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ABSTRACT 

EFFICIENT SOLUTION OF OPTIMIZATION PROBLEMS WITH 

CONSTRAINTS AND/OR COST FUNCTIONS EXPENSIVE TO EVALUATE 

 

 

Kurtdere, Ahmet Gökhan 

M.Sc., Department of Electrical and Electronics Engineering 

          Supervisor: Prof. Dr. Kemal Leblebicioğlu 

 

December 2009, 85 pages 

 

 

There are many optimization problems motivated by engineering applications, whose 

constraints and/or cost functions are computationally expensive to evaluate. What is 

more derivative information is usually not available or available at a considerable 

cost. For that reason, classical optimization methods, based on derivatives, are not 

applicable. This study presents a framework based on available methods in literature 

to overcome this important problem. First, a penalized model is constructed where 

the violation of the constraints are added to the cost function. The model is optimized 

with help of stochastic approximation algorithms until a point satisfying the 

constraints is obtained. Then, a sample point set satisfying the constraints is obtained 

by taking advantage of direct search algorithms based sampling strategies. In this 

context, two search direction estimation methods, convex hull based and estimated 

radius of curvature of the sample point set based methods can be applicable. Point set 

is used to create a barrier which imposes a large cost for points near to the boundary. 

The aim is to obtain convergence to local optima using the most promising direction 
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with help of direct search methods. As regards to the evaluation of the cost function 

there are two directions to follow: a-) Gradient-based methods, b-) Non-gradient 

methods. In gradient-based methods, the gradient is approximated using the so-called 

stochastic approximation algorithms. In the latter case, direct search algorithms 

based sampling strategy is realized.  This study is concluded by using all these ideas 

in the solution of complicated test problems where the cost and the constraint 

functions are costly to evaluate. 

Keywords: Optimization, Direct Search Methods, Response Surface, Stochastic 

Approximation.  
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ÖZ 

KISITLARI VE GİDER FONKSİYONLARI HESAPLAMASI PAHALI OLAN 

OPTİMİZASYON PROBLEMLERİNİN VERİMLİ ÇÖZÜMLERİ 

 

 

Kurtdere, Ahmet Gökhan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

          Tez Yöneticisi: Prof. Dr. Kemal Leblebicioğlu 

 

Aralık 2009, 85 sayfa 

 

 

Mühendislik uygulamalarında kısıt ve gider fonksiyonları hesaplaması pahalı olan 

birçok optimizasyon problemi mevcuttur. Bununda ötesinde bu fonksiyonların 

türevleri elde edilebilir değildir yada elde edilme maliyetleri yüksektir. Bu sebeple 

türev tabanlı klasik optimizasyon yöntemleri uygulanamayabilir. Bu çalışmada bu 

önemli problemin çözümüne yönelik literatürde yer alan mevcut yöntemler dahilinde 

bir çatı sunulmuştur. İlk olarak kısıtların ihlalinin maliyet fonksiyonuna eklenmesiyle 

bir ceza modeli oluşturulur. Bu model, rasgele yaklaşma algoritmaları kullanılarak 

kısıtların sağladığı ilk noktaya kadar optimize edilir. Sonra, doğrudan arama 

metodları tabanlı örnekleme stratejileri ile kısıtları sağlayan örnek noktalar kümesi 

elde edilir. Bu kapsamda, arama yönü tahmini için, dışbükey kabuk ve nokta 

kümesinin eğrilik yarıçapını kullanan iki yöntem kullanılabilir. Örnek noktalar 

kümesi sınıra yakın bölgelerde yüksek maliyet veren bir sınır oluşturmak için 

kullanılır. Burada amaç, doğrudan arama yöntemlerinden faydalanarak yerel 

optimum noktaya yakınsamaktır. Gider fonksiyonunun değer tahmini konusuna 

gelince, aslında izlenecek iki yön vardır: a-) Gradyan tabanlı yöntemler, b-) Gradyan 
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tabanlı olmayan yöntemler. Gradyan tabanlı yöntemlerde, gradyan rasgele yaklaşma 

algoritmaları kullanılarak hesaplanabilir. Diğer durumda ise doğrudan arama 

yöntemleri tabanlı örnekleme algoritmaları ile gider fonksiyonu değer tahmini 

gerçekleştirilebilir. Bu çalışma tüm bu fikirlerin gider ve kısıt fonksiyonları 

hesaplaması pahalı olan karmaşık test problemlerin çözümünde kullanılmasıyla 

sonlandırılmıştır. 

 

Anahtar Kelimeler: Optimizasyon, Doğrudan Arama Yontemleri, Tepki Yüzeyi, 

Rastlantısal Yaklaşım.  
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CHAPTER 1 

INTRODUCTION 

 

1.1. INTRODUCTION 

It is almost impossible to have the exact analytical solutions for most systems, with 

increasing complexities in the engineering applications. Then, utilization of modeling 

methods may be advantageous with the help of modern supercomputers and parallel 

computing. In these situations, generally an approximate black box model is 

developed for simulation or computational purposes. The model is called as a “black 

box” model since closed-form expression and the derivative information are not 

available or available at a considerable cost. Moreover, each evaluation of the black 

box model may include a random noise. For many large-scale complex systems, one 

evaluation of such a black box model which generates a single or a set of output for a 

given set of input variables has usually high computational cost and/or time 

consuming.  

Although, the developed approximate model enables the designer to simulate the 

performance of the original system, the problem of finding a setting for possibly a 

large number of design variables still exists. [42] Then a crucial question arises as 

how to find the best possible setting requiring minimum number of evaluations. [42] 
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Specification of the appropriate values for the variables of these kinds of engineering 

systems is a well studied problem considered in the context of design optimization 

concept. During design optimization, various numerical techniques can be applied on 

the mathematical model of a system to provide some improvement on the 

performance or reliability of the system [43]. In this study, an efficient iterative way 

for finding a local optimum setting of these types of black box design optimization 

problems with the help of available methods in the literature is presented.   

Utilization of traditional quasi-Newton methods to solve the problem is eliminated 

first because derivative information is unavailable or hard to obtain. Even if it was 

available quasi-Newton methods might be poor choices because they are adversely 

affected by function inaccuracies [8]. 

Local search, tabu search, simulated annealing are some other approaches to the 

design optimization problem generally considered in the field of discrete-event 

simulation [7]. These methods assume that one simulation run or one evaluation of 

the function can be performed quickly. Moreover, they only deal with (simple) 

constraints on the design parameters. 

Derivative-free optimization algorithms are another approach for solving 

optimization problems which do not try to estimate or calculate the gradients [15]. 

These are heuristic methods extensively used to solve design optimization problems, 

called direct search methods. It is observed that these methods are relatively 

insensitive to inaccuracies in the cost and/or the constraint functions [1], [2], [3], [4]. 

Besides derivative free methods, Keifer–Wolfowitz method [5], [6] is an approach 

from the area of stochastic approximation. The gradient estimation with this method 

requires the evaluation of the cost function at points 
k ix e , where ie  represents 

the i
th

 unit coordinate vector, i = 1,2,…n and k  is a constant depending on the 

iteration. Then algorithm takes a step of length k  considering the gradient direction. 



 3 

In noisy cases, allowing k  and k  tend to zero very slowly, provides better 

convergence. 

In this context, some approximate gradient based and gradient free optimization 

algorithms are examined. Simultaneous perturbation and finite differences based 

stochastic approximation algorithms that require approximation of the gradient is 

utilized and some direct search algorithms which attempts to minimize a scalar-

valued nonlinear function of n real variables using only function evaluations without 

any explicit or implicit derivative information is considered. (A type of simpex based 

algorithm, Nelder-Mead simplex algorithm, a pattern search type algorithm, Hooke 

and Jeeves pattern search method and a random search algorithm, one at a time 

search method) 

In some situations, representation of an approximate local surface model, that is both 

inexpensive to evaluate and accurate, capturing the underlying relationship between 

input and output may be desirable. Thus, it can be used to predict the output for some 

future observations or to estimate the derivatives at specific locations. For that reason, 

a surface representation concept is also considered in the scope of this study. Radial 

Basis Functions (RBF) are utilized as interpolants and the Orthogonal Least Squares 

(OLS) algorithm is preferred for center selection procedure. 

This study defines an iterative optimization methodology utilizing direct search 

methods and stochastic approximation algorithms for solving optimization problems 

with expensive to evaluate cost functions and/or constraints which is given more 

detailed in chapter 2.  

1.2. PROBLEM STATEMENT 

As it is defined in reference [42], optimization problems with cost and constraint 

functions not known explicitly are common in black-box design optimization. The 

main characteristic of these types of problems, at least for an important part, is that 

there is no derivative information available for the responses. This situation generally 
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comes into being when dealing with simulation models. A preset design parameter is 

fed to black box model, most probably a simulation tool, and output response 

parameter set is returned according to unknown input-output relationship. Moreover, 

in many applications, black-box models require high computation cost or they are 

time consuming; so developed algorithm should not run the model an unnecessary 

amount of times.  

The aim of the optimization problem is to minimize or maximize underlying function 

of the design parameters and responses, subject to given set of constraints that may 

be costly to evaluate or not (i.e., a constrained optimization problem) [42]. 

 

Figure 1.1: Black-box model 

Generally a constrained optimization problem P  can be stated as a nonlinear 

optimization problem of the following form; 

1 2: max ( ) , ( , ,..., )

( ) 0 1,2,...,

( ) 0 1, 2,...,

   

 

   

T d

d

i

j

P f F S R

subject to

g i q

h j q q m

    





 (1.1) 

whose feasible region, denoted by  

{ | ( ) 0, 1,..., , ( ) 0, 1,..., }d

i jF R g i q h j q m        
 (1.2) 
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where 1 2( , ,..., ) T

n     and S  represent the vector of solutions and search space, 

respectively. There are q  inequality and m q equality constraints. ( )f  is 

generally called the criterion function or cost function. Cost function and constraints 

can be linear or nonlinear.  , satisfying all the constraints is a feasible solution of 

the problem. All of the feasible solutions constitute the feasible region. Additionally, 

the equality constraints ( ) 0 , 1, 2,...,jh j q q m      can be converted to 

inequality constraints ( ) 0 , ( ) 0j jh h    . So the problem can be expressed with 

only inequality constraints. 

The user in these cases almost usually forced to construct a penalized model, where 

the violation of the constraints is added to the cost function; thereby enforcing the 

satisfaction of constraints [38]. In this way, an optimization problem with constraints 

can be transformed into an unconstrained form.  

Barrier and penalty methods are designed to solve these types of problems. In a 

penalty method, the feasible region of the problem P  stated as given in Equation 1.1 

is expanded from feasible region F  to whole space dR , but a large cost or “penalty” 

is added to the cost function for the points that lie outside of the original feasible 

region F [33]. 

In a barrier method, we start with an assumption that a feasible point is given and a 

large cost is added to the cost function on feasible points that ever get closer to the 

boundary of F . That means, a barrier that prevents exiting the out of the feasible 

region is created [33]. 

