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ABSTRACT 

 
 

DESIGN AND IMPLEMENTATION OF  
SPATIOTEMPORAL DATABASES 

 
 
 
 

Sözer, Aziz 

 Ph.D., Department of Computer Engineering 

 Supervisor : Prof.Dr. Adnan Yazıcı 

 Co-supervisor : Assoc.Prof.Dr. Halit Oğuztüzün 

  

July, 2010, 163 pages 

 

 

Modeling spatiotemporal data, in particular fuzzy and complex spatial objects 

representing geographic entities and relations, is a topic of great importance in 

geographic information systems, computer vision, environmental data management 

systems, etc. Because of complex requirements, it is challenging to design a 

database for spatiotemporal data and its features and to effectively query them. This 

thesis presents a new approach for modeling, indexing and querying the  

spatiotemporal data of fuzzy spatial and complex objects and/or spatial relations. As 

a case study, we model and implement a meteorological application in an intelligent 

database architecture, which combines an object-oriented database with a knowledge 

base.  

 

Keywords: Spatiotemporal Data, Object-Oriented Database, Knowledge Base, 

Fuzzy Objects, Meteorological Database Application 
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ÖZ 

 
 

UZAM-ZAMANSAL VERİTABANLARININ  
TASARIM VE GERÇEKLEŞTİRİMİ 

 
 
 
 

Sözer, Aziz 

 Doktora, Bilgisayar Mühendisliği Bölümü 

 Tez Yöneticisi : Prof.Dr. Adnan Yazıcı 

 Ortak Tez Yöneticisi : Doç.Dr. Halit Oğuztüzün 

  

Temmuz, 2010, 163 sayfa 

 

 

Uzam-zamansal verileri, özellikle coğrafik oluşum ve ilişkileri temsil eden bulanık 

ve karmaşık uzamsal nesneleri modellemek coğrafi bilgi sistemleri, bilgisayarlı 

görme, çevresel veri yönetim sistemleri, vb. için çok önemli bir konudur. Karmaşık 

gereksinimler nedeniyle, uzam-zamansal veriler ve özellikleri için veritabanı 

tasarlamak ve etkin şekilde sorgulamak zordur. Bu tez çalışması, bulanık uzamsal ve 

karmaşık nesnelerin ve/veya uzamsal ilişkilerin uzam-zamansal verilerini 

modelleme, endeksleme ve sorgulama için yeni bir yaklaşım sunmaktadır. Örnek 

çalışma olarak, uzam-zamansal nesnelerin modellenmesi ve sorgulanması için 

nesneye dayalı veritabanı ile bilgi tabanını akıllı bir veritabanı mimarisinde 

birleştiren meteorolojik veritabanı uygulaması gerçekleştirilmiştir. 

 

Anahtar Kelimeler: Uzam-Zamansal Veri, Nesneye Dayalı Veritabanı, Bilgi 

Tabanı, Bulanık Mantık, Meteorolojik Veritabanı Uygulaması 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
 

1.1 Scope of the Study 

 

Space and time are inherent notions in spatiotemporal applications. These 

applications (e.g. traffic control, environmental, meteorological, etc.) include spatial 

and temporal data and variations. For example, a moving car in traffic changes 

position over time. The borders of a salty lake move back and forth because of 

seasonal evaporation and rainfall. The size and speed of a meteorological storm may 

change during its lifetime. Hence spatiotemporal databases are required to deal with 

both spatial and temporal phenomena. 

 

Modeling spatiotemporal data is difficult because of such spatial variations and 

advanced data structures and techniques are needed [20, 31, 44]. In modeling 

spatiotemporal data, two approaches have been widely used: field-based and object-

based modeling [33]. The field-based approach assumes the real world to have 

attributes which are varying over space as a continuous function. For example, 

contour lines on a map represent points of a constant value (e.g. pressure, 

temperature, velocity, density) within a volume of space. On the other hand, the 

object-based approach distinguishes fully definable disjunctive objects. That is, the 

database for the application stores a map that consists of a collection of identifiable 

objects, which refer to the partitions and fragments of information space. For 

example, the temperature regions (e.g. cold, warm, etc.), and the rainy or foggy 
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areas on a weather map are reflected with their unique attributes (e.g. borders, 

position, direction, etc.) in the database. 

 

Uncertainty and fuzziness are also features of most spatiotemporal applications. 

Spatial and temporal information and various relationships often involve uncertainty 

and fuzziness. For example, in describing a windy and wavy region, the region’s 

boundary is inherently fuzzy. In the case of estimating a moving weather object, the 

need to determine its position at a certain time, or its time of arrival at a certain 

location, gives rise to fuzzy estimations. The most common reasons for considering 

various types of uncertainty in spatiotemporal applications are as follows:  

 

• Some spatial information is imprecise or fuzzy. The locations of objects, 

spatial relationships and various geometric and topological properties usually 

involve uncertainty [47]. 

• Many natural phenomena have fuzzy boundaries due to the transitional 

nature of variation in the phenomenon (e.g. a river’s changing line because 

of floods and drought) [6, 15, 35]. 

• To obtain precise data is difficult and unnecessary most of the time, and we 

may only be able to give a range of values in which the exact numbers would 

lie. For instance, we may need the number of “cloudy” or “partly cloudy” 

days for some region in a period. In this request, the user specifies cloudiness 

criteria in linguistic terms instead of giving numeric degrees of cloudiness 

(e.g. 4/8 or 6/8) [3].  

 

There have been several efforts aimed at using fuzzy set theory for modeling spatial 

objects and their properties [40, 41, 42, 44, 48, 59]. Schneider et. al. [40, 41, 42] 

represent fuzzy spatial objects and relationships as well as complex crisp objects and 

relationships by using fuzzy techniques. Tang et. al. [48] propose basic fuzzy spatial 

object types based on a fuzzy topology. A fuzzy cell complex is defined for fuzzy 

points, lines and regions. Zhan et.al. [59] describe how to find the resultant regions 

from the topological overlay of two simple polygons with indeterminate boundaries. 

The effect of three typical overlay operations – intersection, difference, and union – 
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on resultant regions is also discussed. Tao et. al. [49] study range query on 

multidimensional uncertain data using a “probabilistically constrained rectangle”. 

 

Temporality has also been studied by some researchers [34, 37, 62]. In its simplest 

form, time is considered as an attribute of spatial objects in [37]. A simple time 

stamping approach is adequate to obtain the states of objects at certain times. 

However, to identify individual changes in objects, event-based approaches are 

developed in [34]. In [62] temporal uncertainty and fuzzy timing are introduced in a 

model that combines temporality and fuzziness. In this model the notions of fuzzy 

time stamping, enabling time, occurrence time and delays are defined.  

 

There are also efforts to combine spatial and temporal properties into one modeling 

framework using an object-oriented modeling approach [16, 17, 50]. Tenets of 

object-orientation, such as classes and instances, attributes and abstract data types, 

operations and methods, classification and encapsulation, aggregation, information 

hiding, inheritance, polymorphism and dynamic binding are very useful for 

modeling and manipulating spatiotemporal data. Worboys [55] introduces the 

concept of the spatiotemporal object and defined a spatiotemporal object as a unified 

object with both spatial and temporal extents, also called a simplex. A finite set of 

such spatiotemporal simplexes are then defined to form a spatiotemporal complex 

on the basis of which query algebra is developed.  

 

The object oriented modeling approach is also used to support fuzzy data. This lead 

to development of fuzzy object-oriented modeling techniques for imperfect 

information requirements of various complex applications. Gyseghem et. al. [18] 

propose an object-oriented model that represents uncertainty and fuzzy information. 

In that work, fuzzy information is presented by fuzzy sets and uncertainty by means 

of generalized fuzzy sets. Bordogna et. al. [4] define a graph based fuzzy object-

oriented data model that permits attributes to take linguistic values. The association 

between an object instance and instance properties are modeled through a fuzzy 

reference relation. Lee et. al. [26] propose a new approach to object-oriented 

modeling based on fuzzy logic to formulate fuzzy classes, fuzzy rules to describe the 
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relationship between attributes, the membership function of a fuzzy class based on 

both static and dynamic properties, and uncertain fuzzy associations between 

classes. Marin et. al. [29] present a set of operators to compare objects in a fuzzy 

setting. Among them is a generalized resemblance degree between two fuzzy sets of 

imprecise objects and to compare complex fuzzy objects. Yazici and George [56] 

study a similarity based fuzzy object-oriented data model in which impreciseness at 

the data level contributes to uncertainty in the class-object and class-subclass 

hierarchy. In this thesis we introduce some extensions to that model for 

spatiotemporal objects. 

 

There also exist some other studies extending conceptual models for modeling fuzzy 

information. For example, Geo-ER [19] is an extension of the entity-relationship 

(ER) model that provides a set of concepts specific to the spatial application domain, 

and attempts to capture spatial peculiarities at the conceptual level of geographic 

database design. Yazici et. al. [58] use unified modeling language (UML) [2], 

providing extensions to handle spatial and temporal objects. In their work, some new 

special entity sets, relationships, and constructs were introduced for modeling spatial 

objects. 

 

In knowledge intensive applications, support for deduction is an important 

requirement. In a spatiotemporal application, relations between objects can be very 

complex. Consider, for example, a ship crossing the sea. In some parts the sea line 

may be restricted for travel due to wave and wind conditions. How can we record 

this information and make the deduction that the sea line is restricted? The 

spatiotemporal data can be stored in databases but naturally there are relations 

including some rules as well. Instead of storing all relations in a database, a 

knowledge base that is capable of representing knowledge and making deductions is 

preferable and very helpful for retrieving the status of the sea line. Hence, the 

interaction and/or integration of database and knowledge base technologies are 

important requirements for the development of knowledge intensive applications. 

This is reflected in the continuing research into the development of deductive object-

oriented models since the late 1980s [9, 27]. 
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1.2 Summary of Contributions 

 

In this study, we present a new approach to model and query real world 

spatiotemporal objects, in particular meteorological phenomena. The main 

contributions of this thesis and our working layout can be summarized as follows: 

 

• A generic model is introduced. Spatiotemporal objects and relations are 

incorporated into the model. The types of the objects and relations can be 

classified as follows: 

o Complex crisp spatial objects, 

o Fuzzy spatial objects, 

o Crisp/fuzzy spatial relations (e.g. topological, directional and metric) 

between spatial objects. 

Then an application specific model is combined with the generic model. The 

geographic objects (i.e. city, sea, line, etc.) and meteorological objects (i.e. 

temperature, wind, waves, etc.) are included in a three dimensional space.  

• The model including generic and specific parts and fuzzy spatiotemporal 

querying mechanism are presented logically by C-logic [52] and 

conceptually by extended UML [46]. The model is also specified formally 

using Alloy and verified by Alloy analyzer [21]. 

• Following modeling efforts, an architecture is designed by utilizing the 

Intelligent Fuzzy Object-Oriented Database (IFOOD) [25] including 

components which are: 

o an object oriented database, 

o a knowledge base, 

o a querying interface and fuzzy spatial. 

• The architecture is implemented as a prototype application. Using 

meteorological data some crisp and fuzzy queries are implemented to verify 

the application. 
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• The queries are enhanced and diversified by adapting a spatial index 

structure (R*-tree) [22, 45]. The adapted R*-tree (Enhanced R*-tree) 

supports fuzzy spatiotemporal queries.  

• Finally, the fuzzy semantic queries are run with real meteorological data and 

the efficiency and scalability of the application is evaluated. 

 

 

1.3 Organization of the Thesis 

 

In the following chapter, we give some background information on concepts related 

to fuzzy spatiotemporal database modeling, including spatial and temporal fuzziness 

as well as relationships between fuzzy and complex objects. Then a comprehensive 

related work summary is presented in the same chapter. In Chapter 3, we describe 

how to develop a generic model for spatiotemporal database applications. We use a 

meteorological database application to illustrate our approach. Chapter 4 gives 

details about the architectural design of the system. In Chapter 5, we present queries 

from the application domain, and discuss crucial details of their processing. The 

development of a fuzzy index structure (Enhanced R*-tree) are explained in Chapter 

6. Chapter 7 diversifies proof-of-concept queries in Chapter 5 by adding fuzzy index 

structure and real data. The implementation details of crisp, fuzzy and semantic 

queries are presented. We also evaluate the scalability and performance of the 

application components. Finally, we present our conclusions and point out possible 

future studies, in the last chapter. 
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CHAPTER 2 
 
 

BACKGROUND AND RELATED WORK 

 
 
 
 

In order to support our modeling and querying aspects, basic spatial and temporal 

concepts are discussed in this chapter. The spatial objects in geographic information 

systems especially in meteorological maps are presented in Section 2.1. Basic 

definitions of fuzzy spatial data types are given in Section 2.2. We describe spatial 

relations in general and topological relations between complex regions and fuzzy 

regions in Section 2.3. The temporal requirements of a spatiotemporal application 

are presented in Section 2.4. These are followed by a summary of index 

requirements and R-tree/R*-tree descriptions in Section 2.5. Finally, we give a 

summary of the related work in literature and our contributions in Section 2.6. 

 

 

2.1 Spatial Objects 

 

In many areas of geographic information systems, natural objects (e.g. mountains, 

rivers, aridity areas, population distribution areas and meteorological phenomena 

like foggy regions, wavy sea regions, etc.) and man-made objects (e.g. cadastral 

divisions, administrative borders of the cities, roads and bridges etc.) are modeled, 

stored and queried. The objects are defined with spatial (e.g. geometric shape, 

location, boundary length, diameter etc.) and/or descriptive (e.g. name, origin etc.) 

attributes [28].  
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In Figure 1, wave heights over the Mediterranean Sea are illustrated on a weather 

map. According to the map, the wave heights have varying characteristics, which are 

most dense in south-west of Italy and clear on the Eastern Mediterranean. The 

borders of the density regions are indeterminate since the height characteristic 

changes somewhat gradually.  

 

 

 

 

 

Figure 1: A weather chart showing wave heights on the Mediterranean Sea 
 

 

 

In Figure 2, the temperature values of Turkey on 31.12.2007 are depicted on a map 

using GIS software [14]. The software groups the similar values together with close 

tones of colors. So the cold and warm areas and the gradual changes are visualized 

on the map.  
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Figure 2: Temperature mapping on 31.12.2007 

 

 

 

Figure 3 is a similar map produced for the humidity measurements of Turkey at the 

same date. The brown colors indicate the relatively dry regions whereas greenish 

colors indicate the humid regions. Similar maps produced for different 

meteorological parameters are presented in Appendix A. 

 

 

 

 

 

Figure 3: Humidity mapping on 31.12.2007 
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In a geographic space like these maps, the objects with imprecise or vague spatial 

attributes could be referred to as fuzzy spatial objects and the ones with precise or 

exact attributes (e.g. country borders) could be referred to as crisp spatial objects 

[40]. We define for fuzzy spatial objects, namely fuzzy points, lines and regions in 

the next section.  

 

 

2.2 Spatial Data Types 

 

A fuzzy point is a point for which an exact position is not known but possible 

positions are known within a certain area. In Figure 4-(a) the expected position of 

such a point is shown by a black dot and the possible positions are shown by grey 

dots. For instance, a ship waiting in the queue for crossing “Istanbul Bosphorus” is 

supposed to be found at a certain point but may drift from that position from time to 

time (e.g. move to the grey parts).  

 

 

 

 

a) Fuzzy point 

 

b) Fuzzy line 
 

c) Fuzzy region 

 

d) Complex region 

 

Figure 4: Spatial data types 

 

 

 

A fuzzy line is a line, the exact shape, position or length of which is not known, but 

what is known is which area the line must reside in. In Figure 4-(b) the center line 
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shows the normal shape of a river. The actual river line can change position and 

shape due to floods or droughts (hence the grey area).  

 

A fuzzy region is a region with indeterminate boundaries. It has three parts: (1) the 

core (indicated by the dark part) (2) the indeterminate boundary (grey part) and (3) 

the exterior (the outer parts of indeterminate boundary) [59]. In Figure 4-(c) a 

typical fuzzy region is depicted and might be used to express the gradual change 

over a spatial domain for a given attribute (e.g. wave height).  

 

Finally, a complex region is as set of regions, possibly with holes and multiple 

components (see, Figure 4-(d)) [40]. Foggy regions with clear patches, for example, 

can be represented as complex regions. 

 

 

2.3 Spatial Relations 

 

Spatial relationships can be one of the three kinds, namely, topological (e.g., 

overlap, inside, covers, etc.), directional (e.g., North (N), South East (SE), etc.) and 

metric (e.g., "5 km away from") relationships [7]. 

 

Topological relations describe spatial relationships of objects in space. A model for 

analyzing binary topological relations, known as the 9-intersection model, has been 

proposed in the literature [13]. The 9-intersection model is based on the intersection 

between the parts (interior, boundary, exterior) of the regions involved. The 

intersections of the parts are analyzed with 3x3 matrices (total 29=512 matrices). 

The model distinguishes eight meaningful (disjoint, meet, overlap, equal, contains, 

inside, covers and covered by) relations for crisp regions. Later, this model was 

generalized for fuzzy regions [32, 48, 59] and complex regions [11, 41]. These 

generalizations are presented in the next sections. 
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2.3.1 Fuzzy Topological Relations 

 

The topological relations between fuzzy regions are inevitably fuzzy because of the 

indeterminate boundaries of the regions involved. Suppose that “A” is a set of 

attributes under consideration, and that a region is a fuzzy subset defined in two 

dimensional space R2 over “A”. The membership function of the fuzzy region can be 

defined as [ ]1,0: →×× AYXµ , where X and Y are the sets of coordinates defining 

the region. Each point ( )yx,  within the region is assigned a membership value for 

an attribute a in A.  

 

A fuzzy region is illustrated in Figure 5 with the core, the indeterminate boundary, 

the exterior and α-cut levels. The indeterminate boundary of the fuzzy region is an 

aggregation of regions whose boundary is defined by cut−α  levels, that is all 

points with membership values equal to α . So, an  cut−α  level region is defined 

as follows: 

( ) ( ){ }( )10,,,, <<≥= ααµα ayxayxR R  (1) 

 

 

 

 

 

Figure 5: Visualization of a simple fuzzy region 
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The degree of the fuzzy relation is measured by aggregating the cut−α level of 

fuzzy regions. The basic probability assignment ( )iRm α , which can be interpreted as 

the probability that iRα  is the true representative of R , is defined as in [12, 41, 59]:  

 

( ) 1+−= iiiRm ααα   (2) 

for ni ≤≤1  for some Nn ∈ with 1 = 1α > 2α >…>
nα > 1+nα = 0 

It is clear that ( )∑
=

=
n

i

iRm
1

1α .  

Let ( )ji SR αατ ,  indicate the existence of a topological relation between two cut−α  

level regions of fuzzy regions R and S (e.g. 0 or 1). Then the degree of a topological 

relation between R and S can be determined by the following equation: 

( ) ( ) ( ) ( )
jij

n

i

m

j

i SRSmRmSR αααα ττ ,, ∑∑
= =

=
1 1

 (3) 

Because ( )
ji SR αατ ,  has a value of either 0 or 1 and ( ) ( )∑ ∑

= =

==
n

i

m

j

ji SmRm
1 1

1αα , 

( )SR,τ  should be in [0,1].  

