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ABSTRACT

SOLUTION OF INVERSE PROBLEM OF ELECTROCARDIOGRAPHY USING
STATE SPACE MODELS

Aydın, Ümit

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Yeşim Serinağaoğlu Doğrusöz

September 2009, 108 pages

Heart is a vital organ that pumps blood to whole body. Synchronous contraction of the

heart muscles assures that the required blood flow is supplied to organs. But some-

times the synchrony between those muscles is distorted, which results in reduced

cardiac output that might lead to severe diseases, and even death. The most com-

mon of heart diseases are myocardial infarction and arrhythmias. The contraction of

heart muscles is controlled by the electrical activity of the heart, therefore determina-

tion of that electrical activity could give us the information regarding the severeness

and type of the disease. In order to diagnose heart diseases, classical 12 lead elec-

trocardiogram (ECG) is the standard clinical tool. Although many cardiac diseases

could be diagnosed with the 12 lead ECG, measurements from sparse electrode lo-

cations limit the interpretations. The main objective of this thesis is to determine

the cardiac electrical activity from dense body surface measurements. This problem

is called the inverse problem of electrocardiography. The high resolution maps of

epicardial potentials could supply the physician the information that could not be ob-

tained with any other method. But the calculation of those epicardial potentials are
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not easy; the problem is severely ill-posed due to the discretization and attenuation

within the thorax. To overcome this ill-posedness, the solution should be constrained

using prior information on the epicardial potential distributions. In this thesis, spatial

and spatio-temporal Bayesian maximum a posteriori estimation (MAP), Tikhonov

regularization and Kalman filter and Kalman smoother approaches are used to over-

come the ill-posedness that is associated with the inverse problem of ECG. As part

of the Kalman filter approach, the state transition matrix (STM) that determines the

evolution of epicardial potentials over time is also estimated, both from the true epi-

cardial potentials and previous estimates of the epicardial potentials. An activation

time based approach was developed to overcome the computational complexity of

the STM estimation problem. Another objective of this thesis is to study the effects

of geometric errors to the solutions, and modify the inverse solution algorithms to

minimize these effects. Geometric errors are simulated by changing the size and the

location of the heart in the mathematical torso model. These errors are modeled as

additive Gaussian noise in the inverse problem formulation. Residual-based and ex-

pectation maximization methods are implemented to estimate the measurement and

process noise variances, as well as the geometric noise.

Keywords: Inverse electrocardiography, Spatio-temporal methods, Kalman filter, Noise

estimation, Geometric errors
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ÖZ

ELEKTROKARDİYOGRAFİDE GERİ PROBLEMİN DURUM UZAYI
MODELLERİ KULLANILARAK ÇÖZÜMÜ

Aydın, Ümit

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Yeşim Serinağaoğlu Doğrusöz

Eylül 2009, 108 sayfa

Kalp bütün vücuda kan pompalayan hayati bir organdır. Kalp kaslarındaki senkron

kasılma ve gevşemeler organlara gerekli kan akışının gerçekleşmesini sağlamaktadır.

Fakat bazen bu kaslar arasındaki senkronizasyon bozulmakta ve düşen kalp debisi

ölüme kadar gidebilen hastalıklara sebep olabilmektedir. Bu hastalıklardan en çok

karşılaşılanlar enfarktüs ve aritmidir. Kalp kaslarındaki kasılmalar elektrik sinyalleri

ile kontrol edilmektedir, bu sebeple kalbin elektriksel aktivitesi hakkında bilgi edin-

mek bize hastalıkların cinsi ve ciddiyeti hakkında da çok önemli bilgiler vermektedir.

Günümüzde kalp hastalıklarının teçhisinde kullanılan standart klinik yöntem klasik

12 kanallı elektrokardiyografidir (EKG). Bu yöntem birçok hastalığın teşhisinde kul-

lanılsa da vücut yüzeyinden alınan ölçümlerin seyrekliği çıkarımları sınırlamaktadır.

Bu tezde başlıca amaç kalpteki elektriksel aktiviteyi vücut yüzeyinden sık bir çekilde

alınan ölçümlerden bulmaktır ve bu ters elektrokardiyografi problemi olarak tanımlan-

maktadır. Elde edilen yüksek çözünürlüklü epikart potansiyel haritaları ise dok-

tora baçka hiçbir girişimsiz yöntemle elde edilemeyecek bilgiler verir. Fakat epikart

potansiyellerini hesaplamak kolay değildir çünkü, ters EKG problemi göğüs kafesinde
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sinyallerin uğradığı ayrıklaşma ve zayıflama sebebiyle kötü konumlanmıştır. Bu

problemin üstesinden gelebilmek amacıyla, epikart potansiyel dağılımları ile ilgili

önsel bilgiler kullanılarak çözüme bazı kısıtlamalar getirilir. Bu tezde uzamsal ve

zaman-uzamsal Bayes en büyük sonsal kestrim (MAP), Tikhonov düzenlileştirmesi

ile Kalman filtre ve yumuşatıcı bu kötü konumlandırılmış problemi çözme amaçlı

kullanılmıştır. Kalman filtre yaklaşımının bir uzantısı olarak epikart potansiyellerinin

zamana bağlı değişimini modelleyen durum geçiş matrisi (DGM) hem gerçek epikart

potansiyellerinden hem de başka yöntemlerle kestirilen epikart potansiyellerinden

elde edilmiştir. Bu tezin başka bir hedefi ise geometrik hataların çözümlere etki-

lerini incelemek ve ters çözüm algoritmalarını bu etkileri minimize edecek şekilde

modifiye etmektir. Bu kapsamda geometrik hatalar kalbin boyut ve pozisyonunun

matematiksel modelde değiştirilmesi ile elde edilmiştir. Bu hatalar ters problem

formülasyonunda eklenir Gaussian gürültü olarak modellenmişlerdir. Daha sonra

ise durum ve ölçüm gürültü varyansları ile geometrik hatadan kaynaklanan gürültü

varyansı, artıklardan yararlanan algoritma ve beklenti ençoklaması kullanılarak kes-

tirilmeye çalışılmıştır.

Anahtar Kelimeler: Geri elektrokardiyografi, Uzamsal-zamansal yöntemler, Kalman

filtre, Gürültü kestirimi, Geometrik hata
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Thesis

Heart failure affects approximately 15 million people worldwide and since 1968, the

role of heart failure as the primary cause of death has increased fourfold [1]. Only in

European Union over 1.9 million deaths annually are due to cardiac diseases. Ar-

rhythmias are among the major causes of heart failure. In order to diagnose ar-

rhythmias, knowledge about the electrical activity within the heart is vital. Classi-

cal 12-lead electrocardiogram (ECG) is the standard diagnostic tool to measure the

electrical activity of the heart. However, although physicians could diagnose certain

pathologies with the 12-lead ECG, this technique’s low resolution limits its benefits

significantly; for example, precise localization of pathologies like myocardial infarcts

and arrhythmogenic foci is not possible with the 12-lead ECG [2]. Furthermore, the

12-lead ECG could only diagnose %60 of acute inferior myocardial infarctions [3].

The 12-lead ECG also suffers from the effects of inhomogeneity within the thorax,

and Brody and respiration effects, which cause wrong interpretations [4]. For clinical

purposes, catheters are used to obtain details about the heart’s electrical activity [5].

High resolution images are obtained with these catheters; however, the invasive na-

ture of this technique restricts its usage. There are also other non-invasive techniques

to monitor cardiac behavior such as cardiac CT, nuclear imaging, stress electrocardio-

graphy and echocardiography. Inverse problem of ECG, which is a method to provide

high resolution images of the heart’s electrical activity, could support the diagnosis

made based on the 12-lead ECG. In the inverse ECG problem high resolution cardiac

electrical activity is estimated noninvasively from dense body surface potential mea-
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surements (usually minimum 64 electrodes). Some advantages of using this type of

electrocardiographic imaging are [6]:

• To screen people that have higher risks for arrhythmias.

• To find the source of patient specific arrhythmia mechanism to determine the

best cure.

• To determine the optimal location and size of the diseased tissue for ablation

and targeted drug delivery.

• To assess the success of the therapy over time.

• To further study the mechanism and properties of arrhythmias.

Due to above cited reasons and benefits, the studies on electrocardiographic imaging

continues faster than ever before. The main motivation of this thesis is to make a

contribution to those efforts.

1.2 Contributions of the Thesis

• The performances of spatio-temporal methods for the solution of inverse prob-

lem of electrocardiography are compared.

• New techniques to determine the state transition matrix (STM), which tempo-

rally maps the epicardial potentials with each other, are employed to solve the

inverse problem of ECG using the Kalman filter and smoother. Those tech-

niques include reduction of the problem size for faster computation using an

activation time based approach and the calculation of the STM from previ-

ous estimates such as Bayesian maximum a posteriori estimation (MAP) and

Tikhonov regularization instead of from real epicardial potentials.

• The effects of geometric errors to Bayesian MAP and Kalman filter solutions

are studied.

• A statistical noise model that also includes the effects of geometric errors is

modified to be used in the inverse problem of ECG.
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• A residual based method and a method based on expectation- maximization

(EM) algorithm are used to estimate the noise covariances needed in the Bayesian

MAP estimation and the Kalman filter algorithms. The two proposed noise es-

timation methods are used to estimate the measurement and process noise co-

variances in the Kalman filter approach, with or without additional geometric

noise.

1.3 Scope of the Thesis

In this thesis the second chapter is devoted to the background information. In this

chapter, first anatomy and physiology of the heart is given. Then most common

cardiac diseases are explained with a stress on arrhythmias. Next, the forward and

inverse problems of ECG are defined along with a literature survey on these topics.

Finally, the chapter is concluded with a short section on validation of the inverse ECG

problem solutions and studies on human subjects.

The third chapter contains problem definition, theory and methods of the inverse

problem of ECG in terms of epicardial potentials. In this chapter after the problem

definition is given, the second part includes a detailed explanation of Tikhonov reg-

ularization, spatial and spatio-temporal Bayesian MAP estimation, Kalman filter and

smoother and the estimation of STM. Then a statistical model used to overcome the

effects of the geometric errors is explained. The final part of this chapter is devoted

to the noise estimation algorithms.

In the fourth chapter, the application details of the algorithms given in theory section

are provided, along with the results and the discussions of those results.

At the last chapter, conclusions of this study are given.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 Introduction

In this chapter first anatomy and physiology of the heart is explained shortly. Then a

brief information is given about main cardiac diseases with the focus on arrhythmias.

Then recent progresses on the forward and inverse problem of electrocardiography

is given. The forward problem of ECG targets the determination of body surface

potentials from cardiac electrical activity, and the inverse problem of electrocardiog-

raphy, which is the main topic of this thesis, is defined as the determination of cardiac

electrical activity from body surface potentials.

2.2 Anatomy of the Heart

The human heart is located in the middle mediastinum of the thorax and weights

around 250-300 g. It is a muscular organ that is enclosed with the pericardium. There

is a small region between the fibrous sac pericardium and the heart which is filled with

a fluid and this fluid serves as a lubricant agent for heart that helps avoiding problems

that could occur during movement due to contractions [7]. If we omit pericardium,

heart is composed of three layers as seen in Figure 2.1. Those layers are:

• Epicardium: This is the outer layer of the heart and surrounded by peri-

cardium. The potentials on epicardium (epicardial potentials) are widely used

as cardiac sources in inverse and forward problems of electrocardiography.
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• Myocardium: This layer is in between epicardium and endocardium. This is

the thickest layer and it contains the myocytes (striated muscle cells) whose

synchronous contraction and relaxation results in pumping of the blood. The

main objective in electrocardiographic imaging is the determination of the ac-

tivity within this region. The solutions in terms of epicardial or endocardial

potentials are obtained due to their close location to myocardium.

• Endocardium: This is the inner layer of the heart and it has a smooth surface to

allow blood flow with minimum resistance. The endocardial potentials which

can be recorded with catheters are also used as cardiac sources for electrocar-

diographic imaging.

The heart has four chambers as seen in Figure 2.2. The upper ones are the right and

left atrium which are responsible for collecting blood from vessels. The lower ones

are called right and left ventricle. The right ventricle pumps the blood to lungs and the

left ventricle pumps the blood to body. Because pumping the blood to body requires

more pressure than pumping it to lungs the left ventricle has a thicker myocardial

layer.

2.3 Physiology of the Heart

Heart is an organ that receives the low pressure blood from venous blood vessels and

then ejects it to arterial blood vessels after increasing its pressure. By this way the

nutrients and oxygen needed is supplied to every living cell in human body via blood.

2.3.1 Cardiac Conduction System

For a normal heart, the excitation starts at the sinoatrial (SA) node then spreads to

the atrioventricular (AV) node thorough myocytes at atrium. The only conductive

region between atria and ventricles is the AV node so the depolarization wavefront

spreads through AV node to ventricles. AV node decreases the conduction velocity

and the wavefront spreads through bundle of His to right and left bundle branches
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Figure 2.1: Layers of the heart [8]

where the velocity of conduction is increased again. Then the conduction velocity

becomes even higher from the bundle branches, at purkinje fibers and the wavefront

is transmitted to the ventricular myocytes to complete conduction path [9]. The con-

duction velocities of those regions are shown in Figure 2.5. The delay at AV node

has two main advantages. Firstly, it provides sufficient time for atrial contraction and

depolarization before ventricular contraction and depolarization occur. Secondly, it

limits the frequency and prevent the ventricles from the affects of the atrial flutter and

fibrillation [9]. This is very important because although atrial flutter and fibrillation

are not very fatal, ventricular fibrillation cause death in just a few minutes [10].

Although cardiac excitation starts from the SA node for a normal heart AV node,

bundle of His, bundle branches and purkinje fibers also have the self-excitation ability.

This property of cardiac tissues prevent fatal consequences that might occur when a

problem occur at the SA node. The self-excitation frequencies of those tissues are

smaller than the SA node and when an excitation with a higher frequency received

they follow it. The self-excitation frequencies for cardiac tissues are also shown at

Figure 2.5.
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Figure 2.2: Anatomy of the heart. RA, right atrium; LA, left atrium; RV, right ven-
tricle; LV, left ventricle; SVC, superior vena cava; IVC, inferior vena cava; PA, pul-
monary artery; PV, pulmonary veins [9].
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2.3.2 Cardiac Action Potential

Although the action potential wavefront changes for different tissues as seen in Figure

2.3, the generation of the typical cardiac action potential after the stimulus can be

explained with steps below:

1. The quick Na+ channels are opened which causes sodium to flow inward thus

increasing the membrane potential through positive. Then depolarization occur

around +20 mV.

2. Slower K+ channels are opened and the outward flow of K+ stops the rising

potential due to Na+.

3. Na+ channels start closing while K+ channels are still open.

4. Slow Ca++ channels are opened and stay opened for approximately 20 millisec-

ond which causes the plateau in membrane potential potential due to the inward

Ca++ flow.

5. Ca++ channels are closed and repolarization occur with membrane voltage around

-90 mV.

The shape of cardiac action potential differs from the action potential of other ex-

citable tissues in the body. The difference is the plateau present after depolarization

in cardiac action potential. The main reason for this plateau is the 4’th step explained

above so Ca++ channels. This plateau does not occur in other excitable cells because

they do not have Ca++ channels [7]. A typical action potential for a ventricular muscle

cell and the ion permeabilities are shown in Figure 2.4.

2.3.3 Electrocardiography

In electrocardiography (ECG) the summation of cardiac action potentials are mea-

sured. In Figure 2.6 a classical ECG measurement is shown. In this figure [4];

• P represents the atrial depolarization
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Figure 2.3: The action potential waveforms for different cardiac tissues [11].

• QRS interval represents the ventricular depolarization (also atrial repolarization

occur at this interval but it is surpassed by ventricular depolarization)

• T represents the ventricular repolarization

2.4 Cardiac Diseases

At this section only some of the cardiac diseases will be explained. The focus will be

on diseases that can be diagnosed with inverse electrocardiography.

