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ABSTRACT 

 
 

DOPPLER RADAR DATA PROCESSING  
AND CLASSIFICATION 

 
 

Aygar, Alper 

M.Sc., Department of Electrical and Electronics Engineering 

    Supervisor        : Prof. Dr. Uğur Halıcı 

    Co-Supervisor    : Assist. Prof. Dr. Đlkay Ulusoy 
 

August 2008, 107 pages 

 

 

 

In this thesis, improving the performance of the automatic recognition of 

the Doppler radar targets is studied. The radar used in this study is a ground-

surveillance doppler radar. Target types are car, truck, bus, tank, helicopter, 

moving man and running man. The input of this thesis is the output of the real 

doppler radar signals which are normalized and preprocessed (TRP vectors: 

Target Recognition Pattern vectors) in the doctorate thesis by Erdogan (2002). 

TRP vectors are normalized and homogenized doppler radar target signals with 

respect to target speed, target aspect angle and target range. Some target classes 

have repetitions in time in their TRPs. By the use of these repetitions, 

improvement of the target type classification performance is studied. K-Nearest 

Neighbor (KNN) and Support Vector Machine (SVM) algorithms are used for 

doppler radar target classification and the results are evaluated. Before 

classification PCA (Principal Component Analysis), LDA (Linear Discriminant 
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Analysis), NMF (Nonnegative Matrix Factorization) and ICA (Independent 

Component Analysis) are implemented and applied to normalized doppler radar 

signals for feature extraction and dimension reduction in an efficient way. These 

techniques transform the input vectors, which are the normalized doppler radar 

signals, to another space. The effects of the implementation of these feature 

extraction algoritms and the use of the repetitions in doppler radar target signals 

on the doppler radar target classification performance are studied.  

   

Keywords: Doppler radars, Principal Component Analysis (PCA), Linear 

Discriminant Analysis (LDA), Non-negative Matrix Factorization (NMF), 

Independent Component Analysis (ICA), K-Nearest Neighbor (KNN), Support 

Vector Machine (SVM). 
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ÖZ 

 
 

DOPPLER RADAR VERĐ ĐŞLEME  

VE SINIFLANDIRMA 

 

 

Aygar, Alper 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

       Tez Yöneticisi        : Prof. Dr. Uğur Halıcı 

       Ortak Tez Yöneticisi  : Assist. Prof. Dr. Đlkay Ulusoy 
 

Ağustos 2008, 107 sayfa 

 

 

 

Bu tezde, doppler radar hedeflerinin otomatik olarak tanınma 

performansının artırılması üzerine çalışmalar yapılmıştır. Gerçek Doppler radar 

sinyallerinin bir doktora tezi kapsamında Erdogan (2002) ön işleme ve 

normalizasyondan geçirilmesi sonucu elde edilen çıktılar bu tezin girdilerini 

(HTÖ vektörleri: Hedef Tanıma Örüntüsü vektörleri) oluşturmaktadır. HTÖ 

vektörleri hedeflere ait doppler ses sinyallerinin hedef hızı, hedefe bakış açısı, 

hedef menzili gibi etkilerden arındırılmaya çalışılmış ve homojenize edilmiş 

halleridir. Bazı hedef sınıflarının HTÖ vektörlerinde zamanda tekrarlamalar 

bulunmaktadır. Bu tekrarlamaların kullanımı ile hedef tipi tanıma 

performansının artırılması üzerine çalışılmıştır. KNN (K-Nearest Neighbor) ve 

SVM (Support Vector Machine) sınıflandırma yöntemleri doppler radar verileri 

hedef tanıma için kullanılmış ve sonuçlar incelenmiştir. Sınıflandırma öncesinde 
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Temel Bileşenler Analizi (TBA), Lineer Diskriminant Analizi (LDA), Bağımsız 

Bileşenler Analizi (BBA), Negatif Olmayan Matris Ayrıştırma (NOMA) 

yöntemleri kullanılmış, öz nitelik çıkarımı ve boyut düşürümü için normalize 

edilmiş doppler radarı sinyallerine uygulanmıştır. Bu yöntemler doppler radar 

sinyallerinin normalize edilmiş halleri olan girdi vektörlerini başka bir boyuta 

dönüştürmektedir. Tüm bu yöntemlerin ve hedef sinyallerindeki tekrarlamaların 

kullanımının sınıflandırma başarımı üzerine etkileri incelenmiştir. Bu çalışmada 

kullanılan radar doppler tabanlı bir kara gözetleme radarıdır. Hedef tipleri ise 

araba, kamyon, otobüs, tank, helikopter, yürüyen adam ve koşan adamdır. 

   

Anahtar Kelimeler: Doppler radarları, Temel Bileşenler Analizi, Lineer 

Diskriminant Analizi, Negatif Olmayan Matris Ayrıştırma, Bağımsız Bileşenler 

Analizi, K-Nearest Neighbor (KNN), Support Vector Machine (SVM). 
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 CHAPTER 1                                        

INTRODUCTION 

 
Radar (Radio Detection and Ranging) is a device that detects objects 

such as aircrafts, ships, vehicles and people. These objects reflect radio waves. 

Radar radiates radio waves to space and the signals reflected from objects are 

processed to detect the targets. Radars can operate at day and night, in different 

weather conditions such as rain, snow and fog. There are several types of radars 

used for different purposes (Stimson, 1998). Radars are used in military, air 

traffic controllers, highway safety, aircraft and ship safety (Skolnik, 2001).  

Doppler Radars detect moving targets by using doppler principle. 

According to the doppler principle, due to the relative velocity of the target with 

respect to the radar, the motion of the target will create corresponding 

frequencies in the received signal (Richards, 2005).  More detailed information 

about doppler radars is given in Section 2.1. 

Since motion of a target is the triggering effect for the doppler radars, 

targets which show different motion characteristics can be classified according 

to the different doppler frequency information received from them. There are 

some studies in the literature on doppler radar target classification based on 

target motion characteristics. One of them is the doctorate thesis study by 

Erdogan (2002) in METU EEE Computer Vision and Intelligent Systems 

Research Laboratory. 

In Erdogan (2002) ASELSAN ASKARAD Ground Surveillance Doppler 

Radar is used. In this radar, the received doppler signals are also used at the 

speakers and headphones of the radar operator, so radar operator can listen these 

signals to classify targets. Doppler audio signals received from car, truck, bus, 

tank, helicopter, walking man and moving man targets are gathered. Two audio 

signal records received from a car at different times are presented in Figure 1.1 
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and Figure 1.2 . X axis shows time and Y axis shows amplitude of the received 

signal. 

 

 

 

 
 

 

 

 

Figure 1.1 10 seconds long Car  record 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Another Car record 
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Figure 1.3 Tank record 

 

 

 

 

 

 

 

 

 

Figure 1.4 Helicopter record 

 

 

 Observing Figures 1.1 to 1.4, intiutively we can say that classifying the 

targets using only time domain data is not feasible since even for the same target 

type (in this case car) different signal envelopes are obtained and for different 

target types (in this case tank and helicopter) similar signal envelopes are 

obtained. So it is not possible get discriminative information only using time 

domain anaysis. For a doppler radar, target aspect angle and target speed factors 

affect the frequency information of received doppler signal. The target aspect 

angle is the angle between the direction of motion of the target and line of sight 

of the radar. Since target aspect angle and speed factors change in time, 

frequency information of the received doppler signal will change in time. So 
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frequency information must be analyzed in time, so a Time-Frequency transform 

will be convenient for this purpose. STFT (Short Time Fourier Transform) is 

used for time-frequency analysis because it is implementable for radar systems. 

Time domain data is sampled at 11025 Hz. As the STFT parameters, FFT (Fast 

Fourier Transform) frame size is 512, FFT window type is Kaiser and FFT 

Overlap Ratio is %50. As an example, two STFT time frames for car target is 

given in Figure 1.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Two STFT time frames for car 

 
 
 
 By concetanating the STFT time frames shown in Figure 1.5, 3-

dimensional STFT plots for targets are obtained. These plots show the change of 

the STFT doppler spectrums with respect to time frames. The car target, whose 

STFT time frames are presented in Figure 1.6, made a motion between 800 and 

600 aspect angles and also the car speed is increased during the motion.  As it can 

be seen from Figure 1.6, there is a peak with a significant amplitude in the 

doppler spectrum of each time frame. The location and amplitude of this peak 

changes from frame to frame. The peak frequency location changes due to the 

changing radial speed and aspect angle of the target. 
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Figure 1.6 3-dimensional STFT of a car. 
 

 

The amplitude of the doppler spectrums change in time frames due to the 

target range factor so doppler spectrum for each time frame must be normalized 

in amplitude. For this purpose, amplitudes of frequency components of each 

time frame are divided by the energy of that time frame. Amplitude 

normalization step is explained in detail in Section 2.3. In Figure 1.7 the doppler 

spectrums for time frames before amplitude normalization are shown. In Figure 

1.8 the doppler spectrums of time frames after amplitude normalization are 

shown. 
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Figure 1.7 3-dimensional STFTs for time frames before amplitude normalization 
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Figure 1.8 3-dimensional STFTs for time frames after amplitude normalization
  

  

After frame amplitude normalization, frequency information of doppler 

spectrums must be normalized since target radial speed and aspect angle factors 

changes the frequency information of doppler spectrums. The frame frequency 

normalization step is explained in section 2.3. After frequency normalization of 

time frames, the STFTs become in the form presented in Figure 1.9. 
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Figure 1.9 3-dimensional STFTs of time frames after frequency normalization 

 

 

Amplitude and frequency normalized doppler spectrums of time frames 

are called TRP (Target Recognition Pattern) vectors. TRP vectors form the 

preprocessed doppler radar signals that can be used for classification. 

In this thesis improving the performance of the doppler radar automatic 

target classification system given in Erdogan (2002) is studied. The target types 

are car, truck, bus, tank, helicopter, walking man and running man.  

The main doppler radar target concept used in this thesis is Target 

Recognition Pattern. Other useful doppler radar target concepts related to this 

thesis are Target Doppler Signal and Target Doppler Spectrum. 

Target Doppler Signal is the doppler signal received from the target. 

Target Doppler Spectrum is the frequency spectrum of the Target 

Doppler Signal. 

Target Recognition Patterns are the normalized Target Doppler 

Spectrums in Erdogan (2002) with respect to amplitude and frequency variations 

which are triggered by target characteristics such as target range, target aspect 

angle, target radial speed. 

This thesis uses Target Recognition Patterns as input. Target 

Recognition Patterns used in this thesis are the normalized Target Doppler 
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Spectrums of Target Doppler Signals obtained by the ASELSAN ASKARAD 

Ground Surveillance Doppler Radar. (Appendix A) 

 

1.1 Statement of the Problem 

In some doppler radar systems, received doppler signals can also be 

listened at the headphones of the radar operator as audio signal. Radar operators 

can listen these signals to classifiy targets. However this task requires an extra 

radar operator to perform only this job. Making the target classification in an 

automatic manner could yield better classification performance and less operator 

workload for such systems. The doctorate thesis Erdogan (2002) was such a 

study to make the target the classification system of such a system (ASKARAD) 

automatic. 

The main goal of this thesis is to improve the classification performance 

of the automatic target recognition system which was proposed during the 

doctorate thesis study Erdogan (2002). In Erdogan (2002), even though a 

classification based on neural networks was considered, the main challange of 

the thesis was the preprocessing stage. We will use the preprocessing stage of 

Erdogan (2002) and construct a target classification system that feeds multiple 

time frames to classify the targets and increase the classification performance. 

Time frames in Erdogan (2002) will be called as time bins in this thesis. 

 

The goals of this thesis are: 

• Constructing an automatic target recognition system that uses various 

feature extraction and classification methods. 

• To present the input data (Target Recognition Patterns) by considering 

multiple time bins to the automatic target recognition system in order to 

improve the classification performance of the system. 

• Comparing the methods that are used for feature extraction and 

classification according to the classification performance values of them. 
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• To test the performance of a classification scheme which uses multiple 

classifiers organized hierarchically (Hierarchical Classification) 

• To study target classification performance metrics such as clustering 

quality, khat values and average recognition rate to use on the ATR 

system classification results. 

• To inspect the best ATR system parameters (feature extraction method, 

classification method, data handling method and other system 

parameters) to classifify car, truck, bus, tank, helicopter, walking man 

and running man targets with a high classification performance value. 

 

1.2 Scope of the Thesis 

Some ATR system concepts are not in the scope of this thesis. These are listed 

below: 

• Data Acquisition stage of the ATR system is not implemented. This 

thesis uses the acquired data of Erdogan (2002). There is no target 

detection implementation, the target was detected by the operator. Also 

target detection was done for single target conditions. The operations 

done for data acquisition are explained in Chapter 2. 

• Preprocessing stage of the ATR system is not implemented but the one 

developed in Erdogan (2002) is used. The operations done for the 

preprocessing is described briefly in Chapter 2. 

 

The concepts that are in the scope of this thesis are listed below: 

• Feature Extraction and Classification stages of the ATR system are 

implemented. 

• In the Feature Extraction stage of the ATR system, PCA, LDA, ICA and 

NMF methods are implemented. 

• In the Classification stage of the ATR system, KNN and SVM classifiers 

are implemented. 
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• A Hierarchical Classification approach is also examined. 

• Clustering Quality and Classification performance metrics are searched 

and used. 

• The TRP vectors obtained by considering multiple time bins are also 

examined. 

 

1.3 Contribution of the Thesis 

In the traditional doppler ATR systems, the variations of the 

preprocessed Target Doppler Spectrums in time are not evaluated (See Chapter 

2 Background - Literature Survey part). This study examines the performance of 

various feature extraction and classification methods and evaluates the effects of 

using time variations of preprocessed Target Doppler Spectrums on the 

classification performance. 

 

1.4 Organization of the Thesis 

The thesis is organized as follows:  

Chapter 2 gives background on doppler radars, studies about doppler 

radar ATR systems, a brief explanation about the prepocessing stage in Erdogan 

(2002), pattern recognition, clustering quality measures, classification 

performance metrics, feature extraction methods used in the thesis, classification 

methods used in the thesis.  

Chapter 3 explains the ATR system used in the thesis. 

Chapter 4 gives the experimental results of the ATR system explained in 

Chapter 3. 

Chapter 5 gives conclusions and possible feature works. 
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 CHAPTER 2                           

BACKGROUND 

 

2.1 Background on Doppler Radars  

Doppler Radars use the doppler effect to detect moving targets and 

calculate the velocities of the targets. According to the doppler effect the relative 

velocity of the target will create corresponding frequencies at the signal received 

from the target (Richards, 2005). Doppler radars utilize these frequencies to 

detect the target and find the characteristics of the target. This is due to the 

common physical phenomenon that the phase of the reflected signal for a 

stationary object is constant whereas for a moving object it is changing. The 

change in the phase (doppler frequency shift) is proportional to the radial speed 

of the target. The doppler frequency shift fd is given by the derivation: 

 fd  = (2 * ft * vr) / c                           (2.1)  

where 

 fd  : Doppler frequency shift 

 ft  :  Frequency transmitted 

 vr  : Radial speed of the target 

 c  : Speed of the light 

For approaching targets the doppler frequency shift will be added up to the 

transmitted frequency and for diverging targets the doppler frequency shift will 

be subtracted from the transmitted frequency. If the target has moving parts, 

each distinct moving part of the target will create a different doppler frequency 

on the received signal due to the different speeds of the different moving parts 

of the target. This can be utilized to classify targets since different target types 

show different motion characteristics. 
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In Table 2.1 physical structures for different target classes that will generate 

doppler frequencies is presented. 

