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ABSTRACT 

 

USE OF HELICAL WIRE CORE TRUSS MEMBERS IN SPACE STRUCTURES  
 
 

 

Işıldak, Murat 

M.S., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Uğur Polat 

 

 

May 2009, 74 pages 

 

In an effort to achieve lighter and more economical space structures, a new patented 

steel composite member has been suggested and used in the construction of some 

steel roof structures. This special element has a sandwich construction composed of 

some strips of steel plates placed longitudinally along a helical wire core. The 

function of the helical core is to transfer the shear between the flange plates and 

increase the sectional inertia of the resulting composite member by keeping the 

flange plates at a desired distance from each other. Because of the lack of research, 

design engineers usually treat such elements as a solid member as if it has a full 

shear transfer between the flanges. However, a detailed analysis shows that this is not 

a valid assumption and leads to very unsafe results. In this context, the purpose of 

this study is to investigate the behavior of such members under axial compression 

and determine their effective sectional flexural rigidity by taking into account the 

shear deformations. This study applies an analytical investigation to a specific form 

of such elements with four flange plates placed symmetrically around a helical wire 
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core. Five independent parameters of such a member are selected for this purpose. 

These are the spiral core and core wire diameters, the pitch of the spiral core, and the 

flange plate dimensions. Elements with varying combinations of the selected 

parameters are first analyzed in detail by finite element method, and some design 

charts are generated for the determination of the effective sectional properties to be 

used in the structural analysis and the buckling loads. For this purpose, an alternative 

closed-form approximate analytical solution is also suggested.  

Keywords: Sandwich Beam, Helical Wire Core, Composite Truss Member, Finite 

Elements, Effective Sectional Inertia 
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ÖZ 

 

SPİRAL KAFES GÖVDELİ ÇUBUK ELEMANLARIN UZAY YAPISAL 
SİSTEMLERDE KULLANIMI  

 

 

Işıldak, Murat 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Uğur Polat 

 

 

Mayıs 2009, 74 sayfa 

 

Son yıllarda daha hafif ve ekonomik çelik uzay yapılar elde etmek üzere tasarımda 

patentli ve sandviç bir yapıya sahip çelik çubuk elemanların kullanılması 

önerilmektedir. Özellikle çelik çatı tasarımında kullanılan bu özel elemanlar temel 

olarak spiral bir yay formundaki tel kafes gövde boyunca yerleştirilmiş çelik plaka 

şeritlerden oluşmaktadır. Bu kompozit yapıda spiral kafes gövde, bir yandan flanş 

plakaları arasındaki kesme transferini sağlarken aynı zamanda bu plakalar arasındaki 

mesafeyi belirli bir düzeyde tutarak kesitin atalet momentini artırmaktadır. Bu tip 

sandviç yapıya sahip elemanların davranışı yakından incelenmemiş olduğundan 

tasarımı yapan mühendisler genellikle elemanın kesme rijitliği açısından yeterince 

güçlü olduğu ve dolayısı ile kesme deformasyonunun küçük ve plakalar arasındaki 

kesme transferinin mükemmel olduğu varsayımından hareket etmektedirler. Ancak 

bu yaklaşımın geçersiz ve son derecede hatalı olduğu görülmekte ve eleman 

rijitliğinin analizlere olduğunun çok üzerinde yansıtılmasına yol açarak yapısal 

güvenlik açısından olumsuz sonuçlar verdiği görülmektedir. Çalışmada bu tür 

elemanlardan spiral kafes gövde çevresine simetrik olarak yerleştirilmiş dört adet 
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çelik şerit plakadan oluşan ve adeta kutu kesitli bir çubuk formundaki tipi analitik 

olarak incelenmiştir. Bu amaçla bu tip elemanların yapısal özelliklerini belirleyen beş 

temel parametre seçilmiştir. Bunlar spiral gövde ve spiral yay çapları, spiral adımı ve 

flanş plaka boyutları olarak belirlenmiştir. Bu beş parametrenin değişik 

kombinasyonlarından oluşan çubuklar önce sonlu elemanlar yöntemi kullanılarak 

ayrıntılı olarak incelenmiş ve yapısal analiz ve tasarımda kullanılmak üzere 

elemanların etkin kesit ataletleri ile burkulma dayanımlarını belirlemek üzere  

abaklar oluşturulmuştur. Bu amaçla alternatif bir yaklaşık analitik yöntem de 

önerilmektedir.  

Anahtar Kelimeler: Spiral Sandviç Kiriş, Spiral Kafes Gövde, Kompozit Çubuk 

Eleman, Sonlu Elemanlar, Etkin Kesit Ataleti 
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 General 

A growing interest in space frame structures has been witnessed worldwide over the 

last half century. The search for new structural forms to accommodate large 

unobstructed areas has always been the main objective of architects and engineers. 

With the advent of new building techniques and construction materials, space frames 

frequently provide the right answer and satisfy the requirements for lightness, 

economy, and speedy construction. New and imaginative applications of space 

frames are being demonstrated in the total range of building types, such as sports 

arenas, exhibition pavilions, assembly halls, transportation terminals, airplane 

hangars, workshops, and warehouses.  

Space frames are highly statically indeterminate and their analysis leads to extremely 

tedious computations if carried out by conventional methods. The difficulty of the 

complicated analysis of such systems contributed to their limited use. However, the 

introduction of electronic computers has radically changed the whole approach to the 

analysis of space frames. By using computer programs, it is possible to analyze very 

complex space structures with great accuracy and less time involved. 

The structural pattern of large span steel space structures is built up from basic 

modules that are repeated throughout the structure The economical importance of the 

system is that the construction is so simple that simple prefabricated units are mass-

produced, easily transported, and erected when required.  
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1.2 The Use of Composite Sections and Sandwich Beams 

Historically, there have been plenty of studies to get rid of the less effective sectional 

parts such as the web of I shaped sections. The composite section approach is a result 

of this idea. In the section, the less effective sectional parts are made of weaker and 

consequently cheaper material. This reduces the cost and the weight of the section.  

Sandwich beams, constructed with two stiff, strong face sheets and a lightweight, 

relatively flexible core, are widely used in various industrial applications demanding 

a high bending stiffness and strength per unit weight. The relatively large separation 

introduced by the core and the relatively high axial stiffness of the face sheets aid in 

effectively increasing the thickness of the sandwich beam, leading to a large bending 

stiffness per unit weight. Under axial compression, a sandwich beam has a very 

different failure mechanism than a corresponding monolithic structure. Failure of a 

sandwich beam under end compression is by a number of competing mechanisms, 

two of which are the global and local buckling instabilities. 

