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Mathematics, Bilkent University

Prof. Dr. Atalay Karasu
Physics, METU

Prof. Dr. Ali Ulvi Yılmazer
Engineering Physics, Ankara University

Assoc. Prof. Dr. Bayram Tekin
Physics, METU

Assoc. Prof. Dr. Özgür Sarıoğlu
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ABSTRACT

BLACK HOLE COLLISIONS AT THE SPEED OF LIGHT

Şentürk, Çetin

Ph.D., Department of Physics

Supervisor: Prof. Dr. Atalay Karasu

January 2010, 62 pages

The main purpose of this work is to study the collision of two black holes and the energy

loss due to the gravitational waves emitted during this collision in the framework of general

relativity. For this purpose we first study plane wave geometries and their collisions. More

realistic collisions are the pp-wave collisions. As an analytic treatment of this problem, we

investigate the head-on collision of two ultra-relativistic black holes. Treating the problem

perturbatively, we extract the news function to compute how much energy is radiated in grav-

itational waves during the process. We show that the news function vanishes for the solutions

obtained meaning that there is no mass-loss at the order of approximation.

Keywords: Colliding Waves, Black Holes, Gravitational Radiation
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ÖZ

IŞIK HIZINDA KARA DELİK ÇARPIŞMALARI

Şentürk, Çetin

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Atalay Karasu

Ocak 2010, 62 sayfa

Bu tezin ana amacı, iki kara deliğin çarpışmasını ve bu çarpışma süresince yayınlanan kütle-

çekim dalgalarından dolayı sistemde kaybolan enerjiyi genel görelilik çerçevesinde incele-

mektir. Bu amaç için, ilk olarak düzlem dalga geometrilerini ve bunların çarpışmalarını

ģözönüne alıyoruz. Fiziksel açıdan gerçekçi olan çarpışmalar “pp-wave” çarpışmalarıdır.

Böyle bir çarpışma için analitik bir çalışma olarak, ışık hızında ilerleyen iki kara deliğin kafa

kafaya çarpışmasını inceliyoruz. Problemi bir tür yaklaşıklık hesabıyla ele alarak, çarpışmada

açığa çıkan çekim dalgalarının enerjisini bulabilmek amacıyla, elde ettiğimiz çözümler için

“news” fonksiyonunu hesaplıyoruz ve sıfır olduğunu gösteriyoruz. Bir başka deyişle, uygu-

lanan yaklaşıklık çerçevesinde, çarpışmadan sonra kütle kaybı olmadığı sonucuna varıyoruz.

Anahtar Kelimeler: Çarpışan Dalgalar, Kara Delikler, Kütleçekimsel Işıma
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CHAPTER 1

INTRODUCTION

Black hole collisions at the speed of light have attracted much attention recently. There are

mainly two reasons for this interest. First of all, they enable us to calculate the quantum scat-

tering amplitudes at very high energies comparable to the Planck energy Mpl ∼ 1019GeV ,

where gravitational effects dominate [1, 2]. It is well-known that the quantum effects of grav-

ity come into play at the Planck energy. If we collide two particles at about Planck energy,

so much energy, and therefore mass, becomes concentrated in a very small region of space

that gravitational forces overwhelm all others. Therefore, in collision processes at above the

Planck energy semi-classical approximation can be applied by studying the classical space-

times such as black hole collisions. ’t Hooft [1] proposed that at energies of the order of or

higher than the Planck scale, an elementary particle may be represented by its accompanying

gravitational field which is, due to special relativistic effects, concentrated in the vicinity of a

plane containing the particle and orthogonal to the direction of motion. For massless particles

this field becomes a gravitational shock wave for which the Riemann tensor is proportional

to the Dirac delta function on this plane. That shock wave solution is already known in the

literature. Aichelburg and Sexl [3] obtained the gravitational field of a massless particle by

boosting the geometry of a single black hole to the speed of light. In [1], ’t Hooft calcu-

lated the two-particle scattering amplitude by solving quantum mechanical equations for one

particle moving in the external shock wave geometry produced by the other particle which

is taken to be massless. So the trans-Planckian scattering of point particles may well be de-

scribed by black hole scattering. Also, it has long been believed that head-on collisions at the

center of mass energy beyond the Planck scale will produce black holes because of the huge

concentrated energy involved in the interactions. These black holes, after their formation, are

expected to settle down to a stationary state by radiating gravitational waves, and evaporate

1



via Hawking radiation. Recently, motivated by the brane-world scenarios [4, 5], this issue

of trans-Planckian scattering and subsequent black hole formation has gained renewed inter-

est. In these scenarios, it is proposed that if our space is a 3-brane situated in a large [4] or

warped [5] extra dimensional space, the Planck energy could be as low as the electroweak

scale (TeV). This opens up the possibility of observing black hole formation in particle ac-

celerators such as the Large Hadron Collider (LHC) at CERN [6]. An important signature in

this search is the energy loss due to gravitational radiation.

On the other hand, these black hole collisions may be a testing ground for the cosmic censor-

ship hypothesis which claims that singularities in nature must be hidden behind event horizons

(see, for example, [7]). When black holes collide, due to their rapidly changing accelerations

at the moment of collision, gravitational radiation is produced. In [8], Hawking, using the

area theorem which states that the area of a future event horizon of a black hole can never

decrease, put an upper limit on the gravitational radiation emitted in a collision process of

two black holes. For two equal-mass Schwarzschild black holes, that limit is 29% of the ini-

tial energy. Later, Penrose [9] considered the head-on collision of two ultra-relativistic black

holes described by the Aichelburg-Sexl shock waves [3], and found an apparent horizon (a

closed two-dimensional spacelike surface on which the outgoing null geodesics have zero

divergence [7]) on the union of the incoming plane shocks. Then, if one assumes that cos-

mic censorship holds, this information can be used to put an upper bound on the amount of

radiation emitted in the collision. This bound is the same as the one obtained by Hawking,

namely, a maximum of 29% of the initial energy should be radiated away. In both of these

calculations, cosmic censorship hypothesis is assumed to hold, so in a collision process too

much radiation than the above bound would be a direct indication that this hypothesis must

be wrong. Giving analytical solutions which describe the full dynamics of the spacetime after

the collision seems to be unlikely because of the highly nonlinear interaction of the black

holes. Therefore, to clarify the structure of the spacetime after the collision, some perturba-

tive or numerical methods must be employed. In [10], D’Eath and Payne studied this problem

perturbatively (summarized in [11]), and by calculating the Bondi’s news function (see [12]),

which describes the emission of gravitational radiation, they gave an estimate of 16.4% for

the efficiency of gravitational wave generation in head-on collisions. This is well below the

upper bound (29%) calculated by Hawking and Penrose. All these mean that new and more

refined methods are necessary to accurately describe black hole collisions and the resulting
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gravitational wave generation.

In this thesis, we investigate the classical formation of a black hole in a head-on collision

of two ultra-relativistic black holes. In particular, we are interested in the total gravitational

energy radiated in this process. We treat the problem in the standard fashion, namely, we de-

scribe the incoming particles by two Aichelburg-Sexl shock waves, and consider the head-on

collision of these shocks in the center of mass frame. By two different perturbative methods,

we give approximate solutions which may describe the interaction region of these waves. To

study the efficiency of the gravitational radiation emitted in the collision, we apply the method

of Bondi and extract the news function which enables us to calculate the mass-loss of the sys-

tem. We found that the news function vanishes for the solutions we give, which brings out

the conclusion that the system does not radiate at the order of approximations. Of course, it is

possible that the Bondi’s procedure may not be useful here, so it may be necessary to invoke

some other methods to evaluate the gravitational radiation problem.

The layout of the thesis is as follows:

In Chapter 2, we first review the plane-fronted gravitational waves and their interactions in

general relativity.

In Chapter 3, we construct the shock wave solutions both in classical electrodynamics and in

general relativity by the well-known boosting procedure.

In Chapter 4, we review three different methods which enable us to estimate the efficiency of

the total gravitational radiation in high-energy particle collisions.

In Chapter 5, to understand the problem of collision and how to calculate the news function,

we give a perturbation treatment with respect to the energies of the colliding shock waves.

In Chapter 6, we formulate the problem in terms of the proper time and rapidity.
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CHAPTER 2

PLANE WAVES AND THEIR COLLISIONS

IN GENERAL RELATIVITY

The study of the collision and subsequent interaction of gravitational and electromagnetic

plane waves is of great importance in general relativity. This is due to the fact that, being a

highly non-linear theory, general relativity predicts that there will be a non-linear interaction

between such waves when they collide. According to the theory, all forms of energy produce

curvature in spacetime, so any field propagating in spacetime has an associated gravitational

field, which is actually the curvature of the spacetime structure. As a result, when two waves

collide, they do not simply pass through each other; they interact non-linearly through their

accompanying gravitational fields. Because of this non-linear interaction, in general, in almost

all collision processes there occur singularities in spacetime after the collision of the waves.

These may be real curvature singularities or just Killing-Cauchy horizons depending on the

types of the colliding waves. Colliding plane wave spacetimes have been investigated in

great detail and many exact solutions describing the geometries after the collision have been

obtained so far [13].

In this section, we very briefly review the plane waves and their collisions in classical general

relativity. For much more detailed discussions, see [13, 14].

2.1 pp-WAVE SPACETIMES

Plane-fronted waves with parallel rays (pp-waves) constitute a well-known class of exact

solutions to Einstein’s equations [14, 15, 16]. These spacetimes are defined by the property
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that they admit a covariantly constant null vector field kµ, i.e.,

∇µkν = 0, kµkµ = 0. (2.1)

As is showed in Appendix A, in a suitable coordinate system xµ = (u, v, X,Y), the metric of

such spacetimes can be written as

ds2 = 2dudv + H(u, X,Y)du2 − dX2 − dY2, (2.2)

where

u =
1
√

2
(t − Z), v =

1
√

2
(t + Z) (2.3)

are the double null coordinates, and X and Y are the spacelike coordinates in the transverse

space u = const. with Euclidean geometry. The metric function H(u, X,Y) is called the pro-

file function which characterizes the nature of the wave, and since it is independent of the

coordinate v, the spacetime (2.2) has the Killing vector k = ∂/∂v representing the propagation

direction of the wave. Therefore, the metric (2.2) describes a plane-fronted wave with arbi-

trary profile which propagates along the Z-direction in the background Minkowski specetime.

The only non-zero components of the Riemann tensor, the Ricci tensor and the Weyl tensor

are, respectively,

Ruiu j = −
1
2
∂i∂ jH(u, Xk),

Ruu =
1
2
∇2
⊥H(u, Xk),

Cuiu j = −
1
2
∂i∂ jH(u, Xk) +

1
4
δi j∇

2
⊥H(u, Xk), (2.4)

where ∂i ≡ ∂/∂Xi, ∇2
⊥ ≡

∑
i ∂

2
i and Xi = (X,Y). Moreover, the Ricci scalar vanishes

R = 0. (2.5)

Actually, all scalar curvature invariants are zero for the pp-wave spacetime (2.2), which is

guaranteed by the existence of a covariantly constant null vector field [17, 18].

Therefore the vacuum field equations for the spacetime (2.2) reduce to the two-dimensional

Laplace equation in the transverse coordinates:

∇2
⊥H = 0. (2.6)

This equation means that any harmonic function H of X and Y , whatever its dependence on

u may be, describes a pure gravitational wave, and since it is a linear differential equation,
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distinct solutions with different wave profiles may be simply superposed as long as they prop-

agate along the same direction.

A particular subclass of pp-waves are the plane waves which are defined to be those for which

the profile function H(u, X,Y) is quadratic in the transverse coordinates X and Y , that is,

H(u, Xk) =
∑
i, j

hi j(u)XiX j (2.7)

where the symmetric tensor hi j(u) contains the information about the polarization and am-

plitude of the wave. Thus the field components (2.4), being dependent only on the second

derivatives of the function H(u, X,Y) with respect to X and Y , are the same, i.e. functions of u

alone, at every point on the transverse plane. This, in a sense, reflects the extra plane symme-

try of the wave; the wave is of infinite extent in all directions in the plane. Plane gravitational

waves of infinite extent are of course unphysical, but nevertheless, they may be considered as

realistic approximations to real waves within finite regions and at large distances from their

sources.

For a plane wave (2.2) with the profile (2.7), the non-zero field components (2.4) become

Ruiu j = −hi j,

Ruu = Tr(h),

Cuiu j = −hi j +
1
2
δi jTr(h), (2.8)

where Tr(h) =
∑

i hii. It can be seen directly from the Ricci tensor component that the trace

of the symmetric matrix hi j(u) is related to the other fields (scalar, electromagnetic, etc.)

present in the spacetime, so Tr(h) , 0 implies that the wave is not a pure gravity wave. For

a pure vacuum gravitational plane wave Tr(h) = 0, of course. On the other hand, since the

Weyl tensor describes the free gravitational field in spacetime that does not come from the

Ricci part of the Riemann tensor, vanishing of it represents a wave directly generated by the

matter fields present in the spacetime (a pure electromagnetic plane wave for instance). This

condition implies that the matrix hi j(u) is purely diagonal, namely hi j = δi jTr(h)/2.

There is a further restricted class of pp-waves which are called the homogeneous plane waves.

They are obtained by taking out the u dependency of the matrix hi j(u) in (2.7), i.e.

H(u, Xk) =
∑
i, j

µi jXiX j (2.9)

where µi j is a constant symmetric matrix.
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Figure 2.1: The spacetime diagram representing the collision of two plane waves. Two space-
like coordinates have been suppressed.

2.2 COLLIDING PLANE WAVES

The importance of the gravitational interaction of waves in general relativity drives from the

fact that it manifests the richness and the non-linearity of the theory explicitly. However, in

the most general case in which the colliding waves are pp-waves, it is too difficult to analyse

the problem analytically. Therefore, in order to formulate the problem explicitly and to obtain

exact solutions, it is convenient to consider the interaction of plane waves which have more

symmetry than pp-waves. The first exact solutions which describe the collision of two pure

gravitational plane waves with collinear polarization was given by Khan and Penrose [19], and

Szekeres [20]. They showed that the collisions of such waves with step or impulsive profiles

always produce a curvature singularity in the spacetime after the collision. This singularity is

due to the focusing effect of the colliding waves on one another. For a detailed discussion of

the exact solutions and the singularities produced, see [13].

The colliding plane wave spacetimes are most conveniently represented as in Figure (2.1)

in which the waves approach each other from exactly opposite spatial directions and collide

head-on at a point in the figure. The head-on collision assumption is not a restriction in the

discussion actually. For the most general case of the collision in arbitrary directions, it is

always possible to make a Lorentz transformation to a reference frame in which the collision

appears to be head-on.