 

Here we present the formulation for the overlap relation as an example but the 

remaining topological relations which are illustrated in Figure 6 can be formulated 

in a similar manner: 

 

( ) ( ) ( ) ( )
jioverlapj

n

i

m

j

i SRSmRmSR αααα ττ ,, ∑∑
= =

=
1 1

 (4) 
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Disjoint Contains Inside Equal 

 

    

Meet Covers Coveredby Overlap 

 

Figure 6: Examples of topological relations between fuzzy regions. 

 

 

 

2.3.2 Topological Relations Between Complex Regions 

 

A complex region is the union of simple regions )(SR including, possibly, holes. Let 

F and G  be two simple regions with holes, that is 

 

U
n

i

iSR FFF
1

0
=

−=  and  

U
m

j

jSR GGG
1

0
=

−= ,  (5) 

 

where 0F and 0G  are bases and iF  and jG are the holes of F and G  respectively. 

Then, two regions are disjoint if 0F  and 0G  are disjoint or one region is inside of 

another region’s hole. More precisely, 
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( ) ( )

( )( ) 













≤≤∃∨≤≤∃

∨=

j
,GFinside:mj

i
,FGinside:ni

,GFtdisjoinF,G
SR

ntdisjoi

0
1

0
1

00  (6) 

 

, where 

 

( ) ( )
( )

( ) ( )( )













≤≤∃∧

∨≤≤∀
∧=

ijj

j

SR
,FGinside:ni,FGinside

,GFntdisjoi:mj
,GFinsideF,Ginside

1

1

0

0

00
 (7) 

 

F is considered to be inside G  if 0F  is inside 0G and if each hole jG  of G  is either 

disjoint from 0F  or inside a hole of iF . Examplary regions with holes and their 

relations are illustrated in Figure 7. 

 

 

 

 

 

Figure 7: Examples of the relations (a) disjoint  and (b) nsidei  
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Other topological predicates for simple regions, possibly with holes, are defined in 

the same vein. Based on these definitions, topological predicates for complex 

regions are defined as follows:  

Let  

U
n

i

iCR FF
1=

=  and U
m

j

jCR GG
1=

=  

 

be two complex regions (CR) ,where iF  and jG  are simple regions with holes. Then 

the topological relations are defined as follows: 

 

( ) ( )
jiSRCR GFntdisjoimjniGFntdisjoi ,:11, ≤≤∀≤≤∀=  (8) 

( ) ( )

( ) ( )( )
jiSR

CRCR

GFmeetdisjomjni

GFntdisjoiGFmeet

,nti:11

,,

≤≤∀≤≤∀

∧¬=

( ) ( )
jiSRCR GFinsidemjniGFinside ,:11, ≤≤∃≤≤∀=  (9) 

( ) ( )FGinsideGFcontains CRCR ,, =  (10) 

( ) ( )iiSRCR GFequalniGFequal ,:1, ≤≤∀=  (11) 

( ) ( ) ( )( )
( ) ( )( )

jiSR

CRCR

GFequalveredBycoinsidemjni

GFequalinsideGFveredByco

,||:11

,|,

≤≤∃≤≤∀

∧=  (12) 

( ) ( )FGveredBycoGFversco CRCR ,, =  (13) 

( ) ( ) ( )GFoverscveredBycoequalcontainsinsidemeettdisjoinGFoverlap
CRCR ,||||||, ¬=  (14) 

 

 

2.4 Temporal Aspects of Spatiotemporal Databases 

 

Temporal aspects have been the focus of attention in the literature, and applications 

often require that time information to be stored in the database. Information about 
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objects’ attributes and relationships among objects are valid when the object exits 

temporally. For example, windy regions exist over the sea within a time interval and 

the ships which have to cross these regions are planned to start and finish their 

journeys at certain times. The windy regions and the ship routes will be expected to 

relate to each other in certain ways in this interval. Temporal information is 

generally stored in databases in two forms: 

 

• the valid time is the time when the information about an object or 

relationship holds in the modeled reality. For example the valid times of a 

ferry route in the Marmara Sea is 08:30, 12:00 and 17:00 daily. 

• the transaction time of a database entry is the time when the entry becomes a 

part of the current state of the database. The time when the ferry lines’ times 

are stored in the database is the transaction time of the entry. 

 

Individual time values are termed chronons and many applications also have 

duration, which can be captured by using time intervals, where a time interval [tbegin, 

tend] is defined as a set of consecutive chronons. We call tbegin and tend the start and 

the end chronon of the interval, respectively. 

 

 

2.5 Spatial Indexing 

 

The design of a spatiotemporal database should meet the unique requirements of 

spatiotemporal data. In this section, we discuss a number of requirements at the 

physical level. 

 

A spatial object has a complex structure. It may be composed of numerous points, 

line segments and polygons with holes and vague parts. It is not usually possible to 

store such collections in a single relational table. Spatial objects also have dynamic 

properties. The attributes like shape, position, etc. may change by the time. Data 

structures used in this context should support this dynamic behavior. The complex 
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structure and the dynamic behaviors result in large databases comparatively. Finally, 

the spatial operators are generally more expensive than the standard relational 

operators. The spatial search operations require special support at the physical level 

because of the existence of spatial attributes as well as non-spatial attributes.  

 

Spatial index structures are designed to support such operations at physical level. 

Based on the properties of spatiotemporal data, spatial index structures should be 

dynamic for changing attributes, scalable for database growth, and should support 

broad range of operations. There are a number of index structures which support 

spatial indexing [45]. R-tree index family is widely studied [22] and we adapt one of 

them, R*-tree for this study. 

 

An R-Tree is an index structure for spatial data. At the leaf node of R-Tree, an index 

record refers to the spatial data. The index record is an n-dimensional rectangle and 

it is the bounding rectangle of the spatial data indexed. This rectangle is also known 

as minimal bounding rectangle, MBR. Non-leaf nodes contain entries (I, childnode-

pointer) where I is the MBR bounding all the rectangles in the lower nodes' entries. 

Childnode-pointer is the pointer to a lower node in the R-Tree.  

 

Figure 8 shows an example of an R-tree. In the figure, leaf nodes (LN1 to LN7) are 

the enclosing rectangles of original spatial data objects in the data space. Inner nodes 

(IN1 to IN3), are MBRs of corresponding leaf nodes, and they are stored in the root 

of this R-tree. 
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Figure 8: An example of R-tree 

 

 

 

R*-tree is basically different from R-tree in the insertion phase. The design of the 

R*- tree introduces a policy called forced reinsert: If a node overflows, it is not split 

right away but firstly p entries are removed from the node and reinserted into the 

tree.  The parameter p may vary; but it is suggested that p to be about 30% of the 

maximal number of entries per page [1]. 

 

Another difference between R-tree and R*-tree is the node splitting policy. While R-

tree algorithms try to minimize the area that is covered by the bucket regions, the 

R*-tree algorithms also take into account minimum overlap between bucket regions, 

minimum region perimeters and maximum storage utilization. 
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2.6 Related Work 

 

A recent literature survey about the topic is presented in this section. The works are 

classified under the modeling, querying and indexing sections. 

 

 

2.6.1 Modeling Spatiotemporal Data 

 

In this section a number of works about modeling spatiotemporal objects are 

checked and compared to our work. The fuzzy object modeling, the past and future 

states of moving objects, the conceptual, logical and physical modeling are the main 

topics of our survey. 

 

In [24] finite number of crisp regions where each region is associated with a 

membership value indicating the degree of belonging, forms so called a plateau 

region.  Thus, a fuzzy region in Figure 5 is approximated by n crisp regions. So an 

implementation effort can benefit from well known crisp region algebra. The authors 

define formal plateau regions and operations. In our work in the prototype system 

we implemented complex regions with holes and fuzzy regions. The fuzzy region 

which is used to represent wavy and windy regions over the sea is a kind of plateau 

region mentioned in [24] with some differences. In that work plateau regions are 

presented like complex spatial objects with multiple parts each having different 

fuzzy degrees whereas in our implementation fuzzy regions of windy areas are more 

crisped shape of the simple fuzzy region. So our fuzzy regions have a core region 

and from core to outside some non uniform crisp rings cover the core with 

decreasing memberships. 

 

Like plateau regions, vague spatial object and topological predicates [32], fuzzy 

spatial data types [40], complex crisp and simple fuzzy regions [41] and complex 

spatial objects and topological predicates [42] are formalized in a number of work 
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by Schneider and co-workers. We also handled fuzzy and complex spatial objects 

and the formalism presented in these papers is quite useful for our modeling efforts.  

 

The past and future states of moving objects are modeled in [36].  The formal 

definitions of moving objects with respect to their past and future movements are 

provided. In our study, we used past meteorological data and hence for moving 

objects. In the ferry lines example, the restrictions for the line are queried. In 

weather forecasting, the future states of meteorological objects are predicted. So if 

we use future data our model can be used to query for the future topological 

relations (e.g. the future states of the ferry lines will be restricted can be queried). 

 

A survey on multidimensional modeling discusses the issues about the phases of 

modeling [38]. The modeling phases are described at conceptual, logical and 

physical level. The conceptual modeling aims an implementation independent and 

expressive schema. In literature, conceptual modeling has been searched from two 

perspective, multidimensional and Extraction-Transformation-Loading (ETL) 

modeling. The multidimensional modeling approaches use extensions to Entity 

Relationships model, UML and ad-hoc models. The authors state that ETL is less 

mature then multidimensional modeling. The logical modeling takes place after 

conceptual modeling and creates a logical schema. Finally physical design phase 

concerns the issues specifically related to the implementation such as indexing. In 

our research effort we follow the conceptual, logical and physical modeling order. 

The conceptual model is based on extended UML for spatiotemporal data. The 

logical design use C-logic and Alloy for a logical schema of the model. Finally at 

the physical level we used an object oriented database supported by a spatial index 

structure. 

 

A recent work on modeling and querying vague spatial objects [63] uses shapelets 

which is an image decomposition technique developed in astronomy. Shapelet is as 

set of functions that includes a Gaussian function and higher order terms composed 

of the products of Gaussian function with a set of polynomials. The shapelets 

approach is optimized especially for smoothly varying fuzzy spatial objects. The 
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arithmetic operations (add/subtract two objects), topological operations (overlap, 

etc.) and metric operations are defined formally for shapelets. An extension 

including shapelet class is integrated into PostgreSQL as a library. In addition, 

existing R-tree support in PostgreSQL is used to index shapelets. There are a couple 

of differences in our approach and this approach. We use vague spatial objects 

which are formalized by fuzzy set theory and complex crisp objects whereas in this 

work shapelets are used to model spatial objects especially for smoothly varying 

objects. The vague spatial objects and complex crisp objects are very suitable for 

modeling meteorological objects. Both work use a database (PostgreSQL and db4o) 

and a spatial index structure (R-tree and R*-tree). The R-tree and R*-tree use 

bounding boxes as a standard indexing mechanism. In addition to that, we adapt R*-

tree for fuzzy spatial and aspatial indexing for fuzzy and semantic queries. In 

querying spatial data, in addition to topological, metric relations we implement also 

fuzzy semantic queries which may require deduction defined in fuzzy knowledge 

base. 

 

Our modeling effort follows conceptual, logical and physical modeling of 

spatiotemporal data. We use fuzzy set theory in modeling fuzzy data. The definitions 

for the fuzzy objects and complex crisp objects which have foundations in literature 

[42] are suitable for meteorological objects. So our modeling efforts are parallel 

with the works above and we present a complete architecture including modeling at 

three levels supported by knowledge base and fuzzy semantic querying. 

 

 

2.6.2 Querying Spatiotemporal Data 

 

In this section we briefly give an overview of recent works from literature which is 

related to querying methods. The location based queries, nearest neighbor and 

distance searches are mainly the subjects of these works. Also fuzzy inputs and 

processing are required to process the queries. 
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The location of reference objects and the target instances in a given range are the 

subject location based spatial queries (LBSP) [5]. LBSQ take a reference point and 

find instance objects in a distance or a range. The distance may be specified between 

minimum and maximum values. The range may be a geometrical shape like circle. 

The reference point and the instance locations can be uncertain also. The range, 

circle, ring, distance range, fuzzy topological (inside, overlap, etc) queries are part 

of our work. 

 

In [43], an intelligent querying tool, TreeSap is presented. The tool focuses on 

qualitative fuzzy input when querying spatial data. The distance relationships 

between objects can be stated ambiguously such as near, close, very close, etc. 

TreeSap converts this qualitative input to a numerical form and presents the results 

of the query which is in numerical form in a simple and intuitive manner. 

 

In [23], modeling and querying uncertain location information from free text which 

is obtained from newspaper or event reporting sources is studied. Uncertain 

locations such as near (Building A) and event types such as ‘traffic accident’ are 

extracted from text and mapped onto probability density functions (pdf). They also 

analyze several types of spatial queries such as range search. 

 

ESSE [61] system allows user to query the environmental data archives in human 

linguistic terms. These terms are mapped into query language by fuzzy logic. Fuzzy 

states of spatiotemporal data sources are specified as logical expressions (AND, OR, 

NOT) applied to a set of linguistic terms (Large, Small, etc.) and numeric predicates 

(Less than, equal, etc.). The transformation from one state to another state by the 

time is also defined formally. 

 

These works in the previous paragraphs are focused on a specific part of spatial 

querying. The location, distance, topological relations are implemented in our work 

as well as other fuzzy semantic queries. We use meteorological objects and data sets 

although it can be implemented for other data sets. We also adapt index structure 

and knowledge base for efficient fuzzy semantic querying. 
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2.6.3 Spatial Index Structures 

 

The indexing approaches in recent literature are discussed in this section. The usage 

of R-tree index family and using separate or single index structures and fuzzy query 

supporting issues are the main topics of these works. 

 

Using separate index structures for different dimensions are discussed in [30]. In the 

survey for geographic information retrieval systems two separate index structures 

for text and geographical scopes are planned to use. We used single index structure 

for spatial and non-spatial indexing. The additional indexing is added at the data and 

intermediate nodes. The advantages of our approach are firstly it is dynamic so any 

number of attributes of objects at the leaf level can be indexed and secondly during a 

search only one index is loaded and all indexing criteria can be found in the same 

level and structure. 

 

Another work also uses two separate index structures for video clips. The variants of 

R-tree and R*-tree are adapted for a two phased retrieval algorithm in content based 

multimedia system [60]. While first tree is built on the spatial objects in the scenes 

of a video, the second tree stores the spatial relations between the objects in the first 

tree.  

 

The relative spatial orientation and distance relation are indexed for icons which are 

a collection of labeled point features in [10]. In this approach each pairing of two 

icons is represented by a single point and all pairs with same separation and relative 

orientation map to same point. Given a spatial relationship or range, the database 

search is performed by using R-theta index which is a variant of R-tree. In our 

approach the spatial relations and orientation are calculated dynamically by fuzzy 

spatial processor and/or fuzzy knowledge base together.  

 

The U-tree is built on the multidimensional uncertain data for range search [49]. 

Like R*-tree’s MBRs, a U-tree uses probabilistic constrained rectangles (pcr), 

where pcr(0)=MBR and pcr(0.6) is a smaller rectangle and so on. As the probability 
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of pcr increases to 1, the bounding rectangle gets smaller. A query returns all objects 

that appear in search region with at least a certain or higher probability.  This 

approach gives probability values to rectangles so in the core part of the rectangles 

the object is found most probably. In our approach we use crisp rectangles to index 

objects. Nevertheless the spatial (direction, relation, etc) and aspatial fuzziness are 

supported as we mentioned. 

 

The indexing approaches in these works are mainly differentiating from our work in 

some couple of ways. In summary, we use single indexing structure which may be 

more costly during the built up but more efficient while querying. We put index on 

each attribute of the objects including temporal data. The spatial relations are not 

indexed but calculated dynamically. Since the meteorological objects change 

position, shape etc. continuously we believe that our approach is more convenient. 

Finally in our work, any fuzzy attribute at the leaf level is indexed in the 

intermediate nodes and it is dynamic which is independent of the number of 

attributes. 
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CHAPTER 3 

 
 

A GENERIC MODEL FOR SPATIOTEMPORAL 

MODELING 

 
 
 
 

In this chapter, the components of the generic spatiotemporal model, namely, the 

fuzzy object oriented database (FOOD) [57] and the fuzzy knowledge base (FKB) 

[25], are presented. 

 

 

3.1 The Fuzzy Object-Oriented Database (FOOD) Model 

 

The Fuzzy Object Oriented model supports multivalued attributes and fuzzy 

domains are defined for these attributes. The domain of an attribute is the set of all 

possible values that the attribute can take. For example, the fuzzy domain for a 

“temperature” attribute of a meteorological observation can be defined as: 

 

{ }coldcool,moderate,warm,hot,Domain etemperatur =  (15) 

 

That is, the temperature attribute can have some combination of these values from 

the domain such as {hot, warm}, {warm}, {cool, cold, moderate}. The similarity 

matrix in Table 1 shows the similarity of each element with other elements in the 

domain. 
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Table 1: The similarity matrix for temperature attribute 

 

Temperature hot warm moderate cool cold 

hot 1.0 0.6 0.4 0 0 

warm 0.6 1.0 0.8 0.2 0 

moderate 0.4 0.8 1.0 0.6 0.4 

cool 0 0.2 0.6 1.0 0.8 

cold 0 0 0.4 0.8 1.0 

 

 

 

The matrix indicates that cool and cold temperatures are similar with a degree of 0.8. 

In a case where the temperature value is estimated and given a threshold value of 

0.8, multiple values {cool, cold} can be associated, which gives us a fuzzy 

representation for temperature value. Note that the values of the similarity relations 

can be defined either by domain experts or computed using various methods existing 

in the literature [53]. 

 

In FOOD, attributes can take values within a range and in general, domainrange ⊆ . 

The range of an attribute ai of a class C is represented by the notation rngc (ai), 

where { }ni aaaa ,,, 21 K∈ , the attributes of class C. For example, the range of the 

temperature attribute of a class for a “fog” object can be defined as a subset of the 

temperature domain: 

 

{ }coldcoolderatemoetemperaturrng fog ,,)( =  (16) 

 

Another type of fuzziness in FOOD takes place between classes and objects. That is, 

while some objects are full members of a fuzzy class, some other objects may 

belong to the class partially. The objects may still be considered as instances of this 

class but with a degree of membership in [0, 1]. A formal range definition indicating 

the ideal values for a fuzzy attribute is given in the class definition. However, an 

attribute of an object can take any value from the related domain. Then, the degree 
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of membership of an object to its class is computed by using the similarities between 

the attribute values and the range values, and the relevance of fuzzy attributes. The 

relevance is given by the weight of the fuzzy attribute in determining the boundary 

of a fuzzy class. Thus, the degree of membership of an object jO  to a class C  is 

determined by the formula: 

 

( ) ( ) ( )( ) ( ) ( )∑∑
==

×=
n

i

i

n

i

iijiCjC CaRLVCaRLVaoarngINCo
11

,,µ
 (17) 

 

where ( ) ( )( )
ijjC aoarngINC /  is the inclusion value that is taking into account the 

semantics of attributes and ( )CaRLV i ,  is the relevance of attribute ai to the class C, 

as given in the class definition by the class designer. All attributes, therefore, affect 

membership degrees in proportion to their relevance values. For the details of the 

FOOD model, including examples of the computation of inclusion values, the reader 

is referred to [57]. 