In Euler-Bernoulli beam theory, it is assumed that plane cross sections normal to the 

axis of the beam remain plane and normal to the axis after deformation. This 

assumption implies that all transverse shear deformations are zero. However, the 

effect of transverse shear deformation on bending cannot be neglected when dealing 

with sandwich beams, having a relatively flexible core due to that the transverse 

shear deformations become relatively significant. 

1.3 Helical Wire Core Truss Member 

The idea in the construction of a helical wire core truss members is very similar to 

the motivation in the design of sandwich beams. In principle, the helical wire core 

truss member works as an I-shaped beam. However, instead of the web, the shear 

between the flanges is transferred by a helical wire core (Figure 1 and Figure 2). The 

main objective is to obtain an alternative element to be used in space frame structures 

demanding a high axial and bending stiffness and strength per unit weight.  
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Figure 1 The comparison of helical wire truss member and I beam 

 

Figure 2 3D view of helical wire truss member 
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Space frames as a structural form are normally used for large span structures subject 

to transverse loading. In order to achieve both the optimum use of the material and 

economy in the design and the efficiency of the resulting load bearing system, they 

are usually constructed by proper arrangement of axial load members in the form of 

space trusses. It is also customary to use members with solid sections and more 

specifically tubular sections as truss elements. Helical wire core truss members may 

be used in such space frame structures as an alternative to solid and tubular members. 

For those elements which are subjected to tensile forces, the capacity is controlled by 

the total yield capacity of the flanges. The shape and size of the helical wire core has 

very limited and almost negligible contribution on the axial load capacity. However, 

when they are subjected to compressive forces, the transverse shear deformation of 

the helical wire core has a significant influence on the element capacity as it controls 

the element lateral stability. 

Another advantage of these members is that they can be formed very easily. This is 

especially helpful when they are used in curved forms as in the case of roof 

structures having the shape of a barrel vault (see Figure 3). However, the behavior of 

curved helical wire core truss members is out of the scope of this study. 

 

Figure 3 Helical wire core truss member used in roof construction. 



 5

1.4 Object and Scope of the Study 

The object of this study is to investigate in detail the behavior of helical wire core 

truss members under compressive load. The members are composed of four 

longitudinal steel flange plates placed around a helical wire core. This sandwich 

construction of the element has a pronounced effect on its buckling behavior since 

the wire core is relatively flexible compared to its flange plates and it does not 

maintain a full shear transfer between the flanges. The level of shear transfer is a 

function of the relative flexibility of the helical wire core. The shear lag introduced 

by its deformation under transverse shear leads to a reduction in the flexural stiffness 

of the member. Therefore, the effective sectional inertia of the member is closely 

related to the helical wire core structure as well as the flange plate dimensions.  

There are basically five parameters defining a specific structure of a helical wire core 

truss member. These are the core diameter (φ), the wire diameter (dw), the pitch (S) 

of the wire core, and the width (bf) and the thickness (tf) of the flange plates. In order 

to discover the behavior of helical wire core truss members of every possible size 

and structure, some practical ranges are prescribed for these parameters and members 

with different combinations of these parameters are analyzed in detail by the finite 

element method. The buckling loads are initially calculated for 1000 mm long 

specimens. The reason is that for members having its basic parameters in the selected 

practical range, the compressive load capacity of shorter members is normally 

controlled by the yield capacity of the flanges. The results are presented in a 

graphical form. These graphs can be used for design purposes. The sectional 

transverse shear rigidity of a given member can be obtained from these graphs, and 

using this transverse shear rigidity, the buckling load of longer members with the 

same structure can easily be calculated. An approximate procedure is also suggested 

for the calculation of the sectional transverse shear rigidity of a given member 

without using these graphs and the results are compared with those obtained from 

detailed finite element analyses. 
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The scope of the study is limited to the behavior of straight helical wire core truss 

members under compressive loads only. The behavior of curved members and 

members which are subjected to transverse loading are out of the scope of this study.  
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 

Historically the idea of using two plates separated by a distance is first discussed by 

Duleau, in 1820 [1], and later by Fairbairn [2]. But it was not used till 1930. In the 

World War II, sandwich laminates were constructed for the first time with a balsa 

core for The Mosquito aircraft. This was because of the shortage of other materials 

and the need of increasing the structural efficiency of the material. Towards the end 

of World War II, in the late 1940’s, some of the theoretical works on sandwich 

panels were published [3].  

The development of core materials has continued from 1940’s through today to 

reduce the weight. The first material used was Balsa which is still in use where 

weight is not so critical. From 1940’s to 1950’s the honeycomb core material were 

developed for the aerospace industry. Honeycomb cores currently offer the greatest 

shear strength and stiffness to weight ratios, but require care to get the adequate 

bonding to the faces. However, its high cost has restricted the application of this 

material in aerospace industry. 

The theoretical research has generally preceded the practical application of sandwich 

constructions from 1940’s right through to modern times. The classical solutions for 

sandwich beams and plates were made by Plantema [4]. As the core of some 

sandwich beams is typically made of a relatively flexible material, the deformation of 

the beam causes significant shear strains between panels. Thus, unlike the commonly 

used homogenous beams with common geometries, shear deformation of the core 

material must be taken into account in the analysis for sandwich beams to achieve 
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realistic results. Several beam solutions including shear deformation effects are 

reported in the literature.  

Ettouney and Schmidt [5] solved the plane stress elasticity equations and developed a 

finite element solution for deep beams, including shear deformation effects. They 

solved two types of deep beams; one with rectangular cross-section and one with 

arbitrary cross-section and derived the element stiffness matrix by applying the 

virtual displacements to the system. They compared the solution with the 

conventional engineering theory of beam solutions for simple structures and found 

that the conventional solution underestimates the calculated displacement by up to 

23% in cases with beam aspect ratios less than 2.25. 

By using well known Timoshenko beam formulation, simpler shear deformation 

formulations were used. Mucichescu [6] used a displacement formulation and 

developed a Timoshenko beam element, including shear deformation effects. His 

solution starts with five degrees of freedom per element. As a fifth degree of 

freedom, he included the shear deformation with an assumption of any cross section, 

which is initially plane, and remains plane after the beam deformation [7]. By using 

static condensation, he obtained a four degree of freedom beam element. Starting 

with six degrees of freedom, and performing static condensation, Mucichescu [6] 

reported that the stiffness matrix obtained is identical to that based on a five degree 

of freedom solution. 

The main idea of these transformations was to predict the behavior of the structure 

faster and easier. There is a continuing research on the development of elements that 

combine the accuracy of higher order elements with the simple nodal configuration 

of lower order elements. An effective method in this context has been introduced by 

Tessler and Dong [8] for Timoshenko beams [9] using lower order shear angles in a 

base element, they derived a group of constrained elements with fever nodes. In this 

methodology, displacements and rotations were expressed by polynomials and were 

later called "anisoparametric interpolation" by Tessler and Hughes [10]. The 

anisoparametric approach is physically applicable to bending type elements. 

