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ABSTRACT 

PERIODIC SEARCH STRATEGIES FOR 
ELECTRONIC COUNTERMEASURE RECEIVERS 

WITH DESIRED PROBABILITY OF INTERCEPT FOR 
EACH FREQUENCY BAND 

 

KÖKSAL, Emin 

 

M. S., Department of Electrical and Electronics Engineering  

Supervisor: Prof. Dr. Mustafa Kuzuoğlu 

 

January 2010, 95 pages 

 

 

Radar systems have been very effective in gathering information in a battlefield, so 

that the tactical actions can be decided.  On the contrary, self-protection systems 

have been developed to break this activity of radars, for which radar signals must be 

intercepted to be able to take counter measures on time.  Ideally, interception should 

be done in a certain time with a 100% probability, but in reality this is not the case.  

To intercept radar signals in shortest time with the highest probability, a search 

strategy should be developed for the receiver.  This thesis studies the conditions 

under which the intercept time increases and the probability of intercept decreases.  

Moreover, it investigates the performance of the search strategy of Clarkson with 

respect to these conditions, which assumes that a priori knowledge about the radars 

that will be intercepted is available.  Then, the study identifies the cases where the 

search strategy of Clarkson may be not desirable according to tactical necessities, 

and proposes a probabilistic search strategy, in which it is possible to intercept radar 

signals with a specified probability in a certain time. 
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Keywords:  Radar interception, probability of intercept, electronic countermeasure 

receivers, search strategy, synchronization with radar, Farey series 
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ÖZ 

ELEKTRONĐK KARŞI TEDBĐR ALMAÇLARINDA 

HER FREKANS BANDINDA ĐSTENEN YAKALAMA 

OLASILIĞINI SAĞLAYAN PERĐYODĐK TARAMA 

STRATEJĐLERĐ 

 

KÖKSAL, Emin 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mustafa Kuzuoğlu 

 

Ocak 2010, 95 sayfa 

 

Radar sistemleri, taktik kararların alınması için gerekli istihbarat bilgilerinin 

toplanmasında oldukça etkili olmuştur.  Buna karşın, radarların bu etkinliğini 

kırmak için kendini koruma sistemleri geliştirilmiştir.  Bu sistemler, radarlara karşı 

tedbirlerin alınabilmesi için radar sinyallerini yakalamalıdır.  Đdeal olarak bu işlem 

belirli bir zaman içerisinde %100 olasılıkla gerçekleşmelidir; fakat gerçekte bu 

mümkün değildir.  Radar sinyallerini mümkün olan en kısa zaman ve en büyük 

olasılıkla yakalamak amacıyla, almaç için bir tarama stratejisi belirlenmelidir.  Bu 

tezde, radar sinyalini yakalama zamanını artıran, olasılığını düşüren durumlar 

araştırılmıştır.  Ayrıca, Clarkson’un önerdiği, almacın ilgilendiği radarlar için bir ön 

bilgiyi şart koşan tarama stratejisinin performansı sorgulanmıştır.  Bunun 

sonucunda, taktik gereklere bağlı olarak bu stratejinin elverişsiz olabileceği 
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durumlar saptanmış ve belirli bir zamanda istenen bir olasılıkla radar sinyalini 

yakalamayı mümkün kılan bir olasılıksal tarama stratejisi önerilmiştir. 

 

Anahtar Kelimeler:  Radar sinyali yakalama, sinyal yakalama olasılığı, elektronik 

karşı tedbir alıcısı, tarama stratejisi, radarla senkron olma, Farey dizisi 
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CHAPTER 1  

 

INTRODUCTION 

Especially beginning with the World War II, a new battlefield was created: 

Electromagnetic spectrum.  This war is named as Electronic Warfare (EW).  EW 

includes using electromagnetic sprectrum to determine enemy’s order of battle, 

intensions and capabilities or prevent hostile use of the electromagnetic spectrum 

[12].  EW mainly includes two fields:  Electronic Support Measures (ESM) and 

Electronic Countermeasures (ECM) [14].  ESM is defined as “action taken under 

direct control of an operational commander to search for, intercept, identify, and 

locate sources of radiated electromagnetic energy for the purpose of immediate 

threat recognition.  ESM provide a source of information required for immediate 

decisions involving ECM, avoidance, targeting, and other tactical employment of 

forces” [13], whereas ECM is “action taken to prevent or reduce an enemy’s 

effective use of the electromagnetic spectrum” [13]. 

Radar systems have been very effective in gathering information in electromagnetic 

spectrum.  Basically, radars generate radio frequency (RF) energy, transmit, and 

collect and detect the reflected RF [15].  On the contrary, ECM systems have been 

developed to break this activity of radars, for which radar signals must be 

intercepted in a certain time to be able to take counter measures on time.  Radars 

use a very wide spectrum and usually an ECM receiver must be able to intercept 

multiple radars operating in different frequency bands from different directions, 

simultaneously.  Even if it is possible to intercept radar signals in a wide spectrum 

at the same time with some receivers, such as Instantaneous Frequency 

Measurements (IFM) receivers [9], with current technology these receivers can not 
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be highly sensitive [2].  In many applications, there is need to use sensitive 

receivers but they can work only on a narrow band of spectrum at a time.  To cover 

all the spectrum of interest, these receivers sweep all frequencies, which is why they 

are named as Frequency-Swept Receiver (FSR).  Super heterodyne receivers (SHR) 

form a subclass of FSRs, which can tune their frequencies to a different value at 

each time [2].  That is, they are changing the band in which they receive signals 

depending on time, although the bandwidth is fixed. 

Radars are faced with a similar problem; they can not be sensitive in both range and 

angular resolution [2], so that they have to use some methods like using directional 

antenna, emitting pulsed signals, scanning all the directions, etc.  Thus, both 

systems’ activity is intermittent and this makes the interception of radar signals 

probabilistic, rather than being deterministic.  Ideally, the interception should be 

done in a certain time with a 100% probability, but in reality this is not the case.  To 

intercept radar signals in shortest time with the highest probability, a search strategy 

should be developed for the receiver. The performance of SHR is directly related to 

its search characteristics [16].  Then, the question is, how to determine the best 

search strategy for a SHR; how to compare one search strategy with another one.  

This thesis studies the factors that affect the performance of search strategy, tests 

the performance of one search strategy proposed by Clarkson [4], and proposes 

another approach named as probabilistic search. 

1.1 PREVIOUS WORK 

The literature on this problem is quite sparse, and most of the articles are about 

probability of intercept calculations, with a limited number of studies on search 

strategy applications. Richards [6] was most probably the first researcher who 

studied the interception problem comprehensively for two strictly periodic and 

deterministic events.  He modeled the problem as the coincidence of two pulse 

trains (or window functions) which is usually used by the followers, and also he 

was the one who linked the problem to the number theory, using Farey series.  

Miller and Schwarz [17] also investigated connections with the number theory.  In 
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their approach, periods and durations of events are quantized.  Their work was 

simplified in [18] and [19].  Stein and Johansen [20] obtained some statistical 

information on coincidences of random pulse trains, which is extended in [10], but 

their methods were not applicable for strictly periodic pulse trains.  Hatcher [8] 

carried out calculations for intercept time for a pre-selected probability for random-

phase pulse trains.  Wiley [9] also developed a formulation to calculate intercept 

time, by using average coincidence period and average coincidence duration.  He 

was also maybe the first one who gave implications of his calculations to search 

strategies.  Most of these studies ignored the synchronization problem, but in [7], 

methods developed by Richards [6] were extended and synchronization problem is 

examined with number theory.  Clarkson presented a systematic study in which he 

questions the optimal periodic search strategy with respect to some parameters of 

emitters and receiver.  In [11] and [21], this author also studied the synchronization 

problem with number theory, especially using Diophantine approximation and 

Farey series.  In [1], he gave the mathematical model of the problem.  With this 

model, he examined the calculation of the maximum intercept time with change in 

the sweep period, i.e. the period of the receiver’s scan, with equal duration of 

sweeping for each frequency band.  In addition, he proposed a method to find 

periodic search strategy for a SHR receiver with an optimum sweep period which 

minimizes the maximum intercept time.  The continuation of his work was 

presented in [2], where it was shown that it was also possible to assign a different 

duration of sweeping for each frequency band.  In [4] he gave summary and more 

detailed information about his work for selecting optimal search strategy with the 

min-max intercept time criterion. 

1.2 SCOPE OF THE THESIS 

This thesis aims to examine the role of radar interception problem in search strategy 

applications for a SHR receiver.  It explores the factors that affect the performance 

of the search strategy by using the approach of Clarkson [4].  In the articles that 

appeared in the literature, Clarkson did not include simulations for his algorithm.  
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Thus, this thesis presents some simulations with different parameters and analyzes 

his approach against number of frequency bands, duty cycle of radars, PRI of radar 

signals, and diversity of scan period and duty cycle of radars.  In addition, this 

thesis proposes another approach for the search strategy, named as probabilistic 

search, which provides a means to intercept radar signal with a pre-selected 

probability in a certain time. 

Radars may use interpulse modulations, such as continuous wave (CW), pulsed, or 

chirp radars. Moreover, they can transmit more than one frequency; they can be 

frequency agile, or may employ frequency hopping [16].  In addition, radars may 

operate in many types of mode, such as switching, staggering, pulse repetition 

frequency (PRF) jittering [4].  Also they can make raster scan, spiral scan, or lobe-

switching scan.  Note that in this study it is assumed that the radars are circularly 

scanning and do not use any interpulse modulation, and also they emit with a 

constant frequency.  Furthermore, throughout the thesis it is assumed that SHR 

receiver periodically sweep frequency bands with an omnidirectional antenna.  

Therefore, all of the search strategy considered in this study is periodic.  Also it is 

assumed that a pre-knowledge about radars to be intercepted is available.  

Otherwise, there can not be any search strategy that guarantee finite intercept times 

[22].  Another assumption made here is that there is no noise, so that the 

interception is certain when coincidence between pulse trains happen.  In the 

presence of noise, the interception problem must be modeled in terms of detection 

theory. 

1.3 OUTLINE OF THE THESIS 

In Chapter 2, a brief summary for intercept problem and pulse train model is given 

as well as definitions of the parameters that are used throughout the study. 

Chapter 3 explains periodic search strategy for SHR receiver and gives a 

mathematical background to calculate the maximum intercept time which is used to 

find optimal search strategy.  In addition, an iterative algorithm by Clarkson [4] to 

compute the optimal search strategy is explained. 
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Chapter 4 gives the method for generation of data to test the performance of the 

algorithm of Clarkson and clarifies in which way the test is done. 

Results of simulations of the algorithm of Clarkson are given in Chapter 5 and also 

an analysis about the results is presented. 

Chapter 6 proposes a new approach, named as probabilistic search, where for each 

frequency band different probabilities of intercept are considered during the search.  

The algorithm of this approach is also given in this chapter. 

In Chapter 7 simulation results of probabilistic search are given and a comparison is 

made with the results of the algorithm of Clarkson. 

Chapter 8 concludes the study. 
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CHAPTER 2  

 

RADAR INTERCEPT 

2.1 COINCIDENCE WITH RADAR SIGNALS 

For an intercept to occur, the radar should direct its main beam to the receiver, and 

the receiver should be tuned to the frequency of the radar pulses.  Therefore, the 

problem may include different type of interceptions; such as, beam-on-beam 

intercept, beam-on-frequency intercept, or frequency-on-frequency intercept [8]. 

a) Beam-on-beam intercept:  In this problem, as indicated in  Figure 2-1, the 

radar and the receiver have directional antennas that are rotating.  Therefore, 

an intercept can occur only when the main beams of both antennas are 

coincident. 

 _______________________________________________ 

 

 

Figure 2-1: Beam-on-beam intercept [8] 
 



7 

 

b) Frequency-on-frequency intercept:  In this case, the radar and receiver 

have omnidirectional antennas, and the radar is continuously emitting.  But, 

the radar is sweeping or jumping in frequency.  Thus, the receiver should be 

tuned to the frequency of the radar pulses for an intercept.  This is illustrated 

in the Figure 2-2. _______________________________________________ 

 

 

 

Figure 2-2: Frequency-on-frequency intercept [8] 

 

c) Beam-on-frequency intercept:  As illustrated in Figure 2-3, in this 

intercept problem, the radar antenna is directionally rotating, whereas the 

receiver has an omnidirectional antenna and searching in frequency.  An 

intercept occurs when the receiver is tuned to the frequency of radar pulses 

and the main beam of radar is directed to the receiver antenna. 

 

 

 

Figure 2-3: Beam-on-frequency intercept [8] 
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In this thesis, the beam-on-frequency intercept problem is studied.  Therefore, 

throughout the study it is assumed that the radar is circularly scanning with a 

directional antenna, and the receiver is sweeping frequency bands with an 

omnidirectional antenna. 

2.2 PULSE TRAIN (WINDOW FUNCTION) MODEL 

Typically, radars make a search in angle with a directional antenna.  In Figure 2-4, a 

typical antenna pattern of radar is shown. 

