
 
 

MODELING PART DYNAMICS IN MACHINING PROCESSES 
CONSIDERING MATERIAL REMOVAL 

 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 

BY 
 
 
 
 
 

SİBEL ATLAR 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

MECHANICAL ENGINEERING 
 
 
 
 
 
 

DECEMBER 2007 
 
 



 
Approval of the thesis: 

 

MODELING PART DYNAMICS IN MACHINING PROCESSES 

CONSIDERING MATERIAL REMOVAL 

 

 

submitted by SİBEL ATLAR in partial fulfillment of the requirements for the 
degree of Master of Science in Mechanical Engineering Department, Middle 
East Technical University by, 
 
 
Prof. Dr. Canan Özgen                                                                                ________ 
Dean, Graduate School of Natural and Applied Sciences 
 
Prof. Dr. Kemal İder                                                                                    ________ 
Head of Department, Mechanical Engineering 
 
Prof. Dr. H. Nevzat Özgüven                                                                      ________ 
Supervisor, Mechanical Engineering Dept., METU                                 
  
Assoc. Prof. Dr. Erhan Budak                                                                     ________ 
Co-Supervisor, Faculty of Engineering and Natural Sciences, SU             
 
 
 
Examining Committee Members: 

 

Prof. Dr. Mehmet Çalışkan                                               _____________________ 
Mechanical Engineering Dept., METU 
 
Prof. Dr. H. Nevzat Özgüven                                            _____________________ 
Mechanical Engineering Dept., METU 
 
Assoc. Prof. Dr. Erhan Budak                                           _____________________ 
Faculty of Engineering and Natural Sciences , SU 
 
Asst. Prof. Dr. Yiğit Yazıcıoğlu                                        _____________________ 
Mechanical Engineering Dept., METU 
 
Prof. Dr. Yavuz Yaman                                                     _____________________ 
Aerospace Engineering Dept., METU 
 

                                                     Date:  24/12/2007 

 



   
 iii

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also 
declare that, as required by these rules and conduct, I have fully cited and 
referenced all material and results that are not original to this work. 
 
 
 
     Name, Last Name: Sibel Atlar 
  

Signature              : 



   
 iv 

 
 

ABSTRACT 
 

 

 
MODELING PART DYNAMICS IN MACHINING PROCESSES 

CONSIDERING MATERIAL REMOVAL 

 

 

Atlar, Sibel 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat Özgüven 

Co-Supervisor: Assoc. Prof. Dr. Erhan Budak 

 

 

December 2007, 129 Pages 

 
 

Self-excited chatter vibration in machining is one of the most important limitations 

on utilizing the increasing productivity of modern machine tools. In order to 

predict stable depth of cuts at high cutting speeds, the stability lobe diagram for a 

spindle-tool holder-tool combination must be developed. The frequency response 

function (FRF) of the system must be known for analytical prediction of the 

stability lobe diagrams. When the flexibility of the workpiece is important, the 

workpiece itself should be included in the system model by considering the 

variation of its dynamics at different stages of the machining process. 

 

In this thesis, an exact structural modification method is used to find the frequency 

response functions of the workpiece to be machined at every stage of the 

machining process. In order to obtain the system matrices and the modal 

parameters of the original structure, a commercial finite element program MSC. 

Marc© is used. The frequency response functions of workpiece are calculated by 
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using the computer program developed in this thesis, and are compared with the 

ones found by MSC. Marc©. The stability lobe diagram of the system is obtained 

by combining the FRFs of the tool with those of the workpiece. The effects of the 

dynamic of the workpiece on the stability lobe diagrams are studied extensively by 

using the results of case studies presented in this thesis. In order to increase 

productivity, minimum chatter-free machining times are also calculated for 

different cases. For this purpose the effects of the different radial depth of cuts and 

different cutting strategies on the stability and the machining time are examined 

with various case studies.   

 

Keywords: Chatter Vibrations, Chatter Stability, Structural Dynamics, Structural 

Modification. 
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ÖZ 

 
 

 

TALAŞLI İMALATTA TALAŞ KALDIRMAYI DİKKATE ALAN PARÇA 

DİNAMİĞİ MODELLENMESİ 

 

 

Atlar, Sibel 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. H. Nevzat Özgüven 

Ortak Tez Yöneticisi: Doç. Dr. Erhan Budak 

 

 

Aralık 2007, 129 Sayfa 

 
 

Gelişen takım tezgahlarının artan kapasitesini verimli kullanma yolunda en büyük 

engellerden birisi, metal kesme sürecinde ortaya çıkan ve “tırlama” adı verilen 

kendinden kaynaklı titreşimlerdir. Bir kesici takım için kararlı ve derin kesme 

sağlayacak en yüksek hızları hesaplayabilmek için iş mili - takım tutucu - takım 

kombinasyonunun kararlılık diyagramı elde edilmelidir. Kararlılık diyagramlarını 

analitik olarak elde etmek için ise sistemin frekans tepki fonksiyonunun bilinmesi 

gerekmektedir. İşlenen parçanın esnekliğinin önemli olduğu durumlarda, kesme 

sürecinin farklı aşamalarında parça dinamiği özelliklerinin değiştiği düşünülüp, iş 

parçası da sisteme dahil edilmelidir. 

 

Bu tezde, iş parçasının işleme sürecinin her aşamasındaki frekans tepki 

fonksiyonlarını bulmak için yapısal değişiklik yöntemi kullanılmıştır. Esas yapının 

sistem matrisleri ile titreşim biçim parametrelerini elde edebilmek için sonlu 

elemanlar analiz programı MSC. Marc© kullanılmıştır. İş parçasının bu tez 
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çalışmasında geliştirilen program ile bulunan frekans tepki fonksiyonları, MSC. 

