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ABSTRACT

PERFORMANCE OF BILINEAR TIME-FREQUENCY TRANSFORMS IN ISAR

Lo§o§lu, Berker

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gülbin Dural

December 2007, 61 pages

In this thesis a stepped-frequency Inverse Synthetic Aperture Radar (ISAR) is employed

to develop two-dimensional range-Doppler images of a small �ghter aircraft which exhibits

three dimensional rotational rotation. The simulation is designed such that the target can

exhibit yaw, pitch and roll motions at the same time. First, radar returns from prominent

scatterers of various parts of the target are processed and displayed using conventional Fourier

transform. The e�ects of di�erent complex motion types and scenarios are observed and

discussed. Then, several linear and bi-linear time-frequency distributions including short-

time Fourier transform, Wigner-Ville, pseudo Wigner-Ville, smoothed pseudo Wigner-Ville,

Choi-Williams, Born-Jordan and Zhao-Atlas-Marks distributions are applied to the same

target and scenarios. The performance of the transforms is compared for each scenario. The

reasons for success of the distributions are discussed thoroughly.

Keywords: Inverse Synthetic Aperture Radar, Bilinear Time-Frequency Transforms
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ÖZ

�K� DO�RUSAL ZAMAN-SIKLIK ÇEVR�M� �LE ISAR PERFORMANSI

Lo§o§lu, Berker

Yüksek Lisans, Elektrik-Elektronik Mühendisli§i Bölümü

Tez Yöneticisi: Prof. Dr. Gülbin Dural

Aral�k 2007, 61 sayfa

Bu tezde ayn� anda yalpa, alçalma-yükselme ve yuvarlanma hareketleri yapabilen bir hede�n

ayr�k-frekans Yapay A§�z Aç�kl�kl� Radar ile görüntülenmesinin benzetimi yap�lm�³t�r. �lk

olarak geleneksel Fourier tabanl� yöntem ile farkl� hareket senaryolar� için menzil-Doppler

görüntüsü elde edilmi³tir. Elde edilen görüntüler de§erlendirilmi³, sonuçlar sebepleri ile

aç�klanm�³t�r. Daha sonra ayn� hedef ve senaryolara, geleneksel yöntem yerine zaman-frekans

tabanl� do§rusal ve iki-do§rusal çevrimler uygulanm�³t�r. Uygulanan çevrimlerin performans

kar³�la³t�rmalar� ve de§erlendirmeleri yap�lm�³, ba³ar� ve ba³ar�s�zl�k sebepleri irdelenmi³tir.

Uygulanan zaman-frekans yöntemleri s�ras� ile k�sa-zaman Fourier çevrimi, Wigner-Ville,

yalanc� Wigner-Ville, yumu³at�lm�³ yalanc� Wigner-Ville, Choi-Williams, Born-Jordan ve

Zhao-Atlas-Marks da§�l�mlar�d�r.

Anahtar Kelimeler: Ters Yapay A§�z Aç�kl�kl� Radar, �ki Do§rusal Zaman-S�kl�k Çevrimi
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CHAPTER 1

INTRODUCTION

1.1 Radar Imaging

Radar is an electromagnetic sensor that is widely used for detection, tracking and imaging

of both stationary and moving objects such as aircraft, ships, ground vehicles. It is also used

for generating high resolution maps of terrains. Radar sensors are superior to other type of

sensors in the way that they can perform in all weather conditions at long distances with

high accuracy [9]. Radar transmits electromagnetic waves and the radar receiver collects

the returned signals from the scatterers of the object which are typically discontinuities,

corners or cavities. The features of the object is described by the scattering properties of

that object thus an image of the object can be constructed from the corresponding spatial

distribution of the re�ectivity. The image is usually mapped into down-range and cross-

range planes. Down-range (slant-range) is the dimension along the line of sight (LOS) and

cross-range is the perpendicular range to down-range [5]. To obtain high-resolution images is

an important aspect. Resolution along down-range is determined by the radar's bandwidth

and resolution along cross-range is determined by wavelength and viewing-angle segment.

Thus, larger antenna aperture antenna must be used for higher cross-range resolution. To

solve this problem, a synthetic aperture is utilized to emulate a large aperture antenna by

coherently combining signals from sequences of small apertures [5]. Synthetic aperture radar

(SAR) and inverse synthetic aperture radar (ISAR) are both synthetic array radars that

emulate larger apertures.

SAR refers to the situation in which radar is moving whereas the target is stationary. It

is an airborne or spaceborne radar mapping technique developed in the early 1950s that is

used for generating high resolution maps of stationary surface targets and terrain. A SAR

map is generated from re�ectivity data collected as the radar passes the target area. ISAR
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utilizes a geometrically inverse way of SAR. In ISAR, radar is stationary whereas the target

is moving. It is used to image targets such as ships, aircraft and space objects. ISAR images

are generated from re�ectivity data collected from a single aperture as the target rotates

[36].

1.2 Related Work

The ability to generate focused, high resolution images from ISAR systems is of great im-

portance to military and intelligence operations. Thus, many works have been reported on

high resolution ISAR imaging of moving airborne and naval targets [26], [31], [18], [27], [34].

One of the main challenges in ISAR image formation is the unknown nature of the target

motion. So, removing the blurring and distortions using motion compensation has always

been a challenge in ISAR concept [30], [29]. Various techniques are tried.

Di�erent non time-frequency techniques are used in literature. Range instantaneous

Doppler technique is implemented in [16]. An algorithm using the dechirp method is proposed

in [1]. A super-resolution imaging method based on data extrapolation is carried out to

enhance image resolution in [39]. Moving parameters of target is used to compensate the

echo data in the two dimensional frequency space in [40]. The modi�ed Doppler centroid

tracking (MDCT) method which applies the phase gradient auto-focus (PGA) algorithm is

used in [38]. To reduce the error of range alignment a minimum entropy criterion of range

alignment in ISAR compensation is proposed in [17]. Range alignment using a minimum

sum criterion is used in [35].

Besides from the mentioned techniques, time-frequency approach is the most common

and the most successful one. Joint Time-Frequency Transforms are used in [23], [4], [5], [6],

[7], [8], [9], [20], [21], [32], [33], [24].

1.3 Our Approach

In this thesis a stepped-frequency ISAR simulation is developed and various time-frequency

techniques (TFTs) are applied for various scenarios. Developing an ISAR simulation and

applying TFTs is not new in literature, many such work is done ([3], [11], [12]). Di�erent

from all those, in the developed ISAR simulation, the targets can exhibit not just two-

dimensional (2D) rotation but all types of three-dimensional (3D) rotational movements;

yaw, pitch and roll motions (see Figure 1.1). The simulation is implemented such that the

2



target can perform all three types of movements at the same time. Three di�erent scenarios

are implemented. In the �rst one is the target exhibits traditional simple rotation (yaw

only), second one exhibits yaw and roll motions at the same time and the last one exhibits

all three types of rotation at the same time.

Figure 1.1: 3D target rotation [11]

As mentioned before, the time-frequency transforms are applied to ISAR in many past

work ([4], [5], [6], [7], [8], [9], [20], [21], [32], [33]). However, the TFTs were applied to

only simple 2D rotating targets. But in this thesis, various both linear and bi-linear time-

frequency transforms including short-time Fourier transform, Wigner-Ville, pseudo Wigner-

Ville, smoothed pseudo Wigner-Ville, Choi-Williams, Born-Jordan and Zhao-Atlas-Marks

distributions to 3D rotating, complex manoeuvring targets. After all the transforms are

applied and results are shown, ISAR image formation performance comparison for all the

transforms is made and the results are discussed.