 

 

3.2 The Generic Model 

 

In this section, the types, operations and predicates for a generic spatiotemporal 

model are specified. C-Logic and Alloy notations are used for the formal definitions 

of the model. Then in the next chapter implementation details are presented. 

 

 

3.2.1 C-Logic notation 

 

We use C-Logic, which allows direct transformation of the specification into first 

order formulas [54]. C-logic also allows class and subclass specification 

independently, which facilitates the update of objects’ subparts. This specification 

can then be easily implemented in an object oriented programming language.  
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In C-logic a class is specified as a collection of atomic properties. For example, a 

“Point” is a spatial data type having a membership value to exist at a location (x, y). 

 

[ ] [ ] [ ][ ] 0.10,,,: ≤≤⇒⇒⇒= µµ wherefloatyfloatxfloattPoin . (18) 

 

For example, an object of type Point can be defined 

as [ ]5.5,0.3,0.1: ⇒⇒⇒= yxtPoinp µ , which indicates that the point p is located 

at ( )5.5,0.3  with membership value 0.1=µ . A more general specification for Point 

class is given below: 

 

{ } { } { }[ ]

( ) .,0.10

,,,,,,,,:
2

111

Ryxandwhere

yyyxxxtPoin nnn

∈≤≤

⇒⇒⇒=

µ

µµµ KKK
 (19) 

 

The mapping ⇒  can be understood as either “containing as a subset”, if it is 

followed by a collection of terms, or “containing an element”, if it is followed by a 

single term. In the former case, terms with the same index are associated with each 

other. 

 

An object is defined as an instance of a class within an interval of time and specified 

by a predicate is_instance: 

 

( ) endbegin TTTwhereTClassObjectanceinstis ≤≤,,,_  

 

In a spatiotemporal model, the spatial portions of objects are described with 

“Geometry”, “Point”, “Line” and “Region” classes. The “Point”, “Line” and 

“Region” classes are associated with each other through aggregation relation. For 

example, a line can be described by an aggregation of points and similarly a region 

can be represented by an aggregation of lines, and so on. A special form of 

aggregation is the “whole/parts” relation between “Geometry” and part classes, 
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namely, “Point”, “Line” and “Region”. “Geometry” is formed by the combination of 

more than one spatial type and expressed in “Geometry” class definition as follows:  

 

{ } [ ] [ ] [ ][ ]
( ) ( )

( ) ( )
( ) 0,,,,,,_

,,,_,,,_

,,,_,,,_,

,,,,,,:

1

1

11

>∈
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kandjiofoneleastatandNkjiTntPoiPanceinstis

TegionRegRanceinstisTegionRRanceinstis

TLineLanceinstisTntPoiPanceinstisTTTwhere
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The other attributes of the “Geometry” class are “Minimum Bounding Rectangles 

(MBR)” [8] for locating and accessing objects in space, “center” for the central 

position of the object and “size” for the volume that an object occupies. 

 

The “STObject” class is associated with the “Geometry” class from which detailed 

spatial information is extracted, such as geometries and possible holes for regions as 

well as the position and trajectory of an object. The “STObject” class, having 

geometric and temporal attributes is defined below. Note that an “STObject” can 

have at least one simple geometry with possible holes. 
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A fuzzy spatial relation describes the relative positions of two fuzzy spatial objects. 

The degree of relation can be computed by using the definitions in Section 2.3 and 

the “Fuzzy Topological Relation algorithm” presented in Figure 16. A formal 

definition is given here: 
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3.2.2 Alloy notation 

 

After the model is defined formally in C-logic, Alloy analyzer is used. Alloy is a 

formal object oriented specification language and its tool can be used for specifying 

properties about objects and validating them [21]. The model is first abstracted in 

Alloy language and then the analyzer verifies it. 

 

In Alloy there are two kinds of specification elements: 

• Signatures: define new types and contains a set of objects. The objects can be 

related by the relations, which are fields of the objects. 

• Facts, functions, predicates: define constraints and true statements. 

 

Next we define our model in Alloy as follows: 

 

module systems/STModel 

 

open alloy/models/util/ordering[LineSegment] as ordL 

open alloy/models/util/ordering[Time] as ordT 

open alloy/models/util/ordering[Fuzzy] as ordF 

 

The open statements are used to access the predefined ordering module. Ordering 

module gets an argument and creates a linear ordering over it. The module presents 

some functions, such as which element is first in the ordering (first), or whether a 
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given element precedes another (next), and some predicates such as comparisons 

(gte, lt, eq, etc.) . 

 

//abstract fuzzy class. The implementation consists of definition of fuzzy number 

// which gives degree of fuzziness between 0 and 1 

abstract sig Fuzzy{}  

 

//The Time class includes definiton of time in YYYYMMDD hh:mm 

sig Time{} 

// a temporal class includes temporal class and a temporal entity has 

// beginning time and end time 

sig Temporal{ 

beginTime,endTime:Time 

} 

 

// Beginnig time should be less than or equal to end time 

fact TemporalFact{ 

all T:Temporal| ordT/lte[T.beginTime,T.endTime] 

} 

 

//a temporal object exits in a temporal interval 

pred isInstance(o:Temporal,bt,et:Time){ 

ordT/gte[o.beginTime,bt]  and ordT/lte[o.endTime,et]  

} 

 

Alloy allows the definition of abstract classes. This is similar to object oriented 

abstract classes. The detailed definitions of Fuzzy and Time classes are left to 

implementation. The Temporal class definition which is extended by temporal 

classes is followed by a fact definition. Facts are constraints which are assumed to 

be always true. In the model, TemporalFact asserts that the beginTime should be 

less than or equal than the endTime. Next, we define a predicate which implies that a 
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temporal object should exist in a temporal interval.  Predicates in Alloy are simply 

named constraints.  

 

// Spatialbase has common entries for spatial classess 

// membership: is a fuzzy number and shows the degree of  

// spatial object's belonging to a particular spatial class 

// size: for fuzzy spatial object size is also fuzzy. 

abstract sig SpatialBase extends Temporal{ 

membership:Fuzzy, //fuzzy membership 

size:Fuzzy 

} 

 

// Coordinate defines an x, y location in the space. 

// x, y may be float numbers 

sig Coordinate{} 

 

// Point is the basic spatial element and can be part of line segments. 

sig Point extends SpatialBase { 

location:Coordinate 

} 

 

// a line segment is aggregated by a set of points, 

// It has a beginning and ending defined by points. 

sig LineSegment extends SpatialBase{ 

sourceEnd:Point, 

targetEnd:Point 

} 

 

// a region is aggregated by a set of line segments 

sig Region extends SpatialBase{ 

linesegs:set LineSegment 

} 
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// at least 3 line segments form a region 

fact RegionConst{ 

all r:Region |#r.linesegs >= 3 

} 

 

The SpatialBase is a super class of spatial classes such as Point, LineSegment and 

Region. Then some facts are defined which presents natural truths about geometry. 

For example a line segment has two points and at least three line segments form a 

region 

 

// a geometry is formed by a set of points and/or linesegments  

// and/or regions 

sig Geometry extends Temporal{ 

points: set Point, 

linesegs: set LineSegment, 

regions: set Region 

} 

 

// a geometry should have at least one of the parts. 

// not all of the parts can be empty sets. 

// this fact does not allow empty geometry 

fact GeometryFact{ 

all g:Geometry | 

not (#g.points=0 and #g.linesegs=0 and #g.regions=0) 

} 

 

// if a geometry exists in some temporal interval so that  

// its parts should exist in the same interval 

fact GeometryConst{ 

all g:Geometry | 

isInstance[g,g.beginTime,g.endTime] => 

( isInstance[g.points,g.beginTime,g.endTime]  and  
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isInstance[g.linesegs,g.beginTime,g.endTime] and  

isInstance[g.regions,g.beginTime,g.endTime]) 

} 

 

The GeometryConst fact states that if there exists a geometric entity in some 

temporal interval, so do all its parts in the same interval. 

 

// A spatiotemporal object definition 

sig STObject extends Fuzzy{ 

geometry:some Geometry, // an STObject has one or more Geometry 

holes:set Geometry, // an STObject may have holes 

trajectory:some Point, //trajectory is a non-empty set of points 

spatialRelation:set RelationType // An STObject may have spatial 

    // relation(s) with other STObjects 

} 

 

The STObject has fields such that geometry and holes define the geometry of the 

spatiotemporal object. The trajectory show the path that object follows. The 

spatialRelation field holds the object’s topological relation with other STObjects. 

These relations are formally defined in Chapter 2. An Alloy specification is given 

here: 

 

// A spatial relation exists in some temporal interval 

// including two STObjects and fuzzydegree that shows 

// the degree of the relation 

abstract sig RelationType extends Temporal{ 

F,G: one STObject, //two STObjects F and G 

fuzzyDegree:Fuzzy //the degree of the relation which is fuzzy 

} 

 

// These are the possible types of spatial relations. 

// Each one of them is a relation between two STObjects and have a degree 
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one sig Disjoint,Meet, Inside,Equal, Contains,Covers,CoveredBy,Overlap extends 

RelationType{ 

rel:F->G->Fuzzy 

} 

 

This definition is an enumeration of RelationType class. Each relation is a triple 

from one object to another and to the Fuzzy class because the degree of relation can 

be fuzzy. The predicates below define these relations by giving some constraints 

about about object geometries and/or holes.  

 

// the following predicates give definitions for the spatial relations 

 

pred disjointCR(R:RelationType){ 

no(R.F.geometry & R.G.geometry) and no(R.G.geometry & R.F.holes) and  

no(R.F.geometry & R.G.holes) and no(R.F.holes & R.G.holes) 

} 

 

pred insideCR(R:RelationType){  

some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or  

((R.G.holes in R.F.geometry) and (R.G.holes in R.F.holes))) 

} 

 

pred insideCR2(R:RelationType){  

some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or  

((R.F.holes in R.G.geometry) and (R.F.holes in R.G.holes))) 

} 

 

pred meetCR(R:RelationType){ 

one (R.F.geometry & R.G.geometry) and not disjointCR[R] and  

not insideCR[R] not insideCR2[R] and not equalCR[R] 

} 
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pred containsCR(R:RelationType){ 

insideCR2[R] 

} 

 

pred equalCR(R:RelationType){ 

(R.F.geometry=R.G.geometry) and (R.F.holes=R.G.holes) 

} 

 

pred coversCR(R:RelationType){ 

insideCR2[R] and meetCR[R] and  #(F.geometry & G.geometry) = 1 

} 

pred coversCR2(R:RelationType){ 

insideCR[R] and meetCR[R] and  #(F.geometry & G.geometry) = 1 

} 

 

pred coveredbyCR(R:RelationType){ 

coversCR2[R] 

} 

 

pred overlapCR(R:RelationType, fuz:Fuzzy){ 

not (disjointCR[R] or meetCR[R] or insideCR[R] or  containsCR[R] or 

equalCR[R] or coveredbyCR[R] or coversCR[R]) and ordF/gte[R.fuzzyDegree,fuz] 

} 

 

Some assertions and consistency checks are also necessary in order to show that the 

definitions are correct: 

 

// Spatial relation asserts 

assert disjoinT{ //if disjoint not any other relation 

all R:RelationType, fDegree:Fuzzy | disjointCR[R] => 

 not (overlapCR[R,fDegree] or meetCR[R] or insideCR[R] 

 or containsCR[R] or equalCR[R] or coveredbyCR[R] or  
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 coversCR[R]) or  

 R.G.geometry in R.F.holes //a geometry may be inside the hole 

} 

 

check disjoinT 

 

assert meeT{ 

all R:RelationType, fDegree:Fuzzy| meetCR[R] => 

 not disjointCR[R] and not insideCR[R] and  not equalCR[R] and  

 not coversCR[R] and not overlapCR[R,fDegree]  

} 

 

check meeT 

 

assert insidE{ 

all  R:RelationType, fDegree:Fuzzy | insideCR[R]=> 

 not (disjointCR[R] or meetCR[R] or coversCR[R] or  

 overlapCR[R,fDegree]) or (R.F.geometry in R.G.holes) 

} 

 

check insidE 

 

assert coverS{ 

all R:RelationType, fDegree:Fuzzy | coversCR[R]=> 

 not (disjointCR[R] or overlapCR[R,fDegree]) and  

 insideCR2[R] and (G.holes in F.geometry) 

} 

 

check coverS 

 

assert equaL{ 

all R:RelationType, fDegree:Fuzzy | equalCR[R]=> 
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 not (disjointCR[R] or overlapCR[R,fDegree]) and 

 (R.G.geometry in R.F.geometry) and (R.F.holes in R.G.holes) 

} 

 

check equal 

 

The full list of spatial assertions together with complete model in Alloy can be found 

in Appendix B. So far the generic classes and related constraints, facts and 

assertions are defined. The application specific classes extend the generic classes.  

 

//application specific classes 

//--------------------------------- 

// City may have some routes crossing and have some weather object 

sig City extends STObject{ 

route:set Route, 

weather:some MetObject 

} 

 

sig Route{ 

parts: some LineSegment, //route has at least one LineSegment or more 

 

//route may be one type or a mixed type. e.g. maritimeRoute or 

// territoriolRoute + MaritimeRoute 

rType:some RouteType,  

           

// some parts may be clear some parts may be restricted so it has at least 

// one status but may have more than one 

rStatus:some RouteStatus, 

 

// route crosses at least one City 

cities:some City, 
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// a set of vehicles use the route 

vehicles:set Vehicle 

} 

 

//two consecutive line segments over a route should have one common point 

//one's targetEnd equals other's sourceEnd 

assert routeFact{ 

all R:Route, ls1,ls2:R.parts| 

 (ls1!=ls2 and ordL/eq[ordL/next[ls1],ls2])=>ls1.targetEnd= ls2.sourceEnd 

} 

check routeFact 

 

// route type can ben maritime, territorial or aerial  

abstract sig RouteType{} 

one sig MaritimeRoute,TerritorialRoute, AerialRoute extends RouteType{} 

 

// route may be clear, wavy (for maritime route) or restricted (for all types) 

abstract sig RouteStatus{} 

one sig Clear,Wavy,Restricted extends RouteStatus{} 

 

sig Vehicle{ 

type:VehicleType, 

status:VStatusType, 

route:set Route 

} 

 

//route-vehicle relation at specific time 

sig Journey extends Temporal{ 

route: Route, 

vehicle: Vehicle, 

} 
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// 1-a journey has only one vehicle and one route 

// 2-A vehicle is used on only one journey during the journey 

assert JourneyFact{ 

all j1,j2:Journey, t:Temporal| 

isInstance[t,j1.beginTime,j1.endTime] and 

isInstance[t,j2.beginTime,j2.endTime]=> 

one j1.vehicle and one j1.route and one j2.vehicle and one j2.route and 

j1.vehicle != j2.vehicle  

 

} 

check JourneyFact 

 

sig Voyage extends Journey{} //ship journey 

abstract sig VehicleType{} 

one sig Ship, Bus, Train, Plane extends VehicleType{} 

 

// a voyage has a MaritimeRoute and the vehicle running should be Ship 

fact voyageFact{ 

all vyg:Voyage| 

 vyg.route.rType=MaritimeRoute and vyg.vehicle.type=Ship 

} 

 

// A vehicle may be on time, delayed or canceled 

abstract sig VStatusType{} 

one sig OnTime,Delayed,Canceled extends VStatusType{} 

 

//if a journey's route is restricted vehicle is delayed or canceled 

fact statusFact{ 

all j:Journey| 

 j.route.rStatus=Restricted=> 

 j.vehicle.status=Delayed or j.vehicle.status=Canceled 

} 
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// a meteorological object is a spatiotemporal object 

sig MetObject extends STObject{ 

object:MeteorType, 

degree:MeteorObjectDegree 

} 

 

// the types of metorological objects are enumerated here 

abstract sig MeteorType{} 

one sig Temperature, Pressure, Visibility, Wind, Wave, Cloude, Precipitation 

extends MeteorType{} 

 

// The strength of Meteorological object i 

abstract sig MeteorObjectDegree extends Fuzzy{} 

 

// Here a sample is given for visibility 

one sig Visible, Misty, Foggy extends MeteorObjectDegree{} 

 

// Another sample for precipitation 

one sig Drizzle, Rainy, Snowy, Thunderstorm extends MeteorObjectDegree{} 

 

// a meteorological measurement in a City includes a number of meteorological 

objects 

sig Measurement extends Temporal{ 

metobj:some MetObject, 

city:lone City 

} 

 

// two spatiotemporal objects have overlap degrees 

abstract sig OverlapDegree extends Fuzzy{} 

 

//fuzzy overlapdegrees are enumerated 

one sig Less, Moderate,High extends OverlapDegree{} 
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//if city and meteorological object overlaps than the object is in the city's weather 

fact weatherFact{ 

some M:MetObject, C:City, R:Overlap|  

 (R.F=M and R.G=C and overlapCR[R,High]) => M in C.weather 

} 

 

// As an example : if a city's weather has visibility and precipitation and  

// their degrees are strong enough, then the route is restricted 

fact routeStatusFact{ 

some M:MetObject, C:City, route:Route|  

 (  (M.object=Visibility and M.degree=Foggy) or  

(M.object =Precipitation and (M.degree=Snowy or 

M.degree=Thunderstorm)) and 

  M in C.weather and C in route.cities)=>route.rStatus=Restricted  

} 

 

We finally run all check commands in Alloy and have no inconsistency: 

 

Executing "Check disjoinT" 

   Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 

   0 vars. 0 primary vars. 0 clauses. 140ms. 

   No counterexample found. Assertion may be valid. 0ms. 

 

Executing "Check meeT" 

   Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 

   0 vars. 0 primary vars. 0 clauses. 31ms. 

   No counterexample found. Assertion may be valid. 0ms. 

 

Executing "Check insidE" 

   Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 

   0 vars. 0 primary vars. 0 clauses. 31ms. 

   No counterexample found. Assertion may be valid. 0ms. 
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Executing "Check coverS" 

   Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 

   0 vars. 0 primary vars. 0 clauses. 16ms. 

   No counterexample found. Assertion may be valid. 0ms. 

 

Executing "Check equaL" 

   Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 

   0 vars. 0 primary vars. 0 clauses. 15ms. 

   No counterexample found. Assertion may be valid. 0ms. 

 

Executing "Check routeFact" 

   Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 

   0 vars. 0 primary vars. 0 clauses. 16ms. 

   No counterexample found. Assertion may be valid. 0ms. 

 

Executing "Check JourneyFact" 

   Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 

   0 vars. 0 primary vars. 0 clauses. 16ms. 

   No counterexample found. Assertion may be valid. 0ms. 

 

7 commands were executed. The results are: 

   #1: No counterexample found. disjoinT may be valid. 

   #2: No counterexample found. meeT may be valid. 

   #3: No counterexample found. insidE may be valid. 

   #4: No counterexample found. coverS may be valid. 

   #5: No counterexample found. equaL may be valid. 

   #6: No counterexample found. routeFact may be valid. 

   #7: No counterexample found. JourneyFact may be valid. 

