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ABSTRACT 

 

OPTIMIZATION OF TIME-COST-RESOURCE TRADE-OFF PROBLEMS IN 
PROJECT SCHEDULING USING META-HEURISTIC ALGORITHMS 

 

 

Bettemir, Önder Halis 

PhD., Department of Civil Engineering 

Supervisor      : Assoc. Prof. Rıfat Sönmez 

 

August 2009, 227 pages 

 

 

In this thesis, meta-heuristic algorithms are developed to obtain optimum or near 

optimum solutions for the time-cost-resource trade-off and resource leveling 

problems in project scheduling. Time cost trade-off, resource leveling, single-mode 

resource constrained project scheduling, multi-mode resource constrained project 

scheduling and resource constrained time cost trade-off problems are analyzed.  

 

Genetic algorithm simulated annealing, quantum simulated annealing, memetic 

algorithm, variable neighborhood search, particle swarm optimization, ant colony 

optimization and electromagnetic scatter search meta-heuristic algorithms are 

implemented for time cost trade-off problems with unlimited resources. In this thesis, 

three new meta-heuristic algorithms are developed by embedding meta-heuristic 

algorithms in each other. Hybrid genetic algorithm with simulated annealing presents 

the best results for time cost trade-off.  

 

Resource leveling problem is analyzed by five genetic algorithm based meta-

heuristic algorithms. Apart from simple genetic algorithm, four meta-heuristic 

algorithms obtained same schedules obtained in the literature. In addition to this, in 

one of the test problems the solution is improved by the four meta-heuristic 

algorithms. 
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For the resource constrained scheduling problems; genetic algorithm, genetic 

algorithm with simulated annealing, hybrid genetic algorithm with simulated 

annealing and particle swarm optimization meta-heuristic algorithms are 

implemented. The algorithms are tested by using the project sets of Kolisch and 

Sprecher (1996). Genetic algorithm with simulated annealing and hybrid genetic 

algorithm simulated annealing algorithm obtained very successful results when 

compared with the previous state of the art algorithms. 

 

120-activity multi-mode problem set is produced by using the single mode problem 

set of Kolisch and Sprecher (1996) for the analysis of resource constrained time cost 

trade-off problem. Genetic algorithm with simulated annealing presented the least 

total project cost. 

 

Keywords: Meta-heuristic algorithm, Planning, Optimization, Time cost trade-off, 

Resource Leveling, Resource constraint project scheduling, Resource constraint time 

cost trade-off problem 
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ÖZ 

 

MODERN-SEZGİSEL YÖNTEMLERLE PROJE PLANLAMASINDA ZAMAN-
MALİYET-KAYNAK ÖDÜNLEŞİM PROBLEMLERİNİN OPTİMİZASYONU 
 

 

Bettemir, Önder Halis 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi           : Doç. Dr. Rıfat Sönmez 

 

Ağustos 2009, 227 sayfa 

 

 

Bu tez çalışmasında,  proje planlaması ile ilgili zaman-maliyet- kaynak ödünleşim ve 

kaynak dengeleme problemlerinin en iyi veya yakın en iyi sonuçlarının 

bulunabilmesi için modern sezgisel yöntemler geliştirilmiştir. Bu amaçla, kaynak 

dengelemesi, sınırlı ve sınırsız kaynaklı projelerin zaman maliyet analizi, sınırlı 

kaynaklı tek yapım ve çok yapım yöntemli projelerin zaman çizelgelerinin 

hazırlanması problemleri incelenmiştir. 

 

Literatürdeki Genetik algoritma (GA), tavlama benzetimi, kuantum tavlama 

benzetimi, deneyimsel algoritma, komşu arama, kuş sürüsü optimizasyonu, karınca 

koloni optimizasyonu ve elektromanyetik saçılım algoritmaları zaman maliyet 

problemi çözümü için uygulanmıştır. Bu modern sezgisel algoritmalardan üç yeni 

melez modern sezgisel yöntem geliştirilmiştir. Sabit maliyetli zaman maliyet analizi 

için, melez genetik algoritma tavlama benzetimi yöntemi en iyi sonucu vermiştir. 

  

Kaynak dengeleme problemi için, GA ve genetik algoritma tabanlı modern sezgisel 

yöntemler incelenmiştir. GA dışındaki dört yöntemle, literatürdeki sonuçlarla aynı 

sonuçlar elde edilirken; test problemlerinin birinde mevcut çözümlerden daha iyi 

sonuç elde edilmiştir. 
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Sınırlı kaynaklı proje planlaması problemleri için; GA, genetik algoritma tavlama 

benzetimi, melez genetik algoritma tavlama benzetimi ve kuş sürüsü algoritması 

literatürdeki test örnekleri ile denenmiştir. Sonuçlar karşılaştırıldığında, Genetik 

algoritma tavlama benzetimi ve melez genetik algoritma tavlama benzetimi 

algoritmalarının daha iyi çözümler verdiği görülmüştür. 

 

Sınırlı kaynaklı zaman maliyet analizinde kullanılmak üzere literatürdeki 120 

aktiviteli tek yapım yöntemli proje setinden, çok yapım yöntemli problem seti elde 

edilmiştir. Bu analizde genetik algoritma tavlama benzetimi yöntemi en iyi sonucu 

vermiştir. 

 

Anahtar Kelimeler: modern sezgisel algoritmalar, en iyi sonuç, planlama, zaman 

maliyet analizi, kaynak dengeleme, kısıtlı kaynaklı proje planlaması, kısıtlı kaynaklı 

zaman maliyet analizi 
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CHAPTER 1 
 

1. INTRODUCTION 
 

 

Competition in the construction industry is increasing day by day as new firms are 

entering into market and the existing companies are enlarging their job opportunities 

by entering into new construction sectors. To gain competitive advantage against 

rivals, the construction companies aim to minimize the resource costs by means of 

minimizing the idle machinery and labor time which requires excellent planning and 

scheduling of construction projects. 

 

Project planning, resource constrained scheduling and resource leveling has 

significant importance, since these tasks directly effect project completion duration 

and cost. To gain competitive advantage in the market, the project must be executed 

in the optimum or near-optimum planned state. In other words, to be strong against 

rivals optimum or near optimum solutions of time cost trade-off, resource leveling 

and resource constrained scheduling problems should be obtained in the planning 

phase of the project. 

 

In this thesis, optimum or near optimum solution for time cost trade-off  (TCT) 

problem with unlimited resources, resource leveling, resource constrained scheduling 

and time cost trade-off problem with limited resources are searched by meta-heuristic 

algorithms. 

 

1.1 Background of this Research 

 

This research aims to develop an optimization tool for the mentioned time-cost-

resource based project planning and optimization problems. The problems in concern 

have a common point in which all have the objective function as minimization of an 

objective value. Total project cost for the TCT problem, fluctuations of resource 
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demand for resource leveling and project duration for resource constrained 

scheduling are the objectives to be minimized. 

 

Project duration can often be shortened by accelerating some of its activities at an 

additional expense. Crashing of activities increases the activity’s cost, thus the direct 

project cost. However, crashing of activities reduces the project duration and 

decreases the indirect project costs. Summation of direct and indirect project costs 

are aimed to be minimized which is called as TCT problem (Hegazy 1999). 

 

Over-timing or assigning more crew and equipment decreases the productivity. Thus 

unit work done per machine or labor decreases and total labor and equipment costs 

increase. Resource availabilities are not considered in the solution procedure of the 

TCT problem with unlimited resources. Optimum solution of TCT with unlimited 

resources minimizes the total project cost. 

 

Fluctuations in the resource usage decrease the productivity because fluctuations 

causes idle labor and machinery during low resource demanding periods of the 

project. To prevent idle labor if only firing labors are preferred than during the 

execution of the project too much labor hiring and labor firing will occur. This may 

cause additional problems such as excessive decrease in production, problem in 

hiring labor during certain periods. Similarly, if idle equipment and machinery is 

aimed to be prevented by returning the rented machinery and renting it again when 

needed may cause additional problems. Increased transportation costs, problems in 

delivering the machine on time and lack of available machinery to rent in certain 

periods are some of the problems to be faced for frequent renting and returning 

equipment. As a result, resource demand profile is aimed to be smoothed as much as 

possible in order to minimize idle time of the resources. This problem type is called 

resource leveling. Resource leveling does not try to minimize the peak resource 

demand on purpose and assumes no resource limitation on the availabilities of the 

resources. However, at the end of the resource leveling, decrease in the maximum 

demand might be achieved. 
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There can be limitations on the hiring of certain labor types or renting of equipments. 

Besides, there can be limitations on accommodation of the labors in the construction 

site. As a result of these, there can be limitations on the maximum number of 

employed labor and/or on the hired machinery. In most of the cases, resource 

demand profile of the project obtained by taking early start times of the activities into 

account overrides the resource limits. Consequently, delays in some of the activities 

are unavoidable, if these activities are on the critical path, than project duration 

increases compared with the case of unlimited resources. Aim of resource 

constrained project scheduling problem is to complete the project in minimum 

duration without overriding the resource limitations. Optimum solution of resource 

constrained project scheduling problem gives the shortest project completion 

duration which satisfies the resource constraints and CPM relationships. 

 

In this study, TCT, resource leveling and resource constrained scheduling problems 

will be handled. In this respect, optimum or near-optimum solutions of these 

problems are aimed. In order to achieve this task, meta-heuristic optimization 

algorithms are implemented. 

 

Formulation of resource leveling or resource allocation is significantly difficult by 

means of polynomial functions or linear equations. Similarly, heuristic algorithms 

are problem dependent and can easily get stuck into local minima. Consequently, 

meta-heuristic algorithms are preferred for the solution method of the optimization 

problems. 

 

1.2 Prospects from this thesis 

 

Obtaining optimum or near-optimum solution for the project planning problems 

consisting of simple TCT, resource leveling and resource allocation is the main 

objective of this research. Meta-heuristic algorithms are implemented for the search 

of optimum or near optimum solution. Optimization procedure is performed by 

software generated during the thesis study. The software is developed in a way 

capable of performing CPM scheduling for the four kinds of logical relationships; 

FS, FF, SS, SF. Furthermore, positive or negative lags can be assigned to the 
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relationships between the activities. The computer software is written and compiled 

by Microsoft .NET Visual Studio C++ and Microsoft Visual Studio 2008 C# 

programming software. 

 

Genetic Algorithm (GA), Genetic Algorithm with Simulated Annealing(GASA), 

Hybrid Genetic Algorithm with Simulated Annealing (HGASA), Hybrid Genetic 

Algorithm with Quantum Simulated Annealing (HGAQSA), Genetic Memetic 

Algorithm with Simulated Annealing (GMASA), Genetic Algorithm with Simulated 

Annealing and Variable Neighborhood Search (GASAVNS), Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO) and Electromagnetic Scatter 

Search (ESS) meta-heuristic algorithms are implemented and analyzed for the 

solution of optimization problem. 

 

This thesis consists of solution of different type of planning problems. In the first 

task, TCT type problems with unlimited resources are analyzed. For the analysis, 

three case problems obtained from the literature are used. In addition to this, a 63-

activity network is generated as a test problem. 

 

Second task of the thesis study is the resource leveling. Similar to the previous task, 

sample problems obtained from literature is used and the results are compared by the 

results obtained from the literature. In addition to this, convergence speed of the 

algorithms is also taken into account. 

 

Third task involves solution of resource constrained scheduling problem. In this task, 

shortest construction duration is searched by taking limited resources into account 

with one execution mode for each activity. Randomly generated networks obtained 

from PSPLIB are used as test problems. 

 

Fourth task consists of resource constrained project scheduling with multi-mode 

activity execution modes. Solution algorithm aims to minimize project duration by 

choosing the optimum activity priorities and their execution modes. Performances of 

the algorithms are tested by JXX and RX multi-mode resource constrained problem 

sets obtained from PSPLIB. 
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Fifth task consists of optimization of project cost with limited resources for the 

projects with multi activity execution modes. The solution aims to minimize the 

summation of the direct and indirect costs without overriding the resource 

restrictions. 

 

1.3 Scope and Limitations 

 

In this thesis, it is aimed to obtain global optima for the solution of planning 

problems. However, if the number of activities of the project increases, the search 

space enlarges significantly which requires excessive number of iterations. Thus, 

computation time of the solution for global optima would be longer than reasonable 

duration. For this reason, near optimum solutions are aimed to be obtained for large 

projects in order to limit computation duration. 

 

1.4 Organization of Thesis 

 

In the second chapter of this thesis; CPM, project progress monitoring and tender 

types will be briefly explained. In the third chapter, meta-heuristic algorithms 

implemented in this thesis study are explained. Their implementation for the solution 

of optimization problem is illustrated. In chapter four, TCT analyzes are performed. 

Sample problems and analysis results are illustrated. Chapter five consists of the 

analysis related with resource leveling problems. In chapter six, resource constrained 

project scheduling with single activity execution mode is included. Chapter seven 

includes the resource constrained project scheduling problem with multi mode 

activity execution modes. TCT problem with limited resources is analyzed in chapter 

eight and an overall conclusion of the thesis is performed in chapter nine. 
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CHAPTER 2 

 

2. PROJECT PLANNING, TIME COST TRADE-OFF AND RESOURCE 
ALLOCATION PROBLEMS 

 

 

In this chapter, the basics of project scheduling, time cost trade-off (TCT) and 

resource leveling and resource constraint project scheduling are explained. Well 

known project scheduling method CPM and the topics related with the CPM is 

briefly explained. Objectives of the resource leveling and resource allocation 

problems and the related studies are mentioned. 

 

2.1 CPM  

Critical Path Method (CPM) was invented for planning and scheduling of projects. 

The planning and scheduling of construction activities has vital importance because 

the amount and the time of the resource and material requirements will be known 

before the commencement of the project. The benefits of using CPM can be briefly 

explained as (Suhanic 2001): 

 

• CPM pinpoints the activities whose completion times are responsible for 

establishing the overall project duration. Identification of critical activities 

helps to pay more attention on these activities to keep them on schedule. 

• CPM gives a quantitative evaluation of the amount of float that each activity 

has. Within the limits of float time the activities with float may be started and 

finished later than the earliest dates, or they may be shifted in time to smooth 

labor or equipment requirements. This property of CPM gives the data for 

resource leveling. 

• CPM shows the most economical scheduling for all activities for each 

possible project completion date. This allows consideration of both time and 

cost in choosing methods, equipment, materials, crews, and work hours. 
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• CPM provides the necessary data for choosing the best project completion 

date which is used for TCT analyses. 

• Effect of changing the activity execution modes is monitored effectively by 

CPM networks. 

 

CPM can be implemented on two different network types: activity on arrow and 

activity on node. As their name implies, in activity on arrow diagram the activities 

are represented by the arrows and the arrows are connected to the nodes which are 

events. In activity on node, the activities are represented by nodes and the logical 

relationships between the activities are demonstrated by the arrows. 

 

In this thesis, the scheduling of the construction activities is performed by activity on 

node diagrams. The reason of this selection is, construction of AoA diagrams 

requires considerably more endeavor than construction of AoN diagrams and there is 

less data requirement from the user. In addition to this, activity on node diagrams are 

suitable for defining logical relationships and lags. Terminology for the CPM 

planning is represented below (Suhanic 2001): 

 

Activity: Discretely defined task. Activities are specified by an activity number, 

description, duration, and type. Furthermore, cost and resource demand may also be 

represented. 

Critical Path: Longest path through a schedule network, or the chain or sequence of 

activities that takes the longest time, or the longest irreducible sequence of events. 

The critical path determines the project duration. 

Duration: Time period expressed in working days between the start and finish of an 

activity. 

Early Start Date (ES): The earliest date that and activity can start based on the 

logical relationships among its predecessors. 

Early Finish Date (EF): The earliest date that an activity can finish based on its 

duration, and logical relationships among its predecessors. 

Late Start Date (LS): Latest start date calculated for an activity on the backward 

pass. Late start is the activity latest start date allowed so as not to delay the project 

completion date. 
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Late Finish (LF): Latest finish date calculated for an activity on the backward pass. 

Late finish is the activity latest finish date allowed so as not to delay the project 

completion date. 

Finish to Finish (FF): Network relationship whereby the finish of a preceding 

activity is a condition for the finish of the succeeding activity. 

Finish to Start (FS): Network relationship whereby the preceding activity must 

finish before the succeeding activity can start. 

Start to Finish (SF): Network relationship whereby the activity can only finish if its 

predecessor activity has started. 

Start to Start (SS): Network relationship whereby the activity can only start if its 

predecessor activity has started. 

Total Float: Amount of leeway that an activity has in the schedule before it 

adversely affects the critical path. 

Free Float: The amount of leeway an activity has before it adversely affects another 

activity. 

Forward Pass: Early start and early finish dates of all activities are calculated. The 

longest sequence of activities sets the critical path and the project completion date. 

Backward Pass: Late start and late finish dates for all activities are determined by 

calculating backwards from the project end date, set by the forward pass calculation, 

to its beginning. Activities that have the same early and late start or same early and 

late finish dates are on the critical path. These activities are called critical activity. 

 

2.2 TCT 

 

Time Cost Trade off analysis is the compression of the project schedule to achieve a 

more favorable outcome in terms of project duration, cost, and projected revenues. 

The objectives of the TCT analysis are to compress the project to the optimum 

duration which minimizes the total project cost. 

 

TCT analysis is performed by evaluating the possible crashing alternatives of the 

activities. Possible crashing durations can be obtained in three ways: by over sizing 

the crew, by over timing or by executing another construction technique which is 

faster but more expensive. 
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Total project cost consists of two parts, direct costs and indirect costs. Direct costs 

are the activity based costs which are the labor, material, equipment and machinery 

costs of the project. As the activity’s normal duration is crashed, it is expected that 

the direct costs are increased. This is because in order to finish a certain activity, 

larger crews are assigned or the crew is over-timed. Larger crew size or over-timing 

decreases the productivity. As a result of this, unit cost per unit output increases. 

Indirect costs are the overhead costs and possible delay penalties of the projects. 

Overhead cost includes any costs of the project which can not be associated with the 

activities of the project. Salaries of the cook, security staff and office staff can be 

counted as overhead costs. Heating or cooling, illuminating of the site and the 

barracks are also included in overhead costs of the project. Overhead costs fluctuate 

during the project as it affected by the climate and the number of the workers in the 

site. In order to simplify the cost computations, overhead cost is usually assumed 

constant during the project. Consequently, indirect cost decreases when the project 

duration decreases. 

 

TCT is one of the major interests of the construction management, since the optimum 

solution of TCT problems directly increases the productivity thus the profit of the 

project. As this is the case, several algorithms and heuristics are developed and 

implemented which aims to achieve the optimum solution of TCT problems. 

Importance of the TCT problem was recognized for approximately half a century 

ago, almost simultaneously with the development of project analysis techniques by 

Fulkerson and Kelly (De et al. 1995). First considerable attempt to solve TCT 

problem can be counted as the heuristic algorithm derived by Nicolai Siemens 

(Siemens 1971) and later his algorithm is improved by Goyal (1975, 1996).  

 

This heuristic algorithm was based on crashing of the longest path(s) of the network 

if total crashing cost was less than the savings obtained by the reduction of indirect 

costs. The drawback of this algorithm is the requirement of the determination of all 

paths through the network. This requirement can easily be satisfied for a small sized 

project but for large projects, it would be impossible to store all paths in the memory 

of the computer. The number of path in the network grows exponentially as some of 

the activities have more than one predecessor. If some of the paths are eliminated by 
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means of a heuristic algorithm, it can be possible to be stuck in local minimum, as a 

result heuristic methods are infeasible to implement if global minima is intended. 

Furthermore, this heuristic method is suitable for continuous crashing functions. If 

discrete crashing functions are assigned to the activities, the heuristic algorithm 

would prefer the least crashing cost sloped activity. If the activity have to be crashed 

more than the difference between the critical path and the second longest path, than 

the former critical path would be crashed unnecessarily longer. Other activities on 

the previous critical path might provide cheaper crashing alternatives which could 

end up with the same project length. To sum up, heuristic methods can be considered 

as a satisfactory tool for solution of TCT problems as they can provide near optimum 

solutions with reasonable computational duration. Consequently, many researchers 

implement heuristic algorithms in their studies for the search of the optimum solution 

of TCT problem (Panagiotafopoulos 1977, Schwarze 1980, Barber and Boardman 

1988, Chiu and Chiu 2005, Vanhoucke and Debels 2007). 

 

Some heuristic methods were also generated to solve time cost trade-off problems. 

These methods provide good solutions, but do not guarantee optimality. Fondahl’s 

method (1961), Siemens’s model (1971), and Moselhi’s model (1993) are examples 

of heuristic approaches. 

 

Many researchers attempted to solve TCT by linear programming (Babu and Suresh 

1996, Burns et al. 1996, Khang and Myint 1999, Wei and Wang 2003, Moussourakis 

and Haksever 2004, Vanhoucke 2005, Yang 2005a, 2005b, Bidhandi 2006). The 

advantage of Linear Programming (LP) can be seen as any kind of TCT problem can 

be converted into LP and solved by using commercial linear programming software. 

If the cost function includes quadratic equations, the quadratic equations are 

linearized by Taylor series expansion and the LP is solved iteratively. The 

disadvantage of the LP is that the number of parameters grows considerably as the 

number of activities increases. Parameter number to be solved is around four to five 

times the number of activities depending on the TCT problem which makes the 

solution of TCT problem difficult for large sized projects. If there is not any memory 

limitation on the computer, it is guaranteed to obtain optimum solution of TCT by 

LP.  
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The nature of the TCT problems is suitable for the solution of linear programming. It 

is expected that the cost slope of activities increase as the activities are further 

crashed. This is mainly caused by the reduced productivity of labor and machinery as 

the crew size or amount of overtime is increased. As a result of this each activity 

would have an increasing sloped crash duration versus crash cost curve. As a result 

of this, the realistic crashing alternatives end up with convex solution space which 

guarantees the solution algorithm of LP to converge into global optimum.  

  

Dynamic Programming (DP) is a talented method which reduces the network size 

significantly by merging the activities. DP aims to reduce the network to one node 

system and solves the TCT problem according to the one node system’s crashing 

alternatives. The reduction algorithm can be programmed but keeping or eliminating 

the crashing alternatives of the reduced alternatives is difficult and requires high 

storage capacity as activities are reduced for large projects. In addition to this, every 

network can not be reduced to a one node system because of complex logical 

relationships between the activities. Merging of the alternatives are not possible if 

there are complex relationships and those nodes are kept as they are. At the end of 

the merging process, the network is solved by exhaustive enumeration of the 

complex nodes which can not be merged. Computation duration of DP is reasonable 

for small and simple networks, however for the complex networks exhaustive 

enumeration may not be practical. De et al. 1995 and Demeulemeester et al. 1996 

clearly illustrated and explained the decomposition algorithms of the network. 

 

Mathematical programming methods were generally used to solve time cost trade-off 

problems. The methods used either linear programming or dynamic programming 

(Kelly 1961, Meyer and Shaffer 1965, Butcher 1967, Talbot 1982). In these methods, 

the relationships between activity costs and durations are generally assumed as: (1) 

linear or nonlinear; (2) concave, convex, or not fixed; (3) discrete or continuous; or 

(4) hybrid.  

 

Ant Colony Optimization (ACO) had been implemented by Kuang and Xiong 

(2005). They solved a small project with 7 activities and find the global optimum 

with ACO by searching only 6.63% of the possible search space. Afshar et al. 
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(2007), Ng and Zhang (2008) and Xiong and Kuang (2008) also analyzed TCT 

problem by ACO meta-heuristic algorithms. Ng and Zhang (2008) embedded a local 

search algorithm to the ACO. 

 

Afshar et al. (2009) proposed Nondominated Archiving ACO (NA-ACO) algorithm 

in which all ant colonies are initiated by the same number of ants and arbitrary order 

is given to the colonies. Ants in a certain colony simultaneously explore a solution 

according to the objective assigned to that colony. Solutions found for one objective 

in one cycle are evaluated in the next colony according to the competing objective 

assigned to that colony. If there is an improvement the optimal path is updated. 

Afshar et al. (2009) used 18-activity project analyzed by Hegazy (1999) before. The 

project is analyzed for several indirect project costs. 

 

Genetics Algorithm (GA) is applied for the solution of TCT by many researchers 

since GA is a good candidate for finding the global optimum (Zheng et al. 2004, Li 

and Love 1997, Li et al. 1999, Zheng et al. 2005, Feng et al. 1997, Eshtehardian et al. 

2008, Elbeltagi et al. 2005). The advantages of GA can be counted as its ability to 

manage any kind of crashing function such as discrete, linear, and nonlinear, can 

easily be programmed and can systematically surfs through the search space to avoid 

local minimum. However, as the number of activities increases the number of 

evaluation should be increased in order to obtain better results increasing the 

computation time increases as well. 

 

Meta-heuristic algorithms are widely applied for the solution of simple TCT 

problem, although LP is guaranteed to solve simple TCT problem. One reason for the 

application of meta-heuristic algorithm is that, the LP is a difficult method to apply 

for a planning engineer. The linear equations and definition of slack variables require 

skilled planners. However, there is not any requirement of a-priori information if 

meta-heuristic algorithms are implemented. Only definition of crashing alternatives 

and CPM network is enough. 

 

Meta-heuristic algorithms are easy to implement, but they can not always guarantee 

optimum solution. The largest project analyzed by meta-heuristic algorithm found in 
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the literature was 18-activity project. Even the analyzes of 18-activity project did not 

obtain the optimum solution at each trial (Elbeltagi et al. 2005). In this situation the 

meta-heuristic algorithms becomes undependable for the optimization of TCT 

problems. 

 

Main deficiency of the existing meta-heuristic algorithms is that the algorithms could 

not improve the current best even the iteration number is increased. This is because 

the meta-heuristic algorithms get stuck into local optima and could not escape. The 

other reason is the imperfections in the search algorithms that the optimum search is 

mainly based on random changes committed on the individuals. The search 

algorithm should involve conscious optimum search process. 

 

In order to improve the convergence capability of the algorithms, hybrid meta-

heuristic algorithms are developed in this thesis study. Genetic algorithm, simulated 

annealing, memetic search algorithm and variable neighborhood search algorithms 

are the meta-heuristic methods developed for improving the convergence capability. 

 

Optimum solution of simple TCT problem by meta-heuristic algorithms can be seen 

as an inessential endeavour, as the guaranteed optimal solution can be obtained by 

LP. However, the main reason of the analysis of simple TCT problems with meta-

heuristic algorithms is to use the TCT problems as a tool which would help to 

monitor the progress obtained in the convergence capacity. 

 

Instead of using sinusoidal functions which are theoretical testing examples, it is 

preferred to use realistic project planning example problems. TCT is a good 

candidate for this purpose as the optimum solution of the problem can be obtained by 

LP. In addition to this, the problem characteristics of TCT are similar to resource 

levelling and resource allocation problems. If a meta-heuristic algorithm successfully 

converges to the global optima in TCT problem, than it can be expected that the 

meta-heuristic algorithm will also converge to optimum or near-optimum in resource 

levelling and resource allocation problems. However, if a meta-heuristic algorithm 

converges into global optima in sinusoidal test functions, it can not be soundly 
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expected that the algorithm will also converge to optimum in resource levelling and 

resource constrained scheduling problems. 

 

In addition to this, knowledge of global optima of the test function has significant 

importance. Otherwise, only relative improvements would be able to be monitored 

by comparing the results of the other meta-heuristic methods. However, by this way 

absolute convergence capability of the meta-heuristic algorithms would be able to be 

monitored. 

 

2.3 Resource Leveling 

 

The resource leveling problem arises when there are sufficient resources available 

and it is necessary to reduce the fluctuations in the resource usage over the project 

duration. The objective of the leveling process is to “smooth” resource usage profile 

of the project without elongating the project duration as much as possible. This is 

accomplished by rescheduling of activities within their available slack to give the 

most acceptable profiles (Davis E. W. 1973). In resource leveling, the project 

duration of the original critical path remains unchanged (Senouci and Adeli  2001). 

 

Fluctuations of resources are undesirable for the contractor for two reasons. It is 

expensive to hire and fire labor on a short term basis to satisfy fluctuating resource 

requirements. Resources can not be managed efficiently, if the schedule demands 

more output per day than possible with available resources (Son and Skibniewski 

1999). Efficient use of project resources will decrease construction costs to owners 

and consumers, and at the same time, will increase contractor’s profits (Hegazy and 

Kassab 2003). In other words, alternative labor utilization strategies and better 

utilization of existing labor resources are needed to improve work productivity and 

reduce construction costs (Burleson 1997).  

 

The peak demand and fluctuations of resources are undesirable for the contractor 

because: it is expensive to hire and fire labor on a short term basis to satisfy 

fluctuating resource requirements; resources cannot be managed efficiently if the 
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schedule demands more output per day than possible with available resources (Harris 

1978; Stevens 1990; Martinez and Ioannou 1993). 

 

The availability of various resource utilization options at the activity level creates a 

very large number of possible combinations of resource utilization plans at the 

project level, where each is associated with a unique project duration and cost 

(Kandil and El Rayes, 2006). 

 

Resource leveling method was introduced (Burgess and Killebrew 1962) in order to 

reduce the fluctuations in the resource profile. Noncritical activities are shifted 

within their available float to minimize the following objective function: 
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Where T is the project duration; iy  is the sum of resource requirements of the 

activities performed at time unit i; and iy  is mean of the resource requirement during 

the project. 

 

The Burgess procedure can be explained in following (Moder et al. 1983): 

 

• List the activities in a certain priority, i.e. depending on total float, activity 

ID, free floats, activity duration or resource demand. 

• Starting with the last activity listed according to the priority rule. Schedule 

the network by delaying the activity one period each time and compute the 

evaluation function. Select the schedule which gives the least evaluation 

function. 

• Hold the previous activity fixed and repeat the previous step for the next 

activity. In order to search possible alternative the fixed activity is released if 

additional float is obtained for the present activity. If there is an improvement 

in the evaluation function, start and finish time of the activity is updated. 

• The process is repeated until all activities are considered. This completes one 

cycle. 
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• Additional schedule is performed by starting from the last activity in the list 

which permits only delaying of the activities. If there is an improvement in 

the evaluation function, the whole cycle is repeated. 

 

Application of Burgess procedure gives smoother resource profile but it is not 

guaranteed to obtain the possible least evaluation function. 

 

In the past few decades, traditional resource optimization was based on either 

mathematical methods or heuristic techniques. Mathematical methods, such as 

integer, linear, or dynamic programming have been proposed for individual resource 

problems. Mathematical methods, however, are computationally non-tractable for 

any real life project, which is reasonable in size (Moselhi and Lorterapong 1993; 

Allam 1988). In addition, mathematical models suffer from being complex in their 

formulation and may be trapped in local optimum (Li and Love1997; Hegazy 2001). 

Heuristic methods, on the other hand, use experience and rules-of-thumb, rather than 

rigorous mathematical formulations. Despite their simplicity, heuristic methods 

perform with varying effectiveness when used on different project networks, and 

there are no hard guidelines that help in selecting the best heuristic approach to use. 

Therefore, the heuristic methods can not guarantee optimum solutions (Hegazy and 

Kassab 2003).  

 

Hiyassat (2000) modified the minimum moment approach in resource leveling. The 

proposed method assumes limited project duration with an unlimited availability of 

resources. The final goal of the modification was to reduce the amount of 

calculations without sacrificing the accuracy of the results.  

 

Son and Skibniewski (1999) introduced a multi-heuristic model called local 

optimizer and a hybrid model combining the local optimizer with simulated 

annealing for the solution of resource leveling problems. 

 

Easa (1989) used integer programming techniques to solve the resource leveling 

problem. Integer linear programming procedures that have been developed for the 

resource leveling problem include (Ahuja, 1976; Easa, 1989; Elmaghraby, 1977; 
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Moodie and Mandeville, 1966). For example, Ahuja (1976) presents an integer linear 

programming formulation for minimizing resource variations between consecutive 

periods, and solves it using an explicit enumeration algorithm. Ahuja (1976) 

presented exhaustive enumeration procedures which permit the calculation of 

optimum solutions for resource leveling problems. However, the resource leveling 

problem has a phenomenon of “combinatorial explosion,” especially for large-scale 

problems. However, integer linear programming algorithm does not guarantee 

finding global optima of the evaluation function resource leveling. When the 

complexity of linear programming algorithm is taken into account, implementation 

of meta-heuristic algorithms for the solution of resource leveling problems will be 

clearly acceptable. To avoid the explosion problem, heuristic rules were mostly used 

to solve the problems (Easa 1989).   

 

Major efforts for resource leveling heuristic procedures have been expended in 

developing rules which produce “good” feasible solutions. To date, many heuristic 

scheduling rules have been proposed to solve project scheduling problems. The 

PACK model (Harris R. B. 1990) and the NASTRAT model ( Padilla and Carr 1991 

) are examples of heuristic methods. Wiest and Levy (1977), Antill and Woodhead 

(1982), Moder et el. (1983), have also developed heuristic rules for construction 

resource leveling problems. Mathematical models may guarantee optimal solutions 

on small-scale problems. However, it is difficult to create general mathematical 

models and extensive computational effort is required for larger problems (Leu S. S. 

et al. 2000). 

 

Heuristic procedures developed for the resource leveling problem include those 

reported in Antill and Woodhead (1970), Burgess and Killebrew (1962), Harris 

(1978), Shaffer et al. (1965), Woodworth and Willie, (1975). The basic concept of 

these heuristics is to reschedule non-critical activities within the limits of available 

float according to some heuristic rule to achieve a better distribution of resource 

usage.  
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2.4 Single Mode Resource Constrained Project Scheduling 

 

Resource-constrained scheduling arises when there are definite limits on the amount 

of resources available. The scheduling objective is to extend the project duration as 

little as possible beyond the original critical path duration in such a way that the 

resource constraints are met. In this process, both critical and noncritical activities 

are shifted. 

 

Available resources are not unlimited and most of the time, initial schedule obtained 

from the CPM demands for excessive amounts of resources than available. In such 

cases, delaying the activities within the total floats may not help to decrease resource 

requirement to the available amounts. If this is the case, it will be impossible to 

complete the project within the latest finish time obtained by CPM. 

 

If resources are not adequate for the commencement of an activity, the activity is 

delayed until the resources are adequate. The aim is to minimize the project 

elongation caused by the resource shortage. Priorities are assigned to the activities 

which demand for the same resources and best combination of activity priorities is 

searched via analytic or heuristic algorithms. 

 

If there are limited amounts of resources available during each time period of project 

duration, the problem is called resource constrained project scheduling problem. 

When the amounts available are not sufficient to satisfy demands of concurrent 

activities, sequencing decisions are required, often with a resultant increase in project 

duration beyond the original Critical Path duration. While the most common 

objective is that of minimizing the increase in project duration, other objectives, such 

as cost minimization, are not unusual (Davis E. W. 1973).  

 

If there are more than one alternative for activity duration and resource requirement, 

than the problem is called “multi mode resource constrained project scheduling”. In 

this problem both priority of activities and construction alternative of that activity are 

important. 
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There are two general methods for applying heuristics in project resource allocation 

problems. A serial scheduling procedure is one in which all activities of the project 

are ranked in order of priority as a single group, using some heuristic, and then 

scheduled. Activities that can not be started at their early start time are progressively 

delayed until sufficient resources are available. 

 

In parallel scheduling, all activities starting in a given time period are ranked as a 

group in order of priority and resources allocated according to this priority as long as 

available. When an activity can not be scheduled in a given time period for lack of 

resources, it is delayed until the next time period. At each successive time period a 

new rank-ordering of all eligible activities is made and the process is continued until 

all activities have been scheduled (Moder et al. 1983). 

 

Many researcher are focused on SRCPSP (Davis 1973, Woodworth and Willie 1975, 

Patterson 1984, Allam 1988, Al-jibouri 2002, Bock and Patterson 1990, Seibert and 

Gerald 1991, Dean et al. 1992, Chan et al. 1996, Nudtasomboon and Randhawa 

1997, Savin et al. 1997, Savin et al. 1998, Mattila and Abraham 1998, Leu and Yang 

1999, Brucker et al. 1999, Hiyassat 2000, Leu et al. 2000, Neumann and 

Zimmermann 2000, Senouci and Adeli 2001, Wei et al. 2002). 

 

The zero-one integer linear programming model has been widely used to formulate 

the resource allocation problem (Elmaghraby and Cole 1963, Brand et al. 1964, 

Hadley 1964, Elmaghraby 1967, Pritsker et al.1969, Davis 1973, Wiest and Levy 

1977). The earliest studies show that the LP is implemented for the solution of 

SRCPSP since 1960s. Early attempts to solve the resource-constrained scheduling 

problem concentrated in two areas: the formulation and solution of the problem as a 

mathematical programming problem, and the development of heuristic or 

approximate solution procedures for obtaining good or satisfying solutions to the 

problem. Numerous formulations of the problem were proposed but found to be 

impractical except for solving small problems of only a few activities. Wiest (1967) 

showed that in order to solve a 55-activity project with four resource types, solution 

of more than 6000 equations and 1600 variables is necessary. 
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Later researchers improved on the formulation techniques and solution of larger 

networks became possible. In addition to this, increase of the computer memory and 

CPU clock speed also helped application of LP for the solution of SRCPSP. The 

researchers improved the LP formulation (Patterson and Huber 1974, Lee et al. 1976, 

Hannan 1978, Slowinski 1981, Lee and Olson 1984, Mohanty and Siddiq 1989). 

 

Patterson and Huber (1974) combined a minimum bounding procedure with LP to 

reduce the computation time required in arriving at minimum project duration. The 

algorithm starts the optimization procedure with a good lower bound solution to 

reduce the domain of possible solutions over which the LP algorithm must search. 

 

To overcome the problems associated with optimization, special algorithms have 

been developed for solving the resource-constrained problems. These include the 

bounded enumeration approach (Davis and Heidorn, 1971); the branch and bound 

approach (Johnson, 1967; Stinson, 1976; Stinson et al., 1978); and the implicit 

enumeration approach (Patterson and Roth (1976), Talbot (1976), (1982), Talbot and 

Patterson, (1978)).  

 

Enumeration techniques are based on enumeration of all possible activity sequencing 

combinations. The term Branch and Bound (B&B) refers to a generic type of 

optimization procedure which involves partitioning a problem into sub-problems. 

B&B can be modeled by the nodes and branches of a tree, to enumerate possible 

alternatives in arriving at the best solution. The results from these approaches vary 

depending on model complexity. However, techniques such as the Talbot’s implicit 

enumeration algorithm (Talbot, 1976) have been shown to provide efficient solutions 

to the constrained project problem. Power of the algorithm comes from the facts that 

the enumeration process is implicit, in which some schedule alternatives can be 

immediately identified as not capable of leading to an improvement in the search for 

the optimum schedule. With this property, numerous schedule alternatives are 

eliminated without evaluating them. 

 

Solution process of SRCPSP by B&B consists of branching, building up the tree; 

bounding, evaluating the nodes; pruning non-optimal portions of the tree. Nodes in 
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the decision tree form unique partial schedules. Each partial schedule represents 

scheduling decisions for some subset of the total number of activities. The partial 

schedules are always feasible which satisfy both precedence and resource constraints. 

In addition to this, there is no redundancy in the schedule meaning that no two 

schedules are alike (Moder et al. 1983).  

 

Tree generation process starts with creation of an initial node representing the set of 

activities which can be started at the beginning of the project. A family of partial 

schedules is created by branches with new nodes to the three starting from the first 

node. Each node in the family created from a particular node has in common with the 

others all scheduling decisions made previously in creating the common node. 

However each partial schedule is unique from the others is that it includes one new 

decision involving the scheduling of one or more activities previously unscheduled. 

 

Therefore each branching operation creates as many new partial schedules as feasible 

combinations of activities that can enter the schedule in time, tn. Thus a partial 

schedule, PSn, can be visualized as a real project in progress at time tn where some 

activities, the complete set Cn, will have been completed at tn and the others, active 

set An, are actively in progress and have to be finished at a later date. To prevent 

growth in the number of branches, infeasible partial projects are pruned. 

 

At any point in the project scheduling, a minimum length schedule for the remaining, 

unscheduled, activities can be calculated by ignoring possible resource conflicts. In 

this case, the remaining of the project is scheduled by only considering the activity 

durations and precedence requirements. The completion time of this path constitutes 

a lower bound on completion time of any partial schedule derived from this partial 

schedule. Lower bound obtained with this procedure is called precedence-based 

lower bound (LBP). If the obtained lower bound is not less than the completion time 

for a known complete schedule, the partial schedule may be pruned. 

 

Apart from LBP, by ignoring precedence constraints and only taking resource 

requirements into account a resource-based lower bound (LBR) can be defined. With 

constraints on resource availabilities and resource demands of the activities, 
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minimum project completion duration can be computed. One way to improve the 

lower bounds is to incorporate heads and tails into LP-formulation (Moder et al. 

1983). 