Table 2.1 Structures for different target classes that generate doppler frequencies 

 
TARGET CLASS STRUCTURE 

Car Body and Wheels 

Truck Body and Wheels 

Bus Body and Wheels 

Tank Body, Wheels and Track 

Helicopter Body, Main and Back Propellers 

Walking Man Body, Legs and Arms 

Running Man Body, Legs and Arms 

   

The most important factors that affect the received signal for a doppler 

radar are target range, target aspect angle and target radial speed factors. These 

factors were defined before. In Figure 2.1 we present these factors visually 

(Erdogan, 2002). 
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Target’s Motion 
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Figure 2.1 Doppler radar factors affecting the received signal 

 
 

Target range affects the amplitude of the received signal, whereas target aspect 

angle and target radial speed factors affect the frequency information of the 

received signal. 

 

2.2 Background on Doppler Radar ATR Studies 

There are several studies performed on doppler radar automatic target 

recognition. This section gives information about them. 

In Castalez (1988), they classified 4 artillery munition classes with the 

use of their doppler time signatures which were obtained by Hughes AN/TPQ-

37 radar. Back-Propagation Neural Network was used for classification and its 

input was 15 doppler frequency bin amplitudes returned from the target and time 

information which is fed to the 16. input. The 16-16-16 Back-Propagation was 

trained with 32 samples for each target class and tested with 256 samples for 
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each class. Training samples were fed to the network for several thousand 

cycles. The classification performance obtained was %92. They also used a 16-

32-32 network but same level of performance was obtained. In their experiments 

they observed that three layer networks are sufficient and networks with more 

layers can degrade the classification performance. 

In Bullard (1991), classification of rotary wing aircraft was performed 

based on the doppler signatures of the target. It was a study directed by MICOM 

(U.S. Army Missile Command) / Georgia Tech measurements in 1989-90. 

Target signatures of a Sikorsky S-55 helicopter were gathered with a high-pulse 

repetition frequency X-band coherent radar. Helicopter’s main rotor blades, tail 

rotor blades and hub regions creates distinct doppler signatures such that it 

would be possible to identify helicopter characteristics such as rotor 

configuration, blade count and rotor parity. This study did not implement an 

automatic target classification system but it rather proposed methods to extract 

information about rotary wing aircraft. 

 In Madrid (1992), an automatic target recognition system was designed 

to classify four target types (airplanes and ground vehicles, helicopters, groups 

of small moving targets (e.g, persons) and clutter). Doppler signatures were used 

to implement the classification. The target classes were chosen in such a detail 

to obtain an adequate classification performance. These target classes have 

different spectral shape characteristics. Airplanes and ground vehicles do not 

have any vibrating or rotating parts, they only have a large rigid body so their 

signatures will include a large peak. Due to the main and tail rotor blades of the 

helicopter, it will have flat wide sidebands around the sharp peak. In a group of 

persons there will be members with different speeds. By considering the 

spectrum of this class as the sums of individual member spectrums, there can be 

more than one peak in the spectrum of this class. Since clutter has zero velocity, 

its spectrum will consist of a peak at zero doppler.  

At the signal processing stage each frame was transformed by Discrete 

Fourier Transform. In the feature extraction step, four measurements including 
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shift of the spectral maximum and bandwidths at three different levels were 

taken for each frame. The classifier is fed with 12 parameters which consist of 

the features of three frames. The classifier was a 2 hidden layered Multilayer 

Perceptron Neural Network with first and second hidden layers consist of 36 and 

12 nodes respectively. For each target class, 200 samples were used at the test 

phase of the experiment. Also some extra controls were performed under certain 

conditions to prevent some kinds of errors. If aircrafts or group of persons had a 

mean doppler shift of zero, such detections were labeled again as clutter. RCS 

(Radar Cross Section) was utilized in some conditions such as the classification 

of an accelerating plane as group of persons. After the feature extraction and 

classification steps, for Aircraft/Vehicle and Helicopter target classes %100 

classification performance were obtained while obtaining %97 and % 98 

classification performances for Persons and Clutter target classes respectively. 

% 2 of Persons classified as Aircraft/Vehicle and %1 classified as Clutter. % 2 

of Clutter classified as Persons. 

In Jianjun (1996), they performed aircraft target classification using by 

using engine modulation on radar signatures obtained from the target. Radar 

signatures were taken with an air defense surveillance radar. Target class set 

consists of five aircrafts. Optical fourier transform was used for the extraction of 

modulation signatures.  

The classifier was a semi-connected backpropagation neural network 

with one hidden layer. Numbers of training samples used for each target class 

were 43, 45, 41, 39 and 60 respectively. Since there were not enough samples 

for training samples, the leave-one-out technique is used for test. The 

classification performances for five target classes were % 99.87, %98.67, 

%99.33, %97.87 and % 98.27 respectively. 

In Chen (2000), usefulness of micro-doppler signatures which are 

induced by the rotating and vibrating parts of the target for target detection, 

classification and recognition was considered. The modulations due to 

vibrations are at low frequencies with respect to the body doppler frequency 
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while modulations due to rotations are at high frequencies with respect to the 

body doppler frequency. In this study Time-Frequency Domain Signatures of 

the targets such as stationary reflector, vibrating reflector, rotating blades and 

walking-man with swinging arms were investigated and it was observed that 

these targets have distinct time-frequency domain signatures which can be used 

for target classification. 

In Yoon (2000), they used time-frequency analysis to determine the 

number of helicopter blades unambiguously. The main rotor rotation frequency 

then can be estimated after the number of blades is determined and all of these 

results can be used to determine the type of the helicopter. In the STFT of the 

helicopter echoes there are N sinusoids corresponding corresponding to the N 

rotor blades. They obtained satisfactory experiment results with a model 

helicopter with changeable rotor blades. 

In Stove (2002), they used the target data of the MSTAR (Man Portable 

Surveillance and Tracking Radar)  which is in use in U.K. and some other armed 

forces since 1989. This radar has audio which can be used by the radar operator 

to classify targets. The main aim of this study was to implement and test an 

automatic target classifier which can be used to provide classification service to 

the radar operator so that the workload of the radar operator can be reduced. The 

target classes of interest were wheeled vehicles, tracked vehicles and personnel. 

The sequences of audio samples were transformed by Fourier Transform. The 

classifier used was Fisher Linear Discriminator whose inputs were normalized 

spectrums. For a better performance, discrimination was implemented in two 

stages. Personnel and vehicle classes were discriminated first then wheeled 

vehicle and tracking vehicle classes were discriminated. %10 of the overall data 

is used for testing. As the result of the experiment average correct classification 

rates were % 86, % 83 and %83 for personnel, wheeled vehicles and tracked 

vehicles respectively. The biggest confusion rate was between wheeled vehicle 

and tracked vehicle classes. % 13 of the tracked vehicles classified as wheeled 

and % 14 of wheeled vehicles classified as tracked. 
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In McConaghy (2003), they implemented an automatic target recognition 

system that uses RBFNNs (Radial Basis Function Neural Networks) to classify 

real life audio signals collected by a ground surveillance radar mounted on a 

tank. With the implementation of such a system the number of personnels on the 

tank will be reduced since this job is done by the personnel by listening to the 

audio signals of the targets. In the neural network different signal classification 

methods were used. First method was to use a linear autoregressive model to 

extract the linear features of the audio data and second method was to use non-

linear predictors to model the audio data and then classify the signals according 

to prediction errors. Target data was collected by AN/PPS-15 ground 

surveillance radar and the target types of concern were men-marching, walking-

man, airplanes, trucks, tanks, crawling-man, birds and boats etc. By using a 

linear adaptive algorithm for the training of the network, The RBF network can 

be made implementable for real-time applications. % 75 of the overall data used 

for training and %25 used for test. Classification Performance was %86 and % 

65 for training and test data by using AR (Autoregessive) feature extraction.  

Classification performance was %63 and %51 for training and test data by using 

linear predictors. They also experimented classification with human 

classification with a team of 40 humans and the classification performance was 

%27. 

 In Lei (2005), they used Gabor filtering method to extract micro-doppler 

signatures in the time-frequency domain. Dimension of the extracted features 

was reduced by PCA. Bayes linear, k-nearest neighbor and SVM classifiers 

were used and their classification performances were compared. This study used 

Gabor function since it is a good tool for extracting localized features in both 

spatial and frequency domain. Recognition rates were, between %44 and %92 

for SVM, between %42 and %84 for KNN, between %38 and %78 for bayes 

linear classifier. Recognition rates were low when the number of features was 

below 500. 
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In Bilik (2005), they implemented an ATR system based on the Greedy 

learning of GMM (Gaussian Mixture Model). The aim was to classify doppler 

audio. Target class types were walking person(s), wheeled and tracked vehicles, 

animal and clutter. Target class probability density functions were modeled by 

GMMs. ML (Maximum Likelihood) and majority voting are used for 

classification. Greedy-GMM based classification technique is implemented 

using the linear predictive coding (LPC) and cepstrum coefficient feature sets, 

extracted from the data. A classification rate of % 88 obtained with ML 

classifier and %96 obtained with majority voting classifier. 

 

2.3 Data Acquisition and Preprocessing 

 In this section data acquisition and preprocessing done in Erdogan 

(2002) for ASKARAD target signals are explained. The outputs of the 

prepocessing stage are TRP vectors which are also input to our target 

recognition system. 

2.3.1 Data Acquisition 

 Doppler Signal is obtained from a range. This received signal is 

processed in the radar receiver in order to make it suitable for the target 

detection. In ASKARAD, doppler signal can also be listened by the radar 

operator as an audio signal. The audio signal is recorded as an analog signal, 

digitized at 11025 Hz and saved as 8 bit mono wav file. Information such as 

target range and azimuth can not be obtained from this signal. 

2.3.2 Preprocessing of Signals 

 For a doppler radar there are several factors affecting the received target 

doppler signal. Most important of them are target range, target aspect angle and 

target radial speed. Target range is the distance between the target and the radar. 

Target aspect angle is the angle between the direction of the motion of the target 
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and line of sight of the radar. Target Radial Speed is the target speed component 

along the line of sight of the radar.  Target range affects the amplitude 

information of the received doppler signal, target speed and target aspect angle 

factors affect the frequency information of the received doppler signal. Since 

target speed and aspect angle can change in time, frequency analysis must be 

done in time. 

 Each audio signal received at a time-bin is transformed into frequency 

domain by using STFT (Short Time Fourier Transform). This transformed signal 

can be called as STFT frame. In Figure 2.2 STFT frames for a walking man 

target are presented. 

 

Figure 2.2 3-dimensional STFT frames of Walking Man 
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 As mentioned previously the input to the ATR system designed in the 

thesis are the TRP vectors. In the following paragraphs, the preprocessing steps 

applied in order to obtain TRP vectors are explained. 

Amplitude Normalization is done for each STFT frame by dividing 

amplitudes of the frequency components for an STFT frame by the frame 

energy.  

After frame amplitude normalization step, frequency normalization is 

performed. The aim of this step is to find the TCB (Target Characteristics Band) 

for each STFT frame. Target Characteristics Band can be defined as the part of 

the STFT spectrum where the target characteristics reside. TCB can be 

expressed by mean frequency and TCB width. 

The mean frequency of a STFT frame   is: 

 

Mean Frequency = ((Frame Amplitudes Vector)
3
 * Frame Bin Vector) /  

                               (∑ Frame Bin Vector)              (2.2) 

where  

Frame Bin Vector = [1, 2,.., Frame Length] 

 

The average of the mean frequencies of the STFT frames is defined as 

the mean frequency of STFT frames. Mean frequency averaging is done on a 

specified number of consecutive frames. TCB is located at the mean frequency 

and its width is set equal to the twice of the mean frequency. 

As the last step in the prepocessing stage, TCB frame is transformed into 

fixed length TRP vector. TRP vectors form the basis for feature extraction since 

target doppler signal is amplitude and frequency normalized and characteristic 

part of the frequency spectrum is extracted regardless of the actual frequency 

components. The dimension of TRP vector is chosen as 63. 
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2.4 Data Used in the Thesis 

 This thesis uses the Target Recognition Patterns (preprocessed Target 

Doppler Spectrums of ASELSAN ASKARAD Ground Surveillance Doppler 

Radar Target Signals). Half of TRP vectors are used for training and half of 

them used for testing. The Data Acquisition and Preprocessing done in  is 

explanied in section 2.3. 

TRP vectors used for training are presented in Figures 2.3 to 2.9. The 

data dimension of each time bin is 63. 

 

 

    
   Figure 2.3 TRP vectors of training data for CAR class 
 

  



 22 

    

    Figure 2.4 TRP vectors of training data for TRUCK class. 

 
 

   
   Figure 2.5 TRP vectors of training data for BUS class 
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 Figure 2.6 TRP vectors of training data for TANK class 

 

 
Figure 2.7 TRP vectors of training data for HELICOPTER class 
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Figure 2.8 TRP vectors of training data for WALKING MAN class. 

 

 
Figure 2.9 TRP vectors of training data for RUNNING MAN class 
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A total of 884 TRP vectors are used in this thesis. The number of TRP vectors 

for car, truck, bus, tank, helicopter, walking man and moving man classes are 

104, 114, 188, 30, 42, 218 and 188 respectively. Half of the TRP vectors are 

used for training and half of them are used for test. 

 

2.5 Background on Pattern Recognition 

Pattern recognition aims to assign a measurement, object or data to one 

of the classes defined. Mainly a pattern recognition system consists of three 

stages which are data gathering, feature extraction and classification. Data 

gathering part or the sensor part gathers the raw data or takes the measurements 

that will be the input to the feature extraction part. Depending on the type of 

gathered data, there can be need of preprocessing for the data. This can be due to 

the noise or some other factors that are special to the data. The aim of the feature 

extraction part is to extract characteristic and relevant information (also can be 

called as features) from the raw data. Extracted features are input to the 

classification stage. The classification stage assigns the data or object to one of 

the defined classes based on the extracted features. The classification can be 

either supervised or unsupervised. In supervised classification there is a training 

data set which consists of classified data and the test data is classified according 

to this training data. In unsupervised classification, there is no priori 

information; classification is done based on the statistical information of the 

data. 

 

2.6 Performance Measures  

One of the main areas of interest in Pattern Recognition systems is to 

represent the performance of the feature extraction step mathematically in order 

to evaluate the feature extraction method performance separately from the 

classifier. To perform this, Clustering Quality Measures can be used. A 
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clustering quality measure can be defined as a function whose input is a sample 

set and partition of the samples to the clusters and whose output is a number that 

represents the quality of clustering. 

One of the CQMs (Clustering Quality Measures) is given in Schweitzer 

(1999). This measure is defined as the ratio of Sw (Within Class Scatter Matrix) 

to Sb (Between Class Scatter Matrix). 

CQM = Sw / Sb                         (2.3) 

The Sb (Between Class Scatter Matrix) and Sw (Within Class Scatter 

Matrix) are defined as 

Sb     =  ∑j (mj)(µj - µ)(µj - µ)
T
  j = 1..k    (2.4) 

Sw     = ∑j ∑i (xi - µj)(xi - µj)
T
  i = 1..Gj                                                    (2.5) 

 

The definition of mean of all samples is given below. 

µ = (∑j (mj µj )) / m    j = 1..k                         (2.6) 

where 

k                : Number of clusters. 

G1..Gk           : Partition of the patterns into k clusters. 

mj        : Number of samples in cluster j. 

xi        : Samples in cluster j. 

µ1.. µ k           : Means of the clusters. 

µ        : Mean of all samples.  

m        : Number of all samples. 