 

These definitions and consistency checks in Alloy show that the model is sound and 

can be transformed into a programming language. In the next section we present the 

model in a UML notation. 
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3.3 The Object Model 

 

In Section 3.1 the object model is formalized using C-logic and verified using Alloy. 

In this section this modeling approaches are visualized using UML. The object 

model in Figure 9 consists of the objects and relationships between objects for the 

generic part of our model. The second part in Figure 10 consists of meteorological 

application specific objects and relations. 

 

The “Temporal” class is extended by classes having temporal data. The temporal 

class is made up of the “Time” class including beginning/end times and the type of 

the time record (valid or transaction). The temporal dependency of a class is shown 

by “T” on the upper right-hand side of the entities and the spatiotemporal 

dependency by “ST”. This is one of the extensions to UML that we used for the 

specific requirements of the fuzzy spatiotemporal application [58].   

 

The Fuzzy class is an abstract class and provides range definitions, relevance values 

and class-object membership values for other inheriting classes. The fuzzy 

constructor, indicated by the tag U to the left-hand side of the name of the class, is 

used to indicate the existence of class attributes having fuzzy values, such as the 

degree of a spatial relation. 

 

The SpatialBase is a super class for spatial classes. The membership attribute in 

spatial classes stores a membership value to describe a proximity to a certain fixed 

space. So, spatial objects may belong to a class fully (i.e. with a degree of 1) or 

partially (i.e. with a membership degree between 0 and 1). As an extension to UML, 

a fuzzy class constructor, indicated by a double-square placed on the upper-left hand 

side of the spatial class, explicitly represents the fuzzy instances.  The spatial classes 

(Point, LineSegment and Region) have an aggregation relation in between which is 

shown by a diamond symbol. The Point class is defined with a Coordinate which 

includes x and y values in R2 and z as a third dimension represents the altitude value.  
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Figure 9: A fuzzy spatiotemporal model 
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Point, LineSegment and Region are parts of Geometry and a whole-part relation 

exists with Geometry, in which the whole is aggregated by different kinds of parts. 

The whole/part relation is indicated by a double diamond symbol. The STObject can 

have some geometry with a set of holes, follow a trajectory and have a set of 

relations with other STObjects. A spatial relation between two STObjects can be 

enumerated by eight topological relations (i.e. Disjoint, Meet, Inside … etc.) defined 

in Section 2.3.2. 

 

Under the generic model, meteorological application classes (e.g. MetObject, Route, 

Measurement, Vehicle and City) exist inheriting the STObject and Temporal and 

LineSegment classes. The model is shown in Figure 10. 

 

According to application model the classes and some relations or constraints 

between them are defined. For example, a MetObject is aggregated by numerous 

Measurement observed by meteorological stations in the cities. A City may be on the 

way of some Routes used by Vehicles. A Route is formed by consecutive line 

segments. There may be different route types such as Maritime, Territorial, Aerial, 

etc. A route crossing the multiple cities may be also used by multiple vehicles. A 

vehicle using a route in some temporal interval forms a Journey. A journey refers to 

a route which may be a real one like a river, a railway, or a virtual route like the 

route of a ferry (a Voyage) or a plane. 

 

This modeling approach should satisfy most practical requirements for 

spatiotemporal applications. For example, the changes of spatial and temporal 

attributes are captured by collecting all the related Geometry and Temporal objects. 

The relations between the objects are calculated dynamically. 
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Figure 10: Meteorological application model 
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The generic model and the object model using are finalized with example class 

definitions in Java. We show a few typical class definitions since the other classes 

can be created similarly. 

 

public class Geometry{ 

  Point p; //point reference 

 LineSegment l; //line reference 

 Region r; //polygon reference 

 Temporal temporal; //temporal reference 

 Fuzzy size; 

} 

public abstract class STObject extends Fuzzy{ 

 Geometry gset []; //geometries 

 Geometry hset []; //holes 

 int ngset, nhset; //number of geometries and holes 

 Point tset []; //trajectory  

} 

 

public class City extends STObject{ 

  String name; 

 int population; 

 HashSet<Measurement> measurements; //a set of measurements 

 Route route; 

} 

 

The Geometry class contains the references for the parts of the geometry (i.e. Point, 

LineSegment and Region). The geometries, holes, position and time are some fields 

of the STObject. Finally, the City definition which is a spatiotemporal object is 

presented.  The HashSet<Measurement> represents a set of elements (unordered 

and not duplicated) of type Measurement.  
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3.4 Coupling the Fuzzy Database with a Fuzzy Knowledge Base 

 

In order to achieve an intelligent application, a knowledge base (KB) is integrated to 

the object-oriented database. We utilize the Intelligent Fuzzy Object Oriented 

Database (IFOOD) [25], which provides flexible and powerful querying 

mechanisms for complex data and knowledge with uncertainty in both database and 

knowledge base. 

 

The knowledge base (KB) used in the IFOOD architecture includes rules and 

intelligent objects having fuzzy attributes. In addition, it features a fuzzy inference 

method used for deduction of fuzzy conclusions. It gets the rules and facts/objects as 

input, tries to satisfy rules by comparing them with facts, and produces a conclusion 

from the satisfied rules.  

 

The IFOOD language is an object-oriented database language extended with 

declarative rules to define predicates. We illustrate this with an example: sea traffic 

is prohibited in the Istanbul Strait due to conditions of wind, visibility, and waves, 

etc. In the knowledge base, the combination of rules and the objects attributes fire 

the maritime lines are prohibited conclusion. The fuzzy rules are defined using 

linguistic values as follows: 

 

if city.visibility is badsight or underAverage 

and city.wind is windy or gust  

then city.route is restricted. 

 

The rule given below exemplifies the fuzzy if-then rules utilized in the IFOOD 

language formally.  

 

[ ]( ) ( ) ( )
[ ]( ) [ ]( ),,,.,,,.

,,,,,.defrule

thresholdgustwindywindYthresholdgeunderAverabadsightvisibilityY

YCityXRoutethresholdZYprohibitedStatusX f
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where o.a(v, [ thresholdrng(a) ] ) is an object term, where o is an object ID, a is an 

object attribute, v is an attribute value, and thresholdrng(a) is the threshold level 

defined for the attribute a. For more details of the IFOOD inference engine and 

language the reader is referred to [25]. 
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CHAPTER 4 

 
 

THE ARCHITECTURE OF THE SPATIOTEMPORAL 

DATABASE APPLICATION 

 
 
 
 

The architecture of the proposed environment for spatiotemporal data modeling is 

illustrated in Figure 11. The FOOD system acts as a database server for data 

management and the FKB system acts as a knowledge server for knowledge 

management. Additionally, the fuzzy spatial predicates are determined by the fuzzy 

spatial processor (FSP). The communication and interaction between the database 

system, the knowledge base system and the fuzzy spatial processor is performed by 

the bridge interface (BI). At the higher level, there is a single user interface that 

provides a unified environment for both data and knowledge management and 

allows users the capability of query processing independently from the physical 

structure of the architecture. 

 

Fuzzy processors are used to handle uncertainty at both the object-oriented database 

component and the knowledge base component of the system. At the user interface 

level, users are able to define objects and rules having uncertain properties and to 

query the system with uncertain conditions. The definitions of uncertain types, 

similarity relations, and membership functions are stored in the object-oriented 

database. 
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Figure 11: The architecture of the spatiotemporal database application 

 

 

The FKB system processes rules taking fuzzy objects as input. We provide the 

required facilities in the FKB system to access the definitions in the FOOD system. 

For example, if the FKB system needs the similarity of two fuzzy terms of a special 

domain, it gets this value via the fuzzy processor from the FOOD system.  

 

The FSP module processes topological predicates between complex spatial objects 

possibly with holes and fuzzy spatial objects. BI forwards the user request to FKB if 

the query includes a topological predicate. FSP requests the spatial objects from 

FOOD and finds the predicates and the degree of membership of the relation. 

 

The BI component plays a coordinating role in query processing. It gets user queries, 

analyzes them, sends requests to the database and/or to the knowledge base, 

retrieves the results, and sends them up to the user interface. The algorithm, with 

implementation steps, is as follows: 
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Query Evaluation Algorithm: 

Input: Query supplied by the user 

Output: Retrieved objects 

Get and Parse(query); 

if query is nonspatial-query then 

if query is crisp-query then 

Send-to-OODB(crisp-query); 

else 

Send-to-OODB(fuzzy-query); 

end if 

if query includes knowledge-base predicate(s) then 

Transfer-to-knowledge-base(satisfying-objects); 

Start-inference-engine-evaluation; 

Return(result); 

end if 

Get(satisfying-objects); 

else 

Send-to-OODB(spatial-query); 

if query includes knowledge-base predicate(s)(rule) then 

Transfer-to-knowledge-base(satisfying-objects); 

Transfer-to-FSP(satisfying-objects); 

Apply fuzzy spatial and/or complex spatial algorithm; 

Start-inference-engine-evaluation; 

Return(result); 

else 

Transfer-to-FSP (satisfying-objects); 

Apply fuzzy spatial algorithm in Figure 16 and/or complex spatial 

algorithm in Figure 14; 

end if 

end if 

Submit-to-user (selected satisfying-objects); 

Figure 12: Query evaluation algorithm
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CHAPTER 5 
 
 

QUERY PROCESSING 
 
 
 
 

In this chapter query processing mechanism is tested with various types of queries. 

The following procedures are applied to resolve the query according to its type: 

 

• The basic query (crisp and non-spatial): This type of query asks for crisp 

data that does not have a spatial dimension. The BI sends the parsed query 

expression directly to OODB. The objects that meet the query condition 

are sent back to the BI. 

• The fuzzy non-spatial query: This type of query asks for data that is fuzzy 

but non-spatial and the BI, FKB, and OODB components are employed. 

The objects retrieved by the BI are sent to the FKB component to check 

whether they meet the fuzzy conditions. How these objects are checked is 

illustrated in Section 5.1. Objects satisfying the conditions are sent back to 

the BI.  

• The complex spatial query: Complex spatial objects and their relationships 

are queried in this type of query. The BI, OODB and the FSP components 

are employed to fetch query results. The user asks for the objects that have 

topological relations (described in Section 2.2 and 2.4) with the objects 

under inquiry. Section 5.2 illustrates this type of query. 

• The fuzzy spatiotemporal query: In this type query, the user asks for the 

objects that meet the conditions of the predefined rules within a specified 

time interval. The rules can be evaluated by an examination of topological 

relations between fuzzy regions and fuzzy objects.  The fuzzy 

spatiotemporal queries are illustrated in Section 5.3-5.5. 
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5.1 Fuzzy Non-Spatial Query 

 

The objects used in the example are listed in Table 2, and the similarity relation of 

“cloud” is included in Table 2 and Table 3. The similarity relation of “temperature” 

is already presented in Section 3.1. 

 

 

 

Table 2: Sample records in database 

 

ID Object 

Type 

Name Temperature Cloudiness Visibility DateTime 

C1 City Istanbul Cool Cloudy Bad sight 01.01.2008 

C2 City Edirne Moderate Partly cloudy Under average 01.01.2008 

C3 City Izmit Cold Cloudy,closed Average 01.01.2008 

 

 

 

Table 3: Similarity matrix of cloudiness attribute 

 

Cloud Clear Partly Cloudy Closed 

Clear 1.0 0.6 0 0 

Partly cloudy 0.6 1.0 0.6 0.4 

Cloudy 0 0.6 1.0 0.8 

Closed 0 0.4 0.8 1.0 
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Query: Retrieve the cool and partly cloudy cities on 01.01.2008. 

This query is formulated as follows: 

 

select X.cityname 

 from city(X) 

where X.temperature([cool],0.6) and X.cloud([cloudy],0.8), 

X.validtime(01.01.2008); 

 

The query is evaluated as follows: 

i. The first predicate to evaluate in this query is X.temperature([cool],0.6). 

• C1.temperature is cool, and µSimilarity(cool,cool)=1.0. Therefore C1 satisfies the 

temperature predicate. 

• C2.temperature is moderate, and µSimilarity (cool,moderate)=0.6. Therefore C2 

satisfies it. 

• C3.temperature is cold, and µSimilarity (cool,cold)=0.8. Therefore C3 satisfies it. 

ii. Then, the predicate X.cloud([cloudy],0.8) is evaluated. 

• C1.cloud is cloudy, and µS Similarity (cloudy,cloudy)=1.0. Therefore C1 satisfies 

the cloud predicate. 

• C2.cloud is partly cloudy, and µSimilarity(cloudy,partly cloudy)=0.6. Therefore 

C2 does not satisfy it. 

• C3.cloud is cloudy or closed with 

max{µSimilarity(cloudy,cloudy),µSimilarity(cloudy,closed)}= max{1.0,0.8}=1.0. 

Therefore C3 satisfies it. 

iii. As a result, the objects C1 and C3 satisfy the fuzzy query conditions 

 

 

5.2 Complex Spatial Query 

 

Figure 13 shows the maximum temperature regions (a) and the meteorological 

events (b) as mapped by the Turkish Meteorological Office on 01.01.2008.  
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(a) 

 

 

(b) 

 

Figure 13: Maximum temperature regions (a) and  

meteorological events (b) on 01.01.2008. 

 

 

 

The temperature regions are shown in different colors (e.g. cold parts by dark blue, 

cool parts by green, moderate parts by orange and warm parts by red). Temperature 

regions are visualized as complex spatial objects since they have multiple 

components possibly with holes. The expected meteorological events are depicted 
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with symbols and colors, e.g. rain (green drops), snow (blue stars), grey clouds, 

black foggy areas and yellow patchy areas. 

 

The spatial objects representing temperature regions and meteorological objects in 

Figure 13 are inserted in the database as shown in Table 4. The temperature regions, 

which are classified by their degrees (e.g. cool, cold, etc.), have different geometries 

(e.g. Geo1, Geo2, etc.). According to the figure, Cold (dark blue) region has one 

simple region (Geo1) and a hole (Hole1). The cool regions (green) have four simple 

regions forming Geo2, and none of them has a hole.  

 

 

 

Table 4: Objects in the FOOD 

 

Object ObjType Degree Geometries Holes Valid Time 

Met 

Object 
temperature 

{cold, cool, 

moderate, 

warm} 

{Geo1, Geo2, 

Geo3, Geo4} 

{Hole1, 

Null, 

Null, Null} 

01.01.2008 

Met 

Object 
fog {foggy} {Geo5} {Null} 01.01.2008 

Met 

Object 
snow 

{heavy, 

rainy} 
{Geo6, Geo7} 

{Null, 

Null} 
01.01.2008 

Met 

Object 
rain {shower} {Geo8} {Null} 01.01.2008 

Met 

Object 
cloud 

{cloudy, 

partly 

cloudy 

{Geo9, 

Geo10} 

{Null, 

Null} 
01.01.2008 
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Query: Retrieve the cold and foggy regions and the relation on 01.01.2008. 

 

This query is formulated as follows: 

select spatial_relation(X.geometry,Y.geometry) 

 from MetObject(X), MetObject(Y) 

where X.ObjType([temperature]) and Y.ObjType([fog]) and 

X.degree([cold],0.8) and Y.degree([foggy],0.8) 

and X.validtime(01.01.08) and Y.validtime(01.01.08); 

 

In this query, the temperature objects having the attribute value cold, and the fog 

objects having the foggy degree are fetched from FOOD to BI. The user supplies a 

threshold value 0.8 for temperature degree, so “cool” regions are also fetched 

since [ ] [ ]( ) 0.1, =coldcoldSµ and [ ] [ ]( ) 8.0, =coolcoldSµ ). The simple topological 

relation algorithm is applied for components with holes of complex regions. After 

finding simple topological predicates, the complex topological relation algorithm is 

applied to determine the final topological predicate. Note that we show only the 

“disjoint” case in the algorithm in Figure 14 since it occupies much space and the 

other cases are handled similarly, as explained in Section 2.4:  

 

 

 

Complex Topological Relation algorithm: 

Input: Simple regions of two complex regions  

Output: Sequence of topological predicates that hold between each pair of simple 

regions 

1. STR ←∅  //Simple Topological Relation 

2. for each simple region of complex regions(F,G) 

 F0 ←{Base geometry of F} 

 G0 ← {Base geometry of G} 

 

Figure 14: Complex topological predicate evaluation algorithm 
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 S ←∅  //S is a set of Simple topological relations 

 if spatial_relation(F0,G0) = “disjoint” then 

 simple topological relation(STR) ←”disjoint”; 

 else 

 for i ←1 to n  //For each hole of F 

 if spatial_relation(G0,Fi) = “inside” then 

 simple topological relation(STR) ←”disjoint”; 

 end if 

 end for 

 for j ←1 to m //For each hole of G 

 if spatial_relation(F0,Gj ) = “inside” then 

 simple topological relation(STR) ←”disjoint”; 

 end if 

 end for 

 end if 

// If not disjoint do related calculations for other topological predicates 

S ←S ∪ {STR}; 

 end for 

 

3. for each STR in S 

 if all STR are pairwise disjoint then  

 complex topological relation(CTR) ←”Disjoint”; 

 end if 

// If not disjoint do similar calculations for other complex topological 

predicates 

 CTR








←
OverlapContainsoveredbyCoversC

EqualInsideMeettDisjoin

|||

||||
 

 end for 

 

Figure 14: Complex topological predicate evaluation algorithm (cont’d) 
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5.3 Fuzzy Spatiotemporal Query 

 

In this example, fuzzy spatial relations are queried. In Figure 15, wave height (a) 

and wind speed (b) for “Marmara Sea” are illustrated on 31.12.2007 15:00 

Greenwich Mean Time (GMT) (between 40.0-41.4 North latitudes and 26-30 East 

longitudes. 

 

 

 

(a) 

 

(b) 

Figure 15: Wave height (a) and wind speed (b) over Marmara Sea. 
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Both meteorological events are represented as fuzzy spatial objects, in which the 

central parts have the highest waves and strongest winds while the coastal areas 

have lower waves and calmer wind conditions. The three lines, Line1, Line2 and 

Line3 represent ferry routes between the ports. 

 

Query: Retrieve the sea lines restricted for transportation due to wind and wave 

conditions on 31.12. 2007. 

 

This query is formulated as follows: 

 

select X 

from Geo_line(X), MetObject(Y), MetObject(Z) 

where X.LineType([SeaLine]) and Y.ObjType([Wave]) and 

Z.ObjType([Wind]) and X.status([restricted], Y, Z, threshold_value), 

X.validtime (31.12.2007); 

 

In the query, the sea lines restricted for transportation are requested. In this case, 

X.status([restricted],Y,Z,threshold) is a rule defined in the FKB as follows: 

 

[ ]( )
( ) ( ) ( )

( )
( );,.,.

,,.,.

