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ABSTRACT 

 

 

 

DEVELOPMENT OF AN AXISYMMETRIC, TURBULENT AND 
UNSTRUCTURED NAVIER-STOKES SOLVER  

 

 

 

AKDEMĐR, Mustafa 

M. Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M.Haluk AKSEL 

 

May 2010, 76 pages 

 

An axisymmetric, Navier-Stokes finite volume flow solver, which uses Harten, Lax 

and van Leer (HLL) and Harten, Lax and van Leer–Contact (HLLC) upwind flux 

differencing scheme for spatial and uses Runge-Kutta explicit multi-stage time 

stepping scheme for temporal discretization on unstructured meshe is developed. 

Developed solver can solve the compressible axisymmetric flow. The spatial 

accuracy of the solver can be first or second order accurate. Second order accuracy 

is achieved by piecewise linear reconstruction. Gradients of flow variables required 

for piecewise linear reconstruction are calculated by Green-Gauss theorem. 

Baldwin-Lomax turbulent model is used to compute the turbulent viscosity. 

 

Approximate Riemann solver of HLL and HLLC implemented in solver are 

validated by solving a cylindrical explosion case. Also the solver’s capability of 

solving unstructured, multi-zone domain is investigated by this problem. First and 

second order results of solver are compared by solving the flow over a circular 



 

 

v 

bump. Axisymmetric flow in solid propellant rocket motor is solved in order to 

validate the axisymmetric feature of solver. Laminar flow over flat plate is solved   

for viscous terms validation. Turbulent model is studied in the flow over flat plate 

and flow with mass injection test cases.  

 

Key-words:  Navier-Stokes Equations, Second Order Spatial Accuracy, Finite 

Volume Method, HLL Aproximate Riemann Solver, HLLC Aproximate Riemann 

Solver, Baldwin-Lomax Turbulence Model 

 



 

 

vi 

 

ÖZ 

 

 

 

EKSENEL SĐMETRĐK, TÜRBÜLANSLI VE YAPISAL OLMAYAN BĐR 
NAVĐER-STOKES ÇÖZÜCÜSÜ GELĐŞTĐRĐLMESĐ 

 

 

 

AKDEMĐR, Mustafa 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M.Haluk AKSEL 

 

Mayıs 2010, 76 sayfa 

 

Zamandan bağımsız, durağan çözümlerinin yapılabilmesi için, düzensiz ve hibrit 

çözüm ağını uzayda HLL ve HLLC yön hassas (upwind) akı ayrımına dayalı 

yöntemini, zamanda ise explicit Runge-Kutta çok kademeli yöntemini kullanarak 

ayrıştıran, iki boyutlu sonlu hacim Navier-Stokes çözücüsü geliştirilmiştir. 

Geliştirilen Navier-Stokes çözücüsü sıkıştırılabilir akışlar için eksenel simetrik 

çözümler verebilmektedir. Çözücü uzayda birinci ve ikinci dereceden doğrulukla 

çözüm yapabilmektedir. Uzayda ikinci dereceden doğruluk, doğrusal yeniden 

yapılandırma yöntemiyle elde edilmiştir. Doğrusal yeniden yapılandırma için 

gerekli olan akış değişkenlerinin türevleri Green-Gauss yöntemi kullanılarak 

hesaplanmaktadır. Turbulanslı akışlarda viskosite hesaplamak için Baldwin-Lomax 

turbulans modeli kullanılmıştır. 
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Sonuçlar daha önce yayınlanmış sonuçlarla ve analitik sonuçlarla karşılaştırılmıştır. 

HLL ve HLLC akı ayrıştırma yöntemleri silindirik patlama problemi çözülerek 

doğrulanmıştır. Uzayda birinci ve ikinci dereceden çözümler kanal içinde akış 

çözülerek karşılaştırılmıştır. Katı yakıtlı roket motoru iç akışı çözülerek çözücünün 

eksel simetrik özelliği test edilmiştir. Laminar akış çözümleme yeteneği düz plaka 

üzerinde akış çözülerek doğrulanmıştır. Tubulans modelini doğrulamak için düz 

plaka üzerinde akış ve kütle enjeksiyonlu akış problemleri çözülmüştür. 

 

Anahtar Kelime: Navier-Stokes Denklemleri, Uzayda Đkinci Derece Doğruluk, 

Sonlu Hacim Metodu, HLL Akı Ayrıştırma Yöntemi, HLLC Akı Ayrıştırma 

Yöntemi, Baldwin-Lomax Türbulans Modeli. 
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CHAPTER 1 

CHAPTERS 

1. INTRODUCTION 

 

INTRODUCTION 

 

 

 

The use of computational methods in fluid dynamics applications is expanding 

throughout industry, academia, defense and research community. Advances in 

computers’ skills such as speed, capacity, etc. are making the Computational Fluid 

Dynamics (CFD) to become an unchangeable part of life. Especially in design process 

having an interaction with a flow, CFD is increasingly being used.  

 

There are four main methods using for computational engineering. Those are 

 

• Finite Difference Method (FDM) 

• Finite Element Method (FEM) 

• Spectral Method 

• Finite Volume Method (FVM) 

 

Finite Volume Method is one of the popular methods used in CFD. In FVM, physical 

space of flow is divided into small control volumes. In FVM method, fluxes are evaluated 

at the faces of control volume. Integral form of conservation laws is used in FVM, so the 

mass, momentums and energy are conserved over each control volumes. Surface integral 

of fluxes is assumed to be equal to the sum of the fluxes crossing the faces of these 

control volumes. There are several spatial discretisation methods used in approximation 
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of convective and viscous fluxes separately. For convective fluxes, these methods can be 

classified as central methods, upwind methods. Temporal discretisation methods can also 

be classified into two groups. Those are Explicit Time Stepping Algorithms and Implicit 

Time Stepping Algorithms. In Implicit Time Stepping Algorithms, there is a high 

convergence rate but it requires large amount of memory. Also implementation of 

implicit time stepping is more complicated then the explicit one. In Explicit Time 

Stepping Algorithms, convergence rate is lower than the implicit one. In the case required 

coarse mesh, explicit time stepping may be efficient. However, solution of Navier-Stokes 

equations requires fine meshes especially within the boundary layer.  

 

It is necessary to solve the Navier-Stokes equations in order to analyse the flow field in 

detail. Also dependence of viscosity and thermal conductivity to a thermodynamic 

property has to be achieved in order to achieve an accurate simulation of flow. For 

laminar flows, the viscosity and thermal conductivity can be defined as a function of 

temperature.  

 

The main problem in numerical solutions of Navier-Stokes equations is the existence of 

the many different length scales and time scales, due to the different natures of each 

physical phenomena. Typical length scales for a boundary layer thickness, the viscous 

thickness of a shock wave and the turbulent eddy are in the order of 
Re

1
,
Re

1
 and 

2Re

1
 

respectively. These scalings differ by orders of magnitude in any flow. Since all of them 

cannot be handled, the unresolved scalings must be modeled, either by physical closures 

(like turbulence) or by numerical means (like shock capturing). Inside the viscous layers 

like boundary layers and wakes, order of magnitude of convective and viscous terms are 

balanced. Thus the solution becomes continuous but shows large gradients in variables. 