 

Demeulemeester and Herroelen (1992) developed a branch and bound procedure for 

the multiple resource-constrained project scheduling problem. The procedure was 

based on a depth-first solution strategy in which nodes in the solution tree represent 

resource and precedence feasible partial schedules. Branches emanating from a 

parent node correspond to exhaustive and minimal combinations of activities, the 

delay of which resolves conflicts at each parent node. 

 

Brucker P. et al. (1998) proposed a branch and bound algorithm for the resource-

constrained project scheduling problem. The branching scheme starts from a graph 

representing a set of conjunctions, the classical finish start precedence constraints, 

and disjunctions, induced by the resource constraints. The algorithm either 

introduces disjunctive constraints between pairs of activities or places these activities 

in parallel. Concepts of immediate selection are developed in connection with this 

branching scheme. Immediate selection allows adding conjunctions as well as further 

disjunctions and parallel relations. The computational tests show that the algorithm 

does not perform well on problems with small capacity factor (up to 0.5). To 

improve the performance for such problems better lower bounds should be derived.  

 

A depth-first branch and bound procedure proposed by Speranza and Vercellis 

(1993), and exact branch-and-bound algorithm (Sprecher and Drexl, 1998) are also 

proposed. 

 

As the early attempts at using integer programming to solve the exact version of this 

problem were unsuccessful, numerous specialized approaches for scheduling 

resource constrained project scheduling problem were developed (Johnson 1967, 

Davis 1969, Balas 1970 and 1971, Schrage 1970, Davis and Heidorn 1971, 

Gorenstein 1972, Fisher 1973, Patterson 1973, Patterson and Huber 1974, Patterson 

and Roth 1976, Talbot 1976, Stinson 1976, 1978, Patterson J. H. 1984, Kurtulus and 

Narula 1985, Norbis and Smith 1988). 



23 
 

The studies on heuristic algorithms has shown that one heuristic which gives good 

results for a project might not give that much successful results for another project. 

This is the greatest disadvantage of the heuristics: Rules perform well on one 

problem may perform poorly on another. In practice, even with more sophisticated 

procedures, it is not possible to guarantee in which particular heuristic, or 

combination of heuristics, will produce best results for a given problem. In spite of 

not guarantying finding the global optima, heuristic algorithms are used widely for 

the solution of SRCPSP. Some of the important heuristics are illustrated in Table 2-1.  

 

 

In the optimization of manufacturing projects, obtaining global optima is certainly 

essential. However, when the construction projects are concerned, the schedules 

obtained by heuristic algorithms are acceptable to use for construction planning 

purposes when the uncertainties of the activity durations, resource constraints and 

labor productivity are considered (Moder et al. 1983). 

 

 

Comparison of the heuristic algorithms is performed by Davis and Patterson (1975). 

In the analysis, small and medium sized multi-resource problems for which the 

optimal solution, in terms of minimum project completion duration, could be 

calculated. Deviation of the heuristic rules from the optimum duration is given in 

Table 2-2. The explanations of the heuristic algorithms can be found in Table 2-1. 
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Table 2-1 Some of heuristics used for the solution of SRCPSP 
 

Heuristic Scheduling Rules Evaluated 

Rule Notation Operating Features 
    
Minimum activity 
slack 

MINSLK Schedules first those activities with 
lowest activity slack time (total float) 

    
Minimum late finish 
time 

LFT 
  

Schedules first those activities with the 
earliest values of late finish time 

    
Resource scheduling 
method 

RSM 
  

Priority index calculated on basis of 
pairwise comparison of activity early 
finish and late start times. Method gives 
priority to activities roughly in order of 
increasing late finish time   

  
  
  

Greatest resource 
demand 
  

GRD 
  
  

Schedules first those activities with 
greatest resource demand in order to 
complete potential bottleneck activities 

    
Greatest resource 
utilization 

GRU 

  
    

Gives priority to that group of activities 
which results in the minimum amount of 
idle resources in each scheduling interval, 
involves an integer linear programming 
logarithm 

    
Shortest Imminent 
Operations 

SIO 

    

Schedules first those activities with 
shortest durations in an attempt to 
complete the greatest number of activities 
within a given time span 

    
Most Jobs Possible MJP 

  
    

Gives priority to the largest possible 
group of jobs which can be scheduled in 
an interval. Involves an integer linear 
programming logarithm 

    
Random activity 
selection 

RAN Priority given to jobs selected at random, 
subject to resource availability limits. 
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Table 2-2 Heuristic algorithms result (Davis and Patterson 1975) 

 
Heuristic Algorithm Deviation (%) Optimum found (%) 
MINSLK 5,6 29 
LFT 6,7 20 
RSM 6,8 14 
RAN 11,4 5 
GRU 13,1 2 
GRD 13,1 13 
SIO 15,3 1 
MJP 16,0 2 

 

 

Recent comparison of heuristic methods is performed by Kanit et al. (2009). Ten 

housing projects in Turkey are investigated by three heuristic algorithms; maximum 

remaining path length (MRPL), LFT and MINSLCK. The performance of each 

priority rule is evaluated in relation to the duration of the project. Besides labor and 

equipment constraints, limitations in delivery of material if also considered.  In the 

analysis MRPL priority rule present the best results. 

 

Methods implemented for the solution of resource constrained scheduling problem 

includes genetic algorithms, tabu search, simulated annealing, scatter search, ant 

systems, mathematical formulations and linear integer programming. 

 

GA has received considerable attention regarding their potential as an optimization 

technique. When using GA, chromosome patterns depend on the problem to be 

coded. There are two basic chromosome formats in GA: (1) binary coding; and (2) 

ordering coding. The forms of crossover and mutation operators also depend on the 

way the problem is coded. Ordering coding may represent the priority of the 

activities or the activities with the certain priority.  

 

Research has been done in the optimization of construction scheduling using GA 

(Chan et al. 1996; Chua et al. 1997; Feng et al. 1997). Leu and Yang (1999) 

proposed a genetic algorithm based multi-criteria computational optimum scheduling 
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model, which integrates the time/cost trade-off model, resource-limited model, and 

resource leveling model. 

 

In addition to the researchers mentioned above, GA is also implemented by Valls et 

al. (2003), Kochetov and Stolyar (2003), Alcaraz et al. (2004), Hartmann (2002), 

Coelho and Tavares (2003), Leon and Ramamoorthy (1995) for the solution of 

SRCPSP. The algorithms differ in execution of the scheduling and sampling 

operators. Kim and Ellis (2008) implemented a GA based algorithm and tested on 15 

of the projects of the PSPLIB project set. 

 

Tabu search is implemented by Klein (2000), Nonobe and Ibaraki (2002) and Baar et 

al. (1998). Bouleiman and Lecocq (2003) preferred simulated annealing, while 

Debels et al. (2006) used scatter search. Heuristic sampling algorithm is selected by 

Tormos and Lova (2001, 2003a, 2003b), Valls et al. (2005), Schirmer (2000), 

Kolisch (1996a, 1996b, 1995), and Kolisch and Drexl (1996). 

 

Ant colony optimization has recently been implemented for the solution of SRCPSP. 

Stützle (1998), Merkle et al. (2002), Gagne et al. (2002), Besten et al. (2000), Blum 

and Sampels (2004), Blum (2005a) are the primary studies on the SRCPSP with the 

search of optimum by ACO. Merkle et al (2002) tested the algorithm on the test 

problems of PSPLIB and the algorithms could not converge into the schedules better 

than 30% on the average from the lower bounds of the 120-activity problem set. 

 

Resource constrained scheduling problem is still an up-to-date subject and there are 

many recent studies. Tseng and Chen (2006) developed a hybrid meta-heuristic 

algorithm called ANGEL which is the combination of ACO and GA. Initially, ACO 

searches the solution space and generates activity lists to provide the initial 

population for GA. After this step, GA is executed and the pheromone set in ACO is 

updated if GA obtains better solution. This forms a cycle of the meta-heuristic 

method ANGEL and this cycle is iterated until the stopping criterion is met. The 

meta-heuristic algorithm ANGEL obtains successful results in the analysis of the 30-

activity test set, however the analysis results are not satisfactory in the 120-activity 

test set. 
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Wnag and Zheng (2001), developed a hybrid meta-heuristic algorithm by combining 

genetic algorithm and simulated annealing. With the hybrid meta-heuristic algorithm, 

some benchmark job-shop scheduling problems are well solved by the hybrid 

optimization strategy, and competitive results are obtained with the best literature. 

 

Mendes et al. (2009) generated a GA based on binary representation. The schedule is 

constructed using a heuristic priority rule in which the priorities of the activities are 

defined by the genes of the GA. Each chromosome is made of genes whose amount 

is twice of the activity number of the project. The genes carry information related 

with the activity priority and delay time for the activity. Mendes et al. (2009) 

obtained the most successful results in the analysis of 30, 60 and 120-activity test 

sets of PSPLIB. 

 

Ranjbar (2008) proposed a new heuristic algorithm for the SRCPSP based on filter 

and fan (F&F) method. The proposed method incorporates two fundamental 

components. First component is a local search to identify a local optimum and a F&F 

search to explore larger neighbors to overcome local optimality. If a new local 

optimum is found, the method switches the search strategy. The switching continues 

until the filter and fan search fails to improve the current best solution. Ranjbar 

(2008) obtained very close results to the current best analysis in 30 and 60-activity 

project data sets, the algorithm is slightly far from the current best values in 120-

activity projects. 

 

Based on the recent studies on SRCPSP followings can be concluded, LP requires 

solution of high amounts of equations and parameters even for small sized problems. 

B&B algorithm may require large amounts of memory capacity for the storage of 

partial networks. Heuristic algorithms are problem based solution algorithms whose 

results may deviate significantly for different network characteristics. Meta-heuristic 

algorithms require too much evaluation in order to converge into the near-optimum 

solutions. It is seen that the convergence speed of the meta-heuristic algorithms 

should be improved in order to obtain proper results for the solution of RCPSP. 
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2.5 Multi Mode Resource Constrained Project Scheduling 

 

In the classical SRCPSP each activity has a single execution mode, that is, both the 

activity duration and its resource requirements are fixed. In consideration of the 

dynamic availabilities of the renewable and non-renewable resources as well as the 

dynamic precedence feasibilities, some activities are allowed to be executed in 

flexible forms or modes in practice; each mode of an activity represents an 

alternative relation between resource requirements of the activity and its 

corresponding duration. Therefore, the multimode resource-constrained project 

scheduling problem (MRCPSP) that allows each activity to be executed in one of 

several modes needs to be addressed. 

 

MRCPSP considers both renewable and nonrenewable resources that have not been 

addressed efficiently in the construction field. Zhang et al. (2006) introduces a 

methodology for solving the MRCPSP based on particle swarm optimization (PSO). 

A particle representation formulation is proposed to represent the potential solution 

to the MRCPSP in terms of priority combination and mode combination for 

activities. 

 

The methodologies for solving the MRCPSP that have been proposed include the 

exact and heuristic or meta-heuristic approaches. The exact methods include the 

exact enumeration schemes proposed by Talbot (1982) and Patterson et al. (1989). 

Enumeration scheme based on the enumeration scheme for single mode (Sprecher et 

al., 1997) and (Demeulemeester and Herroelen, 1992) is also proposed. The heuristic 

methods include the branch-and-bound algorithm that is developed based on the 

exact procedure (Hartmann and Drexl, 1998), the biased random sampling approach 

(Drexl and Grünewald, 1993), the single-pass and a multi-pass approach (Slowinski 

et al., 1994), the local search procedure (Kolisch and Drexl, 1997), a heuristic 

algorithm based on a new mathematical formulation (Maniezzo and Mingozzi, 

1999), and one based on the CPM computation (Boctor, 1996). 

 

Peteghem and Vanhoucke (2009) present a detailed description of the past studies on 

the MRCPSP. The studies are classified as exact, heuristic, meta-heuristics algoritms. 
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The PSPLIB problems are solved by the following authors. Kolish and Drexl (1997) 

analyzed J10 and J30 activity sets with heuristic algorithms. Hartmann and Drexl 

(1998) analyzed J10, J12, J14 and J16 problem sets by B&B algorithm. Sprecher and 

Drexl (1998) implemented B&B algorithm using his own data set apart from J10, 

J12, J14, J16, J18 and J20 data sets. Özdamar (1999) used his own 90-activity multi-

mode problem sets and the J10 problem set of the PSPLIB. Nonobe and Ibaraki 

(2001) analyzed the J30 problem set by Tabu Search (TS) algorithm. Jozefowska et 

al. (2001) examined J10, J12, J14, J16, J18, J20 and J30 data sets by simulated 

annealing algorithm. The same problem sets are analyzed by Hartmann (2001) using 

GA, Bouleimen and Lecocq (2003) using SA, Alcaraz et al. (2003) using GA. Zhang 

et al. (2006) analyzed the same problem set by ignoring J30 data set with PSO. Zhu 

et al. (2006) analyzed the J20 and J30 data sets by B&C algorithm. Pourghaderi et al. 

(2008), proposed a scatter search algorithm for the MRCPSP. Jarboui et al. (2008) 

implemented PSO and tested his algorithm by solving all JXX problem sets. Ranjbar 

et al. (2009) solved the same problem set by only ignoring J30 with scatter search 

algorithm. Lova et al. (2009) analyzed the all JXX problem set by GA. 

 

Agarwal et al. (2007) analyzed MRCPSP with artificial immune system (AIS) meta-

heuristic algorithm. AIS is defined as an abstract ormetamorphic computational 

system based on the ideas inferred from the theories and components of 

immunology. The algorithm involves immune cell and antigens. B-cells and T-cells 

are the immune cells which help in recognizing antigenic patterns. Antigens are 

disease causing elements consisting of self and non-self cells. Non-self antigens 

disease-causing and self antigens are harmless. 

 

Hyper-mutation and receptor editing are two remarkable characteristics of the AIS. 

Hyper-mutation is very much similar to the mutation operator of GA where 

hypermutation differs in the rate of modification which depends on antigenic affinity. 

Lower antigenic affinity antibodies are hyper-mutated at a higher rate as compared to 

the antibodies with higher antigenic affinity. This phenomenon is known as receptor 

editing, which governs the hyper-mutation. Hyper-mutation is an optimum search 

operator while receptor editing avoids being stuck into local optima. 

 



30 
 

Damak et al. (2009) implemented Differential Evaluation (DE) meta-heuristic 

algorithm and obtained successful results. DE is inspired by GA and the evolutionary 

strategies. However, DE is combined with geometric search technique. The key idea 

behind DE is a scheme for generating trial parameter vectors. Mutation and crossover 

are used to generate new vectors, and selection determines which of the vectors will 

survive the next generation. 

 

Tchao and Martins (2008), implemented tabu search based heuristic algorithms with 

path relinking for the MRCPSP. Path relinking is used as a post optimization 

strategy, so that it explores paths that connect elite solutions found by the tabu search 

based heuristics. The combined hybrid heuristics were able to find near-optimum 

solutions in quite short computational times. 

 

Recent analysis results of the researches on the multimode problem sets of Kolisch 

and Sprecher (1996) are given in Table 2-3. Some of the analyses do not include the 

J30 problem set. In addition to this, there is not a well defined stopping criteria of the 

schedules. As a result of this, the final obtained average deviation and percentage of 

optimum solutions obtained could not be compared fairly. Table 2-4 contains 

analysis results of the same problem which are fairly older analysis. 

 

Table 2-3 Analysis results of recent previous studies 
 

  
Zhang et al. 
(2006) 

Jarbouri et 
al. (2008) 

Jarboui et al. 
(2008) 

Porghaderi et 
al., (2008) 

  PSO PSO 
Differential 
Evaluation Scatter Search 

Prob 
Set 

Av 
Dev 

Per Op. 
Found 

Av 
Dev

Av 
Dev 

Av 
Dev 

Per Op. 
Found 

Av 
Dev 

Per Op. 
Found 

J10 0.11 97.9 0.03 99.25 0.06 98.7 0.05 99.07 
J12 0.17 95.2 0.09 98.47 0.14 97.3 0.11 98.35 
J14 0.41 89.3 0.36 91.11 0.44 89.8 0.38 93.66 
J16 0.83 85.6 0.44 85.91 0.59 87.8 0.52 87.66 
J18 1.33 74.5 0.89 79.89 0.99 78.3 0.84 83.33 
J20 1.79 69.1 1.10 74.19 1.21 73.3 1.03 79.24 
J30     2.35 57.41    1.76 69.44 
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Table 2-4 Analysis results of the previous studies 
 

  
Sprecher and 
Drexl (1998) Hartmann, (2001) 

Bouleimen and 
Lecocq, (1998) 

  B&B 
Simulated 
Annealing Genetic algorithm 

Prob 
Set Av Dev 

Per Op. 
Found Av Dev 

Per Op. 
Found Av Dev 

Per Op. 
Found 

J10 0.0 100 0.21 96.3 0.06 98.7 
J12 0.12 98.2 0.19 91.2 0.14 97.3 
J14 1.46 85.7 0.92 82.6 0.44 89.8 
J16 3.81 69.5 1.43 72.8 0.59 87.8 
J18 7.48 57.4 1.85 69.4 0.99 78.3 
J20 11.51 47.3 2.10 66.9 1.21 73.3 

 

Mori and Tseng (1997), proposed a GA based solution algorithm and obtained better 

results than stochastic scheduling method of Drexl and Gruenewald (1993). Goçalves 

et al. (2008) proposed a GA algorithm for the solution of multi-mode multi projects. 

The gene representation contains activity priorities, delay for each activity and 

release date of the project. The binary representation for the gene representation is 

preferred. 

 

2.6 Resource Constrained Time Cost Trade-off Problem 

 

The final problem type examined in this thesis is the resource constrained time cost 

trade-off problem (RCTCTP). This problem is very similar to simple TCT and 

MRCPSP. It differs from simple TCT in a way that there are limitations on resource 

availabilities and differs from MRCPCP that the objective function to be minimized 

is the cost of the project not the duration of the project. 

 

Compared by the TCT and MRCPSP, optimum solution of RCTCTP gives the most 

profitable project schedule. In this case, cost of the project is minimized by 

considering the indirect costs and the liquidated damages. On the other hand, 

minimum project duration minimizes indirect project costs which may not minimize 

the total project cost. Solution of simple TCT problem may end up with unacceptably 

fluctuated and peaked resource profile, as the resource demand is never considered 

during the analysis. The fluctuated resource profile may cause excessive decrease in 

the labor productivity. In addition to this, significant number of labor and equipment 
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may stay idle which may also cause an increase in the direct cost of the project. As a 

result of this, the project may cost more than the planned project by simple TCT 

analysis. 

 

RCTCTP is significantly a difficult problem not only to solve but also difficult to 

acquire the necessary data for the analysis. Apart from the duration and resource 

requirements, the analysis also demands the costs of each execution mode of the 

activities. As a result of this, the data required for the analysis becomes time-

consuming and requires detailed planning endeavor. If manufacturing is considered, 

there would be enough time, work force and money for the data acquisition. 

However, construction industry usually prepares planning data in a short time and 

limited budget. As a result of this, there would be uncertainties on the data which 

will affect the benefits of the data. 

 

In order to prepare dependable project plans, construction companies should allocate 

more budgets and implement computer aided tools for preparation of the tender 

documents. With the help of a database and a decision support system, costs of the 

construction activities can be estimated in a short time and accurately. 

 

As it is a difficult problem and the data required for the analysis is difficult to acquire 

the RCTCTP did not attract the attention of many researchers. Pathak et al. (2007) 

analyzed RCTCTP by using a GA based method. The optimum solution is searched 

by multi-objective genetic algorithm (MOGA). For the test of the analysis 9-activity 

and 18-activity projects are used. Adaptive resource restrictions are defined during 

the project which aims to minimize the maximum resource demand. 

 

RCTCTP is analyzed by dividing the problem into two separate problems in which 

the simple TCT problem is analyzed by releasing the resource constraints and the 

obtained schedule is resource leveled. However, this procedure may not always help 

reducing the peak resource demand. As a result of this infeasible labor or machinery 

demand may be faced during the life cycle of the project. 
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As RCTCTP is not widely analyzed in the literature, there are not test project sets 

available. As a result of this, test projects are generated to be used in the RCTCTP 

analysis. The test problems will be made available after the dissertation of this thesis 

study. 
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CHAPTER 3 

 

3. META-HEURISTIC ALGORITHMS 
 

 

In this thesis study, meta-heuristic algorithms are developed for the solution of 

optimization problems which are discussed in Chapter 2. Some of the existing meta-

heuristic algorithms are implemented without any modification, some algorithms are 

modified and their convergence capability is improved and new meta-heuristic 

algorithms are developed by embedding meta-heuristic algorithms into Genetic 

Algorithm. In this chapter, meta-heuristic algorithms implemented for this study are 

explained and their executions are illustrated. 

 

A meta-heuristic is an optimum search algorithm which is independent from problem 

type where heuristic algorithms are problem dependent. The name combines the 

Greek prefix "meta" ("beyond", here in the sense of "higher level") and "heuristic" 

(from ευρισκειν, heuriskein, "to find") (Reeves 1995a). 

 

3.1 Genetic Algorithm 

 

Evolutionary computing was introduced in the 1960s by I. Rechenberg in the work 

“Evolution strategies”. This idea is later improved by researchers and finally, (GA) 

was invented by John Holland and developed this idea in his book “Adaptation in 

natural and artificial systems” in the year 1975. Holland proposed GA as a heuristic 

method based on “Survival of the fittest”. GA was discovered as a useful tool for 

search and optimization problem. 

 

GA is a search technique used for finding exact or near optimum solutions to 

optimization problems. GA searches the global optimum with an algorithm based on 

the meiosis. An initial population is randomly generated and new genes are 
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reproduced by crossover. The genetic differences are formed by mutation and the 

unfit genes are terminated by natural selection operations. 

 

As its name implies, each solution candidate is represented by genes in GA. For the 

TCT type problems, the gene contains the crashing option assigned to that activity 

among possible alternatives. For the resource leveling problems genes contain the 

delay time of the activities which have floats, and for the resource allocation genes 

represent activity priorities. Gene representation can be integer, float, binary or 

hexadecimal. Binary representation has advantages in crossover and mutation 

operations, because of this binary representation is preferred for the solution of 

simple TCT and resource leveling problems although it increases computational 

demand. 

 

First step of the GA is generation of the initial population. Determining the 

population size has significant importance, because small populations contain the 

risk of seriously under-covering the solution space, while large populations incur 

severe computational demand. Goldberg indicates that the optimal size for binary-

coded strings grows exponentially with the length of the string n (Reeves 1995a).  

 

Population generation can be executed randomly or by seeding. Seeding is 

generating the initial population by high-quality solution obtained from another 

heuristic technique. Seeding can help GA finding better solutions rather more 

quickly than it can do from a random start. However, there is a possible disadvantage 

in that the chance of premature convergence may be increased (Revees 1992 and 

Kapsalis et al. 1993). 

 

Crossover is the necessary operation for the genetic reproduction. New genes are 

reproduced from randomly selected genes. Couples, namely the parents; are 

determined by randomly generated numbers and new two genes are reproduced from 

parents by crossover operation. The location of the crossover is also determined by 

generating a random number which is shown in Figure 3.1. After the crossover new 

two gene combinations are generated by the existing gene combination of the 

population. 
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Eshelman et al. (1989), worked on multipoint crossover that examined the biasing 

effect of traditional one-point crossover and considered a range of alternatives. 

Central argument was that two sources of bias exist to be exploited in a genetic 

algorithm; positional bias, and distributional bias. Eshelman concluded that simple 

crossover has considerable positional bias and the bias may be against the production 

of good solutions. In addition to this, crossover operator is analyzed in detail by Faily 

(1991). 

 
Figure 3.1 Crossover operator 

 

 

To examine the results of multiple point crossover operations, apart from one point 

crossover; two, three and four point crossover operations are also examined. In 

multiple point type of crossover operations, the gene is divided into equal intervals, 

which is same with the crossover point number. For each interval simple crossover 

operator is executed. Effect of chromosome number is analyzed on 18-activity 

project and the analysis results are given in the next chapter. 

 

In Holland’s original GA, parents were selected by means of a stochastic procedure 

from the population and a complete new population of offspring was generated 

which replace their parents. In another version, he suggested that each offspring 

should replace a randomly chosen member of the current population. 

 

In this study, in order to select the genes for the crossover operation, one random 

number is generated for each gene. The genes, which come up with random numbers 

0 1 0 1 0 1 0 0 

1 0 0 0 1 0 0 1 

0 1 0 1 0 0 0 1 

1 0 0 0 1 1 0 0 
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smaller than the crossover probability are selected for the crossover. The couples are 

formed by sorting the selected genes according to their assigned random numbers 

and each consecutive genes form couple. With this method both selection of genes 

for the crossover and the determining crossover couples will be performed randomly. 

Mutation operator shifts the binary value of the gene on a randomly selected location 

from 0 to 1 or vice versa, which is shown in Figure 3.2.  

 
Figure 3.2 Mutation operator 

 

Mutation prevents domination of a certain gene which has high probability of 

survival. Initially domination of relatively good fit genes may cause being stuck into 

local minimum. On the other hand, too high mutation rate may also bastardize good 

fit genes. Moreover, crossover can produce good fit genes from existing genes, but it 

can not generate a new gene for a specific portion which does not exist in the 

population. Therefore, mutation operator has significant importance as it can produce 

new gene combinations, which have not been generated at the initialization of the 

population or regenerate a gene combination terminated at natural selection. 

 

Crossover is more important in the beginning when the population is diverse, but as 

the individuals approaches to optimum solution it is important to increase the chance 

of finding different solution, which is where mutation is more effective.  

 

Natural selection is the final step of a cycle of the GA. Natural selection keeps the 

population size constant by terminating the same number of individuals reproduced 

at the crossover. In addition to this, it improves the overall gene quality of the 

population by terminating the low fit genes. On the other hand, low fit genes may 

carry very important genes on their certain location and in order to preserve these 

portions and prevent initially good fit genes to dominate, some precautions are taken 

0 1 0 1 0 0 0 1 

0 1 0 1 0 1 0 1 
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at the natural selection phase. Roulette wheel selection algorithm has been 

implemented for this purpose which is a probabilistic selection algorithm. Roulette 

wheel determines the genes to be terminated by assigning high probability of 

termination to low fit genes and low probability of termination to good fit genes.  

 

 
Figure 3.3 Flowchart of GA 

 

An obvious defect with the simple natural selection operator is that there is no 

guarantee that best member of a population will survive in the next generation. One 
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way of dealing with this drawback is De Jong’s (1975) elitist model, in which the 

best member of the current population is forced to be a member of the next. Another 

approach was taken by Ackley (1987), who introduced the term “termination with 

prejudice” for his algorithm. This was to use an incremental replacement approach 

where at each step the new chromosome is replaced by a randomly selected one from 

these which currently have a below average fitness. With this algorithm good fit 

genes are guaranteed to survive if they are not terminated by mutation. 

 

Fitness calculation has also significant importance, since a problem may arise in the 

beginning of the GA when there are many poor chromosomes and just one or two 

outstanding chromosomes. A naive fitness measure may lead to a rapid takeover by 

the good fit ones and premature convergence to a poor local optimum can be 

unavoidable. One approach to prevent this is to ignore the actual objective function 

and use a ranking procedure. The main argument is that the key to good GA 

performance is to maintain an adequate selective pressure by means of an appropriate 

relative fitness measure. 

 

Natural selection operator completes the one cycle of the GA. Number of cycle 

generation depends on the number of input parameters and the expected reduction in 

the total project cost. Flowchart of GA is given in Figure 3.3. 

 

3.2 Genetic Algorithm with Simulated Annealing 

 

If GA is implemented solely for the optimization, much iteration would be required 

to obtain satisfactory results. Convergence of GA can be increased significantly by 

applying complementary methods, thus important savings would be obtained in 

terms of computation time. Simulated Annealing (SA) is one of the complementary 

methods that are used for this purpose. SA is a generic probabilistic meta-heuristic 

algorithm for the global optimization problem. SA is inspired by the cooling 

schedule of alloys subjected to tempering. Initially, when the temperature is high, the 

molecules are free to move in any direction. At later phases, movements of 

molecules are restricted depending on the temperature (Reeves 1995b).  
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Mutation operator sometimes leads to better genes and sometimes doesn’t. SA 

decides weather to reject or accept the mutation that leads to a worse result. The 

rejection probability increases as the iteration number increases which simulates the 

cooling of the alloy. SA accepts every mutation that leads to a better gene and 

decides the rejection of a harmful mutation. If the final solution is to be independent 

from the starting solution, the initial temperature must be hot enough to allow an 

almost free exchange of neighbouring solutions. In some cases there is enough 

information in the problem to estimate the size of the permissible increase in the cost 

function. If the maximum difference of the evaluation function between 

neighbouring solutions is known, it may be assumed that increases of cost in this 

magnitude will be sufficient and t can be calculated appropriately. However, 

computing the difference between neighbours is very time consuming in 

combinatorial problems. For large networks, defining the initial temperature by this 

way will cause too much computational demand. 

 

Besides the initial temperature, the cooling schedule has vital importance as well. In 

theory, the temperature should be allowed to decrease to zero before the stopping 

condition is satisfied. However, in practice there is no need to decrease the 

temperature this far. Given the limited precision of any computer implementation, as 

t approaches zero from right, probability of accepting a harmful mutation will be 

indistinguishable to zero. Even before zero temperature is reached, it is likely that the 

chances of a complete escape from the current local optimum will become negligible. 

Thus the criterion for stopping can be expressed either in terms of a minimum value 

of the temperature parameter, or in terms of the ‘freezing’ of the system at the 

current solution. 

 

Starting the process with the temperature so high that almost all mutations are 

accepted simply produces a series of random solutions, each might be a starting 

solution. In this case, any beneficial changes might be terminated by the opposite 

mutation because of the very high temperature and very little progress would be 

obtained after several iterations. 
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If the initial temperature is not high enough or cooled very rapidly, there can be no 

beneficial mutations after a certain point. If no progress is apparent in searching, a 

concerted acceptance of detrimental mutation would be made in order to widen the 

scope of the search. Kirkpatrick et al. (1983) proposed reheating the temperature if 

there is not an improvement for a certain number of iterations. In this thesis study, 

there is not any reheating, by enlarging population size; enrichment of the gene 

content is aimed to be obtained. 

 

In this study, the difference between the mutated gene evaluation and the initial gene 

evaluation is normalized by dividing the difference by the initial evaluation value. 

The cooling process is controlled by Boltzmann Constant which is taken as 1 for GA. 

Division by temperature for cooling is replaced by multiplying the exponential 

equation with the iteration number. After the mutation, a random number is 

generated for the decision and if the generated random number is smaller than the 

decision function, the mutation is accepted (Hwang and He 2006). The decision 

function explained above is represented as: 
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where; 

 

Rn is a random number generated between 0 and 1 for the decision, fm is the 

evaluation value of the mutated gene, f0 is the initial value of the gene before the 

mutation operator affects the gene, BC is the Boltzmann constant used to determine 

the speed of cooling, t is the current number of iteration. In Figure 3.4 the acceptance 

probability of a harmful mutation which increase the evaluation function to be 

minimized by 2%, project schedule is plotted for Boltzmann Constant equal to 1.0. 
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Figure 3.4 Acceptance probability vs. iteration number 
 

 

As seen in Figure 3.4 after the 200th iteration, the acceptance of a harmful mutation 

will almost be zero. This prevents harmful mutations to take place thus mutations 

always seek for better neighbors and the crossover operator of the genetic algorithm 

prevents being stuck into local minimum. 
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Figure 3.5 Flowchart of GASA 

 

Decision function always gives results greater than 1 if the mutation is beneficial, as 

a result beneficial mutations are always accepted. If the mutated gene is worse than 

its initial state, the decision formula gives a result between 0 and 1 depending on the 

difference between the initial and mutated state. Higher the detriment of the 

mutation, closer the decision function to 0. If the detriment of the mutation is small 
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the decision formula will give results close to 1 and the probability of acceptation 

will be high. Meanwhile, the higher the iteration number, the harder the acceptance 

criteria. If mutation is harmful even a small difference will be evaluated as close to 0 

by the decision formula and the probability of acceptance will be very low. The 

hardening of acceptance criteria is controlled by the Boltzmann constant. 

 

The genetic algorithm in which the acceptance of mutation is under the control of 

simulated annealing is called, Genetic Algorithm Simulated Annealing (GASA). The 

flowchart of GASA is given in Figure 3.5. 

 

3.3 Hybrid Genetic Algorithm with Simulated Annealing 

 

Population based search is ideal for exploring as much of the search space as 

possible. Once the GA can not find any better individuals after a certain number of 

generations, the best individual of the population is chosen to undergo a series of 

random walks until the optimal solution is found. However, one series of random 

walk may not be adequate for obtaining the optimum, as the number of activities of 

the project increases. In order to preserve the improvements gained at the previous 

random walks and produce better genes at the crossover, overall gene quality of the 

population should be improved. For this reason, the series of random walk is applied 

to the whole population. In the analysis of TCT and resource leveling whole 

population is subjected to a series of random walks. However, in resource 

constrained scheduling problems only population best and some of the randomly 

selected individuals of the population are subjected to random walk. 
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Figure 3.6 Flowchart of HGASA 
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The decision of applying random walk significantly increases the computational 

demand. However, random walk of only the best individual has high risk of getting 

stuck in local optimum. Therefore, in order to avoid getting stuck into local optimum 

hybrid local search algorithm is applied to some of the randomly selected individuals 

of the population. The algorithm is called Hybrid Genetic Algorithm Simulated 

Annealing (HGASA). After a certain number of GASA generations the whole 

population is subjected to a series of random walk. The number of random walk 

generations is determined by considering the number of parameters to be solved in 

the optimization procedure (Chan et al. 2005). 

 

Acceptance of random walk is also determined by SA. However, in this case the 

acceptance criterion is hardened at each random walk and it is reset if another 

individual starts random walk process. 

 

After the completion of random walk session, GASA starts and after a certain 

number of generations again random walk session starts. Number of GASA 

generations should be adequate enough to escape from local minimum and should 

not be too high to create computational burden. Hardening of the acceptance criteria 

in the random walk session has also important affect. Too fast cooling may cause 

getting stuck into local minima and too slow cooling may lead to randomized genes 

at the end of the random walk. Flowchart of HGASA is given in Figure 3.6.  

 

3.4 Hybrid Genetic Algorithm with Quantum Simulated Annealing 

 

Hybrid Genetic Algorithm with Quantum Simulated Annealing (HGAQSA) 

algorithm is very similar to the HGASA algorithm. Both algorithms depend on a 

series of GASA generations and random walk sessions. The difference is that in 

HGAQSA as its name implies, acceptance criteria is determined by a process 

analogous to quantum fluctuations. In quantum simulated annealing, a "current state" 

is randomly replaced by a randomly selected neighbor state, if the latter has a better 

value of the objective function (Das and Chakrabarti, 2005). The process is 

controlled by the tunneling field strength T, a parameter that determines the extent of 

the neighborhood of states explored by the method. The tunneling field is initially 
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wide, so that the neighborhood extends over the whole search space; and is slowly 

reduced. 

 

Shrinkage of neighborhood is very difficult to implement in binary representation. 

For this reason, the neighborhood is kept constant through the random walk session. 

However, the acceptance criteria are determined by the tunneling field strength 

parameter. T is assigned as the variance of the population and it is kept constant for 

each individual through the quantum simulated annealing (QSA) random walks. 

Decision function in QSA random walk becomes; 
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Where, T is the tunneling field strength and initially equal to Populationσ . After each 

iteration T is decreased by formula T = T*k, in which k is a real number between 0 

and 1 that gradually makes the acceptance criteria harder. Similar to cooling 

parameter, determination of k has vital importance. Flowchart of HGAQSA is shown 

in Figure 3.7. 
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Figure 3.7 Flowchart of HGAQSA 
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3.5 Genetic Memetic Algorithm with Simulated Annealing 

 

Memetic algorithm is a local search method (Merz and Freisleben 1997) and the 

hybrid genetic memetic algorithm simulated annealing (GMASA) is a meta-heuristic 

algorithm which combines the advantages of population-based search and local 

optimization. 

 

In this study, a new meta-heuristic algorithm is generated by combining GA, SA and 

MA. Local search algorithm of GMASA differs from HGASA and HGAQSA in a 

way that, HGASA and HGAQSA have a random walk search algorithm while 

GMASA systematically searches the domain. The local search algorithm begins after 

a certain number of GASA generations. Memetic algorithm systematically mutates 

each parameter starting from the first parameter and sequentially reaches the last 

parameter. Acceptance decision of the mutation is given by the simulated annealing 

based algorithm. 

 

After searching the whole parameter set the temperature is decreased, which means 

acceptance of harmful mutations are hardened, and another memetic search is 

performed. The number of successive memetic searches is determined according to 

the number of parameters and accepted mutations. If there is not any accepted 

mutation for a certain iteration the local search is stopped and again GASA iterations 

are started. 

 

Aim of such a systematic search is to decisively visit each parameter and search its 

neighborhood. With the help of GASA iterations new gene combinations are formed 

from high quality gene combinations. After a certain number of GASA iterations, 

which is adequate enough to alter the gene combinations, again a set of memetic 

search is executed. Genetic algorithms are suitable for exploring the whole search 

space for identifying the possible near optimum regions. Local search operators 

iteratively move from one solution to a better one in its neighborhood within the near 

optimum region and find good solutions in small regions of the search space. 

Flowchart of GMASA is given in Figure 3.8. 
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Figure 3.8 Flowchart of GMASA 
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3.6 Genetic Algorithm with Simulated Annealing and VNS 

 

Genetic algorithm with simulated annealing and variable neighborhood search 

(GASAVNS) is a hybrid meta-heuristic algorithm which has a variable neighborhood 

during the local search. Variable Neighborhood Search (VNS) is a recent meta-

heuristic, which exploits systematically the idea of change of neighborhood during 

the search (Hansen et al. 2008). Using systematically this idea, which leads to a new 

meta-heuristic a widely applicable algorithm is generated. Contrary to other meta-

heuristics based on local search methods, VNS does not follow a trajectory but 

explores increasingly distant neighborhoods of the current incumbent solution, and 

jumps from this solution to a new one if and only if an improvement has been made 

(Hansen and Mladenovic 2001, Mladenovic and Hansen 1997). 

 

GASAVNS starts with GASA and after a certain number of generations VNS 

algorithm is executed. VNS algorithm searches the domain with random walk search 

algorithm. VNS starts with one mutation per iteration and the acceptance of the 

mutation is decided by SA. After a several number of VNS, neighborhood is 

extended by increasing the number of mutations in a random walk. The maximum 

number of mutations in one generation is limited by a pre-determined number which 

is obtained by considering the number of parameters. When VNS reaches the 

maximum neighborhood, then VNS stops and GASA is executed. 

 

Similar to other meta-heuristics GASAVNS has the advantages of genetic and local 

search algorithms. In addition to this, SA prevents obtaining a randomized solution 

generated by multi mutations. VNS has a fast local search algorithm, if the number 

of parameters is high and affect of some of the parameters are relatively low with 

respect to others VNS can obtain near-optimum solutions in the early stages of the 

iterations. In addition to this, VNS has the possibility of surviving from local optima 

with its multi-mutation specialty. Flowchart of GASAVNS is given in Figure 3.9. 
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Figure 3.9 Flowchart of GASAVNS 
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3.7 Particle Swarm Optimization 

 

Particle Swarm Optimization (PSO) is (Kennedy and Eberhart 1995) a meta-heuristic 

algorithm inspired by the social behavior of a flock of migrating birds trying to reach 

an unknown destination. PSO is modified by introducing a new parameter, called 

inertia weight by Shi and Eberhart (1998). 

 

Similar to genetic algorithms, PSO has randomly generated population. In contrast to 

evolutionary algorithms, PSO simulates social behavior. Instead of using genetic 

operators, individuals are evolved by cooperation and competition among the 

individuals. Each individual adjusts its flying velocity according to its own and the 

population’s experience. Individuals are named as particle which represents a 

potential solution to a problem. 

 

PSO is initialized by randomly generated individuals of size N. The ith particle is 

represented by its position as a point in a S-dimensional space, where S is the number 

of variables. Throughout the process, each particle i monitors three values: its current 

position (Xi); the best position it reached in previous cycles (Pi); its flying velocity 

(Vi). These three values are represented as follows: 

 

Current position  ( )iSiii xxxX ,,, 21 K=  

Best previous position ( )iSiii pppP ,,, 21 K=                          (3.3) 

Flying Velocity  ( )iSiii vvvV ,,, 21 K=  

 

In each cycle, the position Pg, of the best particle, g, is calculated as the best fitness 

of all particles. Accordingly, each particle updates its velocity Vi to converge into the 

best particle g, as fallows: 

 ( ) ( ) ( ) ( )igiiii XPrandcXPrandcVV −××+−××+×=+ 21 211 ω             (3.4) 

 

where, min1max VVV i −≥≥ + , maxV is the maximum allowable velocity, minV  is the 

minimum allowable velocity, c1 and c2 are two positive constants called learning 

factors which are usually assigned c1 = c2 = 2; rand1( ) and rand2( ) are random 
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numbers in the range [0,1]; ω is an inertia weight employed as an improvement to 

control the impact of the previous history of velocities on the current velocity. The 

operator ω plays the role of balancing the global search and the local search; which is 

proposed to decrease linearly as iteration progresses from 1.4 to 0.5 (Shi and 

Eberhart 1998). 

