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ABSTRACT

ALTERNATIVE MATHEMATICAL MODELS FOR REVENUE MANAGEMENT
PROBLEMS

Terciyanlı, Erman

M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Zeynep Müge Avşar

July 2009, 161 pages

In this study, the seat inventory control problem is considered for airline networks from the

perspective of a risk-averse decision maker. In the revenue management literature, it is gen-

erally assumed that the decision makers are risk-neutral. Therefore, the expected revenue is

maximized without taking the variability or any other risk factor into account. On the other

hand, risk-sensitive approach provides us with more information about the behavior of the

revenue. The risk measure we consider in this study is the probability that revenue is less

than a predetermined threshold level. In the risk-neutral cases, while the expected revenue

is maximized, the probability of revenue being less than such a predetermined level might

be high. We propose three mathematical models to incorporate the risk measure under con-

sideration. The optimal allocations obtained by these models are numerically evaluated in

simulation studies for example problems. Expected revenue, coefficient of variation, load fac-

tor and probability of the poor performance are the performance measures in the simulation

studies. According to the results of these simulations, it shown that the proposed models can

decrease the variability of the revenue considerably. In other words, the probability of revenue

being less than the threshold level is decreased. Moreover, expected revenue can be increased

in some scenarios by using the proposed models. The approach considered in this thesis is
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especially proposed for small scale airlines because risk of obtaining revenue less than the

threshold level is more for this type of airlines as compared to large scale airlines.

Keywords: Revenue management, Seat inventory control, Mathematical programming, Risk
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ÖZ

GELİR YÖNETİMİ PROBLEMLERİ İÇİN ALTERNATİF MATEMATİKSEL
MODELLER

Terciyanlı, Erman

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Zeynep Müge Avşar

Temmuz 2009, 161 sayfa

Bu çalışmada, havayolu ağları için koltuk envanter kontrolü problemi riskten kaçınan bir karar

vericinin bakış açısıyla incelenmektedir. Gelir yönetimi literatüründe, genelde karar veri-

cilerin risk-nötr olduğu varsayılmaktadır. Bundan dolayı, değişkenlik ya da başka bir risk

faktörü göz önüne alınmadan beklenen gelir için en yüksek değer bulunmaya çalışılmaktadır.

Öte yandan, riske duyarlı yaklaşım gelirin davranışı hakkında daha fazla bilgi sağlamaktadır.

Bu çalışmada, gelirin belirlenmiş bir eşik değerinden düşük olması olasılığı risk ölçüsü olarak

kullanılmaktadır. Risk-nötr durumlarda, beklenen gelir için en yüksek değer elde edilirken

gelirin belirlenmiş bir değerden düşük olması olasılığı yüksek olabilmektedir. Bu çalışmada,

belirtilen risk ölçüsünü dikkate alarak üç matematiksel model önerilmiştir. Örnek prob-

lemler için, modellerden elde edilen optimal dağıtımlar simülasyon çalışmalarında sayısal

olarak değerlendirilmiştir. Beklenen gelir, değişkenlik katsayısı, yük faktörü ve kötü perfor-

mans olasılığı simülasyon çalışmalarında kullanılan performans ölçütleridir. Bu simülasyon

sonuçlarına göre, önerilen modellerin gelirdeki değişkenliği azaltabildiği gösterilmiştir. Başka

bir deyişle, gelirin eşik değerinden düşük olma olasılığı azaltılmıştır. Bunun yanında, bazı

senaryolarda beklenen gelir önerilen yöntemler kullanılarak arttırılabilmiştir. Eşik değerinin

altında gelir elde etme riski küçük ölçekli havayolu şirketlerinde büyük ölçekli şirketlere
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oranla daha yüksek olduğundan, bu tezde çalışılan yaklaşım özellikle küçük ölçekli havayolu

şirketleri için önerilmektedir.

Anahtar Kelimeler: Gelir yönetimi, Koltuk stok kontrolü, Matematiksel programlama, Risk
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Group. I would like to send my special thanks to Prof. Dr. Muammer Ermiş and Prof. Dr.
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CHAPTER 1

INTRODUCTION

Revenue management (RM), also called as Yield Management (YM), is basically defined as

a tool for maximizing revenue by using demand management decisions. The most common

definition for RM in airline industry is due to American Airlines :”Selling the right seats to

the right people at the right time”. More generally Pak and Piersma (2002) define revenue

management as follows: ”The art of maximizing profit generated from a limited capacity of

a product over a finite horizon by selling each product to the right customer at the right time

for the right price”.

Revenue management history starts with the deregulation of the airline industry in USA in

1970s. Therefore, airline industry is the main area where revenue management is successfully

applied. Moreover, RM can be used in most of the industries where demand management de-

cisions are critical as in the cases of hotels, car rental, retailing, media and broadcasting, nat-

ural gas storage and transmission, electricity generation and transmission, air cargo, theaters,

sporting events and restaurants.

This thesis deals with the revenue management applications in airline industry. The appli-

cability of revenue management in airline industry results from the following typical char-

acteristics of the sector. First of all, the product is perishable; unsold seats at the departure

time of the flight cannot be sold later. Secondly, the profit is maximized by finding the right

combination of the passenger types on the flight. Since operating costs of a flight, such as

airport costs, fuel costs, and personnel costs, are much higher than the total marginal costs of

passengers, it is assumed that marginal cost of a passenger is zero. That is, objective of the

airline revenue management problem is maximization of the revenue for the flights that are

already scheduled. Scheduling of the flights is a structural decision for the airline companies
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Figure 1.1: An example airline network.

and out of the scope of revenue management.

Briefly, revenue management problem in airline industry is defined as managing the capacities

of the flights in a network, where flights can be in a connecting or local traffic. An example

graph that contains a connecting network and a local traffic is given in Figure 1.1. The traffic

between nodes F and G is called local traffic and the traffic among nodes A to E is called

connecting network traffic. The nodes in this graph are the locations of the airports and they

are connected by the flights shown with arcs. Node C in this graph is called as hub. A hub is an

airport that an airline uses as a transfer point to get passengers to their intended destination.

A journey between an origin node and a destination node is called an itinerary (OD). A

product is an origin-destination-fare combination, that is abbreviated as ODF. In single-leg

flights, because of the uniqueness of the origin-destination pair, the products are defined for

the fare classes. On the other hand, because of the increasing number of origin-destination

pairs, network traffic is more complex.

In airline revenue management, fare classes are determined according to the segments of

customers. Customer segments differ according to the characteristics such as type of the cus-

tomers and condition of the tickets. Customer types are generally considered in two groups;

leisure traveler and business traveler. That is, customer types are not only classified accord-
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ing to locations of the seats on the aircrafts such as first, business and economy classes, but

also according to the characteristics of the customers such as the arrival time of the demand.

Leisure travelers, generally tend to arrive earlier than the business travelers. The conditions

of the tickets are also important for defining customer segments. These are basically called as

options for cancellation, overnight stay, refund and advance purchase option. Low price tick-

ets (discounted fares) are offered for leisure travelers to attract them at the beginning of the

booking horizon and increase the capacity used. The booking horizon, or booking period, is

the period of time in which booking is available. High fare tickets (full fare tickets) are offered

to the business travelers and they generally have some options such as cancellation and partial

or full refund. The load factor which is defined as the ratio of seats filled on a flight to the

total number of seats available would be increased in a network by offering discounted fares.

However, revenue per passenger may be increased by offering full fare tickets. Hence, the

performance of a network is not only measured by the earned revenue, but also by load factor

and revenue per passenger. In order to decrease the risk of empty departure, overbooking is

considered. Overbooking means selling more seats than the capacity. Overbooking is used

for coping with the uncertainties regarding the sold tickets such as cancellation and no-show.

Cancellation is an option for customer and the customer with that option can cancel the tick-

ets and get a refund of partial or full fare. Moreover, some of the customers do not arrive at

the time of departure without cancellation, which is called no-show. A revenue management

glossary due to McGill and van Ryzin (1999) is given in the Appendix for clarifying the defi-

nitions of the terms in revenue management that may have different meanings in more general

contexts.

There are two approaches for revenue management in airline industry : capacity allocation,

also called as seat inventory control, and dynamic pricing. The corresponding classification

due to Talluri and van Ryzin (2005) is as follows: Quantity based RM and Price based RM. In

seat inventory control policy, the decision maker, who has the responsibility for determining

the capacity allocations and/or fares makes the decisions of accepting or rejecting the ticket

requests. There are multiple tickets that differ in options and fares. Availability of these tickets

for the customer changes over booking horizon. At the beginning of the booking horizon,

most of the tickets are open for sale and they are closed as the departure time of the flight gets

closer. On the other hand, dynamic pricing offers only one product with a price that changes

over time. Both of these approaches are used in real life according to the characteristics of the

3



sector and the distinction between the approaches is not always sharp. Increasing the price of a

good is not so different than closing a discounted class. In the sectors where changing prices is

costly, it is logical to use capacity allocation instead of dynamic pricing. The cost of changing

prices is due to the operational costs such as announcing them to the customers in print media

or tariff books. In some sectors, firms have more price flexibility than quantity flexibility. In

online retailing, the cost of changing prices is nearly zero and dynamic pricing is used in order

to manage inventories and revenues. On the other hand, in restaurants, using dynamic pricing

causes updating price lists frequently, which is impractical and costly. This situation is not so

different for airline industry. Although some firms use dynamic pricing, most of the airline

companies announce their prices over a given time interval and do not update them frequently

because of the advertising reasons. Moreover, in seat inventory control, the only variable that

must be stored and announced is the status of the product that is open or close. Because of the

easy implementation of seat inventory control policy, it is widely used in the airline industry

and this thesis focuses on seat inventory control policies.

Seat inventory control is considered under two headings depending on the number of flight

legs. Single-Leg Seat Inventory Control is used to maximize revenue for a direct flight be-

tween an origin-destination pair, which is generally isolated from the other flights in the net-

work. The main disadvantage of Single-Leg Seat Inventory Control is optimizing the booking

limit locally, whereas in real life, companies want to maximize revenue for the whole network.

Network Seat Inventory Control deals with all of the legs in a network simultaneously. The

main disadvantage of the Network Seat Inventory Control is the complexity of the problem

which increases as network gets larger.

The main approach in seat inventory control is setting booking limits and protection levels

for each fare class in order to maximize revenue. The number of seats that are protected for

a high-fare class and not available for low-fare classes is called the protection level. On the

other hand, booking limit is defined as the number of seats that are allocated to a specific fare

class. A control policy is called partitioned booking limit control policy when booking limits

are used in such a way that each fare class has a separate booking limit. In other words, a

seat that is allocated for a fare class cannot be booked for another class. The aircraft departs

with empty seat when demand is lower than the booking limit in partitioned booking limit

control policy. Another policy is nested booking limit control policy such that fare classes are

ordered according to some criteria and seats that are available for a low ranked fare class are
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also available for a high ranked one. Nested control policy gives higher revenues and load

factors than the partitioned policy.

Bid price control policy is another common policy for seat inventory control in airline revenue

management problems. In bid price control policy, a request is accepted if fare of the class ex-

ceeds the opportunity cost of the corresponding itinerary. The opportunity cost of an itinerary

is defined as the expected loss in the future revenue from using the capacity now rather than

reserving it for future use. It is approximately calculated by summing the bid prices of the

flight legs the itinerary uses. A bid price is the net value for an incremental seat on a partic-

ular flight leg in the airline network. The difference between bid price and opportunity cost

is generally not clear. Although sum of bid prices of the flight legs the itinerary uses is an

approximation for opportunity cost, there need not be one-to-one correspondence between

the optimal bid prices and the opportunity costs. Talluri and van Ryzin (2005) explains this

situation with an example. Consider a single-resource problem in which high-revenue prod-

ucts arrive before low-revenue products. In this case, the optimal bid price is zero. On the

other hand, the opportunity cost at each point in time t will in general not be zero. The main

difference in bid price control policy compared to booking limit control policies is that the

class is open without any limit when the fare of the ODF exceeds the opportunity cost of the

corresponding itinerary. The main advantage of the bid price approach is that it is very easy to

implement. It requires only a comparison between bid prices of the legs and fare of the ODF.

The mathematical models developed for airline network revenue management problems are

classified into two groups according to the assumptions for demand behavior: deterministic

and stochastic models. Deterministic models assume that demand for a particular ODF is

equal to the expected value. On the other hand, in probabilistic models, probabilistic nature

of the demand is incorporated into the models.

In the RM literature, it is generally assumed that the decision makers are risk-neutral. There-

fore, the expected revenue is maximized without taking the variability or any other risk factor

into account. Levin et al. (2008) state that the long term average revenues will be maximized

as long as good risk-neutral strategies are employed because of the law of large numbers. In

real life networks, there are hundreds or thousands of successive flight departures in a year and

the impact of the revenue of a single case (a flight for a single-leg or network traffic) on the

gross revenue is not severe. However, it is also important to manage the demand in the short
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term by incorporating the risk factors, especially for the small sized airlines or new flights.

Small sized airlines change their routes according to the changes in demand especially be-

cause of the seasonal effects. In these cases, the number of flight departures in a year is small

according to general network RM problems. Additionally, risk factors can be included in the

revenue management problems for new flights with higher risks as compared to the existing

ones.

In this thesis, a network seat inventory control problem is considered from the perspective of

a risk-sensitive decision maker. This risk-sensitive approach provides us with more informa-

tion about the behavior of the revenue. As it is given in the previous paragraph, the studies

with risk-neural cases only aim to maximize the total expected revenue. This objective is not

sufficient when the decision maker desires to keep the total revenue higher than a predeter-

mined level. In the risk-neural cases, the expected revenue might be high, but the probability

of revenue being less than that predetermined level might be high. This predetermined level

is called the threshold level throughout the thesis. In contrary to the risk-neutral studies in the

literature, our approach solves the dilemma between expected revenue and the probability of

revenue being less than a predetermined level. In this study, overbooking, cancellation and

no-show are not allowed. It is assumed that customers make their decisions for the classes that

they request and a shift between classes does not occur. Moreover, customers arrive sequen-

tially, which means batch booking is not allowed. The probabilistic nature of the demand is

taken into account in the proposed models. In the real life problems, it is likely that the deci-

sion makers have a revenue threshold level and they want to minimize the probability that the

revenue is less than this level. This situation is considered in this study. The risk factor is used

in the proposed mathematical programming models by minimizing or limiting the probability

that the revenue is less than a threshold level.

Three probabilistic mathematical models are proposed in this thesis. These are called SLP-

RM, PMP-RC and RRS. SLP-RM and RRS are linear programming formulations, but PMP-

RC is an integer programming formulation. There are two SLP-RM models that are used

successively. SLP-RM-1 minimizes probability that the revenue is less than a threshold level

for a number of sample demands. SLP-RM-2 model maximizes the expected revenue by

using the output of the SLP-RM-1 model. PMP-RC maximizes the expected revenue with an

additional constraint on the probability that the revenue is less than a threshold level. RRS

model maximizes the revenue by solving the model many times for different realizations of
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demand. The methodology we propose for the use of the RRS model is as follows: the bid

price for an itinerary is approximated by taking the average of the bid prices for the instances

with revenue less (or more) than the threshold level. It is assumed that the risk-sensitive (risk-

taking) decision makers use the average of the bid prices for the instances with the revenue

less (more) than the threshold level.

Although the concept of risk-sensitivity is extensively studied in the literature for different

types of problems, there are only a few studies for risk-sensitive approaches in revenue man-

agement. These studies can be classified into two groups according to the types of the prob-

lems: pricing problems and seat inventory control problems. The dynamic pricing studies

are similar to the ones proposed for general inventory models. In these studies, risk is for-

mulated in the objective functions in order to find a price for the good throughout the selling

horizon. In a recent study, Levin et al. (2008) introduce a risk measure by augmenting the

expected revenue with a penalty term for the probability that total revenues fall below a de-

sired level of revenue. This risk measure is equal to the probability that the total revenues

fall below a threshold level and similar to one that is used in this thesis. Levin et al. (2008)

propose this approach for optimal dynamic pricing of perishable services or products. There

are only a few studies in the literature that incorporate risk-aversion into the classical seat

inventory control problem for airline industry. Weatherford (2004) proposes a new concept

called expected marginal seat utility (EMSU). The EMSU is based on the expected marginal

seat revenue (EMSRa) heuristic introduced by Belobaba (1989). In EMSU, the revenue gained

from a ticket is substituted by the utility of its revenue. Barz and Waldmann (2007) extend

the static and dynamic models for single-leg revenue management problem to introduce the

risk using an exponential utility function. For seat inventory control, Çetiner (2007) proposes

two mathematical programming models by including the variance of the revenue in addition

to the expected revenue. To conclude, this thesis is the first study in the RM literature that

uses seat inventory control for risk-sensitive cases without the need of estimating hardly de-

fined parameters, which simplifies the implementation and the decision making procedure. In

the previous studies, the estimation of utility function parameters and penalty parameters for

variances are not straightforward. In our proposed approach, the only parameter that must be

estimated by the decision maker is the threshold level for revenue. The main disadvantage of

the SLP-RM and PMP-RC models are the computational complexities of the models.

The organization of the thesis is as follows: In Chapter 2, the related literature is reviewed
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for single-leg and network RM problems. Chapter 3 presents the network seat inventory

models and control policies in detail. The alternative models and the control techniques we

propose for the RM problems for risk aversion are in Chapter 4. Chapter 5 is devoted to the

simulation models and estimation of the parameters. Chapter 6 is on the numerical analyses

and comparisons of the proposed approach with the existing approaches in the literature. The

thesis ends with concluding remarks and suggestions for future research in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

RM problems can be classified into two groups: Single-Leg Seat Inventory Control and Net-

work Seat Inventory Control. Single-leg seat inventory control is at a single flight-leg level.

On the other hand, network seat inventory control optimizes the complete network that con-

tains more than one leg simultaneously. Single-leg problems are covered in an important part

of the literature up to 1990s. By the change in the structure of airline industry from single-leg

flights to network traffics and the development in computational capacities to solve more com-

plicated mathematical models, detailed studies on network RM have started both at the airline

companies and at the research institutes. In this chapter, firstly the related studies on single-

leg seat inventory control are summarized and, then, the studies on network seat inventory

control are reviewed.

2.1 An Overview of Single-Leg Seat Inventory Control

Single-leg seat inventory control is the first problem studied in airline revenue management.

The problem is allocating the seats on a single-leg flight to different types of customers. This

problem is considered as static or dynamic depending on the assumption used for the arrival

of customers. In static case, customer classes are assumed to arrive sequentially: a low-fare

customer books earlier than all of the passengers from the classes with higher fares. In dy-

namic single-leg control, such an assumption is not made. All of the assumptions in static

single-leg seat inventory control are listed by McGill and van Ryzin (1999) as follows: 1)

booking classes are sequential; 2) low-before-high arrival pattern; 3) statistically indepen-

dent demands of booking classes; 4) no cancellation, no-show and overbooking; 5) no batch

booking; 6) single flight leg.
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The first study for the use of mathematical models in airline industry to maximize expected

revenue is due to Littlewood (1972). The main assumption he considers for the arrival of

booking classes is the low-before-high fare booking. By using all of the six assumptions

above for only two classes, the rule for accepting low-fare passengers is given by Littlewood

(1972) as follows:

f2 ≥ f1P(D1 ≥ x),

where fi is the fare for class i = 1, 2 and f1 ≥ f2. P(·) is the probability of the event under

consideration. D1 is the random variable denoting the total demand for class 1. x is the

number of seats allocated to class 1 and P(D1 ≥ x) is the probability of selling all reserved

seats for class 1. Therefore, basically f1P(D1 ≥ x) is the expected marginal revenue of the

xth seat reserved for class 1. It is also obvious that P(D1 ≥ x) is a monotonically decreasing

function of x and so is f1P(D1 ≥ x) . Now, optimal seat inventory control policy for a single-

leg flight is determined by finding the smallest x value such that f2 ≥ f1P(D1 ≥ x). This x

equals to the number of seats protected for the high fare class and is known as the protection

level. In other words, the demand request of a low fare customer is accepted as long as the

remaining capacity of the flight is higher than this value.

Mayer (1976) extends Littlewood’s work by using a simulation study and updating the rule

more than once during the booking horizon before departure when low-before-high arrival as-

sumption is relaxed. Belobaba (1987) develops a heuristic which is called Expected Marginal

Seat Revenue (EMS Ra) for maximizing flight leg revenues of multiple fare class inventories.

In this heuristic, the protection levels for each higher class i over lower class j, S i
j, is the

smallest value that satisfies the following equation.

fiP(Di ≥ S i
j) ≤ f j.

The total protection level for the n − 1 highest fare classes, Πn−1, is calculated by summing

n − 1 protection levels as follows:

Πn−1 =

n−1∑

i=1

S i
n.

Hence, a request for a low fare class is accepted when the remaining capacity of the flight

is higher than the total protection level for the fare classes that have higher fares than the

requested class. EMS Ra heuristic is optimal only for two fare classes, but practical also for
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multiple fare class problems. The simulation studies of McGill (1989) and Wollmer (1992)

show that the mean revenue from the seat inventory control policy of EMS Ra method is very

close to that of the optimal policy for multiple fare class problems. However, a later study

due to Robinson (1995) shows that the performance of the EMS Ra heuristic depends on the

demand distribution and gives poor results for more general demand distributions.

Curry (1990), Wollmer (1992) and Brumelle and McGill (1993) propose alternative methods

for obtaining optimal booking limits for the single-leg problems under the six assumptions

above due to McGill and van Ryzin (1999). Curry (1990) also relaxes the assumption of

single-leg flight and proposes an approximate model for network seat inventory control by

assuming a continuous demand distribution. Wollmer (1992) presents a model with a discrete

real life demand data to find booking limits for the fare classes. In the study of Brumelle

and McGill (1993), both discrete and continuous demand distributions are considered. The

approach of Brumelle and McGill (1993) maximizes expected revenue using a set of equations

based on the partial derivatives of the expected revenue function. Moreover, they show that the

optimal protection levels are expressed in terms of joint probability distributions as follows:

f2 = f1P(D1 > Π1)

f3 = f1P(D1 > Π1,D1 + D2 > Π2)

...

fk = f1P(D1 > Π1, D1 + D2 > Π2, ..., D1 + D2 + ... + Dk−1 > Πk−1),

where Πk is the protection level for fare class k and f1 ≥ f2 ≥ ... ≥ fk. If the remaining

capacity of flight is higher than the protection level for a class, the demand request for that

class is accepted. The method summarized above is called EMS Rb.

The studies summarized above are for the assumption of low-before-high demand pattern.

In dynamic models, this assumption is relaxed and a low-fare customer is allowed to arrive

after a high-fare one. The first study on dynamic models is due to Lee and Hersh (1993).

In this study, a discrete-time dynamic programming model is given. Moreover, batch arrival

assumption is also relaxed by allowing multiple seat bookings. Unlike the previous models

that use probability distributions, the demand is modeled as a stochastic process in this study.

The demand intensity for a seat in booking class varies with time.

Lautenbacher and Stidham (1999) propose a discrete-time finite horizon Markov Decision
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Process to solve the single-leg problem without cancellations, overbooking and no-shows.

The dynamic models in this study do not differ from the one given by Lee and Hersh (1993).

The main contribution of this study is using both static and dynamic approaches with Markov

Decision Processes and showing the similarities between them.

Subramanian et al. (1999) extend the model of Lautenbacher and Stidham (1999) by includ-

ing overbooking, cancellations and no-shows. In this model, the optimal booking policy is

characterized by state and time dependent booking limits for the fare classes. The main re-

sults of the study can be summarized as follows: the booking limits need not be monotonic;

it may be optimal to accept a low-fare class rather than high one because of the cancellation

probabilities; an optimal policy depends on both the total capacity and the remaining available

capacity.

Gosavi et al. (2002) suggest a stochastic optimization technique, called Reinforcement Learn-

ing, for the single-leg problem. They use the Semi-Markov Decision Process (SMDP) allow-

ing overbooking, concurrent demand arrivals from different fare classes and class dependent,

random cancellations.

2.2 An Overview of Network Seat Inventory Control

As it is mentioned in Chapter 1, it is hard to fly from an origin to a destination directly without

using a transfer center in the hub and spoke systems. Hubs are the huge airports where most

of the passengers are transferred from one flight to another and can be different for different

airline companies. Because of these structural changes in airline industry, single-leg seat

inventory control policy has lost its effectiveness significantly against network seat inventory

control. In network seat inventory control, seats are allocated simultaneously for different

customer segments and for different flight legs in a network.

Buhr (1982) is the first one who introduces a model for the seat inventory control problem

with two legs and one fare class. In this model, it is allowed to board at the intermediate node.

Buhr (1982) defines expected marginal revenue of the S th
OD seat for an origin-destination pair

OD as follows:

EMROD(S OD) = fODP̄OD(S OD),
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where fOD is the fare of the origin-destination pair under consideration and P̄OD(S OD) is the

probability of selling the S th
OD seat to the passengers. Then, Buhr (1982) shows that total

revenue is maximized by minimizing

∆EMR = EMRAC(S AC) − (EMRAB(S AB) + EMRBC(S BC))

subject to the capacity constraint. A-B-C is the network with legs AB and BC. Buhr (1982)

also gives an approximation for the case of more than one fare class using a two-step approach,

in which the allocation is determined for OD pairs first and then the allocation of seats among

fare classes for a given OD itinerary is determined.

First study in the literature for a large network seat inventory control problem is due to Glover

et al. (1982). The authors propose a maximum profit network flow model when demand is

deterministic. The integer programming formulation of this network model is called Deter-

ministic Mathematical Programming (DMP) model and the details of the model are given in

Chapter 3. The linear relaxation of this model is called Deterministic Linear Programming

(DLP). In the network flow formulation, two arc sets are used, one is for the flight legs in

forward direction and the second set is for the ODFs in backward direction. The limitations

on forward arcs are the aircraft capacities on a flight leg and the backward arcs are limited by

the ODF demand estimates.

Wollmer (1986) introduces a mathematical programming formulation for a multi-leg multi-

class network problem. A binary decision variable is defined by Wollmer (1986) for every

possible ODF and seat i as xODF,i. The objective function is the total expected marginal

revenue and the only constraint in the formulation is the capacity constraint. Wollmer’s for-

mulation is computationally difficult to solve because of the large number of binary decision

variables.

The studies for network RM problems reviewed up to this point are for booking limit controls.

Bid price control policy in network seat control problems is firstly introduced by Simpson

(1989) and developed by Williamson (1992). In bid price control, a seat is sold if fare of

that ODF exceeds the sum of bid prices of the legs along the path. Simpson (1989) and

Williamson (1992) use deterministic linear programming models to get dual prices of the

capacity constraints which they propose to use as the bid prices. The study due to Williamson

(1992) is a significant study on network seat control because it includes partitioned, nested

and bid price policies, demand aggregation, simulation and comparisons of different methods.
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The results of this study have been widely used in the following studies.

Also, Talluri and van Ryzin (1998) study on the bid price control for network RM problems.

Because of the increasing popularity of the bid price control in RM, they analyze theoretical

basis of the policy that leads to intuitive and practical use in the other studies. Moreover, they

show that bid price control is not optimal in general especially when leg capacities and sales

volumes are not large enough. Talluri and van Ryzin (1999) consider a randomized version of

the DLP model which is called Randomized Linear Programming (RLP). In RLP, the realized

demands of itineraries are considered in a deterministic linear programming model. RLP is

obtained by replacing the expected demand figures in DLP by the realized demands. Then,

the dual prices for different demand realizations are used to obtain a bid price approximation.

The authors also give the conditions under which the RLP provides an unbiased estimator of

the gradient of perfect information network. The RLP method is simple and has some slight

improvements in revenue over DLP. The details of the RLP model are given in Chapter 3.

de Boer (1999) and de Boer et al. (2002) give an extensive study on the analysis of determin-

istic and stochastic network revenue management problems. There is a common phenomenon

in the literature that the deterministic models outperform more advanced probabilistic meth-

ods. The authors argue that this is due to a booking process that includes nesting of the fare

classes and the probabilistic models suffer more from ignoring the nesting in the model. The

reason of this situation is explained in Chapter 3. Moreover, a stochastic model, Stochastic

Linear Programming (SLP), is developed by de Boer (1999) using demand aggregation. SLP

is given in Chapter 3.

Overbooking is also an important area for network revenue management. Overbooking is

allowing total volume of the sales to be higher than the capacity of the flights. This way,

capacity utilization of the flights is increased significantly. There is a wide research history for

overbooking. The first study is due to Beckmann (1958) and on a non-dynamic optimization

model. Some other related studies on overbooking for network airline revenue management

are given by McGill and van Ryzin (1999). We only summarize important and recent studies

in the literature. Shlifer and Vardi (1975) propose an overbooking model for three cases:

single-leg flight carrying a single type of passenger; a single-leg flight carrying two types

of passengers; two-leg flight. Biyalogorsky et al. (1999) propose using overbooking with

opportunistic cancellations. In this study, the request of a high fare customer is accepted
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even if the remaining capacity is zero and then the ticket of a low fare customer is cancelled

with a compensation. Ringbom and Shy (2002) suggest an ”adjustable-curtain” strategy in

order to determine the number of business and economy class bookings. In this strategy, the

airline can adjust the size of the business and economy class sections before boarding. This

way, overbooking for business class passengers is allowed. Karaesmen and van Ryzin (2004)

suggest a two-period optimization model to determine the overbooking levels. In the first

period, reservations are accepted with the probabilistic knowledge of cancellations. In the

second period, surviving customers are assigned to the various inventory classes to minimize

penalties of assignments.

2.3 An Overview of Other Studies in Revenue Management

The survey in Sections 2.1 and 2.2 summarizes major studies on mathematical programming

models for airline seat inventory control policies. In this section, we summarize the studies

on pricing in which prices rather than quantities are used as the primary demand management

variables.

Pricing has been extensively studied in the literature because of the wide implementation

area. The objective of pricing is determining the prices for various classes (customer seg-

ments) during the booking horizon. Weatherford (1991) presents a formulation for making

pricing/allocation decisions simultaneously. Gallego and van Ryzin (1994) give an optimal

dynamic pricing for the case of stochastic demand. Gallego and van Ryzin (1997) consider the

pricing strategies of multiple firms in revenue management context. In this study, firms have

finite capacities and the problem is revenue maximization over the finite horizon. Bitran and

Candeltey (2003) and Elmaghraby and Keskinocak (2003) review the pricing studies in rev-

enue management. Feng and Gallego (2000) and Aviv and Pazgal (2005) propose approaches

for pricing problems to find optimal or approximate solutions.

Revenue management can be applied to many industries other than airline industry. The

airlines, hotels and rental car industries are called as traditional industries and have similar

characteristics such as perishability of the goods, varying demand over time and insignificant

variable costs for customers. Talluri and van Ryzin (2005) and Chiang et al. (2007) give a list

of areas where revenue management is successfully applied in the literature. In the study of
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Chiang et al. (2007), the studies on revenue management for traditional areas, such as hotels

and car rental, and non-traditional areas are listed. Some of the non-traditional areas are as

follows: restaurants, hospitals and health care, sport events, cargo and freight, broadcasting

and media, project management and retailing.