Marc© ile bulunan değerlerle karşılaştırılmıştır. Sistemin kararlılık diyagramları, 

iş parçasının ve kesici takımın frekans tepki fonksiyonlarının birleştirilmesiyle 

bulunmuştur. İş parçası dinamiğinin kararlılık diyagramlarına etkisi, bu tez 

çalışmasında yapılan örnek çalışmalarla kapsamlı şekilde incelenmiştir. Ayrıca 

üretim kapasitesini arttırmak için tırlamasız en kısa üretim zamanları değişik 

durumlar için hesaplanmıştır. Bu amaçla değişik radyal kesme derinlikleri ve 

kesme stratejilerinin kesme kararlılığı ve üretim zamanına etkileri çeşitli örnek 

çalışmalarla incelenmiştir.   

 

Anahtar Kelimeler: Tırlama Titreşimleri, Tırlama Kararlılığı, Yapı Dinamiği, 

Yapısal Değişiklik. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 General 
 
 
Self-excited vibration which is called “chatter” is one of the most common 

problems in machining. Chatter vibrations results in  

 

- poor surface finish,  

- dimensional inaccuracy in machined parts,  

- reduced  tool life,  

- limitation on material removal rate,  

- necessity for additional finishing processes, 

- damage to the tool, part and machine.  

 

Therefore, chatter results in poor quality, reduced productivity and increased cost.  

 

The machine-tool chatter vibrations can be classified as regeneration [1] and mode 

coupling [2] based on their underlying physical mechanism. Mode coupling occurs 

whenever the relative vibration between the tool and the workpiece exists 

simultaneously in at least two directions in the plane of the cut. Regenerative 

chatter occurs due to variation in the chip thickness during the machining 

processes. Because of the structural vibrations, an oscillatory surface is left by the 

cutter in the initial pass. In the next pass, the vibrating cutter removes the wavy 

surface left from the previous wavy surface. As a result of these two waves a 

variable, or modulated, chip thickness is obtained as shown in Figure 1.1. The 

periodically varying chip thickness would result in oscillatory cutting forces and 

leads to growing the vibrations.  
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Figure 1.1 Regenerative chatter model with one degree of freedom 

 

 

Many studies have been performed on chatter to predict chatter-free cutting 

conditions. Stability lobe diagrams as shown in Figure 1.2 have been generated 

which contain chatter-free depth of cuts and cutting speeds to maximize the 

material removal rate in a stable region. The stability lobe diagrams are based on 

the frequency response functions (FRFs) of the system. Since chatter is a result of 

the relative movement between the machine/tool and the workpiece, the dynamics 

of the workpiece (especially for thin-walled slender structures) play a very 

important role on the generation of stability lobe diagrams.  Furthermore, during a 

cutting process, the dynamics of the workpiece changes continuously due to 

material removal. As a result, in order to predict more realistic stability lobe 

diagrams, the dynamics the workpiece must be updated for every stages of the 

process.  
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Figure 1.2 Characteristic plot of stability lobes 

 

 

Performing experiments or finite element analysis of the workpiece at every stage 

of machining to obtain FRFs of the workpiece is impractical and time-consuming. 

However, the FRFs of the workpiece can be obtained from the response data of the 

original structure and modification matrices by using the structural modification 

methods. An analytical model of the original structure or its measured response is 

usually used in the structural modification methods. The modal model or the FRFs 

of the original workpiece can be estimated from the experiment in order to obtain 

the FRFs of the modified workpiece. Furthermore, the analytical model of the 

original structure formed in a finite element program may be used for predicting 

the FRFs of the original structure in the structural modification methods.    

 

 

1.2 Literature Survey 
 

 

Several studies have been done on chatter vibrations until now. Taylor [3] stressed 

the importance of chatter and difficulty in its suppression exactly one century ago 
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(1907). However, until 1950s no analytical method or solution was developed on 

chatter problems. First Tobias [1, 4] and Fischwick [1] established the basis of the 

regenerative chatter theory.  They found the first analytical formulation of the 

dynamic cutting force variation as a function of variation of chip thickness and 

feed velocity. Then, Tlusty and Polacek [5] generated a chatter model for 

orthogonal cutting which is based on time invariant process dynamics. A feedback 

model explaining chatter as a closed loop interaction between the structural 

dynamics and the cutting process was presented by Merrit [6].  In turning, the 

orientation of the cutting forces and chip thickness are not a functions of time, 

however in milling the cutting forces, chip thickness and the direction of the 

excitation vary with time and have an intermittent nature due to rotating cutter. 

Tlusty and Koenigsberger [2] adapted their orthogonal cutting chatter stability 

model to milling process considering an average direction and average number of 

teeth in cut to find stability lobes. Opitz et al. [7, 8] generated an improved lumped 

model in the average force direction. Tlusty et al. [9-11] presented a method of 

generating stability lobes using time domain simulations of the chatter vibrations 

in milling. Sridhar et al. [12, 13] derived a detailed dynamic force formulation in 

milling. Minis and Yanushevsky [14, 15] used Floquet’s Theorem and Fourier 

series for milling stability formulation. Then, using the Nyquist criterion they 

solved the problem numerically. Altıntaş and Budak [16] presented a new method 

for the analytical prediction of stability limits in milling. In their formulation, the 

time varying dynamic cutting force coefficients are approximated by their Fourier 

series components. Their analytical method was verified with numerical and 

experimental results and presented for the generation of the stability lobe diagrams 

[17].  

