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ABSTRACT

FUZZY UNEQUAL CLUSTERING IN WIRELESS SENSOR NETWORKS

Bağcı, Hakan

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

January 2010, 64 pages

In order to gather information more efficiently, wireless sensor networks are partitioned into

clusters. The most of the proposed clustering algorithms do not consider the location of the

base station. This situation causes hot spots problem in multi-hop wireless sensor networks.

Unequal clustering mechanisms, which are designed by considering the base station location,

solve this problem. In this thesis, we propose a fuzzy unequal clustering algorithm (EAUCF)

which aims to prolong the lifetime of wireless sensor networks. EAUCF adjusts the cluster-

head radius considering the residual energy and the distance to the base station parameters of

the sensor nodes. This helps decreasing the intra-cluster work of the sensor nodes which are

closer to the base station or have lower battery level. We utilize fuzzy logic for handling the

uncertainties in cluster-head radius estimation. We compare our algorithm with some popular

algorithms in literature, namely LEACH, CHEF and EEUC, according to First Node Dies

(FND), Half of the Nodes Alive (HNA) and energy-efficiency metrics. Our simulation results

show that EAUCF performs better than other algorithms in most of the cases considering

FND, HNA and energy-efficiency. Therefore, our proposed algorithm is a stable and energy-

efficient clustering algorithm.
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ÖZ

KABLOSUZ ALGILAYICI AĞLARDA BULANIK DEĞİŞKEN YARIÇAPLI
KÜMELEME

Bağcı, Hakan

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Ocak 2010, 64 sayfa

Kablosuz algılayıcı ağlar daha verimli bir şekilde veri toplanmasını sağlamak için kümelere

ayrılırlar. Şu ana kadar tasarlanan kümeleme algoritmalarının birçoğu baz istasyonun konu-

munu hesaba katmamıştır. Bu durum çoklu atlamalı kablosuz algılayıcı ağlarda sorunlu bölge

problemine sebep olmaktadır. Baz istasyon konumunu dikkate alarak tasarlanan değişken

yarıçaplı kümeleme algoritmaları bu problemi çözmektedir. Bu tezde kablosuz algılayıcı

ağların ömrünü uzatmayı amaçlayan bulanık değişken yarıçaplı bir kümeleme algoritması

(EAUCF) önerilmektedir. EAUCF, algılayıcıların enerji seviyelerini ve baz istasyona olan

uzaklıklarını dikkate alarak kümelerin yarıçapını belirler. Bu durum, baz istasyona daha

yakın olan veya pil seviyesi daha düşük olan küme liderlerine daha az küme içi iş verilmesini

sağlar. Kümeleme yarıçapı hesaplamada ortaya çıkan belirsizliklerle başa çıkmak için bulanık

mantık kullanılmıştır. Tasarladığımız algoritmayı literatürde popüler olan LEACH, CHEF

ve EEUC kümeleme algoritmları ile FND, HNA ve enerji verimliliği ölçütlerini kullanarak

karşılaştırdık. Simulasyon sonuçlarımıza göre çoğu durumda EAUCF algoritması diğer al-

goritmalardan FND, HNA ve enerji verimliliği açısından daha iyi performans göstermiştir.

Bundan dolayı tasarladığımız algoritma kararlı ve enerji verimli bir kümeleme algoritmasıdır.
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CHAPTER 1

INTRODUCTION

There have been recent advances in micro-electro-mechanical systems (MEMS) technology,

wireless communications, and digital electronics. These advances have enabled the develop-

ment of low-cost, low-power, multifunctional sensor nodes that are small in size and commu-

nicate with each other using radio frequencies [1]. A single sensor node has limited capability

in sensing and is not sufficient for gathering useful information from a specific domain. This

data gathering process can be accomplished by the collective work of a number of sensor

nodes. In many applications the number of sensor nodes could be hundreds or thousands.

These collaboratively working sensor nodes form a network which is called a wireless sensor

network (WSN).

Wireless sensor networks have plenty of advantages. The deployment of WSNs are easier and

faster than the wired sensor networks or any other wireless networks [10], because they do

not need any fixed infrastructure [22]. Since sensor nodes are densely deployed in most of the

cases, they are able to tolerate the network failures. Wireless sensor networks do not require

a central organisation and they are self-configuring [10].

There are several types of wireless sensors such as seismic, low sampling rate magnetic, ther-

mal, visual, infrared, acoustic and radar sensors [1]. These sensor nodes can monitor various

environmental conditions. Some of these conditions are temperature, pressure, humidity, soil

makeup, vehicular movement, noise levels, lighting conditions, the presence or absence of

certain kinds of objects and mechanical stress levels on attached objects [3].

Wireless sensor networks have various types of applications. Foremost WSN applications are

military applications, environmental applications, health applications, home applications and
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other commercial applications [1]. Brief descriptions of some of these WSN applications are

listed below:

• Military Applications: Properties such as fault tolerability, rapid deployment and self

organization make WSNs useful in military applications. They may be used in moni-

toring and tracking friendly forces, battlefield surveillance, nuclear, chemical and bio-

logical attack detection.

• Environmental Applications: WSNs can be used for monitoring and tracking animals,

detecting forest fires and floods, large-scale earth monitoring and planetary exploration.

• Health Applications: Some of the health areas that WSN applications may be used are

patient monitoring, telemonitoring of human physiological data, and drug administra-

tion.

• Home Applications: WSNs can be used in home automation systems. The domestic

devices may interact with each other using wireless communication.

• Other Commercial Applications: WSN applications can be developed for monitoring

material fatigue, managing inventory, monitoring product quality, detecting and moni-

toring car thefts, factory process control and automation.

In wireless sensor networks, each sensor node receives signal from a limited region. This

signal is processed in that sensor node and sensed information is generally transmitted to the

observers (e.g. base stations) [21]. Sensor nodes consume energy while receiving informa-

tion, processing information and transmitting information. In most of the cases, these sensor

nodes are equipped with batteries which are not rechargeable. Therefore, energy efficiency is

a major design goal in wireless sensor networks [21].

Nodes can be partitioned into a number of small groups, called clusters, for aggregating data

through efficient network organization [21]. In general, each cluster has a cluster-head which

coordinates the data gathering and aggregation process in a particular cluster. Each cluster

member forwards its data packets to the cluster-head. Clustering in wireless sensor networks

guarantees basic performance achievement with a large number of sensor nodes [17] [2]. In

other words, clustering improves the scalability of wireless sensor networks [14]. This is

because clustering minimizes the need for central organization and promotes local decisions.

The major benefits of clustering in wireless sensor networks are listed [22] below:
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• Clustering provides the spatial reuse of resources to increase system capacity. For ex-

ample, if the clusters are not neighbors, they can use the same frequency for wireless

communication.

• Routing information of a cluster is shared with only other cluster-heads or cluster gate-

ways. This restriction reduces the number of transmissions performed for distributing

routing information. By using this advantage of clustering, more energy efficient rout-

ing protocols have been implemented.

• When cluster structure is used in a WSN, the local changes need not be reflected to

entire network. This reduces the information processed by sensor nodes and data stored

in sensor nodes.

There have been substantial amount of research on clustering protocols for WSNs. These

clustering protocols are classified according to different criteria. The classification of cluster-

ing protocols according to their objectives is given [22] below:

• Dominating-set-based clustering: This type of clustering protocols try to find a weakly

connected dominating set which is responsible for searching route and maintaining

routing table. Thus, table-driven routing and on-demand routing can be applied easily.

• Low-maintenance clustering: This type of clustering protocols aim to provide a stable

cluster structure to upper layer protocols. To achieve this goal, they try to limit re-

clustering situations or reducing the control messages for clustering.

• Mobility-aware clustering: Mobility-aware clustering protocols take the mobility of

sensor nodes into consideration. They try to group the mobile nodes that move with

similar speed. The clusters that consist of mobile nodes moving with similar speed

build a more stable cluster structure for wireless sensor networks.

• Energy-efficient clustering: Energy-efficient clustering protocols try to use the battery

energy of the sensor nodes more wisely, because sensor nodes have limited battery en-

ergy, and they are generally not rechargeable. Energy consumption of sensor nodes can

be reduced by eliminating redundant energy consumption and balancing the energy us-

age of sensor nodes over the network. The main goal of this type of clustering protocols

is prolonging the network lifetime.
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• Load-balancing clustering: This type of clustering protocols try to limit the number of

sensor nodes in each cluster. This approach produces clusters with similar sizes. If the

clusters are similar in size, loads can be more evenly distributed within each cluster.

• Combined-metrics-based clustering: As the name implies, this type of clustering pro-

tocols consider different metrics together. These metrics can be node degree, battery

energy, cluster size, mobility speed, etc. These types of metrics are generally used in

cluster-head election phase of clustering protocols.

Most of the clustering algorithms utilize two techniques which are selecting cluster-heads with

more residual energy and rotating cluster-heads periodically to balance energy consumption

of the sensor nodes over the network [13]. These clustering algorithms do not take the location

of the base station into consideration. This lack of consideration causes the hot spots problem

in multi-hop wireless sensor networks. The cluster-heads near the base station die earlier,

because they will be in a heavier relay traffic than the cluster-heads which are relatively far

from the base station. In order to avoid this problem, some unequal clustering algorithms are

proposed in literature [18][13]. In unequal clustering, the network is partitioned into clusters

with different sizes. The clusters close to the base station are smaller than the clusters that

are far from the base station. EEUC (Energy-Efficient Unequal Clustering) mechanism for

periodical data gathering partitions the sensor nodes into clusters of unequal size, and clusters

closer to the base station have smaller size.

In order to balance energy consumption of cluster-heads, a periodically rotating cluster-head

mechanism is firstly proposed by Heinzelman et al., namely LEACH (Low-Energy Adaptive

Clustering Hierarchy). LEACH is a clustering algorithm that utilizes randomized rotation to

balance energy consumption of cluster-heads over the network [9]. Randomized periodical

rotation property of LEACH is used in many clustering algorithms. Although periodical ro-

tation is a vital property for clustering algorithms, it is not sufficient by itself. Most of the

clustering algorithms, such as EEUC and CHEF, use periodical rotation as a base property

and build their approach on top of it.