 

 

Figure 2-4: Example directional radar antenna pattern 

 

Assuming that the radar is making a periodic search in angle and the receiver is 

tuned to the frequency of radar signals, the signals will be received with a highest 

power when the mean beam is directed to the receiver, while their power will be 

lower, even below the noise power, when the antenna of the radar is directed 

elsewhere.  In this way, the graph of noise-free perceived radar signal powers on the 

receiver will be like in Figure 2-5: 
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Figure 2-5: Circularly scanning radar signal interception at the receiver 

 

For the sake of simplicity, radar interception may be modeled by a pulse train, so 

that the value is 1 when the radar signals can be received over the noise level and 0 

when the received power would be under noise level if the receiver were tuned to 

the true frequency.  With this model, Figure 2-5 will be replaced by Figure 2-6. 

 

 

Figure 2-6: Interception model with pulse train 

 

In this respect, Figure 2-6 shows the temporal regions where it is possible to 

intercept the signals of radar.  So, in these regions the pulse train has a value of 1, 

but also the receiver has to be tuned to the frequency band to be able to intercept the 

signals.  Note that we can also model the behavior of the receiver with a pulse train 

as follows:  Let us assume that the receiver is also making a periodic search in 

frequency bands yielding a value of 1 when the receiver is tuned to the true 

frequency and 0 when the receiver is tuned to any other band.  Then, we can plot 

the frequency sweeping behavior of the receiver as in Figure 2-7 b). 
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Figure 2-7: Coincidence of two pulse trains.  a) Pulse train (1) of radar  b) Pulse 
train (2) of receiver 

 

If Figure 2-7 is examined, the dashed lines show the times where both pulse train 1 

and pulse train 2 have a value of 1, namely both the radar is directed to the receiver 

and the receiver is tuned to the frequency of radar signals.  Thus, interceptions 

occur in dashed regions. 

2.3 DEFINITIONS 

2.3.1 Scan Period 

Search radar with an antenna that rotates with constant angular velocity directs its 

main beam to the receiver with regular time intervals.  Thus, as seen in Figure 2-7 

a), there will be a periodicity in radar’s scan, which is named as scan period, emitT . 
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2.3.2 Beamwidth 

Beamwidth (in degree) defines the sight of the radar when it directs its main beam 

in a certain direction.  The duration during which the radar directs its main beam to 

the receiver is proportional to the beamwidth.  We can assign beamwidth to the 

pulse width in Figure 2-7 a), emitτ , with the following formula: 

 emitemit T
beamwidth

×=
360

τ  (2.1) 

2.3.3 Pulse Repetition Interval (PRI) 

During the time emitτ , actually the radar emits not only one pulse, but many pulses 

one after another with an interval to be able to detect its targets in its range.  The 

pulses in Figure 2-7 a) illustrate the time intervals when the radar directs its main 

beam to the receiver.  Actual radar pulses are shown in Figure 2-8.  The interval 

between these pulses is defined as PRI. 

 

 

Figure 2-8: Pulse repetition interval 
 

2.3.4 Sweep Period 

A receiver that applies a periodic search strategy will tune its frequency to each 

band periodically.  This period can be defined as the sweep period, rcvT .  It can be 

seen in Figure 2-7 b). 
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2.3.5 Dwell Time 

Dwell time determines the amount of time during which the receiver stays tuned to 

a frequency band.  It is seen in Figure 2-7 b) as the pulse width of the pulse train 2, 

rcvτ . 

The role of PRI in interception is important and must be clarified.  It can be seen 

from Figure 2-7 that when interception occurs, it lasts at most for an amount of time 

equal to the dwell time.  In order to detect the radar, at least a few pulses are 

necessary.  This means that when an interception occurs, the receiver has to 

perceive at least some number of pulses.  Therefore, we can assign the time to 

intercept a given minimum number of pulses to dwell time as follows: 

 PRI  receive  topulses ofnumber  minimum   timedwell minimum ×=  (2.2) 

2.3.6 Duty Cycle 

The duty cycle of a pulse train is the ratio of the pulse width to the period.  So, for 

the receiver, it can be written as follows: 

 
rcv

rcv

T

τ
==

 period sweep

 timedwell
 cycleduty  (2.3) 

The duty cycle can show how busy is the receiver for a specific frequency band.  To 

save time for other frequency bands, it will be necessary to consider duty cycle for 

one band. 
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CHAPTER 3  

 

PERIODIC SEARCH STRATEGY 

In the search strategy, intercept time has an important role.  The aim is not only to 

get information about the electromagnetic spectrum as much as possible in a limited 

time, sweep period, but also to intercept the emitters as soon as possible.  Therefore, 

the maximum time to intercept a radar signal is of interest. 

Here, the intercept time refers to this possible maximum time to receive the signal 

of the emitter of interest.  That is, during the intercept time, at least once the radar is 

directed to the receiver and the receiver is tuned to the frequency of the radar at the 

same time.  If we use the model introduced in part 2.2, intercept time is the time to 

wait for at least one coincidence between pulse train 1 and pulse train 2 in the worst 

case.  It is possible to receive signals before the intercept time, but at the end of 

intercept time, this is guaranteed. 

It should be noted that when a coincidence occurs, intercept is accepted to be 

certain, due to the absence of noise. 

3.1 THE ROLE OF SWEEP PERIOD AND DWELL TIME IN 

INTERCEPTION 

Since one of the main parameters to be decided for the best search strategy is the 

sweep period, it is useful to observe the variation of the intercept time with the 

change in sweep period.  This is provided in [1], where the author gives a 

calculation method for intercept time to easily see the effect of change in sweep 
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period, assuming fixed sum of pulse widths ( rcvemit ττ + ), or constant duty cycles, 










rcv

rcv

emit

emit

TT

ττ
 and .  Another assumption that is made in [1] is that the dwell time rcvτ  

is the same for each frequency band.  In Figure 3-1, such a simple periodic search 

strategy can be seen for an example of 10 frequency bands. 

 

 

Figure 3-1: Simple periodic search strategy of a SHR for 10 frequency bands with 
2=rcvT  

 

Obviously, here the question is to decide the sweep period rcvT for the best search 

strategy which minimizes the maximum intercept time of all the emitters in the 

threat-emitter list.  This will be explained in more detail later in this section, but for 

now it is convenient to show how the search strategy differs with rcvT when pulse 

width or duty cycle is constant. 
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Figure 3-2: Simple periodic search strategy of a SHR with sum of dwell times less 
than rcvT  

 

In Figure 3-2, we see that if the pulse width is constant, when rcvT increases, some 

gaps appear while sweeping during rcvT .  This is because pulse width for each 

frequency band is fixed while increasing rcvT creates more idle time available for the 

receiver.  The places of the gaps are actually not important unless the search of any 

frequency band becomes aperiodic.  To answer how to fill this time is not a purpose 

of [1], but one of the useful results will be to show how intercept time for each 

emitter in the threat-emitter list changes with rcvT when pulse width is fixed. 

 

 

Figure 3-3: Gaps are filled equally when sweep period increased 

 

Moreover, this new idle time can be automatically filled by increasing pulse width 

of each frequency band by the same proportion, as in Figure 3-3.  In other words, 
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the duty cycles remain the same. The variation of intercept time by changing rcvT  is 

also examined in [1] when duty cycle is fixed. 

First of all, consider the equation 

 τφ
2

1
≤−− kTt  (3.1) 

which tells us that a pulse appears at all times t  that satisfies the condition in (3.1), 

where T  is period and τ  is pulse width as stated before, k  is defined as pulse 

index for thk pulse, which is an integer ( Ζ∈k ), and φ  is the time delay.  Therefore, 

for a coincidence between two pulse trains, for an emitter and the receiver, a 

necessary and sufficient condition is as follows, 

 ( ) ( ) ( )dTkTk rcvemitrcvrcvrcvemitemitemit 2
2

1
−+≤+−+ ττφφ  (3.2) 

where d  is the minimum time required for a coincidence.  Also note that for a 

coincidence of duration d  both demit >τ  and drcv >τ . 

Intercept time is the required time to guarantee at least one coincidence between 

two pulse trains, which is independent from phases of pulse trains.  Then, in the 

SHR problem the intercept time can be defined as integer multiple of rcvT . 

Now, it will be useful to examine the intercept time relative to the scan period of the 

emitter, rcvT .  Thus, define the values ,, βα  and, ε  as follows: 

 Ratio of periods,        
emit

rcv

T

T
=α                                     (3.3) 

                Normalized sum of pulse widths,       
emit

rcvemit

T

d2−+
=

ττ
ε                       (3.4) 

                       Normalized phase difference,      
emit

emitrcv

T

φφ
β

−
=                          (3.5) 
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If we rewrite (3.2) in terms of ,, βα  and, ε  as in (3.6) below, 

 εβα
2

1
≤+− pq  (3.6) 

we can see that there is an interval for normalized phase difference β , in which a 

coincidence occurs between thp  pulse and thq pulse of pulse train 1 and 2, 

respectively.  From (3.6), this interval can be written as follows: 







 ≤+−ℜ∈= εα

2

1
, xpqxI qp                                           






 +−−−= εαεα
2

1
,

2

1
qpqp                                      (3.7) 

When β  is a member of such an interval, then there is coincidence.  More 

precisely, if a union is defined which consists of all these intervals, the condition for 

a coincidence is: 

U
nq
Zqp

qpI

<≤
∈

∈

0
,

,β  

A characteristic function )(βnC  of this union then can be defined, which takes the 

value 1 if some integers qp,  can be found with nq <≤0  such that qpI ,∈β  and it 

is 0 otherwise.  Inherited from the periodicity of both pulse trains, )(βnC  is 

periodic with 1=β . 

Therefore, when )(βnC  is always 1 for 10 ≤≤ β , a coincidence must occur 

between pulse trains, within these n  consecutive pulses.  Then, the intercept time 

is rcvTn× . 

In Figure 3-4 taken from [1] the values of characteristic function )(βnC  are shown 

for 14,9,5 === nnn  between 0=β  and 1=β , for an example with values 

217.0=α  and 1.0=ε .  Here, the important thing is to see that )(βnC  takes 0s for 

some values of β  for 14<n .  This means that when 14<n , there are some values 

of β , which makes the coincidence impossible.  In other words, coincidence is still 
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phase-dependent until 14=n .  For 14=n , however, )(14 βC  becomes 1 for all 

values of β  between 0 and 1, so that a coincidence is guaranteed.  Thus, the 

receiver should be tuned to the frequency of the emitter for duration of 14 times rcvT  

to ensure to intercept the signals of emitter.  Obviously, this is the intercept time for 

that emitter:  rcvrcv TTn ×=× 14 . 

Another result from Figure 3-4 is that as n  increases, there are more intervals that 

makes )(βnC  = 1.  Note that some intervals form overlaps over the values of β .  

Because of this, )(βnC  would be equal to 1 for all values of β  most quickly, if 

there were not overlaps.  Actually, this is the theoretical lower bound for the 

intercept time.  Remembering that the width of each interval is ε , this bound is 

expressed as follows: 

 
rcvemit

rcvemitrcv TTT

ττε +
=≥ timeintercept   (3.8) 
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Figure 3-4: The value of the characteristic function )(βnC  for 14,9,5 === nnn  

[1] 

 

3.2 MAXIMUM INTERCEPT TIME 

3.2.1 Diophantine Approximation 

Diophantine approximation is a branch of number theory which deals with 

approximation of real numbers by rational numbers.  In this context, it is important 

how to decide one approximation is better than the other.  For our purpose, in [1] a 

best approximation qp /  with 0≥q  to α  is defined as the one for which the 

following is true: 

For all any other approximation '' qp  with 0'≥q ,  

 pqpqqq −≥−⇒≤ αα '''   (3.9) 
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and 

 qqpqpq ≥⇒−≤− ''' αα   (3.10) 

where pq −= αη  is the absolute approximation error. 

For any real number α  we can find a sequence of best approximations, like 

LL ,,,,
2

2

1

1

n

n

q

p

q

p

q

p
 

such that the absolute approximation error η  is non-increasing.  The sequence is 

infinite unless α  is rational. 

The best approximation of α  within ε  is the one that is the first in the sequence of 

best approximations to α  with an absolute approximation error not greater than ε  

[1]. 

The sequence of best approximations can be ordered so that they have the following 

properties: 

- 01 <+nnηη , where nη  and 1+nη  are the approximation errors of successive 

elements of the sequence. 

- Let 
nn qp  and 11 ++ nn qp  be two successive elements of the sequence.  

Then, they exhibit unimodularity property as follows: 

 




−

>
=− ++ otherwise,1

0 if,1 n
11

η
nnnn qpqp   (3.11) 

Then, according to [1], Diophantine approximation can be used to find the intercept 

time of any two pulse trains with α  and ε  as defined in (2.3) and (2.4) by the 

following procedure: 

1. Determine the best approximation of α  to within ε , which is denoted as 

)()( εε nn qp . 

2. If the approximation error of the best approximation found in 1 is zero, this 

is because α  is rational and this corresponds to a synchronization ratio, so 

that the intercept time is infinite. 
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3. If not, determine the next element in the sequence: 1)(1)( ++ εε nn qp . 