 

In order to form the chatter models, the dynamic response of the machine tool 

structure is required. Tool point FRFs are usually measured using impact testing 

and modal analysis [18].  Considering great variety of machine tool configurations, 

tool holder and cutting tool geometries, to make a new test for every combination 

can be quite time consuming and impractical. Schmitz [19, 20] used receptance 

coupling method to predict the dynamics of tool holder-end mill assembly using 
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beam component modes. It is suggested that the dynamics of the spindle-holder 

subassembly can be obtained experimentally by performing an impact test at the 

holder tip for once. Then, the measured FRF can be coupled with the dynamics of 

the tool which is obtained analytically. In a recent study, Ertürk et al. [21, 22] 

presented an analytical approach to predict the tool point FRF by modeling the 

whole system (spindle, tool holder and tool). They also used the model developed 

to analyze the effects of bearing supports and spindle-holder and tool-holder 

interfaces on the FRF [23], and demonstrated the use of the model in fast and 

practical generation of the stability diagrams [24].  

 

As mentioned earlier, if the workpiece to be machined is dynamically flexible, to 

obtain the stability limits accurately the workpiece dynamics must be included in 

the analysis. However, the dynamics of the workpiece continuously vary during 

machining due to the mass removal. Thus, the variation of the dynamics of the 

workpiece must be considered in the generation of the stability lobes. At this point, 

it becomes very important to use an efficient structural modification method in 

order to find the frequency response functions of the modified (machined) 

structures at intermediate steps of the machining process. This is one of the main 

objectives of this study.  

 

The first reanalysis techniques were originally developed for the reduction of the 

computational time for the dynamic analysis of large structures. Many different 

reanalysis techniques are available in literature. Component mode synthesis was 

first presented by Hurty in 1965 [25]. After that several methods using the 

component mode synthesis technique have been presented. In these model 

reduction methods, the aim is to reduce computational time in the analysis of large 

structures by selecting most dominant modes [26-29]. 

 

For reanalysis purposes, dual modal space structural modification and local 

eigenvalue modification techniques were developed. Local eigenvalue 

modification (LEVM) was presented by Weissenburger [30] in 1968. Synder et al. 

[31, 32] extended LEVM to include damping. O’Callahan and Chou [33] used the 
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three dimensional generalized beam element in conjunction with LEVM procedure 

and presented a method to obtain more realistic structural modifications. Luk and 

Mitchell [34-36] developed the dual modal space structural modification method. 

The dual modal space structural modification method and transfer matrix method 

were combined by Elliott and Mitchell [37, 38] in order to make more accurate 

beam modifications. 

 

As mentioned above, the structural modification methods can be divided in two 

categories: theoretical or experimental methods. In order to obtain a validated 

modal model of the structure which is modified, vibration tests can be performed 

and it can be used for structural modification calculations. However, the main 

drawback of the experimental methods is difficulties in getting the rotational 

degrees of freedoms from experimental data. Another restriction is that the 

accuracy of the modal model affects the accuracy of the reanalysis results. High 

dependence of experimentally determined modal models to model truncation has 

been shown by Braun and Ram [39] and by Elliott and Mitchell [40]. Not taking 

some particular modes of the original system which affects the other modes can 

cause errors in the modified model. In the reanalysis problems, to use FRFs of the 

original structure directly without using modal parameters eliminates the modal 

truncation problem. The problems of the FRF coupling method using 

experimentally obtained FRFs have been discussed by Ewins [41]. Chou et al. [42] 

have presented an expansion method to overcome the problems about the 

difficulties in measuring vibration response of rotational degrees of freedoms. 

 

Özgüven has developed a structural modification method using FRFs of the 

original structure and system matrices of the modifying structure [43-45]. Özgüven 

first introduced the matrix inversion method to obtain the receptances of a damped 

system from its undamped counterparts [43]. Then, he presented a new method to 

calculate FRFs of non-proportionally damped structures using undamped modal 

data without matrix inversion [44]. Both of these methods can be applied to the 

structural modification problems as explained in reference 45 in which the method 

is also extended to structural modifications with adding additional degrees of 
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freedom. Main advantage of these methods is that inversion of a single matrix with 

the order of the size of the modifying structure (which is in most cases much less 

than the total dof of the system) is required. The recursive solution algorithm 

suggested by Özgüven [44] avoids matrix inversion, which does not only reduce 

the computational time, but also avoids the problems in inverting ill-conditioned 

matrices.  

 

 

1.3 Objective 
 

 

In this thesis, it is aimed to find the FRFs of the workpiece at intermediate stages 

of the machining process by adding the removed mass step by step to the final 

shape of the part until the initial workpiece dimensions are obtained. Özgüven’s 

Structural Modification Method [43] is used to find the FRFs at intermediate 

stages, and then the FRFs of the workpiece are combined with tool point FRFs 

before generating the stability lobe diagram. The ultimate goal is to find the 

stability diagrams by considering the workpiece dynamics at every stage of the 

machining so that chatter can be avoided during the whole process. Thus it is 

aimed:  

• to obtain the FRFs of the machined part (workpiece) efficiently by using an 

analytical method, instead of making finite element analysis or experiments 

to find FRFs at every stage  

• to study in detail the effects of the changing dynamics of the workpiece on 

stability diagrams   

• to obtain more realistic stability diagrams when thin-walled and slender 

parts are machined. 
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1.4 Scope of the Study 
 

 

The outline of the thesis is as follows: 

 

In Chapter 2, chatter theory and prediction of stability diagrams are reviewed 

briefly. Then the theory of the structural modification methods used, namely, 

Matrix Inversion Method [43] and Özgüven’s Recursive Formulation [44] are 

given. 

 

Chapter 3 outlines the computer program written using the structural modification 

methods, and gives the verification of the program by comparing the results 

obtained in this study with those obtained  with  a finite element program, MSC. 

Marc©. 

 

In Chapter 4, the changing dynamics of the workpiece and its effect on the stability 

diagrams are analyzed in detail with case studies. The results of the case studies 

presented are discussed. 

 

In Chapter 5, conclusions and suggestions for future work are given.  
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CHAPTER 2 
 
 
 

THEORY 
 
 
 

2.1 Chatter Theory and Stability Diagrams 
 

 

Chatter is the result of the dynamic interactions between the machine tool and the 

workpiece. Chatter vibrations result in poor surface finish and reduced tool life. 