3



1.4 Outline

First of all, stepped-frequency ISAR is introduced, basic concepts and design parameters

are explained in Chapter 2. Then, in Chapter 3, a stepped-frequency ISAR simulation with

complex rotational motion is implemented. The target dynamics and the target model is

explained. The chosen and calculated radar parameters used in the simulation are given

and �nally the images obtained by conventional Fourier transforms for various scenarios

are shown. In Chapter 4, various linear and bi-linear time-frequency distributions are ex-

plained. Mathematical de�nitions are given and a basic discussion about their performance

is made. Each distribution is applied to the simulated Mig-25 and Boeing-727 data provided

by V.Chen [3]. In Chapter 5, the time-frequency distributions introduced in Chapter 4 are

applied to the simulation scenarios implemented in Chapter 3. Performance of distribu-

tions for various complex manoeuvres are observed and the results are discussed. Finally, in

Chapter 6 conclusions are given, results are evaluated and future work is discussed.
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CHAPTER 2

INVERSE SYNTHETIC APERTURE

RADAR IMAGING

2.1 Introduction

ISAR imaging systems are used to project the electromagnetic re�ectivity properties of the

targets re�ective components such as wings, tail, nose, fuselage, engine and the weapons on to

a two-dimensional plane. The dimensions of the ISAR image and the conversion of the targets

electromagnetic re�ectivity properties on to planar points have to be emphasized. The �rst

image dimension becomes slant-range (the terms range or down-range are sometimes used

interchangeably) to be question of imaging with ISAR systems. Range axis is the straight

line which connects the target with the radar. The second image dimension is the cross-

range (see Figure 2.1). Cross-range axis and equidistant cross-range lines lie perpendicular

to the range axis. Because of the direct relation between the cross-range dimension and the

Doppler information, the term range-Doppler imaging is also called instead of the term ISAR

imaging in some sources [25].

2.2 ISAR Theory

The inverse synthetic aperture is formed by the coherent construction of signals obtained

from the �xed aperture radar as the target translates and rotates within its beam-width,

thus, creating the equivalent of a large circular aperture focused at the target's center-of-

rotation (COR). The underlying idea in ISAR imaging is to use the Doppler information

provided by the di�erent velocities relative to the radar of those parts of the target charac-

terized as individual scatterers to obtain high cross-range resolution. That is, the target is

decomposed (spatially) into a set of individual point scatterers each of which has a di�erent

5



Figure 2.1: Range-Doppler image dimensions [22]

Doppler velocity represented by Doppler frequency shifts in the measured spectrum. Thus,

the distribution of the target's re�ectivity function can be measured by the Doppler spec-

trum. Typically, the Doppler spectrum is estimated using conventional Fourier transform

techniques implemented computationally using the fast Fourier transform (FFT) algorithm

with the underlying assumption that the Doppler frequency is �xed or time invariant. When

the target moves this assumption is no longer valid and the Doppler spectrum is smeared

degrading the cross-range resolution.

2.3 Stepped-Frequency ISAR

2.3.1 Introduction

Stepped-frequency (SF) modulated radar is selected in our applications for its high range

resolution. It employs inter-pulse compression, in which the carrier frequency of successive

pulses is changed by a �xed frequency step, ∆f. Due to this technique, a wide bandwidth

is inherently achieved over several pulses instead of within a single pulse. The product of

the number of coherently integrated pulses, N, and the frequency step size gives the e�ective

stepped-frequency waveform (SFWF) bandwidth.

High resolution range (HRR) pro�le is obtained by taking the inverse fast Fourier trans-

form (IFFT) of the frequency spectrum of the target re�ectivity which is formed by the

returns of the N pulses at di�erent carrier frequencies. HRR pro�le gives the relative po-

sition of each scatterer. Detailed stepped-frequency ISAR formation steps are shown in

Figure 2.2. Throughout this chapter, only detailed explanations on key subjects about

stepped-frequency ISAR which are used in the simulation developed in Chapter 3 are made.

6



Figure 2.2: Stepped-Frequency ISAR image formation [10]

2.3.2 Waveform

The stepped-frequency radar transmits a sequence of N pulses at a �xed pulse repetition

frequency (PRF). Each set of pulses is called a burst or a coherent processing interval. Each

pulse in a sequence is transmitted with a di�erent carrier frequency. The frequency is linearly

increased from pulse to pulse by a �xed increment ∆f . The carrier frequency for the n-th

pulse can be written as:

fn = f0 + n∆f (2.1)

where f0 is the nominal carrier frequency and ∆f is the frequency step size. Thus the

transmitted signal for the n-th pulse can be written as:

sT = AT cos[2π(f0 + n∆f)t] (2.2)

where AT is the amplitude of the transmitted signal. Thus the transmitted signal is:

7



sR = AR cos[2π(f0 + n∆f)(t− 2R

c
)] (2.3)

where
2R

c
is the delay time of the signal, AR is the attenuated signal amplitude and c is the

speed of light.

2.3.3 Quadrature Detection

Phase information and the Doppler shift is one of the most important steps of ISAR. Quadra-

ture detection is used to retrieve phase information relative to the transmitted signal. It is

also called coherent phase detector and is illustrated in Figure 2.3.

Figure 2.3: Quadrature Detector [36]

sRI
(t) = LPF{AT AR cos[2π(f0 + n∆f)t] cos[2π(f0 + n∆f)(t− 2R

c
)]}

= LPF{AT AR

2
{cos[2π(f0 + n∆f)t− 2π(f0 + n∆f)(t− 2R

c
)] + cos[2π(f0 + n∆f)

2R

c
]}}

(2.4)

sRQ
(t) = LPF{AT AR sin[2π(f0 + n∆f)t] cos[2π(f0 + n∆f)(t− 2R

c
)]} (2.5)

where sRI
(t) is the in-phase (I) and sRQ

(t) is the quadrature (Q) output of the received

signal sR after the mixing operation. It should be noted that the high frequency terms will
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be �ltered out by the low pass �lter (LPF). Then, the output of the quadrature detector can

be written as:

sRaw(t) = sRI
(t) + jsRQ

(t) = Ae−jφn (2.6)

where:

φn = 2π(f0 + n∆f)
2R

c
(2.7)

If the target moves with a constant radial velocity vR, then the range must be represented

as:

Rn = R0 + nvRT (2.8)

where T is the pulse repetition interval (PRI). Thus, the phase can be represented as:

φn =
4πfoR0

c
+

4π∆fR0(n− 1)T
c

+
4πf0(n− 1)T

c
+

4π∆fvR(n− 1)2T 2

Tc
(2.9)

2.3.4 Key Parameters

In a stepped-frequency radar design the calculations of the following parameters must be well

known and carefully chosen to satisfy the design parameters such as bandwidth, down-range

and cross-range resolutions:

Bandwidth

The instantaneous bandwidth of a stepped-frequency radar system is same as a single pulse

system:

Binst =
1
τ

(2.10)

where τ is the pulse width. But the e�ective bandwidth is:
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Beff = N∆f (2.11)

A stepped-frequency radar system is designed such that:

Beff > Binst (2.12)

Range Resolution

The range (down-range) resolution of a conventional radar is given as:

∆rd =
cτ

2
(2.13)

Compared to conventional systems, much smaller range resolution values can be obtained:

∆rd,step =
c

2Beff
=

c

2N∆f
=

Ru

N
(2.14)

where Ru is the unambiguous range window [36]. As seen from 2.14, increasing the number

of pulses or increasing the frequency step size ends up with smaller range resolution values.

