Enhanced R*-Tree

Although third dimension increases the inner nodes, it doesn’t affect the building

time of Enhanced R*-Tree. While primary index building times are almost same for

two dimensional (2D) and three dimensional (3D) versions, secondary index

building times are negligible (see Figure 78 and Figure 79).

138

Enhanced R*-tree Secondary Index Build Time

0

5

10

15

20

25

30

35

40

45

50

1000 5000 10000 20000 40000 60000 80000

of records

Time (ms)

2D

3D

Figure 79: Secondary index building time in Enhanced R*-Tree

Enhanced R*-Tree Range Query Node Access

0

10

20

30

40

50

60

70

1000 5000 10000 20000 40000 60000 80000

of records

of Node Access

2D

3D

Figure 80: Range Query performance of Enhanced R*-Tree (1)

Two and three dimensional Enhanced R*-Trees are tested with crisp and fuzz

semantic queries. In Figure 80 and 81 number of node accesses and execution times

are shown for range query. In the three dimensional range query an altitude range is

also input by the user.

139

Enhanced R*-Tree Range Query Execution Time

0

500

1000

1500

2000

2500

1000 5000 10000 20000 40000 60000 80000

of records

Time (ms)

2D

3D

Figure 81: Range Query performance of Enhanced R*-Tree (2)

Enhanced R*-Tree Fuzzy Semantic Query Node Access

0

500

1000

1500

2000

2500

1000 5000 10000 20000 40000 60000 80000

of records

of Node Access

2D

3D

Figure 82: Fuzzy Semantic Query performance of Enhanced R*-Tree (1)

140

The performance of Enhanced R*-Tree nearly same for range query. In Figure 82

and Figure 83 the results of Fuzzy Semantic Query is shown. In this query, the

meteorological parameter temperature change by altitude is measured.

Enhanced R*-Tree Fuzzy Semantic Query Execution Time

0

500

1000

1500

2000

2500

1000 5000 10000 20000 40000 60000 80000

of records

Time (ms)

2D

3D

Figure 83: Fuzzy Semantic Query performance of Enhanced R*-Tree (2)

The performance of three dimensional Enhanced R*-Tree is slightly worse than two

dimensional Enhanced R*-tree. As a result, number of inner nodes increase by using

the altitude as the primary indexing attribute. This affects index building and query

execution times so that three dimensional tree executes worse than two dimensional

tree. But in terms of number of node access, two dimensional tree performs worse

than three dimensional tree.

141

CHAPTER 8

CONCLUSIONS

In this study we have introduced a generic spatiotemporal data model and a querying

mechanism for spatiotemporal databases. We presented our method, designed to

handle uncertainty in spatiotemporal database applications. We used an application,

involving meteorological objects with some spatial and temporal attributes, as an

example. The proposed mechanism has been implemented as a proof-of-concept

prototype.

In the scope of this work, spatial objects, relations including temporality are

incorporated into a generic model. Based on the generic model meteorological

phenomena and geographic data are modeled as spatiotemporal objects. These

objects can move and evolve in time. In addition, the meteorological and geographic

man made objects may have spatial relations. The model and fuzzy spatiotemporal

querying mechanisms are presented formally. The crucial decision was to integrate

the model with a fuzzy knowledge base allowing a fuzzy deduction and querying

capability to handle complex data and knowledge. As a result, we are able to handle

spatiotemporal queries (position, spatial properties and spatial relationships).

We also adapted an index structure for efficient querying and verified that with

performance runs using three dimensional data. Since our queries mostly deal with

ground information we used the third dimension (altitude) in the secondary index.

For the queries related with the atmospheric data it could be better to use third

dimension as the primary index.

142

Spatiotemporal data modeling and querying require further research. The model and

the method presented in this thesis should be applied to other fields, such as wireless

sensor networks and multimedia, to gain more insight into fuzzy spatiotemporal

modeling and querying.

143

REFERENCES

[1] Beckmann N. and Seeger B., “A revised R*-tree in comparison with related
index structures”, Proceedings of the 35th SIGMOD International Conference on
Management of Data, Rhode island USA, pages 799-812, 2009.