2.4.1 Myocardial Infarction

Myocardial infarction is one of the major health problems and each year more than

1.5 million people suffer from it only in United States [7]. Heart muscles are in a con-

tinuous cycle and this process requires energy. The oxygen and nutrients required for

energy production are supplied by coronary arteries. Those arteries might suffer from

occlusions which results in reduced blood flow. This phenomenon is called ischemia.
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Figure 2.4: Action potential wavefront and ion permeabilities for a ventricular muscle
cell. The upper figure shows the membrane potential and the lower figure shows the
simultaneous ion permeabilities [7]

.
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Figure 2.5: The path of cardiac impulse conduction and the corresponding regions
at the electrocardiogram with the conduction velocities, conduction times and self-
excitatory (intrinsic) frequencies [11].
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Figure 2.6: A typical ECG measurement [4].
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If the damage due to ischemia is severe the tissues at that part of the heart might die

and this is called myocardial infarction. Those ischemic regions or infarctions cause

the extracellular conductivity changes which could be detected with investigation of

epicardial potentials [12].

2.4.2 Cardiac Re-entry Phenomenon

In normal circumstances the excitation wavefront follows a predetermined path be-

cause all other paths are obstructed with tissues in refractory period. But sometimes

due to certain problems the wavefront can find other ways to spread and after a period

it comes back and simulates the same tissues again and again unless the conduction

is resynchronized with electroshock.

The causes and mechanism of cardiac re-entry are usually described with cardiac

muscle strips that are cut in a circular shape. Here this convention will be followed

too [10].

In Figure 2.7 upper part shows the conduction for a normal tissue. Here the first

stimuli is given from the 12 o’clock position and it spreads through the circle. The

purple regions show the cells that are in refractory period. As can be seen from the

lower part of Figure 2.7 when the excitation arrives at the initiation point again, it

vanishes because neighboring cells are still in refractory period. However, sometimes

when the excitation wavefront reaches the initiation point those points have been

already out of the refractory period and the wavefront continues to travel forever in

that loop. The reasons for this phenomenon and some typical pathologies lies under

this conditions are summarized at Table 2.1.

Also this mechanism can be observed on whole heart instead of only circular muscle

strips. Figure 2.8 is for a heart stimulated with a 60 hertz alternative current and very

educational to show different waveforms caused by cardiac re-entry [10].
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Figure 2.7: The mechanism of cardiac re-entry: At the upper part of the figure con-
duction in normal tissue is shown and at at the lower part the re-entry mechanism is
shown. [10]

Figure 2.8: The cardiac re-entry model: At the left the initiation of the fibrillation can
be seen with darker pink regions shows the regions in refractory period. The figure
on the right hand side shows the propagation paths of those impulses. [10]
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Table 2.1: The reasons for cardiac re-entry mechanism and possible diseases causing
those.

Cause Possible underlying diseases
The pathway around the circle is too long Dilated Heart

Blockage of the Purkinje Fibers
The velocity of the conduction is too low Ischemia of the muscle

High blood potassium

The refractory period of the muscle Due to some drugs (epinephrine etc.)
decreased significantly Repetitive electrical stimulation

2.4.3 Ventricular Fibrillation

Ventricular fibrillation is the most serious cardiac arrythmia and it can cause death if

not treated within 1 to 3 minutes. As explained previously normally the excitation

wavefront follows the same path in every cardiac cycle. But sometimes this path is

distorted and the excitation wavefront follows other paths and returns to itself again

which distorts the synchrony of the heart muscles. Due to this asynchrony sufficient

blood can not be pumped to body which results in unconsciousness in a few seconds

and death in a few minutes [10]. The main reason for ventricular fibrillation is known

as re-entry phenomenon.

2.4.4 Atrial Fibrillation and Flutter

Atrial fibrillation and flutter are problems due to cardiac arrhythmias. The main cause

of those problems is re-entry mechanism. In atrial flutter the depolarization wavefront

spreads in one direction along atria with a much higher frequency than normal (200

to 350 beats per minute). On the other hand in atrial fibrillation there is not a single

depolarization wavefront instead many different wavefronts spread through atria. The

wavefront propagations for those two diseases can be seen at Figure 2.9. Both atrial

flutter and fibrillation cause serious reduction in pumping mechanism of the atria but

those diseases are not as serious as ventricular fibrillation [10].
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Figure 2.9: The movement of depolarization wavefront for atrial flutter and fibrillation
[10].

2.5 Forward Problem of Electrocardiography

The goal in forward problem of ECG is to calculate the body surface potentials from

the cardiac electrical activity. Although it may not seem so meaningful in clinical

sense it has several implementations like [13]:

• Simulation of ECG with computer heart models

• Solution of reciprocal problem of determining currents on heart due to the cur-

rent sources on body surface.

To solve the forward problem of ECG along with the anatomical information also a

numerical solver is required.

2.5.1 Obtaining the Anatomical Information

In order to solve forward or inverse problem of electrocardiography, information

about the geometries (or anatomies) of the organs is a crucial requirement. In the liter-

ature the geometry information is usually obtained by Magnetic Resonance Imaging

(MRI) or Computed Tomography (CT) [2]. The most important criticization about

using those imaging modalities for electrocardiographic imaging is that they are ex-

pensive. Another drawback about those are that they are too heavy and not mobilized

so they can not be used for a system that could overcome the classical 12 lead ECG. In

order to address these problems studies on obtaining necessary geometrical informa-
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tion for electrocardiographic imaging using other imaging techniques emerge. One

group studies on using electrical impedance tomography (EIT) for this purpose and

try to benefit from its relative cheap price and high mobility [14, 15, 16]. Another

advantage of using EIT is its ability to measure conductivity values of the tissues. By

using these data instead of using predetermined values for each tissue, conductivities

that are specific for each patient could be used to obtain better results. There are also

studies that use three dimensional ultrasound for this purpose [17, 18].

2.5.2 Numerical Solution Techniques

After the geometry information is obtained using imaging modalities described sec-

tion 2.5.1, a numerical approach is needed to calculate the transfer matrix that maps

the parameters of the cardiac sources to body surface potentials. Those numerical

solvers can be categorized as [13]:

• Volume Element Methods:

– Finite Element Method (FEM)

– Finite Difference Method

– Finite Volume Method

• Surface Element Methods:

– Boundary Element Method (BEM)

Here FEM and BEM are compared because the most widely used methods in elec-

trocardiographic imaging are those two. The main advantages and disadvantages of

these methods compared to each other are [13, 19]:

• For FEM solution, whole tissue volume should be discretized, on the other hand

for BEM, only the boundaries of the tissues with different conductivities should

be discretized which reduces the complexity by a great amount.

• FEM could model tissues with anisotropic conductivities such as the the fiber

orientation of the heart. BEM could model only isotropic tissues because only
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the boundaries of those tissues are discretized. The anisotropies are included

to the BEM model by determining an average of the conductivities that are

longitudinal and transversal to the fiber direction.

• The matrices in FEM method are symmetric, positive definite and sparse but for

BEM those matrices are dense which results in higher memory requirement.

The adaptive methods can be used to refine FEM in order to obtain finer solutions

on the regions where fine solution is needed and coarse solution in regions where the

solutions resolution is not that significant. By this way the extra work to construct

fine meshes everywhere is avoided and this reduces the computation costs [20].

The accuracy of the BEM method is shown to be increased without upsurges in com-

putational complexity using adaptive BEM [21]. For that purpose a coarse initial

mesh is chosen and finer meshes are build using h-adaptive BEM in the literature

[21]. The size of the meshes differ for different locations of the torso model based on

the residual error. This means finer meshes are built for the parts of the torso where

body surface potentials changes more. In that study it is shown that the accuracy can

be increased as much as 10 percent with h-adaptive BEM.

Also there is a study to obtain numerical solution using method of fundamental solu-

tions which eliminates the need to construct meshes [22]. At this technique first an

auxiliary domain which encloses the real domain is constructed with auxiliary bound-

aries. The virtual source points (fundamental solutions) on those auxiliary boundaries

achieves an approximate solution with linear superposition. Then the required epicar-

dial surface potentials are calculated easily because the epicardial boundary is also in

that auxiliary domain. Another advantage of the method of fundamental solutions

over BEM is that the complex singular integrals are avoided [22].

2.6 Inverse Problem of Electrocardiography

The inverse problem of ECG is more meaningful in the clinical sense because from

the measured body surface potentials the unknown cardiac electrical activity is tried to

be calculated. In this section first different types of cardiac sources used to represent
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the electrical activity are explained. Then a literature survey on the inverse solution

algorithms is given. In the next subsection validation studies and human experiments

are explained. Finally the section is ended with a subsection on geometric errors.

2.6.1 Cardiac Source Models

There are many different cardiac source models that are used in inverse problem of

electrocardiography. The first attempts focus on representing the electrical activity

by one dipole [23]. Then more than one dipole and multipoles are used [24, 13]. The

most frequently used source models today are epicardial or endocardial potential,

transmembrame potential and activation time based models. Thus those techniques

will be explained at this section. All of those techniques have advantages over others

in terms of uniqueness, linearity and the severity of ill-posedness.

• Uniqueness One of the main difficulties about inverse electrocardiography prob-

lem is the non-uniqueness of the problem. Different cardiac source distribu-

tions may result in same body surface potentials which results in physologi-

cally meaningless solutions. In order to overcome this problem physiological

constraints can be used.

• Ill-Posedness Ill-posedness is defined as the phenomenon that even small per-

turbations results in very severe errors in solutions. To overcome this problem

regularization or statistical methods are widely used.

We have used the epicardial based method in our studies due to its advantages that

will be explained shortly.

2.6.1.1 Epicardial and Endocardial Potential Distributions

One widely used model for cardiac sources is in terms of epicardial or endocardial

potentials. Those solutions can be also called as surface potential based models.

Although the cardiac sources are located at myocardium they could also be inter-

preted when potential distribution on surface is obtained. The detailed formulation
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and information regarding the epicardial potential based model is given at section

3.1. The advantages of formulating the problem in terms of surface potentials are:

[2, 25, 13, 26]:

• In theory because the location of cardiac sources are restricted to the epicardial

or endocardial surface the problem becomes unique.

• The solutions can be verified with either catheter measurements (for endocar-

dial potential map) or sock electrodes (for epicardial potential map). Here we

neglect the effects of surrounding impedances to those potentials which could

change the measurements for example in open heart surgery.

• Another advantage of using epicardial potential based methods is that errors due

to blood masses within the heart are avoided. Those blood masses cause sig-

nificant errors due to the changes in flow and amount. The epicardial potentials

are outside those masses. Thus while the epicardial potentials are calculated

from body surface potentials those blood masses has no effects on solutions.

• The problem can be formulated linearly.

Some groups prefer studying on other formulations due to the disadvantages of sur-

face potential based models such as:

• The problem is highly ill-posed due to the discretization and smoothing effects

on potential signals passing through thorax. To overcome this problem reg-

ularization, statistical methods or filters are used which are explained in the

subsection 2.6.2.1.

• Some studies show that it is affected more from geometric errors compared to

activation time models [27, 28].

2.6.1.2 Transmembrane Potentials

The transmembrane potential (TMP) is the potential difference between inside and

outside of the cell membrane. The calculation of transmembrane potentials at the

myocardium becomes a widely studied model due to advantages such as [29, 30]:
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• The problem can be formulated as a linear problem.

• Most of the diseases can be diagnosed with studying TMP’s shape and distri-

bution. Epicardial potentials and activation times could easily be obtained from

the TMP distributions.

But it has a very serious limitation, the solution is non-unique so the obtained solution

may not be physiologically meaningful unless additional constraints are used [29].

Also the increase in problem size a major disadvantage.

2.6.1.3 Activation Time Imaging

Although epicardial or endocardial potentials could give significant information re-

garding the myocardium, some groups prefer calculating the myocardial activation

directly from BSP’s. When uniform and isotropic conductivities are assumed along

with zero phase amplitude, the formulation for activation time based model is:

Φ(y, t) =
∫

S
A(x, y)H(t − τ(x))dS x (2.1)

where H is the Heaviside step function, τ(x) is the activation time of myocardium at

position x, A(x, y) is the uniform double layer transfer function and Φ(y, t) is the body

surface potential at position y. The advantages of this formulation are [2, 25, 13, 26]:

• It deals directly with the phenomenon sought which is the activation times at

myocardium.

• It is better-posed then surface potential methods.

• It deals with only a few parameters eg. the activation time of the tissue at a cer-

tain location whereas the surface potential methods tries to find the potentials

for each time instant which requires a lot more parameters.

• Some studies show that it is affected less from geometric errors comparison

with surface potential based methods [27, 28].

There are also disadvantages of this model:
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• The solutions cannot be verified directly with measurements as in the case of

surface potential methods.

• The problem is non-linear which results in more complex calculations.

• The model forces the solution of activation times for all tissues based on a

template function that mimics the transmembrane potentials and because this

template function is not valid at ischemic or infarcted regions, the solution fails

[29].

• The isotropy assumption for myocardium limits its results (There are some re-

cent studies that does not require isotropy assumption to overcome this limita-

tion [31]).

2.6.2 Literature Survey on Inverse Solution Approaches

At this subsection first, a literature survey on the solution of inverse problem of ECG

in terms of epicardial potentials and other source models is given then the literature

survey is concluded with some recent works on human studies and validation meth-

ods.

2.6.2.1 Methods in Literature to Deal with Ill-posedness for Epicardial Poten-

tial Based Model

In inverse electrocardiography literature many different techniques were used to solve

inverse problem of electrocardiography. Some of those are:

• Tikhonov Regularization: It is the most widely used method in the literature

and it is explained in detail in section 3.2.1 [32, 33]. Shortly its solution is the

minimization of the sum of the data misfit and a constraint to regularize the

solution.

• Twomey Regularization: It is very similar to Tikhonov regularization but the

constraint is the two-norm of the difference between the a priori and a posteri-

ori estimate instead of the energy of the estimate [34].
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• Truncated Singular Value Decomposition (TSVD) : The main motivation in

TSVD is the elimination of the small singular values of the transfer matrix to

overcome the ill-posedness [35]. This elimination regularize the solution but

due to the elimination of the high frequency components associated with the

small singular values the solution suffers from serious smoothing.

• Bayes Maximum A Posteriori Estimation (Bayes-MAP): The conditional

a posteriori probability density function (pdf) for epicardial potentials given

the BSP’s is maximized with conditional a priori pdf of epicardial potentials

given. Usually the solution is solved separately for each time instant which

makes it a spatial algorithm [36]. The algorithm could also be modified as a

spatio-temporal approach [37]. The detailed information about both spatial and

spatio-temporal Bayes-MAP is given in chapter 3.

• State-Space Models: Kalman filter (or state space model) is also used to bene-

fit from the spatio-temporal behavior of electrocardiographic imaging problem

[38, 39, 40, 41, 42, 43]. Its optimality in the sense of mean square error with

given a priori information is a major advantage of Kalman filter. The main dif-

ficulty about the usage of Kalman filter for electrocardiographic imaging is the

determination of the state transition matrix (STM). This matrix is critical be-

cause it determines the spatio-temporal relationship of epicardial potentials for

two consecutive time instants. Berrier et al. uses an identity matrix multiplied

by a scalar as STM which means that the epicardial potential at the next time

instant only depends on its present value [38]. Other studies calculate the STM

from epicardial potentials [39, 40, 41].

• Other Approaches: There are a number of other studies that use different

algorithms to solve inverse ECG problem like hybrid methods such that the one

combines the least squares QR with truncated singular value decomposition,

genetic algorithms and Laplacian weighted minimum norm [44, 45, 46].

At this point extra emphasis should be given to spatio-temporal methods. The reason

for this is, they better represent the cardiac electrical activity comparison to spatial

methods due to spatio-temporal nature of the phenomenon itself. Most widely used

spatio-temporal approaches for electrocardiographic imaging are explained shortly
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below: Although most of the explained studies are for epicardial potentials also a

study for trans-membrane potentials (TMP) is explained because of the close rela-

tionship between TMP and epicardial potentials.

Brooks et al.’s study is important in the sense that they employed a multiple con-

straint approach [32]. In classical Tikhonov regularization as previously described,

the solution is found with the minimization of the data fit error and the constraint. In

their study they added an extra constraint to the optimization problem of Tikhonov

regularization. The regularization parameters are determined by plotting the residual

norm against the norms of the constraints and using the corner of that surface. They

call this method L-surface because it is a method based on L-curve. They have used

two different approaches: 1) They used two spatial constraint. 2) They used one spa-

tial and one temporal constraint which they call joint time/space (JTS) regularization.