1.3. OVERVIEW OF THE ALGORITHM 

The algorithm presented in this study is based on direct search methods and 

stochastic approximation algorithms. Penalty and barrier methods are also utilized to 

handle the hard-to-evaluate constraints of the problem. 
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The proposed method has four main steps: 

 Step1: Starting from an arbitrary initial guess, a point P  satisfying the 

constraints is obtained. Stochastic approximation methods are employed for 

this part of the proposed method. A penalized model is first constructed to 

handle the constraints, and then this model is minimized or maximized until a 

point satisfying the constraints is obtained. The problem can then be 

considered as an unconstrained optimization problem from this point on. 

 Step2: New sample points in the neighborhood of the point P  are generated 

with the help of search direction estimation methods. Search direction 

estimation is critical; good estimates for the direction require smaller number 

of function evaluations. The obtained points have to be checked if they are 

satisfying the constraints or not. Points not satisfying the constraints have to 

be replaced by points in the feasible region. This can be achieved by the way 

employed in Step1. At the end of this step, a sample point set satisfying the 

constraints is obtained. This sample set is used for the procedure of barrier 

functions, employed in the next step.  

 Step3: A barrier function model is constructed and one of the direct search 

algorithms executed for that model. The aim is to obtain approximately a 

local minimizer or maximizer of the problem. The point set obtained in the 

previous step is used as a barrier and the direction of iterations is forced to a 

better local optima. This procedure provides a more robust convergence. 

Penalty and barrier methods and some direct search methods are utilized in 

this step of the proposed algorithm.  

 Step4: When achieving a satisfactory improvement, new constraints are 

developed; a new penalized model is developed and steps 2, 3 and 4 are 

repeated, respectively. The constraints constructed here are hypothetical; they 

are not original constraints of the problem. But original constraints of the 

problem also have to be checked. This procedure is continued until one of the 

stopping criteria is met. (Exceeding allowable number of function evaluations 

or attaining a desirable improvement for the response value, etc.). 
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Figure 1.2: The steps of the algorithm 

As shown in Figure 1.2 , starting from an initial point (marked as 1), a point set 

satisfying the constraints is obtained (marked as 2). While converging to local 

maximum iteratively, four hypothetical constrained surfaces have also determined by 

the algorithm and sample points on these constrait surfaces are obtained. These four 

imaginary constrait surfaces are also seen in Figure 1.2 (marked as 3 and 4). 

First step of the method is, starting from an arbitrary initial point, approaching to a 

new point which satisfies the constraints of the problem. Penalized model is 

constructed to handle the constraints. For this model, simultaneous perturbation 

stochastic approximation and finite difference stochastic approximation algorithms 

are executed for gradient evaluation until a point *  satisfying the constraints is 

obtained. For this point * , penalized and unpenalized cost functions yields the same 
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constant value c . * *( ( ) ( ) )pf f c   . The set of points that has the same function 

value (.)pf c , is used as an artificial constraint surface. In this construction, penalty 

functions are differentiable and strictly increasing. 

Next step is to increase the number of samples in the neighborhood of the point 

obtained in first step. Each obtained point has to satisfy constraints, in other words, 

each obtained point has to be on the “artificial” constrained surface (.)pf c . For 

that purpose, some direct search methods (Nelder-Mead simplex method, Hooke-

Jeeves pattern search and a random search method, one at a time search) are utilized. 

Two search direction estimation methods are proposed for that part of the algorithm. 

In the first one; sampling density is determined with respect to the curvature of the 

local points set. High curvature parts of the point set are determined. These parts 

have to be sampled more densely opposed to low curvature parts. In this way no 

expensive evaluations are wasted on parts of less importance. The second one utilizes 

a convex hull representation. New sampling locations are determined by using the 

vertices of this convex hull. These sampling methods are discussed in detail in 

chapter 2. 

In the third step, a barrier function model is constructed using the point set obtained 

in the previous step. This point set used as a barrier and forces the direction of 

ongoing iterations to be in the feasible region as well as towards better local optima. 

Direct search algorithms are utilized for execution of the cost function. 

Last step is updating the constraints to a better value and obtaining new points 

satisfying these new constraints. New sample points from new constraint surfaces 

contribute the convergence towards better local optima. Algorithm stops if an 

acceptable improvement achieved or the number of function evaluations exceeds the 

allowed limit. 
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1.4. OUTLINE OF THE THESIS 

This study has been composed of five chapters. The first chapter consists of the 

introduction, problem statement and overview of the proposed algorithm parts. 

Furthermore, outline of the thesis has been given in this chapter. In chapter two, 

theoretical background of algorithms for optimization problems whose constraints 

and/or cost functions are expensive to evaluate are explained. This chapter also 

covers details of the proposed algorithm. Surface representation strategy is given in 

the third chapter. Implementation results of the algorithm to three different special 

test problems are given in chapter four. Finally, chapter five contains the conclusion 

part and future work about the study. References and appendices are given at the end 

of the thesis. 
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CHAPTER 2 

SOLVING OPTIMIZATION PROBLEMS WHOSE COST 

FUNCTIONS AND/OR CONSTRAINTS ARE EXPENSIVE 

TO EVALUATE 

 

Design optimization is a field of engineering which employs optimization methods to 

solve the problems. Literature in design optimization has investigated optimization 

methods based on simulated annealing, genetic algorithms and gradient based 

techniques. These algorithms are generally not preferred in the solution of 

computationally expensive, complex problems because they require large number of 

function evaluations or measurements. Another way of solving optimization 

problems is utilizing derivative free methods which do not try to estimate or calculate 

the gradients. These are heuristic and simple methods called direct search methods 

[15]. 

As it is stated in [44], direct search methods for unconstrained optimization problems 

have been more popular for the past few years. Since these methods do not make 

gradient estimates and involve relatively few function evaluations, they are widely 

employed for optimization of costly functions. The most commonly used one in this 

class is the Nelder-Mead method. This method operates using the repeated operations 

of reflection, expansion, and contraction applied to a simplex of 1n   points in
nR . 

This method was developed more than 30 years ago; however some extended 
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versions of this method is still the most commonly applied method for optimization 

when each function evaluation requires a separate experiment (i.e., very costly to 

evaluate).   

In 1961, Robert Hooke and T.A. Jeeves developed a method for optimization and 

introduced “direct search” term. They presented the following description of direct 

search in the introduction of their paper [10]: 

“We use the phrase “direct search” to describe sequential examination of trial 

solutions involving comparison of each trial solution with the “best” obtained up to 

that time together with a strategy for determining (as a function of earlier results) 

what the next trial solution will be. The phrase implies our preference, based on 

experience, for straightforward search strategies which employ no techniques of 

classical analysis except where there is a demonstrable advantage in doing so.“ 

Direct search methods only rely on the values of the objective function. They do not 

calculate or estimate the value of any derivatives at any point. So such methods are 

also called “derivative-free” methods or “zero-order methods” [15]. 

In addition to derivative free methods, another approach originated from the so-

called Stochastic Approximation (SA) area is the Keifer–Wolfowitz method [5], [6]. 

The SA methods essentially approximate the gradients, where they can be estimated 

either numerically or analytically. The Kiefer-Wolfowitz [12] algorithm uses the 

finite difference gradient approximation to estimate gradients. Spall [13], [14] 

proposed the Simultaneous Perturbation Stochastic Approximation (SPSA) method 

for gradient estimation, which requires only two function evaluations per estimation, 

regardless of the dimension of the problem. 

 In this chapter, we begin by describing the family of underlying optimization 

algorithms on which the proposed algorithm is based. The direct search methods and 

stochastic approximation methods which are the two main branches of stochastic 

optimization are considered in this chapter. In this scope, simultaneous perturbation 

gradient approximation based stochastic approximation algorithm and finite 
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difference gradient approximation based stochastic approximation algorithm are 

discussed and direct search algorithms: simplex based algorithms (Nelder-Mead 

simplex method), pattern search (Hooke and Jeeves pattern search method) and 

random search (one at a time search) are also considered. Also the proposed 

algorithm is formally defined in this chapter. 

2.1. STOCHASTIC APPROXIMATION 

Stochastic approximation is a popular stochastic optimization technique. In particular, 

it may be called as "gradient-free" SA sometimes, because it only requires 

approximation of the gradient information [45]. Consider the problem given below. 

( )
( )






f
g





 (2.1) 

for a differentiable function : nf R R . When direct evaluations of g  are not 

costly, there are, of course, many approaches which can be used as a solution method 

(e.g., steepest descent). In the case where the exact functional relationship between 

the function value and the parameters,  , is not known and the function is evaluated 

by measurements on the system (or by other means, such as simulation) an 

approximation to ( )g   is used [45] (The well-known form of SA called the Kiefer-

Wolfowitz type is just an example). 

The generally used form of this type of SA recursion is: 

1
ˆ ( )  k k k k ka g    (2.2) 

where ˆ ( )kg   refers to an approximation (at the k th  step of the recursion) of the 

gradient ( )g  , and  the sequence { }ka consists of positive scalars which decreases 

to zero  in the standard implementation [45]. 

For the approximation of the gradient, ˆ ( )g  , in the usual version of this algorithm, 

based on the "finite difference" method, is discussed in the next section. Another 



 13 

general version of stochastic approximation is obtained by using a "simultaneous 

perturbation" gradient approximation. 

2.1.1. FINITE DIFFERENCE STOCHASTIC APPROXIMATION 

(FDSA) 

The important part of Equation (2.2) is the gradient approximation ˆ ( )kg  .  

Traditionally, the finite difference method is used for constructing the approximation. 

Equation (2.2) is referred to as the finite difference stochastic approximation (FDSA) 

when this method is used. 

In finite difference based gradient approximation method, each component of  the 

parameter 1 2( , ,..., ) T

n     is perturbed one at a time and corresponding 

measurements (.)y  are obtained. Next, each element of the gradient estimate is 

formed by differencing the corresponding output values and then dividing by a 

difference interval [46]. This type is the standard Kiefer-Wolfowitz approach to 

approximating gradient components and is originated from the definition of a 

gradient as a vector of p partial derivatives [46]. 

If gradient approximation is one sided, only ˆ( )ky   and ˆ( )ky perturbation   

measurements are needed, while two-sided approximations involve measurements of 

the form ˆ( )ky perturbation  . The two-sided FD approximation to be used 

with Equation (2.2) is; 

1 1
ˆ ˆ( ) ( )

2

ˆˆ ( )

ˆ ˆ( ) ( )

2

n n n n

k

n

n n p n n p

k

f c f c

c

f

f c f c

c

   



   

   
 
 
 
 

   
 
 
   
 
  

  (2.3) 
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where i  denotes a vector with a  in the i th  place and 0's elsewhere and 0nc   

defines the difference magnitude. The { , }k ka c pair are the gains (or gain sequences) 

for the FDSA algorithm.  