[2] Booch G., Rumbaugh J. and Jacobson I., “The Unified Modeling Language User
Guide”, The (2nd Edition) (Addison-Wesley Object Technology Series), 2005.

[3] Bordogna G., Chiesa S. and Geneletti D., “Linguistic modelling of imperfect
spatial information as a basis for simplifying spatial analysis”, Information Sciences,
176, 4 (Feb. 2006) pp.366-389, 2006.

[4] Bordogna G., Leporati A., Lucarella D. and Pasi G., “The fuzzy object oriented
database”, Recent Issues on Fuzzy Databases, Springer-Verlag, 2000.

[5] Bordogna G., Pasi G. and Psaila G., “Evaluating Uncertain Location-Based
Spatial Queries”, SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.

[6] Cheng T., Molenaar M. and Lin H., “Formalizing fuzzy objects from uncertain
classification results”, International Journal of Geographical Information Science,
vol. 15, no. 1, pp.27-42, 2001.

[7] Claramunt C. and Theriault M., “Fuzzy semantics for direction relations between
composite regions”, Information Sciences, 160, pp.73-90, 2004.

[8] Cobb M.A. and Petry F.E., “Modeling spatial relationships within a fuzzy
framework”, Journal of the American Society For Information Science
49(3):pp.253-266, 1998.

[9] Colomb R.M., “Deductive Databases and Their Applications”, Taylor & Francis,
1998.

[10] Cranston B. C. and Samet H., “Efficient Position-Independent Iconic Search
Using An R-Theta Index”, ACM-GIS’06, November 10–11, 2006, Arlington,
Virginia, USA

144

[11] Du S., Qin Q., Wang Q. and Ma H., “Evaluating structural and topological
consistency of complex regions with broad boundaries in multi-resolution spatial
databases”, Information Sciences, 178, pp.52-68, 2008.

[12] Dubois D. and Jaulent M.C., “A general approach to parameter evaluation in
fuzzy digital pictures”, Pattern Recognition Letters, pp.251–259, 1987.

[13] Egenhofer M., Clementini E. and Felice P., “Topological relations between
regions with holes”, International Journal of Geographical Information Systems 8
(2), pp.129-144, 1994.

[14] ESRI Products overview, http://www.esri.com/products/index.html#desktop_gi
s_panel, April 2010.

[15] Fisher P., Arnot C., Wadsworth R. and J.J. Wellens, “Detecting change in
vague interpretations of landscapes”, Ecological Informatics 1, pp.163-178, 2006.

[16] Frihida A., Marceau D.J. and Theriault M., “Spatiotemporal object-oriented
data model for disaggregate travel behavior”, Transactions in GIS, 6(3), pp.277-294,
2002.

[17] Griffiths T., Fernandes A., Paton N., and Barr R., “The TRIPOD spatio-
temporal data model”, Data and Knowledge Engineering, 49(1), pp.23-65, 2003.

[18] Gyseghem N.V. and Caluwe R.D., “Imprecision and uncertainty in the UFO
database model”, Journal of the American Society for Information Science, Volume
49, Issue 3 , pp.236 – 252, 1999.

[19] Hadzilacos T. and Tryfona N., “An extended entity-relationship model for
geographic applications”, SIGMOD Record, Vol. 26, No. 3, 1997 .

[20] Iwerks G.S., Samet H. and Smith K.P., “Maintenance on K-nn and spatial join
queries on continuously moving points”, ACM Transactions on Database Systems,
Vol. 31, No.2, pp.485-536, 2006.

[21] Jackson D., “Software abstractions: logic, language, and analysis”, The MIT
Press, ISBN:0262101149, 2006.

[22] Joomla, “R-tree Portal - Home”, http://www.rtreeportal.org/, Last visited
(28/05/2010).

145

[23] Kalashnikov D. V., Ma Y., Mehrotra S., Hariharan R. and Butts C., “Modeling
and Querying Uncertain Spatial Information for Situational Awareness
Applications”, ACM GIS’06, November 10–11, 2006, Arlington, Virginia, USA

[24] Kanjilal V., Liu H. and Schneider M., “Plateau Regions: An Implementation
Conceptfor Fuzzy Regions in Spatial Databases and GIS”, IPMU, LNAI 6178, 624-
633, 2010.