However, the decrease in the node number of a model makes it necessary to have a 
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deflection-matching analysis and improve the stiffness of the element. Tessler and 

Hughes [11] found a new shear correction factor that incorporates both the classical 

shear correction, and the element properties are determined. 

Oral [12] developed a Timoshenko beam using a hybrid stress finite element 

formulation, which gives accurate displacements and bending moments throughout 

the beam without any finite element shear correction. The element model provided a 

powerful tool in the finite element formulations for bending problems.  

Using Hamilton’s principle, a two node Timoshenko beam was derived by Friedman 

and Kosmatka [13]. Hamilton principle is a generalization of the principle of virtual 

displacements into dynamic systems-. Although their formulation is based on the 

exact shape functions for a static solution, it was successfully adopted in solving 

dynamic problems. The obtained stiffness matrix is very similar with the one derived 

by Mucichescu [6]; however there is a single exception; shear shape factor was not 

considered in Mucichescu’s [6] formulation. This was not a problem for short thick 

beams, but for long slender beams the result was overly stiff. This increase in 

stiffness is also known as shear locking.  

Later on, Kosmatka [14] added the effect of axial force into the formulation through 

the introduction of a geometric stiffness matrix. With numerical results presented he 

has shown  that the buckling load and the natural frequencies of axially loaded 

isotropic and composite beams are accurately predicted despite the approximations in 

the formulation.   

Aydogan [15] developed a stiffness matrix for a beam element with shear effect on 

an elastic foundation using the differential-equation approach for plane-frame 

analysis. He included the shear effect by a second-order term of the derivative of 

beam element. This was an exact finite element formulation for a Timoshenko beam 

on an elastic foundation.  

Wang [16] introduced six set of relationships to solve the deflections and stress 

resultants of single span Timoshenko beams with general loading and boundary 
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conditions, in terms of corresponding Euler–Bernoulli beam solutions. He 

established  the relationships between deflection gradient, stress resultants and 

deflection of Timoshenko and Euler-Bernoulli beams for simply supported, clamped 

free, free clamped, clamped simply supported, simply supported clamped and 

clamped beams. With the exact relations presented, design engineers do not have to 

perform more complicated flexural-shear-deformation analysis other than familiar 

Euler Bernoulli solutions.  

Ortuzar and Samartin [17] introduced a consistent finite element formulation for four 

classical 1-d beam models and found an exact Timoshenko beam finite element 

solution including axial force effects. They presented a comparative study between 

the Euler– Bernoulli beam and Timoshenko beam formulations with and without 

axial force effects.  

Bazoune and Khulief [18] noticed that there has been no attempt to find the shape 

functions of a three dimensional Timoshenko beam element, therefore they 

introduced the exact shape functions for a three dimensional Timoshenko beam 

element with no warping effect. 

Frostig et al. [19] accounted for core height changes and shear deformation of the 

core material for sandwich beams in their theory. They used beam theory formulation 

for the skins and a two-dimensional elasticity theory formulation for the core. They 

considered the core material as vertically flexible and derived an analytical approach 

for the deformations and internal forces. They also considered the effect of point of 

application of external force and concluded that it is important where the load is 

applied. Recent developments in sandwich beam theories include their work.  

Frostig and Baruch [20] presented a buckling analysis of sandwich beams with soft 

cores, with flexibility effects of the core on overall behavior. They derived behavior 

equations and appropriate boundary and continuity conditions using perturbation 

techniques. At a load level of 5% and 10% of the corresponding bifurcation load, the 

stability of the system is exceeded because of the disbanding skin from the core or 

peeling effects. 
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Sokolinsky and Frostig [21] have also included the study of buckling behavior of 

sandwich panels. They stated that the core properties affect the buckling loads and 

the corresponding modes of the panel in such a way that the structures with identical 

boundary conditions but with different cores may undergo different types of buckling 

such as overall and local as well as interactive loss of stability. 

Lee et al. [22] developed a layerwise higher-order for the analysis of the model for 

thick-cored sandwich beams. The model is based on an assumed cubic variation of 

the longitudinal displacements in each layer, and a parabolic variation of the 

transverse shear stress across the composite beam with zero values at the free 

surfaces.  

Other developments include the work of Reddy [23] who developed a layerwise 

laminated plate bending theory based on Lagrange interpolation functions of the 

thickness coordinate.  

A more general cylindrical plate bending theory was developed by Perel and 

Palazotto [24]. The theory is equally applicable both to thin or thick faces and to 

transversely rigid or flexible cores. 

The nature of the above listed studies reveals that there have always been efforts to 

increase the load bearing capacity of structural components by different arrangement 

of the given amount of material. Sandwich construction is just an example of such an 

effort in which a relatively lighter, cheaper and flexible core material is used between 

two or more stronger plates. The resulting structures have been studied over years. 

The idea of using helical wire just like a flexible core material is an alternative 

method for these types of structural solutions.  
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CHAPTER 3 

 

3. BEHAVIOR OF HELICAL WIRE CORE TRUSS MEMBERS 

 

The behavior of helical wire core truss member under axial compression is studied 

numerically by the finite element method (FEM). The elastic bearing capacities of 

the mathematical models are obtained by buckling analysis. The primary issue that 

has to be addressed when studying buckling of a sandwich structure (herein helical 

wire core truss member) is the shear deformation of the helical core. Hence, the 

elastic buckling force for each model must be a function of the member core 

diameter (φ), the pitch (S), the flange width (bf), the flange thickness (tf) and helical 

wire diameter (dw). Once the reliability is checked for the solution with FEM, the 

correlation of the input parameters with the elastic buckling force is studied. There 

must be a functional relationship of the form f(φ,S,bf,tf,dw)=y whose output y is the 

elastic buckling load of the member with the selected input parameters. This function 

may allow the designer to find an approximate solution for the member design, rather 

than constructing analyzing a complex finite element model of the member.  

3.1 Numerical Modeling 

The finite element method is used to solve physical problems in engineering analysis 

and design. It is a technique to turn a physical problem into a mathematical problem. 

By means of certain assumptions and idealizations, a set of differential equations 

governing the mathematical model is created and the stresses, deflections and 

reaction forces etc in objects can be estimated. The technique involves dividing the 

object into relatively small elements whose individual behavior is easily calculated 
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until a sufficient accuracy is reached. The behavior of all of the small elements is 

then put together to estimate the stresses and deflections of the entire object [25].  

In the finite element analysis, the structure is discretized or subdivided into a series 

of elements that are connected to each other at nodal points. The material and 

element geometric properties are specified to represent the physical properties of the 

model. Boundary conditions and applied loads are then defined to represent the 

operating environment for which the structure is to be subjected. The finite element 

analysis is a simulation tool that enables engineers to simulate the behavior of a 

structure. 