4. Calculate k  as follows: 











 −
=

+

)(

1)(

ε

ε

η

ηε

n

n
k  

5.  The intercept time is ( ))()(1)( εεε nnnrcv kqqqT −+× + . 

3.2.2 Farey Series and Intercept Time 

According to [1], to enumerate the synchronization ratios and to find the intercept 

time, it is suitable to use Farey series1 of appropriate order.  Farey series of order n , 

nℑ , is such a series that its elements are fractions in lowest terms in ascending 

order, whose denominators are positive and less than or equal to the order n  [3].  

The Farey series between 0 and 1 up to order five can be seen in Table 3-1. 

 

Table 3-1: The Farey series up to order 5 between 0 and 1 
 

1. 

order 1

0
,                                                                                                               

1

1
 

2. 

order 1

0
,                                                     

2

1
,                                                     

1

1
 

3. 

order 1

0
,                              

3

1
,                  

2

1
,                  

3

2
,                              

1

1
 

4. 

order 1

0
,                  

4

1
,       

3

1
,                  

2

1
,                  

3

2
,       

4

3
,                  

1

1
 

5. 

order 1

0
,       

5

1
,      

4

1
,       

3

1
,      

5

2
,       

2

1
,      

5

3
,       

3

2
,        

4

3
,      

5

4
,      

1

1
 

 

 

                                                 
1 Although the Farey Series is in fact a “sequence”, this terminology is used in the literature. 
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The Farey series have the following properties:  Let kh  and '' kh  be two adjacent 

elements of the series.  Their median is defined as ( ) ( )'' kkhh ++  and when the 

order reaches 'kk +  it is added to the series between kh  and '' kh .  Moreover, the 

elements of the Farey series also obey unimodularity property, i.e. 1'' =− hkkh . 

Then, the Farey series can be used to determine intercept time as follows [1]: 

1. Calculate α  and ε  as in (2.3) and (2.4). 

2. Find the appropriate order of Farey series, which is   11 −ε . 

3. Find adjacent elements of the series, kh  and '' kh , such that 

'' khkh ≤≤α .  If α  is equal to one of these elements, then this element 

corresponds to a synchronization ratio, so the intercept time is infinite and 

there is no further steps. 

4. Calculate 1x  as follows: 

 








−

<
+

=
 otherwise,

'

'

'if  ,

1

k

h

kk
k

h

x ε

ε

 (3.12) 

5. Calculate the values QPqp ,,,  and κ  as follows: 

 

(3.13) 

 












−

−−
=

pq

PQ

α

αε
κ  (3.14) 

6. The intercept time is ( )qqQTrcv κ−+× . 

With this procedure, holding ε  as constant, the change in intercept time by varying 

emitT  or rcvT  can be easily seen.  As α  moves towards elements of Farey series, 

intercept time goes to infinity.  Thus, the elements of the Farey series of order 

  11 −ε  give the complete series of synchronization ratios of relevant pulse trains.  

On the other hand, the intercept time reaches to its minimum value as α  moves 

between adjacent elements [1]. 



 =<<

=
otherwise    ,,','

   and  'both or    if',',,
,,, 11

khkh

xkkxkhkh
QPqp

αα
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3.2.3 Constant Duty Cycles and Intercept Time 

We have shown the procedure to use Farey series to determine synchronization 

ratios and intercept times when the sum of pulse widths, i.e. ε , is constant.  

However, since the purpose here is to be able to intercept radars as quick as 

possible, the new idle time of receiver created by increasing rcvT  would be filled 

with some duties immediately.  Therefore, it would be useful if we were also able to 

observe the effects of varying rcvT  on the intercept time when the duty cycle is 

constant. 

In [1], there is a method for this purpose very similar to the constant sum of pulse 

widths case.  The main difference is that in the constant duty cycle case, instead of 

Farey series, an augmented generalized Farey series is used, which is denoted by 

( )21
* , λλξ , where 1λ  and 2λ  are the duty cycles of two pulse trains.  Then, the 

procedure to find the intercept time where the duty cycles are constant is as follows: 

1. Calculate α  as in (2.3). 

2. Calculate the augmented, generalized Farey series, ( )rcvemit λλξ ,* , where 

emitλ  and rcvλ  are the duty cycles for the emitter and the receiver, 

respectively. 

3. Find the successive elements of ( )rcvemit λλξ ,*  such that '' khkh ≤≤α .  If 

α  is equal to one of the elements, the intercept time is infinite because of 

synchronization.  Otherwise, follow next steps. 

4. Calculate 1x  as follows: 

 










+

−

<
−

+

=
 otherwise,

'

'

'if  ,

2

1

2

1

1

λ
λ
λ
λ

k

h

kk
k

h

x  (3.15) 

5. Calculate the values QPqp ,,,  and κ  as in (3.13) and (3.14). 

6. The intercept time is ( )qqQTrcv κ−+× . 
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In Figure 3-5 below, we see how the intercept time changes with the sweep period 

rcvT , when duty cycle of both the emitter and the receiver is constant.  For the 

emitter a duty cycle of 0.13 is used whereas for the receiver the duty cycle is 0.26.  

emitT  is taken constant as 1, and rcvT  is varied between 0.1 and 4.  As seen from the 

graph, intercept time sometimes goes to infinity.  This corresponds to the 

synchronization ratios, and the augmented generalized Farey series give these 

ratios. 

 

                    

 

Figure 3-5: Intercept time vs. rcvT  with constant duty cycles  

 

3.2.4 Geometric Construction of Intercept Time 

Another result seen in Figure 3-5 is that there is a point where intercept time 

reaches a local minimum value between two infinite values, i.e. between two Farey 
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ratios.  Moreover, there are regions where the change in intercept time is piecewise 

linear, and there are jumps between these linear regions.  These jumps are because 

of the change in intercept time as number of looks.  This means that there is a 

tolerance for dwell time for which intercept time as the number of looks remain the 

same.  These regions depend on the ratio of the periods of the pulse train, α  as in 

(3.3), and the tolerance, ( ) emitrcvemit Td2−+= ττε , where d  is the minimum 

required time for a coincidence.  Note that ε  is actually the normalized sum of 

pulse widths (3.4) when 0=d . 

In fact, α -ε  plane can be divided into these regions which shows us at once where 

the intercept time becomes infinite, where there are jumps in intercept time as the 

number of looks, and where it remains constant.  To get subdivided α -ε  plane as 

in [4], we need some theorems. 

Theorem 1:  The fractions kh  and '' kh  are adjacent elements of Farey series if 

and only if 1'' =− hkkh .  The necessity and sufficiency part of the proof of this 

theorem can be found in [3] and [5], respectively. 

Theorem 2:  Let kh  and '' kh  be two adjacent elements in a Farey series, such that 

'' khkh ≤≤α .  If for some '''' kh ,  '''''' hkhkhk −<−<− ααα , then ''' kkk +≥ . 

Theorem 3:  Let α  and ε  be period ratio and tolerance as defined before, and let 

kh  and '' kh  be two fractions such that '' khkh <≤α .  If εα ≤− kh  and 

εα ≤− '' hk , then the intercept time (the number of looks) is not greater than 'kk + , 

i.e. int. time ≤  'kk + . 

Theorem 4:  Again consider α  and ε  as in previous theorem and let kh  and '' kh  

be two adjacent elements in a Farey series such that '' khkh <≤α .  If 

( ) ( ) εα >−−− hhkk '' , then the intercept time as the number of looks is not less than 

'kk + , i.e. int. time ≥  'kk + . 

The proofs of Theorems 2, 3, and 4 can be found in [4]. 
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Now, consider any two adjacent Farey elements such that '' khkh <≤α .  From 

theorem 3 we know that the intercept time is not greater than 'kk + , when 

εα ≤− kh  and εα ≤− '' hk .  The intersection of these regions can be found by 

writing the equality '' hkkh −=− αα  and using Theorem 1.  Then, α  is found to 

be ( ) ( )'' kkhh ++ , and ( )'1 kk +=ε .  Also note that at kh=α , εα ≤− '' hk  

reduces to k1≥ε , and at '' kh=α , εα ≤− kh  reduces to '1 k≥ε .  Furthermore, 

from Theorem 4 we know that the intercept time is not less than 'kk + , when 

( ) ( ) εα >−−− hhkk '' , which reduces to k1<ε  at kh=α , and '1 k<ε .  As a 

result, these boundaries form a triangle in the α -ε  plane, inside which the intercept 

time is constant, 'kk +  [4].  The vertices of the triangle are as follows: 

 
















++

+


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











'

1
,

'

'
,

'

1
,

'

'
,

1
,

kkkk

hh

kk

h

kk

h
 (3.16) 

Such a triangle is drawn in Figure 3-6 as an example.  Except the dotted line, the 

intercept time is 'kk +  inside and on the edges of this triangle. 
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Figure 3-6: A triangle in α -ε  plane inside which the intercept time is constant. [4] 

 

The whole α -ε  plane can be partitioned by these triangles which show us the 

value of intercept times depending on α  and ε  values.  The region for which the 

intercept time is infinite, i.e. synchronization occurs, remains non-partitioned.  

Since these triangles are not used directly but instead just the idea is used in later 

chapters, the details of the procedure for this partition will not be given here but can 

be found in [4].  However, in Figure 3-7 this partitioned α -ε  plane can be seen for 

intercept time up to 7.  The numbers in the triangles show the intercept time for any 

two pulse trains which have the ( )εα ,  values that are inside the triangle.  The graph 

repeats itself after 1=α . 
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3.3 MIN-MAX INTERCEPT TIME OPTIMIZATION FOR 

SEARCH STRATEGY 

The results of the previous chapter can now be used to develop a search strategy for 

the receiver.  The assumption here made is that we have a priori information about 

the emitters that are expected to exist in the environment.  This assumption is 

actually realistic, since the parameters of the radars can be extracted by ELINT 

systems.  These parameters can not have always exact values, but their values are 

usually within a range.  For now, let the parameters of the emitters have exact 

values for simplicity.   

One simple example of threat-emitter list is given in Table 3-2 [4], in which there 

are 3 different bands and there is one emitter for each.  The receiver should sweep  

 

 

Figure 3-7: α -ε  plane partitioned by triangles of constant intercept time 
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Table 3-2: Example threat-emitter list 
 

Emitter 
number 

Band Scan period 
( sµ ) 

PRI ( sµ ) Beamwidth (˚) 

1 A 6104.8 ×  31038633.2 ×  1.3 

2 B 61097.2 ×  31037792.1 ×  2.6 

3 C 10.5 610×  9.38 2.1 

 

 

periodically these 3 bands and remain to be tuned to the frequency of each band 

during their respective dwell time.  The dwell time together with rcvT  will result an 

intercept time for each emitter of the relevant band, in which at least one 

coincidence is guaranteed.  In this manner, the aim is to find the sweep period of the 

receiver, rcvT , and the dwell time iτ  for each band, such that the maximum of all the 

intercept times is minimized. 

Due to the hardware and system restrictions, rcvT  may have a minimum and 

maximum acceptable value; we prefer to use min_rcvT and max_rcvT  for these 

values in the rest of the thesis.  Therefore, optimization is performed over 

[ ]max_min,_ rcvrcv TT .  Remember from the Sec. 2.3.5 that there is a minimum 

acceptable dwell time, since at least some number of pulses of the emitter should be 

received for interception to be possible.  Let 5 be the minimum number of pulses, 

then, from (2.2) the minimum dwell time for a band is ×5 PRI.  Note that if there is 

more than one emitter in the band, then here PRI actually refers the maximum of all 

PRIs of the emitters, in order to get a minimum of acceptable dwell time for all 

emitters in the band.  Since in our example of Table 3-2 there is one emitter in each 

band, minimum dwell time of a band is equal to the PRI of the emitter in the band.  

Moreover, using (2.1) we can calculate the duration of the illumination of the 
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emitters, emitτ .  The values that are discussed so far are added to Table 3-2 to form 

Table 3-3. 

 

Table 3-3: Example threat-emitter list used in the algorithm 
 

Emitter 

number 

Band 
emitT  ( sµ ) min rcvτ  ( sµ ) emitτ  ( sµ ) 

1 A 6104.8 ×  11931.65 30333.3333 

2 B 61097.2 ×  6889.6 21450 

3 C 10.5 610×  46.9 61250 

 

 

Obviously, the sum of dwell times of all bands can not exceed the sweep period.  

So, we can write this constraint of optimization as follows, 

rcv

n

i

rcv Ti ≤∑
=1

)(τ                                                     (3.17) 

where n  is the number of bands, and i  is the index of the band, i.e. )1(rcvτ  is dwell 

time for band A, )2(rcvτ  is for band B, etc.  It is clear that we want to allocate all 

the available time in rcvT  for dwells, since there is no benefit when the receiver is 

idle.  Thus, the first aim will be to allocate all the time duration in min_rcvT to the 

dwell time of each band.  We will refer this as optimization for a fixed sweep 

period.  When all the time duration in min_rcvT  is filled, it will be necessary to 

increase the sweep period to create more available time.  This process is referred to 

as optimization over a range of sweep period. 
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3.3.1 Optimization for a Fixed Sweep Period 

In this scenario, rcvT  is fixed at min_rcvT  and only dwell times are varied, so that 

the maximum intercept time of all emitters is minimized, such that (3.17) is 

satisfied and dwell times are not less than their minimum acceptable values.  Thus, 

initially we can assign the minimum acceptable values, min rcvτ , to the dwell times.  