Various uncertainties may arise while partitioning wireless sensor networks into clusters.

Fuzzy set theory is exclusively useful to model uncertainty. In general, it might also be the

most appropriate way to model uncertainty for well-defined situations [23]. Some fuzzy clus-

tering algorithms, such as CHEF [11] and the algorithm of Gupta et al. [5], are proposed
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for handling uncertainties in clustering. CHEF (Cluster Head-Election with Fuzzy) is a lo-

calized cluster-head election mechanism that uses fuzzy logic to maximize the lifetime of

the WSN [11]. On the other hand, the algorithm that is proposed by Gupta et al. is a cen-

tralized cluster-head election mechanism. Thus, it requires gathering clustering information

from sensor nodes to the base station.

In this thesis, a fuzzy energy-aware unequal clustering approach (EAUCF) is introduced to

make a further improvement in maximizing the lifetime of the WSN. EAUCF is a distributed

competitive aglorithm. It selects the cluster-heads via energy-based competition among the

tentative cluster-heads which are selected using a probabilistic model. EAUCF mostly focuses

on wisely assigning competition ranges to the tentative cluster-heads. In order to make wise

decisions, it utilizes the residual energy and the distance to the base station parameters of

the sensor nodes. In addition to this, EAUCF uses fuzzy logic to handle uncertainties in

competition range estimation.

LEACH protocol rotates the cluster-heads periodically in order to balance energy consump-

tion. It uses a pure probabilistic model to elect cluster-heads. CHEF, EEUC and EAUCF also

utilize randomized periodical rotation. However, they do not elect the final cluster-heads by

using a pure probabilistic model. They rotate the tentative cluster-heads periodically, but not

the actual cluster-heads. CHEF, EEUC and EAUCF are competitive clustering algorithms.

They elect the actual cluster-heads via competition among the tentative cluster-heads. The

competition of tentative cluster-heads are based on the residual energy and local distance pa-

rameters. On the other hand, EEUC and EAUCF only employ the residual energy levels of

the tentative cluster-heads in order to elect the actual cluster-head.

EAUCF, CHEF and the approach of Gupta et al. utilize fuzzy logic for handling uncertainties

in clustering. CHEF and the approach of Gupta et al. assign chances to the sensor nodes

using the results which are inferred from the predefined fuzzy if-then mapping rules. These

chances are used in cluster-head competition. However, EAUCF employs fuzzy logic for

wisely adjusting the competition ranges of the tentative cluster-heads. The approach of Gupta

et al. is a centralized cluster-head election mechanism. Thus, in order to elect cluster-heads,

the base station has to collect clustering information from all sensor nodes in WSN [11].

However, this is a very costly task for a WSN, and it is hard to repeat cluster-head election

process periodically. LEACH, CHEF and EAUCF clustering algorithms are localized and
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distributed algorithms. Since they elect cluster-heads locally, they do not need to forward

clustering information to the base station. Thus, they elect the cluster-heads with a lower

energy cost. Morover, it is easy to repeat cluster-head election periodically in LEACH, CHEF

and EAUCF.

EAUCF is an unequal clustering algorithm like EEUC. EEUC assigns unequal competition

ranges to the tentative cluster-heads considering only the distance to the base station param-

eter. However, EAUCF utilizes both the residual energy and the distance to the base station

parameters of the tentative cluster-heads for estimating competition ranges. EAUCF assigns

greater competition ranges to the tentative cluster-heads which have higher residual energy

levels, because they can serve to a larger region. This significant property of EAUCF puts it

forward considering LEACH, CHEF and EEUC algorithms.

The rest of the thesis is organized as follows. In the next chapter, we give information about

studies that are related to probabilistic clustering, fuzzy clustering and unequal clustering. In

chapter 3, we describe LEACH, CHEF and EEUC algorithms in detail. In that chapter, we also

introduce our clustering algorithm EAUCF. In chapter 4, we evaluate our proposed algorithm

by comparing LEACH, CHEF and EEUC and provide the detailed evaluation results. Finally,

we conclude the thesis and discuss some possible future works.
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CHAPTER 2

RELATED WORK

There are several proposed clustering algorithms for WSNs in recent years. In this section, we

review probabilistic clustering algorithms, fuzzy clustering algorithms and unequal clustering

algorithms.

2.1 Probabilistic Clustering Algorithms

In probabilistic clustering approaches, each node in the wireless sensor network decides its

role by itself. This type of clustering algorithms aim to minimize the communication between

sensor nodes. Probabilistic clustering algorithms guarantee rapid convergence and provide

balanced cluster sizes [21]. Basically, each node assigns itself a probability which is a num-

ber between 0 and 1. If this probability is less than a predefined threshold, then that node

becomes a cluster-head. Based on this principle, various probabilistic clustering algorithms

are proposed. Here we overview LEACH [9], HEED (Hybrid Energy-Efficient Distributed

Clustering) [20] and the algorithm proposed by Kuhn et al. [12].

The objective of LEACH protocol is to minimize energy dissipation in sensor networks.

LEACH has distributed coordination and control mechanisms for cluster set-up and opera-

tion processes [9]. Static clustering algorithms select cluster-heads for WSNs only once, and

these cluster-heads operate as cluster-head until they die. Since cluster-heads consume much

more energy than ordinary sensor nodes, energy consumption over the network cannot be

distributed evenly by using static clustering. Therefore, WSN can quickly move to a useless

state, because the number of cluster-heads decreases drastically. In LEACH protocol, cluster-

heads are rotated in randomized manner, and cluster-head election is done periodically. The
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interval between two consecutive cluster formation process is called as round. A single round

consits of two phases which are set-up and steady-state phases [7]. The cluster-head election

and cluster formation are done during set-up phase. In steady-state phase, the data, which is

gathered from cluster member nodes, is aggregated at local cluster-head and transmitted to

the base station. We compare our approach EAUCF with this well-known probabilistic clus-

tering protocol, because EAUCF uses randomization for selecting tentative cluster-heads in

each round.

In HEED protocol, residual energy of each sensor node is the primary parameter for proba-

bilistic election of cluster-heads [21]. As stated in [20], there are four primary goals of HEED.

These are listed below:

• Prolonging the lifetime of the wireless sensor network by evenly distributing energy

consumption

• Selecting cluster-heads in a constant number of iterations

• Minimization of control overhead

• Formation of well-distributed cluster-heads and compact clusters

In case of a tie in cluster-head election, node degree or average distance to neighbors parame-

ters are used to determine the clusted-head. HEED protocol is implemented in TinyOS, which

is an operating system developed for Berkeley motes. Experimentations that are employed for

evaluating HEED protocol show that clustering and data aggregation at least double the life-

time of the wireless sensor network [21].

Kuhn et al. studied initializing newly deployed ad hoc and sensor networks, and proposed a

probabilistic cluster-head election algorithm. In this approach, the probability of each node

depends on the node degree [21]. Kuhn et al. showed that their proposed clustering approach

computes an asymptotically optimal clustering in polylogarithmic time [12]. This algorithm

tries to find a dominating set of nodes which will be assigned as cluster-heads. Sensor nodes

compete to become dominators by exponentially incrementing their sending probability on a

specified channel. Three different channels are used in this algorithm. Remaining two chan-

nels are used to keep the number of dominators small in a vicinity of an emerging dominator

[12].
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Pure probabilistic clustering algorithms (e.g. LEACH) have some disadvantages, which are

listed [11] below:

• Since pure probabilistic clustering algorithms only depend on probability, they can pro-

duce cluster-heads closer to each other.

• They do not consider the residual energy of the sensor nodes. Therefore, the nodes that

have lower energy levels may become cluster-heads.

• These algorithms may randomly elect cluster-heads in vicinities that have low node

density.

Pure probabilistic clustering approaches are useful for cluster-head election, but they are not

sufficient. In order to make a more accurate cluster-head election, some additonal parameters

such as node degree, residual energy and local distance should be taken into consideration.

2.2 Fuzzy Clustering Algorithms

Fuzzy logic is useful for making real time decisions without needing complete information

about the environment. On the other hand, conventional control mechanisms generally need

accurate and complete information about the environment [5]. Fuzzy logic can also be uti-

lized for making a decision based on different environmental parameters by blending them

according to predefined rules.

Some of the clustering algorithms employ fuzzy logic to handle uncertainties in the wireless

sensor networks. Basically, fuzzy clustering algorithms use fuzzy logic for blending different

clustering parameters to elect cluster-heads. They assign chances to tentative cluster-heads

according to the defuzzified output of fuzzy if-then rules. The tentative cluster-head becomes

a cluster-head if it has the greatest chance in its vicinity. There are distributed and centralized

fuzzy logic clustering approaches. Here we are going to overview the centralized approach of

Gupta et al. [5] and the distributed approach of Kim et al. [11] which is abbreviated as CHEF.

In the fuzzy clustering approach proposed by Gupta et al., the cluster-heads are elected at the

base station. In every round, each sensor node forwards its clustering information to the base

station. There are three fuzzy descriptors which are considered by the base station during
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cluster-head election. These fuzzy descriptors are node concentration, residual energy in each

node and node centrality [5]. The definitions of these fuzzy descriptors are given [5] below:

• Node Concentration: Number of the nodes in the vicinity

• Residual Energy: Remaining battery energy of each sensor node

• Node Centrality: A parameter that indicates how central the node is to the cluster

There are 27 fuzzy if-then rules which are defined at the base station. The base station elects

the cluster-heads according to these fuzzy rules. After the base station elects the cluster-head,

it forwards the election results to entire network. This algorithm is a centralized clustering al-

gorithm, because all clustering decisions are made at the base station. Gupta et al. claims that

a centralized clustering approach will produce more accurate cluster-heads, because the base

station has all clustering information about the network and base stations are more powerful

than ordinary nodes [5]. However, this centralized approach have some disadvantages [11]:

• The base station must collect all clustering information from the network. Repeating

this process in every round brings a high overhead to sensor nodes. Thus, the battery

levels of the sensor nodes may run low quickly.