To prevent range ambiguities, Ru must be chosen larger than the maximum target extent

(E):

Ru =
c

N∆f
≥ E =⇒ ∆f ≤ c

2E
(2.15)

Cross-range Resolution

Assume a target with all scatterers on the same horizontal plane rotates with a constant

angular rotation speed of w rad/s about the axis that is perpendicular to the horizontal plane.
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For a scatterer at a cross-range distance of rc from the center of rotation, the instantaneous

tangential velocity towards radar will be wrc, thus, the corresponding instantaneous Doppler

frequency shift will be:

fd = 2wrc
fc

c
(2.16)

where fc is the carrier frequency. For two scatterers located in the same down-range that

are separated in the cross-range by ∆rc, the frequency di�erence is computed as:

∆fd = 2w∆rc
fc

c
(2.17)

The Doppler resolution is approximately given by:

∆fd =
1
T

(2.18)

where T is the coherent integration (total observation) time. Thus, for a Doppler resolution

of ∆fd the corresponding cross-range resolutions is calculated as [36]:

∆rc =
c∆fd

2wfc
=

c

2wTifc
(2.19)
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CHAPTER 3

STEPPED-FREQUENCY ISAR

SIMULATION WITH YAW,PITCH AND

ROLL MOTIONS

3.1 Introduction

Both real and simulated ISAR data is very hard to obtain. The only simulated ISAR

data that could be obtained from [3] in which the target exhibits simple 2D rotation is

processed in Chapter 4. However, this data is not su�cient since the performance of time-

frequency transforms for complex manoeuvring targets is wanted to be examined. For further

investigation, because of the lack of data, a stepped-frequency ISAR simulation in which the

target is capable of having 3D rotational motions which consists yaw, pitch and roll motions

rather than just 2D rotation is implemented.

Throughout this chapter, since it is the key point, manoeuvring target dynamics will be

explained �rst [12], [11]. Then, the key parameters which are explained in Chapter 2 will be

selected and calculated, the target model will be de�ned, design approach will be explained

step by step and the ISAR simulation results for three di�erent scenarios to be de�ned will

be shown.

3.2 Manoeuvring Target Dynamics

A manoeuvring target is de�ned as a target that has possibly nonuniform translational

and rotational motion during the observation time. For simplicity, let's de�ne a planar

target in 2D Cartesian coordinates (x,y,z) . The geometric center is de�ned at the origin

of the Cartesian coordinate system. The radar is de�ned to be located at the origin or
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another Cartesian coordinate system (u,v,w). Two di�erent coordinate systems are de�ned

to describe the rotation of the target properly (see Figure 3.1).

Figure 3.1: Geometry of the target [2]

R is the distance from the geometric center of the target to the radar, where Rp is the

distance from the point scatterer P . θ0 is the initial rotational angle about the z-axis and α

is the azimuth angle of the target with respect to the radar coordinate system. Then, Rp is

calculated as [2]:

Rp = [(Tx + x cos θ0 − y sin θ0)2 + (Ty + y cos θ0 + x sin θ0)2]1/2

= {R2 + (x2 + y2) + 2R[x cos(θ0 − α)− y sin(θ0 − α)]}1/2

' R + x cos(θ0 − α)− y sin(θ0 − α)

(3.1)

This is the case when the origin of the target is assumed to be stationary, i.e. ( Tx, Ty, Tz =

0 ). Let's assume the target has translational motion as well as rotational motion only in

the x-y plane where vR is the initial radial velocity and its constant. The orientation of the

target changes during the observation time ∆t = t − t0. Assume R >> R − Rp so that

neglect the change in α and assume its constant. Then [2]:
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Rp(t) = R(t) + x cos(θt − α)− y sin(θt − α)

R(t) = R0 + vRt

θt = θ0 + Ωt

(3.2)

where Ω is the angular rotation rate. Then the phase of the returned signal from the scatterer

is calculated as [2]:

φ(Rp(t)) = 2πf0
2Rp(t)

c
(3.3)

where c is the speed of electromagnetic wave propagation in air. By taking the time-derivative

of the phase function the induced Doppler frequency shift can be derived as [2]:

fD =
2f0

c

d

dt
Rp(t)

=
2f0

c
vR +

2f0

c
{−xΩ[sin(θ0 − α) cos Ωt + cos(θ0 − α) sinΩt]

− yΩ[cos(θ0 − α) cos Ωt + sin(θ0 − α) sinΩt]}

' 2f0

c
vR +

2f0

c
{−[x sin[θ0 − α] + y cos(θ0 − α)]Ω

− [x cos[θ0 − α]− y sin(θ0 − α)]Ω2t}

(3.4)

Then translation motion induced Doppler frequency is:

fDTrans
=

2f0

c
vR (3.5)

and the rotational motion induced Doppler frequency is :

fDRot
=

2f0

c
{−[x sin[θ0 − α] + y cos(θ0 − α)]Ω− [x cos[θ0 − α]− y sin(θ0 − α)]Ω2t} (3.6)

Roll, pitch and yaw are the frequently used set of rotational motions. These motions are

shown in Figure 1.1. For a target heading along the x-axis, the target's coordinates can be

written by the following matrices:
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Roll(x, θr) =


1 0 0 0

0 cos θr − sin θr 0

0 sin θr cos θr 0

0 0 0 1

 (3.7)

Pitch(y, θp) =


cos θp 0 sin θp 0

0 1 0 0

− sin θp 0 cos θp 0

0 0 0 1

 (3.8)

Y aw(z, θy) =


cos θy − sin θy 0 0

sin θy cos θy 0 0

0 0 1 0

0 0 0 1

 (3.9)

Rot(θr, θp, θy) =


a11 a12 a13 0

a21 a22 a23 0

a31 a32 a33 0

0 0 0 1

 (3.10)

where:
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a11 = cos θp cos θy

a12 = − cos θp sin θy

a13 = sin θp

a21 = sin θr sin θp cos θy + cos θr sin θy

a22 = − sin θr sin θp sin θy + cos θr cos θy

a23 = − sin θr cos θp

a31 = − cos θr sin θp cos θy + sin θr sin θy

a32 = cos θr sin θp sin θy + sin θr cos θy

a33 = cos θr cos θp

(3.11)

Composite translational and rotational motion can be presented by the following matrix:

Trans(Tx, Ty, Tz Rot(θr, θp, θy) =


a11 a12 a13 Tx

a21 a22 a23 Ty

a31 a32 a33 Tz

0 0 0 1

 (3.12)

Thus, the coordinates of any manoeuvring target can be calculated by:


xt

yt

zt

1

 =


a11 a12 a13 Tx

a21 a22 a23 Ty

a31 a32 a33 Tz

0 0 0 1




x0

y0

z0

1

 (3.13)
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3.3 Design Approach

To simplify the design, some important assumptions are done before starting:

• All scatterers are assumed to have same radar cross section.

• No multiple scattering mechanisms are considered.

• Scatterers do not shadow each other.

• Location of scatterers change only from one burst to another.

• The coordinate axes of the radar and the target are aligned.

• Translational motion is compensated.

After the assumptions are done, the following steps are followed in the simulation:

• Radar parameters are selected, locations of radar scatterers are de�ned.

• Doppler velocity for each scatterer at each burst is determined.

� Initial center to radar, scatterer to center and scatterer to radar vectors are cal-

culated.

� Initial yaw, pitch, roll angles are calculated using the vectors calculated in the

previous step.