Just at this point it is possible that the sum of dwell times is greater than max_rcvT , 

in which case it is not possible to find a feasible solution.  Otherwise, optimization 

is carried out using a simple principle:  As a function of dwell time, intercept times 

with emitters of a particular band is monotonically non-increasing [4].  In other 

words, if we assign more dwell time to a band, the intercept times for the emitters of 

that band can not increase.  Conversely, if dwell time is reduced for a band, the 

intercept times for the emitters of that band can not decrease. 

Beginning with the initial values of dwell times, optimization progresses iteratively.  

At each iteration, intercept time with each emitter is calculated using the method in 

Sec. 3.2.2.  Then, for each band, its maximum intercept time is found.  Since the 

aim is to minimize the maximum of all intercept times, optimization focuses on the 

band which has the maximum intercept time, i.e. the one that includes the emitter 

with maximum of all intercept times.  According to the simple principle that has 

just been explained, we add some dwell time to the band with maximum intercept 

time.  The amount of the dwell time to be added can be found by using the α -ε  

plane in Figure 3-7.  For the emitter with maximum intercept time, α  and ε  are 

calculated by using (3.3) and (3.4).  This (α ,ε ) point will belong to a triangle in 

α -ε  plane, or it will be in a non-partitioned region, if the intercept time for this 

emitter is infinite.  Then, while α  is kept constant – since rcvT  is constant –, ε  is 

increased until when (α ,ε ) point reaches to the upper triangle which represents a 

lower intercept time.  This point can be found by the intersection of two lines, i.e. 

α  = rcvT  line and the edge of upper triangle.  However, in our simulations, the 

amount of dwell time to be added is found iteratively, i.e. by starting with some 
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amount of dwell time and then increasing or decreasing it depending on whether the 

intercept time becomes worse (greater) or better (lower) than the current one.  In 

this manner, the smallest dwell time to be added is found.  If this extra amount of 

dwell does not cause (3.17) to fail, it is added to the related band.  Now, intercept 

times of the emitters of that band may be changed, so they are recalculated.  Since 

in this part of the optimization rcvT  is fixed at min,_rcvT there will be no change in 

other bands.  At this point, the first iteration is completed.  For the next one, the 

band with the maximum intercept time is found again, since now it may have been 

changed.  Then, the same steps are repeated for that band.  Iterations will continue 

in the same way until when there is not enough available time left to be added to the 

dwell time of any band.  The iteration steps are listed below: 

1. All of the intercept times are calculated using the method in Sec. 3.2.2. 

2. Maximum intercept time is decided for each band and the band with 

maximum intercept time between all bands is found.  Choose it arbitrarily if 

there is a tie. 

3. The smallest dwell time to be added to the band with maximum intercept 

time to decrease its intercept time is calculated by using α -ε  plane as 

shown in Figure 3-7 or iteratively. 

4. If there is available time in min,_rcvrcv TT =  i.e. +∑
=

n

i

rcv i
1

)(τ extra dwell 

found in 3 rcvT≤ , this dwell time is added to the band with maximum 

intercept time, so that its intercept time is decreased. 

5. Otherwise, try 3-4 with other bands with next maximum intercept time until 

4 is applicable for a band. 

6. If  4 or 5 is completed, return to 1 and repeat all the steps, otherwise 

optimization for a fixed sweep period is completed, since there is no more 

available time in rcvT . 

Now we can see the procedure with an example, again using the emitters of Table 

3-3.  Assume that sesTrcv µ611min_ == , so that throughout all iterations rcvT  is 
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fixed at .min_rcvT   At the end of the iterations, optimum dwell times for each band 

will be found such that maximum intercept time is minimized and (3.17) is 

satisfied.  We can see the results of iterations in Table 3-4. 

In iteration 0 we start with the minimum dwell times from Table 3-3 and we see that 

this results in infinite intercept time for Band A and Band C, because of 

synchronization.  Thus, Band A is arbitrarily chosen and in the next iteration more 

dwell time is added to Band A, which reduces its maximum intercept time to 42 

looks, i.e. only after sTrcv µ×42  it is guaranteed to intercept with all the emitters of 

Band A.  Notice that dwell time of Band A is increased to 193530 sµ .  In the next 

iteration we will try to add more dwell time to Band C, which has the maximum 

intercept time now.  We see that its intercept time is smaller than infinity only when 

its dwell time increased to 438844 sµ .  With these dwell times we see that there is 

355296 sµ  left in seTrcv µ61=  which can be used in the next iterations.  In the rest 

of the iterations, this available time is used for Band B to reduce its intercept time to 

65 looks.  Finally there is no more available time to reduce intercept time of any 

band and optimization for a fixed sweep period is completed. 
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Table 3-4: Iteration results of optimization for a fixed sweep period 
 

Band A Band B Band C 

# of 

iteration # of 

looks 

dwell 

( )sµ  

# of 

looks 

dwell 

( )sµ  

# of 

looks 

dwell 

( )sµ  

available time 

∑
=

−
n

i

rcvrcv iT
1

)(τ  

0) Inf 11932 297 6890 Inf 47 981131 

1) 42 193530 297 6890 Inf 47 799533 

2) 42 193530 297 6890 21 438844 360736 

3) 42 193530 199 12330 21 438844 355296 

4) 42 193530 101 22330 21 438844 345296 

5) 42 193530 98 32330 21 438844 335296 

6) 42 193530 95 62330 21 438844 305296 

… … … … … … … … 

17) 42 193530 65 362330 21 438844 5296 

 

 

Intercept times throughout all iterations for all bands can be seen in Figure 3-8 

below.  It is actually the graph of the results of Table 3-4.  We can see that at the 

beginning Band A and Band C have infinite intercept times and they are reduced in 

the first iterations.  After second iteration, however, we see how intercept time of 

Band B reduces, since it remains as the band with maximum intercept time until the 

end of optimization. 
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Figure 3-8: Optimization iterations with fixed sweep period rcvT  

 

3.3.2 Optimization over a Range of Sweep Period 

In the previous section during optimization process we had fixed rcvT  at min_rcvT  

and we varied only dwell times.  In this section, we will allow to vary rcvT  (between 

min_rcvT and max_rcvT ) and dwell times simultaneously [4].  The logic is again 

the same; at each iteration maximum intercept time is found and it is reduced by 

adding more dwell to that band.  But, now there is not enough available time in 

sweep period, so we have to increase rcvT  if we want to add more dwell to a band.  

However, rcvT  is a common parameter in calculating intercept time for every emitter 

of any band and we have to be careful, since increasing rcvT  alters the situation for 

every emitter.  Therefore, while reducing maximum intercept time with a particular 

emitter in its band, we have to be sure that we are not increasing intercept times 

with other emitters.  To do this, we can use the information contained in the α -ε  
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plane shown in Figure 3-7, which plays an important role here.  From that figure we 

see how intercept time changes if we increase α , therefore rcvT .  For example, we 

increase rcvT  by some number, let us call x .  Calling the candidate of new sweep 

period as rcvT * , 

 rcvT *  = xTrcv +  (3.18) 

Also we had some remaining time from optimization in previous part, and call this 

time as w .  This means that now we have a total of wx +  sµ  to add to a dwell; 

which can be named as idle time, i.e. idle time = wx + .  Now, return to Figure 3-7.  

Since we have increased α , obviously intercept times with emitters are affected; 

while some of them remain same, some of them may increase or decrease.  

Remember that the aim is to create more available time as much as possible to add 

to a dwell of the band with maximum intercept time.  Therefore, we have to seek 

the smallest dwell times for each band, which reduces the maximum intercept time, 

whereas other intercept times are at worst kept the same.  In other words, maximum 

intercept time must reduce, while other intercept times must not increase.  To make 

it clear, let us explain it numerically.  Let )(* ircvτ  be the candidate of new dwell 

time for band i .  Moreover, let ( )jit ,int_  be the intercept time with thj  emitter of 

band i , calculated with current parameters rcvT  and )(ircvτ , and similarly 

( )jit ,int*_  be the intercept time with that emitter, calculated with candidate 

parameters, rcvT *  and )(* ircvτ .  Then, at the end of the iteration rcvT  is increased 

to rcvT *  if the following conditions are true: 

 rcv

n

i

rcv Ti *)(*
1

≤∑
=

τ  (3.19) 

 ( )( ) ( )( )jitjit ,int_max,int*_max ≤ ,      for ( )ji,∀ , max_ii ≠  (3.20) 

 ( )( ) ( )( )jitjit max,_int_maxmax,_int*_max < ,    for j∀  (3.21) 
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where i  represents the band, max_i represents the band with maximum intercept 

time, and j  refers to a particular emitter in band i . 

The parameters rcvT *  and )(* ircvτ  can be found by analytical calculations [4] 

using the triangles of α -ε  plane as in Figure 3-7.  However, in our 

implementations they will be found with another method, iteratively.  rcvT  is 

increased to rcvT *  step by step by an amount of time, x , which is actually the 

smallest resolution for the receiver, i.e. for the receiver it is not possible to schedule 

a dwell below that time because of hardware restrictions.  At each step, by using the 

same procedure given in the previous section, the smallest dwell times for each 

band is calculated, such that they satisfy (3.20) and (3.21).  Moreover, if (3.19) is 

also satisfied, rcvT *  and )(* ircvτ  are found.  Then, rcvT  is increased again by an 

amount x , and a better solution (the one for which maximum intercept time is 

lower than the last one) is searched again.  When rcvT  exceeds max,_rcvT  

optimization is completed and the optimum solution is the last solution.  To make it 

clear, the algorithm is summarized below: 

 

0. Start with dwell times found after previous optimization and with 

.min_rcvT   Dwell times and rcvT  are varied until max_rcvT to find a better 

solution, such that maximum intercept time is further decreased. 

1. Increase rcvT  by an amount of x , to get rcvT *  = kxTrcv + , where k  is the 

number of iterations, which is initially 1, and increments by 1 at the 

beginning of new iteration.  rcvT *  is the candidate to be the new sweep 

period. 

2. Calculate all intercept times using the method in Sec. 3.2.2. 

3. Decide maximum intercept time for each band, and find the band which has 

the maximum intercept time between all bands.  Choose one of them 

arbitrarily if there is a tie. 
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4. Using rcvT * , find smallest dwell times which satisfy (3.20) and (3.21), using 

α -ε  plane or iteratively.  These dwell times, )(* ircvτ , are candidates to be 

new dwell times. 

5. If )(* ircvτ  together with rcvT *  satisfy (3.19), a better solution is found, 

since maximum intercept time is reduced.  Thus, rcvT *  and )(* ircvτ  are the 

parameters of the new solution.  Update rcvrcv TT *=  and )(*)( ii rcvrcv ττ = .  

Otherwise, a better solution can not be found with rcvT * , since available 

time in rcvT *  is not enough to compensate the increase in sum of dwell 

times.  rcvT  and )(ircvτ  remain unchanged. 

6. If rcvT *  is equal to max,_rcvT  no further optimization is possible.  rcvT  and 

)(ircvτ  give the best solution between min_rcvT and max,_rcvT  so that 

maximum intercept time is minimized.  Otherwise, go to 1 and repeat all the 

steps. 

 

Table 3-5 together with Figure 3-9 shows iteration results for the emitters of Table 

3-3 as a continuation to optimization for a fixed sweep period in the previous 

section.  Assume that sTrcv µ1000000min_ =  and sTrcv µ1050000max_ = .  

Optimization starts with min_rcvrcv TT =  and dwell times are shown in Table 3-5 at 

0th iteration, which was the result of previous section.  rcvT  is increased step by step 

with a resolution, 1 sµ  in this example, and when rcvT  reaches to 1000772 sµ , a 

new solution is found such that (3.19), (3.20), and (3.21) are satisfied.  Maximum 

intercept time is reduced from 65 to 62 looks, while intercept times for Band A and 

Band C are not increased.  Notice that there was need to add more dwell time to 

Band A and Band C in order to not increase their intercept times, while for Band B 

dwell time could be reduced to get a lower intercept time.  Also note that these are 

smallest dwell times that give those intercept times, which ensures (3.19).  Rest of 

the iterations continues similarly with an exception of 6.  In that iteration we see 

that intercept time of both Band A and Band B is reduced.  Actually, the iteration is 
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taken just for Band B since it has maximum intercept time, 50 looks.  However, 

remember that it is necessary to hold intercept time of other bands at most at their 

last values (for Band A this value is 42 looks in this case) to satisfy (3.20).  For 

Band A, this is satisfied only when its dwell is 322154 sµ , which yields the 

intercept time as 33 looks.  There is no smaller dwell time which gives an intercept 

time not greater than or equal to 42 looks.  For example, 322153 sµ  results in 58 

looks.  Thus, 322154 sµ  is the dwell time of Band A for the solution at 6th iteration 

and so intercept time of Band A is also decreased, although this was not the aim of 

this iteration. 

