

AUTOMATIC COMPOSITION OF SEMANTIC WEB SERVICES
 WITH THE ABDUCTIVE EVENT CALCULUS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ESRA KIRCI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2008

AUTOMATIC COMPOSITION OF SEMANTIC WEB SERVICES
 WITH THE ABDUCTIVE EVENT CALCULUS

submitted by ESRA KIRCI in partial fulfillment of the requirements for the degree
of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen ____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay ____________________
Head of Department, Computer Engineering

Assoc.Prof.Dr. Nihan Kesim Çiçekli
Supervisor, Computer Engineering Dept., METU ____________________

Examining Committee Members:
Prof. Dr. Mehmet Tolun ____________________
Computer Engineering Dept., Çankaya Üniversity

Assoc.Prof.Dr. Nihan Kesim Çiçekli ____________________
Computer Engineering Dept., METU

Assoc.Prof.Dr. Ali Do�ru ____________________
Computer Engineering Dept., METU

Assoc.Prof.Dr. Ahmet Co�ar ____________________
Computer Engineering Dept., METU

Asst. Prof. Dr. Pınar �enkul ____________________
Computer Engineering Dept., METU

Date: 03.09.2008

iii

I hereby declare that all information in this document has been

obtained and presented in accordance with academic rules and ethical

conduct. I also declare that, as required by these rules and conduct, I

have fully cited and referenced all material and results that are not

original to this work.

 Name, Last name : Esra Kırcı

 Signature :

iv

ABSTRACT

AUTOMATIC COMPOSITION OF SEMANTIC WEB SERVICES

WITH THE ABDUCTIVE EVENT CALCULUS

Esra Kırcı

 M.Sc., Department of Computer Engineering

 Supervisor: Assoc. Prof. Dr. Nihan Kesim Çiçekli

September 2008, 178 pages

In today's world, composite web services are widely used in service oriented

computing, web mashups and B2B Applications etc. Most of these services

are composed manually. However, the complexity of manually composing

web services increase exponentially with the increase in the number of

available web services, the need for dynamically created/updated/discovered

services and the necessity for higher amount of data bindings and type

mappings in longer compositions. Therefore, current highly manual web

service composition techniques are far from being the answer to web service

composition problem. Automatic web service composition methods are

recent research efforts to tackle the issues with manual techniques. Broadly,

these methods fall into two groups: (i) workflow based methods and (ii)

methods using AI planning. This thesis investigates the application of AI

planning techniques to the web service composition problem and in

v

particular, it proposes the use of the abductive event calculus in this domain.

Web service compositions are defined as templates using OWL-S ("OWL for

Services"). These generic composition definitions are converted to Prolog

language as axioms for the abductive event calculus planner and solutions

found by the planner constitute the specific result plans for the generic

composition plan. In this thesis it is shown that abductive planning

capabilities of the event calculus can be used to generate the web service

composition plans that realize the generic procedure.

Keywords: Automatic Web Service Composition, OWL-S, Abductive Event

Calculus, Semantic Web Services

vi

ÖZ

ANLAMSAL ÖRÜN SERV�SLER�N�N ÇIKARIMSAL OLAY CEB�R� �LE

OTOMAT�K B�RLE��M�

Esra Kırcı

 Yüksek Lisans, Bilgisayar Mühendisli�i Bölümü

 Tez Yöneticisi: Doçent. Dr. Nihan Kesim Çiçekli

Eylül 2008, 178 sayfa

Günümüzde servis odaklı mimarinin, örün mashup'ları ve B2B uygulamaların

artmasıyla örün a�ı servisleri birle�imleri de geni� bir kullanım alanına sahip

olmu�tur. Bu örün a�ı servis birle�imlerinin büyük bir ço�unlu�u el ile

yapılmaktadır. Ancak bu i�lemin karma�ıklı�ı uygun örün servislerinin

sayısındaki artı�, devingen olarak olu�turulmu�/güncellenmi�/bulunmu� örün

servislerine olan gereksinim ve daha yüksek oranda veri ba�lama ve tür

e�leme ihtiyacı sebepleriyle gün geçtikçe artmaktadır. Dolayısıyla

günümüzde kullanılan el ile örün servisi birle�tirme yöntemleri bu problemin

cevabı olmaktan çok uzaktır. Bu sebeple son yıllarda otomatik örün servisi

birle�tirme metodlarının geli�tirilmesi için ara�tırmalar sürdürülmektedir. Bu

metodlar genel olarak iki ana sınıfta toplanabilir: (i) i� akı�ı temelli metodlar

ve (ii) yapay zeka ile planlama içeren metodlar. Bu tezde yapay zeka

planlama tekniklerinin örün servisi birle�imi problemine nasıl

vii

uygulanabilece�i ara�tırılmı� ve özellikle çıkarımsal olay cebirinin bu

alandaki kullanılabilirli�i irdelenmi�tir. Örün servisi birle�imleri OWL-S

("Servisler için OWL") dili ile �ablonlar halinde tanımlanmı� ve bu tanımlar

Prolog dilinde çıkarımsal olay cebiri planlayıcısının kullanabilece�i

aksiyomlara çevrilmi�tir. Bu aksiyomları kullanan planlayıcının buldu�u

çözümler, genel örün servisi birle�imi planının özel çözümlerini içeren kümeyi

olu�turmaktadır. Bu tezde olay cebirinin çıkarımsal planlama yeteneklerinin

genel örün servisi birle�imi yordamı için çözüm te�kil edecek planları

olu�turma amacıyla kullanılabilece�i gösterilmi�tir.

Anahtar Kelimeler: Otomatik Örün Servisi Birle�imi, OWL-S, Çıkarımsal Olay

Cebiri, Anlamsal Örün A�ları

viii

To My Parents

ix

ACKNOWLEDGMENTS

First and foremost I wish to express my sincerest gratitude and appreciation

to my supervisor, Assoc. Prof. Dr. Nihan Kesim Çiçekli, who has supported

me throughout my thesis with her encouragement, friendship, advice,

patience and knowledge. One could not wish for a better or friendlier

supervisor. I would have been lost without her.

Words fail to express my gratitude to my family, who raised me with their

caring, endless love and inseparable support and who taught me honesty

and the importance of working while always trying to be beneficial for my

country and for the whole world since I was a child.

I wish to thank M.Onur Özorhan, whose endless love, dedication and

persistent confidence in me has taken the load off my shoulders. His

strength, determination and support encouraged me throughout this work,

enabling me to get through the difficult times.

Finally, I wish to thank my best friend Simge Sarıgül for all the emotional

support, comradeship, entertainment, and caring she provided. I have always

felt very lucky for having the chance of getting to know her.

x

TABLE OF CONTENTS

ABSTRACT………………………………………………………………………...iv

ÖZ…………………………………………………………………………………...vi

ACKNOWLEDGEMENTS………………………………………………………...ix

TABLE OF CONTENTS…………………………………………………………...x

LIST OF FIGURES……………………………………………………………….xiii

CHAPTER

1. INTRODUCTION.. 1
2. RELATED WORK... 7

2.1 Web Services... 7
2.1.1 Introduction to Web Services Model... 7
2.1.2 Types of Web Services .. 9
2.1.3 Web Services Standards.. 10

2.2 Web Service Discovery.. 15
2.2.1 UDDI Registries ... 15
2.2.2 Specialized Portals and Search Engines 16
2.2.3 Peer to Peer (P2P) Methods .. 17

2.3 Web Service Composition.. 17
2.3.1 Illustrative Examples .. 19
2.3.2 Techniques for Web Service Composition 20
2.3.3 Automated Web Service Composition.................................... 22

2.4 OWL-S... 30
2.4.1 Service Profile .. 31
2.4.2 Process Model ... 32
2.4.3 Service Grounding ... 34
2.4.4 Service Composition with OWL-S .. 35

2.5 Event Calculus... 39
2.5.1 The Formalism, Predicates and Axioms of the Event Calculus 39

2.6 Planning with the Event Calculus... 44
2.6.1 Basic Concepts .. 44
2.6.2 The Abductive Theorem Prover (ATP) 45

xi

3. EVENT CALCULUS AND WEB SERVICE COMPOSITION.................. 50
3.1 Architecture of the System... 50
3.2 Advantages of Using Event Calculus... 51
3.3 Representation of Web Service Composition in Event Calculus 53

3.3.1 Representation of Web Services.. 53
3.3.2 Representation of Composition .. 55
3.3.3 Representation of Control Flow.. 58
3.3.4 Representation of Data Flow Between Web Services............ 61

3.4 Plan Generation with Abductive Theorem Prover (ATP)............ 62
3.4.1 Advantages of ATP .. 62
3.4.2 Plan Generation Example .. 62
3.4.3 Communication with the Real World 63
3.4.4 Service Execution During Planning .. 64

4. OWL-S TO EVENT CALCULUS TRANSLATION.................................. 67
4.1 Translation of the Goal State ... 68
4.2 Translation of Atomic Services .. 69
4.3 Translation of Composite Services .. 71

4.3.1 Translation of the Sequence Control Construct...................... 72
4.3.2 Translation of the Any-Order Control Construct 74
4.3.3 Translation of the Choice Control Construct........................... 76
4.3.4 Translation of the Split Control Construct............................... 77
4.3.5 Translation of the Split-Join Control Construct 78
4.3.6 Translation of the If-Then-Else Control Construct 79

4.4 Translation of the Preconditions .. 81
5. IMPLEMENTATION.. 84

5.1 Web Interface .. 84
5.2 OWL-S Parsing.. 86

5.2.1 OWL-S API... 87
5.2.2 CMU OWL-S API ... 87

5.3 Graphical Representation .. 88
5.4 Generation of Prolog code... 90

5.4.1 Incremental Prolog Code Generator 90
5.4.2 Process Model Based Prolog Generator................................ 91

5.5 Input and Output Bindings ... 93
5.6 Simple Compositions ... 96
5.7 Recursive Compositions .. 98
5.8 Handling Preconditions.. 100
5.9 Invocation and Plan Generation... 101

5.9.1 JPL Library ... 101
5.9.2 Calls from Prolog to Java ... 102
5.9.3 Calls from Java to Prolog ... 106
5.9.4 Input Types .. 108

xii

5.9.5 Service Discovery at Execution Time................................... 109
5.9.6 Plan Selection .. 110
5.9.7 Execution Mode ... 112

5.10 System Performance ... 114
5.10.1 Network Delays .. 114
5.10.2 RDF Parsing... 117
5.10.3 JPL Calls and Prolog.. 118

6. CONCLUSION AND FUTURE WORK.. 119
6.1 Summary and Conclusions.. 119
6.2 Future Work... 122

REFERENCES .. 124

APPENDICES ... 134

A. SEQUENCE EXAMPLE... 134
B. EXAMPLE IN TRAVEL DOMAIN.. 143
C. PERFORMANCE CHARTS ... 164

xiii

LIST OF FIGURES

Figure �1.1 Web Service Framework .. 8
Figure �1.2 SOAP message containing a header block and a body.............. 13
Figure �1.3 The Framework of the Service Composition System.................. 23
Figure �1.4 Planning Graph... 29
Figure �1.5 OWL-S Model ... 31
Figure �1.6 How the Event Calculus Functions ... 41
Figure �1.7 Event Calculus Predicates.. 41
Figure �1.8 (a) Total order plan (b) Partial order plan 44
Figure �1.9 Abductive Theorem Proving ... 47
Figure �3.1 The System Architecture .. 51
Figure �3.2 Representation of a Single Web Service 53
Figure �3.3 Graphical Representation of a Simple Composite Process 55
Figure �3.4 Representation of A Simple Composition 56
Figure �3.5 Graphical Representation of a Recursive Composite Process ... 57
Figure �3.6 Simple Composition with Any-Order Control Construct 65
Figure �4.1 OWL-S Representation of an Atomic Service............................. 70
Figure �4.2 Event Calculus Representation of an Atomic Service................. 71
Figure �4.3 A Composition with the Sequence Construct in OWL-S 73
Figure �4.4 Translation of Sequence to Event Calculus................................ 74
Figure �4.5 A Composition with the Any-Order Construct in OWL-S............. 75
Figure �4.6 Translation of Any-Order to Event Calculus 76
Figure �4.7 Translation of Choice to Event Calculus..................................... 77
Figure �4.8 Translation of Split to Event Calculus ... 77
Figure �4.9 Translation of Split-Join to Event Calculus 78
Figure �4.10 A Composition with the If-Then-Else Construct in OWL-S........ 80
Figure �4.11 Translation of If-Then-Else to Event Calculus........................... 80
Figure �4.12 A Precondition Example in OWL-S... 82
Figure �4.13 Translation of Precondition to Event Calculus 82
Figure �4.14 Body of the Precondition Event .. 83
Figure �5.1 OWL-S File/URL Upload Step .. 85
Figure �5.2 OWL-S Composition: Graphical Representation Step................ 90
Figure �5.3 Prolog Code Display... 93
Figure �5.4 A Sample Output Binding in OWL-S... 94

xiv

Figure �5.5 A Simple Composition in OWL-S.. 96
Figure �5.6 A Simple Composition Axiom in Prolog 97
Figure �5.7 A Recursive Composition ... 99
Figure �5.8 Prolog for An Atomic Process with a Simple Precondition........ 102
Figure �5.9 JPL Method Definitions in Event Calculus 104
Figure �5.10 JPL Call of an If Condition in an If-Then-Else Process 106
Figure �5.11 JPL Call to a Composition from Java...................................... 107
Figure �5.12 OWL-S Composition Input Screen.. 109
Figure �5.13 Plan Selection Step .. 111
Figure �5.14 Plan Execution Step ... 113
Figure �5.15 Execution Output Step.. 114
Figure �5.16 Local vs. Remote Resource Usage .. 116
Figure �5.17 Distribution of Delays in a Choice Type of Composition 117
Figure �5.18 JPL Delays for a Sample Any-Order Composition.................. 118
Figure �C.1 Performance Charts... 165

1

CHAPTER 1

INTRODUCTION

In the early days of computing, organizations were monolithic and focused

on static and centralized applications. Changes were perceived as problems

disrupting the normal flow, schedule, budget etc, and they should be

avoided. But nowadays the world is much more dynamic and fast

organizational responses to rapidly changing intra and extra organizational

requirements are needed. The need for changing the systems quickly

according to the context gives rise to the usage of off-the-shelf components.

Web service technology gains importance in this context as one of the most

prominent paradigms for building complex web based applications.

According to the IBM web service tutorial [�67] the definition of web services

is as follows: “Web services are a new breed of web application. They are

self-contained, self-describing, modular applications that can be published,

located, and invoked across the web. Web services perform functions, which

can be anything from simple requests to complicated business processes. …

Once a Web service is deployed, other applications (and other web services)

can discover and invoke the deployed service.” Web services architecture is

loosely coupled and service oriented. The Web Service Description

2

Language (WSDL) [�13] is used to describe the interface of the service. It

uses the XML format to describe the methods provided by a web service,

including input and output parameters, data types and the transport protocol,

which is typically HTTP, to be used. The Universal Description Discovery and

Integration standard (UDDI) [�74] is used to publish details about a service

provider, the services that are stored and the opportunity for service

consumers to find service providers and web service details. The Simple

Object Access Protocol (SOAP) [�24] is used for XML formatted information

exchange among the entities involved in the web service model.

One drawback of WSDL is that, it does not supply the specification of what

happens when a web service is used in a machine interpretable way. To

make use of a web service, a software agent needs a computer-interpretable

description of the service, and the means by which it is accessed. Semantic

web provides some answers to this problem. The semantic web is a set of

technologies for representing, and publishing computer-interpretable

structured information on the web. Standard languages including the

resource description framework (RDF), RDF schemas (RDFS), and the web

ontology language (OWL) have been developed for enabling the creation of

ontologies for any domain and the instantiation of these ontologies in the

description of specific web components. In an environment of semantically

annotated services, users who need to achieve certain goals could be

assisted by software agents which automatically identify and, if necessary,

dynamically compose services in order to accomplish the user's goals, which

may be either explicitly stated or derived from the situation the user is in. In

order to use semantic web techniques to automate dealings with web

services, OWL-S have been developed. OWL-S [�34] is an ontology of service

concepts that supplies a web service designer with a core set of markup

3

language constructs for describing the properties and capabilities of a web

service in an unambiguous, computer-interpretable form. OWL-S allows for

the description of a web service in terms of a Profile, which tells "what the

service does", a Process Model, which tells "how the service works", and a

Grounding, which tells "how to access the service". These semantically rich

descriptions enable automated machine reasoning over service and domain

descriptions, thus supporting automation of service discovery, composition,

and execution, and reducing manual configuration and programming efforts.

Moving onto the web service composition problem, sometimes no single web

service can satisfy the user’s requirement. In this case, there arises a need

to combine existing services so that the combination would fulfill the user’s

requirement. The service oriented architecture is based on this idea. It is

possible to create applications by combining the convenient web services

together. Recursive compositions can be created by using a composite

service as an individual service contained in the composition. To define such

an application, a flow specification is needed to describe in which order

messages have to be exchanged between the services. There are many flow

specification languages for web services like BPEL4WS [�15] and WSCI [�3].

The composition should be defined manually using these languages, but

there are some problems about it. First, the amount of available web services

is too much, and they can be created and updated on the fly. Thus the

composition system needs to detect the updating at runtime and the decision

should be made based on the up-to-date information. In addition, the web

services are usually developed by different organizations that use different

models for presenting the properties of the services. This requires the

processing of semantic information about the services, for finding the

4

suitable service and composing it. Handling these issues manually in a short

time with human intervention is beyond the human capability. Thus the ability

to efficiently select and compose web services seamlessly and dynamically

in runtime becomes an important issue, which is the so called problem of

automated web services composition. Given a repository of service

descriptions and a service request, the web service composition problem

involves finding multiple web services that can be put together in correct

order of execution to obtain the desired service [�14]. Finding a web service

that can fulfill the request alone is referred to as web service discovery

problem [�42]. When it is impossible for one web service to fully satisfy the

request, one has to compose multiple web services, in sequential or parallel,

preferably in an automated fashion [�14].

The web service composition problem is similar to the AI planning problem in

many ways, which for over three decades, has investigated the problem of

how to synthesize complex behaviors given an initial state, an explicit goal

representation, and a set of possible state transitions. It is often assumed

that a business process or application is associated with some explicit

business goal definition that can guide a planning-based composition tool to

select the right service [�37]. Both the planning problem and composition

problem seek a (possibly partially) ordered set of operations that would lead

to the goal starting from an initial state (or situation). Also, like actions in

planning domain, compositions have web services which have parameters,

preconditions, results and effects. Hence AI planning is a very suitable and

attractive method for the web service composition problem.

There is a considerable amount of work on automated web service

composition with AI planning techniques. Viewing the composition problem

5

as an AI planning problem, different planners are employed for the solution

[�32, �36, �37,�42, �44, �46]. The techniques introduced so far are using the

situation calculus, the Planning Domain Definition Language (PDDL), rule-

based planning, the theorem proving and others. For instance, the STRIPS

[�19] is the first major AI planning system to describe actions in terms of their

preconditions and effects. The Graphplan [�10] is a general-purpose planner

for STRIPS-style domains using graph algorithms. Given a problem

statement, Graphplan uses a backward search to extract a plan and allows

for partial ordering among actions. As the satisfiability approach for the

planning problems, the SATPlan algorithm [�29] is a greedy local search

method that translates a planning problem into propositional axioms and

finds a model that corresponds to a valid plan [�42].

In this thesis, it is shown that the abductive planning capabilities of the event

calculus [�50] has the necessary features to be used for the solution of web

service composition problem. Our tool constitutes a proof of concept showing

this. It is shown that the composition problem can be represented and solved

completely in a logical framework, taking the advantage of its declarative

behaviour and clear semantics, which enables the easy development and

solution of the problem. When the composition is represented as event

calculus axioms, it is possible to apply planning methods of the event

calculus given the initial state and goal state. Abduction is used in planning,

and the necessary steps for reaching the goal state are found by the planner.

The generic web service composition template is to be provided by the user,

and our tool generates a set of possible execution plans which would satisfy

the goal on execution. The generic composition definitions are represented in

OWL-S, which enables the definition of semantic information of the

composite service and the individual services included in the composite

6

service. The inputs, outputs, preconditions and effects of the services are

provided by the OWL-S and the composition is translated to event calculus

framework. In the planning process, web service discovery is needed to

guide the plans and also, after the user selects one of the generated plans

for execution, the composite service is to be executed. Both of the discovery

and execution parts are out of the scope of this thesis, so the role of these

parts are simulated.

The rest of the thesis is organized as follows. Chapter 2 gives insight

information about web services, OWL-S and the event calculus. Also current

technologies and techniques for the solution of web service discovery and

composition problems are presented. Chapter 3 presents the abductive

implementation of the event calculus and the usage of it in web service

composition problem to generate the composition plans automatically. In

Chapter 4, methods to translate service descriptions in OWL-S to event

calculus axioms are presented. The implementation of our solution is

described in Chapter 5. Finally, conclusions and possible future work are

presented in Chapter 6.

7

CHAPTER 2

 RELATED WORK

In this chapter, some background information on Web services, Web service

discovery/composition methods, OWL-S and Event Calculus is provided. The

purpose of this chapter is to describe the basic concepts, introduce the

necessary terminology, and present relevant definitions.

2.1 Web Services

2.1.1 Introduction to Web Services Model

According to W3C (World Wide Web Consortium) definition in the Web

Services Architecture document [�11], Web services are software systems

designed to support interoperable machine-to-machine interaction over a

network. They are considered as self-contained, self-describing, modular

applications that can be published, located, and invoked across the Web

[�58]. As the current Web enables users to connect to applications, the web

services enable applications to connect to other applications in a way that it

provides an interface for applications to publish their functions or messages

to the rest of the world so that other applications can use them across the

8

Web. Web services are therefore a key technology in enabling business

models to move from B2C (Business to Consumer) to B2B (Business to

Business) [�21].

There are three roles in the Web service model to accomplish the above

task, namely the service provider, the service requestor and the service

registry. The service provider publishes the service description to the service

registry. This description includes the format for requests and responses for

the service. The service requester then finds the service description via the

service registry. The description of the service in the registry contains

sufficient information for the service requestor to bind to the service provider

to use the service. So after the requestor finds the service it needs, the

service registry fullfills its task and the remaining interaction is carried over

between the service requestor and the service provider themselves. vFigure

2.1 shows a graphical representation of this traditional web service model.

Figure �1.1 Web Service Framework

9

2.1.2 Types of Web Services

Web services can be categorized in three groups according to their uses:

1. Web services as reusable application components: There are

common patterns that are used by different applications. Web

services can be used for those common parts so that each application

would not need to contain the common job, instead they can use the

Web service fulfilling that functionality. The ideal case is that, there will

only be one type of each application component, and anyone can use

it in their application.

2. Web services for connecting existing software: Web services help

solve the interoperability problem by giving different applications a

way to link their data. Using Web services one can exchange data

between different applications and different platforms.

3. Web services as parts of a bigger Web service: Usually Web

services should be connected to each other as a workflow to meet the

user’s needs. This is known as the Web service composition problem

and will be investigated in Section 2.3.

Web services can also be categorized according to the task performed inside

them. There are two categories falling into this group:

1. Information-Providing Web services: These services can be

defined as services that return information only about the initial state,

and do not have any world-altering effects. Most services of this kind

are stateless, i.e they only provide information about the current state

of the world, but do not change that state. Services such as flight

information providers, map services, temperature sensors, and

cameras can be given as examples of this kind.