� Change of angles for each burst for each scatterer are calculated according to

rotation rates.

� New position of each scatterer is calculated for each burst according to equation

3.13.

� Doppler velocities are calculated using the velocity and position information of

individual scatterer positions, thus target returns for each scatterer for each burst

are calculated.

• In-phase and quadrature-phase components are calculated, these components are pro-

cessed using IFFT.

• Doppler pro�le is generated using FFT.

• Range-Doppler image is created.
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3.4 Target Model

A jet �ghter aircraft like an F-16 is tried to be simulated. Thus, the length and wingspan

of the aircraft are chosen as 15 m and 12 m respectively. The aircraft is modeled with 22

scatterer points. The 2D and 3D positions of scatterers are shown in Figure 3.2. Point

scatterer model is chosen since:

• It is simple to implement

• Image formation algorithms are easily compared.

• Target's motion is easy to simulate and e�ect of rotational motions are clearly observed.

Figure 3.2: Target image and the position of scatterers

3.5 Radar Parameters

A range resolution of 0.3 m and a cross-range resolution of 0.1 m is wanted to be achieved.

No range ambiguity is wanted. So using the equations de�ned in section 2.3.4, the following

radar parameters are selected and calculated:

• Carrier frequency: 9 GHz

• Pulse repetition frequency: 15 kHz

• Stepped frequency step size: 8 MHz
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• Number of stepped frequency steps: 64

• Number of burst for ISAR processing: 512

• E�ective bandwidth: 512 MHz

• Total observation time: 2.18 s

• Range resolution: 0.29 m

• Cross-range resolution (for w=0.2 rad/s): 0.095 m

3.6 Simulation Results for Various Scenarios

Di�erent manoeuvres are simulated in the following three scenarios. All the motions and

rotation rates de�ned are within the limits of a �ghter aircraft. Since none of the rotational

motion compensation algorithms is not applied, all the obtained images are blurred due to

fast rotation and relatively long observation time (see Figure 3.3, Figure 3.4, and Figure 3.5).

It is impossible to resolve the scattering points. It should be noted that the distortion

is caused only by rotational motion since translational motion is assumed to be perfectly

compensated. The causes of the distortion will be further investigated in section 3.7 after

all the results are shown.

These scenarios will further be processed by time-frequency transforms, and higher res-

olution images will be tried to be formed in Chapter 5.

Scenario 1

The �rst scenario is the one that exhibits the simplest motion. The target is de�ned to have

only yaw motion similar to the ones in [3]. The yaw rate is de�ned as 0.15 rad/s. De�nition

of yaw, pitch and roll motions for our target model de�ned in Section 3.4 can be seen in

Figure 1.1. Simulated range-Doppler image is shown in Figure 3.3.

Scenario 2

The second scenario is more complex. The target is de�ned to have 0.1 rad/s yaw and 0.25

rad/s roll motions. Simulated range-Doppler image is shown in Figure 3.4.
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Figure 3.3: Scenario 1: Conventional ISAR Image

Figure 3.4: Scenario 2: Conventional ISAR Image
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Scenario 3

The third scenario is the most complex one. The target is de�ned to have 0.1 rad/s yaw, 0.1

rad/s pitch and 0.2 rad/s roll motions at the same time. Simulated range-Doppler image is

shown in Figure 3.5.

Figure 3.5: Scenario 3: Conventional ISAR Image

3.7 Distortion Produced by Rotational Motion

Cross-range resolution is achieved by Doppler gradient which is produced by target rotation.

However, the same rotation is also the cause of distortion. The velocity components of

target's individual back-scattering centers toward the radar are not constant since their

motion relative to target's rotational axis is circular. These back-scattering centers follow

curved paths. Thus, generating range pro�les by applying IFFT for each range cell results

in nonlinear phase slope which causes a distorted image [36].

The e�ect of nonlinear phase slope will be analyzed in terms quadratic-phase distortion

and distortion produced by cell migration [36]. Since the distortion is independent of the

method used for range pro�le generation, distortion will be analyzed in terms of real range

pro�les for simplicity.
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3.7.1 Quadratic-Phase Distortion

Assuming a single scatterer at radius r from the target's rotation axis, rotating with w rad/s

and the distance from radar to the rotation axis is R, range delay to the scatterer becomes:

τ(t) =
2R

c
− 2r

c
cos(wt− θ) (3.14)

Phase associated with τ(t) is:

φ(t) = −2πf0τ(t) = −2πf0{
2R

c
− 2r

c
cos(wt− θ)} (3.15)

The Doppler frequency shift produced is:

fd(t) =
1
2π

dφ(t)
dt

= −f0
2wr

c
sin(wt− θ) (3.16)

Assuming θ = 0, for small wt the phase response can be written as:

φ(t) ' −2πf0{
2R

c
− 2r

c
(1− (wt)2

2!
)}

φ(t) = −4πR

λ
+

4πr

λ
− 4π

λ

v2t2

2r

(3.17)

where v is the cross-range velocity. The �rst two terms represents the total phase advance

to the scatterer at t = 0 whereas the third term is the quadratic-phase term which produces

the distortion [36].
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3.7.2 Cell Migration

Cell migration is the movement of scatterers across range cells. It occurs when the scatterers

shift at least one resolution cell because of large data integration angle wT . The movement

across range cells can occur in both down-range and cross-range dimensions. Both migration

types blur the ISAR image.

For the same scatterer described in section 3.7.1, the down-range between the radar

and the scatterer is R − rcos(wt − θ). During target rotation, the change in down-range

is maximum at the cross-range extremes when θ = π/2. Thus the number of down-range

resolution cells that the scatterer will migrate during the observation time T is given as [36]:

Md = | 1
∆rd

{[R− r cos(wt− π

2
)]|t=0 − [R− r cos(wt− π

2
)]|t=T }|

Md = |r sin(wT )
∆rd

|
(3.18)

where ∆rd is the down-range resolution.

Similarly, during target rotation, the change in cross-range is maximum at the down-

range extremes when θ = 0/2. Thus the number of cross-range resolution cells that the

scatterer will migrate during the observation time T is given as [36]:

Mc = | 1
∆fd

(fd|t=0 − fd|t=T )| (3.19)

Using Equation (3.16), for Doppler resolution given by 1/T , we obtain:

Mc = |2f0rwT

c
sin(wT )| (3.20)
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CHAPTER 4

TIME-FREQUENCY TECHNIQUES IN

ISAR

4.1 Introduction

In this chapter, time-frequency image formation and various time-frequency transforms

(TFT) that will be compared are thoroughly explained. Before de�ning any time-frequency

transform, the Fourier transform S(w) of a signal must be de�ned. The Fourier transform

S(w) of a time signal s(t) is de�ned as:

S(w) =
∫ ∞

−∞
s(t) e−jwt dt (4.1)

The inverse Fourier transform is de�ned as:

s(t) =
1
2π

∫ ∞

−∞
S(w) e−jwt dw (4.2)

One of the most known and important property of the Fourier transform pair s(t) -

S(w) is the uncertainty principle whose importance will be discussed in Section 4.3.1 when

discussing short-time Fourier transform:

4t4w ≥
1
2

(4.3)
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where 4t is the time duration of s(t) and 4w is the frequency bandwidth of S(w).

Characterization of the time-varying frequency content of a signal is the basic idea of time-

frequency analysis. It is used when frequency content of the signal of interest change over

time and tracking this change is important. It has applications in acoustic analysis, radar

tracking, and speech processing. Using such an analysis in ISAR, highly improved cross-

range resolution, thus, high resolution images can be obtained. Time-frequency transforms

also allows the use of variable parameters that change according to the time and frequency,

in order to achieve the desired target resolution [21].