Their results show that using two spatial constraint instead of one supply the solution

the robustness to the exact choice of regularization parameter and smaller regulariza-

tion parameter values were enough to obtain satisfactory solutions. In the JTS case

they stated that they obtained more realistic results in temporal sense in comparison

to only spatial constraint. This study is very important in the sense of benefiting from

spatio-temporal information to obtain more accurate solutions to inverse electrocar-

diography problem.

Greensite et al.’s study is very important in the sense that using spatio-temporal in-

formation for inverse problem of electrocardiography [47]. The isotropy assumption

described in this work allow the problem’s spatial and temporal covariance matrices

written separately with a Kronecker product. This property has been used to include

temporal information to Tikhonov regularization and Bayes-MAP approach [37, 43].

The unknown state at Kalman filter algorithm is the surface potentials in most of the

studies for inverse ECG problem [38, 39, 40, 41, 42, 43]. As previously stated the

major problem for Kalman filter based inverse ECG methods, is the determination of

state transition matrix which determines the time evolution of the states. In their study

Joly et al. use two different models as STM [41]. The first STM is identity matrix

multiplied with a scalar (F = αI) and the second one is calculated with a regularized

least squares approach from measured epicardial potentials. El-Jakl et al. calculates
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the STM and noise covariances with expectation maximization algorithm from body

surface potentials but they define only two parameters for STM such as F = αI + βS

where I is the identity matrix and S represents the spatio-temporal correlation of one

node and its four closest neighbors at the previous time instant [40]. In that study

El-Jakl et al. also calculates the STM from epicardial potentials too. Berrier et al.’s

study also uses an identity matrix multiplied by a scalar as STM. The difference of

their study from others is that instead of epicardial potentials they assume endocardial

potentials as unknown state. Goussard et al. again use the epicardial potentials as the

unknown state and calculates the STM with a linear prediction model from epicardial

potentials [39]. Their model benefits from the locality character of the depolarization

wavefront to reduce the problem dimension. They also used a training set to calculate

STM. More information about the work of Goussard et al. is given in the section

3.2.5.

Ghodrati et al.’s study differs from other Kalman filter approaches because they use

the activation wavefront as the unknown state [48]. In their study Ghodrati et al. use

two approaches which they called wavefront-based curve reconstruction (WBCR) and

wavefront-based potential reconstruction (WBPR). In WBCR the epicardial poten-

tials are found from the activation curve with a basic assumption where the potentials

are modeled as either active, inactive or transition. The wavefront curve is mod-

eled as changing according to a curve evolution function whose shape and speed is

determined by the parameters like angle between curve normal and fiber direction,

fiber effect coefficients and spatial factor. Because this model is non-linear, Extended

Kalman filter is used with wavefront curve as unknown state. The WBPR benefit from

the relationship between wavefront curve and epicardial potentials. But the potential

model is much simpler where the most important parameters are the distance of the

node from the wavefront and whether the node is inside or outside of the curve. The

results show that both WBCR and WBPR produce better results compared to zero’th

order Tikhonov regularization.

Mesnarz et al. consider both spatial and temporal constraints and use these con-

straints to solve the problem [29]. They used TMP’s as the cardiac source. They

add temporal constraint as a side constraint with two assumptions. The first one is

assuming TMP as monotonically nondecreasing function during depolarization and
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monotonically nonincreasing function during repolarization. The second temporal

constraint is the determination of upper and lower bounds for the TMP value to re-

strict amplitude. They used the amplitude and Laplacian with usage of 0’th and 2’nd

order Tikhonov regularization to benefit from spatial constraint. Then they changed

the Tikhonov regularization scheme to a large-scale convex quadratic optimization

problem with respect to the linear temporal constraint. The main advantages of their

method is the avoidance of temporal regularization parameter (because a side tempo-

ral constraint is used) and the imposition of weak temporal constraints which allow

acceptable solutions not only for healthy tissues but also for ischemic and infarcted

regions.

The interested reader about spatio-temporal approaches should refer to the study of

Zhang et al. which is important in the sense that they compared the three most widely

used spatio-temporal inverse solution approaches for dynamic inverse problems [49].

Those methods are multiple constraints method [32], state-space models (Kalman fil-

ter) [40, 41] and Greensite’s isotropy assumption [50, 47]. More information about

Greensite’s approach and Kalman filter solutions will be given in chapter 3 and mul-

tiple constraint approach is explained above in the work of Brooks et al. [32].

2.6.2.2 Other Approaches to Obtain Cardiac Electrical Activity

He et al. uses Laplacian weighted minimum norm (LWMN) algorithm to determine

the current dipoles at myocardium [46]. They found the location of the arrhythmias

in three dimensional myocardium which distinguishes this study from others which

tries to find the location of arrhythmia with solutions of epicardial or endocardial

potentials. Due to spatial smoothing effects of Laplacian operator they also applied a

recursive weighting algorithm to detect even small arrhythmia sites.

Farina et al. suggested to use the information obtained from the simulations as a pri-

ori information for inverse ECG solution [30]. For that purpose they used cellular

automaton to calculate transmembrane potentials for the patients anatomical data ob-

tained by MRI. Then using FEM the epicardial potentials are calculated from those

transmembrane potentials. They compared three regularization methods which are

0’th order Tikhonov, Twomey and a stochastic regularization method. The a priori
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information used for Twomey and stochastic regularization are obtained from those

calculated epicardial potentials and only spatial regularization is used. The results

show that the best solutions are obtained with stochastic regularization, but its com-

putational cost is higher than others. Also Twomey regularization helps to avoid

over-smoothing which is a typical problem for 0’th order Tikhonov regularization.

In another study the same group determines the slope of transmembrane potential

and action potential propagation velocity using body surface potentials [51]. The

importance of this study is that they optimize the excitation velocity for different

tissues in the patient specific cellular automaton model such as bundle branches and

Tawara nodes. By this way a model of the patients heart is constructed where the

effects of therapy might be simulated as well as determination of the infarcted tissues.

Another study which tries to fit a model according to the measures BSP’s is studied by

He et al. for 3-D myocardium model [52]. In their study an anisotropic heart model is

used to obtain more realistic results with different excitation velocities for longitudi-

nal and transverse fiber direction and 82 different myocardial segments which results

in 82 current dipoles are assumed. They also used cellular automaton model to sim-

ulate the BSP’s. They first obtain the anatomical information with CT and used this

data to build a thorax model. Then they optimize the parameters in their model with

a comparison of measured and simulated BSP’s. After that using those optimized

parameters they determine the myocardial activation times. They have also published

a similar study where they determine the transmembrane potentials [53].

2.6.3 Validation Studies and Human Experiments

The work by Nash et al. is important in the sense that it is an in vivo study that

measures BSP’s and epicardial potentials simultaneously [54]. Earlier studies uses in

vitro experiments with a dog heart placed in a torso tank [55, 56] or does not have the

needed resolution because of the technological limitations [57, 58]. In order to mea-

sure epicardial and body surface potentials simultaneously they implemented a sock

electrode to the ventricles of a pig heart and the wire for epicardial measurements are

exited near diaphragm. Also a suture snare is inserted to the left anterior descending

(LAD) coronary artery to occlude it whenever necessary during experiment and they
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closed the chest. They have stated that with that experiment they were able to observe

the slow conduction velocity at the ischemic region and measure the epicardial and

BSP’s simultaneously. As the authors stated this study could serve well to validate

the inverse electrocardiography solutions.

Ramanathan et al. tested the technique they called electrocardiographic imaging

which is same as inverse problem of electrocardiography for human subjects [6].

In their study they tested their imaging system for normal sinus rhythm, right bun-

dle branch block, right and left ventricular pacing and atrial flutter. The first step at

their system is the measurement of body surface potentials from 224 points with a

vest electrode. Then they used CT with an axial resolution of 0.6 to 1 mm to obtain

epicardial surface geometry and the positions of the vest electrodes. In the signal

processing part, first the preprocessing module acquires ECG signals with noise fil-

tration, baseline correction etc, at the second part the segmentation process is carried

on and the CT images are got ready for calculating transfer matrix with BEM at the

third step. Finally at the fourth step Tikhonov regularization and generalized mini-

mum residual error algorithms are applied to the data to overcome ill-posedness of

ECG signals. They obtained epicardial potential maps, epicardial electrograms, acti-

vation time isochrone maps and recovery times. Rudy et. al. also take the patent for

that system in 2006.

2.6.4 Geometric Errors

As previously stated the geometric information regarding the thorax along with the

conductivity values is a must for electrocardiographic imaging. This is because the

transfer matrix that maps the cardiac activity to BSP’s is used in both forward and

inverse problems of elctrocardiography. But different kinds of errors are introduced

to the system while the transfer matrix is calculated from the patient and those errors

are called as geometric errors. The major sources of those errors are:

• Imaging modalities like CT and MRI are not perfect so errors in the locations

and boundaries of the organs occur.

• Extra errors are introduced to the system in the segmentation step of the organ
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boundaries.

• The numerical solvers also introduce errors due to discretization.

• Usually the movement of the heart is not considered during solution and the

same transfer matrix is used for each phase of cardiac cycle.

• Non-invasive measurement of conductivities are not possible with current imag-

ing modalities so approximate conductivity values are used for tissues.

There are many studies that deal with the effects of geometric errors for inverse prob-

lem of electrocardiography but those studies do not offer any method to reduce those

affects [59, 28, 52, 60, 61, 62, 63]. Also those studies concluded that the errors in the

locations and the size of the organs reduce the accuracy of the solutions more in com-

parison to errors occur due to conductivity values [28, 62]. Thus at this dissertation

we will only study the affects of location and size errors at the organs and when we

use the term geometric errors we will refer to those.

In their study Ramanathan et al. study the effects of torso inhomogeneities for body

surface potential [60]. They used the frozen human torso cross-sections from the

Library of Medicines Visible Human Project for realistic torso. They use actual mea-

sured epicardial potentials. They have studied normal sinus rhythm along with ven-

tricular pacing to simulate ventricular arrhythmias with single and dual pacing. In

their study they conclude that although differences in lung conductivities has some

slight affects on amplitudes of body surface potentials no visible difference could be

observed on potential patterns. The overall conclusion of this study was the torso

inhomogeneities has small affects on amplitudes but does not affect the body surface

potential patterns much. At this study also the need for a specific torso and heart

geometry to obtain decent solutions are stressed along with the effects of smoothing

for both homogeneous and inhomogeneous torso models.

Cheng et al.’s study is one of the most recent studies about geometric errors in in-

verse problem of electrocardiography [28]. At their study they examine the affects

of signal (errors in signal amplitude and electrode locations for both correlated and

uncorrelated cases), material (errors due to wrong conductivity assignments to the

organs) and geometric (errors due to the wrong determination of size and location of
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the organs) errors. They obtain the solutions for both epicardial potential and acti-

vation based models and compare their performances for the existence of modeling

errors. The inverse algorithms that are used to obtain epicardial potentials in this

study are truncated singular value decomposition (TSVD), Tikhonov regularization

and Greensite’s algorithm. They use a method that benefits from critical point theo-

rem to obtain activation time based solution [25]. Their results show activation based

models are more immune to modeling errors than epicardial potential based methods.

Also results show that geometric error is the most dominant modeling error (it leads

to highest errors at the solution). The material errors have the least significant effect

on solutions and the effects of signal errors are between those two. This study also

shows the need for an inverse solution algorithm for cardiac imaging that could also

address the geometric errors in the formulation.

Another interesting study is published by Jiang et al. [64]. In that study they tested

the effects of heart motion by solving the problem for both static and dynamic models

for epicardial potential based formulation. The motion of the heart is simulated only

in the T period and this movement is simulated with mesh deformation. They use

zero’th order Tikhonov regularization and generalized minimal residual error (GM-

RES) to obtain solutions. Their results show improvements in correlation coefficient

up to 0.1 with dynamic model for Tikhonov regularization but on the other hand no

significant improvement observed for GM-RES. They stated that this shows that GM-

RES is more immune to modeling errors.
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CHAPTER 3

THEORY

3.1 Problem Definition

The relationship between body surface measurements and the electrical activity of the

heart is usually represented with the equation below [13]:

Y = H(X) + V (3.1)

where X is the matrix of parameters that defines the electrical activity of the heart,

Y is the matrix of body surface measurements, H is the non-linear transfer matrix

that is used to determine the torso measurements from the parameters that defines the

electrical activity of the heart and V is the noise matrix which is usually assumed as

Gaussian. The equation above represents the forward problem of electrocardiography

which is the determination of torso measurements from the electrical activity of the

heart.

The linearity of the relationship given in equation (3.1) changes for different param-

eters used to represent electrical activity at the heart. For example if activation times

are used as X in equation (3.1) then H is a non-linear function. But if epicardial po-

tentials are used as parameters X then the transfer matrix becomes linear. Also the

values given in equation (3.1) can be discretized to be solved in computers. After

those modifications the forward problem equation in terms of epicardial potentials

and torso potentials takes the form given in equation (3.2). Also measurement noise

(due to imperfections in the measurement devices, wrong modeling of transfer matrix

etc.) is inserted to the system to obtain a more accurate formulation.

yk = Hxk + vk (3.2)
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where xk is the Nx1 vector of epicardial potentials at time instant k, yk is the Mx1 vec-

tor of body surface potentials at time instant k, H is the MxN linear transfer matrix

and vk is Mx1 measurement noise vector. The measurement noise is assumed as inde-

pendent and identically distributed Gaussian noise vector with v ∼ N(0,R). Also the

measurement noise vector is assumed to be uncorrelated with epicardial potentials.

The transfer matrix H shown in equation (3.2) is calculated using the geometry and

conductivities of the organs within the thorax using Boundary Element Method.

The solution strategies for the forward problem of ECG has been widely studied and

its solution with Boundary element method (BEM) and Finite element method (FEM)

can be found in the literature [13, 19]. In this thesis the BEM is used to obtain the

forward transfer matrix. For that purpose the procedure described in the study of Barr

et al. is used [65] using the forward solver that is developed by one of our group

members.

The formulation given in equation (3.2) is also somewhat incomplete because the

change of epicardial potentials with respect to time are not taken into consideration.

To make up this deficiency an extra equation as shown below should be inserted to

the formulation.

xk = Fxk−1 + wk (3.3)

In equation (3.3) the F is the NxN state transition matrix (STM) which determines

the transition between the epicardial potentials of two consecutive time instants (xk−1

and xk) and wk is the Nx1 process noise vector which is assumed as independent and

identically distributed Gaussian noise vector with w ∼ N(0,Q).

The main motivation of this thesis is to solve the inverse problem of ECG, which is

defined as the estimation of electrical activity in the heart from torso measurements.

The motivation behind this problem in terms of diagnostic purposes is more obvi-

ous than forward problem of ECG because normally the electrical activity within the

heart cannot be measured but torso potentials can easily be measured. If the inverse

problem of electrocardiography is formulized in terms of epicardial potentials and

discretized, a linear formulation as shown below is obtained.
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Figure 3.1: The plot of eigenvalues of a homogeneous transfer matrix obtained with
BEM

xk = H−1yk; (3.4)

Unfortunately the inverse problem of ECG can not be solved that easily because the

condition number of the transfer matrix H is very high that, even a small noise resulted

in very high errors in the solution. The condition number of a matrix is the ratio of the

greatest eigenvalue to the smallest one. The plot of eigenvalues of one of the transfer

matrices used in this study (for a homogeneous thorax model) is shown in Figure 3.1

and this matrix has a condition number 2.88e14.

In the previous paragraph it was mentioned that the solution of inverse ECG prob-

lem can not be obtained just by taking the inverse of the transfer matrix, because

even small perturbations resulted in large errors in the solution. Those kind of prob-

lems are called as ill-posed problems (actually discrete ill-posed problem cause the

formulation used here is discrete). In the literature those kind of inverse problems

are usually solved with regularization methods like truncated singular value decom-

33



position (TSVD), Tikhonov and Twomey regularization [32, 33, 34]. Also statistical

estimation methods like Bayesian maximum a posteriori and Kalman filter were used

[36, 38, 39, 40, 41].