This fact can lead to severe problems of accuracy of the numerical method if these layers 

are not resolved sufficiently well [1]. 

 

The main characteristic of the compressible flows is the occurrence of discontinuities in 

flow variables and also in fluid properties. The occurrence of discontinuities and their 
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interactions may have strong affects on flow characteristics. For the flow field with the 

significant discontinuities, flow direction information is required to solve the problem 

accurately. Upwind schemes are developed which take the direction of the flow into 

consideration. Upwind schemes are the major spatial discretization methods used in CFD 

[2]. There are two basic ways of using the upwind schemes: flux-vector splitting (FVS) 

methods and flux-difference splitting (FDS) methods. 

 

In flux-vector splitting, the flux vector is split into two parts based on the information 

coming from upwind and downwind of the cell face [3]. The flux terms are split 

according to the sign of characteristic variables into a convective and a pressure part [4]. 

Van Leer’s method splits the fluxes according to the sign of characteristic variables [5], 

while Advection Upstream Splitting Method (AUSM) splits the fluxes into convective 

and pressure part [6]. 

 

In flux-difference splitting method, a local Riemann problem is solved at each face of 

cells using left and right state of the corresponding face. The flow variables are taken as 

constant over the left and right states of the cell face. Flux-difference splitting method 

was introduced by Godunov [7], who solved the local Riemann problem exactly. He 

proposed that the non-linear superposition of the Riemann problems which lead to a 

general initial value problem. Thus the exact solution of Riemann problem gives almost 

the exact results of the initial value problem. Since the exact solution of Reimann 

problem is computationally expensive, some approximate Riemann solvers have been 

developed by Roe [8], Osher and Solomon [9], Toro [10] and Harten [11]. 

 

In order to use the flux-difference splitting method with the approximate Riemann solver, 

Harten, Lax and van Leer [12] introduced an efficient and robust approach called Harten, 

Lax and van Leer (HLL) approximate Riemann solver method [10]. Davis [13] and 

Einfeldt [14] derived the methods for computing the wave speeds required by HLL 

method. Based on HLL approximate Riemann solver, the high-resolution TVD schemes 

have been introduced Mingham and Causonb [15] and Hu [16]. By using the HLL 

scheme as a basis for developing second-order TVD schemes, shallow water flows were 
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solved. ADER-HLL method which is a higher order version of HLL approximate 

Riemann solver was introduced by Titarev and Toro. One disadvantage of HLL method is 

the assumption of two-wave structure. For Euler equations, this assumption is not true. 

Some physical features such as entropy waves, slip surfaces, material interfaces, vertical 

flows, shear layers and contact discontinuities may be resolved inaccurately by using 

HLL approximate Riemann solver. Wackers and Koren [17] adopted the HLL 

approximate Riemann solver to two-fluid flow. The source term in the flow equations is 

incorporated into the HLL solver of the Riemann by Wackers and Koren. 

 

Toro, Spruce and Speares [18] presented a new method called Harten, Lax and van Leer–

Contact (HLLC) which overcome the two-wave structure disadvantage of HLL method 

by considering the contact wave speeds. HLLC is useful and efficient approximate 

Riemann solver for practical applications. Two dimensional multi phase flow was solved 

by Toro by using HLLC approximate Riemann solver [10]. Shallow water equations were 

solved with the HLLC approximate Riemann solver by Toro in 2001 [10].  A new high 

order accurate method named ADER-HLLC was presented by Titarev and Toro. HLLC 

method was implemented to an implicit solver by Batten, Goldberg and Leschziner [19] 

and has been used to solve the turbulent flows.  

 

In the Navier-Stokes equations, the coefficients of viscosity and thermal conductivity are 

represented as functions of temperature for laminar flow. Hence, Navier-Stokes equations 

and constitutive relations are sufficient to handle the laminar cases. Looking at the 

turbulent cases, the situation is more complex to handle where turbulence is characterized 

by random fluctuation of the flow properties. Since time history is not of a great interest 

one would integrate the flow properties over a period of time to extract time-averages, 

which is an adopted technique by engineers. For turbulent flows, turbulent features of 

flows are modeled since the length scale of turbulent eddy is so small. 

 

The turbulence models had been classified under four main categories. They are: 

 

• algebraic ( zero-equation) models 
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• one-equation models 

• two-equation models and 

• second-order closure models 

 

Many turbulence models, however, are cumbersome to implement and require a lot of 

computer time to run, since they add a number of differential equations to be solved to 

model a flow. The algebraic turbulence models are the simplest of all turbulence models. 

After Prandtl, the first contribution was due to Van Driest who proposed that the mixing 

length must be multiplied by a viscous damping correlation. This models use the 

Boussinesq eddy-viscosity approximation to compute the Reynolds stress tensor. Cebeci-

Smith and Baldwin-Lomax are the most important ones of the algebraic turbulence 

models. The Baldwin-Lomax turbulence model is superior in separated flows, especially 

for flows with shock waves. The algebraic models are incomplete models of turbulence, 

because the eddy viscosity as well as the mixing length depends on the type of flow that 

is being considered [20]. 

 

The Baldwin-Lomax turbulence model is a popular model. It is an algebraic, eddy 

viscosity model. The Baldwin-Lomax model is used in many CFD codes because it is 

quick and easy to implement. And also Baldwin-Lomax model is suitable for separated or 

attached flows. Sakowski, Roach and Wall implemented the Baldwin-Lomax turbulence 

model for both steady and unsteady compressible flows in engine inlets. They did some 

modifications in order to apply this turbulence model to engine inlet flows.  

 

Because of easiness of implementation and having capability of solving the attached and 

separated flow Baldwin-Lomax turbulence model is selected to implement the developed 

code. 
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1.1. Present Study 

The purpose of this study is to develop a two-dimensional flow solver, which can be used 

for the analysis of internal flows in solid propellant rocket motors in order to analyze its 

performance. 

 

Flow solver is capable of solving Navier-Stokes equations in two dimensions for steady 

state problems. It uses the finite volume method, with upwind flux calculation of HLL 

and HLLC. Moreover, the solver can operate on structured and unstructured grids. For 

the integration of governing equations in time, solver uses explicit methods. Accuracy of 

spatial discretization can be selected to be first and second order. Baldwin-Lomax 

turbulence model is used. 

 

The developed solver, which is described in this thesis, is validated with the results of 

previously validated performance prediction codes.  

 

The governing equations of flow and the equation of turbulence model used in thesis are 

explained in Chapter 2. 

 

Chapter 3 discusses the spatial and temporal discretization methods used in this thesis. 