As represented in Figure (2.1), the colliding plane wave spacetime is divided by two null

hypersurfaces u = 0 and v = 0 into four distinct regions. The region I is the background

7



Minkowski spacetime on which the collision occurs, regions II and III contain the approach-

ing plane waves, and the region IV is the region where the two waves interact. Since the

approaching waves have plane symmetry in the directions of the transverse plane, we assume

that the interaction region also retains this symmetry, and so the whole spacetime possesses

two commuting spacelike Killing vector fields ∂x and ∂y.

In this way, the collision problem has been set up as a characteristic initial value problem with

the initial data prescribed on the null boundaries u = 0 and v = 0 for the interaction region

IV. The problem is well-posed and according to the work of Penrose [21], given arbitrary

waves in regions II and III, a unique solution exists in the interaction region IV at least in the

neighborhood of the boundaries of regions II and III. However, this approach is not always

practical in obtaining analytic solutions in region IV. Therefore, it is often more appropriate to

take the opposite approach; namely, first find a solution to the field equations in the interaction

region IV, and then extend it back to determine the incoming waves (data) which would give

rise to that solution. This is accomplished by the substitution

u→ uθ(u), v→ vθ(v) (2.10)

in the solution obtained in the interaction region. Here θ(u) is the Heaviside step function

defined by

θ(u) =

 1 if u ≥ 0,

0 if u < 0.
(2.11)

It is also necessary to satisfy the junction conditions across the null hypersurfaces u = 0

and v = 0. In the colliding wave problems, the appropriate junction conditions are those of

Lichnerowicz [22] or O’Brien-Synge [23] conditions. The Lichnerowicz conditions require

that the metric and its first derivatives be continuous across the junctions. The O’Brien-Synge

conditions are weaker than the Lichnerowicz conditions and they allow some derivatives of

the metric to be discontinuous across the junctions (as in the Khan-Penrose solution [19]

for colliding plane impulsive gravitational waves, and the Bell-Szekeres solution [24] and its

higher-dimensional generalization [25] for colliding plane electromagnetic waves in Einstein-

Maxwell theory). Therefore, the Lichnerowicz conditions exclude impulsive waves which

have Dirac delta function profiles.
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CHAPTER 3

SHOCK WAVE GEOMETRIES

As explained in the introduction, shock waves are relevant in collision processes involving

energies of the order or higher than the Planck scale. Later, we will consider the collision

of two ultra-relativistic black holes which are represented by two shock waves in studying

the gravitational radiation emitted in such collisions. So in this chapter we discuss these

geometries by first reviewing the boosting procedure to obtain simplest shock waves in both

classical electrodynamics and general relativity.

3.1 BOOSTING THE COULOMB FIELD

In this section we mainly follow [26], we expand the discussion there by giving explicit cal-

culations.

We are interested in finding the electromagnetic field of a point charge which is moving with

the speed of light along the x-axis in Minkowski spacetime. This can be achieved by first

boosting to a reference frame in which the particle is seen to be moving with a constant

speed v and then taking the ultra-relativistic limit v → c. At the end we will see that the

field of the charge is a plane wave with a Dirac delta function profile, i.e. a plane impulsive

electromagnetic wave.

Let us begin with the relativistic notation for the electrodynamic quantities. Throughout this

section we shall use the Gaussian units. First it is convenient to parametrize the spacetime

with the coordinates

xµ = (x0, x1, x2, x3) = (ct, x, y, z) = (ct, x), (3.1)

where the Greek index µ takes the values 0,1,2,3. Then the line element in these coordinates
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becomes

ds2 = ηµνdxµdxν = c2dt2 − dx2 − dy2 − dz2 (3.2)

with

ηµν = diag[1,−1,−1,−1] (3.3)

being the metric tensor of the Minkowski spacetime. Here we used the notation diag[ ] to

represent a 4×4 diagonal matrix. So, raising or lowering indices with the Minkowski metric

(3.3) just amounts to changing the signs of the spatial components of the relevant 4-vector,

that is, for the 4-coordinates (3.1)

xµ = ηµνxν = (ct,−x). (3.4)

Similarly, we can define

∂µ =
∂

∂xµ
= (∂0, ∂1, ∂2, ∂3) =

(
1
c
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
1
c
∂

∂t
,∇

)
(3.5)

giving the d’Alembertian operator

� = ∂µ∂
µ =

1
c2

∂2

∂t2 −
∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2 =
1
c2

∂2

∂t2 − ∇
2. (3.6)

The 4-vector potential can be defined in a similar way as

Aµ = (φ,A), (3.7)

where φ and A are the scalar and vector potentials, respectively. In terms of this 4-potential,

the electromagnetic field tensor is defined by

Fµν = ∂µAν − ∂νAµ, (3.8)

and has components

F0i = ∂0Ai − ∂iA0 = −

(
1
c
∂A
∂t

+ ∇φ

)
i
= Ei, (3.9)

and

Fi j = ∂iA j − ∂ jAi = −εi jk(∇ × A)k = −εi jkBk, (3.10)

which are the electric and magnetic fields, respectively. Here the latin index i runs over the

values 1,2,3 and εi jk is the totally antisymmetric Levi-Civita symbol defined by

εi jk =


+1, if (i jk) is an even permutation of (123),

−1, if (i jk) is an odd permutation of (123),

0, otherwise.

(3.11)
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With the definition of the field tensor (3.8), the homogeneous (source-free) Maxwell equations

are automatically satisfied, while the inhomogeneous ones can be written as

∂νFµν =
4π
c

Jµ (3.12)

with the current density 4-vector

Jµ = (cρ, J), (3.13)

which satisfies the continuity equation

∂µJµ =
∂ρ

∂t
+ ∇ · J = 0. (3.14)

It is also obvious from (3.8) that the potentials are not uniquely determined, namely, we could

always change the 4-potential as such

A′µ = Aµ + ∂µχ, (3.15)

without changing the field tensor Fµν. Here χ is an arbitrary scalar function.

After this summary, we can now calculate the field of a moving charge with a constant speed

v. Let us consider a point charged particle q which is at rest in some reference frame S̄ , so in

this frame there is only the Coulomb field of the charge:

φ̄ =
q
r̄
, r̄ =

√
x̄2 + ȳ2 + z̄2. (3.16)

Since the vector potential is zero in S̄ , we write the 4-potential of the particle

Āµ = (φ̄, 0, 0, 0) = φ̄δ
µ
0, Āµ = (φ̄, 0, 0, 0) = φ̄δ0

µ, (3.17)

where

δ
µ
ν =

 1, if µ = ν

0, if µ , ν
(3.18)

is the Kronecker delta. Therefore we initially have

F̄µν = ∂̄µĀν − ∂̄νĀµ = (∂̄µφ̄)δ0
ν − (∂̄νφ̄)δ0

µ

=
q
r̄3

(
x̄δ0

µδ
1
ν + ȳδ0

µδ
2
ν + z̄δ0

µδ
3
ν − x̄δ0

νδ
1
µ − ȳδ0

νδ
2
µ − z̄δ0

νδ
3
µ

)
, (3.19)

where in the second line we put

∂̄µφ̄ =
q
r̄3

(
−x̄δ1

µ − ȳδ2
µ − z̄δ3

µ

)
,
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using the scalar potential (3.16). Then it follows from (3.9), (3.10) and (3.19) that in S̄

Ē =
q
r̄3 r̄, B̄ = 0. (3.20)

Now we can perform a Lorentz transformation to a reference frame S in which the particle

appears to be moving along the positive x-direction with a constant speed v. This means that

the frame S is moving along the negative x-direction with respect to the frame S̄ with the

same speed v. The transformation is

xµ =
∂xµ

∂x̄ν
x̄ν, (3.21)

or explicitly

x0 = γ(x̄0 + βx̄), x = γ(x̄ + βx̄0), y = ȳ, z = z̄, (3.22)

with

γ =
1√

1 − β2
, β =

v
c
. (3.23)

Then the 4-potential (3.17) transforms as

Aµ =
∂xµ

∂x̄ν
Āν = φ̄

∂xµ

∂x̄0 = γφ̄(1, β, 0, 0) =
q
R

(δµ0 + βδ
µ
1) (3.24)

where we have used the inverse Lorentz transformations to put x̄ = γ(x − βx0) in (3.16) and

defined

R ≡ [(x − βx0)2 + γ−2(y2 + z2)]1/2. (3.25)

It is now straightforward to evaluate the field tensor Fµν in S :

Fµν = ∂µAν − ∂νAµ = q
[
∂µ

(
1
R

)
(δ0
ν − βδ

1
ν) − ∂ν

(
1
R

)
(δ0
µ − βδ

1
µ)

]
=

q(1 − β2)
R3

[
(x − βx0)δ0

µδ
1
ν + yδ0

µδ
2
ν + zδ0

µδ
3
ν − βyδ1

µδ
2
ν − βzδ1

µδ
3
ν

− (x − βx0)δ1
µδ

0
ν − yδ2

µδ
0
ν − zδ3

µδ
0
ν + βyδ2

µδ
1
ν + βzδ3

µδ
1
ν

]
, (3.26)

since from (3.25)

∂µ

(
1
R

)
=

1
R3

[
β(x − βx0)δ0

µ − (x − βx0)δ1
µ − (1 − β2)(yδ2

µ + zδ3
µ)

]
.

Therefore, the electric and magnetic fields of a moving charge in the frame S are the following

E1 =
q(1 − β2)(x − βx0)

R3 , E2 =
q(1 − β2)y

R3 , E3 =
q(1 − β2)z

R3 , (3.27)

B1 = 0, B2 = −
q(1 − β2)βz

R3 , B3 =
q(1 − β2)βy

R3 . (3.28)
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From these expressions, it is seen that when β = 0 there is only the electric field of the

static charge, however for β , 0 both the electric and magnetic fields are present, and as β

increases the component of the electric field along the direction of motion becomes smaller

and smaller. Now we will see that in the ultra-relativistic limit, i.e. β → 1, the parallel

component of the electric field becomes exactly zero and the only nonzero components are

the ones perpendicular to the direction of motion.

To take the ultra-relativistic limit, first we need to observe that

1 − β2

R3 =
γ−2

R3 =
1

y2 + z2

∂

∂x

(
x − βx0

R

)
, (3.29)

where R is defined in (3.25). Then

lim
β→1

1 − β2

R3 =
1

y2 + z2

∂

∂x

(
x − x0

|x − x0|

)
=

1
y2 + z2

∂

∂x
[2θ(x − x0) − 1] =

2δ(x − x0)
y2 + z2 , (3.30)

with the help of the Heaviside theta θ(x − x0) and the Dirac delta δ(x − x0) functions. Then

the limit of the field tensor (3.26) is

Fµν ≡ lim
β→1

Fµν =
2qδ(x − x0)

y2 + z2

[
yδ0

µδ
2
ν + zδ0

µδ
3
ν − yδ1

µδ
2
ν − zδ1

µδ
3
ν

− yδ2
µδ

0
ν − zδ3

µδ
0
ν + yδ2

µδ
1
ν + zδ3

µδ
1
ν

]
, (3.31)

where we have used that (x − x0)δ(x − x0) = 0. In terms of the electric and magnetic fields,

we get

E1 = 0, E2 =
2qδ(x − x0)y

y2 + z2 , E3 =
2qδ(x − x0)z

y2 + z2 , (3.32)

B1 = 0, B2 = −
2qδ(x − x0)z

y2 + z2 , B3 =
2qδ(x − x0)y

y2 + z2 , (3.33)

(these can also be obtained directly from (3.27) and (3.28) using (3.30)). These show that

the field is an electromagnetic plane wave propagating along the x-axis with a delta function

profile, i.e. an impulsive plane wave.

We can also show that the field tensor (3.31) satisfies the Maxwell equations with a null source

13



current density:

∂νFµν = q
{
δ(x − x0)

[
∂2

(
2y

y2 + z2

)
+ ∂3

(
2z

y2 + z2

)]
(−δ0

µ + δ1
µ)

−

(
2y

y2 + z2 δ
2
µ +

2z
y2 + z2 δ

3
µ

) (
∂0[δ(x − x0)] + ∂1[δ(x − x0)]

)}
= qδ(x − x0)

{
∂2

∂y2 [ln(y2 + z2)] +
∂2

∂z2 [ln(y2 + z2)]
}

(−δ0
µ + δ1

µ)

= qδ(x − x0)∇2
⊥[ln(y2 + z2)](−δ0

µ + δ1
µ)

= 4πqδ(x − x0)δ(y)δ(z)(−δ0
µ + δ1

µ)

≡
4π
c
Jµ. (3.34)

Here in the second equality we used

f (x)
∂

∂x
[δ(x − x0)] = −

(
∂ f (x)
∂x

)
x=x0

δ(x − x0) (3.35)

for some arbitrary function f (x). In the third line, we have defined

∇2
⊥ ≡

∂2

∂y2 +
∂2

∂z2 , (3.36)

and in the fourth we have used

∇2
⊥[ln(y2 + z2)] = 4πδ(y)δ(z), (3.37)

which is just the two dimensional Poisson equation with the Greens’ function ln(y2 + z2) for

a point source. We have also made the identification in the last line

Jµ ≡ qcδ(x − x0)δ(y)δ(z)(−δ0
µ + δ1

µ). (3.38)

This is the current density which represents a point particle propagating along the x-axis with

the speed of light.

To find the 4-potentialAµ that leads to (3.31), we proceed as follows:

Fµν =
2qδ(x − x0)

y2 + z2

[
yδ0

µδ
2
ν + zδ0

µδ
3
ν − yδ1

µδ
2
ν − zδ1

µδ
3
ν

− yδ2
µδ

0
ν − zδ3

µδ
0
ν + yδ2

µδ
1
ν + zδ3

µδ
1
ν

]
= qδ(x − x0)

{(
δ2
ν∂2[ln(y2 + z2)] + δ3

ν∂3[ln(y2 + z2)]
)

(δ0
µ − δ

1
µ)

−
(
δ2
µ∂2[ln(y2 + z2)] + δ3

µ∂3[ln(y2 + z2)]
)

(δ0
ν − δ

1
ν)
}

=
(
δ0
µ∂0 + δ1

µ∂1 + δ2
µ∂2 + δ3

µ∂3
) [

q ln(y2 + z2)δ(x − x0)(−δ0
ν + δ1

ν)
]

−
(
δ0
ν∂0 + δ1

ν∂1 + δ2
ν∂2 + δ3

ν∂3
) [

q ln(y2 + z2)δ(x − x0)(−δ0
µ + δ1

µ)
]

= ∂µAν − ∂νAµ, (3.39)
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where in the third equality, using (3.35) again, we put

∂µ = δ0
ν∂0 + δ1

ν∂1 + δ2
ν∂2 + δ3

ν∂3. (3.40)

Therefore the 4-potentialAµ of a light-like charged particle is

Aµ = q ln(y2 + z2)δ(x − x0)(−δ0
µ + δ1

µ). (3.41)

On the other hand, if we try to calculate this potential by taking the ultra-relativistic limit of

(3.24), then we get

lim
β→1

Aµ =
q

|x − x0|
(δµ0 + δ

µ
1) (3.42)

which is meaningless when x − x0 = 0. It can be shown that this potential gives a vanish-

ing field tensor for x − x0 , 0 which is consistent with (3.31). However, the x − x0 = 0

behavior is unclear in this gauge, so we perform a gauge transformation in order to be able

to investigate the behavior at x − x0 = 0. In the next section, when we discuss the gravita-

tional analogue of this situation, we will see that this gauge freedom corresponds to a clever

coordinate transformation there.