[25] Koyuncu M. and Yazici A., “IFOOD: An Intelligent Fuzzy Object-Oriented
Database Architecture”, IEEE Trans. on Knowledge and Data Engineering, pp.1137-
1154, 2003.

[26] Lee J., Xue N.L., Hsu K.H., Yang S.J., “Modeling imprecise requirements with
fuzzy objects”, Information Sciences, 118, pp.101-119, 1999.

[27] Liu M., “Deductive Database Languages: Problems and Solutions”, ACM
Computing Surveys, vol. 31, no. 1, pp.27-62, 1999.

[28] Lu C.T., Kou Y., Zhao J. and Chen L., “Detecting and tracking regional outliers
in meteorological data”, Information Sciences, 177, pp.1609-1632, 2007.

[29] Marin N., Medina J.M., Pons O. and Vila M.A., “Object resemblance in a fuzzy
object-oriented context”, Proceedings of 2002 IEEE International Conference on
Fuzzy Systems, Honolulu (EEUU), 2002.

[30] Martins B., Silva M. J. and Andrade L., “Indexing and Ranking in GeoIR
Systems”, GIR’05, November 4, 2005, Bremen, Germany.

[31] Papadias D., Tao Y., Mouratidis K. and Hui C.K., “Aggregate nearest neighbor
queries in spatial databases”, ACM Transactions on Database Systems, Vol.30, No.
2, pp. 529-576, June 2005.

[32] Pauly A., and Schneider, M., “Topological predicates between vague spatial
objects”, In 9th Int. Symp. On Spatial and Temporal Databases (SSDT), Lecture
Notes in Computer Science (LNCS), pp.418–432. Springer, 2005.

[33] Pelekis N., Theodoulidis B., Kopanakis I., and Theodoridis Y., “Literature
review of spatio-temporal database models”, The Knowledge Engineering Review,
Vol.19:3, pp.235-274, 2004.

[34] Peuquet D., “Making space for time: Issues in Space-Time Data
Representation”, GeoInformatica 5(1), pp.11-32, 2001.

146

[35] Plewe B., “The nature of uncertainty in historical geographic information”,
Transaction in GIS, pp.431-456, 2002.

[36] Praing R. and Schneider M., Modeling Historical and Future Movements of
Spatio-Temporal Objects in Moving Objects Databases, CIKM’07, November 6–8,
2007, Lisboa, Portugal.

[37] Renolen A., “Temporal Maps and Temporal Geographical Information Systems
(Review of Research)”, Department of Surveying and Mapping, The Norwegian
Institute of Technology, 1997.

[38] Rizzi S., Abello A., Lechtenbörger J. and Trujillo J., “Research in Data
Warehouse Modeling and Design:Dead or Alive?”, DOLAP’06, November 10,
2006, Arlington, Virginia, USA.

[39] Sandia National Laboratories, “Jess, the Rule Engine for the Java Platform”,
http://www.jessrules.com/, Last visited (28/05/2010).

 [40] Schneider M., “Uncertainty Management for Spatial Data in Databases: Fuzzy
Spatial Data Types”, in 6th Int. Symp. on Advances in Spatial Databases, LNCS
1651, pp.330–351. Springer-Verlag, 1999.

[41] Schneider M., “A Design of Topological Predicates for Complex Crisp and
Fuzzy Regions”, 20th International Conference on Conceptual Modeling, Yokohama,
Japan, November 27-30, 2001.

[42] Schneider M. and Behr T. “Topological Relationships Between Complex
Spatial Objects”, ACM Transactions on Database Systems, Vol.31, No. 1, pp. 39-81,
March 2006.

[43] Schults C. P. L., Guesgen H. W. and Amor R., “Computer-Human Interaction
Issues when Integrating Qualitative Spatial Reasoning into Geographic Information
Systems”, Chinz’06, July 6–7, 2006, Christchurch, New Zealand

[44] Shekhar S., Chawla S., Ravada S., Fetterer A., Yuan L. and Chang-Tien L.,
“Spatial Databases – Accomplishments and Research Needs”, IEEE Trans. On
Knowledge and Data Engineering, Vol. 11, No.1, pp.45-55, 1999.