 

A smaller value of the clustering quality measure Sw / Sb indicates a 

better clustering quality value since a smaller value of Sw and a larger value of 

Sb denotes a good clustering. Samples in a single cluster must be closer to each 

other and clusters must be far from each other for a good clustering. 

Other clustering quality measure is given in Zardoshti (1993). This 

clustering quality measure is defined as cluster-to-cluster similarity. The cluster-

to-cluster similarity value between two clusters is the ration of the difference of 
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dispersions of clusters to the distance between the cluster means and its formula 

is given below.  

Rij = (Si - Sj) / Dij        (2.7) 

Dispersion of cluster i (Si) is defined as 

Si = ( (∑j (xj – µi )
T 

(xj – µi)) / mi)
1 / 2  

j = 1.. mi                                  (2.8) 

Distance between means of two cluster i and cluster j is defined as 

Dij = ((µi - µj )
T 

(µi - µj))
1 / 2                                                                                                   (2.9) 

where 

Si  : Dispersion of cluster i. 

Sj  : Dispersion of cluster j. 

Dij : Distance between means of cluster i and cluster j. 

mi : Number of members of cluster i. 

xi :  Input samples of cluster i. 

µi :  Mean of cluster i. 

k :  Number of clusters. 

 
The clustering quality value can be defined as the average cluster-to-

cluster similarity value of all cluster-to-cluster similarity values. 

 
Ravg = avg (Rij)  i = 1..k     j = 1..k             (2.10) 

                                                  
 
 A smaller clustering value of Ravg indicates a better clustering quality 

value. Among the two clustering quality metrics given in (2.3) and (2.7), the 

quality metric in (2.3) covers the overall data more than the one in (2.7). So, in 

the thesis the results for the clustering quality metric in (2.3). 

 As the classification performance measure class-to-class confusion 

matrices are widely used. These matrices show the actual and predicted 

classifications performed by the classification system. In such a matrix the entry 

in row i column j shows the number of samples classified as class j but in fact 

are the members of class i. Confusion matrices shows class-to-class 

classification performance however they do not yield a single value which is to 
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show the overall performance of the classifier. In the literature there are some 

classification performance values used for this purpose. One of them is called 

KHAT (Wilkinson, 2005). This classification performance metric takes the 

class-to-class confusion matrix as input and returns a single value that presents 

the classification performance. KHAT value of a confusion matrix is given by: 

 

         ( N * ( ∑i Xii  ) ) – ( ∑i    (Xi+ * X+i) )  i = 1..r          (2.11) 

KHAT =     
______________________________________ 

              ( N
2 

) – ( ∑i    (Xi+ * X+i) ) 

 
 
where 
 
r  : Number of rows in the confusion matrix 

Xii  : Number of observations in row i column i of the confusion                

matrix 

Xi+  : Marginal total of row i of the confusion matrix 

X+i  : Marginal total of column i of the confusion matrix 

N : Total number of samples in the confusion matrix 

 

KHAT formula takes into account not only the correct classifications but 

also the misclassifications.  

 
 Also the average of the correct classification rates of each class can also 

be used as classification metric and its formula is given below. 

Recognitionavg  =  ( ∑i Ci ) / k                           (2.12) 

where 

 Ci = Correct recognition rate for class i 

 k  = Number of classes  

In fact Recognitionavg given in (2.12) is the sum of the diagonal elements in 

confusion matrix divided by the number of classes.                   
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2.7 Feature Extraction and Classification Methods  

In this thesis, PCA, LDA, ICA and NMF methods are used for feature 

extraction, while KNN and SVM methods are used for classification. Our target 

recognition system consists of a feature extraction method and a classifer chosen 

from these methods. Methods are explained in the following sections. 

2.7.1 PCA 

PCA (Principal component analysis) is a non-parametric method that 

extracts relevant information from complex data sets. The main aim of PCA is 

to reduce the dimension of the data while preserving as much representative 

information as the original data (Shlens, 2005). PCA is a linear transformation 

that computes a matrix which transforms the high dimensional space to a lower 

dimensional space.  PCA transforms the data along the directions where data 

varies the most. PCA is unsupervised, i.e. it does not deal with class information 

of the data. 

 Considering the vector x, PCA tries to find the matrix T ∈ RKxN for 

which y = Tx where y ∈ RK is the transformed version of x∈ RN such that  

K < N. 

 

PCA method can be summerized as below: 

• x1,x2 .. xL are the sample vectors whose dimension is N and will be 

reduced. L is the number of samples. 

• Calculate the mean of the samples. µ = (∑j xj) / L     j = 1..L 

• Subtract the mean from the samples. Фj = xj  - µ 

• Calculate the matrix A. A = [Ф1 Ф2  .. ФL] 

• Calculate the covariance matrix C = AAT 

• Calculate the eigenvalues of C, Λ1 >  Λ2 > ..  > ΛN 

• Calculate the eigenvectors of C, Π1, Π2, .. ,ΠN 

• Eigenvectors determines the directions of the new space. 
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• Any training or test sample can be projected to the new space by            

yi = (xi - µ) [Π1 Π2 .. ΠK] where xi is the sample and yi is the transformed 

sample. 

• Dimensionality reduction means loss of information. The dimension of 

the new space must be chosen such that the difference between yi and xi   

must be minimum.  

• In order to minimize the difference between yi  and xi   , K must be 

chosen such that; 

            (∑i Λi) / (∑j  Λj ) > Threshold (For example 0.85) 

 where i = 1 .. K and j = 1 .. N 

• One advantage of PCA is that noisy directions can be eliminated from 

data representation. 

2.7.2 LDA  

LDA (Linear Discriminant Analysis) is a feature extraction method that 

utilizes the class information of the samples. LDA tries to find the directions in 

which separation of classes is good by computing the within class scatter Sw and 

between class scatter SB (Shan, 2002). 

 

Within class scatter Sw is given by the derivation: 

Sw = ∑i ∑j (yj - µi) (yj - µi)
T         

i = 1..k   j = 1..mi                                   (2.13)

  

where  

k   : Number of classes 

mi  : Number of samples that belongs to class i 

µi  : Mean of the samples in class i 

 

Between class scatter SB is given by derivation: 

SB = ∑i (µi  - µ) (µi  - µ))
T                                                   (2.14) 
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where  

µ : Mean of the overall data set 

LDA is a transformation that maximizes between class scatter while minimizing 

within class scatter. To perform this LDA finds the optimal transformation W to 

maximize J(W). J(W) is given by the derivation:  

J(W) = (W
T
 SB W) / (W

T
 SW W)             (2.15) 

To maximize J(W) the equation below must be solved. 

 SBW = Λ SWW                 (2.16) 

 

For the equation (2.16) to have a solution, SW must be non-singular. Solving 

equation (2.16) requires finding the eigenvectors of SW
-1

 SB. In our target 

recognition system we reduced the dimension of the training and test samples to 

32 with PCA before applying LDA. 

2.7.3 ICA 

ICA (Independent Component Anlaysis) is a recently developed linear 

transformation method that maximizes the statistical independence of the 

components of the new representation as much as possible (Hyvarinen, 1999). 

ICA can be defined in a general sense as a linear transformation method which 

finds a projection W for a random vector x such that s = Wx and components of 

s are statisticaly independent as much as possible. ICA is mainly used for blind 

source separation problem and it can also be used for feature extraction. ICA 

can be considered as a variant of PCA such that PCA makes the data 

uncorrelated whereas ICA makes the data statistically independent (Lathauwer, 

2000). The aim of ICA is to make the transformed data non-gaussian Vasilescu 

(2005). 

To implement ICA, the code in Ustun (2007) is used with modifications. 

Before executing ICA, we reduced the size of training and test samples to 32 

with PCA. 
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2.7.4 NMF 

NMF (Non-negative Matrix Factorization) is used in many areas. In 

algebra, large and complex problems can be divided to small simple 

subproblems by NMF. In pattern recognition NMF can be used for feature 

extraction and dimension reduction (Weixiang, 2006). Considering an nxm non-

negative matrix V, the aim of NMF is to find two non-negative matrices W and 

H such that  

V ≈ W * H                 (2.17) 

 

where 

W ∈ R
nxr

, H ∈ R
rxm 

  

Here, r is generally chosen smaller than n and can be as small as possible to 

reduce dimension (Xue, 2006). W and H are also non-negative. 

 To find matrices W and H, there are different methods in the literature. 

In the thesis we used the one that minimizes Divergence(V||WH) with respect to 

W and H, being subject to the constraints W > 0 and H > 0. In order to satisfy 

the non-negativity constraint for V, W and H, during the experiments we added 

the minimum value of V to all training and test samples. W and H can be 

intiated to random values. The update rules for W and H are given by 

derivations: 

Haµ  ←  Haµ (∑i (Wia Viµ / (WH) iµ)) / (∑k Wka)                                      (2.18) 

Wia  ←  Wia (∑µ (Haµ Viµ / (WH) iµ)) / (∑v Hav)              (2.19)                                    

 

Pseudo inverse of matrix W is multiplied by test samples and transpose 

of matrix H gives the NMF applied training samples. In our pattern recognition 

system before executing NMF, dimension of training and test samples are 

reduced to 32 with PCA. 
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2.7.5 KNN 

KNN (K nearest neighbor) is a classifier that classifies test samples 

according to the class labels of training samples that are closest to the test 

sample in the feature space. The class label of the test sample is decided as the 

most common class label among the class labels of the K-nearest neighbors. It 

can be considered as the simplest classifier. In our target recognition system, test 

samples are classified according to the class labels of the 5 closest training 

samples. KNN can not be considered as a real time implementable classifier 

since at execution, for a test sample distances to all training samples are 

calculated rather than multiplying the sample with a matrix and deciding the 

class label. There is no training phase for this classifier. 

2.7.6 SVM 

A SVM (Support Vector Machine) is a classifier that separates the data 

into two groups by forming an N dimensional hyperplane. The aim of SVM is to 

find the optimal separating hyperplane so that different classes are on the 

different sides of the hyperplane. Support vectors are the samples which are the 

closest ones to the hyperplane. SVMs are used for handwritten digit recognition, 

object recognition, speaker identification, face detection, text categorization 

(Burgess, 1998). For the 2-dimensional case, an example separating hyperplane 

and support vectors are presented in Figure 2.10. 
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Figure 2.10 Separating hyperplane for 2 dimensions 

 
 

In Figure 2.10 the green and blue labels shows the samples of two 

different classes. The continuos black line is the separating hyperplane and the 

samples that are closest to the two dashed lines are the support vectors. This is a 

compleletely separable condition i.e SVM separates all of the samples correctly 

to their classes, there is no overlapping. There can be non-separable cases in 

which SVM can not separate the classes and there will be training errors too. 

SVM finds the support vectors for which the margin between clusters is 

maximized. The aim of maximizing the margins is to reduce the testing errors. 

For the cases when the boundaries between the clusters are so complex that 

linear seperation is not possible, non-linear kernel functions can be used instead 

of linearly separating hyperplanes. Radial Basis Function is one of the most 

recommended and used one as the kernel function and we also used it in our 

code. The support vector machine code used in the thesis is given in Spider 

(2006).  
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 CHAPTER 3                                                       

THE PROPOSED ATR SYSTEM 

 

3.1 The General Structure of the ATR System 
 

The block scheme of the target recognition system proposed in the thesis 

is shown in Figure 3.1. The system consists of N-bin Data Generation, Feature 

Extraction & Dimension Reduction and Classification stages which are 

explained in sections 3.2, 3.3 and 3.4 respectively. 

 

 

 

Figure 3.1 Block scheme of the target recognition system proposed 
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3.2 N-bin Data Generation 

Some target classes have repetitions in time in their TRP vectors. To see 

these repetitions in time visually, 3-D plots of TRP vectors of target training 

classes were given in the figures from Figure 2.3 to Figure 2.9. 

From the figures we can observe that TRP vectors of vehicles (car, truck, 

bus) are homogenic in time while target classes such as walking man, running 

man and helicopter have different vectors which repeat itself in time.  To see 

these repetitions in detail furtherly 2-D time-bin – amplitude plots for walking 

man, running man and helicopter targets are shown below in Figure 3.2 to 

Figure 3.4. These plots are the projections of the 3-D plots in Figure 2.8, Figure 

2.9 and Figure 2.7 into amplitude and time-bin axes.  One of the main goals of 

this thesis is to take into consideration these repetitions in time in order to 

enhance classification performance. 

 

 

 
 
Figure 3.2 Time-bin – Amplitude plot for Walking Man training data 
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Figure 3.3 Time-bin – Amplitude plot for Running Man training data 
 

 

 

 
Figure 3.4 Time-bin – Amplitude plot for Helicopter training data 



 38 

To take these repetitions into consideration, successive TRP vectors in 

time of a target can be concatenated and presented to the feature extraction part 

of the target recognition system. The N-bin Data Generation part of the target 

recognition system just concatenates previous N-1 TRP vectors with the current 

TRP vector and outputs this as the N time-bin sample. 

 

3.3 Feature Extraction & Dimension Reduction 

The second part of the target recognition system is feature extraction and 

dimension reduction part.  PCA, LDA, ICA, NMF methods are used 

alternatively for feature extraction. Before applying LDA, ICA and NMF 

methods, we used PCA for dimension reduction. Data dimension is reduced with 

PCA to 32 before applying these algorihms. Feature extraction part is shown in 

Figure 3.5. After the feature extraction step not all the features of the samples 

are fed to the classifier, they are further reduced to proper dimension. 

 

 

 

 
Figure 3.5 Feature Extraction & Dimension Reduction of the target recognition 

system 
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3.4 Classification 

K-Nearest Neighbor and Support Vector Machine classifiers are used at the 

classification stage of the pattern recognition system. Multi-Layer Perceptron 

classifier is not used in classification because for target classes which have less 

training samples than other classes (tank and helicopter), poor classification 

performance results are obtained. KNN classifier is coded in MATLAB and we 

used an SVM tool that we found from the internet Spider (2006). 

 

 

 

 

Figure 3.6 Classification stage of the pattern recognition system 

 

 

3.5 Hierarchical Classification          

Observing the training TRP vectors shown in Figure 2.3 to Figure 2.9, 

we see that some target classes have similar vectors compared to the other 

classes. While Car, Truck and Bus TRP vectors are similar to each other and 

make one group, the Walking Man and Running Man TRP vectors make another 

group. This grouping is shown schematically in Figure 3.7 
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Figure 3.7 Hierarchical grouping of data according to their similarities 

 

 

So, instead of trying to assign the target samples directly to 7 classes, we 

can first classify them to a smaller class set in which classes are of more general 

types (first level classification) and then the samples that belong to these classes 

can be further classified to the classes which are of more detailed types (second 

level classification). By applying such a classification system the classification 

performance can be improved. For our data, Car, Truck and Bus target samples 

form the vehicle target class set. Walking Man and Running Man target samples 

form the Moving Man target class set. In the first level of the classification the 

samples will be classified to Vehicle, Tank, Helicopter and Moving Man target 

classes, then in the second level of classification the samples classified as 

Vehicle will further be classified to Car, Truck and Bus target classes and 

samples classified as Moving Man will further be classified to Walking Man and 
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Running Man target classes. The overall hierarchical classification system for 

our target samples is shown in Figure 3.8. 

 

 

 

   Figure 3.8 Hierarchical target recognition system 
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The Feature Extraction steps shown in Figure 3.8 can be PCA, LDA, 

ICA or NMF as before we used in Section 3.3 and the Classifier steps can ve 

SVM or KNN similarly as in Section 3.4. Vehicle, Tank, Helicopter and Moving 

Man target train and test samples are fed to the Feature Extraction-1 step. 