We perform the following transformation to the original 4-potential (3.17) before the Lorentz

boost (3.22)

Ãµ = Āµ + ∂µχ = φ̄δ
µ
0 −

q
√

x̄2 + 1
δ
µ
1 (3.43)

with χ = q sinh−1 x̄. Of course, Ã yields the same electric and magnetic fields (3.20). After

the Lorentz boost (3.22), (3.43) becomes

Aµ =
∂xµ

∂x̄ν
Ãν =

q(δµ0 + βδ
µ
1)

[(x − βx0)2 + γ−2(y2 + z2)]1/2 −
q(βδµ0 + δ

µ
1)

[(x − βx0)2 + γ−2]1/2 . (3.44)

This can also be written as

Aµ = q
{

1
[(x − βx0)2 + γ−2(y2 + z2)]1/2 −

1
[(x − βx0)2 + γ−2]1/2

}
(δµ0 + βδ

µ
1)

+
q(1 − β)

[(x − βx0)2 + γ−2]1/2 (δµ0 − δ
µ
1)

= q
∂

∂x

[
ln

(
x − βx0 + [(x − βx0)2 + γ−2(y2 + z2)]1/2

x − βx0 + [(x − βx0)2 + γ−2]1/2

)]
(δµ0 + βδ

µ
1)

+ q
1 − β2

[(x − βx0)2 + γ−2]3/2

(x − βx0)2 + γ−2

1 + β
(δµ0 − δ

µ
1)

= q
∂

∂x

[
ln

(
x − βx0 + [(x − βx0)2 + γ−2(y2 + z2)]1/2

x − βx0 + [(x − βx0)2 + γ−2]1/2

)]
(δµ0 + βδ

µ
1)

+ q
∂

∂x

[
x − βx0

(x − βx0)2 + γ−2

]
(x − βx0)2 + γ−2

1 + β
(δµ0 − δ

µ
1), (3.45)
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where in the last line we did the same trick as in (3.29). Now using

lim
β→1

ln
(

x − βx0 + [(x − βx0)2 + γ−2(y2 + z2)]1/2

x − βx0 + [(x − βx0)2 + γ−2]1/2

)
= [1 − θ(x − x0)] ln(y2 + z2), (3.46)

which is proved in Appendix B, we obtain

Aµ ≡ lim
β→1

Aµ = q
∂

∂x
[1 − θ(x − x0)] ln(y2 + z2)(δµ0 + δ

µ
1)

+ q
∂

∂x
[2θ(x − x0) − 1]

(x − x0)2

2
(δµ0 − δ

µ
1)

= −qδ(x − x0) ln(y2 + z2)(δµ0 + δ
µ
1) (3.47)

since f (x − x0)δ(x − x0) = 0. This is the same potential as (3.41) considering the covariant

index.

3.2 AICHELBURG-SEXL LIMIT

In the previous section we have obtained the electromagnetic field of a null charged particle,

i.e. of a point charge moving with the speed of light, and we have seen that the field has a

delta function profile which means that all the field is compressed onto the transverse plane

orthogonal to the direction of motion. The field is therefore an impulsive electromagnetic

field. The gravitational analogue of this situation, i.e. a point mass moving with the speed of

light, is studied by Aichelburg and Sexl [3]. They boosted the Schwarzschild metric which

may describe the gravitational field of a point mass to a reference frame in which the mass

appears to be moving with a constant speed and showed that in the ultra-relativistic limit the

gravitational field of the point mass becomes a plane impulsive gravitational wave.

In this section we review this solution keeping the discussion in parallel with the previous

section.

The gravitational field of a static spherically symmetric mass in general relativity is de-

scribed by the well-known Schwarzschild solution which we write here in the coordinates

x̃µ = (ct̄, r̃, θ, φ) (we keep all the relevant universal constants throughout this section):

ds2 =

(
1 −

2m
r̃

)
c2dt̄2 −

(
1 −

2m
r̃

)−1

dr̃2 − r̃2(dθ2 + sin2 θdφ2), (3.48)

where m ≡ GM/c2, with M being the mass of the source, is called the geometric mass.

Defining a new radial coordinate by

r̃ = r̄
(
1 +

m
2r̄

)2
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and performing the transformation

x̄ = r̄ sin θ cos φ, ȳ = r̄ sin θ sin φ, z̄ = r̄ cos θ,

we can bring the metric (3.48) into the isotropic form

ds2 =
(1 − A)2

(1 + A)2 c2dt̄2 − (1 + A)4(dx̄2 + dȳ2 + dz̄2), (3.49)

where we have identified

A ≡
m
2r̄

=
GM
2c2r̄

, r̄ = (x̄2 + ȳ2 + z̄2)1/2, (3.50)

as in [3]. Now we perform the same Lorentz transformation in (3.22) with x0 = ct:

ct = γ(ct̄ + βx̄), x = γ(x̄ + βct̄), y = ȳ, z = z̄. (3.51)

This is the transformation to a reference frame of an observer who sees the mass moving

along the x-axis with the speed v. Then the metric (3.49) becomes

ds2 =
(1 − A)2

(1 + A)2γ
2(cdt − βdx)2 − (1 + A)4

[
γ2(dx − βcdt)2 + dy2 + dz2

]
= −

[
(1 + A)4 −

(1 − A)2

(1 + A)2

]
γ2(cdt − βdx)2

+ (1 + A)4
[
γ2(cdt − βdx)2 − γ2(dx − βcdt)2 − dy2 − dz2

]
(3.52)

= −

[
(1 + A)4 −

(1 − A)2

(1 + A)2

]
γ2(cdt − βdx)2 + (1 + A)4

[
c2dt2 − dx2 − dy2 − dz2

]
with, from (3.50),

A =
GM/c2

2[γ2(x − βct)2 + y2 + z2]1/2 =
(GE/c4)γ−2

2[(x − βct)2 + γ−2(y2 + z2)]1/2 =
µγ−2

2R
, (3.53)

where E = γMc2 is the total energy of the particle, µ ≡ GE/c4 and

R ≡ [(x − βct)2 + γ−2(y2 + z2)]1/2. (3.54)

In the second line of (3.52), we added and subtracted the quantity (1 + A)4γ2(cdt − βdx)2.

In taking the limit β → 1, since γ → ∞, the total energy E = γMc2 of the particle diverges,

so to keep the energy (or µ through µ ≡ GE/c4) constant it is necessary to put the rest mass

M → 0 in this limit. But before that, let us write the factor of the first term of (3.52) as follows[
(1 + A)4 −

(1 − A)2

(1 + A)2

]
γ2 =

(
8A + 14A2 + 20A3 + 15A4 + 6A5 + A6

)
γ2

(1 + A)2 . (3.55)
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Now with the help of (3.29) and (3.30), we see that

lim
β→1

A = lim
β→1

µγ−2

2R
= lim

β→1

µ

2
γ−2

R3 R2 = lim
β→1

µ

2(y2 + z2)

[
∂

∂x

( x − βct
R

)]
R2

=
µ

2(y2 + z2)
∂

∂x
[2θ(x − ct) − 1](x − ct)2

=
µ

(y2 + z2)
(x − ct)2δ(x − ct)

= 0 (3.56)

for all values of t, x, y and z, but

lim
β→1

Aγ2 =
µ

2|x − ct|
(3.57)

for x , ct and so

lim
β→1

Anγ2 =


µ

2|x−ct| , for n = 1

0, for n > 1.
(3.58)

Then, the ultra-relativistic limit of the metric (3.52) for x , ct is

lim
β→1

ds2 = −
4µ
|x − ct|

(cdt − dx)2 + c2dt2 − dx2 − dy2 − dz2. (3.59)

But this is just the Minkowski spacetime in different coordinates. Indeed, with the null coor-

dinates

u =
1
√

2
(ct − x), v =

1
√

2
(ct + x), (3.60)

it takes the same form as the pp-wave metric (2.2), and from (2.4)

Rµναβ = 0. (3.61)

The metric (3.59) is the analogue of (3.42). In the charged particle case in Section 3.1, we

have performed the gauge transformation (3.43) in order to investigate the behavior of the

4-potential at x = ct. The corresponding thing here is to perform a coordinate transforma-

tion which enables us to see the gravitational field of the massless particle at x = ct more

apparently.

The appropriate coordinate transformation is the following [3]

x′ − βct′ = x − βct

x′ + βct′ = x + βct − 4µ ln
[√

(x − βct)2 + γ−2 − (x − ct)
]

(3.62)
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which leaves the coordinates y and z, and the function A invariant. This brings the metric

(3.52) into the following form

ds2 = cdt′2 − dx′2 − dy′2 − dz′2

− 4µ
{

1
[(x′ − βct′)2 + γ−2(y′2 + z′2)]1/2 −

1
[(x′ − βct′)2 + γ−2]1/2

}
(cdt′ − βdx′)2

+ O((1 − β))

= cdt′2 − dx′2 − dy′2 − dz′2

− 4µ
∂

∂x′

[
ln

(
x′ − βct′ + [(x′ − βct′)2 + γ−2(y′2 + z′2)]1/2

x′ − βct′ + [(x′ − βct′)2 + γ−2]1/2

)]
(cdt′ − βdx′)2

+ O((1 − β)). (3.63)

Now using the relation (3.46), we can take the ultra-relativistic limit, which yields

ds′2 ≡ lim
β→1

ds2 = cdt′2 − dx′2 − dy′2 − dz′2 + 4µ ln(y′2 + z′2)δ(x′ − ct′)(cdt′ − dx′)2. (3.64)

Defining the null coordinates

u′ = ct′ − x′, v′ = ct′ + x′, (3.65)

we can write

ds′2 = du′dv′ + 4µ ln(y′2 + z′2)δ(u′)du′2 − dy′2 − dz′2. (3.66)

But if we define the null coordinates as in (2.3), i.e.

u′ =
1
√

2
(ct′ − x′), v′ =

1
√

2
(ct′ + x′), (3.67)

then using δ(au) = δ(u)/|a| we get

ds′2 = 2du′dv′ + 4µ̄ ln(y′2 + z′2)δ(u′)du′2 − dy′2 − dz′2 (3.68)

with µ̄ ≡
√

2µ =
√

2GE/c4. So the energy parameter µ of the particle should be scaled

appropriately depending on the definition of the null coordinates.

The metric (3.68), or (3.66), describes the gravitational field of a massless particle moving

along the x-axis with the speed of light in Minkowski spacetime. It has the form of a grav-

itational plane-fronted wave (pp-wave) which we have discussed in Chapter 2. The profile

function of the wave is

H(u′, y′, z′) = 4µ̄ ln(y′2 + z′2)δ(u′) (3.69)
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and so with the help of the expressions (2.4) we can calculate

Ru′y′u′y′ = −Ru′z′u′z′ = 4µ̄
y′2 − z′2

(y′2 + z′2)2 δ(u
′),

Ru′y′u′z′ = 8µ̄
y′z′

(y′2 + z′2)2 δ(u
′),

Ru′u′ = 8πµ̄δ(u′)δ(y′)δ(z′),

Cu′y′u′y′ = 4µ̄
y′2 − z′2

(y′2 + z′2)2 δ(u
′) + 4πµ̄δ(u′)δ(y′)δ(z′),

Cu′z′u′z′ = −4µ̄
y′2 − z′2

(y′2 + z′2)2 δ(u
′) + 4πµ̄δ(u′)δ(y′)δ(z′),

Cu′y′u′z′ = 8µ̄
y′z′

(y′2 + z′2)2 δ(u
′), (3.70)

where we have used (3.37). These are the physical quantities like the electromagnetic field

tensor (3.31) in Section 3.1. Due to the Dirac delta function the curvature represented by the

Riemann tensor is concentrated only on the null plane u′ = 0 and moves along the x-axis with

the speed of light. Therefore this solution describes an impulsive gravitational plane wave, or

a shock wave, generated by a null point particle propagating in Minkowski spacetime. Indeed,

using Einstein’s field equations we can show that the spacetime described by the metric (3.68)

is sourced by a null particle: Since the metric is in the pp-wave form, the Ricci scalar is zero

and therefore the Einstein tensor is identical to the Ricci tensor given in (3.70), so the field

equations read

Gµν ≡ Rµν −
1
2

gµνR = Ru′u′δ
u′
µ δ

u′
ν = 8πµ̄δ(u′)δ(y′)δ(z′)δu′

µ δ
u′
ν =

8πG
c4 Tµν (3.71)

which gives

Tµν =
c4µ̄

G
δ(u′)δ(y′)δ(z′)δu′

µ δ
u′
ν =

√
2Eδ(u′)δ(y′)δ(z′)δu′

µ δ
u′
ν , (3.72)

where we remember µ̄ ≡
√

2µ =
√

2GE/c4. Again, the factor
√

2 comes from the definition

of the null coordinates (3.67). This is the energy-momentum tensor of a null point particle

moving along the x-axis, which can also be obtained directly from transforming the energy-

momentum tensor of a static particle under the Lorentz transformations (3.51) and then taking

the ultra-relativistic limit β→ 1, keeping the energy of the particle constant.

3.3 IMPULSIVE WAVES

In this section we generalize the Aichelburg-Sexl solution of the previous section to arbitrary

shock wave geometries.
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Shock waves belong to the class of pp-waves (2.2) that we have discussed in Chapter 2 with

the profile function

H(u, X,Y) = f (X,Y)δ(u) (3.73)

for some arbitrary function f (X,Y), so the metric of a shock wave can be written as

ds2 = 2dudv + f (X,Y)δ(u)du2 − dX2 − dY2 (3.74)

in terms of the null coordinates,

u =
1
√

2
(t − Z), v =

1
√

2
(t + Z). (3.75)

In this section we put c = G = 1. The metric (3.74) represents an impulsive plane-fronted

wave traveling along the Z-axis with arbitrary profile f (X,Y). For this metric the field com-

ponents (2.4) becomes

Ruiu j = −
1
2

(∂i∂ j f )δ(u),

Ruu =
1
2

(∇2
⊥ f )δ(u),

Cuiu j = −
1
2

(∂i∂ j f )δ(u) +
1
4
δi j(∇2

⊥ f )δ(u), (3.76)

where, as before, ∂i = (∂/∂X, ∂/∂Y) and ∇2
⊥ ≡

∑
i ∂

2
i . Then, the form of the profile function

is determined by the Einstein’s field equations which reduce to a Poisson equation in the

transverse space:
1
2

(∇2
⊥ f )δ(u) = 8πTuu. (3.77)

Here we should recall that in geometrized units (c = G = 1) the energy-momentum tensor has

units [Tµν] = L−2, and so from (3.77) [ f ] = L since [δ(u)] = L−1.