In this thesis Tikhonov regularization, Bayesian-MAP and Kalman filter (smoother)

algorithms are used to solve the inverse problem of ECG.

3.2 Inverse Problem Solution Algorithms

3.2.1 Tikhonov Regularization

Tikhonov regularization is the most widely used method to solve discrete ill-posed

problems and the goal is to minimize the least squares solution given as [66]:

‖Hx − y‖22 + λ ‖Lx‖22 (3.5)

where x demonstrates the unknowns, y represents measurements, H is the forward

transfer matrix, λ is the regularization parameter and L determines what to penalize.

Here the first term determines the fit of the solution while the second term is used to

constrain the solution. The regularization parameter determines the trade-off between

data fit and the level of regularization. If the regularization parameter is large then

the solution will be oversmoothed but if it is small than it cannot cope with the ill-

posedness of the problem. Shortly, Tikhonov regularization works like a filter. It

attenuates the effects of smaller singular values and thus reduce the effects of noise.

The solution for the minimization problem given in equation (3.5) is:

x̂ =
(
H′H + λL

)−1 H′y (3.6)

The principles behind Tikhonov regularization can be understood much easier when

the solution given in equation 3.6 is written with the help of singular value decom-

positon (SVD). In which the forward matrix H is written as

H = USV′ (3.7)

where S = s1, ..., sn is composed of singular values of H. The U and V are matrices

of right and left eigenvectors of H (or HT H). The solution in terms of SVD becomes:

x̂ =
n∑

i=1

s2
i

s2
i + λ

2

U′:,iy
si

U:,i (3.8)
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Figure 3.2: An example L-Curve plot for inverse ECG problem

It is clear from this formulation that the greater the singular values the higher its

effect will be. Also the importance of the regularization parameter to obtain decent

solutions is obvious in equation 3.8.

In this thesis regularization parameter is determined with L-Curve method [67]. In

this method the residual ‖Hx − y‖22 and the constraint ‖Lx‖22 are plotted for different

regularization parameters and the one that corresponds to the optimal trade-off value

between them is selected. The name of this method comes from the shape of the plot.

As it can be seen in Figure 3.2 the logarithmic plot of residual and constraint norms

has a shape like L. The parameter value at the corner of this curve is the optimal point

and previous and later parameter values cause major increases in the norms.
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3.2.2 Bayesian Maximum A Posteriori Estimation

In section 3.1 it is described that our goal is to find unknown x with given measure-

ments y. The x and y assumed as random variables. It is known from Bayesian phi-

losophy that when the prior probability density function (pdf) of an unknown random

variable p(x) is given along with its conditional pdf y given x (likelihood function),

the posterior conditional pdf x given y can be found from the equation below [68],

p(x\y) =
p(y\x)p(x)∫

X
p(y\x)p(x)dx

(3.9)

where X is the parameter space.

In Bayesian-MAP the solution x̂ that maximizes the posterior pdf is tried to be calcu-

lated:

x̂ = argmaxxp(x\y) (3.10)

When the unknown x is assumed as epicardial potentials, the pdf of x can be assumed

as normally distributed with mean x and Covariance matrix with Cx. Also the mea-

surement noise v shown in equation (3.3) is assumed as independent and identically

distributed Gaussian noise, so its pdf is v ∼ N(0,R) where R = σ2
vI. Therefore the

joint pdf is represented as [69]:

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎝ x

y

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝ x

Hx

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.11)

Cx,y =

⎛⎜⎜⎜⎜⎜⎜⎜⎝ Cx CxH′

HCx HCxH′ + R

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.12)

Under these conditions the solution to the maximization problem shown in equation

(3.10) can be obtained as:

x̂ =
(
H′R−1H + C−1

x

)−1 (
H′R−1y + C−1

x x
)

(3.13)

More detail about the Bayesian-MAP can be found in [68, 69].
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3.2.3 Temporal Bayesian-MAP

The Bayesian-MAP approach described in 3.2.2 assumes no temporal correlation be-

tween epicardial potentials and thus solve each time instant separately. But electrical

activity in the heart has temporal dependence too [13]. In order to include temporal

information to Bayesian-MAP solution the isotropy assumption is used which is sug-

gested by Greensite et al. [50, 47]. The isotropy is very similar to the separability

condition for random variables. According to separability condition a spatio-temporal

random variable’s cross-covariance matrix Cx depends on temporal covariance matrix

Ct and spatial covariance matrix Cs as shown below [47]:

Cx = Ct ⊗ Cs (3.14)

where ⊗ is the kronecker product and:

E[X̃X̃
′
] = Cs

N∑
j=1

tCt( j, j) (3.15)

E[X̃
′
X̃] = Ct

N∑
i=1

sCs(i, i) (3.16)

With X̃ represents mean removed random variable.

From equations (3.15) and (3.16) Cx is written as:

Cx =
E[X̃

′
X̃] ⊗ E[X̃X̃

′
]∑N

i=1 sCs(i, i)
∑N

j=1 tCt( j, j)
(3.17)

Due to high memory requirement of the direct solution the solution should be modi-

fied to a column by column solvable formulation as in the spatial Bayesian-MAP. For

that purpose the time correlation should be broken somehow. To break the the time

correlation temporal whitening can be used. This method is simply using a transfor-

mation matrix Z such that the new coordinate system supplies the time independency

that is required to solve the problem with spatial Bayesian-MAP. Then instead of

solving the whole system at once, it could be solved column by column. By that way

the memory consumption of the solution algorithm is reduced without ignoring the

time dependency.
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Choosing an appropriate transformation matrix which supplies the time decorrelation

is very important to have minimum error using this assumption. For that purpose the

transformation matrix should be chosen as orthogonal and also it should diagonalize

E[Y′Y]. In previous studies that matrix (Z) is chosen as eigenvectors of E[Y′Y] and

at that study it is chosen the same [37].

This process is called temporal whitening and the modified model for this system

becomes [49]:

YZ = HXZ + VZ (3.18)

where V is the noise matrix with independent and identically distributed Gaussian

assumption. Also equation (3.17) for Cxz becomes:

Cxz =
E[(X̃Z)′(X̃Z)] ⊗ E[(X̃Z)(X̃Z)′]

E[
∥∥∥∥X̃∥∥∥∥2

F
]

(3.19)

where ‖.‖2F is the Frobenius norm.

When the system given in equation (3.18) is solved column by column with Bayesian-

MAP formulation 3.13, the new unknown XZ is calculated. Finally using orthogo-

nality of the transformation matrix Z the estimate for X is determined from:

X = XZZ′ (3.20)

More information about these derivations could be found in papers [50, 47, 49].

3.2.4 Kalman Filter and Smoother

The first implementation of the Kalman filter was a part of the space program directed

by NASA (National Aeronautics and Space Administration) [70]. Since then the

Kalman filter is used for a variety of problems from economy to biology [71, 72].

The main reason is its optimality in the mean square error sense with given a priori

information and its ability to include uncertainties easily.
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Using Kalman filter, processes that are represented with state space models can be

solved and the inverse ECG problem can be represented with a state space model as

shown in equations (3.2) and (3.3). Those equations are repeated below:

xk = Fxk−1 + wk (3.21)

yk = Hxk + vk (3.22)

The derivations given in this section are modified from the books [73, 74, 75].

The Kalman filter is an estimator used to determine the most probable unknown states

xk
k and error covariance Pk

k with given measurements Yk = y1, ..., yk. Mathematically

xk
k = E(xk|Yk) (3.23)

Pk
k = E{(xk − xk

k)(xk − xk
k)
′} (3.24)

The Kalman filter is a two stage estimator. At the first stage a priori state estimation

xk−1
k and error covariance Pk−1

k are estimated with measurement Yt−1 = y1, ..., yt−1

xk−1
k = E(xk|Yk−1) = E(Fxk−1 + wk|Yk−1) = Fxk−1

k−1 (3.25)

Pk−1
k = E{(xk − xk−1

k )(xk − xk−1
k )′} = FPk−1

k−1F′ +Q (3.26)

At the second stage a priori state and error covariance that are shown in equations

(3.25) and (3.26) are updated with the measurement at the last time instant yk. For

that purpose first the innovations or residuals should be determined which are defined

as

εk = yk − E(yk|Yk−1) (3.27)

The expectation of residuals is zero and its variance is

var(εk) = HkPk−1
k H′k + R (3.28)

So,

xk
k = E(xk|Yk) = E(xk|Yk−1, εk) = xk−1

k +Kkεk (3.29)

Pk
k = [I −KkHk]Pk−1

k (3.30)
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A posteriori error covariance could also be calculated with a different formulation.

That formulation satisfies the need for Pk
k to be positive definite and symmetric which

helps to avoid problems due to ill-conditioning.

Pk
k = [I −KkHk]Pk−1

k [I −KkHk]
′ +KkRkK′k (3.31)

It is clear that the formulation above satisfies both symmetry and positive definite-

ness requirements. The symmetry is satisfied because the formulation compose of

summation of two symmetric matrices so the result is symmetric too. Also the first

term is a positive definite matrix and the second term is a nonnegative definite matrix

whose sum is obviously a positive definite matrix [73]. In equation (3.31) Kk is the

Kalman gain that decides the amount of correction to a priori estimates using the last

measurement and formulated as:

Kk = Pk−1
k H′k(HkPk−1

k H′k + R)−1 (3.32)

Equations (3.25), (3.26), (3.29), (3.31) and (3.32) are called the Kalman filter equa-

tions. This formulation is called Kalman filter because it uses all measurements up to

the time instant that the state is going to be calculated. For example xk is calculated

with Yk. If xk was calculated from Yk−1, it would be called an estimator. Actually

equations (3.25) and (3.26) are estimation. Also if xk is calculated from all measure-

ments such that Yn (where n is bigger than k) then it is called Kalman smoother. It

is called smoother because the results are usually smoother than the filter results. In

this study also Kalman smoother is used to further decrease errors.

The Kalman smoother does the backward recursion and requires the results of Kalman

filter for the last time instant (xn
n, Pn

n). Those equations to obtain Kalman smoother

are given as:

Jk−1 = Pk−1
k−1F′[Pk−1

k ]−1 (3.33)

xn
k−1 = xk−1

k−1 + Jk−1(xn
k − xk−1

k ) (3.34)

Pn
k−1 = Pk−1

k−1 + Jk−1(Pn
k − Pk−1

k )J′k−1 (3.35)

where k = n, ..., 1
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3.2.5 Determination of STM for Kalman Filter from Epicardial Potentials

For standard Bayesian-MAP and Tikhonov regularization algorithms only equation

(3.2) is used but for Kalman filter approach also the equation (3.3) is used and the ma-

trix F which is called state transition matrix (STM) should be determined. As can be

seen from equation (3.3) STM maps the unknown states (epicardial potentials) at the

previous time instant to the states at the next time instant thus contains the temporal

information regarding the problem. For that reason unlike standard Bayesian-MAP

and Tikhonov regularization techniques Kalman filter is a spatio-temporal method.

To obtain a decent solution with Kalman filter the correctness of the STM is very

important. But the determination of it for inverse ECG problem is not an easy task. In

this subsection the technique that is suggested by Goussard et al. [39] is explained. In

this technique the epicardial potentials are used to determine the STM. For that pur-

pose they changed the formulation and assumed the epicardial potentials are known

and it is STM which should be determined. Then they solved this formulation with a

modified version of Kalman filter.

The new formulation where the unknown states are the elements of the STM is as:

xk = Xk−1f + wk (3.36)

Where,

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

f2

...

fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, X (k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
′(k) 0 · · · 0

0 x
′(k) · · · 0

...
...

. . .
...

0 0 · · · x
′(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.37)

In equation 3.37 fN is the transpose of the N’th row of STM matrix and xT
(k) is the

transpose of the epicardial potentials at time instant k.

As stated previously a modified version of Kalman Filter is used to solve this problem

which is given as [39]:

Kk = PkX′k (3.38)

fk+1 = fk +KkQ−1 (xk+1 − Xkfk) (3.39)
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Qk = I + XkPkX′k (3.40)

Pk+1 = Pk −KkQ
−1
k K′k (3.41)

After rearranging the f as STM matrix, it could be used in Kalman Filter. For more

detail on these one may refer to [39].

In this equation 3.41 K is the Kalman gain, Q is the covariance matrix of noise and P

is the error covariance matrix.

This technique’s high memory requirement is a major drawback. For an array of

sensors that have measurements from 490 sensors the size of the error covariance

matrix P becomes a matrix with size 4902x4902 that requires approximately 429 GB

of memory. In their work Goussard et. al. use the locality property to reduce the

dimension of the problem by assuming a node is associated to only its neighbors.

To avoid high memory problem we use the activation times of the nodes along with

locality properties.

For that purpose first the activation time of each node is calculated using the second

order differentials. Then the epicardial potential value at node (i) in time instant (k)

is assumed as dependent to only the nodes at time instant (k-1) whose activation

times are closed to the i’th. Only the elements of STM and so f that corresponds to

those nodes are calculated and others are forced to zero. The rows of X in equation

3.37 corresponding to the elements that will be forced to zero at f has no effects on

the calculated STM. For that reason those rows are deleted from the matrix which

also reduces size of error covariance matrix at modified Kalman filter form N2xN2

to NDxND where N is the number of nodes on epicardium and D is the number of

nodes that are assumed as associated to each other for each node. By benefiting from

this property the memory consumption could be significantly reduced.

Usage of activation times also allow us to include physiological information to our

problem solution. For example the nodes with close activation times probably cor-

responds to the fiber directions on the heart and so if the fiber directions are known

the nodes that will be associated to each other could have chosen according to this

information. This might save us from the obligation to calculate activation times for

each node while introducing physiological constraints.
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3.3 Enhanced Noise Model for Geometric Error Compensation

Modeling errors are very often in inverse problems. For inverse ECG problem those

modeling errors may be due to discretization, wrong interpretation of electrode lo-

cations, wrong determination of heart’s size and location and wrong conductivity

assignments in the mathematical torso model. In the literature it can be seen that ge-

ometric errors have very significant effects in solutions [28]. As a part of this thesis

geometric errors occur due to wrong size and location assignments to the heart are

investigated. The effects of those geometric errors are also tried to be minimized with

the modification of a method suggested by Kaipio et. al. for inverse problem solu-

tions [76]. This model was implemented to optical tomography before [77] but to the

best of our knowledge this is the first study that modifies this method to the inverse

problem of electrocardiography.

In order to consider geometric errors the formulation of the system is changed as:

y = H(x, z) + v (3.42)

The difference in this formulation from others is that the transfer matrix is assumed as

dependent on parameter vector z. For inverse electrocardiography problem those pa-

rameters are the size and locations of each tissue that are present in the mathematical

torso model.

If the true parameter vector is assumed as z* and the parameter vector that are used

in the inverse model are represented by z, then it is clear that extra errors enter the

system. For that case the formulation becomes [77]:

y = H(x, z*) + (H(x, z) −H(x, z*)) + v (3.43)

In the formulation above (H(x, z) − H(x, z*)) term represents the error due to uncer-

tainties in the parameters of the transfer matrix. Those uncertainties may be due to

wrong interpretations of the heart’s size and location and thus this error represents

the geometric errors in the problem. If that noise is assumed as ε(x, z) then equation

(3.43) becomes [77]:
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y = H(x, z*) + ε(x, z) + v (3.44)

For simplicity H is assumed as linearly dependent to parameters z and using Gaussian

approximation geometric error is written as [77]:

ε(x, z) = DzH(x, z*)δz (3.45)

With,

δz = z − z∗ (3.46)

In the formulation above Dz is the Jacobian matrix with respect to z. If the expectation

of the geometric error is assumed as zero then the covariance of the geometric error

is [77]:

E
(
ε(x, z)ε(x, z)′

)
= Γε = DzH(x, z*)ΓzDzH(x, z*)′ (3.47)

where,

Γz = E
(
δzδ
′
z
)

(3.48)

Finally, benefiting from the independence assumption between geometric errors and

measurement noise equation (3.43) is written as:

y = H(x, z∗) + e (3.49)

With the covariance matrix of e is Γe = Γε + Γv.