2.1.2. SIMULTANEOUS PERTURBATION STOCHASTIC 

APPROXIMATION (SPSA) 

Simultaneous perturbation stochastic approximation (SPSA) method has been 

developed for difficult multivariate optimization problems. SPSA has recently 

attracted considerable attention in areas such as simulation-based optimization, 

signal image processing and statistical parameter estimation because of its power and 

relative ease of implementation [46]. 

The gradient approximation by using SPSA algorithm requires only two 

measurements or function evaluations independent from the dimension of the 

optimization problem where finite difference based gradient estimation algorithms 

require two times the number of optimization problem variables for each iteration of 

the algorithm. This is the most powerful side of the SPSA algorithm. Especially the 

problems that require large number of variables to be optimized, this feature of the 

algorithm provides a considerable decrease in the cost of optimization. 

In simultaneous perturbation algorithm, all elements of ˆ
k  are randomly perturbed 

together (“simultaneously”) to obtain two measurements 

ˆ( )k k kf c   and ˆ( )k k kf c   . Each component of the gradient estimate ˆˆ ( )k kg   is 

formed from the difference of the two corresponding measurements, divided by an 

individual component in the perturbation vector [46]. For two-sided SP; 
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1

1 1 1

1 2

ˆ ˆ( ) ( )

2

ˆˆ ( )

ˆ ˆ( ) ( )

2

ˆ ˆ( ) ( )
, , ... ,

2

k k k k k k

k k

k k

k k k k k k

k kp

T
k k k k k k

k k kp

k

f c f c

c

g

f c f c

c

f c f c

c

 



 

    

     
 

 
 
 

  
 
 
     
 

  

    
     



 (2.4) 

  

where 1 2, , ... ,
T

k k k kp
        is the distribution of the user-specified p-

dimensional random perturbation vector (superscript “T ” denotes vector transpose). 

 

Figure 2.1: Relative search patterns for two dimensional problem for SPSA and FDSA 

algorithms [13] 
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The number of function evaluations needed at each iteration of FDSA increases with 

the dimension p while SPSA algorithm only needs two measurements independent of 

p since the numerator is the same in all components of p. 

2.1.2.1. IMPLEMENTATION OF SPSA 

How SPSA algorithm iteratively produces a sequence of estimates is shown in the 

following, step by step summary where the related material is directly adopted from 

[13]. 

Step 1: Initialization and coefficient selection. Set counter index 1k  . Pick initial 

guess and non-negative coefficients , , ,a c A and   in the SPSA gain sequences 

/( )ka a A k    and /kc c k  . The choice of the gain sequences ( ka  and kc ) is 

critical to the performance of SPSA (as with all stochastic optimization algorithms 

and the choice of their respective algorithm coefficients). Spall [14] provides some 

guidance on picking these coefficients in a practically effective manner (In cases 

where the elements of   have very different magnitudes, it may be desirable to use a 

matrix scaling of the gain ka  if prior information is available on the relative 

magnitudes. The next section discusses a second-order version of SPSA that 

automatically scales for different magnitudes). 

Step 2: Generation of the simultaneous perturbation vector. Generate by Monte 

Carlo a p-dimensional random perturbation vector k , where each of the p 

components of k  is independently generated from a zero mean probability 

distribution satisfying the preceding conditions. A simple (and theoretically valid) 

choice for each component of k  is to use a Bernoulli ±1 distribution with 

probability of 1/2 for each ±1 outcome. Note that uniform and normal random 

variables are not allowed for the elements of k  by the SPSA regularity conditions 

(since they have infinite inverse moments). 
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Step 3: Function evaluations. Obtain two measurements of the function (.)f  based 

on the simultaneous perturbation around the current ˆ ˆ: ( )k k k ky c      and 

ˆ( )k k ky c    with the kc  and k  from Steps 1 and 2. 

Step 4: Gradient approximation. Generate the simultaneous perturbation 

approximation to the unknown gradient ˆ( )kg  : 

1

1

1

2

1

ˆ ˆ( ) ( )ˆˆ ( )
2

k

kk k k k k k
k k

k

kp

y c y c
g

c

 








 
 
      

  
 
  


 (2.5) 

where ki  is the i th  component of the k  vector (which may be ±1 random 

variables as discussed in Step 2); note that the common numerator in all p 

components of  ˆˆ
k kg   reflects the simultaneous perturbation of all components in 

ˆ
k  in contrast to the component-by-component perturbations in the standard finite-

difference approximation. 

Step 5: Updating estimate. Use the standard SA form; 

1
ˆ ˆ ˆˆ ( )k k k k ka g      (2.6) 

to update ˆ
k  to a new value 

1
ˆ
k 

. Modifications to the basic updating step in 

Equation (2.6) are sometimes desirable to enhance convergence and to impose 

constraints. These modifications block or alter the update to the new value of   if 

the “basic” value from Equation (2.6) appears undesirable. 

Step 6: Iteration or termination. Return to Step 2 with k+1 replacing k. Terminate the 

algorithm if there is little change in several successive iterates or the maximum 

allowable number of iterations has been reached. 
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2.2. DIRECT SEARCH METHODS 

Direct search method requires points  nP R in design space which represent possible 

candidate solutions in the optimization problem as described by Hooke and Jeeves 

[10]. For any two points, 1P  and 2P  in the design space, if 1P  is a “better” candidate 

than 2P , then this situation is expressed as 1 2P P . There is an assumption that a 

single point *P , the solution, with the property * P P  for all *P P . The pseudo-

code given below which is adopted from [15] explains the direct search method.  

Direct Search Method: Select a point 0a arbitrarily as the first “base point.” 

1i  

repeat 

Select a new point iP  

if 1i iP a  then 

i ia P  

else 

1i ia a   

end if 

1 i i  

until no beter points are found. 

 

One of the important steps in the above algorithm is, selecting a new point. 

Considering the strategy for selecting a new point, direct search methods can be 

classified into different categories:  

 Random Search (One at a time search) 

 Pattern search methods (Hooke-Jeeves pattern search), 

 Simplex based methods (Nelder-Mead simplex method) 
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2.2.1. NELDER-MEAD SIMPLEX METHOD 

For optimization of a real valued function ( )f x , nx R , the Nelder-Mead simplex 

algorithm is an effective method. To define a complete Nelder-Mead method, four 

scalar parameters has to be defined; these parameters are coefficients of 

reflection ( ) , expansion ( )X , contraction ( ) , and shrinkage ( ) . The material of 

this part is based on the following reference, [16]. 

According to the original Nelder-Mead paper [9], parameters of the method should 

satisfy the conditions below.  

0 , 1 , , 0 1X X        (2.7) 

Usually the values of the parameters in standard Nelder-Mead simplex algorithm are 

selected as:  

1 1
1 , 2 , ,

2 2
X       (2.8) 

At the beginning of the k th  iteration of the algorithm, 0k  , an initial simplex k  

is given, along with its 1n  vertices and each of these vertices are defined in the 

design space 
nR . Generally, it is assumed that k th  iteration begins ordering these 

vertices as
( ) ( ) ( )

1 2 1, , ... ,k k k

nx x x  , such that 

( ) ( ) ( )

1 2 1...k k k

nf f f     (2.9) 

where 
( )k

if  denotes 
( )( )k

if x . 

In the k th  iteration, a new set of 1n vertices are generated so the next iteration 

starts from a different initial simplex ( 1k k   ). Since the aim is to minimize f, we 

say that 
( )

1

kx  to 
( )

1

k

nx   can be ordered from the best point or vertex to the worst. 

Consequently, we refer to 
( )

1

k

nf   as the worst function value but  
( )

1

kf  is the best. 
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2.2.1.1. ONE ITERATION OF NELDER-MEAD ALGORITHM 

 

1. Ordering; Algorithm needs an initial simplex which is the 1n vertices 

satisfying the condition that 1 2 1( ) ( ) ... ( )nf x f x f x    , using the tie-breaking 

rules given below. 

2. Reflection; Reflection point, rx  is computed first from 

1 1( ) (1 )r n nx x x x x x          (2.10) 

where x  is the center location of the first n points (all vertices except 1nx  ) and it is 

calculated by 

1

/
n

i

i

x x n


  (2.11) 

Evaluate ( )r rf f x . If 1 r nf f f  , the reflected point, rx , is accepted and 

iteration is terminated. 

3. Expansion; If the value of the reflection point rf is smaller than 1f , the expansion 

point ex , is calculated from 

1 1( ) ( ) (1 )e r n nx x X x x x X x x X x X x             (2.12) 

and is evaluated as ( )e ef f x . If the value of the expansion point ef is smaller than 

rf ,  ex  is accepted as an expansion point and the iteration is terminated; otherwise 

if e rf f , rx is accepted and the iteration is terminated. 

4. Contraction; If the value of the reflection point is greater than nf , a contraction 

between x  and the better of 1nx   and the reflection point rx is performed. 

4.1. Outside contraction. If 1n r nf f f    (i.e., rx  is strictly better than 1nx  ), the 

outside contraction is applied; xc is calculated as 
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1 1( ) ( ) (1 )c r n nx x x x x x x x x              (2.13) 

and f is evaluated at xc as ( )c cf f x . If the value of the contraction point is smaller 

than rf , cx is accepted as a contraction point and the iteration is terminated; 

otherwise, go to step 5. 

4.2. Inside contraction. If the value of the reflection point is greater than 1nf  , an 

inside contraction is performed; xcc is calculated as 

1 1( ) (1 )cc n nx x x x x x          (2.14) 

and f is evaluated at xcc as ( )cc ccf f x . If 1cc nf f  , ccx is accepted and the iteration 

is terminated; otherwise, go to step 5. 

5. Perform shrink step. Evaluate f at all of the following n points; 

1 1( ) , 2 , ... , 1i iv x x x i n      (2.15) 

At the next iteration the (unordered) vertices of the simplex consist of 

1 2 1, , ... , nx v v  . 
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Figure 2.2: After a reflection and expansion step Nelder-Mead Simplex is shown. The dashed 

lines refer to original simplex [16] 

 

 

Figure 2.3: After an outside, inside contraction and shrink a Nelder-Mead simplex is shown. The 

dashed lines refer to original simplex  [16] 
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For two dimensional space (simplex is triangle) the effects of reflection, expansion, 

contraction, and shrinkage operations are shown in Figure 2.2 and Figure 2.3, 

respectively. 

 

It is seen that, in all of the operations except the shrink step, the new vertex always 

lies on the (extended) line joining x  and 1nx  . Furthermore, it is visually evident that 

the simplex shape changes noticeably during an expansion or contraction operations 

with the standard coefficients 
( 1) ( 1) ( 1)

1 2 1( ) ( ) , ... , ( )k k k

nf x f x f x  

   . 

 

Nonshrink ordering rule; The worst vertex, 
( )

1

k

nx  , is discarded when a nonshrink 

step occurs. During the iteration k, the accepted point, denoted by ( )kv , becomes a 

new vertex and takes position j + 1 in the vertices of the simplex at next iteration 

1k , where 

( ) ( )

1
0
max{ | ( ) ( )}k k

l
l n

j l f v f x 
 

   (2.16) 

with all other vertices retain their relative ordering from iteration k. 