Let us give some examples.

Impulsive vacuum pp-waves: In vacuum, Tµν = 0, so (3.77) reduces to the Laplace equation

in the transverse coordinates

∇2
⊥ f = 0. (3.78)

Therefore, in this case any harmonic function f (X,Y) describes a gravitational shock wave

with the metric (3.74). This is a subclass of vacuum pp-waves discussed in Chapter 2.

Null point particle: If the source is a null spinless particle represented by the energy-

momentum tensor

Tuu = µ̄δ(u)δ(X)δ(Y), (3.79)
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where µ̄, being the energy of the particle, has units [µ̄] = L, then (3.77) becomes

∇2
⊥ f = 16πµ̄δ(X)δ(Y), (3.80)

from which, with the help of the Greens’ function in (3.37),

f (X,Y) = 4µ̄ ln
(

X2 + Y2

`2

)
, (3.81)

where ` is an arbitrary integration constant having the units of length. This is just the

Aichelburg-Sexl shock wave solution derived in the previous section.

Null shell of matter: Instead of a point particle, it is also possible to consider a null infinite

homogeneous shell of matter which has the energy-momentum tensor

Tuu = σδ(u), (3.82)

where σ = const. is the surface energy density having units [σ] = L−1. Therefore, the field

equation (3.77) becomes

∇2
⊥ f = 16πσ (3.83)

which yields

f (X,Y) = 4πσ
(
X2 + Y2

)
. (3.84)

This solution represents a gravitational shock wave produced by a planar shell of null matter

with constant energy density, and was first given by Dray and ’t Hooft [27].
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CHAPTER 4

THE EFFICIENCY OF THE GRAVITATIONAL RADIATION

EMITTED IN HIGH-ENERGY COLLISIONS

In this chapter we review and compare three different methods for estimating the efficiency of

the total gravitational energy emitted in high-energy collisions.

4.1 HAWKING’S AREA THEOREM

In 1971, Hawking [8] found an upper limit for the efficiency of gravitational radiation emitted

in a collision process of two black holes.

In this section we will review Hawking’s reasoning for the case of two colliding black holes,

each of which is neutral and non-rotating, i.e. a Schwarzschild black hole, and show that the

upper bound on the energy radiated away is 29% of the initial energy of the holes.

If the cosmic censorship hypothesis holds, Hawking’s area theorem states that

Theorem: During the evolution of any black hole, the area of the event horizon can never

decrease, but only increase or stay the same.

For example, if two black holes collide and unite, the surface area of the event horizon of the

final black hole must be greater than the sum of the surface areas of the initial black holes.

Let us call the areas of the initial black holes A1 and A2, and the area of the final black hole

A f . Then, according to the area theorem,

A f ≥ A1 + A2. (4.1)

Now remembering the well-known relation between the area of the event horizon of a black
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hole and its mass

A = 4πr2 = 16πm2, (4.2)

where r = 2m is the radius of the horizon and m is the geometric mass of the black hole (see

Section 3.2), we can write (4.1) as

m2
f ≥ m2

1 + m2
2. (4.3)

Assuming the masses of the black holes to be equal, namely m1 = m2 = m, we get

m f ≥
√

2m =

√
2

2
(2m) ' 0.71(2m). (4.4)

This is the lower bound for the mass of the final black hole. It cannot be less than 71% of the

initial total mass. Therefore, the upper bound for the energy radiated should be

mrad = 2m − m f ≤

1 − √2
2

 2m ' 0.29(2m), (4.5)

which means that a maximum of 29% of the initial energy could be radiated in the collision.

Note that in this derivation there is no assumption on the velocities of the colliding black

holes. It is therefore valid in general. However, in the next section, using the trapped surface

method, we will show that this bound also comes out in the collision of two black holes

moving with the speed of light.

4.2 TRAPPED SURFACE METHOD

Black hole formation and outgoing gravitational radiation in high-energy collisions can also

be studied by just proving the existence of a closed trapped surface in the future of the collision

geometry. There is no need to know the solution beyond the collision. This method was first

applied by Penrose [9] to the head-on, i.e. zero impact parameter b = 0, collision of two ultra-

relativistic black holes, and later extended by Eardley and Giddings [28] to non-zero impact

parameters b > 0. Modeling the spacetime as the union of two Aichelburg-Sexl shock waves,

Penrose was able to find a closed trapped surface at the moment of the collision, and give an

upper limit of about 29% of the initial energy of the spacetime radiated in gravitational waves.

A closed trapped surface is defined as a compact two-dimensional spacelike surface whose

outgoing normal null geodesic congruence has negative expansion everywhere on the surface.
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Physically, what this means is that there is a closed surface whose normal light rays (in both

future-directed directions) converge, so are trapped by gravity. In the special case when the

expansion is zero, the surface is said to be marginally trapped, and the outermost marginally

trapped surface is called the apparent horizon.

The existence of a marginally trapped surface in a spacetime implies the existence of a sin-

gularity in the future. Since an apparent horizon is the outermost marginally trapped surface,

this also implies the existence of an apparent horizon outside the marginally trapped surface

in the spacetime. If the cosmic censorship conjecture holds and the null energy condition is

satisfied, an apparent horizon in turn implies the presence of an event horizon exterior to it,

or coincident with it in a stationary spacetime (for a formal proof see [7]). Therefore, the

existence of an apparent horizon is a sufficient condition for the black hole formation, and the

area of the apparent horizon can be used to put a lower bound on the area of the produced

black hole which then provides a lower bound on the mass of the black hole.

Let us apply this procedure to the collision of two general shock waves. As we have discussed

in Section 3.3, a shock wave moving in the v direction can be given by the metric (here in polar

coordinates on the transverse plane)

ds2 = 2dūdv̄ + f (ρ̄)δ(ū)dū2 − dρ̄2 − ρ̄2dφ̄2, (4.6)

where f (ρ̄) is the wave profile, and for a Aichelburg-Sexl wave of Section 3.2 it is

f (ρ̄) = 4µ̄ ln ρ̄2 (4.7)

with µ̄ =
√

2E. The delta function in (4.6) indicates that the coordinates x̄µ = (ū, v̄, ρ̄, φ̄) are

discontinuous at ū = 0. Later, we will be interested in the null geodesics crossing the hyper-

surface ū = 0 to calculate the expansion. It is therefore convenient to pass to the continuous

and smooth coordinates xµ = (u, v, ρ, φ) via the coordinate transformation (see Appendix C)

ū = u, v̄ = v −
1
2
θ(u) f (ρ) +

1
8

uθ(u)
[
f ′(ρ)

]2 , ρ̄ = ρ −
1
2

uθ(u) f ′(ρ), φ̄ = φ. (4.8)

The metric in these coordinates takes the form

ds2 = 2dudv −
[
1 −

1
2

uθ(u) f ′′
]2

dρ2 −

[
1 −

1
2

uθ(u)
f ′

ρ

]2

ρ2dφ2. (4.9)

For a Aichelburg-Sexl shock wave, since f (ρ̄) = 4µ̄ ln ρ̄2, (4.9) becomes

ds2 = 2dudv −
[
1 + 4µ̄

uθ(u)
ρ2

]2

dρ2 −

[
1 − 4µ̄

uθ(u)
ρ2

]2

ρ2dφ2. (4.10)
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Now we can set up the collision of two such identical Aichelburg-Sexl shock waves as fol-

lows. The spacetime structure is as in Figure 2.1. Region I is the flat background, region II

contains one of the approaching shocks described by the continuous metric (4.10), and region

III contains the opposite shock described again by (4.10) but with u and v interchanged. Re-

gion IV is the interaction region after the collision. Because the shocks propagate at the speed

of light, they do not interact with each other before the collision (by causality). Then we can

construct the precollision metric, which describes the geometry outside the future light cone

of the collision event (regions I, II, and III), simply by combining the metrics of the right and

left shocks:

ds2 = 2dudv −
[
1 + 8µ̄

uθ(u) + vθ(v)
ρ2 + 16µ̄2 u2θ(u) + v2θ(v)

ρ4

]
dρ2

−

[
1 − 8µ̄

uθ(u) + vθ(v)
ρ2 + 16µ̄2 u2θ(u) + v2θ(v)

ρ4

]
ρ2dφ2, (4.11)

where µ̄ =
√

2E.

Nonlinearities in the field equations prevent us from obtaining the metric in the interaction

region u > 0, v > 0. However, it is still possible to confirm the black hole formation by

proving the existence of an apparent horizon on some slice in regions I, II, and III. We first

need to find the null geodesics normal to some surface in this slice, and then impose that their

expansion is zero.

We will look for the apparent horizon on the slice v ≤ 0 = u and u ≤ 0 = v of Figure 2.1.

Let us assume that the apparent horizon is given by the surface S which is made up of the

union of two pieces S = S 1 ∪ S 2. The first piece S 1 lies in the null hypersurface v ≤ 0 = u,

while the second piece S 2 lies in u ≤ 0 = v. These surfaces S 1,2 are connected on a common

one-dimensional boundary C which lies in the intersection u = v = 0. Because the system

is axially symmetric, the surfaces S 1,2 are given by functions of ρ only. Therefore, S is

composed of

S 1 : {v = −Ψ1(ρ), u = 0}, with Ψ1 = 0 on C,

S 2 : {u = −Ψ2(ρ), v = 0}, with Ψ2 = 0 on C. (4.12)

Since S 1 and S 2 lie in the regions v < 0 and u < 0 respectively, it should also be that Ψ1(ρ) > 0

and Ψ2(ρ) > 0. These two functions Ψ1(ρ) and Ψ2(ρ) have to be determined by imposing the

condition that the null geodesic congruence orthogonal to the surface they define has zero

expansion. Because we are considering two identical Aichelburg-Sexl shock waves in our

26



setup, we can simply put Ψ1 = Ψ2 = Ψ. Also, since we are working in the center of mass

frame, by the left-right symmetry we can consider only the surface S 1 in v ≤ 0 = u. The

metric in the neighborhood of v ≤ 0 = u is given by (4.9) (or explicitly by (4.10)). In the

barred coordinates x̄µ = (ū, v̄, ρ̄, φ̄) of the metric (4.6), the surface S 1 is located at, from (4.8),

v̄ = −Ψ(ρ̄) −
1
2

f (ρ̄) ≡ −h(ρ̄), ū = 0, (4.13)

since ρ̄ = ρ on u = 0, and θ(0) = 1. For this surface to define an apparent horizon, it should

be continuous and smooth at all values of ρ̄.

Now we need to calculate the normal null geodesic congruence (affinely parameterized) pass-

ing through the surface S 1 : {v = −Ψ1(ρ), u = 0}. We follow the review section of [29]. The

tangent vector ξ1
µ of the congruence is

ξ1
µ =

dxµ

dλ
= (u̇, v̇, ρ̇, φ̇), (4.14)

since we have the coordinates xµ = (u, v, ρ, φ) in the spacetime of the metric (4.9). Here λ is

the affine parameter. Since the surface S 1 lies in the null hypersurface u = 0, it is convenient

to define the coordinates ya = (ρ, φ) on S 1. Then the tangent generators eµa = ∂xµ
∂ya of the

surface (see [30]) become

eµρ =
∂xµ

∂ρ
= (0,−Ψ′1, 1, 0),

eµφ =
∂xµ

∂φ
= (0, 0, 0, 1), (4.15)

where the prime denotes derivative with respect to ρ. We have to impose the conditions that

the geodesics are null, and normal to the generators of the surface, i.e.

ξ1µξ1
µ = 0, ξ1µeµa = 0. (4.16)

We can also impose the normalization condition

ξ1µkµ = 1, (4.17)

where kµ = ∂µu = δ0
µ is the normal vector to the null hypersurface u = 0 and defines the

auxiliary null vector field (see [30]). These conditions (4.16) and (4.17) together with the

metric (4.9) enable us to calculate the tangent vector ξµ as

ξ1
µ =

1, Ψ′21

2
,−Ψ′1, 0

 . (4.18)
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This is the null normal vector to the surface S 1 on u = 0, and satisfies the geodesics equation

in its affinely parameterized form, i.e.

ξ1
µ∇µξ1ν = 0, (4.19)

with λ = u being the affine parameter.

Similarly, the tangent vector ξ2
µ of the null geodesic congruence which is normal to the sur-

face S 2 : {u = −Ψ2(ρ), v = 0} is

ξ2
µ =

Ψ′22

2
, 1,−Ψ′2, 0

 . (4.20)

The outer null normal to the apparent horizon S must be continuous across the intersection C

at ρ = ρc. Otherwise, there would be a delta function in the expansion. This means that the

tangent vectors ξ1
µ and ξ2

µ should be parallel at ρ = ρc, and so the condition ξ1
uξ2

v = ξ1
vξ2

u

holds. From (4.18) and (4.20) this is equivalent to

Ψ′1(ρc)Ψ′2(ρc) = 2. (4.21)

As we said before, our shock waves are identical, i.e. Ψ1(ρ) = Ψ2(ρ) = Ψ(ρ), so this condition

becomes

Ψ′2(ρc) = 2. (4.22)

Then, due to the left-right symmetry of the system, considering the left part only we can

calculate the expansion with the help of (4.9) and (4.18) (see [30] for the definition of expan-

sion):

θ|u=0 = ∇µξ1
µ =

1
√
−g

(
√
−gξ1

µ),µ = −

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ

) (
Ψ +

f
2

)
, (4.23)

where f (ρ) = 4µ̄ ln ρ2. As we discussed in (4.13), the function Ψ(ρ) + f (ρ)/2 defines the ap-

parent horizon in the barred coordinates (ρ̄ = ρ on u = ū = 0), so it should be continuous and

smooth at all ρ. Since the apparent horizon is defined as the surface for which the expansion

is zero, from (4.23) we get (
∂2

∂ρ2 +
1
ρ

∂

∂ρ

) (
Ψ +

f
2

)
= 0 (4.24)

which has the general solution

Ψ +
f
2

= A + B ln ρ, (4.25)

where A and B are two integration constants. Since we are interested in the solution without

singularities, we put B = 0, and using the condition Ψ(ρc) = 0 we obtain

Ψ(ρ) = −4µ̄ ln
ρ

ρc
. (4.26)
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This function describes the shape of the apparent horizon surface in the continuous coordi-

nates xµ = (u, v, ρ, φ). The condition (4.22) determines the radius of the boundary circle C:

Ψ′2(ρc) = 2 ⇒ ρc = 2
√

2µ̄. (4.27)

Therefore, in the barred coordinates x̄µ = (ū, v̄, ρ̄, φ̄) the apparent horizon consists of two discs