Feature Extraction-1 uses vehicle, tank, helicopter and moving man classes as 

base classes. Classifier-1 is also trained with extracted features of the training 

samples of these classes. After Classifier-1, all target test samples are classified 

to vehicle, tank, helicopter and moving man target classes.  

TRP vectors of target test samples classified as Vehicle are then 

classified as Car, Truck, Bus after Feature Extraction-2.1 and Classifier-2.1 

steps. Feature Extraction-2.1 step uses Car, Truck and Bus base classes. 

Classifier-2.1 is trained with the extracted features of target train samples 

belonging to the mentioned classes. 

TRP vectors of target test samples classified as Moving Man are then 

classified as Walking Man and Running Man after Feature Extraction-2.2 and 

Classifier-2.2 steps. Feature Extraction-2.2 uses Walking Man and Running 

Man as base classes. Classifier-2.2 is trained with the extracted features of target 

train samples belonging to the mentioned classes. 

The khat result tables and recognition rates of hierarchical classification 

for various time-bin and principal component values are presented in Chapter 4. 
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3.6 Clustering and Classification Performance Analysis 

To evaluate the performance of target recognition system shown in 

Figure 3.1, Clustering Quality Evaluations and Classification Performance 

Evaluations metrics are applied which are described in 3.6.1 and 3.6.2 

respectively. 

3.6.1 Clustering Quality Evaluation 

Before observing the overall target recognition system classification 

performance, we used simply the PCA method for 1 time-bin, 5 time-bin and 10 

time-bin data in order to see the affect of repetitions in time. In our normalized 

data set, a single time bin contains 63 data points in the frequency domain. So, 

data dimensions for 1 bin data, 5 bin data and 10 bin data are 63, 315 and 630 

respectively.  In the dimension reduction step we reduced the size of extracted 

features to 2 for visual examination. The separation of target classes for train 

and test data with respect to these 2 extracted features is shown in Chapter 4. 

Observing the affect of using repetitions in time visually by using 2-D 

plots of the 2-dimensional extracted features gives us an intuition on how the 

samples are distribured over the feature space when different numbers of bins 

are used. However expressing it mathematically is a better way. For this purpose 

we used the clustering quality metrics in (2.3) and (2.7). After N-bin Data 

Generation and Feature Extraction & Dimension Reduction steps, we calculated 

the values of these clustering quality metrics on the feature vectors obtained. 

Clustering quality values are calculated for various time-bin data and for various 

numbers of principal components (By the number principal components we 

refer to the dimension of feature vectors after the N-bin Data Generation and 

Feature Extraction & Dimension Reduction steps.). Values calculated according 

to the metric in (2.3) are presented in Chapter 4. 
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3.6.2 Classification Performance Evaluation 

 By feeding our test TRP vectors to the target recognition system shown 

in Figure 3.1 and which is trained with our training TRP vectors, we obtained 

class-to-class confusion matrices. To express the classification performance as a 

single value, KHAT classification performance metric is used, which is 

described in section 2.6. Class-to-class confusion matrices are input to the 

KHAT function and KHAT function returns a single value that represents the 

classification performance. A higher value represents a better classification. 

Maximum value of KHAT is 1 which means that there are no misclassifications. 

KHAT values and Recognition Rates for different number of time bins and 

number of principal components are presented in Chapter 4.  
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 CHAPTER 4                          

EXPERIMENTAL RESULTS 

 
In this chapter clustering quality results and classification performance 

results which were explained in Chapter 3 are presented. 

4.1 Clustering Quality Results 

To see the effects of using repetitions in the TRP vectors before performing all 

of the target recognition system steps, we applied PCA feature extraction 

method to 1, 5 and 10 time-bin data for target training and test data sets. When 

applying PCA to training and test data sets, the coefficients calculated for the 

training data set are used. After applying PCA, we presented the 2-D plots of the 

first two principal components having the largest eigen values through Figure 

4.1 to Figure 4.6. 

 

 

 
Figure 4.1 Target clusters of train data set for 1 bin data with PCA reduced 

components. 
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Figure 4.2 Target clusters of train data set for 5 bin data with PCA reduced 

components. 

 

  

 
Figure 4.3 Target clusters of train data set for 10 bin data with PCA reduced 

components. 
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Figure 4.4 Target clusters of test data set for 1 bin data with PCA reduced 

components. 

 
 

 
Figure 4.5 Target clusters of test data set for 5 bin data with PCA reduced 

components       
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Figure 4.6 Target clusters of test data set for 10 bin data with PCA reduced 

components. 

 

 

As we can see from Figure 4.1, Figure 4.2 and Figure 4.3 target classes 

are separated from each other and class members of the same class become 

closer to each other while they are separated from other classes as the number of 

bins used increases. Walking Man and Running Man classes become separated 

from CAR, TRUCK and BUS classes. Number of overlapping samples between 

Walking Man and Running Man classes is reduced as the number of bins is 

increased. There are no overlapping samples between Running Man and Vehicle 

classes for multiple numbers of bins. For 10 bin data there are no overlapping 

samples between classes except between vehicle classes. These results are 

obtained using only 2 prinpical componets. A better separation can be obtained 

with a higher number of principal components, however it is not easy to show 

the separation visually with more than 2 principal components. In order to 

observe the seperation in other dimensions, clusterings of PCA applied 1 time-

bin training data are presented in Figure 4.7 and Figure 4.8 . These figures 
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present the clusterings with respect to first-third and second-third principal 

components. 

 

 

 
Figure 4.7 Target clusters of PCA applied training data set for 1 bin data with 

respect to first and third principal components 

 

 

 

Figure 4.8 Target clusters of PCA applied training data set for 1 bin data with 

respect to second and third principal components 
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In Figure 4.9 and Figure 4.10 target clusters of PCA applied 10 time-bin 

data are presented. These figures present the clusterings with respect to first-

second and second-third principal components.  

 

 

 
Figure 4.9 Target clusters of PCA applied training data set for 10 bin data with 

respect to first and third principal components 

 

 

 
Figure 4.10 Target clusters of PCA applied training data set for 10 bin data with 

respect to second and third principal components 
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By the 2-D plots of 2 extracted features of PCA applied training and test 

data, we observed that using repetitions in time provides better clustering. 

However it must be expressed mathematically. To express it mathematically, 

after generating N time-bin data, we applied PCA, LDA, ICA and NMF 

transformations to test and training data for various numbers of time-bins. After 

feeding the extracted and reduced features to the clustering quality metric in 

(2.3) for various number of principal components, we obtained clustering 

quality results. Clustering quality values are calculated for various time-bin data 

and for various numbers of principal components. These results are presented 

through Table 4.1 to Table 4.8. 

 

Table 4.1 Clustering quality values of training samples for 2 principal 

components (For different number of time bins) 

 
Feature Extraction Method Clustering quality for 

training data PCA  LDA ICA NMF 
1 0,24 0,14 0,15 24,45 

2 0,19 0,09 0,14 13,23 

3 0,15 0,06 0,11 20,58 

4 0,13 0,05 0,09 24,11 

5 0,12 0,04 0,08 15,22 

6 0,11 0,04 0,08 21,17 

7 0,10 0,03 0,07 24,69 

8 0,09 0,03 0,07 22,26 

9 0,09 0,03 0,06 16,51 

 

 

 

Number 

Of 

Time 

Bins 

10 0,09 0,02 0,06 8,34 
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Table 4.2 Clustering quality values of test samples for 2 principal components 

  

Feature Extraction Method Clustering quality for 
test data PCA  LDA ICA NMF 

1 0,31 0,19 0,20 21,51 

2 0,25 0,11 0,18 15,54 

3 0,22 0,09 0,15 17,31 

4 0,19 0,07 0,13 27,12 

5 0,17 0,06 0,12 15,32 

6 0,16 0,05 0,11 27,15 

7 0,15 0,04 0,11 20,49 

8 0,14 0,04 0,11 19,99 

9 0,14 0,04 0,10 16,56 

 

 

 

Number 

Of 

Time 

Bins 

10 0,14 0,03 0,10 8,72 

 

 

Table 4.3 Clustering quality values of training samples for 3 principal 

components  

 
Feature Extraction Method Clustering quality for 

training data PCA  LDA ICA NMF 
1 0,30 0,14 0,16 16,64 

2 0,23 0,11 0,13 11,89 

3 0,19 0,09 0,11 12,15 

4 0,17 0,07 0,09 22,43 

5 0,16 0,06 0,08 17,81 

6 0,15 0,05 0,08 11,34 

7 0,14 0,04 0,07 17,88 

8 0,12 0,04 0,07 13,16 

9 0,12 0,04 0,06 12,82 

 

 

 

Number 

Of 

Time 

Bins 

10 0,11 0,03 0,06 9,89 
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Table 4.4 Clustering quality values of test samples for 3 principal components 

 
Feature Extraction Method Clustering quality for 

test data PCA  LDA ICA NMF 
1 0,35 0,22 0,21 13,18 

2 0,28 0,16 0,18 11,09 

3 0,24 0,12 0,15 11,27 

4 0,22 0,10 0,14 17,20 

5 0,21 0,08 0,12 17,40 

6 0,20 0,07 0,12 10,08 

7 0,18 0,06 0,11 18,69 

8 0,17 0,06 0,11 11,32 

9 0,16 0,05 0,10 12,10 

 

 

 

Number 

Of 

Time 

Bins 

10 0,15 0,05 0,10 10,33 

 

 

Table 4.5 Clustering quality values of training samples for 4 principal 

components 

  

Feature Extraction Method Clustering quality for 
training data PCA  LDA ICA NMF 

1 0,35 0,17 0,16 18,80 

2 0,28 0,15 0,13 19,69 

3 0,24 0,11 0,11 13,10 

4 0,22 0,09 0,09 18,12 

5 0,20 0,08 0,08 13,49 

6 0,18 0,07 0,07 15,16 

7 0,17 0,06 0,07 10,95 

8 0,16 0,05 0,07 15,65 

9 0,15 0,05 0,06 11,14 

 

 

 

Number 

Of 

Time 

Bins 

10 0,14 0,04 0,06 9,68 
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Table 4.6 Clustering quality values of test samples for 4 principal components 

  

Feature Extraction Method Clustering quality for 
test data PCA  LDA ICA NMF 

1 0,39 0,27 0,21 13,48 

2 0,33 0,21 0,18 21,17 

3 0,29 0,15 0,15 11,51 

4 0,27 0,12 0,13 15,01 

5 0,25 0,10 0,13 12,14 

6 0,23 0,08 0,11 12,01 

7 0,22 0,07 0,11 10,73 

8 0,21 0,07 0,11 16,48 

9 0,20 0,06 0,10 12,16 

 

 

 

Number 

Of 

Time 

Bins 

10 0,19 0,06 0,10 9,77 

 

 

Table 4.7 Clustering quality values of training samples for 5 principal 

components  

 
Feature Extraction Method Clustering quality for 

training data PCA  LDA ICA NMF 
1 0,37 0,21 0,16 12,74 

2 0,31 0,17 0,13 13,90 

3 0,26 0,13 0,10 16,40 

4 0,24 0,11 0,09 12,71 

5 0,23 0,09 0,08 11,03 

6 0,22 0,08 0,07 13,45 

7 0,20 0,07 0,07 9,91 

8 0,19 0,06 0,07 11,81 

9 0,19 0,06 0,06 12,07 

 

 

 

Number 

Of 

Time 

Bins 

10 0,18 0,05 0,06 11,85 
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Table 4.8 Clustering quality values of test samples for 5 principal components 

 
Feature Extraction Method Clustering quality for 

test data PCA  LDA ICA NMF 
1 0,41 0,31 0,21 12,56 

2 0,35 0,24 0,18 13,92 

3 0,31 0,18 0,15 13,86 

4 0,30 0,14 0,13 12,22 

5 0,28 0,12 0,12 10,71 

6 0,27 0,10 0,11 11,96 

7 0,26 0,09 0,11 10,49 

8 0,25 0,08 0,10 12,00 

9 0,24 0,07 0,10 13,11 

 

 

 

Number 

Of 

Time 

Bins 

10 0,23 0,07 0,10 11,53 

 

 

Due to the clustering quality description in (2.3), a smaller value 

represents a better clustering quality. As we can see from Table 4.1 to Table 4.8, 

increasing the number of time-bins provides a better clustering quality for all 

feature extraction methods. Among the feature extraction algorithms applied, 

LDA provides the best clustering quality and NMF provides the worst clustering 

quality. As an example, for Training Data of 10 time-bins which is reduced to 5 

principal components with feature extraction, we get 11.53, 0.18, 0.06 and 0.05 

clustering quality values for NMF, PCA, ICA and LDA respectively. However, 

this does not mean that in our target recognition system best classification 

results will be obtained when LDA is used at the feature extraction stage. These 

results just mean that best geometrical separation is obtained with LDA and 

worst geometrical separation is obtained by NMF. For NMF clustering quality 

can be increased by increasing the number of principal components.  
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Increasing the number of principal components does not change the 

clustering quality values of ICA. Intuitively, ICA can be regarded as the best 

method in extracting the most significant and meaningful part of the data with 

minimum number of principal components. For other methods the clustering 

quality value depends on the number of principal components taken. The 

dependence of the clustering quality on the number of principal components can 

be regarded as a disadvantage. 

 

4.2 Classification Performance Results 

In this section, classification performance results of target recognition 

system in Figure 3.1 are given. Our classification performance metric KHAT is 

explained in section 2.6.  KHAT is a derivation that takes misclassifications into 

consideration. We also give the Average Recognition Rate results as a 

performance metric, which is the average of the correct classification rates for 

each class. The KHAT and Average Recognition Rate results are given in Table 

4.9 through table 4.25. Regarding the four feature extraction methods (PCA, 

LDA, ICA and NMF) and two classification methods (SVM, KNN) used, there 

are 8 configurations of our target recognition system. By configuration, we refer 

the feature extraction method and classification method used. These 

configurations are PCA+KNN, PCA+SVM, LDA+KNN, LDA+SVM, 

ICA+KNN, ICA+SVM, NMF+KNN, NMF+SVM. For example PCA+KNN 

means that we use PCA at feature extraction stage of our target recognition 

system and KNN at the classifier stage of our target recognition system. The 

configurations used are given at the upper left hand corner of the tables. Also for 

each type of configuration, minimum, maximum and average value of the table 

are given below the table. 

Since W and H matrices in (2.18) and (2.19) are intialized to random 

values and updated with equations (2.18) and (2.19), NMF can give different 

classification performances for different experiments with the same sample 
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training and test data set. In order to obtain reliable classification results with 

NMF, average of classification performances of 10 experiments with different 

random initial values are obtained for the configurations in which NMF is used 

in the feature extraction step.   
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As we can see from Table 4.9, classification khat results for PCA+KNN 

don’t increase much by increasing the number of principal components or 

number the number of time-bins when the number of principal components is  

bigger than 4. For a constant number of principal components, increasing the 

number of time-bins generally increases classification performance. The 

difference between classification performances of small number of time bins 

and large number of time bins for small number of principal components is 

higher than the difference for large number of principal components.  Also for 

PCA+KNN there is saturation in the classification performance after the number 

of time-bins 3. Increasing the number of time-bins for PCA+KNN does not 

increase the classification performance so much. This can be due to the lack of 

enough number of pricipal components for high number of time-bins. To 

understand this for PCA+KNN the number of principal components is chosen 

proportional to the number of time bins. The number of principal components is 

chosen as %10 of the original sample size for each time bin data. The 

classification performance results of this trial are shown in Table 4.13.  