 

 
Figure 3.10 Flowchart of PSO 
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Second term in Equation 3.4 represents cognition, or the private thinking of the 

particle when comparing its current position to its own best. Third term of Equation 

3.4 represents the social collaboration among the particles, which compares a 

particle’s current position to that of the best particle (Elbeltagi et al. 2005). 

 

The position of particle is updated by the formula: 

iii VXX +=+1                              (3.5) 

 

Operations mentioned above constitutes one cycle of PSO. Number of cycles is 

determined by taking the difficult of the problem and analysis duration into account. 

Flowchart of PSO is given in Figure 3.10. 

 

3.8 Ant Colony Optimization 

 

Marco Dorigo and colleagues introduced the first Any Colony Optimization (ACO) 

algorithms in the early 1990’s which is inferred by the social behavior of ant 

colonies. Ants live in colonies and their behavior is governed by the goal of colony 

survival rather than being focused on the survival of individuals. When searching for 

food, ants randomly search through the possible paths between the food and their 

nests. Ants leave a chemical called pheromone which they can also smell. If an ant 

should make a decision about selecting a path to follow, it selects the one which 

contains highest amount of pheromone. The shortest path would have the highest 

pheromone concentration if all paths are initially preferred by same number of ants. 

This is because the ants would travel the shortest path in shorter duration and the 

path would be travelled by more ants when compared with the other paths. As this is 

the case, the pheromone concentration of the path would be increased by the ants and 

the probability of the shortest path would be higher than the other paths (Ya-ping and 

Ying 2006). 

 

During the return trip, the quantity of pheromone that an ant leaves on the ground 

may depend on the quantity and quality of the food. The pheromone trails will guide 

other ants to the food source. The indirect communication between ants via 
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pheromone trails, known as stigmergy, enables them to find shortest paths between 

their nest and food sources. 

 

Similar to genetic algorithms and PSO, ACO has population size N, which is 

generated randomly. Population is initialized by assigning pheromone by generating 

random numbers. Pheromone values are assigned to the each parameter of ant, which 

is an S-dimensional space, where S is the number of variables. The probability of a 

discrete variable being assigned according to its pheromone value is computed by the 

formula (Dorigo et al. 1996): 
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where, ( )tpijk  is the probability of assigning the kth option to the ith individual’s jth 

parameter at iteration t, ( )tijkτ  is the pheromone value of the ith individual’s jth 

parameter’s kth value at iteration t, ( )tijkη  is a heuristic function, α and  β are problem 

dependent constants, which show the relative importance of pheromone and heuristic 

function. Heuristic function of the TCT problem with no resource constraint is given 

as; 
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where DailyIC is the daily indirect cost of the project which is computed by taking 

the overhead, penalty and bonus into account. DirectCostij is the direct cost of the ith 

activity’s jth crashing option and Durationij is the duration of the corresponding 

crashing option. 

 

The crashing options are randomly selected based on their probability of selection 

computed in the Equation 3.6. Path of each ant is evaluated and the pheromone 

content is updated by the following equation (Blum 2005a): 
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where, R is a problem dependent constant and fitness is the result of the evaluation 

function of that ant. 

 
Figure 3.11 Flowchart of ACO 
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After the evaluation of all ants in the colony the pheromone values are updated by 

the formula (Dorigo et al. 1996): 

 

( ) ( ) ijkijkijk tt τρττ Δ+=+1                (3.9) 

where, ρ is the evaporation rate of pheromone which prevent getting stuck into local 

minima. ρ is chosen in the interval [0,1]. The reason for allowing pheromone 

evaporation is to avoid too strong influence of the old pheromone to avoid premature 

solution stagnation. When an entire iteration is over, that is to say after all ants have 

completed their travels, the pheromone value in options belonging to the best 

solution in that iteration would be changed according to the following update rule 

(Sun et al. 2001): 

 

( ) ( ) ( ) τττ Δ+−=+ ztzt ijkijk 11             (3.10) 

 bestRf=Δτ               (3.11) 

 

where z denotes the evaporation rate in the global-updating process; τΔ  is equal to 

the pheromone value changed to the best option of this task in the same iteration; R is 

the constant representing the pheromone reward factor; and fbest is the fitness value of 

the best ant in the tth iteration. 

 

3.9 Electromagnetic Scatter Search 

 

The fundamental concepts and principles of Electromagnetic Scatter Search (ESS) 

were first proposed in the 1970s, based on formulations dating back to the 1960s for 

combining decision rules and problem constraints. In contrast to other evolutionary 

methods like genetic algorithms, ESS uses strategies for search diversification and 

intensification that have proved effective in a variety of optimization problems. 

 

ESS includes three basic elements: generation of a population, sized N, which 

consists of diverse solutions; extraction of high quality and diverse solutions from N 

and use them to create a reference set R; combine solutions in R to obtain new 

improved solutions and maintaining and updating R. 
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Using the diverse solution generator, a set of initial solutions, N, is generated. For 

this purpose, controlled randomization and frequency memory is used. A solution is 

constructed by randomly selecting an execution mode for each activity. The 

probability of selecting a mode is inversely proportional to its frequency count. The 

size of N is typically at least 10 times the size of the reference set (Marti et al. 2006). 

At this stage, solutions are generated without any consideration to their quality with 

respect to the objective function.  

 

Scatter search does not allow duplications in the reference set, and its combination 

methods are designed to take advantage of this lack of duplication. Hashing is often 

used to reduce the computational effort of checking for duplicated solutions. An 

efficient way of comparing solutions and avoiding duplications can be the following 

hashing function; 

( ) ∑
=

=
m

i

i
iimksHash

1
              (3.12) 

In which m is the total number of activities in the solution, mki is the execution mode 

assigned to activity i, is computed and used to compare solutions and avoid 

duplication in R. It is empirically determined that two different solutions almost 

always have different hash values. After the generation of the population 

electromagnetism mechanism starts. 

 

Electromagnetism mechanism (EM) is a powerful algorithm for global optimization 

that converges rapidly to optimum. EM can be used as stand-alone approach or as an 

accompanying algorithm for other methods. The strength of the algorithm lies in the 

idea of directing the sample points towards local optimizers utilizing an attraction-

repulsion mechanism.  

 

In this process, each sample point is considered as a charged particle. Charge of each 

sample point is initially calculated. The amount of charge relates to the value of the 

objective function at that point which also determines the magnitude of attraction or 

repulsion of the point over the sample population. The direction for each point to 

move in subsequent iterations is then determined. The direction is specified by 

evaluating a combination force exerted on the point by other points. 
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Figure 3.12 Flowchart of ESS 

Start 

Initialize 
population 

Evaluate 
Population 

Compute 
Charges 

    Better  
Than Worse 
  Solution 

Replace Worst 
Solution 

End 

 Global 
   Best 
Changed 

   Update 
Global Best 

Yes 

No 

No 
Yes 

Compute 
Forces 

Constitude 
Combined Solution 

   Final 
   Cycle 

Output Best 
Solutions 

Yes 

Terminate Combined 
Solution 

No 
   

Meet Global 
Stopping 
Criteria 

Yes 

Alter the 
population 

No 



61 
 

 

 

Implementation of EM is done slightly different by Tareghian and Taheri (2007). In 

their implementation, only one point is considered to act on other points, contrary to 

the basic EM, where all points in a population exert forces on all other points. For all 

pairs in R, si and sj, i ≠ j where, ( ),,, 21 n
iiii ssss K= , a force is exerted by point 

(solution) sj on si either attracting it to its neighborhood or being repulsed by it. 

According to superposition principle of electromagnetism theory, the force exerted 

on a point via another point is inversely proportional to the distance between the 

points and directly proportional to the product of their charges. In the implementation 

of Taregian and Taheri (2007), the charge of each point is not constant. It changes 

each time R is updated. Instead of using fixed and independent charges for points, a 

charge, [ ]1,1
21

−∈ssq  is defined which depends on the relative efficiency of the 

objective function value of the corresponding points in the reference set (Tareghian 

and Taheri, 2007). 

 

( ) ( )
( ) ( )bw

ss sfsf
sfsf

q
−
−

= 21
21

              (3.13) 

 

Where f(si) is the cost of solution i, sw and sb are the worst and best solutions in R 

respectively. Attraction of s1 by s2 occurs when f(s1) > f(s2). Repulsion of s1 by s2 

occurs when f(s1) < f(s2), and no action is taken when f(s1) = f(s2). The force exerted 

by solution s2 on solution s1 is calculated as 

 

( )
2121 12 ssss qssF −=               (3.14) 

 

According to the value of 
21ssF , new solutions are created in Euclidian space by 

moving from s1 to s1 + 
21ssF . The discrete alternative, whose value is closest to the s1 

+ 
21ssF , is assigned to the activity. After the determination of all parameters of the 

combined solution, sc, if fitness value of sc is better then sw than sw is replaced with 

sc. 
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ESS involves a double loop which scans all the population. After the evaluation of 

the double loop, whole population converges to the same solution. This can be either 

global optima or local optima. In order to escape from local optima, ESS is modified. 

After executing one set of ESS, one solution is preserved and the others are altered 

by generating random numbers. Electromagnetic search is repeated several times and 

with this modification slightly better results are obtained. Flowchart of ESS is given 

in Figure 3.12. 
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CHAPTER 4 

 

4. ANALYSIS OF TCT PROBLEMS 
 

 

In this chapter, analysis of TCT problems obtained from literature is explained. Test 

problems are illustrated and the performances of the meta-heuristic models are 

compared and their results are discussed. In addition to this, representations of the 

meta-heuristic algorithms are illustrated.  

 

4.1 Abstraction of TCT problems by meta-heuristic algorithms 

 

Nature of the TCT problem requires the determination of the crashing alternatives of 

the activities which gives the least total project cost. In a TCT type problem, the 

number of parameters becomes the number of activities of the project which have 

more than one construction mode alternative. As this is the case, meta-heuristic 

alternatives should be able to represent the crashing alternatives efficiently. There are 

many possibilities for the representation of crashing alternatives. In order to 

implement a method which is computationally feasible and allowing diversification, 

the domain of the crashing alternatives are divided into discrete portions for the 

representation of crashing alternatives. 

 

The reason for the division of discrete ranges is that, crashing alternatives are 

represented discretely because they are more realistic than continuous crashing 

functions weather linear or nonlinear. In real construction projects, there can be a few 

alternatives for the selection of equipment such as excavator, crane or concrete plant. 

Similarly, number of labors can only be assigned as the integer multiplies of the crew 

sizes for most of the construction activities such as constructional steel erection, 

welding, or electrical and mechanical works. For this reason, it is not practical and 

realistic to represent the crashing alternatives of an activity by a continuous function. 
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Within this context, some of the test problems containing linear crashing options are 

converted into discrete crashing options without eliminating any crashing alternative. 

 
Figure 4.1 Continuous and discrete function 

 
To give an example, if normal duration of a trench excavation activity is 60 days 

which can be crashed up to 40 days would have 21 different duration-cost 

alternatives if a continuous function is assigned for the representation of the crashing 

alternatives. However, in the market it is not possible to procure or hire equipments 

capable of giving outputs for 21 different completion alternatives. On the other hand, 

discrete representation shown in Figure 4.1 is more realistic than continuous 

functions in terms of taking crashing alternatives into account. 

 

For the gene representation of GA, binary representation is preferred although it has 

some difficulties for the evaluation of discrete crashing alternatives different than 2n. 

In order to handle activities with crashing alternatives different than 2n i.e. 3 or 5; 

some of the crashing possibilities must be left empty if two bits and three bits 

representation is assigned respectively. After the mutation or crossover operations, 

genes carrying these blank portions might have occurred. If this is the case; by 

generating a random number, the crashing alternative can be determined. However, if 

crashing alternative would be determined by a random number which by-passes the 

genetic representation, implementing genetic algorithm would be nonsense. 

 

In order to handle any number of crashing alternatives special method is 

implemented for the representation of crashing alternatives. A pseudo-continuous 

interval is generated by assigning high gene lengths for the representation of crashing 

alternatives. For example, if the genes length is determined as 8 bits it would 
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correspond to 256 intervals. These intervals are classified into classes in which the 

number of classes are same with the number of crashing alternatives of the 

corresponding activity. The bit length is determined in a way to increase the number 

of intervals adequate enough to divide by the number of crashing alternatives as fair 

as possible. The maximum error in this case is less than the remainder of the division 

of number of intervals with the number of crashing alternatives divided by the 

number of crashing alternatives. In Figure 4.2 the intervals for the representation of 3 

and 5 crashing alternatives respectively. 

 

Similar methodology is implemented for the representation of crashing alternatives 

by the PSO and ACO. Position and the pheromone content are the parameters 

necessary for the determination of the crashing alternative by the PSO and ACO 

algorithms respectively. Range, which is the boundary of position and pheromone 

content, can also be divided into discrete intervals. Number of discrete intervals is 

assigned as same amount with the GA based methods for the simplicity of the 

comparison of methods. 

 

 
Figure 4.2 Illustration of borders of the crashing alternatives 

  

Probabilities assigned for each crashing alternatives would be almost equal and the 

difference between the probabilities can easily be ignored. The difference can be 

further decreased by increasing the bit size of the genes which increases the storage 

and computational demand. Therefore, there is a trade-off between the enlarging the 

gene size and the computational demand. In order to keep the gene size within 

reasonable length, at most 8 bit per activity is preferred. For 5 crashing alternatives 

this makes 51 units of interval for 4 crashing alternatives and 52 units for the last 

crashing alternative. For 3 crashing alternatives, 2 of them will have 85 units of 
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interval and the remaining one will have 86 units of crashing alternatives. The 

examples show that, the probabilities of the selection of crashing alternatives can be 

considered as equal. 

 

4.2 TCT Analysis with 7-Activity Project 

 

First analysis for the TCT type problems is conducted with a 7-activity project 

developed by Burns et al. (1996). The network contains 7 activities with logical 

relationships of only FS with no lag which is shown in Figure 4.3. The crashing 

options for the activities are given in a hybrid way, such that both linear and discrete 

crashing alternatives can be assigned to an activity. 

 

 
Figure 4.3 Network of 7-activity project 

 

The crashing alternatives of the network are given in Table 4-1; 

 

Only second activity has linear crashing options and the total crashing alternatives of 

that activity is 8. The TCT problem is relatively an easy problem to solve as the total 

combinations is 3*8*3*3*4*3*3 = 7776 which means if an exhaustive enumeration 

would be performed for the exact solution, only 7776 trials is necessary. Burns et al. 

(1996) assumes indirect cost of $1000/day as overhead cost and obtains two different 

optimum solutions which are 78 days of construction duration with $107500 direct 

cost and $185500 total cost; 84 days of construction duration with $101500 direct 

cost and $185500 total cost. 
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The aim of the trial is not only obtain the exact solution but also obtain the solution 

in less than 7776 trials. GA, GASA, HGAQSA, GMASA, GASAVNS, ACO, EMS 

and PSO are implemented for the solution of the network. 

 

Table 4-1 Activity options for the 7-activity network 
 
Activity 
Description 

Activity 
Number Option Duıration Cost 

Slope 
Relationship 

1 Crew 1 + Eq 1 14 23000 D 
1 Crew 2 + Eq 2 20 18000 D Site preparation 
1 Crew 2 + Eq 2 24 12000 D 
2 Method 1 15 3000 C 
2 Method 2 18 2400   
2 Method 3 20 1800 D 
2 Method 4 23 1500 C 

Forms and Rebar 
 
 

2 Method 5 25 1000 D 
3 Equipment 1 15 4500 D 
3 Equipment 2 22 4000 D Excavation 
3 Equipment 3 33 3200 D 
4 Method 1 12 45000 D 
4 Method 2 16 35000 D Precast Concrete Girder 
4 Method 3 20 30000 D 
5 Method 1 22 20000 D 
5 Method 2 24 17500 D 
5 Method 3 28 15000 D 

Pour Foundations and 
Piers 

5 Method 4 30 10000 D 
6 Railroad 14 40000 D 
6 Truck 18 32000 D Deliver PC Girders 
6 Barge 24 18000 D 
7 Crane 1 + Crew 1 9 30000 D 
7 Crane 2 + Crew 2 15 24000 D Erect Girders 
7 Crane 3 + Crew 3 18 22000 D 

 

 

4.2.1 Solution by GA 

 

Population size is taken as 25 which is close to the gene length computed by the 

multiplication of parameter number by bit per activity. Genetic iteration is 

determined to be high enough that total evaluation number will reach 10000 

evaluations. The parameters assigned for the GA is given in Table 4-2. 
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Table 4-2 Parameters of GA for the 7 Activity network 
 

Genetic Iteration 1000
Population Size 25 
bitPerActivity 4 
Crossover 0,6 
Mutation 0,07 

 

The analysis is repeated 10 times in order to measure possible deviations of the 

solution. The results of the solutions obtained by the GA are shown in Table 4-3. 

Although the 7-activity TCT problem was relatively an easy problem and the total 

project iteration is more than the iteration of exhaustive evaluation, GA can find the 

optimum solution at only 4 trials of 10. At the end of 1000 project evaluation, 

optimum solution could not be achieved in any trials. Only one optimum solution is 

obtained after the 2500 and 5000 iterations. After the 10000th project evaluation, only 

4 of the trials reach the optimum solution. One analysis took around 0,3 seconds on 

one processor of 2,4 GHz Intel Core2 Duo CPU. Although the 7-activity project is 

relatively an easy TCT problem, GA could not present successful results. 

 

 

Table 4-3 Solution obtained by GA for 7-activity project 
 

Analysis No 1000 2500 5000 10000 
1 187100 185500 185500 185500 
2 193000 187300 186500 185500 
3 192300 190300 189300 186500 
4 193400 193400 191500 190300 
5 188900 187300 186500 186500 
6 189300 189300 187300 187300 
7 186500 186500 186500 185500 
8 188500 188500 185500 185500 
9 190100 188900 187100 186500 
10 190100 190100 190100 186300 

 
 

4.2.2 Solution by GASA 

 

Same problem is analyzed by GASA. The project is again solved by 10 times in 

order to monitor the deviations of the obtained results. The parameters shown in 

Table 4-4  are assigned. 
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Table 4-4 Parameters of GASA for the 7 Activity network 
 

Genetic Iteration 500 
Population Size 25 
bitPerActivity 4 
Crossover 0,6 
Mutation 0,8 
Boltzmann Constant 0,9 

 

Mutation rate is higher than the GA because the acceptances of the mutations are 

controlled by the Simulated Annealing process. SA prevents deterioration of high 

quality genes by harmful mutations. To increase the local search ability of the 

algorithm, mutation rate is increased by depending on the protection of SA. In order 

to increase the cooling speed and help the algorithm converge faster, Boltzmann 

Constant can  be assigned less than 1. The 7-activity project is a small problem, as a 

result of this number of local minima are relatively less than the ones in complex 

projects. Probability of getting stuck into local minima is low. To decrease the 

probability of acceptance of a detrimental mutation, BC is assigned as 0.9.  Results 

shown in Table 4-5 are obtained by GASA. 

 

Table 4-5 Solution obtained by GASA for 7-activity project 
 

Analysis No 1000 2500 5000 10000 
1 188900 186300 185500 185500 
2 185500 185500 185500 185500 
3 187300 185500 185500 185500 
4 185500 185500 185500 185500 
5 185500 185500 185500 185500 
6 186500 185500 185500 185500 
7 189100 185500 185500 185500 
8 186500 186300 185500 185500 
9 186500 186300 185500 185500 
10 187300 186300 185500 185500 

 

Successful results are obtained by GASA at the end of 10 trials. The optimum 

solution is obtained in all trials. At the end of the 1000th iteration optimum solution is 

obtained in 3 of the 10 trials and 6 of the 10 trials at the end of 2500th iteration. At 
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the end of 5000th iteration, optimum solution is obtained in all trials. One analysis 

took around 0,3 seconds on one processor of 2,4 GHz Intel Core2 Duo CPU. 

 

 

4.2.3 Solution by HGAQSA 

 

HGAQSA differs from GASA by its enhanced local search capability. Because of its 

hybrid local search algorithm, number of genetic iteration which is the repletion of 

whole GA cycle is significantly less than GA and GASA. As a result of this, cooling 

of HGAQSA must be done in less cycles compared with GASA. In order to increase 

cooling speed, BC is assigned as 0.8 which is less than the BC assigned to GASA. 

Parameters assigned for the HGAQSA are shown in Table 4-6. Genetic algorithm is 

stopped after SAperiod of generation evaluation. At this point, random mutations are 

applied to the RWalkNo individuals and the number of mutations per individuals is 

SAiteration. The individuals are selected randomly but, the best individual is 

guaranteed to be selected at each QSA iteration. Following results obtained by 

HGAQSA are shown in Table 4-7. 

 

 

Table 4-6 Parameters of HGAQSA for the 7 Activity network 
 

Genetic Iteration 100 
Population Size 25 
bitPerActivity 4 
Crossover 0,5 
Mutation 0,8 
Boltzmann Constant 0,8 
SAiteration 14 
SAperiod 10 
RWalkNo 15 
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Table 4-7 Solution obtained by HGAQSA for 7-activity project 
 

Analysis No 1000 2500 5000 10000 
1 187500 185500 185500 185500 
2 185500 185500 185500 185500 
3 185500 185500 185500 185500 
4 185500 185500 185500 185500 
5 185500 185500 185500 185500 
6 185500 185500 185500 185500 
7 185500 185500 185500 185500 
8 185500 185500 185500 185500 
9 185500 185500 185500 185500 
10 185500 185500 185500 185500 

 

HGAQSA obtained the optimum solution at 9 of the 10 trials at the end of 1000th 

iteration and at all trials after the 2500th iteration. Similar to the previous analysis, 

computational duration is measured as 0,3 seconds. 

 

 

4.2.4 Solution by GMASA 

 

GMASA is a similar algorithm to HGAQSA in which it differs only in the local 

search operator that sequentially searches through the search space. On the other 

hand, HGAQSA performs a random walk on the parameters. The search algorithm of 

GMASA significantly increases the evaluation number. However, it increases the 

probability of convergence into global optima. Parameters assigned for the GMASA 

are shown in Table 4-8. 

 

GMASAiteration is the number of memetic searches for each individual. The 

algorithm seeks for better solutions by mutating the genes in a sequential way. This 

procedure is repeated 2 times for the selected individual making 14 mutations for 

each MA search. 
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Table 4-8 Parameters of GMASA for the 7 Activity network 
 

GeneticIteration 90 
Population 25 
bitPerActivity 4 
GMASAiteration 14 
Boltzmann 0,7 
Crossover 0,5 
Mutation 0,8 
Maperiod 10 

 

When the Table 4-9 is examined, it is seen that the convergence of GMASA is 

relatively slow. Although GMASA obtained optimum solution at the end of all 

analysis, the method could not be considered as successful. Duration of one analysis 

is measured as 0.3 second. 

 

 

Table 4-9 Solution obtained by GMASA for 7-activity project 
 

Analysis No 1000 2500 5000 10000 
1 187900 187300 187300 185500 
2 192000 187500 187500 185500 
3 186500 186500 185500 185500 
4 187500 187300 185500 185500 
5 190500 187900 185500 185500 
6 187100 186500 186500 185500 
7 191300 185500 185500 185500 
8 187100 186300 186300 185500 
9 187900 187900 187500 185500 
10 185500 185500 185500 185500 

 

 

4.2.5 Solution by GASAVNS 

 

The 7-activity project is analyzes by GASAVNS and the model parameters are given 

in Table 4-10. The variable neighborhood search algorithm performs at most 3 

mutation at the same time which is determined by the MaxNeighbor parameter. The 

local search is repeated 3 times which is determined by SAiteration parameter. 

Similar to GMASA, local search is applied to all individuals of the population. 
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Table 4-10 Parameters of GASAVNS for the 7 Activity network 
 

GeneticIteration 250 
Population Size 25 
bit/activity 4 
SAiteration 3 
crossover 0,4 
mutation 0,8 
VNSperiod 5 
Boltzman 0,5 
MaxNeighbor 3 

 

The genetic algorithm is stopped after evaluation of VNSperiod generations and VNS 

local search begins. In this example, after 5 GASA cycles, VNS local search is 

applied. The analysis results are shown in Table 4-11. 

 

Table 4-11 Solution obtained by GASAVNS for 7-activity project 
 

Analysis No 1000 2500 5000 10000 
1 186500 185500 185500 185500 
2 185500 185500 185500 185500 
3 187100 185500 185500 185500 
4 187100 185500 185500 185500 
5 186300 185500 185500 185500 
6 185500 185500 185500 185500 
7 185500 185500 185500 185500 
8 185500 185500 185500 185500 
9 186500 185500 185500 185500 
10 185500 185500 185500 185500 

 

GASAVNS obtains the optimum at all trials after 2500th evaluation. In addition to 

this, after the 1000th iteration in five of the ten trials optimum schedule is obtained. 

The results show that GASAVNS converges to optimum fast. 
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4.2.6 Solution by ACO 

 

Ant colony optimization seeks the global optimum by assigning more probability of 

selection to the crashing alternatives which ends up with schedules of lower total 

project costs. Probability values are determined by considering the pheromone 

content of the alternatives. Upper bound for the pheromone content is limited by the 

MaxPheromone parameter. The pheromone amount added for the best solution’s 

crashing alternatives is equal to pheromoneConstant. The other solution’s added 

pheromone amounts are determined by taking the ratio of individual’s total project 

cost and the current best project total project cost into account.  

 

Alfa and Beta are the parameters for the computation of the probability of selection 

of the crashing options by considering the pheromone amounts. In order to prevent 

getting stuck into local minima, pheromone amounts are evaporated by taking the 

Evaporation parameter into account. After one cycle of ACO, 30% of the pheromone 

is evaporated. Parameters assigned for the ACO algorithm is shown in Table 4-12. 

 

Table 4-12 Parameters of ACO for the 7 Activity network 
 

Iteration 500 
Population 25 
Max_Pheromone 64 
q0 0,2 
Alfa 1 
Beta 0,001 
pheromoneConstant 12 
Evaporation 0,7 
Best_Evap 0,97 

 

 

Analysis results show that ACO converges to optimum significantly fast that after 

the 1000th evaluation the algorithm had obtained 9 optimum solutions out of 10 trials. 

In addition to this, optimum solution is obtained when the stopping criteria is 

reached.The analysis result of ACO is given in Table 4-13. 
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Table 4-13 Solution obtained by ACO for 7-activity project 
 

Analysis No 1000 2500 5000 10000 
1 194000 194000 191500 190500 
2 185500 185500 185500 185500 
3 185500 185500 185500 185500 
4 185500 185500 185500 185500 
5 185500 185500 185500 185500 
6 185500 185500 185500 185500 
7 185500 185500 185500 185500 
8 185500 185500 185500 185500 
9 185500 185500 185500 185500 
10 185500 185500 185500 185500 

 

 

4.2.7 Solution by ESS 

 

Model parameters of ESS consists of only population size and the repetition number 

of ESS by randomly alteration of the results obtained by ESS. Population size for the 

ESS is chosen as 14 and the scatter search is repeated 7 times. After the 10 trials, 

obtained results are shown in Table 4-14. 

 

 

Table 4-14 Solution obtained by EMS for 7-activity project 
 

Analysis No 1000 2500 5000 10000 
1 195500 186500 186300 185500 
2 188100 187500 186500 185500 
3 191500 186500 185500 185500 
4 190300 188500 185500 185500 
5 193000 187300 185500 185500 
6 191900 190800 190300 185500 
7 191500 187100 185500 185500 
8 201700 192000 187500 185500 
9 203500 192800 185500 185500 
10 195750 190300 188500 185500 

 

ESS obtained optimum when the stopping criterion is met; however the convergence 

of ESS is very slow. Only in five trials out of ten, optimum solution is obtained after 
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the 5000th evaluation. In addition to this, ESS gives the worst results at the end of the 

1000th evaluation, which means the initial convergence capability of the algorithm is 

the worst. 

 

4.2.8 Solution by PSO 

 

Particle swarm optimization seeks the global optimum by directing each particle’s 

position, crashing alternatives, towards the global best and that individual’s current 

best. Each particle’s velocity is determined by considering the distance between the 

global best and its overall best.  

 

In order to prevent missing out any crashing alternatives which is on the search 

direction, the maximum velocity is limited by Vmax parameter. The maximum 

distance between the crashing alternatives is determined by the parameter Resolution. 

Parameters c1 and c2 are the importance factors of the distance between global 

optimum and current best respectively. Parameters of the PSO are given in Table 

4-15. 

 

 

Table 4-15 Parameters of PSO for the 7 Activity network 
 

Iteration 100 
Population Size 25 
Random Iteration 5 
Resolution 64 
c1 1,9 
c2 1,9 
Vmax 16 

 

PSO is repeated “Random Iteration” times by randomly changing the obtained 

positions in order to prevent getting stuck into local minimum. The obtained results 

are shown in Table 4-16. 
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After the 5000th evaluation PSO obtained the optimum solution in all trials. Only in 

one trial out of ten, global optimum could not be obtained at the end of the 2500th 

evaluation.  

 

Table 4-16 Solution obtained by PSO for 7-activity project 
 

Analysis No 1000 2500 5000 10000 
1 187100 187100 185500 185500 
2 185500 185500 185500 185500 
3 185500 185500 185500 185500 
4 185500 185500 185500 185500 
5 185500 185500 185500 185500 
6 185500 185500 185500 185500 
7 186300 185500 185500 185500 
8 186300 185500 185500 185500 
9 186300 185500 185500 185500 
10 186500 185500 185500 185500 

 

4.2.9 Conclusion 

 

7-activity project was relatively an easy TCT problem. For this reason, obtaining 

global optima does not necessarily mean that the meta-heuristic algorithm is 

successful. When the stopping criteria is met which is more than the evaluation 

number of exhaustive evaluation, all meta-heuristic algorithms obtained global 

optimum in some or all of the trials. For this test problem, performance of HGAQSA 

and GASAVNS are the best and they showed pleasing results in terms of 

convergence speed and precision of the results. 

 

PSO is also a fast converging algorithm. Its convergence to near-optimum is 

significantly fast but it takes much iteration for PSO to converge into global 

optimum. For this reason, PSO is the third algorithm after HGAQSA and 

GASAVNS. 

 

ACO has the best initial convergence speed.  At the end of the 1000th evaluation, 

results of ACO are better than the any other algorithms. However, precision of ACO 

is not satisfactory. Improvement of the initially obtained near-optimum results are 
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significantly slow at later iterations which causes the risk of getting stuck into local 

optima. 

 

GASA obtained satisfactory results that after the 5000th evaluation, it obtained global 

optimum in all trials. This property of GASA makes it a dependable optimization 

method in contrast to its slow convergence speed for this problem. Finally, GMASA, 

ESS and GA did not present satisfactory results in this analysis. 

 

To conclude, 7-activity project is not a proper problem to test the convergence 

abilities of the meta-heuristic algorithms. However, the important criteria in this case 

were to reach global optimum in the project evaluation number which is less than the 

number of combinations of the project. HGAQSA and GASAVNS are successful 

meta-heuristic algorithms with their precise and fast convergence into global optima.   

 

4.3 TCT Analysis with 18 Activity Project 

 

Second TCT type problem examined is an 18-activity Project which was generated 

by Burns et al. (1996) and altered by Hegazy (1999). There are two to five different 

cost and duration alternatives for each activity. 18-activity project’s logical 

relationships and crashing options of the activities are shown in Table 4-17. 

 

Total number of possible different cost-duration alternatives is; 

55*42*310*21 = 5,9 Billion alternatives. 

 

Complete evaluation of this much high value takes significantly long time even if it 

was evaluated on a high speed computer. For this reason, implementing an 

exhaustive enumeration is almost impossible. The 18-activity project is analyzed for 

2 cases: 

• Minimum total project cost for constant $200/day overhead cost and $1000/day 

bonus for earlier finish from 110 days and $20000/day liquidated damages for 

later finishes from 110 days. 

• Minimum total project cost for constant $200/day overhead cost. 
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Table 4-17 18 Activity project 
 

Act. 
No. 

Predecess
or Alternative 1 Alternative 2 Alternative 3 Alternative 4 Alternative 5

  Dur. 
(days) Cost ($)

Dur. 
(days) Cost ($)

Dur. 
(days) Cost ($)

Dur. 
(days) Cost ($) 

Dur. 
(days) Cost ($)

1 – 14 2,400 15 2,150 16 1,900 21 1,500 24 1,200 
2 – 15 3,000 18 2,400 20 1,800 23 1,500 25 1,000 
3 – 15 4,500 22 4,000 33 3,200 – – – – 
4 – 12 45,000 16 35,000 20 30,000 – – – – 
5 1 22 20,000 24 17,500 28 15,000 30 10,000 – – 
6 1 14 40,000 18 32,000 24 18,000 – – – – 
7 5 9 30,000 15 24,000 18 22,000 – – – – 
8 6 14 220 15 215 16 200 21 208 24 120 
9 6 15 300 18 240 20 180 23 150 25 100 
10 2, 6 15 450 22 400 33 320 – – – – 
11 7, 8 12 450 16 350 20 300 – – – – 
12 5, 9,10 22 2,000 24 1,750 28 1,500 30 1,000 – – 
13 3 14 4,000 18 3,200 24 1,800 – – – – 
14 4, 10 9 3,000 15 2,400 18 2,200 – – – – 
15 12 12 4,500 16 3,500 – – – – – – 
16 13, 14 20 3,000 22 2,000 24 1,750 28 1,500 30 1,000 
17 11, 14, 15 14 4,000 18 3,200 24 1,800 – – – – 
18 16, 17 9 3,000 15 2,400 18 2,200 – – – – 

 

 

 

The two contract types are analyzed by the eight meta-heuristic algorithms. The GA 

based methods: GA, GASA, HGASA, HGAQSA, GMASA, GASAVNS have the 

same gene representation. Binary coding is preferred and each activity is represented 

by 6 bits. As a result the total gene length is 18*6 = 108 bits. 

 

The number of chromosomes, namely crossover points, is a critical issue to 

determine. In order to see the effect of number of chromosomes, different number of 

chromosomes from 1 to 4 is tested. The gene is divided into equal intervals at each 

trial and the crossover point for each chromosome is determined by generating 

random numbers. Each trial is repeated 10 times and the following results shown in 

Table 4-18 are obtained. 
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Table 4-18 Effect of chromosome number 
 

Analiz No 1CH GA 2CH GA 3CHGA 4CH GA 
1 138865 139070 142670 142520 
2 147170 130670 143558 140550 
3 149070 147590 140170 148005 
4 138870 144850 144300 139858 
5 130520 140500 148050 137170 
6 144370 144870 145790 144650 
7 146815 149908 145770 143615 
8 142960 148320 139370 146608 
9 141908 146015 151338 141570 
10 148065 142958 141308 144100 
Mean 142861,3 143475,1 144232,4 142864,6 
St Dev 5649,25 5623,06 3673,52 3237,52 

 

From the analyses, it is seen that for the genetic algorithm, chromosome number does 

not have a significant affect on the mean value of the solutions. However, the 

standard deviation of the results decreases as the number of chromosome increases. 

Precision of the results have significant importance, because in this thesis it is aimed 

to develop a meta-heuristic algorithm which converges to global optimum or near-

optimum at every trial. As a result, if the results have high precision this reflects that 

the algorithm has tendency to converge to a stable solution. Therefore, four-

chromosome genetic representation is preferred during the thesis study. 

 

18-activity network is analyzed by the meta-heuristic methods and the results are 

briefly introduced. The 6 bit per activity is assigned for the GA based methods. 

Pheromone interval for the ACO and position interval for the PSO is also assigned as 

64. 

 

The two contract conditions are re-solved by adding the project on to itself 5 and 19 

times respectively. As a result of this, 108 and 360-Activity projects are obtained. 

Problem solution capabilities of meta-heuristic algorithms are tested on large projects 

also. 

 

For the first case there is not any penalty function for the restrictions, cost function is 

adequate for the total evaluation of the contract condition. 
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where, PD is the project duration. Optimum solution of this case was 110 days of 

project duration and $106270 direct cost and $22000 indirect cost which is the same 

solution with the previous case. Contract conditions of the first case restrict only 

delayed projects and awards the projects finished earlier than 110 days. 

 

For the second case, there is only constant overhead cost of $200/day. There is not 

any limitation on the project duration by the contract clauses. Aim is to obtain the 

optimum project scheduling which gives the least total project cost. Cost function of 

the second case is shown as; 

 

∑ += PDDCCF *200                 (4.2) 

 

Solution of this problem was 126 days of project duration with $102570 direct cost 

and $25200 indirect cost which makes the total cost $127770.  

 

4.3.1 Analyses by GA 

 

GA is a very simple method to implement as there are very few parameters to assign. 

GA does not demand a significant meta-heuristic knowledge to run the analysis for a 

project manager. There are not complicated parameters to decide the values of them 

to improve analysis results. 

 
Analysis results are given in Table 4-19 for the cases 1 and 2. It can easily be 

inferred from the analysis results that GA can not give satisfactory results. Although 

18-Activity project is not a challenging problem, the best solution is not close to 

optimum solution. 

 

At first glance Case 1 seems to be an easy problem to solve, since the project 

completion dates later than 110 days are penalized heavily. The penalty function 

restricts the solution space and only early finishes than 110 days have high 
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probability of survival. This effect is seen especially in the 18-Activity projects 

which have earlier than 110 days solution. However, those solutions are far from 

optimum solutions. 

 

Best solution deviates about 13,4% and the mean deviates about 19,5% from the 

optimum solution. This represents that the GA can not converge into global optimum 

successfully and the results can deviate significantly. However, project duration has 

not deviated as much as the project cost. This means that GA is not successful at 

extending the activity durations of activities which have slack time. As a result of 

this, global optimum could not be obtained. 

 

GA could not give successful results when the project is duplicated six times. This 

result has already been expected when the 18-Activity project results are examined. 

However, the results are surprising that none of the analysis could not finish the 

project earlier than 660 days and are penalized by $20000 per delay day. As a result 

of this the results are extremely bad that even the best solution costs 2,85 times of the 

optimum solution. 

 
Table 4-19 Analysis results by GA 

 
Case 1 Case 2 

  Project Size Cost Duration Cost Duration 
18 Activity 145400 106 129116 122 
108 Activity 2192400 722 798290 989 Best 

Solution 360 Activity 10062232 2541 2668600 3341 
18 Activity 153250 106,5 129833 125 
108 Activity 2416666 732 816440 1001 

Mean of 
10 

Analysis 360 Activity 10395559 2557 2698744 3361 
 
 

Table 4-20 Model Parameters of the GA 
 

Genetic Iteration 1000 
Population Size 100 
bitPerActivity 6 
Crossover 0,6 
Mutation 0,07 

 

It is obvious that GA is trapped in a local optimum and could not obtain a better 

solution although there were significantly better solutions. The main reason of this is 
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that GA can not systematically improve the solutions and mutations may be harmful 

for complex projects if an improvement is obtained. Probability of a beneficial 

mutation decreases significantly as the gene quality of the individuals improve 

compared with their initial, in other words their randomly generated, state. 

 

It is clear that in order to finish the project earlier than 660 and avoid paying 

liquidated damages, successive beneficial mutations are mandatory. However, 

probability of a beneficial mutation decreases as the gene quality improves. 

Unfortunately, the improvement is terminated by a harmful mutation and the gene 

quality again decreases. However, it is surprising that there are not any infeasible 

early finishes which was observed in the 18-Activity project. 

 

The results are even worse at the 360-Activity project. This can be explained by the 

same reasoning with the previous analysis. In addition to this, in this case the 

problem is more complicated and the gene structure is more difficult to improve. As 

a result the analysis results are not satisfactory. 

 

Although the results are not satisfactory, the deviation of the 10 analysis is not much. 

Difference between the best solution and the mean of the results are not very much. 

This is an unexpected situation, because it is expected that the solutions of the GA 

deviate in a wide range as the solutions are not satisfactory. In contrast with this, the 

solutions converged in a similar local optimum in which project cost and project 

duration do not deviate much. 

 

Reason of this can be explained as the four point crossover operation, which keeps 

the mean of the solutions in a steady state and decreases the variation of the results. 

Main difference between the Case 1 and Case 2 is that there is not an apparent 

feasible region in Case 2. As a result of this the feasible solution space is 

significantly wider in Case 2. There would not be abrupt changes in the project cost 

with the fluctuations of the project duration. 