• In this approach the simulation is done for electing only one cluster-head per round.

Therefore, this simulation is not a realistic one.

CHEF is a similar approach to that of Gupta et al. [5], but it performs cluster-head election

in a distributed manner. Cluster-head election is done locally. Thus, the base station does

not need to collect clustering information from all sensor nodes [11]. In every round, each

node generates a random number between 0 and 1. If the random number is smaller than the

predefined threshold, then that node becomes a tentative cluster-head. There are two fuzzy

descriptors that are used in cluster-head election. These are residual energy of each node and

local distance. Local distance is the total distance between the tentative cluster-head and the

nodes within predefined constant radius r. There are 9 fuzzy if-then rules that are defined in all

sensor nodes. Tentative cluster-heads calculate their chances to be a cluster-head using these

fuzzy rules. If the chance of a tentative cluster-head is greater than the other tentative cluster-

heads’ chances in radius r, then that tentative cluster-head becomes an actual cluster-head.
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Afterwards, it sends a cluster-head advertisement message to the nodes in the vicinity. The

nodes that are not elected as cluster-head join to the closest cluster by sending a message to

that cluster-head. CHEF guarantees that any two cluster-heads cannot exist within r distance

[11]. We compare our approach EAUCF with CHEF, because this approach is a well-known

distributed fuzzy approach.

2.3 Unequal Clustering Algorithms

The sensor nodes closer to the base station consume more energy, because the network traffic

increases as we get close to the base station [21]. Therefore, the nodes closer to the base sta-

tion quickly run out of battery. In order to balance energy consumption over the network, un-

equal clustering approach is introduced. This approach is based on the idea of decreasing the

cluster sizes as we get close to the base station. If a cluster-head closer to the base station has

less intra-cluster work, then it can contribute to inter-cluster data forwarding more. Unequal

clustering is meaningful even in the cases where each cluster-head forwards its aggregated

data to the base station directly. Here, we overview two unequal clustering approaches. These

are the approaches that are proposed by Shu et al. [18] and Li et al. [11] which is abbreviated

as EEUC.

If a cluster-head is closer to the base station, it has to relay more data forwarding traffic

than the sensor nodes which are far from the base station [18]. Each sensor node in the

network tries to send its data to the base station. Therefore, as we get close to the base station,

the data forwarding traffic increases. Shu et al. proposed an approach that aims to achieve

optimal power allocation over the sensor network. This approach assigns larger cluster sizes

to cluster-heads that take less role in data forwarding process. This approach is illustrated

in Figure 2.1. The proposed network model in this approach assumes a circular sensing

region. However, generally sensor nodes are deployed randomly by throwing them to the

target region. Therefore, this approach is not a practical one for real environments in most of

the cases. This model should be improved to handle non-circular regions.

EEUC is a distributed competitive unequal clustering algorithm where cluster-heads are elected

by local competition [11]. Every node has a preassigned competitive range. This range gets

smaller as we get close to the base station. This makes EEUC an unuequal clustering algo-
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Figure 2.1: Cluster size distribution of Shu et al. approach

rithm. EEUC algorithm is also a probabilistic clustering algorithm, because in each cluster

formation round, each node generates a random number between 0 and 1 to decide whether

it is going to participate to the cluster-head election competition or not. If a sensor node has

decided to participate to the competition, then it becomes a tentative cluster-head. Tenta-

tive cluster-heads in local regions compete in order to become an actual cluster-head. This

competition is based on the residual energy of each tentative cluster-head. After cluster-head

election is completed, the remaining sensor nodes join to the closest cluster. We compare

our approach with EEUC, because EEUC is a recent and well-structured unequal clustering

algorithm.
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CHAPTER 3

CLUSTERING ALGORITHMS

In this chapter, we propose an algorithm for cluster-head election in wireless sensor networks.

We also provide the details of three different clustering algorithms. We are going to compare

our approach with these clustering algorithms. These algorithms are LEACH [9], CHEF [11]

and EEUC [13].

3.1 Preliminaries

Before describing clustering algorithms in detail, we introduce the characteristics of the sys-

tem model that we use in our implementations. First, we list the assumptions that we make

about the network model:

• Sensor nodes are deployed randomly.

• All sensor nodes and the base station are stationary after deployment phase.

• Nodes have the capability of adjusting the transmission power according to the distance

of the receiver nodes.

• The distance between nodes can be computed based on the received signal strength.

Therefore, there is no need for sensor nodes to know their exact locations.

• All sensor nodes have the same amount of energy when they are initially deployed.

• Base station need not to be located far away from the sensing region.

• All sensor nodes are identical.
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The first order radio model that is shown in [9] is used for energy dissipation model in sim-

ulations. Equation 3.1 represents the amount of energy consumed for transmitting l bits of

data to d distance. Eelec is the energy consumption per bit in the transmitter and the receiver

circuitry. εamp is the energy dissipated per bit in the RF amplifier.

ET x(l, d) = lEelec + lεampd2 (3.1)

Equation 3.2 represents the amount of energy consumed for receiving l bits of data.

ERx(l) = lEelec (3.2)

3.2 LEACH Clustering Protocol

In this section, we describe LEACH (Low-Energy Adaptive Clustering Hierarchy) protocol

proposed by Heinzelman et al. LEACH is a well-known cluster-head election approach that

constitutes a basis for many other approaches [8] [7] [19] as stated in [4]. It is the first

significant protocol that aims to minimize the overall energy used in data gathering operations

in wireless sensor networks [4].

LEACH is a distributed algorithm which makes local decisions to elect cluster-heads. If

the cluster-heads are selected for once and do not change throughout the network lifetime,

then it is obvious that these static cluster-heads die earlier than the ordinary nodes. Therefore,

LEACH includes randomized rotation of cluster-head locations to evenly distribute the energy

dissipation over the network [9]. LEACH also performs local data compression in cluster-

heads to decrease the amount of data that is forwarded to the base station.

In LEACH, cluster-head election is done periodically to enable randomized rotation of cluster-

heads. Every round consists of two phases, namely set-up phase and steady-state phase. In

set-up phase, cluster-heads are elected and clusters are formed. In steady-state phase, data

transfers to the base station are performed through the clustered network. A particular sensor

node decides whether it is going to become a cluster-head or not by generating a random

number between 0 and 1. If this number is less than the predefined threshold T (n), then

the sensor node becomes a cluster-head. G represents the set of sensor nodes that have not
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been cluster-heads in the last 1
P rounds where P is the desired percentage of cluster-heads. r

represents the current round number. Using these parameters, T (n) is formulated as follows:

If the sensor node n belongs to G:

T (n) =
P

1 − P ∗ (r mod 1
P )

(3.3)

If the sensor node n does not belong to G, then the T (n) is set to 0. Thus, n cannot become

a cluster-head. At round 0, the propability of becoming a cluster-head for each node is equal

to P. However, this situation changes in the following rounds. The cluster-heads of round

0 cannot become cluster-heads during the following 1
P rounds. This restriction prevents a

particular node to become a cluster-head frequently. However, this restriction brings a draw-

back. It causes rapid decrease in the number of cluster-heads. To handle this drawback, as

r increases, the chance of the remaining sensor nodes to be a cluster-head is also increased

by adjusting the threshold T (n) for the remaining sensor nodes. This critical balance is a

significant property of LEACH.

After cluster-heads are elected for a particular round, each cluster-head broadcasts an ad-

vertisement message to the remaining sensor nodes. As each non-cluster-head node receives

these advertisement messages, they decide the cluster to which they belong. Each non-cluster-

head joins to the cluster from which it has received the largest signal strength. In order to join

to the selected cluster, it transmits a JoinClusterHeadMessage to that cluster. Once all the

cluster-heads are selected and the clusters are formed, data transmission continues up to the

next round. Pseudo-code for cluster-head election and cluster formation procedure for a single

sensor node is given in Algorithm 3.1.

The simulations in [9] showed that LEACH reduces communication energy as much as 8

times as compared to direct transmission. In other words, the first node death in LEACH

occurs 8 times later than the first node death in direct transmission. Since we compare our

proposed algorithm with LEACH, we have developed a LEACH simulation. Figure 3.1 and

Figure 3.2 shows two different cluster-head distribution examples over the network for two

different particular rounds. In both of the examples, the number of deployed sensor nodes is

200. The desired percentages of cluster-heads are 0.05 and 0.1, respectively for the examples

in Figure 3.1 and Figure 3.2.
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1: P← desired percentage of cluster-heads

2: currentRound ← currentRound + 1

3: nodeS tate← CLUSTERMEMBER

4: clusterMembers← empty

5: myClusterHead ← this

6: if notClusterHeadCount < 1/P then

7: notClusterHeadCount ← notClusterHeadCount + 1

8: else

9: T ← threshold for current round that is calculated by Equation 3.3

10: µ← rand(0,1)

11: if µ < T then

12: nodeS tate← CLUSTERHEAD

13: notClusterHeadCount ← 0

14: Advertise ClusterHeadMessage(ID)

15: end if

16: end if

17: On receiving all ClusterHeadMessages

18: if nodeS tate = CLUSTERMEMBER then

19: myClusterHead ← the closest cluster-head

20: Send JoinClusterHeadMessage(ID) to the closest cluster-head

21: end if

22: On receiving JoinClusterHeadMessage from node N

23: if nodeS tate = CLUSTERHEAD then

24: add node N to the clusterMembers list

25: end if

Algorithm 3.1: Clustering Algorithm of LEACH protocol
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Figure 3.1: Cluster-head distribution example for LEACH with P = 0.05.

3.3 CHEF Clustering Protocol

In this section, we describe CHEF (Cluster-Head Election with Fuzzy) protocol proposed by

Kim et al. The motivation behind this protocol is that using fuzzy logic can reduce gath-

ering data and calculating overheads [11]. Thus, the lifetime of the sensor network can be

prolonged. This clustering protocol is aimed to overcome the significant defects of LEACH,

which are caused by its pure probabilistic characteristics. Cluster-heads produced by LEACH

may be too close to each other and they may be located at the edges of the WSN [11]. To over-

come these defects, CHEF takes two parameters into account which are the residual energy

of each sensor node and the local distance.