The studies summarized in this chapter are all to maximize the expected revenue without

taking the risk factors into account. More clearly, all of the studies in the previous sections

are proposed for a risk neutral decision maker. However, in real life problems, according to

the changes in the market, one may prefer to work with risk-sensitive approaches.

Although the risk-aversion is widely used for a variety of inventory models, it is new for rev-

enue management problems. Barz and Waldmann (2007) and Levin et al. (2008) summarize

risk literature for inventory models. The studies due to Agrawal and Seshadri (2000), Feng

and Xiao (1999), Chen et al. (2005), Chen and Federgruen (2000), Eeckhoudt et al. (1995),

and Martı́nez-de Albéniz and Simchi-Levi (2006) are some of the studies on risk-sensitive

inventory models. Risk is generally incorporated into revenue management problems in a dy-

namic pricing framework. Feng and Xiao (1999) use an objective function that incorporates a

penalty function to reflect changes in the sales variance as a result of price changes. Lancaster

(2003) uses a sensitivity analysis instead of directly incorporating risk aversion into revenue

management models. Weatherford (2004) and Chen et al. (2006) use expected utility of the

revenue instead of expected revenue. Barz and Waldmann (2007) study a single-leg revenue

management problem from the perspective of risk-sensitive decision maker using exponential

utility function. Levin et al. (2008) use dynamic pricing with a loss-probability as a risk

measure which we also use in the proposed models in Chapter 4. The only study in the litera-

ture that uses mathematical models for risk-sensitive seat inventory control policies is due to

Çetiner (2007). She proposes two models incorporating variance of the revenue in addition to

the expected revenue. First model (EMVLP) is to use variance in the objective function and

the second model (CVLP) is to use it in the constraints. Our work in this thesis is also for the

use of mathematical models in risk-sensitive seat inventory control.
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CHAPTER 3

NETWORK SEAT INVENTORY CONTROL

This chapter is devoted to the studies on network seat inventory control in the literature. A

general dynamic programming model is introduced first. In Sections 3.1 and 3.2, deterministic

and probabilistic mathematical programming models are summarized. Control policies for

RM problems are given in Section 3.3. This chapter ends with the risk-sensitive models in

the literature in Section 3.4. For network seat inventory control, the complete network is

considered with all the dependence relations between different legs.

First of all, the notation used in the following sections for network RM problems is introduced.

The network has m resources, which are the legs between origins and destinations. There are

n products (origin, destination and fare combinations) offered on those legs. An itinerary is a

trip from an origin to a destination. A is an m × n matrix and jth column of the matrix gives

the resources needed for product j. al j is the entry of matrix A for row l and column j. It is

used to relate resources and products: al j = 1 if resource l is a part of the trip of product j and

0 otherwise. T is the length of the booking period horizon and t is the remaining time until

boarding. That is, the time indices run backward and departure of the flight is at time 0. In

general, discrete-time models are considered in the literature. The time periods are generally

assumed to be small enough and only one demand request arrives in a period. c = (c1, ..., cm)

where cl is the capacity of the flight that flies through leg l. Letting A j denote the jth column

of matrix A, the capacity vector is updated as c-A j when product j is sold. F(t) is used as

the demand vector for time period t such that F(t) = (F1(t), ...,Fn(t)). F(t) is the random

variable denoting the price of product j requested in period t. F j(t) = f j > 0 when product

j is requested at a price of f j at time t, and F j(t) = 0 when there is no request for product

j. F(t) = 0 when no request arrives for any of the products. The sequence {F(t); t ≥ 1}
is assumed to be independent across time t with known joint distribution in each period t.
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u(t) = (u1(t), ..., un(t))> denotes the decision made at time t: u j(t) = 1 if request for product

j is accepted and u j(t) = 0 if it is rejected. > denotes transpose of the vector. The main

factors, which affect the decision at time t upon arrival of a demand request, are the remaining

capacity and price of the product requested. Therefore, the decision to be made is a function

of these factors, which can be denoted by u(t) = u(t, c, f ) where f = ( f1, ..., fn).

Using the notation introduced above, a dynamic programming model is formulated by Talluri

and van Ryzin (2005) to find the optimal accept/reject decisions for the requests. Vt(c) is the

maximum expected revenue for the last t periods when the remaining capacity is c at time t.

Then, the backward recursive function is

Vt(c) = E[max
u(t)
{F(t)>u(t) + Vt−1(c − Au(t))}],

with the boundary condition

V0(c) = 0 for all c.

E(·) denotes expected value of the random variable under consideration. The optimal control

for this formulation is given as follows:

u∗j(t, c, f j) =


1 if f j ≥ Vt−1(c) − Vt−1(c − A j) and A j ≤ c ,

0 otherwise.

Hence, the optimal control policy for accepting a request is of the form: accept a booking

request for product j if the remaining capacity is sufficient and the price of product j exceeds

the opportunity cost of the reduction in resource capacities required to satisfy the request.

The displacement cost, Vt−1(c) − Vt−1(c − A j), in the control policy given above leads to bid

price control for network RM. Moreover, Talluri and van Ryzin (2005) show that the condition

for accepting product j in period t can be approximated as follows when it is supposed that

the optimal value function Vt−1(c) has a gradient ∇Vt−1(c) .

f j ≥ Vt−1(c) − Vt−1(c − A j)

≈ ∇VT
t−1(c)A j

=
∑

l∈A j

πl(t, c),

where πl(t, c) = ∂
∂cl

Vt+1(c).
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Based on the approximation above, a request for a product can be accepted if the price exceeds

the sum of the bid prices, πl(t, c), for all of the resources used by that particular product.

Because of the large dimensionality of the dynamic programming model, approximations

should be used. There can be two basic approximations for the problem: using a simplified

network model, e.g. solving the problem as a static mathematical programming problem

such as Deterministic Linear Programming Model, or decomposing the network problem into

single-leg problems to work with bid prices of subproblems determined independently. For

both of these approximations, having good estimates of the optimal value function and bid

prices is important.

3.1 Deterministic Mathematical Programming Models

The deterministic formulation of the network seat inventory control problem is such that prob-

abilistic nature of the demand is ignored by working with expected value of the demand. The

formulation is called DMP that stands for Deterministic Mathematical Programming. The

network formulation of this integer programming model is firstly introduced by Glover et al.

(1982). DMP model is given below.

DMP : Maximize
n∑

j=1

f jx j (3.1)

sub ject to (3.2)
∑

j∈S l

x j ≤ Cl for l = 1, ....,m, (3.3)

x j ≤ E(D j) for j = 1, ..., n, (3.4)

x j ≥ 0 and integer for j = 1, ...., n. (3.5)

The decision variable x j in this model is the number of seats allocated for ODF j. Constraint

(3.3) in the model is the capacity constraint for the legs where the summation of allocations

for ODFs on a leg is smaller than the leg capacity. S l denotes the set of ODF combinations

using flight leg l, S l = { j|al j = 1}. In (3.4), the upper bound on the allocation of an ODF

is the expected demand of ODF j, given by E(D j). The objective function is to maximize

the total revenue. The main advantage of the DMP model is the simplicity of the model.

The output of the model is the set of allocations of the seats to the products. Use of these

allocations without any nesting is called the partitioned booking policy. Partitioned policy
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is such that the seats are allocated to only one of the ODFs and the seats that are not sold

to that ODF will remain empty. This drawback can be handled by using a nesting heuristic

for the implementation of the allocation obtained by the DMP model. The major drawback

of the DMP model is ignoring stochastic nature of the demand requests. It is assumed that

the demand is certain and equals to the mean demand. Although the allocations obtained by

the DMP model give higher revenues as compared to almost all of the other models in the

literature, its performance is directly dependent on the demand forecasting quality.

Another problem to solve the DMP model is the integrality constraint for x js as pointed out

by Williamson (1992). In order to obtain integer seat allocations, decision variables must be

integer. This would cause an increase in solution time. However, this problem was solved by

Williamson (1992) by using linear relaxation of the model and working with integer demand

estimates in the constraints. This relaxed model is called DLP that stands for Deterministic

Linear Programming. The following statement is due to Williamson (1992): ”Under the

integrality of the network problems (referring to the study of Bradley et al., 1977), if the

upper and lower bounds on the decision variables are integers and the right hand side values

of the flow balance constraints are integer, the solution will be integer. Thus, by requiring

both the demand constraint values to be integer, an integer solution can be obtained.” Hence,

Williamson (1992) claims that by rounding the expected demand values, integer solutions can

be obtained by the DLP model. However, de Boer (1999) gives a counter example where the

right hand sides and limits are integer, but the solution is not. de Boer (1999) argues that the

theoretical background of Williamson (1992) is not clear, but it works in the real airline data

surprisingly. Moreover, although de Boer (1999) and Williamson (1989) state that rounding

the solution may give worse results than rounding the demand data, there is no theoretical and

numerical ground of this statement to the best of our knowledge.

3.2 Probabilistic Mathematical Programming Models

The most general probabilistic model in the network RM is called as Probabilistic Mathemat-

ical Programming or Probabilistic Nonlinear Programming Model which is to maximize the

expected revenue in terms of the protection levels. The abbreviation used for this model is
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PMP or PNLP, and the model is given below.

PMP : Maximize E(
n∑

j=1

f j min{x j,D j}) (3.6)

sub ject to
∑

j∈S l

x j ≤ Cl for l = 1, ....,m,

x j ≥ 0 and integer for j = 1, ...., n,

where min{x j,D j} is the random variable that gives minimum of demand for ODF j and

number of seats allocated to ODF j. The PMP model is nonlinear because of the objective

function and hard to solve. DeMiguel and Mishra (2006) state that PMP can be reformulated

as a stochastic program with simple recourse and can be solved numerically. Unfortunately,

non-linear programming formulations are computationally hard to solve for large scale prob-

lems. de Boer et al. (1999) argue that, in general, the outcome of implementing the solution

of the stochastic model exceeds the outcome of implementing the deterministic solution and

it is called the value of the stochastic solution. However, Williamson (1992) shows that, in

simulation studies, booking control policies using DLP performs better than the ones using

PMP for airline revenue management problems. de Boer (2002) argues that DLP outperforms

probabilistic models because nesting is not considered in DLP. Although both deterministic

and probabilistic models are non-nested, the adverse impact of not incorporating nesting is

more for the probabilistic models. Probabilistic models assign more seats to high-fare classes

in order to earn upward potential of high-fare demand, which in fact only aggravates the de-

gree of overprotection. The deterministic model is unable to recognize this potential and this

drawback turns out to be an advantage in nested environment. In the numerical studies in

Chapter 6 of this thesis, it is shown that revenues for deterministic and probabilistic models

are not so different when the difference among fares for different classes are low.

Second probabilistic model which is widely used in the literature is the Expected Marginal

Revenue (EMR) Model. This model again incorporates the probability distribution of the

demand. The objective function is the summation of expected marginal revenues of the seats.

The only constraint in the model is the capacity constraint for the legs. x j(i) is the binary

decision variable for a given ODF j and seat i.

x j(i) =


1 if i or more seats are allocated to ODF j,

0 otherwise.
for i = 1, ..., B j,
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B j is defined as the maximum number of seats that can be allocated to the ODF j. Three

different ways to determine the value of B j are proposed as follows:

• B j = minl{Cl : j ∈ S l},
• B j = B = maxl{Cl},
• B j = minl∈T j{ϑl,Cl} where ϑl = max{Υ : P(D j ≤ Υ) ≤ ψ, Υ is integer and j ∈
S l} and T j = {l : j ∈ S l}.

In the first way, B j is defined as the minimum capacity of the legs which are used by ODF

j. Secondly, it is defined as the maximum of the flight capacities directly. In the third way,

B j for ODF j is the minimum of ϑl and Cl for leg l where leg l is a part of the trip of ODF

j. Moreover, ϑl is equal to the maximum of Υ where probability of demand for ODF j being

smaller than Υ is smaller than a predetermined level, ψ. The number of seats allocated to an

ODF j, x j, can be expressed in terms of x j(i)s as follows:

x j =

B j∑

i=1

x j(i). (3.7)

Then, the expected marginal revenue of the ith seat on ODF j is

EMR j(i) = f jP(D j ≥ i)x j(i).

Summation of EMR j(i) over all i and j is the total expected revenue. As a result, EMR model

is given as follows:

EMR : Maximize
n∑

j=1

B j∑

i=1

f jP(D j ≥ i)x j(i) (3.8)

sub ject to
∑

j∈S l

B j∑

i=1

x j(i) ≤ Cl for l = 1, ....,m,

x j(i) ∈ {0, 1} for i = 1, ..., B j and j = 1, ...., n.

Since the decision variables in the model are binary, computational difficulties would be en-

countered for large networks. Williamson (1992) suggests to work with linear relaxation of

this model because of the monotonically decreasing behavior of the complementary proba-

bility P(D j ≥ i) in the objective function in i for each j. The following remark is useful in

showing that the linear relaxation of the EMR model gives also integer results.

Remark 3.2.1 (due to Williamson 1992) In the linear relaxation of the EMR model, a full

seat is allocated to x j(i) before any portion of a seat is allocated to x j(i + 1). That is, x j(i + 1)
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can take a positive value only if x j(i) = 1.

Proof. The probability of demand being larger than i, i.e., P(D j ≥ i), in the objective function

decreases as i increases. As a result of this, EMR j(i) decreases monotonically as i increases.

This guarantees that a full seat is allocated to x j(i) before any portion of a seat is allocated

to x j(i + 1). ¥

Remark 3.2.1 only guarantees that x j(i+1) cannot take a positive value if x j(i) < 1. Therefore,

for any j, x j(i) may take a fractional value for at most one seat, i. Combining this remark with

the integrality property of network problems, the following constraints can be used in the re-

laxed formulation: 0 ≤ x j(i) ≤ 1 for all j and i. Then, the resulting allocations for the ODFs

can be found by summing related decision variables as follows: x j =
∑B j

i=1 x j(i). Although

large number of decision variables leads to computational burden for the applicability of lin-

ear programming (LP) relaxation of EMR model, technical improvements in computational

capabilities might be expected to avoid this disadvantage.

Because of the computational difficulties to solve the EMR model, an aggregation method is

proposed by de Boer et al. (2002) leading to an approximation of EMR: Stochastic Linear

Programming (SLP). In SLP, suppose D j can only take some values d j(1) < d j(2) < ... <

d j(K j) such that K j is the number of aggregate demand groups.

S LP : Maximize
n∑

j=1

f jx j −
n∑

j=1

f j

K j∑

k=1

P(D j < d j(k))x j(k) (3.9)

sub ject to
∑

j∈S l

x j ≤ Cl for l = 1, ....,m,

x j =

K j∑

j=1

x j(k) for j = 1, ..., n,

x j(1) ≤ d j(1) for j = 1, ..., n,

x j(k) ≤ d j(k) − d j(k − 1) for j = 1, ..., n and k = 2, ...,K j,

x j(k) ≥ 0 for j = 1, ..., n and k = 1, ...,K j,

x j ≥ 0 for j = 1, ..., n,

where each x j is split up in several smaller allocations x j(k), which represents the amount of

seats allocated to the kth partition of the demand, i.e., for the demand that falls in the interval

(d j(k−1), d j(k)). In EMR model, B j is defined as the maximum capacity of the legs which are
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used by ODF j and in SLP model, K j is defined as the maximum number of demand groups.

Hence, the maximum value of d j(k) for all demand groups is equal to B j, i.e., d j(K j) = B j.

First term in the objective function is total revenue gained when all of the seats which are

allocated to the itineraries are sold. Second term is a correction for the uncertainty of demand.

The SLP model is linear and the solution of SLP gives integer results when integrality property

due to Bradley et al. (1977) holds. Although the theoretical background of integrality is not

clear as in Section 3.1, this formulation works in the real airline data again. The complexity

of the SLP model can be decreased by aggregating demands more, but causing the results to

get poor. Moreover, de Boer et al. (2002) show that the LP relaxation of EMR is only a special

case of SLP. That is, objective function of SLP can be rewritten as

n∑

j=1

K j∑

k=1

f jP(D j ≥ d j(k))x j(k)

by letting d j(k + 1) − d j(k) = 1 and d j(1) = 1 for all j and k.

Talluri and van Ryzin (1999) propose a randomized version of the deterministic linear pro-

gramming (DLP) model for computing network bid prices. This model is called the Ran-

domized Linear Programming (RLP) model. In RLP, the bid prices are calculated by solving

deterministic linear programs for each demand realization.

RLP : Maximize
n∑

j=1

f jx j (3.10)

sub ject to
∑

j∈S l

x j ≤ Cl for l = 1, ....,m, (3.11)

0 ≤ x j ≤ d j for j = 1, ..., n, (3.12)

where x j is the number of seats allocated for ODF j and d j is the specific demand realization.

Expected demands on the right-hand sides of the demand constraints in the DLP model are

replaced with the specific demand values. Then, averages of the dual variables of (3.11) for

the specified set of demand realizations are used as the approximate bid prices. Let µr(l) be

the bid price for leg l for demand realization r and equals to the dual price of the capacity

constraint. Then, the estimated bid price for leg l is 1
N

∑N
r=1 µr(l). The advantage of this

method is the decrease in complexity of the problem as compared to EMR.
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3.3 Control Methods for Network RM

In the previous section, the mathematical models that aim to obtain optimal allocations and bid

prices are summarized. In this section, control methods or policies are given which are used to

make the decision of accepting or rejecting a booking request based on the optimal allocations

or bid prices. From this point on, the first step for RM to use mathematical programming

models is called the optimization step and the second step for the implementation of the

allocations or bid prices obtained from the models is called the control step. In this section,

three types of control policies are summarized. These are partitioned booking limit control,

nested booking limit control and bid price control.

3.3.1 Partitioned Booking Limit Control

This control method directly uses the booking limit allocations, which are obtained from the

mathematical models in the optimization step. This is the basic and most straightforward con-

trol policy. Each of the booking limits is used only for the corresponding ODF and unsold

capacity of an ODF cannot be used for other ODFs even if they have higher fares. Therefore,

the revenue obtained using this control policy generally turns out to be lower than the revenue

obtained by the other policies described in this section. Moreover, the load factor under this

policy is generally less than the load factor under the other control policies. These drawbacks

can be overcome by updating booking limits frequently. However, for each update, an addi-

tional optimization and re-forecasting of future demand are required. As a result, partitioned

booking limit control policy is rarely used in airline industry.

3.3.2 Nested Booking Limit Control

Nested booking control policy is suggested to overcome the major drawback of partitioned

policy, in which the unsold seat for an ODF cannot be sold to a request with an higher fare.

For nested booking limit control policy, fare classes are ranked. The booking limit for the

ODF with the lowest ranked fare class can be used for all of the classes, and the booking

limit for the highest ranked fare class is equal to the capacity of the flight. The seats allocated

to a fare class are allowed to be booked by a higher ranked class.
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The main difficulty in nested booking limit control is the ranking of fare classes for a network

RM problem. Williamson (1992) proposes three different ways of ranking. These are nesting

by fare class, nesting by fares and nesting by shadow prices. In the first nesting strategy, fare

classes are ranked according to the class types, where a full fare class is ranked higher than a

low fare class of an origin-destination pair. In this ranking strategy, amounts of the fares do

not have any impact on the ranking. Therefore, gain from a discounted fare passenger of a

long path can be lost and a full fare class of a short path can be given priority although the gain

from full fare of a short path can be less than the discounted one of a long path. Therefore,

this strategy generally gives poor results in network RM problems.

Second strategy, nesting by fares, is proposed by Boeing Commercial Airplane Company and

based on ODFs’ fare values. The classes are ranked according to the fares of itineraries and

itinerary with the highest fare is ranked in the first position. In this approach, the itineraries for

long paths are generally ranked in the first positions although they may have less contributions

to the revenue than the itineraries for short paths. In this strategy, it is possible for low-yield

long-path itineraries which have small number of allocations in the optimization models to

have access an important number of seats. Therefore, first and second nesting strategies are

two extreme cases and both of them generally give poor results.

In the third nesting strategy, shadow prices are used, which is proposed by Williamson (1992).

Note that shadow price is an increment in the revenue that would be gained when one more

seat is allocated to a particular ODF, when other allocations are kept constant. The idea

behind this approach is as follows: itineraries with higher shadow prices would most prob-

ably give more revenue than the ones that have lower shadow prices, therefore they should

be ranked higher. In the DLP model, shadow price for an ODF is simply the dual price of

the respective demand constraint. However, in the probabilistic models, there is no demand

constraint associated with each ODF. Williamson (1992) proposes to calculate shadow prices

as incremental change in revenue which is generated by forcing an additional seat to be al-

located to a given ODF at the expense of another ODF or combination of ODFs. However,

this would be time consuming especially for large-scale networks because the model must be

used once for each possible ODF.

de Boer et al. (2002) suggest using dual prices of the capacity constraints in the probabilistic

models in order to obtain an estimate of the dual prices of ODFs as follows: the opportunity
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cost of an ODF is the sum of dual prices of the legs which are elements of that particular

itinerary. This is only an approximation of the opportunity cost of this itinerary. Then, by

subtracting this value from fare of the ODF, an estimate of an ODF’s net contribution to the

network revenue is found. That is, by subtracting opportunity cost from the fare of the ODF,

the profit that will be gained from that ODF can be calculated.

It is hard to incorporate the nesting strategies considered above into mathematical models.

Therefore, nesting heuristics are developed in the literature to be used with the allocations

obtained from the mathematical models without considering nesting. In this thesis, we use

the nesting heuristic that is proposed by de Boer et al. (2002). The notation used in this

nesting heuristic is as follows:

r j : the number of booking requests for ODF j that have been accepted,

cl : remaining capacity on leg l.

Nesting Heuristic (due to de Boer et al. 2002)

Step 0. Let cl = Cl f or l = 1, ...,m and r j = 0 f or j = 1, ..., n.

Step 1. A booking request for an ODF j′ arrives and should be considered for acceptance.

Step 2. Define b j = max{x j − r j, 0} for all ODF j.

Step 3. Define bl =
∑

b j for all legs l 3 j′ ∈ S l. The summation is over all ODF j that

outranks j′ and that also crosses leg l .

Step 4. Define bmin = min{cl − bl | j′ ∈ S l}.
Step 5. If bmin > 0, accept the booking request and let cl = cl − 1 for all legs l 3 j′ ∈ S l and

let r j′ = r j′ + 1. Decline the request otherwise.

Step 6. If another booking request arrives within the booking horizon, go to step 1. Otherwise,

stop.

Step 0 is the initialization step where capacities and number of booking requests that have

been accepted so far are set to the initial values. A booking request arrives at step 1 and is

taken into consideration for acceptance. Then, bl values are calculated for all legs. These

limits are protected for fare classes that are ranked higher than the current ODF j′. In step 4,

the number of available seats are found considering all legs on ODF j′. If the result of step

4 is higher than zero, then the booking request is accepted and capacity is decreased for the

legs of ODF j′ by one. The number of booking requests that are accepted is increased by one

at step 5.
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3.3.3 Bid Price Control

As it is seen in Section 3.3.1 and Section 3.3.2, one somehow needs to avoid drawbacks

of the booking limit control policies in order to improve the results. As an alternative to

the booking limit control policies, a bid price control policy is proposed by Simpson (1989)

and Williamson (1992) as a part of a research project in MIT. The main idea behind the

policy is the following: if the fare of demand request is higher than a threshold level, then

the request is accepted. Otherwise, it is rejected. The threshold level for an ODF in LP

formulations is calculated by summing dual prices of the capacity constraints of the legs that

are on this particular ODF. If fare of the ODF is lower than the bid price, the fare class for

this origin-destination pair is called closed. Easy implementation of this control policy is the

main advantage. Only the remaining capacity and the class status are necessary information

that must be kept for use. The major drawback of the policy is the lack of the controls on the

acceptance of requests. In this policy, there is no limit on the number that can be accepted for

any of the itineraries when the class is open. Therefore, one class which has small contribution

to the revenue can use most of the capacity. Williamson (1992) shows that with frequent

updates, bid price and booking limit control policies give almost the same results. However,

updating frequently is time consuming especially for the probabilistic models.

3.4 Risk-Sensitive Models in the RM Literature

Traditional RM models that are summarized up to this section are risk neutral. The objec-

tive of these models is to maximize expected revenues without considering variability of the

revenue. In this section, three studies on risk aversion are summarized.

Barz and Waldmann (2007) study on static and dynamic single-leg revenue management prob-

lems from a perspective of risk sensitive decision maker using an exponential utility function.

Moreover, they show that all well known structural results of the optimal policy that maxi-

mizes expected revenue hold for the risk-sensitive optimal policy as well. The authors give the

dynamic model for a risk-neutral case and extend this model using a risk-sensitive approach.

They consider a single-leg flight with a capacity of C seats. Fare classes are again denoted by

j = 1, ..., n with associated fare of f j. It is assumed that 0 < fn < fn−1 < ... < f1. Cancel-

lations, no-shows and batch bookings are not allowed in the model. The booking horizon is
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divided into T intervals and the periods are indexed by t. For each period t, the probability of

observing customer request for class j is given by p jt. Furthermore, p0t = 1−∑n
j=1 p jt denotes

the probability of no customer request in period t. Then, Barz and Waldman (2007) come up

with a Markov Decision Process; namely, MDP(T,ℵ,=, (qt), (rt),V0). The state space, action

space, transition law, reward function and boundary condition of the model are given by the

authors as follows:

State Space: ℵ = {(c, j)|c ≤ C, j ≤ n}, c is the remaining capacity and j is the requested

booking class, where j = 0 is the artificial class having f0 = 0.

Action Space: = = {0, 1} ≡ {re ject, accept}
Transition Law: qt((c, j), a, (c − a, j)) = p jn, where a ∈ A(c, i) and A(c, i) = =; f or i > 0.

Reward Function: rt((c, j), a) = ar j

Boundary Condition: V0(c, i) = 0 for c ≥ 0 and V0(c, i) = r̄c for c < 0 with r̄ > max j{ f j}.
Markov Policy: π = (gT , gT−1, ..., g1) is defined as a sequence gT , gT−1, ..., g1 of decision rules

gt specifying the action at = gt(ct, jt) to be taken at stage t in state (ct, jt). G denote the set of

all decision rules and GT is the set of all policies.

Then, the state process of the MDP is denoted by (xT , xT−1, ..., x1). V∗(c, i) is the maximum

expected revenue starting with capacity c and request i, i.e.,

V∗(c, i) = maxπ∈GT Eπ[
T∑

t=1

ft(xt, gt(xt)) + V0(x0)|xT = (c, j)].

Moreover, in dynamic programming V∗ ≡ VT is the unique solution to the optimality equation

Vt(c, i) = maxa∈A(c, j)a f j +

n∑

j′=0

p j′ tVt−1(c − a, j).

The decision rule of a control limit is defined by,

gt(c, j) =


1 if c > y j−1(n),

0 otherwise.
(3.13)

To conclude, Barz and Waldmann (2007) give optimal protection level rule as

y∗j−1(t) = max{c : r j <

n∑

j=0

p jt(Vn−1(c, j) − Vn−1(c − 1, j))} f or j = 1, ..., n.

For the risk-sensitive approach, Barz and Waldmann (2007) define the expected utility of the

revenue Rπ :=
∑T

t=1 ft(Xt, ft(Xt)) + V0(X0). The expected utility function used in this study is
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exponential and given by uγ(x) = −exp(−γx). The policy π∗γ = (g∗γT , g
∗γ
T−1, ..., g

∗γ
1 ) is called

γ − optimal.

Let V∗γ(c, j) be the maximal exponential utility,

V∗γ(c, j) = max
π∈GT

Eπ[−exp(−γ[
T∑

t=1

ft(Xt, gt(Xt)) + V0(X0)])|XT = (c, j)].

Then, V∗γ ≡ Vγ
T is the unique solution of

Vγ
t (c, j) = max

a∈A(c, j)
{exp(−γa f j)

k∑

j=0

p jnVn−1(c − a, j)},

where Vγ
0 (c, j) = −exp(−γV0(c, i)). In order to simplify the notation, they define Ltv(c) =

∑k
j=0 p jnV(c, j) for an arbitrary real-valued function v. Moreover, it is found to be more

convenient to work with Gγ
t := −Vγ

t which is the unique solution of

Gγ
t (c, j) = mina∈{0,1}{exp(−γa f j)LnGγ

n−1(c − a)}

= LnGγ
n−1(c − 1)min{exp(−γ f j),

LnGγ
n−1(c)

LnGγ
n−1(c − 1)

}.

Then, the optimal policy is

yi−1(t) = max{c ∈ {0, ...,C − 1} : exp(−γ f j) >
LtC

γ
t−1(c)

LtC
γ
t−1(c − 1)

such that π∗γ = (g∗γT , g
∗γ
T−1, ..., g

∗γ
1 ) defined by

gt(c, j) =


1 if c > y∗γj−1(n),

0 otherwise,
(3.14)

is γ-optimal.

Barz and Waldmann (2007) experiment their approach with a single-leg example. In this ex-

ample, there are four fare classes and the demand is normally distributed. Barz and Waldmann

note that risk-sensitive decision maker prefers a lower certain revenue compared to future un-

certain revenue. The main disadvantage of this study is that the proposed approach is usable

only for single-leg flights. Therefore, extending this approach for network traffics is a pending

matter.

Levin et al. (2008) present a model for optimal dynamic pricing of perishable services or

products. This model is proposed for applications in which attainment of a revenue target is an

important consideration for managers. Levin et al. (2008) study the problem of dynamically
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pricing items over a finite time horizon so that both the expected revenues and the risk of

poor performance are taken into account. Risk is introduced into the model by augmenting

the expected revenue objective with a penalty term for the probability that total revenues fall

below a desired level of revenue, a loss-probability risk measure. The main contribution of

this paper to the literature is explicit inclusion of the revenue process in the description of the

system’s state to formulate a class of simple Markovian models incorporating risk. Because

of the similarities between risk measures of this approach and our approach, the details of this

study are given below. The numerical studies due to Levin et al. (2008) are only for general

inventory models. Therefore, there is not anything in their study about the applicability of the

model to the airline RM problems.

In the study of Levin et al. (2008), the proposed model is presented as a stochastic optimal

control problem over [T, 0] in continuous time. Demand is distributed as a Non-Homogeneous

Poisson Process (NHPP) which depends on time t and current price p. The sale process

N(t) is limited by the initial inventory, YT , which is shown as N(t) = min{N′(t),YT }. The

demand process N′(t) is a nonhomogeneous Poisson process. The revenue is defined as a

stochastic integral of the form R(t) =
∫ t

T p(T )dN(T ). Therefore, the risk-neutral case is simply

maximization of E[R(0)]. In the risk sensitive case, Levin et al. (2008) add the following

constraint to the model: P[R(0) ≥ z] ≥ π0, where z is a minimum desired level of revenue and

π0 is the minimum acceptable probability with which the desired level to be reached. This is

substantially similar to the constraint we use in the PMP-RC model in Chapter 4. Moreover,

Levin et al. (2008) use risk factor in the objective function by multiplying risk measure with a

penalty parameter as follows: max E[R(0)] − ζP[R(0) < Z], where ζ is the penalty parameter

and ζ ∈ [0,+∞]. Levin et al. (2008) interpret ζ as the maximum cost associated with not

meeting the desired level of revenue Z.