,,,_

,,,.

thresholdgeometryZgeometryXoverlap

thresholdgeometryYgeometryXoverlap

ZMetObjectYMetObjectXLineGeo

thresholdZYrestrictedStatusXdefrule f

 

 

The threshold value supplied by the user gives a limit for the restriction of the sea 

line. Required objects (sea wind and wave height geometries) are fetched from the 

OODB, and FSP calculates the fuzzy spatial relation (overlap in this case) between 

the fuzzy regions wind and wave, and crisp ferry lines using the fuzzy topological 

relation algorithm in Figure 16: 
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Fuzzy Topological Relation algorithm (region vs. line): 

 

Input: Two fuzzy object geometries 

Output: The overlap degree of two objects 

 

1. FuzzyRelation 0←  

2. for each levelcut−α  region Rα i – R α i+1  

if the line overlaps with Rα i – R α i+1   then 

FuzzyRelation ←FuzzyRelation + ( ) ( )linemregionm i ×α  

end if 

end for 

3. Return FuzzyRelation 

 

Figure 16: Fuzzy topological predicate evaluation algorithm 

 

 

 

According to the meteorological forecast, the sea area is divided 

into levelscutfive −α (i=5) and the ferry lines overlap some of them (see Figure 

15); the calculation details are presented in Table 5 and Table 6.  

 

The results of the fuzzy spatial relation calculations are supplied to FKB for 

inference. In FKB, a rule may be composed of more than one condition. Each 

condition in a rule may have its own matching degree. Therefore, we compute an 

overall matching degree. Here, we use the “min” operator for combining the degree 

of matching of conjunction (AND) conditions and the “max” operator for combining 

the degree of matching of disjunction (OR) conditions [47].  

 

For example, considering the rule given for “restricted sea line” above, each term is 

matched with a matching degree, as shown in Table 5 and Table 6, and the overall 
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matching degree is calculated as in Table 7. According to the overall restriction 

degrees in the third column, given the threshold value 0.7, “Line 1” and “Line 2 ” 

will be restricted. 

 

 

 

Table 5: Computing a fuzzy topological relation for a wavy region and ferry lines 

 

levelscut−α

of wavy 

region 

overlapτ

 

( )×iregionm α

( )1linem  

overlapτ

 

( )×iregionm α

( )2linem  

overlapτ

 

( )×iregionm α

( )3linem  

1.0 - 0.75 1 0.25 0 0.00 0 0.00 

0.75 - 0.50 1 0.25 1 0.25 0 0.00 

0.50 - 0.30 1 0.20 1 0.20 0 0.00 

0.30 - 0.0 1 0.30 1 0.30 1 0.30 

τoverlap(R, L)  1.0  0.75  0.30 

 

 

 

 

Table 6: Computing a fuzzy topological relation for a windy region and ferry lines 

 

levelscut−α

of windy 

region 

overlapτ

 

( )×iregionm α

( )1linem  

overlapτ

 

( )×iregionm α

( )2linem  

overlapτ

 

( )×iregionm α

( )3linem  

1.0 - 0.65 1 0.35 1 0.35 0 0.00 

0.65 - 0.30 1 0.35 1 0.35 0 0.00 

0.30 - 0.20 1 0.10 1 0.10 1 0.10 

0.20 - 0.0 0 0.00 1 0.20 1 0.20 

τoverlap(R, L)  0.80  1.00  0.30 
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Table 7: The overall fuzzy relation degrees 

 

 
Degree of overlap of 

lines with wavy 

Degree of overlap of 

lines with windy 

µoverall=Min(overlapwavy, 

overlapwindy) 

Line 1 1.00 0.80 0.80 

Line 2 0.75 1.00 0.75 

Line 3 0.30 0.30 0.30 

 

 

 

5.4 Nested Rule Query 

 

Due to the restrictions in the transportation lines, the vehicles’ trips are “cancelled” 

or “delayed”. Following the example in Section 5.3, we find the “delayed” vehicles 

for the same date. 

 

Query: Retrieve delayed ferries on 31.12.2007. 

 

This query is formulated as follows: 

 

select X 

from Vehicle(X), MetObject(Y), MetObject(Z), Geo_Line(L) 

where X.Type([Ferry]) and X.GetLine()=L and 

X.status([delayed],Y,Z,L,threshold_value) and  X.validtime (31.12.2007); 

 

The rule is defined in FKB as follows: 

 

[ ]( )
( ) [ ]( );,,,.,_),(

),(),(,,,,.defrule

thresholdZYrestrictedStatusLLLineGeoZMetObject

YMetObjectXVehiclethresholdLZYdelayedStatusX f
 

 

This rule is a nested rule as it fires another rule (Y.status[restricted],threshold), as 

described in Section 5.3. 
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5.5 Fuzzy Spatiotemporal Query 

 

In Figure 17, the meteorological objects for an interval are presented. According to 

the figures the rainy areas (green drops) move to the east while decreasing in 

effective size. On the other hand the cloudy areas move to the west while increasing 

in effective size.  

 

 

 

 

(a) 

 

(b) 

 

Figure 17: Meteorological objects on 01.01.2008 (a) and 02.01.2008 (b) 
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Query: Retrieve the area, direction and speed changes of meteorological events in 

terms of position and effect area between 01.01.2008 and 02.01.2008 . 

In the query, the directional, positional and areal changes of the objects are queried 

and the algorithm in Figure 18 is applied. 

 

 

 

Fuzzy Spatiotemporal Query algorithm: 

Input: A pair of geometries for a time interval 

Output: Area, direction and speed change 

1. for each chrononi (i=0 to n) 

for each object in the chronon 

TotalAreai ←0 

for each component of the object’s geometry 

TotalAreai ←  TotalAreai + component’s area (CA) 

end for 

for each component of the object’s geometry 

Get the minimum bounding rectangle(MBR) 

Get the center (x,y) of the MBR 

Object center (X,Y)i ←Weighted average of (x,y)’s 

end for 

end for 

end for 

2. for each pair of center points (X,Y)i 

Distancei ←Sqrt((Yi-Yi-1)
2
+(Xi-Xi-1)

2
) 

Speedi ←  Distancei /(chorononi  – choronon i -1) 

Directioni ←  (Yi-Yi-1)/(Xi-Xi-1) 

AreaChangei ←  TotalAreai - TotalAreai-1 

end for 

 

Figure 18: The algorithm to evaluate area, speed and direction change 
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In order to illustrate how the algorithm works, the rain object’s spatial attribute 

changes are shown in Figure 19. This complex object is made of three parts on the 

first day (on the left) and four parts on the second day (on the right). The MBRs, 

central points for each part and the areas are depicted in the figure. A central point 

for the whole object on both days is calculated, using a weighted average 

considering the proportional area of each part: 

areaTotalAreaAandAandA

whereyACenterY

xACenterX

ii

n

i

ii

n

i

ii

n

i

ii

/110

,

1

1

1

==≤<

×=

×=

∑

∑

∑

=

=

=

 (23) 

 

 

 

 

 

 

Figure 19: Rain object movement on 01.01.2008 (a) and 02.01.2008 (b)  
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The approximated centre points for the complex object (e.g. at coordinates of (91, 

77) and (228,103)) are used to calculate the directional change and the speed of the 

object. The summation of the areas of each part shows the change (growth or 

decrease) in the object’s effect area. 
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CHAPTER 6 

 
 

FUZZY SPATIAL/ASPATIAL INDEXING 
 
 
 
 

In this chapter, the adaption of an index structure from R*-tree for fuzzy spatial and 

aspatial data is explained. This new tree is called Enhanced R*-tree throughout our 

work. We present the logical structure of enhanced R*-tree and visualize it with 

meteorological data. Enhanced R*-tree is very flexible so that any data in the leaves 

can be indexed and the indexed attributes are fuzzified in upper levels. 

 

 

6.1 Enhanced R*-Tree 

 

R*-tree is a variant of R-tree family that uses rectangles to organize spatial data. 

While the directory nodes hold the organizing rectangles, the leaf nodes hold the 

data itself. R*-tree introduces a forced reinsert policy which means that whenever a 

node overflows it is not split right away but firstly p entries are removed and 

reinserted into the tree. 

 

The structure of Enhanced R*-tree is depicted in Figure 20. It basically shows three 

parts in the tree: the root of the tree, the directory nodes and the data nodes. The 

fields in the figure can be summarized as follows: 

 

R*-tree: This node is the header of the whole Enhanced R*-tree and includes some 

statistical data about the tree. 

num_of_data: Number of stored data 

num_of_dnodes: Number of data nodes 

num_of_inodes: Number of directory nodes 
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root_is_data: Shows if the root is a data node 

root_ptr: Pointer to the root node 

 

 

 

 

 

Figure 20: The structure of Enhanced R*-tree 

 

 

 

Directory Node: Directory node implements the intermediate nodes in the tree. This 

is where the organizing rectangles (MBR) are stored. The members of a directory 

node are as follows: 

 

son_is_data: Shows whether the son is a data node 

level: the level of the directory node in the tree 

num_entries: number of directory entries in the directory node 

fuzzy_index[]: An array of fuzzy indexing values for the underlying nodes. Assume 

that there are n attributes of each data record. Then ith attribute is stored in the 

following indices: 

Low value of the attribute: fuzzy_index[2*i-2] 

High value of the attribute: fuzzy_index[2*i-1], where 1 ≤ i ≤ n 
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For example in our application eight attributes are stored in the following indices: 

 

0-1: Direction of station’s location in 360°. 

2-3: Altitude of the stations low and high value 

4-5: Temperature low and high value 

6-7: Humidity low and high value 

8-9: Pressure low and high value 

10-11: Precipitation low and high value 

12-13: Wind Direction low and high value 

14-15: Wind Speed low and high value 

 

DirEntry []: Array of directory entries which has a pointer to another directory or 

data node. Directory entries also hold a rectangle which covers all rectangles under 

this directory node. The rectangle indexes the underlying nodes spatially. The 

capacity of the directory node is calculated with the size of Enhanced R*-tree block 

size divided by the size of each directory entry.  

 

Data Node: Data node implements the leaf nodes in the tree. This is where the data 

objects are stored. The members of the data node are as follows: 

 

level: the level of the data node in the tree 

 

num_entries: number of data objects in the data node 

 

fuzzy_ index[]: An array of fuzzy indexing values for the object’s attribute values. 

These attributes are same ones which are explained in directory node. The fuzzy 

index of data node holds the low and high range values for the data objects’ 

attributes whereas in the directory nodes these are the range values for the whole 

nodes underlying. As the level of the directory nodes increase the range gets bigger 

and bigger. In the root directory node the fuzzy index stores the full range values for 

the whole tree. 
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Data []: Array of Data objects which has spatial location and other meteorological 

attribute values. The attributes in Data object are stored in the following indices: 

0-3: Location – {(x1, y1)-(x2, y2)} 

4: Altitude 

5: Date Time 

6: Station Number 

7: Temperature 

8: Humidity 

9: Pressure 

10: Precipitation 

11: Wind Direction 

12: Wind Speed 

 

 

6.2 Building the Enhanced R*-Tree 

 

An enhanced R*-tree is built in two steps: First the primary index is built based on 

minimum bounding rectangles and then secondary index is built based on the 

attributes of the objects. The creation algorithm shows how the primary and 

secondary indexes are built in Figure 21. 

 

 

 

Algorithm for Enhanced R*-tree Creation 

Input: Input data file 

Output: Enhanced R*-tree 

While Not EOF(input data file)  

 Read a line 

 Parse MBR and other attributes 

 

Figure 21: Enhanced R*-tree insertion algorithm 
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 Create Data Object 

 Insert into tree recursively starting from the root pointer 

  Get corresponding son 

  Insert into son 

   If data node capacity is full 

    Calculate the center of the node 

    Sort the entries by the distance to the center 

    Copy the nearest %70 entries to new node  

    Reinsert the last %30 entries 

   Else if reinsert is applied then 

    Split the node 

   End if 

  If Split happens in the son then 

  Create a new entry to hold the new son 

  Insert this entry to directory node 

 End if 

 If directory node splits then 

  Split the directory node 

 End if 

End While 

Build secondary index 

 For each entry in the node 

  Get son 

  If the son is directory node then 

   Build secondary index for the son 

 

Figure 21: Enhanced R*-tree insertion algorithm (cont’d) 
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  Else 

   For each attribute of Data objects 

    If the attribute is less than minimum range in secondary index 

     Set the minimum of index range 

    End if 

    If the attribute is bigger than max range in secondary index 

     Set the maximum of index range 

    End if 

   End For 

  End if 

  Set the minimum value of the corresponding attribute in secondary index  

  Set the max value of the corresponding attribute in secondary index 

 End For 

 

Figure 21: Enhanced R*-tree insertion algorithm (cont’d) 

 

 

 

6.3 The Visualization of Enhanced R*-Tree 

 

The structure of the Enhanced R*-tree is visualized with meteorological data. 

Turkey’s meteorological measurements data between 30.12.2007 00:00 and 

01.01.2008 21:00 in Table8 are read from a text file and inserted into the tree. The 

text file has the following fields: 

 

F0: Longitude of the meteorological station 

F1: Latitude of the meteorological station 

F2: Altitude of the meteorological station 

F3: Date Time (yyyymmddhh) 



77 

F4: Station Number, an international unique code given to each meteorological 

station. The first two digits are for the country code and the rest is the station 

number. 

F5: Temperature in Celsius 

F6: Humidity as percentage 

F7: Pressure in milibar 

F8: Precipitation Hour 

F9: Wind direction in 360° scale 

F10: Wind Speed in knots 

 

 

 

Table 8: The text file structure for meteorological data 

 

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

41,11 31,48 248 2007123000 17018 -4,70 97 NULL 1 0 0 

41,38 32,20 189 2007123000 17020 1,80 94 1029 1 0 0 

41,27 31,48 118 2007123000 17022 3,30 72 1029 1 140 15 

 

 

 

In Figure 22 the Enhanced R*-tree is depicted. There are three levels in the tree. The 

smallest rectangles at level 3 show the data nodes. At level 2 and level 1 the 

directory nodes group smallest rectangles. The logical structure of the Enhanced R*-

tree is seen in Figure 23. The details of the tree in general are presented in the header 

of the tree: 

• Number of data:1059 

• Number of data nodes:116 

• Number of internal (or directory) nodes:7 

• Pointer to the first node 
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Figure 22: Enhanced R*-tree visualization 

 

 

 

For the first directory node, the details are presented as follows: 

• the kind of son node (i.e. data or directory node): false 

• the level of the directory node:2 

• number of entries in the node:6 

• a fuzzy index array which shows the range values for spatial and aspatial 

attributes in all data nodes which can be accessed through this directory 

node. The values in the array indicate the range values in the following 

order: 

o lowest value for orientation of the meteorological stations under this 

node in 360°: 2° 

o highest value for orientation of the meteorological stations under this 

node in 360°: 355° 

o lowest altitude value of the meteorological stations under this   node:  

o highest altitude value of the meteorological stations under this node: 
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Figure 23: Enhanced R*-tree nodes 
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o minimum temperature value measured by the stations under this 

node: -16.7 

o maximum temperature value measured by the stations under this 

node:17 

o minimum humidity value measured by the stations under this node:16 

o maximum humidity value measured by the stations under this 

node:99 

o minimum pressure value measured by the stations under this 

node:990 

o maximum pressure value measured by the stations under this 

node:1030 

o The shortest duration of precipitation in hour:1 

o The longest duration of precipitation in hour:2 

o The minimum angle of wind direction in 360° scale: 0° 

o The maximum angle of  wind direction in 360° scale: 360° 

o The calmest wind speed value in knots : 0  

o The strongest wind speed value in knots : 51 

• An array of directory entries under this node, each of which specifies a 

bounding rectangle and a pointer to the underlying node whether directory or 

data node. The bounding rectangle is the minimum one which can cover all 

objects underlying. 

 

For some data node the details are presented as follows: 

• the level of the data node : 0 

• number of entries in the node : 9 

• a fuzzy index array which shows the range values for spatial and aspatial 

attributes in the data nodes. The order of the values in the array is the same 

as directory node but here it shows the range values for the data node, 

• An array of data objects with some attributes. Data[8] is given as an example 

in Figure 23 with the following attributes: 

o Bounding rectangle borders 
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o Altitude 

o Valid time 

o Station number 

o Temperature 

o Humidity 

o Pressure 

o Precipitation duration in hour 

o Wind direction 

o Wind speed 

 

 

6.4 Querying the Enhanced R*-Tree 

 

In this section the working of Enhanced R*-tree is shown for various kinds of query 

types. The query types can be spatial, aspatial which may include fuzzy or crisp data 

and a combination of these. 

 

6.4.1 Crisp Aspatial Queries 

 

Crisp and aspatial input parameter is used to fetch the object by means of Enhanced 

R*-tree. For example: 

Retrieve the measurements which have 5 °C temperatures. 

 

An algorithm is presented to show the working of Enhanced R*-tree in Figure 24. 

The nodes of the Enhanced R*-tree is searched for the input parameter. In our 

example it is the temperature attribute and 5 °C. Whether the searched node is 

directory or data node the fuzzy index is checked for the aspatial attributes. The 

indices values are four for low temperature and five for the high temperature. So 

fuzzy_index[4] and fuzzy_index[5] are checked and if the input is between those 

ranges than the node satisfies. If the node is directory node each sub-tree under the 

node is searched recursively, otherwise this should be a data node. In that case the 
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data entries are checked and this time we search for the exactly matching entries. If 

any data entry satisfies the object is retrieved.  

 

 

 

Crisp Aspatial Query Algorithm for Enhanced R*-tree: 

Input: Enhanced R*-tree, aspatial parameter value 

Output: The objects having exact aspatial value 

 For each Enhanced R*-tree node 

 Check the low and high value for input parameter in the fuzzy index 

 If the input parameter is between the low and high value 

   If the node is a directory node 

   for each directory entry in R*-tree directory node 

    Search the nodes pointed by directory entry 

   end for 

  else if the node is a data node 

   for each Data entry in R*-tree data node 

    if the Data entry’s related attribute equals input parameter 

     Get the object 

    end if 

   end for 

  end if 

 end if 

 end for 

 

Figure 24: Crisp Aspatial Query Algorithm in Enhanced R*-tree  
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Crisp Spatial Query Algorithm for Enhanced R*-tree: 

 

Input: Enhanced R*-tree, spatial parameter value 

Output: The objects having exact spatial value 

 

For each Enhanced R*-tree node 

 If the input parameter is related to the MBR of the tree && 

  the input rectangle intersects (inside, overlap) the MBR of the node 

  If the node is a directory node 

  for each directory entry in R*-tree directory node 

   Search the nodes pointed by directory entry 

  end for 

 else if the node is a data node 

  for each Data entry in R*-tree data node 

   if the Data entry’s rectangle inside the  input parameter 

    Get the object 

   end if 

  end for 

 end if 

 else if the input parameter is related to the fuzzy index && 

  the input parameter is between the low and high value 

 //fuzzy index[0-1] for direction and fuzzy_index[2-3] for altitude 

   Search sub-tree for the directory nodes or get the objects as in the if part 

of this else if block 

 end if 

end for 

 

Figure 25: Crisp Spatial Query Algorithm in Enhanced R*-tree  
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6.4.2 Crisp Spatial Queries 

 

In this type of query, crisp spatial input parameter is used to find the objects. For 

example: 

 

-Fetch objects in given (x1,y1)-(x2-y2) rectangular range 

-Fetch objects at 270° degree of orientation 

-Fetch object at 1500 meters of altitude 

 

An algorithm is presented to show the working of Enhanced R*-tree in Figure 25. 

The primary indexing attribute in the Enhanced R*-tree is the MBR of the nodes. So 

if the input is a range specified by a rectangle then the MBR of the nodes are used. 