CHEF is also a distributed algorithm like LEACH which makes local decisions to select

cluster-heads. CHEF also uses a threshold for electing tentative cluster-heads. However, this

threshold does not change in every round as in the case of LEACH. The optimal threshold
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Figure 3.2: Cluster-head distribution example for LEACH with P = 0.1.
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Popt for CHEF is defined in Equation 3.4.

Popt = α · P (3.4)

P represents the desired percentage of cluster-heads. α is a constant value which represents

the ratio of the candidate for cluster-head. The optimal value of P for a particular WSN is

intoduced in [6]. The optimal P can be calculated by using Equation 3.5.

P =

√
n

√
2π
·

√
ε f s

εmp
·

√
A

(0.765 ×
√

A × 0.5)2
·

1
n

(3.5)

A represents the area of the wireless sensor network. ε f s and εmp denote the amount of energy

per bit consumed in the RF amplifier [11] with respect to d0. If the transmission distance is

smaller than d0, then ε f s is used for the amount of energy dissipated. Otherwise, εmp is used.

d0 can be calculated by using Equation 3.6.

d0 =

√
ε f s

εmp
(3.6)

The optimal cluster-head radius r for CHEF is fixed and calculated by using Equation 3.7. In

this equation n represents the total number of sensor nodes in the WSN.

r =

√
A

π · n · P
(3.7)

In every round, each qualifying sensor node, which is the node that generates a random num-

ber less than Popt, calculates its chance for becoming a cluster-head by blending its residual

energy and local distance values using predefined fuzzy if-then mapping rules. Local distance

is defined in [11] as the sum of distances between a particular node and the nodes within r

distance. The fuzzy mapping rules for CHEF is listed in Table 3.1.

A particular sensor node generates a random number between 0 and 1, and checks whether

this number is less than Popt or not. If this condition is satisfied, then the particular node

becomes a tentative cluster-head. Tentative cluster-heads compete with each other locally to
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1: P← desired percentage of tentative cluster-heads

2: nodeS tate← CLUSTERMEMBER

3: clusterMembers← empty

4: myClusterHead ← this

5: µ← rand(0,1)

6: if µ < Popt then

7: Compute the chance using fuzzy if-then mapping rules

8: Advertise CandidateClusterHeadMessage(ID, chance)

9: On receiving CandidateClusterHeadMessage from node N

10: if chance < N.chance then

11: myClusterHead ← N

12: end if

13: if myClusterHead = this then

14: Advertise ClusterHeadMessage(ID)

15: nodeS tate← CLUSTERHEAD

16: On receiving JoinClusterHeadMessage from node N

17: add N to the clusterMembers list

18: else

19: Send JoinClusterHeadMessage(ID) to node myClusterHead

20: end if

21: else

22: On receiving all ClusterHeadMessages

23: myClusterHead ← the closest cluster-head

24: Send JoinClusterHeadMessage(ID) to the closest cluster-head

25: end if

Algorithm 3.2: Clustering Algorithm of CHEF protocol
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Table 3.1: Fuzzy if-then mapping rules for CHEF

Rule No Energy Local Distance Chance
1 Low Far Very Low
2 Low Medium Low
3 Low Close Rather Low
4 Medium Far Medium Low
5 Medium Medium Medium
6 Medium Close Medium High
7 High Far Rather High
8 High Medium High
9 High Close Very High

become an actual cluster-head. During this competition, each tentative cluster-head advertises

a message that includes its chance, and it waits for advertisements of other tentative cluster-

heads in the vicinity. If it receives an advertisement message that includes a higher chance

than its own chance, then it quits competition. If it is the node with the greatest chance, then

it becomes a cluster-head. The remaining cluster formation process is similar to LEACH in

which each ordinary node joins to the closest cluster. Pseudo-code for cluster-head election

and cluster formation procedure for a single sensor node is given in Algorithm 3.2.

We have developed a CHEF simulation to compare our proposed algorithm with CHEF. Figure

3.3 and Figure 3.4 show two different cluster-head distribution examples for two different

particular rounds. The number of deployed sensor nodes in the examples are 100 and 200,

respectively. α constant is set to 2.5 in both of the examples.

CHEF protocol guarantess that any two cluster-heads cannot exist within r distance [11] as

also seen in Figure 3.3 and Figure 3.4.

3.4 EEUC Clustering Protocol

In this section, we describe EEUC (Energy-Efficient Unequal Clustering) protocol proposed

by Li et al. EEUC is a distributed competitive clustering algorithm that elects cluster-heads

by local competition. This behavior of EEUC is dissimilar to LEACH [13]. The relay traffic

increases as we get close to the base station in multi-hop wireless sensor networks. EEUC

takes this observation into consideration and tries to decrease the intra-cluster workload of
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Figure 3.3: Cluster-head distribution example for CHEF where α = 2.5 and the number of
sensors is 100.
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Figure 3.4: Cluster-head distribution example for CHEF where α = 2.5 and the number of
sensors is 200.
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the cluster-heads that are closer to the base station. If a cluster-head has less intra-cluster

workload, then it can contribute to inter-cluster communication more. EEUC achieves this

goal by assigning smaller competition ranges to the sensor nodes that are closer to the base

station. In other words, the competition range of the tentative cluster-head decreases as its

distance to the base station decreases [13].

First, EEUC selects tentative cluster-heads which are the candidate sensor nodes for becoming

an actual cluster-head. In every round, each sensor node has the same probability T to become

a tentative cluster-head. Each sensor node generates a random number between 0 and 1. If

this number is smaller than T , then it becomes a tentative cluster-head. After tentative cluster-

heads are selected, the remaining sensor nodes sleep until cluster-head election is completed.

Each tentative cluster-head has a competition range Rcomp that is calculated considering its

distance to the base station. Rcomp can be calculated using the Equation 3.8.

Rcomp(si) = (1 − c
dmax − d(si, BS )

dmax − dmin
)R0

comp (3.8)

dmax and dmin represent the maximum and minimum distances between sensor nodes and the

base station. d(si, BS ) denotes the distance between the node si and the base station. R0
comp

represents the predefined maximum competitive range. c is a constant coefficient between 0

and 1. We can change the range of the Rcomp function by adjusting c coefficient.

Similar to CHEF, EEUC guarantees that any two cluster-heads cannot exist within Rcomp

distance. This situation is illustrated in Figure 3.5. In this figure, S 1 and S 2 cannot be both

cluster-heads, because S 2 is inside of S 1’s competition range. On the other hand, S 3 and S 4

can be elected as cluster-heads together, since neither S 3 nor S 4 are in other’s competition

range.

Each tentative cluster-head keeps a list of its adjacent tentative cluster-heads which is denoted

by S CH . A tentative cluster-head s j is adjacent to si if s j is in competition range of si or si

is in competition range of s j. Each tentative cluster-head broadcasts a competition message

with a broadcast radius R0
comp to populate its adjacent tentative cluster-heads list. This com-

petition message contains the node ID, competition radius and the residual energy level. Each

tentative cluster-head listens for competition messages of other tentative cluster-heads. When

a tentative cluster-head receives a competition message from another tentative cluster-head, it
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Figure 3.5: The competition ranges of different tentative cluster-heads

checks whether the source tentative cluster-head is adjacent to itself or not. If it is adjacent,

then it is added to adjaceny list. After each tentative cluster-head finishes populating its ad-

jaceny list, it makes a decision whether to become an actual cluster-head or quit cluster-head

election. If the residual energy of the tentative cluster-head is greater than all the adjacent

tentative cluster-heads’ residual energy, then it becomes a cluster-head. Otherwise, it quits

cluster-head election. After a tentative cluster-head becomes a cluster-head, it broadcasts a

final message to advertise its cluster-headship to other sensor nodes in its adjaceny list.

After cluster-head election phase is completed, each cluster-head broadcasts an advertisement

message through the network. Ordinary sensor nodes in the network join to the closest cluster

just like in LEACH and CHEF. Pseudo-code for cluster-head election and cluster formation

procedure for a single sensor node is given in Algorithm 3.3 and 3.4.

Since we compare our proposed algorithm with EEUC, we have developed a EEUC simula-

tion. Figure 3.6 and Figure 3.7 illustrate two different cluster-head distribution examples for

two different particular rounds.
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1: T ← probability to become a tentative cluster-head

2: nodeS tate← CLUSTERMEMBER

3: clusterMembers← empty

4: myClusterHead ← this

5: S CH ← empty

6: µ← rand(0,1)

7: if µ < T then

8: beTentativeHead ← TRUE

9: Broadcast CompeteHeadMessage(ID,Rcomp, residualEnergy)

10: else

11: On receiving all ClusterHeadMessages

12: myClusterHead ← the closest cluster-head

13: Send JoinClusterHeadMessage(ID) to the closest cluster-head

14: EXIT

15: end if

16: On receiving a CompeteHeadMessage from node N

17: if d(this,N) < N.Rcomp OR d(this,N) < this.Rcomp then

18: Add N to S CH

19: end if

Algorithm 3.3: Clustering Algorithm of EEUC protocol
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1: while beTentativeHead = TRUE do

2: if this.residualEnergy > N.residualEnergy,∀N ∈ S CH then

3: Broadcast FinalHeadMessage(ID) to the tentative cluster-heads in the list

4: nodeS tate← CLUSTERHEAD

5: On receiving JoinClusterHeadMessage(ID) from node N

6: add N to the clusterMembers list

7: EXIT

8: end if

9: On receiving a FinalHeadMessage from node N

10: if N ∈ S CH then

11: Broadcast QuitElectionMessage(ID)

12: end if

13: On receiving a QuitElectionMessage from node N

14: if N ∈ S CH then

15: Remove N from S CH

16: end if

17: end while

Algorithm 3.4: Clustering Algorithm of EEUC protocol (cont’d.)
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Figure 3.6: Cluster-head distribution example for EEUC where c = 0.5, R0
comp = 30, T = 0.4

and the number of sensors is 100.
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Figure 3.7: Cluster-head distribution example for EEUC where c = 0.5, R0
comp = 30, T = 0.4

and the number of sensors is 200.
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3.4.1 EEUC Inter-Cluster Multi-Hop Routing Protocol

We briefly describe the characteristics of EEUC inter-cluster multi-hop routing protocol, be-

cause we use it as a multi-hop communication protocol in our simulations. Each cluster-head

aggregates the data which comes from its cluster members, and sends it to the base station

via multi-hop communication [13]. Li et al. proposed a multi-hop routing protocol for inter-

cluster communication. The overview of EEUC multi-hop routing protocol for inter-cluster

communication is depicted in Figure 3.8 [13].