10

2. World-Altering Web services: If a Web service has an effect on its

domain after the execution, it is accepted to be a World-Altering Web

Service [�5]. Services such as flight-booking programs, sensor

controllers, and a variety of e-commerce and business-to-business

services can be given as examples of this kind.

2.1.3 Web Services Standards

Web services may be defined and running on diverse environments. They

can be mapped to any implementation language, platform, object model, or

messaging system. In order to provide interoperability among applications

and Web services, some standards are defined. Firstly, Web services have

an interface described in a machine-processable format (specifically WSDL).

Other systems interact with the Web service in a manner defined by its

description using SOAP messages, typically conveyed using HTTP with an

XML serialization in conjunction with other Web-related standards [�25].

These standards have lowered costs and shortened development timelines.

The following sections provide more detailed descriptions of these standards.

2.1.3.1 WSDL (Web Services Description Language)

The web services description language (WSDL) [�13] has been developed for

the necessity of a standard way of defining services. It is an XML-based

language for describing Web services and methods of interacting with them

along with the message format and protocol details. A WSDL document

defines “services” as collections of network endpoints, or “ports” [�13], and

defines “binding” as a common mechanism used to attach a specific protocol

or data format or structure to an abstract message, operation, or endpoint,

which allows the reuse of abstract definitions. This “binding” mechanism is in

practice likely to be another XML-based standard, SOAP [�24].

11

There are two different kinds of users for WSDL documents:

• The developer: During development of an application that will use a

web service, the developer needs to know the interface to the service

that the application will bind to.

• The application: When the application is running it needs details of a

specific implementation of that service so that it can bind to it.

WSDL describes four critical pieces of data in the definition of Web services

[�28]:

• Datatype information for all message requests and message

responses.

• Interface information describing all publicly available functions.

• Binding information about the transport protocol to be used.

• Address information for locating the specified service.

It uses the following elements for these definitions [�13]:

• Types: A container for data type definitions using some type system

(such as XSD).

• Message: An abstract, typed definition of the data being

communicated.

• Operation: An abstract description of an action supported by the

service.

• Port Type: An abstract set of operations supported by one or more

endpoints.

• Binding: A concrete protocol and data format specification for a

particular port type.

• Port: A single endpoint defined as a combination of a binding and a

network address.

12

• Service: A collection of related endpoints.

2.1.3.2 SOAP

SOAP [�24] is a standard communication protocol for XML-based information

exchange between distributed applications. The acronym “SOAP” once stood

for “Simple Object Access Protocol” but SOAP Version 1.2 [�24] doesn't

define "SOAP" as an acronym anymore since it is considered to be

misleading. SOAP specifies the format of the request and response XML

documents and provides a platform for a distributed processing model where

communication is between applications or Web services via Internet. This

distributed processing model can support many message exchange patterns

such as one-way messages, request/response interactions and peer-to-peer

conversations.

SOAP is based on XML and consists of three parts: a SOAP envelope

(describing what's in the message and how to process it); a set of encoding

rules, and a convention for representing RPCs (Remote Procedure Calls)

and responses. SOAP messages can be carried by a variety of network

protocols; such as HTTP, SMTP, FTP, RMI/IIOP, or a proprietary messaging

protocol, but mainly HTTP is used for message exchange. There is a

standard way of encoding WSDL messages in SOAP to achieve

interoperability. By definition, SOAP is a stateless, one-way message

exchange paradigm; but applications can create more complex interaction

patterns by combining such one-way exchanges.

According to the SOAP Version 1.2 specification, SOAP messaging

framework consists of the following items:

13

• The SOAP processing model defining the rules for processing a

SOAP

• The SOAP Extensibility model defining the concepts of SOAP features

and SOAP modules

• The SOAP underlying protocol binding framework describing the rules

for defining a binding to an underlying protocol that can be used for

exchanging SOAP messages between SOAP nodes.

• The SOAP message construct defining the structure of a SOAP

message.

The details of these items can be found in [�24].

SOAP has an extensibility mechanism which can be used to add capabilities

found in richer messaging environments. Some example features with which

SOAP may be extended may be "reliability", "security", "correlation" and

“routing". Also SOAP may be extended with some message exchange

patterns such as request/response, one-way, and peer-to-peer

conversations.

The following example from [�24] shows a sample notification message

expressed in SOAP.
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <n:alertcontrol xmlns:n="http://example.org/alertcontrol">
 <n:priority>1</n:priority>
 <n:expires>2001-06-22T14:00:00-05:00</n:expires>
 </n:alertcontrol>
 </env:Header>
 <env:Body>
 <m:alert xmlns:m="http://example.org/alert">
 <m:msg>Pick up Mary at school at 2pm</m:msg>
 </m:alert>
 </env:Body>
</env:Envelope>

Figure �1.2 SOAP message containing a header block and a body

14

2.1.3.3 UDDI (Universal Description, Discovery and Integration)

UDDI [�74] is a platform independent registry system that provides a

standardized way for publishing and discovering services over the Internet. It

is an open industry initiative, sponsored by OASIS [�72]. UDDI is itself a web

service which uses World Wide Web Consortium (W3C) and Internet

Engineering Task Force (IETF) internet standards such as XML, HTTP, and

DNS protocols; and can be accessed via SOAP from an application that

wishes to discover web services. UDDI specifies interfaces for applications to

publish and discover web services. WSDL can be considered as the main

interface but a UDDI entry actually contains more than just a WSDL interface

and implementation, it can also include further metadata such as quality of

service parameters, payment mechanisms, security and keywords for

resource discovery. UDDI discovery mechanisms can be classified as both

keyword and table-based.

There are three main parts of UDDI:

• White Pages: Contact information about the businesses that

developed the Web services is listed.

• Yellow Pages: Web services are organized according to their

categories.

• Green Pages: Technical details of offered services (WSDL

descriptions) are given.

With these standards we have the infrastructure to publish (WSDL, UDDI),

find (WSDL, UDDI) and bind (WSDL, SOAP) web services in an

interoperable manner.

15

2.2 Web Service Discovery

Web service discovery is "the act of locating a machine processable

description of a Web service that may have been previously unknown and

that meets certain functional criteria" [�11]. Generally speaking, the need for

web service discovery could emerge in two phases: development phase and

execution phase [�22].

In the development phase the designer of the composition or an intelligent

software agent discovers the services that will be necessary to build a

composition. In the execution phase, instances of services matching a

specific interface will be discovered, to replace or assist services already in a

composition.

The challanges in service discovery are the heterogenity of the descriptions,

ontological and vocabulary related disagreements and the scattered

distribution of service providers.

There are several approaches to web service discovery, these are:

centralized Universal Description, Discovery and Integration (UDDI)

registries, specialized portals, search engines and peer to peer methods [�6].

2.2.1 UDDI Registries

UDDI is an open industry initiative supervised by OASIS [�72] and has been

proposed as a core web service standard in 2000. UDDI specification

includes APIs to allow querying and publishing information to the registry, the

data model for services to be stored on the registry. Being a centralized and

16

XML based corporate information repository, UDDI registries were planned

to be the key indexes for publicly available web services.

Since 2006, most of the publicly available UDDI registries have been

discontinued and UDDI has been mostly used as an internal repository within

the company networks [�6]. The main reasons for the less than expected

popularity of UDDI are: (i) the need for keywords, service name and manual

selection of discovered services, (ii) lack of coverage of the web services

available publicly (iii) the simplicity of the available search tools (iv) lack of

correlations between web services and quality of service information.

There are several approaches trying to incorporate the semanticity of OWL-S

with the keyword based capabilities and centralized indexing of UDDI by

adding OWL-S descriptions to UDDI registries [�56].

2.2.2 Specialized Portals and Search Engines

There are specialized portals and search engines for web services discovery

like XMethods, BindingPoint, Web Service List and StrikeIron [�6]. Most of

these web sites allow the manual registration of services, and some of them

also have intelligent crawlers for web service indexing themselves. Search

engines such as Google also index web service descriptor documents. Using

text search methods an agent can search through WSDL and OWL-S

documents to find services required.

Even though the traditional search engines have a much larger database of

service descriptions in contrast to specialized portals, there are no

specialized query methods for the service description documents. To

improve the performance of search engines in web service discovery, web

17

service providers can use standardized vocabularies such as eClass [�66]

and search engine providers can implement different searching and

processing routines for WSDL/OWL-S files.

2.2.3 Peer to Peer (P2P) Methods

P2P overlay networks provide infrastructures for routing information between

the nodes of a decentralized environment. In a P2P web service discovery

environment, the nodes of the network may also be the publishers of the

services they index. Proposed P2P systems for web service discovery

include CAN [�47], Pastry [�49] and Chord [�57].

In the P2P overlay systems nodes are assigned id numbers from a global

address space. Each peer in the network stores information about the

network to appropriately route queries. Peers consult their lookup tables

when a query is received and route the query to an appropriate peer that

stores the queried key [�22].

The advantage of P2P service discovery is that the users can access more

up-to-date web services, since the hosts in the P2P network can publish and

update their web services dynamically.

2.3 Web Service Composition

Recently, many companies and organizations prefer to implement just their

core business, and outsource other applications they use by making use of

web services over the Internet. So it has become an important issue

finding/selecting the right web services to fulfill the given goal and integrating

18

them easily and efficiently. But this task has become more difficult because

of the poliferation of web services. It becomes even more difficult when there

is no web service capable of satisfying the functionality required by the user,

but there should be a combination of existing web services in order to fulfill

the request. The problem of combining multiple web services to satisfy a

single task is called web services composition problem, and a considerable

amount of research has been done on it in academia and in industry [�46].

Manual, semi-automated and automated solutions are proposed to the

problem. In manual solutions, the user generates the workflow, finds the

services and sends them to the execution engine. However due to the

increase on the number of services it becomes more and more diffucult for

users to deal with locating the exact services and integrating them. Semi-

automated techniques facilitates user tasks by making suggestions for

service selection, however the user is still responsible for constructing the

workflow and making service selection from a short list [�28]. Automatic

techniques aim to select, combine, integrate and execute web services to

achieve a user’s objective automatically.

Service composition in general can be differentiated into synthesis and

orchestration [�31]. Synthesis refers to generating a plan how to achieve a

desired behavior by combining the abilities of multiple services. In contrast,

orchestration refers to coordinating the control and data flow among the

various components when executing that plan [�31]. Orchestration is an

important problem that is complementary to synthesis. Examples of "service

composition" approaches referring to orchestration include [�45, �8]. In this

thesis, focus is on automatic synthesis.

19

2.3.1 Illustrative Examples

The following is a motivating example for web service composition problem

from [�42]: Suppose there are two web services available: (1) findRestaurant:

returns a name, phone number, and address of the closest restaurant

provided a zip code and food preference; and (2) findDirection returns driving

direction and a map image provided a start and destination addresses.

“Sylvie” visits “State College, PA” on a business trip and stays in the

“Atherton” hotel at “100 Atherton Ave, 16801, PA.” Now, she wants to find a

Thai restaurant near the hotel along with a driving direction. We can see that

neither of two web services can satisfy the request alone. findRestaurant can

find a Thai restaurant near the hotel, but cannot provide a driving direction.

On the other hand, the web service findDirection can give a direction from

one location to another, but cannot locate a restaurant. Therefore, one has to

combine both web services to jointly satisfy the request as follows: (1) invoke

findRestaurant(“16801”, “Thai”) to get the address of the closest restaurant,

say “410 S. Allen St. 16802, PA”; and (2) invoke the web service

findDirection(“100 Atherton Ave, 16801, PA”, “410 S. Allen St. 16802, PA”) to

get the driving direction.

Some other examples posed to be solved with the help of automatic web

service composition techniques are [�5]:

• Traveling Domain: It is the domain of trip planning systems that offer

to query and book transportation and accommodation according to

user-defined constraints [�27]. A typical problem of this domain is to

plan a trip for a conference attendance with constraints like the date

and place of the conference, preferences for certain hotels or airlines

[�37].

20

• Appointment Scheduling Domain: It is the domain of schedule

organizing systems that offer multiple appointments according to user

constraints. A typical instance is arranging a schedule after a visit to a

doctor that involves tasks of prescription filling in pharmacy, diagnostic

tests in different medical test centers and a final follow-up meeting

with the doctor [�9].

• Commercial Sale Domain: It is the domain of electronic sale system

that offers purchasing of items according to customer constraints or

quality of service (QoS) [�60] parameters. For instance a customer

wants to buy a microprocessor but s/he does not want to know where

or how to buy the item [�36].

2.3.2 Techniques for Web Service Composition

As the need for the web services composition is grown, several techniques

have been risen up for this area. There are several composition languages

that have been proposed for defining the web services composition, such as

BPML [�2], IBM's WSFL [�26, �33], Microsoft's draft of XLANG [�59], and

Business Process Execution Language for Web Services (BPEL4WS) [�1].

Almost all of these flow languages use/extend WSDL as the web service

definition language.

XLANG models the entities as services and specifes interaction among their

operations using contract construct. The details of how a service performs its

work are given in the behaviour section using any of sequential, concurrent,

conditional, loop and non-deterministic constructs. The main differences

between XLANG and WSFL are that XLANG does not provide for separate

control and data link specification, and it has support for delay and rollback-

recovery (called compensation) of operations.

21

BPEL descriptions are XML documents, which describe the roles involved in

the message exchange, supported port types and orchestration, and

correlation information as aspects of a process. BPEL4WS is a service

composition model, which supports both, composition and coordination

protocols. It also consists of an activity-based component model, an

orchestration model that allows the definition of structured activities, XML

schema data types, a service selection model and a mechanism for

exception, event and compensation handling. BPEL4WS has become a

standard for defining the business process for the Web services composition

later.

Despite all these efforts, web service composition is still a very complex and

challenging task, and dealing with it manually is beyond the human

capability. The problems with it can be listed as follows [�46]: First, the

number of services available over the web increases dramatically during the

recent years, and one can expect to have a huge web service repository to

be searched. Second, web services can be created and updated on the fly,

thus the composition system needs to detect the updating at runtime and the

decision should be made based on the up to date information. Third, web

services can be developed by different organizations, which use different

models to describe the services, but, there does not exist a universal

language to define and evaluate the web services in an identical means.

Therefore, building composite web services with an automated or

semiautomated tool is a very critical issue.

Before performing a web service composition, some basics to enable service

composition have to be performed. Six different issues that have a large

impact on service composition have been identified: Coordination,

22

transaction, context, conversation modelling, execution monitoring,

infrastructure. Details can be found in [�17].

Web service composition methods can be grouped according to the following

categories of composition strategies:

• Static or dynamic composition strategies

• Model driven service composition

• Business rule driven service composition

• Declarative service composition

• Automated or manual service composition

• Small or large scale composition

• Compositions using simple or complex operator

• Template-based, interface-based, and logic-based systems

We will investigate the automated service composition methods in the

following section. Details about the other categories can be found in [�42], [�17]

and [�20].

2.3.3 Automated Web Service Composition

Automated web service composition allows service consumers to generate

and change the composition structure on the fly and adapt it to changing

conditions. Despite its difficulties, dynamic service composition provides

several benefits to the emerging applications, namely, flexibility, adaptability,

and availability. It accelerates rapid application development, service reuse,

and complex service creation.

23

2.3.3.1 Web Services Composition Framework

A general framework for automated web services composition is proposed in

[�46] and depicted in Figure 2.3.

Figure �1.3 The Framework of the Service Composition System

This composition system has two kinds of participants, service provider and

service requester. The service providers propose Web services for use. The

service requesters consume information or services offered by service

providers. The translator translates between the external languages used by

the participants and the internal languages used by the process generator.

For each request, the process generator tries to generate a plan that

composes the available services in the service repository to fulfill the

request. If more than one plan is found, the evaluator evaluates all plans and

proposes the best one for execution. The execution engine executes the plan

and returns the result to the service provider. Then the provider sends the

result to the requestor.

24

2.3.3.2 Automatic Web Service Composition Methods

For automatic composition of web services, several techniques have been

proposed, which define how the process generator in Figure 2.3 generates

the process. The automation in this context means that either the method

can generate the process model automatically, or the method can locate the

correct services if an abstract process model is given [�46]. These methods

can be grouped under two categories: Workflow based and AI planning

based methods. These categories will be explained in the following sections

with example methods for each group.

2.3.3.2.1 Workflow Based Composition Techniques

When composing web services, the business logic of the client is

implemented by several services. The definition of the service composition

includes a set of atomic services with the control/data flow information

among them. This is analogous to workflow management, where the

application logic is realised by composing autonomous applications. The

current achievements on flexible workflow, automatic process adaption and

cross-enterprise integration provide the means for automated web services

composition as well. In addition, the dynamic workflow methods provide the

means to bind the abstract nodes with the concrete resources or services

automatically [�46].

There are two kinds of workflow generation techniques [�46]:

• Static Workflow Generation: With this technique, the abstract

process model should be provided by the client prior to planning. The

abstract process model includes a set of tasks and their data

25

dependency. Each task contains a query clause that is used to search

the real atomic web service to achieve the task. In this technique, only

the selection and binding of atomic web service is done automatically.

Most commonly, the process model is provided to the tool as a graph,

but methods are also included using a language to represent the

model. This language may be a commonly used standard or may be

specifically defined for the tool in question.

EFlow [�12] uses static workflow generation methods where a

composite process is modelled as a graph manually and may be

updated dynamically. The graph may include service, decision and

event nodes. The tasks in the workflow are however not semantically

annotated. Automatic discovery of web services is based on a

definition contained in each service node in the graph.

• Dynamic Workflow Generation: With this technique the process

model is also created automatically in addition to the selection and

binding of atomic services. In this case, the client should specify the

constraints of the composition. More information on this technique can

be found in [�40] and [�16]. These research are based on homogenous

environments and require no mediation amongst services.

2.3.3.2.2 AI Planning Based Composition Techniques

Given a set of goals and a set of process specifications, it is possible to

derive a sequence of process instances which can accomplish those goals

using AI planning methods. AI planning methods are widely used for the web

service composition problem. The reason for this is the great similarity

26

between these two fields, and the high maturity level of the AI planning

methods. Both the planning problem and composition problem seek a

(possibly partially) ordered set of operations that would lead to the goal

starting from an initial state (or situation). Operations of the planning domain

are actions (or events) and operations of the composition domain are the

web services [�14�14]. To apply AI planning methods to automatic web service

composition problem, services are represented as actions having

parameters, preconditions, results and effects; and service composition is

treated like a planning problem. With this approach each web service is first

translated to a planning operator, the objective is expressed as a logical

condition, and the planner generates a plan which is essentially a sequence

of web service instances; that is, a sequential composition that causes the

goal condition to be true upon execution [�54]. The AI planning methods are

used when the requester has no process model but has a set of constraints

and preferences; hence the process model can be generated automatically

by the program [�46].

Using AI planning techniques for web services composition introduces some

challenges which are defined in [�32] as follows: The traditional planning

systems assume that the planner begins with complete information about the

world. However, in web service composition problem, most of the information

(if it is available) must be acquired from the web services, or may require

prior use of such information-providing services. In many cases, however, it

is not feasible or practical to execute all the information-providing services up

front to form a complete initial state of the world. Some other challenges can

be found in [�54].

27

Viewing the composition problem as an AI planning problem, different

planners are employed for the solution. Here, some of the existing work are

highlighted.

• Situation Calculus: In [�37], McIlraith and others presented a method

to compose web services by applying logical inferencing techniques

on predefined plan templates. This technique focuses on the process-

centric description of services as actions that are applicable in states.

The states of the world and the world-altering actions are modeled as

Golog programs, and the information-providing services are modeled

as external functions calls made within those programs. Golog is a

logic programming language built on top of the situation calculus and

it supports specification and execution of complex actions in

dynamical systems. Semantic representations of state, actions, goals

are needed for composing services. The service capabilities are

annotated in DAML-S/RDF and then manually translated into Prolog.

The goal is stated as a Prolog-like query and the answer to that query

is a sequence of world-altering actions that achieves the goal, when

executed in the initial state of the world. During the composition

process, however, it is assumed that no world-altering services are

executed. Instead, their effects are simulated in order to keep track of

the state transitions that will occur when they are actually executed.

� Hierarchical Task Network Planning: An approach using HTN

planning was proposed in [�55], facilitating the SHOP2 system [�41].

This approach is based on the relationship between OWL-S used for

describing web services and Hierarchical Task Networks as in HTN

Planning. OWL-S processes are translated into tasks to be achieved

28

by the SHOP2 planner, and SHOP2 generates a collection of atomic

process instances that achieves the desired functionality. The

advantage of the approach is its ability to deal with very large problem

domains [�44], and authors claim that the HTN planner is more efficient

than other planning languages, such as Golog.

� PDDL: PDDL, the “Planning Domain Definition Language" [�23], is a

widely accepted language for expressing planning problems and

domains. It allows to describe the requirements of planning domains

and the capabilities of planners in a uniform way. This enables to

easily select the best suited planner for a particular composition task.

The structure of it is also very similar to DAML-S. For web service

composition, DAML-S descriptions could be translated to PDDL

format, so that different planners could be exploited for further service

synthesis. A PDDL based tool for automatic web service composition

is presented in [�43]. The tool transforms web service composition

problems into AI planning problems and delegates them to the

planners most suitable for the particular planning task.

• Graph Based Planning: Generally, the graph based planning

consists of two interleaved phases: extending the planning graph, and

searching for plans. A planning graph is a directed leveled graph as in

Figure 2.4 [�62].

Graphplan [�10] is the first planning algorithm using a planning graph. It

consists of two kinds of alternating levels, state levels and service

levels. The first level consists of initial states. The second level

consists of services whose preconditions are present in the first level.

The third level consists of the states appearing in the first level and

29

the states brought by the services in the second level as their effects.

In this way the graph is extended by state levels and service levels

alternatively.

Figure �1.4 Planning Graph

When the graph reaches a level where all goal states are present, the

algorithm searches for plans. Graphplan uses a backward search to

extract a plan and allows for partial ordering among actions. A valid

plan is a subgraph satisfying some conditions [�10].

� Estimated Regression Planning: Estimated-Regression is a

planning technique in which the situation space is searched with the

guide of a heuristic that makes use of backward chaining in a relaxed

30

problem space [�36]. A regression planner starts with a state satisfying

the goal and searches for action instances that bring the planner

closer to the initial state. To apply this method to composition domain,

the estimatedregression planner called Optop [�36] translates the

composition problem to a PDDL planning problem and tries to solve it.

As an instance of the General-WSC procedure, a state is a situation in

Optop, which is essentially a partial plan. The solution function checks

whether the current situation satisfies the conjunction of the goal

literals given to the planner as input, and the children-of function

computes a regression-match graph and returns the successors of the

current situation [�4].

2.4 OWL-S

OWL -short for Web Ontology Language- is a semantic markup language for

publishing and sharing ontologies on the World Wide Web according to W3C

[�7]. It is used as the language for defining compositions in this thesis.

OWL-S -formerly DAML-S- is built on OWL, and is used for describing

semantic web services. OWL-S has been developed within the

DARPA/DAML program and currently is a W3C recommendation. OWL-S is

serialized using RDF/XML syntax.

The need for OWL-S arose with the emergence of semantic web. With

semantic web, software agents will be able to access content on the web

easily. Software agents should also be able to discover, invoke, compose

and monitor services on the Web easily, with a high level of automation [�34].

31

This need can be fulfilled by OWL-S, which provides constructs for defining

semantic web services that can be interpreted easily by computers.

An OWL-S specification for a web service can be formed of three main parts,

which are:

• Profile: for service advertisement and discovery

• Process: for describing service's operation model in detail

• Grounding: for disclosing technical details on how to communicate

with the service.