Tlusty et al. [5] and Tobias [4] identified the most powerful source of self-

excitation which is associated with the structural dynamics of the machine tool and 

the feedback between the subsequent cuts on the same cutting surface resulting in 

regeneration of waviness on the cutting surfaces, and thus modulation in the chip 

thickness [46]. Under certain conditions the amplitude of vibrations grows and the 

cutting system becomes unstable. Although chatter is always associated with 

vibrations, in fact it is fundamentally due to instability in the cutting system. For a 

certain cutting speed there is a limiting depth of cut above which the system 

becomes unstable, and chatter develops. The chatter stability limit in orthogonal 

cutting is given as [2], 

 

[ ])(Re..2

1
lim

ωωωωGK
b

f

−
=                                                                                          (2.1) 

 

where fK  is the cutting force coefficient in the feed direction which is measured or 

calibrated through testing [47], [ ])(Re ωωωωG  is the real part of the resultant FRF in the chip 

thickness direction. )(ωωωωG  is the total transfer function of the system which can be 

determined by summing tool and workpiece transfer functions, i.e., 

[ ] [ ] [ ])()()( ωωωωωωωωωωωω workpiececutter GGG += .  
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The chip thickness variation, which is responsible for chatter vibrations, is a result 

of the dynamic displacements of the tool and the workpiece during cutting. Since 

the same cutting force acts on the cutter and the workpiece, but in the opposite 

directions, the total displacement (distance) can be found by multiplying the their 

respective transfer functions by the cutting force. By summing the transfer 

functions of the cutter and the workpiece, and by multiplying this total transfer 

function with the cutting force, the total chip thickness variation can be obtained. 

Therefore, the total transfer function of the system can be taken the summation of 

the cutter and the workpiece transfer functions. 

 
 

2.1.1 Stability of Milling Process 
 

 

2.1.1.1 Dynamic Chip Thickness and Milling Forces 

 

 

The milling cutter and work piece are considered to have two orthogonal modal 

directions as shown in Figure 2.1. Milling forces excite both cutter and workpiece 

causing vibrations which are imprinted on the cutting surface. Each vibrating 

cutting tooth removes the wavy surface left from the previous tooth resulting in 

modulated chip thickness which can be expressed as follows [48]: 

  

[ ]
jjj yxh φφφφφφφφφφφφ cos.sin.)( ∆+∆=                                              (2.2) 

 

where φφφφφφφφφφφφ +−= pj j ).1(  is the angular immersion of tooth (j) for a cutter with 

constant pitch angle Np /.2 ππππφφφφ = and N teeth. t.Ω=φφφφ  is the angular position of 

the cutter measured with respect to the first tooth, Ω (rad/sec) being the rotational 

speed of the tool.  
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             (a)     (b) 

Figure 2.1 (a) Cross sectional view of an end mill showing regeneration and 

dynamic forces, and (b) a closer look up to the dynamic chip thickness. 

 
The static part of the chip thickness is neglected in the stability analysis. The 

dynamic displacements are defined as follows: 

 

 
)()(

),()(
o

ww

o

cc

o

ww

o

cc

yyyyy

xxxxx

−−−=∆

−−−=∆
                                                                  (2.3) 

 

where ( cc yx , ) and ( ww yx , ) are the dynamic displacements of the cutter and the 

work piece in the x and y directions, respectively. The superscript (o) denotes the 

dynamic responses in the previous tooth period which are imprinted on the cut 

surface. The dynamic cutting forces on tooth (j) in the tangential and the radial 

directions can be expressed as follows: 

 

)(.. φφφφjtt haKF
j

=       ;  )(. φφφφ
jj trr FKF =                                                 (2.4)   

 

where a is the axial depth of cut, and tK  and rK  are the cutting force coefficients 

which are experimentally identified. After substituting  jh  from equation (2.2) into 

(2.4), and summing up the forces on each tooth ( jFF Σ= ), the dynamic milling 

forces can be resolved in x and y directions as follows: 

 









∆

∆








=
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





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x
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t

y

x
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2

1
                                                                         (2.5) 
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where a  values are the directional coefficients [16, 17] due to the rotation of the 

tool which makes equation (2.5) time-varying : 

 

{ } [ ]{ })()(...
2

1
)( ttAKatF t ∆=                                    (2.6) 

 

[ ])(tA  is periodic at the tooth passing frequency N.Ω=ωωωω  and with the 

corresponding period of 
ωωωω

ππππ.2=T   . In general, the Fourier series expansion of 

the periodic term is used for the solution of the periodic systems [50]. The solution 

can be obtained numerically by truncating the resulting infinite determinant. 

However, in chatter stability analysis the inclusion of the higher harmonics in the 

solution may not be required as the response at the chatter limit is usually 

dominated by a single chatter frequency. Starting from this idea, Budak and 

Altintas [16, 17, 49] have shown that the higher harmonics do not affect the 

accuracy of the predictions, and it is sufficient to include only the average term in 

the Fourier series expansion of [ ])(tA : 

 

[ ] [ ]dttA
T

A

T

.)(
1

0

0 ∫=                                                                                               (2.7) 

 

As all the terms in [ ])(tA  are valid within the cutting zone between start and exit 

immersion angles ( exst φφφφφφφφ , ), equation (2.7) reduces to the following form in the 

angular domain: 

 

[ ] [ ] 







== ∫

yyyx

xyxx

p

N
dAA

ex

st

αααααααα

αααααααα

ππππ
φφφφφφφφ

φφφφ

φφφφ

φφφφ
.2

.)(
1

0                                                             (2.8) 

 

where the integrated, or average, directional coefficients are given as: 
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[ ] [ ]

[ ] [ ]