In ISAR, due to complex motion of the target, the Doppler frequency content obtained by

conventional Fourier transforms is time-varying. This leads the Doppler spectrum and image

to be smeared. The time-varying Doppler frequency shift can be treated as time-invariant in

each time slice by using the time-frequency transform; hence the image smearing e�ect will be

suppressed and high resolution images can be obtained. The Doppler frequency resolution,

which determines the cross-range resolution, is determined by the resolution of the selected

time-frequency transform technique. There are various time-frequency transforms such as

short-time Fourier transform (STFT) and wavelet transforms and bi-linear transforms such

as Wigner-Ville and Choi-Williams. Many of these techniques will be examined throughout

the thesis.

4.2 Time-Frequency Image Formation

Figure 4.2 and Figure 4.1 shows the basics of the target imaging using the time-frequency

analysis. The di�erence from the conventional radar imaging system is that the Fourier

transform is replaced by the time-frequency transform and time sampling. The Fourier-

based system generates only one image frame from an M x N I and Q data where the radar

transmits a sequence of N pulses and the total number of range cells is M . However, time-

frequency based system generates N x N time-Doppler distribution for each time history

series by taking the time-frequency transform of each one. Combining the M time-Doppler

distributions at M range cells we end up with the N x M x N time-range-Doppler cube

Q(rm, fn, tn). It can be de�ned as:

Q(rm, fn, tn) = TFTn{G(rm,n)} (4.4)
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where G(rm,n) is the range pro�les with M time history series which are N pulses long and

TFTn denotes the Time-frequency operation which calculates the instantaneous Doppler

frequency shift.

Figure 4.1: Obtaining the time-range-Doppler cube by time-frequency based image formation

[11]

Figure 4.2: Time-sampling in time-frequency based image formation [9]

At a sampling time, ti, only one range-Doppler image Q(rm, fn) can be extracted from

the cube Q(rm, fn, tn) which is the sum of N full range-Doppler images at particular time

instants. Thus, by applying time-sampling we obtain a time sequence of 2D range-Doppler

images. Each time sampled frame corresponds to a clear image of the target. The only

advantage is not obtaining clear images with superior resolution, we can observe the time-

varying properties of the target as well [21], [7].
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To apply time-frequency techniques two di�erent simulated data that are both provided

by Victor C. Chen [3] are used. These are respectively:

• Simulated Mig-25 data: The stepped-frequency radar operates at 9GHz and has a

bandwidth of 512MHz. For each pulse, 64 complex range samples were saved ( 64

pulses). 512 burst of pulses are used. The pulse repetition frequency is 15KHz. Basic

motion compensation processing without polar reformation has been applied to the

data without pulse compression. [3].

• Simulated Boeing-727 data: The stepped-frequency radar operates at 9GHz and has

a bandwidth of 150 MHz. For each pulse, 64 complex range samples were saved. 256

burst of pulses are used. The pulse repetition frequency is 20KHz. Motion compensa-

tion and range processing have been applied to the data [3].

The images reconstructed by conventional Fast Fourier Transform (FFT) technique are

shown in Figure 4.3. These images can be compared with the images reconstructed by various

time-frequency transforms that will be introduced in the following sections. The discussions

about the obtained images will be made in Section 5.5 together with the other simulation

results in Chapter 5.

Figure 4.3: Original ISAR image created by regular FFT approach

4.3 Linear Time-Frequency Transforms

Linearity is one of the most desirable property in any application involving multicomponent

signals such as speech and radar signals:
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s(t) = c1s1(t) + c2s2(t) ⇒ Tx(t, f) = c1Tx1(t, f) + c2Tx2(t, f) (4.5)

where s1(t) and s2(t) are two di�erent signals and Tx1(t, f) and Tx2(t, f) represent the

time-frequency transform of the signals.

Some of the linear time-frequency transforms are short-time Fourier transform (STFT),

continuous wavelet transform (CWT) and the adaptive time-frequency transforms. Since it

is the most known, only STFT will be discussed in this chapter.

4.3.1 Short-Time Fourier Transform

Short-time Fourier transform is one of the most known time-frequency transforms. A moving

window Fourier transform is the basic idea behind STFT [21]. Time localization of frequency

components of the a signal can be obtained by suitably pre-windowing the signal s(t):

STFT (t, w) =
∫

s(t
′
) w(t− t

′
) e−jwt

′
dt

′
(4.6)

The function w(t) is named the window function since usually it has a short time duration.

By moving w(t) and repeating the same process in Equation (4.6), we can roughly observe

the signal's frequency contents change over time.

STFT indicates a signal's behaviour in the vicinity of [t−4t, t+4t]x[w−4w, w +4w].

4t and 4w are desired to be as narrow as possible in order to better measure a signal at

a particular time and frequency. Unfortunately the selections of 4t and 4w are related via

Fourier transform (see Equation 4.1) and limited by the uncertainty principle (see Equation

4.3). Thus STFT has limited time-frequency resolution which is determined by the size of

the window used. The uncertainty principle prohibits using arbitrarily small duration and

arbitrarily small bandwidth windows. A fundamental resolution trade-o� exists: a smaller

window has a higher time resolution but a lower frequency resolution whereas a larger window

has higher frequency resolution but a lower time resolution [32].

Images of simulated MIG-25 and Boeing-727 reconstructed by STFT using M/4 and M/32

length hamming windows are shown in Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7,
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respectively (M is the total number of bursts of pulses which is 512 for MIG-25 and 256 for

Boeing 727 data):

Figure 4.4: Images of simulated MIG-25 reconstructed by STFT using M/4 length windows.

Figure 4.5: Images of simulated MIG-25 reconstructed by STFT using M/32 length windows.

4.4 Bi-linear Time-Frequency Transforms

Power spectrum of a signal s(t), which is the magnitude square of its Fourier transform,

|S(W )|, characterizes the signal's energy distribution in the frequency domain:
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Figure 4.6: Images of simulated Boeing-727 reconstructed by STFT using M/4 length win-

dows.

Figure 4.7: Images of simulated Boeing-727 reconstructed by STFT using M/32 length

windows.

P (t, w) = |S(W )|2 =
∫ ∞

−∞
R(τ) e−jwτ dτ (4.7)

where the auto-correlation function is given by:

R(τ) = s(t) s∗(t− τ) dt (4.8)

Based on Equation (4.7) it is not possible to tell whether or not the signal's power
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spectrum changes over time. Thus, the standard power spectrum is insu�cient to represent

signals whose frequency content change over time. To depict a time-dependent spectrum

and to achieve high resolution in both time and frequency domains, a time dependent auto-

correlation function R(t, τ) can be used. The Fourier transform of a time dependent auto-

correlation function R(t, τ) gives us the time-dependent power spectrum of the signal s(t):

P (t, w) =
∫ ∞

−∞
R(t, τ) e−jwτ dτ (4.9)

The power spectrum is the quadratic function of frequencies. The linearity of the STFT

can not be applied to the quadratic signals. The power spectrum of the sum of two signals

s1(t)+s2(t) is not simply the sum of the individual power spectrum P1(t, w)+P2(t, w). The

quadratic superposition principle is given for any time frequency distribution (TFD) as:

s(t) = c1s1(t) + c2s2(t) ⇒

Ts(t, f) = |c1|2Ts1(t, f) + |c2|2Ts2(t, f) + c1c
∗
2Ts1s2(t, f) + c2c

∗
1Ts2s1(t, f)

(4.10)

where Tx1x2(t, f) and Tx2x1(t, f) are the cross-terms of the signals s1(t) and s2(t).