Figure �1.5 OWL-S Model

2.4.1 Service Profile

Service profile section of an OWL-S documents is aimed for both human

reading and service seeking agents, and includes service name, description

and contact information about the publisher. This part does not directly

32

contribute to the semantics of the service description, unless software agents

use text mining techniques.

A service-seeking agent or a matchmaking agent assisting a service-seeking

agent can use the service profile to see whether the service meets its needs

[�34].

Service profile includes a “serviceCategory” section, which refers to an

ontology of services that are offered. High level services can include

classification on top of industry taxonomies (i.e. NAICS [�71]). A sample

profile specification for an airline company is provided below:

<profile:serviceCategory>
 <addParam:UNSPSC rdf:ID="UNSPSC-category">
 <profile:value>Travel Agent</profile:value>
 <profile:code>90121500</profile:code>
 </addParam:UNSPSC>
</profile:serviceCategory>

Using process ontology, service profiles can model inputs, outputs,

preconditions and effects (hereafter called IOPEs) of the related process.

These IOPEs, just like the profile itself are useful until the service selection is

made, because once the service is selected the client will use the Process

Model of the service to interact with it, thus the Process Model in a way

subsumes the information contained in the Service Profile.

2.4.2 Process Model

Process model of the service describes how a software agent can interact

with the service. An atomic process is a service which responds with a set of

outputs when provided a set of inputs in a single step. A composite process

33

is a set of services in which the client advances its state by communicating

with sub-processes step by step.

There are two main types of services: information providing and world

altering services, as defined in Section 2.1.2. While inputs and outputs are

used to model information providing services, preconditions and effects are

used to model world altering services.

The process model includes the set of inputs and outputs of each service.

For composite service definitions, the input-output bindings are also provided

to describe the data flow of the composition (i.e. where a service's output is

the input of another service). Input/output bindings carry an important role in

service composition since all the connectivity relies on them. A sample

output binding is provided below:

<process:OutputBinding>
 <process:toParam rdf:resource="#PreferredFlightItinerary"/>
 <process:valueSource>
 <process:ValueOf>

<process:theVar
rdf:resource="#BookFlight_PreferredFlightItinerary"/>

 <process:fromProcess rdf:resource="#PerformBookFlight"/>
 </process:ValueOf>
 </process:valueSource>
</process:OutputBinding>

In the above example, BookFlight_PreferredFlightItinerary output from the

atomic PerformBookFlight process is bind to PreferredFlightItinerary output

of the current composite process.

Process model also contains the preconditions and outputs for the included

services. These constructs can be described in logical languages such as

34

DRS (Discourse Representation Structures), SWRL (Semantic Web Rule

Language) or KIF (Knowledge Interchange Format) [�73]. A sample

precondition with SWRL is provided below:

<expr:expressionBody rdf:parseType="Literal">
 <swrl:AtomList>
 <rdf:first>
 <swrl:ClassAtom>
 <swrl:classPredicate rdf:resource="#LoggedIn"/>
 <swrl:argument1 rdf:resource="#AcctName"/>
 </swrl:ClassAtom>
 </rdf:first>
 <rdf:rest rdf:resource="&rdf;#nil"/>
 </swrl:AtomList>
</expr:expressionBody>

In the above example, the condition examines whether the given account

name variable is logged in, by checking its class.

Preconditions are meant to be evaluated in the client side, and limit the

range of inputs and states that are to be used while invoking a service. When

the preconditions of a process are met and inputs are provided, the

associated outputs and effects (as a couple called “results”) in the process

should occur.

Composite processes and control constructs are also specified in the

process model, which are examined in detail in Section 2.4.4 below.

2.4.3 Service Grounding

The grounding part of the OWL-S description contains the wiring information

for the given service. Communication protocols, message formats, url

addresses and port numbers are specified in this part.

35

Since OWL-S 1.1, grounding specification targets WSDL 1.1. The grounding

specifications are made in WsdlGrounding element, which is just a collection

of WsdlAtomicProcessGrounding elements. Each instance of

WsdlAtomicProcessGrounding denotes a one to one correspondence

between an atomic process defined in OWL-S and a WSDL operation.

2.4.4 Service Composition with OWL-S

There are three types of processes in OWL-S: atomic processes, simple

processes and composite processes. The atomic processes are services that

can be directly invoked with groundings, and they do not contain any sub-

processes. They execute at a single step.

A simple process is an abstraction of a process, atomic or composite. It does

not contain a grounding, therefore it is not executable. The reason for a

simple process is to enable easier planning for software agents. In the

OWL-S description, a simple process can be realized by an atomic process

or expanded to a composite process.

Composite processes are composed of atomic or other composite

processes, via control constructs such as Sequence, If-Then-Else, Split-Join

etc. These control constructs are defined in OWL-S process ontology. A

composite process is not a program that gets automatically invoked by itself

once the inputs for the initial process are provided, rather the client can

follow the steps described by the composition with the specified inputs to get

the expected outputs. The types of compositions available in OWL-S are

examined in the next section.

36

2.4.4.1 Sequence

A Sequence construct lists a series of atomic or composite processes to be

executed in the specified order. A sample process with Sequence structure is

provided below:
<process:composedOf>
 <process:Sequence>
 <process:components>
 <process:ControlConstructList>
 <list:first>
 <process:Perform rdf:ID="PerformProcess1">
 <process:process rdf:resource="#Process1" />
 </process:Perform>
 </list:first>
 <list:rest>
 <process:ControlConstructList>
 <list:first>
 <process:Perform rdf:ID="PerformProcess2">
 <process:process rdf:resource="#Process2" />
 </process:Perform>
 </list:first>
 <list:rest rdf:resource="&shadow-rdf;#nil" />
 </process:ControlConstructList>
 </list:rest>
 </process:ControlConstructList>
 </process:components>
 </process:Sequence>
</process:composedOf>

In the above example, a composite process with a Sequence of two

processes is decribed (data flow is intentionally left out). The client is

expected to invoke Process1 and Process2 in the given order.

2.4.4.2 If-Then-Else

The If-Then-Else construct has an if condition, then case and else case. The

if condition can be represented in one of the aforementioned logical

languages. A sample If-Then-Else construct is provided below. In this

example, the TestVariable is tested whether it is of the TestClassPredicate

37

class, and if it is, Then process, if not the Else process is executed by the

client.

<process:If-Then-Else>
 <process:ifCondition>
 <expr:SWRL-Condition>
 <rdfs:label>IfCondition</rdfs:label>
 <rdfs:comment>This condition is an if condition</rdfs:comment>
 <expr:expressionBody rdf:parseType="Literal">
 <swrl:AtomList>
 <rdf:first>
 <swrl:ClassAtom>
 <swrl:classPredicate rdf:resource="#TestClassPredicate"/>
 <swrl:argument1 rdf:resource="#TestVariable" />
 </swrl:ClassAtom>
 </rdf:first>
 <rdf:rest rdf:resource="&rdf;#nil" />
 </swrl:AtomList>
 </expr:expressionBody>
 </expr:SWRL-Condition>
 </process:ifCondition>
 <process:then>
 <process:Perform rdf:ID="PerformThen">
 <process:process rdf:resource="#Then" />
 </process:Perform>
 </process:then>
 <process:else>
 <process:Perform rdf:ID="PerformElse">
 <process:process rdf:resource="#Else" />
 </process:Perform>
 </process:else>
</process:If-Then-Else>

2.4.4.3 Split

Split, is an asynchronous construct, which contains a bag of processes

instead of a list of processes to be executed. When a Split composition is

invoked, all the processes in the construct are scheduled for execution at the

same time and the composite process is completed right after the

scheduling. The responses of the individual processes in the Split bag are

not waited.

38

2.4.4.4 Split+Join

Split+Join is a similar construct to a Split construct in the sense that it

contains a bag of processes, and does not have an ordering amongst the

processes it contains, but unlike the Split construct it carries a synchronous

nature. The Split+Join composite process returns response when each and

every individual process returns response.

2.4.4.5 Any-Order

In an Any-Order composition, an unspecified ordering is made within a bag

of processes that are defined by the composition, and all the responses of

the child processes are awaited by the composite processes. This construct

is different than a Split+Join construct since the execution of the individual

services can not be concurrent, they can not overlap, and different from the

Sequence construct since the ordering of the bag of services is not specified

explicitly, they can be executed in any order the client requests.

<process:composedOf>
 <process:Any-Order>
 <process:components>
 <process:ControlConstructBag>
 <list:first>
 <process:Perform rdf:nodeID="Perform1" />
 </list:first>
 <list:rest>
 <process:ControlConstructBag>
 <list:first>
 <process:Perform rdf:nodeID="Perform2" />
 </list:first>
 <list:rest rdf:resource="&list;#nil" />
 </process:ControlConstructBag>
 </list:rest>
 </process:ControlConstructBag>
 </process:components>
 </process:Any-Order>
</process:composedOf>

39

In the above example, the processes contained in Perform1 and Perform2

are executed in any order the client requests.

2.4.4.6 Choice

The Choice construct specifies a bag of services, from which the client

should select one and execute. This construct is useful in the cases where

identical services are replicated and defined for backup or redundancy

purposes.

2.4.4.7 Repeat-Until and Repeat-While

Both of these iterable constructs provide a way to re-initiate service calls until

a condition becomes true or false. Repeat-While tests the condition and

proceeds with the operation and stops if the condition becomes false.

Repeat-Until does the operation, tests the condition and stops if the condition

becomes true. Since the condition test is made after the operation in the

Repeat-Until construct, the related service is invoked at least once.

2.5 Event Calculus

2.5.1 The Formalism, Predicates and Axioms of the Event

Calculus

In situation calculus [�35], a changing world is represented by a discrete and

strictly ordered sequence of "snapshots", each representing the complete

state of the world at a given instant. It is hard to represent partially ordered or

simultaneous events, or continuous change in situation calculus because of

this structure. To overcome this problem, several new formalisms were

developed. The introduction of the event calculus from Kowalski and Sergot

[�30] is one such formalism. It is a logic programming paradigm for

40

representing events (or actions) and their effects, especially in database

applications [�53]. Here, actions/events mean the activities which have an

effect on the fluents in the world around them, and fluents are properties that

can hold or not hold. A number of alternative formulations, implementations

and applications of the Event Calculus have sprung up, aiming to

accommodate constructs intended to enhance the expressiveness of event

calculus. These new dialects have been developed in a number of logic

programming forms; in classical logic , in modal logic and as an “action

description language”. In these forms, event calculus is extended in the

context of many different areas including planning, abductive reasoning, etc

[�38]. One such extension is introduced by Murray Shanahan in [�52, �53]. In

the event calculus described by Kowalski and Sergot, all change is discrete.

But it needs to be extended to be able to represent continuously changing

quantities. [�52] presents such an extension and the event calculus version

discussed here will be this version. It is based on first-order predicate

calculus with circumscription, and is capable of representing a variety of

phenomena, including actions with indirect effects, actions with non-

deterministic effects, compound actions, concurrent actions, and continuous

change. This version also presents a straightforward solution to the frame

problem.

The event calculus can be defined as a logical mechanism that infers what’s

true when given what happens when and what actions do. The “what

happens when” part is the plan (temporal ordering, sequence of Happens(…)

and a description of the initial state); and the “what actions do” part is the

domain dependent sentences and information about the effects of actions.

The “what actions do” part describes the effects of events described in “what

happens when” part. Figure 2.6 from [�53] shows this graphically.

41

Figure �1.6 How the Event Calculus Functions

In the event calculus, some predicates are used in order to define the theory

of a specific problem domain, i.e for saying what happens when, for

describing the initial situation, for describing the effects of actions, and for

saying which fluents hold at what times. Figure 2.7 [�5] lists some of these

predicates.

Figure �1.7 Event Calculus Predicates

42

The “what happens when” part in Figure 2.6 corresponds to the predicates

“Initially” and “Happens”; the “what actions do” part corresponds to the

“Initiates” and “Terminates” predicates; and “what’s true when” part

corresponds to the “HoldsAt” predicate.

Event Calculus representations consist fundamentally of the following

constructs [�61]:

1. Domain dependent sentences: Sentences which explain the effects

of actions and provide information about initial states:

Initiates(�,�,�): Action � initiates fluent � at some time point �

Terminates(�,�,�): Action � terminates fluent � at some time point �

2. Domain independent axioms: These axioms are the heart of the

event calculus. They define which fluents hold and do not hold at

specific time points. The definitions of these axioms are as follows.

• The predicates Clipped/Declipped define a time frame for a fluent

that is overlapping with the time frame of an event which

initiates/terminates or releases this fluent respectively [�5]. Relevant

axioms are:

Clipped(t1,f,t4) � ∃a,t2,t3 [Happens(a,t2,t3) ∧ t1 < t3 ∧ t2 < t4 ∧

 [Terminates(a,f,t2) ∨ Releases(a,f,t2)]]

 Declipped(t1,f,t4) � ∃a,t2,t3 [Happens(a,t2,t3) ∧ t1 < t3 ∧ t2 < t4

 ∧ [Initiates(a,f,t2) ∧ Releases(a,f,t2)]]

43

• The axioms that define whether a fluent holds since the initial state

are as follows. A fluent holds at some time t if it was initially true and

has not been terminated (clipped):

HoldsAt(f,t) � Initially(f) ∧ ¬Clipped(0,f t)

A fluent does not hold at some time t if it was initially held but was

terminated (declipped):

 ¬HoldsAt(f,t) � Initially(f) ∧ Declipped(0,f,t)

• The axioms that define whether a fluent holds or not at a specific

time are as follows. A fluent holds at some time t3 if an event

happens before t3 which initiates the fluent and the fluent is not

terminated during the event (clipped):

HoldsAt(f,t3) � Happens(a,t1,t2) ∧ Initiates(a,f,t1) ∧ t2 < t3 ∧

¬Clipped(t1,f,t3)

A fluent does not hold at some time t3 if an event happens before t3

which terminates the fluent and the fluent is not initiated during the

event (declipped):

¬HoldsAt(f,t3) � Happens(a,t1,t2) ∧ Terminates(a,f,t1) ∧ t2 <t3 ∧

¬Declipped(t1,f,t3)

3. Goal: Goals indicate specific times when certain events occurred.

They are a finite conjunction of HoldsAt(…) predicates and optionally

Happens(…) clauses.

4. Narrative: A finite sequence of Happens(…) predicates and temporal

orderings, such as “t1<t2” meaning that t1 occurs before t2.

5. Initial situation: It is used to describe the state of fluents at the initial

time. The initial situation is not mandatory.

44

Initallyp(�): Fluent � initially holds at the start time point.

6. Uniqueness of names: This defines a common sense rule that

actions are unique and are not identical to other actions.

2.6 Planning with the Event Calculus

2.6.1 Basic Concepts

A plan is a sequence of actions that allows you to achieve a desired goal.

There are two kinds of plans:

1. Total ordered plans: The sequence of actions in the plan are totally

ordered, so no parallel execution is possible.

2. Partial ordered plans: They consist of a partially ordered list of

actions, that are either ordered before or after another and some

actions are unordered, so parallelism is supported.

Figure 2.8 illustrates graphical representations of these kinds of plans.

Figure �1.8 (a) Total order plan (b) Partial order plan

The event calculus supplies a logical foundation for deductive, abductive,

and inductive reasoning in the following ways [�53]:

45

• Deduction: In a deductive task, “what happens when” and “what

actions do” are given and “what’s true when” are required. Deductive

tasks include temporal projection or prediction, where the outcome of

a known sequence of actions is sought.

• Abduction: In an abductive task, “what actions do” and “what’s true

when” are supplied, and “what happens when” is required. In other

words, a sequence of actions is sought that leads to a given outcome.

Examples of such tasks include temporal explanation or postdiction,

certain kinds of diagnosis, and planning.

• Induction: In an inductive task, “what’s true when” and “what happens

when” are supplied, and “what actions do” is required. In this case,

we’re seeking a set of general rules, a theory of the effects of actions,

that accounts for observed data. Inductive tasks include certain kinds

of learning, scientific discovery, and theory formation.

2.6.2 The Abductive Theorem Prover (ATP)

The event calculus has been used mainly for deductive reasoning in

database applications. Developing a notation to represent actions and

change is the fundamental issue with AI planning. The event calculus

representation is suitable for this, and Kave Eshghi was the first to show that

the event calculus could be used for planning using abduction instead of

deduction [�18]. Shanahan further improved this by encoding the event

calculus axioms in meta-level and presented this meta-interpreter planning

system written in Prolog language in [�50] as an abductive theorem prover

(ATP) which is a second order logical prover. Several other abductive event

calculus planners were developed. In this thesis the one Shanahan

described in [�50], and extended in [�5] to cover issues related with service

composition will be used since it goes beyond the work of its predecessors.

46

For the plan generation phase, the initial state and the goal clause are

defined and provided to the planner and abduction is used for finding out the

plans as web service compositions to reach the goal. The abductive theorem

prover (ATP) returns a set of time stamped events that would lead the plan

from the initial state to the goal. Multiple plans are found with the help of

backtracking mechanism of Prolog. The generated plans are sets of events

represented by happens predicates and the temporal relationship between

them represented by before predicates.

2.6.2.1 Generation of Plans

ATP takes a list of goal clauses and tries to find out a plan that contains the

narrative. It tries to solve the goal list proving the elements one by one.

Abductive planning continues until all axioms which are unified with goal

clauses are proved.

During the resolution, abducible predicates, which are before and happens,

are stored in a residue to keep the record of the narrative. This process is

depicted in Figure 2.9 [�5].

The axioms for the process are not directly written as implications but they

are defined inside the predicate axiom in order to gain control of the

abduction process. By adding a meta-level predicate this way, normal flow of

Prolog is altered and an extra degree of control is added which makes it

possible to adjust the order in which the subgoals of holds_at are solved. For

example, although the initiates predicate is resolved immediately, further

work on the sub-goals of initiates is postponed until the resolution on

47

happens and before to prevent looping. Also, the predicate Ab is used to

denote the theorem prover. During the process, axiom bodies are resolved

by the Ab and this technique allows Ab to reach bodies of the axioms.

Goal

AxHead1 AxBody11 AxBody1N

AxHeadM AxBodyM 1 AxBodyMK

Residue

AxBody12

Abducible

Abducible

AxHeadX AxBodyX AxHeadY AxBodyY

Abducibles

Abducibles

Abducibles

Add to residue

Unification

Logical "and" in axiom body

Logical " implies" for axiom head

Axiom Head

Axiom Body Literal

List of Axiom Body Literals

Figure �1.9 Abductive Theorem Proving

48

The goal of the ATP is to find out a residue containing the narrative, given a

list of goal clauses. For each specific object level axiom of the event

calculus, a meta-level Ab solver rule is written. The following examples of

this are taken from [�5].

In the object level axiom below, AH is the head of the axiom and AB1 to ABN

is the body definition of the axiom:

AH � AB1 ∧ AB2 ∧ … ∧ AB3

This axiom is translated to the following predicate form for the ATP:

Axiom (AH, {AB1, AB2, …, ABN})

Axiom bodies are resolved by Ab but not Prolog itself since Ab populates the

abducibles inside the residue [�5]. A simple version of Ab solver which solves

general axioms is as follows, such that RL:residue list, GL: goal list, A: axiom

head and AL: axiom body:

Ab(GL, RL) � GL = ∅

Ab({A} U GL, RL) � Abducible(A) ∧ Ab(GL, {A} U RL)

Ab({A} U GL, RL) � Axiom(A, AL) ∧ Ab(AL U G, RL)

Abducible literals are declared via the Abducible predicate, and are added to

the residue. The axioms which are not abducible are inserted into the goal

list to be resolved with other axioms.

When negative axioms are to be proven, a technique called negation-as-

failure is used to prove it. When literals added to the residue, previously

proved negated goals may no longer be provable. This is because the

negations of axioms are proven according to the absence of contradicting

evidence, but the new members of residue might change it by proving the

axioms positive. So negated goals have to be recorded and rechecked each

49

time the residue is modified. An Ab version handling negated axioms is as

follows [�50]:

Ab(GL, RL, NL) � GL = ∅

Ab({A} U GL, RL, NL) � Abducible(A) ∧

 Consistent(NL, {A} U RL) ∧ Ab(GL, {A} U RL, NL)

Ab({A} U GL, RL, NL) � Axiom(A, AL) ∧ Ab(AL U G, RL, NL)

Ab({¬A} U GL, RL, NL) � Irresolvable({A}, RL) ∧

 Ab(AL U G, RL, {A} U NL)

The last argument of the Ab predicate (NL) is a list of negated goals, which is

recorded for subsequent checking.

In this chapter, introductory information about the technologies and concepts

used in this work has been given. OWL-S is used as the language for web

service composition definitions in our work. For generating the steps leading

an application from an initial state to a goal state, AI planning methods are

used. Specifically, an abductive event calculus planner is employed for

resolving the intervening steps constituting the actions which are the

solutions to the composition problem.

50

CHAPTER 3

 EVENT CALCULUS AND WEB SERVICE COMPOSITION

The event calculus, described in the previous chapter, serves as the

framework for representing the web service compositions and applying

abductive theorem proving techniques. In this chapter, methods for achieving

these issues will be investigated.

3.1 Architecture of the System

In our system, generic web service composition definitions are taken, and

they are translated to event calculus domain for finding the possible plan set

with the abductive planner. A subset of OWL-S ontology is used as the

language for the generic composition definition. The generic composition

definition is translated to event calculus axioms in Prolog language as

compound events. The abductive planner in event calculus generates the

plans which would lead the user to the desired goal on execution. Figure 3.1

shows the architecture of our system graphically

In the planning process, the planner is in a continuous interaction with the

real world to get the available services which can be used in the plan in order

to achieve the goal. The plan acquires its structure step by step with this

51

information on the discovered services. In a single step of planning, a

separate plan is generated for each discovered service for the step in

question. The list of generated plans is then presented to the user in an

interactive graphical user interface for selection of the preferred plan for

execution. The preferred plan is then executed with the parameters provided

by the user, and the goal is reached.

Figure �3.1 The System Architecture

The web service discovery and execution parts are out of the scope of this

thesis, so only primitive structures are implemented for them in this thesis.

The translation from OWL-S to event calculus will be explained in Chapter

IV, and the implementation details of this architecture are explained in

Chapter V. In this chapter, it will be shown how abductive planning

capabilities of the event calculus can be used to solve the web service

composition problem.

3.2 Advantages of Using Event Calculus

The planning problem in the event calculus is formulated in simple terms as

follows [�14]: Given the domain knowledge containing possible events in that

52

domain and how the fluents are affected from those events (i.e. a conjunction

of specific axioms happens, initiates, terminates for that domain), the event

calculus axioms (i.e. holdsAt, clipped, declipped) and a goal state (e.g.

holdsAt(f,t)), the abductive theorem prover generates the plan which is a

conjunction of (i.e. abducible literals) time stamped happens predicates and

temporal ordering predicates. The event calculus provides an elegant way to

represent the changes of the world through actions. The choice of event

calculus as the domain for planning is motivated by both practical and formal

needs, and gives several advantages. The primary advantage is that, the

event calculus ontology has the necessary properties and components to

represent a generic composition description, making it possible to map the

description to the logical representation in its domain. The event calculus

ontology includes an explicit time structure that enables it to express the

temporal ordering of the events included in the composition. It is possible to

represent totally ordered or partially ordered sets of events with the capability

to express concurrency, or sequential ordering of events. Another advantage

is that, the semantics of non-functional requirements can be represented in

event calculus enabling the transfer of preconditions/effects of web services

involved in the composition. Also, it is possible to define conditional

constructs for the representation of conditional components belonging to the

generic composition definition. So, in this thesis the abductive event calculus

planner (ATP) described in [�50], and extended in [�5] will be used for

representing the generic composition definition and generating a composite

process as the output of planning.