1 1
cos2 2 sin 2 ; sin2 2 cos2

2 2
1 1

sin 2 2 cos2 ; cos2 2 sin 2
2 2

ex ex

st st

ex ex

st st

xx r r xy r

yx r yy r r

K K K

K K K

φ φ
φ φ

φ φ
φ φ

α φ φ φ α φ φ φ

α φ φ φ α φ φ φ

= − + = − − +

= − + + = − − −

   (2.9) 

 

Then, equation (2.6) reduces to the following form: 

  

{ } [ ]{ })(..
2

1
)( 0 tAKatF t ∆=                                                                               (2.10) 

 

 

2.1.1.2 Chatter Stability Limit 

 

 

The dynamic displacement vector,{ })(t∆ , in equation (2.10) can be determined 

using the dynamic properties of the structures, frequency response functions, and 

the dynamic forces. By substituting the response and the delay terms in equation 

(2.10), the following expression is obtained [16, 17]: 

        

{ } [ ][ ]{ } ti

c

Ti

t

ti ccc eFiGAeKaeF
ωωωωωωωωωωωω ωωωω )()1.(..

2

1
0

−−=                                             (2.11) 

 

Here, { }F  represents the amplitude of the dynamic milling force { })(tF , and the 

transfer function matrix is given as 

 

[ ] [ ] [ ])()()( cworkpiececcutterc iGiGiG ωωωωωωωωωωωω +=              

[ ]











=

yyyx

xyxx

pp

pp

p GG

GG
G            ),( wcp =                                                               (2.12) 

 

Equation (2.11) has a non-trivial solution only if its determinant is zero,    
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[ ] [ ][ ] 0)(det 0 =Λ+ ciGI ωωωω                                                                            (2.13)  

 

where [ ]I  is the unit matrix, and the oriented transfer function matrix is defined as: 

       

[ ] [ ][ ]GAG 00 =                                                          (2.14) 

 

and the eigenvalue ( Λ ) in equation (2.13) is given as: 

 

 )1(
4

Ti

t
ceaK

N ωωωω

ππππ
−−−=Λ                                           (2.15) 

 

Λ  can easily be computed from equation (2.13) numerically. However, an 

analytical solution is possible if the cross transfer functions, xyG and yxG , are 

neglected: 

              

( )0
2
11

0

.4
.2

1
aaa

a
−±−=Λ                                                                    (2.16) 

 

where  

 

)()(

))(()(

1
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−=
                                                       (2.17) 

 

Since the transfer functions are complex, Λwill also be complex. However, the 

axial depth of cut, a , is a real number. Therefore, when IR iΛ+Λ=Λ and  

TiTe cc

Ti c ωωωωωωωωωωωω sin.cos −=−  are substituted in Eq. (2.15), the complex part of the 

equation has to vanish yielding 

         

T

T

c

c
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ωωωω

ωωωω
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−
=

Λ

Λ
=                                              (2.18) 
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Equation (2.18) can be solved to obtain a relation between the chatter frequency 

and the spindle speed [16, 17]: 

    

ππππεεεεωωωω ..2 kTc +=   ,  ψψψψππππεεεε .2−=   ,  κκκκψψψψ 1tan −=   ,  
TN

n
.

60
=       (2.19) 

 

where εεεε  is the phase difference between the inner and outer modulations, k  is an 

integer corresponding to the number of vibration waves within a tooth period, and 

n  is the spindle speed (rpm). After the imaginary part in equation (2.15) is 

vanished, the following is obtained for the stability limit [16, 17]: 

 

  ( )2
lim 1

.

..2
κκκκ

ππππ
+

Λ
−=

t

R

KN
a                                             (2.20)        

 

Therefore, for a given cutting geometry, cutting force coefficients, tool and 

workpiece transfer functions, and a chatter frequency cωωωω , IΛ  and RΛ  can be 

determined from equation (2.16), and can be used in equations (2.19) and (2.20) to 

determine the corresponding spindle speed and the stability limit.  When this 

procedure is repeated for a range of chatter frequencies and number of vibration 

waves, k, the stability lobe diagram for a milling system is obtained. 

 

 

2.2 Structural Modifications without Additional Degrees of    
Freedom 
 

 

2.2.1 Matrix Inversion Method 
 

 

The matrix inversion method presented by Özgüven [43] originally developed to 

calculate the FRFs of the damped structures from undamped modal data, and then 
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later applied to structural modification problems [45]. In this section, the 

generalized form of the formulation for structural modifications is explained. 

 

Consider a system with n degrees of freedom which can be written as 

 

[ ] } [ ]{ }{ [ ]{ } { }FxKxHixM =++&&                                                                        (2.21) 

 

where [ ]M  is mass matrix, 

           [ ]H  is structural damping matrix 

            [ ]K  is stiffness matrix 

            { }F  is a generalized force vector 

             { }x  is the vector of generalized coordinates. 

 

For a harmonic excitation force{ }F  at frequency ω , the response { }x  can be 

found as 

 

{ } [ ] [ ] [ ][ ] { }FHiMKx
12 −

+−= ωωωω                                                                        (2.22) 

 

Then the receptance matrix [ ]αααα  can be written as 

 

[ ] [ ] [ ] [ ][ ] 12 −
+−= HiMK ωωωωαααα                                                                               (2.23) 

 

In a similar manner, the receptance matrix of the modified system can be written as 

 

[ ] [ ] [ ] [ ] [ ][ ] [ ] [ ][ ][ ] 12 −
∆++∆+−∆+= HHiMMKK ωωωωγγγγ                                        (2.24) 

 

where [ ]K∆ , [ ]M∆  and [ ]H∆  are stiffness, mass and damping modification 

matrices, respectively. Inverting both sides of equations (2.23) and (2.24) and one 

can obtain 
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[ ] [ ] [ ]D+=
−− 11