The details of spatial discretization are presented for convective and viscous fluxes 

separately. Convective fluxes are calculated by using the HLL and HLLC approximate 

Riemann solver. Also, how second order of accuracy of convective flux calculation is 

introduced. Also, the explicit Multi-Stage Runge Kutta Method time discretization 

method is explained. Coordinate transformation and calculation of time steps is explained 

in Chapter 3. This chapter concludes with the description of boundary conditions used in 

the solver developed. 

 

Test cases and the results of the solver are presented in Chapter 4. Approximate Riemann 

solver of HLL and HLLC is validated by solving a cylindrical explosion case. Also the 

solver’s capability of solving unstructured, multi-zone domain is investigated by this 



 

 

7 

problem. Assessment of higher order accuracy of the solver is validated by solving the 

flow over a circular bump. Axisymetric flow in solid propellant rocket motor is solved in 

order to validate the axismmetric property of the solver. Laminar flow solving capability 

is tested by solving the flow over a flat plate. Also turbulent flow solving capability is 

tested by using this case and the flow with mass injection case. 
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CHAPTER 2 

2. GOVERNING EQUATIONS 

 

GOVERNING EQUATIONS 

 

 

 

2.1. Navier-Stokes Equations 

The flow of a viscous, heat conducting, compressible gas without body force and heat 

generation can be modeled by the Navier-Stokes equations. In two dimensions, the 

conservative formulation of the Navier-Stokes equations can be written in differential 

form in terms of conservative variables as:  

 

                                                 0
)()(
=

∂

−∂
+

∂

−∂
+

∂
∂

y

GG

x

FF

t

U vv                                    (2.1) 

 

where  

                                                                 


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







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
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


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E

v

u
U

ρ
ρ
ρ

                                                       (2.2) 

 

where t is the time, ρ  is the density, E is the total internal energy per unit volume, u and 

v are the velocity components in x and y directions, respectively. 
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where p is the pressure. 
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The shear stress components are expressed as; 
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                                                                 xyyx ττ =                                                        (2.10) 

 

where µ  is the total effective viscosity coefficient. Total effective viscosity is defined by 

using the eddy-viscosity concept as follows [21] 

 

                                                            turblam µµµ +=                                                    (2.11) 

 

where lamµ  and turbµ  are the laminar and turbulent viscosities, respectively. The 

Sutherland formula [21] is used for the laminar viscosity, lamµ , 

 

                                                      
110

1045.1
3

2

6

+
= −

T

T
xlamµ                                           (2.12) 

 

Evaluation of the turbulent viscosity, turbµ , is explained in detail in next section. 

 

The components of heat flux are expressed as follows; 

 

                                                            
x

T
qx ∂

∂
−= κ                                                        (2.13) 

 

                                                           
y

T
q y ∂

∂
−= κ                                                         (2.14) 

 

where T and κ  are the temperature and thermal conductivity, respectively. 

 

To close the system of equations, the equation of state for an ideal gas is used 
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                                                        )(
2

1 22 vueE ++= ρρ                                             (2.15) 

 

                                                              
ργ )1( −

=
p

e                                                      (2.16) 

 

where e and γ is the specific internal energy and the specific heat ratio, respectively. 

 

2.2. Turbulence Model 

Baldwin-Lomax turbulence model is employed to calculate the turbulent viscosity. This 

model defines the turbulent viscosity as follows [22] 
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
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≤
=
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turb
YYif

YYif

)(

)(

µ

µ
µ                                (2.17) 

 

In the above equation, Y is the normal distance from the wall and Ycrossover is the value of 

Y at which values of inner and outer formulas are equal.  

 

Inner layer turbulent viscosity based on the Prandtl mixing length theory is  

 

                                                        ωρµ
r2)( innerinnerturb l=                                              (2.18) 

 

where innerl is the mixing length and defined as follows 

 

                                                        )1(4.0 26
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Y
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ω
r
 is the vorticity and given as follows 
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Y
+ is the non-dimensional wall distance and defined as 

 

                                                             Y
u

Y wall

lam

)(
µ
ρ τ=+                                               (2.21) 

 

where the friction velocity, τu , is given as 

 

                                                              
wall

wallu
ρ
τ

τ =                                                     (2.22) 

 

The turbulent viscosity in the outer layer is given as 

 

                                              )(0168.0)( YFFC klebwakecpouterturb ρµ =                               (2.23) 

 

where the wakeF  is given as 
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F

V
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FY

F
diff

WK
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                                        (2.24) 

 

maxmaxFY  term in above equation is valid for attached wall boundary layers while the 

max

2

max
F

V
YC

diff

WK  term is valid for separated and attached wall boundary layers and wakes 

where 6.1=cpC  and 25.0=WKC  [22]. maxY is the Y value at which the F is maximum. 

Following equation is used to calculate the velocity difference, diffV .   
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                                                         minmax )()( VVVdiff −=                                           (2.25) 

 

where max)(V  is the magnitude of velocity corresponding to maxF  as maxY . min)(V is the 

minimum velocity of the profile [22]. The vorticity moment F is calculated as follows 
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                                        (2.26) 

 

In the above equation, ω
r

Y  term is applied to wakes while the other one is applied to the 

wall boundary layer. 

 

For the evaluation of outer layer turbulent viscosity, the Klebanoff intermittency factor is 

used so the outer turbulent viscosity is vanish as Y goes to infinity. This factor is given as 
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CHAPTER 3 

3. NUMERICAL METHODS 

 

NUMERICAL METHODS 

 

 

 

Basic parts of numerical methods being used for analyzing a flow are the spacial 

discretisation and temporal discretisation. There are so many methods for special and 

temporal discretisation. This chapter mainly introduces these methods. Firstly, spacial 

disretisation method of flux differencing method for convective flux will be presented. 

Evaluation of viscous fluxes will be introduced next. Developed code can analyze a flow 

on unstructured grid, so the coordinate transformation is needed. This subject will be 

discussed after the viscous flux. After the subjects of spatial discretisation, temporal 

discretisation subjects, calculation of time steps and explicit time stepping, will be 

presented. This will be followed by the description of data reconstruction for higher order 

accuracy and the limiter. Finally boundary conditions will be defined. 

 

3.1. Flux Difference Splitting Method 

Flux difference splitting method evaluates the fluxes at the faces of the control volume 

from the left and the right sides conditions by solving the Riemann shock tube problem. 

The idea of flux difference splitting method was first introduced by Godunov [7]. Flux 

difference splitting method considers not only direction of waves but also the waves 

themselves. The solution of the Riemann problem may employ exact or approximate 

solvers. Exact solution of Riemann shock tube problem is required so much 
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computational effort. So many approximate Riemann solvers were presented in literature 

[4]. 

 

3.1.1. Riemann Problem 

Riemann problem is, simply, the initial value problem of hyperbolic systems. This 

problem is important because the exact time-dependent solution is known. This known 

solution can be compared with the solution computed by using any numerical method in 

order to validate the used method. 