The last risk-sensitive approach reviewed in this section for network RM problems is due to

Çetiner (2007). Çetiner (2007) proposes two models: EMVLP and CVLP. In these models,

variance of the revenue is chosen as a control variable for risk sensitivity of the decision

maker. The first model, EMVLP, is to penalize variance of the revenue by a given factor while

maximizing the expected revenue. In the second model, CVLP, the total expected revenue is

maximized under a constraint on the ratio of the expectation and variance of the total revenue.
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The models are given below:

EMVLP : Maximize
n∑

j=1

K j∑

k=1

f jP(D j ≥ k)x j(k)

−θ
n∑

j=1

K j∑

k=1

x j(k) f 2
j P(D j ≥ k)P(D j < k)

sub ject to
∑

j∈S l

x j ≤ Cl for l = 1, ...,m,

x j =

K j∑

k=1

x j(k) for j = 1, ..., n,

x j(1) ≤ d j(1) for j = 1, ..., n,,

x j(k) ≤ d j(k) − d j(k − 1) for j = 1, ..., n and k = 2, ...,K j ,

x j(k) ≥ 0 for j = 1, ..., n and k = 2, ...,K j.

CVLP : Maximize
n∑

j=1

K j∑

k=1

f jP(D j ≥ k)x j(k)

sub ject to
∑

j∈S l

x j ≤ Cl for l = 1, ...,m,

x j =

K j∑

k=1

x j(k) for j = 1, ..., n,

x j(1) ≤ d j(1) for j = 1, ..., n,,

x j(k) ≤ d j(k) − d j(k − 1) for j = 1, ..., n and k = 2, ...,K j,
n∑

j=1

K j∑

k=1

x j(k) f 2
j P(D j ≥ k)P(D j < k) ≤

ρ
∑

j

∑

k

x j(k) f jP(D j ≥ k),

x j(k) ≥ 0 for j = 1, ..., n and k = 2, ...,K j.

In the first model, EMVLP, the first term of the objective function is the expected marginal

revenue and the second term represents the variance of the marginal revenue penalized by

θ. The constraints in this model are the same as the ones used in the S LP model proposed

by de Boer et al. (2002). The numerical studies on EMVLP model show that the expected

revenue and variance of the revenue can be controlled by changing the θ values. The main
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disadvantage of this model is that setting θ is not a straightforward task for decision makers.

An additional effort is required to convert the risk-sensitivity measure of the decision maker

to the θ values.

In the second model, CVLP, a measure which is the ratio of the expectation and variance of

the revenue is used in the constraints. This measure is bounded as follows: Var(MR)
E(MR) ≤ ρ.

Moreover, Çetiner (2007) uses the EMVLP and CVLP models together. The EMVLP model

is solved first and then the CVLP model is solved by taking the ratio of the expectation and

variance of the total revenue corresponding to the optimal EMVLP solution as the right hand

side of the constraint in the CVLP model.

To summarize, Barz and Waldmann (2007) propose a Markov Decision Process in order to

solve single-leg airline revenue management problems. In the study of Levin et al. (2008), a

general model for optimal dynamic pricing of perishable services or products is given. The

only model that is proposed for risk-sensitive applications in airline network revenue manage-

ment problems is due to Çetiner (2007). The numerical results of the risk-sensitive models

due to Çetiner (2007) and the models proposed in this thesis are analyzed and compared in

Chapter 6.
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CHAPTER 4

THE PROPOSED RISK-SENSITIVE APPROACH

Recall from the previous chapters that there are only a few studies on the risk-sensitive ap-

proaches in RM literature. The approach that is proposed by Çetiner (2007) is the only one

that uses seat inventory control to solve the network revenue management problems for risk-

sensitive cases. Other risk-sensitive approaches cited in Chapter 3 are proposed for dynamic

pricing problems and/or single-leg problems. In this chapter, we propose models by restrict-

ing or minimizing the probability of revenue being less than a predetermined threshold level

for airline network revenue management problems. This probability is calculated by working

with sample demand realizations and used in the objective function or in one of the constraints

in the proposed mathematical models. The derivations to formulate this probability are given

in Section 4.1. In Section 4.2, general multi-objective optimization methods are summarized.

A lexicographic optimization model is developed in Section 4.3 to minimize the probability

of revenue being less than a threshold level. Section 4.4 is devoted to the approximations

of this proposed lexicographic optimization model. In Section 4.5, a mathematical model is

given to use the probability measure under consideration in a constraint while maximizing

the expected revenue. Finally, a method is in Section 4.6 given to solve the RLP model due

to Talluri and van Ryzin (1999) for risk-sensitive cases. The resulting seat allocations or bid

prices obtained from the models are used with the control policies in Chapter 5 and Chap-

ter 6. In order to improve the solution quality of the models, a Bayesian update approach is

used in Chapter 5. The seat allocations or bid prices are updated at the predetermined times

throughout the booking horizon.
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4.1 Risk Measure

In real life, attainment of a revenue target is an important consideration for managers. De-

cision makers, who deal with risk in their decision making process, want to minimize the

probability of poor performance. In this thesis, the risk of a certain decision is measured

by the probability of earning revenue that is less than a predetermined threshold level. The

interpretation of this measure is easier for decision makers than the interpretation of the vari-

ance or any other measure considered in Chapter 3 for the existing studies in the literature.

In this section, the derivations for this measure are given. The risk measure is formulated

as P(R < L), where L is the predetermined threshold level for revenue denoted by random

variable R.

Let Z j = min{D j, x j}, where D j is the demand of ODF j and x j is the number of seats

allocated for ODF j. Recall from Chapter 3 that the total revenue for PMP is expressed in

terms of Z js. Let random variable RPMP(x) denote the total revenue earned in PMP for given

allocation (x1, ..., xn), that is,

RPMP(x1, ..., xn) =

n∑

j=1

f jZ j. (4.1)

Now, consider the total marginal seat revenue in the objective function of the EMR model. As

shown by Çetiner (2007), the marginal seat revenue is expressed in terms of random variable

F j(i) which is the marginal seat revenue obtained when the ith seat is allocated as an additional

seat for ODF j. That is,

F j(i) =


f j if D j ≥ i,

0 otherwise.
(4.2)

If the ith seat is allocated to ODF j and the demand for that ODF is greater than i, the gain

for that seat is equal to the fare of the ODF j. Otherwise, the gain is zero. Then, the total

revenue that can be obtained from the network can be calculated by summing up the marginal

seat revenues of the seats of all itineraries. Let total revenue be denoted by random variable

REMR(x) in this case.

REMR(x) =

n∑

j=1

B j∑

i=1

F j(i)x j(i), (4.3)
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where

x j(i) =


1 if i or more seats are allocated to ODF j,

0 otherwise,
for i = 1, ..., B j. (4.4)

Here, x j = (x j(1), ..., x j(B j)) for j = 1, ..., n and x = (x1, ..., xn). Note that x j = |x j|. The

expected revenue for a network in the objective function of the EMR model is

E(REMR(x)) =

n∑

j=1

B j∑

i=1

f jPr(D j ≥ i)x j(i). (4.5)

By using the equations (4.1), (4.2), (4.3), the equality of the revenue functions used in PMP

and EMR models for a given allocation is shown in Lemma 4.1.1.

Lemma 4.1.1 RPMP(x) = REMR(x) for a given allocation x = (x1, ..., xn).

Proof. REMR(x) in (4.3) is rewritten as shown below using the definition of F j(i) in (4.2).

REMR(x) =

n∑

j=1

(
D j∑

i=1

f jx j(i) +

B j∑

i=D j+1

0 · x j(i)) (4.6)

=

n∑

j=1

f j

D j∑

i=1

x j(i). (4.7)

From (3.7), x j =
∑B j

i=1 x j(i). Also, recall Remark 3.2.1 for allocating a full seat to x j(i) before

any portion of a seat is allocated to x j(i + 1). Then, in (4.7) above,

D j∑

i=1

x j(i) =


D j if D j ≤ x j,

x j otherwise.

That is,
∑D j

i=1 x j(i) = min{D j, x j} which is Z j defined for RPMP(x1, ..., xn) and the proof is

complete. ¥

In Lemma 4.1.1, it is shown that the random revenue functions for given allocations in PMP

and EMR are equal. Moreover, Çetiner (2007) shows that E(REMR(x)) = E(RPMP(x)) and

also gives the formulation for Var(REMR(x)). Note that objective functions of PMP and EMR

are the same. Then, equivalence of the EMR and PMP models can be claimed if the feasible

regions of these two models are also the same. In Lemma 4.1.2, it is shown that the feasible

regions for EMR and PMP are the same.

Let Φe be the feasible region for EMR model and Φp be the feasible region for PMP model.
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Lemma 4.1.2 Φe = Φp.

Proof. The only constraint other than the integrality constraints in EMR and PMP models is

the capacity constraint. Left hand side of the capacity constraint for EMR model is

∑

j∈S l

B j∑

i=1

x j(i) =
∑

j∈S l

x j f or l = 1, ...,m,

since x j =
∑B j

i=1 x j(i). Hence, the capacity constraints for EMR and PMP models are the

same. ¥

Based on the observations in Lemma 4.1.1 and 4.1.2, total revenue is denoted by random

variable R throughout the thesis without specifying the model in the subscript. The approach

we propose in this thesis is based on the use of the following risk measure: probability of total

revenue being less than L, P(R(x) < L). This measure is limited or minimized by using the

models given in the following sections. Formulation for the probability of the revenue being

smaller than L is given in Lemma 4.1.3. p(d) and v(x, d) in Lemma 4.1.3 are introduced next.

For a given sample demand d = (d1, ..., d j, ..., dn) and seat allocation x, v(x, d) is defined as

follows:

v(x, d) = P(
∑

(i, j) 3 D j≥i

f jx j(i) < L | D = d)

= I{∑(i, j) 3 d j≥i f j x j(i)<L}, (4.8)

where D = (D1, ...,Dn) is the vector of random variables denoting demands and

I{∑(i, j) 3 d j≥i f j x j(i)<L} =


1 if

∑
(i, j) 3 d j≥i f jx j(i) < L,

0 otherwise.

Also,

p(d) = P(D = d)

=

n∏

j=1

P(D j = d j). (4.9)

For a given seat allocation x, v(x, d) is the (conditional) probability that total revenue is less

than L given that the demand is equal to d = (d1, ..., dn). v(x, d) turns out to be an indicator

function because total revenue for the specified x would be constant for given d, it is either

smaller or larger than or equal to L. Therefore, in the proposed models, a binary decision

variable is defined for v(x, d). p(d) is the probability that the demand vector is equal to d
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and it is assumed that demands of different booking classes are independent according to the

studies due to de Boer (1999).
∑

d denotes the summation over all d, note that the random

variable D j can only take integer values for every j.

Lemma 4.1.3 For a given x,

P(R(x) < L) =
∑

d

v(x, d)p(d).

Proof.

P(R(x) < L) =
∑

d

P(R(x) < L | D = d)P(D = d).

From (4.3),

P(R(x) < L) =
∑

d

P(
n∑

j=1

B j∑

i=1

F j(i)x j(i) < L | D = d)P(D = d).

Then, by definition of F j(i) in (4.2),

P(R(x) < L) =
∑

d

P(
n∑

j=1

f j

D j∑

i=1

x j(i) < L | D = d)P (D = d)

=
∑

d

P(
∑

(i, j) 3 D j≥i

f jx j(i) < L | D = d)P(D = d)

=
∑

d

v(x, d)p(d).

¥

4.2 Multi-Objective Optimization

The risk measure given in Section 4.1 can be used for minimizing risks. However, in RM

problems, the main aim is maximization of the expected revenue. In fact, our approach is

to work with two objectives: expected revenue maximization and risk minimization. This

requires a multi-objective optimization formulation. Multi-objective optimization is defined

as the simultaneously optimizing two or more conflicting objectives subject to certain con-

straints. A general maximization problem is formulated by Kosmidou and Zopounidis (2004)

as follows:

max {g1(x), g2(x), ..., gn(x)}

sub ject to

x ∈ z,
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where z is the feasible set and gi(x), i = 1, ..., n, are the objective functions. There exist

several solution methods to solve this kind of multi-objective problems and the ones described

by Kosmidou and Zopounidis (2004) are given in the following paragraphs.

Lexicographic Optimization:

1. Classify the objectives from the most important to the least important: g1, g2, ...gn.

2. Maximize gi over the set of feasible solutions and let zi be the set of optimal solutions in

zi−1 corresponding to the maximization of gi. Note that zi ⊆ zi−1... ⊆ z1 ⊆ z.

3. If |zi| = 1 or i = n, there is only one solution, otherwise set i = i + 1 and go to step 2.

The main advantage of this method is its simplicity.

In our models, there are only two objectives: minimizing P(R(x) < L) and expected revenue

maximization. The optimal solutions of the expected revenue maximization models are gen-

erally singleton. That is, there is not in general any alternative optimal solution. Therefore,

lexicographic optimization method can be used in our case by minimizing P(R(x) < L) first

and then maximizing expected revenue over the set of x minimizing P(R(x) < L). The main

disadvantage of the method stated by Kosmidou and Zopounidis (2004) is that independent

examination of each criterion from the others degrades partially the multi-objective character

of the problem.

Global Criterion Method: In global criterion method, the multi-objective problem is con-

verted to a simple optimization problem by using a general function. This function is denoted

by u(x) and defined as u(x) = g(g1(x), g2(x), ..., gn(x)). Then, the problem turns into a clas-

sical maximization of u(x) subject to x ∈ z. The main disadvantage of the model is the

difficulties in determining the u(x) function. In simplest cases, this function is considered

to be linear expressed as a weighted average of the goals. In our case, this method can be

used by working with the following objective: Maximize E(R(x)) − δP(R(x) ≤ L). However,

determination of δ is not a straightforward work.

Interactive Procedures: This method is defined by Kosmidou and Zopounidis (2004) as

follows:”In the first stage of such procedures, an initial efficient solution is obtained and it

is presented to the decision maker. If this solution is considered acceptable by the decision

maker, then the solution procedure stops. If this is not the case, then the decision maker is

asked to provide information regarding his preferences on the pre-specified objectives. This
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information involves the objectives that need to be improved as well as the trade-offs that he

is willing to undertake to achieve these improvements. The objective of defining such infor-

mation is to specify a new search direction for the development of a new improved solution.

This process is repeated until a solution is obtained that is in accordance with the decision

maker’s preferences or until no further improvement of the current solution is possible.” This

solution method requires important amount of effort. In airline revenue management prob-

lems, it is necessary to update solutions frequently and this increases the amount of required

effort more. Therefore, it does not seem appropriate for airline revenue management problems

with multi-objectives.

Goal Programming: Goal programming (GP) is given as an extension of linear programming

to include multiple objectives. In goal programming, goal target values are set for objectives

and then different GP variants are used to minimize the deviations from these target levels.

The deviation is characterized by a difference underlying distance metric or utility function.

Three of these variants are weighted goal programming, lexicographic goal programming and

minmax goal programming. Goal programming is widely used in the literature because of the

easy implementation. However, in weighted GP and minmax GP, there are some difficulties

in setting weights. Lexicographic goal programming is not so different from lexicographic

optimization and have the same disadvantages of independent examination.

All of the methods described above are analyzed for our case and lexicographic optimization

method is chosen to be used in this study.

4.3 The Proposed Lexicographic Optimization Approach

The proposed lexicographic optimization method is used by working with two optimization

models; namely, PMP-RM-1 and PMP-RM-2. The abbreviation PMP-RM stands for Prob-

abilistic Mathematical Programming with Risk Measure. The first model, PMP-RM-1, min-

imizes the probability of gaining revenue less than threshold level over the feasible region.

Then, the feasible region in PMP-RM-2 is set to the set of optimal solutions found by PMP-

RM-1. The second model, PMP-RM-2, maximizes the expected revenue over this restricted

feasible region. These two models are given next. At this point, v(x, d) is replaced with v(d)

in the models as seen below. Note that the dependence relation between v and x results from

40



the constraints (4.12) and (4.13).

As in the EMR model, (4.11) is the capacity constraint used for limiting the number of seats

allocated to ODFs using leg l, and (4.14) is the constraint for setting x j(i)s to 0 or 1. Since

v(d) is equal to an indicator function for each x, it is defined as a binary decision variable in

(4.15). Three constraints in addition to the constraints of EMR model are (4.12), (4.13) and

(4.15). Here, M is a big number. By using (4.12) and (4.13), we guarantee that v(d) > 0 when

total revenue is less than L. In other words, if
∑

(i, j) 3 d j≥i f jx j(i) < L, then (4.13) is redundant

and (4.12) implies that v(d) > 0, and thus v(d) = 1. If
∑

(i, j) 3 d j≥i f jx j(i) ≥ L, then (4.12) is

redundant and (4.13) implies that v(d) = 0.

PMP-RM-1 : Minimize
∑

d

p(d)v(d) (4.10)

sub ject to
∑

j∈S l

B j∑

i=1

x j(i) ≤ Cl for l = 1, ....,m, (4.11)

Mv(d) ≥ −
∑

(i, j) 3 d j≥i

f jx j(i) + L for all d, (4.12)

M(1 − v(d)) ≥
∑

(i, j) 3 d j≥i

f jx j(i) − L for all d, (4.13)

x j(i) ∈ {0, 1} for j = 1, ...., n and i = 1, ..., B j, (4.14)

v(d) ∈ {0, 1} for all d, (4.15)

The PMP-RM-2 model maximizes the expected revenue when the feasible region is the set of

optimal solutions corresponding to the minimization of risk measure in PMP-RM-1. The v(d)

values found in PMP-RM-1 model are used as parameters in PMP-RM-2. That is, x j(i)s are

the only decision variables in PMP-RM-2 model. As a result, the model is given for specified

v = (..., v(d), ...). That is why the notation used for the model is PMP-RM-2|v. The model is
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given below.

PMP-RM-2|v : Maximize
n∑

j=1

B j∑

i=1

f jP(D j ≥ i)x j(i) (4.16)

sub ject to
∑

j∈S l

B j∑

i=1

x j(i) ≤ Cl for l = 1, ....,m, (4.17)

Mv(d) ≥ −
∑

(i, j) 3 d j≥i

f jx j(i) + L for all d, (4.18)

M(1 − v(d)) ≥
∑

(i, j) 3 d j≥i

f jx j(i) − L for all d, (4.19)

x j(i) ∈ {0, 1} for j = 1, ...., n and i = 1, ..., B j. (4.20)

With the use of PMP-RM-1 and PMP-RM-2 models, the lexicographic optimization method

simply gives the optimal seat allocations that minimizes P(R(x) < L) first and then maxi-

mizes expected revenue over the set of seat allocations with minimum risk. The procedure is

analyzed in detail considering the following compact representations of the PMP-RM-1 and

PMP-RM-2 models.

PMP-RM-1 : Min {g(v) | (x, v) ∈ Φ},

PMP-RM-2|v∗ : Max {h(x) | x ∈ Φ|v∗},

where g(v) is the objective function given in (4.10) and h(x) is the objective function given in

(4.16). Φ is the set of constraints in (4.11)-(4.15) and Φ|v∗ is the set of constraints in (4.17)-

(4.20) with v(d) = v∗(d) for all d. Note that Φ|v∗ ⊆ Φ. The PMP-RM Procedure is given

below using the compact representation.

PMP-RM Procedure:

Step 1. Solve PMP-RM-1: Min {g(v) | (x, v) ∈ Φ} for (x∗, v∗). Set P(R(x∗) < L) =

∑
d p(d)v∗(d).

Step 2. Solve PMP-RM-2|v∗ : Max {h(x) | x ∈ Φ|v∗} for the optimal allocation x∗∗. Set

P(R(x∗∗) < L) =
∑

d p(d)v∗(d) and E(R(x∗∗)) =
∑n

j=1
∑B j

i=1 f jP(D j ≥ i)x∗∗j (i).

It must be noted here that the resulting seat allocations for PMP-RM-1 may have a conflict

with the definition of x j(i) in (4.4). In other words, there may exist an optimal allocation

x∗ for PMP-RM-1 such that some x∗j(i
′) = 0 and x∗j(i

′′) = 1 for some j although i′′ > i′.

However, it is shown in the following lemmas, propositions and remarks that there exists at

least one optimal allocation for PMP-RM-1 model that is also a proper allocation in terms of
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the definition of x j(i) in (4.4).

In Lemma 4.3.1, it is shown that the optimal solution for PMP-RM-1 is feasible for PMP-

RM-2|v∗ and all of the feasible solutions of PMP-RM-2|v∗ are optimal for PMP-RM-1. That is,

PMP-RM-2|v∗ is constructed in such a way that the feasible region of PMP-RM-2|v∗ , namely

Φ|v∗ , consists of optimal solutions of PMP-RM-1. This is true in general for lexicographic

optimization, but it is shown here for our models.

Lemma 4.3.1 (x, v∗) for any x ∈ Φ|v∗ is optimal for PMP-RM-1.

Proof. Proof follows from {x | (x, v∗) ∈ Φ} = Φ|v∗ . ¥

The lemmas, remarks and the proposition in this section aim to show that the optimal seat

allocation for the proposed lexicographic optimization satisfies Condition 4.3.2 below. Con-

dition 4.3.2 is given for the rule of allocating a full seat to x j(i) before any portion of a seat is

allocated to x j(i + 1).

Condition 4.3.2 For j = 1, ..., n, if x j(i + 1) = 1, then x j(i) = 1.

For the case x does not satisfy Condition 4.3.2, x′ is defined below in Definition 4.3.3. This

definition is used for arranging x j(i)s in a row. The use of Condition 4.3.2 and Definition

4.3.3 is shown in Example 4.3.4.

Definition 4.3.3 For an allocation x, x′ satisfies Condition 4.3.2 and the equation below:

B j∑

i=1

x′j(i) =

B j∑

i=1

x j(i) for j = 1, ..., n. (4.21)

Equation (4.21) is used for equating the total number of seat allocations in x and x′ for each

j = 1, ..., n.

Example 4.3.4 Suppose that the capacity of a sample single leg flight is 10 and an example

allocation is x =[1 1 0 0 1 0 1 0 0 1]. Then, the corresponding allocation x′ given by

Definition 4.3.3 is x′ =[1 1 1 1 1 0 0 0 0].

In Lemma 4.3.5 below, it is shown that the objective function value of PMP-RM-2|v∗ for x′ is

greater than the one for x.
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Lemma 4.3.5 Let x be an allocation that does not satisfy Condition 4.3.2 and x′ be given as

in Definition 4.3.3. Then, h(x) ≤ h(x′).

Proof. From (4.21),

f j

B j∑

i=1

x′j(i) = f j

B j∑

i=1

x j(i) for j = 1, ..., n.

Since x′ satisfies Condition 4.3.2 and (4.21), and P(D j ≥ i) is nonincreasing in i,

B j∑

i=1

f jP(D j ≥ i)x′j(i) ≥
B j∑

i=1

f jP(D j ≥ i)x j(i) for j = 1, ..., n.

As a result,

n∑

j=1

B j∑

i=1

f jP(D j ≥ i)x′j(i) ≥
n∑

j=1

B j∑

i=1

f jP(D j ≥ i)x j(i).

¥

Lemma 4.3.5 is given for the expected total revenue. In Lemma 4.3.6, total revenue figures

for x′ and x are compared for a particular given demand realization d = (d1, ..., dn). This

lemma is given in order to show that not only the expected revenue but also the revenue for a

given demand vector for allocation x′ is greater than or equal to the revenue for allocation x.

Lemma 4.3.6 Let x be an allocation that does not satisfy Condition 4.3.2 and x′ be given as

in Definition 4.3.3. Then,
∑

(i, j) 3 d j≥i

f jx j(i) ≤
∑

(i, j) 3 d j≥i

f jx′j(i) for any d.

Proof. Let D = d. For x, total revenue is equal to

∑

(i, j) 3 d j≥i

f jx j(i) =

n∑

j=1

f j(
d j∑

i=1

x j(i)). (4.22)

From Definition 4.3.3,
d j∑

i=1

x j(i) ≤
d j∑

i=1

x′j(i) for j = 1, .., n.

Then, using the relation in (4.22),

∑

(i, j) 3 d j≥i

f jx j(i) ≤
n∑

j=1

f j(
d j∑

i=1

x′j(i))

=
∑

(i, j) 3 d j≥i

f jx′j(i).

¥

44



In Lemma 4.3.7, it is shown that x∗′ that satisfies Condition 4.3.2 and (4.21) is a feasible

solution of PMP-RM-2|v∗ for optimal solution, (x∗, v∗), of PMP-RM-1. Then, from Lemma

4.3.1, (x∗′, v∗) is an optimal solution of PMP-RM-1.

Lemma 4.3.7 Let (x∗, v∗) be an optimal solution for the PMP-RM-1 model and x∗′ be given

as in Definition 4.3.3. Then, x∗′ ∈ Φ|v∗ .

Proof. The proof is given by showing that all of the constraints in PMP-RM-2|v∗ are satisfied

by x∗′. x∗ satisfies (4.11) in PMP-RM-1. Then, due to (4.21) in Definition 4.3.3, constraint

(4.17) in PMP-RM-2|v for v = v∗ is satisfied by x∗′. Constraint (4.18) in PMP-RM-2|v for

v = v∗ is also satisfied by x∗′ as shown below.

Mv∗(d) ≥ −
∑

(i, j) 3 d j≥i

f jx∗j(i) + L for all d,

≥ −
∑

(i, j) 3 d j≥i

f jx∗j
′(i) + L for all d,

where the first inequality is (4.12) in PMP-RM-1 under the optimal policy and the second

inequality results from Lemma 4.3.6.

Now, consider constraint (4.19) in PMP-RM-2|v for v = v∗.

• If
∑

(i, j) 3 d̄ j≥i f jx∗j
′(i) − L ≤ 0 for some d̄, then

M(1 − v∗(d̄)) ≥
∑

(i, j) 3 d̄ j≥i

f jx∗j
′(i) − L

is redundant. That is, in this case, x∗′ satisfies (4.19) when v = v∗.

• If
∑

(i, j) 3 d̄ j≥i f jx∗j
′(i) − L > 0 for some d̄, then consider the two cases: v∗(d̄) = 0 and

v∗(d̄) = 1.

If v∗(d̄) = 0, then

M(1 − v∗(d̄)) ≥
∑

(i, j) 3 d̄ j≥i

f jx∗j
′(i) − L

is redundant because the left hand side above is equal to M.

If v∗(d̄) = 1, then

M(1 − v∗(d̄)) �
∑

(i, j) 3 d̄ j≥i

f jx∗j
′(i) − L,
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because the left hand side is equal to zero while the right hand side is positive. (Note that, in

this case,
∑

(i, j) 3 d̄ j≥i f jx∗j(i) − L ≤ 0 from (4.13).) That is, constraint (4.19) in PMP-RM-2|v
for v = v∗ is not satisfied by x∗′. In this case, letting

v̄(d) =


0 for d 3 ∑

(i, j) 3 d j≥i f jx∗j
′(i) − L > 0 and v∗(d) = 1,

v∗(d) otherwise,

it is observed that (x∗′, v̄) is feasible for PMP-RM-1. (v̄ is defined in order for x∗′ to satisfy

(4.19) also for d such that
∑

(i, j) 3 d j≥i f jx∗j
′(i) − L > 0 and v∗(d) = 1.) Note that (4.12) is not

violated by (x∗′, v̄) in PMP-RM-1. This is because the right (left) hand side in (4.12) below

Mv̄(d) ≥ −
∑

(i, j) 3 d j≥i

f jx∗j
′(i) + L

is negative (0) for each d such that
∑

(i, j) 3 d j≥i f jx∗j
′(i) − L > 0 and v∗(d) = 1. Then, (x∗′, v̄) ∈

Φ. Now, consider the objective function g(v∗) of PMP-RM-1 for (x∗, v∗) and g(v̄) for (x∗′, v̄).

Here, letting D =
{
d | ∑(i, j) 3 d j≥i f jx∗j

′(i) − L > 0 and v∗(d) = 1
}
,

g(v∗) =
∑

d∈D
p(d)v∗(d) +

∑

d<D

p(d)v∗(d)

>
∑

d∈D
p(d)v̄(d) +

∑

d<D

p(d)v∗(d) by definition of v̄,

= g(v̄).

This contradicts to the optimality of (x∗, v∗) for PMP-RM-1. As a result, there does not exist

a demand vector d̄ causing x∗′ to be infeasible for PMP-RM-2|v∗ . ¥

Remark 4.3.8 Let (x∗, v∗) be an optimal solution for the PMP-RM-1 model and x∗′ be given

as in Definition 4.3.3. From Lemma 4.3.7, (x∗′, v∗) is also optimal for PMP-RM-1. As a result,

there exists at least one optimal allocation for PMP-RM-1 (feasible allocation for PMP-RM-

2|v∗) that satisfies Condition 4.3.2.

If x∗ satisfies Condition 4.3.2, then the observation above immediately follows. If x∗ does

not satisfy Condition 4.3.2, then x∗′ given in Definition 4.3.3 is in Φ|v∗ (feasible for PMP-

RM-2|v∗) from Lemma 4.3.7, and, thus, x∗′ is optimal for PMP-RM-1 from Lemma 4.3.1. As a

result, Φ|v∗ is not restricted to the allocations (optimal allocations for PMP-RM-1) that do not

satisfy Condition 4.3.2. Furthermore, x∗′ is not dominated by x∗ in PMP-RM-2|v∗ as shown

in Lemma 4.3.5.
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In order to conclude that x∗∗ as the optimal solution of PMP-RM-2|v∗ satisfies Condition

4.3.2, the final observation used in Proposition 4.3.9 below is that P(D j ≥ i) in h(x) decreases

monotonically in i for each j.

Proposition 4.3.9 Let v∗ and x∗∗ be optimal solutions for PMP-RM-1 and PMP-RM-2|v∗ ,
respectively. Then, x∗∗ satisfies Condition 4.3.2.

Proof. Let x∗ denote optimal solution of PMP-RM-1. From Lemma 4.3.7 and Remark 4.3.8,

x∗′ that satisfies Condition 4.3.2 and (4.21) is in Φ|v∗ for every x∗. Also, Φ|v∗ is restricted to

the optimal solutions of PMP-RM-1. Then, x∗∗ satisfies Condition 4.3.2 due to Lemma 4.3.5.

Recall that P(D j ≥ i) in h(x) decreases monotonically as i increases for each j. ¥

Remark 4.3.10 Let x∗ and x∗∗ denote optimal solutions of PMP-RM-1 and PMP-RM-2|v∗ ,
respectively.

a) h(x∗) ≤ h(x∗∗).

Let x∗′ be given as in Definition 4.3.3. x∗, x∗′ and x∗∗ are in Φ|v∗ . h(x∗) ≤ h(x∗′) ≤ h(x∗∗)

where the first inequality is due to Lemma 4.3.5 and the second inequality follows from the

optimality of x∗∗ for PMP-RM-2|v∗ . Note that if x∗ , x∗∗, then x∗ and x∗∗ are alternative

optima for PMP-RM-1.

b) P(R(x∗) < L) = P(R(x∗∗) < L) =
∑

d p(d)v∗(d).