Figure 3.8: EEUC multi-hop routing protocol overview

In EEUC routing protocol, if a particular cluster-head’s distance to the base station is smaller

than a predefined threshold T D MAX, it transmits its data packet to the base station directly.

Otherwise, that particular node tries to find a forwarding relay node. Each cluster-head keeps

a set of candidate forwarding cluster-heads in order to forward its data to the next hop. This

candidate set RCH is populated for a particular cluster-head si using the set definition in Equa-

tion 3.9.

si.RCH = {s j|d(si, s j) ≤ k.si.Rcomp, d(s j, BS ) < d(si, BS )} (3.9)

k denotes the minimum integer that generates a minumum number of members for RCH . If

a proper k cannot be found for si, then it forwards its data to the base station via direct

transmission.
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EEUC routing protocol considers two criteria to select a forwarding node from RCH . These

criteria are the residual energy of each forwarding node and the link cost. Link cost that is

represented by d2
relay is calculated using the Equation 3.10.

d2
relay = d2(si, s j) + d2(s j, BS ) (3.10)

First, si reduces the number of candidates by choosing the two smallest d2
relay nodes. After

that, it selects the node that has more residual energy as its relay node among two remaining

candidates. Each cluster-head chooses its relay node and trasmits its aggregated data to that

relay node. Consequently, the data packets are delivered to the base station through the relay

nodes via multi-hop communication.

3.5 EAUCF Clustering Algorithm

In this section, we describe our proposed clustering algorithm EAUCF (Energy-Aware Un-

equal Clustering with Fuzzy). EAUCF is a distributed competitive unequal clustering algo-

rithm similar to EEUC. It makes local decisions to determine competition radius and to elect

cluster-heads. The main difference between EEUC and EAUCF is their competiton radius

estimation methods. EEUC only considers distance to the base station parameter to calcu-

late competition radius. However, EAUCF employs both residual energy and distance to the

base station parameters of the sensor node. Morover, EAUCF takes advantage of using fuzzy

logic to calculate competition radius. CHEF is also a fuzzy approach, but it utilizes fuzzy

logic for assigning cluster-head chances to tentative cluster-heads. LEACH protocol rotates

the cluster-heads periodically in each round by using a probabilistic model. EAUCF also em-

ploys a probabilistic model, but it does not elect the final cluster-heads by just depending on

this model. It elects the tentative cluster-heads using this model like CHEF and EEUC. First,

we explain the main flow of EAUCF in Algorithm 3.5. After that, we get into details of the

algorithm.

In every clustering round, each sensor node generates a random number between 0 and 1. If

the random number for a particular node is smaller than the predefined threshold T , which is

the percentage of the desired tentative cluster-heads, then that sensor node becomes a tenta-
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1: T ← probability to become a tentative cluster-head

2: nodeS tate← CLUSTERMEMBER

3: clusterMembers← empty

4: myClusterHead ← this

5: beTentativeHead ← TRUE

6: µ← rand(0,1)

7: if µ < T then

8: Calculate Rcomp using fuzzy if-then mapping rules

9: Advertise CandidateClusterHeadMessage(ID,Rcomp, residualEnergy)

10: On receiving CandidateClusterHeadMessage from node N

11: if this.residualEnergy < N.residualEnergy then

12: beTentativeHead ← FALS E

13: Advertise QuitElectionMessage(ID)

14: end if

15: end if

16: if beTentativeHead = TRUE then

17: Advertise ClusterHeadMessage(ID)

18: nodeS tate← CLUSTERHEAD

19: On receiving JoinClusterHeadMessage(ID) from node N

20: add N to the clusterMembers list

21: EXIT

22: else

23: On receiving all ClusterHeadMessages

24: myClusterHead ← the closest cluster-head

25: Send JoinClusterHeadMessage(ID) to the closest cluster-head

26: EXIT

27: end if

Algorithm 3.5: Clustering Algorithm of EAUCF protocol
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tive cluster-head. The competition radius of each tentative cluster-head changes dynamically

in EAUCF, because EAUCF uses residual energy parameter with distance to the base station

metric of the sensor node to calculate competition radius. It is logical to decrease the ser-

vice area of a cluster-head while its residual energy is decreasing. If the competition radius

does not change as the residual energy decreases, the sensor node runs out of battery rapidly.

EAUCF takes this situation into consideration and decreases the competition radius of each

tentative cluster-head as the sensor node battery level decreases. Radius computation is ac-

complished by using predefined fuzzy if-then mapping rules to handle the uncertainty. These

fuzzy if-then mapping rules are given in Table 3.2. We have used Mamdani Method [16] as

fuzzy inference technique, because it is the most frequently used fuzzy inference technique

[5].

Table 3.2: Fuzzy if-then mapping rules for competiton radius calculation in EAUCF

Rule No Distance to Base Residual Energy Competition Radius
1 Close Low Very Small
2 Close Medium Small
3 Close High Rather Small
4 Medium Low Medium Small
5 Medium Medium Medium
6 Medium High Medium Large
7 Far Low Rather Large
8 Far Medium Large
9 Far High Very Large

In EAUCF cluster-head competition radius calculation, we use two fuzzy input variables. The

first one is the distance to the base station of a particular tentative cluster-head. The fuzzy set

that describes the distance to base the station input variable is depicted in Figure 3.9. The

linguistic variables for this fuzzy set are close, medium and f ar. We choose a trapezoidal

membership function for close and f ar. On the other hand, the membership function of

medium is a triangular membership function.

The second fuzzy input variable is residual energy of the tentative cluster-head. The fuzzy

set that describes residual energy input variable is illustrated in Figure 3.10. low, medium

and high are the linguistic variables of this fuzzy set. low and high linguistic variables have a

trapezoidal membership function while medium has a triangular membership function.
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Figure 3.9: Fuzzy set for fuzzy input variable DistanceToBase

Figure 3.10: Fuzzy set for fuzzy input variable ResidualEnergy
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The only fuzzy output variable is the competition radius of the tentative cluster-head. Fuzzy

set for competition radius fuzzy output variable is demonstrated in Figure 3.11. We have

9 linguistic variables which are very small, small, rather small, medium small, medium,

medium large, rather large, large and very large. very small and very large have a trape-

zoidal membership function. The remaining linguistic variables are represented by using

triangular membership functions.

Figure 3.11: Fuzzy set for fuzzy output variable CompetitionRadius

If a particular tentative cluster-head’s battery is full and it is located at the maximum distance

to the base station, then it has the maximum competiton radius. On the contrary, if a particular

cluster-head’s battery is near empty and is the closest node to the base station, then it has the

minimum competition radius. The remaining intermediate possibilities fall between these two

extreme cases.

The maximum competition radius is a static parameter for a particular wireless sensor net-

work. The base station broadcasts the value of this parameter to the entire network. Thus,

all the sensor nodes know the maximum competition radius, in advance. Each of the sensor

nodes can calculate their relative competition radius according to the value of this parameter.

The maximum distance to the base station is also a static parameter, because we assume that

the sensor nodes are stationary. Each sensor node can determine their relative position to the

base station considering the maximum distance to the base station in the WSN.
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The change of competition radius according to residual energy and distance to the base station

parameters is demonstrated by the examples in Table 3.3. In these examples, the maximum

distance to base station is 127 m and the maximum competition radius is set to 60 m. In

example 1, 2 and 3, the residual energy levels of the nodes are identical and equal to 1 J.

However, their distances to the base station are different. As we get closer to the base station,

the competition radius of the sensor node decreases. In example 4 and 5, the distance to the

base station is identical, but energy levels are different. The node which has a lower energy

has a lower competition radius.

Table 3.3: Examples for fuzzy cluster competition radius calculation

Example No Distance to Base(m) Residual Energy(J) Competition Radius(m)
1 112.90 1.0 45.31
2 20.12 1.0 20.61
3 65.92 1.0 31.61
4 84.31 0.999 38.88
5 84.31 0.70 33.47
6 103.77 0.50 36.65
7 122.80 0.64 46.02
8 112.89 0.59 41.08
9 99.30 0.29 34.63
10 8.94 0.76 12.46

To clarify how we use fuzzy logic to determine cluster-head competition radius for each ten-

tative cluster-head, we give a detailed example here. Suppose we have a tentative cluster-head

with residual energy 0.6 J and its distance to the base station is 70 m. The maximum competi-

tion radius is set to 50 m and the maximum distance to the base station is 100 m. We evaluate

9 if-then mapping rules which are listed in Table 3.2. To get the membership degree of input

variables, we use the membership functions of the linguistic variables. The membership de-

grees for residual energy and distance to the base station is depicted in Figure 3.12 and 3.13

respectively.

Table 3.4 illustrates the triggered fuzzy if-then rules according to the fuzzified values of resid-

ual energy and distance to the base station. Since we use AND in fuzzy if-then mapping rules,

we use the minimum operator to get the membership degree of the competition radius for each

rule. For example, in rule 8, DistanceToBase is 0.5 Far and ResidualEnergy is 0.8 Medium.
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Figure 3.12: Fuzzification of crisp ResidualEnergy input variable for value 0.6 J

Figure 3.13: Fuzzification of crisp DistanceToBase input variable for value 70 m
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Therefore, we get CompetitionRadius 0.5 Large by applying the minimum operator.