 

The Riemann problem or the initial value problem for 1-D Euler equations can be 

formulated as follow: 

 

                                                               0=
∂
∂

+
∂
∂

x

F

t

U
                                                    (3.1) 

 

with the initial conditions 
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Figure 3.1  Shematic view of shock tube 
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Practically Riemann problem is experienced the flow through a shock tube flow as shown 

in Figure 3.1. The gas on two side of the tube is separated by a diaphragm at the point x0 

at the time t0. If the viscous forces are neglected and the tube is assumed to be infinitely 

long, the exact solution of the Euler equations can be obtained. 

 

In the shock tube, there are two regions separated from each other by the diaphragm. 

Initially the left and the right sides of diaphragm contain same gas at different states 

called UL and UR. 

 

After the sudden rupture of the diaphragm, expansion waves move to the high-pressure 

side in order to decrease the pressure; and a normal shock wave moves to the low-

pressure side to increase the pressure. A contact surface is formed between the normal 

shock wave and the tail of the expansion waves [10]. 

 

For two dimensional Euler equations, there is one additional characteristic field 

associated with the eigen value having the value û . This is a shear wave across which the 

tangential velocity component v̂  changes discontinuously. In the star region, between the 

right and left waves, pressure p and normal velocity û  are constant. Structure of the 

solution of the local Riemann problem can be seen in Figure 3.2. All variables, 

superscripted with (^), represent the value according the facial coordinate. 

 

 

Figure 3.2  Structure of solution of the two-dimensional split Riemann problem 
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There are four possible wave patterns in the solution of Riemann problem. Those are can 

be listed as follows and shown in Figure 3.3. 

 

• Left rarefaction, contact and right shock (a) 

• Left rarefaction, contact and right rarefaction (b) 

• Left shock, contact andright shock (c) 

• Left shock, contact and right rarefaction (d) 

 

 

Figure 3.3  Possible wave patterns in the solution of the Riemann problem 

 

As can be seen in Figure 3.2, in star region between the left and right wave, values of 

primitive variables are as follows:  
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Knowing the values of primitive variables in left and right regions, *p , *û , L*ρ  and R*ρ  are 

variables to be evaluated.  
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*p  can be evaluated exactly by solving for the root of the following equation [10]. 

 

                                              0ˆˆ),(),( ** =−++ LRRRLL uuWpfWpf                                  (3.4) 

 

where function fL and fR represents the relations between the left star region and the left 

region and the right star region and the right region respectively and given as 
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The solution for *û  is given as [1] 
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ˆ *** pfpfuuu LRLR +++=                                      (3.7) 

 

After evaluation of the *û  and *p , other unknown variables L*ρ  and R*ρ  can be evaluated 

by using the following relations between the density ratio and the pressure ratio across 

the shock waves. 
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If the types of waves are the rarefaction following relations are used for calculation of 

L*ρ  and R*ρ . 
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Wave speeds SR , SL and S* for Riemann problem can be calculated as follows: 
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The inter-cell flux at a face f for the exact Riemann solver is given as follows: [10] 
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Detailed explanation of exact solution of Riemann problem can be seen in reference [10]. 

 

3.1.2. Godunov Approach 

Finite difference formulations assume that the functions are sufficiently smooth, 

continuous and continuously differentiable at the order of accuracy. This assumption is 

not valid for flows consisting discontinuities like shock waves. Godunov introduced a 

finite volume method called flux difference splitting scheme to overcome the problem 

encountered while discontinuities occur in flow. Basis of Godunov approach is the 

handling the flow by evaluating the fluxes using the solution of Riemann problem [10]. 

 

The Godunov approach considers the solution to be constant over a cell at a fixed time, t, 

as shown in Figure 3.4. The cell interfaces are assumed to be similar to the diaphragm in 

the shock tube. The flow field variables at the next time step are evaluated by assuming 

that there is a local Riemann problem [23].  

 

 

Figure 3.4  Piecewise constant distribution of U variable at time n. 
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Exact solution of Riemann problem is computationally expensive, so approximate 

Riemann solvers, HLL and HLLC are used. Before introducing the approximate Riemann 

solvers, integral relations of solution structure is discussed.  

 

In Figure 3.5, control volume is given as [xL, xR] x [0, T]. Integral form of the 

conservation laws as in follows: 
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Figure 3.5  Control volume for solution structure of Riemann problem 

 

Right hand side above equation can be written as follows: 
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Left hand side of equation in integral form can be split into three integrals as follows: 
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Some parts of above equation can be evaluated as follows: 
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From Equation 3.4 and Equation 3.6, one can obtain 
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Integral average of solution, *Û , between the waves SL and SR can be calculated as 

follows: 
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Integral form of conservation laws in control volume [xL, 0] x [0, T], the left side of the t 

axis in Figure 3.5 given as follows: 
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Right hand side of above equation can be written as 

 

                                                   LLLL

x

TFTFUxdxTxU

L

0

0

ˆ),(ˆ −+−=∫                                (3.23) 

 

Left hand side of above equation can be split into two integral. 
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After evaluating the first term of left hand side following equation is obtained. 
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Solving for F0L we find  
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Integral form of conservation laws in control volume [0,xR] x [0, T], the right side of the t 

axis in Figure 3.5 given as follows: 
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Right hand side of above equation can be written as 
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Left hand side of above equation can be split into two integral. 
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After evaluating the first term of left hand side following equation is obtained. 
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Solving for F0R we find  
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From Equations 3.20, 3.25 and 3.30 following equality can be obtained 

 

                                                                      LR FF 00 =                                                  (3.32) 

 

3.1.3. HLL Approximate Riemann Solver 

The HLL approximate Riemann solver is based on the integral form of the conservation 

laws and the largest and smallest wave speed in the Riemann problem. The stability and 

robustness of the HLL solver is closely related to the wave speeds. Main part of this 

solver is that the structure of solution is assumed to have two waves as indicated in 

Figure 3.6. 

 

 

Figure 3.6  Structure of the solution of the HLL approximate Riemann solver 
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HLL approximate Riemann solver assumes two wave structures so there are three 

separate regions. If the interface of two corresponding cells is in the left region of SL 

inter-cell flux is determined as FL. The inter-cell flux determined as FR if the interface is 

in the right side of the SR. If the interface is in the region between the two waves, inter-

cell flux is F0L or F0R which are equal. F0R can be obtained as follow by substitution *Û  

from Equation 3.8 into the Equation 3.18. 
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The inter-cell flux at a face f for the HLL approximate Riemann solver is given as follows 

[10] 
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The right and left wave speeds, SL and SR, can be estimated by using two different 

methods. Simple direct estimation is given by Davis [13] as 
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An estimation leading effective and robust schemes is proposed by Einfelt [14] as 
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where 
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û is the Roe averaged speed normal to the face and can be given by 

 

                                                          
RL

RRLL uu
u

ρρ

ρρ

+

+
=

ˆ.ˆ.
ˆ                                          (3.39) 

 

3.1.4. HLLC Approximate Riemann Solver 

The HLLC approximate Riemann solver was introduced by Toro [10]. Some physical 

features can be resolved inaccurately by using HLL solver as a result of the assumed two-

wave structure. HLLC Riemann solver can overcome this problem by restoring the 

missing contact and shear waves. HLLC is quite robust and efficient but somewhat more 

diffusive [23]. Solution structure of HLLC approximate Riemann solver is given in 

Figure 3.7. 