We can generalize the quadratic superposition principle to an N-component signal:

s(t) =
N∑

i=1

cisi(t) (4.11)

such that there corresponds an auto-term |ci|2Tsi(t, f) for each signal component cisi(t) and

there corresponds a cross-term (interference term) cic
∗
jTsisj (t, f) + cjc

∗
i Tsjxi(t, f) for each

pair of signal components cisi(t) and cjsj(t).

It should be noted that the number of cross-terms grows quadratically as the number of

signal components increase since for an N-component signal there exists N auto-terms and

N(N − 1)/2 cross-terms [19].

Throughout this chapter many quadratic (bi-linear) distributions will be discussed, start-

ing with the most known, which is Wigner-Ville distribution:
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4.4.1 Wigner-Ville Distribution

The �rst developed so that the most signi�cant of the bi-linear time-frequency transforms

is the Wigner-Ville Distribution (WVD). It is originally developed in the area of quantum

mechanics by Wigner in 1932 and introduced for signal analysis by a French scientist Ville

in 1947 [21].

In the WVD, the time-dependent auto-correlation function is chosen to be:

R(t, τ) = s(t +
τ

2
) s∗(t− τ

2
) (4.12)

Substituting Equation (4.12) into Equation (4.9), we obtain the WVD as:

WV D(t, w) =
∫

s(t +
τ

2
) s∗(t− τ

2
) e−jwτ dτ (4.13)

Unlike the STFT there is no time-limited window in WVD. It provides both higher

time and frequency resolution compared to STFT. However, when the signal contains more

than one component, the WVD generates cross-term interference terms between each pair of

signal components. The cross-terms generated are highly oscillatory and have limited energy.

Although these terms have limited contribution to signal energy, they usually degrade the

time-frequency spectrum's useful range [9].

ISAR images of simulated MIG-25 and simulated Boeing-727 reconstructed using Wigner-

Ville distribution are shown in Figure 4.8 and Figure 4.9, respectively:

Figure 4.8: Images of simulated MIG-25 reconstructed using Wigner-Ville distribution
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Figure 4.9: Images of simulated Boeing-727 reconstructed using Wigner-Ville distribution

To reduce the cross-term interference, the 2D �ltered (a unique kernel function) WVD

can be used. Thus, cross-term interference can be reduced signi�cantly while time-frequency

resolution is slightly reduced.

Leon Cohen showed that all existing time-frequency distributions could be written in a

generalized form [14] and new time-frequency transforms can be derived using this form [15].

This class of transforms are known as Cohen's class. The generalized form is de�ned as:

C(t, w) =
∫ ∫

s (u +
τ

2
) s∗ (u− τ

2
) φ(t− u, τ) e−jwτ du dτ (4.14)

where the Fourier transform of φ(t, τ) gives us the kernel function Φ(θ, τ). If we choose the

kernel function as Φ(θ, τ) = 1, then φ(t, τ) = δ(t) thus giving us the WVD. As seen WVD

is a member of Cohen's class.

There are many other time-frequency distributions in Cohen's class each with a unique,

signal independent kernel function. Pseudo Wigner-Wille (PWV), smoothed pseudo Wigner-

Ville (SPWV), Choi-Williams (CW), Zhao-Atlas-Marks (ZAM), Born-Jordan, Butterworth,

Cone-kernel, Generalized exponential, Levin, Page, Rihaczek are some of the distributions

that are considered to be members of Cohen's class [19].

4.4.2 Pseudo Wigner-Ville Distribution

The PWVD is one of Cohen's class distribution as the other distributions that will be

discussed further. PWVD has reduced cross-term interference. It has the advantage over

the spectrogram of instantaneous temporal response, but it still produces some interfering
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cross-terms when used in multicomponent signal analysis. PWVD is mathematically de�ned

as:

PWV D(t, u) =
∫

h(τ) s(t +
τ

2
) s∗(t− τ

2
) e−j2πuτ dτ (4.15)

where h is the frequency smoothing window.

ISAR images of simulated MIG-25 and simulated Boeing-727 reconstructed using pseudo

Wigner-Ville distribution are shown in Figure 4.10 and Figure 4.11, respectively:

Figure 4.10: Images of simulated MIG-25 reconstructed using pseudo Wigner-Ville distribu-

tion

Figure 4.11: Images of simulated Boeing-727 reconstructed using pseudo Wigner-Ville dis-

tribution
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4.4.3 Smoothed Pseudo Wigner-Ville Distribution

The SPWVD has a Gaussian smoothed window, it suppresses cross-terms in WVD, but the

resolution is also reduced. Most of the images from the SPWVD have higher resolution

than those produced by the STFT using the same data. Smoothing the WVD, cross-term

interference can highly be reduced but some phase information is lost.The distribution can

be written in the following form [32]:

SPWV D(t, v, ; g, h) =
∫

h(τ)
∫

g(s− t) x(s +
τ

2
) x∗(s− τ

2
) e−j2πvτ dτ (4.16)

where h is the frequency smoothing window where as g is the time smoothing window.

ISAR images of simulated MIG-25 and simulated Boeing-727 reconstructed using smoothed

pseudo Wigner-Ville distribution are shown in Figure 4.12 and Figure 4.13, respectively:

Figure 4.12: Images of simulated MIG-25 reconstructed using smoothed pseudo Wigner-Ville

distribution

4.4.4 Choi-Williams Distribution

The Choi-Williams distribution is a smoothed version of WVD with a de�ned kernel [13]. It

is a shift-invariant transform. The kernel function is de�ned as:

Φ(θ, τ) = e−α(θτ)2 (4.17)
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Figure 4.13: Images of simulated Boeing-727 reconstructed using smoothed pseudo Wigner-

Ville distribution

The inverse Fourier transform of this exponential kernel is:

φ(t, τ) =
1√

4πατ2
e−

1
4ατ2 t2 (4.18)

Thus using Equation (4.14) and Equation (4.18):

CWDx(t, v) =
∫ ∫

1√
4πατ2

e−
(t−u)2

4ατ2 s(u +
τ

2
)s∗(u− τ

2
)e−jvτ du dτ (4.19)

The corresponding kernel function is a low-pass �lter in the ξ − τ plane. The smoothing

is controlled by the constant σ. The larger the σ is, the more the more cross-terms are

suppressed but it also means the more the auto-terms are a�ected. Therefore, a trade-o�

for the selection of the parameter σ exists. It can be also noted that, the CWD will simply

converge to WVD as σ →∞ and kernel goes to 1.

The exponential kernel preserves all cross-terms that are in the θ − τ plane while it

suppresses the portion that is away from the origin. As a result, the CWD usually contains

strong horizontal and vertical ripples. This ripples are caused by the auto-terms that have

the same frequency center and the same time center [2], [28].