53

3.3 Representation of Web Service Composition in Event

Calculus

In order to use abductive event calculus, first of all the web service

composition definition should be translated to the domain of planning namely

the event calculus axioms described in Section 2.5, so that the properties of

the composite service are specified in the form of a logical sequent to be

proven. The following sections describe how the generic web service

composition definition, the web services involved in the composition and the

data/control flow are represented in event calculus.

3.3.1 Representation of Web Services

In general, semantic web services have the properties input, output,

precondition and effect. In the event calculus, they are modeled as events

with parameters for inputs and outputs. Figure 3.2 illustrates a generic

representation of a web service in the event calculus.

axiom(happens(serviceName([InputList], [OutputList]), T1, T2),

[

[preconditions],

jpl_webServiceName([InputList], [OutputList])

]).

Figure �3.2 Representation of a Single Web Service

54

In this figure, the name of the web service should begin with a lower-case

letter and input/output parameters should begin with upper-case letters. An

example definition would be:

axiom(happens(pCurrencyCon(Price,Currency,OutputPrice),T1,TN),

[

jpl_pPrecondition(Currency,IsValidCurrency),

jpl_pCurrencyCon(Price,Currency,OutputPrice)

]).

The name of the above web service is “CurrencyCon”. It takes “Price” and

“Currency” as inputs and returns the price in the provided currency as the

output “OutputPrice” if it is a valid currency. This service runs in the time

interval [T1, TN]. The jpl method definitions constitute the interface between

the planner and the real world. Interaction with the web service discovery

module is carried on by these methods. The details of jpl methods will be

investigated in Section 3.4.3 and Chapter V.

The preconditions, if there are any, are modeled inside the definition of the

web service. If they are not satisfied, the event fails and no plan containing

this event is generated.

The effects can also be modeled similary. Only world-altering web services

can generate effects, but in the planning phase no world altering services are

executed. They are executed via the web service execution module only

when the user selects the preferred plan.

55

3.3.2 Representation of Composition

The compositions are modeled as sets of events accompanied with the

necessary data and control flow information provided to represent the

structure of the generic composition definition. Control flow information

reveals the sequence of the services’ execution; and data flow reveals the

message bindings among the parameters of the services.

Two kinds of composition types are defined according to the approaches for

translating them to the event calculus: simple compositions and recursive

compositions:

3.3.2.1 Simple Compositions

If a composite process is constructed only with atomic processes, this

composition is called a simple composition. In a simple composition there is

only one composition construct and a single level of composition. Only

atomic web services can be included in a simple composition. To be more

specific, if the composition type is one of Sequence, Split-Join, Choice…etc.

and all the contained sub-processes are atomic processes, the composition

is said to be a simple composition. The graphical representation of an

example simple composite process, with a Sequence control construct can

be seen in Figure 3.3.

Figure �3.3 Graphical Representation of a Simple Composite Process

56

In Figure3.3, the simple composite web service is named “BookPrice” and it

gives the price of a book in the desired currency. It is composed of three

atomic web services which are supposed to run sequentially. The first

service finds the ISBN of the book whose name is provided by the user, the

second service finds the price of the book with the provided ISBN from the

first service, and the third service converts the found price to the desired

currency.

In the event calculus, a simple composite process is modeled as a

compound event which contains the declarations of the participating atomic

web services as simple events. The atomic web services are declared in a

timely fashion for expressing control flow according to the type of

composition. The definitions of atomic web services should also be added to

the model as individual events as described in the previous section.

An example axiom for a simple process definition in the event calculus is as

follows:

axiom(happens(pBookPrice(Currency, BookName), T1, TN),

[

 happens(pBookFinder(BookName, BookInfo), T2, T2),

 happens(pBNPrice(BookInfo, Price), T3, T3),

happens(pCurrencyCon(Price, Currency, OutPrice),T4, T4),

 before(T1, T2),

 before(T2, T3),

 before(T3, T4),

 before(T4, TN)

]).

Figure �3.4 Representation of A Simple Composition

57

The events for individual services, i.e “pBookFinder”, “pBNPrice” and

“pCurrencyCon” and relevant jpl methods should also be defined as in Figure

3.2.

3.3.2.2 Recursive Compositions

If a composite process includes another composite process as one of its

subprocesses, then this composition is called a recursive composition. In

recursive compositions, there are multiple levels of composite processes in

contrast to simple compositions. The graphical representation of an example

recursive composite process can be seen in Figure 3.5.

Figure �3.5 Graphical Representation of a Recursive Composite Process

In Figure 3.5, the main, or the outermost composition is the recursive

composition structured according to the composition control construct

Sequence containing four more compositions: one Split-Join (marked with

pink), one If-Then-Else (marked with yellow), and two other Sequence

(marked with arrows) types. The blue recktangles represent the atomic

services.

In a simple composition there is only one composite axiom representing the

composite event, whereas in the recursive composition there are as many

58

composite axioms as the composite process count. Each composite process

should be axiomatized according to its type and the indvidual processes

contained in it. The axiom for the recursive composition includes the

declarations of the contained atomic and/or composite web services. Each

contained composite process should also be axiomatized in a recursive

fashion until there remain only atomic web services to be represented as

individual events.

The structure of the axioms for recursive compositions is the same as the

simple one’s depicted in Figure 3.4. The only difference between the

representations is that, for the recursive compositions, the contained axioms

corresponding to the contained composite web services also need to be

defined as the main recursive composition axiom. The details and examples

will be provided in Chapter V.

3.3.3 Representation of Control Flow

In the event calculus, the temporal relationships between the web services

defining the flow of control of the generic composition definition are

represented by the predicate before. As the name implies, “before (T1, T2)”

means that T1 is a former timestamp in timeline than T2. It is possible to

model sequential and concurrent activities with this predicate. This enables

the total and partial ordering of events for the planning process. Also it is

possible to represent conjunctions, disjunctions and temporal iterations as

well [�48].

There are two types of events according to their durations. First group

contains events occuring in an instant and do not have a significant duration.

They are represented as:

59

happens(E1, T1) or

happens(E1, T1, T1)

Second group contains the events having a duration bounded by start and

finish times of the event, and are represented as:

happens(E1, T1, T2).

For the second group the predicate before (T1, T2) is included implicitly.

There is no need to define it again.

3.3.3.1 Modelling Sequential Activities

The sequential activity is modeled as follows for the first and second groups.

For the first group:

happens(E1, T1),

happens(E2, T2),

before(T1, T2)

For the second group:

happens(E1, T1, T2),

happens(E2, T3, T4),

before(T2, T3)

60

3.3.3.2 Modelling Concurrent Activities

Obviously, if the timestamps of the events are equal, then those events are

said to be concurrent. For the following examples, E1 and E2 are concurrent

events.

happens(E1, T1),

happens(E2, T1)

Or,

happens(E1, T1, T2),

happens(E2, T1, T2),

Also, when there is no relative ordering between the timestamps of events,

then those events are assumed to be concurrent. The following example

from [�14] illustrates this. In this example there is no time relationship between

E2 and E3, so they are assumed to be concurrent. The example for the

second group is similar.

happens(E1, T1),

happens(E2, T2),

happens(E3, T3),

happens(E4, T4),

before(T1, T2), before(T2, T4),

before(T1, T3), before(T3, T4)

61

3.3.4 Representation of Data Flow Between Web Services

As a result of web service compositions’ nature, outputs of atomic or

composite processes can be the inputs of other processes in the

composition. The individual web services comprised in the composition

operate as autonomous and separate entities being executed on the servers

they are hosted and they are not subject to a form of centralized monitoring.

But the composition itself is supposed to be executed by the client owning

the composition. As a result, the wiring of the input/output parameters

between the atomic or composite web services should be handled also in the

side owning the composition.This is necessary in order not to lose the path

for the flow of data between the services and invoke the services with the

inputs dynamically obtained in the runtime.

In the event calculus, this data flow is handled via parameter names of the

events. In a specific axiom, all the variable names which point to a certain

value should have the same name. For example, in Figure 3.4, the second

input parameter “BookName” of the composite service “pBookPrice” is used

also as the input for “pBookFinder” process. The same naming of the

parameter ensures that the input of the composite process “pBookPrice” will

be provided to the process “pBookFinder” as its input. Also, the parameter

“BookInfo” is declared both in “pBookFinder” and “pBNPrice” processes. This

means the output of the first process “BookInfo” will be the input of the

second process.

Using the techniques described in this section, a comprehensive

representation of the generic composition definition in the event calculus can

be maintained. Having this representation in hand, it is possible to apply the

abductive planning techniques for generating the list of possible plans for the

62

generic composition. The following section describes how the planning is

accomplished for a composition defined in event calculus.

3.4 Plan Generation with Abductive Theorem Prover (ATP)

In this thesis, the Abductive Theorem Prover is used as a planner in the

event calculus framework in the planning phase. The theoretical grounding of

planning with ATP has been given in Section 2.6. In this section, the

advantages of using ATP and an example illustrating how the plans are

generated with it will be presented in addition to some issues about planning

in our tool.

3.4.1 Advantages of ATP

The advantages of ATP can be summarized as follows [�51]: It supports

reasonably complex event calculus plans. It tackles the issue of hierarchical

planning. The event calculus formalism used is not just a logic program, but

is specified in first-order predicate calculus augmented with circumscription.

It can handle actions with context-dependent effects; and since it uses

abduction to solve initiates and terminates goals, the planner is both sound

and complete.

3.4.2 Plan Generation Example

A simple example showing how abduction can be used in planning will be

shown here. With the use of abduction, the planner generates a sequence of

actions leading from an initial state to a final state.

63

In the example from [�39], given that Nathan was not awake and then he was

awake, it is possible to abduce that he woke up with ATP. In order to perform

abduction with ATP, first a file containing the relevant event calculus axioms

are created. In our case the file, named sleep.pl contains the following:

axiom(initiates(wake_up(X),awake(X),T),[]).

axiom(terminates(fall_asleep(X),awake(X),T),[]).

axiom(initially(neg(awake(nathan))),[]). abducible(dummy).

executable(wake_up(X)). executable(fall_asleep(X)).

Then Prolog is started and event calculus planner and sleep.pl files are

consulted (loaded) to it. Then the following query is issued to Prolog:

abdemo([holds_at(awake(nathan),t)],R).

Given the above axioms and goal, the event calculus planner produces the

following plan:

R = [[happens(wake_up(nathan), t1, t1)], [before(t1, t)]]

It is found out by abduction that, Nathan should perform the action

“wake_up” before time t in order to satisfy the situation that he was awake at

time t.

3.4.3 Communication with the Real World

In the planning process, the planner is in a continuous interaction with the

real world to get the available services which can be used in the plan in order

to achieve the goal. Since the plan generation is a dynamic process, in every

step of the planning process where an atomic web service is to be

64

processed, there needs to be an interaction with the real world to get the

information about the discovered services. The interaction is with the web

service discovery module, which, in theory, takes the semantic descriptions

of atomic web services included in the generic composition definition, and

returns the set of convenient and available web services as a result of its

internal discovery mechanism. This communication is achieved through jpl

method definitions, that provide an interface between the planning process

and the discovery module. There is a single jpl method for each event

representing an atomic web service. That single jpl method manages all the

necessary data transfers and transformations. It provides the semantic

information of the services needed by the planner, provided the inputs are

taken from the user. The plans are generated and listed with this gathered

information including service name and parameters.

Once the user selects the preferred plan, the next phase of planning begins.

In this phase, the information providing services included in the selected plan

are executed, and the results are shown to the user. This execution is also

handled via jpl calls. The jpl method definitions handle the case where there

is more than one output of the atomic service description, and also there is

more than one web service found by the discovery module for the event in

question. This dynamic structure will presented in Chapter V.

3.4.4 Service Execution During Planning

In the plan generation phase, the inputs defined in the generic composition

definition are provided by the user and the outputs of the individual atomic

services are taken after the execution of the found services provided by the

discovery module. The services executed in the planning phase and guiding

65

the plan generation process are only information-providing web services. The

world-altering services are not executed, because changing the state of the

world would result in unwanted harm unless the plan in question is not

selected by the user for execution. For example, it may be desired querying

the price of a book from a set of web services in order to find the cheapest

one, but buying the book, which has a world-altering effect, needs

confirmation from the user. The plan containing the step for buying the book

should be selected by the user explicitly and confirmed for execution.

When there are multiple services found by the discovery engine, a separate

plan for each of them is generated. Also, for multiple steps having multiple

discovered services, combinations of the found services are taken. Consider

the following generic composition definition given in Figure 3.7. This

composition is a simple composition having “Any-Order” structure as the

control construct. In this service, the execution order of the services does not

matter, so plans including the found services in any order are valid.

Figure �3.6 Simple Composition with Any-Order Control Construct

For this composition, assume that there are two services found for the “Zip

Code Finder Process” Z1, Z2; and one service for the “Book Finder Process”

66

B1. In this case, ATP will generate plans including Z1 and B in any order, and

also including Z2 and B in any order. There will be four plans as folows:

Plan 1 - Step 1: B, Step 2: Z1

Plan 2 - Step 1: B, Step 2: Z2

Plan 3 - Step 1: Z1, Step 2: B

Plan 4 - Step 1: Z2, Step 2: B

In this chapter, the plan generation phase with the generic composition

definition provided in event calculus has been explained. But in our system,

generic compositions are defined in OWL-S. The composition structure as

well as the user constraints should be declared in OWL-S files and provided

to our system. Next chapter presents the methods for translating generic

compositions in OWL-S to the event calculus domain.

67

CHAPTER 4

 OWL-S TO EVENT CALCULUS TRANSLATION

In our system, a subset of OWL-S ontology is used as the language for

generic composition definitions, which are the specifications for how to

compose a sequence of atomic process executions. It is possible to define

the composition abstractly using the process model part of OWL-S. The

grounding information is not needed in our system, since the exact services

will be discovered and provided by the service discovery module. The profile

part is not needed either, but it would be beneficial for the discovery module.

The abstraction mechanism of OWL-S helps service discovery engines to

easily understand the properties of the composition. The advantage of using

OWL-S is that, it is possible to express the composition structure and the

interaction scenarios of the services (data/control flow) as well as the

necessary information for the discovery of the composite service and the

atomic services included in the composition. The generic composite services

are translated to event calculus axioms automatically with our tool. In this

chapter, we will show how to encode a composite process composition

problem as an abductive event calculus planning problem, so that our tool

can be used with OWL-S web services descriptions to automatically

generate a composition of web services calls.

68

4.1 Translation of the Goal State

A plan is a set of events resulting in the goal state on execution. The plans

are returned by the planner as answers to the query declaring the goal state.

The query for the abductive theorem prover, stating the goal situation is

defined as an event calculus axiom as follows.

abdemo([holds_at(pCompositeProcessPlanned(InputList), t)], R).

Here, the lower-case letter “p” is added as a prefix to the name since the

predicates should begin with a lower-case letter. Also, the word “Planned” is

attached to the name of the composite process as a suffix. It could be

another word either; the point here is that the name should be different from

the original process name.

This query reveals the set of plans which satisfy the

“pCompositeProcessPlanned” predicate at time t with the input list (InputList)

of the composite process provided by the user. An actual query example

would be as follows.

abdemo([holds_at(pBookPriceProcessPlanned('YTL',

 'Madam Bovary'),t)],R).

The predicate “pCompositeProcessPlanned” is a construct for linking the

goal state to the main process axiom. It is used as follows:

initiates(pCompositeProcess(InputList),
 pCompositeProcessPlanned(InputList), T).

69

Here “pCompositeProcess” is the name of the main composite process. The

predicate “pCompositeProcessPlanned” is initiated by “pCompositeProcess”.

Since the goal state is the satisfaction of pCompositeProcessPlanned, it is

possible only if “pCompositeProcess” is satisfied. So by this way the planner

is guided to prove “pCompositeProcess”, which is the main composite

process axiom. An example initiates axiom is as follows.

initiates(pBookPriceProcess(OutputCurrency,BookName),

 pBookPriceProcessPlanned(OutputCurrency, BookName), T).

In this example, the main composite process is “BookPriceProcess”, having

the input parameters “OutputCurrency” and “BookName”. The OWL-S

description of an example having a Sequence control construct, and its

translation to event calculus can be found in Appendix A.

4.2 Translation of Atomic Services

Atomic services are translated into simple events of the event calculus. An

atomic service in OWL-S can be seen in Figure 4.1. This atomic service

named "AtomicProcess1" has 2 inputs, "Input1" and “Input2" and an output,

“Output1”. Some constructs of OWL-S such as comments, bindings, etc. are

not included for simplicity throughout this chapter. Also, there are so many

alternatives for representation of processes in OWL-S which are all valid.

Some of them are shown here. For other alternatives ontology description

[�73] can be used.

This atomic process is translated to an event calculus axiom as an event with

the same name as the atomic process with the lower-case letter “p” attached

70

as a prefix. The inputs and outputs of the process are the parameters of the

event with upper-case letters.

<process:AtomicProcess rdf:ID="AtomicProcess1">
<rdfs:label> AtomicProcess1 </rdfs:label>
<process:hasInput>
 <process:Input rdf:ID="Input1">

<process:parameterType
 rdf:datatype="&xsd;#anyURI">&xsd;#string

 </process:parameterType>
 </process:Input>
</process:hasInput>
<process:hasInput>

<process:Input rdf:ID="Input2">
 <process:parameterType
 rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>

</process:hasInput>
<process:hasOutput>

<process:Output rdf:ID="Output1 ">
<process:parameterType
 rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Output>

</process:hasOutput>
</process:AtomicProcess>

Figure �4.1 OWL-S Representation of an Atomic Service

The inputs of the event are instantiated with the inputs provided by the user,

and outputs are the results of the execution of the actual information-

providing services. The time interval in which the service is active is

described by the time tags “T1, TN” which are the last two parameters. They

are used to cache results for operations. If operations are not cached

according to their time points then different effect axioms of the same atomic

71

process would be associated with different outputs which might result

conflicting effects when the world altering web service operations are

invoked to collect outputs [�14]. The translation of the atomic process in

Figure 4.1 can be seen in Figure 4.2.

axiom(happens(pAtomicProcess1(Input1,Input2,Output1),T1, TN),

[

 jpl_pAtomicProcess1(Input1,Input2,Output1)

]).

Figure �4.2 Event Calculus Representation of an Atomic Service

4.3 Translation of Composite Services

Composite processes are composed of subprocesses, and specify

constraints on the ordering and conditional execution of the subprocesses.

The constraints are captured by the “composedOf" property in OWL-S, which

is required for a composite process [�73], and they are similar to standard

workflow structures. Composite processes are constructed using control

constructs and references to processes are called “Perform”s in OWL-S

ontology. Performs may be references to atomic or composite processes,

and they are composed using other “ControlConstruct”s. The minimal initial

set of control constructs according to [�73] includes Sequence, Split, Split +

Join, Any-Order, Condition, If-Then-Else, Iterate, Repeat-While and Repeat-

Until. These constructs are translated into compound events in the event

calculus framework. The subprocesses in a composition can be either atomic

or composite processes. So, the translation of the control constructs is

recursively applied to the processes until all composite processes are

replaced with the corresponding axioms that contain atomic processes as

72

stated in [�14]. The translation of some of the flow control constructs into the

event calculus axioms is presented in the following sections. The Repeat-

While and Repeat-Until constructs are not within the scope of this thesis, so

their translations are not included. The abstract and more generic

formulations for the translations can be found in [�5].

4.3.1 Translation of the Sequence Control Construct

When the Sequence construct is used, all the sub-processes contained in it

are to be executed sequentially in order. An example composite process

definition containing a Sequence control construct can be seen in Figure 4.3.

There two sub-processes in this definition. The inputs, outputs, bindings and

some other OWL-S constructs are omitted for simplicity. A real composition

including most of the control constructs with their comprehensive definitions

can be found in Appendix B.

The translation is accomplished through the use of compound events in the

event calculus which contain sub-events [�14]. The sequence of events is

triggered from the body of the compound event and the ordering between

them is ensured with the “before” predicate, satisfying the ordering in the

OWL-S definition. The event calculus axiom which is the translation of the

composition in Figure 4.3 is given in Figure 4.4.

73

<process:CompositeProcess rdf:ID="SequenceExample">
<process:composedOf>

<process:Sequence>
<process:components>
 <process:ControlConstructList>
 <list:first>
 <process:Perform rdf:ID="PerformProcess1">
 <process:process rdf:resource="#Process1" />
 </process:Perform>
 </list:first>
 <list:rest>
 <process:ControlConstructList>
 <list:first>
 <process:Perform rdf:ID="PerformProcess2">
 <process:process rdf:resource="#Process2" />
 </process:Perform>
 </list:first>
 <list:rest rdf:resource="&list;#nil" />
 </process:ControlConstructList>
 </list:rest>
 </process:ControlConstructList>
</process:components>
</process:Sequence>

</process:composedOf>
</process:CompositeProcess>

Figure �4.3 A Composition with the Sequence Construct in OWL-S

axiom(happens(pSequenceExample([InputList],[OutputList]),T1, TN),

[

happens(pProcess1([InputList], [OutputList]), T2, T3),

 happens(pProcess2([InputList], [OutputList]), T4, T5),

before(T1, T2),

before(T3, T4),

before(T5, TN)

74

]).

Figure �4.4 Translation of Sequence to Event Calculus

4.3.2 Translation of the Any-Order Control Construct

According to the OWL-S process ontology, Any-Order control construct

allows the sub-processes contained in it to be executed in some unspecified

order but not concurrently. The sub-processes are specified in a structure

named “ControlConstructBag”. Execution and completion of all components

is required. The execution of processes in an Any-Order construct cannot

overlap, i.e. atomic processes cannot be executed concurrently and

composite processes cannot be interleaved. An example composition with

Any-Order construct can be seen in Figure 4.5.

<process:CompositeProcess rdf:ID="AnyOrderExample">
<process:composedOf>

<process:Any-Order>
<process:components>
 <process:ControlConstructBag>
 <list:first>

 <process:Perform rdf:ID="PerformProcess1">
 <process:process rdf:resource="#Process1" />
 </process:Perform>

</list:first>
<list:rest>

 <process:ControlConstructList>
 <list:first>
 <process:Perform rdf:ID="PerformProcess2">

 <process:process rdf:resource="#Process2" />
 </process:Perform>

</list:first>
 <list:rest rdf:resource="&list;#nil" />
 </process:ControlConstructList>
</list:rest>
</process:ControlConstructBag>

</process:components>
</process:Any-Order>

75

</process:composedOf>
</process:CompositeProcess>

Figure �4.5 A Composition with the Any-Order Construct in OWL-S

The ordering of the sub-processes can be any permutation of them. So, a

permutation predicate is needed for the translation, which is as follows.

jpl_permutation([A, B], [A1, B2]):-

 permutation([A, B], [A1, B2]),

 true.

The definition of the permutation method includes the permutation

method from Prolog library, and extends it by returning the value “true”. This

is necessary because this permutation method is used in the compound

event calculus axiom representing the Any-Order composite process, and if it

does not return “true”, then the whole event would fail. The translation of the

composition in Figure 4.5 can be seen in Figure 4.6 below. In this translation,

the plans are generated for all permutations of the processes.

axiom(happens(pAnyOrderExample([InputList],[OutputList]),T1,TN),

[

jpl_permutation([pProcess1([InputList], [OutputList]),

 pProcess2([InputList], [OutputList])],

 L1, L2]),

happens(L1, T2, T2),

happens(L2, T3, T3),

before(T1, T2),

before(T2, T3),

before(T3, TN)

76

]).