More detail on the proofs given in this part can be found in Kaipio et. al.’s book and

journal so interested reader is encouraged to read those [77, 76].

To summarize, ENM allows the usage of Γe instead of measurement noise covariance

R to reduce the effects of geometric errors in the inverse ECG problem.
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3.4 System Identification Problem

The usage correct values of measurement and process noise covariances is critical to

obtain decent solutions with inverse solution algorithms. In this section two different

methods are described to determine the noise covariances for inverse ECG problem.

The first method benefits from residuals and the other one uses expectation maximiza-

tion. Those methods do not only used to calculate noise covariance matrices under

normal conditions but also in the case of geometric errors. In that sense those methods

are used to determine the noise covariances employed in enhanced noise model.

3.4.1 Determination of Measurement and Process Noise Covariance Matrices

Using Residuals

As stated in 3.2.4 the values of measurement (R) and process (Q) covariance matrices

should be known to use Kalman filter. As a part of this thesis those covariances are

calculated from the residuals for inverse ECG problem such as Bailie and Jazwinski

propose for orbit determination problem [78].

To calculate the noise covariances, first the residual should be calculated as:

rk = y(i)k −H(i)xk−1
k (3.50)

R(i)k = r2
k −H(i)Pk

kH(i)′ (3.51)

where i represents the row number and k is used to show time instant. So H(i) repre-

sents the i’th row of the forward transfer matrix. On the equations above if the value

of R(i)k is not positive then its value should be assigned as 0 [78]. Then xk
k, Pk

k and

xk+1
k are calculated with Kalman filter equations as [78]:

xk
k = xk−1

k + Pk−1
k H(i)′(H(i)Pk−1

k H(i)′ + R(i)k)
−1(y(i)k −H(i)xk−1

k ) (3.52)

Pk
k = Pk−1

k − Pk−1
k H(i)′(H(i)Pk−1

k H(i)′ + R(i)k)
−1H(i)Pk−1

k (3.53)

xk
k+1 = Fxk

k (3.54)

After the residual for k+1’th time instant is calculated from the formula given in

equation (3.50), the process noise covariance elements are calculated as [78]:

45



Q(i)k =
rk+1 −H(i)FPk

kH(i)′ + R(i)k

H(i)H(i)′
(3.55)

Again non-positive elements of covariance matrix are forced to zero. Finally error

covariance matrix Pk
k+1 is calculated with formulation below and the process contin-

ues.

Pk
k+1 = FPk

kF
′ +Q(i)k (3.56)

More detail regarding the general formulations in this section can be found in [78].

3.4.2 Determination of Measurement and Process Noise Covariances Using Ex-

pectation Maximization

In this technique the likelihood is tried to be maximized for parameters Θ = [Q,R]

[75, 79]. In expectation maximization (EM) algorithm the complete data likelihood

with Gaussian assumption is written as [75, 79]:

−2lnLX,Y(Θ) = ln |Σ0| + (x0 − μ)′Σ−1
0 (x0 − μ)

+ ln |Q| +
n∑

k=1

(xk − Fxk−1)′Q−1(xk − Fxk−1)

+ ln |R| +
n∑

k=1

(yk −Hxk)
′R−1(yk −Hxk) (3.57)

where Σ and μ are the covariance and mean of the initial state vector x0. In EM

algorithm maximizing the conditional expectation of the complete data likelihood

with iterations is same as maximizing complete data likelihood. So at the j-th iteration

[75, 79]:

Q(Θ|Θ( j−1)) = E
{
−2lnLX,Y(Θ)|Yn,Θ

( j−1)
}

(3.58)

The procedure have 4 steps and the iterations are j = 1, 2, ...

1. Initial parameter values Θ(0) = [Q,R] are selected along with μ and Σ

2. The expectation step is performed. In this step the Kalman smoother estima-

tions are used to calculate S11, S10 and S00 which forms the conditional expec-
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tation of the complete data likelihood as below:

Q(Θ|Θ( j−1)) = ln |Σ0| + tr
{
Σ−1

0 [Pn
0(xn

0 − μ0)(xn
0 − μ0)′]

}
+ ln |Q| + tr

{
Q−1[S11 − S10F′ − FS′10 + FS00F′]

}
+ ln |R| + tr

⎧⎪⎪⎨⎪⎪⎩R−1
n∑

k=1

(yk −Hxn
k)′ +HPn

kH′
⎫⎪⎪⎬⎪⎪⎭ (3.59)

With S11, S10 and S00 are as

S11 =

n∑
k=1

(xn
kxn

k
′ + Pn

k) (3.60)

S10 =

n∑
k=1

(xn
kxn

k−1
′ + Pn

k,k−1) (3.61)

S00 =

n∑
k=1

(xn
k−1xn

k−1
′ + Pn

k−1) (3.62)

The Pn
k,k−1 is found using the lag-one covariance smoother whose formulation

is as for k = n, n − 1, ..., 2 [75, 79]:

Pn
k−1,k−2 = Pk−1

k−1J′k−2 + Jk−1(Pn
k,k−1 − FPk−1

k−1)J′k−2 (3.63)

With initial value as

Pn
n,n−1 = (I −KnH)FPk−1

k−1 (3.64)

3. In this step as the name expectation maximization implies the expectation is

tried to be maximized for parameters. SoΘ( j) is calculated with equations given

below [75, 79]:

Q( j) = n−1(S11 − S10S−1
00 S′10) (3.65)

R( j) = n−1
n∑

k=1

[(yk −Hxn
k)′ +HPn

kH′] (3.66)

4. Next iteration starts from the second step with new parameter values.

More information about derivations can be found in [75, 79].
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter first the data used for simulations are explained and then the recon-

struction results for inverse problem of electrocardiography are given.

4.1 Simulated Data

The body surface potential measurements used in this study are simulated using the

QRS intervals of measured epicardial potentials and an appropriate noise and forward

model which is explained in detail later.

The epicardial potentials used for this study are measured at University of Utah Nora

Eccles Harrison Cardiovascular Research and Training Institute (CVRTI) [56]. The

measurements are taken from a dog heart which is perfused from another dog’s cir-

culatory system and suspended in an electrolytic filled (500Ωcm) adolescence human

thorax shaped fiberglass tank. To measure the epicardial potentials a nylon sock elec-

trode with silver wires is slipped over the ventricles. During measurements the heart

is stimulated from the ventricles to simulate ventricular arrhythmias. The epicardial

measurements are taken from 64 or 490 points with sampling rate 1000 sample per

second.

The forward transfer matrix that maps epicardial potentials to body surface potentials

is calculated with boundary element method from MRI images 1. The thorax model

consists of heart, torso and lungs. The conductivity values for thorax volume and

lungs are taken from literature as 0.0002 S/mm and 0.00005 S/mm respectively [60].

1 The forward solver is developed by Dr. Özlem Birgül
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Figure 4.1: Schematic representation of the forward problem.

The forward transfer matrix is used to obtain 658 or 771 body surface potentials form

epicardial potential measurements from 64 or 490 points respectively.

The body surface potentials are obtained from the epicardial potential measurements

by a multiplication with the transfer matrix and addition of 30 dB SNR independent

and identically distributed Gaussian noise. By doing so the forward problem of elec-

trocardiography is solved. This process is shown in Figure 4.1.

4.2 Validation Methods

The quantitative comparisons of the solutions are made using correlation coefficients

(CC) and relative difference measurement star (RDMS):

CC =
N
(∑T

i=1 XiX̂i

)
−
(∑T

i=1 Xi

) (∑T
i=1 X̂i

)
√

N
(∑T

i=1 X2
i

) (∑T
i=1 Xi

)2√
N
(∑T

i=1 X̂
2

i

) (∑T
i=1 X̂i

)2 (4.1)
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RDMS =

√√√√∑⎛⎜⎜⎜⎜⎜⎜⎝ X̂i∑T
i=1 X̂

2

i

− Xi∑T
i=1 X2

i

⎞⎟⎟⎟⎟⎟⎟⎠
2

(4.2)

As it is clear from their formulations that higher CC and lower RDMS correspond

to better solutions. Although RDMS and CC give us information about the perfor-

mances of the methods used for inverse electrocardiography problem, it is also im-

portant to compare original and reconstructed epicardial distributions visually. One

of the reasons for this visual comparison is that the error measures used in this study

cannot put necessary emphasis on true reconstruction of activation wavefront which is

one of the most important features for inverse electrocardiography problem. For that

purpose map3d software has been used which is a scientific visualization application

written in Utah Nora Eccles Harrison Cardiovascular Research and Training Institute

for the purpose of displaying and editing three-dimensional geometric models and

time-based data associated with those models [80].

In Figure 4.2 the epicardial potential distribution and body surface potential map for

a certain time instant which are plotted by map3d software are shown. In this fig-

ure red represents the regions that have not activated yet and the blue regions show

the cells that have already been activated, the transition region between those two is

the activation wavefront. While the results are compared with map3d two important

characteristics are considered:

1. The solution’s ability to follow the wavefront without dispersing it much. The

dispersion in the wavefront is due to the regularization.

2. The solution’s ability to correctly reconstruct the activated or inactivated re-

gions.

50



Figure 4.2: Sample epicardial and body surface potential potential maps plotted with
map3d [80] for a certain time instant.

4.3 Reduction of the Problem Size for Inverse ECG Solution Using Kalman

Filter

4.3.1 Comparison of the Reduced Formulation for STM Calculation with the

Original One for 64 Node Data

In this subsection the algorithm suggested by Goussard et al. is implemented with

some modifications to improve its performance. As explained in 3.2.5 they calcu-

lated the state transition matrix (STM) from epicardial potential (EP) measurements.

The drawback of this approach is the high dimension of the problem when all nodes

are assumed as related to each other. For example for N EP nodes the size of the error

covariance matrix for full STM calculation algorithm is N2xN2. Although it could be

calculated for 64 nodes (the memory requirement for error covariance matrix is 128

MB) for a model with higher resolution such as 490 epicardial nodes the memory re-

quirement is approximately 430 GB. For that purpose Goussard et al. tries to benefit

from the locality property of the problem and construct the STM as the EP at one

time instant is related to only its 4 closest neighbors at the previous time instant. This

assumption reduce the problem dimension significantly but introduce extra errors. In

this part of the thesis we benefit from other characteristics of the propagating activa-

tion wavefront to achieve the reduction in the problem dimension without introducing

extra errors. For that purpose strategies explained below are tested and a sample illus-

tration of the nodes that corresponds to the scenarios explained are shown at Figure

4.3.
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1. All nodes are assumed as related to each other which is called here as the full

STM approach.

2. Only the first order neighbors are assumed as related to each other (approxi-

mately 7 node for each node).

3. Only the second order neighbors are assumed as related to each other (approx-

imately 18 node for each node).

4. Only the nodes with close activation times are related to each other (within 11

ms threshold approximately 18 node).

5. The union set of the nodes that are found from both 1’st and 3’rd approaches

are related to each other (within 4 ms threshold).

At this point extra information for the 3’rd and 4’th strategies might be needed. The

motivation behind using those two strategies is to benefit from the relation between

the signals that are along the same wavefront. In order to use those strategies at first

the activation times for each node are determined by using the second derivative’s of

the EP’s. The goal here is to relate those leads that are located on the same wavefront;

i.e., those that are depolarized at the same time. For that purpose the activation time

difference for each node is calculated and the nodes whose activation time difference

are within a predetermined threshold are related to each other. The STM is calculated

only for the entries that corresponds to those predetermined related nodes and other

entries are forced to zero.

In this part of the study the STM is calculated from the test data itself. After the

STM’s are calculated according to the 5 scenarios, the inverse solutions are obtained

by processing the data first with Kalman filter and then with Kalman smoother. The

schematic representation of the simulation procedure is shown at Figure 4.4.

At the first step the simulations are conducted with EP measurements from 64 nodes

to test the performances of the strategies 2 to 5 compared to the calculation in which

full STM is used (strategy 1).
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(a) 1’st and 2’nd order neighbors for node 230 (b) The isochrone map

Figure 4.3: The nodes that are related to 230’th node for STM calculation for different
scenarios for the case of 490 epicardial nodes. In (a) The blue dots are the 1’st order
neighbors and the union of blue and green dots are the 2’nd order neighbors while the
black dot is the node 230. In (b) the isochrone map for the activation times is shown
and the nodes at the same isochrone are related to each other.

Table 4.1: Means and standard deviations of CC and RDMS values, average related
node numbers and the time consumptions of different scenarios to reduce the problem
dimension of STM calculation for 64 node case. The threshold values for activation
time based solutions are given in parenthesis near scenario name.

Scenario name Mean CC Mean RDMS Node Number Time consumption
± std ± std (sec)

Full STM 0,94 ± 0,17 0,22 ± 0,28 64 66
1’st Order Neighbors 0,89 ± 0,23 0,34 ± 0,33 7 3
2’nd Order Neighbors 0,93 ± 0,17 0,25 ± 0,27 18 6
Activation Based (11 ms) 0,92 ± 0,20 0,26 ± 0,30 18 6
Activation (4 ms) and

0,93 ± 0,19 0,24 ± 0,30 12 4
1’st Neighbor Union
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Figure 4.4: Schematic representation of the simulation procedure. Scenario 1 is the
one that relates only 1’st order neighbors, scenario 2 relates only 2’nd order neigh-
bors, scenario 3 relates only the nodes with close activation times and scenario 4
relates the union of the ones with very close activation time and 1’st order neighbors
for STM calculation.
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Figure 4.5: Starchart representation of time consumption, CC and RDMS.

In Table 4.1 the averages of CC and RDMS for the previously described strategies are

given. The node number shows the average number of nodes that are related to one

node. This number also corresponds to the average number of non-zero entries of the

STM for one row. It can be seen that full STM approach has the best error perfor-

mance. But other approaches except the one that uses 1’st order neighbors, have very

similar performances to full STM approach, although the problem dimension and

computation time are significantly decreased. The reason for this result can be under-

stood when the entries of the full STM is studied. In full STM most of the entries are

so close to zero which means that they have no significant relation for the correspond-

ing nodes. Also if the entries with the highest values are checked it can be seen that

the nodes that correspond to those entries are not only the neighbors. Sometimes the

entry corresponding to two nodes with far locations is very high which contradicts to

the assumption of using only the locality property of the activation wavefront propa-

gation. When those related nodes are studied further, a pattern appears and it can be

seen that those nodes are the ones that are along the same activation wavefront. This

result also demonstrates the logic behind using not only local neighbors but also the
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ones with close activation times. The same results could be observed from Figure 4.5

too. At that chart CC, RDMS and time consumption of the algorithms are plotted on

three dashed lines with 120 degree between them. In this plot the algorithm which

crosses the dashed line at the outer most point has the best performance in the criteria

that dashed line represents.

The interpretations made for Table 4.1 are also verified by Figure 4.6. This figure

shows the epicardial distributions calculated at 37 ms after the stimulation with the

scenarios described previously. Those results also indicate that there is no obvious

difference between using the full STM, 2’nd order neighbor, activation based and

activation union 1’st neighbor scenarios. Close correspondence of those solutions to

the real epicardial potential distribution is also observed.

The results presented here show that the inverse problem of ECG could be solved

without using the full STM because most of the entries of that STM is very close to

zero. Also the nodes that should be related to each other can be determined bene-

fiting from not only the locality property but also the shape of the wavefront. One

possible question is how to determine those nodes along the same wavefront for real

case. There are two possible answers to this question. The first one is, the approxi-

mate activation times could be determined from the pre-solutions obtained with other

methods like Bayes-MAP or Tikhonov regularization and and the second one is, if

the fiber directions are known the nodes along those fiber directions could be used as

those along the same activation wavefront.

4.3.2 Comparison of the Proposed Problem Dimension Reduction Techniques

for STM Calculation with 490 Node Data

The reason for using the data with 64 epicardial nodes previously was to assess the

performance when problem dimension is reduced and the results show no significant

reduction in the performance. Here those scenarios except the full STM scenario (due

to its very high computational cost) ,for a problem with higher resolution which tries

to find the EP’s from 490 nodes using BSP’s from 771 nodes, are tested.