When rcvT *  exceeds sTrcv µ1050000max_ = , it can not be increased anymore and 

optimization is terminated.  The solution is the last one, which is found at rcvT  = 

1016491 sµ  from Table 3-5.  This is the optimum solution which ensures that for 

emitters of Table 3-3, maximum intercept time is minimized for rcvT  between 

1000000 sµ  and 1050000 sµ  together with dwell times listed at 10th iteration of 

Table 3-5.  Trace of intercept times for all bands can be seen graphically in Figure 

3-9. 
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Table 3-5: Iteration results of optimization over a range of sweep period rcvT  

between 1s and 1.05s 
 

Band A Band B Band C 

# of 

iteration # of 

looks 

dwell 

( )sµ  

# of 

looks 

dwell 

( )sµ  

# of 

looks 

dwell 

( )sµ  

rcvT  ( )sµ  

0) 42 193530 65 362330 21 438844 1000000 

1) 42 206654 62 346782 21 447336 1000772 

2) 42 225609 59 316658 21 459601 1001887 

3) 42 248916 56 279656 21 474682 1003258 

4) 42 278326 53 232930 21 493712 1004988 

5) 42 316542 50 172238 21 518440 1007236 

6) 33 322154 47 149762 21 536986 1008922 

7) 33 310506 44 146832 21 553002 1010378 

8) 33 296922 41 143442 21 571680 1012076 

9) 33 280874 38 139460 21 593746 1014082 

10) 33 261602 35 134618 21 620245 1016491 
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Figure 3-9: Optimization iterations with variable sweep period rcvT  
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CHAPTER 4  

 

TEST DATA GENERATION AND SIMULATIONS OF 

SEARCH STRATEGY OPTIMIZATION ALGORITHM 

In this chapter, simulation results of the search strategy algorithm proposed in the 

previous chapter are included to find out the cases for which this search strategy 

works well and the cases for which the algorithm is not useful in practical 

applications. 

Actually, it is not easy to propose generalized results valid for all similar cases, due 

to the diversity of radar types and their wide range of parameters.  Moreover, if we 

remember that search strategy works on threat-emitter lists, in other words, on a 

group of radars, we notice that there can be infinitely many combinations of lists to 

be tested.  It seems that this is why Clarkson did not include detailed analysis on the 

strategy, as he admitted in [4], but just a few restricted results. 

Despite this difficulty, there is need to know the borders of the algorithm for 

practical purposes and even to propose new approaches on the search strategy, 

where the algorithm is insufficient.  In fact, this and the following chapters fulfill 

this goal, covering the deficiency of analysis in the papers of Clarkson. 

To analyze the algorithm, first of all, the parameters are determined for which the 

performance of the algorithm would be observed.  The choice of these parameters is 

not complicated, if we pre-analyze the algorithm by deciding what is expected from 

it as an outcome.  In this way, 4 parameters are found to test the search strategy:  
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Number of bands (to be scanned by the receiver), duty cycle of radars, PRI of radar 

signals, diversity of period and duty cycle of radars. 

For simulations, Monte Carlo method is used.  In the test employing each 

parameter, the range of the parameter is varied, while other parameters are hold 

within a constant and “easy” range.  With “easy” range we mean a range of values 

which decrease the work load of the algorithm, i.e. the complexity of the problem.  

For example, when we test the algorithm for the number of bands, PRI of radar 

signals is chosen from a lower range of values, so that a coincidence between two 

pulse trains can be more easily found, since the minimum duration of a valid 

coincidence would be lower (as explained in Sec. 2.3.5).  Thus, the effects of the 

other parameters can be either eliminated or controlled and the dependence of the 

results to the parameter which is being examined can be seen more easily. 

The value of the parameter under focus is changed according to the specified values 

of the test cases.  For each step, 100 tests are performed, with 100 different threat-

emitter lists that include emitters with an appropriate range of parameters.  The 

values of the parameters are chosen randomly from a uniform distribution over their 

ranges depending on the test case.  To produce these random threat-emitter lists, a 

GUI is created with MATLAB.  For parameters, the range of values is chosen 

realistically and accordingly simulations are carried out for a minimum sweep 

period of 1000 ms  and 1100 ms , i.e. the best search strategy is searched for a sweep 

period between these values.  Finally, the average time, minimum, maximum, and 

standard deviation of sweep periods found as a result of the algorithm are calculated 

over 100 threat-emitter lists and analyzed. For the 4 parameters, at least 3 test cases 

for each, 100 simulations for each case, in other words, more than one thousand 

simulations are done in this work. 

The range of values used in simulations can be seen below in Table 4-1.  Notice that 

these ranges are minimum - maximum values considered throughout simulations, 

but in test cases restricted, particular ranges are used to test the algorithm. 
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Table 4-1: General range of values used throughout simulations 
 

Number of 

bands 

Duty cycle of 

radars (%) 

PRI of radar 

signals (ms) 

Scan Period of 

radars (s) 

3 – 25 0.2 – 1.5 0.1 – 10 3 – 50 

 

 

4.1 NUMBER OF BANDS 

Since a super heterodyne receiver will find limited time to be tuned to a particular 

frequency when there are several frequency bands, it is obvious that an increase in 

the number of frequency bands to be scanned is a challenge for the algorithm.  With 

more frequency bands, it is expected that maximum intercept time increases.  If the 

number of bands is increased further, it will be even impossible to find a feasible 

solution, since the maximum possible time for receiver scan is not sufficient to 

cover all the bands. 

In the search strategy proposed in the previous chapter, when there is more than one 

emitter in a band in threat-emitter list, maximum or minimum (depending on the 

parameter) parameter of all emitters in that band is taken and the algorithm 

processes as if there is one emitter with these parameters.  Because of this, 

assuming that there is more than one emitter in a band does not change the process 

of the algorithm.  Thus, in simulations it is assumed that there is one emitter in each 

band, for simplicity. 

In order to see the effects of number of bands on algorithm performance, 4 test 

cases are created, each of which contains 100 threat-emitter lists including random 

emitters uniformly chosen depending on the range of values of the parameters.  In 

each case, the number of bands is increased, while holding the values of other 

parameters within a constant range throughout all cases.  To concentrate on the 

effects of number of bands, the range of values of the other parameters are chosen 
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to lower the complexity of problem, as explained before.  The range of values of the 

parameters used for this section can be seen below in Table 4-2.  

 

Table 4-2: Range of values for test cases of the part 4.1 
 

Test Number of 

bands 

Duty cycle of 

radars (%) 

PRI of radar 

signals (µs) 

Scan Period 

of radars (s) 

Case 1.1 3 1 – 1.5 100 – 500 3 – 10 

Case 1.2 8 1 – 1.5 100 – 500 3 – 10 

Case 1.3 15 1 – 1.5 100 – 500 3 – 10 

Case 1.4 25 1 – 1.5 100 – 500 3 – 10 

 

 

We start to test the algorithm with 3 different bands to be scanned by the receiver, 

which is followed by the test case 1.2 with 8 bands.  In fact, 3 or 8 bands can be 

thought rather small compared to a realistic application, but they are suitable to see 

the algorithm performance gradually.  15 different frequency bands are included in 

the threat-emitter lists for the test case 1.3, which is thought to be more difficult for 

the algorithm.  The test case 1.4 with 25 emitters is thought to be a really difficult 

and time-wasting case for the algorithm. 

With these test cases it is expected that in case 1.3, on the average maximum 

intercept time would be greater than in cases 1.1 and 1.2, and would reach at its 

maximum in the test case 1.4.  Similarly, case 1.1 should have the lowest maximum 

intercept time.  The results are shown in the next chapter. 



46 

 

4.2 DUTY CYCLE OF RADARS 

Duty cycle of radars is thought to be another parameter that will directly affect the 

performance of the algorithm.  Remember from Chapter 1 that in a pulse train duty 

cycle is defined as the ratio of pulse width to the period.  Thus, the duty cycle of 

radar determines how much time the radar signal will be available in one period of 

radar signal.  This means that together with the scan period of radar, duty cycle 

determines the pulse width of the pulse train of radar.  For example, when the scan 

period is 10 seconds, 1% duty cycle means that in every 10 seconds there will be 

100 ms  of available radar signal to be intercepted by the receiver.  It should be 

noticed that because of noise and sensibility of the receiver, not all of the beam of 

the radar signal would be available at the receiver; but we can assume that the given 

duty cycle is calculated after considering this and thus all of the beam is thought to 

be available at the receiver. 

Similar to the previous test, 100 random threat-emitter lists are created for each test 

case, but this time with the range of values of parameters given below in Table 4-3. 

 

Table 4-3: Range of values for test cases of the part 4.2 
 

Test Number of 

bands 

Duty cycle of 

radars (%) 

PRI of radar 

signals (µs) 

Scan Period 

of radars (s) 

Case 2.1 5 1.2 – 1.5 100 – 500 3 – 10 

Case 2.2 5 0.8 – 1.2 100 – 500 3 – 10 

Case 2.3 5 0.3 – 0.6 100 – 500 3 – 10 

Case 2.4 5 0.2 – 0.3 100 – 500 3 – 10 
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For simplicity, number of bands is fixed as 5 throughout all the test cases.  

Similarly, PRI of radar signals and scan period of radars are chosen from a range of 

lower values.  On the other hand, in case 2.1 duty cycle of the radars is higher, 

while it is decreased in the cases 2.2 and 2.3, and even further decreased in the case 

2.4. 

Since the duty cycle of radars determines the pulse width of the pulse trains of our 

model, with a higher value for the duty cycle, it should more likely to have 

coincidences between two pulse trains.  With lower duty cycles, however, radar 

signals available at the receiver would be decreased and so the coincidences would 

be sparser.  Thus, with these test cases it is expected to see that average maximum 

intercept time would be smaller when duty cycle has a greater value and that it 

would increase when duty cycle is decreased. 

4.3 PRI OF RADAR SIGNALS 

PRI of radar signals does not affect the pulse train of our model, but it changes the 

minimum duration of a valid coincidence between two pulse trains.  From (2.2) we 

see that minimum duration increases linearly with increase in PRI.  When minimum 

duration of a valid coincidence increases, the coincidences with duration below that 

increased minimum duration but over the older (non-increased) minimum duration 

are now considered as invalid, although earlier they were obviously valid.  This tells 

us that when PRI increases, number of valid coincidences decrease.  Therefore, the 

time to wait for a first valid coincidence, in other words maximum intercept time, 

increases. 

As seen in Table 4-4 below, the range of values of PRI is increased from 100 – 

500 sµ  in the test case 3.1 to 6000 – 10000 sµ  in the case 3.3, while holding 

number of frequency bands at 5, duty cycle at 1% – 1.5% and scan period between 

3 s  – 10 s . 
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Table 4-4: Range of values for test cases of the part 4.3 
 

Test Number of 

bands 

Duty cycle of 

radars (%) 

PRI of radar 

signals (µs) 

Scan Period 

of radars (s) 

Case 3.1 5 1 – 1.5 100 – 500 3 – 10 

Case 3.2 5 1 – 1.5 2000 – 5000 3 – 10 

Case 3.3 5 1 – 1.5 6000 – 10000 3 – 10 

 

 

Through the test cases of this section, we should see that optimization in the search 

strategy will be more and more difficult with increasing PRI in the cases 3.2 and 

3.3, because of the decrease in valid coincidences.  For this reason, PRI is an 

important parameter to see the borders of the algorithm. 

4.4 DIVERSITY OF SCAN PERIOD AND DUTY CYCLE 

This test differs from the previous ones for its purpose.  It is not focused on a 

parameter change, but on diversity of parameters (scan period and duty cycle).  By 

testing the algorithm against threat-emitter lists including random emitters with a 

wide range of values of scan periods and duty cycles, we aim to see how the 

performance of the algorithm responds from one threat-emitter list to another with 

random, mixed emitters. 

It should be remembered that in the previous tests, the range of values of one 

parameter changes from a test case to the other, while other parameters are kept 

fixed within a restricted range of values.  In this way, in one particular test case, 

within a threat-emitter list the emitters have parameters with values that are close to 

each other.  Therefore, although results may change from one test case to the other, 

this change may lie in a limited proportion.  This could prevent us to see the 
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tolerance of the algorithm to the change in threat-emitter list, i.e. dependency on the 

threat-emitter lists.  For example, consider a threat-emitter list that consists of N 

emitters with scan periods about 3 seconds, with 1% duty cycle for each.  When we 

add one more emitter to this threat-emitter list, but now with much a greater scan 

period, say 30 seconds, again with 1% duty cycle, the result of the algorithm may be 

very different compared to the older one.  Because, the last emitter would have a 

much smaller PW in its pulse train and because of this in most of the steps of the 

algorithm, probably it would give maximum intercept time; thus it would dominate 

the optimization steps and most of the dwell time would be spent for that last 

emitter.  Thus, since in this test threat-emitter lists include diverse emitters, this test 

is the one to see the effects of diversity of values of parameters on the algorithm 

performance. 