When real life problems are analyzed, a mathematical model should be established. 

The mathematical model will have some assumptions to reach the solution easier. 

Engineering comes into play at this stage. Cost effectiveness of a finite element 

model is the prime factor in problems. There is a continuing research on the 

development of new elements that combine the accuracy of higher order formulation 

with the simple nodal configuration of lower order elements. 

In this section, the behavior of a helical wire core truss member under axial 

compressive load is analyzed with finite element modeling. For the sake of simplicity 

and to accelerate the model building phase, an input generator was programmed in 

Visual Basic to create analysis model with the selected input parameters.  

3.1.1 Geometrical Properties 

The structure of helical wire core truss members investigated in this study consists of 

four steel flange plates and a helical wire core welded to each plate to transfer the 

shear stresses between the flange plates. The welding of the wire core is done just 

inside of the member and along the centerline of the flange plates (Figure 4). 
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φ

 

Figure 4 Cross-sectional view of a typical member and the basic parameters 

The flange plates of the member are the main substructures that have the most 

important role in the overall member stiffness. The four plates are located on four 

quadrants of the core: left, right, top and bottom. Once the member is under an 

applied moment, one plate tends to have compression and the opposite plate tends to 

have tension. The distance between the two plates under pressure creates a force 

couple, hence a moment in the global sense. 

In case of bending about one of its principal axes, the side plates increase the flexural 

stiffness of the member by stiffening the wire core and thus reducing its shear 

deformations. In addition, they also contribute to bending capacity of the section. 

The wire diameter of the helical core has a direct influence on the flexural stiffness 

of the resulting sandwich member. The level of stresses induced in the helical wire is 

relatively quite low when the member is subjected to bending. Therefore, as long as 

the strength demand from the wire core during buckling of such members is 

concerned, a rather small wire diameter is sufficient for most practical cases. 

However, its stiffness is vitally important in controlling the effective flexural rigidity 
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of the member. For this reason, as large wire diameter as economically feasible is 

beneficial. Considering the ease of manufacturing of the helical core, the range of 

plain wire diameters to be investigated in this study is selected between 6.0 mm to 

10.0 mm. 

The pitch (S) of the helical core also has a direct effect on the flexural stiffness of the 

resulting sandwich member. The amount of shear deformation per unit length of the 

member is inversely proportional to the pitch of the helical core. Moreover, it is the 

minimum distance of the welded joints along each flange plate (Figure 5). It is a 

parameter selected by the design engineer. Apparently, once selected, the pitch is 

constant along the helical core. The number of welded joints per unit length of the 

member increases as the pitch gets smaller. This in turn increases the labor involved 

in the production of the element. Therefore, the designer must think of the ease and 

the labor cost of manufacturing in selecting this parameter. 

The pitch (S) is very critical for the member stability as well. The unsupported length 

of the flange plates increases with increasing pitch and this may cause local buckling 

of some of the plates under compression. 

 

Figure 5 Pitch of the spiral core 
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The results of a preliminary study show that the shear deformation of the wire core 

becomes excessively large for the selected range of the wire diameter when the core 

diameter exceeds 400 mm. Therefore, the core diameter of the members investigated 

in the study is selected between 20 mm to 400 mm. Finally, the width and the 

thickness of the flange plates are selected in a range between 20 mm to 50 mm and 

4 mm to 8 mm respectively.  

3.1.2 Finite Element Modeling  

The subject member is structurally composed of four steel plates and a spiral wire 

core. The plates are subject to axial force and bending. There are two alternative 

ways of modeling the plates. The flange plates can either be modeled by using two- 

node three dimensional line elements or by using four-node three dimensional plane 

elements. The finite element models by these two approaches are studied in detail 

and the assumptions for each model are as follows. 

In case of using four-node plane elements for the flange plates, the mathematical 

formulation of the elements must be such that; model can capture both the axial and 

the bending response by the flange plates of the actual structure. Therefore, the plane 

elements must be capable of representing both the membrane and the plate bending 

modes of behavior. For this reason, four-node shell elements are preferred to model 

the flange plates (Figure 6).  

The finite element analysis program SAP2000 [27] is used to solve the mathematical 

finite element model. In SAP2000 [27], there are two possible formulations for the 

plate bending mode of the element. For thick plates, the transverse shear 

deformations are significant and the more complex thick-plate (Mindlin/Reissner) 

formulation require. However, for thinner plates the effect of transverse shear 

deformations is negligible. Therefore, a thin-plate (Kirchhoff) formulation, in which 

the transverse shear deformations are neglected, is sufficient [26]. The thickness of 

the flange plates considered in this study is relatively small and a plate bending 

element based on thin-plate formulation will be sufficient. 
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Figure 6 Four- node quadrilateral shell element used for the flange plates [26]  

In case of using two node line elements to represent the flange plates of the member, 

the mathematical model is simpler. It consists of frame elements as flange plates with 

bending rigidity “EI” and axial rigidity “EA”, where “I” is the moment of inertia of 

each rectangular flange and “A” is the gross area of the rectangular flanges. 

In both mathematical models, two node frame elements with circular cross-section 

are used to represent the wire core portion of the member. The frame elements of the 

wire core are connected to flange plates at some discrete points along the centerline 

of the plates, as shown in Figure 7 and Figure 8. 
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Figure 7 Connection of the frame elements of the wire core and the shell elements of 

the flange plates 

 

Figure 8 Connection of the frame elements of the wire core and the flange plates 
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The finite element model building phase of the wire core members is automated by 

an input generator which is programmed in Visual Basic. The interface of the input 

generator can be seen in Figure 9. 

 

Figure 9 SAP2000 Input generator Graphical User Interface 

Core mesh density / quarter turn: The helical wire of the core is divided into a 

number of small frame elements with 6 degree of freedom at each end. This is the 

number of divisions per quarter turn of the helical core. For the models used in this 

study, the parameter is selected as 8. Hence; 8x4=32 frame elements are used for a 

full turn of the helical wire core. 

Pitch: Pitch (S) of the helical wire is an independent parameter for each model.  
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Core diameter: This is the distance between two opposing flange plates, i.e. the 

diameter of the helical wire core (φ). 

Plate width: The width of flange plates (bf). 

Plate thickness: The thickness of flange plates. It is the bending and membrane 

thickness of each shell element used for the flange plates (tf). 

Longitudinal mesh density: This is a parameter used for the shell models. It is the 

number of elements along the flange plates between two successive connection 

points to wire core. It is taken as 8 in the finite element models used in this study. 

Transverse mesh density: This is another parameter used for shell models. It is the 

number of elements used across the flange plates It is taken as 8 in the finite element 

models used in this study. 

Number of turns for spiral core: An integer value by which the length of the member 

can be adjusted by changing its value. One full turn is equal to the pitch of the helical 

core. The nearest integer value is used for each member. 