ISAR images of simulated MIG-25 and simulated Boeing-727 reconstructed using Choi-

Williams distribution are shown in Figure 4.14 and Figure 4.15, respectively:
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Figure 4.14: Images of simulated MIG-25 reconstructed using Choi-Williams distribution

Figure 4.15: Images of simulated Boeing-727 reconstructed using Choi-Williams distribution

4.4.5 Born-Jordan Distribution

Born-Jordan distribution is a shift invariant, kernel smoothed version of WVD. The distri-

bution performs well for signals with constant frequency whereas it does not performs as

well for signal with frequency modulation [32]. The kernel function is de�ned as:

Φ(θ, τ) =
sin(πθτ)

πθτ
(4.20)

Thus, the BJD is:

BJx(t, v) =
∫ ∞

−∞

1
|τ |

∫ t+|τ |/2

t+|τ |/2
x(s +

τ

2
) x∗ (s− τ

2
) ds e−j2πvτ ds dτ (4.21)
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ISAR images of simulated MIG-25 and simulated Boeing-727 reconstructed using Born-

Jordan distribution are shown in Figure 4.16 and Figure 4.17, respectively:

Figure 4.16: Images of simulated MIG-25 reconstructed using Born-Jordan distribution

Figure 4.17: Images of simulated Boeing-727 reconstructed using Born-Jordan distribution

4.4.6 Zhao-Atlas-Marks Distribution

The Zhao-Atlas-Marks distribution is a widely used distribution. It is also called cone-shaped

distribution (CSD) because of the de�nition of a cone-shaped φ(t, τ):
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φ(t, τ) =
g(τ) |τ | ≥ 2|t|

0 otherwise
(4.22)

If

g(τ) =
1
τ
e−ατ2

(4.23)

Then the kernel function becomes:

Φ(θ, τ) =
sin(θτ/2)

θτ/2
e−ατ2

(4.24)

Thus using Equation (4.14), the distribution becomes [37]:

ZAMx(t, v) =
∫ ∞

−∞
{g(τ)

∫ t+|τ |/2

t+|τ |/2
x(s +

τ

2
) x∗ (s− τ

2
) ds}e−j2πvτ dτ (4.25)

The suppression degree is controlled by the parameter α. A large α suppresses the

cross-terms more at the expense of more disturbed auto-terms [28].

Unlike the exponential kernel function used is CWD (4.18), the cone-shaped kernel can

suppress the cross-terms created by the auto-terms that have the same frequency center.

Therefore cross-term interference is signi�cantly reduced in CSD compared to CWD [28].

ISAR images of simulated MIG-25 and simulated Boeing-727 reconstructed using Zhao-

Atlas-Marks distribution are shown in Figure 4.18 and Figure 4.19, respectively:
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Figure 4.18: Images of simulated MIG-25 reconstructed using Zhao-Atlas-Marks distribution

Figure 4.19: Images of simulated Boeing-727 reconstructed using Zhao-Atlas-Marks distri-

bution
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CHAPTER 5

PERFORMANCE ANALYSIS OF

TIME-FREQUENCY TRANSFORMS FOR

VARIOUS COMPLEX MANOEUVRING

TARGET SCENARIOS

5.1 Introduction

In this chapter, all the time-frequency transforms introduced in Chapter 4 are applied and

compared for three di�erent scenarios. The stepped-frequency ISAR simulation is described

in sections 3.3 and 3.5. The target model is de�ned in 3.4 and the scenarios are de�ned in 3.6.

Since the same scenarios are used, the performance comparison of time-frequency transforms

with conventional Fourier transform can also be done. The discussion on performances of

the transforms is done in section 5.5 after all the results are shown.

5.2 Scenario 1: Target with Yaw Motion

Conventional Fourier Transform

The image reconstructed by conventional method that uses Fourier transform is shown in

Figure 3.3

Short-Time Fourier Transform

The images reconstructed by STFT using M/4 and M/32 length Hamming windows are

shown in Figure 5.1 and Figure 5.2 respectively. Note that M is the total number of bursts

of pulses which is 512 in our simulation.
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Figure 5.1: Scenario 1: Images reconstructed by STFT using M/4 length windows.

Figure 5.2: Scenario 1: Images reconstructed by STFT using M/32 length windows.

Wigner-Ville Distribution

Images reconstructed using Wigner-Ville distribution are shown in Figure 5.3.

Pseudo Wigner-Ville Distribution

Images reconstructed using pseudo Wigner-Ville distribution are shown in Figure 5.4.

Smoothed Pseudo Wigner-Ville Distribution

Images reconstructed using smoothed pseudo Wigner-Ville distribution are shown in Fig-

ure 5.5.

Choi-Williams Distribution

Images reconstructed using Choi-Williams distribution are shown in Figure 5.6.
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Figure 5.3: Scenario 1: Images reconstructed using Wigner-Ville distribution

Figure 5.4: Scenario 1: Images reconstructed using pseudo Wigner-Ville distribution

Figure 5.5: Scenario 1: Images reconstructed using smoothed pseudo Wigner-Ville distribu-

tion
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Figure 5.6: Scenario 1: Images reconstructed using Choi-Williams distribution

Born-Jordan Distribution

Images reconstructed using Born-Jordan distribution are shown in Figure 5.7.

Figure 5.7: Scenario 1: Images reconstructed using Born-Jordan distribution

Zhao-Atlas-Marks Distribution

Images reconstructed using Zhao-Atlas-Marks distribution are shown in Figure 5.8.

44



Figure 5.8: Scenario 1: Images reconstructed using Zhao-Atlas-Marks distribution

5.3 Scenario 2: Target with Yaw and Roll Motions

Conventional Fourier Transform

The image reconstructed by conventional method that uses Fourier transform is shown in

Figure 3.4

Short-Time Fourier Transform

The images reconstructed by STFT using M/4 and M/32 length Hamming windows are

shown in Figure 5.9, Figure 5.10 respectively. Note that M is the total number of bursts of

pulses which is 512 in our simulation.

Wigner-Ville Distribution

Images reconstructed using Wigner-Ville distribution are shown in Figure 5.11.
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Figure 5.9: Scenario 2: Images reconstructed by STFT using M/4 length windows.

Figure 5.10: Scenario 2: Images reconstructed by STFT using M/32 length windows.

Figure 5.11: Scenario 2: Images reconstructed using Wigner-Ville distribution

Pseudo Wigner-Ville Distribution

Images reconstructed using pseudo Wigner-Ville distribution are shown in Figure 5.12.
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Figure 5.12: Scenario 2: Images reconstructed using pseudo Wigner-Ville distribution

Smoothed Pseudo Wigner-Ville Distribution

Images reconstructed using smoothed pseudo Wigner-Ville distribution are shown in Fig-

ure 5.13.

Figure 5.13: Scenario 2: Images reconstructed using smoothed pseudo Wigner-Ville distri-

bution

Choi-Williams Distribution

Images reconstructed using Choi-Williams distribution are shown in Figure 5.14.
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Figure 5.14: Scenario 2: Images reconstructed using Choi-Williams distribution

Born-Jordan Distribution

Images reconstructed using Born-Jordan distribution are shown in Figure 5.15.

Figure 5.15: Scenario 2: Images reconstructed using Born-Jordan distribution

Zhao-Atlas-Marks Distribution

Images reconstructed using Zhao-Atlas-Marks distribution are shown in Figure 5.16.
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Figure 5.16: Scenario 2: Images reconstructed using Zhao-Atlas-Marks distribution

5.4 Scenario 3: Target with Yaw, Pitch and Roll Motions

Conventional Fourier Transform

The image reconstructed by conventional method that uses Fourier transform is shown in

Figure 3.5

Short-Time Fourier Transform

The images reconstructed by STFT using M/4 and M/32 length Hamming windows are

shown in Figure 5.17, Figure 5.18 respectively. Note that M is the total number of bursts of

pulses which is 512 in our simulation.

Wigner-Ville Distribution

Images reconstructed using Wigner-Ville distribution are shown in Figure 5.19.
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Figure 5.17: Scenario 3: Images reconstructed by STFT using M/4 length windows.