The simulation procedure is same as in subsection 4.3.1 and only the threshold values
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(a) Real Distribution

(b) 1’st Neighbor (c) 2’nd Neighbor (d) Activation Based

(e) Activation 1’st Neighbor Union (f) Full STM (g) Colormap

Figure 4.6: Epicardial potential map for 64 node solution with 37 ms after the first
stimulus.
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Table 4.2: Means and standard deviations of CC and RDMS values, average related
node numbers and the time consumptions of different scenarios to reduce the problem
dimension of STM calculation for 490 node case. The threshold values for activation
time based solutions are given in parenthesis near scenario name.

Scenario name Mean CC Mean RDMS Node Number Time consumption
± std ± std (sec)

1’st Order Neighbors 0,89 ± 0,11 0,42 ± 0,13 7 3
2’nd Order Neighbors 0,92 ± 0,10 0,35 ± 0,16 18 6
Activation Based (3 ms) 0,91 ± 0,11 0,37 ± 0,14 19 6
Activation (1 ms) and

0,93 ± 0,10 0,32 ± 0,15 14 4
1’st Neighbor Union

for activation based scenario are reduced due to the increase in epicardial nodes.

In Table 4.2 the average CC and RDMS values for the corresponding scenarios are

given. The node number shows the average number of nodes that are related to one

node which is the same as the average non-zero entries at the STM for one row. Also

in Figure 4.7 CC, RDMS and computation times are given with a graphic representa-

tion. Possible interpretations from those results are:

• The first order neighbors based solution has the worst error performance.

• The best error performance is achieved by union of activation time and 1’st or-

der neighbors eventhough this solution relates only 14 epicardial nodes at the

calculated STM. Which means less computational cost comparison to activa-

tion based and 2’nd order neighbor solution.

• Second order neighbor solution performs slightly better than the activation

based solution.

As stated previously the quantitative error measures are not sufficient alone to com-

pare results for inverse electrocardiography so along with those the epicardial poten-

tial distributions should be studied which are given in Figure 4.8. The results shown

at Figure 4.8 prove the accuracy of that. These maps show that:

• The first order neighbor solution suffer from severe dispersion at the activation

wavefront compared to the actual potential map.
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Figure 4.7: Starchart representation of time consumption, CC and RDMS.

59



• The second order neighbor solution reduce the dispersion at the activation wave-

front but still the smoothing affect is obvious.

• The activation based solution does not have the activation wavefront dispersion

problem from which both first and second order neighbor solutions suffer. But

this approach suffers from another problem which is the false activated regions

that do not exist neither in the actual map nor in the neighborhood based mod-

els.

• The union of activation and first neighbor solution seems to benefit from the

advantages of both neighborhood and activation based methods. It follows the

wavefront much better than neighborhood based methods and does not have the

false activated areas reconstructed in the activation based method.

From Table 4.2 the second order neighbor method seems to perform better in error

metrics compared to the activation based method but from Figure 4.8 it is seen that

the activation time based method constructs the wavefront better. The reason for this

is quite simple. The neighborhood based methods result in spatial smoothing due

to the locality they benefit from so the activation wavefront is also smoothed along

with the inactivated and activated regions. The activation time based method is not

affected from this smoothing because it relates only those nodes that are on the same

activation wavefront. But due to the lack of the spatial smoothing the false regions

are not corrected in the activated and inactivated regions. On the other hand the union

of activation and first order neighbor avoids the smoothing at the wavefront due to

the related activation nodes and it avoids the false regions at activated or inactivated

regions with benefiting from the spatial smoothing of first order neighbors.

The conclusion of this part of the study is neither neighborhood nor activation based

methods are the best choices alone to determine nodes that should be related to each

other for STM determination. The best choice is using both of them which results in

better solutions with very significant reduction at the computational cost.
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(a) Real Distribution (b) 1’st Neighbor (c) 2’nd Neighbor

(d) Activation Based (e) Activation 1’st Neighbor Union (f) Colormap

Figure 4.8: Epicardial potential map for 490 node solution at 57 ms after the first
stimulus.
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4.4 Studies on the Calculation of State Transition Matrix without Using Real

Epicardial Potentials

In the previous section the emphasis was on the reduction of the problem dimension

to calculate the STM. The STM’s calculated in the previous section requires the epi-

cardial potential distributions of the test data itself which is obviously not possible

in a realistic application. Those studies are helpful to show us that if appropriate

a priori information can be acquired the STM calculation described at the previous

section could be used to solve inverse electrocardiography problem with very high

correlations.

In this section our objective is to present ways to obtain the a priori information

needed to calculate the STM and compare those results with other spatial and spatio-

temporal techniques. For that purpose we have used the following techniques:

1. Bayes-Train: The spatial Bayes-MAP solution obtained using the mean and

covariance from the training set

2. Tikhonov: The zero’th order Tikhonov regularization solution

3. Temp-Bayes: The spatio-temporal Bayes-MAP solution with a priori informa-

tion from the training set

4. Kalman-Bayes: The training set is used to obtain the solution using the spatial

Bayes-MAP (Bayes-Train) and then this solution is used to calculate STM.

5. Kalman-Tikh: The solution of zero’th order Tikhonov regularization is used

to calculate STM.

6. Kalman-Direct: A training set is used to calculate the STM directly which is

suggested by Goussard et al. [39]

The BSP’s that are used for inverse solutions are produced same as previous section.

So epicardial potentials from 490 nodes are multiplied with the transfer matrix cal-

culated with BEM and finally 30 dB white Gaussian noise is added to obtain noisy

BSP’s.
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The training set used at this study is constructed from 8 different epicardial potential

distributions which contains only the QRS intervals, with duration of 97 ms. The

epicardial potential maps used in training set are all stimulated from the ventricles

of the same dog heart but the location of the first stimulus site is different for each

of them so the epicardial potential distributions are different. The test data is not

included to the training set. The construction of training set for Bayes-Train and

Kalman Direct differs from the temporal training set used for Temp-Bayes.

The 490x776 training set Xs for Bayes-Train is constructed by adding the epicardial

potential distribution for each data column by column as shown below.

Xs = [X1 X2 · · · X8] (4.3)

Where 490x97 matrix Xi is the matrix that contains epicardial potential maps at 97

different time instants of the QRS interval for the i’th beat in the training set. The

number of columns at Xi represents the number of time instants at which the epicardial

potentials are measured and the number of rows are equal to the number of nodes on

the epicardium. The priori mean for each node is found by averaging the rows of the

training set over time and covariance matrix is found from equation given below.

Cs =
XsXT

s

NT
(4.4)

Where NT is the total number of time instants, which is 8x97 = 776. In this study it

is clear that the resulting 490x490 covariance matrix Cs contains only spatial infor-

mation.

For the Temp-Bayes algorithm the temporal covariance matrix Ct is also needed along

with the spatial covariance matrix Cs. In order to construct the 3920x97 training set Xt

for temporal information, the 490x97 Xi epicardial potential map matrices are added

row by row so:

Xt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

...

X8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.5)
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Then the temporal training set Ct is calculated with the formulation below:

Ct =
XtXT

t

NS
(4.6)

where NS is the row number of Xt and corresponds to the number of epicardial nodes.

The regularization parameter for zero’th order Tikhonov regularization is calculated

using the L-Curve method [67] and a different regularization parameter is used for

each time instant.

For Kalman-Bayes solution first the Bayes-Train solution is obtained. Then the epi-

cardial potential map obtained from those are assumed as the real epicardial potential

map and the activation time for each node is calculated from those. Finally the STM

is calculated with using the problem dimension reduction technique described in 4.3.

The procedure for Kalman-Tikh is the same as Kalman-Bayes only this time the so-

lution of Tikhonov is used to find the STM instead of Bayes-Train.

The Bayes-Train and Tikhonov algorithms benefit from only spatial information to

constrain the solution so these are called as spatial methods. On the other hand

Kalman-Direct, Kalman-Bayes, Kalman-Tikh and Temp-Bayes benefit from both tem-

poral and spatial constraints so those are spatio-temporal constraints. In this section

also spatial and spatio-temporal methods are compared for the solution of inverse

electrocardiography problem.

The schematic representation of the simulation procedure for methods Bayes-Train,

Tikhonov, Kalman-Bayes, Kalman Tikh and Kalman-Direct is given at Figure 4.9

In Table 4.3 the average CC and RDMS values obtained for the algorithms explained

above are given. In Figure 4.10 the performances of the algorithms in terms of CC,

RDMS and computation time are shown. At this plot the algorithm which crosses the

dashed line at the outer most point has the best performance in the criteria that dashed

line represents. The interpretations from this table and plot are:

• Tikhonov solution has the worst performance in terms of error metrics.
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Figure 4.9: Schematic representation of the simulation procedure for Bayes-Train,
Tikhonov, Kalman-Bayes, Kalman-Tikh and Kalman-Direct approaches
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Figure 4.10: Starchart representation of time consumption, CC and RDMS.

• The Kalman-Tikh algorithm improves the results of Tikhonov solution signifi-

cantly.

• The worst error performance after Tikhonov and Kalman-Tikh belongs to Bayes-

Train solution.

• Eventhough Kalman-Tikh does not benefit from a priori information from any

training set, its result is almost the same as Bayes-Train when CC’s are con-

sidered but in terms of RDMS Bayes-Train is much better than Kalman-Tikh.

Better RDMS means the relative potential map is constructed better and CC

considers not only relative maps but also the amplitudes of the result.

• Usage of temporal information with Temp-Bayes improves the performance

compared to the Bayes-Train but the improvement is limited. The advantage of

this approach is its lower computational time compared to other spatio-temporal

methods that are used in this study..

• Kalman-Real has the best error performance as expected because it uses the test

data itself to calculate STM.
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Table 4.3: Means and standard deviations of CC and RDMS values for spatial and
spatio-temporal methods.

Scenario name Mean CC ± std Mean RDMS ± std Time consumption
Bayes-Train 0,84 ± 0,19 0,48 ± 0,26 5 sec
Tikhonov 0,77 ± 0,20 0,60 ± 0,20 12 sec
Temp-Bayes 0,86 ± 0,17 0,45 ± 0,24 23 sec
Kalman-Bayes 0,89 ± 0,13 0,42 ± 0,21 695 sec
Kalman-Tikh 0,83 ± 0,11 0,53 ± 0,16 702 sec
Kalman-Direct 0,87 ± 0,12 0,45 ± 0,21 158 min
Kalman-Real 0,97 ± 0,08 0,20 ± 0,10 690 sec

• Kalman-Bayes has the best error performance if Kalman-Real is omitted. Kalman

Direct is only slightly better than Temp-Bayes but its computational cost is very

high. Also the computational cost increases as the number of beats included in

the training set are increased because the number of recursions increase. On

the other hand for Kalman-Bayes the computational time does not increase as

in Kalman-Direct when the number of beats included to the training set in-

creases, because in any case the number of recursions needed will be the same

as the time instants of the test data itself.

• The usage of Kalman filter with a priori information from Bayes-Train im-

proves the results of Bayes-Train.

• Overall it could be stated that spatio-temporal algorithms have better perfor-

mance than spatial methods and the best performance among the spatio-temporal

methods in terms of error metrics is belong to the Kalman-Bayes.

The epicardial potential map for 45 ms after the first stimulus are shown in Figure

4.11 respectively. The interpretations from those models are:

• The Kalman-Tikh improves the Tikhonov solutions significantly.

• Temp-Bayes and Kalman-Bayes solutions show some improvements compari-

son to Bayes-Train in terms of wavefront dispersion and false activated regions.

• Kalman-Direct and Kalman-Real solutions have the best performances in con-

structing the wavefront truly.
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• Although in terms of error metrics Kalman-Bayes is better than Kalman-Direct,

when epicardial maps are studied visually it is seen that Kalman-Direct per-

forms better to avoid dispersion at the wavefront. Kalman-Direct is also better

than the Temp-Bayes and its solution is close to the Kalman-Real case. But it

is also observed during our studies that the performance of the Direct-Kalman

approach depends on the sequence of the maps used in the training set due to

the recursive algorithm used to obtain STM. For example the result presented

here obtained when the last element of the training set is the propagation map

initiated from the first order neighborhood of the test data. When the sequence

of propagation maps is reversed the solutions of Kalman-Direct become even

worst than Bayes-Train.

Figure 4.12 shows the CC and RDMS plots for different time instants. From those

plots:

• The error metrics are worst at the initial and final time intervals. The possible

explanation of this poor performance is the lower values of the RMS signal at

those time instants due to the the small size of the activation wavefront at the

initial and final time instants.

• Tikhonov and Kalman-Tikh solutions can compete with other methods at the

initial time interval but especially after 60 ms these two solutions are signifi-

cantly worse than other solutions.

The interpretations in terms of temporal information can better be made when the

estimated epicardial potential signals for one node are plotted versus time as seen in

Figure 4.13. From that figure it can be seen that the the solutions of spatio-temporal

methods are more similar to the real one compared to spatial methods. Also due

to temporal constraints used the spatio-temporal methods are much smoother than

spatial methods with respect to time.

To summary of the conclusions for this section are:

• The solutions of other inverse ECG algorithms could be used to solve inverse
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(a) Real Distribution (b) Bayes-Train (c) Tikhonov

(d) Kalman-Direct (e) Kalman-Bayes (f) Kalman-Tikh

(g) Kalman-Real (h) Temp-Bayes (i) Colormap

Figure 4.11: Epicardial potential map for different STM solutions at 45 ms after the
first stimulus.
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Figure 4.12: The CC and RDMS values of different STM solutions with respect to
time.
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Figure 4.13: The real and estimated potential signal plot for the 365’th node on epi-
cardium
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problem of ECG with Kalman filter algorithm.

• This study is important in the sense that it shows the possible improvements

with the usage of spatio-temporal algorithms instead of spatial ones. Especially

the improvements obtained using Kalman-Bayes and Kalman-Tikh is important

because all a priori information used in those two techniques are obtained from

the spatial algorithm solutions.

• Kalman-Direct and Kalman-Bayes solutions performances are close to Kalman-

Real solution.

• Although Kalman-Direct seems to follow the wavefront very good its much

higher computational cost should also be considered. Also its dependence

on the sequence of elements in the training set considerably limits its usage.

Also the Kalman Direct performs worse than Kalman-Bayes, Kalman-Tikh and

Kalman-Real.

• Kalman-Bayes performs slightly better than Temp-Bayes but its computational

cost is higher. So if one can tolerate the extra computational time Kalman-

Bayes could be preferred instead of Temp-Bayes or Bayes-Train.

• The results of Kalman-Tikh are worse than Bayes-Train and its computational

time is higher but the advantage of Kalman-Tikh is that the necessity of using

training set could be avoided with that approach.

4.5 The Effects of Geometric Error in Cardiac Electrical Imaging and A Sta-

tistical Model to Overcome Those Errors: Enhanced Noise Model

In this section first the affects of geometric errors in cardiac electrical imaging for

the solutions obtained by Kalman Filter and Bayes-MAP will be studied. Then the

improvements obtained by modeling those geometric errors in a statistical sense will

be shown. According to this model geometric errors could be added to the inverse

solutions algorithms as independent and identically distributed Gaussian noise. The

new noise model is called the Enhanced noise model. The enhanced noise model is

firstly proposed by Kaipio et. al. and then used in optical tomography [76, 77]. To
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the best of our knowledge this is the first application of this model to inverse ECG

problem.

4.5.1 Effects of Geometric Errors

The effects of the geometric errors were investigated by several studies [28, 62]. In

those studies the effects of geometric errors are shown to be more important (cause

more error in the constructed inverse solution) than errors in the conductivity values

within the thorax. For that reason the errors due to wrong conductivity assignments

are not covered in this thesis.