Table 3.4: Evaluation of fuzzy if-then mapping rules

Rule No DistanceToBase ResidualEnergy CompetitionRadius
1 Close=0 Low=0 Very Small (min=0)
2 Close=0 Medium=0.8 Small (min=0)
3 Close=0 High=0.25 Rather Small (min=0)
4 Medium=0.6 Low=0 Medium Small (min=0)
5 Medium=0.6 Medium=0.8 Medium (min=0.6)
6 Medium=0.6 High=0.25 Medium Large (min=0.25)
7 Far=0.5 Low=0 Rather Large (min=0)
8 Far=0.5 Medium=0.8 Large (min=0.5)
9 Far=0.5 High=0.25 Very Large (min=0.25)

After we evaluate the rules, and cut the CompetitionRadius fuzzy set with the calculated

input membership degrees, we get the results which are depicted in Figure 3.14. To obtain

a crisp competition radius value, we perform defuzzification using COA (Center of Area)

method. Equation 3.11 represents the formula that is used to calculate COA. By applying this

equation, we get the competition radius approximately 29.24 m.

Figure 3.14: Output of evaluation of fuzzy if-then mapping rules

De f uzzi f iedCompetitionRadius =

∫
x µCompetitionRadius(x)xdx∫
x µCompetitionRadius(x)dx

(3.11)
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After each tentative cluster-head determines its competition radius, cluster-head competi-

tion begins. Each tentative cluster-head advertises CandidateClusterHeadMessage to com-

pete with other tentative cluster-heads locally. This message is advertised to the tentative

cluster-heads which are inside the maximum cluster-head radius like in EEUC. It includes

node ID, competition radius and residual energy level of the source node. Residual en-

ergy is the key parameter in cluster-head competition. If a tentative cluster-head receives

a CandidateClusterHeadMessage from another tentative cluster-head which is in its compe-

tition range and the residual energy of the source node is greater than the residual energy of

the receiving node, then the receiving node quits cluster-head competition and broadcasts a

QuitElectionMessage. If a particular tentative cluster-head has the highest residual energy

level among the tentative cluster-heads which it recieves a CandidateClusterHeadMessage

from, then it becomes a cluster-head. This competition guarantees that there does not exist

another cluster-head in the competiton radius of a particular cluster-head. After cluster-head

election is completed, each ordinary sensor node joins to the closest cluster like in LEACH,

CHEF and EEUC.

In order to compare our approach with CHEF, LEACH and EEUC, we have developed an

EAUCF simulation. Figure 3.15 and Figure 3.16 illustrate two different cluster-head distribu-

tion examples for two different particular rounds.
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Figure 3.15: Cluster-head distribution example for EAUCF where R0
comp = 60, T = 0.3 and

the number of sensors is 100.
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Figure 3.16: Cluster-head distribution example for EAUCF where R0
comp = 60, T = 0.3 and

the number of sensors is 200.
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CHAPTER 4

EVALUATION

In this chapter, we present the results of the experiments that we have done to evaluate our

algorithm. We compare our clustering algorithm EAUCF with three different algorithms,

namely LEACH, CHEF and EEUC. We have implemented a wireless sensor network clus-

tering simulator to evaluate our algorithm. This simulation tool is able to simulate LEACH,

CHEF, EEUC and EAUCF for different WSN configurations. We have run several experi-

ments on this tool to evaluate our algorithm. Experimental results have shown that our algo-

rithm performs better than LEACH, CHEF and EEUC in most of the situations tested. Before

we get into details of experiments done, we briefly describe the features of our wireless sensor

network clustering simulator.

4.1 Wireless Sensor Network Clustering Simulator

It is quite costly to deploy hundreds of sensors to a particular field to conduct experiments for

evaluating clustering algorithms. Simulations must be performed repeatedly to generate more

reliable results. Therefore, we choose simulation method to evaluate our algorithm EAUCF.

We have implemented our own simulation tool to simulate clustering environment, because

the existing wireless sensor network simulation tools do not meet all of our expectations. In

addition to this, it is a hard task to configure an existing simulation tool for our experiments.

Thus, we choose to implement our own simulation tool to make this configuration easier.

We have just implemented necessary features that we use in our experiments and exclude the

most of the other features that are implemented by other simulation tools but not related to

our experiments.
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Most of the other wireless sensor network simulators do not provide a graphical user in-

terface (GUI). Our simulation tool provides an interactive interface which enables pausing,

accelarating, decelarating, etc. to intervene in clustering simulation process. Several number

of clustering simulation scenarios with different configurations can be defined via using this

interface. Our simulation tool also provides a detailed results screen that includes detailed

charts for visualising the experimental results. It is easy to understand the behaviors of clus-

tering algorithms by using these features. Implementation of this simulation tool is done in

C# language on .NET environment.

The major capabilities of our simulation tool is listed below:

• Simulates LEACH, CHEF, EEUC and EAUCF.

• Supports two different radio models for simulating energy dissipation.

• Allows to deploy hundreds of sensors which are located randomly.

• Supports sequential simulation of any number of different types of algorithms.

• Displays the currently running clustering simulation with an interactive user interface.

• Represents the results using FND, HNA and energy-efficiency metrics.

• Displays the results of the performed simulations together for comparing different sim-

ulation results.

• Displays the logs of the simulations in the log window.

• Saves the results of the simulations.

4.2 Round Based Evaluation Metrics

The main objective of LEACH, CHEF, EEUC and EAUCF is prolonging the network life-

time by distributing the workload to the sensor nodes evenly. In LEACH, CHEF and EEUC

clustering algorithms, the term round is used for each of the consecutive periods in which the

sensor nodes perform a predefined constant work. For example, in each round, every sensor

node forwards 4000 bits of data to its cluster-head. Handy et al. used the metrics First Node
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Dies (FND), Hal f o f the Nodes Alive (HNA) and Last Node Dies (LND) in [7] for esti-

mating the lifetime of the wireless sensor networks. FND denotes an estimated value for the

round in which the first node dies. This metric is useful in sparsely deployed wireless sensor

networks. However, in densely deployed wireless sensor networks, death of a single node

is not an important issue. Therefore, Handy et al. proposed the metric HNA which denotes

an estimated value for the round in which the half of the nodes die. In addition to this, they

provide another metric LND which denotes an estimated value for the overall lifetime of the

network. However, LND is not a very useful metric, because after half of the sensor nodes

die, the wireless sensor network becomes almost useless in most of the cases. Therefore, we

mostly pay attention to the metrics FND and HNA in order to evaluate our simulation results.

4.3 Scenarios

In order to evaluate our proposed algorithm EAUCF, we have compared EAUCF with LEACH,

CHEF and EEUC. In each of the scenarios, we run all of the algorithms on an identical wire-

less sensor network. We have used the same random seed to generate the identical wireless

sensor netwowk topology. First order radio model is used as energy dissipation model. This

model simulates the energy consumption of each sensor node for transmitting and receving l

bits of data.

In each round of the scenario, clusters-heads are elected and clusters are formed. Afterwards,

each ordinary node forwards a certain bits of data to its cluster-head. Each cluster-head ag-

gregates the received data and forwards it to the base station with a particular routing protocol

or directly transmits the aggregated data to the base station. LEACH cluster-heads transmit

their data packets to the base station directly. In our simulations, CHEF, EEUC and EAUCF

cluster-heads can forward their data packets to the base station directly or can use EEUC

multi-hop routing protocol.

The area of deployed wireless sensor network is same for all scenarios and is 200x200 m. In

each round, each ordinary sensor node transmits 4000 bits of data to its cluster-head. The

cluster-head which receives the data from its cluster members, aggregates the received data

with a certain aggregation ratio. This aggregation ratio is set to 10% in our simulations. In

the simulations of CHEF, Kim et al. also used the same aggregation ratio. The length of the
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aggregated data for a particular cluster-head is calculated using Equation 4.1.

Lagg = Lrec + (Lrec ∗ Ragg ∗ N) (4.1)

In equation 4.1, Lagg represents the length of the aggregated data in bits while Lrec represents

the length of the received data from each cluster member. Ragg is the ratio of aggregation and

N is the total number of cluster members. For example, if a particular cluster has 20 cluster

members each of transmitting 100 bits of data to their cluster-head where the aggregation

ratio is set to 10%, then the length of the aggregated data is (100 + (100 * 0.1 * 20)) which is

equal to 300 bits.

In all of the scenarios, the desired percentage of cluster-heads for LEACH is set to 0.1. The

α value of CHEF algorithm is set to 2.5. The optimal threshold Popt for CHEF is calculated

approximately 0.3 for 100 nodes and 0.21 for 200 nodes using Equation 3.4 and Equation 3.5.

The threshold T is set to 0.4 and the coefficient c is set to 0.5 for EEUC clustering algorithm.

The value of the threshold T is 0.3 for EAUCF.

In order to produce more reliable results, every scenario is simulated for 50 times, and the

average of the results are taken. For each of the scenarios, we provide a summary result table

which represents the values of FND and HNA metrics for each of the algorithms simulated.

After that, we provide a summary chart which illustrates the values of FND and HNA metrics

visually. We also generate charts for the distribution of the number of alive sensor nodes and

the distribution of the number of clusters per each round. By using these simulation results,

we comment on the performance of the simulated algorithms.

4.3.1 Scenario 1

In this scenario, the base station is located at the center of the wireless sensor network. Each

cluster-head forwards the aggregated data to the base station directly without using a relay

node. The detailed configuration of this scenario is depicted in Table 4.1.

The maximum competition radius is assigned as 30 and 60 m for EEUC and EAUCF, respec-

tively. These are the optimal maximum competition radius values for this scenario. After

wireless sensor network is deployed, the maximum distance to the base station is calculated
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Table 4.1: Configuration parameters of Scenario 1

Parameter Value
Network size 200x200m

Base station location (100,100)m
Number of sensor nodes 100

Initial energy 1 J
Data packet size 4000 bits

εamp 100 pJ/bit/m2

Eelec 50 nJ/bit
Aggregation Ratio 10%

approximately 127.35 m.