 

 

Figure 3.7  Structure of the solution of the HLLC approximate Riemann solver 
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For HLLC approximate Riemann solver, left hand side of Equation 3.7 is split into two 

parts as follows: 
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The integral average, LU*
ˆ , between the waves SL and S*  is defined as 
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The other integral average, RU*
ˆ , between the waves S* and SR  is defined as 
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Integrating over the control volumes as explained in previous chapter and using the 

conditions given in above equation, LU*
ˆ  and RU*

ˆ  can be obtained as follows: 
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Solution procedures of LU*
ˆ  and RU*

ˆ are given in reference [10] in details.  

 

HLLC approximate Riemann solver assumes three wave structures so there are four 

separate regions. If the interface of two corresponding cells is in the left region of SL 

inter-cell flux is FL. The inter-cell flux is FR if the interface is in the right side of the SR. If 

the interface is in the region between the SL and S*, inter-cell flux is F*L. In the region 

between the SR and S*, inter-cell flux is F*R. 

 

The inter-cell flux at a face f for the HLLC Riemann solver is given as follows: [10] 
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The middle wave speed *S  can be calculated using Equation 3.47 [24]. 
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The right and left wave speeds, SL and SR, are calculated by using the methods presented 

by Davis [13] and Einfelt [14] as mentioned in the previous section. 
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3.2. Evaluation of Viscous Flux 

The velocity and temperature gradients over the faces are required for the evaluation of 

viscous fluxes. Calculation of viscous fluxes over the cells is given below 
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The velocity and temperature gradients are calculated at the cell center; however, since 

gradients at the cell faces are needed, the average of the gradients of the right and the left 

cells of a face is used as the gradients on that face. For all boundary conditions, except 

the wall boundary condition, velocity and temperature gradients at the cell faces are taken 

as the same as the gradients at the cell center.  

 

The temperature gradient in the normal direction of the cell face is taken as zero, since 

adiabatic wall assumption is made. 

 

3.3. Coordinate Transformation 

Convective fluxes over the faces are calculated by using the right and left state of faces. 

During the calculation of fluxes, rotational invariance property of the Euler equations is 

used [10]. The domains that are not aligned with Cartesian coordinates can be dealed 

with the aid of this property. Using the rotation matrix of a face, right and left state 

vectors of this face are rotated to facial coordinates. Rotation matrix, Tf , of a face can be 

expressed as follows: 
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where θ  is the angle between the normal of the face and the horizontal direction. 

 

Tf
-1 is the inverse rotational matrix used to rotate the vectors from facial coordinates to 

Cartesian coordinates. Tf
-1 is as follows: 
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3.4. Calculation of Time Steps 

∆t is calculated for each cell using the following formula 
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where Ccfl and V are the CFL number and the area of cell, respectively, a is the speed of 

sound in the corresponding cell, Ax and Ay are the projections of the control volume on 

the y axis and the x axis, respectively. 
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where  xA
r

 and yA
r

 are the x and y components of face normal, respectively. 
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3.5. Explicit Time Stepping 

In this study, one of the most popular explicit methods, Runge-Kutta multi-stage time 

stepping scheme, is used for the time discretization. Four stage Runge-Kutta scheme can 

be given as follows. 
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where the 
321

,, ααα  and 4α  are the coefficients for each stage. For the first order upwind 

spatial discretization, the following values are recommended [4]. 

 

                                  0833.01 =α     2069.02 =α     4265.03 =α     14 =α                    (3.54) 

 

For the second order spatial discretization, recommended values are [4]. 

 

                                  1084.01 =α     2602.02 =α     5052.03 =α     14 =α                    (3.55) 
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3.6. Data Reconstruction for High Order Accuracy 

By using reconstruction, cell-centered data can be extrapolated to face centers for flux 

computation so that the higher order accuracy in space is obtained. Reconstruction can be 

achieved by using the expression given below. 

 

                                                           rUUU ccf

r
.∆+=                                                (3.56) 

 

 where Uc and ∆Uc are the cell-centered value and its gradient at the cell center 

respectively. r
r
is the vector from the cell center to face centroid.  

 

Cell-centered gradient of a cell-centered value, ∆Uc, is calculated by Green-Gauss 

theorem. 
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In above equation, fU  is the value of face centroid. fA
r

 is the face normal vector. fU  can 

be given as 
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3.6.1. Limiters 

Second order upwind spatial discretization requires a limiter function in order to prevent 

the generation of oscillations and spurious solutions in regions of high gradients, such as 

shocks. Maxima in the flow field must be non-increasing, minima must be non-

decreasing, and no new local extrema should be created during the advancement of the 

solution in time. 
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By using a limiter, the gradients used to reconstruct the left and right state at the faces of 

the control volume are reduced.  

 

In this study, Venkatakrishnan’s [25] limiter is used, which reduces the reconstructed 

gradient cU∆  at the center of cell by the factor 
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where  

 

                                                            cc UU −=∆ maxmax,                                            (3.60) 

 

                                                            cc UU −=∆ minmin,                                             (3.61) 

 

In the above equations, maxU and minU stand for the maximum and minimum values of all 

surrounding cells including the corresponding cell. Definition of 2∆ is given by the 

following equation as 

 

                                                                  rU
r

∆=∆2                                                    (3.62) 

 

where r
r
 is given as the vector from the cell centroid to the midpoint of the corresponding 

cell face. 
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The parameter 2ε  is intended to control the amount of limiting. In practice, 2ε  is taken to 

be proportional to a local length scale; 

 

                                                                ( )32
hv∆= κε                                                  (3.63) 

 

where 
vκ is a constant and h∆ is the square-root of the area of the cell for two 

dimensional case. 

 

3.7. Boundary Conditions 

3.7.1. Inviscid Wall Boundary Condition 

In an inviscid wall boundary, a ghost cell is used. State of a ghost cell is calculated as 

follows. 
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All values in above equation are the values which are rotated from Cartesian coordinates 

to facial coordinates. 

 

3.7.2. Viscous Wall Boundary Condition 

For the viscous wall boundary, state of a ghost cell is assumed as follows. 
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The velocity components of a ghost cell in facial coordinates are the negative of those of 

domain cells. Gradients of this boundary can be calculated as follows: 
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where x̂∆  is the distance between the cell center and face center. 

 

3.7.3. Far Field Boundary Condition 

The state of a face on the far field boundary depends on the direction and speed of the 

flow in facial coordinates. In a boundary, there are two basic situations, inflow and 

outflow. One of the following four far field boundary types occurs depending on the local 

Mach number.  

 

1. Supersonic Inflow 
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2. Subsonic Inflow 

3. Supersonic Outflow 

4. Subsonic Outflow 

 

1. Supersonic inflow 

For the supersonic inflow case, states of boundary faces are determined from the free 

stream values. 