The forward calculations are same as in 4.4. But the inverse calculations differ in or-

der to simulate geometric errors. During the inverse calculations, position or the size

of heart mesh is changed in the model and a new transfer matrix is calculated with

this faulty mesh (F-mesh). Using this F-mesh in the inverse solution the geometric

errors that could occur in noninvasive ECG imaging applications are simulated. Two

kinds of geometric errors are investigated in this study. These are the wrong determi-

nation of heart’s position and size. These two problems could often occur due to the

movement of the heart. First, the consequences of the faulty determination of heart’s

location are examined. The error is created by shifting the heart from its original posi-

tion by 2 to 25 mm in the positive–x direction and using the transfer matrix calculated

from these F-meshes in the inverse solution. Next, wrong estimation of heart’s size is

examined. The error is created by multiplying the heart’s surface by a scalar varying

from 0.90 to 1.10 to adjust its size. For example if the heart’s surface is multiplied

by 0.95, 5 percent reduction in the heart’s size is achieved. These error margins are

enough because the modern techniques used today for geometry determination usu-

ally have smaller errors than those. The training set used here is same as in 4.4. The

simulation procedure for geometric errors is shown at Figure 4.14.

The inverse problem solution algorithms used here are:

1. Tikhonov: It is same as the one used at the previous section.

2. Kalman-Real: It uses the epicardial potential maps of the test data itself to

calculate STM.
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Figure 4.14: The schematic representation of the simulation procedure to study geo-
metric errors.

3. Bayes-Real: It uses the epicardial potential maps of the test data itself to cal-

culate the mean and the covariance matrix.

4. Bayes-Train: It uses the epicardial potential maps from a training set to calcu-

late the mean and the covariance matrix (same as in 4.4).

5. Kalman-Bayes: It uses the solution of Bayes-Train to calculate STM (same as

in 4.4).

In Table 4.4 the effects of wrong determination of heart’s size on the inverse solutions

can be seen. From that table it is seen that geometric errors based on size of the heart

results in very significant degradations on the performances of the algorithms. This
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Table 4.4: The CC and RDMS values for wrong determination of heart’s size.

Tikhonov Regularization Kalman-Real Bayes-Real Kalman-Bayes Bayes-Train
Scale CC RDMS CC RDMS CC RDMS CC RDMS CC RDMS
1.00 0.78 0.60 0.97 0.20 0.96 0.24 0.88 0.42 0.84 0.48
0.95 0.58 0.85 0.71 0.73 0.75 0.66 0.67 0.77 0.69 0.72
0.90 0.29 1.13 0.30 1.14 0.51 0.93 0.30 1.13 0.44 1.00
1.05 0.69 0.73 0.78 0.64 0.80 0.59 0.67 0.75 0.75 0.65
1.10 0.47 0.99 0.50 0.97 0.59 0.87 0.43 1.04 0.56 0.91

Table 4.5: The CC and RDMS values for the wrong determination of the heart’s
location.

Tikhonov Regularization Kalman-Real Bayes-Real Kalman-Bayes Bayes-Train
Shift CC RDMS CC RDMS CC RDMS CC RDMS CC RDMS
0 mm 0.78 0.60 0.97 0.20 0.96 0.24 0.88 0.42 0.84 0.48
2 mm 0.77 0.62 0.96 0.26 0.95 0.28 0.88 0.43 0.84 0.49
6 mm 0.73 0.68 0.89 0.44 0.89 0.44 0.83 0.54 0.80 0.56

10 mm 0.66 0.78 0.77 0.64 0.80 0.60 0.74 0.69 0.74 0.68
15 mm 0.53 0.92 0.62 0.83 0.69 0.74 0.60 0.86 0.63 0.82
20 mm 0.38 1.07 0.49 0.96 0.60 0.84 0.47 1.00 0.53 0.93
25 mm 0.26 1.17 0.40 1.05 0.54 0.91 0.36 1.10 0.45 1.01

table also shows that Bayes-MAP algorithms are more immune to geometric errors

than the Kalman Filter algorithms.

In Table 4.5, the performances of solutions when the heart’s location is wrongly de-

termined are given. But when this type of geometric error is very small (eg. 2 mm

shift), it does not change the performances much but after 6 mm shift the effects of

geometric errors on the solutions become more obvious. Again the Bayes-MAP can

be said to be affected less from geometric errors in comparison to Kalman-Filter.

From the results presented in this section it is clear that geometric errors has very

significant effects on inverse solutions. Even 5 percent error in heart’s size decreases

the CC by approximately 25 percent. For the heart location errors significant increases

in errors is seen after the error exceeds 2 mm. The results presented here coincide

with earlier studies and show the need for a possible technique to reduce the effects

of geometric errors. This is a major obstacle on the way to practical usage of inverse

ECG problem.
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4.5.2 Enhanced Noise Model to Compensate Geometric Errors

In 4.5.1 it was shown that geometric errors reduce the quality of the inverse solutions

significantly. In this section the simulation results of a possible approach to compen-

sate the effects of geometric errors is given. This approach is called enhanced noise

model and this is described in detail in 3.3. In Figures 4.15 and 4.16 the change in

RDMS with different assumptions on the variance values of enhanced noise model are

given. From those plots it could be seen that using enhanced noise model improves

the performances of all algorithms used (Bayes-Train, Bayes-Real, Kalman-Bayes

and Kalman-Real). From that figure:

• The improvements in Kalman filter approaches are higher than Bayes-MAP

approaches

• The improvements for the algorithms that use very accurate a priori informa-

tion (Bayes-Real, Kalman-Real) are higher.

• After a point the increase in the assumed measurement noise due to enhanced

noise model increases error. So neither too low nor too high measurement noise

covariance is good. This requires the determination of the global minimum of

RDMS or maximum of the CC.

• The amount of assumed noise increases as the geometric error in the system is

increased which proves the idea behind enhanced noise model.

In Table 4.6 the improvements in terms of CC and RDMS using enhanced noise model

are given. The assumed measurement noise covariances are selected as the ones that

give the best CC values. From those results the significant improvements can be seen

clearly with the usage of enhanced noise model instead of normal noise model when

geometric errors are present.

In Figures 4.17 and 4.18 the epicardial potential maps calculated for size and scale

errors are given. Also the solutions that do and do not use enhanced noise model are

given at those figures too. From those figures it could be seen that the enhanced noise

model improves the solutions by a great amount. Also the solutions using enhanced

noise model of Kalman filter methods (Kalman-Real, Kalman-Bayes) are better than
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Figure 4.15: The change in RDMS values for different values of Enhanced noise
model with geometric errors present for Bayesian-MAP.

Table 4.6: The CC and RDMS values when enhanced noise model is used. Imp.
columns show the increase of CC in percentage compared to the solutions that do not
use enhanced noise model.

Kalman-Real Bayes-Real Kalman-Bayes Bayes-Train
Error Type CC RDMS Imp. CC RDMS Imp. CC RDMS Imp. CC RDMS Imp.

shift 10 0.92 0.37 19 0.86 0.49 16 0.81 0.58 9 0.77 0.62 4
shift 15 0.90 0.43 45 0.83 0.54 2 0.77 0.63 28 0.74 0.66 17

scale 0.95 0.94 0.34 25 0.85 0.50 16 0.81 0.57 21 0.76 0.63 10
scale 0.90 0.87 0.48 190 0.79 0.59 55 0.74 0.67 147 0.73 0,68 66
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Figure 4.16: The change in RDMS values for different values of Enhanced noise
model with geometric errors present for Kalman filter.
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(a) Real Distribution (b) Colormap

(c) Kalman-Real (d) Bayes-Real (e) Kalman-Bayes (f) Bayes-Train

(g) ENMKalman-Real (h) ENMBayes-Real(i) ENMKalman-Bayes(j) ENMBayes-Train

Figure 4.17: The comparison of epicardial potential maps for scale 0.95 that do and
do not use enhanced noise model. The ENM at the beginning of the model name
means the measurement noise covariance used is selected according to the enhanced
noise model.

Bayes-MAP methods (Bayes-Real, Bayes-Train). The enhanced noise model could

be said to have smoothing affect on the wavefront especially for the Bayes-MAP

based methods which is obviously due to the increased measurement error assump-

tion.

In this section it is shown that determining the measurement noise covariances ac-

cording to the enhanced noise model (adding the geometric errors to measurement

noise as independent and identically distributed Gaussian noise) greatly improves the

results. But the problem here is the determination of the amount of error that should

be inserted to the model to compensate geometric errors. As it is seen from Figure

4.15 there is a point where the errors are minimized and after that point the errors
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(c) Kalman-Real (d) Bayes-Real (e) Kalman-Bayes (f) Bayes-Train

(g) ENMKalman-Real (h) ENMBayes-Real(i) ENMKalman-Bayes(j) ENMBayes-Train

Figure 4.18: The comparison of epicardial potential maps for 15 mm shift that do
and do not use enhanced noise model. The ENM at the beginning of the model name
means the measurement noise covariance used is selected according to the enhanced
noise model.
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starts to increase again. Another important observation is the error decline at the

Kalman filter algorithms are a lot more comparison to Bayes-MAP algorithms when

enhanced noise model is used.

4.6 Determination of the Measurement and Process Noise Covariance Matrices

Using Residuals

In this section the measurement and process noise covariance matrices are estimated

using a method based on residuals. In order to test the performance of the methods

different scenarios are employed. In the first scenario both measurement and process

noise covariance matrices are calculated for the case that no geometric error exists

and only independent and identically distributed (iid) 15 or 30 dB noise is present.

By doing so the algorithm’s ability to compensate additive errors is tested. In the

second scenario again both process and measurement noise covariance matrices are

calculated but this time along with 30dB iid noise also geometric errors are present

at the system. This scenario is implemented to find out if residual based algorithm

is able to compensate the geometric errors. In the third and fourth scenarios only

measurement noise covariance matrix is calculated and the value that gives highest

CC value for 30 dB noise case is used as process noise covariance. The difference

between third and fourth scenarios is that the third scenario is simulated for 15 and 30

dB iid noise cases and the fourth scenario is tested for the case when both geometric

errors and 30 dB noise are present. As stated in 4.5.2 the determination of correct

values for the process noise covariance without using CC and RDMS is the most

important problem that needs to be solved before the usage of ENM in practical cases.

The fourth scenario at this section refers to that problem and tries to determine the

measurement noise covariance matrix that should be used in the system to compensate

geometric errors by using body surface potentials

At the first scenario the process and measurement noise covariances are estimated

for the cases where 30 dB or 15 dB independent and identically distributed Gaussian

noise is added to the system. The results for this scenario are given in Table 4.7. From

that table:
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Table 4.7: CC and RDMS values for Kalman-Real and Kalman-Bayes when noise
covariances are calculated from residuals. The Res prefix before method name indi-
cates the noise covariances that are calculated from residuals are used in solutions.
No prefix means that those solutions are obtained with noise covariances used for 30
dB.

Noise Kalman-Real Kalman-Bayes Res-Kalman-Real Res-Kalman-Bayes
CC RDMS CC RDMS CC RDMS CC RDMS

30 dB 0.97 0.20 0.88 0.42 0.95 0.26 0.88 0.43
15 dB 0.84 0.49 0.79 0.56 0.36 1.11 0.42 1.04

Table 4.8: CC and RDMS values for Kalman-Real and Kalman-Bayes when noise
covariances are calculated from residuals with geometric errors are present(15mm
shift in heart’s position and 0.95 change in heart’s size). The Res prefix before method
name indicates the noise covariances that are calculated from residuals are used in
solutions. No prefix means that those solutions are obtained with noise covariances
used for 30 dB.

Geometric Error Kalman-Real Kalman-Bayes Res-Kalman-Real Res-Kalman-Bayes
CC RDMS CC RDMS CC RDMS CC RDMS

15 mm Shift 0.62 0.83 0.60 0.86 0.56 0.90 0.57 0.89
0.95 scale 0.71 0.73 0.67 0.77 0.61 084 0.62 0.83

• When 30 dB noise is added to the system the algorithm successfully determine

noise covariances very close to optimal values.

• When the noise is increased to 15 dB the algorithm fails and the results obtained

are even worse than the solutions that uses the noise covariances for 30 dB case.

At the second scenario the performance of the algorithm when geometric errors are

present is tested. For that purpose 15 mm shift in heart’s location and 0.95 scale er-

ror in heart’s size are simulated as geometric errors. Then process and measurement

noise covariance matrices are calculated. Finally, epicardial potential map solution

is obtained using those noise covariances in Kalman-Real and Kalman-Bayes algo-

rithms. Table 4.8 shows that using the residual based method not only provides us no

improvements but also worsen the results in the case of geometric errors. This result

was not expected. The possible reason for this result is the search for many unknowns

(both process and measurement noise covariance matrices) with limited and indirect

information (body surface potentials).

In the next scenario the process noise covariance is fixed to the value that gives highest
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Table 4.9: CC and RDMS values for Kalman-Real and Kalman-Bayes when only
measurement noise covariances is calculated from residuals. The Res prefix before
method name indicates the noise covariance that is calculated from residuals are used
in solutions. No prefix means that those solutions are obtained with noise covariances
used for 30 dB. The R shows the scalar σ calculated for measurement covariance
matrix which is in the form σI.

Noise Kalman-Real Kalman-Bayes Res-Kalman-Real Res-Kalman-Bayes
CC RDMS CC RDMS CC RDMS R CC RDMS R

30 dB 0.97 0.20 0.88 0.42 0.97 0.23 0.0103 0.85 0.49 0.0159
15 dB 0.84 0.49 0.79 0.56 0.97 0.24 0.0177 0.85 0.49 0.0189

CC for 30 dB noise and the measurement noise covariance is calculated with the

algorithm in order to make analogy with the enhanced noise model.

In Table 4.9 the scenario that calculates only measurement error covariance is tested

when there is no geometric error and only 30 or 15 dB Gaussian noise is present.

From Table 4.9 it is seen that the solutions obtained with residual algorithm are

slightly worse than the optimal CC and RDMS values especially for the Kalman-

Bayes algorithm when results for 30 dB are examined. But when the SNR is de-

creased to 15 dB the measurement covariance matrix calculated from the residuals

improves the results significantly. Also it is seen that the measurement error covari-

ance calculated for Kalman-Real is smaller than Kalman-Bayes which is because the

STM used in Kalman-Real is more accurate than the Kalman-Bayes. This result is

important in the sense that the quality of the STM can be evaluated from those values

and the appropriate one from available STM’s can be chosen. But this is a preliminary

result and more study on this is required.

In Table 4.10 the scenario that calculates only measurement error covariance is tested

when geometric errors along with 30 dB Gaussian noise is present.

From Table 4.10 it is clear that instead of calculating both process and measurement

noise covariances, fixing the process noise covariance and calculating only measure-

ment noise covariances results in higher CC and lower RDMS. The solutions are im-

proved significantly with residual based algorithm when geometric errors are present.

It is also seen that the scalar (σ) that determines the measurement error covariance

matrix (σI) is calculated as same for both 0.95 scale and 15 mm shift errors. It is seen
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Table 4.10: CC and RDMS values for Kalman-Real and Kalman-Bayes when only
measurement noise covariance is calculated from residuals with geometric errors are
present(15mm shift in heart’s position and 0.95 change in heart’s size). The Res prefix
before method name indicates the noise covariance that is calculated from residuals
are used in solutions. No prefix means that those solutions are obtained with noise
covariances used for 30 dB.The R shows the scalar (σ) calculated for measurement
covariance matrix which is in the form (σI).

Geometric Error Kalman-Real Kalman-Bayes Res-Kalman-Real Res-Kalman-Bayes
CC RDMS CC RDMS CC RDMS R CC RDMS R

15 mm Shift 0.62 0.83 0.60 0.86 0.87 0.47 0.0103 0.77 0.64 0.0162
0.95 scale 0.71 0.73 0.67 0.77 0.92 0.38 0.0103 0.81 0.57 0.0162

that the calculated measurement covariance matrix does not change much for differ-

ent amounts of geometric errors. For example for Kalman-Bayes it is 0.0159 for no

geometric error case, 0.0160 for 6 mm shift, 0.0162 for 15 mm shift and 0.0164 for

25 mm shift. From these it is clear that the calculated measurement noise covariance

increases as the amount of geometric error increases which supports the ENM.

At Figure 4.19 the epicardial maps with and without residual based method are shown

for 15 mm location error. From those maps it is clear that the epicardial potential

distributions are constructed with higher correlation to the real distribution when the

measurement noise covariance matrix is calculated with the residual based algorithm.