As this test measures the reliability of the algorithm against diverse threat-emitter 

lists, it would be reasonable to look at the standard deviation of all the maximum 

intercept times as the result of the search strategy algorithm.  Standard deviation for 

the cases in which the range of values of scan period and duty cycle of radar 

gradually increase will show us how the result of algorithm changes from one 

threat-emitter list to the other. 

In order to achieve this purpose, 100 threat-emitter lists are created for each case as 

shown in Table 4-5.  Again, 5 different bands are used for simplicity.  In case 4.1, 

duty cycle and scan period of radars are restricted in a narrow range of values; 1.2% 

– 1.5%, and 3 s  – 10 s , respectively.  Actually, this test case is the same with the 

case 2.1 of duty cycle of radars in Sec. 4.2.  In the case 4.2, these ranges are wider, 

and in the case 4.3, duty cycles and scan periods are chosen between 0.3% – 1.5% 

and 3 s  – 50 s , respectively.  With these cases, it is expected that in the case 4.3, 

standard deviation of maximum intercept times is higher, but more importantly, we 

will see the reliability of the algorithm. 
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Table 4-5: Range of values for test cases of the part 4.4 
 

Test Number of 

bands 

Duty cycle of 

radars (%) 

PRI of radar 

signals (µs) 

Scan Period 

of radars (s) 

Case 4.1 5 1.2 – 1.5 100 – 500 3 – 10 

Case 4.2 5 0.8 – 1.5 100 – 500 3 – 25 

Case 4.3 5 0.3 – 1.5 100 – 500 3 – 50 
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CHAPTER 5  

 

RESULTS FOR SEARCH STRATEGY OPTIMIZATION 

ALGORITHM 

In the previous chapter, we have defined test cases with particular parameters to see 

the performance and limits of the search strategy algorithm of Clarkson.  For each 

test case, 100 different threat-emitter lists were created with the values of 

parameters particularly restricted for each case.  For each threat-emitter list, the 

search strategy algorithm is run and the result, optimized minimum of maximum 

intercept time, is found.   

The results are examined with respect to two main aspects.  One of these aspects is 

comparing the result of the algorithm with the maximum intercept time of simple 

search.  In simple search, all of the available time of the receiver is shared equally 

by each band, i.e. the dwell time for each band is equal.  This approach does not 

need any a priori knowledge about the environment, such as threat-emitter list, but 

does not consider synchronization problem neither.  Therefore, this comparison 

clarifies how far the strategic search algorithm minimizes the maximum intercept 

time and eliminates the synchronization problem.  The comparisons are illustrated 

via the figures with the results of simple and strategic search. 

The other aspect of the analysis of results is to show the borders of the algorithm, 

i.e. how the performance of the algorithm is affected by the change in parameters.  

For this purpose, in the previous chapter some test cases have been created, such 
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that a particular parameter is changed gradually, while other parameters are kept 

within a range.  Also, some anticipation has been made about the results.  The 

validity of these anticipations is demonstrated in this chapter.  To this end, output of 

the algorithm (minimums of maximum intercept times) are shown for each test case 

on the same graph (remember that there are N tries within each case). 

Analysis of the results is given in four sections below with respect to the test cases. 

5.1 NUMBER OF BANDS 

In this test, to see the effect of number of bands on the performance of algorithm, 

number of bands is increased in each test case as seen in Table 4-2.  The 

comparisons between the results and simple search are given in Figures 5-1 – 5-4. 

As seen in Figure 5-1, when the number of bands is very small, the problem is 

relatively simple, so that even with simple search, for many of the threat-emitter 

lists, the maximum intercept time is very close to the one of strategic search.  

Nevertheless, there are some cases, in which for the simple search maximum 

intercept time is much larger, and there may be also synchronization problem (seen 

in the case where the maximum intercept time goes to infinity).  The strategic 

search algorithm, however, can easily solve these synchronization problems and 

makes the larger maximum intercept times as small as the other cases successfully.  
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Figure 5-1: Comparison of simple search and test case 1.1 results 

 

From Figure 5-2 we see that the simple search results in much larger maximum 

intercept time and more synchronization.  The strategic search algorithm is again 

successful in decreasing the maximum intercept time. 
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Figure 5-2: Comparison of simple search and test case 1.2 results 

 

When the number of bands is further increased, the simple search becomes 

ineffective, as seen in Figure 5-3.  With the most of the threat-emitter lists, the 

maximum intercept time goes to infinity (because of the synchronization problem), 

so that by applying simple search, the receiver would not be able to intercept all the 

radars in the threat-emitter lists.  In the same figure it is seen that the strategic 

search algorithm is able to eliminate synchronization problem and minimized the 

maximum intercept time. 
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Figure 5-3: Comparison of simple search and test case 1.3 results 

 

In the last test case, the number of bands is further increased to 25, which is actually 

a more realistic case, since the radars function in a much wider spectrum and the 

receiver should scan all the spectrum of its threats.  As shown in Figure 5-4, simple 

search is as ineffective as in the previous case.  Moreover, although the strategic 

search minimizes the maximum intercept time, there are some threat-emitter lists 

for which the maximum intercept time can not be decreased to acceptable values. 
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Figure 5-4: Comparison of simple search and test case 1.4 results 

 

In Figure 5-5, the results of the algorithm are shown for all the cases.  As we see, 

the minimized maximum of intercept time is increasing by increasing the number of 

bands.  Moreover, for the case 1.4, with the maximum number of bands, we see that 

for some threat-emitter lists, the minimized maximum intercept time takes values 

greater than the average. 
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Figure 5-5: Results of all test cases together for number of bands 

 

We can see this result numerically from Table 5-1.  While with 3 bands, the average 

of the results is about 25 seconds, this gradually increases, and with 25 bands it 

becomes about 163 seconds.  Furthermore, the minimum and the maximum values 

of the results are 100 and 592 s for 25 bands, while these values are 12 and 40 s for 

3 bands.  The standard deviation of the results show us that the strategic search 

algorithm becomes more unreliable when the number of bands increase, since in the 

first three cases the standard deviation changes between 5 and 18 seconds, while in 

the case 1.4 there is a rapid increase and it becomes 68 seconds.  When the number 

of bands increases, the available time that the receiver can dedicate for a particular 

band decreases.  Thus, the strategic search algorithm begins to become incapable to 

eliminate the synchronization problem. 
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Table 5-1: Results of test case for number of bands 
 

Test 

Minimum of 

Max 

Intercept 

Time (s) 

Maximum of 

Max 

Intercept 

Time (s) 

Average of 

Max 

Intercept 

Time (s) 

Standard 

Deviation of 

Max 

Intercept 

Time (s) 

Case 1.1 12.016 40.118 25.887 5.233 

Case 1.2 42.236 105.276 60.780 10.834 

Case 1.3 69.000 162.344 103.685 18.191 

Case 1.4 100.884 592.350 163.443 67.889 

 

 

5.2 DUTY CYCLE OF RADARS 

From the previous chapter remember that in this test the values of Table 4-3 are 

used in which duty cycle of radars is gradually decreased.  The comparisons 

between the results of the algorithm and the simple search are illustrated in Figure 

5-6 - 5-9.  As seen from these figures, in all the cases, the algorithm has superiority 

over simple search.  Decreasing the duty cycle of radars did not dramatically lower 

the performance of the algorithm.  
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Figure 5-6: Comparison of simple search and test case 2.1 results 

 

 

Figure 5-7: Comparison of simple search and test case 2.2 results 
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Figure 5-8: Comparison of simple search and test case 2.3 results 

 

 

Figure 5-9: Comparison of simple search and test case 2.4 results 
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Nevertheless, when we look to the results all together in Figure 5-10, it is seen that 

on the average the minimized maximum intercept time increases while duty cycle is 

decreased, although this change is small as compared to the previous test. 

 

 

Figure 5-10: Results of all test cases together for duty cycle of radars 

 

From Table 5-2, it is more clearly seen that the average of maximum intercept time 

increases starting from 40 seconds to about 53 seconds.  In the same way, the 

maximum of the results increases from 66 to 99 seconds throughout the cases.  Also 

we see that the standard deviation of the results increases.  Remember that this test 

is done with 5 threats for simplicity.  Although with 5 threats, decreasing the duty 

cycle to 0.2% – 0.3% did not cause any failure in the algorithm, it shows us that 

smaller percents of duty cycle of radars obviously increase the maximum intercept 

time on the average, and if we connect this result with the previous one, more 

number of bands with radars employing low duty cycles will get the algorithm into 

more trouble. 
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Table 5-2: Results of test cases for duty cycle of radars 
 

Test 

Minimum of 

Max Intercept 

Time (s) 

Maximum of 

Max Intercept 

Time (s) 

Average of 

Max Intercept 

Time (s) 

Standard 

Deviation of 

Max Intercept 

Time (s) 

Case 2.1 27.166 66.523 39.996 7.593 

Case 2.2 29.753 64.316 44.809 7.477 

Case 2.3 35.388 77.173 49.731 9.283 

Case 2.4 31.726 99.000 52.765 11.820 

 

 

5.3 PRI OF RADAR SIGNALS 

The simulations for PRI of radar signals are carried out for three test cases, as 

shown in Table 4-4.  The results of the algorithm and the simple search are 

compared in Figure 5-11 and Figure 5-12.  Increasing PRI from 100 – 500 sµ  to 2 – 

5 ms  increased the average value by nearly 20%, as seen in Figure 5-14 and Table 

5-3, and this does not seem to be a big performance loss for the algorithm.  The 

algorithm eliminated the synchronization problem and it is clearly superior to 

simple search.  However, notice that when the PRI is increased to 6 – 10 ms  in the 

case 3.3, the maximum of maximum intercept time jumped to 109 s  from 74.6 s .  

Furthermore, the simulation time increased excessively.  This difficulty is caused by 

the increased order of Farey series used in the algorithm.  Remember from Sec. 

3.2.2 that the Farey order used in the algorithm is determined by the reciprocal of 

the normalized sum of pulse widths, i.e. ε/1 .  Also remember from (2.2) that 

increasing the PRI increases the minimum dwell time for a valid coincidence 



63 

 

between two pulse trains.  Since this minimum dwell time is subtracted from the 

sum of pulse widths while calculating ε , increasing the PRI causes ε  to decrease.  

Therefore, the necessary Farey order increases considerably.  This loaded excessive 

process on the algorithm and for many of the threat-emitter lists of the case 3.3, it 

could not produce results in a reasonable time.  Increased Farey order also means 

that the maximum intercept time would become much larger.  This is because, when 

the minimum acceptable time for a valid coincidence increases, it is much more 

difficult for a coincidence to happen.  In this longer time, the possibility of 

synchronization increases, and actually this is another explanation for larger Farey 

order.  Remember that Farey series include the ratios for synchronizations, and 

more number of synchronizations is obviously given by more number of Farey 

ratios, which implies larger Farey order. 

 

 

Figure 5-11: Comparison of simple search and test case 3.1 results 
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Figure 5-12: Comparison of simple search and test case 3.2 results 

 

 

Figure 5-13: Comparison of simple search and test case 3.3 results 
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Figure 5-14: Results of all test cases together for PRI of radar signals 

 

Table 5-3: Results of test cases for PRI of radar signals 
 

Test 

Minimum of 

Max Intercept 

Time (s) 

Maximum of 

Max Intercept 

Time (s) 

Average of 

Max Intercept 

Time (s) 

Standard 

Deviation of 

Max Intercept 

Time (s) 

Case 3.1 28.027 77.719 40.316 8.543 

Case 3.2 32.295 74.574 47.208 9.149 

Case 3.3 39.641 109.000 56.478 11.195 
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5.4 DIVERSITY OF SCAN PERIOD AND DUTY CYCLE 

In this test, the range of values for the diversity of scan period and the duty cycle 

are increased throughout the 3 test cases of Table 4-5.  In Figures 5-15 - 5-17, the 

comparisons between the simple search and the results of the algorithm are shown.  

With these comparisons we see that again the strategic search successfully 

eliminates the weakness of the simple search, i.e. it eliminates the synchronization 

problem and minimizes the maximum intercept time.  However, when we consider 

Figure 5-18, we see that the maximum intercept time increases with increased 

diversity.  From Table 5-4, we see this more clearly via the numerical results.  