 

For the 18-Activity project GA gives satisfactory results. The Best solution among 

10 trials is very close to the optimum solution. Project cost is 1% higher and the 
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project duration is 4 days shorter than the optimum solution. When these results are 

compared with the previous case’s results, in this case GA can be said to give 

satisfactory results. In addition to this, there is not a significant deviation in the mean 

of the analyses. Especially mean of the project cost did not deviate much and the 

mean project duration is surprisingly close to the optimum solution. 

 

Similarly 108 and 360-Activity project solutions are not deviated as much as the 

previous case’s results. However, the results are far from being acceptable. Deviation 

of the best result of the 108-Activity and 360-Activity projects are a little less than 

5% and the deviation of mean is a little more than 5%. However, project duration is 

not close to the optimum solution. It is obvious that by extending the activity 

durations on the critical path project duration, thus the indirect cost is increased and 

the direct cost is decreased. It is probable that the GA got stuck into local minima 

and could not achieve better solution. Consequently, when the analysis duration and 

the analysis results are compared it can be said that the results are not satisfactory. 

 

Analysis duration of GA is measured as 40 seconds for the 18-Activity project, 12 

minutes for 108-Activity project and 37 minutes for 360-Activity project. 

 

4.3.2 Analyses by GASA 

 

Due to SA characteristics, analysis with GASA had ended up with successful results 

which are given in Table 4-21. GASA obtained optimum solutions at every trial for 

the 18-Activity and 108-Activity projects. In addition to this, GASA obtained very 

close results to the global optimum for the 360-Activity projects. If the population 

size and the iteration is increased it could be possible for GASA to obtain the global 

optimum of 360-Activity project also. 

 

Analysis results of GASA deviated only 0,5% from the global optimum in terms of 

total project cost for the 360-activity project. In the first case GA is penalized by the 

liquidated damage because of the late project completion. However, in none of the 

analysis GASA has late finish penalty. GASA end up with slightly shorter project 

durations compared with the project duration of global optimum. Mean of the 360-
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Activity project solutions are very close to each other which means that the success 

of GASA is not by chance. GASA had obtained global optimum at every trial of 18-

Activity and 108-Activity projects and very close results to global optimum at 360-

Activity projects. 

 

Table 4-21 Analysis results by GASA 
 

Case 1 Case 2 
  Project Size Cost Duration Cost Duration 

18 Activity 128270 110 127770 126 
108 Activity 769620 660 766620 756 Best 

Solution 360 Activity 2686452 2192 2558526 2522 
18 Activity 128270 110 127770 126 
108 Activity 769620 660 766620 756 

Mean of 
10 

Analysis 360 Activity 2687957 2192 2558925 2530 
 

Model parameters of GASA are determined according to the project size. The total 

project evaluation number is proportional with the square of the project size. The 

evaluation duration of GASA analysis is proportional with the cubical power of 

project size. As a result exact solution of very large projects may not be suitable by 

GASA. The model parameters of GASA are given in Table 4-22. 

 

Table 4-22 Model Parameters of the GASA 
 

Genetic Iteration 1000 
Population Size 150 
bitPerActivity 6 
Crossover 0,6 
Mutation 0,8 
Boltzmann Constant 0,9 

 

Similar to previous case, GASA end up with successful results in Case 2 too. For the 

18-Activity and 108-Activity projects GASA obtained the global optimum for every 

trial. This showed the ability of GASA on the solution of medium sized TCT 

problems. In addition to this, very close results to the global optimum are obtained at 

the analysis on 360-Activity projects. The deviation of total project cost is less than 

%0,1 both for the best solution and the mean of the 10 trials. The error amount is 

significantly small and can be accepted as near-optimum solution. 

 



86 
 

Best solution has a schedule two days later project completion time compared with 

the global optimum. However, mean project completion time is 10 days later than the 

optimum solution. This indicates that there is a slight deviation in the solutions of 

GASA in terms of project duration; however 10 days is not a significant time when 

the 2520 days of optimum project duration is considered. 

 

GASA can be considered to be a successful method in that; it can obtain global 

optimum for the small and medium-sized projects and obtained satisfactory results 

for the large-sized projects. However, better results must be achieved for a proper 

project planning. 

 

Analysis duration of GASA is measured as 8 seconds for the 18-Activity project, 7 

minutes and 30 seconds for 108-Activity project and 43 minutes for the 360-Activity 

project. 

 

4.3.3 Analyses by HGAQSA 

 

HGAQSA end up with very successful results which can be seen from Table 4-23. 

Optimum solution is achieved at all trials including the 18-Activity, 108-Activity and 

360-Activity projects. In addition to its successful results, HGAQSA has high 

convergence speed to the global optimum. 

 

Table 4-23 Analysis results by HGAQSA 
 

  Case 1 Case 2   
    Cost Duration Cost Duration

18 Activity 128270 110 127770 126 
108 Activity 769620 660 766620 756 Best Solution 
360 Activity 2565400 2200 2555400 2520 
18 Activity 128270 110 127770 126 
108 Activity 769620 660 766620 756 Mean of 10 

Analysis 
360 Activity 2565400 2200 2555400 2520 

 

Random search of HGAQSA was the only difference between the GASA, and this 

additional specialty improved the optimization capability of HGAQSA significantly. 

Random search in implemented after 10 successive runs of GA and after the each 
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trial the acceptance criteria is hardened. Model parameters of HGAQSA are given in 

Table 4-24. 

 

First Case is resolved for the 1080-Activity projects also. This analysis is repeated 

three times and HGAQSA obtained global optimum in eight hours in the three trials. 

 

Table 4-24 Model Parameters of the HGAQSA 
 

Genetic Iteration 65 
Population Size 150 
bitPerActivity 6 
Crossover 0,6 
Mutation 0,8 
Boltzmann Constant 0,7 
Random Walk Project Size3/2 
Random Walk Period 10 

 

 

HGAQSA again obtained very good solutions and achieved global optimum at all 

trials for the 18-Activity, 108-Activity and 360-Activity projects. Analysis duration 

for the 18-Activity project is 2 seconds, for the 108-Activity duration is 76 seconds 

and for the 360-Activity project is 24 minutes and 37 seconds. 

 

4.3.4 Analyses by GMASA 

 

Analysis results of GMASA which are given in Table 4-25 are slightly worse than 

GASA but it can still be considered as satisfactory solution. The model is based on 

GASA and a memetic search which systematically mutates each activity per run. 

This property of GMASA increases computational demand but it guarantee visiting 

every activity. 

 

Model parameters are adjusted in a way to limit the GMASA iterations to a certain 

level in order to prevent the computational duration increase too fast when the 

number of activities increases. The model parameters of GMASA is given in Table 

4-26. 
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Table 4-25 Analysis results by GMASA 
 

  Case 1 Case 2 
    Cost Duration Cost Duration 

18 Activity 128270 110 127770 126 
108 Activity 772096 660 768168 758 Best 

Solution 360 Activity 2596844 2200 2612216 2524 
18 Activity 128270 110 127770 126 
108 Activity 773872 660 768549 756 

Mean of 
10 

Analysis 360 Activity 2601969 2200 2617149 2538 
 

 

Table 4-26 Model Parameters of the GMASA 
 

GeneticIteration 150 
Population 150 
bitPerActivity 6 
GMASAiteration 5 
Boltzmann 0,7 
Crossover 0,5 
Mutation 0,8 
MAperiod 10 

  

 

4.3.5 Analyses by GASAVNS 

 

GASAVNS gives better results than GMASA but worse than GASA. Analysis 

results of GASAVNS are shown in Table 4-27. It is seen that the expected 

improvement could not be obtained by the implemented VNS in this analysis. 

GASAVNS has high variability in its results especially in the analysis of Case 1 for 

the 108 Activity projects.  

 

Table 4-27 Analysis results by GASAVNS 
 

  Case 1 Case 2 
    Cost Duration Cost Duration 

18 Activity 128270 110 127770 126 
108 Activity 769980 660 766620 756 Best 

Solution 360 Activity 2631547 2192 2576662 2524 
18 Activity 128270 110 127770 126 
108 Activity 773229 651 766703 756 

Mean of 
10 

Analysis 360 Activity 2649823 2190 2582936 2528 
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Model parameters of GASAVNS are given in Table 4-28.  

 

Table 4-28 Model Parameters of the GASAVNS 
 

Iteration Project Size * 3 + 100 
Population Size Project Size * bitPerActivity
bit/activity 4 
SAiteration ProjectSize0,4 
crossover 0,5 
mutation 0,8 
Maperiod 5 
Boltzman 0,5 
MaxNeighbor ProjectSize0,3 

  

 

4.3.6 Analyses by ACO 

 

Global optimum is obtained by ACO algorithm for the 18-Activity and 108-Activity 

projects at the analysis of Case 1. In addition to this, global optimum is obtained for 

the 18-Activity project and near optimum for the 108-Activity project at the analysis 

of Case 2. Up to this point the analysis results can be considered as optimum, as 

global optimum is obtained at all of the trials for the 18 and 108-Activity projects of 

Case 1. However, the analysis results are not satisfactory for the 360-Activity 

projects which are given in Table 4-29. 

 

Table 4-29 Analysis results by ACO 
 

    Case 1 Case 2 
    Cost Duration Cost Duration 

18 Activity 128270 110 127770 126 
108 Activity 769620 660 766720 756 Best  

Solution 360 Activity 4686194 2312 2556100 2524 
18 Activity 128270 110 127870 126,2 
108 Activity 769620 660 768823 757,4 

Mean of 
10 

Analysis 360 Activity 4902165 2327 2563517 2534 
 

For the Case 1, ACO stuck into local optima and paid liquidated damages. For this 

reason, results of Case 1 are unacceptable. Results of the 360-Activity project deviate 

within reasonable limits from global optima. The analysis shows that ACO may get 
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stuck into local optima for the case of large projects with penalty functions. The 

model parameters of ACO are given in Table 4-30. 

 

Table 4-30 Model Parameters of the ACO 
 

Iteration 200 
Population 100 
Iteration 5 
Max_Pheromone 64 
q0 0,2 
Alfa 1 
Beta 0,001 
pheromoneConstant 12 
Evaporation 0,7 
Best_Evap 0,97 

 

 

4.3.7 Analyses by PSO 

 

Performance of PSO for the 18-Activity project was very pleasing that it obtained 

global optima in both Case 1 and Case 2. However, the remaining analysis results are 

not pleasing which is given in Table 4-31. PSO stuck into local optima for the 108-

Activity and 360-Activity projects and pays liquidated damages for the Case 1. If 

PSO is compared by ACO, it can be said that ACO has better performance since 

ACO did not pay liquidated damages for the 108-Activity project. 

 

Table 4-31 Analysis results by PSO 
 

 Case 1 Case 2 
  Cost Duration Cost Duration 

18 Activity 128270 110 127770 126 
108 Activity 2175041 723 768320 761 Best 

Solution 360 Activity 2565400 2520 2587670 2537 
18 Activity 128270 110 127770 126 
108 Activity 2540167 726,4 768555 762 

Mean of 
10 

Analysis 360 Activity 10553883 2558 2599934 2543 
 

 

Analysis results of PSO are not satisfactory for the 360-Activity results. Only in one 

of the analysis PSO did not paid liquidated damages and paid high amount of 
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liquidated damage in the remaining nine analyses. For the Case 2 PSO give moderate 

results, only for the 108-Activity project near optimum results are obtained. Model 

parameters of PSO are given in Table 4-32. 

   

Table 4-32 Model Parameters of the PSO 
 

Iteration 450 
Population Size 500 
Random Iteration 9 
Resolution 64 
c1 2 
c2 2 
Vmax 16 

  

 

4.3.8 Analyses by EMS 

 

Results of EMS are only better than GA and worse than the remaining meta-heuristic 

algorithms. EMS obtains global optimum in none of the analyses. Only in 18-

Activity projects near optimum results are obtained. Schedules with liquidated 

damages are obtained for the 108 and 360-Activity projects. Model parameter of 

EMS is only the population size and random iteration. Population size is taken as 

twice of the project size and random iteration is taken as five. 

 

 

Table 4-33 Analysis results by EMS 
 

    Case 1 Case 2 
    Cost Duration Cost Duration 

18 Activity 129670 110 128650 128 
108 Activity 996368 676 841255 812 Best  

Solution 360 Activity 5570200 2349 2994425 2987 
18 Activity 139704 109,5 130068 131 
108 Activity 1141976 684 867222 821 

Mean of 
10 

Analysis 360 Activity 5586985 2250,7 3045552 3002 
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4.3.9 Conclusion 

 

Characteristics of 18-Activity project significantly differ from the 7-activity project. 

First of all, trial and error solution of 18-activity project is almost impossible even by 

a high speed computer. A small increase in the project size ends up with a high 

amount of increase in the number of possible project combinations. This is a sound 

example for the illustration of the combinatorial expansion of TCT type problems. 

 

Abrupt changes are observed in the performances of the meta-heuristic algorithms. 

Optimum solution of 7-activity project is obtained by all of the algorithms. However, 

GA and ESS could not obtain global optima in any of the trials in 18-activity project. 

HGAQSA performed the best performance and had obtained global optimum at all of 

the trials within reasonable computation duration. Hybrid local and global search 

capability of HGAQSA is the main advantage of the meta-heuristic algorithm for the 

convergence of global optima. 

 

GASA has the second rank for the obtaining of global optima. The main 

disadvantage of GASA when compared with HGAQSA is its slow convergence. 

However, GASA also obtains global optimum even for the large projects within 

reasonable computation time. 

 

After the GASA, ACO can be considered as the third successful meta-heuristic 

algorithm. Although ACO does not represent satisfactory results, it gives pleasing 

results for the small and medium-sized projects.  

 

 

GASAVNS, GMASA and PSO give successful results for the small-size project but 

did not give satisfactory results for the medium and large-projects. Finally, GA and 

EMS do not give pleasing results in none of the analyses. 
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4.4 TCT Analysis with 29 Activity Project 

 

Test problem which is previously analyzed by Chassiakos and Sakellaropoulos 

(2005) is analyzed. The time cost trade-off optimization problem consists of a 

precedence diagram with 29 activities and various crashing alternatives for a 

highway upgrading project. Project’s logical restrictions are shown in Table 4-34 and 

crashing alternatives are illustrated in Table 4-35. Indirect project cost is determined 

as €1200/day. In the original project, there were additional restrictions on some of 

the start and finish times of the activities. The restrictions are omitted in order to 

make the duplication of the project possible. 

 

In the study of Chassiakos and Sakellaropoulos (2005), project is analyzed with an 

additional case besides the constant overhead cost. A penalty of €1500/day is paid if 

the project is completed later or a bonus of €500/day is gained if the project is 

completed earlier than 240 days. Two contract cases are analyzed and the results are 

compared with the results published by Chassiakos and Sakellaropoulos (2005).  

 

29-activity project consists of 6 single mode, 6 two-mode and 17 three-mode 

activities. Number of combinations is computed as 26 * 317 which is 8.264.970.432. 

This number is almost twice of the combination of the 19-activity project. The 

project is analyzed by GA, GASA, HGASA, GMASA, GASAVNS, ACO, PSO and 

ESS meta-heuristic algorithms. 

 

 

 

 

 

 

 

 

 

 

 



94 
 

Table 4-34 Logical restrictions of the 29-Activity project 
 
Activity 
ID Activity Description Precedence relations 
  Service road A   
1 Road excavation NULL 
2 Embankment construction 1SS+5, 1FF 
3 Subbase and base layers 1SS+10, 1FF+3, 2SS + 10, 2FF+3 
4 Asphalt layer 3FS 
5 Temporary marking and signing 4FS 
  Service road B   
6 Earth and semirock excavation 1FS 
7 Embankment construction 6SS, 6FF 
8 Subbase and base layers 7FS 
9 Asphalt layer 4FS, 8FS 
10 Temporary marking and signing 5FS, 9FS 
  Main Road   
11 Traffic diversion 5FS, 10FS 
12 Rock excavation 11FS 

13 
Earth and semirock excavation - 
existing pavement removal 12SS+6 

14 
Subgrade stabilization, retaining 
wall/culvert construction 12FF+8, 13FF+8 

15 Embankment construction 12SS+6, 12FF, 14FS-6, 14FF+10 
16 Drainage layer 15SS+10, 15FF 
17 Drainage pipe construction 15FS-10, 15FF 
18 Electrical ins. at roadway verges 15FS 
19 Planting at roadway verges 15FS+12 
20 Ditches 17SS+10, 17FF+5 
21 Subase layer 16FS-10, 16FF, 20SS+12, 20FF+2 
22 Base layer 21SS+15, 21FF+2 
23 Median island (New Jersey) 22FS-15, 22FF 
24 Electrical ins. at median island 23SS+15, 23FF+5 
25 Asphalt layer No. 1 23FS-10, 23FF 
26 Asphalt layer No. 2 25FS-10, 25FF 
27 Friction course overlay 26FS-10, 26FF 
28 Final marking and signing 27FS-10, 27FF 
29 Traffic restoration 18FS, 19FS, 24FS, 28FS 
 

 

Crashing options of the activities are shown in Table 4-35. Cost of the activities is 

given in €1000. 
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Table 4-35 Crashing alternatives of the 29-Activity project 
 

Normal Alternative 1 Alternative 2 Activity 
ID Time Cost Time Cost Time Cost 
1 15 60 12 68 - - 
2 25 30 20 38 15 44 
3 25 50 20 54 15 60 
4 12 17 9 21 - - 
5 6 3 - - - - 
6 12 27 9 32 - - 
7 6 8 - - - - 
8 20 44 15 48 12 54 
9 12 15 9 22 - - 
10 6 3 - - - - 
11 1 0,5 - - - - 
12 25 95 20 105 15 109 
13 15 34 12 41 9 51 
14 12 9 9 13 - - 
15 25 30 15 38 12 42 
16 40 78 35 85 30 90 
17 25 23 20 26 12 35 
18 20 14 15 18 12 24 
19 25 14 20 19 15 24 
20 20 38 15 42 - - 
21 40 42 35 50 30 58 
22 40 36 30 48 25 56 
23 40 65 35 74 25 79 
24 9 7 - - - - 
25 25 45 20 51 15 59 
26 25 50 20 58 15 64 
27 30 60 25 72 20 78 
28 12 9 9 13 7 18 
29 1 0,5 - - - - 

 
 
 
In the first case there are four different optimum solutions that give the same total 

project cost. Optimum solution of 241 days of project duration is given in Table 

4-36. 
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Table 4-36 Schedule of 241 days project duration 
 

Activity ID ES EF Cost Duration 
1 0 15 60000 15 
2 5 30 30000 25 
3 15 35 54000 20 
4 35 47 17000 12 
5 47 53 3000 6 
6 15 27 27000 12 
7 21 27 8000 6 
8 27 47 44000 20 
9 47 59 15000 12 
10 59 65 3000 6 
11 65 66 500 1 
12 66 91 95000 25 
13 72 87 34000 15 
14 87 99 9000 12 
15 93 118 30000 25 
16 103 143 78000 40 
17 108 133 23000 25 
18 118 138 14000 20 
19 130 155 14000 25 
20 118 138 38000 20 
21 133 173 42000 40 
22 148 178 48000 30 
23 163 188 79000 25 
24 184 193 7000 9 
25 178 203 45000 25 
26 193 218 50000 25 
27 208 238 60000 30 
28 228 240 9000 12 
29 240 241 500 1 

 
 
 
Direct cost of the project is €937000 and the indirect cost is €289200 which makes 

the total project cost €1226200. Optimum solution of 246 days of project duration is 

given in Table 4-37. 
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Table 4-37 Schedule of 246 days project duration 

 
Activity ID ES EF Cost Duration 
1 0 15 60000 15 
2 5 30 30000 25 
3 15 35 54000 20 
4 35 47 17000 12 
5 47 53 3000 6 
6 15 27 27000 12 
7 21 27 8000 6 
8 27 47 44000 20 
9 47 59 15000 12 
10 59 65 3000 6 
11 65 66 500 1 
12 66 91 95000 25 
13 72 87 34000 15 
14 87 99 9000 12 
15 93 118 30000 25 
16 103 143 78000 40 
17 108 133 23000 25 
18 118 138 14000 20 
19 130 155 14000 25 
20 118 138 38000 20 
21 133 173 42000 40 
22 148 188 36000 40 
23 173 198 79000 25 
24 194 203 7000 9 
25 188 208 51000 20 
26 198 223 50000 25 
27 213 243 60000 30 
28 233 245 9000 12 
29 245 246 500 1 

 
 
First case of the 29-Activity project has four different solutions which have the same 

total project cost. In Table 4-38 analysis results of meta-heuristic algorithms are 

given. The results include the 10 trials per each meta-heuristic algorithm. By 

examining the results it can be concluded that HGAQSA is the best meta-heuristic 

algorithm because HGAQSA converged to global optima at all of the trials in 

shortest analyses time. Besides HGAQSA, GASA and GMASA converged to global 

optima at all of the trials with slightly longer analyses duration. The three algorithms 

randomly converged into one of the four global optima. 
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Table 4-38 Analysis results for only overhead cost 
 
  GA ACO PSO GASAVNS EMS HGAQSA GMASA GASA 
  Cost Dur Cost Dur Cost Dur Cost Dur Cost Dur Cost Dur Cost Dur Cost Dur 
1 1230200 266 1228200 246 1226200 251 1226200 251 1244200 221 1226200 251 1226200 246 1226200 241 
2 1228200 241 1228200 251 1228600 253 1226200 251 1245600 233 1226200 241 1226200 246 1226200 246 
3 1230200 266 1226200 251 1226200 241 1226200 246 1237000 255 1226200 236 1226200 246 1226200 241 
4 1228200 246 1228200 256 1226200 241 1226200 251 1242800 254 1226200 251 1226200 241 1226200 246 
5 1230200 266 1228200 256 1226200 246 1228200 236 1248600 228 1226200 241 1226200 241 1226200 246 
6 1228200 256 1230200 261 1226200 236 1226200 241 1241600 238 1226200 241 1226200 236 1226200 241 
7 1228200 256 1228200 256 1226200 251 1230200 266 1247200 251 1226200 236 1226200 241 1226200 236 
8 1228200 256 1228200 256 1230600 243 1226200 236 1238600 238 1226200 251 1226200 241 1226200 241 
9 1228200 251 1228200 246 1226200 246 1228200 246 1245600 238 1226200 236 1226200 236 1226200 246 
10 1226200 251 1228200 246 1226200 241 1229800 224 1239800 264 1226200 251 1226200 246 1226200 236 

 
 

Table 4-39 Analysis results with overhead, penalty and bonus 
 
  GA ACO PSO GASAVNS EMS HGAQSA GMASA GASA 
  Cost Dur Cost Dur Cost Dur Cost Dur Cost Dur Total Cost Dur Total Cost Dur Total Cost Dur 
1 1257700 221 1247400 232 1220700 221 1220700 221 1240600 218 1220700 221 1220700 221 1220700 221 
2 1226700 211 1236100 233 1220700 221 1220700 221 1237900 207 1220700 221 1220700 221 1220700 221 
3 1246000 200 1238100 243 1222600 218 1220700 221 1239700 231 1220700 221 1220700 221 1220700 221 
4 1252100 213 1230200 236 1221700 211 1223200 216 1238400 222 1220700 221 1220700 221 1220700 221 
5 1244000 220 1234700 221 1223600 218 1220700 221 1237100 213 1220700 221 1220700 221 1220700 221 
6 1233900 217 1224100 223 1223600 218 1220700 221 1232400 212 1220700 221 1220700 221 1220700 221 
7 1245800 224 1235800 224 1220700 221 1220700 221 1235000 210 1220700 221 1220700 221 1220700 221 
8 1237200 226 1230000 230 1225400 212 1221200 226 1241800 204 1220700 221 1220700 221 1220700 221 
9 1242000 210 1231200 226 1221700 211 1220700 221 1233600 228 1220700 221 1220700 221 1220700 221 
10 1237800 214 1230000 230 1224600 208 1222300 209 1238200 236 1220700 221 1220700 221 1220700 221 
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GASAVNS, PSO and ACO converged into global optima at some of the analysis. 

The algorithms had converged to near optimum solutions at the remaining analysis 

within reasonable computation duration. GA and EMS could not converge into 

global optima in none of the analysis. 

 

Direct cost of the project is €931000 and the indirect cost is €295200 which makes 

the total cost €1226200. Optimum schedule of project duration of 236 days is given 

in Table 4-40. 
 

Table 4-40 Schedule of 236 days project duration 
 

Activity ID ES EF Cost Duration 
1 0 15 60000 15 
2 5 30 30000 25 
3 15 35 54000 20 
4 35 47 17000 12 
5 47 53 3000 6 
6 15 27 27000 12 
7 21 27 8000 6 
8 27 47 44000 20 
9 47 59 15000 12 
10 59 65 3000 6 
11 65 66 500 1 
12 66 91 95000 25 
13 72 87 34000 15 
14 87 99 9000 12 
15 93 118 30000 25 
16 103 143 78000 40 
17 108 133 23000 25 
18 118 138 14000 20 
19 130 155 14000 25 
20 118 138 38000 20 
21 133 173 42000 40 
22 148 178 48000 30 
23 163 188 79000 25 
24 184 193 7000 9 
25 178 198 51000 20 
26 188 213 50000 25 
27 203 233 60000 30 
28 223 235 9000 12 
29 235 236 500 1 
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Direct cost of the third optimum solution is €943000 and the indirect cost is €283200 

which makes the total cost €1226200. Optimum schedule of project duration of 251 

days is given in Table 4-41.  

 

Direct cost of the fourth optimum solution is €925000 and the indirect cost is 

€301200 which makes the total cost €1226200.  

 

 
Table 4-41 Schedule of 251 days project duration 

 
Activity ID ES EF Cost Duration 
1 0 15 60000 15 
2 5 30 30000 25 
3 15 35 54000 20 
4 35 47 17000 12 
5 47 53 3000 6 
6 15 27 27000 12 
7 21 27 8000 6 
8 27 47 44000 20 
9 47 59 15000 12 
10 59 65 3000 6 
11 65 66 500 1 
12 66 91 95000 25 
13 72 87 34000 15 
14 87 99 9000 12 
15 93 118 30000 25 
16 103 143 78000 40 
17 108 133 23000 25 
18 118 138 14000 20 
19 130 155 14000 25 
20 118 138 38000 20 
21 133 173 42000 40 
22 148 188 36000 40 
23 173 198 79000 25 
24 194 203 7000 9 
25 188 213 45000 25 
26 203 228 50000 25 
27 218 248 60000 30 
28 238 250 9000 12 
29 250 251 500 1 

 

 
 
 
 



101 
 

Table 4-42 Optimum schedule of the second case 
 

Activity ID ES EF Cost Duration 
1 0 15 60000 15 
2 5 30 30000 25 
3 15 35 54000 20 
4 35 47 17000 12 
5 47 53 3000 6 
6 15 27 27000 12 
7 21 27 8000 6 
8 27 47 44000 20 
9 47 59 15000 12 
10 59 65 3000 6 
11 65 66 500 1 
12 66 91 95000 25 
13 72 87 34000 15 
14 87 99 9000 12 
15 93 118 30000 25 
16 103 143 78000 40 
17 108 133 23000 25 
18 118 138 14000 20 
19 130 155 14000 25 
20 118 138 38000 20 
21 133 173 42000 40 
22 148 178 48000 30 
23 163 188 79000 25 
24 184 193 7000 9 
25 178 193 59000 15 
26 183 198 64000 15 
27 188 218 60000 30 
28 208 220 9000 12 
29 220 221 500 1 

 
 

Second case which has liquidated damage for late project completion and bonus for 

early completion is analyzed in the same manner and the analyses results are given in 

Table 4-39. The results of the second case are very similar to the first case. 

HGAQSA, GMASA and GASA converge into global optimum at all trials. 

GASAVNS and PSO converge into global optima in some of the trials but obtained 

near optimum results. GA, ACO and EMS could not obtain optimum solution in 

none of the trials. Apart from ACO, all meta-heuristic algorithms end up with the 

more or less same quality results. The reason of failure to obtain global optima in 

Case 2 can be the contract condition with liquidated damages. Optimum schedule of 

project duration for the second case is given in Table 4-42. 
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Direct cost of the optimum solution is €965000 and the indirect cost is €265200. 

However, since the project is completed 19 days before the contract requirement 

€9500 bonus is gained which makes the total cost €1220700. 

 

When the analysis results are compared with the solutions obtained by Chassiakos 

and Sakellaropoulos (2005), it is seen that the solution obtained by meta-heuristic 

algorithms give better results by €5200 for the first case and by €3200 for the second 

case. This is because of the removed restrictions on some of the start and finish times 

of some of the activities. It is not possible to compare the schedule since the authors 

did not give the schedule in tabular form. 

 

The 29-Activity problem is different than the previous two projects in which it has 

complicated CPM logical restrictions where activities have more than one restriction 

with positive or negative lags. The problem is previously solved by Chassiakos and 

Sakellaropoulos (2005) by LP/IP. The authors had 265 constraints and 129 variables 

to solve. The genetic representation of this problem has only 23 parameters to solve 

which took only 2 seconds to solve by HGAQSA. 

 

The analyses of 29-Actitivity project show that apart from simple FS relationships 

the meta-heuristic algorithms have the capability of solving TCT problems with 

complicated logical relationships. 

 

Analysis duration is given in Table 4-43. Accept for GA and EMS, the meta-heuristic 

algorithms have reasonable computation duration. Although EMS and GA have the 

longest computation duration, they could not obtain global optimum. 

 
Table 4-43 Analysis duration of one trial of meta-heuristic algorithms. 

 
GA 24 Sec 
ACO 8 Sec 
PSO 8 Sec 
GMASA 8 Sec 
HGAQSA 2 Sec 
GASAVNS 8 Sec 
EMS 67 Sec 
GASA  5 Sec 
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In order to test the algorithms on a more difficult problem, the 29-activity project is 

duplicated nine times and 290-activity project is obtained. Optimum solutions of first 

case is €12.262.000 and second case is €12.207.000. Algorithms are stopped at the 

end of the one millionth evaluation. The analyses are repeated ten times and mean of 

the ten trials are shown in Table 4-44 and Table 4-45. 

 

Table 4-44 10X 29-activity project analysis results of first case 
 

Algorithm 1000 2500 5000 10000 50000 250000 1000000 
GA 12900160 12900160 12900160 12897080 12894860 12892060 12879680 
GASA 12912920 12912620 12911120 12908520 12893600 12781680 12475420 
HGAQSA 12363440 12363440 12361700 12359260 12353300 12318200 12299220 
GMASA 12901640 12901640 12900300 12892560 12872460 12850720 12837080 
GASAVNS 12934640 12926380 12920900 12918720 12865180 12685980 12405920 
PSO 12503300 12486020 12478740 12468940 12467820 12467680 12467680 
ACO 12687540 12661660 12652400 12636060 12596400 12566000 12492000 
ESS 12965020 12965020 12965020 12965020 12963620 12933660 12912340 

 

 

Table 4-45 10X 29-activity project analysis results of second case 
 

Algorithm 1000 2500 5000 10000 50000 250000 1000000 
GA 12825700 12825700 12825700 12824670 12820490 12813600 12802140 
GASA 12843200 12842040 12841530 12836460 12816390 12692420 12379630 
HGAQSA 12269800 12269800 12269800 12269800 12259370 12225530 12208820 
GMASA 12821760 12821110 12820110 12806310 12787500 12783030 12753800 
GASAVNS 12853260 12851820 12841860 12833590 12778530 12591450 12304340 
PSO 12442700 12422250 12411390 12408130 12407890 12407880 12407880 
ACO 12893920 12857710 12846110 12728060 12627460 12525070 12367390 
ESS 12883730 12883150 12883150 12882600 12879000 12856690 12836520 

 

29-activity project is an important example in which it includes SS and FF type 

logical relationships and contains lags in some of these relationships. This example 

project is a good candidate to show the capability of the scheduling program. In 

addition to this, 29-activity project contains activities with only single activity 

execution mode. As this is the case, number of parameters to solve is not equal to the 

number of activities of the project. 29-activity project has 23 parameters to be 

determined. These are the two important characteristics of the project. 
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HGAQSA, GMASA and GASA obtained global optimum in all of the trials, both for 

the first and the second cases. HGAQSA is the most successful algorithm in this 

example since it had obtained the global optimum in the shortest time. GASA and 

GMASA are also successful algorithms. However, in the previous analysis it is seen 

that their convergence are relatively slow. In this analysis, two algorithms obtained 

global optima. From this result, it can be inferred that the number of local minima is 

relatively low as the slow converging algorithm GMASA obtained global optima in 

all of the trials. 

 

GASAVNS and PSO present similar results that the two algorithms obtained global 

optima in some of the analysis and converged to near-optimum solutions in the rest 

of the analysis. GASAVNS is known to be an optimum converging algorithm. 

Similar to GMASA, converging speed of GASAVNS is slow and 150.000 

evaluations are not enough for GASAVNS to converge into global optimum. On the 

other hand, PSO is known to be a fast near-optimum converging algorithm and its 

convergence rate decreases at the further iterations. PSO showed similar trend in this 

analysis. 

 

ACO does not present satisfactory results in the analysis of 29-activity project. The 

algorithm obtained global optimum only once and the analysis results are not close to 

the global optimum especially for the second case. 

 

Although analysis duration of GA and ESS are the longest, worst results are obtained 

by these two algorithms. Two algorithms are failed to present proper results. 

 

The 29-activity project is duplicated nine times and 290-activity project is obtained. 

The project is again analyzed for the two contract conditions with stopping criteria of 

at most 1 million project evaluations. Highly challenging test problem is obtained 

with this method. Since the solution of 29-activity project is known, optimum 

solution of 290-activity project is also known. The aim of this analysis is both to 

measure the convergence ability and convergence rate of the meta-heuristic 

algorithms. 
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At the end of the 1 millionth evaluation, no meta-heuristic algorithm were able to 

obtain global optimum. HGAQSA present best performance and obtain the most 

successful solution. GASA, PSO, GASAVNS and ACO followed HGAQSA. 

However, there is significant difference between the results of HGAQSA and the 

four meta-heuristic algorithms. The slow convergence of GMASA is apparently seen 

in this analysis, where the algorithm is far from obtaining a near-optimum solution. 

Finally, GA and ESS could not obtain successful results.  

 

4.5 TCT Analysis with 63 Activity Project 

 

Previous projects analyzed were small sized projects with at most 8.3 Billion 

schedule alternatives. The difficulties of analyses are not as same as with the real 

cases. 18-Activity and 29-activity projects are duplicated and medium and large-

sized projects are obtained; however the duplicated projects do not have complicated 

logical relationships as same-sized project should have. As a result the analysis can 

not be considered as the real solution of large-sized projects. 

 

In order to measure the performance of the meta-heuristic algorithms on the medium 

sized projects, a 63-Activity hypothetic project which is given in Table 4-46 is 

generated.  

 

The project has only Finish-to-Start logical relationships with no positive or negative 

lag. Crashing alternatives are given in Cost & Duration columns. Minimum crashing 

alternative that an activity has is three and maximum crashing alternative number 

that an activity has is five. 

 

63-activity project consists of 2 3-crashing option activity, 15 4-crashing option 

activity and 46 5-crashing option activity. As a result, total number of possible 

schedule combinations of the 63-activity project is computed as 32 * 415 * 546 = 

1,373*1042. 
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Table 4-46 63-Activity Hypothetical project 
 

Method 1 Method 2 Method 3 Method 4 Method 5 
Activity ID Pred Cost Dur Cost Dur Cost Dur Cost Dur Cost Dur 
1 NULL 3750 14 4250 12 5400 10 6250 9  -  - 
2 NULL 11250 21 14800 18 16200 17 19650 15  -  - 
3 NULL 22450 24 24900 22 27950 19 31650 17  -  - 
4 NULL 17800 19 19400 17 21600 15  -  -  -  - 
5 NULL 31180 28 34200 26 38250 23 41400 21  -  - 
6 1 54260 44 58450 42 63225 38 68150 35  -  - 
7 1 47600 39 50750 36 54800 33 59750 30  -  - 
8 2 62140 52 69700 47 72600 44 81750 39  -  - 
9 3 72750 63 79450 59 86250 55 91500 51 99500 49 
10 4 66500 57 70250 53 75800 50 80750 46 86450 41 
11 5 83100 63 89450 59 97800 55 104250 50 112400 45 
12 6 75500 68 82000 62 87500 58 91800 53 96550 49 
13 7 34250 40 38500 37 43950 33 48750 31  -  - 
14 8 52750 33 58450 30 63400 27 66250 25  -  - 
15 9 38140 47 41500 40 47650 35 54100 32  -  - 
16 9, 10 94600 75 101250 70 112750 66 124500 61 132850 57 
17 10 78450 60 84500 55 91250 49 94640 47  -  - 
18 10, 11 127150 81 143250 73 154600 66 161900 61  -  - 
19 11 82500 36 94800 34 101700 30  -  -  -  - 
20 12 48350 41 53250 37 59450 34 66800 32  -  - 
21 13 85250 64 92600 60 99800 57 107500 53 113750 49 
22 14 74250 58 79100 53 86700 50 91500 47 97400 42 
23 15 66450 43 69800 41 75800 37 81400 33 88450 30 
24 16 72500 66 78500 62 83700 58 89350 53 96400 49 
25 17 66650 54 70100 50 74800 47 79500 43 86800 40 
26 18 93500 84 102500 79 111250 73 119750 68 128500 62 
27 20 78500 67 86450 60 89100 57 91500 56 94750 53 
28 21 85000 66 89750 63 92500 60 96800 58 100500 54 
29 22 92700 76 98500 71 104600 67 109900 64 115600 60 
30 23 27500 34 29800 32 31750 29 33800 27 36200 26 
31 19, 25 145000 96 154800 89 168650 83 179500 77 189100 72 
32 26 43150 43 48300 40 51450 37 54600 35 61450 33 
33 26 61250 52 64350 49 68750 44 74500 41 79500 38 
34 28, 30 89250 74 93800 71 99750 66 105100 62 114250 57 
35 24,27,29 183000 138 201500 126 238000 115 283750 103 297500 98 
36 24 47500 54 50750 49 56800 42 62750 38 68250 33 
37 31 22500 34 24100 32 26750 29 29800 27 31600 24 
38 32 61250 51 65800 47 71250 44 76500 41 80400 38 
39 33 81150 67 87600 61 92100 57 97450 52 102800 49 
40 34 45250 41 48400 39 51200 36 54700 33 58200 31 
41 35 17500 37 21200 31 26850 27 32300 23  -  - 
42 36 36400 44 39750 41 42800 38 48300 32 50250 30 
43 36 66800 75 71200 69 76400 63 81300 59 86200 54 
44 37 102750 82 109500 76 127000 70 136800 66 146000 63 
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Table 4-46 Continued 
 

45 39 84750 59 91400 55 101300 51 126500 47 142750 43 
46 39 94250 66 99500 63 108250 59 118500 55 136000 50 
47 40 73500 54 78500 51 83600 47 88700 44 93400 41 
48 42 36750 41 39800 39 43800 37 48500 34 53950 31 
49 38,41,44 267500 173 289700 159 312000 147 352500 138 397750 121 
50 45 47800 101 61300 74 76800 63 91500 49  -  - 
51 46 84600 83 93650 77 98500 72 104600 65 113200 61 
52 47 23150 31 27600 28 29800 26 32750 24 35200 21 
53 43, 48 31500 39 34250 36 37800 33 41250 29 44600 26 
54 49 16500 23 17800 22 19750 21 21200 20 24300 18 
55 52, 53 23400 29 25250 27 26900 26 29400 24 32500 22 
56 50, 53 41250 38 44650 35 47800 33 51400 31 55450 29 
57 51, 54 37800 41 41250 38 45600 35 49750 32 53400 30 
58 52 12500 24 13600 22 15250 20 16800 18 19450 16 
59 55 34600 27 37500 24 41250 22 46750 19 50750 17 
60 56 28500 31 30500 29 33250 27 38000 25 43800 21 
61 56, 57 22500 29 24750 27 27250 25 29800 22 33500 20 
62 60 38750 25 41200 23 44750 21 49800 19 51100 17 
63 61 9500 27 9700 26 10100 25 10800 24 12700 22 
 

Number of combinations is significantly large that it makes totally impossible to 

perform exhaustive enumeration even with parallel computing. As this is the case, 

importance of convergence capability of optimum search algorithm becomes 

significant. 

 

63-Activity project is analyzed by the 8 meta-heuristic algorithms and the results 

shown in Table 4-47 and Table 4-48 are obtained. The 63-Activity project is 

analyzed for two different conditions. First case is $2300 constant daily overhead 

cost and the second case is $3500 daily overhead cost. The optimum solution of this 

problem is $5421120 and $6176170 for the first and second cases respectively. 

 

Optimum solution of the 63-activity project is obtained by commercial optimization 

software AIMMS. AIMMS is linear, integer programming optimization software. 

The computational duration of 63-activity project was only 0.05 seconds which is 

excessively shorter duration when compared with the analysis duration of meta-

heuristic algorithms. 
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The analysis results are slightly different from the previous analyses that HGAQSA 

could not give the best results. GMASA and GASAVNS obtain the global optimum 

in all of the trials in the first case. HGAQSA obtains global optimum in 7 trials out of 

10 and the remaining three trials are close to global optimum. Finally GASA can be 

considered as a successful meta-heuristic algorithm although it could not obtain 

global optimum in any of the trials. However, the analysis results are close to global 

optimum and deviation of the results is not high. PSO and ACO also give satisfactory 

results but they are not as good as the previous methods results. In addition to this 

deviation of ACO is slightly high. Finally EMS and GA are the worst meta-heuristic 

methods of the case 1.  

 

Case 2 is slightly more difficult problem than Case 1 which is easy to induct if the 

analyses results of both cases are examined. Only GMASA could obtain global 

optimum in all trials. GASAVNS obtained global optimum in 5 trials out of 10. 

HGAQSA could not obtain global optima in any of the trials, however near optimum 

solutions are obtained in all trials. Stable results are also obtained by GASA but in 

Case 2 the results are a little further from the global optima but within acceptable 

region. Similarly PSO and ACO give satisfactory results but they are not as 

successful as GASA. Finally, GA and ESS failed to give proper schedule for the 

TCT problem of 63-Activity project. 

 

Both Case 1 and Case 2 are repeated by duplicating the 63-Activity project 9 times. 

By duplicating the 63-Activity project, 630-Activity project is obtained and the 

project is analyzed 10 times with the conditions of case 1 and case 2. The mean of 

the 10 analysis of 630-activity project is given in Table 4-49 and Table 4-50. 

 

Global optimum of the case 1 is $54211200 and case 2 is $61761700. Meta-heuristic 

algorithms could not obtain global optima in any of the trials. The reason of this can 

be explained by the difficulty of the problem and the early stopping condition. 

 

HGAQSA, PSO and GASAVNS successfully converged into near optimum 

solutions. GMASA is known to be slow converging algorithm and it is expected that 

in further iterations the algorithm would obtain near optimum solutions. On the other 
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hand, GASA could not perform well when compared with its previous results. ESS 

and GA are again the worst meta-heuristic algorithms among the others. 

 

Especially PSO has very high rate of convergence to near optimum solutions. 

However, the algorithm gets stuck into local optima and could not improve its early 

solution considerably. However, HGAQSA could not initially converge near 

optimum solutions as fast as PSO, but HGAQSA obtains better solutions at later 

iterations. 
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Figure 4.4 AoN diagram of 63 activity project
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Table 4-47 Analysis results of 63-Activity project for the Case 1 
 

Analysis 
No GMASA Dur HGAQSA Dur GASAVNS Dur ACO Dur EMS Dur PSO Dur GASA Dur GA Dur 
1 5421120 630 5421120 630 5421120 630 5490120 635 5537190 617 5421620 637 5421320 633 5704200 641 
2 5421120 630 5421120 630 5421120 630 5494410 653 5548930 631 5428920 644 5421320 633 5712485 661 
3 5421120 630 5421320 633 5421120 630 5491180 638 5532710 628 5439620 651 5421620 633 5722260 650 
4 5421120 630 5421120 630 5421120 630 5491620 657 5530750 647 5422920 634 5421320 633 5713450 653 
5 5421120 630 5421320 633 5421120 630 5494920 644 5527270 621 5440570 651 5421620 633 5699650 645 
6 5421120 630 5421320 633 5421120 630 5486630 626 5526450 633 5421320 633 5421620 633 5684295 639 
7 5421120 630 5421120 630 5421120 630 5495080 664 5538750 620 5421320 633 5421620 633 5695655 640 
8 5421120 630 5421320 633 5421120 630 5490350 661 5551255 636 5421620 633 5421620 633 5707600 621 
9 5421120 630 5421120 630 5421120 630 5490680 643 5538340 624 5421320 633 5421620 633 5693015 641 
10 5421120 630 5421120 630 5421120 630 5492210 635 5532920 622 5421320 633 5421620 633 5690790 623 

 

Table 4-48 Analysis results of 63-Activity project for the Case 2 
 

Analysis 
No GMASA Dur HGAQSA Dur GASAVNS Dur ACO Dur EMS Dur PSO Dur GASA Dur GA Dur 
1 6176170 621 6178670 629 6176170 621 6219220 631 6286080 612 6201720 644 6181270 629 6462580 617 
2 6176170 621 6178570 629 6176170 621 6205850 632 6329050 601 6217470 629 6177570 630 6411540 651 
3 6176170 621 6179470 621 6176220 621 6234520 626 6316480 616 6210170 644 6184670 633 6442440 647 
4 6176170 621 6178570 630 6176170 621 6223830 640 6340190 607 6218170 648 6183320 631 6420500 639 
5 6176170 621 6177820 630 6176170 621 6231440 617 6333790 593 6216020 649 6180420 618 6447900 648 
6 6176170 621 6178270 630 6176520 621 6197070 627 6339620 623 6207870 647 6180520 629 6433810 627 
7 6176170 621 6179320 621 6176520 621 6247850 604 6336680 600 6216220 651 6179870 629 6439240 618 
8 6176170 621 6178270 630 6176170 621 6231860 635 6327695 600 6215420 649 6180620 621 6449790 623 
9 6176170 621 6178570 630 6176520 621 6198650 623 6336290 594 6208920 645 6177270 629 6443805 630 
10 6176170 621 6178070 618 6176670 621 6262830 651 6297120 620 6198520 642 6182020 630 6450065 629 
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The 630-activity project was the most difficult project and as a result the best 

solution deviated more than 2% from the global optimum. One analysis took 

approximately 73 minutes which can be elongated if more precise solutions are 

needed. 

 

In the analysis the project is scheduled 1 million times in order to limit the 

computation duration within reasonable limits and to measure the convergence 

capability of the algorithms to the near optimum solution. Schedule counter is 

increased by one after evaluation of a schedule. Therefore, for the GA based meta-

heuristic algorithms although the mutation is rejected, the rejected mutation is also 

counted. 

 

Table 4-49 Mean values of 10 run of 630-Activity project of Case 1 
 
Algorithm 1000 2500 5000 10000 50000 250000 1000000 
GA 59006710 59005575 59005575 59005575 58996707 58983147 58973912 
GASA 59036652 59032161 59029116 59021906 59004968 58752744 57344739 
HGAQSA 55519922 55519922 55519922 55519922 55515989 55450532 55257834 
GMASA 58610138 58609988 58609738 58604393 58560383 58467643 58238341 
GASAVNS 58632095 58627051 58621995 58608931 58531434 58050451 57209157 
PSO 56605465 54821050 54816150 54815880 54815790 54815790 54815125 
ACO 57137808 57074624 57024915 57001015 56896886 56703583 56506595 
ESS 59018710 59018698 59017710 59017544 59015310 59014429 59007254 
 

 
Table 4-50 Mean values of 10 run of 630-Activity project of Case 2 

 
Algorithm 1000 2500 5000 10000 50000 250000 1000000 
GA 66404772 66404633 66404630 66402790 66395840 66364424 66350018 
GASA 66516795 66509778 66505487 66497151 66451864 66283385 65194541 
HGAQSA 63293505 63293505 63293505 63293505 63288277 63236344 63046332 
GMASA 66471550 66471550 66471550 66471550 66433571 66343911 66216394 
GASAVNS 66470339 66439558 66424236 66409958 66316913 65892994 65019518 
PSO 64701615 63170076 63144015 63129480 63121500 63121500 63121500 
ACO 64780611 64718752 64682565 64672048 64574989 64390384 64219993 
ESS 66519873 66518756 66518356 66517218 66517218 66514726 66509967 
 

HGAQSA and PSO can be suggested as good candidates for the solution of TCT 

problems. If there would be a choice to be made between the two, HGAQSA can be 

chosen. However, if the project size is large and near-optimum solutions are 

considered as satisfactory, than PSO can be a good candidate. 



113 
 

 

Optimum solution of TCT type problems are guaranteed by linear integer 

programming algorithms. Any kind of simple TCT type problem can easily be solved 

by commercial linear programming based optimization software. As this is the case, 

the endeavor of solving simple TCT problems by meta-heuristic algorithm can be 

seen meaningless. However, TCT problems are good candidates to measure the 

relative performances of the meta-heuristic algorithms. The performances of the 

algorithms are compared and significant improvements are obtained by adaptations 

on the algorithm. 

 

Although the memory capacity of the computers is high and still increasing, there are 

still some limitations for the solution of large project sizes. The 63-activity project 

required more than 64 MB of memory for the optimum solution. It is known that, 

memory requirement of the integer-linear programming increases proportional with 

the square of the project size. As a result of this, for the solution of large projects, 

there might be limitations due to the memory limitations of the computers. 

 

In addition to this, ESS and ACO meta-heuristic algorithms could not adopted for the 

analyses of resource leveling problem. If the algorithms are not tested on TCT type 

problems, than the comparison of GA based methods with ACO and ESS could not 

be done. 

 

By using meta-heuristic algorithms, the largest project analyzed was only 18-activity 

project. In this thesis, TCT problem is analyzed by 63-activity project and its global 

optimum is found by meta-heuristic algorithms. This is a notable improvement on the 

meta-heuristic algorithms. 

 

4.6 Experimental Design for the Determination of Model Parameters 

 

In this thesis study some of the meta-heuristic algorithms are embedded into each 

other and new meta-heuristic algorithms are obtained. HGAQSA, GMASA and 

GASAVNS are the developed new meta-heuristic algorithms obtained with this 

technique. It can easily be concluded that the model parameters are correlated and 
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affected by each other. As a result of this, it is difficult to guess the optimum or the 

suitable model parameter which will present the optimum solution in minimum 

number of schedule. In order to reveal the correlation between the parameters an 

experimental design is performed. Four meta-heuristic algorithms are examined in 

this analysis which are; GASA, HGAQSA, GMASA and GASAVNS. Although, 

GASA was not an algorithm developed in this thesis, it is included in the analysis. 

The reason of this is to measure the interaction between the basic parameters such as 

crossover, mutation and population size. The remaining algorithms require more 

parameters than GASA and it is not practical to examine effect of each parameter of 

those algorithms. 

 

In experimental design analysis four algorithms are examined by using the 18, 29 

and 63-activity projects. The projects are analyzed by considering the only overhead 

costs and delay penalty and early finish bonuses are not considered. 

 

Experimental design is the systematic measurement of the responses of output 

variable based on the systematic changes on the input variables. The terminology of 

experimental design is briefly introduced. Variable is a qualitative or quantitative 

entity that can vary or take on different values. Reliability is a crucial characteristic 

of measurement and refers to the consistency of a measuring device. Validity of an 

instrument means that it measures what it is designed to measure. Control involves 

holding constant or varying variables systematically so that, their effects can be 

removed from a study or compared to other conditions. Randomization refers to the 

assignment of subjects to conditions or levels of an independent variable either by 

the investigator or by a natural process in the field (Lewis-Beck M. S. 1993). 

 

The design of an experiment should take; the objectives of experiment, the number 

of factors under investigation, possible presence of identifiable and non-identifiable 

extraneous factors, amount of time and money available for the experimentation into 

account (Ryan 2007). 

 

In this study, boundaries of input variables are determined by obtaining the most 

common numbers from the literature. After determining the minimum and maximum 
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values of the variable, experimental design analysis is performed by spreadsheet 

method. 

 

Main effect of a dependent variable on the independent variable is defined as the 

difference in the average response between the high and low levels of a factor. 

The main effect can be represented as (Barrentine 1999); 

 

( ) −+ −=
AA

YYAE                  (4.1) 

 

Where, ( )AE  is the effect of dependent variable A on the independent variable, +A
Y  

is the average response of the high level, −AY  is the average response of the low level 

of A. 

 

Interaction occurs when a particular combination of two factors affect the dependent 

variable unexpectedly from simply observing their main effects. Interaction is 

defined as one-half of the difference between the effect of independent variable A at 

the high level of B and the effect of A at the low level of B. The interaction of 

dependent variable A and B can be formulated as (Barrentine 1999); 

 

( ) ( ) ( )[ ]
−+ −+−+ −−−=

BAABAA YYYYABE
2
1                (4.2) 

 

where, ( )
+−+ − BAA

YY  is the effect of A when B is high and ( )
−−+ − BAA

YY  is the effect 

of A when B is low. 

 

In order to determine the significance of the independent parameters and their 

interactions between each other, t-test is performed. Determination of significance 

requires calculation of standard deviation as a measure of inherent variation or 

experimental error in the process. Variance is the square of the deviation of each 

observation of a sample from the sample average which can be written as (Barrentine 

1999); 
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Average variance is the average of the variance of each variance obtained by k runs, 

where k is equal to 2n if there are n investigated independent variables with only high 

and low levels. Average variance is computed as following; 

 

∑= 22
ie SS                   (4.4) 

 

Effects of the dependent variables are differences between averages and require 

definition of a modified variation which is called variation of the effects as 

(Barrentine 1999) 

   

N
SS eeff

422 =                   (4.5) 

 

where N is the total number of trials. As long as the factors will have only high and 

low levels equation 4.5 will be valid. 

 

In order to perform t-test, degrees of freedom of the data set should be determined. 

The computation of degrees of freedom is shown below (Berger and Maurer, 2002); 

 

( ) ( )runsofrunpernsobservatiooffd #1#.. ×−=              (4.6) 

 

Next step is selecting a significance level for the t-test. In this analysis 95% 

significance interval is preferred. By using the significance interval and degrees of 

freedom, t-value is obtained and decision limits are calculated by the formula (Berger 

and Maurer, 2002), 

 

( )( )dfdftDL ,, αα σ±=                  (4.7) 

 

If effect of a variable or interaction is outside the region defined by DL, then the 

variable or interaction is determined as significant. The model parameters are 
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adjusted according to the significances of them. However, the relationships of the 

parameters are not always linear which makes interpolation not applicable. 

 

4.6.1 Experimental Design of 18-Activity Project 

 

18-activity project is analyzed for experimental design of GASA, HGAQSA, 

GMASA and GASAVNS. In order to limit computational burden and make any 

interpretation from the analysis easier, number of parameters for each algorithm to be 

examined is taken as 4. The project cost at the end of 50000th schedule is taken into 

account in order to make a fair comparison of the effect of the parameters. 

 

First method to be analyzed is GASA. Variables to be examined and their low and 

high limits are given in Table 4-51. 

 

Table 4-51 High and Low levels of parameters of GASA 
 

Parameter High Level Low Level 
Population Size (A) 200 50 
Crossover (B) 0,9 0,3 
Mutation (C) 0,9 0,3 
Boltzmann Constant (D) 1,5 0,5 

 

As there are four parameters number of interactions and parameters becomes 15. 

 

Pareto Chart of Effects of GASA
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Figure 4.5 Pareto Chart of effects of GASA 
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In Figure 4.5 pareto chart of effects of GASA for the 18-activity project is shown. 

The bars show the effect of the parameter on the total cost of the project. The most 

significant parameter is the population size where if population size is increase total 

project cost at the end of the 50000th schedule also increase. Similarly, when 

crossover ratio and Boltzmann Constant is increased total project cost also increases. 

There is significant interaction between the parameters population size and 

crossover, population size and Boltzmann Constant and Crossover and Boltzmann 

Constant. As this is the case the interaction between the three parameters are also 

significant. The positive interaction means that when the population size and 

crossover rate is increased simultaneously, the increase in total project cost will be 

more than the prediction by only considering increase in total project cost when these 

two parameters are increased solely. 

 

It is seen that increasing mutation rate decreases the total project cost at the end of 

the 50000th schedule. Consequently, in order to obtain near-optimum results at the 

end of the 50000th schedule low level values should be assigned to the population 

size, crossover and Boltzmann constant and high level value should be assigned to 

mutation. 

 

The next meta-heuristic algorithm to be examined is HGAQSA. Examined 

parameters and their high and low level values are given in Table 4-52. 

 

Table 4-52 High and Low levels of parameters of HGAQSA 
 

Parameter High Level Low Level 
Tunnel Strength Narrower (A) 0,99 0,7 
QSA Period (B) 20 5 
QSA iteration (C) 40 10 
Boltzmann Constant (D) 1,0 0,5 

 

The pareto chart of the effects of HGAQSA for the 18-activity project is given in 

Figure 4.6. From the analysis results it can be concluded that QSA period and 

Boltzmann Constant are positively correlated with the project cost obtained at the 

end of the 50000th schedule. On the other hand, QSA iteration is negatively 
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correlated with the total project cost. It means that increasing the number of random 

walks per QSA iteration ends up with less cost projects. Tunnel Strength Narrower 

parameter do not have any significance in this project. In addition to this, when 

compared with other heuristics HGAQSA end up with very little variation at the end 

of the analysis that there are very little differences in the project costs obtained by 

different parameter combinations. 
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Figure 4.6 Pareto Chart of effects of HGAQSA 

 

Most of the interactions between the parameters are insignificant which does not 

necessarily means that there is no interaction between the parameters. The 18-

activity project was a too easy project which fails to reveal the interactions between 

the parameters. 

 

After the analysis of HGAQSA, GMASA is analyzed. Parameters analyzed are 

shown in Table 4-53. 

 

Table 4-53 High and Low levels of parameters of GMASA 
 

Parameter High Level Low Level 
Memetic Iteration (A) 3 1 
Memetic Search Period (B) 20 5 
Boltzmann Constant (C) 0,8 0,5 
Population Size (D) 150 50 
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Pareto chart effects of GMASA are shown in Figure 4.7. It is obvious that population 

size and memetic search period has considerably high significance. In addition to 

this, number of memetic iteration is also significant. Increasing these parameters 

causes an increase in the total project cost at the end of the 50000th schedule. 

Interaction of memetic search period and population size is also significant. 

Especially population size should be decreased in order to obtain low cost schedules 

at the end of the 50000th schedule. 

 

Pareto Chart of effects of GMASA
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Figure 4.7 Pareto Chart of effects of GMASA 

  

 

In the final analysis performed by 18-activity projects, GASAVNS meta-heuristic 

algorithm is analyzed. Parameters examined are shown in Table 4-54. 

 

Table 4-54 High and Low levels of parameters of GASAVNS 
 

Parameter High Level Low Level 
VNS period (A) 20 5 
VNS iteration (B) 20 5 
Maximum Neighborhood (C) 5 2 
Boltzmann Constant (D) 0,8 0,5 

 

The pareto chart effects of GASAVNS is shown in Figure 4.8. The analysis results 

reveal that VNS iteration number, Maximum Neighborhood number and their 

interaction significantly affect the total project cost. The two parameters should be 
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assigned low numbers in order to obtain low cost project schedule at the end of the 

50000th schedule. On the other hand, VNS period is negatively correlated with the 

total project cost where increasing the VNS period ends up with less total project 

cost.  

 

The significant parameters are the most important parameters of GASAVNS. 

Decreasing VNS iteration number decreases the number of random walks per VNS 

iteration. Similarly decreasing maximum neighborhood number, decreases maximum 

number of changes could be made in the crashing alternatives at once. On the other 

hand, increasing the VNS period decreases the number of VNS during the optimum 

search. Consequently, it can be concluded that VNS could not improve the 

convergence capability of GASA. 

 

Pareto Chart of effects of GASAVNS
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Figure 4.8 Pareto Chart of effects of GASAVNS 

  

 

4.6.2 Experimental Design of 29-Activity Project 

 

29-activity project is also examined by experimental design in order to monitor the 

characteristics and effects of the hybrid meta-heuristic algorithms. Similar to the 

previous analysis the total project cost obtained at the end of the 50000th schedule is 

taken into account. The objective function was to obtain the least cost project 

schedule for €1200/day constant overhead cost. 
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First meta-heuristic algorithm analyzed is GASA and the algorithms monitored 

parameters and their high level and low level values are given in Table 4-55. 

 

Table 4-55 High and Low levels of parameters of GASA 
 

Parameter High Level Low Level 
Population Size (A) 200 50 
Crossover (B) 0,9 0,3 
Mutation (C) 0,9 0,3 
Boltzmann Constant (D) 1,5 0,5 

 

The high and low levels of the parameters are exactly the same with the 18-activity 

project. This will give some clue about how the algorithm reacts with different 

projects. The pareto chart of effects of GASA for the 29-activity project is given in 

Figure 4.9. 
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Figure 4.9 Pareto Chart of effects of GASA for 29-activity project 

 

When the analysis results are examined it is seen that main effects are almost same 

with the 18-activity project. There are some minor changes on the magnitudes of the 

effects. It is seen that the effects of the parameters are about ten times higher than the 

previous analysis which means that the 29-activity project is more difficult than the 

18-activity project.  
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It is seen that effect of population size is considerably higher than the other effects, 

which means large population size decreases the chance of obtaining cheaper project 

schedules at the end of the 50000th schedule. It is seen that some of the interactions 

becomes insignificant in this project. Interaction between crossover and BC, and 

some triple interactions can be given as example. The reason of this can be given as 

high effect of the population size. Some of the interactions have changed their sign, 

where interaction between ABCD and BCD can be given as example. However, both 

interactions are insignificant and therefore the sign change does not have a 

significant effect on the analysis results. 

 

Second algorithm analyzed on 29-activity project was HGAQSA. Examined 

parameters and their low and high level values are given in Table 4-56. 

 

Table 4-56 Analyzed HGAQSA parameters for the 29-activiy project 
 

Parameter High Level Low Level 
Tunnel Strength Narrower (A) 0,99 0,7 
QSA Period (B) 20 5 
QSA iteration (C) 40 10 
Boltzmann Constant (D) 1,0 0,5 

 

The analysis results are shown in Figure 4.10. Similar to GASA, almost same effects 

are obtained in the analysis performed on HGAQSA. However, in the 29-activity 

project HGAQSA could not obtained optimum results in all of the trials and as seen 

in Figure 4.10 the effects are higher. There are some minor changes in the 

interactions where the interaction between QSA Period and Boltzmann Constant, and 

interaction between QSA iteration and Boltzmann Constant are insignificant. The 

highest effect is measured on the parameter QSA iteration which means increasing 

the QSA period end up with high total project cost projects at the end of the 50000th 

schedules. This means that QSA random walks have significant effect on decreasing 

the total project cost and the more frequent QSA iterations are performed the better 

project schedules are obtained. 
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Pareto Chart of effects of HGAQSA
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Figure 4.10 Pareto Chart of effects of HGAQSA for 29-activity project 

 
 

 Boltzmann Constant is also a significant parameter in which higher values of it end 

up with high project costs. The reason of it can be explained as high Boltzmann 

Constant values increases the probability of acceptance of a detrimental mutation. As 

this is the case, detrimental mutations prevent converging into global optimum and 

after a certain cooling convergence become possible. Tunnel strength narrower and 

QSA iteration number do not have significant effect. 

 

Third algorithm analyzed on 29-activity project is GMASA. The parameters 

analyzed and high and low level values assigned are shown in Table 4-57. 

 

Table 4-57 High and Low levels of parameters of GMASA 
 

Parameter High Level Low Level 
Memetic Iteration (A) 3 1 
Memetic Search Period (B) 20 5 
Boltzmann Constant (C) 0,8 0,5 
Population Size (D) 150 50 

 

Analysis results of GMASA are shown in Figure 4.11. Surprisingly all of the four 

parameters are significant. In this analysis Population Size has the most significant 

effect where higher population size end up with high total project cost at the end of 
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the 50000th schedule. However the population size is not as significant as the on 

measured in the analysis performed on18-activity project. 
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Figure 4.11 Pareto Chart of effects of GMASA 

 
 

Memetic search period, Memetic iteration number and Boltzmann constant have also 

significant effect in which if high values are assigned to these parameters, high total 

project costs are expected at the end of the 50000th schedule. High number of 

memetic search slows down the convergence ration, however memetic search is 

beneficial that frequently performing memetic search increases convergence ratio. 

However, too high number of memetic search slows down the convergence speed. In 

addition to this, low values should be assigned to Boltzmann Constant in order to 

prevent acceptance of detrimental mutations. 

 

Fourth meta-heuristic algorithm analyzed is GASAVNS. Parameters examined and 

the high level and low level values of the parameters are shown in Table 4-58. 

 

Table 4-58 High and Low levels of parameters of GASAVNS 
 

Parameter High Level Low Level 
VNS period (A) 20 5 
VNS iteration (B) 20 5 
Maximum Neighborhood (C) 5 2 
Boltzmann Constant (D) 0,8 0,5 
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Analysis results are shown in Figure 4.12. The results are very similar to the results 

of the 18-activity project. In this case, number of VNS iterations becomes more 

significant. The interaction between maximum neighborhood and number VNS 

iteration is still significant. Both analysis results conducted on 18-activity and 29-

activity projects concludes that VNS does not improve the performance of GASA. 
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Figure 4.12 Pareto Chart of effects of GASAVNS for 29-activity project 

 
 
4.6.3  Experimental Design of 63-Activity Project 

 

The 18-activity and 29-activity projects were relatively small projects with limited 

number of local minima. In order to perform the experimental design analysis on a 

relatively challenging network, 63-activity project is also analyzed. Since the 63-

activity project is more difficult, analysis are stopped at the end of the 250000th 

schedule for this analysis. The effect of the meta-heuristic algorithms parameters are 

investigated based on the total project cost at the end of the 250000th schedule. The 

project is analyzed with $2300/day constant overhead cost without any delay penalty 

or early finish bonus. 

 

GASA is the first algorithm analyzed. The model parameters with the high level and 

low level values are given in Table 4-59. 
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Table 4-59 High and Low levels of parameters of GASA 
 

Parameter High Level Low Level 
Population Size (A) 250 100 
Crossover (B) 0,8 0,3 
Mutation (C) 0,9 0,4 
Boltzmann Constant (D) 1,5 0,5 

  

 

High level and low level values are slightly adjusted based on the analysis results of 

the 18 and 29-activity projects. Although increasing population size has detrimental 

effect on the total project cost, population size is slightly increased as number of the 

parameters to solve is almost tripled when compared with the previous projects. 

 

Analysis results of GASA are given in Figure 4.13. Effects of GASA for the 63-

activity project are significantly different than the effects for the 29 and 18-activity 

projects. The project size and the difficulty of the project have high effect on this 

result. 

 

First of all population size has significant negative effect which was the reverse in 

the previous analysis. Crossover has the most significant effect and higher the 

crossover ratio higher the total project cost. Although, high level value of crossover 

is decreased by 0,1 high level value of crossover ratio decreases the convergence 

speed. Surprisingly, increasing mutation ratio decreases the convergence ratio which 

also contradicts with the previous analysis results. It can be inferred from the 

experimental design results that for small sized projects high mutation ratio is better. 

For medium and large sized projects, low mutation ratio increases the convergence 

speed. Also the analysis results mentioned that, population size should be increased 

when solving large projects. 
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Pareto Chart of effects of GASA 
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Figure 4.13 Pareto Chart of effects of GASA for 63-activity project 

 

 

HGAQSA is the second meta-heuristic algorithm which is analyzed by the 63-

activity project. Parameters analyzed and their high level and low level values are 

given in Table 4-60. 

 

Table 4-60 High and Low levels of parameters of HGAQSA 
 

Parameter High Level Low Level 
Tunnel Strength Narrower (A) 0,99 0,7 
QSA Period (B) 20 5 
QSA iteration (C) 100 25 
Boltzmann Constant (D) 1,0 0,5 

 

 

Analysis results of HGAQSA are shown in Figure 4.14. The analysis results of 

HGAQSA are also different when compared with the 18 and 29-activity projects’ 

analysis results. In this case there is only one significant parameter which is QSA 

period. The analysis results courages more frequent QSA iterations which is the same 

with the previous cases. However, in the 63-activity project increasing Boltzmann 

Constant would present less total project cost. On the other hand, this result is not 

significant but a controversy when compared with the previous analysis. 
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Pareto Chart of effects of HGQSA 
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Figure 4.14 Pareto Chart of effects of HGAQSA 

  

 

GMASA is the third algorithm analyzed on 63-activity project. Parameters analyzed 

and the high and low level values of the parameters are shown in Table 4-61. 

 

Table 4-61 High and Low levels of parameters of GMASA 
 

Parameter High Level Low Level 
Memetic Iteration (A) 3 1 
Memetic Search Period (B) 20 5 
Boltzmann Constant (C) 0,8 0,5 
Population Size (D) 250 100 

 

 

The population size is slightly increased and the remaining parameters kept constant 

in this analysis. The analysis results are shown in Figure 4.15. Effects of parameters 

are very different than the previous analysis. In this case Memetic Iteration has the 

most significant effect on the results. Assigning high values for the memetic iteration 

number significantly decreases the convergence speed. In addition to this, large 

population size also decreases the convergence speed. This is an unexpected result 

for the 63-activity project. The analysis results reveal that frequent memetic search 

decreases the convergence speed. When the effects are covered altogether it is seen 

that memetic search algorithm slows down the convergence speed of GASA when 

the 250000th schedule is considered. 
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Pareto Chart of effects of GMASA
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Figure 4.15 Pareto Chart of effects of GMASA 

 

 

Fourth meta-heuristic algorithm which is analyzed by 63-activity project is 

GASAVNS. The parameters analyzed and their high level and low level values are 

given in Table 4-62. 

 

Table 4-62 High and Low levels of parameters of GASAVNS 
 

Parameter High Level Low Level 
VNS period (A) 20 5 
VNS iteration (B) 20 5 
Maximum Neighborhood (C) 5 2 
Boltzmann Constant (D) 0,8 0,5 

 

 

Analysis results of GASAVNS are shown in Figure 4.16. There is not a notable 

change in the effects when compared with the previous analysis of GASAVNS. 

Number of VNS is still the most significant parameter and assigning high number of 

VNS search slows down the convergence speed at the end of the 250000th schedule. 

In addition to this, increasing the neighborhood and frequent VNS search slow down 

the convergence speed. It can be concluded that VNS does not improve the 

convergence capability of GASA when the project costs at the end of the 50000th and 

250000th schedules are considered. On the other hand, GASAVNS is able to obtain 

global optimum when the maximum schedule number is increased. 



131 
 

Pareto Chart of effects of GASAVNS
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Figure 4.16 Pareto Chart of effects of GASAVNS for the 63-activity project 

  

 

4.7 Convergence characteristics of the meta-heuristic algorithms 

 

In this subchapter, convergence characteristics of the meta-heuristic algorithms are 

examined using the 18-activity project. The improvements in the convergence on GA 

based meta-heuristic algorithms by hybridizing and improvements on ACO, ESS and 

ESS by randomly shuffling the population at the end of a certain iteration number is 

analyzed. The additional computation duration caused and the gained improvement is 

also considered.  

 

The first analyzed meta-heuristic algorithm is GA. Best individual’s cost and 

population mean is shown in Figure 4.17. It is seen that because of mutation and 

natural selection operators the best value can be terminated. Improvement of the best 

individual is limited with $10.000 which is not a significant improvement. In 

addition to this, population mean fluctuates in a short bandwidth and does not 

improve as the iteration progresses. As a result of this, the probability of obtaining 

better genes from crossover and mutation does not increase since the gene quality of 

the population does not improve. 

 



132 
 

Convergence of GA

100000

110000

120000

130000

140000

150000

160000

170000

1 89 177 265 353 441 529 617 705 793 881 969 1057 1145 1233 1321 1409 1497

Iteration

To
ta

l P
ro

je
ct

 C
os

t

 
Figure 4.17 Convergence graph of GA. 

 

In Figure 4.18 convergence graph of GASA is shown. SA significantly improves the 

gene quality when compared with the convergence of GA. Both algorithms start with 

almost same population mean but there is significant difference when the stopping 

criterion is met. Population mean of GASA decreases step by step, when iteration 

progresses and even catches global optimum.  
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Figure 4.18 Convergence graph of GASA. 
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Improvement of population mean, increases gene quality and possibility of obtaining 

proper gees by crossover and mutation increases.  

 

In Figure 4.19 convergence graph of HGAQSA is shown. Ladder type of 

convergence is the characteristics of HGAQSA. Sharp decreases both in population 

mean and best value mean that the local random walk session had been executed. 

Local search increases the convergence speed. In GASA, global optimum is obtained 

when the population mean value is significantly reduced. However, in HGAQSA 

global optimum is obtained when the difference between mean and best value is 

around $10.000. This indicates that local search helps obtaining global optima 

without requiring very high quality population genes.  
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Figure 4.19 Convergence graph of HGAQSA 

 

In Figure 4.20 convergence graph of GMASA is shown. Local memetic search is 

executed at the end each 10th iteration. The MA improves the population mean but it 

could not improve the population best. However, as the gene quality improves 

probability of producing high quality individuals by crossover and mutation operator 

increases. As a result of this, population best is improved after a number of GASA 

iterations. 
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Convergence of GMASA
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Figure 4.20 Convergence graph of GMASA 

  

In Figure 4.21 convergence graph of GASAVNS is shown. The convergence 

characteristics of GASAVNS are very similar to the GMASA. Both methods obtain 

the global optima in more or less same local search. 
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Figure 4.21 Convergence graph of GASAVNS 
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 In Figure 4.22 convergence of PSO is shown. One full cycle of PSO ends at the end 

of the 50th iteration and the population is shuffled randomly and again PSO meta-

heuristic algorithm starts. From the convergence graph, point of random shuffling 

can easily be seen. Population mean increases at the end of random shuffling, 

however after some PSO iterations an improvement in population best is obtained. 

Random shuffling helps PSO to escape from local optima and helps obtaining global 

optimum. 
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Figure 4.22 Convergence graph of PSO 

  

 

In Figure 4.23 convergence graph of ACO is shown. Although ACO is shuffled 

randomly after certain iterations of ACO, there is not a significant mark on the 

population mean and best values which deviates because of random shuffling. Only 

the random shuffling performed at the 300th iteration help to decrease the total 

project cost. However, each random iteration increases the probability of escaping 

from the local minima. 
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Figure 4.23 Convergence graph of ACO 

  

In Figure 4.24 convergence graph of ESS is shown. It is seen that random shuffling 

of population has detrimental effect on the population mean. However, slight 

improvements are obtained in the global best up to 40th random shuffling. It is seen 

that, random shuffling significantly increases the computational demand and 

provides slight improvement in the analysis results. 
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Figure 4.24 Convergence graph of ESS 
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CHAPTER 5 

5. RESOURCE LEVELING 

 

In this chapter, resource leveling of some construction projects found in the literature 

is performed by five GA based meta-heuristic algorithms which are GA, GASA, 

HGAQSA, GMASA and GASAVNS. The reason of this is the suitability of GA 

meta-heuristics for the resource leveling. Float of an activity also depends on the 

delayed amount of its predecessors. Because of this, representation of delay duration 

should be suitable for the changes of the delay periods of its predecessors. For this 

reason, representation style is adapted for the delay representation of resource 

leveling problems. 

 

The gene representation of the meta-heuristic algorithms which is adopted for the 

resource leveling are explained in the next subchapter. Then construction projects 

analyzed are briefly introduced and the analysis results are given. 

5.1 Gene representation 
 

The resource leveling aims to minimize the fluctuations and peaks of the resource 

usage during the construction period. Resource leveling assumes unlimited resources 

so that delay of project completion time obtained by CPM scheduling is not allowed. 

As a result of this, only the activities which are not on the critical path can be 

delayed. 

 

Resource leveling algorithms aims to minimize the sum of the squares of the cost 

functions of the daily resource usages. The cost function can be shown in Eq 5.1 

(Leu et al. 2000); 

∑∑
= =

r

i

T

j
iij wd

0 0

2min                (5.1) 

Where r is the number of resources used in the project and dij is the daily resource 

usage of the resource i in the day j, wi is the weight of the resource and T is the 
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project duration. Weights of the resources can be assigned as 1 or the daily unit cost 

of that resource.  

In this study, resource leveling is performed on the basis of delaying the activities 

within their total floats without any priority rule. Genes represent the information 

necessary for computing the delay of that activity. Similar to the TCT analysis binary 

representation is preferred in resource leveling. In contrast with the TCT analysis, 

only the activities which have slack time are represented by genes. As a result the 

gene length of an individual becomes the number of activities which have floats, 

times the bit per activity. 

 

The method applied for computing the delay of an activity is very similar to the 

method for determining the crashing alternative. The gene representing the delay 

time of an activity covers a wide range. This range is the exponential of 2 since the 

binary representation is preferred. If 6 bit per activity is assumed the range length 

will be 64, if 8 bit per activity is assumed the range length will be 256. 

 

The critical activities are not represented in the gene of the individual since the 

critical activities can not be delayed. As a result of this, number of parameters is 

reduced and search space is narrowed. 

 

In the beginning, the project is scheduled by forward and backward passes and early 

start (ES) and late start (LS) times of the activities are determined. If ES of an 

activity equal to its LS than the activity is assigned as critical activity and its delay 

information is not represented by the genes. 

 

Population is generated by assigning 0s and 1s randomly to the genes. Project is 

scheduled according to its gene, start time of activity is labeled as delayed start (DS) 

and finish time of an activity is labeled as delayed finish (DF). Delayed durations of 

the activities are determined by considering the logical relationships between its 

predecessors and the delay amount which is represented on its genes. Scheduling is 

performed by only forward pass, since every activities’ LS time are pre-known and 

their total float can be computed by counting the working days between LS and its 
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earliest start time obtained from the scheduling. The total float of that activity will be 

the maximum delay time of that activity. The delay time is computed as follows; 

G
G

TFDT i
ii *=                (5.2) 

where, TFi is the total float of the ith activity, Gi is the encoded gene value of the ith 

activity and G is the range. With this scheduling method it is guaranteed that the 

critical path will not be delayed. Although gene representing the activity has not 

changed, delay of that activity may change. This can happen by the changes of the 

DS of the predecessors of the activity. If the predecessors have not delayed, the 

activity can be shifted as much as the activity’s initial TF. However, if the 

predecessors are delayed as much as they can, then the activity becomes critical and 

it can not be delayed. As a result, delay of an activity is determined by considering 

its gene and the floats of its predecessors. 

 

After the scheduling of the project, daily resource usages are computed and the 

resource profile is evaluated. There is not any difference in crossover, mutation and 

natural selection operators. Seven projects obtained from the literature are analyzed 

by the five meta-heuristic algorithms. 

 

5.2 Resource Leveling Analysis 
 

In this sub-chapter the construction projects are briefly introduced and the obtained 

results are commented. The first two projects are taken from Son and Skibniewski 

(1999). CPM logical relationships and resource demand of the first project is given in 

Table 5-1. 

 

The best value for the first analysis obtained by Son and Skibniewski (1999) is 6225. 

This value is obtained by the four of the meta-heuristic algorithms in all of the 10 

trials. GASA required slightly more than 150.000 scheduling in order to converge 

into the best optimum value obtained so far. The remaining three meta-heuristic 

algorithms, especially HGASA, converged into global optimum by requiring very 

little number of iteration. Unfortunately GA could not obtained global optimum, 
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although the algorithm performed the highest number of scheduling. The schedule 

which gives the least fluctuation of resources is given in Table 5-2. 

 

 

Table 5-1 Project-1 obtained from Son and Skibniewski (1999) 
 

Activity 
ID Duration Predecessor

Resource 
Demand 

A 5 NULL 6 
B 10 NULL 3 
C 10 A 5 
D 5 B 4 
E 5 B 6 
F 10 C 4 
G 5 C 7 
H 10 D 0 
I 5 E 5 
J 10 E 6 
K 5 F 8 
L 10 G, H, I 8 
M 5 K, L, J 9 

 

 

 

Table 5-2 Schedule of project-1 from Skibniewski and Son (1999) 
 

Activity Start Finish Dur 
A 0 5 5 
B 0 10 10 
C 5 15 10 
D 10 15 5 
E 10 15 5 
F 20 30 10 
G 15 20 5 
H 15 25 10 
I 20 25 5 
J 15 25 10 
K 30 35 5 
L 25 35 10 
M 35 40 5 

 

 

Resource usage of the first project of Son and Skibniewski (1999) is given in Table 

5-3. 
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Table 5-3 Daily resource usage of project 1 
 

Day Resource Usage Square of R.U. 
1 9 81 
2 9 81 
3 9 81 
4 9 81 
5 9 81 
6 8 64 
7 8 64 
8 8 64 
9 8 64 
10 8 64 
11 15 225 
12 15 225 
13 15 225 
14 15 225 
15 15 225 
16 13 169 
17 13 169 
18 13 169 
19 13 169 
20 13 169 
21 15 225 
22 15 225 
23 15 225 
24 15 225 
25 15 225 
26 12 144 
27 12 144 
28 12 144 
29 12 144 
30 12 144 
31 16 256 
32 16 256 
33 16 256 
34 16 256 
35 16 256 
36 9 81 
37 9 81 
38 9 81 
39 9 81 
40 9 81 
Sum 485 6225 
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Analysis results of the first project of Son and Skibniewski (1999) are given in Table 

5-7. The table consists of ten columns in which results of five meta-heuristic 

algorithms are illustrated. First column represents the best evaluation value obtained 

by the algorithm and the second column represents the total schedule evaluation. The 

analyses are repeated 10 times in order to examine the deviation of the results. 