 

2. Subsonic inflow 

If the flow is subsonic and entering into the domain, one of the characteristic variables is 

extrapolated from the domain while the other ones are  taken from the freestream values.  
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3. Supersonic outflow 

In the case of sıpersonic outflow, states of boundary faces are determined by the 

extrapolation from the corresponding values int the domain. 

 

4. Subsonic outflow 

If the far field boundary type is subsonic outflow, pressure is taken from the free stream 

and the other ones are determined by the extrapolation from the corresponding values int 

the domain. 
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3.7.4. Mass Flow Inlet Boundary Condition 

Mass flow boundary condition can be used to provide a prescribed mass flow rate at a 

boundary. Mass flux, total temperature and the static pressure are provided. The mass 

flux is always in a direction into the domain and its value is ûρ̂ . Density is calculated 

with the procedure described below. 

 

For an ideal gas, density ρ  is calculated using static pressure p and static temperature T 

by the following expression. 
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p
=ρ                                                       (3.72) 

 

In the mass flow inlet boundary conditions, the total temperature T0 is to be provided. 

Total and static temperatures are related by 
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The sound speed, a  and the normal velocity, û , can be expressed as 
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Using equations 3.72, 3.73 and 3.74, one can obtain the following formula for the 

density. 
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3.7.5. Pressure Outlet Boundary Condition 

In pressure outlet boundary conditions, static pressure at the boundary is specified. All 

flow variables at the faces of pressure outlet boundary are taken from the domain in 

supersonic flow regime at the boundary. In the case of subsonic regime, all flow variables 

except the pressure are taken from domain, while the pressure at the face, pf, is calculated 

as [26] 

 

                                                      BnDnf pMppMpp )()( −+ +=                                   (3.76) 

 

where pD and pB are the domain pressure and the boundary pressure, respectively. p+ and 

p
- can be given as follows: 
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where α is 3/16 [6]. ±
1M  and ±

2M  are calculated as follows: 
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3.7.6. Axisymmetric Boundary Condition 

Implementation of the axisymmetric boundary condition is the same as the inviscid 

boundary conditions. If there is an axisymmetric boundary condition in the domain, 

axisymmetric source term should be added to the calculated residuals of each cell. 

Axisymmetric Navier-Stokes equations are as follows: 
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where 
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In axisymmetric flows, cells and faces can be assumed to be rotated around the symmetry 

axis to produce three dimensional cells and faces. If these three dimensional cells and 

faces are used to solve the problem, it is not necessary to calculate source term, S. Cell 

volumes and face areas are calculated by using following equations, respectively, since 

they are three-dimensional.  

 

                                                                   ccc ArV π2=                                                 (3.82) 

 

                                                                   fcf LrA π2=                                                (3.83) 

 

In the above equations, cr  is the distance from the cell center to the symmetry axis. Using 

cV  and fA , the solution procedure is the same as the two-dimensional case. But in this 

case, a new source term should be considered which is given as follows; [27], [28]. 
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CHAPTER 4 

4. TEST CASES AND RESULTS 

 

TEST CASES AND RESULTS 

 

 

 

Test cases and the results of the solver are presented in this chapter. There are 5 case 

solved for the validation of the present numerical methods solving the Euler equations 

and the Navier-Stokes equations. 

 

The accuracy of approximate Riemann solvers, HLL and HLLC, are tested by cylindrical 

explosion. Results are compared with the exact solution and the results of WAF-HLL 

method obtained from the reference [10]. First order and second order special accuracy is 

validated by solving the flow over a circular bump. Result from reference [29] is used for 

the validation of this test case. Axisymmetric flow solving capability is tested by the third 

test case which is the inviscid flow in SPRM. Reference [31] is used to validate this case. 

The overall solution algorithm and discretization accuracy of viscous flux vector is tested 

by solving laminar flow over a flat plate. Numerical results are then compared with the 

analytical solution. After validation of the viscous terms for laminar flows, 

implementation of the turbulence model is tested. Transition location is fixed in the 

turbulence test case. Solution in the laminar portion as well as in the turbulent region is 

compared with the analytical results. 
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4.1. Cylindrical Explosion  

This test problem is used to validate the solver part of program. The solution domain is a 

2x2 square. A circular high pressure region having a radius of R=0.4 is located at the 

center of the square. The region outside the circular region has a low pressure. This case 

may be called 2-D shock problem. Initially the flow variables take constant values in 

each zone and joined by a circular discontinuity at the zone boundaries at time t= 0 as 

shown in Figure 4.1. The initial two constant states for this problem are chosen to be 

 

    1=inp   Pa                   1.0=outp   Pa 

    1=inρ   kg/m3             125.0=outρ   kg/m3                             (4-1) 

    0=inu      0=inv          0=outu       0=outv   

 

Subscripts in and out denote the values inside and outside of the circle respectively. . This 

case was also solved by using a hybrid mesh consisting of triangle and quadrilateral grids 

as shown in Figure 4.2. 

 

The variation of the pressure, velocity component in x-direction and density are given in 

Figure 4.3, Figure 4.4 and Figure 4.5, respectively, for the cross-section between the 

points (x=1, y=1) and (x=2, y=1). ). The variation of the pressure, velocity component in 

x-direction and density for the hybrid grid are presented in Figure 4.6, Figure 4.7 and 

Figure 4.8, respectively. 

 

When the explosion starts or diaphragm between the high pressure and low pressure 

region suddenly burst, a shock wave propagates through the outer region. The velocity, 

pressure and density increase in the outer region. After starting of explosion, a rarefaction 

wave is propagated through the inner region. Across this rarefaction wave, the velocity, 

pressure and density of the outer region gas decrease. The solution exhibits a circular 

shock wave traveling away from the center, a circular contact surface traveling in the 

same direction and a circular rarefaction traveling toward the origin as expected. 
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As observed from the figures, there is shock wave at x~1.8, contact surface at x~1.6 and a 

rarefaction wave at x~1.1. In hybrid mesh, there is fine mesh in the contact region 

between inner and outer regions. So the waves are more evident than the previous one. In 

those figures, the results labeled Random Choice Method (RCM) and Weight Avareged 

Flux-HLL (WAF_HLL) are taken from the reference [1]. RCM method can be thought as 

an exact result of the problem. Details about this problem can be seen in reference [10]. 

Computed results are compatible to the results of RCM and WAF_HLL. 

 

 

Figure 4.1  Unstructured quadrilateral mesh for the cylindrical explosion 
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Figure 4.2  Unstructured triangular and quadrilateral mesh for the cylindrical explosion 

 

 
Figure 4.3  Pressure distribution at t=0.25 s. for the quadrilateral mesh 
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Figure 4.4  Distribution of the axial velocity at t=0.25 s. for the quadrilateral mesh 

 

 
Figure 4.5  Density distribution at t=0.25 s. 
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Figure 4.6  Pressure distribution at t=0.25 s. for the hybrid grid 

 

 

Figure 4.7  Distribution of the axial velocity at t=0.25 s. for the hybrid grid 



 

 

47 

 

Figure 4.8  Density distribution at t=0.25 s. for the hybrid grid 

 

4.2. Flow over a Circular Bump 

This test case is used to validate the second order accuracy of the spatial discretisation 

used in the code. The geometry used for this problem consists of a bump having a 

thickness of 4% of the chord length. Computational domain consists of triangular grids as 

shown in Figure 4.9. 

 

Inviscid wall boundary is implemented to the upper and lower boundaries. Outlet 

boundary is defined as pressure outlet boundary having a pressure value of 101325 Pa. 

Mass flow inlet boundary condition is implemented for the inlet boundary. Values for the 

mass flow inlet boundary condition are given as follows: 

 

9.571=m&   kg/s/m2 

3.417=oT   K                                                      (4-2) 
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101325=p  Pa 

 

Mach number distribution on the upper and the lower wall given in Figure 4.10 and 

Figure 4.13 are compared with the Mach number distribution obtained by using HLL 

method and weight average flux HLL method presented in reference [29] and the Mach 

number distribution taken from reference [30]. 

 

There are two oblique shock waves at the leading and trailing edges of the bump. A 

shock is generated as flow reaches the bump. This shock is reflected by the upper wall 

then crosses the shock which issues from the end of the bump. The two shocks meet 

again before exiting the supersonic channel. Mach contours obtained with HLL and 

HLLC methods with the first and the second order spatial accuracy are shown in Figure 

4.11, Figure 4.12, Figure 4.14, and Figure 4.15, respectively. For the first order spatial 

accuracy, those oblique shocks can not be captured very well. But for the second order 

spatial accuracy oblique shocks are captured well than the one obtained by using the first 

order spatial accuracy. 

 

 

Figure 4.9  Grid for flow over circular bump problem 
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Figure 4.10  Distribution of Mach number for first order spatial accuracy 

 

 

Figure 4.11  Mach number contour for first order spatial accuracy with HLL method 
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Figure 4.12  Mach number contour for first order spatial accuracy with HLLC method 

 

 

Figure 4.13  Distribution of Mach number for second order spatial accuracy 
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Figure 4.14  Mach number contour for second order spatial accuracy with HLL method 

 

 

Figure 4.15  Mach number contour for second order spatial accuracy with HLLC method 

 

4.3. Inviscid Axisymmetric Flow in SPRM 

This test case is studied for the verification of mass injection boundary condition and 

axisymmetric problem solving capability of the developed code. Flow in a SPRM which 

has been used in reference [31] to validate the stability of 2-D computations is solved in 

this case. For this test case, a grid consisting of 196x30 cells is used as given in Figure 

4.16. Upper wall has a length of 170 mm and a radius of 45 mm. SPRM has a 

converging-diverging nozzle which has a throat diameter of 16.7 mm. Motor length is 
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270 mm. The mass is injected from the upper wall at a constant temperature. Values for 

the mass flow inlet boundary condition are given as follows: 

 

39.11=m&   kg/s/m2 

3387=oT   K                                                      (4-3) 

101325=p  Pa 

 

 

Figure 4.16  Mesh used for SPRM 

 

 

Figure 4.17  Mach number along the symmetry axis 
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Figure 4.18  Pressure (atm) along the symmetry axis 

 

Mach number and pressure variation along the symmetry axis are given in Figure 4.17 

and Figure 4.18, respectively. Results labeled as T-108 are taken from reference [31]. 

Computed results are well suited with the T-108 results. Mach number is increasing in 

the converging part of the nozzle as expected and takes the value of 1 at the throat. At the 

diverging part, the flow is supersonic. At the exit plane, Mach number reaches a value of 

about 2.5. Pressure is almost the constant in the motor up to the converging part. It takes 

its maximum value of 2.77 MPa at the head end of the motor.  

 

 

Figure 4.19  Mach contour of SPRM 
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4.4. Laminar Flow over a Flat Plate 

In order to verify the viscous terms in the developed code, laminar flow over a flat plate 

is analyzed. Values of free stream are given as follows: 

 

9.32=∞u   kg/s/m2 

3000=∞T   K                                                      (4-4) 

101325=∞p  Pa 

 

The free stream Reynolds number of the flow is 50500. A grid consisting of 141x61 cells 

is used as shown in Figure 4.20. First y∆ is taken as 0.0001 and it exponentially grows up 

to the top of the boundary. At the leading edge of flat plate, at x = 2, x∆  is 0.00035. Fine 

mesh at the leading edge is necessary to handle the gradients in this region. There are 70 

nodes upstream on the symmetry surface, 56 nodes on the flat plate and 15 nodes in the 

downstream region. Flat plate is assumed to be placed between the points x = 2, y = 0 and 

x = 3, y = 0. Far-field boundary condition is used for left, upper and right sides of the 

grid. On the bottom side, symmetry boundary condition is used for the upstream and 

downstream side of the flat plate. 

 

 

Figure 4.20  Grid used for the laminar flow over a flat plate 
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Velocity profiles are presented by using the similarity parameter 
x

y xRe
=η . 

Comparison of the tangential velocity profile with the Blasius solution is presented in 

Figure 4.21. Tangential velocity is found to be good agreement with the Blasius solution. 

Similarly normal velocity profile compares well with the Blasius solution. In Figure 4.22, 

the normal velocity profile in comparison with the Blasius solution is given.  

 

 

Figure 4.21  Comparison of tangential velocity profile with Blasius solution at x/c=0.5 
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Figure 4.22  Comparison of normal velocity profile with Blasius solution at x/c=0.5 

Local skin friction (Cf ) result along the flat plate is given in Figure 4.23. Cf is compared 

with the analytical solution which is given as follows:  

 

                                                             
( ) 5.0
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664.0

x

fC =                                                   (4.5) 
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Figure 4.23  Comparison of skin friction coefficient with the analytical solution at 

x/c=0.5 

 

The results given in Figure 4.21, Figure 4.22, and Figure 4.23 can be considered to be 

acceptable comparing to analytical solutions. 

 

4.5. Turbulent Flow over a Flat Plate 

Verification of turbulence model implemented in the program is carried out by a laminar-

turbulence flow over a flat plate. Values of free stream are given as follows: 

 

132=∞u   kg/s/m2 

365=∞T   K                                                        (4-6) 

101325=∞p  Pa 

 

The free stream Reynolds number of the flow is 6x106. Grid consisting of triangular cells 

and boundary layer is used. Fine mesh on the flat plate is necessary for solving the 

boundary region accurately. So the first y∆ is taken as 5x10-6 and it exponentially grows 

up to the top of the boundary. At the leading edge of flat plate, at x=2, x∆  could be taken 

as 1x10-2 in order to use hybrid mesh. There are 50 nodes upstream on the symmetry 
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surface, 25 nodes on the flat plate and 38 nodes in the downstream region. Boundary 

conditions are the same as the laminar flow over a flat plate problem. Hybrid mesh used 

in this problem is given in Figure 4.24 

 

 

Figure 4.24  Hybrid mesh consisting of triangular cells and boundary layer 

 

This case is also solved by using structured grid consisting of 181x81 cells. The first 

y∆ is taken as 5x10-6 and it exponentially grows up to the top of the boundary. At the 

leading edge of flat plate, at x=2, x∆  is 8x10-5. There are 75 nodes upstream on the 

symmetry surface, 81 nodes on the flat plate and 25 nodes in the downstream region. 