Figure �4.6 Translation of Any-Order to Event Calculus

4.3.3 Translation of the Choice Control Construct

The Choice construct calls for the execution of one of the sub-processes

from a given bag of control constructs containing them. Any of the given

control constructs may be chosen for execution. OWL-S representation of

Choice control construct is the same as the Any-Order representation in

Figure 4.5, except the construct name is “Choice” instead of “Any-Order”.

For the translation of the Choice, an event is created for each sub-process

included in the Choice construct. By this way, different plans, each having

one of the sub-processes can be generated. The translation of a composite

process having two sub-processes can be seen in Figure 4.7.

axiom(happens(pChoiceExample([InputList],[OutputList]),T1,TN),

[

happens(pProcess1([InputList], [OutputList]), T2, T3),

before(T1, T2),

before(T3, TN)

]).

axiom(happens(pChoiceExample([InputList],[OutputList]),T1,TN),

[

happens(pProcess2([InputList], [OutputList]), T2, T3),

before(T1, T2),

before(T3, TN)

77

]).

Figure �4.7 Translation of Choice to Event Calculus

With the above translation, there will be two plans generated, since there are

two possible orderings of two processes. One plan will include just the

Process1 and the other plan will include just the Process2.

4.3.4 Translation of the Split Control Construct

When the Split control construct is used, the composite process consists of

concurrent execution of a bunch of sub-processes. No further specification

about waiting, synchronization, etc. are given. It is similar to the usage of

"Concurrent" or "Parallel" structures in other ontologies. It terminates when

all of its sub-processes are scheduled to be executed.

The OWL-S representation of Split construct is similar to Any-Order

construct in Figure 4.5, except the “<process:Any-Order>” should be

replaced with “ <process:Split>”. The translation of it is given in Figure 4.8.

axiom(happens(pSplitExample([InputList],[OutputList]),T1,TN),

[

happens(pProcess1([InputList],[OutputList]),T2,T3),

happens(pProcess2([InputList],[OutputList]),T4,T5),

before(T1,T2),

 before(T1,T4),

 before(T1,TN)

]).

Figure �4.8 Translation of Split to Event Calculus

78

As seen in the translation, a Split process immediately completes when the

sub-processes are scheduled, but not already executed. The completion of

executions of them is not waited and it is not checked whether the sub-

processes execute and terminate successfully. Split is somewhat similar to

an asynchronous method call.

4.3.5 Translation of the Split-Join Control Construct

Compositions with the Split-Join construct consist of concurrent execution of

a bunch of sub-processes. Unlike Split construct, it is used for ensuring that

the component processes are completed within the time segment of the

composite process. A Split-Join process waits until all its sub-processes are

completed their executions.

The OWL-S description is similar to the one for Any-Order in Figure 4.5. The

translation of it is given in Figure 4.9.

axiom(happens(pSplitJoinExample([InputList],[OutputList]),T1,TN),

[

 happens(pProcess1([InputList],[OutputList]),T2,T3),

happens(pProcess2([InputList],[OutputList]),T4,T5),

before(T1,T2),

 before(T1,T4),

 before(T3,TN),

before(T5,TN),

]).

Figure �4.9 Translation of Split-Join to Event Calculus

79

The completion of sub-processes within the main axiom's time interval is

ensured by the last two “before” predicates in Figure 4.9.

4.3.6 Translation of the If-Then-Else Control Construct

The If-Then-Else control construct consists of a condition, a “then” and an

optional “else” process. Its semantics is to test the condition, if it is true, do

the then process, if it is false, do the else process if it exists. The OWL-S

description including the if-condition definition defined in SWRL can be seen

in Figure 4.10 and its translation can be seen in Figure 4.11.

<process:CompositeProcess rdf:ID="IfThenElseExample">
<process:composedOf>
<process:If-Then-Else>
 <process:ifCondition>

<expr:SWRL-Condition rdf:resource="#SWRLCondition1"/>
 </process:ifCondition>
 <process:then rdf:resource="#ThenProcess"/>
 <process:else rdf:resource="#ElseProcess"/>
</process:If-Then-Else>
</process:composedOf>

<expr:SWRL-Condition rdf:ID="SWRLCondition1">
 <expr:expressionBody rdf:parseType="Literal">
 <swrl:AtomList>

<rdf:first>
 <swrl:BuiltinAtom>
 <swrl:builtin rdf:resource="&swrlb;#lessThan" />

 <swrl:arguments>
 <rdf:List>

 <rdf:first rdf:resource="#Input1" />
 <rdf:rest>
 <rdf:List>
 <rdf:first rdf:resource="#Input2" />
 <rdf:rest rdf:resource="&rdf;#nil" />
 </rdf:List>
 </swrl:arguments>
 </swrl:BuiltinAtom>
 </rdf:first>
 <rdf:rest rdf:resource="&rdf;#nil" />
 </swrl:AtomList>
 </expr:expressionBody>
</expr:SWRL-Condition>

80

</process:CompositeProcess>

Figure �4.10 A Composition with the If-Then-Else Construct in OWL-S

axiom(happens(pIfThenElseExample([InputList],[OutputList]),T1, TN),

[

 happens(jpl_pIfCondition([InputList]), T2, T3),

 happens(pThenCase([InputList],[OutputList]), T4, T5),

 before(T1, T2),

 before(T3, T4),

 before(T5, TN),

]).

axiom(happens(pIfThenElseExample([InputList],[OutputList]),T1, TN),

[

 happens(jpl_pElseCondition([InputList]), T2, T3),

 happens(pElseCase([InputList],[OutputList]), T4, T5),

 before(T1, T2),

 before(T3, T4),

 before(T5, TN),

]).

Figure �4.11 Translation of If-Then-Else to Event Calculus

Since in the planning time, the input parameters from the user are not

instantiated with the inputs of the composition, and as a result it is not known

whether the if-condition would hold or not, plans for both possibilities are

generated. Two event calculus axioms are generated for ensuring this: one

for the “then” case and one for the “else” case. This is done to show user the

81

possible execution paths. When the user selects one of the plans from the

list containing plans for all discovered services, s/he in fact declares which

discovered service s/he would prefer. On execution, if the “Then” case is

selected, and the if-condition fails, the execution would fail.

4.4 Translation of the Preconditions

An example precondition definition can be seen in Figure 4.12. In this

precondition, SWRL is chosen as the language for specifying the condition.

The condition is whether Input1 is less-than Input2. The inputs are either

provided by the user or by another service as its outputs. The source of them

are specified by the binding declarations which are not shown here. Those

bindings should be handled before the translation to event calculus, because

the parameters representing the same variables should have the same

names in the event calculus.
<process:CompositeProcess rdf:ID="PreconditionExp">
...
<process:hasPrecondition>

<expr:SWRL-Condition rdf:ID="lessThan">
<expr:expressionLanguage rdf:resource="&expr;#SWRL" />
<expr:expressionBody rdf:parseType="Literal">
<swrl:AtomList>
 <rdf:first>
 <swrl:BuiltinAtom>
 <swrl:builtin rdf:resource="&swrlb;#lessThan" />
 <swrl:arguments>
 <rdf:List>
 <rdf:first rdf:resource="Input1" />
 <rdf:rest>
 <rdf:List>
 <rdf:first rdf:resource="Input2" />
 <rdf:rest rdf:resource="&rdf;#nil" />
 </rdf:List>
 </rdf:rest>
 </rdf:List>
 </swrl:arguments>
 </swrl:BuiltinAtom>
 </rdf:first>
 <rdf:rest rdf:resource="&rdf;#nil" />
</swrl:AtomList>

82

</expr:expressionBody>
</expr:SWRL-Condition>

</process:hasPrecondition>
...
</process:CompositeProcess>

Figure �4.12 A Precondition Example in OWL-S

This precondition is translated to a simple event in event calculus, which is

appended to the beginning of the event to which this precondition belongs. If

the precondition does not hold, the event fails in the first step, so that no plan

containing this event is generated. The translation can be seen in Figure

4.13.

axiom(happens(pPreconditionExp([InputList],[OutputList]),T1, TN),

[

jpl_pPrecondition([InputList]),

...

[Other Event/Events and Temporal Orderings]

...

]).

Figure �4.13 Translation of Precondition to Event Calculus

The body of the precondition is defined in the precondition event as shown in

Figure 4.14.

jpl_pPrecondition ([InputList]):-

 atom_number (Input1, Arg1),

 atom_number (Input2, Arg2),

83

 Arg1<Arg2,

 true.

Figure �4.14 Body of the Precondition Event

The translations from OWL-S to event calculus domain have been shown in

this chapter. After the translation, the planning phase is initiated with the

query to the abductive theorem prover including the goal state.

84

CHAPTER 5

 IMPLEMENTATION

The implementation part of our system mostly consists of Java language, as

a web based J2EE application. The front-end is developed using HTML,

JSP, JavaScript and CSS technologies. In the back-end, Java and Prolog

languages are used. The created WAR artifact can be deployed to a J2EE

container; in our case JBoss was used.

For OWL-S parsing, two different parsers -MindSwap's OWL-S API [�63] and

CMU's OWL-S Parser [�70] are used. For the interaction between the Prolog

code and Java code, namely to call Prolog code from within Java, the JPL

library [�68] is used. Java Universal Network/Graph Framework (JUNG) [�69] is

used for the graphical representation of the generic compositions. The

modules of the system are examined in detail below.

5.1 Web Interface

Our system is a web based application, and can be accessible via most

browsers, including Firefox and Internet Explorer. The composition process

in the system is divided into 6 steps with an easy to use HTML front-end.

85

Using the front-end, the user can provide the system with a generic service

composition, see the graphical representation of the composition, select

plans for the composition with matching services, and run a simulated

execution of the given composition with selected services.

Figure 5.1 shows the screen for providing the generic composition. The user

can either upload an OWL-S file or provide the URL of the OWL-S file.

Figure �5.1 OWL-S File/URL Upload Step

86

5.2 OWL-S Parsing

Off-the-shelf OWL-S APIs are used to parse OWL-S files. These APIs are

MindSwap OWL-S API and CMU OWL-S API. The main reason behind using

two libraries is that none of the currently available APIs are able to parse

every type of valid OWL-S document successfully. For instance MindSwap

OWL-S API does not have full support for SWRL expressions, and CMU

OWL-S API can not operate with input-output bindings successfully.

When the user provides a file or a URL of an OWL-S file to the system,

OWL-S parsers are used to parse the given OWL-S documents. For the file

resources MindSwap OWL-S API, for the URL resources, CMU OWL-S API

is used. The aim of parsing is to determine a common, easily navigable and

recursive business model containing all the necessary data for the processes

involved in the composition.

While parsing OWL-S files, the IOPE information is extracted from each of

the participating processes, and added to the Process business object. The

types of the inputs and outputs are also stored within the object. The names

of the inputs and outputs will be changed to reflect input/output bindings in a

future phase.

Apart from IOPE information, each composite process object also contains

composition type information. The business model for the process object is

recursive. Hence a composite process object with the composition type

Sequence has an array of child processes, reflecting the execution order of

the children in the Sequence construct.

87

After parsing OWL-S to generate the process model, the parsers are used to

extract meaningful content for the end-users to see on the front-end. These

include the description of the service composition, the labels for the inputs

outputs, the type of the composition constructs used etc.

5.2.1 OWL-S API

OWL-S API is a library by Maryland Information and Network Dynamics Lab

Semantic Web Agents Project (Mindswap) which provides methods to read

from, write to OWL-S service descriptions. The API also provides a built-in

Service Execution Engine to execute atomic services and certain composite

services with WSDL or UPnP groundings. The supported composite services

are limited to Sequence, Unordered and Split.

OWL-S API has limited support for preconditions and effects. As of version

1.0.1, built-in SWRL parsing is not provided. There are certain cases where

one can reach the same OWL-S class or property by following two different

programmatic paths and face with two different objects, with certain non-

matching fields.

OWL-S parser cannot parse every OWL Full document validated by

WonderWeb OWL Ontology validator [�76] either.

5.2.2 CMU OWL-S API

CMU OWL-S API is a library developed by the Software Agents Group of the

Carnegie Mellon University. CMU OWL-S API provides routines to parse and

88

read the OWL-S service descriptions. As of version 1.1 of the API there's a

solid model tier to navigate through the OWL-S document easily.

Since the model is more intuitive to navigate, creating business objects to

construct Prolog code becomes easier. The API provides routines to parse

OWL-S descriptions located at files, URLs and etc. However the source

stream selection is important, since there are cases where even though the

OWL-S description located at a URL is easily parsed by the API, the same

content cannot be parsed when the source of the stream is a local file.

The problem with CMU OWL-S API is that there's no practical and/or reliable

way of traversing input and output bindings declared in an OWL-S service

description.

There are conflicting libraries between the dependencies of the described

APIs. Therefore the configuration of the implementation becomes important

when both of these libraries are necessary in the same project. In the

implementation phase of this thesis application server's class loader has

been examined and configured properly to operate both libraries within the

application. However a better and easier approach is to opt for only one of

these APIs.

5.3 Graphical Representation

The graphical representation of the composition is necessary to let the user

know what kind of a workflow is to be executed with the given generic

service description. To enable a better viewing experience, a left to right

89

ordering is used, with arrows showing time dependencies and pointing to

nodes from the initial start node, to the end node.

When an arrow is split from a node this means that a Split/Split+Join

construct or an If-Then-Else construct is encountered. In the second case,

the condition stated in the if-condition is parsed and displayed to the user in

a meaningful way, so that the user can understand what will happen if the

generic composition provided is executed. As specified earlier, conditions

can be specified in several logical languages including SWRL, DRS and KIF.

In our implementation, SWRL conditions are supported due to the higher

popularity of the language.

The Java Universal Network/Graph framework JUNG is used to display the

graphical representation. The processes are displayed as vertices in a graph,

and the transitions for the perform structures are displayed as edges. The

graph constructed with JUNG is then exported to a Graphics Interchange

Format (GIF) image and displayed in the browser to the user.

Since one instance of the application might generate multiple files for a

single user or concurrent users, the naming of the GIF files is important in

the web application. The files are named after the id of the session used by

the current user, and the time of image generation request in milliseconds

precision. A sample graphical representation for an If-Then-Else composition

is illustrated in Figure 5.2.

90

Figure �5.2 OWL-S Composition: Graphical Representation Step

5.4 Generation of Prolog code

The generation of Prolog code is the third step in the process of Event

Calculus based Web Service Composition, and is made after the OWL-S file

is parsed. Since there are two different OWL-S parsers, there are also two

different Prolog code generation routines.

5.4.1 Incremental Prolog Code Generator

The first type of Prolog code generator used is an incremental code

generator, and is paired with the MindSwap OWL-S API. The incremental

Prolog generator generates the code as the parser starts parsing the file, and

91

starts embedding Prolog axioms for the processes as the children are

parsed.

For instance, if a process “A” with sequential child processes “C1” and “C2”

are determined, the axiom A containing C1 and C2 is generated right away,

and appended to the buffer. There is no look-ahead approach within the

incremental generator. The Prolog code generated does not change whether

C1 is an atomic process or a composite If-Then-Else statement.

This approach brings certain restrictions on how the compositions and

preconditions are expressed. For instance a precondition for a child process

cannot be placed before the reference to the axiom of the process; it should

be placed within the axiom of the child process. In a similar fashion, If-Then-

Else constructs cannot be externalized to form a relatively flat and easy to

trace code, they should be embedded within the axiom containing the

constructs.

The incremental builder also has several drawbacks in input-output bindings,

since it requires a pre-mapped set of inputs and outputs to work with or an

intelligent code generator which will continuously detect bindings and alter

previously generated code to reflect the actual process.

5.4.2 Process Model Based Prolog Generator

The second type of Prolog code generator is a process model based code

generator, which makes use of an already parsed process to generate the

code, with all the information at hand. This code generator is used with the

CMU OWL-S API.

92

The process model is generated by the CMU OWL-S API as a recursive tree

structure, where the leaves of the tree are the processes, and the branches

of the tree are the transitions between the processes. The preconditions,

input-output bindings and types of the child processes are all known priori

when such a model is used.

The process model based Prolog generator can generate all the static

declarations for axioms and JPL calls at one pass, therefore no additional

passes for the generated code is necessary. The input-output mappings can

be made on the generated process model prior to code generation so that

the generator will not make any additional passes.

The process model based Prolog generator is a more robust code generator

than the incremental code generator, since it works on a pre-processed and

parsed model with more information available at every step.

An individual process object contains a reference to the list of child

processes it has, the inputs and outputs of itself, the composition type of the

process, and the preconditions applicable to the process. The input-output

lists for the composite processes also include inputs and outputs of the child

processes. This is a necessary step since when a child process returns an

output, this output should be made visible to the processes at the same level

as the composite process, and Prolog does not support global variables.

The generated Prolog is displayed to the users on the web interface for

informative purposes as below:

93

Figure �5.3 Prolog Code Display

5.5 Input and Output Bindings

In a web service composition, inputs of atomic or composite processes can

be the outputs of other processes in the composition. For instance, if process

A with inputs i1 and i2 and outputs o1 and o2 is invoked before process B

with inputs i3 and i4 and outputs o3 and o4, and i4 is bound to o2 (the output

of process A), the process B should be invoked with an input dynamically

obtained in the runtime.

94

The concept of input and output bindings is very similar to symbolic links in

Linux, or reference pointers in C/C++. However these constructs are not

supported via Prolog. Therefore the naming of the inputs needs attention.

This means that all the variable names which point to a certain value should

have the same name, so that the Prolog interpreter can pass the correct

value when processes are to be executed. For instance, consider the output

binding in OWL-S in Figure 5.4.

<process:OutputBinding>

 <process:toParam rdf:resource="#BookPrice"/>

 <process:valueSource>

 <process:ValueOf>

 <process:fromProcess rdf:resource="#ComparePrices"/>

 <process:theVar rdf:resource="#CP_OutputPrice"/>

 </process:ValueOf>

 </process:valueSource>

</process:OutputBinding>

Figure �5.4 A Sample Output Binding in OWL-S

In the example OWL-S code, the output “BookPrice” of the current process is

assigned to the output “CP_OutputPrice” of the “ComparePrices” process,

which has been executed prior to the binding. The Prolog approach would

name the “CP_OutputPrice” variable as “BookPrice” as shown below:

axiom(happens(pCurrentProcess(BookName, BookPrice), T1, TN),

[...

 happens(pComparePrices, BookName, BookPrice, T2, T2),

 ...

]).

95

Since the names of the variables are changed when the Prolog code is

generated, the inputs and outputs displayed later in the plan display phase

also change. This might lead to misunderstandings on the user side, i.e. the

user who expects an output with the name “reservation_id” would get an

output with the name “output_id”. Different approaches exist for input and

output bindings.

The output bindings are processed in a bottom up manner whereas the input

bindings are processed in a top down manner. The names of the outputs of

the main composition are propagated up. The names of the inputs of sub-

processes are changed based on the names of the outputs of the previously

executed processes. A simple example for variable naming & binding

scenario is provided below:

OWL-S Process Descriptions:

Process A has inputs i1 and i2, and outputs o1 and o2.

Process B has inputs i3 and i4, and outputs o3 and o4.

Composite process C has inputs i5, i6 and i7, and outputs o5, o6, o7.

OWL-S Input & Output Bindings:

The input bindings are between i5 and i1, i6 and i2, i7 and i3, and o1 and i4

The output bindings are between o5 and o2, o6 and o3 and o7 and o4

Prolog Variable Naming:

Process A has inputs i5 and i6, outputs o1 and o5

Process B has inputs i7 and o1, outputs o6 and o7

Composite process C has inputs i5, i6 and i7, and outputs o5, o6, o7

96

5.6 Simple Compositions

Since Prolog does not provide a class structure equivalent to object oriented

languages, handling simple compositions is easier. A sample simple

composition is given in Figure 5.5.

<process:CompositeProcess rdf:about="#BookPriceProcess">

<process:composedOf>

 <process:Any-Order>

 <process:components>

 <process:ControlConstructBag>

 <list:first>

 <process:Perform rdf:nodeID="Any-Order-Perform1" />

 </list:first>

 <list:rest>

 <process:ControlConstructBag>

 <list:first>

 <process:Perform rdf:nodeID="Any-Order-Perform2" />

 </list:first>

 <list:rest rdf:resource="&list;#nil" />

 </process:ControlConstructBag>

 </list:rest>

 </process:ControlConstructBag>

 </process:components>

 </process:Any-Order>

</process:composedOf>

Figure �5.5 A Simple Composition in OWL-S

97

The above composition is of type Any-Order, and simply references two

atomic processes that can be called with any desired order.

For a simple composition, the generated Prolog code consists of four main

parts: First part contains the static declarations for the Abductive Planner;

second part contains the description of the simple composite process; third

part contains the individual atomic process declarations including their JPL

references; and the last part contains the JPL declarations for the contained

atomic processes

The invocation ordering of the atomic processes is made within the

description of the simple composite process (the second part described

above), based on the type of the composition. A sample ordering is given in

Figure 5.6.

axiom(happens(pSequenceProcess(Input1, Input2, Output), T1, TN),

[happens(pSequenceProcess1(Input1, OutputP1), T2, T2),

 happens(pSequenceProcess2(Input2, OutputP2), T3, T3),

 happens(pSequenceProcess3(OutputP1, OutputP2, Output),T4,T4),

 before(T1, T2),

 before(T2, T3),

 before(T3, T4),

 before(T4, TN)

]).

Figure �5.6 A Simple Composition Axiom in Prolog

The above process shows the composite process “pSequenceProcess”

which is formed by three atomic processes, with several input-output

98

bindings. The time variance is specified with the “before” constructs after the

“happens” declarations. Since this is a sequential composition, each process

is executed after the execution of the preceding process is finished.

5.7 Recursive Compositions

Recursive compositions require extra care in the generation of Prolog code

since Prolog has restrictions on where certain constructs can be defined, and

it does not have support for a hierarchical class-like structure. A sample

recursive composition is illustrated in Figure 5.7.
...
<process:composedOf>
<process:Sequence>
<process:components>
 <process:ControlConstructList>
 <list:first>
 <process:Split-Join>
 <process:components>
 <process:ControlConstructBag>
 <list:first
 rdf:resource="#AtomicProcess1" />
 <list:rest>
 <process:ControlConstructBag>
 <list:first
 rdf:resource="#AtomicProcess2" />
 <list:rest
 rdf:resource="&list;#nil" />
 </process:ControlConstructBag>
 </list:rest>
 </process:ControlConstructBag>
 </process:components>
 </process:Split-Join>
 </list:first>
 <list:rest>
 <process:ControlConstructList>
 <list:first
 rdf:resource="#CompositeProcess1" />
 <list:rest rdf:resource="&list;#nil" />
 </process:ControlConstructList>
 </list:rest>
 </process:ControlConstructList>
</process:components>

99

</process:Sequence>
</process:composedOf>
...
<process:CompositeProcess rdf:ID="CompositeProcess1">
<process:composedOf>
 <process:If-Then-Else>
 <process:ifCondition/>
 <process:then>
 <process:Sequence>
 <process:components>
 <process:ControlConstructList/>
 </process:components>
 </process:Sequence>
 </process:then>
 <process:else>
 <process:Sequence>
 <process:components>
 <process:ControlConstructList/>
 </process:components>
 </process:Sequence>
 </process:else>
 </process:If-Then-Else>
</process:composedOf>
</process:CompositeProcess>
...

Figure �5.7 A Recursive Composition

In the given example, the currently described process is a composite,

Sequence process. As the first step it includes a Split-Join between two

atomic processes. As the second step, it has a reference to a composite

process, which is an If-Then-Else type of composite process. The then and

else cases of the If-Then-Else processes can still be composite processes.