ααααγγγγ                                                                                               (2.25) 

 

where [ ]D  denotes the dynamic structural modification matrix and is expressed as 

 

[ ] [ ] [ ] [ ]HiMKD ∆+∆−∆= 2ωωωω                                                                            (2.26) 

 

Pre-multiplying all terms of equation (2.25) by [ ]αααα  and post-multiplying them by 

[ ]γγγγ  gives  

 

[ ] [ ] [ ][ ][ ]γγγγααααγγγγαααα D+=                                                                                            (2.27) 

 

[ ]γγγγ  can be obtained as 

 

[ ] [ ] [ ][ ][ ] [ ]ααααααααγγγγ
1−

+= DI                                                                                       (2.28) 

 

When the structural modification is local  

 

[ ]
[ ] [ ]
[ ] [ ]






=

00

011D
D                                                                                               (2.29) 

 

then equation (2.28) can be written in partitioned form, so that the receptance 

submatrices of the modified system can be obtained [43] as 

 

[ ] [ ] [ ][ ][ ] [ ]11

1

111111 ααααααααγγγγ
−

+= DI                                                                              (2.30) 

 

[ ] [ ] [ ] [ ] [ ][ ]12 21 21 11 11

T
I Dγ γ α γ = = −                                                                 (2.31) 

 

[ ] [ ] [ ][ ][ ]1211212222 γγγγααααααααγγγγ D−=                                                                               (2.32) 
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Subscripts 1 and 2 correspond to modified and unmodified regions of the structure, 

respectively. As can be seen from the equations, to find the receptance matrix of a 

modified system it is sufficient to the take the inverse of a single matrix which has 

an order equal to the number of coordinates involved in the structural 

modifications. So if the modification is made on a small number of coordinates, 

the computational time will be reduced considerably.       

 

 

2.2.2 Özgüven’s Recursive Formulation   
 

 

This method, like the matrix inversion method, was developed to calculate the 

receptances of non-proportionally damped structures from the undamped 

counterparts [44]. The algorithm developed can easily be used for structural 

modification problems without adding additional degrees of freedom to the system 

[45]. 

 

Consider the system with n degrees of freedom which can be expressed as  

 

[ ] } [ ]{ }{ [ ]{ } { }FxKxHixM =++&&                                                                        (2.33) 

 

In a similar manner, the system equation of the modified system can be written as 

 

[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ][ ]{ } { }FxKKxHHixMM =∆++∆++∆+ &&                               (2.34) 

 

where [ ]K∆ , [ ]M∆  and [ ]H∆  are respectively stiffness, mass and damping 

modification matrices. The terms with modification matrices in equation (2.34) can 

be taken to the other side of the equation and can be regarded as a set of external 

forces to the original structure (which can be written in terms of dynamic stiffness 

values and the displacement of the system). Then the equation of motion can be 

written as 
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[ ]{ } [ ]{ } [ ]{ } { } { }DFxKxHixM +=++&&                                                               (2.35) 

 

where { }D  is a vector representing dynamic stiffness forces defined as 

 

{ } [ ]{ } [ ]{ } [ ]{ }xKxHixMD ∆−∆−∆−= &&                                                               (2.36) 

 

For a harmonic excitation force{ }F  at frequency ω, equation (2.35) takes the form 

 

[ ] [ ] [ ][ ]{ } { } { }DFxHiMK +=+− 2ωωωω                                                                  (2.37) 

 

where 

 

{ } [ ] [ ] [ ][ ]{ }xHMKD ∆+∆−∆−= 2ωωωω                                                                    (2.38) 

 

Equation (2.35) permits one to consider the modified system as an unmodified 

system with two sets of external forces one of which is defined in terms of the 

unknown dynamic displacements { }x  of the modified system. The receptances of 

the unmodified system described by equation (2.35) can easily be found by modal 

superposition. 

 

If a typical coordinate s is considered, the dynamic stiffness force on this 

coordinate can be written as 

 

∑
=

−=
n

k

ksks xdD
1

                                                                                                 (2.39) 

where  

 

sksksksk ihmkd +−= 2ωωωω                                                                                     (2.40) 
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Then, the response of the modified system,{ }x , to a harmonic external force, { }F , 

can be found by considering the unmodified system with two sets of harmonic 

forces as implied by equation (2.35). From the definition of receptance, the 

dynamic displacement of the pth coordinate can be written as  

 

( )∑
=

+=
n

s

sspsp DFx
1

ββββ                                                                                         (2.41) 

∑ ∑∑
= ==

−=
n

s

n

k

kskps

n

s

spsp xdFx
1 11

ββββββββ                                                                       (2.42) 

 

Both px  and kx  are the displacements in the modified system. Then the 

receptance pjαααα  of the modified system can be obtained from equation (2.42) by 

dividing all terms by jF  and setting all external forces, except jF , to zero: 

 

)(
1 1

jk

n

s

n

k

skpspjpj Fxd∑ ∑
= =

−= ββββββββαααα                                                                      (2.43) 

 

Since the receptance pjαααα  is defined as the displacement of the pth  coordinate when 

there is a unit external force at the jth coordinate while all the other external forces 

are zero, the term jk Fx  in equation (2.43) can be identified as kjαααα  and equation 

(2.43) can be written as 

 

∑ ∑
= =

−=
n

s

kj

n

k

skpspjpj d
1 1

ααααββββββββαααα                                                                               (2.44) 

 

which is valid for any p and j ( p = 1, 2, . . . ., n; j = 1, 2, . . . ., n). If only a single 

element of the dynamic stiffness matrix, say skd , is considered while the rest of the 

modification elements are taken to be zero, equation (2.44) takes the form of 

 

kjskpspjpj d ααααββββββββαααα −=                ( p = 1, 2, . . ., n; j = 1, 2, . . ., n)                      (2.45) 
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from which kjαααα  can be obtained (by taking p = k) as 

 

)1( skkskjkj dββββββββαααα +=                                     (j = 1, 2, . . ., n)                          (2.46) 

 

Once the kjαααα   (j = 1, 2, . . ., n) are calculated from  equation (2.46), the remaining 

receptance values  pjαααα  ( p = 1, 2, . ., k-1, k+1, . ., n; j = 1, 2, . . . ., n) are found 

from the calculated values of  kjαααα   (j = 1, 2, . . ., n) by using equation (2.45). 