Wire diameter: The wire diameter of the helical core. It gives the cross-sectional 

geometry of the frame elements used in the FE model for the wire core (dw). 

The mathematical model used for the calculation of the buckling load of wire core 

truss members is shown in Figure 10. The buckling analyses are performed to obtain 

the eigen-values corresponding to first three buckling modes of each model under 

compression without eccentricity. As an initial concentric axial load 1000 Newton is 

applied through thick and relatively rigid end plates. The function of these end plates 

is to enforce plane deformation state at the ends of the member which is anticipated 

and assumed to be the case in practical applications. After buckling analysis, the 

calculated first mode (lowest) eigen-value is multiplied by the initial load to obtain 

the actual buckling load of the member (PcrFEM).  
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Figure 10 Mathematical model for the buckling analysis. 

3.1.3 Basic Failure Modes 

There are basically two possible modes of failures of wire core truss members under 

axial load: the material failure by reaching the yield capacity of the section under 

either tension or compression and geometric failure by loosing its stability under 

compressive loads. 

The axial load is mainly resisted by the flange plates. The helical wire core obviously 

has a negligible contribution to the axial yielding capacity of the member. The axial 

force is equally shared by the four flanges and each flange plate is subjected to an 

axial stress of 
ff t4b

Pσ = . Unless there is a loss of stability, the ultimate axial load 

capacity of the member can be calculated by checking if σσ ≤ yield. 

The results of the finite element analyses performed on the wire core truss members 

with its basic parametric values in the practical range selected in this study reveal 

that the ultimate capacity of such members under axial compressing is normally 

reached by the loss of its stability. A close examination of the buckling modes of the 

members indicate that the buckling instability of the members is started mostly in 

one of three basic modes:  
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1. Flexural Global Buckling 

2. Flexural Local Buckling 

3. Torsional Global Buckling 

3.1.3.1 Flexural Global Buckling Mode of Failure 

Depending on the member length, longer specimens usually loose their stability in 

the flexural global buckling mode. In other words, as the specimen gets longer, the 

mode of instability tends to be flexural global buckling. This is the usual mode of 

buckling for elements having their basic parameters in the practical range selected in 

this study, if the element length is 1000 mm or longer. The buckling shape is shown 

in Figure 11.  

 

Figure 11 Flexural global buckling mode of failure 



 23

3.1.3.2 Flexural Local Buckling Mode of Failure 

This becomes the dominant mode of buckling mode when the pitch and the core 

diameter are large, the wire diameter is small and the flange plates are relatively stiff. 

In this case, the wire core functions as an elastic foundation with a low modulus of 

subgrade reaction and the buckling is similar to that of a column supported only 

transversely by flexible elastic springs. The buckling mode is visually depicted in 

Figure 12. 

 

Figure 12 Flexural local buckling mode of failure 
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3.1.3.3 Torsional Global Buckling Mode of Failure 

This mode of instability is observed in the short wire core truss members when the 

wire diameter and the pitch are large while the core diameter is relatively small. A 

typical buckling shape is shown in Figure 13.  

 

 

 

Figure 13 Torsional global buckling mode of failure 



 25

3.2 Analytical Approach 

The basic knowledge of the mechanics of materials states that the buckling of a 

structural member depends on several parameters for an ordinary beam. The most 

important of these parameters are the modulus of elasticity E, the sectional moment 

of inertia I in the buckling plane, and the effective length of the member. The 

effective length is a parameter which depends on the actual unsupported length of the 

member and the boundary conditions. 

In order to calculate the buckling load of a member analytically, several assumptions 

are made. An ideal member under compression must be initially straight with a 

perfect geometry, and the applied compression force must be perfectly concentric 

without any eccentricity. If the member is homogenous with a flexural rigidity of EI, 

the problem may be reduced to an eigen-boundary-value problem. 

The buckling load according to the Euler-Bernoulli beam theory is given by 

2
eff

2

cr L
EIπP =  (3.1) 

In the case of helical wire core truss member under compression, most of these 

assumptions are valid and the derivations are similar. However, in the buckling 

analysis of sandwich columns, herein the helical wire core truss members, the 

transverse shear deformations must be taken into account. Because of the lack of 

perfect shear transfer, the buckling load of the member is decreased compared with 

the ordinary Euler buckling situation. If there were full shear transfer between the 

plate components, the basic assumption of the Euler-Bernoulli beam theory namely 

the assumption of plane sections remain plane would be valid and the flexural 

capacity would be directly proportional to the square of the helical core diameter (φ).  

In this case, the moment of inertia of the section would be dependent on the sectional 

area of the plates and the distance of the plates to the center of mass of the member. 

In other words, the moment of inertia of a member calculated by assuming perfect 

shear transfer is the maximum possible moment of inertia of wire core truss 
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members. The effective moment of inertia is a function of the resulting transverse 

shear deformations and can be related to the calculated moment of inertia based on 

perfect shear transfer as follows:  

1
I
IK
calculated

effective ≤=  (3.2) 

The contribution to the cross-sectional moment of inertia of the wire core member of 

each flange plate can be calculated as: 

2
dff

3
ff ytbtb

12
1I +=  (3.3) 

where bf and tf are the width and the thickness of flange plate respectively, and yd is 

the distance between the centroids to the wire core element and the flange plate. 

Considering the arrangement of the flange plates around the wire core and ignoring 

the transverse shear deformation of the core, the theoretical moment of inertia of the 

member can be expressed as:  

⎟
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⎜
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f

ff
3

ff
3

ff 2
ttb2tb

12
1tb

12
12I  (3.4) 

The numerical analyses and theoretical studies show that when the transverse shear 

deformations are present the effective flexural rigidity EIeffective of the helical wire 

core truss member is obviously smaller than its theoretical value of EIcalculated. Hence, 

the bearing capacity of the member is lower. The member buckles under smaller 

loads than expected by the Euler formula. Just like the sandwich beams and panels, 

this decrease in buckling load capacity can be formulated to predict the actual 

behavior of the member under axial compression. 
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3.3 An Approximate Procedure for the Calculation of the Critical Load 

Related to the Flexural Global Buckling Mode of Failure  

Assuming that the mode of instability will be flexural global buckling, an analytical 

procedure can be devised for the calculation of the critical buckling load (Pcr) of a 

pin-ended helical wire core truss member, including the influence of transverse shear 

deformations if some additional simplifying assumptions are made. 

As far as the structural behavior of the helical wire core truss member during 

buckling about one of its principal axes is concerned, the element can be regarded as 

composed of two independent substructures as shown in Figure 14.  