Structured grid is given in Figure 4.25. 
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Figure 4.25  Structured grid consisting of quadriliteral cells and boundary layer 

 

The results of this case for hybrid mesh are given in Figure 4.26, Figure 4.27, and Figure 

4.28. Results obtained for skin friction coefficients by using hybrid and structured mesh 

are compared in Figure 4.29. 

 

In Figure 4.26, the axial velocity of turbulent region is compared with the turbulent 1/7 

law given as follows: 

 

                                                                 7/1)(
δ
y

U

u
=                                                     (4.7) 

 

Figure 4.27 shows the similarity profiles at different locations on the flat plate. Transition 

point is defined as x/c=0.054 for this problem. 

 

Local skin friction (Cf ) result along the flat plate is given in Figure 4.28. Cf is compared 

with the analytical solution which is given as follows:  

 

                                                             
( ) 2.0
Re

0592.0

x

fC =                                                   (4.8) 
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Figure 4.26  Comparison of tangential velocity profile with Prandtl’s turbulent solution 

 

 

Figure 4.27  Turbulent similarity profiles for different location 
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Figure 4.28  Comparison of skin friction coefficient with the analytical solution 

 

Comparision of skin friction coefficients of hybrid and structured grid is given in Figure 

4.29. In structured grid, fine mesh can be used at the leading edge of the flat plate so the 

region before the transition can be resolved more accurate in structured grid as can be 

seen in Figure 4.29. 

 

 

Figure 4.29  Comparison of skin friction coefficient for hybrid and structured grid 
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4.6. Turbulent Flow with Mass Injection 

This case is solved as laminar and turbulent flows. Laminar results are compared with the 

turbulent results and the analytical solutions determined by the laminar incompressible 

similarity theory as given in Equation 4.9. Turbulent results are compared with the data 

obtained from a two dimensional planar experimental setup, called VECLA [32], [33], 

that is composed of parallel piped channel bounded by a porous plate and impermeable 

walls. The porous plate has a length of 581 mm. The channel has an open exit section that 

is connected to the ambient air. The channel height was adjusted to 10.3 mm. Cold air at 

303 K is injected with a uniform mass flow rate, 2.619 kg/m2/s, through the porous 

material. In the exit section the pressure is 1.374 bar in accordance with the operating of 

the experimental setup. Experimental setup and grids used for this test case is given in 

Figure 4.30 and Figure 4.31, respectively.  

 

 

Figure 4.30  VECLA setup 

 



 

 

63 

 

Figure 4.31  Grid used for the turbulent flow with mass injection 

 

The results of this case are compared with the results taken from reference [34]. Axial 

velocity profiles along the y axis at different locations are given in Figure 4.32, Figure 

4.33, Figure 4.34, Figure 4.35, Figure 4.36, Figure 4.37 and Figure 4.38. Solver 

developed by Onera is used for the results of k-w method. Results of k-ε method are 

obtained by using the solver developed by Roketsan. Computed turbulence profiles are 

suited with experimental data as the results of the k-w  and k-ε methods obtained from the 

reference [34]. 
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Figure 4.32  Axial velocity profiles at x = 0.570 m. 

 

 

Figure 4.33  Axial velocity profiles at x = 0.500 m. 
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Figure 4.34  Axial velocity profiles at x = 0.450 m. 

 

 

Figure 4.35  Axial velocity profiles at x = 0.400 m. 
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Figure 4.36  Axial velocity profiles at x = 0.350 m. 

 

 

Figure 4.37  Axial velocity profiles at x = 0.220 m. 
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Figure 4.38  Axial velocity profiles at x = 0.120 m. 

 

Laminar and turbulent results are compared with analitic laminar solutions whic are given 

as [34] 

 

                                                        )
2

cos(
2 h

y

h

x

u

u

inj

ππ
=                                                  (4.9) 

 

where u represents axial velocity, uinj represents injection gas velocity, h represents the 

height of the channel. Laminar results are approximately the same with the analitical 

solutions. Difference between the turbulent and laminar flows can be seen in the figure 

belows. Laminar results are well suited with the analytical solutions. 

 

Axial velocity profiles at different location for laminar and turbulent flows are given in 

Figure 4.39, Figure 4.40, Figure 4.41, Figure 4.42, Figure 4.43 and Figure 4.44. 
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Figure 4.39  Analitical and computed axial velocity profiles at x = 0.500 m for laminar 

and turbulent flows. 

 

 

Figure 4.40  Analitical and computed axial velocity profiles at x = 0.450 m for laminar 

and turbulent flows. 
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Figure 4.41  Analitical and computed axial velocity profiles at x = 0.400 m for laminar 

and turbulent flows. 

 

 

Figure 4.42  Analitical and computed axial velocity profiles at x = 0.350 m for laminar 

and turbulent flows. 
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Figure 4.43  Analitical and computed axial velocity profiles at x = 0.220 m for laminar 

and turbulent flows. 

 

 

Figure 4.44  Analitical and computed axial velocity profiles at x = 0.120 m for laminar 

and turbulent flows.
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CHAPTER 5 

5. CONCLUSION  

 

CONCLUSION 

 

 

 

An explicit algorithm has been developed for the solution of Navier-Stokes equations on 

unstructured grids to model the axisymmetric, steady, turbulent flows. The developed 

solver can handle internal and external flows. 

 

Convective fluxes were calculated by using the flux difference splitting methods. HLL 

and HLLC approximate Riemann solvers are used in the finite volume discretisation of 

the governing equations. Unstructured mesh can be used by developed code. Second 

order accuracy in space is achieved by piecewise linear reconstruction method. Green-

Gauss method is used to compute the gradients of flow variables. Venkatakrishnan’s 

limiter is used for second order accurate solutions. Baldwin-Lomax turbulence model was 

used to model the turbulence effects in flows.  

 

For the validation of the solver, six different test cases including cylindrical explosion, 

flow over a circular bump, axisymmetric flow in SPRM, laminar and turbulent flows over 

a flat plate and turbulent flow with mass injection. Cylindrical explosion case has been 

solved by using two different grids, unstructured quadrilateral and hybrid grids. 

Turbulent flow with mass injection case has been solved by using structured and 

unstructured hybrid mesh. For all case, the results are in good agreement with the 

reference data or analytical solution. Turbulent flow with mass injection case has been 

also compared by the experimental data. 
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Because of using the explicit temporal discritization method, solver converges slowly. 

For future developments, implementation of an implicit temporal discritization may be a 

course of action. Also higher order reconstruction scheme may be implemented in the 

solver. Also extension to three dimensions may be the continuation of this work. 
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