 

Shrink ordering rule;  

When a shrink step occurs, the only vertex carried over from the simplex at iteration 

k, k , to simplex at the next iteration, 1k , is 
( )

1

kx . For the case, 
( )

1

kx  and one or 

more of the new points are tied as the best point, only one tie-breaking rule is 

specified, if 

( ) ( ) ( )

2 1 1min{ ( ), ... , ( )} ( )k k k

nf v f v f x   (2.17) 

then
( 1) ( )

1 1

k kx x  . 

Define the change index 
*k  of iteration k  as the smallest index of a vertex that 

differs between iterations k  and 1k  : 
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* ( ) ( 1)min{ | }k k

i ik i x x    (2.18) 

When Nelder-Mead algorithm terminates at step 2, *1 k n ; when termination is at 

step 3, * 1k ; with termination at step 4, *1 1  k n ; and with termination at step 5, 

* 1k  or 2.   

2.2.2. ONE AT A TIME SEARCH 

This search strategy is also known as the alternating variable method. It is a kind of 

random search method. This is the simplest method which consists of optimizing 

with respect to each variable [15]. 

As shown in Figure 2.4, for an example of two dimensional cases, variables are 

changed in turn if no further improvement on the function value is obtained. If an 

improvement obtained in one variable, algorithm goes on with that variable [15]. 

This sequence is repeated with ever-decreasing steps. 

 

Figure 2.4: One at a time search method for function of two variables [15] 
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One of the drawbacks of this algorithm is that in most practical cases the direction of 

optimum is not along any of the coordinate axes. So this algorithm can be employed 

only for a limited number of cases. The progress is slow and it becomes very 

inefficient as the number of variables increase. 

2.2.3. HOOKE AND JEEVES PATTERN SEARCH 

Pattern search methods are better than random search methods from the aspect of 

determination of the search directions. They try to find better search directions. 

These directions are found by using exploration in the design search space. The name 

of going from one location to the new location in design space is called a move. A 

move results as a success if the value of the function (.)f  at the new point is higher 

then the value of (.)f  at the previous point; otherwise, it is a failure. The sequence 

of exploratory moves and pattern moves are the base of the pattern search methods. 

 

Figure 2.5: Hooke and Jeeves Pattern Search for two dimensions [15] 



 26 

a. Exploratory move: In an exploratory move, a step is taken along the direction i .  

If this move results with a success, then new point obtained is retained. If the result is 

failure, then a step is taken in the opposite direction. Steps are taken by adding an 

increment to the variable or subtracting a decrement from the variable.  

When all the n directions originated from coordinate axes are investigated, the 

exploratory move is complete. The point arrived at as a result of this exploratory 

move step, may or may not be distinct from the original point, which is called as the 

base point. 

b. Pattern move: Initial starting base point and the obtained intermediate base point 

using the exploratory move define the search direction or, in other words “pattern”. 

A pattern move takes one step from present base point in the direction specified by 

the pattern. This point is the new starting point of the next exploratory move step. 

If, both a pattern move and the following exploratory move result with a failure, the 

algorithm returns to the previously obtained base point. Again, if the exploratory 

move around this base point also has failure the pattern is deleted and increment is 

reduced. The algorithm is repeated starting from this point. The search is terminated 

when the determined increments fail below a prescribed limit. 

In Figure 2.5, point 1P  (marked 1) is the initial base point 0B . First exploratory move 

from 0B  begins by incrementing the direction on 1x  and the resulting point is 2P . At 

this point 2 1( ) ( )f P f P , so the point 2P  is retained and exploration is continued by 

incrementing on the direction 2x . Since 3 2( ) ( )f P f P , point 3P  is retained in place 

of 2P . The exploratory move is ended and 3P  becomes the second base point 1B . The 

direction of pattern move is 1 0B B  from 3P  to 4P  ( 1 0 4 3  B B P P ). Now, 4( )f P  is 

not calculated, but an exploratory move is performed. The best point found along the 

direction of 1x  coordinate is 5P . Move along 2x  fails, as the points obtained 6P  and 7P  

are not better than 5P ; so exploratory move stage is complete and 5P  is retained. 
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Since 5 1 3( ) ( ) ( ) f P f B f P , it becomes the new base point 2B . The material of this 

part is based on the reference [15]. 

2.3. DESCRIPTION OF THE ALGORITHM 

The details of the proposed method for solving black box optimization problems with 

expensive-to-evaluate cost functions and/or constraints are presented in this section. 

It utilizes some direct search methods and stochastic approximation algorithms from 

the literature in a specific order.  

2.3.1. OBTAINING A POINT SATISFYING CONSTRAINTS 

The first step of the method consists of the use of finite difference stochastic 

approximation and simultaneous perturbation stochastic approximation algorithms in 

the context of finding a point satisfying constraints starting from a given initial 

parameter set. 

Recall that, the problem can be stated as a constrained optimization problem. A 

general constrained optimization problem is generally written as a nonlinear 

optimization problem of the following form: 

1 2min ( ) , ( , ,..., )

( ) 0 1,2,...,

t d

d

i

f F S R

subject to

g i q

    



   

 

 (2.19) 

where 1 2( , ,..., ) T

n     is the vector of solutions, F  denotes the feasible region 

and S  is the search space. In that problem, there are q  number of inequality 

constraints, and ( )f  is usually called the criterion function or the objective function. 

A feasible solution of the problem *  satisfies all the constraints. 

Generally a penalized model is constructed, where the violation of the constraints is 

added to the cost function as a penalty term. A large cost or “penalty” is added to the 

cost function for points that are outside of the original feasible region F . In this way, 
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an optimization problem with “costly” constraints can be transformed into an 

unconstrained optimization problem. A general penalized formulation of the problem 

is as follows;   

 

1

( ) ( )

( ) , 1,...,

m
k

p i i

i

i i i

f f C d

where

d g for i q

 

 



 

 



 
(2.20) 

 

( )pf   is the penalized cost function, ( )f   is the unpenalized cost function, and iC  

is a constant imposed for the violation of constraint i . If constraint i  is violated 

1i  , else 0i  . id  is the distance measure of constraint i  at the feasible point  , 

and k  is a user defined exponent, usually taking the values 1 or 2. 

Thus, rewriting the unconstrained form of the problem; 

max ( ) ( ) . ( )pf f c p     (2.21) 

where c  is a sequence of constant penalty parameters and ( )p  is called the penalty 

function. Generally, the penalty parameter c has to be selected larger than a threshold 

value depending on both functions ( )f  and ( )p  . But, since there is no complete 

information about the function ( )f  , slowly increasing the parameter c  during the 

optimization process, helps the convergence ( limn nc   ). 

Now, the standard stochastic approximation technique can be applied with the 

simultaneous perturbation or finite difference gradient estimate to optimize the cost 

function ( )pf  . In other words the original problem can be solved with an algorithm 

of the following form: 
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  

   

    
 (2.22) 

  

The gradient estimates can be calculated by simultaneous perturbation or finite 

difference stochastic approximation algorithms. At the end of this process, a point   

satisfying the constraints is obtained.  

The penalized cost function and original cost function are identical for the case when 

all the constraints are satisfied ( ( ) ( )pf f  ). The cost function value at this 

feasible point constitutes an artificial surface which can be called as the constrained 

surface ( ( ) )pf const  .  

2.3.2. SAMPLING THE CONSTRAINED SURFACE 

After finding a point which satisfies the constraints, the aim is to increase the number 

of sample points. In this part, the problem of choosing the best sampling instances 

from the parameter space is discussed. 

It is obvious that, a sampling plan is needed in the design variable space that attempts 

to maximize information from an evaluation with as few evaluation points as 

possible, which can be important when the points are computationally expensive to 

evaluate.  

In order to get samples on the constrained surface, a sampling strategy based on 

direct search algorithms is employed. Moreover, eigen-analysis of the covariance 

matrix of obtained samples (starting from a sample point, 1 2{ , ,..., }n     nearly on 

the artificial constrained surface) is utilized for determination of the sampling step 

size. High curvature parts of the surface have to be sampled densely.   

Direct search algorithms which do not make gradient estimates and involve relatively 

few function evaluations, are the main tool for the proposed sampling method. 

Further, the locations where the direct search algorithms are planned to execute, is 
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determined by considering the curvature estimates of the surface. For example, at an 

arbitrary instant of the algorithm, suppose that, k  samples are obtained ( 1 2, , ... , k   ) 

on the constrained surface and now the concern is getting the next ( 1)k th  sample. 

This sample is searched at a distance u  (step size) from lastly obtained k th sample, 

the distance u  is determined according to the eigen-analysis of the covariance 

matrix of recently obtained specified amount of samples, starting from the last 

sample k  ( 1, ,...k k   ).  

In the previous section, the penalized model ( )pf   of the problem is constructed. 

For this model optimization process is employed with the help of stochastic 

approximation algorithms. Then the initial point, * which satisfies all the constraints, 

is obtained. At this point, penalized cost function and original cost function give 

identical results ( ( ) ( )pf f c   ). Now the aim is increasing the number of 

sample points satisfying the condition ( )p if c  which constitutes a surface 

(constrained surface). In chapter 3, representation procedure of a surface using 

sample points from this surface is presented. 

 The steps of the sampling procedure are given below; 

Step1: In a specified neighborhood of initially obtained sample point  on the 

constrained surface ( ( )p if c  ), generate m number of new sample points. Giving 

arbitrary perturbations to each component of that sample point (design 

parameter), 1 2( , ,... )n    , a design parameter set 1 2{ , ,..., }mD    is obtained. For 

example, 1 1 2( , ,... )nperturbation     , 2 1 2( , ,... )nperturbation     .  

Step2: For each design point in the parameter set 1 2{ , ,..., } mD    , execute one of 

the direct search algorithms. This results in a new set of design points; this time, each 

of them is located on the constrained surface, 
* * * *

1 2{ , ,..., } S S SmD    . 
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Step3: For the sample point set
* * * *

1 2{ , ,..., }S S SmD    , define a sampling 

direction d such that the next sample point is searched in that direction. Estimation of 

sampling direction is detailed in section 2.3.2.2 . 

Step4: Eigen-analysis of the covariance matrix of design point set 

* * * *

1 2{ , ,..., }S S SmD     is used to estimate the curvature. This curvature value is used 

to determine the distance of the next sampling location. Sampling step size, u  is 

defined by using this curvature.  

Step5: Sampling step size, u  and search direction, d  are used for calculating the 

approximate location of the new sample ( Snew ). 

*Snew S u d    (2.23) 

  

 

Figure 2.6: Sampling procedure 
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Executing one of the direct search algorithms at the point 
Snew , a point on the 

constrained surface, 
*

Snew  is obtained accurately, where 
S  refers to the centroid of 

the point sample set *D  .  

1

1/
m

S i
i

m 


   (2.24) 

After obtaining each new sample point, the last sample is removed according to the 

sampling direction d  from the set
* * * *

1 2{ , ,..., }S S SmD     and the new sampling point 

*

Snew  is inserted into the set *D , again considering the sampling direction. 