But if the input parameter is related to other spatial parameters such as orientation or 

altitude then the secondary fuzzy index is searched (i.e. fuzzy_index[0-1] for 

orientation and fuzzy_index[2-3] for altitude). If the node is directory node each sub-

tree under the node is searched recursively, otherwise the data entries are checked 

and if any data entry satisfies the object is retrieved. 

 

 

6.4.3 Fuzzy Spatial/Aspatial Queries 

 

Fuzzy spatial or aspatial parameters are input of this query type. Some examples are 

given here: 

 

-Retrieve the measurements which have warmer than 5 °C temperature, 

-Get the N - NW oriented objects, 

-Find the cities higher than 1000 meters. 

 

An algorithm is presented to show the working of Enhanced R*-tree for three fuzzy 

spatial and/or aspatial criteria in Figure 26. 
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Fuzzy Spatial/Aspatial Query Algorithm for Enhanced R*-tree: 

 

Input: Enhanced R*-tree, fuzzy spatial/aspatial parameters combination  

(temperature, orientation ,altitude) 

Output: The objects satisfying all three criteria 

 

 For each Enhanced R*-tree node 

 Check the low, high  value  for input parameter1 (>5 °C )in the fuzzy index 

 Check the input parameter2, orientation (N-NW range) values of fuzzy index 

 Check the input parameter3, altitude low, high value (>1000 m) values of 

fuzzy index 

 If all criteria is between the ranges 

   If the node is a directory node 

   for each directory entry in R*-tree directory node 

    Search the nodes pointed by directory entry 

   end for 

  else if the node is a data node 

   for each Data entry in R*-tree data node 

    if the Data entry’s related attributes satisfies input parameters 

     Get the object 

    end if 

   end for 

  end if 

 end if 

 end for 

 

Figure 26: Fuzzy Spatial/Aspatial Query Algorithm in Enhanced R*-tree  
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The input parameters are related to fuzzy index. fuzzy_index[0-1] for orientation and 

fuzzy_index[2-3] for altitude and fuzzy_index[4-5] for temperature are checked for 

directory nodes and data nodes. If the node is directory node each sub-tree under the 

node is searched recursively, otherwise the data entries are checked and if any data 

entry satisfies the object is retrieved. 
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CHAPTER 7 

 
 

IMPLEMENTATION AND PERFORMANCE 

EVALUATION 

 
 
 
 

In Chapter 5, we implemented the proof-of-concept type queries and verified that 

the application runs smoothly. It is an integrated environment that the objects are 

stored and fetched from an object oriented database whereas the knowledge base 

applies some rules whenever necessary and the user interface runs as a coordinator. 

 

After the proof-of-concept type work, we believe that it is necessary to validate the 

application with real data. In meteorology application there is excessive spatial data 

so also an index structure adaption would be useful in querying. In the previous 

work [45] several spatial index structures have been adapted and compared. In this 

work, we adapt one of them, R*-tree into the spatiotemporal application and 

scalability of the application is tested as the number of records grows. 

 

 

7.1 Implementation 

 

The application is developed in Java using NetBeans IDE 6.5. The other components 

of the implementation environment are  

• db4o 6.4 [51] for object database, which is an open source database engine, 

• jess.jar [39], a rule engine for java platform 

• Enhanced R*-tree [22], a spatial index structure 
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The application runs on a notebook computer with Intel Core Duo CPU T9400, 2.53 

GHz, 4 GB RAM. 

 

 

7.2 An Object Oriented Database, Db4O 

 

Db4O is an open source object database that enables to store and retrieve any 

application object by predefined database libraries. For example, an object is firstly 

created in Java and then stored in the database with set command: 

 

db.set(<savedObject>), where  

db = Db4o.openFile(<databaseName>); 

 

The stored objects are fetched from database by the get command: 

 

db.get(<getObject>); 

 

The objects in Db4O are visualized by ObjectManager tool. The objects can be 

inquired and the whole object hierarchy can be seen. In Figure 27, the stored objects 

like ST_Object with attributes can be seen on the left part of the screen. The other 

parts of the tool are the upper part for querying and the middle part where the results 

of the queries and some statistics can be seen.  

 

 

7.3 The Rule Engine, Jess 

 

Jess is a rule engine developed in Java language. By using the knowledge supplied 

in the form of declarative rules, Jess is able to inference some results. It’s scripting 

language allows to access to Java’s APIs so one can create Java objects, call Java 

methods and implement Java interfaces. An example for the declarative rules is 

given in Figure 28. 
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Figure 27: Database visualization by ObjectManager tool 

 

 

 

The rule defines the geographic line’s status.  FSP module which is a Java module is 

called from FKB. So it is defined at the beginning. In the section before the double 

arrow the prerequisites are written. So any GeoLine object which is put into the 

queue of the FKB should satisfy some constraints. LineType should not be null and 

be SeaLine. It should have an attribute as threshold. The obj refers to the object as 

the final parameter. 

The right side of the double arrow is applied to the objects which satisfy the 

prerequisites. The geographic line’s topological relation with wave and wind objects 

is checked. If any of them is above threshold value then the line status is set to 

“Restricted” otherwise to “Clear”.  
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defglobal ?*fp* = (new Fsp)) 

(defrule geolinestatus 

 

?p1 <- (GeoLine 

            (lineType ?lT&:(and (neq ?lT nil) (eq ?lT "SeaLine"))) 

            (threshold ?th) 

            (OBJECT ?obj)) 

 =>  

            (bind ?result  (call ?*fp* FuzzyRelation ?obj "wave" "wavy")) 

            (bind ?result2 (call ?*fp* FuzzyRelation ?obj "wind" "windy")) 

            (bind ?minresult (min ?result ?result2)) 

            (if (> ?minresult ?th)  then 

                (call ?obj setlineStatus "restricted") 

            ) 

            (if (< ?minresult ?th)  then 

                (call ?obj setlineStatus "clear") 

            ) 

            (call ?obj setOverlap ?minresult) 

) 

 

Figure 28: An example of rules 

 

 

 

7.4 Crisp Queries 

 

The crisp queries are basic spatial queries. They do not include fuzzy or semantic 

input nor require knowledge base processing but they are used by fuzzy/semantic 

queries.  
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In the next sections, the crisp queries are described by the details of input screens, 

implementation algorithms and the output screens. The crisp queries which are 

supported by the application are as follows: 

• Point query 

• Range query 

• Circle query 

• Ring query 

• Kth Nearest Neighbor (kNN) query 

 

 

7.4.1 Point Query 

 

Point query fetches all objects at a specific point which is an input data by the user 

in the form of (x, y) coordinate. In the example, the user asks all objects located at 

(x=220, y=440) coordinate. The user interface gets the input coordinates and the 

bridge as a coordinator applies the point query algorithm in Figure 30.  

 

 

 

 

 

Figure 29: Point query input screen 
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Point Query Algorithm: 

Input: R*-tree, a point data located at (x, y) 

Output: The objects which are located at the input location 

 

1. Create a point from input coordinates,  P ←  (X,Y) 

2. Create an empty result list res 

3. Search R*-tree nodes 

If the node is a directory node 

for each directory entry in R*-tree directory node 

if the point P is inside of the directory node DN 

  search sub-tree of DN 

 end if 

end for 

 else if the node is a data node 

for each entry in R*-tree data node 

if the point P is inside the data objects’ points 

  call fetch utility of object database 

  insert into res 

 end if 

end for 

 end if 

4. call drawPoint 

5. display output objects 

 

Figure 30: Point query algorithm 
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Firstly a reference point, P is created at (x, y). Then, an empty list res for holding the 

resulting objects is created. The search subroutine of the R*-tree is called with these 

two parameters. The directory nodes are checked for whether the bounding 

rectangles contain the reference point. If so the sub tree which is covered by the 

directory entry is searched recursively. The algorithm reaches to a data node if the 

point is inside the directory entries. The data object coordinates and reference point 

are checked one by one and the matching objects are fetched from object database 

by the fetch utility to append to the result list. The objects in the result list are 

mapped in Figure 31.  

 

 

 

 

 

Figure 31: Point query results. 

 

 

 

In Figure 31 the reference point is mapped by the red colored circle. The data 

objects at leaf level which intersects the reference point is also shown at the same 



94 

point in red. The spatial representation is detailed in a separate window above. The 

attributes of the objects in the result list are presented. The details are coordinates of 

the object, date time, station number, and meteorological parameters. 

 

 

7.4.2 Range Query 

 

The range query searches for the objects in a spatial range between (x1, y1) and 

(x2,y2) which is an input data.  

 

 

 

 

 

Figure 32: Range query input screen 

 

 

 

In Figure 32, the user enters a range between (x1=200, y1=300) and (x2=400, 

y2=500). The UI gets the input coordinates and the bridge fetches the spatial objects 

from OODB by using the following algorithm: 

 

 

 

 



95 

Range Query algorithm: 

 

Input: R*-tree, a spatial range defined by a rectangle (x1, y1) and (x2, y2) 

Output: The objects which are covered by the range 

 

1. Create a rectangle  from input coordinates,  MBR ←  (x1, y1 ,x2, y2,) 

2. Create an empty result list res 

3. Search objects  in the input range 

If the node is a directory node 

for each entry in R*-tree directory node 

if the spatial relation between directory entry bounds and MBR is 

INSIDE or OVERLAP 

  search sub-tree of directory entry 

 end if 

end for 

 else if the node is a data node 

for each entry in R*-tree data node 

if the object’s geometry and MBR intersects 

  call fetch utility of object database 

  insert into res 

 end if 

end for 

 end if 

4. call drawRange 

5. display output objects 

 

Figure 33: Range query algorithm 
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In the first step of the range query algorithm a rectangle is created from the input 

data. Then, an empty list res for holding the resulting objects is created. The range 

search subroutine of the R*-tree is called. The directory nodes are checked for 

whether the bounding rectangles inside of or overlap with the input range. If so the 

sub tree which is covered by the directory entry is searched recursively. If the 

algorithm reaches a data node the data object coordinates and input range are 

checked for overlap or inside relation. The matching objects’ details are fetched 

from object database by the fetch utility and appended to the result list. The objects 

in the result list are mapped in Figure 34.  

 

 

 

  

 

Figure 34: Range query result 
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The input range is drawn as a red colored bigger rectangle in Figure 33. The objects 

inside the input range at leaf level are also shown by red color. The object details are 

presented in a separate window above the screen. The details are coordinates of the 

object, date time, station number, and meteorological parameters. 

 

 

7.4.3 Circle Query 

 

A circle is defined with two parameters, the centre and the radius. The parameters 

are entered in UI by the input screen in Figure 35:  

 

 

 

 

 

Figure 35: Circle query input screen 

 

 

 

The user enters a circle center at (x=400, y=420) with radius 30. The UI gets the 

input and the bridge fetches the spatial objects which reside inside the reference 

circle from OODB by using the following algorithm: 
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Circle Query algorithm: 

 

Input: R*-tree, circle parameters center and radius 

Output: The objects which reside inside the circle 

 

1. Create a circle  from input coordinates and the radius,  Circle ←  (x, y ,r,) 

2. Create an empty result list res 

3. Search objects  in the circular area 

If the node is a directory node 

for each directory entry in R*-tree directory node 

if directory entry bounds and circle area intersects 

  search sub-tree of directory entry 

 end if 

end for 

 else if the node is a data node 

for each entry in R*-tree data node 

if the object’s geometry and Circle  intersects 

  call fetch utility of object database 

  insert into res 

 end if 

end for 

 end if 

4. call drawCircle 

5. display output objects 

 

Figure 36: Circle query algorithm 
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Circle query algorithm creates a reference circle from the center coordinates and 

radius. The circular area search subroutine of the R*-tree is called with circle and 

output list res parameters. The directory nodes are checked for whether the 

bounding rectangles intersect with the circle. If so the sub tree which is covered by 

the directory entry is searched recursively. If the algorithm reaches a data node the 

data objects which reside in the circular area are fetched from database and 

appended to the result list. The objects in the result list are mapped in Figure 37.  

 

 

 

 

 

Figure 37: Circle query result 

 

 

 

In the output screen the input circle and its radius can be seen. The objects inside the 

circle at leaf level of R*-tree are also visualized by red color. The object details are 

presented in a separate window above the screen. The details are coordinates of the 

object, date time, station number, and meteorological parameters. 
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7.4.4 Ring Query 

 

A ring is the difference of two circles with the same center point but different 

radiuses.  The ring query deals with the objects which reside inside the ring. The 

ring area is obtained by subtracting small circle from bigger circle. The query 

parameters are entered by UI as in Figure 38:  

 

 

 

 

 

Figure 38: Ring query input screen 

 

 

 

The ring in this query example is defined with center at (x=500, y=520) and the 

inner circle radius (r1=40) and outer circle radius (r2=60). The UI gets the input and 

the bridge fetches the spatial objects which reside inside the ring area by using the 

Ring Query Algorithm in Figure 39. 

 

In Figure 39, ring query algorithm creates two reference circles with r1 and r2 and 

the same center point. The ring is obtained as the difference of two circles. The ring 

area search subroutine of the R*-tree searches from upper nodes to the leaf nodes. If 

the directory nodes intersect with the ring area search continues to the bottom of the 

node until a data node is reached. If the algorithm reaches to a data node and the  
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Ring Query algorithm: 

 

Input: R*-tree, ring parameters: center, radius1 and radius2 

Output: The objects in the ring area 

 

1. Create Circle1 ←  (x, y ,r1) 

2. Create Circle2 ←  (x, y ,r2) 

3. Set Ring ←  Circle2 - Circle1 //Difference operation 

4. Create an empty result list res 

5. Search objects  in the ring area via R*-tree nodes 

if the node is a directory node 

for each directory entry in R*-tree directory node 

if directory entry bounce and the Ring intersects 

  search sub-tree of directory entry 

 end if 

end for 

 else if the node is a data node 

for each entry in R*-tree data node 

if the object’s geometry and ring  intersects 

  call fetch utility of object database 

  insert into res 

 end if 

end for 

 end if 

6. call drawRing 

7. display results in the main map and detail window 

 

Figure 39: Ring query algorithm 
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data objects reside in the ring area, they are appended to the result list. The objects 

in the result list are mapped in Figure 40. 

 

 

 

 

 

Figure 40: Ring query result 

 

 

 

In the output screen the ring area and the objects inside are visualized by red color. 

The object details are presented in a separate window above the screen. The details 

are coordinates of the object, date time, station number, and meteorological 

parameters. 

 

 

7.4.5 Kth Nearest Neighbor (KNN) 

 

KNN query finds first nearest k entries to a reference object. In our implementation 

we use the ring query to find the kth nearest neighbor of an object and the center of 

the ring is accepted as the reference point. The algorithm starts with a circle and the 
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ring is the area between the center and the circle. In every loop of the algorithm 

matching objects are fetched and appended to the output list. In the new run a ring is 

created by increasing the circles radius so the outer circle of the previous run 

becomes the inner circle of the previous run and a new outer circle is created. The 

loops continue until k object is found. The parameters are entered in UI by the 

following screen in Figure 41:  

 

 

 

 

 

Figure 41: KNN query input screen 

 

 

 

The center of the rings is (x=600, y=300), ring width is 20 and 5 nearest neighbor 

are required. KNN query algorithm is described in Figure 42. 

 

KNN query algorithm runs similar to the ring query algorithm. In every loop the 

ring is searched. At the end of the loop circle1 is replaced with circle2 and a new 

circle2 is created. The loop continues until k object is found.  
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KNN Query algorithm: 

Input: R*-tree, reference point coordinates (x, y), number of nearest neighbors k, 

ring width 

Output: The k nearest objects to the reference point 

1. Set r1 ←0 

2. Create a circle  from input coordinates and the radius,  Circle1 ←  (x, y, r1 ) 

3. Create an empty result list res 

4. Search objects  in the ring area via R*-tree nodes 

Loop until k objects are found 

 Set r2 ←  r1 + ring width 

 Create a circle Circle2 ←  (x, y, r2) 

 Set Ring ←  Circle2 - Circle1 

 If the node is a directory node 

 for each directory entry in R*-tree directory node 

if the entry’s bounce and Ring intersects 

  search sub-tree of directory entry 

 end if 

 end for 

  else if the node is a data node 

 for each entry in R*-tree data node 

if the data geometry and Ring  intersects 

  call fetch utility of object database 

  insert into res 

 end if 

 end for 

 

Figure 42: KNN query algorithm 
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  end if 

  Set r1 ←r2 

  Set Circle1 ←  (x, y, r1) 

 end for 

5. call drawRings 

6. display results in the main map and detail window 

 

Figure 42: KNN query algorithm (cont’d) 

 

 

 

 

 

Figure 43: KNN query result 

 

 

 

The result of the KNN query is shown in Figure 43. The innermost circles are 

increased by some width and in every loop new nearest neighbors are found. In the 
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output screen the ring area and the objects inside are visualized by red color. The 

object details are presented in a separate window above the screen.  

 

 

7.5 Fuzzy Queries 

 

Fuzzy queries in general are more complex queries than crisp queries. The 

complexity arises since the queries include fuzzy input and also they may require 

some intelligence which is achieved by some rule processing in FKB. The crisp 

query algorithms can be used for fuzzy semantic queries. 

 

In the next sections, the fuzzy semantic queries are described by the details of input 

screens, implementation algorithms and the output screens. The fuzzy queries 

implemented in the application are: 

 

• Fuzzy Spatial Relations Query 

• Fuzzy Spatiotemporal Query 

 

 

7.5.1 Fuzzy Spatial Relations Query 

 

Topological, directional and distance relations are combined in fuzzy spatial 

relations query. A union of constraints for these relations is supplied by the user. 

The constraints may be fuzzified also. For instance, if an object is not in the exact 

North direction of the reference object but to some fuzzy degree we also accept that 

object in the result. Similarly, we can find the degree of a topological relation so that 

for instance 0.8 overlapping objects with the reference object may be fetched as the 

result of the query. The parameters are entered in UI by the screen in Figure 44. 

 

According to the input screen, the reference object is located at (x1=450, y1=517) 

and (x2=350, y2=389). The distance constraint is given as a range between 0 and  
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Figure 44: Fuzzy Spatial Relations Query input screen 

 

 

 

200. The direction constraint can be a union of 8 directions (i.e. N, NE, S, etc) with 

possible fuzzy degree. In the example user asks for 0.7 degree E, SE objects. As a 

last constraint, a union of 8 topological relations (i.e. Overlap, Inside, Disjoint etc.) 

can be selected with possible fuzzy degree. In the example user asks for disjoint 

objects compared to reference object. Getting input parameters the algorithm in 

Figure 45 is applied. 
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Fuzzy Spatial Relations Algorithm: 

Input: R*-tree, reference object {(x1, y1) - (x2, y2)}, minimum distance, maximum 

distance, fuzzy direction degree, direction values, fuzzy topology degree, relations 

Output: The objects that satisfy the constraints 

1. Create a rectangle from input coordinate for the reference object,  

Set Rect ←  (x1, y1, x2, y2,) 

2. Set direction from direction checkboxes 

3. Set topology from topology checkboxes 

4. Create an empty result list res 

5. Call the R*-tree search subroutine 

If the node is a directory node 

for each entry in R*-tree directory node 

if the directory entry bound is in distance range && direction 

constraint satisfies fuzzy index && topology constraint satisfies 

  search sub-tree of directory entry 

 end if 

end for 

 else if the node is a data node 

for each entry in R*-tree data node 

if object lies in distance range && direction constraint satisfies fuzzy 

index && topology constraint satisfies 

  call fetch utility of object database 

  insert into res 

 end if 

end for 

 end if 

6. Display results in the main map and detail window 

Figure 45: Fuzzy Spatial Relations query algorithm 
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Fuzzy Spatial Relations algorithm starts with creating a reference object. Since the 

user may enter more than one direction, a binary number is created and related bits 

are set to 1 for selected directions. Similarly a topology bitmap is created from 

selected topological relations. The distance range, topology and direction bitmaps 

with fuzzy degrees are input to search subroutine. The search subroutine searches 

the directory nodes, where the bounding rectangles and the reference object are 

compared, and the data nodes, where objects and the reference object are compared. 