Note that for simplicity, these processes and several required constructs are

omitted.

In a recursive composition there are four buffers to which the code generator

appends Prolog code. These buffers are similar to the four main parts of

100

code generated for simple compositions. The main difference between the

approaches is that, in a simple composition there is only one composite

axiom, whereas in the recursive composition the composite axiom count is

equal to the composite process count. Also, the static declarations are not

made per composite process, but rather per Prolog file.

Also the linear code generation approach is not possible with recursive

compositions, because the “external” and “JPL” definitions have to be

altogether in the code. Therefore these definitions are appended to their own

buffers during code generation. When the code generation is completed, all

the buffers are merged to a single Prolog file.

5.8 Handling Preconditions

This thesis focuses on arithmetic preconditions, defined as SWRL

expressions. However, a similar approach can be taken to handle different

preconditions.

Each precondition is treated as another process with the SWRL inputs and a

boolean output. The process declaration of the precondition precedes the

declaration of the actual process the precondition is bound to. If the

precondition fails, the whole axiom including the precondition fails.

If a process A with inputs i1 and i2 and output o1, has a precondition P which

contains an SWRL condition “i1 'not equals' i2”, an imaginary precondition

process with inputs i1 and i2 and output p1 is generated before A, which

controls i1 and i2's equality, and returns false as p1 when they are equal

since the tested condition is i1 and i2's inequality.

101

A special case is present for the If-Then-Else conditions, where the process

in the Then or Else clauses depend on the condition specified in the If

construct. For such cases two instances of composite process definitions

containing the If-Then-Else process is necessary: one which executes the

then case, and the other which executes the else case; then case testing the

if-condition, else case testing the “not” if-condition.

5.9 Invocation and Plan Generation

Once the Prolog code is generated, it has to be invoked with the parameters

provided by the user for both plan simulation and execution purposes. The

invocation step is again done via the web interface, with HTML input fields.

The details of the invocation and plan generation phase are outlined below.

5.9.1 JPL Library

The Java Interface to Prolog (JPL) library is used for the two-way Prolog –

Java communication in which both Java calls Prolog, and Prolog calls Java.

It is used both to access Prolog codes generated to feed the code with the

inputs provided by the user from the web interface, and to access a stub web

service discovery and invocation engine. The details of the calls made, and

certain code samples for the calls are provided in this section.

102

5.9.2 Calls from Prolog to Java

Prolog to Java calls are made from within dynamically generated Prolog files,

for service discovery, service invocation and condition evaluation purposes

during plan generation and execution phases.

For both composite and atomic processes, the Prolog code generated by the

code generator is grounded with a JPL call. The Prolog code generated for a

sample atomic process with a simple precondition is provided in Figure 5.8.

axiom(initiates(pProcessGeneric(Input1,Input2),
 pProcessPlanned(Input1, Input2), T), []).

axiom(happens(pProcessGeneric(Input1, Input2), T1, TN),
[
 happens(pProcess(Input1, Input2, Output1), T2, T3),
 before(T1, T2),
 before(T3, TN)
]).

axiom(happens(pProcess(Input1, Input2, Output1), T1, TN),
[
 jpl_pProcessPrecondition(Input1, Input2),
 jpl_pProcess(Input1, Input2, Output1)
]).

Figure �5.8 Prolog for An Atomic Process with a Simple Precondition

The JPL calls in this composition are defined as shown in Figure 5.9.

103

ex_WebService(jpl_pProcessPrecondition(_,_)).
ex_WebService(jpl_pProcess(_,_,_)).

jpl_pProcessPrecondition(Input1, Input2) :-
 atom_number(Input1, Arg1),
 atom_number(Input2, Arg2),
 Arg1<Arg2,
 true.

jpl_pProcess(Input1, Input2, Output1) :-
 jpl_new('tr.edu.metu.prolog.WebServiceInvocation', [], WSI),
 jpl_list_to_array([Input1, Input2], InputArray),
 jpl_call(WSI,invokeService,['pProcess',InputArray],OutputArray),
 (OutputArray == @(null) -> OutputList = [] ;
 jpl_array_to_list(OutputArray, OutputList)),
 length(OutputList,Length),
 (
 Length==1 ->
 [A] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 WholeList = [TempList1];
 (
 Length==2 ->
 [A,B] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 WholeList = [TempList1, TempList2];
 (
 Length==3 ->
 [A,B,C] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 WholeList = [TempList1, TempList2, TempList3];
 (
 Length==4 ->
 [A,B,C,D] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 (D == @(null) -> TempList4 = [] ;

104

 jpl_array_to_list(D, TempList4)),
 WholeList = [TempList1,TempList2,TempList3,

 TempList4];
 true
)
)
)
),
 member([Output1], WholeList),
 true.

Figure �5.9 JPL Method Definitions in Event Calculus

In the above example, the atomic process named “Process” has two inputs

Input1 and Input2. There's a precondition between these two inputs, which

states that Input1 should have a smaller value than Input2 numerically.

This precondition control is defined as an external JPL call in Figure 5.8,

however no JPL routine is provided inside. This is a trick to deceive the

Prolog interpreter to fail the plan automatically if the boolean value of the

comparison is false.

There's also an other call, the second one in Figure 5.9, which is a real JPL

call invoking the WebServiceInvocation Java class for the process “Process”.

This is done by first creating an instance of the class with the full canonical

name from the current classpath, and assigning it to a temporary variable.

The JPL call receives the inputs of the process as parameters, and wraps

them to a Java array using the jpl_list_to_array routine. This is required since

JPL can not send nested Prolog lists to a Java class. The name of the caller

105

process, and the Java array created is then wrapped as a list and fed to the

invokeService method of the WebServiceInvocation class.

Additional pieces of information could be passed to the invokeService

method to enable better service discovery in the runtime, however for the

scope of this thesis, simply the process name is used as a distinguisher.

An array of output lists is then received and via certain JPL and Prolog tricks

the array is converted to a list of lists. The service invocation method returns

multiple output lists, since more than one service might be discovered with

the along passed information, and each of these services may return their

own outputs.

Prolog should handle all the outputs for the given services, however a direct

“array of arrays” conversion is not provided in JPL, hence the manual

routine. For the scope of this thesis, a set of 4 distinct services are supported

per each discovery, and unlimited outputs are supported for each process.

In the last step the member operator is used to enumerate the output lists

against the outputs of the process (which are listed in a Prolog list in the

order defined in the OWL-S composition).

A second type of Prolog to Java call is made for SWRL conditions specified

in the If case of If-Then-Else compositions. This is a selected approach since

evaluating an SWRL condition in Prolog takes considerably larger effort than

evaluating the condition in Java. A sample JPL call made for an If evaluation

is provided in Figure 5.10.

106

jpl_ifCondition(IfOperator, Input1, Input2, IfResult) :-

 jpl_new('tr.edu.metu.prolog.WebServiceInvocation', [], WSI),

 jpl_list_to_array([IfOperator, Input1, Input2], InputArray),

 jpl_call(WSI, evaluateIf, [InputArray], OutputArray),

 (OutputArray == @(null) -> OutputList = [] ;

 jpl_array_to_list(OutputArray, OutputList)),

 member(IfResult, OutputList),

 IfResult.

Figure �5.10 JPL Call of an If Condition in an If-Then-Else Process

In the above example, there's an if condition which takes Input1 and Input2

literals as inputs, and operates with IfOperator over those inputs. The if

operator is parsed from the SWRL expression in the OWL-S file, and

provided to the Java class for condition evaluation. Sample condition

operators include “less than”, “equal”, “not equal” etc.

5.9.3 Calls from Java to Prolog

Java to Prolog interaction with JPL calls are made from the web application,

to pass the inputs provided by the user to the Prolog engine. The abductive

event calculus planner and the dynamically generated Prolog code for the

composition are both consulted to a Prolog session. Then the Prolog query is

created with the user inputs and fed to JPL to generate all possible plans for

the currently selected composition.

Results of the query are received via a Hashmap in JPL result object

hierarchy. Each entry in the Hashmap denotes a possible plan for the user

107

query. These entries are then parsed with the plan visualizer to be displayed

on the web.

A sample code snippet is provided in Figure 5.11.

Query consultEventCalculus = new Query("consult", new Term[] {

new Atom(eventCalculusPlanner.getAbsolutePath()) });

consultEventCalculus.query();

Query consultDynamicProlog = new Query("consult", new Term[] {
 new Atom(dynamicProlog.getAbsolutePath())
});

consultDynamicProlog.query();

Query query = new Query(prologQuery);

results = query.allSolutions();

Figure �5.11 JPL Call to a Composition from Java

In the above sample, firstly the event calculus library is loaded, and then the

dynamically generated Prolog code is loaded to the Prolog interpreter. Lastly

the Prolog query generated with the inputs of the user is sent to the

interpreter, and the results are requested. A sample Prolog query is as

follows:

abdemo([holds_at(pProcessPlanned("UserInput1","UserInput2"),t)], R).

108

In the above example, the inputs “UserInput1” and “UserInput 2” are two

Strings provided by the user of the system from the web interface for

execution.

5.9.4 Input Types

The intermediate step between Prolog generation and execution is the

interactive input request screen. In this screen, the inputs required by the

process are requested from the user. The screen contains the names of the

inputs and hints the processes within the composition that will use the input.

This way it is easier for the user to provide values for fields with non-

descriptive and generic names like “Date” or “Name”.

A second feature is different field handlers for certain inputs. By default, each

input is provided a text-field accepting alphanumeric characters. However,

for known types like Date, Time and Password, date-time pickers and

password fields are also provided. This way, the user does not have to type

in everything manually.

The decision for specific field handlers are given based on two factors, first

one being the type attribute of the field. If the type of a field is Date, an

immediate positive signal is given for a Date field handler. However, not

every field type is known apriori by the application, therefore field names are

also parsed. This way missing field types are also handled, for instance if an

input has the label “Expiration Date”, and its type is “String” in the OWL-S

file, the application will still provide a Date field handler for this input. A

sample user input screen of the web application is shown in Figure 5.12.

109

Figure �5.12 OWL-S Composition Input Screen

5.9.5 Service Discovery at Execution Time

Neither the OWL-S description nor the generated Prolog code includes any

grounding information, thus to plan the composition, discovery for the

services matching the given specifications is necessary. Since service

discovery is beyond the scope of this thesis, this part is simulated with a

service discovery stub.

110

The JPL calls in the generated Prolog code carry the following information

about the services that are to be discovered: the name of the process, the

number and names of the inputs and outputs. Further information like the

type of the inputs and outputs, the preconditions, quality of service

requirements, labels of IOPEs and descriptions of processes can also be

provided to service discovery engine, for a better semantic discovery.

The current service discovery engine responds to discovery queries with a

pre-established set of services suitable for the set of processes that have

been tested for demo purposes.

5.9.6 Plan Selection

After the inputs are at hand, and the necessary services are discovered via

the service discovery engine, the generated Prolog code returns plans for the

given generic service composition. The number of plans returned by the

abductive planner depends on the number of services discovered and the

type of the composition at hand.

For instance, for a “Choice” type of composition, the amount of plans is at

least the number of processes in the Choice construct. Permutations

regarding the available services, types of composition(s) are all handled by

Prolog.

The user is then provided a set of plans, which contain an ordering with the

name of the processes that will be executed. The inputs provided by the user

are also embedded in the plans, for a better understanding of what will

happen if the composition is executed. Since no execution has been

performed yet, the generated plans do not contain any real outputs, rather

111

they include the names of the outputs to be obtained. The user can then

select a plan for execution. A sample plan selection screen can be seen in

Figure 5.13.

Figure �5.13 Plan Selection Step

112

5.9.7 Execution Mode

In the execution mode, the services in the plan which are selected by the

user in the previous step are executed in the order specified in the plan.

Service execution is beyond the scope of this thesis, therefore the outputs

obtained are simulated outputs, and do not differ based on the given input.

To differentiate world-altering and information-providing services, the

execution mode takes one step for the information-providing services and

two steps for the world-altering services. For the information providing

services, after the plan selection, the actual service is executed and the

outputs of it are shown immediately. For the world-altering services and

composite services containing at least one world-altering service as a child,

in the first step of execution mode, after the plan selection, simulated outputs

are displayed to the user. The user has to proceed one more step to execute

the actual service and see the actual outputs of it for these type of services.

A sample execution step is illustrated in Figure 5.14.

113

Figure �5.14 Plan Execution Step

After the plan execution step, the user selects the plan to be executed, and

the outputs obtained from that plan are listed on a separate screen for

execution confirmation, and a better viewing experience, as in Figure 5.15.

114

Figure �5.15 Execution Output Step

5.10 System Performance

The performance of the system is affected by many factors. The system runs

in a J2EE server, and main reasons for the delays are network overheads,

RDF parsing and Prolog invocation via Java.

5.10.1 Network Delays

Most OWL-S documents include namespace and import declarations to

external resources. The OWL-S parsers need to download the referenced

resources via their provided paths. Even though this necessity seems fair

115

theoretically, in practice it yields to long download delays. Since certain

resources referred by the OWL-S descriptions are either no longer present or

hosted at different locations, even longer delays are encountered with

timeouts.

To provide a better user experience with the download of these resources,

local mechanisms should be used whenever possible. Throughout the

implementation of this thesis, the productive environment for the web

application had several DNS mappings and a local HTTP server to decrease

delays with widely used imports.

As an example, the resource “http://www.w3.org/2000/01/rdf-schema” is

mapped as “rdfs” entity in valid OWL-S documents. Normally, the parser tries

to navigate to the server “www.w3.org” and to the folder “2000/01/rdf-

schema”. Since external Domain Name Servers correctly respond with the IP

“128.30.52.51” to the name server query for “www.w3.org”, the OWL-S

parsers try to connect to this server. To disable this, a DNS record can be

inserted to the hosts file of the operating system. When this record is

created, an external DNS query is not even necessary. In a Linux

environment this can be achieved by inserting “127.0.0.1 www.w3.org” line to

“/etc/hosts” file.

Since parsers now try to connect to the localhost to download the required

file, the file and folder structure should be created properly for a successful

download. Apache2 WWW Server has been used in this case. In the WWW

root of Apache2, the “2000/01” folder hierarchy is created and “rdf-schema”

document is placed exactly as the same folder structure as in www.w3.org.

116

As a final step, an additional trick is necessary in the Java code since the

Java Virtual Machine (JVM) has its own DNS caching mechanism, which

caches an address forever once it has been looked up. This poses a problem

since www.w3.org or any other address could have been cached via JVM

prior to this project. To prevent this JVM DNS caching,

“networkaddress.cache.ttl” Java system property should be set to “0”.

Figure 5.16 illustrates the OWL-S parsing delays for locally hosted vs.

remote resources.

Figure �5.16 Local vs. Remote Resource Usage

Apart from the complex and CPU intensive If-Then-Else compositions, there

are 3 to 5 times performance gains with the usage of locally hosted

resources. More detailed comparison charts are provided in the Appendix C.

117

5.10.2 RDF Parsing

Since OWL-S documents are in RDF format, these documents should be

parsed via the OWL-S APIs to create the business model. The parsing takes

quite less time in contrast with the experienced network delays.

Total time:

10422ms

Total time:

1145ms

Figure �5.17 Distribution of Delays in a Choice Type of Composition

Figure 5.17 depicts the time distribution of tasks in a sample composition for

the first three steps of the application. When local (cached) resources are

used for OWL-S parsing, the total time required for the Prolog generation

decreases dramatically, however the percentage of OWL-S parsing still

increases. This is because the “Image Processing” step also does an amount

of OWL-S parsing to generate a business model for the composition, and

that step also takes less time when resources are local.

118

5.10.3 JPL Calls and Prolog

The system uses SWI Prolog, and Java Interface to Prolog to bind to the

generated Prolog codes. Individual JPL calls are not as expensive as running

Prolog code from an editor visually. The cost of a Prolog call is shown in

Figure 5.18.

Figure �5.18 JPL Delays for a Sample Any-Order Composition

As illustrated above, there are three types of JPL delays: firstly the Prolog file

consultation, secondly invocation and thirdly parsing of JPL results. The most

expensive operation is consulting a Prolog file (888ms in the above

example), however this step needs to be executed only once. A consulted

Prolog file can be used many times with different Prolog queries.

119

CHAPTER 6

 CONCLUSION AND FUTURE WORK

6.1 Summary and Conclusions

In this thesis, an approach and its implementation are presented for the

automated composition of semantic web services problem. The applicable

scenario for our approach is that, given a generic web service composition

definition, our system generates plans as compositions including available

services matching the requirements of the generic composition definition.

The inputs needed by the composition are provided by the user, and after the

planning phase the user is able to select a plan from the generated list of

possible plans and execute it with the provided inputs.

A subset of OWL-S ontology is used for generic web service composition

definitions. OWL-S process model has the necessary features for defining

the structure of the composition with its semantic information. The generic

composition definition in OWL-S includes:

• The definitions for the composite services and the atomic services

included in them with their inputs, outputs, preconditions and effects,

120

• The data flow and binding information for the parameters of services,

• The control flow information which characterizes the structure of the

composition and temporal relationship between the included services.

The composition is defined similar to a workflow structure with these

elements. Profile and grounding parts of OWL-S are not needed for our

framework, but profile definition is displayed to the user if it exists. Also it

may be beneficial for the discovery phase, which is not covered in this work.

The generic service compositions are provided to our system via uploading

the actual OWL-S file, or providing the necessary URL. Then our framework

reads in the generic composition definition and displays the graphical

representation of it for a better understanding of the composition. Then the

inputs needed by the composition are taken from the user and the planning

phase begins.

Abductive planning capability of the event calculus, which is a logical

formalism for the description of actions and their effects in dynamic

environments, is used for planning. The generic composition in OWL-S is

converted to the event calculus axioms in Prolog language. Then a goal

situation is given and plans, which constitute the necessary middle steps

between the initial state and the goal state, are generated by the abductive

theorem prover in the event calculus to reach that goal. In the plan

generation phase, the abductive planner communicates with the web service

discovery module and gets the properties of the atomic services matching

the atomic events in the composition whenever such an event is encountered

in the planning process. After the plans are generated, there are two steps

before the execution of the composition. First, the plans including just the

121

names of the discovered services and names of the parameters belonging to

those services are presented to the user. In this step, the user can select the

plan including the actual services which s/he prefers. Second, after the user

selects the preferred plan and presses the Next button, the information-

providing services included in the selected plan are executed and the plan is

again shown to the user for confirmation before executing the whole plan

with the world-altering services.

In some cases, when the information-providing service has an input which is

an output of a world-altering service, the information-providing service is not

executed either. The outputs of it are simulated as if it is a world-altering

service.

The event calculus is used as a middleground for the execution phase as

well as for the planning phase. The only difference is that, in the planning

phase, the abductive theorem prover is connected with the discovery

module; whereas in the execution phase, it is connected with the execution

module. In the planning and execution phases, the preconditions are also

checked, and the service takes place in the plan or is executed only if its

preconditions are satisfied.

Our tool provides the first web service composition platform using abductive

event calculus as the framework for planning. As a proof of concept, it is

shown that, it is possible to represent composite processes defined in OWL-

S in event calculus domain automatically in a lossless manner. Also, it is

shown that the event calculus, which is declarative and has clear semantics,

is a very suitable platform for web service composition problem, because of

the ease in plan generation. Unlike methods using the situation calculus, our

122

tool can differentiate between the information-providing and world-altering

services, and treats them according to their nature without making any

assumptions.

6.2 Future Work

In our framework, the service discovery and execution modules are

simulated. As a future work, these modules can be replaced with the actual

discovery and execution components and integrated to our system. Also,

currently our system does not handle conditional outputs. The event calculus

axioms are generated dynamically just after the OWL-S file is provided to the

system, and these axioms include the definitions of the services including the

inputs and outputs of them. The number of outputs of a service should be

static and match with the event calculus definition of that service for the

planner to work successfully. Another layer can be added as a future work to

handle conditional outputs as well.

Our system takes ready OWL-S files as generic composition definitions.

Another component for creating the OWL-S files dynamically according to

the user’s needs can be integrated to our system as another future work.

This component may gather the user’s needs graphically and generate the

corresponding OWL-S file.

In the screen used for taking the input values from the user in the web

module, which can be seen in Figure 5.12, custom input fields are shown

only for a limited number of types of inputs. Only the fields for the date-time

picker and password are currently handled. The usual textbox is displayed

for all other types of inputs. This can be improved to handle also the types

123

such as credit card, telephone number, bollean values, currency, only-

numeric etc.

In our tool, performance loss is mainly due to the delay in Java-Prolog

interface and to the effort spent to make the plans coming ATP more

representable in a human-readable format. If ATP could be implemented in

Java, in such a way that the plans from it are generated in a more

representable way, such as a graph, the performance would increase vastly

and the effort to develep a program using ATP would be so much easier.

Only the primitive types string and integer are handled in ATP due to the

restrictions of Prolog. A layer can be put in between Java and Prolog in order

to enable passing other complex types to the planner.

Another future work might include handling all types of conditions written in

SWRL to use the full power of it. Our tool handles only numeric values for the

conditions. SWRL has some other built-in structures for strings, boolean

values, date, time, duration, URIs and lists. Extensions can be made for

handling these other structures.

124

REFERENCES

1. Andrews, T., Curbera, F., Dholakia, H., and Goland, Y.,
Business Process Execution Language for Web Services, Version
http://www.ibm.com/developerworks/library/specification/ws-bpel/,
2003.

2. Arkin, A., Business Process Modeling Language, Version 1.0,
Business Management Initiative, http://www.bpmi.org/, August 2008.

3. Arkin A., Askary S., Fordin S., Jekeli W., Kawaguchi K., Orchard D.,

Pogliani S., Riemer K., Struble S., Takaci-Nagy P., Trickovic I., and
Zimek S., Web Service Choreography Interface (WSCI) 1.0. Published
on the World Wide Web by BEA Systems, Intalio, SAP, and Sun
Microsystems, 2002.

4. Au, T.C., Kuter, U., and Nau, D., Web Service Composition with
Volatile Information, International Semantic Web Conference, 2005.

5. Aydin, O., Automated Web Services Composition with the Event
Calculus, M.S. Thesis, METU, 2005.

6. Bachlechner, D., Lausen, H., Siorpaes, K., Fensel, D., Web Service
Discovery-A Reality Check, Third Annual European Semantic Web
Conference ESWC'06, 2006.

7. Bechhofer, S., Harmelen, F., Hendler, J., Horrocks, I., McGuinness,
D.L., Patel-Schneider, P.F., and Stein, L.A., OWL Web Ontology
Language Reference, W3C Recommendation 10 February 2004,

125

W3C Technical Reports and Publications, http://www.w3.org/TR/owl-
ref/, August 2008.

8. Benatallah, B., Sheng, Q.Z., Ngu, A.H.H., and Dumas, M., Declarative
Composition and Peer-to-Peer Provisioning of Dynamic Web
Services, Proc. of the 18th Int. Conf. on Data Engineering (ICDE'02),
2002.

9. Berners-Lee, T., Hendler, J., and Lassila, O., The Semantic Web,
Scientific American Magazine, 2001.

10. Blum, A., and Furst, M., Fast Planning Through Planning Graph
Analysis, Proceedings of the 14th International Joint Conference on
Artificial Intelligence - IJCAI95, pp. 1636–1642, 1995.

11. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M.,
Ferris, C., and Orchard, D., Web Services Architecture, W3C Working
Group Note 11 February 2004, W3C Technical Reports and
Publications, http://www.w3.org/TR/ws-arch/, August 2008.