 

Figure 14 The wire core truss member represented as a combination of two 

substructures 

The substructure labeled as “sandwich beam” in Figure 14 is composed of the wire 

core and the two of the opposing flanges on either side of the bending axis during 

buckling. The substructure labeled as “side flanges” is composed of the remaining 

flanges parallel to buckling plane which are assumed to act independent of the first 
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substructure. The first substructure will act as a sandwich panel during buckling 

when the buckling is about a horizontal axis and the shear rigidity of the helical wire 

core has a key influence on the buckling capacity. 

After separation of the member into two independent substructures as described 

above, the critical buckling load Pcr of the helical wire core truss member can be 

obtained by the superposition of the critical loads of each substructure. 

cr(side)h)cr(sandwiccr PP  P +=   (3.5) 

There is nothing special about buckling of the side flanges and the Euler buckling 

load is valid for this substructure; 

( )2
side

2

cr(side) λL
EIπP =  (3.6) 

where, the modulus of elasticity for steel is E=200000 MPa, the effective length 

factor for pin-ended member is 1λ = , and Iside is given by 

⎟
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⎝
⎛= 3

ffside bt
12
12I  (3.7) 

For calculating the critical buckling load of the sandwich beam substructure, 

Pcr(sandwich) the shear effect on the buckling capacity should be known. For a pin-

ended column the total lateral deflection y of the centerline is the result of two 

components as shown in Figure 15 

21 yyy +=  (3.8) 
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Figure 15 Deflection of pin-ended sandwich column during buckling 

The deflection y1 is the result of the bending moment M, the deflection y2 is the 

result of the shearing force V. Using elastic theory the curvature due to the bending 

moment M is: 

EI
Ny

EI
M

dx
yd

2
1

2

−=−=  (3.9) 

where E is the modulus of elasticity and I is the moment of inertia of the cross-

section.  

The slope due to the shearing force V is as follows: 
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where G is the shear modulus, As is the shear area of the cross-section. 

The curvature due to the shear force V is: 
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The total curvature of the buckling curve due to moment and shear is:  
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After rearranging the terms 
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Solving the differential equation: 
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Ncr(teo) in Equation (3.15) is the Euler buckling load when the shear deformation of 

the core is neglected. Then, the buckling load of the “sandwich beam” substructure 

including the transverse shear deformations of the wire core can be expressed as 

v

cr(teo)
cr(teo)

vcr(teo)

h)cr(sandwic

S
N

1

1N

S
1

N
1

1P
+

=
+

=  (3.17) 

where sv GAS = is the shear rigidity of the wire core to be calculated.  

Therefore, the problem of calculating the buckling load of the “sandwich beam” 

substructure is reduced to calculation of equivalent shear rigidity Sv for the helical 

wire core between the flanges.  

The value of Sv for the wire core is a function of the pitch (S), the wire diameter (dw), 

and the core diameter (φ). In order to simplify the calculation of the shear rigidity, Sv, 

an equivalent structural model of the helical wire core is used in which the one full 

turn of the helical wire is treated as two battens between the flange plates of the 

“sandwich beam” substructure. The resulting ladder model for the “sandwich beam” 

substructure is shown below, Figure 16 and Figure 17. 
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3D view of the original member 

3D view of the equivalent ladder 

Figure 16 Simplified ladder representation of the “sandwich beam” substructure 

s 

s s 
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Figure 17 Shear deformation of “sandwich beam” substructure under unit shear 

In Figure 17, the free body diagram of one step between two inflection points of the 

member is shown. 

From force equilibrium, the value of x can be calculated as 
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Using the virtual work principle, the displacement δ due to unit transverse shearing 

force of the wire core can be obtained as 
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The shear rigidity is 
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The shear rigidity Sv is the major parameter for the transverse shear effect of the 

helical wire core truss member. Pcr can then be calculated easily after the calculation 

of the shear rigidity Sv given above. A similar approach is proposed in Eurocode 3 

[28] for built up columns. 

3.4 Prediction of Element Buckling Loads by Finite Element Analysis 

The input generator was used to create a set of finite element models in which shell 

elements are used for the flange plates and another set of models, in which frame 

elements are used for the flange plates. The comparison of the analysis results show 

that the models in which the flange plates are represented by frame elements give 

similar results with the models in which shell elements are used. However, when the 

flange plates get thicker and wider the predictions of the two models start to deviate 

from each other.  
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Regarding the basic parameters of the helical wire core members, some range of 

prescribed values are deemed appropriate in practical applications and used in the 

study. These are listed in Table 1. For the values of the parameters in the range 

prescribed in Table 1, the predicted buckling modes are the same and the difference 

in the predicted buckling loads is very small. Therefore, it is decided to model the 

flange plates by frame elements. 

Table 1 Parametric values of wire core truss members used in the study 

Helical Core 
Diameter Pitch Plate width Plate 

thickness
Wire 

Diameter
φ S bf tf dw

(mm) (mm) (mm) (mm) (mm)
20
30
40 10
50 20
60 30
70 40
80 50 20
90 60 25 4 6

100 70 30 6 8
120 80 35 8 10
140 90 50
160 100
180 150
200 200
250 250
300
350
400

Parameter Values 

used in the Study

Member 
Parameters

 

A total of 10530 finite element models are generated for every combination of the 

basic parameters listed in Table 1 and solved for buckling loads. 

The influence of the parameters on the bearing capacity of the member gives a better 

understanding of the behavior of the member. In order to display the influence of the 



 36

pitch and the core diameter on the buckling capacity, several graphs are generated in 

Figure 18 through Figure 32 and presented on the following pages. The sensitivity of 

the element buckling load to related parameters can be seen on these graphs. 

In order to better demonstrate the influence of each parameter on the element 

buckling load the specimens having identical flange dimensions are plotted on the 

same graphs. For instance, in Figure 18, all specimens have identical flange plate 

dimensions of 20x4 mm. In each graph, a family of curves is presented, each for a 

different pitch of the helical wire core. This makes it possible to observe the 

influence of the core pitch on the element behavior. Moreover, in order to see the 

relative influence of the core wire diameter on the element behavior, two separate 

graphs are presented in each figure; one with a helical wire diameter of dw = 6 mm, 

the other for a helical wire diameter of dw = 10 mm.  

It is clearly seen that the buckling loads predicted by the proposed approximate 

scheme and the ones predicted by the finite element solutions are almost identical to 

each other for a range of parameters indicated on the graphs by a transition line in 

Grey. It is observed that, for parametric combinations lying below this line, the 

element buckling loads are somewhat smaller than those predicted by the proposed 

scheme. A close examination shows that the reason for this discrepancy is due to the 

fact that the mode of buckling is either local or lateral torsional for those 

combinations of the member parameters.  
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Figure 18 Buckling load of 1000mm members for 20x4mm flange plates 
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Figure 19 Buckling load of 1000mm members for 20x6mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 



 39
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Figure 20 Buckling load of 1000mm members for 20x8mm flange plates 
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Figure 21 Buckling load of 1000mm members for 25x4mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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FEM Sol.           Theoretical Sol.
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Figure 22 Buckling load of 1000mm members for 25x6mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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Figure 23 Buckling load of 1000mm members for 25x8mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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FEM Sol.           Theoretical Sol.
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Figure 24 Buckling load of 1000mm members for 30x4mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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Figure 25 Buckling load of 1000mm members for 30x6mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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FEM Sol.           Theoretical Sol.
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Figure 26 Buckling load of 1000mm members for 30x8mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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Figure 27 Buckling load of 1000mm members for 35x4mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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Figure 28 Buckling load of 1000mm members for 35x6mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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Figure 29 Buckling load of 1000mm members for 35x8mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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Figure 30 Buckling load of 1000mm members for 50x4mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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FEM Sol.           Theoretical Sol.
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Figure 31 Buckling load of 1000mm members for 50x6mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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FEM Sol.           Theoretical Sol.
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Figure 32 Buckling load of 1000mm members for 50x8mm flange plates 

dw = 10 mm

dw = 6 mm       FEM Sol.            Proposed Sol. 

      FEM Sol.            Proposed Sol. 
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3.5 Correlation of Predictions by Proposed Scheme and FEA 

The buckling loads predicted by the finite element analysis are compared with those 

obtained by the approximate procedure proposed in the previous section. A scatter 

plot of the buckling loads predicted by the finite element analysis and calculated by 

the proposed approximate scheme of Section 3.3 for the entire 10530 element models 

of Section 3.4 are given in Figure 33. It is observed that there is a very acceptable 

correlation between the two predictions for members with high bearing capacities. 

However, a large scatter is observed for lower bearing capacities. It is realized that 

the reason for this scatter is the relative unbalance between the parametric values of a 

given member such as a helical core pitch much larger than the core diameter or a 

thin and wide flange plate dimensions. Such combinations of the element parametric 

values activate buckling modes other than the flexural global mode presumed by the 

proposed approximate scheme. 

Therefore, it is decided to place some restrictions on the wire core diameter, the 

helical core pitch relative to core diameter and the aspect ratio of the flange plate 

sections. Consequently, the following constraints are defined and imposed on the 

parametric combinations to be used by wire core members for whom the proposed 

approximate scheme is used to calculate its buckling load under compression: 

Diameter: 200diameter)core(helical60 ≤φ≤ mm (3.25) 

Pitch to core diameter ratio: 5.0
)diametercore(

(pitch)S
≤

φ
 (3.26) 

Flange plate aspect ratio: 5
thickness)plate(flanget

)widthplateflange(b

f

f ≤  (3.27) 

The correlation between the predictions by the finite element analysis and the 

proposed scheme after successive imposition of the constraints defined in Equations 

(3.25) - (3.27) are shown in Figure 34, Figure 35 and Figure 36. 
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A partial list of the calculation steps and the results for a representative range of 

parameters is also given in Table 2.  It is clearly seen that the two predictions are 

reasonably close. 
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Figure 33 Comparison of the buckling loads without constraints. 
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Figure 34 Comparison of the buckling loads estimated by FEM and the approximate 

procedure after imposing the Diameter constraint 
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Figure 35 Comparison of the buckling loads estimated by FEM and the approximate 

procedure after imposing the Diameter and Pitch constraints 
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Figure 36 Comparison of the buckling loads estimated by FEM and the approximate 

procedure after imposing Diameter, Pitch and Aspect Ratio constraints  
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3.6 Experimental Verification 

To check the validity of assumptions and have a global sense of behavior of the 

members, a limited experimental study is carried out in the Materials of Construction 

Laboratory in the Department of Civil Engineering at METU. For this purpose, a 

total of three members are prepared and tested under compression. The specimens 

are 1.0 m long and each has a different combination of basic parameters. The 

experimental results are compared with the analytical predictions.  

Simply supported end conditions are created for the specimens and the axial load is 

applied through a relatively rigid end plates. This is to ensure that the applied axial 

load is distributed equally on the 4 flange plates (Figure 37, Figure 38 and Figure 

39). The compressive load is applied from a central point without any restraint to 

enable rotation at the ends of the member. Hence, the effective length factor for the 

specimen can be taken as 1λ = . The specimen parameters together with the test 

results and analytical predictions are listed below in Table 3.  

Table 3 Experimental and theoretical result comparison 

Specimen φ 
(mm)

S 
(mm)

bf 

(mm)
tf 

(mm)
dw 

(mm)

Theoretical 
Results

(kN)

SAP2000 
results 

(kN)

Yield 
Capacity 

(kN)

Experiment 
Results 

(kN)

Difference
(%)

1 60 30 20 6 6 135.4 136.2 115.2 90.4 22%

2 60 30 30 6 6 185.9 186.8 172.8 148.2 14%

3 100 100 50 8 6 359.1 362.0 384.0 299.2 22%  

It is seen that the analytical predictions for the bearing capacity are very close to 

those predicted numerically by the finite element analysis. However, the test results 

are somehow lower than the expected. The difference is approximately 20%. This is 
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because the stress level in each specimen is near the material yield level and it is 

known that the tangential modulus of elasticity of the material gets lower at this 

stress level. 

The yield capacity column in Table 3 shows the specimen ultimate capacity 

calculated as follows: 

yffy t4b    area sectional plate Flange Capacity  Yield σ=σ×=  (3.28) 

where MPa 402   y =σ . Therefore, 

ff t960b capacity  Yield =  (3.29) 

The yield capacities of specimens are lower than their expected buckling loads. 

Hence, the members are expected to yield before they loose their stability for the first 

two specimens. However, the test results show that this is not the case. This is 

because the instability of columns at high stress levels close to material yielding is by 

inelastic buckling, and the modulus of elasticity E in Euler’s formula must reflect 

this softening in material response. Therefore, the Euler’s buckling formula, derived 

for materials following Hooke’s law, can also be used for inelastic materials by 

substituting the reduced modulus Er for the modulus of elasticity E. 

2
eff

r
2

cr L
IEπP =  (3.30) 

In Table 3 the experimental results are about 20% lower than the expected values. 

This corresponds to a reduction of 20% in the effective modulus of elasticity of steel 

at this level of stressing which is very reasonable. 
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Figure 37 Specimen 1: φ60-s30-20x6 bearing capacity: 90.4 kN 
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Figure 38 Specimen 2: φ60-s30-30x6 bearing capacity: 148.2 kN 
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Figure 39 Specimen 3: φ100-s100-50x8 bearing capacity: 299.2 kN 
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3.7 Validity of Modeling Assumption 

The modeling of the member was made by ignoring the eccentricity at the junctions 

of the flange plates and the wire core for simplicity. In the analysis models the wire 

axis of the core is assumed to be coincident with that of the flange plates at their 

intersections. However there is actually a distance of (dw+ tf) / 2 between them. This 

simplification results in a reduction in the buckling load capacities of the members 

predicted by the analysis models. A better mathematical model would be created by 

using rigid links between the flange plates and the helical core wire at the junctions. 

(See Figure 40) 

 

Figure 40 Modeling with rigid links 

The buckling load predictions by using of finite element models with eccentric and 

concentric connections are given in Table 4 for helical wire core members with a 

small and a large diameter for comparison. It is seen that the error introduced into the 

predicted buckling loads of the members due to ignoring this eccentricity at the 

junctions is more pronounced for members with smaller diameters. 

Rigid links to model the 
eccentricity at junctions of 
wire core with flange plates 
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Table 4 Buckling load predictions by eccentric and concentric connection models 

φ 
(mm)

s 
(mm)

b 
(mm)

t 
(mm)

d 
(mm)

L 
(mm)

Proposed 
method

(kN)

SAP2000 w/o 
rigid links (kN)

SAP2000 w/ 
rigid links (kN) Error

60 30 30 6 6 1000 185.9 186.8 264.0 41.55%

200 50 50 6 6 2000 91.8 94.1 100.5 6.97%
 

3.8 Feasibility Study 

The study is focused on the structural bearing capacity of helical wire core truss 

members under axial compression. In order to have an idea about the economic 

effectiveness of such members, a limited feasibility study is carried out comparing 

the bearing capacity of these members with those of cylindrical pipes with an 

equivalent sectional area. For this purpose the buckling load capacities are calculated 

for some commercially available and commonly used pipe sections. The results are 

listed in Table 5, below.  

Table 5 Buckling loads for some standard pipe sections 

L=2000mm L=6000mm

(mm) (mm) (mm) (mm4) (mm2) (kN) (kN)
1 60.3 3.65 53.0 261669 649.59 129.13 14.35
2 88.9 5.50 77.9 1258361 1441.05 620.98 69.00
3 114.3 6.00 102.3 3002116 2041.41 1481.48 164.61
4 165.2 6.00 153.2 9520434 3000.85 4698.15 522.02

Section
Sectional 

Area

Bearing CapacityOutside 
Diameter Thickness Internal 

Diameter
Moment 
of Inertia
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In the following figures, Figure 41−Figure 44, the buckling load capacities of the 

pipe sections listed in Table 5 are compared with various helical wire core truss 

member configurations having the same cross-sectional area as the pipe sections. For 

simplicity, the wire diameter is taken as dw=8 mm for the wire core truss members. 

Neglecting the weight of the wire core it is seen that the wire core truss members can 

be an economic alternative for small diameter pipes. However, as the diameter 

increases the commercial pipe sections have higher capacities than helical core truss 

members. It is also seen that the helical wire core members become more economical 

as the element length increases. 
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Figure 41 Buckling loads for pipe section #1 and equivalent wire core members 

L = 6 m 

L = 2 m 
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Figure 42 Buckling loads for pipe section #2 and equivalent wire core members 

L = 6 m 

L = 2 m 
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Figure 43 Buckling loads for pipe section #3 and equivalent wire core members 

L = 6 m 

L = 2 m 
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Figure 44 Buckling loads for pipe section #4 and equivalent wire core members 

L = 6 m 

L = 2 m 
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CHAPTER 4 

 

4. SUMMARY AND CONCLUSION 

 

In the present study, the behavior of three-dimensional helical wire core truss 

member under compression is studied. An interface, which allows the user define the 

related model parameter, was programmed in Visual Basic and used to develop and 

analyze the mathematical models of many cases with the commercial finite element 

analysis software SAP2000 [27]. Several analyses results have shown that the 

bearing capacity of a helical wire core truss member is largely affected by the shear 

deformations. Hence, analyzing helical wire core truss members without proper 

representation of the shear deformations may lead to severe errors and 

unconservative results. 

The reduction in the bearing capacity of axially loaded members as a result of shear 

deformations is a well-known issue in engineering and it is a major problem for 

sandwich beams and built-up columns. A procedure is proposed in Eurocode 3 [28] 

for the calculation of the critical loads of built-up columns under axial compression. 

Using a similar procedure, the behavior of the helical wire core truss members was 

studied and satisfactory results were obtained.  

When the critical bearing capacity of a helical wire core truss members under axial 

compression is studied, it is observed that there are basically three possible modes of 

failure:  

1. Flexural global buckling 

2. Flexural local buckling 
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3. Torsional global buckling 

Flexural global buckling is the dominant mode of failure for helical wire core truss 

members having practical and reasonable combinations of the basic parameters. 

However, as the flanges get stiffer or the core diameter and pitch increases, the 

failure mode tends to be torsional global buckling or flexural local buckling. 

Therefore, in the prediction of the bearing capacity of a helical wire core truss 

member the possibility of instability by flexural local or torsional global buckling 

must be taken into consideration.  

The ultimate bearing capacities of wire core truss members with different 

combinations of the basic parameters based on the flexural global buckling are 

derived and presented in a graphical form. The sensitivity of the bearing capacities to 

each parameter can easily be seen from these graphs. The transition boundaries from 

flexural global buckling into flexural local or torsional buckling can also be seen in 

these graphs.  

In general, shear lag between the flange plates results in a loss of bearing capacity of 

the members. Based on the finite element analysis results, it is evident that as the 

spiral pitch gets smaller, the shear lag diminishes which, in turn, results in an 

increase in the ultimate bearing capacity of the member. 

It is also evident that when the core diameter increases, the shear lag increases. 

Therefore, the increase in bearing capacity is not directly proportional to the core 

diameter. Part of the capacity gain due to an increase in sectional inertia is offset by 

the loss in capacity due to shear lag. 

In order to restrict the basic mode of instability to flexural global buckling and 

prevent the transition into torsional global or flexural local buckling, the following 

approximate constraints are proposed based on the results obtained in the numerical 

analysis of the helical wire core truss member: 

Diameter: 200diameter)core(helical60 ≤φ≤ mm (3.25) 
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Pitch to core diameter ratio: 5.0
)diametercore(

(pitch)S
≤

φ
 (3.26) 

Flange plate aspect ratio: 5
thickness)plate(flanget

)widthplateflange(b

f

f ≤  (3.27) 

The study addresses the flexural global buckling of helical wire core truss members 

which are straight and has a length of 1000 mm or longer. The basic parameters 

defining the size and the structure of the members are limited to a practical range. 

However, the use of such member is not restricted to straight members or members 

within the specified range of parameters. In some structures, it may be necessary to 

use such members in a curved shape. Therefore, as a further study, the stability of 

curved members under axial compression as well as transverse loading must be 

studied. The behavior of members having parametric values outside the range 

specified in this study must be investigated. 

In addition, the local and torsional buckling of such members must also be studied in 

detail.  
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