The objects which satisfy all constraints are appended to the result list. The objects 

in the result list are mapped in Figure 46. 

 

In the output screen the reference object’s geometry can be seen as the big rectangle. 

The data objects which are in 0-200 range, disjoint and E/SE direction are displayed. 

Notice that solution includes not only exact East or South East objects but also some 

North East or South objects. This is because of the fuzzy degree of direction 

constraints. 

 

 

 

 

 

Figure 46: Fuzzy Spatial Relations query result 
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7.5.2 Fuzzy Spatiotemporal Query 

 

An object can change its position and shape during a temporal interval. For example, 

a cold weather area moves, strengthen or weaken (i.e. becomes warmer or cooler). 

Fuzzy spatiotemporal query finds this kind of spatial changes in temporal interval.  

 

The object type is selected as Humidity in the input screen in Figure 47. The values 

are entered as a range so the humidity values within the %70 and %80 values 

measured by the meteorological stations will be queried. The spatial range specifies 

the search area whereas the temporal range specifies the temporal interval (i.e. 

between 30.12.2007 00:00 and 31.12.2007 00:00). 

 

 

 

 

 

Figure 47: Fuzzy Spatiotemporal Query input screen 
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Fuzzy Spatiotemporal Query algorithm: 

Input: R*-tree, Object Type, Value range, spatial range and temporal range 

Output: The object’s path and the values at each position 

1. Create an empty result list res 

2. If the node is a directory node 

for each directory entry in R*-tree directory node 

if directory entry bounce and spatial range intersects && 

value range is in the directory node’s fuzzy index range 

  search sub-tree of directory entries 

 end if 

end for 

 else if the node is a data node 

for each entry in R*-tree data node 

if the object’s geometry and spatial range intersects && 

value range is in the data node’s fuzzy index range &&  

time is in temporal interval 

  call fetch utility of object database 

  insert into res 

 end if 

end for 

 end if 

3. Calculate and display trajectory 

for each unique temporal chronon in the result list 

 Find average value of the meteorological parameter (i.e. humidity) 

 Find center point of the objects 

end for 

Figure 48: Fuzzy Spatiotemporal Query algorithm 
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4. Display results in the main map and detail window 

Display matching objects 

Display each temporal chronon, position and the value 

Draw trajectory between positions 

 

Figure 48: Fuzzy Spatiotemporal Query algorithm (cont’d) 

 

 

 

Fuzzy spatiotemporal query finds the movement of objects in a spatial and temporal 

range. The value range constraint is another constraint. The three constraints are 

checked in directory and data nodes. The objects satisfying the three constraints are 

appended to the output list. The algorithm calculates a trajectory in step three. For 

each unique temporal instance an average of values of objects from output list is 

obtained. Then these instances are connected to each other to show the trajectory of 

the selected object. The trajectory and output list are mapped in Figure 49. 

 

 

 

 

Figure 49: Fuzzy Spatiotemporal query result 
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In Figure 49, the average values of the objects and the temporal value are displayed 

as the black dots. The black lines connect the instances. In addition the red squares 

show the data nodes satisfying the constraints. The bigger red square shows the 

spatial range. And lastly the details of the objects are displayed in the upper window. 

 

 

7.6 Fuzzy Semantic Queries 

 

Fuzzy semantic queries are more complex queries than the crisp and fuzzy queries. 

In these queries fuzzy query algorithms, FKB processing and some semantic 

processing are combined.  

 

In the next sections, the fuzzy semantic queries are described by the details of input 

screens, implementation algorithms and the output screens. The fuzzy semantic 

queries implemented in our application are: 

 

• Fuzzy Semantic Query 1 (Extreme Conditions) 

• Fuzzy Semantic Query 2 (Trajectory of Objects) 

• Fuzzy Semantic Query 3 (k Highest Measurements) 

• Fuzzy Semantic Query 4 (Agricultural Risky Zones) 

• Fuzzy Semantic Query 5 (Altitude vs. Meteorological Parameters) 

 

 

7.6.1 Fuzzy Semantic Query 1 (Extreme Conditions) 

 

Semantic queries find semantic properties and/or behaviors of spatiotemporal 

objects. For example meteorological warnings are very important to urban or rural 

life, like floods, extreme temperatures, etc. These types of queries may be more 

complicated and require some intelligence so that a knowledge base component is 

used. 

 



114 

In the first semantic query, the extreme meteorological conditions are searched. The 

extremeness conditions are defined in FKB by the attributes of the meteorological 

values.  

 

 

 

 

 

Figure 50: Fuzzy Semantic Query 1 (Extreme conditions) input screen 

 

 

 

The query input parameters are displayed in Figure 50. The parameters are specified 

as fuzzy spatial constraint and fuzzy semantic constraint. The fuzzy direction (0.7 

North) as the fuzzy spatial constraint and extremeness (0.6 extreme) as the fuzzy 

semantic constraint are input parameters of the algorithm in Figure 51. 

 

 

 

Fuzzy Semantic Query 1 (Extreme Conditions) algorithm: 

Input: R*-tree, fuzzy spatial and semantic condition 

Output: The objects which satisfy both conditions 

1. Create an empty result list res 

2. Apply fuzzy spatial relations algorithm for direction. 

 

Figure 51: Fuzzy Semantic query 1 (Extreme conditions) algorithm 
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3. Send result list to FKB queue 

4. Run FKB engine 

If the object is eligible for the rule 

Calculate extremeness degree of conditions using temperature, wind 

speed etc. 

Set object’s attribute for extremeness 

 end if 

5. Get objects from output queue of FKB 

6. Display results in the main map and detail window 

 

Figure 51: Fuzzy Semantic query 1 (Extreme conditions) algorithm (cont’d) 

 

 

 

The fuzzy direction parameter is already implemented in Fuzzy Spatial Relations 

Query. The same algorithm is applied to filter the objects for the first constraint. 

Then selected objects are put into the input queue of FKB to further filter for the 

knowledge base predicate. In FKB, one of the semantic rules is invoked according to 

the query type. The degree of the extremeness is calculated by a predefined function 

in Figure 52. 

 

 

 

(deffunction fuzzyM (?a) 

    (bind ?i 1) 

    (bind ?FR 0) 

    (foreach ?e ?a 

     

 

Figure 52: The degree of extremeness function in FKB 
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        (if (and (eq ?i 7) (< ?e 50) (> ?e -30)) then 

        ;temperature 

            (if (< ?e 0) then 

                (bind ?FR (+ ?FR 0.4)) 

            ) 

        ) 

        (if (and (eq ?i 8) (< ?e 100) (> ?e 0)) then 

        ;humidity 

            (bind ?FR (+ ?FR (* (/ ?e 100) 0.2))) 

        ) 

        (if (and (eq ?i 12) (< ?e 50) (> ?e 0)) then 

        ;wind speed 

            (bind ?FR (+ ?FR (* (/ ?e 40) 0.4))) 

        ) 

        (bind ?i (+ ?i 1)) 

    ) 

    (return ?FR) 

) 

 

Figure 52: The degree of extremeness function in FKB (cont’d) 

 

 

 

FuzzyM function gets an array of meteorological parameters as input. It then 

calculates an overall degree of extremeness by weighting each attribute such as 

temperature, humidity and wind speed. The returned fuzzy value ?FR is set as an 

attribute of the object. So when the objects are returned back to bridge the semantic 

degree can be used for output. The returned objects having ?FR greater than 0.6 are 

displayed as output in Figure 53. 
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Figure 53: Fuzzy Semantic query 1 (Extreme conditions) result 

 

 

 

In Figure 53, three stations which measured extreme meteorological conditions are 

displayed as the red squares. The measurements are displayed in the upper window.  

 

 

7.6.2 Fuzzy Semantic Query 2 (Trajectory of Objects) 

 

The trajectory of a moving object is the subject of the fuzzy semantic query 2. In 

fuzzy spatiotemporal query the value ranges for meteorological measurements 

defined the object. In this query the object (cold weather) is defined semantically in 

FKB. The input screen is shown in Figure 54.  
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Figure 54: Fuzzy Semantic query 2 (trajectory of objects) input screen 

 

 

 

The cold weather trajectory between 30.12.2007 00:00 and 31.12.2007 00:00 is 

queried. The algorithm in Figure 55is applied for temperature range (< 5).Cold 

weather is not just the low temperature but wind and humidity also affect the cold 

feeling. So after fuzzy spatiotemporal algorithm result is obtained some more 

refinement is needed. FKB finds cold weather measurements by temperature, 

temperature and wind speed, temperature and humidity. The final result from FKB is 

displayed in Figure 56. 

 

 

 

Fuzzy Semantic query 2 (trajectory of objects) algorithms: 

Input: R*-tree, the spatiotemporal object type, temporal interval 

Output: The trajectory of the object 

1. Set temporal (30.12.2007 00:00 and 31.12.2007 00:00) and temperature interval 

(< 5) 

2. Create an empty result list res 

3. Apply fuzzy spatiotemporal algorithm for temperature 

4. Send result list to FKB queue 

 

Figure 55: Fuzzy Semantic query 2 (trajectory of objects) algorithm 
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5. Run FKB engine 

Fire the coldweather rule 

 If (temperature < 0) or   

 

   (temperature < 5 && wind speed > 20) or  

   (temperature < 5 && humidity > 80) then 

Tag measurement as cold weather 

  end if 

6. Get objects from output queue of FKB 

7. Display trajectory in the main map and results in detail window 

 

Figure 55: Fuzzy Semantic query 2 (trajectory of objects) algorithm (cont’d) 

 

 

 

 

 

Figure 56: Fuzzy Semantic query 2 (trajectory of objects) results 
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In Figure 56, the cold weather data on data nodes are displayed with red squares. 

The average values of the temperature measurements and the temporal value are 

displayed over and below the black dots. The black lines between the dots show the 

trajectory of the cold weather. In the upper window each temporal instance is 

displayed in detail such as temporal instance, position and the average value of the 

temperatures. 

 

 

7.6.3 Fuzzy Semantic Query 3 (k Highest Measurements) 

 

The fuzzy semantic query 3 finds the k highest measurement of a parameter from a 

reference point. This might be helpful especially planning a trip. The meteorological 

parameter can be flexible but in this example we concern with the temperature. The 

query is defined in input screen (see Figure 57).  

 

 

 

 

 

Figure 57: Fuzzy Semantic query 3 (k Highest Measurements) input screen 

 

 

 

The input specifies Istanbul city as the reference point and inquires “5 temperature 

values higher than 10 C during the day and closest to Istanbul city”.  

 

 



121 

Fuzzy Semantic query 3 (k Highest Measurements) algorithm: 

 

Input: R*-tree, temporal range, constraint value (10 C), reference city (İstanbul) 

Output: The objects which satisfy the constraints 

 

1. Set value(>10) , temporal (during the day->06:00 && <18:00) and spatial  

range 

2. Create an empty result list res 

3. Apply fuzzy spatiotemporal algorithm 

4. Set p_ist ←  point for İstanbul 

5. for each entry in res 

 find distance of objects to p_ist 

 Add to 5 closest list 

 end for 

6. Display results in the main map and detail window 

 

Figure 58: Fuzzy Semantic query 3 (k Highest Measurements) algorithm 

 

 

 

The fuzzy semantic query 3 runs fuzzy spatiotemporal query algorithm for 

temperature range (> 10) and temporal interval (06:00 and 18:00) as the daytime. 

The semantic part which calculates the k highest value comes in step 4. A reference 

point for İstanbul city is created and the distance function is applied in the loop for 5 

nearest neighbor. The results are displayed in Figure 59.   
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Figure 59: Fuzzy Semantic query 3 (k Highest Measurements) result 

 

 

 

In Figure 59, five stations which measured higher than 10 C and closest to İstanbul 

are displayed as the red squares. The measurements details are displayed in the 

upper window.  

 

 

7.6.4 Fuzzy Semantic Query 4 (Agricultural Risky Zones) 

 

Fuzzy Semantic query 4 inquires an important meteorological and agricultural 

parameter that is frosty zones.  The query finds the frosty zones with several severity 

degrees. Input screen with details of query is displayed in Figure 60. 

 

According to the input parameters, the algorithm in Figure 61 will find the frosty 

risky zones during the night. 

 



123 

 

 

Figure 60: Fuzzy Semantic query 4 (Agricultural risky zones) input screen 

 

 

 

Fuzzy Semantic query 4 (Agricultural risky zones) algorithm: 

 

Input: Temperature range for frost, temporal range (>00:00 and <06:00), spatial 

range 

Output: The frost levels of meteorological stations are displayed 

 

1. Create an empty list res 

2. Apply spatiotemporal algorithm with input parameters 

3. Put the results to the input queue of FKB 

4. Apply the frost rule 

 Classify the frost level of each record 

 Set object’s attribute with frost level 

3. Display result 

 Display each level with different gray scale 

 Display legend 

 Display result window 

 

Figure 61: Fuzzy Semantic query 4 (Agricultural risky zones) algorithm 

 

 



124 

The fuzzy semantic query 4 runs fuzzy spatiotemporal query algorithm for 

temperature range (< 00) and temporal interval (00:00 and 06:00) as the nighttime. 

The semantic part which calculates the degree of frosty zones is performed in FKB. 

FKB executes the frost rule and classifies each frost value. The results are displayed 

in Figure 62. 

 

 

 

 

 

Figure 62: Fuzzy Semantic Query 4 (Agricultural risky zones) result 

 

 

 

The frosty zones are displayed with different grayscale colors according to the frost 

levels (from No Risk to Very High Risk) in Figure 62. 

 

 

7.6.5 Fuzzy Semantic Query 5 

 

In this query, the relation between meteorological parameters and the altitude is 

queried. The query finds whether parameters increase or decrease in a given 
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temporal and spatial interval as the altitude changes. Input screen with details of 

query is displayed in Figure 63. 

 

 

 

 

 

Figure 63: Fuzzy Semantic query 5 input screen 

 

 

 

The algorithm in Figure 64 will find the relationship between the meteorological 

parameters (i.e. temperature, humidity, pressure, wind speed) and altitude. 

 

 

 

Fuzzy Semantic query 5 algorithm: 

Input: An R*-tree with altitude values and meteorological parameters loaded, 

temporal range, spatial range 

Output: The average value of meteorological parameter for each altitude threshold 

and the average difference between levels of altitude are displayed 

1. Create an empty list res 

2. Apply spatiotemporal algorithm with spatial, temporal ranges given 

 

Figure 64: Fuzzy Semantic Query 5 algorithm 
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3. Find the average value of parameter for each threshold value (i.e. for each 300 

meters 

4. Display result 

 For each altitude value 

  Display altitude 

  Display average value of parameter 

  Display average difference 

 End for 

 

Figure 64: Fuzzy Semantic Query 5 algorithm (cont’d) 

 

 

 

 

 

Figure 65: Fuzzy Semantic Query 5 result 
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The fuzzy semantic query 5 runs fuzzy spatiotemporal query algorithm for instance 

for a temperature range between -30 and +30 oC and in a spatial range (100,200)-

(400,600) to cover western part of the country and finally on 30.12.2007 12:00 time. 

The results are displayed in Figure 65. 

 

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Figure 66: Altitude vs. meteorological parameters variations (a)Humidity 

(b)Pressure (c)Wind speed. 
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The red squares in the window shows the measurements for the given spatial, 

temporal and value range. The second window above shows the results. The results 

indicate that temperature decreases slightly at each 300 meters on the average 0.5 
oC. The other parameter variations are shown in Figure 66.  

 

The result of the fuzzy semantic query 5 indicates that for the input parameters we 

specified: 

 - Temperature decreases on the average 0.5 oC,  

 - humidity decreases % 7-8 at every 300 meters up to 900 meters then steady 

 - Pressure doesn’t change 

 - wind speed is around 13 knots up to 600 meters and then decreases to 7 knots 

 

 

7.7 Experimental Evaluation 

 

In this section, we experimentally study the effectiveness of the architecture 

components. First, we observe the scalability of the system. The crisp queries and 

fuzzy semantic queries are run with real meteorological data. The number of records 

is as many as 80.000 records. Next we show the effect of using Enhanced R*-tree by 

comparing R*-tree. Since we adapted a secondary fuzzy index some fuzzy semantic 

queries are run for the performance evaluation. Finally, the effect of third dimension 

on the tree is evaluated. The application is run on a laptop with Windows Vista 

operating system, 4G RAM, JDK 1.6 and Net Beans 6.5.1. 

 

 

7.7.1 The Scalability of the Application 

 

The scalability of the system is tested with crisp, fuzzy and semantic queries. Firstly 

the crisp spatial queries (point, range, circle, kNN and ring) are tested with the data 

that belongs to fifteen days between 30.12.2007 00:00 and 15.01.2008 12:00. In 
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Figure 67, the number of node access and number of records are depicted for each 

type of query as well as the average.  
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Figure 67: The scalability of the system by Crisp Spatial Queries 

 

 

 

The queries perform quite similar to each other. The performance of each query is 

good even for the high number of records. So the system is scalable for the crisp 

spatial queries.  

 

Next fuzzy spatial queries are tested. Fuzzy Spatial Relation (FSR) and Fuzzy 

Spatiotemporal (FST) queries are tested with the same data set. In Figure 68, the 

number of node access and number of records are depicted for each type of query as 

well as the average.  

 

Both queries and the average are close and application runs smoothly for even high 

number of records. Finally, fuzzy semantic queries are tested. In Figure 69, the 
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number of node access and number of records are depicted for each type of semantic 

query (SQ1 to SQ5) as well as the average. The details of the semantic queries are 

already presented in Section 7.6. 
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Figure 68: The scalability of the system by Fuzzy Spatial Queries 
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Figure 69: The scalability of the system by Fuzzy Semantic Queries 
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The SQ4 (Agricultural Risky Zones) has more node access, because it checks every 

record and performs full scan. But the other queries are close to the average. In the 

next section the Enhanced R*-tree and R*-tree are tested and the effect of adaptation 

is shown. 

 

 

7.7.2 The Enhanced R*-tree 

 

In our implementation the R*-tree is enhanced to support fuzzy semantic 

spatiotemporal queries. The basic form of R*-tree uses rectangles to organize spatial 

data. In Enhanced R*-tree we adapt a secondary index which includes the range 

values for all attributes at the leaf nodes. Before comparing performance of queries 

using Enhanced R*-tree and basic R*-tree let’s check the building cost of R*-tree 

and enhanced R*-tree. In Figure 70 and Figure 71 the elapsed times of building 

times for R*-tree and Enhanced R*-tree are depicted. 