 

The above formulation gives the receptance of the system composed of the 

unmodified system and a single modification element skd . If the calculated 

receptances are treated as ββββ  values in equations (2.45) and (2.46), a new set of 

receptances can be calculated by considering another modification element of the 

original dynamic stiffness matrix [ ]D . If this procedure is repeated for all elements 

of [ ]D , the final receptance matrix [ ]αααα  gives the receptances of the modified 

system.  

 

A considerable reduction in the computational effort can be achieved if the 

modification is local, 

 

[ ]
[ ] [ ]
[ ] [ ]






=

00

011D
D                                                                                               (2.47) 

 

Then, kjαααα  (j = 1, 2, . . ., n) can be found from equation (2.46), and equation (2.45) 

may be used to find  pjαααα   for only m values of p, where m is the order of the 

submatrix [ ]11D . Therefore, the final values of pjαααα  ( p = 1, 2, . . ., m; j = 1, 2, . . ., 

n)  which include the effect of all the m
2 modification element values can be 

calculated without computing the receptances corresponding to only unmodified 

coordinates (i.e., without calculating [ ]22αααα ). Thus the number of recomputations of 
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each receptance will be reduced from n2 to m2, since the number of modification 

elements will be just m2.  

 

Calculating of the receptances corresponding to unmodified coordinates, then can 

be achieved by using equation (2.44) 

 

∑ ∑
= =

−=
m

s

kj

m

k

skpspjpj d
1 1

ααααββββββββαααα                                                                               (2.48) 

 

for   p = m+1, . . ., n; j = p, . . ., n. 

 

A further improvement in the formulation is made by considering one column of 

the dynamic stiffness matrix at a time. When, say, the kth column of the dynamic 

stiffness matrix [ ]11D  is considered, from equation (2.44) one can write 

 

kj

m

s

skpspjpj d ααααββββββββαααα 



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


−= ∑

=1

                                                                                (2.49) 

 

or  p = k, 

 









+

=

∑
=

m

s

skks

kj
kj

d
1

1 ββββ

ββββ
αααα                                (  j = 1, 2, . . . ., n )                    (2.50) 

 

After calculating the kjαααα    (  j = 1, 2, . . . ., n ), which include the effect of the kth  

column of the dynamic stiffness matrix,  the remaining elements of   [ ]11αααα   and 

[ ]12αααα    can be found from equation (2.49) for   j = 1, 2, . . . ., n , and  p = 1, 2, . ., k-

1, k+1, . ., m. After repeating this procedure m times ( k = 1, 2, . . . ., m), the final 

values of the upper m x n portion of   [ ]αααα   will be obtained. The remaining 

elements of the receptances matrix can be obtained from equation (2.48). 
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CHAPTER 3 

 

 

COMPUTER PROGRAM AND VERIFICATION 

 

 

3.1  Overview of the Computer Program 
 

 

The computer program is developed in Visual C++ 6.0© and Matlab©. The 

program is based on the Matrix Inversion Method [43]. The program uses the 

output file of MSC. Marc Mentat© which has “.out” extension. The program reads 

and stores the eigenvectors, eigenfrequencies and the system matrices of each 

element from this file. A text file is formed which includes the nodes of the 

modified elements. If there are nodes restricted in motion, their numbers must be 

removed and renumbering must be performed. The user must define the total 

number of degrees of freedom (dofs) of the system, the number of dofs of the 

modifying matrices, the number of the modes extracted from FE model and the 

starting frequency, ending frequency and frequency step values of required FRF 

calculation. The program firstly calculates the receptance of the unmodified 

structure using modal parameters by modal summation formulation which is given 

as 

  

∑
= +−

=
N

r rr

jrir

ij
i1

222
)(

γωγωγωγωωωωωωωωω

φφφφφφφφ
ωωωωαααα   (3.1)                                                                         

 

where )(ωωωωαααα ij , φφφφ , rωωωω  and γγγγ  are the receptance matrix, mass normalized 

eigenvector , rth
 eigenfrequency of the system, and loss factor  respectively. 
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Then using Matrix Inversion Method [43] the receptance of the modified structure 

is calculated at required frequency range and at all nodes; but only the FRFs at the 

required nodes (locations) are stored.  

 

 

3.2  Extraction of the Program Input Data from Finite Element 

Program 

 

 

As previously mentioned, in order to find the changing dynamics of the workpiece 

in a machining process by using structural modification methods, the FRFs of the 

original structure and the modification matrices (mass, stiffness and damping 

matrices) are needed. For this purpose, first, the workpiece with its final shape and 

the removed mass are modeled by using the finite element analysis (FEA) 

program, MSC. Marc©. Then, the modal parameters and system matrices of the 

workpiece are obtained through modal analysis. The reason for choosing MSC. 

Marc© program is to give the system matrices in its output file without any extra 

command or program. Only the choice of element matrices button in the “Output 

File” tab is enough in order to obtain element system matrices in the pre/post 

processor, MSC. Mentat©. The format of the output file of MSC. Marc© is 

available in Appendix A. In order to read the eigenfrequencies and eigenvectors 

from the file and to write them in a matrix/vector form, a program was also written 

in Visual C++ 6.0©. The structural modification program was written in Matlab© 

due to its predefined functions. 