D1 :
{

v̄ = −Ψ(ρ̄) −
1
2

f (ρ̄) = −4µ̄ ln ρc, ū = −
1
2
θ(v) f +

1
8

vθ(v) f ′2
}
,

D2 :
{

ū = −Ψ(ρ̄) −
1
2

f (ρ̄) = −4µ̄ ln ρc, v̄ = −
1
2
θ(u) f +

1
8

uθ(u) f ′2
}
, (4.28)

since ρ̄ = ρ on u = 0 and v = 0. These two discs intersect each other at

D1 ∩ D2 : {ū = v̄ = −4µ̄ ln ρc, ρ = ρc} , (4.29)

where the boundary circle C lies in the barred coordinates. It can be seen from (4.6) that the

metric on these ū = v̄ = const. discs is just the flat disc metric, i.e.

ds2
D = −dρ̄2 − ρ̄2dφ̄2. (4.30)

This means that the area of the apparent horizon in the barred coordinates is just the area of

two flat discs of radius ρ̄c = ρc given by (4.27), namely,

A(S ) = 2AD = 2πρ2
c = 16πµ̄2. (4.31)

As we mentioned in the beginning of this section, this puts a lower limit on the area of the

event horizon which either lies outside the apparent horizon or coincides with it. So remem-

bering the area of the event horizon of a black hole given in (4.2) it can be found that

Ab = 4πr2
b ≥ A(S ) = 16πµ̄2 ⇒ rb ≥ 2µ̄, (4.32)

from which we get

mb =
rb

2
≥

1
2

(2µ̄) =

√
2

2
(2E) ' 0.71(2E), (4.33)

where we put µ̄ =
√

2E. This is the same bound on the mass of the final black hole as (4.4)

obtained by the Hawking’s area argument in the previous section. Therefore, both Hawk-

ing’s and Penrose’s methods predict an efficiency of about 29% for the gravitational radiation

emitted in such collision processes.
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4.3 INSTANTANEOUS COLLISION METHOD

In this section, we review a different method which enables us to obtain quantitative results

on the gravitational energy released in the collision processes of particles. Whenever two

particles collide, due to the changes in their momenta, gravitational radiation is released into

the spacetime. In general, the treatment of the gravitational radiation in general relativity is

a difficult problem due to the nonlinearity of the field equations. However, it is sometimes

enough to work with the linearized form of the Einstein field equations in the weak field limit

in order to gain some insight on the weak radiation emitted in the collision of two particles.

This method was first applied in [31, 32].

The formalism is reviewed in Appendix D. We have obtained there the radiation spectrum in

linearized gravity, which is given by

d2E
dΩdω

=
Gω2

2π2

[
T ∗µν(ω,k)T µν(ω,k) −

1
2
|T (ω,k)|2

]
, (4.34)

where Tµν(ω,k) is the Fourier transform of the energy-momentum tensor of the source. For a

system of colliding free particles, we also obtained in the appendix that

T µν(ω,k) = −i
∑

n

[
PµnPνn

En(ω − k · vn)
−

P′µn P′νn
E′n(ω − k · v′n)

]
. (4.35)

Here k = ωx̂ is the wave vector which represents the direction of the wave, and En and Pµn are

the energy and 4-momentum of the nth particle defined by

En = γnMn, γn =
1√

1 − v2
n

, Pµn = (En,Pn) = En(1, vn). (4.36)

Let us consider the particular case in which two particles collide head-on to form a final

particle at rest in the center of mass frame. One of the particle has mass M1 and Lorentz

factor γ1, and the other particle has the corresponding quantities M2 and γ2. Without loss of

generality, we may orient the axes so that the motion occurs in the (y, z) plane and the z-axis

is the radiation direction, i.e. k = ωẑ. Then we have

Pµ1 = γ1M1(1, 0, v1 sin θ, v1 cos θ),

Pµ2 = γ2M2(1, 0,−v2 sin θ,−v2 cos θ),

P′µ1 = E′1(1, 0, 0, 0) = γ1M1(1, 0, 0, 0),

P′µ2 = E′2(1, 0, 0, 0) = γ1M1(1, 0, 0, 0), (4.37)
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where θ is the angle between v1 and k. Here the momenta satisfy the relativistic relation

PµPµ = E2 − P2 = M2. (4.38)

Also conservation of momentum requires that γ1M1v1 = γ2M2v2. Substituting (4.37) in (4.35)

and then using (4.34), we find

d2E
dΩdω

=
G

4π2

γ2
1 M2

1v2
1(v1 + v2)2 sin4 θ

(1 − v1 cos θ)2(1 − v2 cos θ)2 . (4.39)

Now consider the special case in which M1 = M2 = M and v1 = v2 = v. Then (4.39) becomes

d2E
dΩdω

=
G
π2

γ2M2v4 sin4 θ

(1 − v2 cos2 θ)2

=
G
π2

E2P4 sin4 θ

(E2 − P2 cos2 θ)2

=
G
π2

E2P4 sin4 θ

(M2 + P2 sin2 θ)2
, (4.40)

where we have used E = γM, P = Ev and E2 = M2 + P2. This form of the energy distribution

is very useful because the ultra-relativistic limit v → 1 can be taken immediately. Therefore,

for the collision of two massless (M = 0) particles, the distribution of the radiation is isotropic

and very simple: From (4.40)
d2E

dΩdω
=

GE2

π2 . (4.41)

If we now try to calculate the total emitted energy by integrating (4.41) with respect to ω from

0 to∞, we get a result that diverges like
∫ ∞

dω. This stems from our implicit assumption that

the collision occurs instantaneously at t = 0 (see Appendix D). In actuality, however, it must

take place in a finite time interval 4t, and so the ω-integral above should be cut off at some

ωc of order 1/4t. Thus, the total energy radiated away is

ET =
4GE2ωc

π
. (4.42)

Assuming a spherical black hole is produced by the collision, we can calculate the efficiency

of the total radiated energy from (4.42). Since the effective timescale for the process is4t ∼ rb,

where rb = 2GMb is the horizon radius of the black hole with mass Mb ∼ 2E in units c = 1,

the cutoff frequency ωc will go as the inverse of the black hole radius rb; that is,

ωc ∼
1
4t
∼

1
rb

=
1

4GE
. (4.43)

Then the efficiency for the gravitational radiation is

ε =
ET

2E
∼

1
2π
' 0.16, (4.44)

31



where 2E is the total initial energy. Therefore, the instantaneous collision method predicts that

16% of the initial energy is radiated away in the collision process. This result is in agreement

with the estimate of D’Eath and Payne [10], but says that Hawking’s area theorem and the

trapped surface method, which give a 29% efficiency, overestimate the total energy emitted in

the collision.
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CHAPTER 5

BLACK HOLE COLLISIONS AT THE SPEED OF LIGHT

In this chapter, we consider the collision of two shock waves produced by two null particles

and try to extract the total energy in gravitational waves using the Bondi news function. In

order to understand how to extract the news function in a collision process, we will perform

a perturbation expansion with respect to the energy parameters of the particles which are

assumed to be equal and small. In the next chapter we will apply a different method.

5.1 SETUP

As we have obtained in Chapter 3, the gravitational field of a null particle is given by the

metric (3.68). Here we write it in the coordinates xµ = (U,V, X,Y), i.e.

ds2 = 2dUdV + 4µ̄ ln(X2 + Y2)δ(U)dU2 − dX2 − dY2, (5.1)

where µ̄ =
√

2E is the parameter related to the energy of the particle, and U and V are the

null coordinates defined as in (2.3),

U =
1
√

2
(t − Z), V =

1
√

2
(t + Z). (5.2)

Throughout this chapter we work in units c = G = 1. This metric is an exact solution to the

full Einstein equations with the source being a point particle moving with the speed of light

along the Z-axis. As we have mentioned earlier, this form of the metric is not suitable for the

collision of such particles. This is due to the fact that the Dirac delta function in (5.1) makes

the metric discontinuous at U = 0, which means that the discussion of the null geodesics

through the hypersurface U = 0 is not easy in these coordinates. Therefore, it is necessary to

transform (5.1) into the Rosen coordinates which is always continuous. This is achieved by
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the following discontinuous coordinate transformation (see Appendix C):

U = u,

V = v − 4µ̄ ln ρθ(u) + 8µ̄2 uθ(u)
ρ2 ,

X =

[
1 − 4µ̄

uθ(u)
ρ2

]
ρ cos φ,

Y =

[
1 − 4µ̄

uθ(u)
ρ2

]
ρ sin φ, (5.3)

which brings the metric (5.1) into the form [33]

ds2 = 2dudv −
[
1 + 4µ̄

uθ(u)
ρ2

]2

dρ2 −

[
1 − 4µ̄

uθ(u)
ρ2

]2

ρ2dφ2. (5.4)

This form of the metric is now continuous across the null hypersurface u = 0.

In order to study the collision of two null particles described by the metric (5.4), we construct

the problem as in Figure 2.1 in Section 2.2. We assume that the collision takes place in four-

dimensional Minkowski spacetime which is the region I in Figure 2.1, and the regions II and

III in the figure contain the approaching particles represented in the coordinates (5.4). Region

IV is the interaction region. Therefore, we assume, from (5.4),

ds2 = 2dudv −
[
1 + 4µ̄1

uθ(u)
ρ2

]2

dρ2 −

[
1 − 4µ̄1

uθ(u)
ρ2

]2

ρ2dφ2 (5.5)

represents the right-moving shock wave which propagates along the v direction in Figure 2.1.

Here µ̄1 =
√

2E1 is the energy of the null particle. This metric describes globally both region

I and region II. The opposite left-moving shock wave which propagates along the u direction

in the figure can be given by the same metric (5.5), but with u and v interchanged, i.e.

ds2 = 2dudv −
[
1 + 4µ̄2

vθ(v)
ρ2

]2

dρ2 −

[
1 − 4µ̄2

vθ(v)
ρ2

]2

ρ2dφ2 (5.6)

with the energy µ̄2 =
√

2E2. Now this describes regions I and III globally. We can simply

superpose these two metrics to write down the precollision line element which describes all

three initial regions I, II, and III globally, that is,

ds2 = 2dudv −
1 + 8

µ̄1uθ(u) + µ̄2vθ(v)
ρ2 + 16

µ̄2
1u2θ(u) + µ̄2

2v2θ(v)

ρ4

 dρ2

−

1 − 8
µ̄1uθ(u) + µ̄2vθ(v)

ρ2 + 16
µ̄2

1u2θ(u) + µ̄2
2v2θ(v)

ρ4

 ρ2dφ2. (5.7)

Since the metric has to be continuous across the null boundaries of region IV, all corrections

to this metric have to be proportional to uvθ(u)θ(v) in these coordinates.
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5.2 HEAD-ON COLLISION

In general, the coordinates u and v are no longer null after the collision. This is due to the fact

that the gravitational field produced by each particle focuses one another after the collision. It

seems impossible to give an exact solution to the full non-linear Einstein field equations which

describe the geometry of the interaction region. Therefore we treat the problem perturbatively

and try to extract information about the energy emitted in gravitational waves.

From now on, we will assume that the particles have the same energy, namely µ̄1 = µ̄2 = µ̄,

and give the following metric ansatz for the interaction region:

ds2 = [1 + K(u, v, ρ)]2dudv + L(u, v, ρ)(du2 + dv2)

−[1 + H(u, v, ρ)]
[
1 + 8µ̄

u + v
ρ2 + 16µ̄2 u2 + v2

ρ4

]
dρ2

−[1 + M(u, v, ρ)]
[
1 − 8µ̄

u + v
ρ2 + 16µ̄2 u2 + v2

ρ4

]
ρ2dφ2 (5.8)

with the conditions

K(0, v, ρ) = K(u, 0, ρ) = K(0, 0, ρ) = 0,

L(0, v, ρ) = L(u, 0, ρ) = L(0, 0, ρ) = 0,

H(0, v, ρ) = H(u, 0, ρ) = H(0, 0, ρ) = 0,

M(0, v, ρ) = M(u, 0, ρ) = M(0, 0, ρ) = 0 (5.9)

to reduce to the initial regions. We have to determine the metric functions K, L,H,M by

solving the vacuum field equations. As already mentioned, however, full analytical solution

is not possible, so we try to solve the field equations perturbatively with respect to the energy

parameter µ̄. Therefore, we assume for the functions K, L,H,M the expansions

K(u, v, ρ) = K1(u, v, ρ)µ̄ + K2(u, v, ρ)µ̄2 + O(µ̄3), etc. (5.10)

We need to solve the vacuum field equations Rµν = 0 in the interaction region. However,

in order to be able to solve the field equations, we will take L(u, v, ρ) = 0, and since the

spacetime is asymptotically flat, we assume a power series ansatz in the negative powers of ρ

for the coefficients in (5.10), that is,

Ki(u, v, ρ) =

∞∑
α=0

ρ−αk(α)
i (u, v), (i = 1, 2, . . .), etc. (5.11)
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with the conditions (5.9):

k(α)
i (0, v) = k(α)

i (u, 0) = k(α)
i (0, 0) = 0, etc. (5.12)

Then we can determine the coefficients from the field equations easily. Using the Penrose

prescription (2.10), we can write the solution which describes the spacetime globally as

ds2 = [1 + K(u, v, ρ)]2dudv

−[1 + H(u, v, ρ)]
[
1 + 8µ̄

uθ(u) + vθ(v)
ρ2 + 16µ̄2 u2θ(u) + v2θ(v)

ρ4

]
dρ2

−[1 + M(u, v, ρ)]
[
1 − 8µ̄

uθ(u) + vθ(v)
ρ2 + 16µ̄2 u2θ(u) + v2θ(v)

ρ4

]
ρ2dφ2, (5.13)

where, from (5.10),

K(u, v, ρ) =

[
−

a
ρ4 uv −

2a
ρ6 u2v2 −

4a
ρ8 u3v3 + O(ρ−10)

]
θ(u)θ(v)µ̄2 + O(µ̄3),

H(u, v, ρ) =

[
2a
ρ4 uv −

3a
ρ6 u2v2 −

16a
3ρ8 u3v3 + O(ρ−10)

]
θ(u)θ(v)µ̄2 + O(µ̄3), (5.14)

M(u, v, ρ) =

[
2a
ρ4 uv +

3a
ρ6 u2v2 +

16a
3ρ8 u3v3 + O(ρ−10)

]
θ(u)θ(v)µ̄2 + O(µ̄3)

with a = 32.

5.3 BONDI PROBLEM

Since we are interested in the gravitational radiation emitted in the collision process of two

ultrarelativistic black holes constructed in the previous section, here we briefly review the

Bondi problem to extract the news function. For more detailed discussions see [12, 34, 35].

Consider a bounded isolated system which is axially symmetric and non-rotating. The space-

time produced by such a source would have a Killing vector field ∂/∂φ representing the axial

symmetry of the source, and the reflection symmetry φ → −φ preventing the source from

rotating around the symmetry axis. We also assume that the spacetime is asymptotically flat.