 As we can see from Table 4.11, PCA+SVM classification performance 

is lower than PCA+KNN performance when the number of time-bins is 1.  Also 

increasing the number of time bins and increasing the number of principal 

components decreases classification performance. We can conclude that using 

PCA+SVM is not suitable for our target classification system. 
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Table 4.13 Khat values for PCA and KNN applied test data  

(Number of Principal Components is % 10 of the original sample size) 
 

Number Of 
Time Bins 

Classification Performance 

1 0,84 

2 0,90 

3 0,92 

4 0,93 

5 0,93 

6 0,93 

7 0,93 

8 0,92 

9 0,92 

10 0,91 

 
We see that, to utilize the repetitions in the data for PCA, the number of 

principal components must be chosen proportional to the number of time-bins. 

Also after a point, increasing the number of time-bins so much can degrade the 

system performance. A time-bin number of 5 or is 6 is adequate to improve the 

classification performance. 

As we can see from Table 4.11, when the number of principal 

components is high, increasing the number of time-bins causes a tremendous 

decrease in the classification performance. For example when the number of 

principal components is 15, khat value for 1 time-bin is % 86, while khat value 

for 5 time-bin is % 54.  Without considering the within class and between class 

information, PCA finds the directions where all data shows the maximum 

variance, so we can not guarantee that good classification results will be 

obtained by SVM. Regarding the bad classfication performance with  

PCA+SVM, we can conclude that PCA transforms the data to a space which is 

improper for SVM. To prove that PCA transforms the data to a space which is 

improper for SVM, we omitted the feature extraction step and fed the 5 time-bin 

TRP vectors to the SVM classifier. With PCA+SVM we obtained %54 

classification performance whereas with only SVM we obtained %90 

classification performance.   
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As we can see from Table 4.14, increasing the number of time bins for 

LDA + KNN causes a tremendous change in the classsification performance. 

When the number of principal components is 2, the classification performance is 

% 53 for 1 time-bin data and classification performance is % 81 for 10 time-bin 

data. When the number of principal components is 15, classification 

performance is %81 for 1 time-bin data and classification performance is %93 

for 10 time-bin data. Even a classification performance improvement of %12 is 

obtained for large number of principal components by increasing the number of 

time bins. 

As we can see from Table 4.16, increasing the number of time-bins for 

LDA+SVM also causes a tremendous change in the classification performance. 

When the number of principal components is 2, the classification performances 

for 1 time-bin data and for 10 time-bin data are %52 and %71. When the 

number of principal components is 15, the classifications performances for 1 

time-bin data and 10 time-bin data are %75 and %96 respectively. The 

maximum classification performance obtained with LDA+SVM is %98 which 

outperforms PCA+KNN. PCA+KNN classification performance is better for 

small number of principal components and small number of time bins than 

LDA+SVM, however LDA+SVM classification performance is much better 

than PCA+KNN for large number of principal components and large number of 

time bins.  
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 As we can see from Table 4.18, for constant number of time bins the 

classification performance of ICA+KNN does not change much by increasing 

the number of principal components. When the number of principal components 

is constant, a classification performance improvement of % 4 to % 10 is 

obtained for different number of principal components. The classification 

performance of ICA+KNN is satisfactory but could not compete with the 

classification performance of LDA+SVM or LDA+KNN. 

 As we can see from the Table 4.20, the minimum classification 

performance of ICA+SVM is %79. ICA+SVM outperforms LDA+SVM, 

LDA+KNN and PCA+KNN in minimum classification performance. 

Comparing to ICA+KNN, increasing the number of principal components 

improves classification performance of ICA+SVM tremendously.  When the 

number of principal components is 2, the classification performances for 1 time-

bin data and 10 time-bin data are %79 and %83 respectively. When the number 

of principal components is 15, the classification performances for 1 time-bin 

data and 10 time-bin data are %84 and %97 respectively. The maximum 

classification performance obtained with ICA+SVM is %97 which is very close 

to the maximum classification performance of LDA+SVM of %98. Regarding 

that the classification performance of LDA+SVM is not satisfactory enough for 

small numbers of principal components and small number of time bins, we can 

conclude that using ICA in the feature extraction stage and using SVM in the 

classifier stage is the best choice for our target recognition system.  
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 As we can see from Table 4.22 NMF+KNN does not provide us good 

classification performance results for small numbers of principal components. 

The number of principal components must be at least 5 to get a classification 

performance of %70.  

 As we can see from Table 4.24, the classification performance of 

NMF+SVM is better than classification performance of NMF+KNN. Like 

NMF+KNN, NMF+SVM provides poor classification performance for small 

number of time bins and small number of principal components. However, for 

large values of principal components and time bins NMF+SVM provides good 

performance. The maximum classification performance obtained with 

NMF+SVM is %97.  The classification performances of NMF+KNN and 

NMF+SVM can be considered as the worst classification performances among 

the feature extraction algoritms applied. 

 We can conclude that NMF is not good at extracting the significant 

features of data. With ICA+SVM the classification performance is %79 with a 

principal component value of 2 and time bin value of 1, however with 

NMF+SVM the classification performance value is only %33 with the same 

number of principal components and number of time-bins. Regarding Table 

4.22, when the number of time bins 1, the classification performance increases 

from %21 to %81 with the increase of the number of principal components from 

2 to 15.  

 Despite taking average of 10 experiments with different random initial 

values for NMF, there are some cases for which reliable classification 

performance results can not be obtained. In Table 4.22, when the number of 

principal components is 5, increasing the number of time bins can cause 

fluctuations. For example khat value for 3 time-bins is %68, while khat value for 

4 time-bins is %57. Also khat value for 9 time-bins is %61 and khat value for 10 

time-bins is %70. This is due to the fact that NMF can give different results for 

different iterations.  
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4.3 Hierarchical Classification Performance Results 
 
 In this section the classification performance results for the hierarchical 

target recognition system shown in Figure 3.8 are presented. Classification 

performance results calculated are KHAT (2.11) and Average Recognition Rate 

(2.12). Classification performance results are calculated for various numbers of 

time-bins and various numbers of principal components. These results are 

presented through Table 4.26 to Table 4.41. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
80

 

T
ab

le
 4

.2
6 

K
ha

t 
va

lu
es

 o
f 

P
C

A
 a

nd
 K

N
N

 a
pp

li
ed

 o
n 

te
st

 d
at

a 

 B
es

t 
K

ha
t 

V
al

ue
 =

 0
.9

4,
 W

or
st

 K
ha

t 
V

al
ue

 =
 0

.7
6,

 A
ve

ra
ge

 K
ha

t 
V

al
ue

 =
 0

.9
0 

  

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
K

ha
t 

R
es

ul
ts

 

H
ie

ra
rc

hi
ca

l 

P
C

A
 +

 K
N

N
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

76
 

0,
82

 
0,

86
 

0,
87

 
0,

86
 

0,
89

 
0,

89
 

0,
90

 
0,

89
 

0,
88

 
0,

90
 

0,
89

 
0,

89
 

0,
89

 

2 
0,

79
 

0,
84

 
0,

87
 

0,
89

 
0,

90
 

0,
90

 
0,

90
 

0,
90

 
0,

90
 

0,
90

 
0,

90
 

0,
90

 
0,

90
 

0,
90

 

3 
0,

79
 

0,
86

 
0,

87
 

0,
90

 
0,

91
 

0,
91

 
0,

90
 

0,
93

 
0,

92
 

0,
91

 
0,

92
 

0,
92

 
0,

93
 

0,
92

 

4 
0,

78
 

0,
85

 
0,

87
 

0,
87

 
0,

91
 

0,
91

 
0,

91
 

0,
92

 
0,
94

 
0,

93
 

0,
94

 
0,
94

 
0,
94

 
0,
94

 

5 
0,

77
 

0,
86

 
0,

88
 

0,
88

 
0,

92
 

0,
92

 
0,

92
 

0,
91

 
0,

92
 

0,
93

 
0,

92
 

0,
93

 
0,

93
 

0,
93

 

6 
0,

81
 

0,
81

 
0,

87
 

0,
87

 
0,

89
 

0,
91

 
0,

91
 

0,
91

 
0,

91
 

0,
92

 
0,

92
 

0,
93

 
0,

93
 

0,
94

 

7 
0,

83
 

0,
82

 
0,

87
 

0,
89

 
0,

89
 

0,
93

 
0,

93
 

0,
93

 
0,

92
 

0,
93

 
0,
94

 
0,

93
 

0,
93

 
0,

93
 

8 
0,

83
 

0,
82

 
0,

88
 

0,
91

 
0,

90
 

0,
93

 
0,

92
 

0,
92

 
0,

92
 

0,
92

 
0,

92
 

0,
93

 
0,

93
 

0,
94

 

9 
0,

83
 

0,
87

 
0,

88
 

0,
93

 
0,

93
 

0,
94

 
0,

93
 

0,
92

 
0,

92
 

0,
92

 
0,

92
 

0,
93

 
0,

93
 

0,
93

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s  

10
 

0,
85

 
0,

89
 

0,
88

 
0,

93
 

0,
93

 
0,
94

 
0,

93
 

0,
93

 
0,

92
 

0,
92

 
0,

92
 

0,
93

 
0,

92
 

0,
92

 



 
81

 

T
ab

le
 4

.2
7 

A
ve

ra
ge

 r
ec

og
ni

ti
on

 r
at

es
 o

f 
P

C
A

 a
nd

 K
N

N
 a

pp
li

ed
 o

n 
te

st
 d

at
a 

 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
es

 

H
ie

ra
rc

hi
ca

l 

P
C

A
 +

 K
N

N
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

80
 

0,
85

 
0,

88
 

0,
90

 
0,

89
 

0,
91

 
0,

91
 

0,
92

 
0,

91
 

0,
90

 
0,

92
 

0,
91

 
0,

91
 

0,
91

 

2 
0,

83
 

0,
87

 
0,

90
 

0,
91

 
0,

92
 

0,
92

 
0,

91
 

0,
91

 
0,

92
 

0,
92

 
0,

92
 

0,
92

 
0,

91
 

0,
92

 

3 
0,

83
 

0,
89

 
0,

90
 

0,
92

 
0,

93
 

0,
93

 
0,

92
 

0,
95

 
0,

94
 

0,
93

 
0,

93
 

0,
94

 
0,

94
 

0,
93

 

4 
0,

82
 

0,
88

 
0,

89
 

0,
89

 
0,

93
 

0,
93

 
0,

93
 

0,
94

 
0,
95

 
0,
95

 
0,
95

 
0,
95

 
0,
95

 
0,
95

 

5 
0,

81
 

0,
88

 
0,

90
 

0,
90

 
0,

93
 

0,
93

 
0,

93
 

0,
93

 
0,

93
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
95

 

6 
0,

85
 

0,
85

 
0,

90
 

0,
90

 
0,

91
 

0,
93

 
0,

93
 

0,
93

 
0,

93
 

0,
93

 
0,

94
 

0,
94

 
0,

94
 

0,
95

 

7 
0,

87
 

0,
85

 
0,

90
 

0,
92

 
0,

91
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
94

 
0,
95

 
0,
95

 
0,
95

 
0,
95

 

8 
0,

87
 

0,
85

 
0,

90
 

0,
93

 
0,

92
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
95

 

9 
0,

86
 

0,
90

 
0,

91
 

0,
94

 
0,

94
 

0,
95

 
0,

94
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
95

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s 

 

10
 

0,
88

 
0,

92
 

0,
91

 
0,
95

 
0,
95

 
0,
95

 
0,
95

 
0,
95

 
0,

94
 

0,
93

 
0,

94
 

0,
94

 
0,

94
 

0,
94

 

 B
es

t 
R

ec
og

ni
ti

on
 R

at
e 

=
 0

.9
5,

 W
or

st
 R

ec
og

ni
ti

on
 R

at
e=

 0
.8

0,
 A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
e 

=
 0

.9
2 

  



 
82

 

T
ab

le
 4

.2
8 

K
ha

t 
va

lu
es

 o
f 

P
C

A
 a

nd
 S

V
M

 a
pp

li
ed

 o
n 

te
st

 d
at

a 

 
N

um
be

r 
O

f 
P

ri
nc

ip
al

 C
om

po
ne

nt
s 

K
ha

t 
R

es
ul

ts
 

H
ie

ra
rc

hi
ca

l 

P
C

A
 +

 S
V

M
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

66
 

0,
71

 
0,

82
 

0,
85

 
0,

84
 

0,
85

 
0,

85
 

0,
86

 
0,

84
 

0,
83

 
0,

84
 

0,
82

 
0,

81
 

0,
81

 

2 
0,

69
 

0,
75

 
0,

82
 

0,
84

 
0,

81
 

0,
78

 
0,

76
 

0,
71

 
0,

71
 

0,
69

 
0,

67
 

0,
66

 
0,

64
 

0,
61

 

3 
0,

70
 

0,
76

 
0,

79
 

0,
75

 
0,

71
 

0,
68

 
0,

64
 

0,
62

 
0,

59
 

0,
54

 
0,

49
 

0,
45

 
0,

42
 

0,
38

 

4 
0,

71
 

0,
80

 
0,

75
 

0,
69

 
0,

64
 

0,
59

 
0,

52
 

0,
46

 
0,

44
 

0,
38

 
0,

34
 

0,
32

 
0,

31
 

0,
30

 

5 
0,

67
 

0,
76

 
0,

69
 

0,
62

 
0,

56
 

0,
47

 
0,

44
 

0,
37

 
0,

33
 

0,
30

 
0,

29
 

0,
28

 
0,

28
 

0,
27

 

6 
0,

62
 

0,
69

 
0,

64
 

0,
55

 
0,

48
 

0,
44

 
0,

40
 

0,
33

 
0,

30
 

0,
28

 
0,

28
 

0,
26

 
0,

26
 

0,
26

 

7 
0,

72
 

0,
66

 
0,

62
 

0,
51

 
0,

45
 

0,
41

 
0,

35
 

0,
31

 
0,

29
 

0,
27

 
0,

26
 

0,
25

 
0,

25
 

0,
24

 

8 
0,

75
 

0,
69

 
0,

57
 

0,
46

 
0,

41
 

0,
35

 
0,

32
 

0,
28

 
0,

27
 

0,
25

 
0,

25
 

0,
24

 
0,

23
 

0,
23

 

9 
0,

73
 

0,
71

 
0,

55
 

0,
45

 
0,

38
 

0,
34

 
0,

29
 

0,
26

 
0,

24
 

0,
24

 
0,

23
 

0,
22

 
0,

22
 

0,
21

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s 

 

10
 

0,
70

 
0,

68
 

0,
53

 
0,

40
 

0,
36

 
0,

32
 

0,
28

 
0,

25
 

0,
22

 
0,

21
 

0,
21

 
0,

20
 

0,
19

 
0,

19
 

 B
es

t 
K

ha
t 

V
al

ue
 =

 0
.8

6,
 W

or
st

 K
ha

t 
V

al
ue

 =
 0

.1
9,

 A
ve

ra
ge

 K
ha

t 
V

al
ue

 =
 0

.5
0 

  



 
83

 

T
ab

le
 4

.2
9 

A
ve

ra
ge

 r
ec

og
ni

ti
on

 r
at

es
 o

f 
P

C
A

 a
nd

 S
V

M
 a

pp
li

ed
 o

n 
te

st
 d

at
a 

 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
es

 

H
ie

ra
rc

hi
ca

l 

P
C

A
 +

 S
V

M
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

72
 

0,
76

 
0,

85
 

0,
88

 
0,

87
 

0,
88

 
0,
88

 
0,
88

 
0,

87
 

0,
87

 
0,

87
 

0,
86

 
0,

85
 

0,
85

 

2 
0,

74
 

0,
80

 
0,

86
 

0,
87

 
0,

85
 

0,
83

 
0,

81
 

0,
77

 
0,

77
 

0,
76

 
0,

74
 

0,
73

 
0,

71
 

0,
70

 