Figure 5.18: Scenario 3: Images reconstructed by STFT using M/32 length windows.

Figure 5.19: Scenario 3: Images reconstructed using Wigner-Ville distribution
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Pseudo Wigner-Ville Distribution

Images reconstructed using pseudo Wigner-Ville distribution are shown in Figure 5.20.

Figure 5.20: Scenario 3: Images reconstructed using pseudo Wigner-Ville distribution

Smoothed Pseudo Wigner-Ville Distribution

Images reconstructed using smoothed pseudo Wigner-Ville distribution are shown in Fig-

ure 5.21.

Figure 5.21: Scenario 3: Images reconstructed using smoothed pseudo Wigner-Ville distri-

bution
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Choi-Williams Distribution

Images reconstructed using Choi-Williams distribution are shown in Figure 5.22.

Figure 5.22: Scenario 3: Images reconstructed using Choi-Williams distribution

Born-Jordan Distribution

Images reconstructed using Born-Jordan distribution are shown in Figure 5.23.

Figure 5.23: Scenario 3: Images reconstructed using Born-Jordan distribution
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Zhao-Atlas-Marks Distribution

Images reconstructed using Zhao-Atlas-Marks distribution are shown in Figure 5.24.

Figure 5.24: Scenario 3: Images reconstructed using Zhao-Atlas-Marks distribution
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5.5 Performance Analysis

During this thesis, 5 di�erent simulations are analyzed for various ISAR techniques and

obtained reasonable results. Even for the most complex manoeuvring scenario the relative

performance of distributions were similar. The best and worst performing distributions were

same for all simulations, so that the results were consistent.

It should be noted that the there is no performance parameter for comparing the images.

However, to be able to observe the scatterers movements and to be able to resolve scatterers

from each other is a reasonable performance criteria.

Firstly, it can be clearly observed that even the most basic time-frequency (TF) tech-

niques produce clearer images than conventional Fourier based technique and most of the

bi-linear TF transforms performs better than linear TF transforms. It is observed that by se-

lecting proper window size for STFT the images produced for some time instants are clearer

than the images obtained by Wigner-Ville and pseudo Wigner-Ville distributions. That is be-

cause with larger window good frequency resolution is obtained but then the time-resolution

degrades. As seen from the results if small windows are used to achieve time-resolution,

the images degrades signi�cantly and even Wigner-Ville distribution becomes much more

successful.

Cross-term interference problem explained in Section 4.4 and shown in Equation (4.10)

is the key factor that e�ects the performance of TF distributions. The most successfully dis-

tribution is the one to suppress the cross-terms most while keeping the auto-terms disturbed

least. Since Wigner-Ville is the one that produces the most cross-term interference terms, it

performs the worst among all the bi-linear transforms. The other distributions uses unique

smoothed kernels to reduce these cross-terms so that they perform much better compared

to Wigner-Ville.

The best performing distributions are Zhao-Atlas-Marks (ZAM) and smoothed pseudo

Wigner-Ville (SPWV) distributions for all the 5 simulations. Choi-Williams can also be

considered to perform as well but it is observed that as the manoeuvres of the targets

gets more complex this distribution fails to suppress the cross-terms (see Figure 5.14 and

Figure 5.22) and fails to perform as well as ZAM and SPWV. The ripples explained in

subsection 4.4.4 can be clearly seen for Choi-Williams as well as Born-Jordan distributions. It

is very reasonable for ZAM and SPWV to perform better compared to others since ZAM is the

smoothed version of Born-Jordan distribution along frequency axis and SPWV consists both

frequency and time smoothed windows so that these two distributions suppresses the cross-
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terms most and becomes the most successful out of all the distributions that are examined.

In fact, theoretically, if perfect motion compensation, re-sampling and polar formatting

was applied to all the individual scatterers, the image obtained by conventional Fourier

transform would achieve the best result since the scatterers would remain in their range cells

during the observation time and the Doppler spectrum would be invariant. However, the

time-frequency transforms are chosen to be applied since they have the following advantages

over conventional Fourier transform [4]:

• There is no restriction for the individual scatterers to stay in their range cells during

the observation time.

• Standard global motion compensation is necessary. There is no need for complicated

motion compensation algorithms for individual scatterers.

• The time-frequency transforms can be applied to deblur the image which is still blurred

even after complex motion compensation algorithms applied.

• Computational complexity is less.

• Time-varying behaviour of the target can be observed.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Inverse Synthetic Aperture Radar is an imaging radar that uses targets rotational motion and

performs range-Doppler processing to produce range-Doppler images. In the conventional

ISAR system, Fourier transform is used to retrieve Doppler information. However, Fourier

transforms are adequate only when the Doppler spectrum of the radar phase history is

stationary during the entire observation time. Due the target irregular translational and

rotational motion, the Doppler frequencies change over time which results a smeared Doppler

spectrum and a blurred image. With the conventional Fourier technique complex motion

compensation algorithms such as polar reformatting must be applied to produce clear images.

However, resulting ISAR images can be signi�cantly improved by using joint time-frequency

transform instead of Fourier transform since this transform can resolve instantaneous Doppler

frequencies.

Throughout this thesis, an ISAR simulation in which a target exhibiting yaw, pitch and

roll motions (separately or at the same time) is implemented to see the performance of

the time-frequency distributions not only for simple rotating targets but also for complex

manoeuvring targets. Time-frequency transforms including short-time Fourier transform,

Wigner-Ville, pseudo Wigner-Ville, smoothed pseudo Wigner-Ville, Choi-Williams, Born-

Jordan and Zhao-Atlas-Marks distributions are examined and compared for both the im-

plemented simulation scenarios but also for the obtained simulated data [3]. As expected,

TFT based image formation performed much better than the conventional Fourier based

image formation and bi-linear transforms performed better than the linear transforms. Bi-

linear transforms performed better since higher resolutions are achieved both in time and

frequency whereas only either one can be achieved in STFT because of uncertainty princi-

ple associated with Fourier transform. It is also observed that since the processed signals

are multi-component signals and bi-linear time-frequency transforms are quadratic by na-
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ture, there corresponds a problem de�ned as cross-term interference and the performance

of time-frequency distributions is directly related to the ability of that transform to sup-

press the cross-term interference. Thus, best results are obtained by the smoothed pseudo

Wigner-Ville and Zhao-Atlas-Mark distributions which can suppress the cross-terms most.

This study showed that time-frequency transforms are the most adequate transforms

for imaging even complex manoeuvring targets in ISAR and they have superior resolutions

both in time and frequency. TFTs are observed to be excellent for analyzing non-stationary

signals. Since the main problem in conventional ISAR is the non-stationary, time-varying

Doppler spectrum obtained by Fourier transform, time-frequency transforms are observed

to be perfect for ISAR. They are superior to conventional Fourier transform so that high

resolution images can be obtained. It is also observed that, no matter how complex the target

manoeuvres, smoothed pseudo Wigner-Ville and Zhao-Atlas-Mark distributions achieve the

highest resolution and the best image.

The implemented simulation is an important step in designing a more realistic simulation

since not only two-dimensional rotation but also three-dimensional rotation of a target is

implemented. This simulation can be further developed to simulate more realistic targets by

considering the multiple scattering mechanisms, shadowing e�ects of scatterers to each others

and also considering the other assumptions that are made. With the enhanced simulation,

more realistic analysis of various ISAR image formation techniques including the ones used

in this thesis can be done.
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