In order to investigate the radiation more properly, it is convenient to introduce the so-called

radiation coordinates

xµ = (x0, x1, x2, x3) = (u, r, θ, φ), (5.15)

where u is called the retarded time and labels a family of non-intersecting null hypersurfaces in

the spacetime, r is a radial parameter along the null rays which generate the null hypersurface
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u = const., and θ and φ are the usual spherical polar angles defined on each 2-sphere u =

const., r → ∞. The radial coordinate r is called the luminosity distance, because it is chosen

such that

g22g33 = r4 sin2 θ (5.16)

exactly and the 2-surfaces u = const. and r = const. have the usual surface area of a 2-sphere,

namely, 4πr2. In such a coordinate system, using the symmetry assumptions (axial symmetry

and reflection symmetry), we can write the spacetime metric as

ds2 = g00du2 + 2g01dudr + 2g02dudθ − r2
(
e2γdθ2 + e−2γ sin2 θdφ2

)
, (5.17)

where all the metric functions g00, g01, g02 and γ are functions of u, r and θ. For the metric to

be regular on the symmetry axis θ = 0, π, the functions

g00, g01,
g02

sin θ
,

γ

sin2 θ
(5.18)

must be regular as sin θ → 0. For the general form (5.17) of the metric, the field equations are

extremely complicated. Indeed, there is no exact solution which describes a time-dependent

asymptotically flat axially symmetric spacetime. Therefore, we carry out an asymptotic anal-

ysis to investigate the gravitational radiation at infinity. For this purpose, since the spacetime

is asymptotically flat, i.e.

lim
r→∞

gµν = ηµν, (5.19)

we assume a series expansion in powers of r−1 for each metric function in (5.17). For instance,

to the required order, if we assume

γ =
c(u, θ)

r
+ O(r−2), (5.20)

the vacuum field equations lead to

g00 = 1 −
2M

r
+ O(r−2),

g01 = 1 −
c2

2r
+ O(r−3),

g02 = −(cθ + 2c cot θ) + O(r−1),

g22 = −r2 − 2cr + O(1),

g33 = −r2 sin2 θ + 2cr sin2 θ + O(1), (5.21)

where M and c are related to each other by the relation

Mu = −c2
u +

1
2

(cθθ + 3cθ cot θ − 2c)u. (5.22)
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Here the function cu(u, θ) is called the “news function”. It contains all the information about

the source, and if it is given, then the time evolution of the system is completely determined.

The other function M(u, θ) is intimately related to the mass of the system, so it is called the

“mass aspect”. In fact, it can be shown that the quantity

m(u) =
1
2

∫ π

0
M(u, θ) sin θdθ (5.23)

determines the total mass of the system as a function of the retarded time u at null infinity and

is called the “Bondi mass”. We can also show that

mu = −
1
2

∫ π

0
c2

u sin θdθ, (5.24)

which is the “Bondi mass-loss” formula. The negative sign on the right hand side indicates

that the system radiates out energy during periods for which cu , 0.

Thus, if the news function cu vanishes for a system, then there is no radiation and the Bondi

mass (5.23) remains constant. But if there is a non-zero news function, then there is radiation

and the system loses mass through the relation (5.24).

The news function also appears in the asymptotic expansions of the Riemann tensor compo-

nents, i.e. to order r−3

R =
N
r

+
III
r2 + O(r−3),

N = −cuu, III ∼ (cu sin2 θ)θθ. (5.25)

Therefore, although cu , 0 expresses the fact that the mass aspect (5.22) of a given solution is

undergoing a change, in order for the Riemann tensor to be of a radiative character it should

be that cuu , 0 also.

5.4 NEWS FOR THE COLLISION

In Section 5.2, we have found an approximate solution given by (5.13) and (5.14), which

describes the collision of two shock waves produced by two ultra-relativistic particles. In

order to study the mass-loss of the system as a result of the gravitational radiation, as described

in the previous section, we need to find the news function for this collision process. For this

purpose, first we need to bring the metric (5.13) into the Bondi form (5.17) to extract the news

function.
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Let us rewrite the metric (5.13) for the interaction region as

ds2 = 2A2(u, v, ρ)dudv − Q2(u, v, ρ)dρ2 − P2(u, v, ρ)ρ2dφ2, (5.26)

where

A2(u, v, ρ) ≡ 1 + K(u, v, ρ),

Q2(u, v, ρ) ≡ [1 + H(u, v, ρ)]
[
1 + 8µ̄

u + v
ρ2 + 16µ̄2 u2 + v2

ρ4

]
,

P2(u, v, ρ) ≡ [1 + M(u, v, ρ)]
[
1 − 8µ̄

u + v
ρ2 + 16µ̄2 u2 + v2

ρ4

]
, (5.27)

with

K(u, v, ρ) =

[
−

a
ρ4 uv −

2a
ρ6 u2v2 −

4a
ρ8 u3v3 + O(ρ−10)

]
µ̄2 + O(µ̄3),

H(u, v, ρ) =

[
2a
ρ4 uv −

3a
ρ6 u2v2 −

16a
3ρ8 u3v3 + O(ρ−10)

]
µ̄2 + O(µ̄3), (5.28)

M(u, v, ρ) =

[
2a
ρ4 uv +

3a
ρ6 u2v2 +

16a
3ρ8 u3v3 + O(ρ−10)

]
µ̄2 + O(µ̄3).

Remembering the definition of the null coordinates,

u =
1
√

2
(t − z), v =

1
√

2
(t + z), (5.29)

we can write the metric (5.26) in cylindrical coordinates

ds2 = A2(dt2 − dz2) − Q2dρ2 − P2ρ2dφ2. (5.30)

Now if we pass from cylindrical coordinates {ρ, z, φ} to spherical coordinates {r, θ, φ} by means

of the transformation

ρ = r sin θ, z = r cos θ, φ = φ, (5.31)

and define the retarded time

ũ = t − r, (5.32)

we obtain, after some rearrangements,

ds2 = A2dũ2 + 2A2dũdr + (A2 − Q2) sin2 θdr2

+2(A2 − Q2)r sin θ cos θdrdθ

−(Q2 cos2 θ + A2 sin2 θ)r2dθ2 − P2r2 sin2 θdφ2. (5.33)
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Of course, we need to express A2, Q2 and P2, which are functions of u, v, ρ in terms of the

variables ũ, r, θ also. From (5.29), (5.31) and (5.32), we can write

u =
1
√

2
[ũ + (1 − cos θ)r],

v =
1
√

2
[ũ + (1 + cos θ)r],

u + v =
√

2(ũ + r),

uv =
1
2

(ũ2 + 2ũr + r2 sin2 θ). (5.34)

Now using these relations in (5.27) and (5.28), we find up to O(µ̄3)

A2 = 1 −
a

2r4 sin4 θ
(ũ2 + 2ũr + r2 sin2 θ)µ̄2 + O(r−6),

Q2 = 1 +
8
√

2
r2 sin2 θ

(ũ + r)µ̄

+

[
32

r4 sin4 θ
(ũ + r)2 +

a

r4 sin4 θ
(ũ2 + 2ũr + r2 sin2 θ)

]
µ̄2 + O(r−6),

P2 = 1 −
8
√

2
r2 sin2 θ

(ũ + r)µ̄

+

[
32

r4 sin4 θ
(ũ + r)2 +

a

r4 sin4 θ
(ũ2 + 2ũr + r2 sin2 θ)

]
µ̄2 + O(r−6), (5.35)

where a = 32.

In order to bring the metric (5.33) to Bondi’s form, we need to find a coordinate system

x̄µ = (ū, r̄, θ̄, φ) such that from (5.21)

ḡ00 = 1 + O(r̄−1),

ḡ01 = 1 + O(r̄−1),

ḡ02 = O(1),

ḡ22 = −r̄2 + O(r̄),

ḡ33 = −r̄2 sin2 θ̄ + O(r̄), (5.36)

and also

ḡ11 = O(r̄−2), ḡ12 = O(r̄−1), ḡ22ḡ33 = r̄4 sin2 θ̄ + O(r̄−3). (5.37)

To satisfy these requirements, especially ḡ11 = O(r̄−2), the necessary transformation from

xµ = (ũ, r, θ, φ) to x̄µ = (ū, r̄, θ̄, φ) should include logarithmic terms as well, and may be
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expanded in powers of r̄−1:

ũ = f0(ū, θ̄) + t1(ū, θ̄) ln r̄ + t2(ū, θ̄)
ln r̄
r̄

+
f1(ū, θ̄)

r̄
+ · · · ,

r = q(ū, θ̄)r̄ + g0(ū, θ̄) + p1(ū, θ̄) ln r̄ + p2(ū, θ̄)
ln r̄
r̄

+
g1(ū, θ̄)

r̄
+ · · · ,

θ = h0(ū, θ̄) + w1(ū, θ̄)
ln r̄
r̄

+
h1(ū, θ̄)

r̄
+ · · · . (5.38)

With the requirements (5.36) and (5.37), the transformation law of the metric tensor

ḡµν =
∂xα

∂x̄µ
∂xβ

∂x̄ν
gαβ (5.39)

determines the functions f , t, q, g, p, h,w. The old metric components gµν can be read off from

(5.33) with (5.35). Under the transformation (5.38), they are (up to O(µ̄3))

g00 = g01 = 1 −
aµ̄2

2q2r̄2 sin2 h0
+ O(r̄−3),

g11 = −
8
√

2µ̄
qr̄

+ 8
√

2µ̄(p1 − t1)
ln r̄
q2r̄2

+
16
√

2(g0 − f0)µ̄ − (3a − 32 + 64 csc2 h0)µ̄2

2q2r̄2 + O(r̄−3),

g12 = −8
√

2µ̄ cot h0 + 8
√

2µ̄
(

qw1

sin2 h0
− t1 cot h0

)
ln r̄
qr̄

+
16
√

2(qh1 csc2 h0 − f0 cot h0)µ̄ − cot h0(3a − 32 + 64 csc2 h0)µ̄2

2qr̄
+ O(r̄−2),

g22 = −q2r̄2 − 2qp1r̄ ln r̄ − (2g0 + 8
√

2µ̄ cot2 h0)qr̄ + O(1),

g33 = −q2r̄2 sin2 h0 − 2q sin2 h0(p1 + qw1 cot h0)r̄ ln r̄

+ 2q
 4
√

2µ̄
sin2 h0

− qh1 cot h0 − g0

 r̄ sin2 h0 + O(1). (5.40)

Now the new metric components ḡµν, subject to the restrictions (5.36) and (5.37), can be

calculated from the transformation law (5.39). From the leading order terms of ḡ00 and ḡ02,

we immediately find that

h0ū = 0, qū = 0. (5.41)

For the condition ḡ11 = O(r̄−2) to be satisfied,

t1 = 4
√

2µ̄. (5.42)

The coefficient of ln r̄ in ḡ12 vanishes if

w1 = −
t1θ̄

qh0θ̄
= 0. (5.43)
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In order to eliminate the term proportional to r̄ ln r̄ in ḡ22, we should have

p1 = −qw1 cot h0 = 0. (5.44)

With the help of these, the other conditions lead to the following equations

q2h2
0θ̄ = 1, (5.45)

q2 sin2 h0 = sin2 θ̄, (5.46)

q f0θ̄ − 8
√

2µ̄qh0θ̄ cot h0 + q2h0θ̄h1 − 4
√

2µ̄qθ̄ = 0, (5.47)

f 2
0ū + 2 f0ūg0ū − q2h2

1ū = 1, (5.48)

q f0ū = 1, (5.49)

qθ̄ f0ū − q2h0θ̄h1ū = 0. (5.50)

Also, we can extract the metric function c(ū, θ̄) from ḡ33 or ḡ22 comparing with the forms in

(5.21); that is, we find from ḡ33

c = −h1 cot h0 −
g0

q
+

4
√

2µ̄
q sin2 h0

(5.51)

using (5.46), or from ḡ22

c = 4
√

2µ̄qh2
0θ̄ cot2 h0 + qh2

0θ̄g0 + q2h0θ̄h1θ̄

−qθ̄ f0θ̄ + 8
√

2µ̄qθ̄h0θ̄ cot h0 + 4
√

2µ̄
q2
θ̄

q
. (5.52)

The equations (5.45) and (5.46) can be solved for q explicitly:

q =

(
1

2χ
−
χ

2

)
cos θ̄ +

1
2χ

+
χ

2
, (5.53)

where χ is a constant of integration. There is no need to determine all the functions appearing

in the transformation (5.38). We are only interested in the mass-loss of the system which can

be calculated from the equation (5.24), so we need to find the news function cū only. Taking

the derivative of (5.52) with respect to the retarded time ū and using (5.41), we get

cū = qh2
0θ̄g0ū + q2h0θ̄h1θ̄ū − qθ̄ f0θ̄ū. (5.54)

Now using (5.45), (5.48), (5.49) and (5.50), it is possible to express (5.54) in terms of the

function q and its derivatives:

cū =
1
2
−

1 + q2
θ̄

2q2 +
qθ̄θ̄
q
. (5.55)
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Then putting (5.53) into this expression yields

cū = 0. (5.56)

This means that there is no mass-loss, according to the formula (5.24), at this order of approx-

imation. However, this cannot be correct. As we argued in the previous chapters, there should

be mass-loss due to the emission of gravitational waves in axi-symmetric particle collisions.

The above result may stem from our perturbation treatment with respect to the energy param-

eter µ̄; it is actually a dimensionful parameter (dimension of length) and so probably not a

good parameter to do perturbation with. Also, there should be contributions to the solutions

(5.14) of the order µ̄.

In the next chapter, we give a more physical construction of the problem.
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CHAPTER 6

GRUMILLER AND ROMATSCHKE APPROACH

In this chapter, we formulate the collision problem discussed in the previous chapter in a

different manner. We will use Milne coordinates in the interaction region of the shock waves.

This approach has been first applied by Grumiller and Romatschke [36] in the context of

AdS/CFT correspondence.