While in the test case 4.1 the maximum intercept time changes between a minimum 

of 27 seconds and a maximum of 66 seconds, in case 4.3 it varies between 60 and 

192 seconds.  In this way, on the average, the result increases from 40 seconds to 98 

seconds.  The other important result is that the standard deviation increased from 

about 7.5 seconds to about 20 seconds.  This shows that the strategic search 

algorithm loses its reliability when in the threat-emitter lists there are radars with a 

diverse range of values of scan period and duty cycle, which is actually the realistic 

case. 
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Figure 5-15: Comparison of simple search and test case 4.1 results 

 

 

Figure 5-16: Comparison of simple search and test case 4.2 results 
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Figure 5-17: Comparison of simple search and test case 4.3 results 

 

 

Figure 5-18: Results of all test cases of the part 5.4 together 
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Table 5-4: Results of test cases for diversity of scan period and duty cycle of radars 
 

Test 

Minimum of 

Max Intercept 

Time (s) 

Maximum of 

Max Intercept 

Time (s) 

Average of 

Max Intercept 

Time (s) 

Standard 

Deviation of 

Max Intercept 

Time (s) 

Case 4.1 27.166 66.523 39.996 7.593 

Case 4.2 42.973 135.000 67.769 14.033 

Case 4.3 60.370 192.318 98.343 20.288 

 

 

From the simulations we have seen that in almost all the situations, strategic search 

results a maximum intercept time which is much smaller than the one of simple 

search.  Moreover, in most of the cases, strategic search solves the synchronization 

problem, whereas the simple search cannot handle synchronization, which may 

cause the receiver not to intercept particular radar forever.  In addition to these 

observations related to the strategic search, however, we have also seen the limits of 

the algorithm.  Depending on the parameters that are just analyzed, the algorithm 

may become inefficient to minimize the maximum intercept time.  Actually, these 

borders come from the nature of the problem, rather than the incapability of the 

algorithm; the receiver has a limited capacity, whereas the work load on it has no 

limit.  However, this does not hide the fact that new approaches can be added to the 

strategic search logic.  In the next chapter, a new algorithmic approach is 

considered.  Probability of intercept is used to calculate the maximum intercept time 

for a particular band, so that it becomes possible to further decrease the maximum 

intercept time of a particular band, while being aware of the new risks that come as 

side-effects. 
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CHAPTER 6  

 

PROBABILISTIC SEARCH STRATEGY 

In the previous chapter, the analysis of the performance of the strategic search 

algorithm has shown that the success of the algorithm depends on the values of 

some parameters.  We have seen that there are some cases for which the algorithm 

can not produce an acceptable search strategy, i.e. the maximum intercept time is 

too large, or there is no solution at all.  Therefore, we need a new approach to get an 

acceptable search strategy, especially for cases where the strategic search algorithm 

failed.  This new approach, which we named as probabilistic search, is given in this 

chapter.  The probabilistic search provides more control on the search strategy by 

assigning more importance to a particular frequency band than the others.  This 

method becomes effective especially when there is a priority threat, i.e. radar which 

is fatal and should be considered first, or there is an unsolved synchronization 

problem since the search strategy algorithm of Sec. 3.3 was unable to solve it. 

6.1 PROBABILITY OF INTERCEPT 

As has been underlined in the previous chapters, the most important parameter in a 

radar interception problem is the time to intercept, which is desired to be as small as 

possible to take the counter measures on time.  Although not mentioned before, 

another important criterion is to intercept the radar with a high probability.  The 

problem involves both the emitter and the receiver, and their functions somehow 

should coincide, depending on their parameters.  Hatcher in [8] calls their functions 

as intermittent and he adds; “If the system has more than a single intermittent 
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function, the resulting interception becomes one of probability, rather than being 

uniquely defined by the system parameters.” [8]. 

Actually, the reason for not mentioning this before is the fact that these two criteria 

are always side by side; for example, the approach of Clarkson aims to obtain the 

maximum intercept time, at the end of which we guarantee to get at least one 

interception, which implicitly means a probability of 100%.  However, the 

probability of intercept can be less than 100%.  For example, a probability of 

intercept with 70% up to the time instant t  means that at t  the receiver may 

intercept the radar with the probability of 70%.  For our new approach, we will 

consider the probability of intercept at a specific time instant.  Hatcher worked on 

this problem and tried to find answers to these two questions: 

i. “What is the probability an intercept will occur within a specified 

time after initiation of a particular activity? 

ii. What is the observation time required after initiation of a 

particular activity to be assured a specific probability of intercept 

will be attained?” [8] 

By using the pulse train model introduced in Sec. 2.2 and assuming that the starting 

time instants of the pulse trains are independent, he obtained the formulas given in 

Table 6.1. 
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Table 6-1: Probability of intercept ( )12P  and intercept time ( )0T  in terms of the 

pulse train parametersτ  and T . [8] 
 

21 TT ≤  

( )112 TP  

For 
12 T≤τ  21 τ≤T  

121 TT −≤τ  















−+

1

2
21

2 2
1

1

TT

τ
ττ  








+

2

1 1
1

2

T

T
τ  

112 τ≤−TT  
( ) ( )

21

2
12

2
21

2
1

TT

TT ττ −+−
−  

( )
21

2
12

2
1

TT

T τ−
−  

Probability of intercept for a time T  

[ ] 1/
11212 )(11)( TT

TPTP −−=  

Observation time for a desired probability of intercept 01P  

( )
( )[ ]112

01
10 1ln

1ln

TP

P
TT

−

−
×=  

 

 

In this table, ( )112 TP  is the probability of a coincidence during the first period of the 

pulse train with shorter period, and 1τ , 1T , 2τ , 2T  are the pulse widths and periods 

of the pulse train 1 and pulse train 2, respectively. 

Wiley [9] also worked on this problem by using a model in which the window 

functions are decomposed into elementary pulse trains, as shown in Figure 6-1.  The 

pulse is divided into smaller unit pulses between which there is a phase difference 
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equal to the width of unit pulse, thus forming the main pulse when they are 

superposed. 

 

 

Figure 6-1: Decomposition of window functions [9] 

 

Then, he gives the mean period of coincidence, 0T , and the mean duration of the 

coincidences, 0τ , as follows [10], where N is the number of pulse trains: 
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Thus, the average coincidence fraction is [9]: 
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Assuming that occurrence of coincidence is independent from one time increment 

to the next and that the probability of coincidence in a small increment t∆  

approaches the ratio of the increment to the average time between coincidences, 0T , 

he found that the probability of coincidence in time t , ( )tP ,  is given by: 

 ( ) ( ) 011 Tt
eftP

−−−=  (6.4) 

Furthermore, solving this for t , the required time to reach the desired probability 

( )tP  becomes: 

 ( )[ ] ( )ftPTt −+−−= 1ln1ln0  (6.5) 

Note that another important assumption Wiley made is that ( ) 1=∞P , i.e. after a 

very long time a coincidence is certain [9].  Namely, synchronization problem is not 

considered in these formulas. 

Different from these approaches, however, we need to find the minimum possible 

dwell time for which the radar may be intercepted with a pre-selected probability in 

a specific time which comes as an output of Clarkson’s algorithm.  In other words, 

minimum possible dwell time, pre-selected probability, and a fixed time to intercept 

should meet.  This is solved with an iterative algorithm which is explained in Sec. 

6.3. 

6.2 SEARCH STRATEGY WITH PROBABILITY OF 

INTERCEPT 

The probabilistic search algorithm begins at the point when Clarkson’s algorithm 

terminates.  The typical output of the algorithm of Clarkson is shown in Table 6-2.  

We have a dwell time and number of looks for each band.  For simplicity, if we 

assume that there is one threat emitter in each band, we remember that this number 

of looks refers to the maximum time during which we guarantee at least one valid 
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coincidence with the threat emitter, when the receiver waits as tuned to the 

frequency band for duration of dwell time in each period of receiver scan.  In other 

words, if the receiver obeys the search strategy of the algorithm, at the end of the 

time given by number of looks, the radar will be intercepted with a probability of 

100 %. 

 

Table 6-2: Example input data for probabilistic search algorithm 
 

Frequency 

Band 

Dwell Time 

(ms) 

(Max) Number 

of Looks to 

Intercept all 

Radars in the 

Band 

Probability to 

Intercept 

Radars in the 

Band 

A 201.868 43 100 % 

B 378.696 14 100 % 

C 251.139 37 100 % 

D 71.007 59 100 % 

E 126.522 40 100 % 

 

 

As a result, until now the probabilities were not considered in the results, since for 

all the results the probabilities were implicitly 100%.  However, now the 

probabilities will be the key part for the probabilistic search and thus for them we 

are adding a new field to the results, as shown in Table 6-2.  In principle, the 

required dwell time is not higher when the desired probability is lower [4].  

Probabilistic search is completely based on this principle.  It will allow us to change 
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the desired probability of any band, and according to this principle it will be 

possible to save more dwell time, since the required dwell times will be less.  Then, 

the receiver will have more idle time, which can be used to reduce the intercept time 

of any band; for example, for a band whose intercept time goes to infinity.  

Consequently, the total dwell time in a scan period of the receiver can be used more 

effectively depending on the tactical necessities, i.e. synchronization problem can 

be solved, a high priority threat can be intercepted in a shorter time, etc.  As an 

example, the information given in Table 6-2 is the input to the probabilistic search 

algorithm and results in an output as shown in Table 6-3. 

 

Table 6-3: Example output of probabilistic search algorithm 
 

Frequency 

Band 

Dwell Time 

(ms) 

(Max) Number 

of Looks to 

Intercept all 

Radars in the 

Band 

Probability of 

Intercept 

Radars in the 

Band 

A 230.392 24 100 % 

B 220.487 14 70 % 

C 148.835 37 70 % 

D 340.289 43 100 % 

E 82.370 40 70 % 

 

 

From Table 6-2 we see that the algorithm of the Clarkson had produced the 

intercept times as 43, 14, 37, 59, and 40 looks, for the bands A-E, respectively.  
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Assume that the bands A and D are more critical than the other bands, i.e. include 

threat emitters which should be definitely (with a probability of 100%) intercepted 

in much less time.  To do this, more dwell time should be added to the bands A and 

D.  To create this extra dwell time, assume that the probabilities of intercept for 

bands B, C, and E are reduced to 70%.  When we calculate the necessary dwell 

times of bands B, C, and E for these new probabilities, we see from Table 6-3 that 

the dwell times of these bands are reduced.  About 305 ms  are saved and so it 

becomes possible to use this time for the bands A and D.  Finally, from Table 6-3 

we see that with this more dwell time, the intercepts times of the bands A and D are 

reduced to 24 and 43 looks, from 43 and 59 looks, respectively. 

In order to explain the steps of the probabilistic search algorithm in more detail, it is 

appropriate to explain the probability of intercept concept and to show how to 

calculate the dwell time for a desired probability theoretically. 

6.3 CALCULATION OF DWELL TIME FOR PROBABILISTIC 

SEARCH 

In order to calculate the minimum dwell time which guarantees to intercept with a 

radar during a given time interval with a desired minimum probability of intercept, 

it is appropriate to use Clarkson’s approach with some modification.  In fact, we 

had already used this method in Sec. 3.2.2.  Remember that, as shown in Figure 3-4, 

Clarkson uses the characteristic function to find the intercept time.  When the 

characteristic function becomes entirely 1 between 0=β  and 1=β , for some 

value of α  and ε , the interception between two pulse trains becomes independent 

from relative phases, i.e. the interception has the probability 100%.  Then, the 

smallest value n  that satisfies this condition gives the maximum intercept time.  

The method of Clarkson, given in Sec. 3.2.2, calculates this value of n  directly.  

Now, instead of using this method, we can find another way to utilize characteristic 

function in our probabilistic search.  In the probabilistic search, the main problem is 

to find the minimum dwell time to intercept radar with any desired probability, 

where n  is known, and thus so is α .  Notice that, since the phases are assumed to 
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be uniformly distributed, this is equal to find the instant where the characteristic 

function is 1 with proportion equal to the desired probability.  For example, if the 

desired probability is 80%, the characteristic function must be 1 in 80% of the time 

between 0=β  and 1=β .  When this condition is satisfied for a minimum value of 

ε , then the minimum dwell time can be found easily using (3.4).  Therefore, 

actually the problem is to find the minimum value of dwell time, and thus ε , for 

which the characteristic function becomes 1 with the desired probability, for some 

fixed value of n  and α . 

The problem is solved with an iterative algorithm, whose steps are given below: 

0. The scan period and pulse duration of the radar ( emitT , emitτ ), sweep period of 

the receiver ( rcvT ), maximum intercept time ( n ), desired probability of 

intercept, and minimum duration for a valid coincidence are given.  From 

these, calculate α  with (3.3), and assign an initial value to ε   with (3.4), by 

substituting the minimum duration for the dwell time, rcvτ , which is 

convenient since this will give the minimum possible value for ε .  

Moreover, calculate maximum value for q , which is n  – 1 as seen from 

Figure 3-4 (For the meanings of p  and q , see Sec. 3.2).  Assign an initial 

value for the variation, which will be halved and added to or subtracted from 

the dwell time to approach to the solution.  The initial value of the variation 

determines the upper limit of the search interval for the value of dwell time.  

Therefore, the value of dwell time will be searched in the interval 

[ ]min duration, min duration+variation . 

1. Halve the value of variation. 

2. For all the possible values of p  and q , as in  Figure 3-4, find all the 

intervals between 0=β  and 1=β  for which the characteristic function is 

1, using (3.7). 

3. Find the percentage of times when the characteristic function is 1, by 

dividing the sum of the durations of intervals that are found in 2 with the 
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duration of the total interval of β , which is actually 1.  This gives us the 

probability of intercept for the current value of ε . 