As a result, high curvature parts of the constrained surface are sampled more densely 

compared to the low curvature parts. 

2.3.2.1. ESTIMATING THE SURFACE VARIATION 

A clever sampling procedure is required to obtain more information requiring smaller 

function evaluations. Regions with high variation need to be sampled more densely. 

In contrast, regions with low variation can be sampled sparsely to reduce the 

computational costs. For this reason, sample size has to be determined according to 

the variation of the region. 

Corresponding to the principal components of the sample point set, the magnitude of 

each eigenvalue can be taken as a measure of the variation, along the direction of the 

corresponding eigenvector. The concept of interest here is generally named as the 

Principal Component Analysis (PCA) which is a searching technique for patterns in a 

high dimensional data. The eigenvalues in principal component analysis represent the 

total variance explained by each factor. First principal component accounts for the 

main variability in the data, and each of the following components accounts for the 

remaining variability. 

In this part, the estimation of the curvature of the underlying point cloud is 

considered. Suppose that, we are given an nxm input matrix  
1 2( , ,..., )T

mD    , 
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where each of the m  input vectors of , 1,.....,i i m  , is defined on an 

n dimensional space and let 
1 2( , ,..., )T

mY y y y  be the resultant vector whose 

components iy ’s are the output values, corresponding to the input vectors 

, 1,.....,i i m  .  

In other words, we are given a simulation data set; 

{ ( , ) : , , 1,...., }n

i i i iD y R y R i m      (2.25) 

in which, both the values of the inputs and the corresponding outputs are made 

available. The aim is to analyze the curvature of this set.  

2.1.3.2.1.1 Covariance Analysis 

Eigen analysis of the covariance matrix of a point sample set obtained from a certain 

part of the surface can be used to estimate the curvature of that part of the surface, as 

it has been demonstrated in studies referenced by [18], [19]. 

Let   be the centroid of the point sample set D , i.e., 

1

1 m

i
im

 


   (2.26) 

Then, the nxncovariance matrix, C  for this set is given by 

1 1

T

m m

C

   

   

    
   

    
       

   (2.27) 

 

The covariance matrix, C  describes the statistical properties of the distribution of 

the sample point set by accumulating the squared distances of these points from the 

center location. 
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 Let’s consider the eigenvector problem; 

, {0, 1, 2,....}l l lC v v l     (2.28) 

Because covariance matrix, C  is positive semi-definite and symmetric, all 

eigenvalues l  are real-valued and the eigenvectors, lv  corresponding to the 

principal components of the sample set D , form an orthogonal frame. The 

eigenvalues l  are a measure of the variation of D , along the direction of the 

corresponding eigenvectors. The total variation, as the sum of squared distances of 

, 1,....,i i m   from the center point is given by 

2

0 1 2

1,...,

....i n

i m

     


       (2.29) 

Assuming 
1 ...o n     , the eigenvector 0v corresponding to the minimum 

eigenvalue, gives the direction of minimum variation.  

 

Figure 2.7: Principal components of a Gaussian distributed point set [41] 
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Now, a measure for the surface variation has to be defined. 0  quantitatively defines 

the variation along the surface normal, In other words, it estimates how much the 

points deviate from the space spanned by eigenvalues 1 1, ,...,o n    . The value n  

gives an insight about the curvature of the sample point set.  

Then the surface variation can be defined as; 

0

0 1
...

n

n




  


  
 (2.30) 

 

2.3.2.2. DIRECTION ESTIMATION 

Search direction estimation to obtain a new sample point on constrained surface is 

critical for expensive-to-evaluate functions with no derivative information available. 

Starting from an estimated direction, convergence to the constrained surface needs 

too many function evaluations for badly estimated search directions which increases 

the computation cost. On the contrary, a thoroughly estimated direction prevents 

unnecessary evaluations.  

2.1.3.2.2.1 Convex Hull Based Method 

Two approaches are considered in this scope. First one utilizes a convex hull of 

previously sampled points to estimate the direction. This algorithm can be executed 

for multi dimensional problems requiring no additional preprocessing steps, in 

contrast to covariance analysis based method, detailed in following part.  
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The pseudo code and the flow diagram of the algorithm are given below; 

 Pset : A newly generated point set on according to the 

estimated directions (most probably not on surface) 

 Used_P : Points used on direction estimation 

 Points_On_Surf : All points on constrained surface 

 Not_On_Hull : Points not on convex hull 

 New_P_Surf  : Newly generated points on Surface 

 Cset : Point set of convex hull 

 

 stop = 0; 

 While stop == 0 

o Converge each point on Pset to constrained surface 

and add them to Points_On_Surf 

o If number of points on Points_On_Surf < 3; 

  stop=1 

o Generate convex hull (Cset) of point set of 

Points_On_Surf 

o Not_On_Hull = Find points not in Cset but in 

Points_On_Surf  

o Dir_C = Erase points of Used_P from the set Cset  

o If number of points on Dir_C < 3; 

  stop=1 

o For each point in Dir_C 

 Nearest = Find nearest point in point set 

Not_On_Hull 

 Vec = Generate vector from Nearest to point 

in Dir_C 

 New_P = point in Dir_C + Vec x constant 

 New_P_Surf = Use one of the direct search 

algorithms to   converge for New_P 

 New_P_Surf = Generate points between points 

New_P_Surf and add to New_P_Surf after 

converge 

o End For 

o Pset = new_P 

 End While 
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Figure 2.8: Flow diagram of convex hull based search direction estimation method 

2.1.3.2.2.2 Covariance Analysis Based Method 

The other direction estimation algorithm utilizes the covariance analysis of lastly 

obtained N number of points to estimate the direction. The direction of principal 

component of the point set is calculated first. Then, this direction is selected as a 

search direction considering the previously calculated direction. The angle between 

the lastly calculated two directions has to be smaller than 90 degrees. As it is seen, 

that direction estimation algorithm assumes that the surface is smooth. If the selected 

N value is high, sensitivity to sharp edges decreases. If selected N value is small, 

sensitivity to noisy observations increases and this may cause wrong convergence.  

The algorithm works for three (two of them are design parameters) and smaller 

dimensional problems. If a higher dimensionsional problem is given, It has to be 
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converted to three dimensional problems. For example, a four dimensional problem 

can be solved for some specific values of a selected dimension. In this way, a four 

dimensional problem can be analyzed as a three dimensional problem for some 

values of the fourth dimension. That approach is applicable to all four or higher 

dimensional problems. 

The pseudo code of the algorithm and flow diagram is given below; 

 Pset : A specified number of lastly obtained points on 

constrained surface 

 Old_Dir : Previously calculated direction (to control 

the consistency of the new direction) 

 New_P_Surf : Lastly obtained point on surface (obtained 

one of the direct search algorithms) 

 New_P : Lastly obtained point by using estimated 

direction(most probably not on the surface) 

 P_Dir : Estimated Direction (calculated by covariance 

analysis of the point set) 

 Stop : Variable used to control stopping condition 

 

 Stop = 0; 

 While stop == 0 

o Old_Dir = P_Dir 

o P_Dir = Find principal direction of the point set 

Pset  

o If Dot(P_Dir, Old_Dir) < 0  

 Reverse P_Dir  

o New_P = P_Dir x constant + Last point in Pset 

o New_P_Surf = Use one of the direct search 

algorithms to converge on surf from New_P 

o Add New_P_Surf to Pset 

o If New_P_Surf is close to starting point or out of 

bounds 

 Stop = 1; 

o Reorder points according to P_Dir 

o Erase last point in P_set 

 End While 
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Figure 2.9: Flow diagram of covariance analysis based search direction estimation method 

2.3.3. CONVERGE TO LOCAL OPTIMA 

The sample point set (
* * * *

1 2{ , ,..., }S S SmD    ) on the constrained surface is obtained 

by using the procedure detailed in previous section. This point set is used to define a 

barrier function. The aim in this section is to obtain convergence to local optima.  

Firstly, a barrier function is constructed; the idea in a barrier method is to dissuade 

points   from ever approaching the boundary of constrained surface, defined by the 

sample point set.  

A barrier function is any function 
*( , )b D  that satisfies;  

 *( , ) 0b D   for all   that satisfies constraints, and 

 *( , )b D   as distance between and constrained surface converges zero. 
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For example, a barrier function *( , )b D  can be defined as * *( , ) 1/ ( , )b D dist D  . 

*( , )dist D is a function that gives the euclidean distance between parameter  and 

sample point set *D  .   

The new form of the problem after adding a barrier function is 

*1
max ( ) ( ) . ( , )bf f b D

c
     (2.31) 

Barrier function forces the direction of the iterations to local optima. So the 

algorithm converges to local optima more robustly. It is obvious that, as the obtained 

points are getting away from the constrained surface, the effect of the barrier 

function decreases. Defining new constraints are necessary. For that reason, while 

execution of the algorithm is going on, constraints are updated and new sample 

points on this new constrained surfaces are obtained with the help of the procedure 

defined in previous section. Naturally, the barrier function uses, lastly obtained 

sample point set. The update condition for the constraints are predefined sufficient 

improvements on the cost function. The new value of the cost function defines a new 

constrained surface ( ( ) if c  ).  
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CHAPTER 3 

SURFACE REPRESENTATION 

 

 

Representation of an approximate local response surface model, which is both 

inexpensive and accurate, capturing the underlying relationship between input design 

parameter set and corresponding outputs, may be desirable, in some situations. Thus, 

it can be used to predict the output at some future observations or to estimate the 

derivatives at specific locations. For that reason, response surface development 

strategy is also considered in the scope of this study.  

A rigorous way to develop an approximate surface model with predefined functions 

whose coefficients are to be determined by the measurements at some design points 

is defined. Such an approximate function is called a response surface model, (also 

known as metamodels, or surrogate models) which explores the relationships 

between several design variables and one or more response variables. The response 

surface model is an interpolation based on Radial Basis Functions (RBF). Radial 

basis functions are preferred as interpolants because they are computationally 

inexpensive and it is very easy to introduce locality. The Orthogonal Least Squares 

(OLS) algorithm is employed for the center selection procedure.  

Development procedure of local response surface model with RBF is presented in 

sections 3.1. Section 3.2 is about selecting the most significant centers among the 

input sample set.  

http://en.wikipedia.org/wiki/Explanatory_variable
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3.1. RBF BASED SURFACE GENERATION 

Response surface methodology is a collection of statistical and mathematical 

techniques that can be used to approximate a system [20]. In this section, 

development procedure of a response surface model based on radial basis functions, 

matching the measurements obtained from the original model by experimentation or 

numerical simulation is considered. The developed models are cheaper to run; so 

they can be used in place of the exact model. In this way required computation time 

and/or cost can be reduced.  

Since the original model may possess multiple local maxima or minima, employing 

linear or quadratic least squares model approaches would be more problematic for 

modeling. Radial basis functions are more suitable for these cases. 

Because of its accurate and stable interpolation properties, radial basis functions are 

used in several fields of engineering. In this section the least squares radial basis 

function (LS RBF) is used to solve the problem of development of the local response 

surface model. 