 

 

 

 

 

Figure 70: The primary index build time 
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In Figure 71 the cost of building the Enhanced R*-tree, which uses MBRs as the 

primary index is shown. The cost of insertion increases linearly. In the following 

figure the cost of adapting a secondary index is shown: 

 

 

 

 

 

Figure 71: The secondary index build time 

 

 

 

The cost of building a secondary index in addition to the primary one seems very 

negligible. While the main index takes 2 to 16 seconds to build, secondary index 

built takes only 25 milliseconds for 80.000 records. This is because the secondary 

index is built on already organized tree so no split or reinsert occurs and one full 

scan is enough and no file I/O is required. 

 

In performance work, we run some of the queries by using classical R*-tree and 

Enhanced R*-tree. The meteorological data is obtained from Meteorology Service 

for the dates between 30.12.2007 00:00 and 15.01.2008 12:00. The data is 

partitioned into bulks (i.e. 1.000, 5.000, 10.000, 20.000, 40.000, 60.000 and 80.000). 
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In each run number of nodes accessed is measured. In the first query, the fuzzy 

spatiotemporal query which is described in Section 7.5.2 is run with the 

meteorological data sets. The input parameters are selected as follows: temperature 

measurements between 10-15 oC, spatial range (100,200)-(600,600) and temporal 

range 30.12.2007 00:00 to 31.12.2007 00:00. The results are depicted as a graphic in 

Figure 72. The number of node access is close up to 10.000 records but the gap 

increases as the number of records increases. The Enhanced R*-tree performs better 

than R*-tree in general.  
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Figure 72: Fuzzy Spatiotemporal Query run with R*-tree and Enhanced R*-tree 

 

 

 

Next we run semantic query 2 which finds trajectory of objects that the details of the 

query algorithm is shown in Section 7.6.2. The query runs for the trajectory of 

humidity values between % 40-42 in the spatial range (0,0)-(1024,800) and in 

temporal range 30.12.2007 00:00 to 31.12.2007 00:00. The results are depicted as a 

graphic in Figure 73. 
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Figure 73: Semantic Query (trajectory) run with R*-tree and Enhanced R*-tree 

 

 

 

Both index structures perform quite close up to 20.000 records. The Enhanced R*-

tree runs better after 20.000 records. On the average the Enhanced R*-tree performs 

better than R*-tree.  

 

Finally we run Fuzzy Semantic Query 3 (k-highest measurements which is described 

in Section 7.6.3. The query finds five (k=5) highest temperature measurements close 

to Istanbul. The resulting graphic obtained by the number of node access are shown 

in Figure 74. 

 

The graphic shows similar figures as the previous runs. So it is verified that the 

Enhanced R*-tree runs better for fuzzy and semantic queries especially for the 

number of records higher than 10.000-20.000.  
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Figure 74: Semantic Query performance of R*-tree and Enhanced R*-tree 

 

 

 

7.7.3 The Effect of Third Dimension 

 

The altitude data forms the third dimension in the application. Altitude data is firstly 

included in the fuzzy index structure. So it is kind of other meteorological attributes 

like temperature, pressure, etc. Then it is used as the primary organizing attribute in 

the Enhanced R*-tree. We think that it may be implemented either as secondary or 

primary index. Since our data and query types mostly belong to ground we included 

in the secondary index. But we evaluate the effect of altitude usage as a third 

dimension as a primary index on tree building and query run times as well. 

 

The major effect of altitude data as the primary indexing attribute is the increasing 

number of inner nodes. This is reflected in Figure 75. Since insertion algorithm 

considers a third dimension more rectangles are needed to group the data. The 

number data nodes are slightly affected by third dimension (see Figure 76). In 

Figure 77, the increase in the inner nodes is visualized. 
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Figure 75: Number of inner nodes in Enhanced R*-Tree 
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Figure 76: Number of data nodes in Enhanced R*-Tree 
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Figure 77: The nodes of three dimensional Enhanced R*-Tree 
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Figure 78: Primary index building time in Enhanced R*-Tree 

 

 

 

Although third dimension increases the inner nodes, it doesn’t affect the building 

time of Enhanced R*-Tree. While primary index building times are almost same for 

two dimensional (2D) and three dimensional (3D) versions, secondary index 

building times are negligible (see Figure 78 and Figure 79). 
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Figure 79: Secondary index building time in Enhanced R*-Tree 
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Figure 80: Range Query performance of Enhanced R*-Tree (1) 

 

 

Two and three dimensional Enhanced R*-Trees are tested with crisp and fuzz 

semantic queries. In Figure 80 and 81 number of node accesses and execution times 

are shown for range query. In the three dimensional range query an altitude range is 

also input by the user. 
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Figure 81: Range Query performance of Enhanced R*-Tree (2) 
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Figure 82: Fuzzy Semantic Query performance of Enhanced R*-Tree (1) 
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The performance of Enhanced R*-Tree nearly same for range query. In Figure 82 

and Figure 83 the results of Fuzzy Semantic Query is shown. In this query, the 

meteorological parameter temperature change by altitude is measured. 
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Figure 83: Fuzzy Semantic Query performance of Enhanced R*-Tree (2) 

 

 

 

The performance of three dimensional Enhanced R*-Tree is slightly worse than two 

dimensional Enhanced R*-tree. As a result, number of inner nodes increase by using 

the altitude as the primary indexing attribute. This affects index building and query 

execution times so that three dimensional tree executes worse than two dimensional 

tree. But in terms of number of node access, two dimensional tree performs worse 

than three dimensional tree.  
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CHAPTER 8 

 
 

CONCLUSIONS 
 
 
 
 

In this study we have introduced a generic spatiotemporal data model and a querying 

mechanism for spatiotemporal databases. We presented our method, designed to 

handle uncertainty in spatiotemporal database applications. We used an application, 

involving meteorological objects with some spatial and temporal attributes, as an 

example. The proposed mechanism has been implemented as a proof-of-concept 

prototype.  

 

In the scope of this work, spatial objects, relations including temporality are 

incorporated into a generic model. Based on the generic model meteorological 

phenomena and geographic data are modeled as spatiotemporal objects. These 

objects can move and evolve in time. In addition, the meteorological and geographic 

man made objects may have spatial relations. The model and fuzzy spatiotemporal 

querying mechanisms are presented formally. The crucial decision was to integrate 

the model with a fuzzy knowledge base allowing a fuzzy deduction and querying 

capability to handle complex data and knowledge. As a result, we are able to handle 

spatiotemporal queries (position, spatial properties and spatial relationships). 

 

We also adapted an index structure for efficient querying and verified that with 

performance runs using three dimensional data. Since our queries mostly deal with 

ground information we used the third dimension (altitude) in the secondary index. 

For the queries related with the atmospheric data it could be better to use third 

dimension as the primary index. 
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Spatiotemporal data modeling and querying require further research. The model and 

the method presented in this thesis should be applied to other fields, such as wireless 

sensor networks and multimedia, to gain more insight into fuzzy spatiotemporal 

modeling and querying.  
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APPENDIX A 

 
 

SAMPLE METEOROLOGICAL MAPS 
 
 
 
 

 
 

 

Figure 84: Cloudiness mapping on 30.12.2007 

 

 

 

 

 

 

Figure 85: Pressure mapping on 30.12.2007 
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Figure 86: Wind strength mapping on 30.12.2007 

 

 

 

 

 

 

 

 

Figure 87: Sunshine duration mapping on 30.12.2007 



151 

 
APPENDIX B 

 
 

THE OBJECT MODEL SPECIFICATIONS IN ALLOY 
 
 
 
 

module systems/STModel 

 

open alloy/models/util/ordering[LineSegment] as ordL 

open alloy/models/util/ordering[Time] as ordT 

open alloy/models/util/ordering[Fuzzy] as ordF 

 

 

//abstract fuzzy class. The implementation consists of definition of fuzzy number 

// which gives degree of fuzziness between 0 and 1 

abstract sig Fuzzy{}  

 

//The Time class includes definiton of time in YYYYMMDD hh:mm 

sig Time{} 

 

// a temporal class includes temporal class and a temporal entity has 

// beginning time and end time 

sig Temporal{ 

beginTime,endTime:Time 

} 

 

// Beginning time should be less than or equal to end time 

fact TemporalFact{ 

all T:Temporal| ordT/lte[T.beginTime,T.endTime] 

} 
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//a temporal object exits in a temporal interval 

pred isInstance(o:Temporal,bt,et:Time){ 

ordT/gte[o.beginTime,bt]  and ordT/lte[o.endTime,et]  

} 

 

// Spatialbase has common entries for spatial classess 

// membership: is a fuzzy number and shows the degree of  

// spatial object's belonging to a particular spatial class 

// size: for fuzzy spatial object size is also fuzzy. 

abstract sig SpatialBase extends Temporal{ 

membership:Fuzzy, //fuzzy membership 

size:Fuzzy 

} 

// Coordinate defines an x, y location in the space. 

// x, y may be float numbers 

sig Coordinate{} 

 

// Point is the basic spatial element and can be part of line segments. 

sig Point extends SpatialBase { 

location:Coordinate 

} 

 

// a line segment is aggregated by a set of points, 

// It has a beginning and ending defined by points. 

sig LineSegment extends SpatialBase{ 

sourceEnd:Point, 

targetEnd:Point 

} 

// a region is aggregated by a set of line segments 

sig Region extends SpatialBase{ 

linesegs:set LineSegment 

} 
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// at least 3 line segments form a region 

fact RegionConst{ 

all r:Region |#r.linesegs >= 3 

} 

 

// a geometry is formed by a set of points and/or linesegments  

// and/or regions 

sig Geometry extends Temporal{ 

points: set Point, 

linesegs: set LineSegment, 

regions: set Region 

} 

 

// a geometry should have at least one of the parts. 

// not all of the parts can be empty sets. 

// this fact does not allow empty geometry 

fact GeometryFact{ 

all g:Geometry | 

not (#g.points=0 and #g.linesegs=0 and #g.regions=0) 

} 

// if a geometry exists in some temporal interval so that  

// its parts should exist in the same interval 

fact GeometryConst{ 

all g:Geometry | 

isInstance[g,g.beginTime,g.endTime] => 

( isInstance[g.points,g.beginTime,g.endTime]  and  

isInstance[g.linesegs,g.beginTime,g.endTime] and  

isInstance[g.regions,g.beginTime,g.endTime]) 

} 
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// A spatiotemporal object definition 

sig STObject extends Fuzzy{ 

geometry:some Geometry, // an STObject has one or more Geometry 

holes:set Geometry, // an STObject may have holes 

trajectory:some Point, //trajectory is a non-empty set of points 

spatialRelation:set RelationType // An STObject may have spatial 

     // relation(s) with other STObjects 

} 

 

// A spatial relation exists in some temporal interval 

// including two STObjects and fuzzydegree that shows 

// the degree of the relation 

abstract sig RelationType extends Temporal{ 

F,G: one STObject, //two STObjects F and G 

fuzzyDegree:Fuzzy //the degree of the relation which is fuzzy 

} 

 

// These are the possible types of spatial relations. 

// Each one of them is a relation between two STObjects and have a degree 

one sig Disjoint,Meet, Inside,Equal, Contains,Covers,CoveredBy,Overlap extends 

RelationType{ 

rel:F->G->Fuzzy 

} 

 

// the following predicates give definitions for the spatial relations 

pred disjointCR(R:RelationType){ 

no(R.F.geometry & R.G.geometry) and no(R.G.geometry & R.F.holes) and  

no(R.F.geometry & R.G.holes) and no(R.F.holes & R.G.holes) 

} 
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pred insideCR(R:RelationType){  

some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or  

((R.G.holes in R.F.geometry) and (R.G.holes in R.F.holes))) 

} 

 

pred insideCR2(R:RelationType){  

some (R.F.geometry & R.G.geometry) and (no(R.F.geometry & R.G.holes) or  

((R.F.holes in R.G.geometry) and (R.F.holes in R.G.holes))) 

} 

 

pred meetCR(R:RelationType){ 

one (R.F.geometry & R.G.geometry) and not disjointCR[R] and  

not insideCR[R] not insideCR2[R] and not equalCR[R] 

} 

 

pred containsCR(R:RelationType){ 

insideCR2[R] 

} 

 

pred equalCR(R:RelationType){ 

(R.F.geometry=R.G.geometry) and (R.F.holes=R.G.holes) 

} 

 

pred coversCR(R:RelationType){ 

insideCR2[R] and meetCR[R] and  #(F.geometry & G.geometry) = 1 

} 

 

pred coversCR2(R:RelationType){ 

insideCR[R] and meetCR[R] and  #(F.geometry & G.geometry) = 1 

} 
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pred coveredbyCR(R:RelationType){ 

coversCR2[R] 

} 

 

pred overlapCR(R:RelationType, fuz:Fuzzy){ 

not (disjointCR[R] or meetCR[R] or insideCR[R] or  containsCR[R] or 

equalCR[R] or coveredbyCR[R] or coversCR[R]) and ordF/gte[R.fuzzyDegree,fuz] 

} 

 

// Spatial relation asserts 

assert disjoinT{ //if disjoint not any other relation 

all R:RelationType, fDegree:Fuzzy | disjointCR[R] => 

 not (overlapCR[R,fDegree] or meetCR[R] or insideCR[R] 

 or containsCR[R] or equalCR[R] or coveredbyCR[R] or  

 coversCR[R]) or  

 R.G.geometry in R.F.holes //a geometry may be inside the hole 

} 

 

check disjoinT 

 

assert meeT{ 

all R:RelationType, fDegree:Fuzzy| meetCR[R] => 

 not disjointCR[R] and not insideCR[R] and not equalCR[R] and  

 not coversCR[R] and not overlapCR[R,fDegree]  

} 

check meeT 

 

assert insidE{ 

all  R:RelationType, fDegree:Fuzzy | insideCR[R]=> 

 not (disjointCR[R] or meetCR[R] or coversCR[R] or  

 overlapCR[R,fDegree]) or (R.F.geometry in R.G.holes) 

} 
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check insidE 

 

assert coverS{ 

all R:RelationType, fDegree:Fuzzy | coversCR[R]=> 

 not (disjointCR[R] or overlapCR[R,fDegree]) and  

 insideCR2[R] and (G.holes in F.geometry) 

} 

 

check coverS 

assert equaL{ 

all R:RelationType, fDegree:Fuzzy | equalCR[R]=> 

 not (disjointCR[R] or overlapCR[R,fDegree]) and 

 (R.G.geometry in R.F.geometry) and (R.F.holes in R.G.holes) 

} 

 

check equaL 

 

//application specific classes 

//--------------------------------- 

 

// City may have some routes crossing and have some weather object 

sig City extends STObject{ 

route:set Route, 

weather:some MetObject 

} 

 

sig Route{ 

parts: some LineSegment, //route has at least one LineSegment or more 

 

//route may be one type or a mixed type. e.g. maritimeRoute or 

// territoriolRoute + MaritimeRoute 

rType:some RouteType,  
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// some parts may be clear some parts may be restricted so it has at least 

// one status but may have more than one 

rStatus:some RouteStatus, 

 

// route crosses at least one City 

cities:some City, 

 

// a set of vehicles use the route 

vehicles:set Vehicle 

} 

//two consecutive line segments over a route should have one common point 

//one's targetEnd equals other's sourceEnd 

assert routeFact{ 

all R:Route, ls1,ls2:R.parts| 

 (ls1!=ls2 and ordL/eq[ordL/next[ls1],ls2])=>ls1.targetEnd= ls2.sourceEnd 

} 

check routeFact 

 

// route type can ben maritime, territorial or aerial  

abstract sig RouteType{} 

one sig MaritimeRoute,TerritorialRoute, AerialRoute extends RouteType{} 

 

// route may be clear, wavy (for maritime route) or restricted (for all types) 

abstract sig RouteStatus{} 

one sig Clear,Wavy,Restricted extends RouteStatus{} 

 

sig Vehicle{ 

type:VehicleType, 

status:VStatusType, 

route:set Route 

} 
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//route-vehicle relation at specific time 

sig Journey extends Temporal{ 

route: Route, 

vehicle: Vehicle, 

} 

 

// 1-a journey has only one vehicle and one route 

// 2-A vehicle is used on only one journey during the journey 

assert JourneyFact{ 

all j1,j2:Journey, t:Temporal| 

isInstance[t,j1.beginTime,j1.endTime] and  

isInstance[t,j2.beginTime,j2.endTime]=> 

one j1.vehicle and one j1.route and one j2.vehicle and one j2.route and 

j1.vehicle != j2.vehicle  

 

} 

check JourneyFact 

 

sig Voyage extends Journey{} //ship journey 

 

abstract sig VehicleType{} 

one sig Ship, Bus, Train, Plane extends VehicleType{} 

 

// a voyage has a MaritimeRoute and the vehicle running should be Ship 

fact voyageFact{ 

all vyg:Voyage| 

 vyg.route.rType=MaritimeRoute and vyg.vehicle.type=Ship 

} 

 

// A vehicle may be on time, delayed or canceled 

abstract sig VStatusType{} 

one sig OnTime,Delayed,Canceled extends VStatusType{} 
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//if a journey's route is restricted vehicle is delayed or canceled 

fact statusFact{ 

all j:Journey| 

 j.route.rStatus=Restricted=> 

 j.vehicle.status=Delayed or j.vehicle.status=Canceled 

} 

 

// a meteorological object is a spatiotemporal object 

sig MetObject extends STObject{ 

object:MeteorType, 

degree:MeteorObjectDegree 

} 

// the types of metorological objects are enumerated here 

abstract sig MeteorType{} 

one sig Temperature, Pressure, Visibility, Wind, Wave, Cloude, Precipitation 

extends MeteorType{} 

 

// The strength of Meteorological object i 

abstract sig MeteorObjectDegree extends Fuzzy{} 

 

// Here a sample is given for visibility 

one sig Visible, Misty, Foggy extends MeteorObjectDegree{} 

 

// Another sample for precipitation 

one sig Drizzle, Rainy, Snowy, Thunderstorm extends MeteorObjectDegree{} 

 

/ a meteorological measurement in a City includes a number of meteorological 

objects 

sig Measurement extends Temporal{ 

metobj:some MetObject, 

city:lone City 

} 
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// two spatiotemporal objects have overlap degrees 

abstract sig OverlapDegree extends Fuzzy{} 

 

//fuzzy overlapdegrees are enumerated 

one sig Less, Moderate,High extends OverlapDegree{} 

 

//if city and meteorological object overlaps than the object is in the city's weather 

fact weatherFact{ 

some M:MetObject, C:City, R:Overlap|  

 (R.F=M and R.G=C and overlapCR[R,High]) => M in C.weather 

} 

 

 

// As an example : if a city's weather has visibility and precipitation and  

// their degrees are strong enough, then the route is restricted 

fact routeStatusFact{ 

some M:MetObject, C:City, route:Route|  

 (  (M.object=Visibility and M.degree=Foggy) or  

  (M.object =Precipitation and (M.degree=Snowy or 

M.degree=Thunderstorm)) and 

  M in C.weather and C in route.cities)=>route.rStatus=Restricted  

} 
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