4. If the probability of intercept found in 3 is lower than the desired 

probability, add the variation to the value of dwell time, so that the 

probability can increase.  Otherwise, subtract the variation from the dwell 

time to lower the probability. 

5. Calculate the new value of ε  with (3.4). 

6. If the variation is lower than the desired resolution of the solution, iterations 

are finished, and the dwell time found in 4 is the solution.  Otherwise, return 

to the step 1. 

Calculation of the dwell time for any probability of intercept is the key part for the 

probabilistic search.  Then, the algorithm that is explained in the next part becomes 

trivial. 

6.4 COMPUTATION OF PROBABILISTIC SEARCH 

STRATEGY 

After giving the background for the concept of probability of intercept and 

explaining the necessary calculations for the minimum dwell time for any 

probability, now it is convenient to give all the steps of probabilistic search.  The 

probabilistic search takes the output of the algorithm of Clarkson, shown in Table 6-

2, as input, in which all the probabilities of intercept are 100%.  Therefore, before 

running the probabilistic search algorithm, one must determine the emitters whose 

maximum intercept time are needed to be decreased, and the emitters whose 

probability of intercept may be decreased, together with their desired probability.  

In other words, the emitters that need more resources (dwell time), the emitters that 

can tolerate reduction of their resources, and their amount of toleration (desired 

probability of intercept) are given.  These decisions depend on the tactics of the 

warfare and are made according to the necessities.  Then, the probabilistic search 

can be run. 
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The probabilistic search algorithm has 2 parts.  In the first part, the new dwell times 

are calculated for the emitters whose desired probabilities are changed, i.e. 

decreased from 100% to create more resources, using the algorithm just explained 

in the previous part.  Since the probabilities are decreased, the new dwell times will 

be also smaller [16].  Therefore, the sum of the differences between new and 

original dwell times give us the created resources, i.e. the idle time of the receiver 

which can be used for any emitter to decrease its maximum intercept time.  Thus, 

we have some idle time of the receiver and we have some emitters for which we 

want to use this idle time to add to their dwell time, while the sweep period of the 

receiver is fixed.  Notice that this is the same case given in Sec. 3.3.1.  Thus, the 

rest of the algorithm is identical to the algorithm explained in Sec. 3.3.1.  Finally, 

we have the results as given in Table 6-3. 

With the probabilistic search, then, the maximum intercept times of the desired 

emitters can be further decreased and unsolved synchronization problems can be 

solved, while being aware of all the risks (lowered probability of intercepts for 

some other emitters).  With this feature, probabilistic search provides more control 

and options for the search strategy of the receiver.  In the next part, the capability of 

the periodic search will be demonstrated through test results. 
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CHAPTER 7  

 

SIMULATIONS AND RESULTS FOR PROBABILISTIC 

SEARCH STRATEGY ALGORITHM 

In Chapter 5, the simulation results for the Clarkson’s search strategy algorithm 

were given together with a discussion about the conditions for which the algorithm 

becomes unable to produce a desirable search strategy for the receiver.  In order to 

overcome this insufficiency, a new approach, probabilistic search was proposed in 

the previous chapter.  Some tests are performed to investigate the performance of 

the probabilistic search algorithm and the results are given in this chapter. 

The probabilistic search aims to perform better than Clarkson’s algorithm.  Thus, to 

see the performance better, the probabilistic search algorithm is run for the test 

cases where Clarkson’s algorithm results were needed to improve; which are the 

cases 1.3, 1.4, 2.3, 2.4, 3.3, and 4.3.  For all the test cases, the probabilistic search 

was run for all 100 threat-emitter lists and the results were obtained over all these 

runs, i.e. minimum, maximum, average, and the standard deviation of the maximum 

intercept time, just as has been done for Clarkson’s algorithm. 

In the test cases 1.3 and 1.4, there are 15 and 25 emitters in each threat-emitter list, 

respectively.  For these test cases, 5 emitters with the smallest intercept time are 

chosen to decrease their probability of intercept to 70%.  In each iteration of the 

algorithm, the emitter whose maximum intercept time is improved is chosen as the 

one that has the maximum of maximum intercept time between all other emitters, 
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just as in the optimization for a fixed sweep period.  The compared results for the 

test cases 1.3 and 1.4 are given in Table 7-1 and Table 7-2. 

 

Table 7-1: Probabilistic vs. Strategic search for test case 1.3 
 

Test 

Minimum of 

Max 

Intercept 

Time (s) 

Maximum of 

Max 

Intercept 

Time (s) 

Average of 

Max 

Intercept 

Time (s) 

Standard 

Deviation of 

Max 

Intercept 

Time (s) 

Strategic 69.000 162.344 103.685 18.191 

POI 61.000 126.043 88.034 13.434 

 

 
 

Table 7-2: Probabilistic vs. Strategic search for test case 1.4 
 

Test 

Minimum of 

Max 

Intercept 

Time (s) 

Maximum of 

Max 

Intercept 

Time (s) 

Average of 

Max 

Intercept 

Time (s) 

Standard 

Deviation of 

Max 

Intercept 

Time (s) 

Strategic 100.884 592.350 163.443 67.889 

POI 91.121 456.040 142.982 53.662 

 

 

It can be noted that for the test case 1.3, minimum and maximum of maximum 

intercept time decreased considerably.  Also, the average value reduced to 88 
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seconds from 103.7 seconds and the standard deviation becomes about 13.5 

seconds, while it was previously about 18 seconds.  Similar results are obtained for 

the test case 1.4, where the average of maximum intercept time reduced to 143 

seconds from 163 and the standard deviation decreased to 53.6 s  from 68 s .  Also 

from the Figure 7-1 and Figure 7-2 it can be seen that the intercept times that are 

above the average are limited by the probabilistic search. 

 

 

 

Figure 7-1: Probabilistic vs. Strategic search for test case 1.3 
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Figure 7-2: Probabilistic vs. Strategic search for test case 1.4 

 

In the test cases 2.3 and 2.4, however, there were 5 emitters in each threat-emitter 

list.  For their tests with the probabilistic search algorithm, 3 emitters with the 

smallest maximum intercept time are chosen to lower their probability of intercept 

to 70%.  As seen from Table 7-3 and Table 7-4, on the average the maximum 

intercept time is decreased to 41.8 s  and 44.8 s  from 49.7 s  and 52.8 s , 

respectively.  In addition to this, the maximum intercept time becomes more 

predictable with the decreased standard deviation.  The results can be seen for each 

threat-emitter list graphically in Figure 7-3 and Figure 7-4. 
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Table 7-3: Probabilistic vs. Strategic search for test case 2.3 
 

Test 

Minimum of 

Max 

Intercept 

Time (s) 

Maximum of 

Max 

Intercept 

Time (s) 

Average of 

Max 

Intercept 

Time (s) 

Standard 

Deviation of 

Max 

Intercept 

Time (s) 

Strategic 35.388 77.173 49.731 9.283 

POI 28.000 56.519 41.787 6.597 

 

 
 

Table 7-4: Probabilistic vs. Strategic search for test case 2.4 
 

Test 

Minimum of 

Max 

Intercept 

Time (s) 

Maximum of 

Max 

Intercept 

Time (s) 

Average of 

Max 

Intercept 

Time (s) 

Standard 

Deviation of 

Max 

Intercept 

Time (s) 

Strategic 31.726 99.000 52.765 11.820 

POI 30.381 85.000 44.858 8.535 
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Figure 7-3: Probabilistic vs. Strategic search for test case 2.3 

 

 

Figure 7-4: Probabilistic vs. Strategic search for test case 2.4 
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Similarly, there were 5 emitters in each threat list for the test cases 3.3 and 4.3.  

Again, 3 of them are chosen to adjust their probability of intercept at 70% for the 

probabilistic search.  The created extra dwell time is used for the emitters with the 

maximum of maximum intercept time and the results are obtained as shown in 

Table 7-5 and Table 7-6.  Like the other cases, we see that the maximum intercept 

times are successfully decreased, as well as the decreased standard deviation makes 

the results more consistent.  The results for each threat-emitter list can be seen in 

Figure 7-5 and Figure 7-6. 

 

Table 7-5: Probabilistic vs. Strategic search for test case 3.3 
 

Test 

Minimum of 

Max 

Intercept 

Time (s) 

Maximum of 

Max 

Intercept 

Time (s) 

Average of 

Max 

Intercept 

Time (s) 

Standard 

Deviation of 

Max 

Intercept 

Time (s) 

Strategic 39.641 109.000 56.478 11.195 

POI 33.000 89.000 47.757 8.7682 
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Table 7-6: Probabilistic vs. Strategic search for test case 4.3 
 

Test 

Minimum of 

Max 

Intercept 

Time (s) 

Maximum of 

Max 

Intercept 

Time (s) 

Average of 

Max 

Intercept 

Time (s) 

Standard 

Deviation of 

Max 

Intercept 

Time (s) 

Strategic 60.370 192.318 98.343 20.288 

POI 46.356 136.225 86.330 15.396 

 

 

 

Figure 7-5: Probabilistic vs. Strategic search for test case 3.3 
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Figure 7-6: Probabilistic vs. Strategic search for test case 4.3 

 

From all these results, we can claim that the probabilistic search algorithm succeeds 

in reaching its aim.  It provides further control and introduces extra options for the 

search strategy of Clarkson’s algorithm.  In this chapter, the choice of the emitters 

whose maximum intercept time are planned to be decreased and the emitters with 

decreased probability of intercept, are carried out without any tactical knowledge, 

but just by looking at the largest and smallest maximum intercept time.  In fact, the 

emitters that will play a role in the probabilistic search algorithm should be chosen 

according to the necessities, so that the algorithm could give a more meaningful 

search strategy for the receiver. 
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CHAPTER 8  

 

CONCLUSION AND FUTURE WORK 

8.1 CONCLUSION 

This thesis is about the best search strategy for a frequency-swept SHR receiver in 

an environment with circularly scanning radars.  First of all, the radar interception 

problem is modeled by two pulse trains.  Then, the dependence of maximum 

intercept time on the radar and receiver parameters is studied.  In this way, the 

connection between the synchronization problem and Farey series was clarified.  

Moreover, a method to select the best periodic search strategy is introduced, which 

finds the optimum sweep period for the receiver to minimize the maximum 

intercept time assuming a pre-knowledge about radars.  However, there were no 

comprehensive simulations in literature for selecting the optimum search strategy.  

Thus, for this thesis more than a thousand threat-emitter lists were created to test the 

algorithm of Clarkson and simulation results are presented.  As a result, it was 

found that the algorithm may produce search strategies which are not well suited to 

tactical necessities, when there is plenty of radars operating in different frequency 

bands, when duty cycle of radars is low, or the PRI of radar signals is high, and 

when the diversity of scan period and duty cycle of radars is high.  Moreover, an 

algorithm to find the dwell time for an intercept time with a desired probability of 

intercept was given in this study.  Thus, a new approach was proposed, named as 

probabilistic search, with remarkably more control on search strategy by being able 

to select different probability values to intercept the radar in a certain intercept time.  
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Then, it is concluded that the probabilistic search could be effective to decrease the 

maximum intercept time and to solve the synchronization problem, especially when 

there are many radars in the environment, some of which are specified to be more 

threatening.  In this case, probabilistic search makes it possible to assign different 

priority to each frequency band and thus to decrease the maximum intercept time of 

radars in the bands with higher priority, at the expense of degrading the frequency 

bands with lower priority, by lowering the probability of intercept for radars of 

those bands.  Even if the performance completely depends on the tactical necessities 

and therefore it can be application dependent, nevertheless some numerical results 

are presented in this thesis, in which the average maximum intercept time could be 

lowered by about 10% - 20%. 

8.2 FUTURE WORK 

In this thesis, it is assumed that the radars in the threat-emitter list are all circularly 

scanning.  However, there may be radars with different scan type, such as raster 

scan, spiral scan etc.  This case does not introduce any complexity to the search 

strategy finding method explained in this thesis.  As long as a periodicity exists in 

the radar signals that will be intercepted, the algorithm should be able to optimize 

the search strategy as explained in the thesis. 

In ECM systems, because of interference with jammers, sometimes the receiver 

should stop to listen radar signals, and the time and duration of this intermittency is 

not deterministic.  This situation violates the periodicity of sweeping of the receiver 

and thus the calculations for intercept probability can not be used here, so that 

anohter approach should be proposed. 

The search strategy considered in this thesis is periodic, and the period is the same 

for all frequency bands.  Is it possible to find an aperiodic search strategy, or at 

least, one with different periods for each frequency bands?  In this case, because of 

coincidences, it becomes impossible to schedule the dwells of all frequency bands 

when there are many frequency bands to be swept.  For a few frequency bands, such 

periods may be found such that their dwells do not coincide, i.e. the receiver 
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successfully schedules all of the dwells, however, this introduces severe constraints 

on  the problem and possibly synchronization problem can not be eliminated. It is 

seen that the aperiodic case is much more difficult, and new techniques must be 

proposed to handle this problem efficiently. 
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