[45] Sozer A. and Yazici A., “Design and implementation of index structures for
fuzzy spatial databases”, International Journal of Intelligent Systems, Vol.22, Issue
7, pp. 805-826, 2007.

147

[46] Sozer A., Yazici A., Oguztuzun H. and Tas O., “Modeling and Querying Fuzzy
Spatiotemporal Databases”, Information Sciences 178, pp. 3665-3682, 2008.

[47] Stell J.G., “Part and complement: fundamental concepts in spatial relations”,
Annals of Artificial Intelligence and Mathematics, 41, pp.1-18, 2004.

[48] Tang X., Fang Y. and Kainz W., “Fuzzy topological relations between fuzzy
spatial objects”, FSKD 2006, LNAI 4223, pp.324-333, Springer Verlag, 2006.

[49] Tao, Y., Xiao, X., and Cheng, R., “Range search on multidimensional uncertain
data”. ACM Trans. Datab. Syst. 32, 3, Article 15, 54 pages, 2007.

[50] Tryfona N. and Jensen S.J., “Using abstractions for spatio-temporal conceptual
modeling”, Proceedings of ACM SAC, Como Italy, 2000.

[51] Versant Corp., “db4o :: Java & .NET Object Database – Open Source Object
Database, Open Source Persistence, Oodb”, http://www.db4o.com/, Last visited
(28/05/2010).

[52] Vidal C. and Rodriguez A., “A logical approach for modeling spatio-temporal
objects and events”, LNCS 3770, pp.218-227, Springer-Verlag, 2005.

[53] Warren T., Zhang L.Z. and Mount C., “Similarity Measures for Retrieval in
Case-based Resoning Systems”, Applied Artificial Intelligence, vol. 12,no. 4,
pp.267-288, 1998.

[54] Weidong C. and Warren D., “C-logic of complex objects”, ACM
SIGACTSIGMOD-SIGART Symp. Principles of Database Systems, pp.369–378,
1989.

[55] Worboys M.F., “A unified model for spatial and temporal information”, The
Computer Journal, Vol. 37, No.1, 1994.

[56] Yazici A. and George R., “Fuzzy Database Modeling”, Heidelberg/New
York:Physica-Verlag, 1998.

[57] Yazici A., George R. and Aksoy D., “Design and Implementation Issues in the
Fuzzy Object-Oriented Data (FOOD) Model”, Information Sciences, Vol. 108/4,
pp.241-260, 1998.

148

[58] Yazici A., Zhu Q. and Sun N., “Semantic data modeling of spatiotemporal
database applications”, International Journal of Intelligent Systems, Vol. 16, pp.881-
904, 2001.

[59] Zhan F.B. and Lin H., “Overlay of two simple polygons with indeterminate
boundaries”, Transactions in GIS, 7(1), pp.67-81, 2003.

[60] Zhang J., Pan H. and Yuan Z., “A Novel Spatial Index for Case based
Geographic Retrieval”, ICIS 2009, November 24-26, 2009 Seoul, Korea.

[61] Zhizhin M., Kihn E., Lyutsarev V., Berezin S., Poyda A. Mishin D., Medvedev
D. And Voitsekhovsky D., “Environmental Scenario Search and Visualization”,
ACMGIS'07, November 7-9, 2007, Seattle, WA.

[62] Zhou Y. and Murata T., “Petri net model with fuzzy timing and fuzzy-metric
temporal logic”, International Journal of Intelligent Systems, volume 14, issue 8,
pp.719-745, 1999.

[63] Zinn D., Bosch J. and Gertz M., “Modeling and Querying Vague Spatial
Objects Using Shapelets”, VLDB ‘07, September 2328, 2007, Vienna, Austria.