3.1.1. RESPONSE SURFACE METHODOLOGY 

The field of response surface methodology consists of both of the following; 

experimental procedure for exploring the space of the design parameters and 

mathematical modeling to obtain a relationship between experiment results and 

design parameters. From mathematical aspect, a response surface model is an 

interpolation technique that fits complex multi dimensional function to its function 

values on specified function domain at some finite sample points [21].  

The developed response surface model accuracy largely depends on the number of 

measurements or evaluations employed and their distribution on the design 

parameter space, as well as the approximation functions used for the development 

procedure of the response surface model. The general purpose of response surface 

methodology is usually one or both of the following: to gain some insight into the 
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operating principles of the related system and/or to seek some optimum settings for 

the variables involved. 

It is assumed that we are concerned with the analysis of a complex system whose 

input-output relationship is given by 

( )y f   (3.1) 

where 
1 1( , ,..., )T

n     is a design parameter vector. The function f(.) is assumed 

to be unknown or partially known and -as mentioned before- can only be evaluated 

experimentally or through a computationally intensive numerical simulation. The 

system is represented by scattered data ( ) , 1,...,i iy f i m  . To study such a 

system at a considerable cost, an approximation to the original function f(.) has to be 

developed.  

The developed approximate function model constitutes a response surface model. 

Since, many interesting scientific and engineering systems are complex, the 

processing times are important. A model which can significantly reduce the 

processing time is absolutely desirable. 

3.1.2. SURFACE RECONSTRUCTION WITH RBF 

The problem of surface reconstruction from scattered point cloud has been studied 

extensively in the field of computer graphics for decades. Quickly and robustly 

reconstruction of a continuous surface from the unorganized points is desirable, for 

that reason, some useful methods are offered by researchers to overcome this 

important problem [18],[22],[23]. 

RBF attracts more attentions recently in multidimensional data interpolation [22], 

[24],[25],[26]. It is identified as one of the most accurate and stable methods to solve 

scattered data interpolation problems.  
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3.1.2.1. RADIAL BASIS FUNCTIONS 

A radial basis function is a real-valued function whose value depends only on the 

distance from the origin ( ( ) ( )    ) or alternatively on the distance from a 

point c , called a center point, ( ( , ) ( )c c     ).  

Any function φ that satisfies the property ( ) ( )     is a radial basis function. The 

norm is usually euclidean. 

 

Figure 3.1: Radial Basis Function Network 

A schematic of the RBF network with n number of inputs and corresponding scalar 

output is depicted in Figure 3.1. Such a network implements a mapping  

: n

rf R R  according to; 
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0

1

( ) ( )
N

r i i

i

f c    


     (3.2) 

where nR   is the input vector, (.)  is a given radial basis function defined from 

nR  into R ,   denotes the euclidean norm, , 0i i N    are the weights or 

parameters, , 1n

ic R i N    are known as the RBF center points, and N  is the 

number of center points. 

Theoretical investigation and practical results shows that the choice of the 

nonlinearity of the function (.)  is not very important for the performance of the 

constructed RBF network [27]. For example, the thin-plate-spline function  

2( ) log( )v v v    (3.3) 

and the gaussian function 

2 2( ) exp( / )v v    (3.4) 

where   is a real constant, are two typical choices for radial basis functions. The 

function )(  in Equation (3.3) goes to infinity as   goes to infinity, whereas the 

function )(  in Equation (3.4) goes to zero as   goes to infinity. These two 

nonlinearities have quite different properties but RBF networks constructed by using 

any of them have good approximation capability [27]. 

3.1.2.2. LS RBF SURFACE RECONSTRUCTION 

As mentioned before, in RBF methods, surface reconstruction problem is considered 

as a scattered data interpolation problem. This problem can be stated as, given a set 

of fixed N  number of data points 
1 2{ , ,..., }N    sampled from a surface S  in 

1nR 
and a set of function values 

1{ } N

i if R  , find an interpolant : n

rf R R  

such that  
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( ) 1,2,...,r i if f i N    (3.5) 

By providing a set of inputs and the corresponding outputs to the interpolating 

function given in Equation (3.2), a linear system whose least square (LS) solution 

gives the unknown weights i , can be obtained. 

Let us rewrite the RBF formulation in Equation (3.2) into 

1

M

r i i

i=

f ( )= λ φ( c )    (3.6) 

where, M is the number of points used in reconstruction ( )M N and T  is the 

transpose operator. Define  and g , such that 

1 2 1 2[ , ,..., ] , [ , ,... ]T

M Mg        . Let
1 2[ , ,..., ]T T T

N NxMG    . Then we 

have 

( )rf G    (3.7) 

The RBF interpolant interpolates the sample points with function values 
1{ }N

i ih f  , 

so the interpolation equations can be derived from the following optimization 

problem 

21
( ) ( ) min

2

TJ G h G h            (3.8) 

To minimize the cost function in Equation (3.8), we proceed as 

( )TJ
G G h




   


 (3.9) 

Let the right hand side of Equation (3.9) be equated to zero:  

T TG G G h     (3.10) 

 

Then   can be obtained as 
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1( )T TG G G h      (3.11) 

After the coefficients   are determined, the surface can be reconstructed with much 

fewer centers ( )M N  the subset of centers, M  can be efficiently selected from 

the original samples using the OLS method. 

3.2. CENTER SELECTION 

In this part, orthogonal least squares algorithm is utilized to select the most 

significant centers among the input sample set. Since the problem of developing a 

response surface model from selected suitable center points has the same 

characteristics with the problem of surface reconstruction from an unorganized point 

cloud in the field of computer graphics, we take advantage of the literature related 

with this field.  

Researchers in this field offer useful strategies and methods to solve the problem of 

surface reconstruction from an unorganized point cloud. Hoppe’s [18] signed 

distance function based method, Amenta’s [28], [29], Voronoi and crust based 

method, moving least square (MLS) of Shen [22], etc.  

In general, subset of suitable centers is selected arbitrarily or randomly from the 

whole point set. It is clear that this approach is unsatisfactory and may suffer from 

numerical ill-conditioning problems. To select suitable centers, orthogonal least 

square (OLS) method can be employed as a forward selection procedure. This is a 

regression procedure such that the selected set of centers is the regressors 

maximizing the desired output. 

 

3.2.1. ORTHOGONAL LEAST SQUARES (OLS) ALGORITHM 

It is a generally recognized fact that utilizing significantly fewer points, a surface 

defined by a large point set can be approximated with desired precision; so center 
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selection is an important process for developing surfaces with radial basis functions. 

It reduces time for processing without much sacrifice of accuracy. The OLS 

algorithm is a greedy algorithm which chooses the suitable centers for radial basis 

functions systematically considering the individual contribution to error reduction. 

Surface developed by using these selected suitable centers approximate the original 

surface well. 

All the material in this part is referenced from Chen’s OLS algorithm [27]. To 

understand the working principle of the algorithm, consider the RBF interpolation 

function given in Equation (3.8); ( ( )rf x G   ) where NxMG  is a regression matrix 

that a fixed center point ic  with a given nonlinearity (.) corresponds to a 

regressor , 1,...,ig i M . 

1 2[ , ,..., ]NxM MG g g g  (3.12) 

Now, the problem of selecting a suitable set of RBF centers from the given data set 

can be considered as an example of selecting a subset of significant regressors from a 

given candidate set. 

The least square solution obtained in Equation (3.11) satisfies the condition that 

G   be the projection of measurements vector ( h ) onto the space spanned by the 

regressor vectors ( ig ) which form a set of basis vectors. 

To calculate the individual contribution to the error reduction from each basis vector 

the OLS algorithm investigates the transformation of the set of ig  into a set of 

orthogonal basis vectors. 

The regression matrix G  can be decomposed into 

G W Q  (3.13) 

where Q  is a MxM upper triangular matrix with ones on the diagonal, and zeros 

below the diagonal, that is, 
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 (3.14) 

and W is a NxM matrix with orthogonal columns iw  such that 

TW W D  (3.15) 

where D  is diagonal with elements id : 

1

( ) ( ), 1
N

T

i i i i i

t

d w w w t w t i M


       (3.16) 

The space spanned by the set of orthogonal basis vectors is the same space spanned 

by the set of
jg . 

 RBF linear system can be rewritten as 

h W  (3.17) 

The orthogonal least square solution is given by 

1 , /( ), 1T T T

j j j jH W h or w h w w j M      (3.18) 

The coefficients   and vector   satisfy the following triangular system; 

Q   (3.19) 

the classical Gram-Schmidt method computes one column of Q  at a time and 

orthogonalizes G  as follows: at the k th  step, the k th  column is made orthogonal to 

each of the 1k   previously orthogonalized columns and this operation is repeated 

for 2,...,k M .  



 50 

The computational procedure can be represented as 

1 1

1

1

/( ), 1 , 2,...,T T

ik i k i i

k

k k ik i

i

w g

q w g w w i k k M

w g q w






     

  

 
(3.20) 

An error ration due to 
jw is defined as 

2[ ] /( )T T

j j j jerr w w h h  (3.21) 

This ratio offers a simple and effective means of significant center selection in a 

forward-regression manner. This procedure can be summarized as follows: 

The first selected center point; 

For  1 i N   

( )

1

i

iw g  

( ) ( ) 2 ( )

1 1 1 1[ ] (( ) ) /((( ) )( ))i i T i T i Terr w h w w h h  

end for 

Find 1( ) ( )

1 1[ ] max[ ] , 1i ierr err i N    

At the kth step, where 2,k   

For  1 11 , ( ,..., )ki N i i i i      

For 1 j k   

( ) /( )i T T

jk j i j jq w g w w  
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1
( ) ( )

1

k
i i

k i jk j

j

w g q w




   

             end for 

( ) ( ) 2 ( )[ ] (( ) ) /((( ) )( ))i i T i T i T

k k k kerr w h w w h h  

Find 
( ) ( )

1 1[ ] max[ ] , 1 , ,...,ki i

k k kerr err i N i i i i       

Select 

1

1

k k

k
i i

k k ik jk j

j

w w g q w




    

The process is stopped at the Mth step when the error ration satisfies  

1

1 [ ]
M

j

j

err 


   (3.22) 

where 0 < ρ < 1 is a user defined tolerance. 
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

 

 

In this section we report the results of some computational tests of the algorithm. The 

aim is to investigate the performance of the described method on test functions when 

utilizing different direct search methods and stochastic approximation methods. The 

numerical results from performed tests are presented as number of function 

evaluations and number of obtained points. Three test problems studied have been 

described in next section.  

For the experiments, MATLAB environment has been preferred and all mentioned 

algorithms have been implemented in MATLAB (Version 6.5, Release 13). 

4.1. DESCRIPTION OF TEST PROBLEMS 

Rosenbrock functions with three and four dimensional variants, previously prepared 

offline four dimensional data set of simulation results of a special military scenario, 

generated with a special super computer provided by TÜBİTAK-İLTAREN 

Research Group and a stock exchange strategy data recorded for specific time period 

are the three selected test problems. 