3 
0,

75
 

0,
81

 
0,

83
 

0,
80

 
0,

77
 

0,
75

 
0,

72
 

0,
71

 
0,

68
 

0,
64

 
0,

61
 

0,
58

 
0,

56
 

0,
53

 

4 
0,

77
 

0,
84

 
0,

80
 

0,
75

 
0,

72
 

0,
68

 
0,

63
 

0,
59

 
0,

57
 

0,
53

 
0,

50
 

0,
48

 
0,

48
 

0,
47

 

5 
0,

74
 

0,
81

 
0,

75
 

0,
70

 
0,

66
 

0,
60

 
0,

57
 

0,
52

 
0,

49
 

0,
47

 
0,

46
 

0,
45

 
0,

45
 

0,
45

 

6 
0,

69
 

0,
75

 
0,

72
 

0,
65

 
0,

60
 

0,
57

 
0,

55
 

0,
49

 
0,

47
 

0,
46

 
0,

45
 

0,
44

 
0,

44
 

0,
44

 

7 
0,

78
 

0,
73

 
0,

70
 

0,
62

 
0,

58
 

0,
55

 
0,

51
 

0,
48

 
0,

47
 

0,
45

 
0,

44
 

0,
44

 
0,

44
 

0,
43

 

8 
0,

80
 

0,
76

 
0,

67
 

0,
59

 
0,

55
 

0,
51

 
0,

48
 

0,
46

 
0,

45
 

0,
44

 
0,

44
 

0,
43

 
0,

42
 

0,
42

 

9 
0,

78
 

0,
77

 
0,

66
 

0,
58

 
0,

53
 

0,
50

 
0,

47
 

0,
45

 
0,

43
 

0,
43

 
0,

42
 

0,
42

 
0,

42
 

0,
41

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s 

 

10
 

0,
77

 
0,

74
 

0,
64

 
0,

55
 

0,
52

 
0,

49
 

0,
46

 
0,

44
 

0,
42

 
0,

41
 

0,
41

 
0,

40
 

0,
40

 
0,

40
 

 B
es

t 
R

ec
og

ni
ti

on
 R

at
e 

=
 0

.8
8,

 W
or

st
 R

ec
og

ni
ti

on
 R

at
e=

 0
.4

0,
 A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
e 

=
 0

.6
2 

  



 
84

 

T
ab

le
 4

.3
0 

K
ha

t 
va

lu
es

 o
f 

L
D

A
 a

nd
 K

N
N

 a
pp

li
ed

 o
n 

te
st

 d
at

a 
 

 
N

um
be

r 
O

f 
P

ri
nc

ip
al

 C
om

po
ne

nt
s 

K
ha

t 
R

es
ul

ts
 

H
ie

ra
rc

hi
ca

l 

L
D

A
 +

 K
N

N
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

69
 

0,
73

 
0,

70
 

0,
70

 
0,

70
 

0,
73

 
0,

74
 

0,
75

 
0,

76
 

0,
76

 
0,

74
 

0,
76

 
0,

79
 

0,
79

 

2 
0,

78
 

0,
79

 
0,

79
 

0,
80

 
0,

80
 

0,
82

 
0,

81
 

0,
81

 
0,

80
 

0,
80

 
0,

80
 

0,
83

 
0,

81
 

0,
82

 

3 
0,

81
 

0,
83

 
0,

83
 

0,
82

 
0,

81
 

0,
82

 
0,

81
 

0,
82

 
0,

84
 

0,
83

 
0,

84
 

0,
84

 
0,

85
 

0,
85

 

4 
0,

86
 

0,
88

 
0,

89
 

0,
88

 
0,

89
 

0,
88

 
0,

89
 

0,
89

 
0,

89
 

0,
89

 
0,

90
 

0,
91

 
0,

90
 

0,
89

 

5 
0,

91
 

0,
93

 
0,

92
 

0,
92

 
0,

92
 

0,
92

 
0,

92
 

0,
92

 
0,

92
 

0,
91

 
0,

91
 

0,
92

 
0,

92
 

0,
92

 

6 
0,

94
 

0,
94

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

94
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
94

 

7 
0,

93
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
93

 
0,

94
 

0,
94

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

94
 

0,
94

 

8 
0,

93
 

0,
95

 
0,

96
 

0,
97

 
0,

96
 

0,
97

 
0,

97
 

0,
97

 
0,

97
 

0,
97

 
0,

97
 

0,
97

 
0,

96
 

0,
97

 

9 
0,

95
 

0,
96

 
0,

97
 

0,
97

 
0,
98

 
0,

97
 

0,
97

 
0,

97
 

0,
97

 
0,
98

 
0,
98

 
0,
98

 
0,
98

 
0,
98

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s  

10
 

0,
96

 
0,

96
 

0,
96

 
0,

96
 

0,
96

 
0,

96
 

0,
95

 
0,

95
 

0,
95

 
0,

95
 

0,
96

 
0,

96
 

0,
95

 
0,

96
 

 B
es

t 
K

ha
t 

V
al

ue
 =

 0
.9

8,
 W

or
st

 K
ha

t 
V

al
ue

 =
 0

.6
9,

 A
ve

ra
ge

 K
ha

t 
V

al
ue

 =
 0

.9
0 

  



 
85

 

T
ab

le
 4

.3
1 

A
ve

ra
ge

 r
ec

og
ni

ti
on

 r
at

es
 o

f 
L

D
A

 a
nd

 K
N

N
 a

pp
li

ed
 o

n 
te

st
 d

at
a 

 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
es

 

H
ie

ra
rc

hi
ca

l 

L
D

A
 +

 K
N

N
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

75
 

0,
78

 
0,

76
 

0,
76

 
0,

76
 

0,
78

 
0,

79
 

0,
79

 
0,

80
 

0,
81

 
0,

79
 

0,
80

 
0,

83
 

0,
83

 

2 
0,

82
 

0,
83

 
0,

83
 

0,
83

 
0,

83
 

0,
85

 
0,

84
 

0,
85

 
0,

84
 

0,
84

 
0,

83
 

0,
86

 
0,

85
 

0,
85

 

3 
0,

85
 

0,
86

 
0,

86
 

0,
86

 
0,

85
 

0,
85

 
0,

85
 

0,
85

 
0,

87
 

0,
86

 
0,

87
 

0,
87

 
0,

88
 

0,
88

 

4 
0,

89
 

0,
90

 
0,

91
 

0,
90

 
0,

91
 

0,
90

 
0,

91
 

0,
91

 
0,

91
 

0,
91

 
0,

92
 

0,
92

 
0,

92
 

0,
91

 

5 
0,

93
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
93

 
0,

94
 

0,
93

 
0,

93
 

0,
93

 
0,

93
 

0,
94

 
0,

94
 

0,
94

 

6 
0,

96
 

0,
96

 
0,

96
 

0,
96

 
0,

96
 

0,
96

 
0,

96
 

0,
96

 
0,

95
 

0,
96

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 

7 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

96
 

0,
96

 
0,

96
 

0,
96

 
0,

95
 

0,
95

 

8 
0,

94
 

0,
96

 
0,

97
 

0,
97

 
0,

97
 

0,
97

 
0,

97
 

0,
98

 
0,
98

 
0,
98

 
0,

97
 

0,
97

 
0,

97
 

0,
97

 

9 
0,

96
 

0,
97

 
0,
98

 
0,
98

 
0,
98

 
0,
98

 
0,
98

 
0,
98

 
0,
98

 
0,
98

 
0,
98

 
0,
98

 
0,
98

 
0,
98

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s 

 

10
 

0,
97

 
0,

97
 

0,
97

 
0,

97
 

0,
97

 
0,

97
 

0,
96

 
0,

96
 

0,
96

 
0,

96
 

0,
97

 
0,

97
 

0,
96

 
0,

97
 

 B
es

t 
R

ec
og

ni
ti

on
 R

at
e 

=
 0

.9
8,

 W
or

st
 R

ec
og

ni
ti

on
 R

at
e=

 0
.7

5,
 A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
e 

=
 0

.9
2 

 



 
86

 

T
ab

le
 4

.3
2 

K
ha

t 
va

lu
es

 o
f 

L
D

A
 a

nd
 S

V
M

 a
pp

li
ed

 o
n 

te
st

 d
at

a 

 
N

um
be

r 
O

f 
P

ri
nc

ip
al

 C
om

po
ne

nt
s 

K
ha

t 
R

es
ul

ts
 

H
ie

ra
rc

hi
ca

l 

L
D

A
 +

 S
V

M
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

67
 

0,
72

 
0,

71
 

0,
64

 
0,

64
 

0,
66

 
0,

69
 

0,
70

 
0,

72
 

0,
71

 
0,

72
 

0,
73

 
0,

73
 

0,
73

 

2 
0,

72
 

0,
77

 
0,

77
 

0,
78

 
0,

77
 

0,
79

 
0,

77
 

0,
81

 
0,

80
 

0,
81

 
0,

82
 

0,
83

 
0,

83
 

0,
81

 

3 
0,

75
 

0,
80

 
0,

81
 

0,
81

 
0,

81
 

0,
80

 
0,

80
 

0,
79

 
0,

81
 

0,
81

 
0,

82
 

0,
81

 
0,

81
 

0,
82

 

4 
0,

87
 

0,
90

 
0,

88
 

0,
88

 
0,

89
 

0,
88

 
0,

87
 

0,
87

 
0,

85
 

0,
85

 
0,

84
 

0,
85

 
0,

85
 

0,
85

 

5 
0,

92
 

0,
93

 
0,

93
 

0,
93

 
0,

91
 

0,
91

 
0,

92
 

0,
91

 
0,

91
 

0,
92

 
0,

91
 

0,
90

 
0,

90
 

0,
89

 

6 
0,

92
 

0,
93

 
0,

93
 

0,
93

 
0,

94
 

0,
93

 
0,

94
 

0,
94

 
0,

92
 

0,
91

 
0,

91
 

0,
92

 
0,

92
 

0,
92

 

7 
0,

94
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
93

 
0,

93
 

0,
94

 
0,

93
 

0,
92

 
0,

91
 

0,
90

 
0,

91
 

0,
90

 

8 
0,

93
 

0,
95

 
0,

94
 

0,
95

 
0,

94
 

0,
94

 
0,

93
 

0,
93

 
0,

93
 

0,
93

 
0,

93
 

0,
93

 
0,

93
 

0,
93

 

9 
0,

93
 

0,
96

 
0,
97

 
0,
97

 
0,

96
 

0,
95

 
0,

93
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
93

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s  

10
 

0,
94

 
0,

96
 

0,
95

 
0,

95
 

0,
94

 
0,

94
 

0,
94

 
0,

94
 

0,
93

 
0,

93
 

0,
93

 
0,

93
 

0,
93

 
0,

93
 

 B
es

t 
K

ha
t 

V
al

ue
 =

 0
.9

7,
 W

or
st

 K
ha

t 
V

al
ue

 =
 0

.6
4,

 A
ve

ra
ge

 K
ha

t 
V

al
ue

 =
 0

.8
7 

  



 
87

 

T
ab

le
 4

.3
3 

A
ve

ra
ge

 r
ec

og
ni

ti
on

 r
at

es
 o

f 
L

D
A

 a
nd

 S
V

M
 a

pp
li

ed
 o

n 
te

st
 d

at
a 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
es

 

H
ie

ra
rc

hi
ca

l 

L
D

A
 +

 S
V

M
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

73
 

0,
78

 
0,

77
 

0,
71

 
0,

71
 

0,
72

 
0,

75
 

0,
76

 
0,

77
 

0,
76

 
0,

78
 

0,
78

 
0,

78
 

0,
78

 

2 
0,

77
 

0,
81

 
0,

81
 

0,
82

 
0,

81
 

0,
83

 
0,

82
 

0,
84

 
0,

84
 

0,
84

 
0,

85
 

0,
86

 
0,

86
 

0,
85

 

3 
0,

80
 

0,
84

 
0,

85
 

0,
85

 
0,

84
 

0,
84

 
0,

84
 

0,
83

 
0,

84
 

0,
85

 
0,

85
 

0,
85

 
0,

85
 

0,
85

 

4 
0,

89
 

0,
92

 
0,

90
 

0,
90

 
0,

91
 

0,
90

 
0,

90
 

0,
90

 
0,

88
 

0,
88

 
0,

87
 

0,
88

 
0,

88
 

0,
88

 

5 
0,

93
 

0,
95

 
0,

94
 

0,
94

 
0,

93
 

0,
93

 
0,

94
 

0,
93

 
0,

93
 

0,
93

 
0,

93
 

0,
92

 
0,

92
 

0,
91

 

6 
0,

94
 

0,
94

 
0,

94
 

0,
94

 
0,

95
 

0,
95

 
0,

96
 

0,
95

 
0,

94
 

0,
93

 
0,

93
 

0,
93

 
0,

94
 

0,
93

 

7 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

94
 

0,
94

 
0,

93
 

0,
92

 
0,

93
 

0,
92

 

8 
0,

94
 

0,
96

 
0,

95
 

0,
96

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

95
 

0,
94

 

9 
0,

95
 

0,
97

 
0,

97
 

0,
98

 
0,

97
 

0,
96

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s 

 

10
 

0,
96

 
0,

97
 

0,
96

 
0,

96
 

0,
96

 
0,

95
 

0,
95

 
0,

95
 

0,
95

 
0,

94
 

0,
94

 
0,

94
 

0,
95

 
0,

95
 

 B
es

t 
R

ec
og

ni
ti

on
 R

at
e 

=
 0

.9
8,

 W
or

st
 R

ec
og

ni
ti

on
 R

at
e=

 0
.7

1,
 A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
e 

=
 0

.9
0 

   



 
88

 

T
ab

le
 4

.3
4 

K
ha

t 
va

lu
es

 o
f 

IC
A

 a
nd

 K
N

N
 a

pp
li

ed
 o

n 
te

st
 d

at
a 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
K

ha
t 

R
es

ul
ts

 

H
ie

ra
rc

hi
ca

l 

IC
A

 +
 K

N
N

 
2 

3 
4 

5 
6 

7 
8 

9 
10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

74
 

0,
77

 
0,

80
 

0,
80

 
0,

80
 

0,
80

 
0,

80
 

0,
81

 
0,

81
 

0,
80

 
0,

81
 

0,
81

 
0,

81
 

0,
81

 

2 
0,

75
 

0,
82

 
0,

83
 

0,
84

 
0,

85
 

0,
85

 
0,

86
 

0,
85

 
0,

84
 

0,
84

 
0,

84
 

0,
84

 
0,

84
 

0,
84

 

3 
0,

77
 

0,
81

 
0,

81
 

0,
83

 
0,

85
 

0,
84

 
0,

85
 

0,
85

 
0,

85
 

0,
86

 
0,

86
 

0,
85

 
0,

85
 

0,
85

 

4 
0,

78
 

0,
82

 
0,

81
 

0,
82

 
0,

83
 

0,
83

 
0,

82
 

0,
83

 
0,

83
 

0,
83

 
0,

84
 

0,
84

 
0,

84
 

0,
85

 

5 
0,

80
 

0,
83

 
0,

84
 

0,
85

 
0,

86
 

0,
86

 
0,

85
 

0,
86

 
0,

85
 

0,
85

 
0,

85
 

0,
85

 
0,

85
 

0,
86

 

6 
0,

82
 

0,
83

 
0,

83
 

0,
84

 
0,

85
 

0,
85

 
0,

85
 

0,
86

 
0,

86
 

0,
85

 
0,

85
 

0,
85

 
0,

86
 

0,
86

 