149

APPENDIX A

SAMPLE METEOROLOGICAL MAPS

Figure 84: Cloudiness mapping on 30.12.2007

Figure 85: Pressure mapping on 30.12.2007

150

Figure 86: Wind strength mapping on 30.12.2007

Figure 87: Sunshine duration mapping on 30.12.2007

151

APPENDIX B

THE OBJECT MODEL SPECIFICATIONS IN ALLOY

module systems/STModel

open alloy/models/util/ordering[LineSegment] as ordL

open alloy/models/util/ordering[Time] as ordT

open alloy/models/util/ordering[Fuzzy] as ordF

//abstract fuzzy class. The implementation consists of definition of fuzzy number

// which gives degree of fuzziness between 0 and 1

abstract sig Fuzzy{}

//The Time class includes definiton of time in YYYYMMDD hh:mm

sig Time{}

// a temporal class includes temporal class and a temporal entity has

// beginning time and end time

sig Temporal{

beginTime,endTime:Time

}

// Beginning time should be less than or equal to end time

fact TemporalFact{

all T:Temporal| ordT/lte[T.beginTime,T.endTime]

}

152

//a temporal object exits in a temporal interval

pred isInstance(o:Temporal,bt,et:Time){

ordT/gte[o.beginTime,bt] and ordT/lte[o.endTime,et]

}

// Spatialbase has common entries for spatial classess

// membership: is a fuzzy number and shows the degree of

// spatial object's belonging to a particular spatial class

// size: for fuzzy spatial object size is also fuzzy.

abstract sig SpatialBase extends Temporal{

membership:Fuzzy, //fuzzy membership

size:Fuzzy

}

// Coordinate defines an x, y location in the space.

// x, y may be float numbers

sig Coordinate{}

// Point is the basic spatial element and can be part of line segments.

sig Point extends SpatialBase {

location:Coordinate

}

// a line segment is aggregated by a set of points,

// It has a beginning and ending defined by points.

sig LineSegment extends SpatialBase{

sourceEnd:Point,

targetEnd:Point

}

// a region is aggregated by a set of line segments

sig Region extends SpatialBase{

linesegs:set LineSegment

}

153

// at least 3 line segments form a region

fact RegionConst{

all r:Region |#r.linesegs >= 3

}

// a geometry is formed by a set of points and/or linesegments

// and/or regions

sig Geometry extends Temporal{

points: set Point,

linesegs: set LineSegment,

regions: set Region

}

// a geometry should have at least one of the parts.

// not all of the parts can be empty sets.

// this fact does not allow empty geometry

fact GeometryFact{

all g:Geometry |

not (#g.points=0 and #g.linesegs=0 and #g.regions=0)

}

// if a geometry exists in some temporal interval so that

// its parts should exist in the same interval

fact GeometryConst{

all g:Geometry |

isInstance[g,g.beginTime,g.endTime] =>

(isInstance[g.points,g.beginTime,g.endTime] and

isInstance[g.linesegs,g.beginTime,g.endTime] and

isInstance[g.regions,g.beginTime,g.endTime])

}

154

// A spatiotemporal object definition

sig STObject extends Fuzzy{

geometry:some Geometry, // an STObject has one or more Geometry

holes:set Geometry, // an STObject may have holes

trajectory:some Point, //trajectory is a non-empty set of points

spatialRelation:set RelationType // An STObject may have spatial

 // relation(s) with other STObjects

}

// A spatial relation exists in some temporal interval

// including two STObjects and fuzzydegree that shows

// the degree of the relation

abstract sig RelationType extends Temporal{

F,G: one STObject, //two STObjects F and G

fuzzyDegree:Fuzzy //the degree of the relation which is fuzzy

}

// These are the possible types of spatial relations.

// Each one of them is a relation between two STObjects and have a degree

one sig Disjoint,Meet, Inside,Equal, Contains,Covers,CoveredBy,Overlap extends

RelationType{

rel:F->G->Fuzzy

}

// the following predicates give definitions for the spatial relations

pred disjointCR(R:RelationType){

no(R.F.geometry & R.G.geometry) and no(R.G.geometry & R.F.holes) and

no(R.F.geometry & R.G.holes) and no(R.F.holes & R.G.holes)

}

155

pred insideCR(R:RelationType){

some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or

((R.G.holes in R.F.geometry) and (R.G.holes in R.F.holes)))

}

pred insideCR2(R:RelationType){

some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or

((R.F.holes in R.G.geometry) and (R.F.holes in R.G.holes)))

}

pred meetCR(R:RelationType){

one (R.F.geometry & R.G.geometry) and not disjointCR[R] and

not insideCR[R] not insideCR2[R] and not equalCR[R]

}

pred containsCR(R:RelationType){

insideCR2[R]

}

pred equalCR(R:RelationType){

(R.F.geometry=R.G.geometry) and (R.F.holes=R.G.holes)

}

pred coversCR(R:RelationType){

insideCR2[R] and meetCR[R] and #(F.geometry & G.geometry) = 1

}

pred coversCR2(R:RelationType){

insideCR[R] and meetCR[R] and #(F.geometry & G.geometry) = 1

}

156

pred coveredbyCR(R:RelationType){

coversCR2[R]

}

pred overlapCR(R:RelationType, fuz:Fuzzy){

not (disjointCR[R] or meetCR[R] or insideCR[R] or containsCR[R] or

equalCR[R] or coveredbyCR[R] or coversCR[R]) and ordF/gte[R.fuzzyDegree,fuz]

}

// Spatial relation asserts

assert disjoinT{ //if disjoint not any other relation

all R:RelationType, fDegree:Fuzzy | disjointCR[R] =>

 not (overlapCR[R,fDegree] or meetCR[R] or insideCR[R]

 or containsCR[R] or equalCR[R] or coveredbyCR[R] or

 coversCR[R]) or

 R.G.geometry in R.F.holes //a geometry may be inside the hole

}

check disjoinT

assert meeT{

all R:RelationType, fDegree:Fuzzy| meetCR[R] =>

 not disjointCR[R] and not insideCR[R] and not equalCR[R] and

 not coversCR[R] and not overlapCR[R,fDegree]

}

check meeT

assert insidE{

all R:RelationType, fDegree:Fuzzy | insideCR[R]=>

 not (disjointCR[R] or meetCR[R] or coversCR[R] or

 overlapCR[R,fDegree]) or (R.F.geometry in R.G.holes)

}

157

check insidE

assert coverS{

all R:RelationType, fDegree:Fuzzy | coversCR[R]=>

 not (disjointCR[R] or overlapCR[R,fDegree]) and

 insideCR2[R] and (G.holes in F.geometry)

}

check coverS

assert equaL{

all R:RelationType, fDegree:Fuzzy | equalCR[R]=>

 not (disjointCR[R] or overlapCR[R,fDegree]) and

 (R.G.geometry in R.F.geometry) and (R.F.holes in R.G.holes)

}

check equaL

//application specific classes

//---------------------------------

// City may have some routes crossing and have some weather object

sig City extends STObject{

route:set Route,

weather:some MetObject

}

sig Route{

parts: some LineSegment, //route has at least one LineSegment or more

//route may be one type or a mixed type. e.g. maritimeRoute or

// territoriolRoute + MaritimeRoute

rType:some RouteType,

158

// some parts may be clear some parts may be restricted so it has at least

// one status but may have more than one

rStatus:some RouteStatus,

// route crosses at least one City

cities:some City,

// a set of vehicles use the route

vehicles:set Vehicle

}

//two consecutive line segments over a route should have one common point

//one's targetEnd equals other's sourceEnd

assert routeFact{

all R:Route, ls1,ls2:R.parts|

 (ls1!=ls2 and ordL/eq[ordL/next[ls1],ls2])=>ls1.targetEnd= ls2.sourceEnd

}

check routeFact

// route type can ben maritime, territorial or aerial

abstract sig RouteType{}

one sig MaritimeRoute,TerritorialRoute, AerialRoute extends RouteType{}

// route may be clear, wavy (for maritime route) or restricted (for all types)