12. Casati, F., Ilnicki, S., and Jin, L., Adaptive and Dynamic Service
Composition in eFlow, Proceedings of 12th Int. Conference on
Advanced Information Systems Engineering(CAiSE), 2000.

13. Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S.,
Web Services Description Language (WSDL) 1.1, W3C Note 15
March 2001, W3C Technical Reports and Publications,
http://www.w3.org/TR/wsdl/, August 2008.

14. Aydin, O., Cicekli, N.K., Cicekli, I., Automated Web Services

Composition with Event Calculus, Proceedings of the 8th International
Workshop in \Engineering Societies in the Agents World" (ESAW07),
2007.

126

15. Curbera F., Goland Y., Klein J., Leymann F., Roller D, Thatte S., and
Weerawarana S., Business Process Execution Language for Web
Service (BPEL4WS) 1.0., Published on the World WideWeb by BEA
Corp., IBM Corp. and Microsoft Corp., August 2002.

16. Davulcu, H., Kifer, M., Pokorny, L., Ramakrishnan, C.R.,
Ramakrishnan, I.V., and Dawson, S., Modelling and Analysis of
Interactions in Virtual Enterprises, RIDE, pp. 12-18, 1998.

17. Dustdar, S., and Schreiner, W., A Survey on Web Services
Composition, Int. J. Web Grid Serv. 1 (1), pp. 1–30, 2005.

18. Eshghi, K., Abductive Planning with Event Calculus, Proceedings of
the 5th International Conference and Symposium on Logic
Programming, MIT Press, pp. 562--579, 1988.

19. Fikes, R. E. and Nilsson, N. J., STRIPS: a new approach to the

application of theorem proving to problem solving, Artificial
Intelligence, 2(3-4): pages 189-208, 1971.

20. Fujii, K., and Suda, T., Component Service Model with Semantics
(CoSMoS): A new Component Model for Dynamic Service
Composition, Proceedings of Applications and the Internet Workshops
(SAINTW’04), pp. 348-355, 2004.

21. Gardner, T., An Introduction to Web Services, Ariadne Issue 29,
http://www.ariadne.ac.uk/issue29/gardner, August 2008

22. Garofalakis, J., Panagis, Y., Sakkopoulos, E., and Tsakalidis, A., Web
Service Discovery Mechanisms: Looking for a Needle in a Haystack,
International Workshop on Web Engineering, 2004.

23. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso,
M., Weld, D., and Wilkins, D., PDDL: The Panning Domain Definition
Language, AIPS-98 Planning Committee, 1998.

127

24. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F.,

Karmarkar, A., and Lafon, Y., SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition), W3C Recommendation 27 April 2007,
W3C Technical Reports and Publications,
http://www.w3.org/TR/soap12-part1/, August 2008

25. Haas, H., and Brown, A., Web Services Glossary, W3C Working
Group Note 11 February 2004, W3C Technical Reports and
Publications, http://www.w3.org/TR/ws-gloss/, August 2008

26. Huang, Y., and Walker, D.W., Extensions to Web Service Techniques
for Integrating Jini into a Service-Oriented Architecture for the Grid,
ICCS 2003, LNCS2659, pp. 254-263, 2003.

27. Hull, R., Hill, M., and Berardi, D., Semantic Web Services Usage
Scenario: e-Service Composition in a Behavior based Framework,
http://www.daml.org/services/use-cases/language/, August 2008

28. Karagoz, F., Application of Schema Matching Methods to Semantic
Web Service Discovery, M.S. Thesis, Dept. of Computer Engineering,
METU, Ankara, 2006.

29. Kautz, H., and Selman, B., Planning as satisfiability, In Proceedings of

the 10th European Conference on Artificial Intelligence, 359–363.
Wiley, 1992.

30. Kowalski, R. A., and Sergot, M.J., A Logic-Based Calculus of Events,
New Generation Computing, Vol. 4(1), pp. 67-95, 1986.

31. Kuster, U., Stern, M., and Konig-Ries, B., A Classification of Issues
and Approaches in automatic Service Composition, 1st Int. Workshop
on Engineering Service Compositions (WESC05) at ICSOC, 2005.

128

32. Kuter, U., Sirin, E., Parsia, B., Nau, D., and Hendler, J., Information
Gathering During Planning for Web Service Composition, Proc. of
ICAPS-P4WGS 2004, 2004.

33. Leymann, F., Web Service Flow Language (WSFL 1.0), IBM Software
Group, Retrieved August 2008, from
http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
2001.

34. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D.,

McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin,
E., Srinivasan, N., and Sycara, K., OWL-S: Semantic Markup for Web
Services, W3C Member Submission 22 November 2004,
Acknowledged Member Submissions to W3C,
http://www.w3.org/Submission/OWL-S/, August 2008

35. McCarthy, J., Situations, Actions and Casual Laws, Stanford Artificial
Intelligence Project: Memo 2, 1963.

36. McDermott, D., Estimated-Regression Planning for Interactions with
Web Services, Sixth International Conference on AI Planning and
Scheduling, AAAI Press, 2002.

37. McIlraith, S. A., and Son, T.C., Adapting Golog for Composition of
Semantic Web Services, Proceedings of Eighth International
Conference on Principles of Knowledge Representation and
Reasoning, pp. 482-493, 2002.

38. Miller, R., and Shanahan, M., Some Alternative Formulations of the
Event Calculus, Computational Logic: Logic Programming and
Beyond, Springer-Verlag, pp. 452-490, 2002.

39. Mueller, Erik T., Commonsense Reasoning, pp. 42-43, 2006.

129

40. Mueller, R., Greiner, U., and Rahm, E., Agentwork: A Workflow
System Supporting Rule-Based Workflow Adaptation, Journal of Data
and Knowledge Engineering, 2004.

41. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., and
Yaman, F., SHOP2: An HTN Planning System, JAIR Volume 20, pp.
379–404, 2003.

42. Oh, S.C., Lee, D., and Kumara, S., A Comparative Illustration of AI
Planning-based Web Service Composition, ACM SIGecom
Exchanges, 5(5), pp. 1-10, 2006.

43. Peer, J., A PDDL Based Tool for Automatic Web Service
Composition, PPSWR’ 04: Proceedings of Second International
Workshop on Principles and Practice of Semantic Web Reasoning,
pp. 149–163, 2004.

44. Peer, J., Web Service Composition as AI Planning - a Survey,
Technical report, Univ. of St. Gallen, March 2005.

45. Pistore, M., Bertoli, P., Barbon, F., Shaparau, D., and Traverso, P.,
Planning and Monitoring Web Service Composition, Proc. of the 14th
Int. Conf. on Automated Planning and Scheduling (ICAPS 2004),
2004.

46. Rao, J., and Su, X., A Survey of Automated Web Service Composition
Methods, Proceedings of First International Workshop on Semantic
Web Services and Web Process Composition, pp 43-54, 2004.

47. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S., A

Scalable Content-Addressable Network, Proceedings of ACM
SIGCOMM`01 Conference, pp. 161–172, 2001.

130

48. Rouached, M., and Godart, C., An Event Based Model for Web
Service Coordination, 2nd International Conference on Web
Information Systems and Technologies - WEBIST 2006, 2006.

49. Rowstron, A., and Druschel, P., Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Systems,
Lecture Notes In Computer Science, 2001.

50. Shanahan, M.P., An Abductive Event Calculus Planner, The Journal
of Logic Programming, Vol. 44(1-3), pp. 207--240, 2000.

51. Shanahan, M.P., Event Calculus Planning Revisited, Proceedings 4th
European Conference on Plannning (ECP 97), Springer-Verlag
Lecture Notes in Artificial Intelligence no. 1348, pages 390-402, 1997.

52. Shanahan, M., Representing Continuous Change in the Event
Calculus, Proceedings of ECAI'90 Conference, Stockholm, pp. 598--
603, 1990.

53. Shanahan, M. P., The Event Calculus Explained, Artificial Intelligence
Today, Springer-Verlag Lecture Notes in Artificial Intelligence no.
1600, Springer-Verlag, pp. 409--430, 1999.

54. Sirin, E., Combining Description Logic Reasoning with AI Planning for
Composition of Web Services, PhD Thesis, Faculty of the Graduate
School of the University of Maryland, , 2006.

55. Sirin, E., Parsia, B., Wu, D., Hendler, J., and Nau, D., HTN planning
for web Service Composition Using SHOP2, Journal of Web
Semantics, pp. 377–396, 2004.

56. Srinivasan, N., Paolucci, M., and Sycara, K., An Efficient Algorithm for
OWL-S Based Semantic Search in UDDI, Lecture Notes in Computer
Science, 2005.

131

57. Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrishnan, H.,
Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications, Proceedings of ACM SIGCOMM’01 Conference, pp.
149–160, 2001.

58. Su, X., and Rao, J., A Survey of Automated Web Service Composition

Methods, In Proceedings of First International Workshop on Semantic
Web Services and Web Process Composition, SWSWPC 2004, pp.
43--54, 2004.

59. Thatte, S., XLANG: Web Services for Business Process Design,
Microsoft Corporation, Retrieved August 2008, From
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm,
2001.

60. Verma, K., Sheth, A., Miller, J., and Aggarwal, R., Semantic Web
Services Usage Scenario: Dynamic QoS based Supply Chain,
Retrieved August 2008, From http://www.daml.org/services/use-
cases/architecture/.

61. Wilk, J., Russo, A., and Cunningham, M.J., Dynamic Workflow Pulling
the Strings, Distinguished Project (MEng), Department of Computing,
Imperial Collage London, 2004.

62. Zhang, J.F., and Kowalczyk, R., Agent-based Dis-graph Planning
Algorithm for Web Service Composition, International Conference on
Computational Inteligence for Modelling Control and Automation and
International Conference on Intelligent Agents Web Technologies and
International Commerce (CIMCA'06), pp. 258, 2006.

63. Carnegie Mellon University, OWL-S API, Retrieved August 2008,
From http://projects.semwebcentral.org/projects/owl-s-api/.

132

64. The DARPA Agent Markup Language Homepage, Bravo Air Profile
Example for OWL-S 1.1, Retrieved August 2008, From
http://www.daml.org/services/owl-s/1.1/BravoAirProfile.owl.

65. The DARPA Agent Markup Language Homepage, Bravo Air Process
Example for OWL-S 1.1, Retrieved August 2008, From
http://www.daml.org/services/owl-s/1.1/BravoAirProcess.owl.

66. eCl@ss, The International Standard for the Classification of Products
and Services, Retrieved August 2008, From http://www.eclass-
online.com/.

67. D. Tidwell, Web Services—The Web's Next Revolution, IBM tutorial,

2000.

68. JPL - Java Interface to Prolog, Retrieved August 2008, From

http://www.swi-prolog.org/packages/jpl/java_api/index.html.

69. JUNG - Java Universal Network/Graph Framework, Retrieved August
2008, From http://jung.sourceforge.net/.

70. Maryland Information and Network Dynamics Lab, Semantic Web
Agents Project (MindSwap) OWL-S API, Retrieved August 2008,
From http://www.mindswap.org/2004/owl-s/api/.

71. North American Industry Classification System, NAICS, Retrieved
August 2008, From http://www.census.gov/epcd/www/naics.html.

72. OASIS, Organization for the Advancement of Structured Information
Standards, Retrieved August 2008, From http://www.oasis-open.org/.

133

73. The DARPA Agent Markup Language Homepage, Process Ontology
for OWL-S 1.1, Retrieved August 2008, From
http://www.daml.org/services/owl-s/1.1/Process.owl.

74. UDDI, Universal Description, Discovery and Integration, The UDDI
Technical White Paper, Retrieved August 2008, From
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf,
September 2000.

75. Wikipedia, Web Ontology Language, Retrieved August 2008, From
http://en.wikipedia.org/wiki/Web_Ontology_Language.

76. myGrid Team, WonderWeb OWL Ontology Validator, Retrieved
August 2008, From http://www.mygrid.org.uk/OWL/Validator.

134

APPENDIX A

SEQUENCE EXAMPLE

A composition example with Sequence control construct in OWL-S, and its

translation to the Event Calculus in Prolog are provided below respectively.

<?xml version="1.0" encoding="windows-1254"?>
<!DOCTYPE uridef[
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
<!ENTITY owl "http://www.w3.org/2002/07/owl">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
<!ENTITY service "http://www.daml.org/services/owl-
s/1.1/Service.owl">
<!ENTITY profile "http://www.daml.org/services/owl-
s/1.1/Profile.owl">
<!ENTITY process "http://www.daml.org/services/owl-
s/1.1/Process.owl">
<!ENTITY grounding "http://www.daml.org/services/owl-
s/1.1/Grounding.owl">
<!ENTITY expr "http://www.daml.org/services/owl-
s/1.1/generic/Expression.owl">
<!ENTITY swrl "http://www.w3.org/2003/11/swrl">
<!ENTITY swrlb "http://www.w3.org/2003/11/swrlb">
<!ENTITY list "http://www.daml.org/services/owl-
s/1.1/generic/ObjectList.owl">
<!ENTITY concepts "http://www.daml.org/services/owl-
s/1.1/Concepts.owl">
<!ENTITY this "http://localhost:801/owl-s/Sequence.owl">
]>
<rdf:RDF xmlns:rdf="&rdf;#" xmlns:rdfs="&rdfs;#" xmlns:owl="&owl;#"
xmlns:xsd="&xsd;#" xmlns:service="&service;#"
xmlns:profile="&profile;#"
xmlns:process="&process;#" xmlns:grounding="&grounding;#"
xmlns:expr="&expr;#"

135

xmlns:swrl="&swrl;#" xmlns:list="&list;#" xml:base="&this;">
<owl:Ontology rdf:about="">
<rdfs:comment>OWL-S Example: Sequence</rdfs:comment>
<owl:imports rdf:resource="&service;" />
<owl:imports rdf:resource="&process;" />
<owl:imports rdf:resource="&profile;" />
<owl:imports rdf:resource="&concepts;" />
<owl:imports rdf:resource="&list;" />
</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="TravelService">
<service:presents rdf:resource="#TravelProfile" />
<service:describedBy rdf:resource="#TravelProcess" />
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="TravelProfile">
<service:presentedBy rdf:resource="#TravelService" />
<profile:serviceName>TravelService</profile:serviceName>
<profile:has_process rdf:resource="#TravelProcess"/>
<profile:hasInput rdf:resource="#City" />
<profile:hasInput rdf:resource="#TravelDate" />
<profile:hasInput rdf:resource="#ReturnDate" />
<profile:hasOutput rdf:resource="#FlightNumber" />
<profile:hasOutput rdf:resource="#HotelReservationNumber" />
</profile:Profile>

<!-- Process description -->
<process:CompositeProcess rdf:ID="TravelProcess">
<rdfs:label>This is the top level process for Sequence
</rdfs:label>
<rdfs:comment> TravelProcess is a composite process.</rdfs:comment>
<process:invocable rdf:datatype="&xsd;#boolean">true
</process:invocable>
<service:describes rdf:resource="#TravelService" />
<process:hasInput>
<process:Input rdf:ID="City">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
<rdfs:label>City</rdfs:label>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="TravelDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
<rdfs:label>TravelDate</rdfs:label>
</process:Input>
</process:hasInput>
<process:hasInput>

136

<process:Input rdf:ID="ReturnDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
<rdfs:label>ReturnDate</rdfs:label>
</process:Input>
</process:hasInput>
<process:hasOutput>
<process:Output rdf:ID="FlightNumber">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
<rdfs:label>FlightNumber</rdfs:label>
</process:Output>
</process:hasOutput>
<process:hasOutput>
<process:Output rdf:ID="HotelReservationNumber">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
<rdfs:label>HotelReservationNumber
</rdfs:label>
</process:Output>
</process:hasOutput>
<process:hasResult>
<process:Result>
<process:withOutput>
<process:OutputBinding>
<process:toParam rdf:resource="#FlightNumber" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="#PerformFindFlight" />
<process:theVar rdf:resource="#FindFlight_FlightNumber" />
</process:ValueOf>
</process:valueSource>
</process:OutputBinding>
</process:withOutput>
</process:Result>
</process:hasResult>
<process:hasResult>
<process:Result>
<process:withOutput>
<process:OutputBinding>
<process:toParam rdf:resource="#HotelReservationNumber" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="#PerformFindHotel" />
<process:theVar rdf:resource="#FindHotel_HotelReservationNumber" />
</process:ValueOf>
</process:valueSource>
</process:OutputBinding>
</process:withOutput>
</process:Result>
</process:hasResult>

137

<process:composedOf>
<process:Sequence>
<process:components>
<process:ControlConstructList>
<list:first>
<process:Perform rdf:ID="PerformFindFlight">
<process:process>
<process:AtomicProcess rdf:ID="FindFlight">
<rdfs:label>FindFlight</rdfs:label>
<rdfs:comment>Finds an available flight</rdfs:comment>
<process:hasInput>
<process:Input rdf:ID="FindFlight_City">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindFlight_TravelDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindFlight_ReturnDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasOutput>
<process:Output rdf:ID="FindFlight_FlightNumber">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Output>
</process:hasOutput>
</process:AtomicProcess>
</process:process>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindFlight_City" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#City" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindFlight_TravelDate" />
<process:valueSource>

138

<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#TravelDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindFlight_ReturnDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#ReturnDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
</process:Perform>
</list:first>
<list:rest>
<process:ControlConstructList>
<list:first>
<process:Perform rdf:ID="PerformFindHotel">
<process:process>
<process:AtomicProcess rdf:ID="FindHotel">
<rdfs:label>FindHotel</rdfs:label>
<rdfs:comment>Finds an available hotel</rdfs:comment>
<process:hasInput>
<process:Input rdf:ID="FindHotel_City">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindHotel_TravelDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindHotel_ReturnDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasOutput>
<process:Output rdf:ID="FindHotel_HotelReservationNumber">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Output>

139

</process:hasOutput>
</process:AtomicProcess>
</process:process>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindHotel_City" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#City" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindHotel_TravelDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#TravelDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindHotel_ReturnDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#ReturnDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
</process:Perform>
</list:first>
<list:rest rdf:resource="&list;#nil" />
</process:ControlConstructList>
</list:rest>
</process:ControlConstructList>
</process:components>
</process:Sequence>
</process:composedOf>
</process:CompositeProcess>
</rdf:RDF>

executable(dummy).

140

abducible(dummy).
:- use_module(library(jpl)).

%abdemo([holds_at(pTravelProcessPlanned(ReturnDate, TravelDate, City), t)],
R).

axiom(initiates(pTravelProcess(ReturnDate, TravelDate,
City),pTravelProcessPlanned(ReturnDate, TravelDate, City), T), []).

axiom(happens(pTravelProcess(ReturnDate, TravelDate, City), T1, TN),
[
happens(pFindFlight(ReturnDate, TravelDate, City, FlightNumber), T2, T3),
happens(pFindHotel(ReturnDate, TravelDate, City, HotelReservationNumber),
T4, T5),
before(T1, T2),
before(T3, T4),
before(T5, TN)
]).

%Atomic Process Prolog:FindFlight
%Atomic Process Prolog:FindHotel
%%% INDIVIDUAL AXIOMS %%%
axiom(happens(pFindFlight(ReturnDate, TravelDate, City, FlightNumber), T1,
TN),
[
 jpl_pFindFlight(ReturnDate, TravelDate, City, FlightNumber)
]).

axiom(happens(pFindHotel(ReturnDate, TravelDate, City,
HotelReservationNumber), T1, TN),
[
 jpl_pFindHotel(ReturnDate, TravelDate, City, HotelReservationNumber)
]).

%%% EX_WEBSERVICE DECLARATIONS %%%
ex_WebService(jpl_pFindFlight(_,_,_,_)).
ex_WebService(jpl_pFindHotel(_,_,_,_)).

%%% JPL METHOD DEFINITIONS %%%
jpl_pFindFlight(ReturnDate, TravelDate, City, FlightNumber) :-
 jpl_new('tr.edu.metu.prolog.WebServiceInvocation', [], WSI),
 jpl_list_to_array([ReturnDate, TravelDate, City], InputArray),
 jpl_call(WSI, invokeService, ['pFindFlight', InputArray], OutputArray),
 (OutputArray == @(null) -> OutputList = [] ;
 jpl_array_to_list(OutputArray, OutputList)),
 length(OutputList,Length),
 (
 Length==1 ->
 [A] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 WholeList = [TempList1];
 (
 Length==2 ->
 [A,B] = OutputList,
 (A == @(null) -> TempList1 = [] ;

141

 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 WholeList = [TempList1, TempList2];
 (
 Length==3 ->
 [A,B,C] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 WholeList = [TempList1, TempList2, TempList3];
 (
 Length==4 ->
 [A,B,C,D] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 (D == @(null) -> TempList4 = [] ;
 jpl_array_to_list(D, TempList4)),
 WholeList = [TempList1, TempList2, TempList3, TempList4];
 true
)
)
)
),
 member([FlightNumber], WholeList),
 true.

jpl_pFindHotel(ReturnDate, TravelDate, City, HotelReservationNumber) :-
 jpl_new('tr.edu.metu.prolog.WebServiceInvocation', [], WSI),
 jpl_list_to_array([ReturnDate, TravelDate, City], InputArray),
 jpl_call(WSI, invokeService, ['pFindHotel', InputArray], OutputArray),
 (OutputArray == @(null) -> OutputList = [] ;
 jpl_array_to_list(OutputArray, OutputList)),
 length(OutputList,Length),
 (
 Length==1 ->
 [A] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 WholeList = [TempList1];
 (
 Length==2 ->
 [A,B] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 WholeList = [TempList1, TempList2];
 (
 Length==3 ->

142

 [A,B,C] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 WholeList = [TempList1, TempList2, TempList3];
 (
 Length==4 ->
 [A,B,C,D] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 (D == @(null) -> TempList4 = [] ;
 jpl_array_to_list(D, TempList4)),
 WholeList = [TempList1, TempList2, TempList3, TempList4];
 true
)
)
)
),
 member([HotelReservationNumber], WholeList),
 true.

143

APPENDIX B

 EXAMPLE IN TRAVEL DOMAIN

A generic composition in travel domain including various control constructs is

provided below. First the OWL-S file, then its translation to the Event

Calculus domain in Prolog will be provided.