Rosenbrock function is a non-convex function generally used in testing the 

developed optimization algorithms. Rosenbrock function is also known as 
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Rosenbrock’s valley or Rosenbrock’s banana function. Two variants of the 

Rosenbrock function for multi dimensional applications are given in Equations 4.1 

and 4.2 respectively. 

/ 2
2 2

1 2 2 1 2 2 1

1

( , , ... ) [100( ) ( 1) ]
N

N i i i

i

f x x x x x x 



     (4.1) 

A more involved variant is; 

1
2 2 2

1

1

( ) [ (1 ) 100( ) ] ,
N

N

i i i

i

f x x x x x R






       (4.2) 

  

 

Figure 4.1: Three and four dimensional plots of the Rosenbrock function 
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In Figure 4.1, three and four dimensional plots of the Rosenbrock functions are 

shown. The design parameters are regularly sampled in the interval [-4, 4]. Four 

dimensional Rosenbrock function is plotted for the isovalues between 500 and 1000. 

Another test environment is the offline generated four dimensional data set, 

generated by simulation trials of a special military scenario including a guided 

missile, sea platform and flare.  

In those scenarios, sea platform tries to guarantee an acceptable miss distance value 

against a guided missile coming towards itself. For that reason, maneuvering with 

different heading rates and using a flare with different release and ignition times are 

the applicable ways for increasing the surviving chance of the sea platform. 

Simulations of that scenario for different values of design parameters and resulting 

miss distance values are recorded to generate an offline data set. 

 

Figure 4.2: A military scenario example 

Heading rate of the sea platform, flare release time and flare ignition times are 

selected as design parameters for miss distance value. All design parameter values 
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are changed in the interval [0, 6] with the step size of 0.2. So the offline data set 

includes 29791 simulation results.  

Simulation trials are executed on a special super-computer with 8 Dual Core AMD 

Opteron Processor 880 at 2.40 GHz and 15.5 GB of RAM, which is provided by 

TÜBİTAK-İLTAREN Research Group and each simulation trial in that super-

computer takes 0.5 sec. on the average. Four dimensional plot of that data set is 

shown in Figure 4.3 for isovalues (miss distances) 200, 220, 240, 260, 280 and 300. 

 

Figure 4.3 Simulation trials plot of offline data set for different isovalues. 



 56 

The last test problem is the four dimensional data of trading strategy originated from 

EURUSD parity which is recorded for a specific time period. Three design 

parameters are the band period, deviation and take profit. The response parameter is 

the total profit. For a determined band period and deviation from the parity, trading 

strategy proposes a sell or buy decision considering the third parameter take profit. 

 Figure 4.4 shows response parameter, total profit for values of 1000, 750, and 500 

respectively symbolized with colors red, green and yellow. 

 

Figure 4.4: Plot of three values, 1000, 750 and 500 for total profit 

Isosurfaces for different constraint values are used for the representation of the 

results of these four dimensional problems. MATLAB is selected as the main tool for 

the development process of the algorithms. 
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4.2. NUMERICAL RESULTS 

Applications of the algorithms to test problems defined in the previous section is 

realized. Obtained results are presented separately for each test problem. 

4.2.1. OFFLINE DATA SET OF İLTAREN 

The application results of convex hull based and covariance analysis based search 

direction estimation algorithms to the four dimensional offline data set provided by 

TÜBİTAK-İLTAREN with two different direct search algorithms, Nelder-Mead 

simplex method and Hooke-Jeeves pattern search method are reported in this section. 

Required number of function evaluations and number of sample points obtained 

during the execution of the algorithms are given. Selected stopping criterion of the 

algorithm is obtaining a considerable improvement for the response parameter. 

For the application of covariance analysis based direction estimation algorithm, four 

dimensional original data set of İLTAREN first passes from some preprocessing 

steps to obtain three dimensional cross sections for some specific values of the 

design parameter, heading rate. This preprocessing step is required because of the 

restriction that the direction estimation algorithm works only for three or smaller 

dimensional problems. 

Results for the application of simultaneous perturbation stochastic approximation and 

finite difference stochastic approximation algorithms based gradient estimates to 

obtain a point satisfying constraints are also reported as required number of function 

evaluations and number of iterations needed for three and four dimensional problems 

of İLTAREN data set separately.  

Application of the algorithm with Nelder-Mead and Hooke-Jeeves direct search 

algorithms are shown in Figure 4.5 and Figure 4.6, respectively. Search direction 

estimation algorithm is convex hull based. 
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Figure 4.5: Application of the algorithm to four dimensional İLTAREN data with Nelder-Mead 

simplex algorithm and convex hull based search direction estimation. 

In Figure 4.5 and Figure 4.6, first three plots show the isovalues (miss distance) 200, 

250 and 300. These three plots are shown together in the last. Samples from the three 

constrained surfaces are yellow points with red edges. Blue points with yellow edges 

are the evaluation points required for searching local optima. Starting location for 

two of the applications is [3.8, 4, 1]. (Heading rate, ignition time and release time) 

Algorithm stops if the response parameter (miss distance) takes the value 350.  
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Figure 4.6: Application of the algorithm to four dimensional İLTAREN data with Hooke-Jeeves 

pattern search algorithm and convex hull based search direction estimation. 

Table 4-1 : Results of four dimensional İLTAREN data for two direct search methods 

Direct Search 

Method 

Number of Iterations 

Required 

Number of 

Points Obtained 

Nelder-Mead 512 97 

Hooke-Jeeves 888 118 
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Application of the algorithm with Nelder-Mead and Hooke-Jeeves direct search 

algorithms are shown in Figure 4.7 and Figure 4.8, respectively. But this time search 

direction estimation is covariance analysis based. So four dimensional original data 

set is considered for three dimensional cross section surfaces for some specific 

values of heading rate design parameter. 

 

Figure 4.7: Application of the algorithm to three dimensional İLTAREN data with Nelder-Mead 

simplex algorithm and covariance analysis based search direction estimation 

In Figure 4.7 and Figure 4.8, yellow points with red edges show the samples from 

constrained surfaces. Black points are evaluations for seeking local optima. 

Algorithm stops if response parameter miss distance gets the value of 280 or higher.  
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Figure 4.8: Application of the algorithm to three dimensional İLTAREN data with Hooke-

Jeeves pattern search algorithm and covariance analysis based search direction 

estimation 

Table 4-2 : Results of three dimensional İLTAREN data for two direct search methods 

Direct Search 

Method 

Number of Iterations 

Required 

Number of 

Points Obtained 

Nelder-Mead 826 388 

Hooke-Jeeves 2477 394 

 

Nelder-Mead simplex method requires less number of function evaluations when 

compared with Hooke-Jeeves pattern search method for three and four dimensional 
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İltaren data application. Furthermore, obtained number of points is nearly the same. 

It is obvious that, Nelder-Mead simplex method as a direct search algorithm is more 

favourable for that application. 

 

Figure 4.9: FDSA and SPSA algorithms for three dimensional İLTAREN data.  

Simultaneous perturbation and finite difference based gradient estimates are utilized 

to obtain a point satisfying the constraints, starting from an initial arbitrary location. 

The application results of these algorithms to three and four dimensional data of 

İLTAREN are also presented in this section. 

Table 4-3 : Results of FDSA and SPSA methods for three dimensional İLTAREN data  

Gradient Estimate 

Method 

Average No of 

Evaluations  

Average No 

of Points 

Number of 

Executions 

FDSA 224 56 20 

SPSA 72 38 20 

 

In Figure 4.9, an example of execution of the SPSA and FDSA algorithms is shown 

for three dimensional İLTAREN data. Two of the algorithms start from the same 

initial point and executed 20 times. Average number of points required for 
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convergence and number of function evaluations needed are given in Table 4-3. 

FDSA algorithm requires four evaluations for gradient estimate, however SPSA 

requires only two.  

As it is seen from the application results given in Table 4-3 and Table 4-4, using 

SPSA algorithm for three and four dimensional İltaren data applications is more 

efficient with respect to the FDSA algorithm. The search pattern for FDSA looks 

more consistent with respect to SPSA, however both of the algorithms converge 

nearly to the same point.  

 

 

Figure 4.10: FDSA and SPSA algorithms for four dimensional İLTAREN data  

Table 4-4 : Results of FDSA and SPSA methods for four dimensional İLTAREN data 

Gradient Estimate 

Method 
Number of Iterations  Number of Points 

FDSA 600 100 

SPSA 201 100 

 

In Figure 4.10 an example of execution of the SPSA and FDSA algorithms is shown 

for four dimensional İLTAREN data. Both of the algorithms start from the same 
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initial point. Number of points required for convergence and number of function 

evaluations needed are given in Table 4-4. 

4.2.2. ROSENBROCK FUNCTION 

Rosenbrock function is generally used to test the performance of optimization 

algorithms. Three and four dimensional Rosenbrock function application results with 

two direct search algorithms Nelder-Mead simplex method, Hooke-Jeeves pattern 

search method and two search direction estimation algorithms, which are covariance 

analysis based and convex hull analysis based are reported in this part. Required 

number of function evaluations and number of sample points obtained during the 

execution of the algorithms are given. Selected stopping criterion of the algorithm is 

getting considerable improvement for the response parameter.  

 

 

Figure 4.11: FDSA and SPSA algorithms for three dimensional Rosenbrock function 

Table 4-5 : Results of FDSA and SPSA methods for three dimensional Rosenbrock function  

Gradient Estimate 

Method 

Average No of 

Evaluations  

Average No 

of Points 

Number of 

Executions 

FDSA 56 14 20 

SPSA 32 16 20 
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Results for the application of simultaneous perturbation stochastic approximation and 

finite difference stochastic approximation algorithms based gradient estimates to 

obtain a point satisfying constraints are also reported. 

In Figure 4.11, an example of execution of the SPSA and FDSA algorithms is shown 

for the three dimensional Rosenbrock function. Two of the algorithms start from the 

same initial point and are executed 20 times. Average number of points required for 

convergence and number of function evaluations needed are given in Table 4-5.  

 

Figure 4.12: FDSA and SPSA algorithms for four dimensional Rosenbrock function 

Table 4-6 : Results of FDSA and SPSA methods for four dimensional Rosenbrock function 

Gradient Estimate 

Method 
Number of Iterations  Number of Points 

FDSA 402 67 

SPSA 109 54 

 

In Figure 4.12, an example of execution of the SPSA and FDSA algorithms is shown 

for four dimensional Rosenbrock function. Two of the algorithms start from the same 

initial point. Number of points required for convergence and number of function 

evaluations needed are given in Table 4-6.  
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SPSA algorithm for both three and four dimensional Rosenbrock function 

applications is more preferable as it is seen from the results given in Table 4-5 and 

Table 4-6. As the dimension of the problem increases, using FDSA algorithm for 

gradient estimation becomes more inefficient.  