The simulation of this scenario yielded the following results. Table 4.2 shows the rounds

in which the first node died (FND) and half of the nodes alive (HNA) for each simulated

algorithm.

Table 4.2: Scenario 1: Values of FND and HNA metrics for each algorithm

Algorithm FND HNA
LEACH 360 628
CHEF 438 773
EEUC 425 772

EAUCF 491 821

As seen in Table 4.2, our proposed algorithm EAUCF performs better than LEACH, CHEF

and EEUC for both FND and HNA metrics. The performance of CHEF and EEUC are close

to each other, but CHEF performs slightly better than EEUC especially for FND. LEACH has

the poorest performance among the four clustering algorithms for this scenario. EAUCF is

more efficient than LEACH about 36.4%, CHEF about 12.1% and EEUC about 15.5% if we

consider FND metric. It performs better than LEACH about 30.7%, CHEF about 6.2% and

EEUC about 6.3% if HNA metric is used for performance evaluation.

LEACH performance is the poorest one, because it does not consider the residual energy level

of the sensor nodes during clustering. It uses a pure probabilistic model for clustering, but

this model itself is not sufficient for providing the best solution. Since CHEF takes both en-

ergy and local distance paremeters into consideration, it performs better than LEACH. EEUC

also considers energy and distance to the base station parameters. Hence, it has a better per-
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formance than LEACH. EAUCF considers the energy level of each tentative cluster-head in

competition radius calculation. This means if a tentative cluster-head has more energy, then it

will have a greater cluster radius. In other words, it can serve to more sensor nodes in the local

region. This property ensures that EAUCF assigns more work to the cluster-heads which have

more energy. This consideration makes EAUCF perform better than other algorithms for this

scenario. The summary chart in Figure 4.1 illustrates the comparison of algorithms according

to FND and HNA metrics visually.

Figure 4.1: Scenario 1: Values of FND and HNA metrics for each algorithm

Figure 4.2 depicts the distribution of the number of alive sensor nodes with respect to the

number of rounds for each algorithm. This figure clearly depicts that deaths of sensor nodes

for EAUCF begin after all the other algorithms.

Figure 4.3 shows the distribution of the number of clusters with respect to the number of

rounds for each algorithm. As seen in this figure LEACH, CHEF and EEUC produce ap-

proximately constant number of clusters for each round until the first node dies. However,

EAUCF slightly increases the number of clusters up to the first node dies. This is because

that the cluster radius is directly proportional to energy level of each tentative cluster-head.

If energy level decreases, the cluster radius gets smaller. Therefore, the number of clusters is
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Figure 4.2: Scenario 1: Distribution of alive sensor nodes according to the number of rounds
for each algorithm

increased to cover all of the wireless sensor network.

Figure 4.3: Scenario 1: Distribution of number of clusters according to the number of rounds
for each algorithm

Table 4.3 represents the total remaining energy for each algorithm at round 500. By using

the information in this table, we compare the energy efficiencies of the simulated algorithms.

Since every node has 1 J initial energy, the total energy of WSN is 100 J at the beginning.

The battery of each sensor node depletes as the number of round increases. At round 500,

LEACH has the lowest energy level which is approximately 24 J. The energy levels of EEUC
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Table 4.3: Scenario 1: Total remaining energy for each algorithm at round 500

Algorithm Total Remamining Energy (J)
LEACH 24.47
CHEF 37.49
EEUC 37.76

EAUCF 40.36

and CHEF are nearly identical and approximately equal to 38 J. On the other hand, EAUCF

has the highest energy level that is approximately 40 J. This result is parallel to the results

which are inferred from FND and HNA metrics.

4.3.2 Scenario 2

In this scenario, the base station is located at the center of the wireless sensor network just

like in Scenario 1. However, CHEF, EEUC and EAUCF cluster-heads use EEUC multi-hop

routing protocol to forward their data packets rather than directly transmitting them to the

base station. By comparing the results of Scenario 1 and Scenario 2, we see the impact of

using a multi-hop routing protocol instead of direct routing. The detailed configuration of this

scenario is illustrated in Table 4.4.

Table 4.4: Configuration parameters of Scenario 2

Parameter Value
Network size 200x200m

Base station location (100,100)m
Number of sensor nodes 100

Initial energy 1 J
Data packet size 4000 bits

εamp 100 pJ/bit/m2

Eelec 50 nJ/bit
Aggregation Ratio 10%

The maximum competition radius is set to 40 and 70 m for EEUC and EAUCF respectively.

These are the optimal maximum competition radius values for this scenario. After wireless

sensor network is deployed, the maximum distance to base station is calculated approximately

129.42 m.
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The simulations of this scenario produced the following results. Table 4.5 shows the rounds

in which the first node died (FND) and half of the nodes alive (HNA) for each simulated

algorithm.

Table 4.5: Scenario 2: Values of FND and HNA metrics for each algorithm

Algorithm FND HNA
LEACH 390 695
CHEF 607 767
EEUC 723 777

EAUCF 761 831

As shown in Table 4.5, EAUCF outperforms LEACH, CHEF and EEUC considering FND and

HNA metrics. LEACH has the lowest performance like in Scenario 1. In the first scenario,

FND values of CHEF and EEUC are close to each other. However, in this scenario EEUC

is better than CHEF about 23.2% considering FND metric. Their HNA performance is still

close to each other. EAUCF is more efficient than LEACH about 95.1%, CHEF about 25.4%

and EEUC about 5.3% according to FND metric. If we consider HNA metric for evaluation,

the performance of EAUCF is better than LEACH about 19.6%, CHEF about 8.3% and EEUC

about 6.9%.

In this scenario, the performance of LEACH is the lowest one again, because the same reasons

in the first scenario also apply to this scenario. The results of this scenario clearly indicate that

unequal clustering algorithms, which are EEUC and EAUCF, perform better than LEACH and

CHEF when the multi-hop routing protocol is used. This is because that the batteries of the

sensor nodes that are closer to the base station deplete faster. However, EEUC and EAUCF

handle this situtation by assigning smaller cluster sizes to the sensor nodes which are closer

to the base station. On the other hand, CHEF cannot perform as well as EEUC and EAUCF,

because it does not consider the hot spots problem. However, when CHEF cluster-heads use

EEUC routing protocol instead of forwarding directly to the base station, it performs slightly

better. Since EAUCF considers the energy level of the tentative cluster-heads during cluster

radius calculation, the performance of EAUCF is quite better than EEUC. The summary chart

in Figure 4.4 represents the comparison of the algorithms graphically considering FND and

HNA metrics.

Figure 4.5 illustrates the distribution of the alive sensor nodes with respect to the number of

50



Figure 4.4: Scenario 2: Values of FND and HNA metrics for each algorithm

rounds for each algorithm. This figure clearly shows that our proposed algorithm is more sta-

ble than the other algorithms, because sensor node deaths begin later in EAUCF and continue

linearly until all sensor nodes die.

Figure 4.6 shows the distribution of the number of clusters with respect to the number of

rounds for each algorithm. LEACH, CHEF and EEUC generate constant number of clusters

until the first node dies while the number of clusters generated by EAUCF increases. This

situtation is also observed in the first scenario. The benefits of this situation is mentioned in

Scenario 1.

Table 4.6 shows the total remaining energy for each algorithm at round 500. EAUCF seems

to be the most energy-efficient algorithm in this scenario, because it has the highest remaining

energy level which is approximately 41 J. The remaining energy levels of EEUC and CHEF

are close to EAUCF. On the other hand, LEACH has the lowest remaining energy level which

is approximately 28 J. These results are parallel to the results which are inferred from FND

and HNA metrics.
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Figure 4.5: Scenario 2: Distribution of alive sensor nodes according to the number of rounds
for each algorithm

Figure 4.6: Scenario 2: Distribution of the number of clusters according to the number of
rounds for each algorithm
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Table 4.6: Scenario 2: Total remaining energy for each algorithm at round 500

Algorithm Total Remamining Energy (J)
LEACH 28.40
CHEF 38.34
EEUC 39.89

EAUCF 41.23

4.3.3 Scenario 3

In this scenario, the base station is located at the center of the wireless sensor network like

in Scenario 1 and 2. CHEF, EEUC and EAUCF cluster-heads use EEUC routing protocol for

data transmission. In this scenario, the density of the deployed sensor nodes is doubled with

respect to Scenario 2. We aim to test the behaviors of the clustering algorithms in different

sensor network topologies which have different number of deployed sensor nodes. In other

words, we try to find out how clustering algorithms perform in relatively dense and sparse

sensor network deployments. The detailed configuration of this scenario is illustrated in Table

4.7.

Table 4.7: Configuration parameters of Scenario 3

Parameter Value
Network size 200x200m

Base station location (100,100)m
Number of sensor nodes 200

Initial energy 1 J
Data packet size 4000 bits

εamp 100 pJ/bit/m2

Eelec 50 nJ/bit
Aggregation Ratio 10%

The maximum competition radius is set to 35 and 70 m for EEUC and EAUCF, respectively.

These are the optimal maximum competition radius values for this scenario. After wireless

sensor network is deployed, the maximum distance to the base station is calculated approxi-

mately 137.93 m.

The simulations of this scenario provided the following results. The values for FND and HNA

metrics for each algorithm are shown in Table 4.8.
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Table 4.8: Scenario 3: Values of FND and HNA metrics for each algorithm

Algorithm FND HNA
LEACH 406 875
CHEF 620 848
EEUC 753 840

EAUCF 750 942

As seen in Table 4.8, the simulation results of this scenario comform more or less with the

simulation results of Scenario 2. However, the HNA performance of LEACH is increased

significantly in this scenario with respect to Scenario 2. EEUC and EAUCF have the highest

FND performance among four clustering algorithms. LEACH sensor nodes start to die earlier

than the sensor nodes of the other algorithms. EAUCF is more efficient than LEACH about

84.7% and CHEF about 21.0% considering FND metric. The HNA performance of EAUCF

is higher than LEACH about 7.7%, CHEF about 11.1% and EEUC about 12.1%.