abstract sig RouteStatus{}

one sig Clear,Wavy,Restricted extends RouteStatus{}

sig Vehicle{

type:VehicleType,

status:VStatusType,

route:set Route

}

159

//route-vehicle relation at specific time

sig Journey extends Temporal{

route: Route,

vehicle: Vehicle,

}

// 1-a journey has only one vehicle and one route

// 2-A vehicle is used on only one journey during the journey

assert JourneyFact{

all j1,j2:Journey, t:Temporal|

isInstance[t,j1.beginTime,j1.endTime] and

isInstance[t,j2.beginTime,j2.endTime]=>

one j1.vehicle and one j1.route and one j2.vehicle and one j2.route and

j1.vehicle != j2.vehicle

}

check JourneyFact

sig Voyage extends Journey{} //ship journey

abstract sig VehicleType{}

one sig Ship, Bus, Train, Plane extends VehicleType{}

// a voyage has a MaritimeRoute and the vehicle running should be Ship

fact voyageFact{

all vyg:Voyage|

 vyg.route.rType=MaritimeRoute and vyg.vehicle.type=Ship

}

// A vehicle may be on time, delayed or canceled

abstract sig VStatusType{}

one sig OnTime,Delayed,Canceled extends VStatusType{}

160

//if a journey's route is restricted vehicle is delayed or canceled

fact statusFact{

all j:Journey|

 j.route.rStatus=Restricted=>

 j.vehicle.status=Delayed or j.vehicle.status=Canceled

}

// a meteorological object is a spatiotemporal object

sig MetObject extends STObject{

object:MeteorType,

degree:MeteorObjectDegree

}

// the types of metorological objects are enumerated here

abstract sig MeteorType{}

one sig Temperature, Pressure, Visibility, Wind, Wave, Cloude, Precipitation

extends MeteorType{}

// The strength of Meteorological object i

abstract sig MeteorObjectDegree extends Fuzzy{}

// Here a sample is given for visibility

one sig Visible, Misty, Foggy extends MeteorObjectDegree{}

// Another sample for precipitation

one sig Drizzle, Rainy, Snowy, Thunderstorm extends MeteorObjectDegree{}

/ a meteorological measurement in a City includes a number of meteorological

objects

sig Measurement extends Temporal{

metobj:some MetObject,

city:lone City

}

161

// two spatiotemporal objects have overlap degrees

abstract sig OverlapDegree extends Fuzzy{}

//fuzzy overlapdegrees are enumerated

one sig Less, Moderate,High extends OverlapDegree{}

//if city and meteorological object overlaps than the object is in the city's weather

fact weatherFact{

some M:MetObject, C:City, R:Overlap|

 (R.F=M and R.G=C and overlapCR[R,High]) => M in C.weather

}

// As an example : if a city's weather has visibility and precipitation and

// their degrees are strong enough, then the route is restricted

fact routeStatusFact{

some M:MetObject, C:City, route:Route|

 ((M.object=Visibility and M.degree=Foggy) or

 (M.object =Precipitation and (M.degree=Snowy or

M.degree=Thunderstorm)) and

 M in C.weather and C in route.cities)=>route.rStatus=Restricted

}

162

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Sözer, Aziz

Nationality: Turkish (TC)

Date and Place of Birth: 20.09.1973, Acıpayam

Marital Status: Married

Phone:+90 312 507 59 90

Fax: +90 312 507 60 18

Email: e070364@ceng.metu.edu.tr

EDUCATION

Degree Institution Year of Graduation

MS METU Computer Engineering 2001

BS METU Computer Engineering 1995

WORK EXPERIENCE

Year Place Enrollment

1997-present T.C Merkez Bankası Expert

1995-1997 Arçelik A.Ş. Analyst

1991-1995 Devlet Meteoroloji İşleri Gen. Md. Forecaster

PUBLICATIONS

1. Aziz Sözer, Adnan Yazıcı, Halit Oğuztüzün and Fred Petry, "Querying

Fuzzy Spatiotemporal Databases:Implementation Issues,", Uncertainty

Approaches for Spatial Data Modeling and Processing: a Decision Support

163

Perspective (Edited Book) Edited by J. Kacprzyk, F. Petry, A. Yazıcı,

Springer Verlag, Germany (2009)

2. Aziz Sözer, Adnan Yazıcı, Halit Oğuztüzün and Osman Taş, “Modeling and

querying fuzzy spatiotemporal Databases”, Information Sciences. 178(19):

3665-3682 (2008).

3. Aziz Sözer, Adnan Yazici, “Design and implementation of index structures

for fuzzy spatial Databases”, International Journal of Intelligent Systems

22(7): 805–826 (2007)

4. Sozer, A. and A. Yazici “ Index Structures for Flexible Querying in Fuzzy

Spatial Databases”, IEEE Conference on Fuzzy Systems, Budapest, 2004.

5. Sozer, A. ve A. Yazıcı, “Access Structures for Fuzzy Spatial Queries”

NAFIPS-2002, pp: 383-388, New Orleans, USA.