6.1 HEAD-ON COLLISION

The construction of the problem is the same as in Section 5.1. One of the shock waves

propagating along the v-direction has the usual continuous form

ds2 = 2dudv −
[
1 + 4µ̄1

uθ(u)
ρ2

]2

dρ2 −

[
1 − 4µ̄1

uθ(u)
ρ2

]2

ρ2dφ2 (6.1)

with µ̄1 =
√

2E1 being the energy of the wave. Similarly, the second shock with energy

µ̄2 =
√

2E2 propagating along the u-direction has

ds2 = 2dudv −
[
1 + 4µ̄2

vθ(v)
ρ2

]2

dρ2 −

[
1 − 4µ̄2

vθ(v)
ρ2

]2

ρ2dφ2. (6.2)

Then, we can construct the precollision metric by simply superposing these two waves (6.1)

and (6.2):

ds2 = 2dudv −
1 + 8

µ̄1uθ(u) + µ̄2vθ(v)
ρ2 + 16

µ̄2
1u2θ(u) + µ̄2

2v2θ(v)

ρ4

 dρ2

−

1 − 8
µ̄1uθ(u) + µ̄2vθ(v)

ρ2 + 16
µ̄2

1u2θ(u) + µ̄2
2v2θ(v)

ρ4

 ρ2dφ2. (6.3)

This metric describes globally the regions I, II, and III of Figure 2.1.
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To study the geometry of the interaction region IV, we use the coordinates of proper time and

spacetime rapidity defined by

τ =
√

2uv, η =
1
2

ln
v
u
. (6.4)

In these coordinates, the hypersurfaces {u = 0}, {v = 0} and {u = 0} ∪ {v = 0} bounding

the region IV in Figure 2.1 become η = +∞, η = −∞ and τ = 0, respectively. With this

transformation, we can write

2dudv = dτ2 − τ2dη2,

µ̄1u + µ̄2v =
1
2

√
2µ̄1µ̄2

√
2uv

[√
µ̄1

µ̄2

√
u
v

+

√
µ̄2

µ̄1

√
v
u

]
= µ̄τ cosh(Y − η),

µ̄2
1u2 + µ̄2

2v2 = (µ̄1u + µ̄2v)2 − 2µ̄1µ̄2uv =
1
2
µ̄2τ2 cosh[2(Y − η)], (6.5)

where we have defined

µ̄ ≡
√

2µ̄1µ̄2, Y ≡
1
2

ln
µ̄1

µ̄2
. (6.6)

Then, considering the form of the precollision metric (6.3), we can make the following general

ansatz for the line element after the collision:

ds2 = [1 + K(τ, η, ρ)]dτ2 − [1 + L(τ, η, ρ)]τ2dη2 + 2N(τ, η, ρ)τdτdη

−[1 + H(τ, η, ρ)]
{

1 + 8µ̄
τ cosh(Y − η)

ρ2 + 8µ̄2 τ
2 cosh[2(Y − η)]

ρ4

}
dρ2

−[1 + M(τ, η, ρ)]
{

1 − 8µ̄
τ cosh(Y − η)

ρ2 + 8µ̄2 τ
2 cosh[2(Y − η)]

ρ4

}
ρ2dφ2, (6.7)

where the functions K, L,N,H,M should vanish at τ = 0 and as η → ±∞ in order for the

ansatz (6.7) to reduce to the precollision metric (6.3). These functions have to be determined

by solving the vacuum field equations for the metric (6.7). However, it seems impossible to

give a full analytical solution which describes the interaction region of the waves. Therefore,

we restrict ourselves to the regime of early times τ � 1, i.e. times just after the collision.

This enables us to assume power series ansatz in τ for the functions K, L,N,H,M:

K(τ, η, ρ) =

∞∑
α=0

ταkα(η, ρ), etc. (6.8)

whose coefficients can be determined by solving the field equations order by order in τ.

It should be remembered that the energies of the black holes are µ̄1 =
√

2E1 and µ̄2 =
√

2E2,

so that eventually to obtain correct results one should put, from (6.6),

µ̄ = 2
√

E1E2, Y =
1
2

ln
E1

E2
. (6.9)
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However, from now on, we will assume that the energies of the black holes are equal, i.e.

E1 = E2 = E, then

µ̄ = 2E, Y = 0, (6.10)

and for this identical construction, since the spacetime will be symmetrical with respect to

η→ −η, we will take N(τ, η, ρ) = 0 (no cross term in the metric (6.7)).

It is possible to give the following solution

K(τ, η, ρ) =
c1µ̄

2

ρ4 τ2 +
8(c1 + 20)µ̄3 cosh(η)

3ρ6 τ3 +

[
c2µ̄

2

ρ6 +
c3µ̄

4

ρ8 +
32µ̄4 cosh(2η)

ρ8

]
τ4 + O(τ5)

L(τ, η, ρ) =
(c1 − 16)µ̄2

3ρ4 τ2 +
8(c1 + 20)µ̄3 cosh(η)

9ρ6 τ3

+

 (c2 − 32)µ̄2

5ρ6 −
(352 + 160c1 + c2

1 − 9c3)µ̄4

45ρ8 −
32µ̄4 cosh(2η)

5ρ8

 τ4 + O(τ5)

H(τ, η, ρ) =
16µ̄2

ρ4 τ2 +
4(c1 − 52)µ̄3 cosh(η)

3ρ6 τ3

+

[
(4 + 5c1)µ̄2

3ρ6 +
8(452 + c1)µ̄4

9ρ8 −
8(304 − c1)µ̄4 cosh(2η)

9ρ8

]
τ4 + O(τ5)

M(τ, η, ρ) =
16µ̄2

ρ4 τ2 −
4(c1 − 52)µ̄3 cosh(η)

3ρ6 τ3

+

[
(28 − c1)µ̄2

3ρ6 +
8(412 + c1)µ̄4

9ρ8 −
8(224 − 5c1)µ̄4 cosh(2η)

9ρ8

]
τ4 + O(τ5), (6.11)

where c1, c2, c3 are free integration constants. Thus we have found that the interaction region

IV of the colliding shock waves can be described by the metric

ds2 = A2(τ, η, ρ)dτ2 − B2(τ, η, ρ)τ2dη2 − Q2(τ, η, ρ)dρ2 − P2(τ, η, ρ)ρ2dφ2, (6.12)

where

A2(τ, η, ρ) ≡ 1 + K(τ, η, ρ),

B2(τ, η, ρ) ≡ 1 + L(τ, η, ρ),

Q2(τ, η, ρ) ≡ [1 + H(τ, η, ρ)]
[
1 + 8µ̄

τ cosh(η)
ρ2 + 8µ̄2 τ

2 cosh(2η)
ρ4

]
,

P2(τ, η, ρ) ≡ [1 + M(τ, η, ρ)]
[
1 − 8µ̄

τ cosh(η)
ρ2 + 8µ̄2 τ

2 cosh(2η)
ρ4

]
(6.13)

with the functions K, L,H,M given in (6.11).
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6.2 NEWS FOR THE COLLISION

Having obtained the solution, we can now study the gravitational radiation produced in the

collision by the method of Bondi which we have described in Section (5.3). Our aim is to

extract the news function from which we can calculate the mass-loss of the system.

Using the definitions (6.4), we can recast the metric (6.12) in terms of the null coordinates u, v

which are defined by (5.29). Then, as we did in section (5.4), passing from cylindrical coor-

dinates {ρ, z, φ} to spherical coordinates {r, θ, φ} by means of (5.31) and defining the retarded

time (5.32), we can rewrite the metric (6.12) as

ds2 = W−1[A2(ũ + r)2 − B2r2 cos2 θ]dũ2

+2W−1{A2(ũ + r)2 + [B2ũ − A2(ũ + r)]r cos2 θ}dũdr

+2W−1(A2 − B2)(ũ + r)r2 cos θ sin θdũdθ

+W−1{A2r2 cos4 θ + (A2 − Q2 sin2 θ)(ũ + r)2

− [2A2(ũ + r)r2 + B2ũ2 − Q2r2 sin2 θ] cos2 θ}dr2

+2W−1{[A2r + B2ũ2 − Q2(ũ + r)](ũ + r)

− (A2 − Q2)r2 cos2 θ}r cos θ sin θdrdθ

−{Q2 cos2 θ −W−1[A2r2 cos2 θ − B2(ũ + r)2] sin2 θ}r2dθ2

−P2r2 sin2 θdφ2, (6.14)

where W ≡ (ũ + r)2 − r2 cos2 θ, and A2, B2, Q2, P2 are functions of τ, η, ρ defined in (6.13)

and should be expressed here in terms of the coordinates ũ, r, θ.

In order to bring the metric (6.14) into the Bondi form asymptotically, we need the transfor-

mation (5.38), which we reproduce here

ũ = f0(ū, θ̄) + t1(ū, θ̄) ln r̄ + t2(ū, θ̄)
ln r̄
r̄

+
f1(ū, θ̄)

r̄
+ · · · ,

r = q(ū, θ̄)r̄ + g0(ū, θ̄) + p1(ū, θ̄) ln r̄ + p2(ū, θ̄)
ln r̄
r̄

+
g1(ū, θ̄)

r̄
+ · · · ,

θ = h0(ū, θ̄) + w1(ū, θ̄)
ln r̄
r̄

+
h1(ū, θ̄)

r̄
+ · · · . (6.15)

Under this transformation, the metric tensor transforms as

ḡµν =
∂xα

∂x̄µ
∂xβ

∂x̄ν
gαβ (6.16)
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with the old metric components gµν to be read off from (6.14). The new metric components

ḡµν are subject to the restrictions (5.36) and (5.37) which lead to the following equations

t1 = 4µ̄, (6.17)

h0ū = qū = w1 = p1 = 0, (6.18)

q2h2
0θ̄ = 1, (6.19)

q2 sin2 h0 = sin2 θ̄, (6.20)

q f0θ̄ − 8µ̄qh0θ̄ cot h0 + q2h0θ̄h1 − 4µ̄qθ̄ = 0, (6.21)

f 2
0ū + 2 f0ūg0ū − q2h2

1ū = 1, (6.22)

q f0ū = 1, (6.23)

qθ̄ f0ū − q2h0θ̄h1ū = 0. (6.24)

Also, the metric function c(ū, θ̄) can be extracted from ḡ33 as

c = −h1 cot h0 −
g0

q
+

4µ̄
q sin2 h0

, (6.25)

or from ḡ22 as

c = 4µ̄qh2
0θ̄ cot2 h0 + qh2

0θ̄g0 + q2h0θ̄h1θ̄

−qθ̄ f0θ̄ + 8µ̄qθ̄h0θ̄ cot h0 + 4µ̄
q2
θ̄

q
. (6.26)

These are actually the same equations as the ones obtained in Section (5.4), considering the

energy parameter µ̄ = 2E here and µ̄ =
√

2E there. Therefore, the conclusion is the same,

namely, (6.19) and (6.21) can be solved for q, which yields (5.53) again

q =

(
1

2χ
−
χ

2

)
cos θ̄ +

1
2χ

+
χ

2
(6.27)

with χ being a constant of integration, and expressing the news function cū in terms of q and

its derivatives by means of the other equations, we get

cū =
1
2
−

1 + q2
θ̄

2q2 +
qθ̄θ̄
q

= 0. (6.28)

Thus we have again found that there is no mass-loss.
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CHAPTER 7

CONCLUSION

In this thesis, we have studied the head-on collision of two identical ultra-relativistic black

holes described by Aichelburg-Sexl shock waves. Since it is not easy to give an exact solution

to the field equations in the interaction region, we treated the problem perturbatively. First,

assuming the energy parameters of the waves to be small, we gave a series solution which

may describe the interaction of the waves approximately. Secondly, formulating the prob-

lem in terms of proper time and rapidity, we studied the early-time dynamics of the collision

spacetime and gave a power series solution in proper time. In this thesis, we used the method

of Bondi which renders possible to calculate the efficiency of the gravitational radiation pro-

duced by the collision by means of the news function. We calculated the news function for

the solutions that we have given, and we found that it is zero at the order of approximations in

either case, which means that there is no mass-loss. This result implies that we need to apply

some other methods to evaluate the emitted radiation in the process. This will be our future

work.

49



APPENDIX A

pp-WAVE SPACETIMES

Spacetimes admitting a covariantly constant null vector field kµ are called plane-fronted grav-

itational waves with parallel rays (pp-waves) [14, 15, 16]. That is, a pp-wave is characterized

by the requirements

kν;µ ≡ ∇µkν = 0, kµkµ = 0. (A.1)

The condition of being covariantly constant also implies that

Rβαµνkβ = kα;µ;ν − kα;ν;µ = 0, (A.2)

and the vector field satisfies the geodesic equation; i.e.

kνkµ;ν = 0, (A.3)

where kµ = dxµ
dv , v being an affine parameter, is the tangent vector to the geodesics. Therefore

the vector field kµ defines a null geodesic congruence. On the other hand, using the nullness,

of the field we can also deduce the following relation

kνkν;µ =
1
2

(kνkν);µ = 0. (A.4)

Now adding and subtracting (A.3) and (A.4) among each other, we get the following two

equations

k(µ;ν) = 0, (A.5)

k[µ;ν] = 0, (A.6)

where the round brackets denote symmetrization, while the square brackets denote anti-

symmetrization. The first of these equations (A.5) is the Killing equation, which can also

be written as

gµν,αkα + gανkα,µ + gµαkα,ν = 0, (A.7)

50



so a covariantly constant null vector field is automatically a Killing vector field. On the other

hand, (A.6) says that

kµ;ν − kν;µ = kµ,ν − kν,µ = 0, (A.8)

and this implies that the vector field kµ can be written as the gradient of a function u(xα):

kµ = u,µ. (A.9)

Now if we choose our coordinates as xµ = (u, v, xi) with i = 1, 2, then from (A.9) and kµ = dxµ
dv

kµ = δ0
µ, kµ = δ

µ
1. (A.10)

Since this is a Killing vector, (A.7) reduces to

∂gµν
∂v

= 0, (A.11)

which means that the metric is independent of the coordinate v, and from (A.10) we also have

gµνkν = kµ ⇒ gµ1 = δ0
µ. (A.12)

There are no further constraints, and thus the most general form of a spacetime metric admit-

ting a covariantly constant null vector field, i.e. a pp-wave spacetime, can be written in the

coordinates xµ = (u, v, xi) as

ds2 = gµν(u, xi)dxµdxν

= g0νdudxν + g1νdvdxν + giνdxidxν

= g00du2 + g01dudv + g0idudxi + g10dvdu + gi0dxidu + gi1dxidv + gi jdxidx j

= 2dudv + g00(u, xi)du2 + 2g0i(u, xi)dudxi + gi j(u, xi)dxidx j. (A.13)

The metric functions g00(u, xi), g0i(u, xi) and gi j(u, xi) are constrained by the field equations.

Just for simplicity, the most useful pp-waves generally considered in the literature are the

ones for which g0i = 0 and gi j = δi j; that is,

ds2 = 2dudv + g00(u, xi)du2 + δi jdxidx j (A.14)

which is the form that we have discussed in Chapter 2.
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APPENDIX B

PROOF OF THE RELATION (3.46)

In this appendix, we will prove the relation (3.46) which is essential for carrying out the

ultrarelativistic limit β→ 1.