7 
0,

82
 

0,
85

 
0,

85
 

0,
86

 
0,

85
 

0,
85

 
0,

86
 

0,
86

 
0,
87

 
0,

86
 

0,
86

 
0,

86
 

0,
87

 
0,

86
 

8 
0,

84
 

0,
85

 
0,

82
 

0,
84

 
0,

83
 

0,
83

 
0,

83
 

0,
84

 
0,

83
 

0,
85

 
0,

85
 

0,
85

 
0,

85
 

0,
86

 

9 
0,

84
 

0,
85

 
0,

86
 

0,
86

 
0,

85
 

0,
84

 
0,

85
 

0,
85

 
0,
87

 
0,
87

 
0,
87

 
0,
87

 
0,
87

 
0,
87

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s  

10
 

0,
84

 
0,

86
 

0,
84

 
0,

84
 

0,
84

 
0,

83
 

0,
83

 
0,

83
 

0,
85

 
0,

85
 

0,
85

 
0,

86
 

0,
86

 
0,

86
 

 B
es

t 
K

ha
t 

V
al

ue
 =

 0
.8

7,
 W

or
st

 K
ha

t 
V

al
ue

 =
 0

.7
4,

 A
ve

ra
ge

 K
ha

t 
V

al
ue

 =
 0

.8
4 

   



 
89

 

T
ab

le
 4

.3
5 

A
ve

ra
ge

 r
ec

og
ni

ti
on

 r
at

es
 o

f 
IC

A
 a

nd
 K

N
N

 a
pp

li
ed

 o
n 

te
st

 d
at

a 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
es

 

H
ie

ra
rc

hi
ca

l 

IC
A

 +
 K

N
N

 
2 

3 
4 

5 
6 

7 
8 

9 
10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

79
 

0,
81

 
0,

84
 

0,
84

 
0,

84
 

0,
84

 
0,

84
 

0,
85

 
0,

84
 

0,
84

 
0,

84
 

0,
84

 
0,

84
 

0,
84

 

2 
0,

80
 

0,
86

 
0,

86
 

0,
87

 
0,

87
 

0,
88

 
0,

88
 

0,
88

 
0,

87
 

0,
87

 
0,

87
 

0,
87

 
0,

87
 

0,
87

 

3 
0,

81
 

0,
84

 
0,

85
 

0,
86

 
0,

88
 

0,
87

 
0,

88
 

0,
88

 
0,

88
 

0,
88

 
0,

88
 

0,
88

 
0,

88
 

0,
88

 

4 
0,

82
 

0,
85

 
0,

85
 

0,
85

 
0,

86
 

0,
86

 
0,

85
 

0,
86

 
0,

86
 

0,
86

 
0,

87
 

0,
87

 
0,

87
 

0,
88

 

5 
0,

83
 

0,
86

 
0,

87
 

0,
88

 
0,

88
 

0,
88

 
0,

88
 

0,
88

 
0,

88
 

0,
88

 
0,

88
 

0,
88

 
0,

88
 

0,
88

 

6 
0,

86
 

0,
87

 
0,

87
 

0,
87

 
0,

88
 

0,
88

 
0,

88
 

0,
89

 
0,

89
 

0,
88

 
0,

88
 

0,
88

 
0,

89
 

0,
88

 

7 
0,

85
 

0,
88

 
0,

88
 

0,
89

 
0,

88
 

0,
88

 
0,

89
 

0,
89

 
0,

89
 

0,
89

 
0,

89
 

0,
89

 
0,

89
 

0,
89

 

8 
0,

87
 

0,
88

 
0,

85
 

0,
87

 
0,

86
 

0,
86

 
0,

86
 

0,
87

 
0,

87
 

0,
88

 
0,

88
 

0,
88

 
0,

88
 

0,
89

 

9 
0,

87
 

0,
88

 
0,

89
 

0,
89

 
0,

88
 

0,
87

 
0,

88
 

0,
88

 
0,

89
 

0,
90

 
0,
90

 
0,
90

 
0,
90

 
0,
90

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s 

 

10
 

0,
87

 
0,

89
 

0,
87

 
0,

88
 

0,
88

 
0,

87
 

0,
87

 
0,

87
 

0,
88

 
0,

88
 

0,
88

 
0,

89
 

0,
89

 
0,

89
 

 B
es

t 
R

ec
og

ni
ti

on
 R

at
e 

=
 0

.9
0,

 W
or

st
 R

ec
og

ni
ti

on
 R

at
e=

 0
.7

9,
 A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
e 

=
 0

.8
7 

   



 
90

 

T
ab

le
 4

.3
6 

K
ha

t 
va

lu
es

 o
f 

IC
A

 a
nd

 S
V

M
 a

pp
li

ed
 o

n 
te

st
 d

at
a 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
K

ha
t 

R
es

ul
ts

 

H
ie

ra
rc

hi
ca

l 

IC
A

 +
 S

V
M

 
2 

3 
4 

5 
6 

7 
8 

9 
10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

73
 

0,
74

 
0,

82
 

0,
85

 
0,

87
 

0,
85

 
0,

87
 

0,
86

 
0,

86
 

0,
86

 
0,

87
 

0,
87

 
0,

86
 

0,
87

 

2 
0,

73
 

0,
78

 
0,

82
 

0,
81

 
0,

86
 

0,
84

 
0,

85
 

0,
88

 
0,

88
 

0,
89

 
0,

90
 

0,
90

 
0,

88
 

0,
85

 

3 
0,

78
 

0,
83

 
0,

79
 

0,
85

 
0,

85
 

0,
88

 
0,

88
 

0,
90

 
0,

88
 

0,
88

 
0,

90
 

0,
90

 
0,

90
 

0,
91

 

4 
0,

78
 

0,
82

 
0,

82
 

0,
79

 
0,

83
 

0,
84

 
0,

88
 

0,
90

 
0,

90
 

0,
90

 
0,

90
 

0,
90

 
0,

90
 

0,
90

 

5 
0,

77
 

0,
80

 
0,

80
 

0,
81

 
0,

84
 

0,
88

 
0,

91
 

0,
90

 
0,

91
 

0,
90

 
0,

90
 

0,
91

 
0,

91
 

0,
91

 

6 
0,

79
 

0,
81

 
0,

80
 

0,
80

 
0,

88
 

0,
90

 
0,

91
 

0,
91

 
0,

91
 

0,
88

 
0,

88
 

0,
89

 
0,

89
 

0,
89

 

7 
0,

77
 

0,
79

 
0,

81
 

0,
85

 
0,

87
 

0,
87

 
0,

88
 

0,
90

 
0,

91
 

0,
90

 
0,

90
 

0,
90

 
0,

90
 

0,
90

 

8 
0,

81
 

0,
85

 
0,

83
 

0,
84

 
0,

88
 

0,
89

 
0,

90
 

0,
89

 
0,

90
 

0,
91

 
0,

90
 

0,
89

 
0,

89
 

0,
89

 

9 
0,

86
 

0,
87

 
0,

89
 

0,
90

 
0,

93
 

0,
92

 
0,

91
 

0,
91

 
0,

89
 

0,
89

 
0,

90
 

0,
88

 
0,

90
 

0,
92

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s  

10
 

0,
82

 
0,

87
 

0,
90

 
0,

92
 

0,
93

 
0,
94

 
0,

93
 

0,
90

 
0,

90
 

0,
91

 
0,

90
 

0,
91

 
0,

91
 

0,
92

 

 B
es

t 
K

ha
t 

V
al

ue
 =

 0
.9

4,
 W

or
st

 K
ha

t 
V

al
ue

 =
 0

.7
3,

 A
ve

ra
ge

 K
ha

t 
V

al
ue

 =
 0

.8
7 

   



 
91

 

T
ab

le
 4

.3
7 

A
ve

ra
ge

 r
ec

og
ni

ti
on

 r
at

es
 o

f 
IC

A
 a

nd
 S

V
M

 a
pp

li
ed

 o
n 

te
st

 d
at

a 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
es

 

H
ie

ra
rc

hi
ca

l 

IC
A

 +
 S

V
M

 
2 

3 
4 

5 
6 

7 
8 

9 
10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

78
 

0,
79

 
0,

85
 

0,
88

 
0,

89
 

0,
88

 
0,

89
 

0,
89

 
0,

89
 

0,
89

 
0,

89
 

0,
89

 
0,

89
 

0,
89

 

2 
0,

78
 

0,
82

 
0,

85
 

0,
84

 
0,

89
 

0,
87

 
0,

87
 

0,
90

 
0,

90
 

0,
91

 
0,

92
 

0,
92

 
0,

90
 

0,
88

 

3 
0,

82
 

0,
86

 
0,

83
 

0,
88

 
0,

87
 

0,
90

 
0,

91
 

0,
92

 
0,

90
 

0,
91

 
0,

92
 

0,
92

 
0,

92
 

0,
93

 

4 
0,

82
 

0,
85

 
0,

86
 

0,
83

 
0,

86
 

0,
87

 
0,

90
 

0,
92

 
0,

92
 

0,
92

 
0,

92
 

0,
92

 
0,

92
 

0,
92

 

5 
0,

82
 

0,
84

 
0,

83
 

0,
85

 
0,

87
 

0,
90

 
0,

93
 

0,
92

 
0,

93
 

0,
92

 
0,

92
 

0,
93

 
0,

92
 

0,
93

 

6 
0,

83
 

0,
85

 
0,

84
 

0,
84

 
0,

90
 

0,
92

 
0,

93
 

0,
93

 
0,

93
 

0,
90

 
0,

90
 

0,
91

 
0,

91
 

0,
91

 

7 
0,

82
 

0,
83

 
0,

84
 

0,
88

 
0,

89
 

0,
89

 
0,

90
 

0,
92

 
0,

93
 

0,
92

 
0,

92
 

0,
92

 
0,

92
 

0,
92

 

8 
0,

84
 

0,
88

 
0,

87
 

0,
87

 
0,

90
 

0,
92

 
0,

92
 

0,
91

 
0,

92
 

0,
92

 
0,

92
 

0,
91

 
0,

91
 

0,
91

 

9 
0,

88
 

0,
89

 
0,

91
 

0,
92

 
0,

94
 

0,
93

 
0,

93
 

0,
93

 
0,

92
 

0,
91

 
0,

92
 

0,
90

 
0,

92
 

0,
94

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s 

 

10
 

0,
85

 
0,

90
 

0,
92

 
0,

93
 

0,
94

 
0,
95

 
0,
95

 
0,

92
 

0,
92

 
0,

93
 

0,
92

 
0,

93
 

0,
93

 
0,

94
 

 B
es

t 
R

ec
og

ni
ti

on
 R

at
e 

=
 0

.9
5,

 W
or

st
 R

ec
og

ni
ti

on
 R

at
e=

 0
.7

8,
 A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
e 

=
 0

.8
9 

   



 
92

 

T
ab

le
 4

.3
8 

K
ha

t 
va

lu
es

 o
f 

N
M

F
 a

nd
 K

N
N

 a
pp

li
ed

 o
n 

te
st

 d
at

a 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
K

ha
t 

R
es

ul
ts

 

H
ie

ra
rc

hi
ca

l 

N
M

F
 +

 K
N

N
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

36
 

0,
36

 
0,

50
 

0,
53

 
0,

62
 

0,
68

 
0,

72
 

0,
71

 
0,

76
 

0,
80

 
0,

72
 

0,
79

 
0,

80
 

0,
81

 

2 
0,

25
 

0,
31

 
0,

50
 

0,
58

 
0,

68
 

0,
66

 
0,

70
 

0,
77

 
0,

80
 

0,
81

 
0,

84
 

0,
82

 
0,

86
 

0,
88

 

3 
0,

49
 

0,
47

 
0,

55
 

0,
61

 
0,

73
 

0,
73

 
0,

76
 

0,
81

 
0,

83
 

0,
77

 
0,

86
 

0,
86

 
0,

87
 

0,
90

 

4 
0,

30
 

0,
54

 
0,

64
 

0,
70

 
0,

65
 

0,
67

 
0,

77
 

0,
78

 
0,

78
 

0,
80

 
0,

87
 

0,
85

 
0,

88
 

0,
89

 

5 
0,

30
 

0,
45

 
0,

57
 

0,
61

 
0,

65
 

0,
76

 
0,

80
 

0,
84

 
0,

79
 

0,
84

 
0,

87
 

0,
87

 
0,

90
 

0,
91

 

6 
0,

27
 

0,
47

 
0,

59
 

0,
68

 
0,

77
 

0,
73

 
0,

76
 

0,
85

 
0,

82
 

0,
81

 
0,

87
 

0,
86

 
0,

89
 

0,
90

 

7 
0,

36
 

0,
43

 
0,

58
 

0,
63

 
0,

70
 

0,
77

 
0,

80
 

0,
78

 
0,

85
 

0,
82

 
0,

87
 

0,
89

 
0,

89
 

0,
90

 

8 
0,

36
 

0,
49

 
0,

54
 

0,
58

 
0,

70
 

0,
74

 
0,

76
 

0,
83

 
0,

84
 

0,
88

 
0,

91
 

0,
89

 
0,

90
 

0,
92

 

9 
0,

38
 

0,
50

 
0,

60
 

0,
75

 
0,

65
 

0,
73

 
0,

82
 

0,
83

 
0,

86
 

0,
89

 
0,

88
 

0,
88

 
0,

91
 

0,
92

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s  

10
 

0,
42

 
0,

42
 

0,
76

 
0,

68
 

0,
75

 
0,

75
 

0,
81

 
0,

80
 

0,
82

 
0,

88
 

0,
87

 
0,

89
 

0,
92

 
0,
94

 

 B
es

t 
K

ha
t 

V
al

ue
 =

 0
.9

4,
 W

or
st

 K
ha

t 
V

al
ue

 =
 0

.2
5,

 A
ve

ra
ge

 K
ha

t 
V

al
ue

 =
 0

.7
2 

   



 
93

 

T
ab

le
 4

.3
9 

A
ve

ra
ge

 r
ec

og
ni

ti
on

 r
at

es
 o

f 
N

M
F

 a
nd

 K
N

N
 a

pp
li

ed
 o

n 
te

st
 d

at
a 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
es

 

H
ie

ra
rc

hi
ca

l 

N
M

F
 +

 K
N

N
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

48
 

0,
48

 
0,

60
 

0,
62

 
0,

69
 

0,
74

 
0,

77
 

0,
77

 
0,

81
 

0,
84

 
0,

78
 

0,
83

 
0,

84
 

0,
85

 

2 
0,

39
 

0,
44

 
0,

60
 

0,
66

 
0,

74
 

0,
72

 
0,

75
 

0,
81

 
0,

84
 

0,
85

 
0,

87
 

0,
86

 
0,

89
 

0,
90

 

3 
0,

59
 

0,
57

 
0,

64
 

0,
68

 
0,

78
 

0,
78

 
0,

80
 

0,
85

 
0,

87
 

0,
82

 
0,

89
 

0,
89

 
0,

90
 

0,
92

 

4 
0,

43
 

0,
63

 
0,

71
 

0,
76

 
0,

72
 

0,
73

 
0,

81
 

0,
83

 
0,

82
 

0,
84

 
0,

89
 

0,
88

 
0,

90
 

0,
91

 

5 
0,

44
 

0,
56

 
0,

65
 

0,
68

 
0,

71
 

0,
81

 
0,

84
 

0,
87

 
0,

83
 

0,
87

 
0,

90
 

0,
90

 
0,

92
 

0,
93

 

6 
0,

41
 

0,
57

 
0,

67
 

0,
75

 
0,

82
 

0,
79

 
0,

81
 

0,
88

 
0,

86
 

0,
85

 
0,

89
 

0,
88

 
0,

91
 

0,
92

 