 

Table 5-4 Project-2 obtained from Son and Skibniewski (1999) 
 

Activity ID Duration Predeccessor Resource Demand 
A 8 NULL 2 
B 3 A 3 
C 5 B, E 3 
D 3 I 4 
E 3 D 2 
F 3 D 3 
G 4 F, K 4 
H 3 G 4 
I 6 NULL 3 
J 5 I 3 
K 5 J 3 

 

Second test problem is given in Table 5-4. Same result is also obtained in the 

analysis of the second project of Son and Skibniewski. In their study, the best value 

obtained is announced as 915. The schedule which gives the best objective value is 

given in Table 5-5. 

 

Table 5-5 Schedule of second project of Son and Skibniewski (1999) 
 

Activity Start Finish Duration 
A 0 8 8 
B 13 16 3 
C 18 23 5 
D 6 9 3 
E 11 14 3 
F 9 12 3 
G 16 20 4 
H 20 23 3 
I 0 6 6 
J 8 13 5 
K 13 18 5 

 

Daily resource usage of the project-2 obtained from Son and Skibniewski is given in 

Table 5-6. 
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Table 5-6 Daily resource usage of project 2 
 

Day Resource Usage Square of R.U. 
1 5 25 
2 5 25 
3 5 25 
4 5 25 
5 5 25 
6 5 25 
7 6 36 
8 6 36 
9 7 49 
10 6 36 
11 8 64 
12 8 64 
13 5 25 
14 6 36 
15 6 36 
16 6 36 
17 7 49 
18 7 49 
19 7 49 
20 7 49 
21 7 49 
22 7 49 
23 7 49 
Sum 143 915 

 

 

Other test problems are obtained from Hiyassat (2000), Leu et al. (2000), Lu and 

Lam (2008) and Woodworth and Willie (1975). From Leu et al. two test problems 

are obtained. One of the test problems of Leu et al. contains three resource types and 

the remaining test problems contain only one resource. 

 

The multi-resource test problem of Leu et al. is solved by assigning same weights to 

all resource types. The test problem showed that the algorithms are capable of 

solving multi-resource resource leveling problems. 

 

Analysis result of the test problem analyzed by Hiyassat (2000) is given in Table 5-9. 

All of the meta-heuristic algorithms obtained the same schedule with the one 

obtained by Hiyassat. For the first test problem of Leu et al. (2000); GASA, 
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HGASA, GMASA and GASAVNS obtained the same results with the Leu et al.. GA 

obtained same results in only seven trials out of 10. Analysis results of this problem 

are given in Table 5-10. 

 

Second test problem of Leu et al. which contains three resource types is analyzed and 

five meta-heuristic algorithms obtained same schedule with the schedule obtained by 

Leu et al.. Analysis results of the second test problem of Leu et al. are given in Table 

5-11. 

 

Test problem of Lu and Lam (2008) and Woodworth and Willie (1975) are also 

analyzed and same results are obtained in all of the ten trails with the five meta-

heuristic algorithms. Analysis results of Lu and Lam (2008) is given in Table 5-12 

and results of Woodworth and Willie (1975) is given in Table 5-13. 

 

Test problems and the obtained schedules are not given in order to limit number of 

tables if same results are obtained with the previous studies. Test problems and the 

schedules can be obtained from the referenced journals. 
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Table 5-7 Analysis results of Son and Skibniewski (1999) of project-1 
 

GA GASA HGASA GMASA GASAVNS 
  Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval 
1 6461 301763 6225 158765 6225 22592 6225 57259 6225 41891 
2 6357 301387 6225 158275 6225 22482 6225 58284 6225 42906 
3 6373 301806 6225 158949 6225 22621 6225 58658 6225 42343 
4 6325 301971 6225 158868 6225 22652 6225 59049 6225 41892 
5 6361 301800 6225 158185 6225 22701 6225 57969 6225 42779 
6 6361 301868 6225 158699 6225 22535 6225 57803 6225 43109 
7 6369 301868 6225 158760 6225 22679 6225 59273 6225 42216 
8 6381 301749 6225 158616 6225 22716 6225 57805 6225 43253 
9 6357 301739 6225 158378 6225 22777 6225 58868 6225 42912 
10 6279 301476 6225 158947 6225 22607 6225 56892 6225 43077 

 

Table 5-8 Analysis results of  Son and Skibniewski (1999) of project-2 
 

GA GASA HGASA GMASA GASAVNS 
 Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval 
1 923 301989 915 158636 915 35665 915 56612 915 41070 
2 941 301513 915 158728 915 35667 915 56842 915 41477 
3 937 301325 915 158545 915 35909 915 57109 915 41157 
4 935 301709 915 158237 915 35785 915 56347 915 41099 
5 939 301830 915 158823 915 35758 915 56715 915 42299 
6 935 301816 915 158998 915 35775 915 56326 915 41062 
7 923 301563 915 158973 915 35822 915 56450 915 41097 
8 939 302303 915 158551 915 35647 915 56525 915 41757 
9 939 301115 915 159087 915 35829 915 57190 915 41204 
10 935 301503 915 158667 915 35846 915 55481 915 40995 
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Table 5-9 Analysis results of  the project Hiyassat (2000) 
 

GA GASA HGASA GMASA GASAVNS 
  Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval 
1 2704 301436 2704 159049 2704 36288 2704 57525 2704 41447 
2 2704 301843 2704 158265 2704 36495 2704 57636 2704 40869 
3 2704 302757 2704 158144 2704 36289 2704 57725 2704 41243 
4 2704 302247 2704 158939 2704 36309 2704 57143 2704 41209 
5 2704 301998 2704 157774 2704 36488 2704 57973 2704 41578 
6 2704 302087 2704 159418 2704 36209 2704 57276 2704 41035 
7 2704 302181 2704 158361 2704 36217 2704 57027 2704 41133 
8 2704 301750 2704 158425 2704 36417 2704 58174 2704 41855 
9 2704 302249 2704 158881 2704 36451 2704 58199 2704 41753 
10 2704 301636 2704 158694 2704 36306 2704 57287 2704 42220 

 

Table 5-10 Analysis results of  Leu et al. (2000) for the first project 
 

GA GASA HGASA GMASA GASAVNS 
  Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval 
1 3284 301865 3284 158362 3284 35691 3284 56731 3284 41849 
2 3300 300806 3284 158808 3284 35702 3284 55969 3284 41434 
3 3284 301336 3284 159014 3284 35801 3284 56300 3284 41368 
4 3284 301957 3284 158402 3284 35691 3284 57072 3284 42308 
5 3284 301573 3284 158732 3284 35844 3284 56857 3284 41017 
6 3316 301703 3284 158764 3284 35687 3284 56597 3284 40918 
7 3284 301860 3284 158147 3284 35911 3284 56344 3284 41385 
8 3316 301195 3284 158366 3284 35827 3284 55855 3284 41765 
9 3284 301853 3284 158572 3284 35889 3284 56402 3284 41734 
10 3284 301291 3284 159672 3284 35879 3284 56538 3284 41075 
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Table 5-11 Analysis results of  Leu et al. (2000) for the second project 
 

GA GASA HGASA GMASA GASAVNS 
  Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval 
1 32200 301320 32200 158106 32200 34858 32200 51483 32200 38598 
2 32200 302239 32200 159071 32200 34778 32200 51817 32200 38646 
3 32200 300903 32200 159119 32200 34821 32200 51594 32200 38898 
4 32200 301771 32200 158984 32200 34740 32200 51566 32200 39141 
5 32200 301027 32200 158592 32200 34641 32200 51678 32200 38832 
6 32448 301205 32200 158883 32200 34768 32200 51473 32200 38755 
7 32200 302161 32200 158086 32200 34714 32200 51336 32200 38685 
8 32200 301828 32200 158242 32200 34585 32200 51533 32200 38737 
9 32200 301671 32200 159098 32200 34658 32200 51344 32200 38948 
10 32200 301385 32200 159163 32200 34779 32200 52095 32200 39068 

 

Table 5-12 Analysis results of the project of Lu and Lam (2008) 
 

GA GASA HGASA GMASA GASAVNS 
  Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval 
1 5240 302123 5240 159280 5240 34634 5240 51683 5240 38816 
2 5240 301403 5240 158878 5240 34540 5240 51285 5240 38401 
3 5240 302061 5240 158478 5240 34547 5240 51226 5240 38947 
4 5240 301195 5240 159282 5240 34700 5240 51357 5240 38662 
5 5240 302158 5240 158257 5240 34753 5240 51298 5240 38702 
6 5240 301806 5240 158038 5240 34555 5240 51598 5240 38714 
7 5240 302019 5240 158201 5240 34774 5240 50809 5240 39407 
8 5240 301319 5240 158263 5240 34601 5240 51167 5240 38708 
9 5240 302133 5240 158940 5240 34911 5240 51486 5240 38552 
10 5240 302259 5240 158569 5240 34573 5240 51526 5240 38894 
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Table 5-13 Analysis results of the project of Woodworth and Willie (1975) 
 

GA GASA HGASA GMASA GASAVNS 
  Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval Obj. Func. P. Eval 
1 2512 301542 2512 158468 2512 36476 2512 57424 2512 41303 
2 2512 300598 2512 158502 2512 36178 2512 56992 2512 41628 
3 2512 301283 2512 158985 2512 36195 2512 56855 2512 41940 
4 2512 302508 2512 159099 2512 36321 2512 57307 2512 40963 
5 2512 301752 2512 158649 2512 36183 2512 57757 2512 41419 
6 2512 300783 2512 158694 2512 36248 2512 57305 2512 41780 
7 2512 301831 2512 158908 2512 36413 2512 58047 2512 41285 
8 2512 301685 2512 158679 2512 36515 2512 57192 2512 41025 
9 2512 302153 2512 159456 2512 36155 2512 57272 2512 41732 
10 2512 301765 2512 158513 2512 36448 2512 56908 2512 41544 
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5.3 Conclusion 
 

In this chapter resource leveling capability of the generated meta-heuristic algorithms 

are measured. Four of the algorithms successfully converged into known best 

solutions in all of the trials within a reasonable computation duration. In addition to 

this, one of the known best solutions is improved. Only the schedule of this solution 

is given in order to limit the number of schedule tables. The other schedules are 

exactly the same with the ones given in the literature. 

 

The algorithms are capable of performing resource leveling for multiple resources 

and for any type of logical network relationships. This increases the usability of the 

algorithms for real construction projects. 

 

The computation duration is measured as only 10 seconds for one trial of GASA in a 

2.4 GHz CPU for 13 activity project. GASA is the slowest algorithm among the four 

algorithms which converge into known best solution in all trials. The reasonable 

computation time implies that the resource leveling of large construction projects can 

be performed by the meta-heuristic algorithms. The improvements in computer 

technology will even make the analysis duration shorter. 

 

HGAQSA is the most successful resource leveling meta-heuristic algorithm among 

the analyzed meta-heuristic algorithms. GMASA, GASAVNS and GASA are also 

obtained global optimum. However, their convergence speed is not as fast as 

HGAQSA. 

 

Resource leveling problem is an important problem type where there is not any 

method which guarantees obtaining the global optimum of the problem. As this is the 

case, the success of the meta-heuristic algorithms becomes more important. 
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CHAPTER 6 

 

6. SINGLE MODE RESOURCE CONSTRAINT SCHEDULING 

 

 

Single mode resource constraint scheduling problem (SRCPSP) deals with project 

scheduling problem in which activities have only one execution mode and the 

available resources are restricted. In this chapter SRCPSP type problems are 

analyzed by using three GA based and PSO meta-heuristic algorithms. The 

algorithms adapted for SRCPSP are GA, GASA, HGASA and PSO. As the test set 

30, 60, 90 and 120-activity projects are used obtained from 

http://129.187.106.231/psplib/main.html. 

 

Problem sets with 30, 60 and 90-activity projects consists of 480 projects in each 

data set. 120-activity data set contains 600 projects. There are four renewable 

resources in each project with a certain maximum available amount. None of the 

projects require non-renewable resource. The aim of the analysis is to complete the 

project in shortest duration without overriding the resource constraints and network 

relationships. 

 

In the next subchapter the genetic algorithm based and PSO meta-heuristic 

algorithms and the solution algorithm of SRCPSP is briefly described. Analysis of 

30, 60, 90 and 120-activity projects are given in the following subchapters. 

 

6.1 Meta-heuristic Algorithms for the Solution of SRCPSP 
 
SRCPSP is analyzed by genetic algorithm based methods, GA, GASA and HGASA, 

and PSO. For the analysis of SRCPSP by genetic algorithm based methods, gene 

represents the priority of the activity. This type of representation differs from the 

representations of crashing alternative and delay of activity. The priorities of the 
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activities are represented by integer numbers starting from 1 to the activity number of 

the project. The smaller number means higher priority of that activity. If there is a 

resource limitation for the execution of more than one activities at the same time, 

execution of activities are determined according to the priorities of the activities. 

 

Genetic algorithm for SRCPSP consists of generation of population, crossover, 

mutation and natural selection. In the following sections the operators of genetic 

algorithm for SRCPSP is explained. 

 

Genes of the individuals represents the priority of the individual in SRCPSP type 

problems. For this reason, population should be generated accordingly. Gene of an 

individual consists of randomly sequenced integer numbers from 1 to the activity 

number of the project. Initially genes of the individuals are formed by sequenced 

integer numbers from 1 to the activity number of the project which is shown in 

Figure 6.1. 

 
Figure 6.1 Initial sequencing of an individual of 8-Activity project. 

 

 The randomly sequencing of the activity priorities are achieved shifting the positions 

of priority numbers of activities in pairs. Couples are determined by generating two 

random integer numbers between 1 and project size. In Figure 6.2 shifted activity 

priorities of the individual is shown if the generated random numbers are 2 and 5. 

 
Figure 6.2 Shifted priority of 8-Activity project. 

 

Shifting of priority rules is performed five times the project-size. In this example, the 

shifting process is repeated 40 times for the 8-Activity project. During the shifting 

process CPM restrictions are not taken into account and as a result pure randomly 

generated activity priorities are obtained. Activity priorities are corrected by 

1 5 3 4 2 6 7 8

1 2 3 4 5 6 7 8
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considering CPM restrictions. If an activity has higher priority compared with its 

predecessors, meaning an override of CPM logical relationships, the activity 

priorities of the two activities are exchanged. After the exchange, the check of the 

CPM logic starts from the first activity of the network. The search procedure is 

terminated if and only if there is not any override of CPM logical relationship in 

whole search of the network. This process is repeated for every individual of the 

population and population generation operation of SRCPSP is completed. 

 

Mutation operator is also adapted for the gene representation of priority rules. 

Mutation operator exchanges the priorities of a couple which is formed randomly. In 

order to form the couple, two random integer numbers are generated and priorities of 

the two activities are exchanged. After the priority shifting in case of an override of 

CPM logic, activity priorities are checked and necessary corrections are performed. 

After the mutation operator, one schedule generation is counted although same 

activity priorities are obtained or the mutation is rejected. 

 

Determination of genes to be mutated is exactly the same with the previous methods. 

For every individual, a randomly generated number is assigned. The individuals, 

whose randomly generated number is less than the mutation ratio are selected for the 

mutation. 

 

Crossover operator is also adopted for the activity priority representation. Main 

problem of the crossover is the preservation of uniqueness of activity priorities. For 

this reason, crossover operator is significantly different than the one for the binary 

representation. In Figure 6.3, a couple mated for crossover for 8-activity project is 

shown. Crossover operation will be performed after the 5th activity. 

 



153 
 

 
Figure 6.3 Mated couples for crossover operator 

 

In classical crossover operator, the remaining genes are exchanged. However, in the 

activity priority representation such a gene exchange may cause prevention of 

representation of some of the activity priorities. In the crossover operation shown in 

Figure 6.3, if genes are exchanged conventionally for the child 1, both activity 4 and 

activity 6 would have the priority 6. In order to prevent such conflicts the exchanged 

genes are corrected. 

 

Same priority assignments are detected in the two exchanged gene particles. In 

Figure 6.4 representation of detected same priorities are shown in the middle box 

sequence. The “0”(s) in the box represents different priority representations which 

will cause problems if they are directly exchanged. In the last box sequence, different 

priority assignments of the two genes to be exchanged are represented. The 

remaining places are filled with “0”(s). Different activity priorities would be 

exchanged in order to preserve the condition that any activity can not be assigned to 

same priority with another activity. In Figure 6.5 correction of the genes to be shifted 

is shown. Same genes are preserved and the different priority assignments in the 

genes are exchanged. This exchange procedure is shown in the first box sequence of 

Figure 6.5. The corrected gene sequences are cross-mated and attached to the 

parent’s genes and two new gen combinations are formed. The process is illustrated 

in Figure 6.5. The new gene combinations are checked for any possible overridden 

CPM logical rules. If there is any conflict, they are corrected. 

 

1 3 2 6 4 7 5 8

2 1 4 5 3 6 8 7
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Figure 6.4 Crossover operator for the activity priority representation 

 

 
Figure 6.5 Exchange of genes within the crossover operator 

 

Final operator is the natural selection operator. For the selection of genes to be 

terminated roulette-wheel selection method is applied. Same number of individual 

generated by the crossover operator is terminated by the natural selection operator. In 

order to protect the best gene, elitist natural selection operator is applied and the best 

gene is always preserved. Genes giving shorter project duration are assigned more 

probability of survival than the genes giving longer project duration.  

 

 

SRCPSP is also analyzed by PSO. In PSO meta-heuristic algorithm, activity 

priorities are represented by the position. Positions of each individual are initialized 

by the same method applied for GA based algorithms. The randomly generated 

positions are evaluated and best value of the population is obtained. Individual’s 

current project durations will be their initial individual best. Velocities of the 

particles are computed and new positions are computed by adding the velocities. 

 

 

7 6 8

5 8 7

5 8 7

7 6 8

1 3 2 6 4 5 8 7

2 1 4 5 3 7 6 8

1 3 2 6 4 7 5 8

2 1 4 5 3 6 8 7

7 0 8

0 8 7

0 5 0

6 0 0
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The updated positions contain floating numbers as the velocity computation is based 

on floating numbers. The range of the positions are limited in the range between zero 

and project size. In order to determine activity priorities, the positions are listed in 

ascending order. The smallest position will have the highest priority and the highest 

position will have the lowest priority. After ordering the positions, activity priorities 

are obtained which are than corrected for CPM logical relationships. The individuals 

are evaluated and if there is any improvement, population best and individuals’ best 

values are updated. The iteration is continued until stopping criteria is met. 

 

 

Implementations of the algorithms are explained by means of pseudocodes. The steps 

of the algorithms are introduced detailed in text. Pseudo code of the GA algorithm is 

given below; 

 
begin 
Set the population size, Ps equal to no of activities of the Project Ns, the crossover probability, Pc  is 
set as 0.4, the mutation probability, Pm is set as 0.1  and the stopping condition is Nc2model 
generation. 
Generate population randomly 
Check for the Network logical restrictions 
Model generation counter i is set as 0 
While i < Nc2: 
Select individuals from P for mutation with probability Pm. 
Perform mutation and accept any mutation. 
Check for the Network logical restrictions  
Select chromosomes from P for crossover with probability Pc. 
Randomly match the individuals selected for crossover 
Perform crossover 
Check for the Network logical restrictions 
Assign probability of survival with the inverse of project completion duration, 1/Pd  
Randomly select the individuals by roulette wheel natural selection algorithm 
Terminate equal number individuals produced in crossover 
i = i + 1 
end 

 

The evaluation of the genes is performed by considering the CPM logical 

relationships, priority rules and resource constraints. By using the priority 

assignment of the gene, early start date of the activity is computed by considering 

only the predecessors of the activity. If the resource constraints are not violated start 

date is accepted and the finish date of the activity is computed. If there is a violation 

of resource limits, the activity is delayed 1 day and the resource usages are checked. 

The delay of the activity is continued until the resource violation is prevented. After 
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computing the activity finish time, another activity with the next priority is taken into 

account. 

 

The operators mentioned above form GA for SRCPSP. In order to improve the 

solution capability of GA, mutation operator is modified by SA and the resulted 

method is called GASA. Modified mutation operator accepts or rejects a mutation 

based on the mutation’s results and the temperature. If the mutation is beneficial, it is 

certainly accepted. On the other hand, harmful mutations are accepted or rejected 

based on the temperature and the amount of elongation of project duration. In the 

earlier iterations the probability of acceptance of harmful mutations are higher. The 

pseudo-code of GASA is given as; 

 
begin 
Set the population size, Ps equal to no of activities of the Project Ns, the crossover probability, Pc  is 
set as 0.3, the mutation probability, Pm is set as 0.4  and the stopping condition is Nc * Nc model 
generation, Boltzmann Constant is set to the project completion duration with unlimited resources. 
Set temperature T initially to Nc2 
Generate population randomly 
Check for the Network logical restrictions 
Model generation counter i is set as 0 
While i < Nc2: 
Select individuals from P for mutation with probability Pm. 
Perform mutation 
Check for the acceptance criteria and accept if Rn < exp((fi – fi’)*BC/T) where Rn is a randomly 
generated number between 0 and 1, fi is the project duration before mutation, fi’ is the project duration 
after the mutation. 
Check for the Network logical restrictions  
Select chromosomes from P for crossover with probability Pc. 
Randomly match the individuals selected for crossover 
Perform crossover 
Check for the Network logical restrictions 
Assign probability of survival with the inverse of project completion duration, 1/Pd  
Randomly select the individuals by roulette wheel for natural selection 
Terminate equal number of individuals produced in crossover 
i = i + 1 
T = T -1 
end 

 

 

Both GA and GASA do not have an advanced local search capability. In order to 

improve GASA, a local search operator is embedded into GASA and hybrid meta-

heuristic algorithm based on GA and SA (HGASA) is formed. With embedded local 

search operator the algorithm seeks better neighbors of the best gene and randomly 

selected genes. Local search operator is executed after several generation of GA. In 
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order to limit the computational burden, the whole population is not exposed to local 

search. Best gene is exposed to local search in order to obtain better gene 

representations. Local search of only best gene may cause being stuck into local 

minima if best gene is not close to global optima. For this reason, some of the 

randomly selected genes are exposed to local search. The local search gradually 

improves the population’s overall gene quality and increases the probability of 

producing better genes at the end of crossover operator. The pseudo-code of HGASA 

is given as; 

 

 
begin 
Set the population size, Ps equal to no of activities of the Project Ns, the crossover probability, Pc  is 
set as 0.3, the mutation probability, Pm is set as 0.4  and the stopping condition is Nc * Nc ^(1/2) 
model generation, Boltzmann Constant is set to the project completion duration with unlimited 
resources. 
Set temperature T initially to Nc2, Local search period, Ls is set as 5. 
Local search amount, La is set as 4*Nc, and searched individual number Si, is set as 4. 
Generate population randomly 
Check for the Network logical restrictions 
Model generation counter i is set as 0 
While i < Nc3/2: 
Select individuals from P for mutation with probability Pm. 
Perform mutation 
Check for the acceptance criteria and accept if Rn < exp((fi – fi’)*BC/T) where Rn is a randomly 
generated number between 0 and 1, fi is the project duration before mutation, fi’ is the project duration 
after the mutation 
Check for the Network logical restrictions  
Select chromosomes from P for crossover with probability Pc. 
Randomly match the individuals selected for crossover 
Perform crossover 
Check for the Network logical restrictions 
Assign probability of survival with the inverse of project completion duration, 1/Pd  
Randomly select the individuals by roulette wheel for natural selection 
Terminate equal number of individuals produced in crossover 
Check if hybrid Local search condition satisfied (i % Ls = 0) 
 if true 

j = 0 
Select current best individual and randomly Si - 1 individuals 
While j < La: 
Perform mutation 
Check for the acceptance criteria and accept mutation if Rn < exp((fi – fi’)*CB*BC/T) where 
CB is the project completion duration of the current best individual 
Check for the Network logical restrictions  
j = j  + 1 
end 

i = i + 1 
T = T -1 
end 
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Local search continuously mutates the selected gene. The decision of the acceptance 

of the mutations is taken based on SA. The decision for the acceptance of the 

mutations has vital importance since too easily acceptance of harmful mutations may 

cause termination of good genes and too strict acceptance criteria may prevent 

escaping from local optima. 

 

6.2 Test Problems 
 

For the test problems, some of the well known resource constraint schedule problems 

found on the literature is used. The simplest one is the 8-Activity project of a two-

span bridge construction project (Toklu 2002). The resource constraint project has 72 

possible scheduling alternatives which can be considered to be a very small search 

space. If the resources are unlimited the shortest project completion date is 75 days. 

With the limited resources MS Project gives the shortest project duration 114 days 

and Primavera P3 gives 139 days. By changing the order of activities the Toklu had 

achieved 131 days of project completion with Primavera P3. The possible earliest 

project completion duration of the project with unlimited resources is 108 days. 

 

 
Figure 6.6 Two-span bridge with the construction activities (Toklu 2002) 
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Two-span bridge and the network diagram also representing resource demands of the 

activities are given in Figure 6.6 and Figure 6.7 respectively. 

 

 

 
Figure 6.7 Network diagram of the example project (Toklu 2002) 

 

The project is analyzed by GA, GASA and HGASA and the following results are 

obtained. 

 

Table 6-1 Analysis of the 8-Activity project by GASA 
 

Analysis/Schedule 10 50 250 500
1 113 108 108 108
2 108 108 108 108
3 114 114 108 108
4 108 108 108 108
5 108 108 108 108
6 123 113 108 108
7 113 113 108 108
8 114 108 108 108
9 108 108 108 108
10 114 114 108 108

 

At the end of the 10 run, following priority assignments which give the 108 days 

project completion duration are obtained. Although the priority assignments are 

different, exactly the same schedule is obtained. The reason of this is the scheduling 

algorithm which tries to execute the activities as soon as possible. Activity B2 is 

labeled as 4 in the priority sequence. In the first solution B2 has the 4th priority 

among the activities and in the second solution B2 has the second priority. However, 
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activities labeled by 1 and 5 which are A1 and C1 do not demand the same resources 

with activity B2 and they do not cause any delay for the activity B2.  

 

Table 6-2 Activity priority lists of the best solutions 
 

3  1  5  4  2  7  6  8  
3  4  1  5  2  6  7  8  
3  4  1  2  7  5  6  8  
3  1  4  2  5  6  8  7  
3  1  5  4  2  7  6  8  
3  1  4  2  5  6  7  8  
3  4  1  5  2  6  8  7  
3  1  4  5  2  6  8  7  
3  1  4  2  5  6  8  7  
3  1  4  2  5  7  6  8  

 

The 8-Activity project is good enough to represent the solution capability of the GA, 

GASA, HGASA and PSO when the analyses results are compared by the results of 

most commonly used commercial software. Primavera converged into 113 days 

schedule while MS Project converged into 119 days of project duration. In order to 

have more idea about the capability of the software the test problem is enlarged and a 

5-span bridge construction with limited resources is analyzed. The project consists of 

42 activities. Logical relationships between the activities, activity durations and 

resource usages of the activities are given in Table 6-3 (Bartusch, 1983). 

 

Available resources are only 1 for each resource type during the construction period. 

In addition to the standard precedence constraints given in Table 6-3, additional 

constraints are also defined.  

They are listed as; 

• The formworks must start at least six days after the beginning of the erection 

of the temporary housing. 

• Removal of the temporary housing can start at most two days before the end 

of the last masonry work 

• Delivery of the performed bearers occurs exactly 30 days after the beginning 

of the project 
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Table 6-3 Activity properties of the 42-Activity project  
 

Resources 
Act ID No Suc Successors Dur R1 R2 R3 R4 R5 R6 R7
1 7 2 3 4 5 6 7 10 0 0 0 0 0 0 0 0 
2 1 11       4 1 0 0 0 0 0 0 
3 1 12       2 1 0 0 0 0 0 0 
4 1 8       2 1 0 0 0 0 0 0 
5 1 9       2 1 0 0 0 0 0 0 
6 1 15       2 1 0 0 0 0 0 0 
7 1 16       5 1 0 0 0 0 0 0 
8 1 13       20 0 1 0 0 0 0 0 
9 1 14       13 0 1 0 0 0 0 0 
10 1 41       10 0 0 0 0 0 0 0 
11 1 17       8 0 0 1 0 0 0 0 
12 1 18       4 0 0 1 0 0 0 0 
13 1 19       4 0 0 1 0 0 0 0 
14 1 20       4 0 0 1 0 0 0 0 
15 1 21       4 0 0 1 0 0 0 0 
16 1 22       10 0 0 1 0 0 0 0 
17 1 23       1 0 0 0 1 0 0 0 
18 1 24       1 0 0 0 1 0 0 0 
19 1 25       1 0 0 0 1 0 0 0 
20 1 26       1 0 0 0 1 0 0 0 
21 1 27       1 0 0 0 1 0 0 0 
22 1 28       1 0 0 0 1 0 0 0 
23 1 29       1 0 0 0 1 0 0 0 
24 1 30       1 0 0 0 0 0 0 0 
25 1 31       1 0 0 0 0 0 0 0 
26 1 32       1 0 0 0 0 0 0 0 
27 1 33       1 0 0 0 0 0 0 0 
28 1 34       1 0 0 0 0 0 0 0 
29 1 36       16 0 0 0 0 1 0 0 
30 2 36 37      8 0 0 0 0 1 0 0 
31 2 37 38      8 0 0 0 0 1 0 0 
32 2 38 39      8 0 0 0 0 1 0 0 
33 2 39 40      8 0 0 0 0 1 0 0 
34 1 40       20 0 0 0 0 1 0 0 
35 5 36 37 38 39 40   2 0 0 0 0 0 1 0 
36 1 42       12 0 0 0 0 0 1 0 
37 1 44       12 0 0 0 0 0 1 0 
38 1 44       12 0 0 0 0 0 1 0 
39 1 44       12 0 0 0 0 0 1 0 
40 1 43       12 0 0 0 0 0 1 0 
41 1 44       10 0 0 0 0 0 0 0 
42 1 44       15 0 0 0 0 0 0 1 
43 1 44       10 0 0 0 0 0 0 1 
44 0               0 0 0 0 0 0 0 0 

 

The project is scheduled by considering the precedence constraints and the additional 

constraints. The analyses are repeated 10 times for each of the meta-heuristic 

algorithm and the results are tabulated in Table 6-4 to Table 6-7. 
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Table 6-4 Solution obtained by GA 
 

Analysis No 1000 5000 25000 
1 104 104 104 
2 105 104 104 
3 108 105 104 
4 104 104 104 
5 104 104 104 
6 104 104 104 
7 104 104 104 
8 104 104 104 
9 104 104 104 
10 104 104 104 

 

 

Table 6-5 Solution obtained by GASA 
 

Analysis No 1000 5000 25000 
1 104 104 104 
2 104 104 104 
3 104 104 104 
4 104 104 104 
5 104 104 104 
6 104 104 104 
7 104 104 104 
8 104 104 104 
9 104 104 104 
10 104 104 104 

 

 

Table 6-6 Solution obtained by HGASA 
 

Analysis No 1000 5000 25000 
1 104 104 104 
2 107 104 104 
3 104 104 104 
4 104 104 104 
5 104 104 104 
6 105 104 104 
7 104 104 104 
8 104 104 104 
9 106 104 104 
10 105 104 104 

 



163 
 

Table 6-7 Solution obtained by PSO 
 

Analysis No 1000 5000 25000 
1 105 104 104 
2 106 104 104 
3 104 104 104 
4 105 104 104 
5 104 104 104 
6 105 104 104 
7 104 104 104 
8 105 104 104 
9 105 104 104 
10 105 104 104 

 

 

It can be seen from Table 6-4 to Table 6-6 that GA, GASA and HGASA converges 

to the same solution which is 104 days. The convergence of GASA and HGASA is 

faster than GA that at the end of the 5000th iteration GASA and HGASA had 

obtained 104 days of schedule while GA obtained same solution in 7 out of 10 trials. 

However, convergence of GASA is significantly faster than HGASA that GASA 

obtained 104-days solution at all trials after the 1000th run. PSO is also obtained 104 

days schedule at the end of the analysis. However, convergence of PSO is not as fast 

as GASA. PSO converged into global optimum more or less the same rate with 

HGASA. The 42-activity project is not difficult enough to measure the meta-

heuristic algorithms’ convergence capability to the global optima. Schedule of 104-

day solution is given in Table 6-8. GA, GASA, HGASA and PSO obtained the same 

construction schedule. 
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Table 6-8 Schedule of 42-activity project 
 

Activity 
ID Start Finish Duration R1 R2 R3 R4 R5 R6 R7 
1 6 10 4 1 0 0 0 0 0 0 
2 0 2 2 1 0 0 0 0 0 0 
3 4 6 2 1 0 0 0 0 0 0 
4 2 4 2 1 0 0 0 0 0 0 
5 10 12 2 1 0 0 0 0 0 0 
6 12 17 5 1 0 0 0” 0 0 0 
7 6 26 20 0 1 0 0 0 0 0 
8 26 39 13 0 1 0 0 0 0 0 
9 0 10 10 0 0 0 0 0 0 0 
10 10 18 8 0 0 1 0 0 0 0 
11 6 10 4 0 0 1 0 0 0 0 
12 26 30 4 0 0 1 0 0 0 0 
13 39 43 4 0 0 1 0 0 0 0 
14 18 22 4 0 0 1 0 0 0 0 
15 43 53 10 0 0 1 0 0 0 0 
16 18 19 1 0 0 0 1 0 0 0 
17 10 11 1 0 0 0 1 0 0 0 
18 30 31 1 0 0 0 1 0 0 0 
19 43 44 1 0 0 0 1 0 0 0 
20 22 23 1 0 0 0 1 0 0 0 
21 53 54 1 0 0 0 1 0 0 0 
22 19 20 1 0 0 0 1 0 0 0 
23 11 12 1 0 0 0 0 0 0 0 
24 31 32 1 0 0 0 0 0 0 0 
25 44 45 1 0 0 0 0 0 0 0 
26 23 24 1 0 0 0 0 0 0 0 
27 54 55 1 0 0 0 0 0 0 0 
28 20 36 16 0 0 0 0 1 0 0 
29 12 20 8 0 0 0 0 1 0 0 
30 44 52 8 0 0 0 0 1 0 0 
31 52 60 8 0 0 0 0 1 0 0 
32 36 44 8 0 0 0 0 1 0 0 
33 60 80 20 0 0 0 0 1 0 0 
34 30 32 2 0 0 0 0 0 1 0 
35 36 48 12 0 0 0 0 0 1 0 
36 52 64 12 0 0 0 0 0 1 0 
37 64 76 12 0 0 0 0 0 1 0 
38 92 104 12 0 0 0 0 0 1 0 
39 80 92 12 0 0 0 0 0 1 0 
40 78 88 10 0 0 0 0 0 0 0 
41 48 63 15 0 0 0 0 0 0 1 
42 92 102 10 0 0 0 0 0 0 1 
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The performance of GA, GASA and HGASA is tested by using the randomly 

generated resource constraint scheduling problems obtained from the 

http://129.187.106.231/psplib/main.html. Problem set consists of 30, 60, 90 and 120-

Activity projects which have four limited nonrenewable resources. There are 600 

120-Activity projects and 480 projects for each of the remaining project sizes. The 

projects are solved by GA, GASA, HGASA and PSO meta-heuristic algorithms. 

 

Test problems obtained from PSPLIB are randomly generated projects on the basis 

of certain rules. The network diagram is based on successor relationships that an 

activity can have at least one successor and at most three successors. Duration of 

activities are also assigned randomly between 1 and 10 days. Resource demand of 

the activities may be limited by one resource type or an activity may require four 

resource types for its execution. 

 

The problems are previously analyzed by many researchers which is also mentioned 

in the literature review part. Upper and lower bounds for the test problems are 

determined and if there is any improvement in these bounds, than the bounds of the 

test problem is updated. 

 

In the literature, there are many algorithms for the determination of the lower 

bounds. Brucker and Knust (2000) mentions that constructive and destructive lower 

bounds can be derived for SRCPSP. Constructive bound is the length of the longest 

path in the network which is provided by solving relaxations of the SRCPSP. The 

relaxed problem is obtained by dropping resource constraints (Mingozzi et al. 1998). 

 

Destructive bounds restrict a problem by setting a maximal objective function value 

and try to destruct the feasibility of this reduced problem. If there is not a schedule 

with make-span less than or equal to the maximal objective function, than the 

maximal objective function will be increased by one day (Brucker and Knust 2003). 

 

Mingozzi et al. (1998) present a binary linear programming formulation of the 

project makespan minimization problem (Möhring et al. 1999). The relaxation 

methods for the lower bound computation can be listed as critical path bound, 
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capacity bound, critical sequence bound, node packing bound, parallel-machine 

bound, extended node packing bound, generalized node packing bound, one-machine 

bound, two-machine bound, precedence bound 1- 2 and Lagrangian relaxation (Klein 

and Scholl 1999). 

 

Upper bounds of the test problem are the shortest project make-spans which are 

obtained by no relaxation procedure. 

 

6.3 Analysis of Test Problems 
 

Success of the algorithms is evaluated by the closeness of the best values at the 

1000th, 5000th and 50000th schedule. The aim of the limitation of schedule number is 

to obtain an acceptable solution within reasonable computation duration. Besides the 

50000 evaluation, for the 120-Activity projects are iterated up to 1M evaluation in 

order to measure the capability of finding global optimum of  the algorithms. 

 

The analysis results deviate since the iterations are stopped before converging into 

global optimum. In order to measure the amount of deviation of the results, each 

analysis is repeated 10 times. Minimum and maximum project completion durations 

are recorded and mean of the results are computed. The analysis results are tabulated 

according to the problem type and solution algorithm. In addition to this, lower and 

upper bound comparisons are illustrated in separate tables.  

 

Columns with headings formed by numbers represent the deviation of the current 

best solution achieved at that number of schedule generation from the best optimal 

solution obtained from the literature. Stopping error column represents the deviation 

of the overall best value achieved by the algorithm from the best optimal solution 

obtained from the literature. No of optimum solution column represents the number 

of solutions in the problem set which is equal to the best known solution. 

 

The analysis results are grouped according to the problem type in which the 

comparison of the meta-heuristic algorithms will be easier. 
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The J30 problem set which consists of 480 projects with 30-activities, is the easiest 

problem set. As a result the error values of the whole algorithms are small and close 

to each other. First 1000 schedules of the algorithms are more or less the same. This 

shows that the algorithms do not have significant difference in initial convergence 

ability to the global optimum. However, the highest mean deviation is %1.432 which 

can be considered as reasonable. 

 

 

Table 6-9 GA analysis results of J30 problem set 
 

Analysis 
No 1000 5000 25000 50000 

Stopping 
Error 

No of Opt 
Sol 

1 1,200 0,635 0,379 0,320 0,206 434 
2 1,183 0,589 0,340 0,270 0,196 435 
3 1,179 0,617 0,364 0,313 0,210 433 
4 1,207 0,698 0,355 0,272 0,211 434 
5 1,155 0,691 0,398 0,336 0,249 433 
6 1,214 0,659 0,382 0,294 0,206 438 
7 1,170 0,616 0,349 0,256 0,177 438 
8 1,146 0,687 0,387 0,322 0,247 428 
9 1,179 0,699 0,354 0,279 0,201 433 
10 1,130 0,608 0,359 0,299 0,236 432 
Mean 1,176 0,650 0,367 0,296 0,214 433,8 

 

 

 

Table 6-10 GASA analysis results of J30 problem set 
 

Analysis 
No 1000 5000 25000 50000 

Stopping 
Error 

No of Opt 
Sol 

1 1,059 0,510 0,240 0,164 0,140 445 
2 1,091 0,526 0,202 0,168 0,135 449 
3 1,124 0,555 0,241 0,171 0,124 451 
4 1,068 0,505 0,236 0,165 0,126 447 
5 1,081 0,525 0,216 0,172 0,147 447 
6 1,079 0,531 0,234 0,148 0,118 451 
7 1,079 0,492 0,223 0,150 0,108 454 
8 1,043 0,550 0,248 0,161 0,138 446 
9 1,141 0,573 0,220 0,153 0,107 452 
10 1,011 0,479 0,221 0,175 0,148 446 
Mean 1,078 0,525 0,228 0,162 0,129 448,8 
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Table 6-11 HGASA analysis results of J30 problem set 
 

Analysis 
No 1000 5000 25000 50000 

Stopping 
Error 

No of Opt 
Sol 

1 1,125 0,380 0,094 0,072 0,049 465 
2 1,135 0,345 0,100 0,060 0,051 464 
3 1,121 0,351 0,090 0,064 0,044 467 
4 1,150 0,379 0,088 0,055 0,047 465 
5 1,180 0,373 0,100 0,070 0,070 463 
6 1,201 0,369 0,088 0,063 0,042 468 
7 1,105 0,393 0,098 0,060 0,044 467 
8 1,188 0,358 0,106 0,057 0,044 466 
9 1,116 0,390 0,100 0,081 0,062 462 
10 1,145 0,379 0,100 0,055 0,044 467 
Mean 1,147 0,372 0,096 0,064 0,050 465,4 

 

Table 6-12 PSO analysis results of J30 problem set 
 

Analysis 
No 1000 5000 25000 50000 

Stopping 
Error 

No of Opt 
Sol 

1 1,377 0,971 0,670 0,555 0,545 391 
2 1,463 1,018 0,714 0,597 0,571 387 
3 1,468 1,016 0,697 0,570 0,567 387 
4 1,435 1,012 0,706 0,620 0,611 378 
5 1,479 0,999 0,704 0,594 0,576 383 
6 1,435 0,994 0,703 0,615 0,610 379 
7 1,381 0,999 0,689 0,565 0,562 383 
8 1,430 1,019 0,671 0,557 0,537 388 
9 1,428 1,034 0,690 0,571 0,561 384 
10 1,421 1,001 0,700 0,578 0,557 391 
Mean 1,432 1,007 0,694 0,582 0,570 385,1 

 

 

Performance of the algorithms deviates when the schedule number increases. GA has 

less significance improvement when compared with the GASA and HGASA. 