Let us define

I ≡ ln
(

x − βx0 + [(x − βx0)2 + γ−2(y2 + z2)]1/2

x − βx0 + [(x − βx0)2 + γ−2]1/2

)
, γ−2 = 1 − β2 (B.1)

the limit of which is

lim
β→1

I = ln
(

x − x0 + |x − x0|

x − x0 + |x − x0|

)
=

 0, for x − x0 > 0,

∞−∞ (indeterminate!), for x − x0 < 0.
(B.2)

For the case x − x0 < 0, apply the L’Hospital rule:

lim
β→1

x−x0<0

I = lim
β→1

x−x0<0

ln

 ∂
∂β

(
x − βx0 + [(x − βx0)2 + γ−2(y2 + z2)]1/2

)
∂
∂β

(
x − βx0 + [(x − βx0)2 + γ−2]1/2)


= lim

β→1
x−x0<0

ln

−x0 −
(x−βx0)x0+β(y2+z2)

[(x−βx0)2+γ−2(y2+z2)]1/2

−x0 −
(x−βx0)x0+β

[(x−βx0)2+γ−2]1/2


= ln

−x0 +
(x−x0)x0+(y2+z2)

x−x0

−x0 +
(x−x0)x0+1

x−x0


= ln(y2 + z2). (B.3)

Therefore

lim
β→1

I =

 0, for x − x0 > 0,

ln(y2 + z2), for x − x0 < 0,

= [1 − θ(x − x0)] ln(y2 + z2) (B.4)

which is (3.46). Also,

lim
β→1

∂I
∂x

= lim
β→1

{
[(x − βx0)2 + γ−2(y2 + z2)]−1/2 − [(x − βx0)2 + γ−2]−1/2

}
= −δ(x − x0) ln(y2 + z2). (B.5)
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APPENDIX C

CONTINUOUS COORDINATES FOR SHOCK WAVES

In this appendix, we give a general coordinate transformation for any shock wave metric

which brings the metric into an explicitly continuous form.

Motivated by the form (3.74), we can write the following general shock wave metric with

plane polar coordinates on the transverse plane:

ds2 = σdūdv̄ + f (ρ̄)δ(ū)dū2 + λ
(
dρ̄2 + ρ̄2dφ̄2

)
, (C.1)

where f (ρ̄) is the profile function which describes the wave, and σ and λ are just numerical

constants introduced for taking into account the signature of the metric and the definition

of the null coordinates (ū, v̄). Evidently, due to the appearance of the delta function δ(ū) in

the metric, the coordinate system is discontinuous across the null coordinate ū. However, it is

sometimes more convenient to work with the form in which the metric is explicitly continuous

(when studying the geodesics in the spacetime, for example). It is therefore necessary to bring

the metric (C.1) into continuous form by an appropriate coordinate transformation which is

in its general form

ū = u, v̄ = v + αθ(u) f (ρ) + βuθ(u)
[
f ′(ρ)

]2 , ρ̄ = ρ + γuθ(u) f ′(ρ), φ̄ = φ, (C.2)

where α, β, γ are again numerical constants, and the prime denotes derivative with respect to

the argument. The differentials of the coordinates (C.2) are

dū = du,

dv̄ = dv + αδ(u) f du + αθ(u) f ′dρ

+ βθ(u) f ′2du + 2βuθ(u) f ′ f ′′dρ,

dρ̄ = dρ + γθ(u) f ′du + γuθ(u) f ′′dρ,

dφ̄ = dφ. (C.3)
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Now putting these in (C.1), the metric becomes

ds2 = σdudv + σαδ(u) f du2︸         ︷︷         ︸
1

+σαθ(u) f ′dudρ︸            ︷︷            ︸
2

+σβθ(u) f ′2du2︸             ︷︷             ︸
3

+ 2σβuθ(u) f ′ f ′′dudρ︸                   ︷︷                   ︸
4

+ f (ρ̄)δ(u)du2︸        ︷︷        ︸
1

+λdρ2 + 2λγθ(u) f ′dudρ︸             ︷︷             ︸
2

+2λγuθ(u) f ′′dρ2

+ λγ2θ(u) f ′2du2︸            ︷︷            ︸
3

+ 2λγ2uθ(u) f ′ f ′′dudρ︸                    ︷︷                    ︸
4

+λγ2u2θ(u) f ′′2dρ2

+λ

[
1 + γuθ(u)

f ′

ρ

]2

ρ2dφ2, (C.4)

where we have used the property f (u)δ(u) = f (0)δ(u). To cancel the same-numbered terms,

the numerical constants should be related to each other as

α = −
1
σ
, γ =

1
2λ
, β = −

1
4σλ

. (C.5)

Therefore, we get

ds2 = σdudv + λ
[
1 + γuθ(u) f ′′

]2 dρ2 + λ

[
1 + γuθ(u)

f ′

ρ

]2

ρ2dφ2. (C.6)

As an application, consider the Aichelburg-Sexl shock wave metric (3.68). Here in the barred

coordinates it takes the form

ds2 = 2dūdv̄ + 4µ̄ ln ρ̄2δ(ū)dū2 −
(
dρ̄2 + ρ̄2dφ̄2

)
, (C.7)

from which we can identify

f (ρ̄) = 4µ̄ ln ρ̄2, σ = 2, λ = −1. (C.8)

So the transformation is, from (C.2),

ū = u, v̄ = v − 4µ̄ ln ρθ(u) + 8µ̄2 uθ(u)
ρ2 , ρ̄ = ρ − 4µ̄

uθ(u)
ρ

, φ̄ = φ, (C.9)

which brings the metric (C.7) into the following continuous form

ds2 = 2dudv −
[
1 + 4µ̄

uθ(u)
ρ2

]2

dρ2 −

[
1 − 4µ̄

uθ(u)
ρ2

]2

ρ2dφ2. (C.10)
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APPENDIX D

ENERGY SPECTRUM OF GRAVITATIONAL WAVES

IN LINEARIZED GRAVITY

We are interested in the generation of gravitational radiation by sources. This in general

requires the consideration of the full non-linear Einstein’s field equations coupled to matter.

But the non-linearity of the equations makes the treatment difficult, so it is necessary to study

the weak field limit of the theory in which the spacetime is nearly Minkowskian and the

self-interaction of the gravitational field is neglected.

We assume that the spacetime is asymptotically flat and the metric can be decomposed into

the flat Minkowski metric plus a small perturbation as

gµν = ηµν + hµν, (D.1)

where ηµν = (1,−1,−1,−1) and |hµν| � 1. We have set the speed of light c = 1. To first order

in h, the Einstein field equations become

�hµν = −16πGS µν (D.2)

in Lorenz gauge (see [31] for details). Here � = ∂2
t −∂

2
x−∂

2
y−∂

2
z is the flat space d’Alembertian,

G is the gravitational constant, and

S µν ≡ Tµν −
1
2
ηµνT. (D.3)

(D.2) can be solved by using the method of Green’s function and the solution is

hµν(t, x) = 4G
∫

d3x′
S µν(t − |x − x′|, x′)

|x − x′|
. (D.4)

This is the gravitational potential at the point (t, x) produced by the sources S µν at the point

(t − |x − x′|, x′). The time argument t − |x − x′| is called the “retarded time” and shows that

gravitational effects propagate with the speed of light.
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In order to investigate the gravitational radiation which is an oscillatory phenomenon, it is

convenient to work with the Fourier transform technique. We use the following conventions:

Given a function of spacetime φ(t, x), the Fourier transform and its inverse are defined by

φ(ω, x) =

∫
dt eiωtφ(t, x),

φ(t, x) =

∫
dω
2π

e−iωtφ(ω, x) (D.5)

with respect to time, and

φ(t,k) =

∫
d3x e−ik·xφ(t, x),

φ(t, x) =

∫
d3k

(2π)3 eik·xφ(t,k) (D.6)

with respect to space. With these definitions, the field hµν(t, x) in (D.4) can be written as

hµν(t, x) = 4G
∫

d3x′
∫

dω
2π

e−iω(t−|x−x′ |) S µν(ω, x′)
|x − x′|

+ c.c., (D.7)

where “c.c.” means the “complex conjugate” of the preceding term which is necessary to

make the whole expression real, and

S µν(ω, x) ≡ Tµν(ω, x) −
1
2
ηµνT (ω, x). (D.8)

Now we suppose that the source is isolated and fairly far away. Therefore, the distances

r ≡ |x|, at which we observe the radiation, are much larger than the dimension R ≡ |x′| of the

source, and also much larger than ωR2 and 1/ω. Hence we may approximate

|x − x′| = [(x − x′) · (x − x′)]1/2,

= (|x|2 − 2x · x′ + |x′|2)1/2,

= (r2 − 2x · x′ + R2)1/2,

= r
(
1 − 2

x
r
·

x′

r
+

R2

r2

)1/2

,

' r − x̂ · x′,

where x̂ ≡ x/r. Also,
1

|x − x′|
'

1
r
.

This enables us to write the field (D.7) as

hµν(t, x) =
4G
r

∫
dω
2π

e−iω(t−r)
∫

d3x′ S µν(ω, x′) e−iωx̂·x′ + c.c.

=
4G
r

∫
dω
2π

e−iω(t−r) S µν(ω,k) + c.c., (D.9)
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where we put the wave 4-vector

kµ = (k0,k) = (ω,ωx̂), (D.10)

and then used (D.6). Since rω is assumed to be large, (D.9) looks just like an integral over ω

of the individual plane waves,

hµν(t, x) =

∫
dω eµν(ω, x) e−ikµxµ + c.c. (D.11)

with kµxµ = ωt − ωr and

eµν(ω, x) ≡
4G
2πr

S µν(ω,k) =
4G
2πr

[
Tµν(ω,k) −

1
2
ηµνT (ω,k)

]
(D.12)

being the “polarization tensor”.

Now using the standard expression for the energy density of the radiation field (see [31]), we

can obtain the distribution of the energy emitted in a direction k̂:

d2E
dΩdω

=
r2(k · x̂)k0

8G

[
e∗µν(ω, x)eµν(ω, x) −

1
2
|eµµ(ω, x)|2

]
=

Gω2

2π2

[
S ∗µν(ω,k)S µν(ω,k) −

1
2
|S (ω,k)|2

]
=

Gω2

2π2

[
T ∗µν(ω,k)T µν(ω,k) −

1
2
|T (ω,k)|2

]
, (D.13)

where we have inserted (D.10) and (D.12). This is the gravitational energy flux per unit solid

angle and per unit frequency in a direction k̂. Thus the problem is solved once we have

calculated the Fourier transform of the energy-momentum tensor of the source.

In Section 4.3, we are interested in the total energy radiated in a collision process of two

particles. To calculate the energy distribution (D.13) in this case, we need to know the energy-

momentum tensor of two moving particles and its Fourier transform. However, we first want

to give a general formula describing the energy-momentum tensor of a system of free particles

moving with arbitrary constant velocities (see [31]).

The energy-momentum tensor of a moving particle can be obtained from the energy-momentum

tensor of a static particle by boosting the particle to a frame moving with constant velocity v.

The only non-zero component of the energy-momentum tensor of a particle of mass M at rest

in a frame with coordinates x̄µ = (t̄, x̄, ȳ, z̄) is

T̄ t̄t̄ = Mδ(x̄)δ(ȳ)δ(z̄). (D.14)
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Under the Lorentz transformation (3.51) with c = 1, i.e.

t = γ(t̄ + vx̄), x = γ(x̄ + vt̄), y = ȳ, z = z̄, (D.15)

the energy-momentum tensor transforms according to the rule

T µν =
∂xµ

∂x̄α
∂xν

∂x̄β
T̄αβ (D.16)

which yields the following non-zero components:

T tt = γMδ(x − vt)δ(y)δ(z),

T tx = γMvδ(x − vt)δ(y)δ(z),

T xx = γMv2δ(x − vt)δ(y)δ(z), (D.17)

with the help of the property δ(au) = δ(u)/|a|. These are the components of the energy-

momentum tensor of a particle of mass M moving along the x-axis with the constant speed v.

All these can be written more compactly by using the relativistic notation:

T µν =
PµPν

E
δ(x − vt)δ(y)δ(z), (D.18)

where E = γM is the energy and Pµ = (E, Px, 0, 0) = γM(1, v, 0, 0) is the 4-momentum of the

particle. Now we can easily generalize (D.18) for an arbitrary number of particles mowing in

arbitrary directions with arbitrary velocities, namely

T µν =
∑

n

PµnPνn
En

δ3(x − vnt), (D.19)

where

En =
Mn√
1 − v2

n

, Pµn = (En,Pn) = En(1, vn) (D.20)

are the energy and 4-momentum of the nth particle.

Let us now consider a system of n free particles that are initially moving with constant veloc-

ities vn. We assume that they collide at the origin at t = 0, and scatter one another to different

directions with different velocities v′n. Then the total energy-momentum tensor is

T µν(t, x) =
∑

n

PµnPνn
En

δ3(x − vnt)θ(−t) +
∑

n

P′µn P′νn
E′n

δ3(x − v′nt)θ(t) (D.21)

where θ(t) is the step function. Here the first term represents the particles before the collision,

while the second term represents them after the collision. There is an abrupt change in the

quantities En and Pµn at t = 0 due to the collision. In order to calculate the distribution of
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the emitted energy, we need to find the Fourier transform of the energy-momentum tensor

(D.21). This can be done by remembering the well-known integral representations of the

functions θ(s) and δ3(x − x′) given by

θ(s) = −i
∫ ∞

−∞

dω
2π

eiωs

ω − iε
,

δ3(x − x′) =

∫
d3k

(2π)3 eik·(x−x′). (D.22)

Then (D.21) becomes

T µν(t, x) = −i
∫

d3k
(2π)3

∫
dω
2π

∑
n

[
PµnPνn

En
eik·(x−vnt) e−iωt

ω − iε

+
P′µn P′νn

E′n
eik·(x−v′nt) eiωt

ω − iε

]
. (D.23)

Changing the variables

ω→ ω − k · vn

in the first term, and

ω→ −(ω − k · v′n)

in the second term, we get

T µν(t, x) = −i
∫

d3k
(2π)3

∫
dω
2π

e−iωt
∑

n

[
PµnPνn

En

eik·x

ω − k · vn − iε

−
P′µn P′νn

E′n

eik·x

ω − k · v′n + iε

]
=

∫
dω
2π

e−iωt T µν(ω, x), (D.24)

where we have used (D.5). So we have

T µν(ω, x) = −i
∫

d3k
(2π)3 eik·x

∑
n

[
PµnPνn

En(ω − k · vn − iε)

−
P′µn P′νn

E′n(ω − k · v′n + iε)

]
=

∫
d3k

(2π)3 eik·x T µν(ω,k) (D.25)

using (D.6). Therefore, we find

T µν(ω,k) = −i
∑

n

[
PµnPνn

En(ω − k · vn − iε)
−

P′µn P′νn
E′n(ω − k · v′n + iε)

]
. (D.26)

We can drop ∓iε in the denominator because ω − k · vn cannot vanish if ω = |k| and |vn| < 1.

For the case of particles traveling at the speed of light, there seems to be a singularity, but it
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is actually spurious (see [31]). Thus we finally write

T µν(ω,k) = −i
∑

n

[
PµnPνn

En(ω − k · vn)
−

P′µn P′νn
E′n(ω − k · v′n)

]
. (D.27)

This is the Fourier transform of the energy-momentum tensor of a system of n free particles,

which is exploited in Section 4.3 to obtain the radiation spectrum for the special case of two

colliding particles.
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