Application of the algorithm with Nelder-Mead and Hooke-Jeeves direct search 

methods are shown in Figure 4.13 and Figure 4.14, respectively. Covariance analysis 

based sampling strategy is utilized.  

 

Figure 4.13: Application of the algorithm to three dimensional Rosenbrock function with 

Nelder-Mead simplex algorithm and covariance analysis based direction estimation 
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In Figure 4.13 and Figure 4.14, yellow points with red edges show the samples from 

constrained surfaces. Green points are evaluations for seeking local optima. 

Algorithm stops if response parameter gets the value of 750 or higher. 

 

 

Figure 4.14: Application of the algorithm to three dimensional Rosenbrock function with 

Hooke-Jeeves pattern search algorithm and covariance analysis based search 

direction estimation 

Table 4-7 : Results of three dimensional Rosenbrock function for two direct search methods 

Direct Search 

Method 

Number of Iterations 

Required 

Number of 

Points Obtained 

Nelder-Mead 689 248 

Hooke-Jeeves 903 247 



 68 

 

Figure 4.15: Application of the algorithm to four dimensional Rosenbrock function with Nelder-

Mead simplex algorithm and convex hull based search direction estimation. 

Table 4-8 : Results of four dimensional Rosenbrock function for two direct search methods 

Direct Search 

Method 

Number of Iterations 

Required 

Number of 

Points Obtained 

Nelder-Mead 1847 305 

Hooke-Jeeves 2388 250 

 

 

In Figure 4.15 and Figure 4.16, first three plots are for the isovalues 500, 1000 and 

1500. These three plots are plotted together in the last. Samples from the three 

constrained surfaces are yellow points with red edges and black points are evaluation 
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points required for searching local optima. Start location for two of the applications 

is same. Algorithm stops if response parameter takes the value of 1800.  

 

 

Figure 4.16: Application of the algorithm to four dimensional Rosenbrock function with Hooke-

Jeeves pattern search algorithm and convex hull based search direction estimation. 

As it is seen from the results given in Table 4.7 and 4.8, Nelder-Mead simplex 

method is more efficient according to the Hooke-Jeeves pattern search algorithm as a 

direct search method. The number of points obtained is close for two of the 

algorithms but Hooke-Jeeves algorithm requires more number of function 

evaluations.  
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4.2.3. STOCK EXCHANGE DATA 

In Figure 4.17 an example of execution of the SPSA and FDSA algorithms is shown 

for four dimensional stock exchange data. Two of the algorithms start from the same 

initial point. Number of points required for convergence and number of function 

evaluations needed are given in Table 4-9.  

 

Figure 4.17: FDSA and SPSA algorithms for four dimensional stock exchange data 

Table 4-9 shows the results obtained for four dimensional stock exchange data. The 

number of points obtained is nearly the same for FDSA and SPSA but the number of 

required function evaluations is approximately three times higher for FDSA. 

Table 4-9 : Results of FDSA and SPSA methods for four dimensional stock exchange data 

Gradient Estimate 

Method 
Number of Iterations  Number of Points 

FDSA 48 8 

SPSA 19 9 
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Figure 4.18:  Application of the algorithm to four dimensional stock exchange data with Nelder-

Mead simplex algorithm and convex hull based search direction estimation. 

Table 4-10 : Results of four dimensional stock exchange data for two direct search methods 

Direct Search 

Method 

Number of Iterations 

Required 

Number of 

Points Obtained 

Nelder-Mead 1958 362 

Hooke-Jeeves 4204 920 

 

In Figure 4.18 and Figure 4.19, first three plots are plotted for the isovalues 500, 525 

and 550. These three plots are plotted together in the last. Samples from the three 

constrained surfaces are yellow points with red edges and black points are evaluation 
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points required for searching local optima. Starting location for two of the 

applications is same. Algorithm stops if response parameter takes the value 600.  

Selecting Nelder-Mead simplex algorithm as a direct search method for stock 

exchange data is more advantageous with respect to Hooke-Jeeves simplex search 

method from the results given in Table 4-10. Two of the algorithms converge to local 

optima but Nelder-Mead method requires smaller number of function evaluations. 

 

 

Figure 4.19: Application of the algorithm to four dimensional stock exchange data with Hooke-

Jeeves pattern search algorithm and convex hull based search direction estimation. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

5.1. CONCLUSIONS 

For the approach investigated in this study, we have in mind problems where the 

only information available is the possibility to evaluate the computational or 

simulation model, and each evaluation is computationally expensive and no other 

additional information is available. Moreover, the problem can be extended with 

some costly or non-costly constraints. The problem of finding an optimum setting for 

possibly large number of design variables requiring minimum number of evaluations 

is considered in this study. 

These types of problems are common in black-box design optimization. Classical 

optimization methods, based on derivatives, are not applicable because the derivative 

information is not available or will be quite costly to approximate. The aim is to 

require as few function evaluations as possible to obtain convergence to a local 

minimizer or maximizer subject to given constraints. 
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The algorithm that is presented in this study is based on direct search methods and 

stochastic approximation algorithms available in the literature. Penalty and barrier 

methods have also been utilized to handle costly constraints in the problem. 

In this context, stochastic approximation algorithms, simultaneous perturbations and 

finite differences, have been examined for the evaluation of the cost function. These 

methods utilize the approximation of the derivative. Some derivative free, direct 

search algorithms are also examined. These are Nelder-Mead simplex algorithm and 

Hooke-Jeeves pattern search algorithm. 

Represention of a local approximate surface model, which is both inexpensive and 

accurate, is also one of the objectives of this study. That approximate model captures 

the relationship between input and output. Such an approximation function is called a 

response surface model (also known as metamodels, or surrogate models). The 

response surface model is an interpolation based Radial Basis Functions (RBFs). 

Radial basis functions as interpolants are preferred since their interpolation 

properties are very suitable. Specifically, it is trivial to construct local interpolations 

using RBF. The Orthogonal Least Squares (OLS) algorithm is a greedy algorithm 

which chooses the suitable centers for radial basis functions systematically 

considering the individual contribution to error reduction. 

Consequently, this study presents an iterative optimization methodology utilizing 

direct search methods and stochastic approximation algorithms for solving 

optimization problems with expensive-to-evaluate cost functions and/or constraints. 

Applications of this algorithm to three test problems are presented and some 

numerical results have been obtained. Rosenbrock function, a real problem provided 

by TÜBİTAK-İLTAREN and data set of stock exchange strategy are the selected test 

problems for the algorithm.  
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5.2. FUTURE WORK 

Although the algorithms used for sampling the constrained surfaces have promising 

results, some extensions may be necessary to improve the performance of the 

sampling.   

Convex hull based sampling algorithm works efficiently for convex regions of the 

surface to be sampled, however it is observed that sampling density for non-convex 

regions of the surface may not be satisfactory for some applications. Detecting these 

regions and executing the algorithm again for these parts to increase sampling 

density is left as a future work. 

The covariance analysis based sampling algorithm performs more satisfactory results 

if the smoothness of the surface to be sampled is high. The application of that 

algorithm to relatively non-smooth surfaces may require some modifications. Sharp 

edges have to be detected and direction at these regions has to be calculated 

rigorously. A new direction estimation method may be developed to execute at sharp 

edges. 
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APPENDIX A 

GRAM SCHMIDT ALGORITHM 

In mathematics, particularly in linear algebra and numerical analysis, the Gram–

Schmidt process is a method for orthonormalizing a set of vectors in an inner product 

space, most commonly the Euclidean space 
nR . The Gram–Schmidt process takes a 

finite, linearly independent set 1 2{ , ,..., } kS v v v for k ≤ n and generates an 

orthogonal set 1 2' { , ,..., } kS u u u that spans the same k-dimensional subspace of 

nR  as S . 

We define the projection operator by: 

                           2

,
( )

,
  u

u v
proj v u u

u u
                                      (A.1) 

where ,u v denotes the inner product of the vectors u and v. This operator projects 

the vector v orthogonally onto the vector u. The Gram–Schmidt process then works 

as follows: 

Step1: Let 1 1u v  

Step2: 
12 2 2( )  uu v proj v   
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Step3: 
1 23 3 3 3( ) ( )  u uu v proj v proj v  

Step4: 
1 2 34 4 4 4 4( ) ( ) ( )   u u uu v proj v proj v proj v  

 

Stepk: 

1

1

( )




  j

k

k k u k

j

u v proj v  

The resulting orthogonal set 1 2{ , ,..., }ku u u  forms an orthogonal basis. The material 

of this part is primarily based on [40]. 
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APPENDIX B 

PENALTY METHODS 

Penalty functions have been a part of the literature on constrained optimization for 

decades [39]. In general, a penalty function approach is as follows: given an 

optimization problem, 

1

2

min ( )

. . ( ) 0

( ) 0

( ) 0p

f

s t g

g

g

















                (B.1) 

where : , : , 1,...,n n

if R R g R R i p   . Considering only inequality constraints 

is not restrictive, because an equality constraint of the form ( ) 0h   is equivalent to 

two inequality constraints 0)(,0)(   handh . We now discuss a method 

for solving the above constrained optimization problem using techniques from 

unconstrained optimization. Specifically, we approximate the constrained 

optimization problem above by an unconstrained optimization problem 

                                               min ( ) ( )f P                                           (B.2) 
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where R  is a positive constant, and : nP R R  is a given function. 

We then solve the associated unconstrained optimization problem, and use the 

solution as an approximation to the minimizer of the original problem. The constant 

  is called the penalty parameter, and the function P is called the penalty function. 

Formally, a function : nP R R is called a penalty function for the above 

constrained optimization problem if it satisfies the following three conditions; 

 P is continuous; 

 ( ) 0P    for all nR  ; 

 ( ) 0P    iff    is feasible, that is, 1( ) 0,..., ( ) 0pg g   . 

Clearly, for the above unconstrained problem to be a good approximation to the 

original problem, the penalty function P must be appropriately chosen. The role of 

the penalty function is to "penalize" points that are outside the feasible set. Therefore, 

it is natural that the penalty function be defined in terms of the constraint functions 

1,..., pg g . A possible choice for P  is 

                                                            
1

( ) ( )
p

i

i

P g 



                                         (B.3) 

where 

                                 
0 ( ) 0

( ) max(0, ( ))
( ) ( ) 0

i

i i

i i

if g
g g

g if g


 

 


 
   

 
                  (B.4) 

The penalty function method for solving constrained optimization problems involves 

constructing and solving an associated unconstrained optimization problem, and 

using the solution to the unconstrained problem as the solution to the original 

constrained problem. Of course, the solution to the unconstrained problem (the 

approximated solution) may not be exactly equal to the solution to the constrained 

problem (the true solution). Whether or not the solution to the unconstrained problem 
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is a good approximation to the true solution depends on the penalty parameter   and 

the penalty function P. We would expect that larger the value of the penalty 

parameter  , the closer the approximated solution will be to the true solution, 

because points that violate the constraints are penalized more heavily. Ideally, in the 

limit as  , the penalty method should yield the true solution to the constrained 

problem. The material of this part is based on the references; [33], [37], [39]. 

 

 

 