4.4 The Proposed Approximation

The main difficulty for the procedure given in Section 4.3 is that linear relaxation cannot be

avoided for the Integer Programming (IP) formulations with binary decision variables x j(i)

and v(x, d). Because of the computational burden of PMP-RM procedure, an approximate

procedure for PMP-RM is suggested in this section. Consider the PMP-RM models for an

example network. Let the number of legs be m = 3 and number of ODFs be n = 18 and the

bound for i be B j = 100 for all j. Then, there are 1800 real decision variables, x j(i)s, and

(100+1)18 ≈ 1036 integer decision variables, vs, and 2× (100+1)18 +1 ≈ 2×1036 constraints

in PMP-RM-1 model. Although this sample network is smaller than real life networks, use of

the approximations is unavoidable because of the computational time and memory limits.

The approximation we propose in this thesis is underlined below.
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(1) The PMP-RM models are solved only for a small number of demand realizations. The

idea behind this approximation is not so different from the RLP model. Talluri and van Ryzin

(1999) solve RLP model many times, which is suggested to be more than 20, each for a

demand realization and, then, the average of the bid prices obtained for each run is used in

the control policy. In this thesis, a given number of demand realizations but not all of them

are considered simultaneously while solving the PMP-RM models just once and the resulting

allocations or bid prices are used in control policies.

(2) Based on the integrality property of the network problems in Section 3.2, Williamson

(1992) claims that the linear relaxation of the EMR model gives integer solutions. In other

words, the claim is the following: if the upper and lower bounds on the decision variables

are integer and the right hand side values of the flow balance constraints are integer, then the

solution will be integer. However, de Boer (1999) gives a counter example to show that, under

these conditions, the models can give non-integer solutions. de Boer (1999) also states that,

in real life problems, the solutions of the models are surprisingly integer. In our numerical

experiments, only one of all seats of an ODF can take a fractional value (as in Condition

4.4.1) when the integrality constraints for x j(i)s are relaxed. Based on these observations, in-

tegrality constraints for x j(i)s are relaxed for both PMP-RM-1 and PMP-RM-2. According to

Condition 4.4.1, only one x j(i) value can be fractional for each ODF j. If x j($) is fractional,

then all of the x j(i)s are zero for i > $ and x j(i)s are equal to 1 for i < $.

Condition 4.4.1 For j = 1, ..., n, if x j(i+1) = 1, then x j(i) = 1; if x j(i) < 1, then x j(i+1) = 0.

(3) The PMP-RM models are solved by relaxing the integrality constraints for x j(i) and v(d)

in the PMP-RM-1 model and, then, rounding the positive v(d) values less than 1 to 1. Because

of the definition of v(d) in (4.8), if v(d) = 0, then the probability that revenue is less than the

threshold level L is equal to zero for given d and the associated seat allocation. On the other

hand, this probability is positive if v(d) > 0. The approximation we consider is rounding

v(d) values to 1 when they are greater than 0 but smaller than 1. v(d) values are rounded

considering the definition of v(d)s. For the risk measure given in Section 4.1, P(R(x) < L) is

calculated by using v(x, d), which is an indicator function. If fractional v(d) values are used

to calculate P(R(x) < L), the value found for P(R(x) < L) would be questioned.

These approximations make our models linear and easy to solve. Although the solution qual-
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ity gets worse as a result of the approximations, the numerical results are acceptable according

to the experiments reported in Chapter 5 and Chapter 6.

First, consider approximations (2) and (3) above. The relaxed models are called PLP-RM,

which stands for Probabilistic Linear Programming with Risk Measure. (x∗, v∗) denotes opti-

mal solution of PMP-RM-1. ṽ is obtained by rounding v∗ as explained for the approximation

(3) above. The compact representations of PLP-RM models are as follows:

PLP-RM-1 : Min {g(v) | (x, v) ∈ Φ̃},

PLP-RM-2|ṽ : Max {h(x) | x ∈ Φ̃|ṽ},

where Φ̃ is the set of constraints in (4.11)-(4.13) with 0 ≤ x j(i) ≤ 1 and 0 ≤ v(d) ≤ 1

instead of (4.14) and (4.15), respectively. Φ̃|ṽ is the set of constraints in (4.17)-(4.19) with

v(d) = ṽ(d) and 0 ≤ x j(i) ≤ 1 instead of (4.20). x∗∗ is the optimal solution of PMP-RM-2|ṽ.

Then, PLP-RM-1 and PLP-RM-2|v models are given as follows:

PLP-RM-1 : Minimize
∑

d

p(d)v(d) (4.23)

sub ject to
∑

j∈S l

B j∑

i=1

x j(i) ≤ Cl for l = 1, ....,m, (4.24)

Mv(d) ≥ −
∑

(i, j) 3 d j≥i

f jx j(i) + L for all d, (4.25)

M(1 − v(d)) ≥
∑

(i, j) 3 d j≥i

f jx j(i) − L for all d, (4.26)

0 ≤ x j(i) ≤ 1 for j = 1, ...., n and i = 1, ..., B j,

0 ≤ v(d) ≤ 1 for all d.

PLP-RM-2|v : Maximize
n∑

j=1

B j∑

i=1

f jP(D j ≥ i)x j(i) (4.27)

sub ject to
∑

j∈S l

B j∑

i=1

x j(i) ≤ Cl for l = 1, ....,m, (4.28)

Mv(d) ≥ −
∑

(i, j) 3 d j≥i

f jx j(i) + L for all d, (4.29)

M(1 − v(d)) ≥
∑

(i, j) 3 d j≥i

f jx j(i) − L for all d, (4.30)

0 ≤ x j(i) ≤ 1 for j = 1, ...., n and i = 1, ..., B j.
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The PMP-RM Procedure is revised by using these relaxed models above and the resulting

PLP-RM Procedure is given next with the use of approximations (2) and (3).

PLP-RM Procedure:

Step 1. Solve PLP-RM-1: Min {g(v) | (x, v) ∈ Φ̃} for (x∗, v∗). For all d, set

ṽ(d) =


1 if v∗(d) > 0,

0 if v∗(d) = 0.
(4.31)

Set P(R(x∗) < L) =
∑

d p(d)ṽ(d).

Step 2. Solve PLP-RM-2|ṽ: Max {h(x) | x ∈ Φ̃|ṽ} for the optimal allocation x∗∗. Set

P(R(x∗∗) < L) =
∑

d p(d)ṽ(d) and E(R(x∗∗)) =
∑n

j=1
∑B j

i=1 f jP(D j ≥ i)x j(i).

For any fractional x∗∗j (i) value obtained by solving PMP-RM-2|ṽ, the fractional value is rounded

up (down) when x∗∗j (i) ≥ 0.5 (x∗∗j (i) < 0.5). This is for the use of allocation is practice with

real life partitioned or nested booking policies.

Next, Definition 4.3.3 and Lemmas 4.3.5 and 4.3.6 are revised for the relaxed cases as in

Definition 4.4.2 and in Lemmas 4.4.4 and 4.4.5.

Definition 4.4.2 For an allocation x, x′ satisfies Condition 4.4.1 and the equation below.

B j∑

i=1

x′j(i) =

B j∑

i=1

x j(i) for j = 1, ..., n. (4.32)

Example 4.4.3 Suppose that the capacity of a sample single leg flight is 10 and an example

allocation is x =[0.5 0.3 0 0 0.8 0 0.2 0 0 0.9]. Then, the corresponding allocation x′ given

by Definition 4.3.3 is x′ =[1 1 0.7 0 0 0 0 0 0].

Lemma 4.4.4 Let x be an allocation that does not satisfy Condition 4.4.1 and x′ be given as

in Definition 4.4.2. Then, h(x) ≤ h(x′).

Lemma 4.4.5 Let x be an allocation that does not satisfy Condition 4.4.1 and x′ be given as

in Definition 4.4.2. Then,

∑

(i, j) 3 d j≥i

f jx j(i) ≤
∑

(i, j) 3 d j≥i

f jx′j(i) for any d.
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In Lemmas 4.4.4 and 4.4.5, the relation between an optimal allocation x and a rearranged

allocation x′ are studied. The observation in Lemma 4.3.7 is revised in Lemma 4.4.6 for the

proposed approach with approximations (2) and (3).

Lemma 4.4.6 Let (x∗, v∗) be an optimal solution for PLP-RM-1 model and x∗′ be given as in

Definition 4.4.2. Let

ṽ(d) =


0 if v∗(d) = 0,

1 if v∗(d) > 0.
(4.33)

Then, x∗′ ∈ Φ̃|ṽ.

Proof. The proof is given by showing that all of the constraints in PLP-RM-2|ṽ are satisfied

by x∗′. x∗ satisfies (4.24) in PLP-RM-1. Then, due to (4.32) in Definition 4.4.2, constraint

(4.28) in PLP-RM-2|v for v = ṽ is satisfied by x∗′. Constraint (4.29) in PLP-RM-2|v for v = ṽ

is also satisfied by x∗′ as shown below.

Mṽ(d) ≥ Mv∗(d) ≥ −
∑

(i, j) 3 d j≥i

f jx∗j(i) + L f or all d,

≥ −
∑

(i, j) 3 d j≥i

f jx∗j
′(i) + L f or all d,

where the first inequality results from the definition of ṽ(d) and the second inequality is (4.25)

in PLP-RM-1 under the optimal policy and the third inequality results from Lemma 4.4.5.

Now, consider constraint (4.30) in PLP-RM-2|v for v = ṽ.

• If
∑

(i, j) 3 d̄ j≥i f jx∗j
′(i) − L ≤ 0 for some d̄, then, x∗′ satisfies (4.30) when v = ṽ as shown

below.

M(1 − v∗(d̄)) ≥ M(1 − ṽ(d̄)) ≥ 0 ≥
∑

(i, j) 3 d̄ j≥i

f jx∗j
′(i) − L.

• If
∑

(i, j) 3 d̄ j≥i f jx∗j
′(i) − L > 0 for some d̄, then consider the two cases: v∗(d̄) = 0 and

v∗(d̄) > 0.

If v∗(d̄) = 0, then ṽ(d̄) = 0. In this case, x∗′ satisfies (4.30) when v = ṽ as shown below.

M = M(1 − v∗(d̄)) = M(1 − ṽ(d̄)) ≥
∑

(i, j) 3 d̄ j≥i

f jx∗j
′(i) − L.
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If v∗(d̄) > 0, then ṽ(d̄) = 1. In this case,

M(1 − ṽ(d̄)) �
∑

(i, j) 3 d̄ j≥i

f jx∗j
′(i) − L

because the left (right) hand side above is zero (positive). Here, M(1 − v∗(d̄)) ≥ M(1 − ṽ(d̄)).

(Note that, in this case,
∑

(i, j) 3 d̄ j≥i f jx∗j(i)− L ≤ M(1− v∗(d̄)) from (4.26).) That is, constraint

(4.30) in PLP-RM-2|v for v = ṽ is not satisfied by x∗′.

In this case, letting

v̄(d) =


0 for d 3 ∑

(i, j) 3 d j≥i f jx∗j
′(i) − L > 0 and v∗(d) > 0,

v∗(d) otherwise,

it is observed that (x∗′, v̄) is feasible for PLP-RM-1. (v̄ is defined in order for x∗′ to satisfy

(4.30) also for d such that
∑

(i, j) 3 d j≥i f jx∗j
′(i) − L > 0 and ṽ(d) = 1.) Note that (4.25) is not

violated by (x∗′, v̄) in PLP-RM-1. This is because the right (left) hand side in (4.25) below

Mv̄(d) ≥ −
∑

(i, j) 3 d j≥i

f jx∗j
′(i) + L

is negative (0) for each d such that
∑

(i, j) 3 d j≥i f jx∗j
′(i) − L > 0 and v∗(d) > 0. Then, (x∗′, v̄) ∈

Φ̃. Now, consider the objective function g(v∗) of PLP-RM-1 for (x∗, v∗) and g(v̄) for (x∗′, v̄).

Here, letting D = {d|∑(i, j)3d j≥i f jx∗j
′(i) − L > 0 and v∗(d) > 0}, we obtain

g(v∗) =
∑

d∈D
p(d)v∗(d) +

∑

d<D

p(d)v∗(d)

>
∑

d∈D
p(d)v̄(d) +

∑

d<D

p(d)v∗(d) by definition of v̄,

= g(v̄).

This contradicts to the optimality of (x∗, v∗) for PLP-RM-1. As a result, there does not exist

a demand vector d̄ such that
∑

(i, j) 3 d j≥i f jx∗j
′(i) − L > 0 and v∗(d̄) > 0. Then, there does not

exist any d̄ such that
∑

(i, j) 3 d̄ j≥i f jx∗j
′(i) − L > 0 and ṽ(d̄) = 1, causing x∗′ to be infeasible for

PLP-RM-2|ṽ. Thus, x∗′ ∈ Φ̃|ṽ. ¥

Lemma 4.4.7 Let (x∗, v∗) and x∗∗ denote optimal solutions of PLP-RM-1 and PLP-RM-2|ṽ,

respectively, where ṽ is defined as in (4.33).

a) x∗ ∈ Φ̃|ṽ.

b) x∗′ ∈ Φ̃|v∗ .
c) Φ̃|v∗ ⊆ Φ̃|ṽ.
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d) h(x∗) ≤ h(x∗∗).

e) P(R(x∗) < L) = P(R(x∗∗) < L) =
∑

d p(d)ṽ(d).

Proof.

Proofs for (a) and (b) are very similar to the proof of Lemma 4.4.6. Here, the proof is given

for (a) but skipped for (b).

a) (4.24) and (4.28) are the same, and x∗ satisfies (4.24). That is, (4.28) is satisfied by x∗.

The second inequality below is due to feasibility of x∗ for PLP-RM-1, constraint (4.25) and

the first inequality below is due to definition of ṽ.

Mṽ(d) ≥ Mv∗(d) ≥ −
∑

(i, j) 3 d j≥i

f jx∗j(i) + L f or all d.

Then, x∗ satisfies (4.29) in PLP-RM-2|v for v = ṽ.

Now, consider (4.30) for v = ṽ.

• If
∑

(i, j) 3 d̄ j≥i f jx∗j(i) − L ≤ 0 for some d̄, then

M(1 − v∗(d̄)) ≥ M(1 − ṽ(d̄)) ≥ 0 ≥
∑

(i, j) 3 d̄ j≥i

f jx∗j(i) − L.

That is, x∗ satisfies (4.30) when v = ṽ.

• If
∑

(i, j) 3 d̄ j≥i f jx∗j(i) − L > 0 for some d̄, then v∗(d̄) = 0 by definition of v. However, for the

sake of rigour and completeness of the proof both v∗(d̄) = 0 and v∗(d̄) > 0 are considered.

If v∗(d̄) = 0, then ṽ(d̄) = 0. In this case,

M = M(1 − v∗(d̄)) = M(1 − ṽ(d̄)) ≥
∑

(i, j) 3 d̄ j≥i

f jx∗j(i) − L.

That is, x∗ satisfies (4.29) when v = ṽ.

If v∗(d̄) > 0, then ṽ(d̄) = 1. In this case,

M(1 − ṽ(d̄)) �
∑

(i, j) 3 d̄ j≥i

f jx∗j(i) − L.

That is, x∗ does not satisfy (4.29) when v = ṽ.

However, letting

v̄(d) =


0 for d 3 ∑

(i, j) 3 d j≥i f jx∗j(i) − L > 0 and v∗(d) > 0,

v∗(d) otherwise,
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it is observed that (x∗, v̄) ∈ Φ but g(v∗) > g(v̄), which contradicts to the optimality of (x∗, v∗)

for PLP-RM-1. Then, there does not exist any d such that
∑

(i, j) 3 d j≥i f jx∗j(i) − L > 0 and

v∗(d̄) > 0 (and thus ṽ(d̄) = 1).

c) From part (b) and by definition of x∗, we have x∗′ ∈ Φ̃|v∗ and x∗ ∈ Φ̃|v∗ , respectively. On

the other hand, form part (a) and Lemma 4.4.6, we have x∗ ∈ Φ̃|ṽ and x∗′ ∈ Φ̃|ṽ. Then,

Φ̃|v∗ ⊆ Φ̃|ṽ.

d) h(x∗) ≤ h(x∗′) ≤ h(x∗∗), where the first inequality is due to Lemma 4.4.4 and the second

inequality follows form the optimality of x∗∗ for PLP-RM-2|ṽ. Note that x∗, x∗′ and x∗∗ are in

Φ̃|ṽ.

e) For x∗ and x∗′, P(R(x∗) < L) =
∑

d p(d)ṽ(d) from the first step of PLP-RM Procedure. Note

that P(R(x∗) < L) is equated to the expression in terms of ṽ but not v∗. This is because the risk

measure is defined in terms of binary v(d)s. (Recall Lemma 4.1.3) For any x in PLP-RM-2,
∑

(i, j) 3 d j≥i f jx j(i)−L ≤ 0 or
∑

(i, j) 3 d j≥i f jx j(i)−L ≥ 0 for given ṽ and all d. Then, for optimal

solution x∗∗, P(R(x∗∗) < L) =
∑

d p(d)ṽ(d). ¥

Then, Proposition 4.3.9 can be revised as in Proposition 4.4.8 for the proposed approach with

approximations (2) and (3).

Proposition 4.4.8 Let v∗ be an optimal solution of PLP-RM-1 and ṽ be defined as in (4.33).

Let x∗∗ be an optimal allocation for PLP-RM-2|ṽ. Then, x∗∗ satisfies Condition 4.4.1.

Proof. From Lemma 4.4.7 (a), (c) and Lemma 4.4.6, Φ̃|ṽ includes not only x∗ but also x∗′ that

satisfies Condition 4.4.1. If x∗∗ is not in (Φ̃|ṽ-Φ̃|v∗), then one of x∗′ would be x∗∗; otherwise,

x∗∗ would also satisfy Condition 4.4.1. Because P(D j ≥ i) in h(x) decreases in i. ¥

Next, the approximation (1) for sample demand realizations is used. The PLP-RM-1 and PLP-

RM-2|ṽ models are solved for a number of sample demand realizations. Let Ψ be the set of

sample demand realizations considered in the PLP-RM-1 and PLP-RM-2|ṽ models and |Ψ| be

the total number of demand realizations. The objective function of the approximate PLP-RM-

1 model would, then, be the normalized probability that the revenue is less than the threshold

level, L. That is, it would be
∑

d∈Ψ p(d)v(d)∑
d∈Ψ p(d) corresponding to P(R(x) < L|D ∈ Ψ). Instead, the

average of v(d) values,
∑

d∈Ψ
v(d)
|Ψ| , is used in the objective function of the approximate PLP-

RM-1 model. If the sample size, |Ψ|, is sufficiently large, then the average of v(d) would work
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well to approximate P(R(x) < L). This is because |Ψd|/|Ψ| would be expected to converge to

p(d) when |Ψd| is the number of demand realization d in the sample |Ψ|. The other alternative

for the objective function, i.e,
∑

d∈Ψ p(d)v(d)∑
d∈Ψ p(d) , does not work well numerically because dividing

very small p(d) values by very small
∑

d∈Ψ p(d) values causes computational problems in

solving the optimization models.

Then, the resulting approximate PLP-RM-1 and PLP-RM-2 models are given as follows:

Approximate PLP-RM-1 : Minimize
∑

d∈Ψ

v(d)
|Ψ| (4.34)

sub ject to
∑

j∈S l

B j∑

i=1

x j(i) ≤ Cl for l = 1, ....,m,

Mv(d) ≥ −
∑

(i, j) 3 d j≥i

f jx j(i) + L for d ∈ Ψ,

M(1 − v(d)) ≥
∑

(i, j) 3 d j≥i

f jx j(i) − L for d ∈ Ψ,

0 ≤ x j(i) ≤ 1 for j = 1, ...., n and i = 1, ..., B j,

0 ≤ v(d) ≤ 1 for d ∈ Ψ.

Approximate PLP-RM-2|v : Maximize
n∑

j=1

B j∑

i=1

f jP(D j ≥ i)x j(i) (4.35)

sub ject to
∑

j∈S l

B j∑

i=1

x j(i) ≤ Cl for l = 1, ....,m,

Mv(d) ≥ −
∑

(i, j) 3 d j≥i

f jx j(i) + L for d ∈ Ψ,

M(1 − v(d)) ≥
∑

(i, j) 3 d j≥i

f jx j(i) − L for d ∈ Ψ,

0 ≤ x j(i) ≤ 1 for j = 1, ...., n and i = 1, ..., B j.

Note that the analytical results given in this section for the PLP-RM Procedure are also valid

when a sample of demand realizations is used.

The computational time for the use of the approximate PLP-RM-1 and PLP-RM-2|ṽ models

with the PLP-RM procedure decreases even more by reformulating these models with aggre-

gate demands as in the S LP model due to de Boer (1999). Then, the resulting models that are

called SLP-RM are as given below. The abbreviation SLP-RM stands for Stochastic Linear
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Programming with Risk Measure.

SLP-RM-1 : Minimize
∑

d∈Ψ

v(d)
|Ψ|

sub ject to
∑

j∈S l

κ j∑

k=1

x j(k) ≤ Cl for l = 1, ....,m,

x j =

κ j∑

k=1

x j(k) for j = 1, ...., n,

x j(1) ≤ d j(1),

x j(k) ≤ d j(k) − d j(k − 1) for k = 2, ...., κ j,

Mv(d) ≥ −
∑

(k, j) 3 d j≥d j(k)

f jx j(k) + L for d ∈ Ψ,

M(1 − v(d)) ≥
∑

(k, j) 3 d j≥d j(k)

f jx j(k) − L for d ∈ Ψ,

x j(k) ≥ 0 for j = 1, ...., n and k = 1, ..., κ j,

x j ≥ 0 for j = 1, ...., n,

0 ≤ v(d) ≤ 1 for d ∈ Ψ.

Recall that, in SLP, D j is assumed to take a value in {d j(i), ..., d j(κ j)} where d j(1) < d j(2) <

... < d j(κ j) for j = 1, ..., n. x j(k) is defined as the number of seats allocated for demand group

k between d j(k − 1) and d j(k) and x j is the total seats allocated to ODF j.

SLP-RM-2|v : Maximize h(x) =

n∑

j=1

f jx j −
n∑

j=1

f j

κ j∑

k=1

P(D j < d j(k))x j(k)

sub ject to
∑

j∈S l

κ j∑

k=1

x j(k) ≤ Cl for l = 1, ....,m,

x j =

κ j∑

k=1

x j(k) for j = 1, ...., n,

x j(1) ≤ d j(1),

x j(k) ≤ d j(k) − d j(k − 1) for k = 2, ...., κ j,

Mv(d) ≥ −
∑

(k, j) 3 d j≥d j(k)

f jx j(k) + L for d ∈ Ψ,

M(1 − v(d)) ≥
∑

(k, j) 3 d j≥d j(k)

f jx j(k) − L for d ∈ Ψ,

x j(k) ≥ 0 for j = 1, ...., n and k = 1, ..., κ j,

x j ≥ 0 for j = 1, ...., n.
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SLP-RM-2|v model is used to maximize the expected revenue by setting v(d) values as pa-

rameters which are found by solving SLP-RM-1 model. As in the SLP model due to de Boer

(1999), the first term in the objective function is the total revenue gained when all of the allo-

cated seats are sold and the second term is a correction for uncertainty of demand. Although

the computational time decreases significantly when SLP-RM models are used, the solution

time is still a disadvantage of SLP-RM model as compared to EMR and DLP. The numerical

studies on SLP-RM models are given in Chapter 6.

The derivations of the expected revenue used in SLP-RM models are given next. Define

random variable K j: K j = k if D j ∈ [d j(k), d j(k + 1)). Let K = (K1, ...,Kn) and

F j(k) =


f j if D j ≥ d j(k),

0 otherwise.
(4.36)

Note that

F j(k) =


f j if K j ≥ k,

0 otherwise.
(4.37)

Let x j = (x j(1), ..., x j(κ j)) for j = 1, ..., n and x = (x1, ..., xn). Then, the revenue for a given

allocation x is

RS LP(x) =

n∑

j=1

κ j∑

k=1

F j(k)x j(k) (4.38)

=

n∑

j=1

(
K j∑

k=1

f jx j(k) +

κ j∑

k=K j+1

0 · x j(0)) (4.39)

=

n∑

j=1

f j

K j∑

k=1

x j(k) (4.40)

=
∑

(k, j) 3 K j≥k

f jx j(k) (4.41)

=
∑

(k, j) 3 D j≥d j(k)

f jx j(k). (4.42)

(4.43)
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The expected revenue for a given allocation x is also rewritten as follows:

E(RS LP(x)) =

n∑

j=1

κ j∑

k=1

E(F j(k))x j(k) (4.44)

=

n∑

j=1

κ j∑

k=1

( f j · P(K j ≥ k) + 0 · P(K j < k))x j(k) (4.45)

=

n∑

j=1

κ j∑

k=1

( f j · P(D j ≥ d j(k)) + 0 · P(D j < d j(k)))x j(k) (4.46)

=

n∑

j=1

κ j∑

k=1

f j · P(D j ≥ d j(k))x j(k). (4.47)

(4.48)

For the formulation, the demand D j is assumed to take a value in {d j(1), ..., d j(κ j)} for j =

1, ..., n. However, for evaluating the expected revenue as a function of a given x, the original

demand distribution is used. Note that the evaluation would be the same even if the original

demand distribution is aggregated according to the formulation.

Next, it is shown that the analytical results given in this section for PLP-RM-1 and PLP-RM-2

models are also valid for SLP-RM-1 and SLP-RM-2 models. First, Condition 4.4.1 is revised

as given in Condition 4.4.9. Next, Definition 4.4.2 and Lemmas 4.4.4 and 4.4.5 are revised.

Condition 4.4.9 For j = 1, ..., n, if x j(k + 1) > 0, then x j(k) = d j(k) − d j(k − 1); if x j(k) <

d j(k) − d j(k − 1), then x j(k + 1) = 0.

Then, the definition of x′ is

Definition 4.4.10 For an allocation x, x′ satisfies Condition 4.4.9 and the equation below.

κ j∑

k=1

x′j(k) =

κ j∑

k=1

x j(k) for j = 1, ..., n. (4.49)

Example 4.4.11 Suppose that κ j = 10 for some j and an example allocation is x =[2.5 0.5 0

0 3.8 0 4 0 0 3]. Then, the corresponding allocation x′ given by Definition 4.3.3 is x′ =[4 4 4

1.8 0 0 0 0 0].
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The allocation x j(k) obtained by solving the SLP-RM-2|v model is

x j(k) =



0 if x j ≤ d j(k − 1),

x j − d j(k − 1) if d j(k − 1) < x j < d j(k),

d j(k) − d j(k − 1) if x j ≥ d j(k).

for k = 1, ..., κ j and j = 1, ..., n.

That is, the solution of SLP-RM-2 would satisfy Condition 4.4.9 because P(D j ≥ d j(k)) in

h(x) =
∑n

j=1
∑κ j

k=1 f jP(D j ≥ d j(k))x j(k) decreases in k.

Lemma 4.4.12 Let x be an allocation that does not satisfy Condition 4.4.9 and x′ be given

as in Definition 4.4.10. Then, h(x) ≤ h(x′).

Proof. From (4.49),

f j

κ j∑

k=1

x′j(k) = f j

κ j∑

k=1

x j(k) for j = 1, ..., n.

Since x′ satisfies Condition 4.4.9 and (4.49), and P(D j ≥ d j(k)) is nonincreasing in k,

κ j∑

i=1

f jP(D j ≥ d j(k))x′j(k) ≥
κ j∑

k=1

f jP(D j ≥ d j(k))x j(k) for j = 1, ..., n.

As a result,

n∑

j=1

κ j∑

k=1

f jP(D j ≥ d j(k))x′j(k) ≥
n∑

j=1

κ j∑

k=1

f jP(D j ≥ d j(k))x j(k).

¥

Lemma 4.4.13 Let x be an allocation that does not satisfy Condition 4.4.9 and x′ be given

as in Definition 4.4.10. Then,

∑

(k, j) 3 d j≥d j(k)

f jx j(k) ≤
∑

(k, j) 3 d j≥d j(k)

f jx′j(k) for all d.

Proof. Let D = d and K = (k1, ..., kn). For x, total revenue is equal to

∑

(k, j) 3 d j≥d j(k)

f jx j(k) =

n∑

j=1

f j(
k j∑

k=1

x j(k)) (4.50)

from (4.36) and (). From Definition 4.4.10,

k j∑

k=1

x j(k) ≤
k j∑

k=1

x′j(k) for j = 1, .., n.
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Then, using the relation in (4.50),

∑

(k, j) 3 d j≥d j(k)

f jx j(k) ≤
n∑

j=1

f j(
k j∑

k=1

x′j(k))

=
∑

(k, j) 3 d j≥d j(k)

f jx′j(k).

¥

Then, Lemma 4.4.6 and 4.4.8 can be revised for the SLP-RM models. As compared to the

PLP-RM models, the only additional constraints in the SLP-RM models are

x j(1) ≤ d j(1),

x j(k) ≤ d j(k) − d j(k − 1) for j = 2, ..., κ j.

Note that the constraint for x j can be removed in SLP-RM-1 (SLP-RM-2 by replacing the

objective function with
∑n

j=1 f jP(D j ≥ d j(k))x j(k)). All of the other constraints and the ob-

jective function in the PLP-RM and SLP-RM models are directly comparable. The revision of

Lemma 4.4.6 for the additional constraints in the SLP-RM models would be straightfroward

because the additional constraints aforementioned above would already be satisfied by an

allocation satisfying Condition 4.4.9.

4.5 Risk-Constrained Mathematical Programming Model

The approach considered in the previous section is to minimize risk first and then to maximize

expected revenue for the risk level determined in the first step. In this section, we propose a

model to maximize the expected revenue under a constraint on the same risk measure as the

one considered in the previous section, i.e., the probability of total revenue being less than a

threshold level. The model is formulated by using the same assumptions and approximations

used in the previous section. The proposed PMP-RC model that stands for Probabilistic
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Mathematical Programming with Risk Constraint is as follows:

PMP-RC : Maximize
n∑

j=1

f jx j −
n∑

j=1

f j

κ j∑

k=1

P(D j < d j(k))x j(k) (4.51)

sub ject to
∑

j∈S l

κ j∑

k=1

x j(k) ≤ Cl for l = 1, ....,m,

x j =

κ j∑

k=1

x j(k) for j = 1, ..., n,

x j(1) ≤ d j(1),

x j(k) ≤ d j(k) − d j(k − 1) for j = 2, ..., κ j,
∑

d∈Ψ

v(d)
|Ψ| < ρ,

Mv(d) ≥ −
∑

(k, j) 3 d j≥d j(k)

f jx j(k) + L for d ∈ Ψ,

M(1 − v(d)) ≥
∑

(k, j) 3 d j≥d j(k)

f jx j(k) − L for d ∈ Ψ,

x j(k) ≥ 0 for j = 1, ...., n and k = 1, ..., κ j,

x j ≥ 0 for j = 1, ...., n,

v(d) ∈ {0, 1} for d ∈ Ψ, (4.52)

where ρ is a predetermined constant number between 0 and 1. Both the objective function

and the constraints are similar to those in the SLP-RM-2 model except the constraint with ρ

and the integrality constraint for the decision variables v(d). Recall that we propose to solve

SLP-RM-2 for given specified v(d) values. ρ in PMP-RC is a threshold level to be determined

by the decision maker.