Overall when both process and measurement error covariance matrices are calculated,

the residual based algorithm can only determine near to optimal noise covariances

for small errors like 30 dB. When the error increases to 15 dB Gaussian noise or

geometric errors are included to the system the solutions obtained are even worse

than the case when error covariances of 30 dB noise is used. If the long processing

time (approximately 80 minutes to calculate the noise covariances) is also considered

we don’t think this method is appropriate when both process and measurement noise

covariance matrices are desired to be calculated.

But if the process error covariance matrix is fixed and only measurement error co-

variance is calculated, significant improvements are observed when geometric errors

are present or the SNR ratio is small (15dB). For the cases without geometric er-

rors and high SNR (30 dB) the solutions are again close to optimal but slightly worse
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(a) Real Distribution (b) Kalman-Real (c) Kalman-Bayes

(d) Colormap (e) Res-Kalman-Real (f) Res-Kalman-Bayes

Figure 4.19: Epicardial potential maps for 54 ms after the first stimulus. The map
solutions of both Kalman-Real and Kalman-Bayes are given when 15 mm shift geo-
metric error is present. The Res prefix before the name of the method stands for the
measurement noise covariance is calculated with the residual based algorithm. When
there is no prefix it means that the same noise covariance matrices as the case in 30
dB Gaussian noise are used.

especially for Kalman-Bayes algorithm. We think the significant improvements in ge-

ometric error cases are more important than the slight decreases in error performance

for the cases without geometric errors and this algorithm can be used for inverse ECG

problem. But here again a major disadvantage should be noted which is the long

processing time which is approximately 60 minutes. Another promising result is that

the measurement noise covariance calculated for Kalman-Bayes is higher than the

Kalman-Real. The reason for this increase is due to the quality of the STM used in

algorithms. This result should be further studied and it could be used as an indicator

of the quality of the STM used in Kalman filter.

4.7 Expectation Maximization Algorithm to Determine Measurement and Pro-

cess Noise Covariance Matrices

As described before the values of measurement and process noise covariances are also

critical in order to obtain good solutions. At this section expectation maximization
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algorithm is used to determine those covariances.

The first scenario used is for the case of additive white Gaussian noise. For that

purpose body surface potentials are simulated from the epicardial potentials, at 15

or 30 dB SNR. Then from those BSP’s the epicardial potentials are estimated using

Kalman-Real and Kalman-Bayes approaches. The initial error covariances needed

for EM algorithm are chosen randomly as 0.01xIN for process and 0.16xIM for mea-

surement noise where IN is the NxN and IM is the MxM identity matrices. Here N is

the number of epicardial nodes and M is the number of BSP measurement electrodes.

In Figure 4.20 the RDMS versus iteration number plots are shown. From those plots

it is seen that the EM algorithm is able to determine the correct values for noise co-

variances for both 15dB and 30 dB Gaussian noise cases. Also the algorithm achieves

to find the covariances not only for Kalman-Real case both also for Kalman-Bayes

which is important because the usage of Kalman-Real is not possible for practical

cases. Another important fact is no significant improvement is observed in terms of

RDMS values after the first five iterations which means that epicardial potential esti-

mations could be obtained just after five iterations. Because each iteration takes about

65 seconds it is wise to avoid unnecessary iterations.

In the second scenario only the measurement error covariance matrix is calculated

to compensate the effects of geometric errors. For that purpose the process noise

covariance is fixed and only the measurement noise covariance is updated with EM.

The initial process and measurement noise covariance matrices are the ones that give

the best CC values when no geometric error is present. Only the measurement noise

covariance is updated at this scenario to make an analogy with the enhanced noise

model described before where the geometric errors are compensated with the increase

in the measurement error covariance. In Figure 4.21 RDMS versus iteration plots for

the geometric errors 15 mm shift and 0.95 scale are given for the Kalman-Real and

Kalman Bayes algorithms. The inferences from those plots are:

• Very significant improvements are obtained in terms of error metrics.

• The convergence is completed usually at five iterations.

• The global minimum point sought for ENM is found with EM algorithm from
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(b) 30 dB Gaussian Noise for Kalman-Bayes
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(c) 15 dB Gaussian Noise for Kalman-Real
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(d) 15 dB Gaussian Noise for Kalman-Bayes

Figure 4.20: The evolution of RDMS values with respect to iterations of the EM
algorithm for Kalman-Real and Kalman-Bayes techniques for 15 and 30 dB Gaussian
noise.
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the body surface potentials and this is a very important result to compensate

geometric errors.

In the last scenario both the measurement and process noise covariances are updated

with EM algorithm for the case where the geometric errors are present. As in the

second scenario the initial process and measurement noise covariance matrices are

selected as the ones that give the best CC values when no geometric error is present

and the geometric errors simulated are the 15 mm shift and 0.95 scale. This time

as seen from Figure 4.22 again improvements are obtained but unlike the first and

second scenarios the RDMS values decrease slowly which requires more iterations.

Another observation from those plots is that the improvements in the Kalman-Real

algorithm is higher than those in Kalman-Bayes algorithm, which is due to the quality

of the a priori information. This result was also observed with the ENM.

The epicardial potential maps for the cases explained in scenario one are given in

Figures 4.23. For the second and third scenarios the results are shown in Figure

4.24 and 4.25. The epicardial potentials maps also support our earlier inferences and

improvements using EM algorithm are obvious.

In this section the EM algorithm is used to calculate the process and measurement

noise covariances. The overall results obtained with EM studies are:

• For 15 and 30 dB Gaussian noise cases only five iterations with the EM algo-

rithm is enough to calculate the optimal noise covariances.

• For the case of geometric errors when only measurement noise covariance is

updated with EM, the results are improved significantly with EM algorithm.

This result also supports the assumption made at the enhanced noise model.

• For the case of geometric errors when both measurement and process noise co-

variances are updated by EM, the improvements are smaller than those obtained

when only the measurement noise covariance matrix is updated by EM. Also

the convergence rate is much slower than first and second scenarios (it still

converges after 500 iterations). The possible reason for smaller convergence
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(c) Scale 0.90 and 0.95 for Kalman-Real
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Figure 4.21: The evolution of RDMS values with respect to iterations of the EM
algorithm which updates only measurement noise covariance for Kalman-Real and
Kalman-Bayes techniques for 10 and 15 mm shift and 0.90 and 0.95 scale geometric
errors.
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Figure 4.22: The evolution of RDMS values with respect to iterations of the EM
algorithm for Kalman-Real and Kalman-Bayes techniques for 15 mm shift and 0.95
scale geometric errors.
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is because determining the optimal values for both measurement and process

noise covariances is a lot more complex than determining only the measure-

ment noise covariance.
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(a) Real Distribution (b) Colormap

(c) Kalman-Bayes (d) EM-Kalman-Bayes

(e) Kalman-Real (f) EM-Kalman-Real

Figure 4.23: Epicardial potential maps for 39 ms after the first stimulus. The map
solutions of both Kalman-Real and Kalman-Bayes are given when 15 dB Gaussian
noise is added to the system. The EM prefix before the name of the method stand for
the noise covariances are calculated with EM algorithm and other solutions use the
same noise covariance matrices as the case in 30 dB Gaussian noise.
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(a) Real Distribution (b) Colormap

(c) Kalman-Bayes (d) EM-Kalman-Bayes (e) EM-Kalman-Bayes only R

(f) Kalman-Real (g) EM-Kalman-Real (h) EM-Kalman-Real only R

Figure 4.24: Epicardial potential maps for 39 ms after the first stimulus. The map
solutions of both Kalman-Real and Kalman-Bayes are given when 15 mm shift geo-
metric error is present. The EM prefix before the name of the method stands for both
measurement and process noise covariances are calculated with EM algorithm. ’only
R’ means only the measurement error is updated and when there is no prefix it means
that the same noise covariance matrices as the case in 30 dB Gaussian noise are used.
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(a) Real Distribution (b) Colormap

(c) Kalman-Bayes (d) EM-Kalman-Bayes (e) EM-Kalman-Bayes only R

(f) Kalman-Real (g) EM-Kalman-Real (h) EM-Kalman-Real only R

Figure 4.25: Epicardial potential maps for 39 ms after the first stimulus. The map
solutions of both Kalman-Real and Kalman-Bayes are given when 0.95 scale geo-
metric error is present. The EM prefix before the name of the method stands for both
measurement and process noise covariances are calculated with EM algorithm. ’only
R’ means only the measurement error is updated and when there is no prefix it means
that the same noise covariance matrices as the case in 30 dB Gaussian noise are used.
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CHAPTER 5

CONCLUSIONS

This thesis focuses on three major problems. The first one is the solution of inverse

problem of ECG using spatio-temporal methods especially with Kalman filter. The

second study is on the effects of geometric errors and a noise model to include geo-

metric noise to the general formulation. The last study focuses on the determination

of process and measurement noise covariances using body surface potentials with and

without geometric errors. The inverse solution scenarios used in those three studies

are

1. Tikhonov: The zero’th order Tikhonov regularization solution in which a dif-

ferent regularization parameter was calculated using the L-Curve approach for

each time instant.

2. Kalman-Tikh: The solution of the zero’th order Tikhonov regularization was

used to calculate the STM.

3. Bayes-Real: The epicardial potential maps of the test data itself are used to

calculate the mean and the covariance matrix in the spatial Bayesian MAP es-

timation.

4. Kalman-Real: The epicardial potential maps of the test data itself were used

to calculate the STM.

5. Bayes-Train: The epicardial potential maps from a training set were used to

calculate the mean and the covariance matrix in the spatial Bayesian MAP es-

timation.

95



6. Temp-Bayes: The spatio-temporal Bayesian MAP solution with a priori infor-

mation from the training set.

7. Kalman-Bayes: A training set was used to obtain the solution using the spatial

Bayesian MAP (Bayes-Train) and then this solution was used to calculate the

STM.

8. Kalman-Direct: A training set was used to calculate the STM directly.

5.1 Spatio-temporal Methods for Inverse Problem of ECG

In this work, Tikhonov, Kalman-Tikh, Bayes-Train, Kalman-Bayes, Temp-Bayes and

Kalman-Direct approaches were compared. But before the comparisons could be

made, one of the major difficulties for the solution of inverse problem of ECG us-

ing the Kalman filter approach had to be solved. This difficulty was the determi-

nation of the state transition matrix (STM) which models the temporal evolution of

the epicardial potentials for the state-space model. Kalman-Tikh, Kalman-Bayes and

Kalman-Direct are possible solutions to this difficulty.

Also in order to decrease the computational cost while the STM is calculated from

epicardial potentials, one node was assumed to be related only a few nodes at the

previous time instant, rather than all nodes so STM matrix was constructed as a sparse

matrix. It was shown that this simplification has no significant effects on the solution

provided that the related nodes are selected carefully. We also showed that the best

choice is to take advantage of both the locality property (1’st order neighbors) and the

shape of the activation wavefront (the nodes that are activated at the same time).

From the solutions the following inferences were made:

• Kalman-Tikh and Kalman-Bayes algorithms could be used to solve the inverse

ECG problem with Kalman filter without the need for the true epicardial poten-

tial distribution.

• Improvements are obtained by using spatio-temporal methods instead of only

spatial methods.
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• The quality of Kalman-Direct solution is highly dependent on the sequence

of the elements in the training set and its computational cost is very high, es-

pecially when the number of epicardial potential recordings included in the

training set increases.

• Kalman-Bayes performs slightly better than Temp-Bayes but its computational

cost is higher. So if one can tolerate the extra computational time, Kalman-

Bayes could be preferred instead of Temp-Bayes or spatial Bayes.

• The results of Kalman-Tikh are worse than Bayes-Train and its computational

time is higher but the advantage of Kalman-Tikh is that the necessity of using

a training set could be avoided with that approach.

5.2 The Effects of Geometrics Errors to the Solution of Inverse ECG Problem

Two different kinds of geometric errors were studied in this work; wrong determi-

nation of the heart’s size and location. The effects of geometric errors were studied

for five inverse problem algorithms which are Tikhonov, Kalman-Real, Bayes-Real,

Bayes-Train and Kalman-Bayes.

The inferences were:

• The geometric errors significantly reduce the performances of the inverse prob-

lem algorithms.

• The Bayesian MAP estimation methods are more immune to geometric errors

in comparison to Kalman filter methods.

To overcome the performance decrease that occurs due to the geometric errors, these

errors were modeled as additive Gaussian noise in the inverse ECG problem defini-

tion. This approach was called the enhanced noise model (ENM). In the ENM, the

overall noise covariance matrix was obtained by adding the measurement noise and

geometric noise covariance matrices. The conclusions are:

• ENM achieved very significant improvements in the solutions of Kalman-Real,
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Kalman-Bayes, Bayes-Train and Bayes-Real methods when geometric errors

are present.

• The amount of increment at the measurement covariance matrix is critical be-

cause there is a global minimum point where the ENM performs best and then

the errors started to increase.

• Kalman-Real and Bayes-Real showed more improvements than Kalman-Train

and Bayes-Train due to the high quality of the a priori information used in

those algorithms .

5.3 Estimation of the Measurement and Process Noise Covariance Matrices

from Body Surface Potentials

The estimation of the correct noise covariances is critical for both Bayesian MAP

and Kalman filter methods. As a part of this thesis, two different approaches to de-

termine noise covariances were modified to be used for inverse ECG problem. The

performances of those methods were tested for the Kalman-Bayes and Kalman-Real

algorithms. Also both of these approaches were tested for two different cases.

Case 1 Both process and measurement covariance matrices were calculated.

Case 2 The process noise covariance matrix was fixed to a value that is calculated

previously for the simulation study at 30 dB SNR when there are no geometric

errors, and only measurement noise covariance was calculated.

The first method is based on residuals. The conclusions for Case 1 are:

• Algorithm determined the near optimal noise covariances for high SNR ratios

(30 dB).

• It failed when the SNR is low (15dB) or geometric errors are present.

• The computation time was high (80 minutes).

For the Case 2:
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• The algorithm calculated near optimal values not only for high SNR (30dB) but

also for lower SNRs (15dB). Significant improvements were obtained for the

low SNR case when the covariance calculated with the residual algorithm was

used instead of fixed measurement noise covariance.

• When geometric errors were present, the calculated measurement covariance

matrix resulted in major improvements in the solutions.

• Computation time was lower than the previous case (60 minutes).

The second method is based on expectation maximization (EM) and it is tested to de-

termine the noise covariance matrices with and without geometric errors. The results

showed that:

• The EM algorithm could calculate the optimal process and measurement noise

covariances for both 15dB and 30 dB SNR cases when there are no geometric

errors. Also the convergence rate was very high and near optimal results were

obtained just after five iterations (both for Case 1 and Case 2).

• When only the measurement noise covariance was updated with EM (Case 2)

to make an analogy with the assumption made in the ENM, the convergence

rate of the algorithm was again very fast, usually five iterations were enough

to converge. The improvements were very significant and coincide with the

results of the ENM.

• The EM algorithm (Case 1) also achieved to enhance the solutions when both

process and measurement noise covariances were updated, when the geometric

errors along with 30 dB Gaussian noise were present. But this time the iteration

number should be higher (although the improvements obtained per iteration de-

creases as the iteration number increases the algorithm still showed improve-

ments after 500 iterations). The improvements obtained there were smaller than

when only measurement noise covariance was updated. A possible reason for

this is, so many parameters were tried to be determined with little information.

• The improvements obtained with EM algorithm were higher for the Kalman-

Real comparison to the Kalman-Bayes. That result coincides with the results
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obtained with ENM and it was probably due to the high quality of the a priori

information used in Kalman-Real.

• Overall it was determined that using EM one could calculate not only the noise

covariance matrices for Gaussian noise cases but also reduce the affects of geo-

metric errors with the information obtained only from body surface potentials.

5.4 Future Works

• Studies on the estimation of the STM directly from the body surface potentials

could be studied.

• Here we have assumed geometric errors as white Gaussian noise and even this

wrong assumption improves the solutions significantly. Actually geometric er-

rors are not Gaussian so adding the effects of the geometric errors to the formu-

lation with a more convenient distribution could further improve results.
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