However, GA is better than PSO. The GA algorithm is stopped at the end of 130000 

schedules and ends up with 433,8 average optimum solution out of 480 projects. 

However, GASA obtains 448,8 average optimum solutions in 85000 schedules and 

HGASA obtains 465,4 average optimum solutions in 85000 schedules. In addition to 

this, average errors of the algorithms shows a similar trend when the stopping criteria 

is met. The mean deviations of the GA, GASA and HGASA are 0,214, 0,129 and 

0,050 respectively. Even GA can be considered as successful. On the other hand, 

PSO could not improve the initial convergence and at the end of 100.000 schedule 
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evaluation 0,570 mean error is obtained. This means that PSO get stuck into local 

minima and could obtained only 0.012% of improvement in 50.000 evaluation. As a 

result of this PSO can obtain only 385,1 optimum solution on the average. The 

detailed analysis results are given in Table 6-9 to Table 6-12. In Table 6-13, average 

deviation of the meta-heuristic methods found in the literature from the optimal 

makespan is represented. In Table 6-13 the deviation results are given from the first 

analysis out of ten. 

 

When the GA, PSO and GASA are compared with the results in Table 6-13, the three 

algorithms do not have a noticeable success. However, HGASA obtains %0,07 

average error and takes the 13th position after Tormos and Lova (2001). 

 

Table 6-13 Average deviation of the J30 from the optimal makespan 
 

Algorithm  Reference Max. # schedules 
    1000 5000 50000 
Hybrid scatter Ranjbar et al. (2009) 0.10 0.03 0.00 
GA, TS, path relinking  Kochetov and Stolyar (2003)  0.10 0.04 0.00 
GAPS Mendes et al. (2009) 0.06 0.02 0.01 
Scatter Search—FBI Debels et al. (2006) 0.27 0.11 0.01 
GA—DBH Debels and Vanhoucke (2005) 0.15 0.04 0.02 
Hybrid GA  Valls et al. (2008) 0.27 0.06 0.02 
GA—FBI Valls et al. (2005)  0.34 0.20 0.02 
GA-forw.-back. —FBI Alcaraz et al. (2004) 0.25 0.06 0.03 
GA  Alcaraz and Maroto (2001)  0.33 0.12 – 
Sampling + BF/FB  Tormos and Lova (2003)  0.25 0.13 0.05 
Tabu Search  Nonobe and Ibaraki (2002)  0.46 0.16 0.05 
Sampling + BF  Tormos and Lova (2001)  0.30 0.16 0.07 
HGASA—priority list This study 1.13 0.38 0.07 
GA—self-adapting Hartmann (2002)  0.38 0.22 0.08 
GA—activity list Hartmann (1998)  0.54 0.25 0.08 
Sampling + BF  Tormos and Lova (2003b)  0.30 0.17 0.09 
TS—activity list Klein (2000) 0.42 0.17  
Sampling—FBI Valls et al. (2005) 0.46 0.28 0.11 
SA—activity list Bouleimen and Lecocq (2003) 0.38 0.23 – 
GA—late join Coelho and Tavares (2003) 0.74 0.33 0.16 
Sampling—adaptative Schirmer (2000) 0.65 0.44 – 
TS—schedule scheme Baar et al. (1998) 0.86 0.44 – 
GASA—priority list This study 1.06 0.51 0.16 
Sampling—adaptative Kolisch and Drexl (1996) 0.74 0.53 – 
GA—random key Hartmann (1998) 1.03 0.56 0.23 
Sampling—LFT Kolisch (1996) 0.83 0.53 0.27 
Sampling—global Coelho and Tavares (2003) 0.81 0.54 0.28 
GA—priority list This study 1.21 0.64 0.32 
PSO—priority list This study 1.38 0.97 0.56 
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60-Activity project set is more difficult than the 30-Activity set; as a result the 

deviation amounts obtained in this analysis are larger. However, the convergence of 

the algorithms is very similar to the previous analysis. The deviations of project 

duration from the lower bounds in percentages are given in Table 6-14 to Table 6-17. 

At the end of the 1000th schedule there is no significant difference between the 

performances of the algorithms where all meta-heuristic algorithms have 

approximately 5.5% mean deviation. At the end of the 5000th schedule GASA has an 

apparent improvement when compared with the 1000th schedule. However, at the end 

of the 250000th schedule HGASA catches the GASA and gives slightly better results. 

On the other hand, there is not significant difference between the GASA and 

HGASA. GA and PSO could not improve their initial results significantly as a result 

of this; worst results are obtained with these two algorithms. GA can improve initial 

results slowly which is costly if near-optimum solutions are required. PSO can not 

improve its results and it is better to stop iteration after a certain point. When the 

results of 25000 and 50000 are examined, it is seen that there is very little 

improvement. This means that the algorithm get stuck into local minima. The 

analysis is stopped after the 150000 schedules. 

 

 

Table 6-14 GA analysis results of J60 problem set with lower bound 
 

Analysis 
No 1000 5000 25000 50000 250000

Stopping 
Error 

No of 
Opt Sol 

1 5,479 4,714 4,190 3,989 3,713 3,677 344 
2 5,515 4,594 4,100 3,985 3,716 3,694 345 
3 5,464 4,705 4,127 4,005 3,715 3,675 347 
4 5,522 4,659 4,155 3,973 3,709 3,667 343 
5 5,437 4,674 4,210 4,034 3,733 3,688 344 
6 5,526 4,711 4,184 3,986 3,676 3,641 347 
7 5,456 4,727 4,217 4,033 3,662 3,627 347 
8 5,532 4,693 4,156 4,003 3,743 3,716 345 
9 5,446 4,654 4,190 4,016 3,728 3,702 342 
10 5,496 4,717 4,229 4,053 3,755 3,716 343 
Mean 5,487 4,685 4,176 4,008 3,715 3,680 344,7 
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Table 6-15 GASA analysis results of J60 problem set with lower bound 
 

Analysis 
No 1000 5000 25000 50000 250000

Stopping 
Error 

No of 
Opt Sol 

1 5,467 4,098 2,925 2,713 2,459 2,448 353 
2 5,460 4,170 2,946 2,746 2,442 2,425 354 
3 5,456 4,168 2,989 2,788 2,466 2,450 354 
4 5,508 4,132 3,000 2,730 2,441 2,420 355 
5 5,565 4,104 2,976 2,772 2,474 2,448 355 
6 5,566 4,195 2,941 2,778 2,487 2,455 355 
7 5,577 4,203 2,905 2,682 2,463 2,449 353 
8 5,474 4,145 2,953 2,741 2,411 2,385 355 
9 5,447 4,132 2,942 2,734 2,452 2,418 353 
10 5,455 4,161 2,962 2,767 2,499 2,475 354 
Mean 5,497 4,151 2,954 2,745 2,459 2,437 354,1 

 

 

Table 6-16 HGASA analysis results of J60 problem set with lower bound 
 

Analysis 
No 1000 5000 25000 50000 250000

Stopping 
Error 

No of 
Opt Sol 

1 5,535 4,466 3,103 2,686 2,388 2,361 355 
2 5,480 4,465 3,129 2,705 2,387 2,334 355 
3 5,490 4,522 3,088 2,720 2,398 2,364 354 
4 5,493 4,480 3,092 2,644 2,364 2,339 354 
5 5,516 4,472 3,159 2,770 2,392 2,365 354 
6 5,420 4,499 3,140 2,745 2,460 2,409 355 
7 5,467 4,471 3,125 2,732 2,405 2,370 353 
8 5,528 4,480 3,110 2,763 2,384 2,366 355 
9 5,559 4,445 3,103 2,712 2,368 2,333 354 
10 5,489 4,521 3,143 2,696 2,406 2,363 354 
Mean 5,498 4,482 3,119 2,717 2,395 2,360 354,3 
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Table 6-17 PSO analysis results of J60 problem set with lower bound 
 

Analysis 
No 1000 5000 25000 50000 

Stopping 
Error 

No of 
Opt Sol 

1 5,452 5,037 4,634 4,449 4,173 323 
2 5,455 5,027 4,685 4,507 4,220 321 
3 5,472 5,082 4,655 4,521 4,225 325 
4 5,498 5,042 4,665 4,506 4,225 323 
5 5,435 5,014 4,611 4,469 4,187 325 
6 5,510 5,078 4,682 4,529 4,224 324 
7 5,488 5,066 4,629 4,458 4,189 323 
8 5,401 5,001 4,624 4,500 4,207 324 
9 5,533 5,108 4,668 4,485 4,225 322 
10 5,548 5,079 4,662 4,486 4,242 323 
Mean 5,479 5,053 4,651 4,491 4,212 323,3 

 

 
In Table 6-18, analysis results of different researches of the same problem set is 

represented for the first trial of the meta-heuristic algorithms. It is seen that HGASA, 

GASA, GA and PSO all have better results than the previous studies. GA based 

meta-heuristic algorithms are stopped at the end of the 325000th schedule, while PSO 

is stopped at the end of 150000th schedule. 

 
Although it’s slow convergence PSO represent better results than the previous 

studies obtained from the literature. The algorithm stopped earlier than the GA based 

algorithm because after a certain number of iterations, the algorithms convergence 

significantly slows down. Number of global optima found by PSO is significantly 

less than the other algorithms. 
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Table 6-18 Average deviation of the J60 from the optimal makespan 
 

Algorithm  Reference Max. # schedules 
    1000 5000 50000 
Hybrid scatter Ranjbar et al. (2009) 11.59 11.07 10.64 
GAPS Mendes et al. (2009) 11.72 11.04 10.67 
GA-DBH Debels and Vanhoucke (2005) 11.45 10.95 10.68 
Scatter search-FBI Debels et al. (2006) 11.73 11.10 10.71 
GA-hybrid Valls et al. (2008) 11.56 11.10 10.73 
GA, TS-path relinking Kochetov and Stolyar (2003) 11.71 11.17 10.74 
GA-FBI Valls et al. (2005) 12.21 11.27 10.74 
GA-forw.-back. -FBI Alcaraz et al. (2004) 11.89 11.19 10.84 
GA-self-adapting Hartmann (2002)  12.21 11.70 11.21 
GA-activity list Hartmann (1998)  12.68 11.89 11.23 
Sampling-LFT, FBI Tormos and Lova (2003b) 11.88 11.62 11.36 
SA-activity list Bouleimen and Lecocq (2003) 12.75 11.90 - 
HGASA-priority list This study 15.04 13.77 11.49 
GASA-priority list This study 14.97 13.31 11.52 
TS-activity list Nonobe and Ibaraki (2002) 12.97 12.18 11.58 
Sampling-adaptative Schirmer and Riesenberg (2000) 12.94 12.58 - 
Sampling-adaptative Kolisch and Drexl (1996) 13.51 13.06 - 
GA-random key Hartmann (1998) 14.68 13.32 12.25 
GA-priority rule Hartmann (1998) 13.30 12.74 12.26 
Sampling-LFT Kolisch (1996a) 13.59 13.23 12.85 
Sampling-WCS Kolisch (1996a, 1996b) 13.66 13.21 - 
TS-schedule scheme Baar et al. (1998) 13.80 13.48 - 
GA-problem space Leon and Ramamoorthy 14.33 13.49 - 
Sampling-LFT Kolisch (1996a) 13.96 13.53 12.97 
GA-priority list  This study 14.98 14.09 13.20 
Sampling-random Kolisch (1995) 14.89 14.30 13.66 
PSO-priority list  This study 14.98 14.55 13.99 
Sampling-random Kolisch (1995) 15.94 15.17 14.22 
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Table 6-19 GA analysis results of J60 problem set compared with UB 
 

Analysis 
No 1000 5000 25000 50000 250000

Stopping 
Error 

No of 
Opt Sol 

1 3,379 2,645 2,149 1,959 1,700 1,666 348 
2 3,414 2,533 2,067 1,958 1,705 1,684 348 
3 3,367 2,638 2,090 1,974 1,700 1,663 351 
4 3,420 2,594 2,117 1,944 1,696 1,658 347 
5 3,339 2,606 2,168 2,001 1,718 1,677 346 
6 3,426 2,644 2,142 1,957 1,666 1,633 351 
7 3,357 2,659 2,173 2,000 1,651 1,619 350 
8 3,431 2,629 2,117 1,972 1,728 1,704 348 
9 3,349 2,589 2,151 1,984 1,715 1,691 346 
10 3,394 2,648 2,185 2,020 1,741 1,703 346 
Mean 3,388 2,618 2,136 1,977 1,702 1,670 348,1 

 

Table 6-20 GASA analysis results of J60 problem set compared with UB 
 

Analysis 
No 1000 5000 25000 50000 250000

Stopping 
Error 

No of 
Opt Sol 

1 3,366 2,067 0,970 0,772 0,536 0,526 377 
2 3,361 2,134 0,988 0,802 0,520 0,505 383 
3 3,360 2,132 1,029 0,841 0,540 0,525 378 
4 3,405 2,099 1,040 0,790 0,519 0,499 380 
5 3,464 2,072 1,018 0,828 0,550 0,526 379 
6 3,462 2,157 0,986 0,834 0,561 0,531 380 
7 3,472 2,165 0,952 0,743 0,540 0,526 378 
8 3,376 2,111 0,997 0,798 0,492 0,467 382 
9 3,349 2,100 0,988 0,793 0,529 0,498 377 
10 3,358 2,127 1,006 0,824 0,574 0,552 379 
Mean 3,397 2,117 0,997 0,803 0,536 0,515 379,3 

 

Table 6-21 HGASA analysis results of J60 problem set compared with UB 
 

Analysis 
No 1000 5000 25000 50000 250000

Stopping 
Error 

No of 
Opt Sol 

1 3,435 2,414 1,135 0,748 0,469 0,444 381 
2 3,380 2,412 1,160 0,764 0,469 0,420 387 
3 3,388 2,469 1,122 0,781 0,479 0,447 377 
4 3,389 2,428 1,125 0,708 0,447 0,424 381 
5 3,418 2,421 1,187 0,825 0,474 0,449 381 
6 3,321 2,445 1,168 0,802 0,537 0,489 380 
7 3,368 2,419 1,156 0,790 0,486 0,454 377 
8 3,427 2,426 1,142 0,817 0,466 0,449 382 
9 3,454 2,394 1,134 0,772 0,452 0,419 383 
10 3,391 2,466 1,172 0,756 0,487 0,447 383 
Mean 3,397 2,429 1,150 0,776 0,477 0,444 381,2 
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In Table 6-19 to Table 6-22, analysis results of J60 compared with the current best 

upper bound values obtained from the literature is shown. As expected the error 

ranges are smaller than the results of the lower bound comparison. Number of 

optimum solution is also increased as the makespan of upper bound solution set is 

usually higher. The algorithms could not improve any of the upper bound solutions. 

 

Table 6-22 PSO analysis results of J60 problem set compared with UB 
 

Analysis 
No 1000 5000 25000 50000 

Stopping 
Error 

No of 
Opt Sol 

1 3,354 2,959 2,574 2,400 2,140 324 
2 3,355 2,949 2,625 2,455 2,184 323 
3 3,371 3,001 2,596 2,467 2,189 326 
4 3,397 2,963 2,606 2,454 2,189 325 
5 3,337 2,936 2,553 2,420 2,153 327 
6 3,410 2,999 2,623 2,479 2,188 326 
7 3,384 2,986 2,570 2,409 2,154 325 
8 3,305 2,924 2,566 2,449 2,171 326 
9 3,429 3,026 2,608 2,434 2,187 324 
10 3,442 2,998 2,603 2,436 2,204 325 
Mean 3,378 2,974 2,592 2,440 2,176 325,1 

 

 

The next problem set examined is the J90 which contains 480 90-Activity projects. 

This problem set was not tested as wide as the previous project sets. As a result, the 

performance of the algorithms is measured with respect to each other’s performance. 

 

Table 6-23 GA analysis results of J90 problem set compared with LB 
 

Analysis 
No 1000 5000 25000 50000 250000 1000000 

Stopping 
Error 

No of 
Opt Sol 

1 6,279 5,666 5,154 4,999 4,636 4,404 4,398 332 
2 6,343 5,645 5,073 4,928 4,633 4,365 4,342 334 
3 6,359 5,612 5,101 4,984 4,653 4,447 4,444 334 
4 6,310 5,672 5,175 4,981 4,656 4,475 4,450 331 
5 6,267 5,642 5,118 4,968 4,638 4,441 4,431 332 
6 6,279 5,636 5,111 4,956 4,615 4,436 4,423 333 
7 6,338 5,577 5,141 4,972 4,686 4,473 4,462 332 
8 6,337 5,646 5,131 4,962 4,675 4,454 4,442 328 
9 6,313 5,658 5,121 4,909 4,671 4,482 4,477 330 
10 6,352 5,630 5,069 4,944 4,685 4,482 4,469 331 
Mean 6,318 5,638 5,120 4,960 4,655 4,446 4,434 331,7 

 



176 
 

Table 6-24 GASA analysis results of J90 problem set compared with LB 
 

Analysis 
No 1000 5000 25000 50000 250000

Stopping 
Error 

No of 
Opt Sol 

1 6,302 5,448 3,812 3,395 2,920 2,699 348 
2 6,354 5,355 3,837 3,363 2,886 2,665 348 
3 6,305 5,414 3,849 3,400 2,930 2,730 347 
4 6,309 5,403 3,823 3,381 2,907 2,720 349 
5 6,337 5,452 3,859 3,399 2,868 2,678 350 
6 6,321 5,418 3,881 3,440 2,903 2,710 348 
7 6,303 5,420 3,862 3,404 2,908 2,700 349 
8 6,350 5,418 3,811 3,376 2,883 2,691 349 
9 6,340 5,443 3,861 3,413 2,885 2,703 349 
10 6,344 5,312 3,860 3,391 2,892 2,682 349 
Mean 6,326 5,408 3,846 3,396 2,898 2,698 348,6 

 

Table 6-25 HGASA analysis results of J90 problem set compared with LB 
 

Analysis 
No 1000 5000 25000 50000 250000

Stopping 
Error 

No of Opt 
Sol 

1 6,234 5,547 4,266 3,611 2,783 2,601 350 
2 6,290 5,510 4,291 3,641 2,853 2,641 349 
3 6,239 5,572 4,257 3,644 2,821 2,615 347 
4 6,236 5,580 4,277 3,629 2,808 2,640 349 
5 6,324 5,532 4,292 3,640 2,784 2,598 349 
6 6,263 5,613 4,261 3,661 2,842 2,619 348 
7 6,257 5,538 4,321 3,656 2,814 2,608 349 
8 6,209 5,550 4,308 3,663 2,813 2,604 349 
9 6,296 5,521 4,244 3,644 2,818 2,635 348 
10 6,194 5,571 4,274 3,658 2,777 2,631 351 
Mean 6,254 5,553 4,279 3,645 2,811 2,619 348,9 

 

Table 6-26 PSO analysis results of J90 problem set compared with LB 
 

Analysis 
No 1000 5000 25000 50000 250000

Stopping 
Error 

No of Opt 
Sol 

1 6,173 5,822 5,518 5,367 5,092 4,927 315 
2 6,198 5,828 5,477 5,346 5,064 4,883 314 
3 6,205 5,857 5,492 5,369 5,060 4,913 315 
4 6,180 5,849 5,538 5,377 5,080 4,906 318 
5 6,219 5,840 5,468 5,335 5,102 4,917 315 
6 6,159 5,792 5,475 5,352 5,045 4,928 315 
7 6,138 5,827 5,488 5,358 5,079 4,958 313 
8 6,196 5,844 5,511 5,371 5,090 4,952 314 
9 6,172 5,819 5,525 5,390 5,087 4,934 312 
10 6,116 5,844 5,505 5,353 5,091 4,919 313 
Mean 6,176 5,832 5,500 5,362 5,079 4,924 314,4 
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Performances of the algorithms are very similar to the previous cases. As the 

problem is a little more difficult than the previous cases the error amount are higher 

and the number of optimum solutions obtained are slightly lower. GA algorithm is 

stopped at the end of the 1081000th schedule and both GASA and HGASA are 

stopped at the end of the 770000th schedule. Due to its slow convergence rate, PSO is 

stopped at the end of the 650000th schedule. Further iterations of GA is performed in 

order to analyze the convergence capability of the algorithm. It is seen that the 

convergence rate excessively decreases after the 250000th schedule. This analysis 

showed that convergence rate of PSO and GA decreases and there is not any 

apparent benefit to continue iterations after 250000th schedule. 

 

GASA and HGASA had challenging performances. Similar to the previous analysis 

GASA and HGASA has more or less the same error range at the end of the 1000th 

iteration. However, GASA has significantly lower error values than HGASA until 

the 250000th iteration. After this iteration level, HGASA has faster convergence rate 

than GASA and catches GASA. Although PSO has the best initial convergence 

performance at the end of the 1000th run, HGASA, GASA and GA obtains better 

results at the end of the 5000th schedule. The analysis results in Table 6-23 to Table 

6-26 show that GASA has initially significantly fast convergence speed but at the 

end GASA’s convergence speed significantly decreases and converges to almost 

same error percentage with the HGASA. 

 

Table 6-27 GA analysis results of J90 problem set compared with UB 
 
Analysis 
No 1000 5000 25000 50000 250000 1000000 

Stopping 
Error 

No of 
Opt Sol 

1 4,105 3,518 3,028 2,882 2,540 2,322 2,316 345 
2 4,164 3,499 2,952 2,817 2,537 2,284 2,263 347 
3 4,182 3,468 2,979 2,869 2,556 2,362 2,359 346 
4 4,134 3,523 3,049 2,867 2,559 2,390 2,366 343 
5 4,092 3,495 2,995 2,852 2,541 2,356 2,348 344 
6 4,104 3,489 2,988 2,840 2,522 2,351 2,339 346 
7 4,162 3,435 3,016 2,855 2,586 2,386 2,376 345 
8 4,157 3,497 3,008 2,848 2,577 2,369 2,359 340 
9 4,137 3,509 2,998 2,798 2,573 2,396 2,392 340 
10 4,175 3,484 2,950 2,831 2,586 2,395 2,383 342 
Mean 4,141 3,492 2,996 2,846 2,558 2,361 2,350 343,8 
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Analysis results of J90 are also compared with upper bound solutions of J90 problem 

set. PSO, GA, GASA and HGASA represent satisfactory results and even the error 

amounts of both GASA and HGASA are smaller than 1%, an improvement in the 

best known solution set could not be achieved. 

 

Table 6-28 GASA analysis results of J90 problem set compared with UB 
 

Analysis 
No 1000 5000 25000 50000 250000 

Stopping 
Error 

No of Opt 
Sol 

1 4,127 3,315 1,772 1,386 0,942 0,737 371 
2 4,174 3,227 1,796 1,356 0,913 0,707 366 
3 4,131 3,282 1,808 1,390 0,951 0,768 368 
4 4,129 3,269 1,783 1,372 0,931 0,757 370 
5 4,159 3,315 1,816 1,389 0,894 0,718 371 
6 4,142 3,284 1,837 1,427 0,926 0,747 371 
7 4,127 3,286 1,819 1,394 0,930 0,738 373 
8 4,170 3,284 1,772 1,368 0,909 0,731 370 
9 4,165 3,308 1,818 1,402 0,909 0,741 371 
10 4,166 3,183 1,817 1,382 0,917 0,722 371 
Mean 4,149 3,275 1,804 1,386 0,922 0,736 370,2 

  

 

Table 6-29 HGASA analysis results of J90 problem set compared with UB 
 

Analysis 
No 1000 5000 25000 50000 250000 

Stopping 
Error 

No of Opt 
Sol 

1 4,058 3,406 2,198 1,586 0,816 0,648 371 
2 4,112 3,373 2,220 1,612 0,881 0,685 372 
3 4,065 3,429 2,189 1,615 0,852 0,659 367 
4 4,060 3,439 2,209 1,602 0,838 0,683 370 
5 4,144 3,393 2,222 1,612 0,818 0,645 368 
6 4,084 3,468 2,194 1,631 0,872 0,663 370 
7 4,080 3,401 2,248 1,625 0,845 0,655 370 
8 4,037 3,410 2,238 1,632 0,844 0,650 371 
9 4,120 3,380 2,179 1,615 0,848 0,678 370 
10 4,021 3,429 2,205 1,630 0,810 0,675 370 
Mean 4,078 3,413 2,210 1,616 0,842 0,664 369,9 
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Table 6-30 PSO analysis results of J90 problem set compared with UB 
 

Analysis 
No 1000 5000 25000 50000 250000

Stopping 
Error 

No of 
Opt Sol 

1 4,007 3,673 3,387 3,244 2,984 2,829 319 
2 4,029 3,678 3,348 3,224 2,959 2,787 317 
3 4,034 3,707 3,361 3,245 2,955 2,815 319 
4 4,012 3,700 3,406 3,254 2,973 2,808 322 
5 4,047 3,689 3,339 3,213 2,993 2,819 319 
6 3,992 3,648 3,346 3,230 2,940 2,829 318 
7 3,973 3,679 3,357 3,234 2,971 2,858 316 
8 4,026 3,697 3,380 3,247 2,983 2,852 317 
9 4,004 3,670 3,393 3,265 2,980 2,836 315 
10 3,953 3,695 3,376 3,231 2,982 2,821 317 
Mean 4,008 3,684 3,369 3,239 2,972 2,825 317,9 

 

 

Final problem set included in the analysis consists of 600 120-Activity projects. As 

this set has the projects with the highest activity number, this test set is the most 

difficult one among the others. The analysis results of the comparisons with lower 

bound are given in Table 6-31 to Table 6-33. GA, GASA and HGASA are stopped at 

the end of the 1285000th schedule while PSO is stopped at the end of 1100000th 

schedule. The difference between the schedule numbers is not significant when the 

slow convergence of the PSO is taken into account. 

 

Table 6-31 GA analysis results of J120 problem set compared with LB 
 
Analysis 
No 1000 5000 25000 50000 250000 1000000

Stopping 
Error 

No of 
Opt Sol 

1 16,228 14,851 13,714 13,294 12,634 12,134 12,039 140 
2 16,259 14,905 13,716 13,330 12,631 12,091 11,994 141 
3 16,230 14,946 13,751 13,347 12,615 12,123 12,019 138 
4 16,263 14,912 13,779 13,345 12,643 12,084 12,003 133 
5 16,269 14,914 13,812 13,374 12,608 12,127 12,010 134 
6 16,267 14,924 13,741 13,350 12,641 12,096 12,009 134 
7 16,305 14,954 13,783 13,387 12,635 12,152 12,045 135 
8 16,136 14,902 13,756 13,351 12,630 12,090 11,978 138 
9 16,201 14,906 13,763 13,337 12,611 12,065 11,979 139 
10 16,229 14,885 13,740 13,342 12,636 12,095 11,995 140 
Mean 16,239 14,910 13,755 13,346 12,628 12,106 12,007 137,2 
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Table 6-32 GASA analysis results of J120 problem set compared with LB 
 
Analysis 
No 1000 5000 25000 50000 250000 1000000

Stopping 
Error 

No of 
Opt Sol 

1 16,289 14,689 11,375 9,684 7,799 7,014 6,906 186 
2 16,307 14,618 11,385 9,749 7,858 6,963 6,882 186 
3 16,293 14,643 11,389 9,715 7,761 6,926 6,830 186 
4 16,214 14,632 11,510 9,736 7,801 6,985 6,892 190 
5 16,262 14,703 11,429 9,773 7,782 6,955 6,847 185 
6 16,319 14,593 11,413 9,714 7,840 7,026 6,912 188 
7 16,255 14,646 11,473 9,732 7,799 6,986 6,888 186 
8 16,267 14,668 11,378 9,687 7,795 6,945 6,853 185 
9 16,214 14,609 11,429 9,722 7,788 6,993 6,884 187 
10 16,262 14,645 11,401 9,719 7,795 6,966 6,868 182 
Mean 16,268 14,645 11,418 9,723 7,802 6,976 6,876 186,1 

 

Table 6-33 HGASA analysis results of J120 problem set compared with LB 
 
Analysis 
No 1000 5000 25000 50000 250000 1000000

Stopping 
Error 

No of 
Opt Sol 

1 16,136 14,883 13,323 12,167 8,676 7,060 6,946 183 
2 16,023 14,861 13,331 12,172 8,699 7,073 6,963 187 
3 15,993 14,876 13,297 12,147 8,645 6,995 6,880 189 
4 16,122 14,980 13,288 12,139 8,663 7,040 6,901 186 
5 16,145 14,915 13,336 12,166 8,675 7,081 6,932 187 
6 16,014 14,862 13,262 12,160 8,680 6,982 6,878 190 
7 16,118 14,845 13,278 12,088 8,645 7,025 6,875 191 
8 16,051 14,903 13,300 12,166 8,678 7,060 6,956 184 
9 16,032 14,939 13,269 12,125 8,643 7,058 6,931 189 
10 16,096 14,868 13,276 12,148 8,641 7,047 6,891 188 
Mean 16,073 14,893 13,296 12,148 8,665 7,042 6,915 187,4 

 

Table 6-34 PSO analysis results of J120 problem set compared with LB 
 
Analysis 
No 1000 5000 25000 50000 250000 1000000

Stopping 
Error 

No of Opt 
Sol 

1 15,827 15,208 14,576 14,258 13,661 13,155 13,139 105 
2 15,934 15,230 14,556 14,283 13,636 13,144 13,116 107 
3 15,797 15,134 14,530 14,257 13,657 13,194 13,165 107 
4 15,830 15,166 14,531 14,266 13,646 13,173 13,146 104 
5 15,889 15,212 14,550 14,216 13,644 13,188 13,163 101 
6 15,905 15,189 14,554 14,247 13,667 13,185 13,170 106 
7 15,903 15,192 14,538 14,274 13,629 13,134 13,110 108 
8 15,863 15,176 14,506 14,257 13,667 13,142 13,112 107 
9 15,910 15,203 14,572 14,288 13,646 13,136 13,097 104 
10 15,837 15,208 14,521 14,268 13,660 13,172 13,154 106 
Mean 15,869 15,192 14,543 14,261 13,651 13,162 13,137 105,5 
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High error percentages of the three algorithms at the end of the 1000th iteration 

represent the difficulty of the problem set. Similar to the previous problem set, PSO 

has the best initial convergence results. There is not any significant difference 

between the successes of the algorithms at the end of the 5000th iteration. However, 

PSO is the worst algorithm among the four with slight differences. The error 

percentages are slightly below 15% but the lowest error percentage is obtained by 

GASA. After this point the high convergence of GASA significantly improves the 

performance of the algorithm and at the end of the 50000th iteration GASA gives less 

than 10% of deviation from the lower bound solutions. At this step there is not any 

significant difference between GA and HGASA which could be the evidence of the 

convergence capability of the HGASA. However, after the 50000th iteration 

convergence of HGASA becomes significantly faster than GASA and GA and as a 

result HGASA almost catches the GASA when the stopping criterion is met. PSO is 

significantly worse than the other meta-heuristic algorithms. The improvement 

obtained is very less after the after the 250000th iteration. The convergence capability 

of PSO is not satisfactory. GA shows satisfactory performance but the algorithm is 

not as good as GASA and HGASA. There is not a significant difference between 

GASA and HGASA. 

 

When the analysis results of the PSO, GA, GASA and HGASA are compared with 

the results obtained by the other researchers given in Table 6-35, it is seen that the 

four meta-heuristic methods present moderate results. In the comparison, first trials 

are used out of ten trials. The remaining analyses are performed in order to measure 

the deviation of the convergences of the algorithms. 

 

Initial convergences of the four meta-heuristic algorithms are very close to each 

other. PSO presents the best performance at the end of the 1000 schedules. When the 

first 1000 schedules are compared with the previous studies it is seen that there is 

significant difference between the four meta-heuristic algorithm and the previous 

studies. The reason of this can be explained by the activity priority representation 

since this is the most significant difference of the algorithms. 
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Table 6-35 Average deviation of the J120 from the optimal makespan 
 
Algorithm  Reference Max. # schedules 
    1000 5000 50000 
GA-DBH Debels and Vanhoucke (2005) 34.19 32.34 30.82 
GA-hybrid, FBI Valls et al. (2008) 34.07 32.54 31.24 
GAPS Mendes et al. (2009) 35.87 33.03 31.44 
Hybrid scatter Ranjbar et al. (2009) 35.08 33.24 31.49 
GA-forw.-back. -FBI Alcaraz et al. (2004) 36.53 33.91 31.49 
Scatter search-FBI Debels et al. (2006) 35.22 33.10 31.57 
GA-FBI Valls et al. (2005) 35.39 33.24 31.58 
GA, TS-path relinking Kochetov and Stolyar (2003) 34.74 33.36 32.06 
Population based-FBI Valls et al. (2005) 35.18 34.02 32.81 
GA-self-adapting Hartmann (2002) 37.19 35.39 33.21 
Sampling—LFT, FBI Tormos and Lova (2003b) 35.01 34.41 33.71 
GA—activity list Hartmann (1998) 39.37 36.74 34.03 
SA—activity list Bouleimen and Lecocq (2003) 42.81 37.68 - 
TS—activity list Nonobe and Ibaraki (2002) 40.86 37.88 35.85 
GA—priority rule Hartmann (1998) 39.93 38.49 36.51 
Sampling—adaptative Schirmer and Riesenberg (2000) 39.85 38.70 - 
Sampling—LFT Kolisch (1996b) 39.60 38.75 37.74 
Sampling—WCS Kolisch (1996a, 1996b) 39.65 38.77 - 
Sampling—adaptative Kolisch and Drexl (1996) 41.37 40.45 - 
GA—problem space Leon and Ramamoorthy-1995 42.91 40.69 - 
GASA-priority list This study 45.87 43.85 37.37 
GA—random key Hartmann (1998) 45.82 42.25 38.83 
Sampling—LFT Kolisch (1996b) 42.84 41.84 40.63 
HGASA-priority list This study 45.70 44.12 40.66 
Sampling—random Kolisch (1995) 44.46 43.05 41.44 
GA-priority list This study 45.78 44.07 42.14 
PSO-priority list This study 41,78 46,12 45,04 
Sampling—random Kolisch (1995) 49.25 47.61 45.60 
 

The results of PSO, GA, GASA and HGASA of the J120 problem set are also 

compared with the upper bounds. The analysis results are represented in Table 6-36 

to Table 6-39. The algorithms could not improve any upper bound solution although 

the mean deviation of project duration is decreased up to 2,3%. 

 

When the convergence characteristics of GASA and HGASA are examined it is seen 

that the two algorithms still improves its results even after the 1 millionth schedule. It 

is also expected that if the maximum number of iteration is further increased, the 

error amount will also decrease. Due to the limitation of computational time, 

maximum number of schedule is not increased. If the analysis is repeated on a more 

powerful computer, than the maximum schedule can be increased and better results 

can be obtained. 
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Table 6-36 GA analysis results of J120 problem set compared with UB 
 
Analysis 
No 1000 5000 25000 50000 250000 1000000

Stopping 
Error 

No of 
Opt Sol 

1 11,085 9,769 8,688 8,287 7,661 7,189 7,099 148 
2 11,111 9,819 8,682 8,316 7,656 7,145 7,055 148 
3 11,082 9,859 8,718 8,336 7,641 7,176 7,079 147 
4 11,113 9,826 8,745 8,331 7,668 7,141 7,064 142 
5 11,122 9,829 8,775 8,359 7,636 7,182 7,073 141 
6 11,119 9,833 8,709 8,339 7,668 7,153 7,070 144 
7 11,155 9,867 8,749 8,375 7,660 7,206 7,103 144 
8 10,994 9,815 8,725 8,341 7,656 7,144 7,039 148 
9 11,058 9,824 8,732 8,326 7,639 7,122 7,041 147 
10 11,084 9,801 8,707 8,329 7,664 7,152 7,058 147 
Mean 11,092 9,824 8,723 8,334 7,655 7,161 7,068 145,6 

 

Table 6-37 GASA analysis results of J120 problem set compared with UB 
 

Analysis 
No 1000 5000 25000 50000 250000 1000000

Stopping 
Error 

No of 
Opt Sol 

1 11,139 9,619 6,476 4,888 3,127 2,393 2,291 219 
2 11,155 9,550 6,486 4,947 3,181 2,346 2,270 216 
3 11,144 9,574 6,491 4,916 3,092 2,311 2,222 222 
4 11,070 9,564 6,601 4,934 3,127 2,363 2,276 223 
5 11,113 9,632 6,524 4,970 3,111 2,336 2,236 215 
6 11,166 9,530 6,511 4,912 3,163 2,402 2,297 220 
7 11,110 9,576 6,570 4,929 3,124 2,366 2,274 216 
8 11,122 9,599 6,478 4,886 3,123 2,329 2,242 214 
9 11,074 9,541 6,525 4,919 3,114 2,370 2,268 221 
10 11,111 9,573 6,498 4,917 3,122 2,346 2,255 217 
Mean 11,120 9,576 6,516 4,922 3,128 2,356 2,263 218,3 

 

Table 6-38 HGASA analysis results of J120 problem set compared with UB 
 

Analysis 
No 1000 5000 25000 50000 250000 1000000

Stopping 
Error 

No of 
Opt Sol 

1 10,993 9,802 8,319 7,226 3,941 2,431 2,325 218 
2 10,884 9,778 8,325 7,230 3,963 2,441 2,340 221 
3 10,858 9,794 8,293 7,203 3,913 2,368 2,262 227 
4 10,979 9,891 8,285 7,200 3,929 2,414 2,284 219 
5 11,003 9,835 8,331 7,223 3,941 2,450 2,310 222 
6 10,875 9,781 8,262 7,218 3,946 2,357 2,261 224 
7 10,978 9,764 8,277 7,150 3,912 2,395 2,257 225 
8 10,912 9,821 8,297 7,224 3,945 2,430 2,333 215 
9 10,893 9,851 8,267 7,186 3,911 2,429 2,311 219 
10 10,954 9,788 8,275 7,206 3,908 2,418 2,273 221 
Mean 10,933 9,810 8,293 7,207 3,931 2,413 2,296 221,1 
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Table 6-39 PSO analysis results of J120 problem set compared with UB 
 

Analysis 
No 1000 5000 25000 50000 250000 1000000

Stopping 
Error 

No of 
Opt Sol

1 10,700 10,120 9,521 9,219 8,655 8,178 8,163 108 
2 10,801 10,136 9,500 9,243 8,632 8,166 8,139 110 
3 10,669 10,045 9,475 9,217 8,651 8,214 8,187 110 
4 10,704 10,077 9,477 9,227 8,641 8,194 8,169 107 
5 10,762 10,123 9,497 9,179 8,641 8,211 8,187 104 
6 10,776 10,100 9,499 9,210 8,663 8,206 8,193 109 
7 10,770 10,100 9,484 9,234 8,626 8,159 8,135 111 
8 10,735 10,088 9,455 9,219 8,660 8,164 8,136 110 
9 10,777 10,112 9,517 9,248 8,643 8,160 8,122 107 
10 10,710 10,115 9,467 9,229 8,656 8,193 8,176 109 
Mean 10,740 10,101 9,489 9,223 8,647 8,184 8,161 108,5 

 

 

The difference of the convergence ability of the algorithms becomes more significant 

when upper bounds are used for the comparison. GASA and HGASA converged into 

upper bounds twice much of PSO had converged. GA is between PSO and GASA 

and HGASA. 

6.4 Conclusion 
 

PSO, GA, GASA and HGASA showed fabulous performance and had successfully 

entered into the list. Although the algorithms could not take place in the higher 

positions, it can be easily concluded that by simple modifications and experimental 

design, convergence capability of the algorithms can be improved further and the 

algorithms can take better positions in the list.  