7 
0,

49
 

0,
54

 
0,

66
 

0,
70

 
0,

76
 

0,
82

 
0,

84
 

0,
83

 
0,

88
 

0,
85

 
0,

89
 

0,
91

 
0,

91
 

0,
92

 

8 
0,

49
 

0,
60

 
0,

63
 

0,
66

 
0,

76
 

0,
79

 
0,

81
 

0,
87

 
0,

88
 

0,
91

 
0,

93
 

0,
91

 
0,

92
 

0,
94

 

9 
0,

51
 

0,
60

 
0,

68
 

0,
80

 
0,

72
 

0,
78

 
0,

86
 

0,
86

 
0,

88
 

0,
91

 
0,

91
 

0,
90

 
0,

93
 

0,
93

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s  

10
 

0,
54

 
0,

53
 

0,
81

 
0,

74
 

0,
80

 
0,

80
 

0,
85

 
0,

84
 

0,
85

 
0,

91
 

0,
90

 
0,

91
 

0,
94

 
0,
95

 

 B
es

t 
R

ec
og

ni
ti

on
 R

at
e 

=
 0

.9
5,

 W
or

st
 R

ec
og

ni
ti

on
 R

at
e=

 0
.3

9,
 A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
e 

=
 0

.7
8 

  



 
94

 

T
ab

le
 4

.4
0 

K
ha

t 
va

lu
es

 o
f 

N
M

F
 a

nd
 S

V
M

 a
pp

li
ed

 o
n 

te
st

 d
at

a 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
K

ha
t 

R
es

ul
ts

 

H
ie

ra
rc

hi
ca

l 

N
M

F
 +

 S
V

M
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

31
 

0,
49

 
0,

52
 

0,
57

 
0,

62
 

0,
65

 
0,

67
 

0,
68

 
0,

74
 

0,
74

 
0,

74
 

0,
76

 
0,

76
 

0,
77

 

2 
0,

33
 

0,
43

 
0,

51
 

0,
58

 
0,

65
 

0,
65

 
0,

73
 

0,
78

 
0,

79
 

0,
81

 
0,

84
 

0,
88

 
0,

90
 

0,
90

 

3 
0,

45
 

0,
45

 
0,

48
 

0,
56

 
0,

63
 

0,
67

 
0,

72
 

0,
78

 
0,

82
 

0,
83

 
0,

85
 

0,
89

 
0,

90
 

0,
91

 

4 
0,

38
 

0,
44

 
0,

50
 

0,
63

 
0,

66
 

0,
68

 
0,

78
 

0,
80

 
0,

82
 

0,
84

 
0,

89
 

0,
88

 
0,

92
 

0,
92

 

5 
0,

33
 

0,
47

 
0,

52
 

0,
57

 
0,

61
 

0,
72

 
0,

77
 

0,
79

 
0,

82
 

0,
84

 
0,

87
 

0,
90

 
0,

90
 

0,
90

 

6 
0,

36
 

0,
48

 
0,

54
 

0,
63

 
0,

71
 

0,
67

 
0,

72
 

0,
82

 
0,

84
 

0,
87

 
0,

88
 

0,
89

 
0,

91
 

0,
92

 

7 
0,

33
 

0,
40

 
0,

56
 

0,
56

 
0,

69
 

0,
73

 
0,

78
 

0,
81

 
0,

86
 

0,
87

 
0,

89
 

0,
91

 
0,

90
 

0,
91

 

8 
0,

40
 

0,
42

 
0,

48
 

0,
54

 
0,

63
 

0,
72

 
0,

78
 

0,
81

 
0,

84
 

0,
88

 
0,

91
 

0,
93

 
0,

92
 

0,
92

 

9 
0,

38
 

0,
46

 
0,

52
 

0,
55

 
0,

61
 

0,
75

 
0,

82
 

0,
82

 
0,

86
 

0,
89

 
0,

91
 

0,
92

 
0,

92
 

0,
92

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s  

10
 

0,
34

 
0,

41
 

0,
51

 
0,

58
 

0,
69

 
0,

73
 

0,
80

 
0,

80
 

0,
83

 
0,

89
 

0,
88

 
0,

90
 

0,
92

 
0,

91
 

 B
es

t 
K

ha
t 

V
al

ue
 =

 0
.9

3,
 W

or
st

 K
ha

t 
V

al
ue

 =
 0

.3
1,

 A
ve

ra
ge

 K
ha

t 
V

al
ue

 =
 0

.7
1 

   



 
95

 

T
ab

le
 4

.4
1 

A
ve

ra
ge

 r
ec

og
ni

ti
on

 r
at

es
 o

f 
N

M
F

 a
nd

 S
V

M
 a

pp
li

ed
 o

n 
te

st
 d

at
a 

N
um

be
r 

O
f 

P
ri

nc
ip

al
 C

om
po

ne
nt

s 
A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
es

 

H
ie

ra
rc

hi
ca

l 

N
M

F
 +

 S
V

M
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

1 
0,

45
 

0,
59

 
0,

62
 

0,
65

 
0,

69
 

0,
72

 
0,

73
 

0,
74

 
0,

79
 

0,
79

 
0,

79
 

0,
80

 
0,

81
 

0,
81

 

2 
0,

47
 

0,
54

 
0,

60
 

0,
66

 
0,

72
 

0,
71

 
0,

78
 

0,
82

 
0,

83
 

0,
85

 
0,

87
 

0,
90

 
0,

92
 

0,
92

 

3 
0,

56
 

0,
56

 
0,

58
 

0,
64

 
0,

70
 

0,
74

 
0,

78
 

0,
82

 
0,

85
 

0,
86

 
0,

88
 

0,
91

 
0,

92
 

0,
93

 

4 
0,

50
 

0,
55

 
0,

60
 

0,
70

 
0,

73
 

0,
75

 
0,

82
 

0,
84

 
0,

85
 

0,
87

 
0,

91
 

0,
90

 
0,

93
 

0,
94

 

5 
0,

46
 

0,
57

 
0,

61
 

0,
65

 
0,

69
 

0,
77

 
0,

81
 

0,
83

 
0,

85
 

0,
87

 
0,

90
 

0,
92

 
0,

92
 

0,
92

 

6 
0,

49
 

0,
58

 
0,

63
 

0,
70

 
0,

77
 

0,
74

 
0,

77
 

0,
86

 
0,

87
 

0,
90

 
0,

90
 

0,
92

 
0,

93
 

0,
93

 

7 
0,

47
 

0,
51

 
0,

64
 

0,
65

 
0,

75
 

0,
78

 
0,

83
 

0,
85

 
0,

89
 

0,
90

 
0,

91
 

0,
92

 
0,

92
 

0,
93

 

8 
0,

52
 

0,
54

 
0,

58
 

0,
63

 
0,

70
 

0,
77

 
0,

82
 

0,
85

 
0,

88
 

0,
91

 
0,

93
 

0,
94

 
0,
94

 
0,
94

 

9 
0,

50
 

0,
57

 
0,

62
 

0,
65

 
0,

69
 

0,
80

 
0,

85
 

0,
86

 
0,

89
 

0,
91

 
0,

93
 

0,
94

 
0,

93
 

0,
94

 

   

N
um

be
r 

O
f 

T
im

e 

B
in

s  

10
 

0,
48

 
0,

53
 

0,
61

 
0,

66
 

0,
76

 
0,

79
 

0,
84

 
0,

84
 

0,
86

 
0,

91
 

0,
91

 
0,

92
 

0,
93

 
0,

93
 

 B
es

t 
R

ec
og

ni
ti

on
 R

at
e 

=
 0

.9
4,

 W
or

st
 R

ec
og

ni
ti

on
 R

at
e=

 0
.4

5,
 A

ve
ra

ge
 R

ec
og

ni
ti

on
 R

at
e 

=
 0

.7
7



 96 

Observing  the classification performance tables of normal classification and 

hierarchical classification, we can conclude that hierarchical classification does 

not provide classification performance improvement for all feature extraction 

and classification methods. Hierarchical classification improves classification 

performance around %3-4 for LDA+KNN and LDA+SVM. Hierarchical 

classification does not improve performance for PCA+SVM, ICA+SVM, 

NMF+KNN, NMF+SVM. We can conclude that hierarchical classification does 

not improve performance when SVM or NMF is used. Also a classification 

performance improvement of %2 is obtained for PCA+KNN, ICA+KNN. 

Hierarchical classification improves performance when KNN is used. 

 

4.4 Confusion Matrices 

Khat values and average recognition rates for different number of time-

bins and principal components were given through Table 4.9 to Table 4.25 for 

normal classification. Observing these tables we can see that best classification 

results are obtained with LDA+SVM and ICA+SVM. From Table 4.17, we see 

that an average recognition rate of %98 is obtained with LDA+SVM when the 

number of time bins is 9 and number of principal components is 12. The 

recognition rate obtained with LDA+SVM is %76, when the number of time 

bins is 1 and number of principal components is 12. To see the performance 

improvement by increasing the number of time-bins, confusion matrices for 

these two cases are given in Table 4.42 and Table 4.43 . 
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Table 4.42 Confusion matrix of LDA+SVM for 1 time-bin and 12 principal 

components 

 
 Car Truck Bus Tank Helicopter Walking 

Man 
Running 

Man 
Car 17 1 33 0 0 1 0 

Truck 5 28 2 3 0 18 1 

Bus 2 7 80 2 0 2 1 

Tank 0 4 0 3 0 8 0 

Helicopter 0 0 0 0 20 1 0 

Walking 
Man 

0 0 0 0 0 103 6 

Running 
Man 

5 0 0 0 0 4 85 

   

 

Table 4.43 Confusion matrix of LDA+SVM for 9 time-bin and 12 principal 

components 

 
 Car Truck Bus Tank Helicopter Walking 

Man 
Running 

Man 
Car 37 3 4 0 0 0 0 

Truck 0 49 0 0 0 0 0 

Bus 0 0 86 0 0 0 0 

Tank 0 0 0 7 0 0 0 

Helicopter 0 0 0 0 13 0 0 

Walking 
Man 

0 0 0 0 0 101 0 

Running 
Man 

0 0 0 0 0 0 86 
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From Table 4.21, we see that an average recognition rate of %97 is 

obtained with ICA+SVM when the number of time bins is 10 and number of 

principal components is 15. The recognition rate obtained with ICA+SVM is 

%87, when the number of time bins is 1 and number of principal components is 

15. To see the performance improvement by increasing the number of time-bins, 

confusion matrices for these two cases are given in Table 4.44 and Table 4.45 . 

 

Table 4.44 Confusion matrix of ICA+SVM for 1 time-bin and 15 principal 

components 

 
 Car Truck Bus Tank Helicopter Walking 

Man 
Running 

Man 
Car 32 13 5 2 0 0 0 

Truck 5 51 1 0 0 0 0 

Bus 11 2 81 0 0 0 0 

Tank 0 0 0 10 0 0 5 

Helicopter 0 0 0 0 20 1 0 

Walking 
Man 

0 0 0 0 0 109 0 

Running 
Man 

6 0 2 0 0 5 81 
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Table 4.45 Confusion matrix of ICA+SVM for 10 time-bins and 15 principal 

components 

 
 Car Truck Bus Tank Helicopter Walking 

Man 
Running 

Man 
Car 37 0 6 0 0 0 0 

Truck 0 47 1 0 0 0 0 

Bus 0 0 83 2 0 0 0 

Tank 0 0 0 6 0 0 0 

Helicopter 0 0 0 0 12 0 0 

Walking 
Man 

0 0 0 0 0 100 0 

Running 
Man 

3 0 1 0 0 0 81 

 

 

4.5 Classification Performance Summary 

The summary of the classification performance results is given in Table 4.42. 

This summary table contains the best, worst and average classification 

performances of the tables Table 4.9 through Table 4.41. 
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 CHAPTER 5                                 

CONCLUSION 

  
In this thesis improving the classification performance of the target recognition 

system designed in Erdogan (2002) is studied. Classification performance 

improvement is done by the following methods: 

• Utilizing the repetitions in time in the TRP vectors of some target classes 

(walking man, running man and helicopter). 

• Using different feature extraction (PCA, LDA, ICA and NMF) and 

classifier (KNN, SVM) combinations. 

• Hierarchical Classification. 

 

We observed that best classification performance results are obtained 

with LDA+SVM and ICA+SVM. ICA+SVM provides a minimum recognition 

rate of %83 and maximum recognition rate of %97. Also maximum recognition 

rate of LDA+SVM is %98, however ICA+SVM outperforms LDA+SVM at 

minimum recognition performance, the minimum recognition rate for 

LDA+SVM is %61. For all feature extraction and classification method 

combinations increasing the number of time bins also increases classification 

performance except PCA+SVM. For higher number of time bins and principal 

components NMF+KNN and NMF+SVM provides good classification 

performance (maximum recognition rates of %90 and %96 respectively), 

however NMF performance is not good for small number of time bins and 

principal components. Also NMF is not real time implementable; it takes too 

much time to extract features. Among the feature extraction methods ICA is the 

most useful one to extract the important features of the input data with the 

minimum number of principal components. A recognition rate of %83 is 
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obtained when the number of time bins is 1 and the number of principal 

components is 2. Also SVM provides better performance than KNN.  

 Hierarchical classification does not improve classification performance 

except LDA method. But this improvement becomes insignificant when the 

number of principal components is high. When the number of principal 

components is 2 and number of time bins is 1, LDA+SVM provides a 

recognition rate of %61 for normal classification and %73 for hierarchical 

classification. When the number of principal components is 2 and number of 

time bins is 10, LDA+SVM provides a classification performance of %77 for 

normal classification and % 96 for hierarchical classification. Hierarchical 

classfication can be used to increase the performance of LDA, but there is no 

need to use such a method for ICA since hierarchical classification makes our 

target recognition system more complex. 

 Future research may consider the optimal target recognition system in 

which each type of misclassification brings different costs to the system. Since 

the radar used is a military radar, the classification of a car target as running 

man is more dangerous than classifying a walking man target as running man. 

The future work can study on a target recognition system which will minimize 

such dangerous misclassifications. Also multiple target situations are not 

handled in the thesis, they can be considered at a future work. 
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APPENDIX A 

ASKARAD TECHNICAL SPECIFICATIONS 

 
 
 

 

Figure A.1 ASKARAD 

 

 

 

Description: 

ASKARAD ASELSAN Ground Surveillance and Artillery Fire 

Adjustment Radar is a radar system combining long range and precision in an 

easy to use system. 

ASKARAD provides surveillance, target acquisition and classification, 

target tracking and artillery fire adjustment function within are unit. 
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Target Detection Ranges: 

Vehicle Convoy : 38 km 

Heavy Vehicle (Tank) : 30 km 

Helicopters : 25 km 

Light Vehicle (Jeep) : 20 km 

Soldiers : 15 km 

155 mm shell burst : 15 km 

105 mm shell burst : 8 km 

Features: 

Ground and coastal surveillance 

Target acquisition and classification 

Audible alarm 

Automatic target tracking 

Artillery fire adjustment 

Guidance of small ground or airborne attack units 

Helicopter navigational aid 

Integration with command - control (C²) systems 

Technical Specifications: 

Frequency : X - Band 

Channel : 10 

Transmitter Power : >5kW peak 

Accuracy 

Range : ± 10 m 

Azimuth : ± 2 mils 

Power Consumption 

Transmit :< 290 W @ 24 VDC 

Stand-by :< 120 W @ 24 VDC 

Environmental Standard : MIL-STD-810D 

Operating Temperature : -30°C to +55°C 

EMI/RFI Specification : MIL-STD-461C 