<?xml version="1.0" encoding="windows-1254"?>
<!DOCTYPE uridef[
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
<!ENTITY owl "http://www.w3.org/2002/07/owl">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
<!ENTITY service "http://www.daml.org/services/owl-s/1.1/Service.owl">
<!ENTITY profile "http://www.daml.org/services/owl-s/1.1/Profile.owl">
<!ENTITY process "http://www.daml.org/services/owl-s/1.1/Process.owl">
<!ENTITY grounding "http://www.daml.org/services/owl-s/1.1/Grounding.owl">
<!ENTITY expr "http://www.daml.org/services/owl-
s/1.1/generic/Expression.owl">
<!ENTITY swrl "http://www.w3.org/2003/11/swrl">
<!ENTITY swrlb "http://www.w3.org/2003/11/swrlb">
<!ENTITY list "http://www.daml.org/services/owl-
s/1.1/generic/ObjectList.owl">
<!ENTITY concepts "http://www.daml.org/services/owl-s/1.1/Concepts.owl">
<!ENTITY this "http://localhost:801/owl-s/Sequence.owl">
]>
<rdf:RDF xmlns:rdf="&rdf;#" xmlns:rdfs="&rdfs;#" xmlns:owl="&owl;#"
xmlns:xsd="&xsd;#" xmlns:service="&service;#" xmlns:profile="&profile;#"
xmlns:process="&process;#" xmlns:grounding="&grounding;#"
xmlns:expr="&expr;#"
xmlns:swrl="&swrl;#" xmlns:list="&list;#" xml:base="&this;">
<owl:Ontology rdf:about="">
<rdfs:comment>OWL-S Example: Sequence</rdfs:comment>
<owl:imports rdf:resource="&service;" />
<owl:imports rdf:resource="&process;" />
<owl:imports rdf:resource="&profile;" />
<owl:imports rdf:resource="&concepts;" />
<owl:imports rdf:resource="&list;" />

144

</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="TravelService">
<service:presents rdf:resource="#TravelProfile" />
<service:describedBy rdf:resource="#TravelProcess" />
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="TravelProfile">
<service:presentedBy rdf:resource="#TravelService" />
<profile:serviceName>TravelService</profile:serviceName>
<profile:has_process rdf:resource="#TravelProcess" />
<profile:hasInput rdf:resource="#City" />
<profile:hasInput rdf:resource="#TravelDate" />
<profile:hasInput rdf:resource="#ReturnDate" />
<profile:hasInput rdf:resource="#ShouldRentACar" />
<profile:hasOutput rdf:resource="#RemoteTransportationReservationNumber" />
<profile:hasOutput rdf:resource="#HotelReservationNumber" />
<profile:hasOutput rdf:resource="#TransportationReservationNumber" />
</profile:Profile>

<!-- Process description -->
<process:CompositeProcess rdf:ID="TravelProcess">
<rdfs:label> This is the top level process for Sequence</rdfs:label>
<rdfs:comment> TravelProcess is a composite process.</rdfs:comment>
<process:invocable rdf:datatype="&xsd;#boolean"> true
</process:invocable>
<service:describes rdf:resource="#TravelService" />
<process:hasInput>
<process:Input rdf:ID="City">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
<rdfs:label>City</rdfs:label>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="TravelDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
<rdfs:label>TravelDate</rdfs:label>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="ReturnDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
<rdfs:label>ReturnDate</rdfs:label>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="ShouldRentACar">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#boolean
</process:parameterType>
<rdfs:label>ShouldRentACar</rdfs:label>
</process:Input>
</process:hasInput>

145

<process:hasOutput>
<process:Output rdf:ID="RemoteTransportationReservationNumber">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
<rdfs:label>RemoteTransportationReservationNumber
</rdfs:label>
</process:Output>
</process:hasOutput>
<process:hasOutput>
<process:Output rdf:ID="HotelReservationNumber">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
<rdfs:label>HotelReservationNumber
</rdfs:label>
</process:Output>
</process:hasOutput>
<process:hasOutput>
<process:Output rdf:ID="TransportationReservationNumber">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
<rdfs:label>TransportationReservationNumber
</rdfs:label>
</process:Output>
</process:hasOutput>
<process:hasResult>
<process:Result>
<process:withOutput>
<process:OutputBinding>
<process:toParam rdf:resource="#RemoteTransportationReservationNumber" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="#PerformFindRemoteTransportation" />
<process:theVar
rdf:resource="#FindRemoteTransportation_RemoteTransportationReservationNumb
er" />
</process:ValueOf>
</process:valueSource>
</process:OutputBinding>
</process:withOutput>
</process:Result>
</process:hasResult>
<process:hasResult>
<process:Result>
<process:withOutput>
<process:OutputBinding>
<process:toParam rdf:resource="#HotelReservationNumber" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="#PerformFindHotel" />
<process:theVar rdf:resource="#FindHotel_HotelReservationNumber" />
</process:ValueOf>
</process:valueSource>
</process:OutputBinding>
</process:withOutput>
</process:Result>
</process:hasResult>
<process:hasResult>

146

<process:Result>
<process:withOutput>
<process:OutputBinding>
<process:toParam rdf:resource="#TransportationReservationNumber" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="#PerformFindLocalTransportation" />
<process:theVar
rdf:resource="#FindLocalTransportation_TransportationReservationNumber" />
</process:ValueOf>
</process:valueSource>
</process:OutputBinding>
</process:withOutput>
</process:Result>
</process:hasResult>
<process:composedOf>
<process:Sequence>
<process:components>
<process:ControlConstructList>
<list:first>
<process:Perform rdf:ID="PerformFindRemoteTransportation">
<process:process>
<process:CompositeProcess rdf:ID="FindRemoteTransportation">
<rdfs:label> FindRemoteTransportation</rdfs:label>
<rdfs:comment> FindRemoteTransportation</rdfs:comment>
<process:hasInput>
<process:Input rdf:ID="FindRemoteTransportation_City">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindRemoteTransportation_TravelDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindRemoteTransportation_ReturnDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasOutput>
<process:Output
rdf:ID="FindRemoteTransportation_RemoteTransportationReservationNumber">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Output>
</process:hasOutput>
<process:composedOf>
<process:Choice>
<process:components>
<process:ControlConstructBag>
<list:first>
<process:Perform rdf:ID="PerformFindFlight">
<process:process>

147

<process:AtomicProcess rdf:ID="FindFlight">
<rdfs:label>FindFlight</rdfs:label>
<rdfs:comment>FindFlight</rdfs:comment>
<process:hasInput>
<process:Input rdf:ID="FindFlight_City">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindFlight_TravelDate">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindFlight_ReturnDate">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasOutput>
<process:Output
rdf:ID="FindFlight_RemoteTransportationReservationNumber">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Output>
</process:hasOutput>
</process:AtomicProcess>
</process:process>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindFlight_City" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess
rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#City" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindFlight_TravelDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess
rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#TravelDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>

148

</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindFlight_ReturnDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess
rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#ReturnDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam
rdf:resource="#FindFlight_RemoteTransportationReservationNumber" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess
rdf:resource="&process;#TheParentPerform" />
<process:theVar
rdf:resource="#RemoteTransportationReservationNumber" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
</process:Perform>
</list:first>
<list:rest>
<process:ControlConstructBag>
<list:first>
<process:Perform rdf:ID="PerformFindBus">
<process:process>
<process:AtomicProcess rdf:ID="FindBus">
<rdfs:label> FindBus</rdfs:label>
<rdfs:comment> Bike</rdfs:comment>
<process:hasInput>
<process:Input rdf:ID="FindBus_City">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindBus_TravelDate">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindBus_ReturnDate">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>

149

</process:hasInput>
<process:hasOutput>
<process:Output
rdf:ID="FindBus_RemoteTransportationReservationNumber">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Output>
</process:hasOutput>
</process:AtomicProcess>
</process:process>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindBus_City" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess
rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#City" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindBus_TravelDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess
rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#TravelDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindBus_ReturnDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess
rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#ReturnDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam
rdf:resource="#FindBus_RemoteTransportationReservationNumber" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess
rdf:resource="&process;#TheParentPerform" />
<process:theVar
rdf:resource="#RemoteTransportationReservationNumber" />

150

</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
</process:Perform>
</list:first>
<list:rest rdf:resource="&list;#nil" />
</process:ControlConstructBag>
</list:rest>
</process:ControlConstructBag>
</process:components>
</process:Choice>
</process:composedOf>
</process:CompositeProcess>
</process:process>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindRemoteTransportation_City" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#City" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindRemoteTransportation_TravelDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#TravelDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindRemoteTransportation_ReturnDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#ReturnDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
</process:Perform>
</list:first>
<list:rest>
<process:ControlConstructList>
<list:first>
<process:Perform rdf:ID="PerformFindHotel">
<process:process>
<process:AtomicProcess rdf:ID="FindHotel">
<rdfs:label> FindHotel</rdfs:label>

151

<rdfs:comment> Finds an available hotel</rdfs:comment>
<process:hasInput>
<process:Input rdf:ID="FindHotel_City">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindHotel_TravelDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindHotel_ReturnDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasOutput>
<process:Output rdf:ID="FindHotel_HotelReservationNumber">
<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Output>
</process:hasOutput>
</process:AtomicProcess>
</process:process>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindHotel_City" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#City" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindHotel_TravelDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#TravelDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindHotel_ReturnDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#ReturnDate" />
</process:ValueOf>

152

</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
</process:Perform>
</list:first>
<list:rest>
<process:ControlConstructList>
<list:first>
<process:Perform rdf:ID="PerformFindLocalTransportation">
<process:process>
<process:CompositeProcess rdf:ID="FindLocalTransportation">
<rdfs:label> FindLocalTransportation</rdfs:label>
<rdfs:comment> FindLocalTransportation</rdfs:comment>
<process:hasInput>
<process:Input rdf:ID="FindLocalTransportation_ShouldRentACar">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#boolean
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindLocalTransportation_City">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindLocalTransportation_TravelDate">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindLocalTransportation_ReturnDate">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasOutput>
<process:Output
rdf:ID="FindLocalTransportation_TransportationReservationNumber">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Output>
</process:hasOutput>
<process:composedOf>
<process:If-Then-Else>
<process:ifCondition>
<expr:SWRL-Condition>
<rdfs:label> ShouldRentACar</rdfs:label>
<rdfs:comment> ShouldRentACar</rdfs:comment>
<expr:expressionBody
rdf:parseType="Literal">

153

<swrl:AtomList>
<rdf:first>
<swrl:ClassAtom>
<swrl:classPredicate
rdf:resource="#1" />
<swrl:argument1 rdf:resource="#ShouldRentACar" />
</swrl:ClassAtom>
</rdf:first>
<rdf:rest rdf:resource="&rdf;#nil" />
</swrl:AtomList>
</expr:expressionBody>
</expr:SWRL-Condition>
</process:ifCondition>
<process:then>
<!-- FIXME Then -->
<!-- FindLocalTransportation_TransportationReservationNumber binding
necessary -->
<process:Sequence>
<process:components>
<process:ControlConstructList>
<list:first>
<process:Perform rdf:ID="PerformFindCar">
<process:process>
<process:AtomicProcess
rdf:ID="FindCar">
<rdfs:label> FindCar</rdfs:label>
<rdfs:comment> Car</rdfs:comment>
<process:hasInput>
<process:Input rdf:ID="FindCar_City">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindCar_TravelDate">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindCar_ReturnDate">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasOutput>
<process:Output
rdf:ID="FindCar_TransportationReservationNumber">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Output>
</process:hasOutput>
</process:AtomicProcess>

154

</process:process>
</process:Perform>
</list:first>
<list:rest rdf:resource="&list;#nil" />
</process:ControlConstructList>
</process:components>
</process:Sequence>
</process:then>
<process:else>
<!-- FIXME Else -->
<process:Sequence>
<process:components>
<process:ControlConstructList>
<list:first>
<process:Perform rdf:ID="PerformFindBicycle">
<process:process>
<process:AtomicProcess
rdf:ID="FindBicycle">
<rdfs:label> FindBicycle</rdfs:label>
<rdfs:comment> Bike</rdfs:comment>
<process:hasInput>
<process:Input rdf:ID="FindBicycle_City">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindBicycle_TravelDate">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input rdf:ID="FindBicycle_ReturnDate">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Input>
</process:hasInput>
<process:hasOutput>
<process:Output
rdf:ID="FindBicycle_TransportationReservationNumber">
<process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string
</process:parameterType>
</process:Output>
</process:hasOutput>
</process:AtomicProcess>
</process:process>
</process:Perform>
</list:first>
<list:rest rdf:resource="&list;#nil" />
</process:ControlConstructList>
</process:components>
</process:Sequence>

155

</process:else>
</process:If-Then-Else>
</process:composedOf>
</process:CompositeProcess>
</process:process>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindLocalTransportation_City" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#City" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindLocalTransportation_TravelDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#TravelDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindLocalTransportation_ReturnDate" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#ReturnDate" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
<process:hasDataFrom>
<process:InputBinding>
<process:toParam rdf:resource="#FindLocalTransportation_ShouldRentACar" />
<process:valueSource>
<process:ValueOf>
<process:fromProcess rdf:resource="&process;#TheParentPerform" />
<process:theVar rdf:resource="#ShouldRentACar" />
</process:ValueOf>
</process:valueSource>
</process:InputBinding>
</process:hasDataFrom>
</process:Perform>
</list:first>
<list:rest rdf:resource="&list;#nil" />
</process:ControlConstructList>
</list:rest>
</process:ControlConstructList>
</list:rest>
</process:ControlConstructList>

156

</process:components>
</process:Sequence>
</process:composedOf>
</process:CompositeProcess>
</rdf:RDF>

executable(dummy).

abducible(dummy).
:- use_module(library(jpl)).

%abdemo([holds_at(pTravelProcessPlanned(ShouldRentACar, ReturnDate,
TravelDate, City), t)], R).

axiom(initiates(pTravelProcess(ShouldRentACar, ReturnDate, TravelDate,
City),pTravelProcessPlanned(ShouldRentACar, ReturnDate, TravelDate, City),
T), []).

axiom(happens(pTravelProcess(ShouldRentACar, ReturnDate, TravelDate, City),
T1, TN),
[
 happens(pFindRemoteTransportation(ReturnDate, TravelDate, City,

RemoteTransportationReservationNumber), T2, T3),
 happens(pFindHotel(ReturnDate, TravelDate, City,

HotelReservationNumber), T4, T5),
 happens(pFindLocalTransportation(ReturnDate, TravelDate, City,

ShouldRentACar, TransportationReservationNumber), T6, T7),
 before(T1, T2),
 before(T3, T4),
 before(T5, T6),
 before(T7, TN)
]).

axiom(happens(pFindRemoteTransportation(ReturnDate, TravelDate, City,
RemoteTransportationReservationNumber), T1, TN),
[
 happens(pFindFlight(ReturnDate, TravelDate, City,

RemoteTransportationReservationNumber), T2, T3),
 before(T1, T2),
 before(T3, T4),
 before(T3, TN)
]).

axiom(happens(pFindRemoteTransportation(ReturnDate, TravelDate, City,
RemoteTransportationReservationNumber), T1, TN),
[
 happens(pFindBus(ReturnDate, TravelDate, City,

RemoteTransportationReservationNumber), T2, T3),
 before(T1, T2),
 before(T3, T4),
 before(T3, TN)

157

]).

axiom(happens(pFindLocalTransportation(ReturnDate, TravelDate, City,
ShouldRentACar, TransportationReservationNumber), T1, TN),
[
 jpl_pFindLocalTransportationIfcondition('1', ShouldRentACar),

happens(pFindCar(ReturnDate, TravelDate, City,
TransportationReservationNumber),T2, T3),

before(T1,T2),
before(T3,TN)

]).

axiom(happens(pIfCondition(ReturnDate, TravelDate, City, ShouldRentACar,
TransportationReservationNumber), T1, TN),
[

 jpl_pFindLocalTransportationIfcondition('1', ShouldRentACar),
]).

axiom(happens(pFindLocalTransportation(ReturnDate, TravelDate, City,
ShouldRentACar, TransportationReservationNumber), T1, TN),
[
 jpl_pFindLocalTransportationElsecondition('1', ShouldRentACar),

happens(pFindBicycle(ReturnDate, TravelDate, City,
TransportationReservationNumber), T2, T3),

before(T1,T2),
before(T3,TN)

]).

axiom(happens(pElseCondition(ReturnDate, TravelDate, City, ShouldRentACar,
TransportationReservationNumber), T1, TN),
[

not(jpl_pFindLocalTransportationIfcondition('1',
ShouldRentACar)),

]).

%Composite Process Prolog:FindRemoteTransportation
%Atomic Process Prolog:FindFlight
%Atomic Process Prolog:FindBus
%Atomic Process Prolog:FindHotel
%Composite Process Prolog:FindLocalTransportation
%Atomic Process Prolog:FindCar
%Atomic Process Prolog:FindBicycle

%%% INDIVIDUAL AXIOMS %%%
axiom(happens(pFindFlight(ReturnDate, TravelDate, City,
RemoteTransportationReservationNumber), T1, TN),
[
 jpl_pFindFlight(ReturnDate, TravelDate, City,
RemoteTransportationReservationNumber)
]).

axiom(happens(pFindBus(ReturnDate, TravelDate, City,
RemoteTransportationReservationNumber), T1, TN),
[

158

 jpl_pFindBus(ReturnDate, TravelDate, City,
RemoteTransportationReservationNumber)
]).

axiom(happens(pFindHotel(ReturnDate, TravelDate, City,
HotelReservationNumber), T1, TN),
[
 jpl_pFindHotel(ReturnDate, TravelDate, City, HotelReservationNumber)
]).

axiom(happens(pFindCar(ReturnDate, TravelDate, City,
TransportationReservationNumber), T1, TN),
[
 jpl_pFindCar(ReturnDate, TravelDate, City,
TransportationReservationNumber)
]).

axiom(happens(pFindBicycle(ReturnDate, TravelDate, City,
TransportationReservationNumber), T1, TN),
[
 jpl_pFindBicycle(ReturnDate, TravelDate, City,
TransportationReservationNumber)
]).

%%% EX_WEBSERVICE DECLARATIONS %%%
ex_WebService(jpl_pFindFlight(_,_,_,_)).
ex_WebService(jpl_pFindBus(_,_,_,_)).
ex_WebService(jpl_pFindHotel(_,_,_,_)).
ex_WebService(jpl_pFindLocalTransportationIfcondition(_,_)).
ex_WebService(jpl_pFindLocalTransportationElsecondition(_,_)).
ex_WebService(jpl_pFindCar(_,_,_,_)).
ex_WebService(jpl_pFindBicycle(_,_,_,_)).

%%% JPL METHOD DEFINITIONS %%%
jpl_pFindFlight(ReturnDate, TravelDate, City,
RemoteTransportationReservationNumber) :-
 jpl_new('tr.edu.metu.prolog.WebServiceInvocation', [], WSI),
 jpl_list_to_array([ReturnDate, TravelDate, City], InputArray),
 jpl_call(WSI, invokeService, ['pFindFlight', InputArray],
OutputArray),
 (OutputArray == @(null) -> OutputList = [] ;
 jpl_array_to_list(OutputArray, OutputList)),
 length(OutputList,Length),
 (
 Length==1 ->
 [A] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 WholeList = [TempList1];
 (
 Length==2 ->
 [A,B] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),

159

 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 WholeList = [TempList1, TempList2];
 (
 Length==3 ->
 [A,B,C] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 WholeList = [TempList1, TempList2, TempList3];
 (
 Length==4 ->
 [A,B,C,D] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 (D == @(null) -> TempList4 = [] ;
 jpl_array_to_list(D, TempList4)),
 WholeList = [TempList1, TempList2, TempList3,
TempList4];
 true
)
)
)
),
 member([RemoteTransportationReservationNumber], WholeList),
 true.

jpl_pFindBus(ReturnDate, TravelDate, City,
RemoteTransportationReservationNumber) :-
 jpl_new('tr.edu.metu.prolog.WebServiceInvocation', [], WSI),
 jpl_list_to_array([ReturnDate, TravelDate, City], InputArray),
 jpl_call(WSI, invokeService, ['pFindBus', InputArray], OutputArray),
 (OutputArray == @(null) -> OutputList = [] ;
 jpl_array_to_list(OutputArray, OutputList)),
 length(OutputList,Length),
 (
 Length==1 ->
 [A] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 WholeList = [TempList1];
 (
 Length==2 ->
 [A,B] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 WholeList = [TempList1, TempList2];
 (

160

 Length==3 ->
 [A,B,C] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 WholeList = [TempList1, TempList2, TempList3];
 (
 Length==4 ->
 [A,B,C,D] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 (D == @(null) -> TempList4 = [] ;
 jpl_array_to_list(D, TempList4)),
 WholeList = [TempList1, TempList2, TempList3,
TempList4];
 true
)
)
)
),
 member([RemoteTransportationReservationNumber], WholeList),
 true.

jpl_pFindHotel(ReturnDate, TravelDate, City, HotelReservationNumber) :-
 jpl_new('tr.edu.metu.prolog.WebServiceInvocation', [], WSI),
 jpl_list_to_array([ReturnDate, TravelDate, City], InputArray),
 jpl_call(WSI, invokeService, ['pFindHotel', InputArray], OutputArray),
 (OutputArray == @(null) -> OutputList = [] ;
 jpl_array_to_list(OutputArray, OutputList)),
 length(OutputList,Length),
 (
 Length==1 ->
 [A] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 WholeList = [TempList1];
 (
 Length==2 ->
 [A,B] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 WholeList = [TempList1, TempList2];
 (
 Length==3 ->
 [A,B,C] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;

161

 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 WholeList = [TempList1, TempList2, TempList3];
 (
 Length==4 ->
 [A,B,C,D] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 (D == @(null) -> TempList4 = [] ;
 jpl_array_to_list(D, TempList4)),
 WholeList = [TempList1, TempList2, TempList3,
TempList4];
 true
)
)
)
),
 member([HotelReservationNumber], WholeList),
 true.

jpl_pFindLocalTransportationIfcondition(I1, IShouldRentACar) :-
 atom_number(I1, Arg1),
atom_number(IShouldRentACar, Arg2),
Arg1==Arg2,
 true.

jpl_pFindLocalTransportationElsecondition(I1, IShouldRentACar) :-
 atom_number(I1, Arg1),
atom_number(IShouldRentACar, Arg2),
not(Arg1==Arg2),
 true.

jpl_pFindCar(ReturnDate, TravelDate, City, TransportationReservationNumber)
:-
 jpl_new('tr.edu.metu.prolog.WebServiceInvocation', [], WSI),
 jpl_list_to_array([ReturnDate, TravelDate, City], InputArray),
 jpl_call(WSI, invokeService, ['pFindCar', InputArray], OutputArray),
 (OutputArray == @(null) -> OutputList = [] ;
 jpl_array_to_list(OutputArray, OutputList)),
 length(OutputList,Length),
 (
 Length==1 ->
 [A] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 WholeList = [TempList1];
 (
 Length==2 ->
 [A,B] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;

162

 jpl_array_to_list(B, TempList2)),
 WholeList = [TempList1, TempList2];
 (
 Length==3 ->
 [A,B,C] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 WholeList = [TempList1, TempList2, TempList3];
 (
 Length==4 ->
 [A,B,C,D] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 (D == @(null) -> TempList4 = [] ;
 jpl_array_to_list(D, TempList4)),
 WholeList = [TempList1, TempList2, TempList3,
TempList4];
 true
)
)
)
),
 member([TransportationReservationNumber], WholeList),
 true.

jpl_pFindBicycle(ReturnDate, TravelDate, City,
TransportationReservationNumber) :-
 jpl_new('tr.edu.metu.prolog.WebServiceInvocation', [], WSI),
 jpl_list_to_array([ReturnDate, TravelDate, City], InputArray),
 jpl_call(WSI, invokeService, ['pFindBicycle', InputArray],
OutputArray),
 (OutputArray == @(null) -> OutputList = [] ;
 jpl_array_to_list(OutputArray, OutputList)),
 length(OutputList,Length),
 (
 Length==1 ->
 [A] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 WholeList = [TempList1];
 (
 Length==2 ->
 [A,B] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 WholeList = [TempList1, TempList2];
 (

163

 Length==3 ->
 [A,B,C] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 WholeList = [TempList1, TempList2, TempList3];
 (
 Length==4 ->
 [A,B,C,D] = OutputList,
 (A == @(null) -> TempList1 = [] ;
 jpl_array_to_list(A, TempList1)),
 (B == @(null) -> TempList2 = [] ;
 jpl_array_to_list(B, TempList2)),
 (C == @(null) -> TempList3 = [] ;
 jpl_array_to_list(C, TempList3)),
 (D == @(null) -> TempList4 = [] ;
 jpl_array_to_list(D, TempList4)),
 WholeList = [TempList1, TempList2, TempList3,
TempList4];
 true
)
)
)
),
 member([TransportationReservationNumber], WholeList),
 true.

164

APPENDIX C

PERFORMANCE CHARTS

Some system performance analysis charts are provided below.

165

 �

Figure C.1 Performance Charts�

