

DOSSO – AUTOMATIC DETECTOR OF SHARED OBJECTS IN

MULTITHREADED JAVA PROGRAMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUNARA TOLUBAEVA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

MARCH 2009

Approval of the Graduate School of Informatics

Prof. Dr. Nazife Baykal

 Director director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Yasemin Yardımcı

 Head of Departmentead

This is to certify that we have read this and that in our opinion it is fully adequate, in

scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Aysu Betin Can

 Supervisor supervisor

Examining Committee Members

Prof. Dr. Semih Bilgen (METU, EEE) _________________

Assist. Prof. Dr. Aysu Betin Can (METU, II) _________________

Assist. Prof. Dr. Erhan Eren (METU, II) _________________

Dr. Sevgi Özkan (METU, II) _________________

Assist. Prof. Dr. Tuğba T. Temizel (METU, II) _________________

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and reference all

material and results that are not original to this work.

Name, Surname: Munara Tolubaeva

Signature: ________________

iv

ABSTRACT

DOSSO – AUTOMATIC DETECTOR OF SHARED OBJECTS IN

MULTITHREADED JAVA PROGRAMS

Tolubaeva, Munara

M.S., Department of Information Systems

Supervisor: Assist. Prof. Dr. Aysu Betin Can

March 2009, 68 pages

In this thesis, we present a simple and efficient automated analysis tool called

DoSSO that detects shared objects in multithreaded Java programs. DoSSO reports

only the shared objects that are modified by at least one thread. Based on this tool,

we propose a new approach in developing concurrent software where programmers

implement the system without considering synchronization issues first and then use

appropriate locking mechanism only for the objects reported by DoSSO.

To evaluate the applicability of DoSSO, we have conducted a case study on a

distributed and concurrent system with graphical user interfaces. Case study results

showed that DoSSO is able to identify objects that become shared among explicitly

v

defined threads and event threads, and objects that become shared through RMI.

Keywords: Concurrent programming, Static analysis, Automation, Java

vi

ÖZ

DOSSO – KOŞUTZAMANLI JAVA PROGRAMLARDAKİ ORTAK KULLANIM

NESNELERİNİN OTOMATİK TESPİT EDİLMESİ

Tolubaeva, Munara

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Aysu Betin Can

Mart 2009, 68 sayfa

Bu tezde koşutzamanlı Java programları içindeki ortak kullanım nesnelerini otomatik

olarak bulmak için bir analiz yöntemi geliştirilmiştir. Bu analiz yöntemi

geliştirdiğimiz DoSSO adındaki araç ile hayata geçirilmiştir. DoSSO analiz

sonucunda ortak kullanımda olan ve en az bir iş parçacığı tarafından yazılan nesneler

raporlanmaktadır. Aracımız sayesinde programcı senkronizasyonu düşünmeden

yazılımını yapabilir ve daha sonra DoSSO sonuçlarına gore sadece gerekli nesneleri

uygun bir senkronize mekanizması kullanabilir. Bu şekilde zor olan senkronizasyon

gerçekleştirimi en sona bırakılır ve iş mantığı üzerine yoğunlaşılır. DoSSO'nun

etkinliğini değerlendirmek amacıyla, kullanıcı arayüzüne sahip dağıtımlı ve

koşutzamanlı bir sistem üzerinde durum çalışması gerçekleştirilmiştir. Durum

çalışmasında DoSSO'nun belirtilmiş iş parçacıkları aralarında ortak kullandıkları

nesneleri; uzaktan erişim nesneleri sebebi ile ortak kullanılan nesneleri; ve kullanıcı

vii

olaylarını yakalayan iş parçacığı ile belirtilmiş iş parçacıkları arasında ortak

kullanılan nesneleri etkin bir şekilde yakaladığı izlenmiştir.

Anahtar Kelimeler: Koşutzamanlı Proğramlama, Statik Analiz, Otomasyon, Java

viii

To my dearest father and mother

ix

ACKNOWLEDGEMENTS

First and foremost, I express my deepest gratitude to my advisor Assist. Prof. Dr.

Aysu Betin Can for introducing me to the fields of program analysis, software

verification and software engineering in general. Moreover, I thank my advisor for

her support, motivation, patience and understanding during two years of

collaborative work in the project.

I would like to thank my friends Erdal Kuzey, Refika Köseler, Gülgün Afacan and

Erkan Er for their endless help during my studies, and for supporting me every time

when I felt myself hopeless and unenthusiastic.

Lastly, I thank my family for their motivation and faith in me.

x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... vi

DEDICATION ... viii

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS .. x

LIST OF TABLES .. xii

LIST OF FIGURES .. xiii

CHAPTER

1. INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Our Approach ... 2

1.3 DoSSO .. 2

1.4 Summary of Contributions ... 3

1.5 Organization.. 4

2. BACKGROUND AND RELATED WORK ... 5

2.1 Concurrent Programming ... 5

2.2 Critical Section Problem ... 6

2.3 Data Synchronization Mechanisms .. 7

2.3.1 Semaphores .. 7

2.3.2 Monitors ... 8

2.3.3. Explicit Locking .. 8

2.4 Race Condition ... 9

2.5 Escape Analysis .. 10

3. THE METHODOLOGY ... 12

3.1 Explicitly shared objects ... 13

3.1.1 Explicit Thread classes and Runnable interface 13

xi

3.1.2 GUI Framework – Event Thread.. 14

3.1.3 RMI Thread .. 16

3.2 Graph of Method (GoM)... 17

3.3 Object Table (OT) ... 20

3.4 The Analysis ... 21

4. “DOSSO” TOOL ... 25

4.1 DoSSO Requirements ... 26

4.2 DoSSO Analysis ... 27

4.2.1 The Analysis Flow ... 31

4.3 DoSSO Structure... 32

4.3.1 DoSSO Package Diagram .. 32

4.3.2 Data Flow Diagram for Visitors ... 34

4.3.3 Class Diagram of Structure Package .. 37

5. EXPERIMENTS AND CASE STUDY .. 40

5.1 Experimental Results .. 40

5.2 Concurrent Editor ... 42

5.3 Case Study Steps ... 43

5.4 Case Study Results.. 48

5.4.1 Observations on Case Study Results .. 49

6. CONCLUSION and FUTURE WORK ... 55

6.1 Limitations .. 55

6.2 Advantages.. 56

6.3 Conclusion .. 57

6.4 Future Work .. 58

REFERENCES .. 59

APPENDICES ... 63

APPENDIX A ... 63

APPENDIX B .. 66

xii

LIST OF TABLES

Table 1 DoSSO Results obtained from Experiments .. 41

xiii

LIST OF FIGURES

Figure 1 Explicitly Shared Objects Example .. 14

Figure 2 Event Handling Methods Example ... 15

Figure 3 Implicit RMI Threads [7] .. 16

Figure 4 Graph of Method Structure ... 17

Figure 5 Detailed View of Elements of Graph Structure 19

Figure 6 Implementation of Observer design pattern to a Graph of Method

Structure .. 20

Figure 7 Object Table Item Structure .. 21

Figure 8 Multiple Level Reference Expression ... 26

Figure 9 Two Level Reference Expression ... 26

Figure 10 Level – 0 DFD for Visitor Classes .. 28

Figure 11 Working List Structure ... 31

Figure 12 DoSSO Package Diagram ... 33

Figure 13 Level – 0 DFD for Visitor Classes .. 35

Figure 14 Partial Class Diagram of Structure Package ... 36

Figure 15 Structure of Variable Class ... 38

Figure 16 Concurrent Editor Screen Shot ... 42

Figure 17 Red Objects Window .. 45

Figure 18 GoMs Window – Output of Analyzed Classes 46

Figure 19 GoMs Window – Detailed View of Analyzed Class 47

Figure 20 The code of createThread method in LockAttribute class 50

Figure 21 The code of the constructor method of Worker class 51

Figure 22 Code segment of run method in Worker class 51

Figure 23 Code segment of initGraphics method in TextEditor class 52

Figure 24 Segment of code of TextEditor$1Anonymous0 class 53

Figure 25 RMI method r_enter of RemoteLockImpl class 53

xiv

Figure 26 Red Objects File .. 66

Figure 27 GoMs Folder ... 67

Figure 28 GoM information of performExit method inside the TextEditor class . 68

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Developing concurrent programs is quite a challenging work, because it is hard to

manually spot and protect all objects accessed by different threads. If not well

designed, shared objects in a program may create some conflicts which may directly

or indirectly affect the flow of a program. Thus, paying attention to shared objects is

the most important part of concurrent programming.

Unfortunately, history clearly showed us what can be the costs of developing

concurrent systems without properly protecting shared objects. A widely known

disaster caused two cancer patients to get fatal radiation overdoses in 1986 in a

computer controlled radiation therapy machine called THERAC – 25 [1, 2]. The

reason of disaster was mishandling synchronous accesses to a shared object in

THERAC – 25. Another disaster which caused the breakdown of Energy

Management System and was a reason for North America blackout in 2003 also

happened because of unprotected shared variables in the system. The blackout

disaster caused financial losses of about 6 billion USD [3, 4].

2

Although, the operating systems such as Symbian and Linux developed in last

decade improved ways of handling concurrency issues successfully at operating

system level [24, 25], concurrent programming still remains as a challenging concern

for application developers.

1.2 Our Approach

In current multithreaded programming methodologies, programmers manually

identify objects that are accessed by multiple threads and implement a

synchronization mechanism to protect them. This process, however, is not always

conducted flawlessly. It is possible to overlook some of the shared objects or to

assume that the object will never be shared at all. In such situations, programmers

miss some objects and do not protect them using any synchronization methods,

which cause conflicts in the program execution later on.

To avoid this problem, we suggest a different approach in developing multithreaded

Java programs. We suggest the developers to implement their system without

considering any synchronization issues first. Then, our automated tool called DoSSO

informs developers about the shared objects that need to be synchronized. Finally,

developers protect these shared objects using an appropriate locking mechanism with

a verification support, such as the concurrency controller pattern [8]. The verification

support in [8] can also be used with Java concurrency utilities [9, 10] to detect faults

in lock ordering and unprotected access to the given shared variables. In this way,

our tool supports the design for verification paradigm [11] and also helps developers

to realize more reliable multithreaded programs.

1.3 DoSSO

We have developed a tool which performs a static analysis to detect shared objects in

a multithreaded Java program. DoSSO outputs only risky shared objects. Risky

3

shared objects are the objects that are accessed by more than one thread, and

modified by at least one thread.

DoSSO also determines potentially shared objects of programs that use graphical

user interfaces (GUI) and remote method invocation (RMI). Programs involving GUI

are considered as multithreaded programs because of an implicitly created thread by

the runtime environment called the event dispatch thread that is created due to the

GUI framework. Event dispatch thread is responsible for capturing user events and

invoking the corresponding event handling methods, meaning that objects accessed

or modified inside event handling methods become automatically shared. Event

handling methods are the methods that are called when user performs some kind of

actions at the UI level of a program, i.e. clicks a button, presses a key etc. So, our

tool handles programs with GUI framework and is able to detect objects that became

shared with the event dispatch thread.

As stated above, we also handle programs containing RMI. We consider there is a

thread responsible for executing the remote calls and this thread’s methods are the

remote methods, i.e. the RMI methods. Consequently, objects and fields accessed or

modified inside RMI methods are seen as being accessed in different thread scopes.

That is why we deal with finding objects that become shared because of RMI

methods.

1.4 Summary of Contributions

The contributions of this work are as follows:

 Instead of dealing with issues such as race condition after the program is

developed, we suggest the prevention of such faults by reporting the risky

objects and save the effort of developer in considering concurrency issues.

4

 Besides handling simple assignment and method call expressions in an input

program, we also detect shared objects in distributed programs with remote

method invocations (RMI)

 We also handle event handling invocations, specifically the events in

programs with graphical user interfaces (GUI). In Java, the user interactions

are represented as events. These events are handled by an implicit thread that

invokes designed event handling methods. This means objects that are

accessed by event handling invocations become shared.

1.5 Organization

The thesis is organized as follows:

Chapter 2 briefly gives an information about concurrent programming, critical

section problem and explains mechanisms how to avoid data synchronization

problem. Moreover, this chapter describes the concepts of race condition and escape

analysis which are closely related to our research.

Chapter 3 describes the analysis technique we have developed to detect shared

objects in a program.

Chapter 4 introduces our tool “DoSSO” and describes its components and

algorithms used in the tool in detail.

Chapter 5 contains information about our small experiments, the case study and the

experiment results of case study with “DoSSO”.

Chapter 6 describes advantages and limitations of our tool and gives concluding

remarks on this thesis.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Concurrent Programming

When looking into the operating systems’ evolution history, we see that scientists

and engineers have always worked on to improve computers’ performance quality.

They tried to develop new operating systems (OS) which overcome previous

versions in terms of response and process time, efficiently use of system resources,

multitasking features etc. To improve OS performance issues, scientist developed

multitasking OSs like UNIX, Windows NT, where system resources are strictly

controlled by OS, multiple tasks or processes are able to run simultaneously and for

most of multitasking OSs multiple user operation mode is provided. Processes could

be executed independently, as well as communicate with each other if needed [5].

Still, there was a performance drawback such that processes were single threaded,

that is a process could do only one thing at a time. The concept of multithreaded

programming evolved at this point. “Thread is a different stream of control that can

execute its instructions independently, allowing a multithreaded process to perform

numerous tasks concurrently” [7]. With the use of multithreaded programming

features, programs can run GUI operations in one thread, wait for I/O instructions in

another thread, and process the information in a totally different thread.

6

Concurrent and multithreaded programming attracts the scientists mainly because it

enables programmers to write efficient programs where the idle time wasted by CPU

is kept at minimum. In a single threaded program, some tasks like user input,

database and networking transactions are processed much slower than the computer

processes information obtained from those tasks, meaning that CPU has to wait for

these tasks to finish before processing obtained information. However, in

multithreaded program, CPU can process these tasks simultaneously, and obtain

results from tasks much faster than that of the execution of single threaded program

[5]. Moreover, another reason to use multithreaded programming is that threads

simplify and divide the overloaded single threaded programs into small clear separate

tasks, where each task executes only its own operations [7].

When developing concurrent applications, programmer deals with controlling

multiple threads and a shared memory. In this thesis we call the variables reside in

this shared memory as shared variables. The essential part of concurrent

programming is to correctly handle the accesses to these shared variables. If shared

variables are not protected from being concurrently used by multiple threads, they

can cause some problems during the execution of a program.

In sections 2.2 through 2.5 we explain these problems in more detail, and present

some mechanisms in the literature that are developed to prevent them.

2.2 Critical Section Problem

Critical Section is a section of code where threads access and modify the values of

shared variables. This section of code must be performed atomically, that is nothing

interrupts the thread to execute all statements in critical section [7, 12]. This

atomicity is necessary to avoid inconsistencies. Critical sections are the most

important parts in a program code, because they contain shared variables which can

be accessed and modified by multiple threads concurrently, which then may cause

7

some conflicts during or at the end of execution. Because of this reason, careful

attention should be paid while writing critical sections of code.

2.3 Data Synchronization Mechanisms

In order to write reliable, bug – free concurrent programs, different types of

synchronization mechanisms and algorithms have been developed. These

mechanisms provide the atomicity required for the critical sections of a program.

2.3.1 Semaphores

A binary semaphore S is a non negative integer, and has got 2 operations which are

Wait(S) and Signal(S). It can take values only 0 or 1 which control the access to

critical section.

Java did not support explicit semaphore primitives before J2SE 5.0 was developed.

In J2SE 5.0, the Semaphore interface was added to the core Java libraries [5].

However before J2SE 5.0, Java has supported lock mechanism which is similar to

semaphore logic. Every Java object has an implicit lock, and this lock can be

implemented as an implicit binary semaphore inside a block with “synchronized”

keyword.

Locks are used with 2 operations lock and unlock which correspond to Wait(S) and

Signal(S), respectively. In fact, a Java lock is the same as a binary semaphore with an

initial value 1 except two differences. The first distinction between binary

semaphores and locks is that in locking mechanism locks are released only by the

holders of the lock, whereas binary semaphores do not have such a restriction and

can be incremented by any arbitrary process. The second distinction between them is

that unlocking an unlocked lock has no effect in Java, whereas in binary semaphores

8

Signal(S) still is stored in the value of S though there is no any process waiting for

the semaphore.

2.3.2 Monitors

Java provides monitors as built in synchronization primitives. Each monitor object

has an implicit lock. This implicit lock guarantees mutual exclusion during the

monitor implementation i.e. it does not allow multiple threads to access monitors

procedures at the same time. Monitor object in Java is an object which uses the

“synchronized” keyword in all its methods’ definitions. Operations on a condition

variable are as follows in Java:

wait() – which is the same as wait(C)

notify() – equivalent to signal(C)

notifyAll() – equivalent to signal(C), but wakes up all waiting threads.

Java monitor has got only one condition variable, and above operations refer to it

automatically. However, explicit objects can be used as condition variables in Java

monitor. Java monitors use signal and continue signaling discipline.

2.3.3. Explicit Locking

When one wants to provide mutual exclusive access to shared data the

“synchronized” keyword is easy to implement for small programs. However, as the

scale and concurrent executing components increase in the program, the complexity

of writing this program using “synchronized” keyword also increases. In fact, it is

really hard to develop large scaled reliable concurrent programs using only this

mechanism. The main reason lies in the fact that synchronized mechanism restricts

programmer to implement the critical section code inside the method block at

maximum. When the program exits from the synchronized method the lock

9

automatically is released. Using synchronized mechanism one is not able to control

the flow of when to grab and when to release the lock. Because of this reason,

explicit locking idea was introduced with J2SE 5.0. The Lock Interface was designed

to provide the freedom of lock usage and with more functionalities than that of

synchronized mechanism.

2.4 Race Condition

Our work is closely related to the detection of race condition concept. A race

condition occurs in a multithreaded program where pair of threads access shared

variables without any order, and at least one of accesses is a write operation. It is a

flaw in the system where the output or the result of the execution is unexpectedly and

critically depends on the sequence of thread interleavings.

A simple example explaining race condition would be as follows. There are two

threads T1 and T2 reading from the same variable sh. Consider this execution: T1

reads the value of sh and then T2 reads the same value from sh. Then both threads

do some computation on the value and then want to update the variable sh. Here

these threads race to see which one can write its value to sh. The thread that writes

to sh first loses its information since it is overridden by the other thread. Note that

here the sequence of which thread takes control effects the result of the program, i.e.

the final value of the variable sh.

There has been a massive amount of work in building both dynamic and static

analysis tools for detection of data races [4, 13-16]. As opposed to detecting the race

condition after the software is fully developed, we aid the programmer by pointing

out the objects that have to be protected before realizing the locking mechanism.

Eraser [14] is the best known dynamic data race detection tool for lock-based

multithreaded programs. Eraser checks that all shared-memory accesses follow a

consistent locking discipline using the lockset algorithm. DoSSO employs static time

10

analysis as opposed to Eraser and it does not deal with lock ordering or errors in

implementing locking mechanism. These errors can be prevented and detected by a

design for verification approach which is complemented with our tool.

RacerX [13] is a static analysis tool for detecting race conditions and deadlocks in

Java programs. Similar to Eraser, this tool also uses lockset algorithm. We defer the

errors in locking mechanism to the error prevention technique such as [8]. On the

other hand, our tool can be extended with lockset algorithm to improve the precision

of the results of the tool tailored for the programs that already contain the

synchronization mechanism.

2.5 Escape Analysis

Our work is strongly related with escape analysis, which has been used to analyze the

scope of objects especially in the last decade by many research projects. Escape

analysis is used to determine the objects that are

1. allocatable on the stack and

2. accessed only by a single thread

The goal of escape analysis is to determine objects that are local to a thread or

method scope. Consequently, researches involving escape analysis are all related

with stack allocation, synchronization elimination methods and optimization of code.

In their escape analysis, Choi et al. [17] store information about how heap allocated

objects and their references are connected in a connection graph to detect objects that

are local to a method or local to a thread.

Whaley et al. [18] have used points – to escape graph in their analysis. Their graphs

represent objects, references between objects and information about which objects

escape to other methods or threads. Other than the difference in goal, their

11

combination of analysis results of each method, i.e. the interprocedural analysis is

different than ours. They divide the program into analyzed and unanalyzed sections.

The system may or may not check unanalyzed sections for escaped objects. When

system does not check unanalyzed sections by skipping invoked method calls in a

method, it looks only into analyzed sections of the program and determines stack

allocatable objects. Then, objects passed as parameters to unanalyzed parts of a

program are considered as method – escape objects. When system checks unanalyzed

sections for escape objects, it then combines objects detected in unanalyzed section

with objects in analyzed sections, which gives more precise results than checking

only analyzed sections. On the other hand, our algorithm does not skip the analysis

of invoked method. Instead it looks for the summary information of the invoked

method whether it is completely analyzed or not. If it is complete, our algorithm

updates current method information with the invoked method’s summary

information. If it is not complete, current method waits for the invoked method to be

completed, and only then it updates its information.

The Marmot system developed by Fitzgerald et al. [19] performs synchronization

elimination as one of its optimization purposes. It optimizes single threaded

programs using Instantiation and Invocation Analysis (IIA). The system checks

whether thread objects are started. If not, the system removes all synchronization

operations from the program. However, this logic is insufficient in GUI-based

programs, because even though GUI-based programs do not create any explicit

thread objects, GUI methods are invoked by a separate framework which can be

thought as different thread.

12

CHAPTER 3

THE METHODOLOGY

We have developed an analysis technique, realized as the tool DoSSO, to detect

potentially shared objects that have read – write relationships between different

threads. We also detect objects used by RMI objects and by event dispatching

threads as in GUI – Swing framework. In our analysis, we thoroughly investigate

these objects and operations performed on them in each method to obtain their scope

and escape information. Escape information of an object is the information about

whether the object escapes the scope of thread that created it, i.e. whether other

threads may access the object or not. We store this information in a structure called

Graph of Method (GoM) which is produced for each method definition and Object

Table (OT) which stores the list of all objects declared in the input program. GoM

and OT are comprehensively explained in section 3.2 and 3.3.

We base our analysis technique on the observation that objects explicitly become

shared in three ways:

 Used with explicit Thread classes and Runnable interface

 Used with GUI framework

 Used with RMI Thread

13

Based on these three conditions, our tool classifies objects into three categories: 1)

Local to thread, 2) Shared by threads, but not used (i.e., the threads just read these

objects), 3) Shared and used by threads (i.e., visible to more than one thread and at

least one of them writes to this object). We mark objects as GREEN, YELLOW and

RED representing thread – local, read – read interaction between threads, and read –

write interactions between threads, respectively. The level of marking increases from

GREEN to RED.

Our technique reports only the objects that are marked as RED since these objects

have a potential read – write conflict between concurrent threads. The technique does

not report the shared objects that have read – read relationships in order not to

overwhelm the users and because they are not critical for the program execution.

In the following sections, we explain different ways of how objects become shared.

Then we continue with presenting the GoM structure which is used to store summary

information of a method, the OT structure which is used to store object information

and give details about implementation of our analysis technique.

3.1 Explicitly shared objects

In this section, we give detailed information about how objects become explicitly

shared.

3.1.1 Explicit Thread classes and Runnable interface

When used in explicit thread classes and classes that implement Runnable interface,

objects escape threads explicitly in three ways:

 At thread initiation when objects are passed as an argument to a constructor

of a thread,

14

 At assignment operations, such as when an object is assigned to a shared

object,

 At cases when objects are globally/statically declared, and multiple thread

objects have a visibility to these objects.

Figure 1 displays a sample code where objects become shared according to

observation 1 and 2 above. In line 6, the object obj is passed as an argument to the

construction of the thread object t; hence obj becomes accessible both by the main

and the thread t. Until line 10, obj is marked as YELLOW. In line 10, one of its

fields is set to anotherObject. Before this line, obj was only reachable by two

threads; however in this line the main thread modifies one of the fields of the object

obj. Therefore, we say that this object is shared in a risky way and mark it as RED.

Moreover, both object references namely obj.field and anotherObject now

point to the same object.

...

5. AnyType obj = new AnyType();

6. Thread t = new Thread (obj);

...

10. obj.field = anotherObject;

...

Figure 1 Explicitly Shared Objects Example

3.1.2 GUI Framework – Event Thread

When there are GUI objects in Java program, the runtime environment instantiates a

thread implicitly to capture the user interactions. This event thread is called

EventDispatchThread. It captures the GUI events instantiated by user

interactions and invokes the corresponding event listeners for event handling. This

means that there is a potential for objects that are accessed by event listeners to be

shared.

15

DoSSO collects all the event handling methods, which are the event listener

methods, and treats them as the methods of the event thread. During the analysis, all

the determined methods of the event thread are considered as thread entry points.

Thread entry points can be understood more clearly with the example given in Figure

2:

public class X extends ActionListener{

 ...

 addActionListener(this);

 ...

 public void actionPerformed(ActionEvent e){

 }

}

Figure 2 Event Handling Methods Example

In the example in Figure 2, the actionPerformed method is actually called by

event dispatching thread when the program is running. Because of this reason, we

consider this method as a method of an explicit thread, and mark objects passed as an

argument as escaped from the current thread scope.

Our analysis technique states that if objects are passed as arguments to the methods

of the event dispatching thread, then they escape the current thread and become

accessible by more than one thread. We consider the addActionListener method

as one of event dispatch thread’s methods. Through this method, the event dispatch

thread knows which object’s listener methods it will invoke when GUI events are

captured. Therefore, we say that this object passes as an argument to the method of

event dispatch thread, and thus becomes shared, though the addActionListener

method call performed by the main thread. Moreover, the technique states that

objects accessed or modified inside of Listener methods also become shared since

the Listener methods are executed by the event thread. For instance, if we had

objects used inside of actionPerformed method scope, then they would be shared.

16

3.1.3 RMI Thread

In RMI, each remote method can be invoked outside of the current application at any

time. There is an implicit thread that serves these remote calls. Without losing

generality, we assume that the underlying RMI framework creates one RMI thread

for each remote method call. The methods of this RMI thread are the methods

declared in the remote interface. As in the event thread case, all of the remote

methods are considered as thread entry points.

Figure 3 [7] is a good example for explaining how RMI invocations are thought as

thread entry points. When client calls remote object’s method, a random thread

becomes responsible for executing remote object’s method. We assumed that for

each remote method there is exactly one explicit thread responsible for executing it.

Figure 3 Implicit RMI Threads [7]

In Figure 3 [7], we see some parts of server and client implementation. In the server

implementation, there is an object f which is bound to a frobber string. This object

is the remote object. The 5
th

 line of code in the client implementation executes frob

method of the remote object f and this execution is carried by one explicit RMI

17

thread which is instantiated at runtime. Since we have stated that all remote method

invocations are considered as thread entry points, any remote object accessed or

modified in remote methods is marked as shared. In Figure 3, the remote object f

becomes shared if it accessed in the remote method frob.

3.2 Graph of Method (GoM)

GoM is developed for storing summary information obtained from the methods

DoSSO has analyzed. The GoM structure includes detailed information about a

method as well as detailed information about object references used in a method.

-observerList : GraphOfMethod

-waitingList : GraphOfMethod

-methodType : string

-formalParameters : Variable

-isComplete : bool

-isVisited : bool

-isInterrupted : GraphOfMethod

GraphOfMethod

Variable Signature

1

1
1

1..*

graphElements methodSignature

Figure 4 Graph of Method Structure

Figure 4 shows the structure of GoM. A GoM contains information about method

which comprises:

 Method signature: The signature consists of the names of a method, class and

package;

 Method type: This information indicates whether it is a setter or a getter

method;

18

 Formal Parameters: This data stores information about formal parameters of a

method.

 Method Completeness: This data indicates whether a method is visited and

dependent on other method graphs. A GoM is dependent on other GoM when

the other GoM is not complete.

 Point of Method interruption: This data shows whether a method is

interrupted by another GoM. GoM A is said to be interrupted when there is a

method call to another GoM B, and GoM B is incomplete. Then GoM A

waits until GoM B becomes complete.

 Method waiting list: This structure stores the list of GoMs that the current

GoM is dependent on and waiting for them to be completed. When there is a

method call in a method, current GoM looks for the corresponding GoM that

has the same signature as the method call. If obtained GoM is not complete,

current GoM waits until it is complete by adding it to the waiting list.

 Method observing list: This is the list which shows GoMs already subscribed

for the current GoM.

 Graph Elements: This part includes detailed information about objects

created, accessed and used inside of method blocks. These objects are stored

as elements of a graph. The Graph Elements are stored in Declared Variables

type as shown in Figure 5. So, each element contains information about:

o Object reference name

o Object reference type

o Object signature – gives concrete address of where the object is

created including the package, class and method names

19

o Object Number – every created object has a unique object number

which is used to distinguish between objects.

o Object escape type – tells whether the object is local to a method or

not.

o Form – tells whether the variable is of composite type, i.e. array,

vector, list etc.

o Access Type – keeps information about whether the access to the

reference object is write or read.

Variable

-refName : string

-refType : string

-signature : Signature

-objectNo : string

-escapeType : string

-form : string

-accessType : string

DeclaredVariables

GraphOfMethod graphElements 0..*

Figure 5 Detailed View of Elements of Graph Structure

Graph of Method structure uses Observer design pattern to inform other graphs about

its completeness. For instance, when one GoM becomes complete, it notifies all other

GoMs that are stored in its observing list about its completeness.

20

+addObserver(in gom : GraphOfMethod)

+removeObserver(in gom : GraphOfMethod)

+addWaitGoM(in gom : GraphOfMethod)

+removeWaitGoM(in gom : GraphOfMethod)

+notifyGraphs()

GraphOfMethod

+update(in gom : GraphOfMethod)

(Interrupted) GraphOfMethod

observers

waitingList

0..*

0..*

for all o in observers{

 o.update(this);

}

Figure 6 Implementation of Observer design pattern to a Graph of Method Structure

In Figure 6, the implementation of Observer design pattern in Graph of Method

structure is shown. In our design, both publisher and subscriber are of the same type

– GoM. GoM keeps the list of observers, which holds the GoMs that are interrupted

and dependent on the GoM. Also it keeps the list of GoMs whom it waits, i.e. the list

of GoMs it is dependent on. A GoM includes operations like addObserver and

addWaitGoM which add a GoM to the observers and waitingList lists

respectively; removeObserver and removeWaitList methods which remove

observer from the observers and waitingList lists respectively; notifyGraphs

method wakes up all GoMs inside the observers list by calling their update method.

For a GoM to be complete, the waitingList list should be empty, showing that it

is not interrupted and not dependent on any other GoM.

3.3 Object Table (OT)

We choose to keep the track of escape information in terms of objects rather than

object references in order to avoid aliasing problems and to be able to match formal

and actual parameters. For this purpose, we make use of Object Table (OT) which

stores object id, the marking level of the object and the signature of the method

where this object becomes shared. When an object becomes shared and marked

21

accordingly all its references which are stored in GoMs become shared

automatically.

OT contains the list of entries of type ObjectTableItem structure which is shown

in Figure 7.

-objectID : string

-marking : Marking

-escapesAt : Signature

ObjectTableItem

Figure 7 Object Table Item Structure

ObjectID field is the unique identifier of an object. Thus, OT stores the list of all

objects declared in the program with unique ObjectID. On the other hand, Graph

Elements in GoM store the list of object references, which refer to ObjectIDs in

OT. Multiple object references can refer to the same ObjectTableItem in OT.

If object reference becomes shared in the program, DoSSO takes the objectNo

information of this object reference, and compares objectNo with objectID field

of each entry in OT. When these two strings matches, DoSSO updates the marking

field of the entry. In this way, we are able to keep markings of objects in consistent

way.

3.4 The Analysis

To determine potentially shared objects our analysis performs five passes over the

input program. In the first pass, we obtain information about Java source files given

as an input. In the second pass, we collect classes that extend Thread class, or

implement either Runnable or Remote interfaces. In the third pass, we collect names

of methods that are called by event dispatching thread. In the fourth pass, we look for

objects that become shared by RMI objects. In the last pass, according to conditions

22

stated in section 3.1.1 and information obtained from the previous passes, we analyze

objects’ escape information.

We do our analysis by building GoMs starting from the thread entry points. Thread

entry points are the main method of the input program, run method of each explicit

thread, the methods of event thread, and the remote methods of RMI classes. During

this traversal when a method invocation is encountered we look for the GoM of the

callee method and propagate its information to the GoM of the caller method. While

combining these two graphs we do the following:

1. We match the formal and actual parameters first. The sharing information of

the formal parameters of the callee is indexed with phantom object

identifiers. The parameters are matched in two ways based on the actual

parameter’s level of marking:

a. The actual parameter’s level of marking is less than or equal to

the formal parameter’s level of marking

Phantom objects are matched to the actual objects of the call site. The

call site object is updated with the information summary of the

phantom object in the callee’s GoM.

b. The actual parameter’s level of marking is higher than the formal

parameter’s level of marking

Markings of formal parameters are set to be the markings of actual

parameters. Callee method with new formal parameters is re-analyzed

i.e. the calle method is revisited by DoSSO again and a new callee

GoM is obtained. Afterwards, parameter matching is done according

to part a.

23

2. Next, we add the callee’s Graph Elements into the caller’s Graph Elements

list in the caller GoM.

If the caller method belongs to a different thread than the callee, then

according to the accessType information of each object reference, object

references become shared. For instance, if the accessType of an object

reference is read then the object is marked as YELLOW; if the accessType

is write then the object is marked as RED in OT. We call a method belongs to

a thread if it is called directly or indirectly inside of a thread scope.

3. Finally, we handle the escape information of returned object of the callee. If

the caller method belongs to a different thread than the callee, then the

returned object becomes thread non – local and is marked as YELLOW in

OT.

The static analysis presented here is top down in the sense that it starts from the

thread entry points which are the main method and the run methods (The entry points

for RMI and event thread are handled differently as discussed in sections 3.1.2 and

3.1.3). In the analysis we traverse each method body encountered and produce

summary information that is propagated to the method’s all calling contexts to

achieve context sensitivity.

The analysis results of DoSSO are an over approximation of the risky shared objects.

Since DoSSO performs a static time analysis, determining the exact set of RED

objects is impossible. Our analysis may produce a few false positives. In other

words, DoSSO can report a nonshared object as shared.

The analysis requires that all GoMs to be complete in terms of dependencies to other

graphs. In order for a graph to be complete, the graph should not be dependent to

other graphs that have not been analyzed yet. While creating a graph for a method, if

callee method is not analyzed, the current graph is marked as incomplete and current

24

graph waits for the callee to be completed. When a graph becomes complete, all

graphs that are waiting for it update themselves accordingly as explained above.

In order to provide complete information about GoMs used inside the input program,

programmers have 3 alternatives:

1. Programmer can write his/her own stub classes. Stub classes are almost

empty classes which contain only the method declarations necessary for the

input program to compile and perhaps some fields which are used in

application classes.

2. Programmer can provide the source code of the Java libraries that are

referenced in the input program. In this case, DoSSO will analyze those class

files as well as the input program. This way the results will be more accurate

but the result will be crowded with the objects of the library classes.

3. Program may use our persistent storage. We provide a saving mechanism for

storing already analyzed GoMs. Through this utility, external packages can

be analyzed once and the analysis can reuse the GoMs for all the package

methods that are stored in our persistent storage. Currently the classes of the

most of the classes of java.util package are in our persistent storage. This

alternative will produce faster results than using the source code of the Java

libraries. On the other hand, similar to alternative 2, the result will be more

accurate than using stubs but crowded with library objects.

25

CHAPTER 4

“DOSSO” TOOL

As all other tools, DoSSO has some instructions that have to be followed so that

programmer gets complete and correct results. We will refer these instructions as the

requirements. These requirements need to be accomplished before running DoSSO,

and they will be presented in the following section. Before stating these

requirements, we first explain a framework that DoSSO heavily makes use of and

how it is used.

The DoSSO tool takes Java source codes as an input. The tool uses the Java Tree

Builder (JTB) framework [20] which performs parsing and visiting operations over

the input program. JTB converts each source file into a syntax tree using the Java

parser. This tree representation includes all information from a source code. The

conversion into syntax tree structure is done according to Java language semantics.

For visiting operations, JTB framework includes several visitor classes which allow

one to extend them into a variety of forms depending on one’s developing purpose.

The DoSSO tool uses DepthFirstVisitor class. DepthFirstVisitor is

developed using Visitor design pattern; and visits each node in a syntax tree in the

depth first order. The purpose of Visitor design pattern is to define operations on

elements of an object structure, without changing elements or structure itself [21].

26

4.1 DoSSO Requirements

There are 3 main requirements that have to be fulfilled before executing DoSSO:

1. Since we suggest developer to leave the synchronization issues to the last step

of development, we assume that the input program is free of lock operations.

Nevertheless, DoSSO is able to accept an input program where locking

mechanism is implemented. However, it simply ignores locking operations

while analyzing the program and does not store any information about them.

2. The code in an input program should be written in 2 level expressions. If not,

it can be converted into 2 level expression using Soot [22], a Java

optimization framework. For example,

 a.b.c.foo();

Figure 8 Multiple Level Reference Expression

is converted to

 T temp; T1 temp1; T2 temp2;

 temp = a.b;

 temp1 = temp.c;

 temp2 = temp1.foo();

Figure 9 Two Level Reference Expression

3. Since DoSSO propagates the method information stored in its GoM to all

calling contexts of that method, the input program should contain the source

codes of all method and initiation expressions used inside it. When using

frameworks, requiring all source code might be a problem. We provide a

saving mechanism for analysis results for this purpose. If input program

contains classes that have not been preprocessed before, programmer should

make sure that she has given all source code. It is needed in order to obtain

27

complete information about methods, which is consequently needed to get

complete results about objects that are escaped.

4.2 DoSSO Analysis

The DoSSO Analysis is performed using visitor objects which traverse abstract

syntax trees and visit each node in the structure to collect, analyze and store the data

required for GoM and to update object information in OT. To perform the analysis,

the DoSSO tool uses five different visitors, all extended from DepthFirstVisitor

class, for five different purposes. These visitors are executed independently from

each other, however information obtained from each can be used by other visitors as

well.

In Figure 10, the Data Flow Diagram (DFD) for Visitor classes used inside DoSSO is

presented. The figure clearly shows how data obtained from one visitor is used by

other visitors, and provides information about the order of visitor executions inside

the DoSSO.

2
8

Input

Program

Working List

Thread and RMI classes, Event

handling methods

Java File

Visitor

Thread RMI

Class Visitor

Java Source Files

Java File Info

Event

Handling

Visitor

Info Collector

Output

RMI Visitor

Java File Info

Java File Info

Java File Info Java File Info

Java File Info

RMI classes

Thread and RMI Classes

Event Handling Methods

Thread Classes and

 Event Handling Methods Explicitly Shared Fields

Objects shared via RMI objects

Figure 10 Level – 0 DFD for Visitor Classes

29

Below we give a description of each visitor where we state the purpose, explain how

visitor collects information for his own purpose, and describe how this information is

used in the analysis.

Java File Visitor

This visitor is used to obtain general information about the source files given as input

to the tool. Gathered information includes file name, directory name, expected files

and methods, file path and the rank of a file. The most important information it

obtains from a file is its rank. The rank of a file is the number of different files it is

dependent on. According to this rank, visitor orders syntax trees beginning from the

least rank to the largest and stores it in the working list. But the ranks of classes that

contain thread entry points are automatically set to zero in order to put them to the

beginning of the working list and to analyze them first. DoSSO uses working list

throughout all visitors. Information about expected methods is used for the purpose

of correctly addressing the signature of a method, when the method call node is

visited. Signature of a method is explained in section 3.2.

Event Handling Visitor

Event Handling Visitor is used to collect all method invocations performed by GUI

framework. The results acquired from this visitor are the list of all method calls and

method definitions that are executed by event dispatching thread. This visitor pays

attention to method invocations and method definitions only. When it visits a node in

the tree, it performs one of these two actions:

 If currently executed node is a method invocation node, then visitor looks if

the method call string contains keyword Listener.

 If currently executed node is a method definition node, then it looks if the

formal parameter type contains Event keyword.

If one of these checks match, then currently executed node information is added to

the event method list. Info – Collector which is comprehensively explained in the

next subsections uses this event method list to detect objects that are accessed or

30

modified by event dispatching thread. Info – Collector visits each method call or

method declaration node to check whether it is included in the event method list. If

so, it marks the objects used inside of these nodes accordingly.

Info – Collector

The main work of DoSSO tool is performed by Info – Collector visitor. This visitor

traverses each syntax tree in the working list, and obtains escape information about

each object created and used in the code. Object escape information is obtained

based on the rules stated in section 3.1.1 and is stored in OT. Also, this visitor stores

method and object reference information in a GoM structure. DoSSO is able to use

different GoMs together to obtain more specific information about objects and fields.

RMI Visitor

The purpose of RMI Visitor is to visit only RMI classes to find objects that are

accessed and used by these classes. It traverses each element of working list, and

checks whether it directly or indirectly extends the Remote interface. If the file is an

implementation of a Remote interface, then RMI visitor checks whether there is a

nonlocal object used inside a remote method. If so, the visitor updates its marking

and object reference information accordingly. Nonlocal object is an object that is not

created inside the method scope or its marking level is not GREEN. A nonlocal

object can be a field, a static object, a formal parameter of a method or an object

whose marking is not GREEN. This visitor reports the objects that became shared by

RMI thread to the user directly.

Thread – RMI Class Visitor

This visitor is used to automatically find the classes that are directly or indirectly

extended from the Thread class and the classes that implement the Remote or

Runnable interfaces. Information obtained from this visitor is used in Info –

Collector and RMI visitors.

31

4.2.1 The Analysis Flow

The DoSSO tool is scalable and is able to accept as an input a large program

containing of about 200 Java files. It is fully automatic and does not need any user

interference to detect RMI, explicit thread classes, and event handling methods. This

section describes how DoSSO analyzes the input step by step:

1. When an input is given, firstly the tool gathers information about source

codes using Java File Visitor by traversing through each syntax tree

converted by the Java Parser. After each visit of a file, DoSSO puts it into a

working list according to its rank. Based on rank of a file, DoSSO decides

where the file should be inserted in the working list.

-instance : WorkingList

WorkingList -fileName : string

-filePath : string

-dirName : string

-rank : int

JavaFileInfo

listOfFiles

1..*

Figure 11 Working List Structure

2. Secondly, Thread – RMI Class Visitor operates to obtain a full list of classes

which are either extended from Thread Class or implemented from Runnable

or Remote interfaces. It is important to get the list of Thread classes and RMI

classes beforehand, because it will be used in subsequent visitor operations.

3. Thirdly, the tool looks for method names that are called or owned by event

dispatching thread. Event Handling Visitor collects the names of event

handling invocations, and stores for Info – Collector to use.

4. Fourthly, the DoSSO tool searches for objects that are accessed remotely.

Remote objects used in a program can be analyzed in two ways. From the

view of a program which calls remote methods, objects are accessed locally.

However, from the view of remote objects, objects used by RMI objects can

32

be accessed by more than one remote method, which means there may be a

conflict in writing or reading the value of an object. From this view, it is

obviously seen that each remote method acts like a separate thread, which can

access the objects in a remote class any time. Thus, we say that objects used

by RMI objects become shared, but inside of a program we deal with objects

that are accessed by remote methods as local. Because of this, the RMI

Visitor visits classes that implement Remote interface only, and collects

information about objects accessed directly or indirectly in the RMI methods.

5. Lastly, the Info – Collector Visitor operates, which is the most important part

in the process of finding shared objects. The purpose of Info – Collector

Visitor is to find objects that have become explicitly shared between threads.

The ways objects become shared are explained in section 3.1. To obtain

correct results about thread escape objects, the Info – Collector Visitor makes

use of information obtained from Event Handling and Thread – RMI Class

Visitors. The Info – Collector Visitor visits the body and declaration of each

method, and then within a Graph of Method structure it stores information

about the method and detailed information about object references used in

that method. Moreover it updates the marking and escapesAt information

of objects in Object Table structure.

4.3 DoSSO Structure

4.3.1 DoSSO Package Diagram

DoSSO consists of 5 main packages which are UI, JTB Structure, JTB Visitors, Input

Program and DoSSO Structure packages. The backbone packages that work behind

the DoSSO are the JTB and DoSSO Structure packages. To execute DoSSO,

programmer interacts with UI and Input Program packages only and does not touch

backbone packages. Figure 12 shows how packages use each other.

33

JTB Package

JTB Structure Package

JTB Visitors Package

DoSSO UI

Package

<<Use>>

Input Program

Package

DoSSO Structure

Package

<<Use>> <<Use>>

Figure 12 DoSSO Package Diagram

The DoSSO UI package is the package which interacts with the user to decide how

and where results of execution are outputted. User is also responsible for locating the

program in question into the Input Program package. UI package uses the JTB

package to execute the DoSSO, whereas JTB uses both input program and DoSSO

structure packages to run the DoSSO.

34

4.3.2 Data Flow Diagram for Visitors

The DFD in Figure 13 shows the flow of data obtained from each visitor, beginning

from analyzing the input program until obtaining the output. Java File Visitor takes

Java source files of the input program as an input data, outputs the Java file

information for each source file which is then stored in the Working List structure.

The data in the Working List structure is used as an input into Thread – RMI Class

and Event Handling Visitors. Their outputs then are stored in “Thread and RMI

classes, Event Handling methods” collection. The other visitors like Info – Collector

and RMI visitors take Working List structure and “Thread and RMI classes, Event

Handling methods” collection as an input. These visitors on the other hand give

outputs directly to the programmer, and the outputs they produce are explicitly

shared objects and objects shared via RMI objects, respectively.

3
5

Input

Program

Working List

Thread and RMI classes, Event

handling methods

Java File

Visitor

Thread RMI

Class Visitor

Java Source Files

Java File Info

Event

Handling

Visitor

Info Collector

Output

RMI Visitor

Java File Info

Java File Info

Java File Info Java File Info

Java File Info

RMI classes

Thread and RMI Classes

Event Handling Methods

Thread Classes and

 Event Handling Methods Explicitly Shared Fields

Objects shared via RMI objects

Figure 13 Level – 0 DFD for Visitor Classes

3
6

-instance : Assigner

Assigner

-instance : GraphOfMethodFactory

GraphOfMethodFactory

Variable

DeclaredVariables

1

JavaFileInfo

-instance : WorkingList

WorkingList

StatementHandler

VariableHandler

-instance : ThreadEscape

ThreadEscape

GraphOfMethod

Signature

<<Uses>>

<<Uses>>

<<Uses>> <<Uses>>

1

1..*

<<Uses>>

1

1..*

1

1

DBAdapter

1

1..*

-instance : ObjectTable

ObjectTable

*

*

<<Uses>>

<<Uses>>

ObjectTableItemtable
1..*

Figure 14 Partial Class Diagram of Structure Package

37

4.3.3 Class Diagram of Structure Package

In Figure 14, main classes of DoSSO Structure Package and their relationships are

displayed. There are 5 Singleton classes in the package which are Working List,

Thread Escape, Assigner, Object Table, and Graph of Method Factory. Below we

will give brief description of each class shown in the diagram.

 Java File Info: When Java File Visitor visits each syntax tree given as an

input, it creates an object of type Java File Info for each syntax tree and sets

the fields of this object accordingly. Java File Info includes fields fileName,

filePath, dirName and rank which give information about the name, the

path, the directory name and the rank of a file, respectively.

 Working List: This structure contains the list of objects of type Java File Info,

which is used by all visitors later on. This list shows the processing order of

the source files. The files are ordered so that the file with minimum

dependency to other source files is processed first. However, files containing

thread entry points are processed before all other files without considering

any dependency information.

 Assigner: This class is one of the major classes in the package. It is

responsible for processing the data obtained from a visitor by assigning the

job to either Variable Handler or Statement Handler objects. When a visitor

finds useful information about objects such as assignment of two objects,

method call and argument passing, it sends a collection of strings containing

this useful information to the Assigner object to decide which handler should

process the information. Moreover, Assigner object converts the obtained

strings into objects and keeps them for later use.

 Statement Handler: This handler class is the class that deals with processing

statement strings such as assignment and method call. Statement handler

takes a string, converts it into objects, processes them based on which

operation was called (the operation is either Handle Assignments or Handle

Method Call) and stores information obtained from objects into the current

GoM.

38

 Variable Handler: This class is responsible for storing all variables used

inside a syntax tree. When there is an assignment statement or an argument

passing expression, the Statement Handler object sends a string to the

Variable Handler object to identify which object is being assigned now or

which object is passing as an argument to a method call. Based on the result

of the Variable Handler, DoSSO is able to get correct information about

objects and their escape information.

 Object Table and Object Table Item: These structures are explained in section

3.3.

 Thread Escape: This structure stores the list of classes that directly or

indirectly extend the Thread class, implement Runnable or Remote interfaces.

It also stores the list of event thread methods.

 Variable: DoSSO stores objects used inside the syntax trees in terms of

Variable objects. The structure of Variable class is as follows:

Variable

-refName : string

-refType : string

-signature : Signature

-objectNo : string

-escapeType : string

-form : string

-accessType : string

DeclaredVariables

Figure 15 Structure of Variable Class

The Declared Variables class is used in all visitors to represent the objects

used in the input program.

 Signature: This structure stores information about where either GoM or an

object was created by giving the package name, class name, method name,

types and number of formal parameters of a method.

 Graph Of Method: This structure is comprehensively explained in section 3.2

39

 Graph of Method Factory: The factory includes the list of all GoMs that were

created during the analysis of the input program. When visitor needs a

specific GoM, it extracts the Signature of the GoM and asks it from the

factory. Factory checks whether there is a GoM matching with the Signature.

If it matches, factory returns the GoM found; if not, factory creates a new

GoM with the Signature and returns a newly created GoM.

 DBAdapter: This adapter is the class which is responsible for storing already

analyzed GoMs into a persistent storage and for retrieving these GoMs for

reuse.

40

CHAPTER 5

EXPERIMENTS AND CASE STUDY

To demonstrate the applicability of DoSSO, we have conducted several small

experiments and a case study on a distributed and concurrent system with graphical

user interface. In this chapter we first give results from experiments, then describe

the structure of the concurrent system called Concurrent Editor on which the case

study was performed. Next, we continue with explaining the steps undertaken to

conduct the case study, and present the analysis results of DoSSO on the Concurrent

Editor.

5.1 Experimental Results

Before conducting the case study, we experimented our tool on 15 various small

input programs. Since these experiments were small, we were able to check whether

DoSSO outputted correct and complete results or not. Before testing DoSSO on each

experiment, we extracted the red and yellow objects manually. After each testing we

compared DoSSO results with our expectations to validate the results. Experiments

showed that DoSSO is able to give correct and complete results.

41

Table 1 DoSSO Results obtained from Experiments

Experiment# Lines Of Code #REDActual #REDDetectedByDoSSO

Experiment1 40 2 3

Experiment2 49 3 4

Experiment3 38 2 2

Experiment4 48 3 3

Experiment5 63 3 4

Experiment6 74 3 3

Experiment7 227 8 9

Experiment8 142 4 5

Experiment9 177 5 8

Experiment10 175 5 7

Experiment11 124 4 4

Experiment12 350 10 10

Experiment13 92 3 4

Experiment14 158 5 6

Experiment15 113 4 4

Table 1 shows the list DoSSO results obtained from testing 15 experimental input

programs. The column “#REDActual” is the number of objects that we expected will

be certainly RED at the end of analysis. Whereas, the column

“#REDDetectedByDoSSO” is the number of objects that DoSSO reported as RED.

The results in Table 1 show that DoSSO does not report the number of objects

detected as RED less than the actual number of RED objects, meaning that DoSSO

may report false positive. In these experiments we observed that DoSSO did not

report false negative. For example in Experiment 12, we knew that 10 objects are

risky shared objects and expected that these objects will be marked as RED. After the

analysis, DoSSO successfully identified these 10 objects as RED.

However, we could not verify the results of the case study in the same way as with

experiments because the case study program was more complicated than our simple

experimental programs, and it was hard to obtain all list of objects that we thought

42

would be definitely shared in the program. On the case study we checked whether the

red objects reported are actually red instead and relied on previous experiments'

results that DoSSO did not miss a red object.

5.2 Concurrent Editor

Concurrent Editor is a distributed text editor. The editor enables multiple users to

edit a document that resides in a server at the same time. The document has to be

consistent at all times. Whenever a client changes the document, the change is

reflected on all clients in real time. After the editing, the document is saved if a

consensus is reached among all clients.

Concurrent Editor is a real complicated application containing remote method

invocations and accesses to shared data concurrently. It consists of 2800 lines of Java

code. The application is composed of server and client nodes. The server node

contains the original document, whereas client nodes contain the copies of the

original document. It is possible for the document to be accessed and modified

concurrently by client nodes. Figure 16 is the screenshot of the application [23].

Figure 16 Concurrent Editor Screen Shot

43

In Figure 16, there are several control buttons and a document with several

paragraphs. As stated earlier, client nodes are able to access paragraphs concurrently.

In order to do so, they need to send a request for either write or read access to the

paragraph by clicking the WriteLock or ReadLock button, respectively. When a

lock request is granted, the color of the paragraph changes and shows that now it is

editable. Figure 16 shows that red color indicates a write lock permission, yellow

indicates a read lock permission, and black indicates no access permission to a

paragraph. A client node cannot modify the paragraph the cursor is on unless she has

a write access to that paragraph. Multiple client nodes are not able to modify

paragraphs at the same time unless they modify different paragraphs. If a client node

has a read access to a paragraph, no other client may have a write access to that

paragraph unless all read accesses to that paragraph are released. If a client node has

a write access to a paragraph, no other client may have either write or read access to

that paragraph unless the write access is released. To release write or read accesses,

client nodes need to click WriteUnlock or ReadUnlock buttons, respectively.

5.3 Case Study Steps

In this section we describe the steps we have taken to conduct the case study.

Step 1 – Preparation of the input program

To prepare the input program means to collect the source codes of all method

invocation and initiation expressions used inside the input program. For example, the

Concurrent Editor package consists of 43 Java class files and they include many

different types of objects such as Vector, Integer, HashMap, SWING components. In

order to run DoSSO successfully, we needed source codes of classes that were used

inside of 43 Java source files and that were not included in our permanent storage.

After collecting all source codes, we ended up with 192 of Java source files.

Nevertheless, a programmer may write his/her own stub classes for source files

instead of collecting them. If programmer uses stub classes, then s/he should make

44

sure that stub classes implement methods used in the source code. In our case, some

classes inside of 192 were written as stub classes.

Step 2 – Preprocessing the input program

DoSSO requires the input program to be written in two level reference expressions.

In this step we used Soot framework [22] to convert the Concurrent Editor

implementation into a program with two level reference expressions.

Step 3 – Executing DoSSO

We executed the case study on the machine containing RAM of 3GB space, with

CPU speed of 1.66GHz and it took about 3 minutes for DoSSO to run.

Step 4 – Evaluating the results

At the end of the analysis, DoSSO gives two different outputs. The first output is the

RedObjects window which contains the list of objects that became shared in the

program. This window outputs only risky shared objects. RedObjects window shown

in Figure 17 includes information about object id, markings and the signature of the

method where the object escapes. However, this single output is not sufficient to

evaluate the results.

45

Figure 17 Red Objects Window

The second output is a GoMs window which contains names of each class analyzed

by DoSSO. For example, Figure 18 shows the package and class names of files

analyzed by DoSSO on the left side of the GoMs window.

46

Figure 18 GoMs Window – Output of Analyzed Classes

Each analyzed class shown in Figure 18 contains at least one GoM information,

depending on the number of methods the class contains. Meanwhile each GoM

contains information about object references created and accessed inside the GoM.

For example, Figure 19 shows GoMs of Buffer class, and Graph Elements inside

the put method.

47

Figure 19 GoMs Window – Detailed View of Analyzed Class

The first row under the “Graph Elements” label, i.e. the headings of the table, in

Figure 19 states the order of the properties of Graph Elements to be shown.

To evaluate the results, a programmer should use both of the outputs. Firstly,

programmer chooses the objectID from the RedObjects window, and gets the

signature of the method where the object became shared. Then from this signature,

programmer extracts the class name and finds the class name in the GoMs window.

Programmer also extracts the method name from the signature in order to look for

the GoM with the same method name inside the class. Afterwards, programmer

examines the GoM of the method reported in the RedObjects window. In this GoM,

48

programmer is able to see the object references which refer to the objectID. These

references are the variables that have to be protected with a synchronization

mechanism.

The analysis results are stored in text files when DoSSO stops running. So, it is also

possible to look for these text files separately. The list of red objects shown in Red

Objects window is stored in Red Objects text file. The list of GoMs and their Graph

Elements shown in GoMs window are stored in GoMs folder, where each class is

stored in a separate text file. Sample screen shots of Red Objects file and GoMs

folder are given in Appendix B.

5.4 Case Study Results

Before discussing the case study results obtained from DoSSO, we want to highlight

one important point that we had observed from our analysis of case study results.

Recall that our input program consisted of about 192 java source files, 43 of which

were Concurrent Editor’s class files. The remaining 149 source files were either

collected from Java libraries or were written as stub classes. The important point we

had observed was that DoSSO results are dependent on how precise the input

program is with respect to objects used inside the program, i.e. the more information

programmer gives in the input program, and the more accurate results are produced

by DoSSO. Because of this reason, we think that if our input program were given in

more detailed way, we could obtain new list of shared objects in addition to our

current findings. By “more detailed way” we mean that if we used original source

code instead of stub classes when were preparing the input program, we could obtain

more exact results.

The another important point is that when the input program contains stub classes, and

DoSSO outputs inadequate number of shared objects, this situation does not mean

that DoSSO reported false negative. It is possible that in the original code, the object

becomes shared but since stub classes do not reflect the original source code in terms

49

of implementation, certainly DoSSO will not able to detect this object, and will

report it as GREEN. But if stub classes reflect the original implementation, then

DoSSO detects shared objects successfully.

DoSSO has identified 53 objects as explicitly shared risky objects. In addition,

DoSSO has detected 23 objects as shared due to RMI objects in the program and all

of them were detected in the server side of the application. In Appendix A, we give

the total list of objects that DoSSO concluded as risky shared objects and that are

stored in RedObjects file. If the developer of Concurrent Editor identified shared

objects manually, most probably the developer would miss some of objects among

the 76 detected ones, and would not protect them with a locking mechanism. Then,

not protecting all shared objects would cause problems after the application is

developed. As the size of concurrent application grows the effort of identifying

shared objects also grows. If the size of an application is huge, then it is very hard to

manually identify all shared objects in the application as in our case study. Because

of this fact, it will be advantageous for developer to use our tool to identify all shared

objects automatically.

The objects DoSSO outputted as shared at the end of the analysis were the objects

that were marked as RED during the analysis. However, at the end of the analysis we

could see that there were too many objects (337 objects to be exact) marked as

YELLOW. Programmer can check those YELLOW objects from files in the GoMs

folder which contain objects used inside GoM, both shared and nonshared.

5.4.1 Observations on Case Study Results

In the rest of this section, we want to show how actually DoSSO concluded that the

object is shared and marked the object as RED. For this reason, we will show three

examples from the case study which will help to understand the steps DoSSO carried

out to decide on the escape information of an object in detail.

50

 Observation – 1

We want to understand how PhantomObject 6888 in Appendix A became

shared in the input program. The output in Appendix A shows that this object

became shared at signature CaseStudy.client, LockAttribute,

createThread :Identity. First we have to find the GoM in the GoMs

window containing the same signature as above in order to find exactly which

object reference became shared. The way to find the specific GoM in GoMs

window is explained in section 5.2 thoroughly.

Figure 20 shows a code of the createThread method of the

LockAttribute class. In the code, the new Thread object is created and 6

objects pass as an argument to the construction of this thread object. Right

after the creation, the messageThread object starts. Since these 6 object

which are remoteLock, s, bufferMutexController, buffer, this and

id pass to another thread scope, they become shared and the objects they

refer are marked as YELLOW in OT.

Figure 20 The code of createThread method in LockAttribute class

51

Meanwhile, in the constructor of Worker class, which is shown in Figure 21,

we see that fields of the thread class are set to formal parameter values.

Therefore when messageThread is instantiated in Figure 20, the mediator,

protectdoc, bufferMutexController, mybuffer, owner and id

fields will refer to the same object as remoteLock, s,

bufferMutexController, buffer, this and id, respectively. Since

they refer to the same object, at this point these fields become shared as well.

Figure 21 The code of the constructor method of Worker class

Right after the instantiation of the messageThread object, the

messageThread starts. Figure 22 shows segment of code taken from the

run method of Worker class. From this code segment, DoSSO detects that

the take method is a setter method, and concludes that the state of

mybuffer field is changed. At this line, DoSSO finds the object mybuffer

refers to in OT, and if the marking of the object is not GREEN, DoSSO

changes its marking to RED. In fact, from the GoM information of Worker

Fields Graph, we found that mybuffer refers to the object Phantom Object

6888 which means DoSSO detected this object correctly.

Figure 22 Code segment of run method in Worker class

52

 Observation – 2

We want to find how PhantomObject 7232 in Appendix A became shared in the

input program. The output in Appendix A shows that this object became shared

at signature CaseStudy.client, TextEditor, initGraphics:

Vector. From the GoM information of signature CaseStudy.client,

TextEditor, initGraphics: Vector we found that this$0 object

reference of type TextEditor refers to PhantomObject 7232. Using this

information we understand that this object in Figure 23 passed as an argument

to the constructor method of TextEditor$1Anonymous0 and the field this$0

is set to refer to the same object as this refers to. The constructor

implementation of class TextEditor$1Anonymous0 is given in Figure 24.

Figure 23 Code segment of initGraphics method in TextEditor class

When this object passes as an argument to the constructor of

TextEditor$1Anonymous0 object, this object becomes shared and marked as

YELLOW because it passes to one of the event dispatch thread’s method. Thus,

the object this refers to is marked as YELLOW. In Figure 24, there is

windowClosing method, where the state of this$0 field changes because one

of its setter methods – performExit is called. Because of this method, object

that this$0 refers to now becomes RED. In this way, Phantom Object 7232 is

concluded as RED in OT.

53

Figure 24 Segment of code of TextEditor$1Anonymous0 class

 Observation – 3

In this part, we show how DoSSO decides escape information of objects used

inside RMI methods, which are considered as thread entry points in the analysis.

For example consider the code in Figure 25.

Figure 25 RMI method r_enter of RemoteLockImpl class

In Figure 25 the remote method r_enter of RemoteLockImpl class is shown.

DoSSO considers this method as explicit thread. In the method, idmap, IDLE

and rw variables are fields of the class. IDLE and rw are only accessed but not

modified by the remote method, thus DoSSO marks objects they refer to as

54

YELLOW. Whereas, idmap is modified at line idmap.put(id, IDLE) since

put method is a setter method meaning that it sets one of the fields of idmap.

At this line, DoSSO marks the object idmap refers as RED in OT.

55

CHAPTER 6

CONCLUSION and FUTURE WORK

In this section, firstly we will mention the limitations and advantages of DoSSO.

Then we will give a conclusive summary of our work. Lastly we will state possible

future work related with the DoSSO.

DoSSO successfully determines shared objects in the input program. However, as all

other tools, it also has got its own advantages and limitations.

6.1 Limitations

 The first and the most important limitation of DoSSO is that it requires the

source codes of all methods used inside the input program. The analysis

expects all GoMs to be complete in terms of dependencies to other graphs.

Requiring all source code might be a problem. For this reason we provide a

storing utility for saving already analyzed GoMs. However, DoSSO still asks

the programmer to carefully check all the source code given as an input.

 DoSSO does not handle recursive functions. Recursive function is a function

in which it makes a call to itself.

56

 Another problem that DoSSO does not handle is an interface implementation

and polymorphism problem. Since DoSSO performs a static analysis, it

cannot distinguish among the types that implemented the same interface or

that extended the same class; this recognition can be done only at run time.

 DoSSO handles only two level reference expressions. If the input program

contains codes similar to ones given below, they have to be converted. We do

this conversion through Soot [22] which is explained in section 4.1 in more

detail.

o a.b.c.d(); - DoSSO accepts only two level reference expressions,

as stated in chapter 3, meaning that programmer should ensure that an

input program is free of multiple level expressions.

o foo(goo()); - variables passed as an argument to a method call

have to be simple, i.e. programmer has to avoid using complex

expressions like method call, assignment operation etc.

o new Thread(); - DoSSO stores objects with their reference names,

hence it is essential for all objects to have a reference name at the

initiation.

6.2 Advantages

 DoSSO is fully automated. It does not involve user interaction or interference

while performing the analysis.

 DoSSO is able to detect shared objects due to RMI objects and event handling

methods. To our best knowledge, none of previous works handle these two

issues while detecting shared objects.

 Another advantage is that DoSSO supports the design for verification

paradigm [11]. Based on the objects that DoSSO reported as potential shared

57

objects, programmer may design his/her concurrent program accordingly, and

may implement its design so that verification becomes easier later on.

 DoSSO saves the effort of developer in considering concurrency issues by

providing shared objects before the program is developed. Instead of dealing

with issues such as race condition after the program is developed, we suggest

the prevention of such faults by reporting the risky objects.

6.3 Conclusion

Developing concurrent programs is hard, because programmer has to carefully

identify shared objects and somehow protect them from being hazardously used.

Identification of shared objects has come to be performed manually, which is an

error prone process. We introduce a new tool which would resolve the problem -

DoSSO, a fully automated tool that detects shared objects in the program. We believe

that identifying all risky shared objects at the beginning of the development of a

program eases the design and implementation of the system, and decreases the cost

of programmer labor force.

We propose a new tool which performs a static analysis to find objects that become

shared. We detect objects that are shared 1) when explicitly used together with

Thread or Runnable objects, 2) when used jointly with RMI objects, and 3) when

accessed inside the event handling methods. Our analysis performs five passes over

the input program to detect shared objects. The abstract syntax tree of the input

program obtained from the source code is traversed by five different visitors to

obtain the following information: Java File information, Thread and RMI objects,

event handling methods, shared objects due to RMI objects and explicit thread

objects. We developed a new structure to store information obtained from each

method definition node – GoM. GoMs store information about object references

created and accessed inside the method scope. Escape information of objects are

58

stored in Object Table (OT) structure. Based on the information stored inside the OT,

DoSSO reports the list of shared objects in the program.

Based on our case study results, the presented tool, DoSSO, successfully identified

shared objects automatically. In this way, we believe that it is a promising tool to aid

the programmers in developing concurrent programs.

6.4 Future Work

In an object oriented program there is a hidden dependency between the methods of

an object. A field of an object is updated in a method while it used in another method

and these methods can be accessed by different threads. We call these fields as

hidden shared fields. These hidden shared objects can be detected by analyzing

relationships between getter and setter methods of an object when they are called in

different thread scopes. In the future, an algorithm for finding hidden shared fields

could be developed and integrated into DoSSO analysis.

Another future work is handling recursive functions in the analysis. Currently

DoSSO does not handle recursive functions. Nevertheless, this limitation can be

resolved by using fixpoint computation for recursions and can be accomplished in

the future work of the project.

The other future work can be extending our tool with lockset algorithm to improve

the precision of the results of the tool tailored for the programs that already contain

the synchronization mechanism.

59

REFERENCES

[1] Therac - 25. Retrieved February 16, 2009. Available:

http://www.netcomp.monash.edu.au/cpe9001/assets/readings/www_uguelph_ca_~tg

allagh_~tgallagh.html

[2] Therac - 25. Retrieved February 16, 2009. Available:

http://www.computingcases.org/case_materials/therac/case_history/Case%20History.

html

[3] North America Blackout. Retrieved February 16, 2009. Available:

http://www.theregister.co.uk/2004/04/08/blackout_bug_report/

[4] M. Naik, Effective static race detection for Java, Unpublished doctoral

dissertation, Stanford University, California, 2008.

[5] S. J. Hartley, Concurrent Programming. The Java Programming Language,

Oxford University Press, 1998.

[6] D. Lea, Concurrent Programming in Java. Design Principles and Patterns,

Second Edition, Addison – Wesley, 2000.

[7] B. Lewis and D. J. Berg, Multithreaded programming with Java technology,

Prentice Hall, 2000.

http://www.netcomp.monash.edu.au/cpe9001/assets/readings/www_uguelph_ca_~tgallagh_~tgallagh.html
http://www.netcomp.monash.edu.au/cpe9001/assets/readings/www_uguelph_ca_~tgallagh_~tgallagh.html
http://www.computingcases.org/case_materials/therac/case_history/Case%20History.html
http://www.computingcases.org/case_materials/therac/case_history/Case%20History.html
http://www.theregister.co.uk/2004/04/08/blackout_bug_report/

60

[8] A. Betin-Can and T. Bultan, "Highly dependable concurrent programming

using design for verification," Formal Aspects of Computing, vol. 19, pp. 243 -268,

2007.

[9] Java 5.0 concurrency utilities. Retrieved February 16, 2009. Available:

http://java.sun.com/j2se/1.5.0/docs/guide/concurrency

[10] Jsr – 166 concurrency utilities. Retrieved February 16, 2009. Available:

http://www.jcp.org/en/jsr/detail?id=166

[11] A. Betin-Can, T. Bultan, M. Lindvall, S. Topp, and B. Lux, "Eliminating

synchronization faults in air traffic control software via design for verification with

concurrency controllers," Automated Software Engineering Journal, vol. 14, pp. 129-

178, 2007.

[12] M. B. Ari, Principles of concurrent and distributed programming, Prentice

Hall Second Edition, 2006.

[13] D. Engler and K. Ashcraft, "RacerX: effective, static detection of race

conditions and deadlocks," in Proceedings of the nineteenth ACM symposium on

Operating systems principles, pp. 237-252, 2003.

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, "Eraser:

a dynamic data race detector for multithreaded programs," ACM Transactions on

Computer Systems, vol. 15, pp. 391 – 411, 1997.

[15] J. Voung, R. Jhala, and S. Lerner, "Relay: Static race detection on millions of

lines of code," in ESEC-FSE '07: Proceedings of the 6th joint meeting of the

European software engineering conference and the 14th ACM SIGSOFT symposium

on Foundations of software engineering, pp. 205 - 214, 2007.

http://java.sun.com/j2se/1.5.0/docs/guide/concurrency
http://www.jcp.org/en/jsr/detail?id=166

61

[16] J. Choi, A. Loginov, and V. Sarkar, Static datarace analysis for

multithreaded object – oriented programs, Technical Report, IBM Research

Division, Thomas J. Watson Research Centre, New York, 2001.

[17] J. D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff,

"Escape analysis for Java," in Conference on Object – Oriented Programming

Systems, Languages, and Applications (OOPSLA), pp. 1-19, 1999.

[18] J. Whaley and M. Rinard, "Compositional pointer and escape analysis for

Java programs," ACM SIGPLAN Notices, vol. 34, pp. 187 – 206, 1999.

[19] R. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steensgaard, and D. Tarditi,

"Marmot: an optimizing compiler for Java," Software – Practice and Experience,

vol. 30, pp. 199-232, 2000.

[20] Java Tree Builder (JTB). Retrieved February 16, 2009. Available:

http://compilers.cs.ucla.edu/jtb/jtb-2003/gjindex.html

[21] E. Gamma, R. Helm, R. Johnson and J. M. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley Professional,

1995.

[22] Soot: a Java optimization framework. Retrieved February 16, 2009.

Available: http://www.sable.mcgill.ca/soot

[23] A. Betin – Can and T. Bultan, "Verifiable Concurrent Programming Using

Concurrency Controllers," in 19th IEEE International Conference on Automated

Software Engineering, pp. 248 - 257, 2004.

[24] Symbian OS. Retrieved March 19, 2009. Available

http://www.symbian.com/symbianos/os_smp.asp

http://compilers.cs.ucla.edu/jtb/jtb-2003/gjindex.html
http://www.sable.mcgill.ca/soot

62

[25] Multithreading in Linux. Retrieved March 19, 2009. Available

http://whitepapers.techrepublic.com.com/abstract.aspx?docid=359061

63

APPENDICES

APPENDIX A

List of RED objects detected after conducting the case study.

Object Number Marking Escapes At: Signature

Phantom Object1826 RED EscapesAt: CaseStudy.controllers,

BController$1Anonymous0, updates ::

Phantom Object2415

RED EscapesAt: CaseStudy.client, TextEditor,

removeUpdate :DocumentEvent,:

Phantom Object2416

RED EscapesAt: CaseStudy.client,

TextEditor$2Anonymous1, run ::

Phantom Object2417

RED EscapesAt: CaseStudy.client,

TextEditor$2Anonymous1, run ::

Phantom Object2418

RED EscapesAt: CaseStudy.client,

TextEditor$2Anonymous1, run ::

Phantom Object2419 RED EscapesAt: CaseStudy.client, TextEditor,

removeUpdate :DocumentEvent,:

Phantom Object2491

RED EscapesAt: CaseStudy.client, TextEditor,

actionPerformed :ActionEvent,:

Phantom Object3305

RED EscapesAt: CaseStudy.client,

TextEditor$1Anonymous0, windowClosing

:WindowEvent,:

this3529

RED EscapesAt: CaseStudy.controllers, BBController,

BBController :Object,:

Phantom Object3544

RED EscapesAt: CaseStudy.client, TextEditor,

actionPerformed :ActionEvent,:

Phantom Object3566 RED EscapesAt: CaseStudy.controllers, BBController,

set$count$access$2 :int,:

Phantom Object3957 RED EscapesAt: CaseStudy.server, Server, Server ::

Phantom Object3963 RED EscapesAt: CaseStudy.client,

64

 TextEditor$2Anonymous1, run ::

Phantom Object3970

RED EscapesAt: CaseStudy.client, TextEditor,

actionPerformed :ActionEvent,:

Phantom Object3971

RED EscapesAt: CaseStudy.client, TextEditor,

actionPerformed :ActionEvent,:

Phantom Object3980

RED EscapesAt: CaseStudy.client, TextEditor,

actionPerformed :ActionEvent,:

Phantom Object3981

RED EscapesAt: CaseStudy.client, TextEditor,

actionPerformed :ActionEvent,:

Phantom Object3984 RED EscapesAt: CaseStudy.client, Worker, run ::

Phantom Object3985 RED EscapesAt: CaseStudy.controllers, BBController,

BBController :Object,:

Phantom Object3987

RED EscapesAt: CaseStudy.controllers, BBController,

BBController :Object,:

Phantom Object3988

RED EscapesAt: CaseStudy.controllers, BBController,

BBController :Object,:

Phantom Object3989 RED EscapesAt: CaseStudy.utility, Vector, setSize :int,:

Phantom Object4002

RED EscapesAt: CaseStudy.utility, Vector, lastIndexOf

:Object,:

Phantom Object4003

RED EscapesAt: CaseStudy.utility, Vector, lastIndexOf

:int,:

Phantom Object4438

RED EscapesAt: CaseStudy.client,

TextEditor$2Anonymous1, run ::

Phantom Object4690

RED EscapesAt: CaseStudy.client, TextEditor,

actionPerformed :ActionEvent,:

Phantom Object4719

RED EscapesAt: CaseStudy.client, TextEditor,

actionPerformed :ActionEvent,:

Phantom Object4720

RED EscapesAt: CaseStudy.client, TextEditor,

actionPerformed :ActionEvent,:

Phantom Object4862

RED EscapesAt: CaseStudy.client,

TextEditor$1Anonymous0, windowClosing

:WindowEvent,:

Phantom Object5454

RED EscapesAt: CaseStudy.utility, BorderFactory,

createLineBorder :Color,:

Phantom Object6105 RED EscapesAt: CaseStudy.client, Worker, run ::

Phantom Object6535

RED EscapesAt: CaseStudy.client,

TextEditor$2Anonymous1, run ::

Phantom Object6755

RED EscapesAt: CaseStudy.client,

TextEditor$2Anonymous1, run ::

Phantom Object6756

RED EscapesAt: CaseStudy.client,

TextEditor$2Anonymous1, run ::

Phantom Object6757

RED EscapesAt: CaseStudy.client,

TextEditor$2Anonymous1, run ::

Phantom Object6759

RED EscapesAt: CaseStudy.client,

TextEditor$2Anonymous1, run ::

Phantom Object6886

RED EscapesAt: CaseStudy.client, LockAttribute,

createThread :Identity,:

Phantom Object6887

RED EscapesAt: CaseStudy.client, LockAttribute,

createThread :Identity,:

Phantom Object6888 RED EscapesAt: CaseStudy.client, LockAttribute,

65

 createThread :Identity,:

Phantom Object6889

RED EscapesAt: CaseStudy.client, LockAttribute,

createThread :Identity,:

this7119

RED EscapesAt: CaseStudy.client, TextEditor, performExit

::

Phantom Object7232

RED EscapesAt: CaseStudy.client, TextEditor, initGraphics

:Vector,:

Phantom Object7297

RED EscapesAt: CaseStudy.client, TextEditor, insertUpdate

:DocumentEvent,:

Phantom Object7298

RED EscapesAt: CaseStudy.client, TextEditor, insertUpdate

:DocumentEvent,:

Phantom Object7299

RED EscapesAt: CaseStudy.client, TextEditor,

insertUpdate:DocumentEvent,:

Phantom Object7300

RED EscapesAt: CaseStudy.client, TextEditor, insertUpdate

:DocumentEvent,:

Phantom Object7301

RED EscapesAt: CaseStudy.client, TextEditor, insertUpdate

:DocumentEvent,:

Phantom Object7306

RED EscapesAt: CaseStudy.client, TextEditor,

removeUpdate :DocumentEvent,:

Phantom Object7307

RED EscapesAt: CaseStudy.client, TextEditor,

removeUpdate :DocumentEvent,:

Phantom Object7327

RED EscapesAt: CaseStudy.client, TextEditor, notify

:Identity,:

Phantom Object7328

RED EscapesAt: CaseStudy.client, TextEditor, notify

:Identity,:

Phantom Object7333

RED EscapesAt: CaseStudy.client, TextEditor, notify

:Identity,:

Phantom Object7334 RED EscapesAt: CaseStudy.client, TextEditor, notify

:Identity,:

66

APPENDIX B

Figure 26 Red Objects File

6
7

Figure 27 GoMs Folder

6
8

Figure 28 GoM information of performExit method inside the TextEditor class