In this scenario, FND performance of LEACH is significantly lower than the other algorithms.

FND performance of LEACH in Scenario 1 and Scenario 2 are close to the performance in

this scenario. The reasons of this low performance which are provided in the former sce-

narios are also valid for this scenario. Unequal clustering algorithms EEUC and EAUCF

outperform LEACH and CHEF considering FND metric, because they handle the hot spots

problem when multi-hop routing protocol is used for data transmission from cluster-heads to

the base station. If we consider the HNA metrics, EAUCF performs slightly better than CHEF

and EEUC in densely deployed sensor networks. In addition to this, LEACH’s HNA perfor-

mance is remarkable in this scenario, but still lower than the performance of EAUCF. Figure

4.7 demonstrates the comparison of the values of FND and HNA metrics for each simulated

algorithm in a visual manner.

Figure 4.8 shows the distribution of the alive sensor nodes according to the number of rounds

for each simulated algorithm. As seen in this figure, the number of sensor nodes of EAUCF

algorithm is significantly greater than the other algorithms when the number of alive sensor

nodes is 100. This situation implies that EAUCF keeps the wireless sensor network stable for

a longer time than the other algorithms.

As depicted in Figure 4.9, EAUCF generates lower number of clusters in the earlier rounds.
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Figure 4.7: Scenario 3: Values of FND and HNA metrics for each algorithm

Figure 4.8: Scenario 3: Distribution of alive sensor nodes according to the number of rounds
for each algorithm
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However, the number of clusters increases in a linear manner until the node deaths begin. This

is beacuse that the radius of cluster-heads are reduced as the residual energy decreases. This

situation triggers the increase in the number of cluster-heads.

Figure 4.9: Scenario 3: Distribution of the number of clusters according to the number of
rounds for each algorithm

Table 4.9 shows the total remaining energy levels for each algorithm at round 500. EAUCF

has the highest energy level, which is approximately 96 J, among all of the simulated algo-

rithms. In Scenario 1 and 2, the remaining energy level of CHEF has been nearly same with

EEUC. However, in this scenario CHEF has a higher remaining energy level which is approx-

imately 92 J. The sensor nodes of LEACH consumed much more energy up to the round 500

than the other algorithms for this scenario.

Table 4.9: Scenario 3: Total remaining energy for each algorithm at round 500

Algorithm Total Remamining Energy (J)
LEACH 82.84
CHEF 92.40
EEUC 90.45

EAUCF 96.33
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4.3.4 Scenario 4

In this scenario, the base station is located at (100,250) m which is outside of the wireless

sensor network. This is different from Scenario 1, 2 and 3 in which the base stations are

located at the center. Each cluster-head sends the aggregated data packet to the base station

by using EEUC routing protocol except LEACH. By comparing the results of Scenario 2 and

4, we will see how the location of the base station affects the results of the simulations. The

detailed configuration of this scenario is illustrated in Table 4.10.

Table 4.10: Configuration parameters of Scenario 4

Parameter Value
Network size 200x200m

Base station location (100,250)m
Number of sensor nodes 200

Initial energy 1 J
Data packet size 4000 bits

εamp 100 pJ/bit/m2

Eelec 50 nJ/bit
Aggregation Ratio 10%

The maximum competition radius is set to 60 and 110 m for EEUC and EAUCF, respectively.

These are the optimal maximum competition radius values for this scenario. After wireless

sensor network is deployed, the maximum distance to base station is calculated approximately

260.28 m.

The simulation of this scenario yielded the following results. Table 4.11 shows the rounds

in which the first node died (FND) and half of the nodes alive (HNA) for each simulated

algorithm.

Table 4.11: Scenario 4: Values of FND and HNA metrics for each algorithm

Algorithm FND HNA
LEACH 173 336
CHEF 159 419
EEUC 346 424

EAUCF 396 445

As seen in Table 4.11, the values of FND and HNA metrics for each algorithm have decreased
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with respect to former scenarios. This is because that the base station is located outside of the

wireless sensor network. Thus, the cluster-heads consume much more energy to trasnmit their

data packets to the base station. In this scenario, EAUCF has outperformed LEACH, CHEF

and EEUC considering both FND and HNA metrics. CHEF has the lowest FND performance

while LEACH has the lowest HNA performance. If we consider FND metric, EAUCF is more

efficient than LEACH about 128.9%, CHEF about 149.1% and EEUC about 14.4%. On the

other hand, if HNA metric is considered, the performance of EAUCF is greater than LEACH

about 32.4%, CHEF about 6.2% and EEUC about 5.0%.

In this scenario, unequal clustering algorithms outperform LEACH and CHEF considering

FND metric. This implies that if smaller cluster-head radius values are assigned to the cluster-

heads closer to the base station, the beginning of sensor node deaths can be delayed. This is the

key observation in all of the scenarios. As we have also observed in the former scenarios, the

radius calculation approach of EAUCF makes it perform better than EEUC. The results of this

simulation show that unequal clustering approaches perform better even if the base station is

located outside of the wireless sensor network. CHEF shows a remarkable HNA performance

in this scenario, but its FND performance is the lowest one. CHEF is a clustering algorithm

which assigns a static cluster-head radius to all its cluster-heads. Therefore, it cannot handle

the hot spots problem. Consequently, the sensor nodes start to die earlier than EEUC and

EAUCF which are unequal clustering algorithms. Figure 4.10 illustrates the FND and HNA

values of the simulated algorithms on a column chart.

Figure 4.11 shows the distribution of the alive sensor nodes with respect to the number of

rounds for each simulated algorithm. As seen in this figure, the sensor nodes of LEACH and

CHEF start to die in the earlier rounds. The sensor node deaths for EAUCF starts later than all

the other algorithms. EAUCF provides at least 400 stable rounds for this particular wireless

sensor network.

The distribution of the number of clusters with respect to the number of rounds for each

algorithm is depicted on a fast line chart in Figure 4.12. CHEF generates the highest number

of clusters at the earlier rounds. On the other hand, EAUCF generates the lowest number of

cluster-heads in the beginning. As the number of rounds increases, EAUCF starts to generate

more cluster-heads until first node dies. This approach helps EAUCF to delay the sensor node
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Figure 4.10: Scenario 4: Values of FND and HNA metrics for each algorithm

Figure 4.11: Scenario 4: Distribution of alive sensor nodes according to the number of rounds
for each algorithm
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deaths up to round 400.

Figure 4.12: Scenario 4: Distribution of the number of clusters according to the number of
rounds for each algorithm

Table 4.12: Scenario 4: Total remaining energy for each algorithm at round 250

Algorithm Total Remamining Energy (J)
LEACH 27.14
CHEF 43.66
EEUC 44.78

EAUCF 46.41

Total remaining energy levels at round 250 for each simulated algorithm are given in Table

4.12. EAUCF has the highest energy level which is approximately 46 J. This data represents

that EAUCF is the most energy-efficient algorithm for this scenario. The remaining energy

levels of CHEF and EEUC are close to each other. As we have also observed in former

scenarios, LEACH consumes considerably more energy than other algorithms.
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CHAPTER 5

CONCLUSION

In this thesis we have proposed a fuzzy unequal clustering algorithm for wireless sensor net-

works, namely EAUCF. The main objective of our algorithm is to prolong the lifetime of the

wireless sensor network by evenly distributing the workload. To achieve this goal, we have

mostly focused on assigning proper cluster-head competition ranges to sensor nodes.

EAUCF adjusts the cluster-head radius values considering energy and distance to the base

station parameters of the sensor nodes. We blend these parameters by using fuzzy logic to

obtain an appropriate cluster-head radius. If a particular sensor node has a higher residual

energy and is located far from the base station, then it has a greater cluster-head radius. On

the other hand, if a particular sensor node has a lower residual energy and is close to the

base station, then it has a smaller radius. The network traffic increases as we approach to the

base station in multi-hop wireless sensor networks. Therefore, the sensor nodes close to the

base station die earlier. Our radius adjustment mechanism solves this hot spots problem by

reducing the intra-cluster work of the cluster-heads closer to the base station.

After describing our algorithm EAUCF to solve hot spots problem, we have introduced our

wireless sensor network clustering simulator tool in order to evaluate our algorithm. We

implement LEACH, CHEF, EEUC and our algorithm EAUCF in this clustering simulator.

Evaluation is done by comparing the simulation results of four different clustering scenarios.

In all of the scenarios, we evaluate the performance of each of the clustering algorithms

using the FND and HNA metrics. In addition to this, we evaluate the energy efficieny of the

algorithms by comparing the remaining energy levels at a certain clustering round.

We have shown that our proposed algorithm has a better performance compared to LEACH,

CHEF and EEUC considering the simulation results. In all of four different scenarios, EAUCF
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sensor nodes start to die later than other algorithms except Scenario 3. In that scenario, EEUC

and EAUCF sensor nodes start to die nearly in the same round. Furthermore, EAUCF has

outperformed all of the algorithms considering the HNA metric. In all of the scenarios the

total remaining energy level of EAUCF at a certain round is higher than the other algorithms.

Therefore, EAUCF is more energy-efficient than other simulated clustering algorithms.

As a result of these experiments, we conclude that fuzzy unequal clustering algorithm EAUCF

is a stable and energy-efficient clustering algorithm for wireless sensor networks.

EAUCF algorithm is designed for the wireless sensor networks that have stationary sensor

nodes. As a future work, the fuzzy unequal clustering approach of our algorithm can be

extended for handling mobile sensor nodes.

Residual energy, distance to the base station and competition radius fuzzy sets can be adjusted

in order to find optimal cluster-head radius values. In addition to this, the optimal maximum

competition radius values for each scenario can be estimated by applying extensive tests.

In cluster-head competition, we only consider the residual energy of the tentative cluster-

heads. Some additional parameters such as node degree, density and local distance may also

be employed to improve the performance of EAUCF.
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