There are some disadvantages of PMP-RC model as compared to the SLP-RM models. These

disadvantages are itemized as follows:

• PMP-RC is an integer programming formulation due to (4.52) and solution time is more than

that of the SLP-RM models for the same networks according to the results of the numerical

experiments. It is numerically observed that it is not computationally efficient to solve the

PMP-RC model for demand realizations more than 100.

• Dual prices can not be obtained by the PMP-RC model to be used as the bid prices because

the model is an integer programming formulation.

• In SLP-RM models only L values are set, but in PMP-RC model ρ value must also be set.

Setting ρ values is not a straightforward task for different L values.
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4.6 Randomized Risk Sensitive Method

As stated before, main disadvantage of the models proposed in Sections 4.3-4.5 to solve

network problems is the computational complexity. The computational time to solve these

models increases as the number of demand realizations increases. In this section, a model that

is based on Randomized Linear Programming Model (RLP) is proposed. RLP is proposed by

Talluri and van Ryzin (1999) and a randomized version of Deterministic Linear Programming

(DLP) model. The RLP model is given below for a given demand realization d = (d1, ..., dn).

RLP : Maximize
n∑

j=1

f jx j (4.53)

sub ject to
∑

j∈S l

x j ≤ Cl for l = 1, ....,m, (4.54)

0 ≤ x j ≤ d j for j = 1, ..., n. (4.55)

Recall the related discussion in Section 3.2.

The following procedure is proposed for both risk sensitive and risk taking decision makers.

RRS stands for Randomized Risk Sensitive.

RRS Procedure:

Step 0. Set the threshold level for revenue, L, and the number of demand realizations, |Ψ|.
Step 1. Solve RLP model |Ψ| times. Let µr(l) be the bid price for leg l and run r = 1, ..., |Ψ|.
µr(l) is equal to the dual price of the capacity constraint (4.54). Let x(r) be the optimal alloca-

tion for run r.

Step 2. Classify runs into two sets: G− and G+.

G− = {r|∑n
j=1 f jx

(r)
j < L},

G+ = {r|∑n
j=1 f jx

(r)
j ≥ L}.

Step 3. Then, take the average of the bid prices for both of the sets.

µ−(l) = 1
|G− |

∑
r ∈G− µr(l) for l = 1, ...,m,

µ+(l) = 1
|G+ |

∑
r ∈G+ µr(l) for l = 1, ...,m.

Step 4. Use bid prices µ−(l) and µ+(l) in bid price control for risk-sensitive and risk-taking

decision makers, respectively.

In this procedure, two bid prices are found: µ−(l) for risk-sensitive decision makers and µ+(l)

for risk-taking decision makers. The risk sensitivity of a decision maker is directly related
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with the optimism of the decision maker. For the pessimistic decision makers, who think that

the expected revenue would be less than the threshold level, using µ−(l) is proposed. On the

other hand, for the risk-taking decision makers, who think that the expected revenue would

be more than the threshold level, using µ+(l) is proposed. The level of risk-sensitivity can be

changed by changing the threshold level. In our numerical studies, it is seen that µ−(l) ≤ µ+(l).

Hence, risk sensitive decision makers tend to use lower bid prices as compared to risk-taking

decision makers.
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CHAPTER 5

SIMULATION MODELS

In Chapter 4, the proposed models are given. This chapter is devoted to the simulation models

and parameter estimation for a small-scale sample network. For this purpose, the airline data

given by de Boer (1999) for a three-leg flight network is used. In this sample network, nodes

are connected with three legs and the total number of itineraries among these nodes is six. It

is assumed that flights are identical, each with a capacity of 200. The number of fare classes

for all of the OD pairs is three. Therefore, total number of ODFs in this sample network is 18.

Booking requests are accepted during 150 days before departure. The figure of the three-leg

network can be seen in Figure 5.1.

In this thesis, MATLAB programming language is used for optimization and simulation stud-

ies. Moreover, in optimization part, YALMIP (Löfberg, 2004) and GLPK are used to solve

linear and mixed-integer mathematical models. YALMIP is a modeling language for defining

and solving optimization problems, and implemented as a free toolbox for MATLAB. GLPK

(GNU Linear Programming Kit) is freely distributed solver for linear and mixed integer pro-

gramming. The MATLAB programming codes are given in Appendix C. The advantages and

disadvantages of using Matlab programming language are listed below.

Figure 5.1: Sample network with three legs

64



Disadvantages

1. CPU time for mathematical models is higher than most of the optimization programs.

2. Inefficient for large scale problems.

3. The memory requirement is high.

Advantages

1. Simple and flexible codes.

2. Both optimization and simulation codes are in one programming language.

3. Easy output analysis (statistical toolbox, graphical interface, etc.).

This chapter is organized as follows: In Section 5.1, the simulation model is described and,

then, Bayesian update strategy is given in Section 5.2. Section 5.3 is devoted to the numerical

analysis of the mathematical models to determine the number of demand realizations, thresh-

old level and aggregation size of the demand groups to be used in the models and procedures

proposed in Chapter 4.

5.1 Simulation Models

In general, performances of the policies obtained from optimization models in RM are evalu-

ated by using simulation models. In Chapter 6, performances of the approaches proposed in

Chapter 4 are evaluated by simulation models and this section is devoted to the construction

of the simulation models. The demand and network data for the simulation models are taken

from the study of de Boer (1999) and given in Appendix B.

It is common in the literature that arrival process of the booking requests for RM problems is

modeled using Poisson Processes. The arrival rate of this arrival process is a random variable

that is fitted with the Gamma distribution. Moreover, in RM problems, arrival rate is not con-

stant throughout the booking horizon and generally low-fare customers tend to arrive earlier

than the high-fare customers. In order to introduce this situation into simulation models, a

Non-Homogeneous Poisson Process (NHPP) is used. The random arrival rate for NHPP is

defined as the product of Beta and Gamma distributed random variables. For our example

problem, Beta density functions for different fare classes can be seen in Figure 5.2. Then, the

resulting arrival rate at time t for an ODF is given by de Boer (1999) as follows;

ΛODF(t) = ϕODF · βODF(t) · AOD, (5.1)
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Figure 5.2: Beta density functions for three fare classes.

where

AOD : Stochastic expected number of booking requests for OD pair in the NHPP,

βODF(t) : Standardized Beta distribution,

ϕODF : Fraction of OD bookings for fare class F.

AOD is the expected total number of demand for itinerary OD and has a Gamma distribution.

ϕODF is the fixed fraction of OD bookings for fare class F. βODF(t) represents the Beta distri-

bution used for spreading the total demand over the booking horizon. Then, the arrivals of the

demands are modeled as a NHPP with arrival rate ΛODF(t). Moreover, it is assumed that the

expected number of arrivals AOD for each fare class is independent. Then, the factor ϕODF(t)

can be left out and the AOD can be replaced with AODF ; more clearly, AODF = ϕODF(t) · AOD.

The independence assumption is also suitable for real life problems because high fare cus-

tomers rarely want to buy low fare tickets and low fare customers rarely want to buy high fare

tickets. Therefore, we can easily claim that demands are independent for each ODF in the

RM problems, which is also tested with real booking data by de Boer et al. (1999). According

to the non-parametric Spearman test, the null hypothesis of no correlation between demand

for different fare classes is not rejected. Moreover, by using the same notation used in Chapter

4, the following equation is obtained.

Λ j(t) = β j(t) · A j f or j = 1, ..., n. (5.2)
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The formulation given in (5.2) is not a pure Poisson process (Non-Homogeneous Poisson

Process) and the demand distribution over the whole reservation period is given in Remark

5.1.1.

Remark 5.1.1 (de Boer 1999, Popovic 1987) The unconditional distribution of D j, demand

for ODF j, over the whole booking horizon is Negative Binomial with parameters p j and
γ j
γ j+1 . This is shown as D j ∼ NB(p j,

γ j
γ j+1 ).

Proof. A j in equation (5.2) is the stochastic expected number of ODF booking requests.

This variable is distributed by Gamma(p j,γ j), where p j is the number of phases and γ j is

the rate. Suppose that A j = λ j for j = 1, ..., n. Then, the arrival is Poisson distributed and

the probability of observing a demand for k units throughout the booking horizon is given as

follows for ODF j:

P(D j = k|A j = λ j) =
λk

j

k!
e−λ j for k = 0, 1, .... (5.3)

We know that λ j is a random variable distributed according to Gamma distribution with

parameters p j and γ j and the probability density function of A j = λ j is

fA j(λ j) =
γp jλp j−1e−γλ j

Γ(p j)
for λ j > 0, (5.4)

where Γ is the gamma function given as follows:

Γ(x) =

∫ ∞

0
yx−1e−ydy. (5.5)

Using Equations (5.3) and (5.4), the distribution function of the total booking requests, D j, is

calculated as follows:

P(D j = k) =

∫ ∞

0
P(D j = k|A j = λ j) fA j(λ j)dλ j

=

∫ ∞

0
(
λk

k!
e−λ j)(

λ
p j−1
j e−γ jλ jγ

p j
j

Γ(p j)
)dλ j

= (
γ j

γ j + 1
)p j(

1
γ j + 1

)k Γ(k + p j)
Γ(p j)k!

=

(
p j + k − 1

k

)
(
γ j

γ j + 1
)p j(

1
γ j + 1

)k f or k = 0, 1, ....

Then, the unconditional distribution of demand for ODF j is Negative Binomial with pa-

rameters p j and γ j
γ j+1 . For Negative Binomial Distribution, the expectation and the variance
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are

E[D j] =
p j

γ j
,

Var[D j] =
p j(γ j + 1)

γ2
j

.

¥

Also, Beta distribution is used in (5.2) in order to model the arrival process. β j(t) is the

standardized Beta distribution with parameters α j > 0 and β j > 0 in booking horizon [0, T ].

T is the length of the booking period. Time t for 0 ≤ t ≤ T denotes the remaining time until

the departure.

β j(t) =
1
T

(
1
T

)α j−1(1 − t
T

)β j−1 Γ(α j + β j)
Γ(α j)Γ(β j)

, (5.6)

Then, the following is the formulation for the number of arrivals for ODF j from time t to the

departure when A j = λ j. Recall 5.2.

∫ t

0
λ jβ j(x)dx =

∫ t

0

λ j

T
(

1
T

)α j−1(1 − x
T

)β j−1 Γ(α j + β j)
Γ(α j)Γ(β j)

dx. (5.7)

Note that, here, the expected number of booking requests, λ j, is multiplied by the cumulative

density function of Beta distribution.

All of the required distribution functions for simulation models have been derived up to now.

However, the simulation of NHPP is not straightforward unlike the case of Poisson Process

with constant rate. The simulation techniques for generating arrivals from NHPP are de-

scribed by Law and Kelton (2000). The authors give the following two algorithms. Algorithm

1 uses stationary Poisson Process, e.g., with a given rate Λ j. In other words, the inter-arrival

time between two arrivals is distributed exponentially with the cumulative distribution func-

tion 1 − e−Λ jt. The algorithm is summarized as follows:

Algorithm 1

1. Generate random variate t from Uniform(0,1).

2. Return the ith customer’s arrival at ti = ti−1 − 1
Λ j

log t.

By substituting Λ j(t) for Λ j, arrival times for NHPP can be obtained. However, Law and

Kelton (2000) argue that this algorithm gives incorrect results especially for small rates.

68



In Algorithm 2, the expectation function µ j is used, where µ j(t) is the expected number of

arrivals for ODF j in the interval [0, t];

µ j(t) =

∫ t

0
Λ j(x)dx f or j = 1, ..., n. (5.8)

Subscript j of µ and Λ is dropped in the algorithms below to keep the notation simpler. The

algorithms should be used for each ODF j.

Algorithm 2

1. Generate random variate ι from Uniform(0,1).

2. Generate arrival times with rate yi = yi−1 − log(ι).

3. Return the ith customer’s arrival at ti = µ−1(yi).

Law and Kelton (2000) show that the simulated arrival rates when applying Algorithm 2 agree

with real (given) arrival rate. However, taking inverse of the expectation function given in

(5.8) would involve some difficulties. In order to solve this problem, Algorithm 3 is proposed

and used in this study as an approximate numerical method.

Algorithm 3

Step 0. Divide the booking horizon into small disjoint time intervals (tη−1, tη) in such a way

that union of the intervals is (0,T ). Generate a table of µ(tη) =
∫ tη

0 Λ(x)dx for all η.

Step 1. Generate random variate ι from Uniform(0,1).

Step 2. Generate arrival times with rate yi = yi−1 − log(ι).

Step 3. Find the interval [tη−1, tη] such that µ(tη−1) ≤ yi ≤ µ(tη).

Step 4. Set a=
yi−µ(tη−1)
µ(tη)−µ(tη−1) . Then, the ith customer’s arrival is at ti = tη−1 · a + tη · (1 − a).

In Step 0, booking horizon is divided into small time intervals and a table for expectation

function, µ, is generated. The aim here is that the intervals should be very short to have

the probability of having two customer arrivals in an interval is as small as possible. As the

interval lengths get smaller, the approximate inverse of µ used in Algorithm 3 gets closer to

the exact inverse. Note that the numerical approximation in this algorithm is µ(s) = µ(tη) for

all s in interval η. Step 1 and Step 2 are the same as the first two steps in Algorithm 2. In

Step 3, the interval for the yi value is found from the table for µ values. Interpolation is used

in Step 4 as an approximation to find the inverse of µ.
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5.2 Bayesian Forecasting Method

The second step for our simulation studies is updating the demand distribution at certain

points in time during the booking horizon. In order to re-optimize the booking limits and bid

prices upon every update of the demand distribution, Bayes’ rule is used. The derivations

of de Boer (1999) and Popovic (1987) are used to adapt Bayes’ formula for RM problems.

Talluri and van Ryzin (2005) note that ”A large class of forecasting methods use the Bayes’

formula to merge a prior belief about forecast values with information obtained from observed

data”. Bayesian update is generally used when historical data are not sufficient to estimate

distributions exactly, e.g., in the case of a new route in airlines. In other words, a new route is

added to the network and there is no sufficient prior belief on the demand distribution of this

new route.

In this paragraph, basic Bayesian forecasting is reviewed and its use is considered for RM. Let

Z1,Z2, ... be i.i.d. random variables representing a data-generation process and Zt has a density

function f (z|θ), which is a function of single, unknown parameter θ. Since θ is unknown, it is

assumed that the prior density of θ is g(θ) and this density represents our current belief about

θ. As the data is observed, the new distribution, which is called posterior distribution, g1(θ),

is calculated by using Bayes’ rule as follows:

g1(θ) =
g0(θ) f (z1|θ)∫

θ
g0(θ) f (z1|θ)dθ

,

where z1 is the first observation, g0(θ) is the initial prior distribution. Note that g1 is the

conditional density function of θ given that Z1 = z1. The Bayes estimator of θ is then the

expected value of θ.

θ∗ = E[θ] =

∫

θ
θg1(θ)dθ.

Talluri and van Ryzin (2005) note that, for a pair of distributions, the posterior distributions

have the same distributional form as the prior, which is called conjugate family of prior dis-

tributions. Poisson-Gamma is a well known pair of conjugate families of prior distributions.

This is pointed out by Talluri and van Ryzin (2005) as follows: ”Z1,Z2, ...,ZN have a Pois-

son distribution with mean λ and λ has a Gamma distribution with parameters p, γ. After

observing z1, z2, ..., zN , λ has a Gamma distribution with parameter p +
∑N

k=1 zk and γ + N.”

The use of this observation above by de Boer (1999) and Popovic (1987) is explained in the

remaining part of this section. Recall that t is the remaining time to the departure and T is the
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length of the booking horizon. Let D j(t1, t2) denote the demand for ODF j in time interval

(t2, t1) where t1 > t2. From Remark 5.1.1 D j(T, 0) ∼ NB(p j,
γ j
γ j+1 ). That is, D j(T, 0) = D j.

Let d j(T, t) be the realized demand for ODF j in time interval (t,T ). Then, the conditional

demand distribution of demand D j(t, 0) for the remaining reservation period (0, t) is again

Negative Binomial with parameters p j + d j(T, t) and γ j+β j(T,t)
γ j+1 .

Remark 5.2.1 (de Boer 1999, Popovic 1987)

D j(t, 0)|D j(T, t) = d j(T, t) ∼ NB(p j + d j(T, t),
γ j+β j(T,t)
γ j+1 ), where β j(T, t) =

∫ T
t β j(x)dx.

Proof. Assume that the booking horizon is divided into disjoint intervals (tω−1, tω) in such a

way that the union of intervals is (0, T ), and A j = λ j. Then, the expected number of arrivals

in the ωth interval is as follows:

µ jω =

∫ tω

tω−1

Λ j(t)dt = λ j

∫ tω

tω−1

β j(t)dt = λ jc jω,

where c jω =
∫ tω

tω−1
β j(t)dt and second equality results from (5.2). Talluri and van Ryzin (2005)

note that Gamma distribution has the following feature:

If A j ∼ Gamma(p j, γ j) and µ jω = A jc jω, then µ jω ∼ Gamma(p j,
γ j

c jω
). (5.9)

For our case, since c jω is constant and prior distribution of A j is Gamma, µ jω is Gamma

distributed. Then, the probability of demand D jω for ODF j in interval ω for given A j = λ j

is Poisson distributed with rate µ jω = λ jc jω (Recall (5.3) in Remark 5.1.1.).

P(D jω = k|A j = λ j) =
(λ jc jω)k

k!
e−λ jc jω for k = 0, 1, ....

An alternative notation for D jω is D j(tω−1, tω).

For the first time interval,

P(D j1 = k|A j = λ j) =
(λ jc j1)k

k!
e−λ jc j1 for k = 0, 1, ..., (5.10)

where A j is Gamma(p j, γ j) distributed. Recall that the density function of A j is

fA j(λ j) =
γ

p j
j λ

p j−1
j e−λ jγ j

Γ(p j)
f or λ j > 0. (5.11)

From Equations (5.10) and (5.11), the probability of demand being equal to d j1 in the first
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period is

P(D j1 = d j1) =

∫ ∞

0
P(D j1 = d j1|A j = λ j) fA j(λ j)dλ j

=

∫ ∞

0

(λ jc j1)d j1

d j1!
e−λ jc j1 f (λ j)dλ j

=

(
p j + d j1 − 1

d j1

)
(

γ j

γ j + c j1
)p j(

c j1

γ j + c j1
)d j1 ,

which is again a Negative Binomial distribution. That is, D j1 = D j(T, t1) ∼ NB(p j,
γ j

γ j+c j1
).

Now suppose D j1 = d j1. From Bayes’ rule, the posterior distribution of A j given that D j1 =

d j1 is

fA j |D j1(λ j|d j1) =
P(D j1 = d j1|A j = λ j) fA j(λ j)∫ ∞

0 P(D j1 = d j1|A j = λ j) fA j(λ j)dλ j

=

(λ jc j1)d j1

d j1! e−λ jc j1
γ

p j
j λ

p j−1
j e−γ jλ j

Γ(p j)(
p j+d j1−1

d j1

)
( γ j
γ j+c j1

)p j( c j,1
γ j+c j1

)d j1

=

λ
p j+d j1−1
j e−λ j(γ j+c j1)

γ
p j
j c

d j1
j1

d j1!Γ(p j)

(p j+d j1−1)!γ
p j
j c

d j1
j1

(p j−1)!d j1!(γ j+c j1)p j+d j1

=
λ

p j+d j1−1
j e−λ j(γ j+c j1)(γ j + c j1)p j+d j1

Γ(p j + d j1)
.

That is, A j|D j1 = d j1 is again Gamma distributed with distribution function Gamma(p j +

d j1, γ j + c j1). Then, from (5.9), µ j1 is also Gamma distributed.

µ j1 = A jc j1 ⇒ µ j1|D j1 = d j1 ∼ Gamma(p j + d j1,
γ j + c j1

c j1
).

The posterior distribution of µ j2|D j1 = d j1 is also calculated in the same way as shown below:

µ j2 = A jc j2 ⇒ µ j2|D j1 = d j1 ∼ Gamma(p j + d j1,
γ j + c j1

c j2
).

Proceeding as in the case of deriving the distributions for the first interval, the posterior

distributions for the second interval can be calculated as follows:

D j2|D j1 = d j1 ∼ NB(p j + d j1,
γ j + c j1

γ j + c j1 + c j2
),

A j|D j1 = d j1,D j2 = d j2 ∼ Gamma(p j + d j1 + d j2, γ j + c j1 + c j2),

µ j2|D j1 = d j1,D j2 = d j2 ∼ Gamma(p j + d j1 + d j2,
γ j + c j1 + c j2

c j2
).
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By continuing with the following intervals, the results are generalized as follows for any

interval n:

D jn|D j1 = d j1, ...,D j,n−1 = d j,n−1 ∼ NB(p +

n−1∑

ω=1

d jω,
γ +

∑n−1
ω=1 c jω

γ +
∑n
ω=1 c jω

),

A j|D j1 = d j1, ...,D jn = d jn ∼ Γ(p +

n∑

ω=1

d jω, γ +

n∑

ω=1

c jω),

µ jn|D j1 = d j1, ...,D jn = d jn ∼ Γ(p +

n∑

ω=1

d jω,
γ +

∑n
ω=1 c jω

c jn
).

By using these equations, the demand distribution for the remaining reservation period, (0,t),

is again Negative Binomial when the number of arrivals up to time t is d j(T, t).

D j(t, 0)|D j(T, t) = d j(T, t) ∼ NB(p j + d j(T, t),
γ j + β j(T, t)
γ j + 1

). (5.12)

Then, the expectation of demand D j(t, 0) in the remaining booking horizon is

E(D j(t, 0)) =
d j(T ; t) + p j

γ j + β j(T ; t)
β j(t, 0). (5.13)

¥

5.3 Analyses of Mathematical Models

This section is devoted to the numerical analyses on proposed models in order to determine

the following in the simulation studies: Number of demand realizations, threshold level for

revenue and aggregation size of the demand groups for the models and procedures proposed

in Chapter 4. In the following sections, these three values are determined by analyzing the

sample network. The data for this network is given in Appendix B. Another issue that must

be clarified at this point is determining the upper bounds for the number of seats available,

B j. The alternative ways to determine B j are given in Section 3.2. In the proposed models,

third alternative is used with ψ = .98 and 80 is found as the maxl{Υl : l = 1, 2, 3}. In order to

simplify the mathematical models and simulation studies, 80 is used as the B j value for each

j.

5.3.1 Studies on the Number of Demand Realizations

In the models proposed in Chapter 4, a sample number of demand realizations is used. It

is obvious that generating all possible demand realizations is better than using a subset of
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demands. However, because of the computational limits, the size of the subset must be limited

at an acceptable level. In this section, the number of demand realizations is determined by

analyzing expected revenue, seat allocation and bid price as a function of the number of

demand realizations.

First of all, the relation between the number of demand realizations, Θ, and expected revenues

is analyzed for PLP-RM models. The model is solved 30 times for Θ = 10, 20, ..., 100, 250.

Working with 30 runs can be explained by referring to Central Limit Theorem (Montgomery

et al. 1997).

Central Limit Theorem (CLT): If X1, X2, ..., Xn is a random sample of size n taken
from a population with mean µ and σ2, and if X is the sample mean, then the
limiting form of the distribution Z =

X−µ
σ/
√

n
as n → ∞, is the standard normal

distribution.

In general, if n ≥ 30, the Normal approximation is assumed to be satisfactory regardless

of the shape of the distribution. The formulas for sample mean, sample standard deviation

and confidence intervals are given below. These formulas are given for a sample of size n,

which is sufficiently large and taken from a population with unknown mean and variance. Let

X1, X2, ..., Xn be the random variables in this sample.

Sample Mean : X̄ =

∑n
i=1 Xi

n
.

Sample Standard Deviation : S =

√√
1

n − 1

n∑

i=1

(Xi − X̄)2.

Confidence Interval for X : X̄ − zα/2
S√

n
≤ E(X) ≤ X̄ + zα/2

S√
n

where z is the Standard Normal score to construct (1 − α)% confidence interval. In Figure

5.3, the sample mean varies between 71400 and 71600 without an increasing or decreasing

behavior.

The main aim of this analysis is to find the minimum number of demand realizations such that

seat allocations and expected revenue are almost stable beyond this number. Therefore, when

sample mean for revenue is almost stable, the only thing that is important for this analysis is

sample standard deviation. The sample mean, sample standard deviation and 95% confidence

interval for revenue are given in Figure 5.3. The sample standard deviation decreases as Θ

increases when Θ ≤ 30. For numbers greater than 30, sample standard deviations are almost

stable. The conclusions according to these analyses are as follows:
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Figure 5.3: Expected revenue as a function of the number of demand realizations for PLP-RM
procedure.

• The sample mean for expected revenue is nearly the same for different Θ values.

• The sample standard deviation decreases in Θ for Θ ≤ 30 and almost stable for Θ > 30.

• It is expected that the sample mean and sample standard deviation would not change

significantly when Θ > 30.

The second analysis for PLP-RM procedure is for the relation between the number of demand

realizations and seat allocations. As in the case of the analysis for revenue, sample mean for

seat allocations are almost stable for different number of demand realizations. Therefore, only

the sample standard deviations for nine sample ODFs are given in Figure 5.4. The following

are the observations according to these analyses:

• The sample standard deviations are generally high for fare classes 1 and 3 which are

the lowest and highest fare classes, respectively. Moreover, risk defined in terms of

P(R < L) is minimized by shifting seat allocations between high and low fare classes.

Impact of the number of demand realizations on the allocations for the medium fare

classes are generally less than the other classes.

• Increasing Θ generally decreases the sample standard deviations of the seat allocations.

• For Θ ≥ 100, the sample standard deviations are less than 2 seats.
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Figure 5.4: Seat allocations as a function of the number of demand realizations for PLP-RM
procedure.

• The seat allocations are almost stable for higher Θ values, especially for Θ > 100.

Another analysis for PLP-RM model is for bid prices using the same data given in Appendix

B. Bid prices for all of the three legs are used in order to calculate sample mean and sample

standard deviation values. In Figure 5.5, the graphs of these results and a sample 95% confi-

dence interval for population mean is given. As it can be seen from the figure, even for 250

demand realizations, bid prices for leg AC may be significantly different for different runs.

The confidence interval of population mean for leg AC is between 40 and 100 even for 250

demand realizations. More clearly, we are 95% confident that population mean of bid price

is between 40 and 100, which is an unacceptable interval in bid price control. As a result, we

conclude that using bid prices as a control mechanism is not reasonable when PLP-RM model

is used.

Last analysis for PLP-RM model is for the relation between the number of demand realiza-

tions and P(R < L). In Figure 5.6, the sample means and sample standard deviations for

L = 70000 and different Θs are given. Moreover, 95% confidence interval for population

mean of P(R < L) is given in the figure. The observations are the same for different L values;

here, only the results for L = 70000 are given. The following are the observations.
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Figure 5.5: Bid price as a function of the number of demand realizations for PLP-RM proce-
dure.

• The sample standard deviation decreases as number of demand realizations increases.

• As a result of the decrease in the standard deviations, the confidence intervals get nar-

row as Θ increases.

• Although confidence intervals are not small enough for the probability measure under

consideration, they are considered acceptable for Θ ≥ 50.

Studies on the number of demand realizations for PLR-RM are completed. To conclude, Θ is

set to the maximum of the values found in these analyses, Θ = max{30, 100, 50} = 100.

Next the studies on the number of demand realizations are considered for PMP-RC model.

For this model, Θ = 10, 20, ..., 100 are used in the mathematical models and all of them are

solved 30 times. In order to analyze Θ values, L and ρ are fixed at 61000 and 0, respectively.

These values are chosen arbitrarily. Recall that ρ is a predetermined constant number and

used in the constraint P(R < L) ≤ ρ. The sample mean and standard deviation of expected

revenue are given as in Table 5.1. The main difficulty in these analyses is the infeasible

solutions, which are excluded in the calculations of mean and standard deviation. As it can

be seen in Table 5.1, the number of infeasible solutions out of 30 runs slightly increases as
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Figure 5.6: P(R < L) as a function of the number of demand realizations for PLP-RM model,
L=70000.

the number of demand realizations increases. Increasing the number of demand realizations

generally increases the number of constraints and the feasible region gets smaller. Therefore,

it is more probable to see more infeasible solutions when the number of demand realizations

gets larger and the results become more realistic than the ones with small number of demand

realizations. Although the results in Table 5.1 do not show a steady state, results for Θ =80,

90 and 100 are not so different. Because the feasible region gets smaller when Θ gets larger,

the variability between different runs increases, which results an increase in sample standard

deviation. According to these results, we conclude that

• By increasing the number of demand realizations, more realistic results are obtained in

terms of sample mean and sample standard deviation.

• ρ values for the risk constraint have a significant impact on the quality of the results.

Low ρ values result in more infeasible solutions and high values result in the same

allocations as the classical EMR model.

The last analysis on the number of demand realizations is for the RRS procedure. In these

analyses, RLP model is solved 1000 times and the solutions are divided into two groups with
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Table 5.1: Revenues in PMP-RC Model for Different Demand Realizations, L=61000, ρ = 0.

Number of Demand Realizations Θ

10 20 30 40 50 60 70 80 90 100
Sample Mean 71759,42 71622,23 71483,41 71090,73 71118,05 70867,28 70535,34 70221,06 70071,16 70386,55

Sample St. Dev. 21,50 276,17 353,83 594,82 845,83 1306,49 1146,35 1659,47 1416,30 1167,93
Infeasible Samples out of 30 runs 0 1 1 2 2 3 4 6 5 6
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Figure 5.7: Bid prices as a function of the number of demand realizations for RRS procedure.

the proposed procedure in Chapter 4. Afterwards, these solutions are used to calculate mean

bid prices for the number of demand realizations between 1 and 250. Mean bid prices are

given in Figure 5.7 for three legs when the objective function values of the RLP models are

greater than 80000 and smaller than 80000. 80000 is an arbitrarily chosen threshold level. It

can be easily seen in Figure 5.7 that bid prices converge to a value when number of demand

realizations are greater than 100. Therefore, the minimum number of Θ can be considered as

100 in our simulation studies.

As a result of the analyses in this section, it is determined that Θ value must be at least 100 in

the simulation studies in Chapter 6 for PLP-RM, PMP-RC and RRS procedures.
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5.3.2 Studies on Threshold Levels

This section is devoted to the analyses on threshold levels for revenue. Expected revenue,

seat allocation and probability of revenue being less than the threshold level are taken into

consideration in order to determine the interval for threshold level. These analyses are done

in order to use the appropriate threshold levels in the simulation studies in Chapter 6. In real

life, decision makers generally set their threshold level according to their experiences or other

decision making mechanisms.

First analysis is again for PLP-RM models, which is solved 30 times for different threshold

levels with Θ = 100, which is set in Section 5.3.1. 30 different runs are shown with different

colors in the figure. According to Figure 5.8, revenue is less than the one gained by using the

EMR model between L=50000 and L=85000. The decrease in expected revenue is because of

incorporating the risk measure. The probability of expected revenue being less than 50000 is

nearly 0, and expected revenue is lower than 85000 with probability 1. L values which are not

in this range give nearly the same results with EMR model. The dashed lines in the graphs

show a basic fitting, average values, for expected revenue and probability of revenue being

less than the threshold level.

As a second analysis for PLP-RM models, the effect of threshold levels on booking limits is

investigated. Figure 5.9 shows average booking limits for itineraries AB and AD, respectively.

For both of the itineraries, booking limits again vary when the predetermined revenue level

L is between 50000 and 85000. Beyond these values, i.e., for values smaller than 50000 or

greater than 85000, the seat allocations for PLP-RM model are the same as the allocation of

the EMR model. According to Figures 5.8 and 5.9, the observations are as follows:

• When risk minimization is taken into account, a decrease in the expected revenue is

seen.

• As it is expected, the probability graph has an S shape, which is similar to the cdf of

the Normal distribution.

• For our specific sample problem, risk minimization can only be considered in the range

between 50000 and 85000. Out of this range, P(R < L) is 0 or 1 and the optimal seat

allocation for EMR model is also optimal for PLP-RM procedure.
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Figure 5.8: Revenue as a function of threshold levels for PLP-RM procedure.
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Figure 5.10: P(R < L) as a function of L when ρ = 1.

For the PMP-RC model, the constraint that is used to limit the probability of revenue being

less than the threshold level is dependent on both the threshold level, L, and right hand side

of the constraint, ρ. Hence, a three dimensional analysis is required for this model which is

computationally impractical. However, the intervals for ρ values for different L values can

be found without risk minimization as in Figure 5.10. When ρ = 1, the optimal solution of

the PMP-RC model is equal to the optimal solution of EMR model because the constraint on

P(R < L) in the PMP-RC model becomes redundant. By solving PMP-RC model more than

once, different P(R < L) values can be obtained and a decision on the interval of ρ values can

be made according to these P(R < L) values. Figure 5.10 gives us these intervals for ρ values

for different threshold levels. For threshold levels lower than 55000 or greater than 85000,

the probabilities are almost the same for different runs. In other words, for a threshold level

lower than 55000, we have almost no risk of obtaining revenue less than 55000. On the other

hand, for a threshold level greater than 85000, it is almost certain that revenue will be less

than 85000. As a result of this observation, the interval for threshold level in PMP-RC model

is set as [55000, 85000].

The last analysis on the threshold levels is for the RRS procedure. The analyses are for limits

between 70000 and 95000 with increments of 100. 1000 demand realizations are used as in
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Figure 5.11: Bid prices as a function of threshold levels for RRS procedure.

Section 5.3.1. The expected revenue values obtained by RLP model used in the RRS procedure

turn out to be similar to the expected revenue obtained by DLP model which is 84915. The

revenue is generally greater than 70000 and smaller than 95000 in our experiments. Because

of inadequate number of data for L < 70000 and L < 95000, bid prices are not calculated for

those cases. The results for two groups with R > L and R < L are given in Figure 5.11. The

observations are summarized as follows:

• Bid prices of the legs considered increase as the threshold level, L, increases.

• RRS procedure shows the difference between risk taking and risk-averse decision mak-

ers for adjusting bid prices. In the first group with R > L, customers are accepted with

higher bid prices as compared to the bid prices of the second group. Briefly, decision

makers, who use the bid prices of the first group, expect to get more revenue from high

fare customers and reject low fare ones.

According to the analyses in this section, it is concluded that threshold levels for PLP-RM

and PMP-RC procedures in simulation studies must be in the interval of [55000, 85000] and

threshold levels for RRS procedure must be in the interval of [70000, 95000].
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Figure 5.12: Revenue as a function of demand aggregation for PLP-RM procedure.

5.3.3 Studies on Demand Aggregation

The last study on mathematical models is for demand aggregation. As it is stated before, in-

creasing the number of demand realizations, Θ, is time consuming. However, larger Θ values

give stronger results than the smaller ones give as it is examined in Section 5.3.1. Therefore,

the dilemma between increasing the number of demand realizations and aggregating demands

for the SLP-RM and PMP-RC models must be analyzed.

In this section, the size of the aggregated groups is changed from 2 to 16 and all of them

are experimented 30 times. Recall from the first paragraph of Section 5.3 that the upper

bounds for the number of seats available for all ODFs are 80. Size 1 means that all seats

are taken into consideration separately as in the EMR model and size 16 means that demands

are aggregated into 5 groups, which is 80/16. The sample mean and standard deviation of

the revenue are calculated for all of the demand groups as in Figure 5.12. The following are

observed according to this analysis:

• Sample mean (sample standard deviation) decreases (increases) in the size of the groups.

• The decrease in mean and increase in standard deviation is almost negligible when size

of the groups is smaller than or equal to 4.

As a second step, the impact of demand aggregation on seat allocation is analyzed. The
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Figure 5.13: Seat allocation as a function of demand aggregation for PLP-RM procedure.

sample mean and standard deviation are used to analyze results as in Figure 5.13. Bullets

are used to show sample means and standard deviations for a specific number of groups and

ODF. In graph at the top, bullets for three different ODFs are shaded in order to show the

behavior of booking limits as a function of demand aggregation. Dark blue bullets are for

a high-fare class, green bullets are for a standard-fare class and light blue bullets are for a

low-fare class. These graphs lead to the following observations:

• Sample means are almost the same for groups of 1 to 8.

• Sample standard deviation increases in the size of the demand groups. The sample

standard deviations for a size up to 4 are smaller than 4 which is acceptable especially

for nested booking policy.

For the PMP-RC model, the impact of demand aggregation on expected revenue is analyzed

when L = 60, 000 and ρ = 0. Again the values are chosen arbitrarily. According to the

results given in Figure 5.14, both sample mean and standard deviation decrease as the size of

demand groups increase. It is obvious that expectation should decrease as size of aggregated

groups increases; note that there is no approximation in the model when the aggregation size

is 1. However, in contrary to SLP-RM model, aggregating demands decreases variance. The
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Figure 5.14: Expected revenue as a function of demand aggregation for PMP-RC model.

reason of this situation is that aggregating demands makes it easier to satisfy the risk constraint

in the model. Hence, for high demand aggregation sizes, PMP-RC gives the same results as

the SLP model in terms of seat allocations. Hence, it is not suggested to aggregate demands

in the PMP-RC model.

As a result of all of the analyses in this section, the following are the conclusions for all of the

models proposed in Chapter 4:

• Demand aggregation worsens the quality of the solutions in terms of expected revenue.

The deterioration is acceptable when the number of the groups is smaller than or equal

to 4 for our sample network.

• It is not suggested to use demand aggregation in the PMP-RC model.
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CHAPTER 6

SIMULATION STUDIES

This chapter is devoted to the numerical studies on simulation models for different booking

policies given in Chapter 4. The sample three-leg network due to de Boer (1999) that is

given in Chapter 5 is used in this thesis for the numerical studies. Five different scenarios are

taken into consideration. First one is the base problem given in Chapter 5. The second one

is the case with low-before-high arrival pattern and the third one is the case with increased

variance of low-fare demand. In the fourth case, the differences between fares are lowered.

In the last scenario, the realistic coefficient of variations of demand and relatively close fares

are used and the order of the arrivals is not specified. The data for the scenarios are given

in Appendix B.1. These scenarios are taken from de Boer (1999) and they are studied in

order to see the performance of the proposed models in different cases. In simulation studies,

a Bayesian update is used for demand distributions in order to see the effect of update on

the performances of the models. The booking limits (allocations) and bid prices obtained

by solving the models are used in the simulation models. In simulation studies, the EMR,

DLP, SLP, EMVLP models in the literature are compared with the proposed models SLP-RM,

PMP-RC and RRS procedure.

According to the analyses in Chapter 5 for the proposed models, the number of demand real-

izations should be higher than 100 and aggregations should be for groups of four. However, it

is not clear yet which one of the following is better for the proposed approach: using a small

number of realizations without aggregation or using more realizations with aggregation. The

analysis on this dilemma is in Section 6.1. Different than the analyses in Chapter 5, the seat

allocations obtained by the models proposed in Chapter 4 are used in the simulation models

in this chapter. The analyses and comparisons are based on the simulation results.
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The sample mean (SM) and sample standard deviation (SSD) for revenue, sample coefficient

of variation (SCV) and load factor (LF) are calculated using the simulation results. The ”sam-

ple” in these analyses is the collection of data and its magnitude is equal to the replication

number in simulation studies which is 10000 in our case. The sample coefficient of variation

is defined as

S CV =
S
X̄

(6.1)

where S is the sample standard deviation and X̄ is the sample mean given in Section 5.3.1.

In addition to expected revenue, probability of poor performance, which is defined as the

probability that the revenue is less than a threshold level, is the other performance measure

considered in this thesis. Towards the end of evaluating simulation results to calculate this

probability, let r be the replication number and k of these replications satisfy the following

condition: R < τ, where τ is a specified revenue level. Then,

p =
k
r
,

E(p) = p,

V(p) =
p(1 − p)

r
,

where p is the proportion of success and p is the sample proportion of success. For rp ≥ 5

and r(1 − p) ≥ 5,

p ∼ N(p,
p(1 − p)

r
)

due to Nelson et al. (2003). For our example problem, the simulation results are used in

calculations of p values and 95% confidence interval for p.

Organization of this chapter is as follows: Section 6.1 is devoted to the analysis on the

dilemma between aggregation and the number of demand realizations used. In Section 6.2,

simulation results for the base problem are given with nested booking control policy, parti-

tioned booking control policy, bid price control policy and Bayesian update. The scenario

for low-before-high arrival pattern is analyzed in Section 6.3. Section 6.4 is devoted to the

scenario with increased low-fare demand variance and the scenario with smaller differences

between fares is considered in Section 6.5. In Section 6.6, the last scenario with realistic

variations and close fares is studied. This chapter ends with concluding remarks in Section
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6.7. The optimal allocations used in the following sections and simulation codes are given in

Appendices B.2 and C, respectively.

6.1 Dilemma Between Aggregation and Number of Demand Realization

The dilemma on using a small number of demand realizations without aggregation or us-

ing more realizations with aggregation is analyzed by solving base problem four times when

L = 70000 and Θ = 100 without aggregation and Θ = 1000 with an aggregation of 4. The

results are given in Table 6.1. In the second and third columns, the results for standard DLP

and EMR models are given, respectively, in order to compare these models with the proposed

ones. The following four columns are devoted to the results of simulation studies for SLP-RM

procedure when Θ = 1000, L = 70000 and demands are aggregated into groups of four. Each

of the four columns is a separate run with the same Θ and L parameters and the replication

number for each run is 10000. Simulation studies are completed four times with the same

data in order to see the difference between different simulation runs. In the last four columns,

the results of simulation studies are given for PLP-RM model when Θ = 100 and L = 70000.

As it is seen in Table 6.1, both sample standard deviations and sample coefficient of varia-

tions for SLP-RM procedure are lower than the ones for the DLP, EMR and PLP-RM models.

Moreover, the SLP-RM procedure gives better expected revenues than the EMR model. Our

numerical observations justify the use of higher Θ values with demand aggregations instead

of using lower Θ values without aggregation.

Table 6.1: SLP-RM procedure and PLP-RM model, simulation results with nested booking
policy, L=70000.

DLP EMR SLP-RM (Θ = 1000) PLP-RM (Θ = 100)
run 1 run 2 run 3 run 4 run 1 run 2 run 3 run 4

S M 75,619 74,227 74,343 74,257 74,508 74,732 75,091 74,537 74,666 74,615
S S D 6,785 6,950 5,582 5,594 5,642 5,792 6,291 6,411 6,021 6,640
S CV 0.0897 0.0936 0.0751 0.0753 0.0757 0.0775 0.0838 0.0860 0.0806 0.089
LF 0.8949 0.8785 0.9164 0.9186 0.9162 0.9131 0.9008 0.8938 0.9044 0.8875

In Figure 6.1, results for PLP-RM and SLP-RM models are given with confidence intervals.

Because of the huge amount of replications (10000 replications in each run), the confidence

intervals are so narrow, which shows that using p values without confidence intervals also
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Figure 6.1: P(R < τ) for SLP-RM and PLP-RM models.

gives reasonable and sufficient information about the simulation results. The probability that

the revenue is less than the threshold values is better for SLP-RM model when the threshold is

less than 75000. In other words, a risk-sensitive decision maker can decrease the probability

of revenue being less than the threshold level more by working with SLP-RM model when

τ < 75000. For τ > 75000, PLP-RM model gives better results. Hence, SLP-RM model

works better for risk-sensitive cases. In the remaining part of this chapter, SLP-RM and PMP-

RC models and RRS procedure are analyzed with partitioned, nested and bid price control

policies. The SLP-RM model is used for Θ = 1000 with an aggregation size of four.

6.2 Base Problem

Base problem is the case that is close to the real life problems because of the following char-

acteristics. In this case, long-haul flights are cheaper than the single-leg flights, there are

important differences between fare classes and low-fare customers generally tend to arrive

before high-fare customers, but not all of the low-fare customers arrive before high-fare cus-

tomers. The data used in the base problem are given in Appendix B.1.1. The Beta distributions

in Figure 5.2 are used in this section.
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6.2.1 SLP-RM Model

The results are given in Tables 6.2 and 6.3 for partitioned and nested policies respectively. The

mean revenues for nested booking policy are higher than the revenues for partitioned book-

ing policy for all of the models. Moreover, some seats that are allocated to low-fare classes

remain empty in partitioned booking policy although there are unsatisfied demands for high-

fare classes, which causes a reduction in load factors. However, using partitioned policy

decreases standard deviation and coefficient of variation slightly. Another important remark

is that EMR-based models, which are SLP, EMVLP and SLP-RM, outperform DLP model in

terms of expected revenue when partitioned booking policy is used. In nested booking pol-

icy, DLP gives better expected revenue than EMR and EMR-based models. Both in nested

and partitioned seat inventory control policy, the models we propose give lower variances and

coefficient of variations than DLP and EMR models. Also, load factors are increased when

the proposed approach is used. In order to compare our approach with other risk averse ap-

proaches in the literature, we consider EMVLP model due to Çetiner (2007). According to

Table 6.2 and Table 6.3 , the standard deviation and coefficient of variation change in the θ

value that is used in EMVLP model. Although EMVLP model gives lower coefficient of vari-

ation values when θ = 0.005, it is not easy to make a generalization that EMVLP outperforms

other models in terms of risk minimization.

Table 6.2: Simulation results with partitioned booking policy for the base problem.

EMVLP (θ) SLP-RM (Lx1000)
DLP EMR S LP 0.001 0.005 60 65 70 75 80

S M 70,567 71,698 71,535 71,515 67,337 70,189 70,908 71,522 71,550 71,547
S S D 5,598 6,268 5,951 5,641 2,951 4,301 5,077 5,691 5,860 6,305
S CV 0.07933 0.08742 0.08319 0.07887 0.04383 0.06128 0.07161 0.07957 0.08190 0.08813

LF 0.86247 0.86533 0.87808 0.88326 0.95188 0.91728 0.89019 0.87917 0.87444 0.86652

Table 6.3: Simulation results with nested booking policy for the base problem.

EMVLP (θ) SLP-RM (Lx1000)
DLP EMR S LP 0.001 0.005 60 65 70 75 80

S M 75,854 74,468 74,314 74,692 70,534 74,119 74,999 75,052 74,929 73,944
S S D 6,812 6,973 6,525 6,249 3,270 4,996 5,853 6,458 6,616 6,950
S CV 0.0898 0.0936 0.0878 0.0837 0.0464 0.0674 0.0780 0.0860 0.0883 0.0940

LF 0.8971 0.8807 0.8930 0.9019 0.9652 0.9338 0.9144 0.8995 0.8941 0.8779
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Next, an analysis on the probability of poor performance is considered for the casess given

in Table 6.2 and Table 6.3. In this analysis, p values for τ = 50000, 51000, ..., 100000 are

calculated and they are used in estimation of P(R < τ), where τ is a revenue level but not the

threshold level L. Because of the huge number of replications used in the simulations, the

standard deviation for p is very small. Hence, confidence intervals are not given in Figure

6.2. Table 6.4 is given for 60, 000 < τ < 70, 000. The best two results in each row are

given with bold style in this table. Note that at least one of the best two values in each row

in Table 6.4 belongs to the SLP-RM model. In Table 6.4 and Figure 6.2, it can be seen that

P(R < τ) is almost the same for different models when τ is less than 65000. Recall from

Table 6.3 that the expected revenue for EMR and DLP models are about 75000 and in Table

6.4, P(R < 65000) for these models is less than 0.1. Especially for τ values between 65000

and 70000, the proposed model outperforms all other models in terms of probability values.

EMVLP model gives reasonable results when θ = 0.005, but the performance of this model

is worse when θ = 0.001. Moreover, DLP model works well when nested booking policy is

used and P(R < τ) for DLP model is less than the values for other models when τ > 70, 000.

However, risk-sensitive decision makers are generally concerned about the risk with respect

to smaller threshold levels than the expected revenue. Hence, it is not meaninful to use higher

τ values as performance measures in our studies. The concluding remarks in terms of sample

mean, standard deviation, coefficient of variation and probability of poor performance for

these analyses are as follows:

• Nested booking policy gives better results in terms of expected revenue than partitioned

booking policy.

• DLP works better than EMR and EMR-based models in terms of expected revenue

when nested booking policy is used.

• SLP-RM model generally gives better results than the other models in terms of proba-

bility of poor performance for τ values between 60000 and 70000.

6.2.2 PMP-RC Model

Second model that is proposed in Chapter 4 is PMP-RC model. A detailed analysis of this

model is for the partitioned booking policy. As it is explained in Chapter 5, the use of PMP-
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Figure 6.2: P(R < τ) for the base problem.

RC model is more complicated than the other models we propose because of the parameters

(the threshold level, L, probability limit, ρ) to be specified. In our analysis, threshold level is

set at 70000 with target probabilities ρ = 0.028, 0.029, 0.030 and 0.031. The reason of select-

ing threshold level as 70000 is that the effect of risk sensitive models on expected revenue can

be seen more clearly when threshold level is around mean expected revenue. The ρ values are

chosen by using the analyses in Figure 5.10. The seat allocations of these models are used in

simulation studies with partitioned booking policy. The sample mean and standard deviation

of the total revenue for PMP-RC model is not so different than the values for the EMR model

as seen in Table 6.5. This shows us that PMP-RC model does not work better than SLP-RM

model with L=70000 and EMVLP model with Θ = 0.005. Because of the computational diffi-

culties, the number of demand realizations for PMP-RC model is set at 100, which is small as

compared to the one, 1000, used in SLP-RM model. Moreover, setting both threshold level, L,

and probability limit, ρ, is not practical to use in real life problems. However, the results of the

PMP-RC model can be improved by increasing the number of demand realizations. Solving

this model with higher number of demand realizations in an acceptable computational time

remains as a future work.
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Table 6.4: P(R < τ) for the base problem.

EMVLP (θ) SLP-RM (Lx1000)
τ DLP EMR S LP 0.001 0.005 60 65 70 75 80

61000 0.0253 0.0357 0.0290 0.0231 0.0064 0.0107 0.0171 0.0244 0.0269 0.0382
62000 0.0326 0.0453 0.0382 0.0319 0.0107 0.0175 0.0242 0.0329 0.0355 0.0493
63000 0.0414 0.0594 0.0494 0.0416 0.0195 0.0248 0.0328 0.0422 0.0451 0.0629
64000 0.0550 0.0736 0.0656 0.0538 0.0348 0.0346 0.0422 0.0556 0.0602 0.0816
65000 0.0695 0.0931 0.0846 0.0696 0.0587 0.0476 0.0569 0.0701 0.0749 0.1047
66000 0.0868 0.1173 0.1080 0.0887 0.0902 0.0633 0.0727 0.0886 0.0961 0.1308
67000 0.1070 0.1488 0.1350 0.1150 0.1404 0.0872 0.0933 0.1116 0.1209 0.1654
68000 0.1325 0.1832 0.1725 0.1459 0.2094 0.1192 0.1204 0.1421 0.1520 0.2003
69000 0.1614 0.2179 0.2092 0.1836 0.2962 0.1532 0.1537 0.1782 0.1888 0.2414
70000 0.1940 0.2593 0.2511 0.2235 0.3966 0.1961 0.1949 0.2170 0.2252 0.2837

Table 6.5: PMP-RC model, simulation results with partitioned booking policy for the base
problem, L=70000.

EMVLP (θ) PMP-RC (ρ)
DLP EMR SLP 0.001 0.005 0.28 0.29 0.30 0.31

S M 70,595 71,789 71,626 71,596 67,385 71,777 71,307 71,663 71,707
S S D 5,604 6,273 5,942 5,631 2,939 6,238 5,479 5,992 6,352
S CV 0.0794 0.0874 0.0830 0.0787 0.0436 0.0869 0.0768 0.0836 0.0886

LF 0.8622 0.8656 0.8784 0.8835 0.9521 0.8670 0.8848 0.8737 0.8632

6.2.3 RRS Procedure

Since we have no seat allocation output of the RRS model, the analysis is for bid price control

policy. Although we know that updating bid prices frequently improves the solution quality,

bid price control policy without update is used firstly. The results are given in Table 6.6. It

can be seen from the table that the results are the same for some of the models as in the case

of DLP and EMR models and RRS procedure with both L < 75000 and L < 80000. Also, the

results are the same for RLP model and RRS procedure with both L > 75000 and L > 80000.

Hence, it is not easy to make a conclusion about risk sensitivity.

6.2.4 Bayesian Update

Bayesian update is considered in this section for DLP, EMR, EMVLP and SLP-RM models

and RRS procedure. Firstly, the impact of updating demand data, p and γ values in Gamma
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Table 6.6: RRS model, simulation results with bid price control policy for the base problem.

RRS
DLP EMR EMVLP RLP L < 75000 L > 75000 L < 80000 L > 80000

SM 73,460 73,460 66,750 76,629 73,460 76,629 73,460 76,629
SSD 4,684 4,684 3,550 5,818 4,684 5,818 4,684 5,818
SCV 0.064 0.064 0.053 0.076 0.064 0.076 0.064 0.076

LF 0.960 0.960 0.980 0.935 0.960 0.935 0.960 0.935

Distribution, on revenue and expected revenue is analyzed for DLP model by changing the

number of updates when bid price control policy is used. The booking horizon consisting of

T time units is divided into equal update periods. For example, for two updates, the book-

ing horizon is divided into three periods, each with a length of T
3 . Updating bid prices im-

proves the solution quality significantly for sample mean as seen in Table 6.7 and Figure 6.3.

However, sample standard deviation and coefficient of variation also increase, which is not a

desired situation for a risk-sensitive decision maker. On the other hand, it is seen in Figure

6.3 that updating bid prices frequently decreases the probability that revenue is less than the

(specified) levels. Moreover, P(R < τ) decreases also for higher τ levels, which is a desired

situation for the decision makers becasue this means that probability of higher revenue values

increases. Although increasing the number of updates improves the revenue while S S D and

S CV are staying at acceptable levels, its effect decreases beyond a certain value. For example,

the difference between results of 10 and 20 updates is smaller than the difference between re-

sults of 2 and 3 updates. Updating frequently has not a significant effect on load factor, which

is almost the same for 0, 2, 3 and 5 updates, but increases slightly for 10 and 20 updates.

Table 6.7: DLP model, simulation results with bid price control policy and Bayesian update
for the base problem.

Number of Updates
0 2 3 5 10 20

S M 73,460 75,266 77,153 78,235 79,322 79,929
S S D 4,684 4,899 5,499 5,719 5,859 5,951
S CV 0.064 0.0651 0.0713 0.0731 0.0739 0.0744
LF 0.960 0.9544 0.9553 0.9550 0.9613 0.9640

According to the analysis on the number of updates for DLP model, the number of updates for
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Figure 6.3: P(R < τ) for DLP model with Bayesian update.

the remaining part of the analysis is set at 3. Although it is known that increasing the number

of updates improves the solution quality, the computational time limits this number. Three

is the number which can be used in an acceptable computational time and gives significantly

better results than the situation with no update. The seat allocations and bid prices for DLP,

EMR, EMVLP and SLP-RM models and RRS procedure are used in the simulation model with

Bayesian update policy. Because of the computational difficulties, the replication number is

decreased to 500. The results for the models are given in Table 6.8 and Figure 6.4. The sim-

ulation studies for RRS procedure with Bayesian update show us that updating only demand

data in RRS procedure does not improve the solution quality; moreover, it can even worsen

the solutions. This situation occurs because of the requirement to update the policy parameter

L in RRS procedure. In this procedure, a threshold level, L, is set at the beginning of the

booking horizon and bid prices are divided into two groups according to this threshold level.

In Bayesian update, only demand data is updated, but this update may significantly affect the

bid prices that belong to the groups R < L or R > L. Hence, in RRS procedure, not only

demand data but also policy parameter L must be updated to obtain better results. However,

a detailed study is required to update policy parameter based on the demand observations.

Bayesian update or other update policies can be considered for this purpose, which remains

as a future work. The following remarks result from the analysis in this section.
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Figure 6.4: P(R < τ) when Bayesian update is used, 3 updates.

• DLP works better than EMR model both with nested and bid price control policies

when Bayesian update is used.

• Load factor in simulation results with Bayesian update policy is significantly higher

than the results without update under bid price control policy. As it is described in

Chapter 3, there is no limit on the number that can be accepted for any of the itineraries

when the class is open in this policy. Hence, customers with small contibutions to the

revenue may be accepted more in this policy, which increases the load factors of the

flights.

• Updating frequently decreases the probability that the revenue is less than the (speci-

fied) levels, P(R < τ).

Table 6.8: Simulation results for the base problem with Bayesian update, 3 updates.

Nested Control Bid Price Control
DLP EMR EMVLP SLP-RM DLP EMR

SM 76,360 75,000 74,272 74,994 77,153 74,146
SSD 6,674 6,089 5,049 5,423 5,499 4,421
SCV 0.0874 0.0812 0.0680 0.0723 0.0713 0.0596
LF 0.9104 0.9043 0.9311 0.9175 0.9553 0.97
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6.3 Low-Before-High Arrival Pattern

In this section, the effect of change in arrival process on total revenue and risk is analyzed.

In the base case, although low-fare class bookings tend to arrive earlier than high-fare class

bookings, an important amount of customers of low-fare class arrive later than the arrival of

the first high-fare class bookings. In this section, the arrival parameters for Beta distribution,

graphed in Figure 5.2, are changed in order to see the effect of using low-before-high arrival

pattern more strictly. The new arrival rates are given in Appendix B.1.2 and graphed in Figure

6.5. Because input data is the same as that of the base problem except for the arrival rates,

mathematical programming solutions do not change. The simulation results are given in Table

6.10.

Because of the use of nested booking control policy in this scenario, the simulation results are

almost the same as the ones for the base problem in Table 6.3. In nested booking policy, the

seats that are allocated for low-fare classes can be used by a passenger with high-fare class

request. In Figure 6.6 and Table 6.10, P(R < τ) values for this scenario are given. They are

again not significantly different from the results given for the base problem. One of the best

two results in Table 6.10 is for the SLP-RM model for all of the considered τ values. The

other good result is for EMVLP or for DLP model. DLP gives better results especially for

greater τ values. It can be concluded that arrival patterns of the fare classes do not affect the

revenues significantly when nested booking policy is used.

Table 6.9: Simulation results for low-before high arrival pattern with nested booking policy.

EMVLP (θ) S LP − RM (Lx1000)
DLP EMR S LP 0.001 0.005 60 65 70 75 80

SM 75,378 74,149 74,009 74,309 69,780 73,548 74,506 74,662 74,561 73,639
SSD 6,499 6,928 6,455 6,135 3,029 4,818 5,662 6,329 6,503 6,919
SCV 0.0862 0.0934 0.0872 0.0826 0.0434 0.0655 0.0760 0.0848 0.0872 0.0940

LF 0.8985 0.8777 0.8911 0.9003 0.9643 0.9319 0.9134 0.8979 0.8923 0.8749
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Figure 6.6: P(R < τ) for the case with low-before-high arrival rates.
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Table 6.10: P(R < τ) for the case with low-before-high arrival rates.

EMVLP (θ) S LP − RM (Lx1000)
τ DLP EMR S LP 0.001 0.005 60 65 70 75 80

60000 0.0180 0.0282 0.0217 0.0167 0.0030 0.0076 0.0124 0.0177 0.0203 0.0301
61000 0.0259 0.0372 0.0303 0.0236 0.0067 0.0119 0.0171 0.0265 0.0278 0.0392
62000 0.0344 0.0481 0.0389 0.0318 0.0125 0.0180 0.0261 0.0335 0.0369 0.0534
63000 0.0446 0.0628 0.0536 0.0428 0.0244 0.0271 0.0336 0.0436 0.0473 0.0707
64000 0.0559 0.0819 0.0701 0.0576 0.0435 0.0373 0.0446 0.0572 0.0630 0.0896
65000 0.0689 0.1034 0.0908 0.0757 0.0726 0.0529 0.0585 0.0754 0.0828 0.1137
66000 0.0881 0.1275 0.1153 0.0999 0.1157 0.0722 0.0803 0.0957 0.1031 0.1399
67000 0.1104 0.1566 0.1439 0.1234 0.1805 0.0978 0.1014 0.1215 0.1311 0.1732
68000 0.1389 0.1920 0.1805 0.1563 0.2616 0.1312 0.1308 0.1523 0.1605 0.2129
69000 0.1695 0.2331 0.2207 0.1937 0.3616 0.1708 0.1658 0.1890 0.1995 0.2554
70000 0.2012 0.2754 0.2685 0.2391 0.4776 0.2220 0.2078 0.2289 0.2405 0.3005

6.4 Increased Low-Fare Demand Variance

In the base problem, demand variance for high-fare class (class 1) is relatively higher than

the demand variances for low-fare classes (class 2 and 3). de Boer (1999) considers the case

of increased low-fare demand variance by changing these variances according to the study of

Belobaba (1987), in which he states that 0.33 is a common coefficient of variation for demand

in airline industry. This value is found by working with the real data of Western Airlines.

In the base problem given in Section 6.2, the coefficient of variations are between 0.18 and

0.75. In this section, only the variances of the low-fare demands are increased which have

coefficient of variations smaller than 0.22 in base problem. The data with increased low-fare

demand variances are given in Appendix B.1.3. Increasing low-fare demand variance results

in an increase in deviations from the mean for low-fare demands. Therefore, we expect that

there must be a decrease in the number of seats allocated for low-fare classes. The optimal

seat allocations of the models used in the simulation studies are given in Appendix B.11. As

it is expected, there is a slight decrease in seat allocations for low-fare classes. These allo-

cations are used in the simulation models for nested booking policy, the results are given in

Table 6.11. The decrease in low-fare class seat allocations results in slight decreases in rev-

enue and load factors. Moreover, an increase in sample standard deviation is seen because

of the increase in variances. According to Figure 6.7 and Table 6.12, SLP-RM shows similar

behavior as in the base problem. One of the best two results always is for the SLP-RM model.

However, the results are not significantly different for DLP, EMVLP and SLP-RM models.
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Figure 6.7: P(R < τ) for the case with increased low-fare demand variance.

Thus, a strong conclusion about comparison on the performances of these three models can-

not be considered in this low-fare demand variance scenario.

Table 6.11: Simulation results for increased low-fare demand variance case with nested book-
ing policy.

EMVLP (θ) SLP-RM (Lx1000)
DLP EMR S LP 0.001 0.005 60 65 70 75 80

SM 75,046 73,722 73,701 74,326 70,030 72,726 74,351 73,997 73,707 73,589
SSD 7,028 7,468 6,857 6,773 3,452 4,884 6,618 6,614 7,433 7,666
SCV 0.0936 0.1013 0.0930 0.0911 0.0493 0.0672 0.0890 0.0894 0.1008 0.1042

LF 0.8851 0.8614 0.8789 0.8889 0.9575 0.9292 0.8907 0.8879 0.8620 0.8541
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Table 6.12: P(R < τ) for the case with low-before-high arrival rates.

EMVLP (θ) SLP-RM (Lx1000)
τ DLP EMR S LP 0.001 0.005 60 65 70 75 80

60000 0.0269 0.0415 0.0320 0.0266 0.0072 0.0130 0.0247 0.0272 0.0424 0.0471
61000 0.0360 0.0540 0.0424 0.0358 0.0113 0.0193 0.0328 0.0354 0.0545 0.0603
62000 0.0450 0.0690 0.0539 0.0470 0.0205 0.0262 0.0439 0.0480 0.0685 0.0753
63000 0.0582 0.0864 0.0693 0.0591 0.0327 0.0377 0.0568 0.0612 0.0869 0.0963
64000 0.0746 0.1088 0.0895 0.0764 0.0528 0.0509 0.0722 0.0766 0.1072 0.1173
65000 0.0909 0.1305 0.1118 0.0968 0.0828 0.0684 0.0907 0.0979 0.1311 0.1401
66000 0.1120 0.1572 0.1370 0.1183 0.1258 0.0935 0.1137 0.1236 0.1573 0.1694
67000 0.1371 0.1887 0.1670 0.1473 0.1840 0.1220 0.1397 0.1482 0.1888 0.2013
68000 0.1646 0.2241 0.2040 0.1784 0.2579 0.1626 0.1706 0.1830 0.2228 0.2347
69000 0.1962 0.2607 0.2442 0.2127 0.3475 0.2113 0.2076 0.2211 0.2570 0.2690
70000 0.2343 0.2992 0.2854 0.2535 0.4598 0.2704 0.2457 0.2613 0.2968 0.3093

6.5 Smaller Differences Between Fares

de Boer (1999) states that decreasing differences between fare classes improves the results

of the stochastic solutions (EMR-based models) as compared to the deterministic ones (DLP

model). In this section, this situation is taken into consideration with smaller differences

between fares. The input data for these cases are given in Appendix B.1.4. Decreasing dif-

ferences between fares by decreasing the high-fares affects the seat allocations for high-fare

classes in a negative way, the mathematical model results are given in Appendix B.12. In

other words, it is now less attractive to allocate a seat to the high-fare class with decreased

fares. This situation causes a reduction not only in revenue but also in standard deviation.

More seats are allocated to low-fare classes which have small variances of demand compared

to the high-fare classes. The results are summarized in Table 6.13 and Table 6.14. In base

problem, because of the higher differences between fares, risk-sensitive models results in a

considerable amount of decrease in revenue as compared to risk-neutral models. This is be-

cause seat allocations obtained by the risk-sensitive models are to decrease variability unlike

risk-neutral models. Therefore, the risk can only be decreased by decreasing the revenue sig-

nificantly. However, in the problem scenario with small differences between fares, changing

seat allocations affects revenue less, but improves the solution quality significantly in terms

of variability. Thus, the results for the proposed models in this section in Figure 6.8 and Table

6.14 are better than the results of other models as compared to the results in Sections 6.2, 6.3

and 6.4.
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Figure 6.8: P(R < τ) for the case with smaller differences between fares.

Table 6.13: Simulation results for the case with smaller differences between fares, nested
booking policy.

EMVLP (θ) SLP-RM (Lx1000)
DLP EMR S LP 0.001 0.005 50 55 60 65 70

SM 63,418 63,007 62,697 62,791 61,010 61,417 62,896 63,424 62,681 62,697
SSD 5,162 4,550 3,844 3,798 2,090 2,302 3,306 4,336 4,978 3,844
SCV 0.0814 0.0722 0.0613 0.0605 0.0343 0.0375 0.0526 0.0684 0.0794 0.0613

LF 0.9011 0.9162 0.9359 0.9365 0.9710 0.9664 0.9478 0.9227 0.9021 0.9359
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Table 6.14: P(R < τ) for the case with smaller differences between fares, nested booking
policy.

EMVLP (θ) SLP-RM (Lx1000)
τ DLP EMR S LP 0.001 0.005 50 55 60 65 70

55000 0.0642 0.0531 0.0368 0.0336 0.0100 0.0133 0.0212 0.0395 0.0758 0.0368
56000 0.0927 0.0802 0.0607 0.0568 0.0235 0.0259 0.0354 0.0608 0.1075 0.0607
57000 0.1251 0.1131 0.0914 0.0865 0.0496 0.0505 0.0589 0.0899 0.1445 0.0914
58000 0.1656 0.1545 0.1317 0.1242 0.0936 0.0900 0.0920 0.1257 0.1907 0.1317
59000 0.2106 0.2019 0.1791 0.1721 0.1673 0.1483 0.1327 0.1677 0.2431 0.1791
60000 0.2600 0.2598 0.2417 0.2311 0.2759 0.2369 0.1911 0.2189 0.3004 0.2417
61000 0.3156 0.3212 0.3083 0.2983 0.4267 0.3585 0.2595 0.2819 0.3603 0.3083
62000 0.3752 0.3863 0.3883 0.3769 0.6250 0.5296 0.3477 0.3467 0.4278 0.3883
63000 0.4392 0.4638 0.4817 0.4713 0.8455 0.7306 0.4518 0.4221 0.4952 0.4817
64000 0.5073 0.5392 0.5783 0.5699 0.9708 0.9047 0.5723 0.5063 0.5673 0.5783
65000 0.5744 0.6232 0.6794 0.6752 0.9965 0.9822 0.7044 0.5930 0.6399 0.6794

6.6 Realistic Variations and Close Fares

In this section, the case with realistic coefficients of variation of demand, relatively close

fares and no specific order of arrivals is analyzed. This case is a combination of the cases in

Sections 6.4 and 6.5. As it is seen in Section 6.4, decreasing differences between fares im-

proves the solution quality of risk averse models in terms of sample coefficient of variation,

load factor and probability of poor performance. In this section, in addition to the lowered

difference between fare classes, the coefficient of variation for demand is set almost at 0.33

which is considered as the realistic case by Belobaba (1987) and the arrivals are assumed to

be the same for all fare classes. de Boer (1999) states that no specific order of arrivals favors

the occurence of nesting. This scenario decreases the differences between fares, which is a

realistic case in small sized airlines. In small sized airlines, the number of options is less than

the regular cases and arrival times of the requests are not so different. As it is stated before,

minimizing risk is more important for this type of airline companies because of the scale of

the network. According to the results given in Table 6.15, Figure 6.9 and Table 6.16, the

risk-sensitive models improve the results significantly. Both EMVLP and SLP-RM models

give almost the same results and it is not easy to make a comparison between them. However,

note that the solutions of these two models depend on the parameters selected. This scenario

shows us that risk sensitive models work well for small scale airline networks that have the

properties of relatively close fares and no specific order of arrivals.
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Table 6.15: Simulation results for the case with smaller differences between fares, nested
booking policy

EMVLP (θ) S LP − RM (Lx1000)
DLP EMR S LP 0.001 0.005 60 65 70 75

SM 70,994 70,894 71,210 71,272 71,429 71,449 71,225 70,452 71,210
SSD 3,995 3,552 2,947 3,099 2,416 2,729 3,084 3,821 2,947
SCV 0.0563 0.0501 0.0414 0.0435 0.0338 0.0382 0.0433 0.0542 0.0414

LF 0.9110 0.9235 0.9458 0.9407 0.9613 0.9524 0.9412 0.9102 0.9458
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Figure 6.9: P(R < τ) for the case with smaller differences between fares.

Table 6.16: P(R < τ) for the case with smaller differences between fares.

EMVLP (θ) S LP − RM (Lx1000)
DLP EMR S LP 0.001 0.005 60 65 70

60000 0.0064 0.0023 0.0005 0.0007 0.0001 0.0003 0.0008 0.0056
61000 0.0117 0.0056 0.0011 0.0016 0.0002 0.0005 0.0015 0.0115
62000 0.0200 0.0110 0.0020 0.0039 0.0005 0.0014 0.0039 0.0218
63000 0.0344 0.0217 0.0064 0.0088 0.0018 0.0031 0.0090 0.0352
64000 0.0533 0.0380 0.0154 0.0189 0.0039 0.0091 0.0196 0.0579
65000 0.0790 0.0612 0.0295 0.0357 0.0106 0.0190 0.0364 0.0894
66000 0.1133 0.0960 0.0521 0.0591 0.0241 0.0374 0.0605 0.1300
67000 0.1621 0.1433 0.0901 0.0973 0.0472 0.0654 0.0984 0.1860
68000 0.2197 0.2062 0.1451 0.1516 0.0886 0.1138 0.1538 0.2534
69000 0.2933 0.2854 0.2221 0.2249 0.1550 0.1828 0.2273 0.3350
70000 0.3779 0.3799 0.3201 0.3168 0.2612 0.2784 0.3205 0.4281
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6.7 Concluding Remarks

The numerical results reported in this chapter show that the performances of the mathematical

models are directly related with the scenario considered. Although deterministic model, DLP,

works surprisingly well for most of the cases, in the last two cases in Sections 6.5 and 6.6,

the stochastic models EMR, S LP, EMVLP and SLP-RM give better results. The risk-averse

models generally improve the solution qualities in terms of probability of poor performances

in all of the cases and the SLP-RM model proposed in this thesis gives almost the same

results as the EMVLP model due to Çetiner (2007). However, SLP-RM model simplifies the

parameter selection in decision making process as compared to EMVLP model in real life

problems. The conclusions related with risk sensitivity according to the analyses in Sections

6.1 to 6.5 are given below:

• Decreasing risks causes an increase in load factors.

• Although risk-sensitive models generally give less revenue and variability, simulation

results of these models can give higher revenues than risk-neutral models.

• The performance of risk-sensitive models are better for small sized airline companies

that have small differences among fares.

106



CHAPTER 7

CONCLUSION

In this study, network seat inventory problems without overbooking, cancellations and no-

shows are taken into consideration from the perspective of the risk-sensitive decision maker.

The main aim of the study is incorporating risk factors into the proposed models in order to

guide risk-sensitive decision makers in developing their own policies for accepting or reject-

ing the booking requests. This risk-sensitive approach is the difference of this study from

most of the studies in the literature.

Three probabilistic models and procedures are introduced in this study, which are called SLP-

RM, PMP-RC and RRS. In SLP-RM procedure, which is composed of two linear programming

models. The probability that the revenue is less than a specified threshold level is minimized

in the first model and then the expected revenue is maximized in the second model by using

the output of the first model. In PMP-RC model, the expected revenue is maximized with an

additional constraint on the probability that the revenue is less than a threshold level. This

model is an integer programming formulation. In RRS procedure, different than SLP-RM

procedure and PMP-RC model, the output of the procedure is used only in the bid price

control policy. In this procedure, revenue is maximized by solving the RLP model, that is

proposed by Talluri and van Ryzin (1999), many times for different realizations of demand.

Then, the bid price for an itinerary is approximated with a pessimistic (optimistic) or risk-

sensitive (risk-taking) perspective by taking the average of the bid prices for the instances

with revenue less (or more) than the threshold level. RRS procedure is simple to use and

decreases the computational time as compared to SLP-RM procedure and PMP-RC model.

The booking limits and bid prices, taken from the proposed models, are used in the simulation

studies in order to compare the proposed models with the existing models in the literature.
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Different scenarios are considered and the performances of the proposed models are evaluated

for these scenarios. Our risk-sensitive approach decreases the variability of the revenue. The

risk-sensitivity of the decision maker is evaluated by changing the threshold level, which is

an easily determined and controlled parameter. The proposed models and procedures do not

only improve our solutions in terms of risk-sensitivity but also give better expected revenues

in some problem scenarios than the well-known models in the literature, DLP and EMR.

Especially for the scenario with close fares and no specific order of arrivals, which is more

realistic for small-scaled airlines, the results of the proposed approach outperform the results

of DLP and EMR models significantly.

The following remains as future work. Since PMP-RC model is an integer programming

formulation, the computational complexity restricts the number of demand realizations in this

model. Moreover, the approximations in SLP-RM procedure worsens the quality of the results

in terms of expected revenue and P(R < τ). Some other linear programming techniques or

heuristic search methods may be used in order to improve the solution quality of the models.

The RRS procedure cannot be effectively used because of the requirement to update the policy

parameter (threshold level) based on the demand observations. A Bayesian update mechanism

can be developed for RRS procedure. Furthermore, this update mechanism may be adapted

in order to use it also in the other models, SLP-RM and PMP-RC.

The simulation studies show us that there is strong correlation between the load factor and

variability of the revenue. The load factor increases significantly in risk-sensitive models and

procedures. Therefore, using load factor in the models in order to manage the risk can be

considered as a future research direction.

In this study, there are many assumptions: overbooking and cancellations are excluded, de-

mands for different fare classes are assumed to be independent, batch booking is not allowed.

The relaxation of these assumptions for risk-sensitive models is another important research

direction.
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APPENDIX A

REVENUE MANAGEMENT GLOSSARY

(due to McGill and van Ryzin, 1999)

Aggregation of demand: The level of summarization of passenger demand data. The trend

has been toward increasing levels of disaggregation in seat inventory optimization; however,

pricing, forecasting, and booking control processes often operate at different levels of aggre-

gation. Possible dimensions for disaggregation include: market, season, month, week, section

of week (e.g., midweek versus weekend), day of week, time of day, flight number, booking

class, fare, flight leg, segment, and itinerary.

Arrival pattern: The pattern of arrivals of booking requests. In the airline context, some

possible arrival patterns are: sequential booking classes, low before-high fares, or interspersed

arrivals. Batch booking: (also multiple booking, or bulk arrival) A booking request that arrives

through normal reservation channels for two or more seats to be booked for the same itinerary.

Contrast with group bookings.

Bid price: A net value (bid-price) for an incremental seat on a particular flight leg in the

airline network. Also referred to as minimum acceptable fare, hurdle price, probabilistic

shadow price, displacement cost, or probabilistic dual cost.

Bid price control: A method of network seat inventory control that assesses the value of

an ODF itinerary as the sum of the bid-prices assigned to individual legs in the itinerary.

Typically, an ODF request is accepted if its fare exceeds the total bid prices. Also referred to

as continuous nesting.

Booking class: A category of bookings that share common features (e.g., similar revenue

values or restrictions) and are controlled as one class. This term is often used interchangeably
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with fare class or bucket.

Booking limit: The maximum number of seats that can be sold to a particular booking class.

In nested booking systems, booking limits apply to the total number of seats sold to a partic-

ular booking class and any lower fare booking classes.

Booking policy: A booking policy is a set of rules that specify at any point during the book-

ing process whether a booking class should be open. In general, such policies may depend

on the pattern of prior demands or be randomized in some manner and must be generated

dynamically as the booking process unfolds for each flight. In some circumstances, optimal

or approximately optimal booking policies can be defined by a set of fixed protection levels

or threshold curves.

Buckets: This term is used in two related ways. First, in older reservations systems, seats

for different fare classes or groups of classes are pre-assigned to distinct buckets. These seats

are available exclusively to bookings in that fare class. This method simplifies reservations

control but is clearly undesirable from a revenue standpoint because seats could fly empty in

a discount bucket even if there is higher fare demand available to fill them. Second, buckets

also refer to clusters of different fare classes or ODFs that are grouped together for control

purposes in a virtual nesting system. A single booking limit is set for all classes in the bucket

or lower value buckets.

Bulk arrival: See batch booking.

Bumping: See denied boarding.

Cabin: The physical compartment of an aircraft containing a particular type of seating. For

example, an aircraft may be equipped with a first class cabin and a coach cabin, each with

different seating and separated by a partition. Multiple fare classes are usually available in

each cabin of the aircraft.

Cancellations: Returns or changes in bookings that occur early enough in the booking period

to permit subsequent rebooking through the reservations system.

Coefficient of variation: The standard deviation expressed as a proportion of the mean of a

probability or relative frequency distribution. Thus a demand distribution with mean demand

100 and standard deviation 40 would exhibit a coefficient of variation of 0.40. Airline demand
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data typically display coefficients of variation in the range 0.25 to over 1.0, depending on the

level of aggregation of the data.

Connectivity (in reservations systems): The degree to which the elements of the reservations

system are electronically interconnected. See seamless availability.

Continuous nesting: (see bid-price control)

Controllable booking classes: All early reservations systems and many existing systems

offer only a small number of distinct booking categories (five to ten) that can actually be

controlled at booking outlets. Thus, regardless of the number of booking classes or distinct

passenger itineraries that can be handled by the revenue management optimization process,

the controls in such systems can only be applied to a small number of aggregate booking

classes or buckets.

Control limit policy: A structural solution that specifies an upper bound (limit) on the num-

ber of seats sold in each fare class (or collection of fare classes) for each time before flight

departure.

CRS: Computer reservations system.

Defections: It can occur that a confirmed passenger who shows up for a flight switches to a

flight with another airline (usually because of a delay in the original flight departure). Defec-

tions constitute a relatively small component of lost passengers and are normally counted as

part of no-shows. However, they are distinct from no-shows, and any attempt to predict their

occurrence requires an estimation of the probability distribution for departure delays.

Demand distribution: An assignment of probabilities (probability distribution) to each pos-

sible level of demand for a flight or booking class. A preliminary estimate of such a demand

distribution can be obtained by calculating the proportion of each demand level seen on com-

parable past flights; i.e., a relative frequency distribution.

Demand factor: The ratio of demand over capacity for a flight or booking class. (Contrast

with load factor.)

Denied boarding: Turning away ticketed passengers when more passengers show-up at flight

time than there are seats available on the flight, usually as a result of overbooking practices.
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Denied boarding can be either voluntary, when passengers accept compensation for waiting

for a later flight, or involuntary, when an insufficient number of passengers agree to accept

compensation. In the latter case, the airline will be required to provide compensation in a

form mandated by civil aviation law.

Disaggregate: See aggregation of demand. Displacement cost: In revenue management,

the displacement (or opportunity) cost of a booking includes all future revenues that may

be lost if the booking is accepted. Taken to the extreme, these include the revenue value of

potential displaced future bookings anywhere in the airline network and goodwill costs from

those displacements. Assessment of the costs and probabilities of such displacements should

allow for the dynamics of cancellations and overbooking and the expected costs of oversold

conditions.

Diversion: The booking of a customer at a fare level lower than one they would have been

prepared to pay. This occurs, for example, when a business traveler has sufficient advance

notice of a trip to book in a discount class intended primarily for leisure travelers. Restrictions

are designed to inhibit such diversion.

Dual prices (also shadow prices): The marginal value of one additional unit of a constrained

resource, as determined by a mathematical programming solution to an optimization model.

Dual prices are one source of the marginal seat values used in bid-price control.

Dynamic models: Models that take into account future possible booking decisions in assess-

ing current decisions. Most revenue management problems are properly modeled as dynamic

programming problems.

Expected marginal seat revenue (EMSR): The expected revenue of an incremental seat if

held open. This is a similar concept to that of bid-price but generally used in a simpler context.

Expected revenue: The statistical expected revenue; that is, the sum of possible revenue values

weighted by their probabilities of occurrence. Fare basis code: An alphanumeric encryption

of the conditions and restrictions associated with a given fare. Usually several fare basis codes

are contained in a single fare class.

Fare class: A category of booking with a (relatively) common fare. Typical labels for such

classes [seeVinod (1995)] are: F for first class (separate compartment); J for business class,

U for business class frequent flyer redemption (often separate compartment); Y for full fare
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coach; B, M, Q, V for progressively more discounted coach bookings; and T for frequent

flyer coach cabin redemptions. Often other fare products (such as travel agent or company

travelers) are categorized under one of these designations for control purposes.

Fare product: The full set of attributes associated with a specific transportation service. The

set includes the fare as well as any restrictions or benefits that apply to that service at that fare.

Fleet assignment: Most airlines have a variety of aircraft types and sizes in their fleets.

The fleet assignment process attempts to allocate aircraft to routes in the airline network to

maximize contribution to profit. There are strong potential linkages between fleet assignment

and revenue management processes because aircraft assignments determine leg capacities in

the network.

Flight leg: A section of a flight involving a single takeoff and landing (or no boarding or

deplaning of passengers at any intermediate stops). Also leg.

Flight number: A numeric or alphanumeric label for a flight service that involves (generally)

a single aircraft departing from an origin airport, possibly making additional scheduled stops

at one or more intermediate airports, and terminating at a destination airport.

Full Nesting: See nested booking.

Global distribution system (GDS): Computer and communications systems for linking book-

ing locations with the computer reservation systems of different airlines. Examples are SABRE,

Galileo, and Amadeus.

Goodwill costs: An airline’s rejection of a booking request can affect a customer’s propensity

to seek future bookings from that airline. This cost is difficult to assess but is considered

particularly acute in competitive markets and with customers who are frequent air travelers.

An approximate assessment of the cost of a permanently lost customer is the expected net

present value of all future bookings from the customer minus the opportunity costs of those

bookings.

Go-show: Passengers who appear at the time of flight departure with a valid ticket for the

flight but for whom there is no record in the reservation system. This no-record situation can

occur when there are significant time lags in transferring booking information from reserva-

tions sources (e.g., travel agent’s offices) to the CRS or when there are transmission break-
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downs.

Group bookings: Bookings for groups of passengers that are negotiated with sales represen-

tatives of airlines; for example, for a large group from one company travelling to a trade show.

These should be distinguished from batch bookings.

Hub-and-spoke network: A configuration of an airline’s network around one or more major

hubs that serve as switching points in passengers’ itineraries to spokes connected to smaller

centers. The proliferation of these networks has greatly increased the number of passenger

itineraries that include connections to different flights.

Hub bank: A collection of inbound and outbound flights that are scheduled to arrive or depart

within a time span that enables convenient passenger connections among flights. An airline

hub will typically operate with several hub banks throughout the day.

Incremental seat: One additional seat, given the number of seats already booked. Indepen-

dence of demands: The assumption that demands in one customer category (e.g., booking

class or ODF) are statistically independent of demands in other categories. It is widely be-

lieved that this assumption is not satisfied in practice.

Indexing: The process of assigning individual ODF categories to virtual nesting buckets.

Interspersed arrivals: Characteristic of an arrivals process in which booking requests in

different booking classes do not arrive in any particular order. (Compare with sequential

booking classes.)

Itinerary: For purposes of this paper, an itinerary is a trip from an origin to a destination

across one or more airline networks. A complete specification of an itinerary includes depar-

ture and arrival times, flight numbers, and booking classes. The term is used ambiguously to

include both one-way and round-trip travel. That is, used in the first way, a round-trip involves

two itineraries and, in the second way, one itinerary.

Leg: See flight leg.

Leg based control: An older, but still common, method of reservations control and revenue

management in which limits are set at the flight leg level on the number of passengers flying

in each booking class. Such systems are unable to properly control multileg traffic, although
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virtual nesting provides a partial solution.

Littlewood’s rule: This simple two-fare allocation rule was proposed by Littlewood (1972).

Given average high fare f1, average discount fare f2, random full fare demand Y, and s seats

remaining, Littlewood’s rule stipulates that a discount seat should be sold as long as the dis-

count fare equals or exceeds the expected marginal return from a full fare booking of the

last remaining seat; that is, discount demand should be satisfied as long as f2 f1 Pr(Y . s).

This is essentially equivalent to the classic optimal stocking rule for single period stochastic

inventory (newsvendor) problems.

Load factor: The ratio of seats filled on a flight to the total number of seats available.

Low-before-high fares: (Also called monotonic fares or sequential fares.) The sequential

booking class assumption is often augmented by the additional assumption that booking re-

quests arrive in strict fare sequence, generally from lowest to highest as flight departure ap-

proaches. The existence of low standby fares violates this assumption.

Minimum acceptable fare (MAF): See bid-price.

Monotonic fares: See low-before-high fares.

Multileg: A section of an itinerary or network involving more than one leg.

Multiple booking: See batch booking.

Nested booking: In fully nested (also called serially nested) booking systems, seats that are

available for sale to a particular booking class are also available to bookings in any higher fare

booking class, but not the reverse. Thus, a booking limit L for a discount booking class defines

an upper bound on bookings in that class and any lower valued classes and a corresponding

protection level of (C 2 L) for all higher classes; where C is the total capacity of the pool of

seats shared by all classes. This should be contrasted with the older distinct bucket approach

to booking control. See, also, parallel nesting.

Network effects: A booking on any leg in the airline network may block booking of any

itinerary that includes that leg. Subsequent interactions of the blocked itinerary with other

legs in the network can, in a similar fashion, propagate across the full network.

Newsvendor problem: The problem of choosing the quantity of a perishable item to stock
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(e.g., newspapers) given known cost, selling price, and salvage values, and subject to un-

certain future demand. (Also called the newsboy or single period stocking problem.) This

classic problem is essentially equivalent to the simple two-fare seat allocation problem with

sequential arrivals.

No-shows: Booked passengers who fail to show up at the time of flight departure, thus al-

lowing no time for their seat to be booked through normal reservations processes. No-shows

are particularly common among full fare passengers whose tickets are fully refundable in the

event of cancellation or no-show.

ODF control (O-D problem): Origin-destination fare control. An approach to revenue man-

agement that accounts for all possible passenger itineraries between origins and destinations

in the airline network, at all fare levels. See network effects.

Opportunity cost: See displacement cost.

Optimal booking limits: This term is often used to refer to exact booking limits for the

single leg seat inventory control under assumptions 1 through 6 in Section 4.1. They are only

optimal within the context of that basic model. At present, there are no truly optimal booking

limits for the full ODF revenue management problem, and likely never will be.

Overbooking: The practice of ticketing seats beyond the capacity of an aircraft to allow for

the probability of no-shows.

Oversold: An ambiguous term sometimes used when more passengers show up for a flight

than there are seats available. Such situations must be resolved with denied boardings.

Parallel nesting: See nested booking. This is an approach to booking that is intermediate

between simple distinct bucket control and full nesting. A number of lower fare classes are

assigned to distinct buckets, but these buckets are nested in one or more higher fare classes.

This approach reduces the revenue potential of the combined fare classes, but may facilitate

control. Perishable asset revenue management

Protected seats: Seats that are restricted to bookings in one or more fare classes. In fully

nested booking systems, seats are protected for bookings in a fare class or any higher fare

class.
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Protection levels: The total number of protected seats for a booking class. In fully nested

booking systems the protection level for a fare class applies to that class and all higher fare

classes.

RCS: Reservations Control System.

Recapture: The booking of a passenger who is unable to obtain a reservation for a particular

flight or set of flights with an airline onto alternative flights with the same airline.

Reservation system controls: The internal logic used by the reservation system for control-

ling the availability of seats. This logic is usually difficult to change and is often a significant

constraint when implementing a yield management system. See controllable booking classes.

Restrictions: Sets of requirements that are applied to discount fare classes to differentiate

them as fare products and discourage diversion. Examples are fourteen-day advance book-

ing requirements, cancellation penalties, Saturday night stay over, and midweek departure

requirements. Also referred to as booking fences.

Revenue management: The practice of controlling the availability and/or pricing of travel

seats in different booking classes with the goal of maximizing expected revenues or profits.

This term has largely replaced the original term yield management.

Rules: See restrictions.

Seamless availability: A capability of reservation and information systems that allows for

direct transmission of availability requests from ticket agents to airlines. With this capability,

airlines may be able to provide unrestricted origin-destination control of their seat inventory.

Seat allocation: See seat inventory control.

Seat inventory control: The component of a revenue management system that controls the

availability of seats for different booking classes.

Segment: One or more flight legs covered by a single flight number. Thus, if a flight orig-

inates at airport A, makes an intermediate stop at B, and terminates at C; the possible flight

segments are AB, BC, and ABC.

Segment closed indicator (SCI): A flag in reservations control systems that indicates that a
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booking class is closed to bookings over a particular segment. The same booking class may

be open for bookings over other segments of the same flight. This allows for O-D control at

the segment level.

Segment control: A level of itinerary seat inventory control that accounts for the revenue

value of flight segments, but does not account for itineraries that involve other flight segments.

In the case of a two leg flight A to B to C, segment control would permit closing the AB

segment to a discount booking class but leaving the ABC segment open for the same class.

This system fails to account for the possibly high revenue value of a booking that includes,

for example, the segment AB in its itinerary but switches to a different flight at B.

Sequential booking classes: The assumption that requests for bookings in particular classes

are not interleaved; for example, all B-class requests arrive before any Y-class requests. This

assumption is rarely satisfied in practice; however, it is close enough to permit significant

revenue gains from methods based on the assumption. Also, early booking restrictions on

many discount booking classes ensure a degree of compliance.

Sequential fares: See low-before-high fares.

Serial nesting: See nested booking.

Show-ups: Passengers who appear for boarding at the time of flight departure. The number

of showups is (final bookings 1 go-shows 1 standbys 2 no-shows).

Single-leg control: See leg based control.

Space control: See seat inventory control.

Spill: Unsatisfied demand that occurs because a capacity or booking limit has been reached.

See censorship of demand data.

Spill formula: A formula or algorithm that estimates the amount of spill that has occurred on

past flights.

Spoilage: Seats that travel empty despite the presence of sufficient demand to fill them. This

will occur, for example, if discount booking classes are closed too early, and full fare demands

do not fill the remaining seats. This should be distinguished from excess capacity-seats that

are empty because of insufficient total demand.

121



Standby fares: Some airlines will sell last minute discount seats to certain categories of

travelers (e.g., youth or military service personnel) who are willing to wait for a flight that

would otherwise depart with empty seats.

Static models: Models that set current seat protection policies without consideration of the

possibility of adjustments to the protection levels later in the booking process. (Compare with

dynamic models.)

Structural solution: A solution to an optimization problem in the form of specifications

(frequently equations) that reveal the pattern of behavior of optimal solutions. These are

important because they lead to a deeper understanding of the nature of optimal solutions and

can lead to development of efficient solution algorithms.

Threshold curves: Threshold curves are functions that return time-dependent booking limits

for overbooking or seat inventory control.

Unconstrained demand: An estimate of the demand for a past flight or fare class that has

been corrected for censorship.

Upgrade: This term is used in two ways. First, it refers to an offer to a passenger to fly in a

higher service class without additional charge (e.g., in exchange for frequent flyer points, or

to avoid a denied boarding). Second, it refers to a decision by a customer to book in a higher

fare class than originally intended when he or she is advised that no seats are available at their

preferred fare.

Virtual nesting/virtual classes: This is one approach to incorporating origin-destination in-

formation into leg or segment based control systems. Multiple ODFs are grouped into virtual

buckets on the basis of similar revenue characteristics (e.g., comparable total fare values, or

similar total bid prices). The virtual buckets may easily contain a mixture of traditional fare

classes. The buckets are then nested and assigned to traditional booking classes for control in

a leg based reservation system.

Yield management: The early term used for what is now more commonly called revenue

management.
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APPENDIX B

DATA AND RESULTS FOR DIFFERENT SCENARIOS

B.1 DATA FOR DIFFERENT SCENARIOS

B.1.1 BASE PROBLEM

Table B.1: Fares settings for the base problem

OD Number Origin-Destination Fare Class 3 Fare Class 2 Fare Class 1
1 A-B 75 125 250
2 A-C 130 370 400
3 A-D 200 320 460
4 B-C 100 150 330
5 B-D 160 200 420
6 C-D 80 110 235

Table B.2: Demand settings for the base problem

Fare Class 3 Fare Class 2 Fare Class 1
Itinerary p j δ j E j S D j p j δ j E j S D j p j δ j E j S D j

AB 80 1.6 50 9.01 80 2 40 7.75 3 0.1 30 18.17
AC 80 2 40 7.75 50 2 25 6.12 2 0.1 20 14.83
AD 60 2 30 6.71 72 3 24 5.66 2 0.1 20 14.83
BC 60 2 30 6.71 40 2 20 5.48 2 0.1 20 14.83
BD 60 2 30 6.71 60 3 20 5.16 6 0.3 20 9.31
CD 80 1.6 50 9.01 80 2 40 7.75 6 0.2 30 13.42
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Table B.3: Request arrival settings for the base problem

Fare Class 3 Fare Class 2 Fare Class 1

Itinerary α β α β α β

1-6 5 6 2 5 2 13

B.1.2 LOW-BEFORE-HIGH ARRIVAL PATTERN

Table B.4: Request arrival settings for the case with low-before-high arrival pattern

Fare Class 3 Fare Class 2 Fare Class 1

Itinerary α β α β α β

1 − 6 13 2 13 13 2 13

B.1.3 INCREASED LOW-FARE DEMAND VARIANCE

Table B.5: Demand settings for the case with increased low-fare demand variance

Fare Class 3 Fare Class 2 Fare Class 1
Itinerary p j δ j E j S D j p j δ j E j S D j p j δ j E j S D j

AB 20 0.4 50 13.23 20 0.5 40 10.95 3 0.1 30 18.17
AC 20 0.5 40 10.95 5 0.2 25 12.25 2 0.1 20 14.83
AD 15 0.5 30 9.49 18 0.75 24 7.48 2 0.1 20 14.83
BC 15 0.5 30 9.49 10 0.5 20 7.75 2 0.1 20 14.83
BD 15 0.5 30 9.49 15 0.75 20 6.83 6 0.3 20 9.31
CD 20 0.4 50 13.23 20 0.5 40 10.95 6 0.2 30 13.42
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B.1.4 SMALLER DIFFERENCES BETWEEN FARES

Table B.6: Fare settings for case with smaller fare spreads

OD Number Origin-Destination Fare Class 3 Fare Class 2 Fare Class 1
1 A-B 75 125 175
2 A-C 130 170 220
3 A-D 200 320 440
4 B-C 100 150 210
5 B-D 160 200 250
6 C-D 80 110 160
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B.1.5 REALISTIC COEFFICIENTS OF VARIATION AND CLOSE FARES

Table B.7: Fare settings for the case with realistic variations and close fares

OD Number Origin-Destination Fare Class 3 Fare Class 2 Fare Class 1
1 A-B 75 125 175
2 A-C 130 170 220
3 A-D 200 320 460
4 B-C 100 150 210
5 B-D 180 210 250
6 C-D 80 110 160

Table B.8: Demand settings for the case with realistic variations and close fares

Fare Class 3 Fare Class 2 Fare Class 1
Itinerary p j δ j E j S D j p j δ j E j S D j p j δ j E j S D j

AB 80 1.6 50 9.01 80 2 40 7.75 3 0.1 30 18.17
AC 80 2 40 7.75 50 2 25 6.12 2 0.1 20 14.83
AD 60 2 30 6.71 72 3 24 5.66 2 0.1 20 14.83
BC 60 2 30 6.71 40 2 20 5.48 2 0.1 20 14.83
BD 60 2 30 6.71 60 3 20 5.16 6 0.3 20 9.31
CD 80 1.6 50 9.01 80 2 40 7.75 6 0.2 30 13.42

Table B.9: Request arrival settings for the case with realistic variations and close fares

Fare Class 3 Fare Class 2 Fare Class 1

Itinerary α β α β α β

1 − 6 2 2 2 2 2 2
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B.2 RESULTS OF THE OPTIMIZATION MODELS

B.2.1 BASE PROBLEM

Table B.10: Optimal allocations of the mathematical models for the base problem

ODF EMVLP (θ) SLP-RM (L)(x1000)
itinerary class DLP EMR S LP 0.001 0.005 60 65 70 75 80

3 41 42 44 44 42 43 44 46 44 44
AB 2 40 40 40 41 38 40 43 41 42 40

1 30 40 40 39 25 32 30 33 36 36
3 0 0 0 1 18 18 7 7 0 0

AC 2 25 18 20 20 18 20 21 20 20 20
1 20 22 20 19 10 14 16 17 20 20
3 0 0 0 0 23 5 7 0 0 0

AD 2 24 21 20 21 18 20 21 22 22 24
1 20 17 16 15 8 8 12 14 16 16
3 30 23 24 25 24 24 24 23 24 23

BC 2 20 19 16 19 18 20 19 20 20 20
1 20 27 28 24 13 19 17 21 24 25
3 1 15 20 20 21 20 20 20 18 12

BD 2 20 16 16 16 15 16 20 16 16 16
1 20 22 20 20 14 17 17 20 20 24
3 45 38 40 39 40 40 40 40 36 38

CD 2 40 36 36 36 35 36 36 36 36 36
1 30 35 32 33 26 38 27 32 36 36
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B.2.2 INCREASED LOW FARE DEMAND VARIANCE

Table B.11: Optimal allocations of the mathematical models for increased low-fare demand
variance case

ODF EMVLP (θ) SLP-RM (L)(x1000)
itinerary class DLP EMR S LP 0.001 0.005 60 65 70 75 80

3 41 41 40 41 41 44 44 42 40 40
AB 2 40 41 40 40 38 38 43 44 40 40

1 30 41 40 38 26 29 35 36 41 41
3 0 0 0 3 26 10 0 4 0 0

AC 2 25 15 16 15 14 16 16 16 15 16
1 20 23 20 19 10 14 20 20 21 24
3 0 0 8 9 18 16 5 1 4 0

AD 2 24 21 20 20 18 20 22 20 20 20
1 20 18 16 15 9 13 16 16 20 20
3 30 22 24 23 24 22 24 23 20 20

BC 2 20 19 16 28 17 18 20 20 20 18
1 20 28 28 25 14 19 24 24 28 28
3 1 17 16 18 21 20 17 19 16 17

BD 2 20 15 16 15 15 15 16 16 14 16
1 20 22 20 20 14 18 20 20 22 22
3 45 35 32 35 41 34 36 35 33 33

CD 2 40 36 36 35 36 36 36 36 36 36
1 30 36 36 33 28 29 32 36 36 36
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B.2.3 SMALLER DIFFERENCES BETWEEN FARES

Table B.12: Optimal allocations of the mathematical models for smaller spread among fares
case

ODF EMVLP (θ) SLP-RM (L)(x1000)
itinerary class DLP EMR S LP 0.001 0.005 60 65 70 75 80

3 41 45 44 44 42 48 45 44 44 44
AB 2 40 41 40 40 38 41 42 44 44 40

1 30 36 32 33 25 23 28 33 36 32
3 0 4 8 9 23 21 11 2 0 8

AC 2 25 20 20 20 19 20 20 21 20 20
1 20 14 12 12 8 4 12 16 16 12
3 0 0 8 6 18 15 6 1 0 8

AD 2 24 22 20 21 19 20 23 24 20 20
1 20 18 16 15 8 8 12 16 20 16
3 30 25 24 25 24 24 25 28 24 24

BC 2 20 20 20 19 18 18 20 20 20 20
1 20 22 20 20 13 17 17 20 25 20
3 1 21 20 21 22 22 22 20 20 20

BD 2 20 17 16 16 15 16 16 16 16 16
1 20 17 16 16 13 15 16 16 19 16
3 45 38 40 39 42 40 40 40 40 40

CD 2 40 37 36 37 37 36 36 36 36 36
1 30 30 28 29 26 28 28 31 29 28
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B.2.4 REALISTIC VARIATIONS AND CLOSE FARES

Table B.13: Optimal allocations of the mathematical models for realistic variations and close
fares case

ODF EMVLP (θ) SLP-RM (L)(x1000)
itinerary class DLP EMR S LP 0.001 0.005 60 65 70 75 80

3 50 43 40 42 43 44 44 44 40 40
AB 2 40 42 40 41 38 39 40 40 40 40

1 30 34 32 33 30 32 32 36 32 32
3 0 4 16 12 25 16 12 1 16 16

AC 2 25 16 16 15 14 16 16 16 16 16
1 20 18 16 17 16 16 16 20 16 16
3 11 20 20 20 21 20 20 20 20 20

AD 2 24 22 20 21 18 19 20 24 20 20
1 20 21 20 19 15 18 19 20 20 20
3 30 22 24 22 22 23 20 20 24 24

BC 2 20 19 16 18 17 16 20 20 16 16
1 20 22 20 21 18 20 20 24 20 20
3 10 21 20 21 22 24 20 20 20 20

BD 2 20 16 16 16 15 16 16 16 16 16
1 20 19 16 18 17 16 20 20 16 16
3 45 35 40 38 44 43 36 33 40 40

CD 2 40 35 36 36 38 32 36 35 36 36
1 30 31 32 31 30 32 32 32 32 32
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APPENDIX C

MATLAB PROGRAMMING CODES

In this section MATLAB Programming codes are given. The brief definitions of ten different

Matlab .m files are given below:

Mainpart.m: Main part for optimization models and used for test purposes.

Input.m: Initial data for legs, seats and demands.

Demandpart.m: This .m file is used for calculating probabilities of demands for all predeter-

mined integer values.

SLP-RM.m: File for SLP-RM procedure.

PMP-RC.m: File for PMP-RC model.

RRS.m: File for RRS procedure.

Partitioned.m: Simulation model for partitioned control policy.

Nested.m: Simulation model for nested control policy.

BidPrice.m: Simulation model for bid price control policy.

Bayesian.m: Simulation model for Bayesian update.
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Mainpart.m

% This .m file is the mainpart for optimization models and used for 

test

% purposes. By setting test and den values and changing parameters 

of the

% models, performances of the models are tested. 

 

% Used for calculating CPU time

 

for test=1:1 

    

    for den=1:1      

    

    Input                   % Go to SLP_input .m file and get the 

input data

    Demandpart              % Go to SLP_demand .m file and solve the 

problem 

% Get objective function values 

% Get bid prices

% Get seat allocations

    

lower than 

                            % the target level(used only for 

proposed models)

 

    end

 

% Write objective function 

values to a 3-d matrix  

% Write bid prices to a 3-d 

matrix

% Write seat allocations to a 3-

d matrix  

    

matrix(used only 

                                    % for proposed models)   

 

end

 

% Used for calculating CPU time

 

clear test den      % clear variables test and den 
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Input.m

% This .m file is used for describing initial values for legs, seats 

and demands.  

 

%*********NETWORK STRUCTURE DATA************

 

% Upper bound of x variables

% Capacity of the flights

% Number of ODFs

% Number of legs

% Number of fare classes

% Number of demand segments

...

% ODFs in legs

 

 

%************DEMAND AND FARE DATA*******************

 

% Big number (used only for proposed models)

% Target level (used only for proposed models)

% Limit for probability being lower than L (used 

only for proposed models)  

% Number of demand realizations (used only for 

proposed models)

% Theta value for EMVLP model

 

% Used for bayesian 

update purposes

 

%***************Base Problem********************

FF=[75 125 250 130 170 400 200 320 460 100 150 330 160 200 420 80 

% Price of tickets

...

% Demand parameters

% Beta distribution parameters

% 

% 

% %**********Changed Arrival Process************

% FF=[75 125 250 130 170 400 200 320 460 100 150 330 160 200 420 80 

% Demand parameters

% Beta distribution parameters
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% 

% 

%*******Increased Low-Fare Demand Variance******

% FF=[75 125 250 130 170 400 200 320 460 100 150 330 160 200 420 80 

% Demand parameters

% Beta distribution parameters

% 

% 

% %*********** Changed Fares 1******************

% FF=[75 125 175 130 170 220 200 320 440 100 150 210 160 200 250 80 

% Demand parameters

% Beta distribution parameters

% 

% 

% %*********** Changed Fares 2******************

% FF=[75 125 175 130 170 220 230 340 460 100 150 210 180 210 250 80 

% Demand parameters

% Beta distribution parameters

 

 

for i=1:D

% Calculate expected 

demand

end

clear i
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Demandpart.m

% This .m file is used for calculating probabilities of demands for 

all predetermined integer values.

 

 

%******************Calculate Pr(Dj>=i) and Pr(Dj<i)

 

 

for i=1:D

    ProbDist(:,i)=1-nbincdf(pdfno,DDODF(i,1),(DDODF(i,2)+beT(1,i))/

end

 

 

for i=1:K

% Group demands

end

 

 

%************************Calculate Pr(Dj=i)

 

for i=1:D

    ProbDistpdf(:,i)=nbinpdf(pdfno,DDODF(i,1),DDODF(i,2)/(DDODF(i,2)

    ProbDistpdf(C,i)=1-nbincdf(C-1,DDODF(i,1),DDODF(i,2)/(DDODF(i,2)

end

 

clear pdfno i ProbDist

SLPRM          % Go to mathematical model
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SLPRM.m

% In this .m file, first of all  average of v(a) values is minimized 

and 

% then the results of this model are used to maximize expected 

revenue.

 

%%%%%%%%%%%%%%FIRST MODEL%%%%%%%%%%%%%%%

 

% VARIABLES

 

xodf=sdpvar(K,D,'full'

 

 

%CONSTRAINTS

 

for l=1:NOD  

    

% b values for 0-1 constraints

 

    for rn=1:D

        RDM(l,rn) = random('nbin',DDODF(rn,1),DDODF(rn,2)/(DDODF(rn,

    end

 

        for j=1:D

            for i=1:K

                if RDMj>(i-1)*C/K

                else

                    break

                end

            end

        end

 

 

 

    

    clear MA

            

end
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SLPRM.m

 

clear l rn RDMj j i

 

% Capacity constraint

 

for i=1:NL

% Right hand side of capacity 

constraint

end

 

clear i

 

% Constraint set

 

F=set(cap <= bcap)+set(bc1 <= bin1)+set(bc2 <= bin2)+set(0 <= xodf 

 

% OBJECTIVE FUNCTION

 

 

% SOLVE MODEL

 

solvesdp(F,pav,sdpsettings('solver','glpk'

 

% RESULTS

 

 

for l=1:NOD

    

   if double(v(l,1))>0

   else

   end

   

end

clear l

 

 

%%%%%%%%%%%%%SECOND MODEL%%%%%%%%%%%%%%%%%%

 

% Clear constraints and variables

 

clear F xodf cap bc1 bc2 v
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% VARIABLES

 

xodf=sdpvar(K,D,'full'

 

%CONSTRAINTS

 

for l=1:NOD

    

    

    

    clear MA

       

end

clear l

 

% Capacity constraint

 

% Constraint set

    

F=set(cap <= bcap)+set(bc1 <= bin1)+set(bc2 <= bin2)+set(0 <= xodf 

 

% OBJECTIVE FUNCTION

 

 

% SOLVE MODEL

 

solvesdp(F,obj,sdpsettings('solver','glpk'

 

% RESULTS 

 

% Bid price

 

% Round results

 

for i=1:D

    for j=1:K

    end

end

clear i j

 

% Seat 
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SLPRM.m

allocation

 

% Revenue

 

clear bc1 bc2 bcap bin1 bin2 cap dxodf obj pav vi xodf F MA MAT 

ProbDist ProbDistcdf ProbDistpdf
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PMPRC.m

% This .m file minimize SLP problem with an additional constraint 

sum(pa.va)<rho.

% Instead of using pa values, average of va's are used in the model.

 

% VARIABLES

 

xodf=sdpvar(K,D,'full'

 

 

%CONSTRAINTS

 

for l=1:NOD

 

% b values for 0-1 constraints

 

    for rn=1:D

        RDM(l,rn) = random('nbin',DDODF(rn,1),DDODF(rn,2)/(DDODF(rn,

    end

 

        for j=1:D

            for i=1:K

                if RDMj>(i-1)*C/K

                else

                    break

                end

            end

        end

 

 

 

    

    clear MA

            

end

 

clear l rn RDMj j i
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% Capacity constraint

 

for i=1:NL

% Right hand side of 

capacity constraints

end

clear i

 

% Constraint for Pr(R<L)

 

%Constraint Set

 

F=set(cap <= bcap)+set(bc1 <= bin1)+set(bc2 <= bin2)+set(0 <= xodf 

 

% OBJECTIVE FUNCTION

 

 

% SOLVE MODEL

 

solvesdp(F,obj,sdpsettings('solver','glpk'

 

% RESULTS

 

% Revenue

 

% Pr(R<L)

 

% Seat allocation

 

% Integer prograaming, no bid 

price

 

clear bc1 bc2 bcap beT bin1 bin2 cap obj pav v xodf MAT MA 

ProbDistpdf ProbDistcdf ProbDist
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RRS.m

% RRS Procedure

 

     

for s=1:300                             % Number of realized demands

    

    % VARIABLES

    

    x_rlp=sdpvar(1,D,'full'

    

    % CONSTRAINTS

    

% RHS of the capacity constraint

    clear i

    

    for rn=1:D

        RDM_rlp(1,rn) = random('nbin',DDODF(rn,1),(DDODF(rn,2)+beT

% Generate random demand

    end

    clear rn

    

% Capacity constraint

    

    % Constraint Set

    

 

    % OBJECTIVE FUNCTION

    

      

    % SOLVE MODEL

 

    solvesdp(F,obj_rlp(s,1),sdpsettings( 'solver','glpk'

 

    % OUTPUT
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RRS.m

 

    if

        for i=1:NL

        end

    else

        for i=1:NL

        end

    end

    

    if

        for i=1:NL

        end

    else

        for i=1:NL

        end

    end

    

    if

        for i=1:NL

        end

    else

        for i=1:NL

        end

    end

    

    if

        for i=1:NL
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RRS.m

        end

    else

        for i=1:NL

        end

    end

    

clear b_rlp cap_rlp x_rlp RDM_rlp obj_rlp F i

    

end
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Partitioned.m

% Simulation model for partitioned booking limits

 

 

    %%%%%%%%%%%%%%%INPUT PART%%%%%%%%%%%%%%%

    

    %----Static input part

    

    Input           % Get input data from optimization part

    

% Number of total periods (3600 periods=24 

hours*150 days)

    

% Duplicate demand parameters

    

% Get booking limits from allocations (for DLP, 

EMR, SLP and EMVLP models)

    

% Initial Capacity

    

    %----Dynamic input part

    

% Total number of models will be solved in the 

simulation

    

% Total number of proposed models will be solved 

in the simulations

    

% 3 if bayesian update is used, 0 otherwise

    

% Number of updates for one replication

    

% Replication number

     

    %%%%%%%%%%%%BOOKING LIMITS%%%%%%%%%%%%%%%%%%    

    

    if Update==3    % Get booking limits of proposed models

        clear BL

    else

        for i=1:PM

        end

    clear i

    end     

            

   %%%GENERATE ARRIVAL RATE USING BETA DISTRIBUTION%%%
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Partitioned.m

    

    for i=1:3

        for j=1:notp

            arr_rate(j,i)=betapdf(j/notp,Inbeta(i,1),Inbeta(i,2))

        end

    end

    clear i j

    

    %%%%%%%%%%%%%REPLICATIONS%%%%%%%%%%%%%%

               

for rep=1:trep          % Replication number

 

    rep                 % Show replication number on screen

    

    if Update==3

% Intialize update number

        Mainpart        % Go to Mainpart and solve the model

% Get booking limit

    end

     

    %%%%%GENERATE INTERARRIVAL TIMES%%%%%%%%%

    

    % Generate random gamma expected demand for all ODFs

    

    for i=1:6

        for j=1:3

            Aodf(i,j)=gamrnd(DDODF((i-1)*3+j,1),1/DDODF((i-1)*3+j,

        end

    end

    clear i j

 

    % Generate Lambda(t)=Beta(t).Aodf

 

    for k=1:notp

        for i=1:6

            for j=1:3

            end

        end

    end

    clear i j k

 

    % Generate interarrival times with interpolation
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Partitioned.m

    for k=1:18

        for cnt=1:1000

            if

                break

            end

            for i=1:notp

                if slam>y

                    inter_arrival(m,k)=(i-1)+(y-slam+arr_nhpp(notp-

                    break

                end

            end

        end

    end

    clear k y m slam

 

% Size of the inter_arrival 

matrix

% Number of cells in 

inter_arrival matrix

   

    % Set null cells to a big number

    

    for k=1:18

        for n=1:sizeint(1,1)

            if inter_arrival(n,k)==0

            end

        end

    end

    clear k n 

     

    % Inıtialize counters

 

    for i=1:TM

% Total 

revenue

% 

Capacity

% 
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Partitioned.m

Accepted Requests

% 

Rejected Requests

% Total 

number of requests

    end

    clear i

    

    %%%%%%%%%%SIMULATION PART%%%%%%%%%%%

       

% Copy inter_arrival matrix        

                

    for r=1:rsize

        

        %----Find the type and time of the arrival

 

% Find minimum number (first 

arrival time) in the matrix

 

        if m_minint>notp

            break                   % If this value is greater than 

the departure time of the flight, stop.

        end

 

        for k=1:18

            if minint(1,k)==m_minint

                for n=1:sizeint(1,1)

                    if intarr(n,k)==m_minint

% Find the ODF of 

the arrival and set cell to 10000

                        break

                        break

                    end

                end

            end

        end

        clear k n

        

        %----Go to bayesian update

            

        if Update==3

        end
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Partitioned.m

        %----Decision making

 

        for ms=1:TM 

            if BL(ms,atype)-AR(ms,atype)>0            % If total 

accepted is lower than booking limit and the capacity is available 

then accept

                if

                else

                end

            end

 

        end

        clear ms

        

% Count requests

       

    end

 

    for ms=1:TM

% Load 

factor

% Revenue

    end 

    clear ms

    

    clear inter_arrival

        

end

 

% Average of load factor 

% Average of revenue
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Nested.m

% Simulation model for nested booking limits

 

 

    %%%%%%%INPUT PART%%%%%%%%%

    

    %----Static input part

    

    Input           % Get input data from optimization part

    

% Number of total periods (3600 periods=24 

hours*150 days)

    

% Duplicate demand parameters

    

% Get booking limits from allocations (for DLP, 

EMR, SLP and EMVLP models)

    

% Initial Capacity

    

    %----Dynamic input part

    

% Total number of models will be solved in the 

simulation

    

% Total number of proposed models will be solved 

in the simulation

    

% 2 if bayesian update is used, 0 otherwise

    

% Number of updates for one replication

    

% Replication number

       

    %%%%%%%%BOOKING LIMITS%%%%%%%%%%

    

    if Update==2    % Get booking limits of proposed models

        clear BL

    else

        for i=1:PM

        end

    clear i

    end     

            

   %%%GENERATE ARRIVAL RATE USING BETA DISTRIBUTION%%%
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Nested.m

    

    for i=1:3

        for j=1:notp

            arr_rate(j,i)=betapdf(j/notp,Inbeta(i,1),Inbeta(i,2))

        end

    end

    clear i j

    

    %%%%%%%%%%%%%REPLICATIONS%%%%%%%%%%%%

    

for rep=1:trep          % Replication number

 

    rep                 % Show replication number on screen

    

    if Update==2

% Intialize update number

        Mainpart        % Go to Mainpart and solve the model

% Get booking limit

    end

     

    %%%%%%%%%GENERATE INTERARRIVAL TIMES%%%%%%%%%%%

    

    % Generate random gamma expected demand for all ODFs

    

    for i=1:6

        for j=1:3

            Aodf(i,j)=gamrnd(DDODF((i-1)*3+j,1),1/DDODF((i-1)*3+j,

        end

    end

    clear i j

 

    % Generate Lambda(t)=Beta(t).Aodf

 

    for k=1:notp

        for i=1:6

            for j=1:3

            end

        end

    end

    clear i j k

 

    % Generate interarrival times with interpolation
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Nested.m

    for k=1:18

        for cnt=1:1000

            if

                break

            end

            for i=1:notp

                if slam>y

                    inter_arrival(m,k)=(i-1)+(y-slam+arr_nhpp(notp-

                    break

                end

            end

        end

    end

    clear k y m slam

 

% Size of the inter_arrival 

matrix

% Number of cells in 

inter_arrival matrix

   

    % Set null cells to a big number

    

    for k=1:18

        for n=1:sizeint(1,1)

            if inter_arrival(n,k)==0

            end

        end

    end

    clear k n 

     

    % Inıtialize counters

 

    for i=1:TM

% Total 

revenue

% 

Capacity

% 
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Nested.m

Accepted Requests

% 

Rejected Requests

% Total 

number of requests

    end

    clear i

    

    %%%%%%%%%%%%SIMULATION PART%%%%%%%%%%%%%%%%

    

% Copy inter_arrival matrix        

                

    for r=1:rsize

        

        %----Find the type and time of the arrival

        

% Find minimum number (first arrival 

time) in the matrix

 

        if m_minint>notp        % If this value is greater than the 

departure time of the flight, stop.

            break

        end

 

        for k=1:18

            if minint(1,k)==m_minint

                for n=1:sizeint(1,1)

                    if intarr(n,k)==m_minint

% Find the ODF of the 

arrival and set cell to 10000

                        break

                        break

                    end

                end

            end

        end

        clear k n

        

        %----Go to bayesian update

        

        if Update==2

        end
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        %----Nesting and decision making

 

        for ms=1:TM 

            % Nesting Part

            for b=1:D

                if cb == atype

                    break

                else

                end

            end

 

            for j=1:NL

                if Leg(j,atype)==1

                else

                end

            end

 

            if Bmin>0     % If booking limit is greater than 0, 

accept

            else

            end

 

        end

        clear ms b cb j B Bmin

        

% Count requests

 

    end

    

    for ms=1:TM

% Load 

factor

% Revenue

    end

    clear ms

    

    clear inter_arrival
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end

 

% Average of load factor 

% Average of revenue

 

 

                155



BidPrice.m

% Simulation model with bid price policy and bayesian update

 

 

    %%%%%%INPUT PART%%%%%%%%%

    

    %----Static input part

    

    Input           % Get input data from optimization part

    

% Number of total periods (3600 periods=24 

hours*150 days)

    

% Duplicate demand parameters

    

% Get bid prices from allocations (for DLP, EMR, 

SLP and EMVLP models)

    

% Initial Capacity

    

    %----Dynamic input part

    

% Total number of models will be solved in the 

simulation

    

% Total number of proposed models will be solved 

in the simulations

    

% 1 if bayesian update is used, 0 otherwise

    

% Number of updates for one replication

    

% Replication number

     

    %%%%%%%BID PRICES%%%%%%%%%%%

    

    if Update==1    % Get bid prices of proposed models

        clear Bid

    else

        for i=1:PM

        end

    clear i

    end     

            

   %%%GENERATE ARRIVAL RATE USING BETA DISTRIBUTION%%%
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    for i=1:3

        for j=1:notp

            arr_rate(j,i)=betapdf(j/notp,Inbeta(i,1),Inbeta(i,2))

        end

    end

    clear i j

    

    %%%%%%%%%%%%%%REPLICATIONS%%%%%%%%%%%%

    

    if Update==1

        Mainpart        % Go to Mainpart and solve the model

    end

    

for rep=1:trep          % Replication number        

 

    rep                 % Show replication number on screen

    

    if Update==1

% Intialize update number

        Mainpart        % Go to Mainpart and solve the model

% Get bid price

    end

         

    %%%%%%%%GENERATE INTERARRIVAL TIMES%%%%%%%%%%%

        

    % Generate random gamma expected demand for all ODFs

    

    for i=1:6

        for j=1:3

            Aodf(i,j)=gamrnd(DDODF((i-1)*3+j,1),1/DDODF((i-1)*3+j,

        end

    end

    clear i j

 

    % Generate Lambda(t)=Beta(t).Aodf

 

    for k=1:notp

        for i=1:6

            for j=1:3

            end

        end

    end
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    clear i j k

 

    % Generate interarrival times with interpolation

    

    for k=1:18

        for cnt=1:1000

            if

                break

            end

            for i=1:notp

                if slam>y

                    inter_arrival(m,k)=(i-1)+(y-slam+arr_nhpp(notp-

                    break

                end

            end

        end

    end

    clear k y m slam

 

% Size of the inter_arrival 

matrix

% Number of cells in 

inter_arrival matrix

   

    % Set null cells to a big number

    

    for k=1:18

        for n=1:sizeint(1,1)

            if inter_arrival(n,k)==0

            end

        end

    end

    clear k n 

     

    % Inıtialize counters

 

    for i=1:TM
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% Total 

revenue

% 

Capacity

% 

Accepted Requests

% 

Rejected Requests

% Total 

number of requests

    end

    clear i    

    

    %%%%%%%%%%SIMULATION PART%%%%%%%%%%%%%

    

% Copy inter_arrival matrix  

    

    for r=1:rsize

        

        %----Find the type and time of the arrival

        

% Find minimum number (first 

arrival time) in the matrix

 

 

        if min(minint)>notp

            break                   % If this value is greater than 

the departure time of the flight, stop.

        end

 

 

        for k=1:18

            if minint(1,k)==m_minint

                for n=1:sizeint(1,1)

                    if intarr(n,k)==m_minint

% Find the ODF of 

the arrival and set cell to 10000

                        break

                        break

                    end

                end

            end

        end

        clear k n
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        %----Go to bayesian update

        

        if Update==1

        end

        

        %----Decision making

 

        for ms=1:TM

 

            if FF(atype)>=Leg(:,atype)'*Bid(ms,:)'      % If bid 

price is lower than the fare and the capacity is available then 

accept

                if

                else

                end

            end

        end

        clear ms

        

% Count requests        

    end

    

    for ms=1:TM

% Load factor

% Revenue

    end

    clear ms

    

    clear inter_arrival

    

end

 

% Average of load factor 

% Average of revenue          
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% Bayesian update

 

if m_minint>((notp*up)/upn)

        

        % Calculate percentage of the arrivals to come in the 

remainig time

 

        for i=1:6

            for j=1:3

                for k=1:(notp*up/upn)

                    beT(1,(i-1)*3+j)=beT(1,(i-1)*3+j)+arr_rate

                end

            end

        end

        

        % Update demand data and solve the model again

 

        for i=1:6

            for j=1:3

                 Expdem(1,(i-1)*3+j)=(IND((i-1)*3+j,1)+acount(1,(i-

                 DDODF((i-1)*3+j,1)=IND((i-1)*3+j,1)+acount(1,(i-1)

            end

        end

        

% Update target level

% Update capacity

% Solve model

% Get bid price

% Get booking limit

% Initialize 

accepted requests

% Increase update number

end
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