 

The difference between the performances of GA, GASA and HGASA can be 

explained as the affect of simulated annealing which prevents performing harmful 

mutations. The close error percentage values at the end of the 1000th iteration can be 

seen as the evidence of this inference. In the beginning, the temperature is high 

enough to allow harmful mutations to occur but in the later analysis the temperature 

decreases and the probability of acceptance of harmful mutations decreases. Thus 

when harmful mutations are accepted in GA, they are probably rejected by GASA 

and HGASA. 
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The initial values of PSO are very close to GA based algorithms. Even in J60 and 

J120 problem sets, initial convergence of PSO is better. However, due to its slow 

convergence at further schedules PSO presents worst results among the four 

algorithms. The similar initial error values of the four algorithms represents that the 

success of the algorithms mainly depends on the activity priority representation.  

 

GASA and HGASA showed different convergence characteristics. HGASA performs 

a detailed local search on the current best individual in order to improve the best 

value. While GASA do not perform a local search and continuously seeks to improve 

the population by continuously performing crossover and mutation operations. The 

reason of slow convergence of HGASA in the beginning can be explained as the best 

individuals are not good quality genes in which they can be improved easily. In 

addition to this, initial local search may cause harmful mutations to be accepted 

when the heat is high. However, by continuous crossover and mutation operations 

the overall quality of the population is improved and the initial best gene is overtaken 

by high quality genes. For this reason, convergence of HGASA requires more 

iteration than GASA. 

 

PSO, GA, GASA and HGASA represent significantly better performance than the 

previous algorithms. The reason of this can be explained by several factors. First of 

all the populations are generated randomly by avoiding any a-priori information. 

Generating the seeds by taking into account float times, number of successors and 

resource usages may lead to generation of poor quality seeds which may not cover 

the search space properly. The second factor can be explained as the gene or position 

representation. In the previous studies obtained from the literature, genes are 

sequenced according to the priorities and the activities’ positions are shifted by the 

crossover and mutation operators. However, in this algorithm the activities’ positions 

are kept constant and a unique priority is assigned to each activity. The priorities are 

checked for the CPM logic and the necessary corrections are performed. As this is 

the case, when crossover operation is implemented, the genes are not shuffled 

harshly. The priority representation indexed by activity order prevents excessive 

shuffling of activity priorities and encourages a systematic search through the 

solution space. 
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Activity priority representation converges to optimum schedule by several 

combinations which are shown by the 8-Activity resource constrained project of 

Toklu. This property significantly increases the number of combinations that 

converges to global optimum solution and increases the convergence speed. 

 

With the activity priority representation and adapted crossover and mutation 

operators, significant improvements are obtained which makes the meta-heuristic 

algorithms a good candidate for implementing the algorithms for the solution of 

SRCPSP. 
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CHAPTER 7 

 

7. MULTI-MODE RESOURCE CONSTRAINT SCHEDULING PROBLEM 

 

Multi mode resource constraint scheduling problem (MRCPSP ) deals with project 

scheduling problem in which activities have more than one execution mode in which 

available resources are restricted. In this chapter MRCPSP type problems are 

analyzed by using PSO, GA, GASA and HGASA meta-heuristic algorithms. Data 

sets used for the evaluation of the performance of the methods are obtained from 

http://129.187.106.231/psplib/main.html. Among the MRCPSP type problems J10, 

J12, J14, J16, J18, J20, J30, R1, R3, R4 and R5 are used. JXX series involves two 

limited renewable and two limited non-renewable resources where XX represents the 

activity number of the project. RX series consist of 16 activity project with two non-

renewable limited resource and with X renewable resource. In the next subchapter 

the genetic algorithm based meta-heuristic algorithms and the solution algorithm of 

MRCPSP are briefly described. 

 

7.1 Genetic Representation of MRCPSP Problem 
 
Similar to the SRCPSP type problems, in MRCPSP type problems, gene represents 

the priority of the activity. In addition to the activity priority, construction mode of 

the activity is also represented in the genes of the individual. Activity priority 

representation is kept same with the SRCPSP type problems. For the representation 

of the construction mode of the activities integer coding is preferred. The reason of 

this representation is to limit the search space of the problem. 

 

If binary coding is represented, necessary mutations for the convergence of optimal 

solution would increase. If the problem was handled by unlimited resources the 

enlarged search space would not be a serious problem. However by considering the 

activity priorities for the limited resources the number of combinations is enlarged 

enormously.  
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Integer representation limits the search space, but it does not have the advantages of 

the binary coding. Binary coding may end up with new construction mode with the 

crossover operator while integer genetic representation does not have this 

opportunity. In order to obtain acceptable solutions in minimum number of iteration 

integer type representation is preferred. 

 

Genetic representation for MRCPSP consists of generation of population, crossover, 

mutation and natural selection. In the following sections the operators of genetic 

algorithm for MRCPSP is explained. 

 

Genes of the individuals represents both the priority of the activity and construction 

mode of the activity in MRCPSP type problems. Activity priority is exactly the same 

with the SRCPSP type problems. For the representation of construction mode of the 

activities, integer representation of construction modes is preferred instead of binary 

encoding. The integer representation prevents the widening of the search space. The 

number of mutations necessary for the binary encoding may be much higher than the 

integer encoding. When the search space for the activity priorities and activity modes 

are considered at the same time it would be impossible to obtain reasonable solutions 

in small number of schedules. However, by preferring integer type of representation, 

some advantages of binary encoding are missed. 

 

The gene of an 8-Activity project for the MRCPSP type problem is shown in Figure 

7.1. Minimum value of the construction modes is 1 and the maximum value is the 

number of construction modes assigned for that activity. The genes representing 

construction modes are initially generated by assigning randomly generated integer 

numbers between 1 and number of construction modes assigned for that activity.  

 

 
Figure 7.1 Gene representation for MRCPSP type problems 

 

1 5 3 4 2 6 7 8

Activity Priorities Construction Modes 

1 2 2 1 1 3 1 3
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Mutation operator may alter activity priority or one of the construction modes. In 

order to decide which representation to mutate an integer number between 1 and 2 is 

generated for the decision. If the random number is 1 activity priority is mutated, if 

the random number is 2 then construction modes are mutated. 

 

For the mutation of the construction mode of an activity, an integer random number 

between 1 and the number of activity in the project is generated. The generated 

random number indicates which activity to be mutated. Another integer random 

number between 1 and 1 less of the number of construction mode of that activity is 

generated. The generated random number and the current value assigned for the 

construction mode is summed. If the summation is bigger than the number of 

construction modes, than number of construction modes is subtracted from the 

summation. Obtained number is assigned for the construction mode. The aim of 

generating random number which is 1 less of the number of construction modes is to 

prevent obtaining same construction mode. The mutation operator for the activity 

priority is the same with the mutation operator for SRCPSP type problem. 

 

Crossover of the genes for the activity priority and construction modes is performed 

simultaneously. Crossover of the genes for the activity priority is the same with the 

crossover operator of the SRCPSP type problems. The crossover operator of the 

construction modes is performed with the same parents and by using the same 

crossover point of the activity priority. The crossover operator of construction modes 

is shown in Figure 7.2. 

 

 
Figure 7.2 Crossover operator of the construction modes 

 
 

Implementation of PSO for MRCPSP is similar to the implementation of SRCPSP. 

Position of a particle represents activity priority and crashing mode. Similar to GA 

1 1 2 3 1 2 2 1

2 1 3 2 2 1 3 3

1 1 2 3 1 1 3 3 

2 1 3 2 2 2 2 1
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based meta-heuristic algorithms there are two separate representations for the activity 

priority and crashing mode. 

 

Activity priority representation of MRCPSP is exactly the same with the 

representation in SRCPSP. Similarly, crashing mode representation is exactly the 

same with the representation in TCT problem. Consequently, for each activity there 

are two position and velocity values. Since in the problem sets there are three 

construction modes for each activity, range for the position representing the crashing 

mode is assigned as three. Maximum velocity of the crashing alternatives is assigned 

as 1.1. 

 

Alteration of construction modes in MRCPSP does not have any affect on activity 

priorities. For this reason, there is no need to check for the CPM logical relations 

after a change in the construction modes. However, alternating the construction 

modes affects the resource usage of that activity. New construction mode 

combination may violate the non-renewable resource limits.  

 

Generating proper individuals which do not violate the non-renewable resource is 

very difficult for some of the projects. Very small portion of the execution mode 

combinations satisfies the restrictions. As this is the case, new activity execution 

modes may not satisfy the restrictions which are generated by mutation and 

crossover operators. In order to immediately reach to a proper combination, an initial 

pool of activity execution mode combinations is generated when the population is 

initialized. One of the proper execution modes in the pool is randomly selected and 

assigned to the violating individual. 

 

If there is an improvement in the current best, one of the randomly selected execution 

mode combinations in the pool is replaced by the current best gene combination. 

This replacement aims to improve the quality of the execution modes in the pool. If 

the pool is kept constant during the optimization procedure, it will decrease the 

overall quality of the population if there is a non-renewable resource violation 

especially at the later iterations. 
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Implemented meta-heuristic algorithms; GA, GASA and HGASA, are based on 

mutation, crossover and natural selection operators, while PSO is based on the past 

experience of the individuals and the best individual of the population. The pseudo-

codes of the algorithms are given below. 

 

 
begin 
Set the population size, Ps to 1,5* no of activities of the Project Ns, the crossover probability, Pc is set 
as 0.4, the mutation probability, Pm is set as 0.1  and the stopping condition is Nc3 model generation. 
Generate population randomly 
Check for the Network logical restrictions 
Model generation counter i is set as 0 
While i < Nc3: 
Select individuals from P for mutation with probability Pm. 
Generate a random number 1,2 to decide on priority mutation or construction mode mutation 
Perform mutation  

Check for the Network logical restrictions if priority mutation 
Check for resource usage if construction mode mutation. 

Select chromosomes from P for crossover with probability Pc. 
Randomly match the individuals selected for crossover 
Perform crossover 

Check for the Network logical restrictions 
Check for the resource usage 

Assign probability of survival with the inverse of project completion duration, 1/Pd  
Randomly select the individuals by elitist roulette wheel for natural selection 
Terminate equal number individuals produced in crossover 
i = i + 1 
end 

 

 

 

The operators mentioned above form GA for MRCPSP. In order to improve the 

solution capability of GA, mutation operator is modified by SA and the resulted 

method is called GASA. Modified mutation operator accepts or rejects a mutation 

based on the mutation’s results and the temperature. If the mutation is beneficial, it is 

always accepted. On the other hand, harmful mutations are accepted or rejected 

based on the temperature and the amount of elongation of project duration. In the 

earlier iterations the probability of acceptance of harmful mutations are higher. The 

pseudo-code of GASA is given as; 
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begin 
Set the population size, Ps equal to1,5* no of activities of the Project Ns, the crossover probability, Pc  
is set as 0.3, the mutation probability, Pm is set as 0.4  and the stopping condition is Nc3 model 
generation, Boltzmann Constant is set to the project completion duration with unlimited resources. 
Set temperature T initially to Nc3 
Generate population randomly 
Check for the Network logical restrictions 
Model generation counter i is set as 0 
While i < Nc3: 
Select individuals from P for mutation with probability Pm. 
Generate a random number 1,2 to decide on priority mutation or construction mode mutation 
Perform mutation 

Check for the Network logical restrictions if priority mutation 
Check for resource usage if construction mode mutation. 

Check for the acceptance criteria and accept if Rn < exp(([fi – fi’]/ fi)*BC/T) where Rn is a randomly 
generated number between 0 and 1, fi is the project duration before mutation, fi’ is the project duration 
after the mutation. 
Select chromosomes from P for crossover with probability Pc. 
Randomly match the individuals selected for crossover 
Perform crossover 

Check for the Network logical restrictions  
Check for resource usage  

Assign probability of survival with the inverse of project completion duration, 1/Pd  
Randomly select the individuals by roulette wheel for natural selection 
Terminate equal number of individuals produced in crossover 
i = i + 1 
T = T -1 
end 

 

 

Both GA and GASA do not have a local search capability. In order to improve the 

GASA further a local search operator is embedded into GASA and hybrid meta-

heuristic algorithm based on GA and SA (HGASA) is formed. With embedded local 

search operator the algorithm seeks for better neighbors of the best gene and 

randomly selected genes. Local search operator is executed after several generation 

of GA. In order to limit the computational burden, whole population is not exposed 

to local search. Best gene is exposed to local search in order to obtain better gene 

representations. Local search of only best gene may cause being stuck into local 

minima if best gene is not close to global optima. For this reason, some of the 

randomly selected genes are exposed to local search. The local search gradually 

improves the population’s overall gene quality and increases the probability of 

producing better genes at the end of crossover operator. The pseudo-code of HGASA 

is given as; 
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begin 
Set the population size, Ps to 1,5*no of activities of the Project Ns, the crossover probability, Pc  is set 
as 0.3, the mutation probability, Pm is set as 0.4  and the stopping condition is Nc3/2 model generation, 
Boltzmann Constant is set to the project completion duration with unlimited resources. 
Set temperature T initially to Nc3/2, Local search period, Ls is set as 5. 
Local search amount, La is set as 4*Nc, and searched individual number Si, is set as 4. 
Generate population randomly 
Check for the Network logical restrictions 
Model generation counter i is set as 0 
While i < Nc3/2: 
Select individuals from P for mutation with probability Pm. 
Generate a random number 1,2 to decide on priority mutation or construction mode mutation 
Perform mutation 

Check for the Network logical restrictions if priority mutation 
Check for resource usage if construction mode mutation. 

Check for the acceptance criteria and accept if Rn < exp(([fi – fi’]/ fi)*BC/T) where Rn is a randomly 
generated number between 0 and 1, fi is the project duration before mutation, fi’ is the project 
duration after the mutation 
Check for the Network logical restrictions  
Select chromosomes from P for crossover with probability Pc. 
Randomly match the individuals selected for crossover 
Perform crossover 

Check for the Network logical restrictions  
Check for resource usage  

Check for the Network logical restrictions 
Assign probability of survival with the inverse of project completion duration, 1/Pd  
Randomly select the individuals by roulette wheel for natural selection 
Terminate equal number of individuals produced in crossover 
Check if hybrid Local search condition satisfied (i % Ls = 0) 
 if true 

j = 0 
Select current best individual and randomly Si - 1 individuals 
While j < La: 
Perform mutation 
Check for the acceptance criteria and accept mutation if Rn < exp((fi – fi’)*CB)*BC/T) 
where CB is the project completion duration of the current best individual 
Check for the Network logical restrictions  
j = j  + 1 
end 

i = i + 1 
T = T -1 
end 
  

 

 

Local search continuously mutates the selected gene. The decision of the acceptance 

of the mutations is taken based on SA. The decision for the acceptance of the 

mutations has vital importance since too easily acceptance of harmful mutations may 

cause termination of good genes and too strict acceptance criteria may prevent 

escaping from local optima. 
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Finally pseudo-code of PSO is given below. 

 
begin 
Set the population size, Ps to 1,5* no of activities of the Project Ns, the stopping condition is Nc3 
model generation. 
Generate particles randomly 
Check for the Network logical restrictions 
Model generation counter i is set as 0 
Evaluate particles 
While i < Nc3: 
Evaluate particles 
Update Population best and particles’ overall best 
Compute velocities for the activity priorities and crashing modes 
Update positions 

Check for the Network logical restrictions if priority mutation 
Check for resource usage if construction mode mutation. 

Evaluate particles 
 

i = i + 1 
end 

7.2 Analysis Results 
 
Problem sets JXX and RX are solved by the algorithms PSO, GA, GASA and 

HGASA adopted for multi-mode projects. The analysis results are compared with the 

best solutions obtained from the literature. The results are tabulated starting with the 

J10 problem set to R5 problem set. The analysis results are grouped according to the 

meta-heuristic solution algorithm. Mean of the 10 solution of the each problem set is 

provided in the tables from Table 7-1 to Table 7-3. The columns of the table 

represent the average error of the solution at the end of the corresponding iteration 

number. The last two columns represent average number of optimum solutions 

obtained and the number of projects at that problem set respectively. 

 
Table 7-1 Analysis results of GA 

 
Problem 
Set 1000 5000 25000 50000 250000 1000000 Overall

No of 
Opt 

No of 
Projects 

J10 12,478 5,151 2,194 1,518     0,961 472,4 536 
J12 15,857 7,111 3,516 2,587     1,341 448,4 547 
J14 19,475 9,509 4,849 3,700 1,989   1,683 407,2 551 
J16 22,918 12,133 6,425 4,983 2,615   1,991 382,6 550 
J18 25,313 13,884 7,234 5,590 3,028   2,126 371,4 552 
J20 27,727 16,261 8,624 6,701 4,024   2,848 334,2 554 
J30 36,714 25,759 16,754 14,652 11,094 8,678 8,139 198,9 542 
R1 21,694 10,821 5,464 4,188 2,197   1,622 417,2 553 
R3 22,579 11,802 6,069 4,656 2,418   1,826 393,5 557 
R4 23,209 12,564 6,637 4,912 2,648   2,211 367 552 
R5 23,768 13,092 6,935 5,337 2,923   2,257 358 546 



195 
 

Table 7-2 Analysis results of GASA 
 

Problem 
Set 1000 5000 25000 50000 250000 1000000 Overall

No of 
Opt 

No of 
Projects 

J10 10,552 3,854 1,349 0,836     0,307 511,5 536 
J12 14,437 6,481 2,647 1,718 0,661   0,550 499 547 
J14 18,076 9,072 4,233 2,963 1,327   0,890 459,7 551 
J16 21,854 11,672 5,443 3,948 1,898   1,203 428,9 545 
J18 24,764 13,810 6,573 4,709 2,223   1,346 420,9 552 
J20 27,405 16,259 7,966 5,704 2,749   2,103 372,9 554 
J30 36,412 26,077 17,538 14,503 7,701 3,812 3,354 315,3 542 
R1 20,813 10,854 5,131 3,620 1,629   1,000 459,9 553 
R3 21,849 10,740 4,184 2,681 0,995   0,788 460,8 557 
R4 22,432 11,889 5,593 4,048 1,915   1,287 427,8 552 
R5 23,255 12,642 5,808 4,065 1,824   1,189 430,1 546 

 
 

Table 7-3 Analysis results of HGASA 
 

Problem 
Set 1000 5000 25000 50000 250000 Overall 

No of 
Opt Sol 

No of 
Projects

J10 11,304 4,146 1,260 0,727   0,476 499,8 536 
J12 15,995 7,449 2,952 1,843   0,840 476,5 547 
J14 19,971 10,541 4,886 3,368   1,459 418,5 551 
J16 24,094 13,783 6,979 4,980 2,207 1,960 378,8 545 
J18 26,795 16,425 8,434 6,054 2,668 2,194 365 552 
J20 29,663 19,501 10,676 7,715 3,374 2,519 351,2 554 
J30 38,235 30,347 22,214 18,978 11,476 6,741 223,5 542 
R1 23,083 12,717 6,106 4,318 1,876 1,687 410,2 553 
R3 24,205 13,914 6,762 4,781 1,994 1,757 396,3 557 
R4 24,925 14,377 7,198 5,126 2,262 1,996 379,6 552 
R5 25,440 15,264 7,655 5,359 2,223 1,986 376 546 

 
 
 

Table 7-4 Analysis results of PSO 
 

Problem 
Set 1000 5000 25000 50000 250000 Overall 

No of 
Opt Sol 

No of 
Projects

J10 31,683 31,681 31,681 31,680   31,680 13,6 536 
J12 33,368 33,365 33,364 33,364   33,364 7,1 547 
J14 35,773 35,761 35,757 35,757 35,757 35,757 3,5 551 
J16 37,283 37,273 37,265 37,265 37,265 37,265 2,8 545 
J18 38,812 38,791 38,774 38,771 38,768 38,768 1,6 552 
J20 41,437 41,424 41,411 41,372 41,369 41,357 1,1 554 
J30 44,141 44,076 44,029 44,006 43,963 43,939 0,0 542 
R1 36,388 36,379 36,378 36,378 36,378 36,378 3,2 553 
R3 38,276 38,250 38,241 38,239 38,237 38,235 2,6 557 
R4 38,496 38,474 38,466 38,464 38,459 38,458 3,2 552 
R5 39,150 39,125 39,114 39,113 39,111 39,111 1,8 546 
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When the analysis results are examined it is seen that error values are significantly 

high especially in the earlier iteration stages. The high error values in the earlier 

stages illustrate the difficulty of the problem. In the early stages there is not any 

significant difference between the convergence capabilities of the algorithms; 

however especially after the 25000th iteration mean error value of GASA becomes 

significantly lower than PSO, GA and HGASA. 

 

GA and HGASA end up with similar error values when the stopping criteria are met. 

However, GA presents slightly worse results than HGASA presents. There was a 

significant difference between GA and HGASA in SRCPSP. However, there is still a 

difference but not that much significant. The local search operator does not improve 

the results as expected. Especially, in the initial evaluations GA and HGASA mean 

error values are very close to each other. Only after the 50000th iteration, HGASA 

can present better results than GA. The difference becomes significant especially in 

J20 and J30 problem sets. The late improvement of local search can be explained as; 

in the initial case, when the temperature of the environment is high, harmful 

mutations are possible to be accepted. During the random walk session HGASA 

continuously mutates the individuals in order to obtain better scheduling alternatives. 

Especially in the initial stages acceptance of a detrimental mutation is very high and 

almost all detrimental mutations are accepted. This situation requires more beneficial 

mutations to improve the current best. On the other hand, if the initial temperature is 

decreased than the probability of getting stuck into local minima will increase. 

 

It is seen that the difficulty of MMRCPS is very high that the initial error values of 

the algorithms are too high. Because of this difficulty, the probability of a mutation 

to be beneficial is very low and the initial random walk sessions are prone to end up 

with detrimental mutations. Detrimental mutations are also prone to GASA and GA 

but, the two meta-heuristic algorithms do not include a random walk search 

algorithm. So that GA and GASA do not have as many detrimental mutations as 

HGASA have. After the environment cools the amount of detrimental mutations 

lowers and the mean error of HGASA catches GA in the end. 

 



197 
 

PSO present the worst results. In this case, the initial convergence results of PSO are 

not as successful as SRCPSP. In addition to this, even this initial mean error values 

are not improved. It can be inferred that with this position and crashing alternative 

representation, PSO is not suitable for MMRCPS. 

 
When the stopping criterion is met, maximum mean error value of GASA is %3,354 

which is an acceptable value for this much difficult problem. On the other hand, the 

algorithms could not improve any optimum duration. Accept for the J30 problem set, 

GASA obtained approximately 350 global optimums out of 550 test problems and is 

the most successful meta-heuristic algorithm. 

 
Table 7-5 Convergences of the algorithms when stopping criteria is met 

 
GA GASA HGASA PSO Problem 

Set 
Av Dev 

Per Op 
Found Av Dev 

Per Op 
Found Av Dev 

Per Op 
Found Av Dev 

Per Op 
Found 

J10 0,96 88,13 0,31 95,43 0,48 93,25 31,68 2,54 
J12 1,34 81,97 0,55 91,22 0,84 87,11 33,36 1,30 
J14 1,68 73,90 0,89 83,43 1,46 75,95 35,76 0,64 
J16 1,99 69,56 1,20 78,70 1,96 69,50 37,27 0,51 
J18 2,13 67,28 1,35 76,25 2,19 66,12 38,77 0,29 
J20 2,85 60,32 2,10 67,31 2,52 63,39 41,36 0,20 
J30 8,14 36,70 3,35 58,17 6,74 41,24 43,94 0,00 
R1 1,62 75,44 1,00 83,16 1,69 74,18 36,38 0,58 
R3 1,83 70,65 0,79 82,73 1,76 71,15 38,24 0,47 
R4 2,21 66,49 1,29 77,50 2,00 68,77 38,46 0,58 
R5 2,26 65,57 1,19 78,77 1,99 68,86 39,11 0,33 

 
 

In Table 7-5 deviation of the project durations when the stopping criteria is met is 

given. Apparently, GASA is the most successful algorithm among the four heuristics. 

When the results are compared with the previous studies it is seen that GASA is not 

successful in J10 and J12 problem sets as it can not provide better results than any of 

the distributed results. In J14, J16, J18 and J20 problem sets GASA provides better 

results than Sprecher and Drexl (1998) and Hartmann (2001). 
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CHAPTER 8 
 

8. RESOURCE CONSTRAINED TIME COST TRADE-OFF PROBLEM 

 

The final problem type analyzed in this thesis is the optimization of resource 

constrained time cost trade off problem (RCTCT). RCTCT is similar to the TCT 

analysis, in which each activity may have more than one execution mode with 

different completion duration and cost. However, in RCTCT type problem each 

execution mode’s resource requirements are also assigned and the maximum 

amounts of these resources are limited. The aim of RCTCT optimization is the 

minimization of the total project cost without overriding the resource restrictions. 

 

The meta-heuristic algorithms GA, GASA and HGASA are implemented for the 

solution of RCTCT. 

 

8.1 Genetic Representation of RCTCT Problem 
 

Genetic representation preferred for the solution of RCTCT problem is exactly the 

same with the MRCPSP problem. Gene of an individual represents both the priorities 

of the activities for the resource usage and the activity execution mode. The detailed 

information about the genetic representation and solution algorithm can be obtained 

from Chapter 7. The only difference between MRCPSP and RCTCT is that the 

objective function is minimization of total project cost instead of minimization of 

project duration. 

 

8.2 Problem sets for RCTCT Problem 
 

In the literature there was not a problem set available for the RCTCT set. For this 

reason, random problems sets are generated. For the base network 120-activity 

projects obtained from PSPLIB are used. Readily generated multi-mode projects are 

not preferred because the number of activities is less and the number of execution 
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modes is constant for each activity. In addition to this, some of the crashing 

alternatives do not satisfy the renewable resource requirements. 

 

Additional activity execution modes are added to the project by assigned number. 

For each activity a random number between 1 and 4 is generated and additional 

execution modes equal to the random number generated for that activity are created. 

Consequently, each activity would have execution modes between 2 and 5. The 

original duration of the activities are assumed to be its full crashed duration of that 

activity. The reason of this is the too short original activity durations. The original 

durations are between 1 and 10 days which are not possible to crash. 

 

For each execution mode added to the original problem another random number 

between 1 and 3 is generated. This random number is the duration difference 

between the next crashing option and itself. In other words, the original duration is 

assigned as the shortest possible duration for the completion of the activity. 

Generated random numbers are added to the duration of the previous crashing option 

in order to compute the current crashing option itself. As a result additional 

execution modes will take longer to complete the activity than the original duration. 

 

Resource requirement of the activity is computed by multiplying the duration of the 

activity and the required amount of that activity. Man-days for each resource type are 

computed and they are tried to be kept constant for each mode. If there is an increase 

in the amount of man-days for a certain resource type because of rounding errors, the 

resource requirement is round-off in order to preserve this. However, if the resource 

requirement becomes zero after the rounding off, than its original value is preserved.  

 

By crashing the activity durations it is assumed that the efficiency of the workers 

would decrease when compared with the efficiency of the workers in activity 

completion in normal duration. It is assumed that the labors are worked over-time in 

order to prevent additional resource for the decreased efficiency and the job is 

completed with same man-days. Crashing of normal activity durations comes at an 

additional cost. This additional cost is taken as $200 for each crashed day. The total 

cost of the activity execution modes are computed by the summation of all resource 
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costs and the overtime cost of the activity. Labor costs are computed by the 

summation of the multiplication the unit costs of the resources with the man-day 

requirement for that resource. Unit costs of the resources are assumed to be; $50/day 

for R1, $55/day for R2, $60/day for R3 and $65/day for R4. 

 

8.3 Analysis results 
 

 The RCTCT problem is analyzed by PSO, GA, GASA and HGASA by the 600 

projects for $750/day, $1500/day, $2250/day and $3000/day overhead costs. 

 

At the end of the RCTCT optimization, the final schedule is further worked on in 

order to obtain better resource distribution. The summation of the square of the daily 

resource usage is tried to be minimized by randomly delaying the activities without 

prolonging the original project completion date and overriding of the resource limits. 

 

Table 8-1 Analysis results of RCTCT problem 
 
Algorithm Overhead 1000 5000 25000 50000 250000 500000 Duration 
GA 591298 588894 584962 582396 578332 577607 141,3 
GASA 590535 588421 585702 583329 562737 543854 133,6 
HGASA 594039 591703 589630 588286 576041 564692 138,8 
PSO 750 612684 608773 602419 599358 592188 587205 143,0 
GA 699698 696300 691462 689061 684822 683649 137,1 
GASA 700322 697183 693000 689668 666289 645316 128,5 
HGASA 699754 696273 693328 691098 677253 665717 132,5 
PSO 1500 708923 703744 696108 692527 684164 677760 138,1 
GA 806814 802191 796140 793120 787504 785899 135,4 
GASA 807250 802880 797093 792177 765409 742414 126,6 
HGASA 807033 802116 797744 794568 777818 765545 130,7 
PSO 2250 917033 912116 907744 904568 887818 875545 150,7 
GA 913291 906997 899300 895674 889215 887674 134,6 
GASA 913520 907681 900538 894159 863118 838058 125,7 
HGASA 913431 907567 901460 897218 876966 863940 129,6 
PSO 3000 1023431 1017567 1011460 1007218 986966 973940 149,6 
 

The analysis results are shown in Table 8-1. Cost values are the average of the 600 

project at the corresponding iteration value. Iterations are stopped when the project 

schedule number reaches 500000. Duration value is the average of the durations of 

the project with the least total project cost. It is seen that when the overhead cost 

increases, average project duration decreases. 
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GASA is the most successful meta-heuristic algorithm when the methods are 

compared. HGASA gives slightly worse results than GASA; however HGASA is 

better than GA and PSO. PSO is the worst method among the four meta-heuristic 

algorithms. 

 

The success of GASA shows that, SA significantly improves the convergence ability 

of GA. As a result of this, GASA obtained the best solutions among the four meta-

heuristic algorithms. Local search algorithm of HGASA slows down the convergence 

of the algorithm. Analysis results of MRCPSP and RCTCTP show that HGASA 

improves its results at later schedules. HGASA requires more iterations than GASA 

in order to obtain same quality results. As a result of this, HGASA gives worse 

results when the stopping criterion is met. 

 

GA obtained worse results than GASA and HGASA. This shows the benefit of SA. 

Both HGASA and GASA represent better results in any of the projects. The results 

of PSO show that, activity priority representation is not a suitable algorithm for PSO 

to improve its initial convergence. It is known that PSO is a fast converging meta-

heuristic algorithm. The obtained results do not reflect the characteristic of PSO. On 

the other hand, obtained solutions by PSO is also satisfactory enough for the 

execution. 

 

The particles in the population of PSO are directed towards the population’s current 

best. The activity priorities are altered in a way which will make them as same as 

with the population’s current best’s activity priorities. The process is performed step 

by step in order to search for better activity priority combinations. However, due to 

the CPM logical relationships activity priorities can not be altered freely. The altered 

activity priorities probably will not satisfy the CPM logical relationships and they are 

corrected accordingly and the position vector representing activity priority list is 

updated. 

 

Thus the obtained activity priorities will not be able to follow the path towards the 

population current best. As a result of this, the particles will make a random search 

through their region inefficiently. 
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The 120-activity project problem set is significantly a difficult problem set. Since the 

problem set contains activities with multi execution modes and the project has 

resource constraints to satisfy. The possible combinations are too high that the initial 

population may not be rich enough to cover all possible combinations. Even the 120-

activity TCT analysis with unlimited resources is a difficult problem, as a result the 

problem set contains very challenging problem set. For this reason, it is normal that 

the convergence characteristics of the meta-heuristic algorithms change significantly. 

The analysis results show that the algorithms should be improved and the test 

problem should be worked on it. 

 

The 120-activity RCTCTP test set is the most difficult problem set analyzed in this 

thesis. Number of possible combinations is extremely high which can not be 

compared with any of the test sample. 

 

When the stopping criterion of RCTCTP is met, the obtained schedules are analyzed 

in order to perform resource leveling. In this case, it is not possible to compute floats 

of the activity since the activity start times are not only determined by CPM 

relationships but also by resource availabilities as well. As this is the case, each 

activity is shifted one day and the project is rescheduled. If there is not any override 

of resource restriction and no elongation of project duration, the shift is accepted. 

Otherwise it is rejected. 

 

All of the activities are sequentially examined. If there is any accepted shift, than 

activities are randomly shifted in which the activity to be shifted is determined 

randomly. This process is repeated 25000 times. At the end of the process, it is seen 

that there is not any improvement in the resource profiles of the activities. 

 

This is caused by the fact that, the resource profiles are too strict that delay of an 

activity probably causes an increase in project duration or override of a resource 

restriction. In addition to this, since the schedules are near-optimum schedules which 

is the almost shortest project durations where the project can be executed with the 

available resources. For this reason, there are not significant fluctuations in resource 

profile. 
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CHAPTER 9 

 

9. CONCLUSION 

 

In this thesis, it is aimed to obtain optimum or near-optimum solutions for the 

planning optimization problems including; time cost trade-off, resource leveling and 

resource constrained project scheduling problems by meta-heuristic algorithms. The 

reason of preferring the meta-heuristic algorithms is that some of the planning 

optimization problems, such as multi-mode resource constrained scheduling and 

resource constrained time cost trade-off analysis can not be solved by linear 

programming or other analytical methods, especially for large projects. 

 

In order to develop and improve convergence capability of meta-heuristic algorithms 

in the beginning simple planning problems are solved such as TCT analysis and 

resource leveling. Each problem type was a good candidate to detect the weak points 

of the algorithms and provide a road map to improve the algorithm. 

 

In the first problem type, TCT with unlimited resources is analyzed. The scheduling 

software developed for this type of problem is capable of handling all of the four 

logical relationships. In addition to this, delays and lags can be defined as well. Four 

different calendars can be assigned to the activities which are the most suitable 

calendar types for the industry. 

 

In the analysis it is shown that the HGASA, GMASA, GASAVNS are capable of 

obtaining global optima for the middle sized projects. However, if near optimum 

solutions are acceptable than ACO, PSO and GASA are also capable of providing 

satisfactory results. The solution of TCT problem with unlimited resource problem 

type can be adapted to construction sector for minimizing the total project cost if 

there is not any difficulty in obtaining and accommodating any kind of labor. The 

developed meta-heuristic algorithms are good candidate to reduce the total cost of 

the construction projects. 
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In the literature, the largest project whose global optimum is obtained by meta-

heuristic algorithm was only 18-activity project. In this thesis, 63-activity project is 

analyzed by meta-heuristic algorithms and three of them were able to obtain the 

global optima of the project. This is a sound improvement for the capability of meta-

heuristic algorithms. 

 

HGAQSA present the most successful results in the analysis of TCT problem. The 

algorithm always converged into optimum or near-optimum solutions. As a result of 

this, HGAQSA can be implemented for the solution of TCT problems without any 

doubt. In addition to this, PSO present near-optimum solution in the early stages of 

the analysis. If optimum solution is not mandatory which can be the case if there are 

uncertainties in the planning data, PSO can be preferred in order to shorten analysis 

duration. Optimum solution of TCT presents the minimum total project cost. As a 

result of this, optimum solution of TCT problems has significant importance in 

construction and manufacturing sectors. 

 

Second problem type was resource leveling in which there was no limit on the 

maximum resource amounts. This problem is also an important scheduling problem 

in construction sector, which aims to minimize the fluctuations in the daily resource 

demand during the project. The fluctuations in the resource demand causes idle 

resources and very often hiring and firing labors which reduces the unit production. 

 

For resource leveling, the meta-heuristic algorithms are tested by using the test 

problems obtained from the literature. In one of the test problems better leveling of 

resources is obtained when compared with the results in the literature and same 

schedule is obtained in the remaining test problems. The test problems showed that 

meta-heuristic algorithms; GASA, HGAQSA, GMASA and GASAVNS are capable 

of improving the resource demand during the construction and provides better 

resource curve suitable for an efficient and productive construction. 

 

Similar to TCT problems, HGAQSA obtained the most successful results in shortest 

time. By considering this fact, in the analysis of large projects HGAQSA would be 

more suitable than the other algorithms. 
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Optimum solution of resource leveling reduces the fluctuations in resource demand. 

As a result of this, more stable resource curves are obtained which reduces the 

amount of idle labor and machinery during the project execution. Consequently, 

additional costs occurring from idle resources would be prevented by the optimum or 

near-optimum solution of resource leveling. 

 

Third problem type analyzed is the resource constrained scheduling problem. In this 

case three genetic algorithm based methods are preferred in the analysis; GA, GASA 

and HGASA. In addition to this, the problem is also analyzed by PSO. RCPSP is 

commonly faced in manufacture and construction sectors. The solution of the 

problems aims to minimize the duration of the production or construction as short as 

possible without overriding the resource limitations and logical relations. Especially 

in international constructions or in some local regions there might be some 

limitations in providing some of the skilled labors such as crane operators, welders or 

carpenters. In such a case obtaining additional skilled labor can be impossible or very 

expensive. Because of this, maximum numbers of labors are limited to a certain 

number and the project duration is allowed to be elongate. SRCPSP aims to 

minimize the elongation of project duration due to resource limitations. 

 

Randomly generated test problems are used for the test of the generated meta-

heuristic algorithms. The algorithms could not improve the currently obtained best 

solutions. However, test results showed that PSO, GA, GASA and HGASA are 

suitable algorithms for the near optimum solutions of SRCPSP both for construction 

and manufacture sectors. However, GASA is the most suitable for the analysis of the 

SRCPSP. 

 

Fourth problem type analyzed in the thesis is the multi-mode resource constrained 

scheduling problem. MRCPSP aims to minimize the duration of manufacture or 

construction with limited resource in which activities of the project can be executed 

in more than one method. MRCPSP is usually faced in manufacture not in 

construction, because the MRCPSP requires detailed planning endeavor in order to 

provide the required data required for the analysis. Moreover, solution of MRCPSP 
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is significantly difficult than the optimization problems mention so far in this thesis. 

Because of this, very talented planning engineers and experts should be employed to 

handle MRCPSP. Construction projects differs from manufacturing projects that 

construction projects are unique and executed only once while manufacturing 

projects are executed significantly many times. Because of this, exhaustive 

optimization procedures are not implemented for the solution of scheduling of 

construction projects. On the other hand, developed meta-heuristic algorithms GA, 

GASA and HGASA are good candidates for the solution of optimization problem of 

MRCPSP in construction sector. 

 

The last problem type analyzed is the resource constrained time cost trade-off 

problem. This problem aims to minimize the total project cost without overriding the 

resource constraints. This problem is the combination of MRCPSP and TCT type 

problems. Solution of RCTCTP aims an overall optimization in resource demand and 

project cost. The two objective functions are simultaneously evaluated in RCTCTP. 

Similar to MRCPSP, RCTCP also requires detailed data about project and talented 

optimization algorithm. For this reason, RCTCTP is not analyzed in construction 

projects in which the tender documents are prepared before the final design is 

available.  

 

In order to provide necessary data for the RCTCTP, automated quantity take-off and 

cost estimation systems should be used. There should be a database and a decision 

support system for the determination of different execution modes of the alternatives. 

Recently, optimum or near-optimum solution of RCTCTP was far from reality. 

However, the developed meta-heuristic algorithms can successfully be used for the 

improvement of the schedule during construction. The developed meta-heuristic 

algorithms presented good results. PSO and GA could not improve their initial 

results notably. HGASA and GASA converged into better results. Convergence of 

GASA is better than HGASA. Consequently, GASA present better results than the 

other meta-heuristic algorithms in this problem so it is the most suitable algorithm 

for this problem. 
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Although superior results are obtained when compared with the previous analysis 

results obtained from the literature. The analysis results obtained in this thesis study 

can be further improved by experimental design. The method can be implemented on 

SRCPSP, MRCPSP and RCTCT in order to improve the model parameters. 

Experimental design requires several computations of test problems with different 

parameter combinations. As a result of this, the endeavor of experimental design 

would be enormous. On the other hand, the analysis on TCT problem has shown that 

significant improvements in the convergence capability of the meta-heuristic 

algorithms can be obtained. 

 

Multi-core processor desktop and laptop computers are standard. In order to benefit 

from the multi-core technology, the population based algorithms can be parallelized 

and benefited from the multi-core processor technology. Significant improvements 

can be obtained by parallel processing and the computation duration can be 

decreased without requiring another computer. 

 

The CPM scheduler can schedule four logical relationships with positive and 

negative lags. Besides the simple CPM logical relationships, certain restrictions can 

be added for certain activities such as latest start or finish date for a certain activity. 

Furthermore, logical network relationships which define latest possible start or finish 

time of an activity can be defined which differs from the simple CPM logical 

relationship defining earliest possible start or finish time. 

 

Philosophy “Strike, while the iron is hot” is valid both in optimization and life. 
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