 

In order to obtain modification matrices, modeling the removed mass which is 

added to the original workpiece, is not sufficient in the calculations. In both beam 

and plate models of the workpiece in the FEA program, the workpiece is modified 

by changing its thickness. Because the stiffness of the beam and plate in bending is 

related with area moment of inertia, change in thickness does not result in a 
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linearly proportional change in the stiffness of the workpiece. The area moment of 

inertia changes with the third power of the thickness in the structures with 

rectangular cross section. In order to find modification stiffness matrix, the 

removed volume is modeled with both initial and final thicknesses. Then, by 

taking the difference of the stiffness matrices of two models, the modification 

stiffness matrix is obtained. For the modification mass matrix, such a process is 

not required since the variation in the thickness of the workpiece affects the area 

term in the mass matrix. Therefore, the mass matrix changes linearly with 

changing thickness of the workpiece, and the modification mass matrix can be 

determined by modeling the removed mass in the FEA program directly.  

 

 

3.3  Verification 
 

 

In this section, it is aimed to verify the computer program developed. For this 

purpose, the results obtained with the computer program are compared with those 

found by using a finite element model of the workpiece. A beam and plate models 

are used for the workpiece in verifying the program. The FRFs of the modified 

workpiece are calculated by using both the computer program developed and the 

finite element program and then the results obtained are compared. 

 

 

3.3.1 Beam Model 
 

 

The beam model used for the workpiece is shown in Figure 3.1 where the 

respective sizes are given follows: 

 

Length: 100 mm 

Width: 50 mm 
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Thickness: 5 mm 

 

The boundary conditions of the beam are taken as fixed-free. The material of the 

beam is steel with Young’s modulus of 200GPa, Poisson’s ratio of 0.3 and the 

density of 7800 kg/m3. The damping models of MSC. Marc© used in the beam 

model are given in equation (3.2). 

 

[ ] [ ] [ ]K
b

MaC .
.2

.
ωωωω

+=                                                                                           (3.2) 

 

where a  and b  are the damping coefficients, 

          [ ] [ ] [ ]KMC  ,  ,   are the damping, mass and stiffness matrices, 

          ωωωω  is the excitation frequency. 

 

The damping coefficients a  and b  are taken as 0.03 and 0.02, respectively, in the 

beam models used in the case studies given in this thesis. 
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Figure 3.1 Beam model 

 

 

The workpiece is modeled in MSC. Marc Mentat© with beam elements (Element 

type 5) as shown in Figure 3.2. Each node of the beam element has 3 degrees of 

freedom (displacement in x axis, displacement in y axis and rotation in z axis) and 

the total degree of freedom of the model is 30 with 10 elements. 
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Figure 3.2 Beam model in MSC. Marc Mentat© 

 

 

3.3.1.1   Modification 

 

 

An additional mass with a thickness of 10mm is added to the 10th and the 6th 

element as shown in Figure 3.3. The material is the same as that of the original 

structure. The FRFs of the modified structure is calculated by MSC. Marc© and 

also by the program developed using the structural modification (SM) method. As 

seen in Figure 3.4, the FRF curves found by MSC. Marc© and the SM method 

match very well so that they seem as only one curve.  

 

 

100

  1   3  2   4   5   6   7   8   9  10

1
0

5

 

Figure 3.3 Modified beam model 

 

 

Node 11 
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Figure 3.4 FRFs of the original and modified model calculated by MSC. Marc© 

and the SM method 

 

 

3.3.2 Plate Model 
 

 

The plate model is shown in Figure 3.5 where the respective sizes are given 

follows: 

 

Length: 150 mm 

Width: 100 mm 

Thickness: 10 mm 

 

The boundary conditions of the plate are taken as fixed-free. The material of the 

plate is steel with Young’s modulus of 200 GPa, Poisson’s ratio of 0.3 and the 
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density 7800 kg/m3. As mentioned in Section 3.3.1, the damping coefficients a  

and b  are taken as 0.03 and 0.02, respectively.  

 

 

 

Figure 3.5 Plate Model 

 

 

The workpiece is modeled in MSC. Marc Mentat© with shell elements (Element 

type 139) as shown in Figure 3.5. Each node of the beam element has 6 degrees of 

freedom (displacement in x axis, displacement in y axis, displacement in z axis, 

rotation in x axis, rotation in y axis and rotation in z axis) and the total degree of 

freedom of the model is 180 (The motion of 5 nodes are restricted in all directions)  

with 24 elements. 

 

 

Modifying Elements 
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3.3.2.1   Modification 

 

 

Additional masses with a thickness of 10mm is added to the 14th, 15th, 18th, 19th, 

22nd and 23rd element as shown in Figure 3.5. The material is the same as that of 

the original structure. The FRFs of the modified structure are calculated by MSC. 

Marc© and also by the program developed using the structural modification (SM) 

method. As seen in Figure 3.6, the FRF curves found by MSC. Marc© and the SM 

method match very well so that they seem as only one curve.  
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Figure 3.6 FRFs of the original and modified model calculated by MSC. Marc© 

and the SM method 
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The identical results obtained in both models verify the program developed. This 

was an expected result, as the method used in structural modification is an exact 

one. Therefore the program gives the same results with MSC. Marc©.  

 

As shown in Figure 3.6, with this modification the first natural frequency of the 

workpiece decreases as the second and the third ones increase. Since increasing the 

workpiece thickness at the free end affects the stiffness of the workpiece less in the 

first mode shape, the first natural frequency of the workpiece reduces due to mass 

effect of the modification. Because of the mode shapes of the 2nd (1st torsional) 

and the 3rd (2nd bending) natural frequencies, the thickness increase at this 

location causes increased  workpiece stiffness, and thus increased natural 

frequencies. 
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CHAPTER 4 
 

 

EFFECT OF THE FLEXIBILITY OF THE 

WORKPIECE ON STABILITY DIAGRAMS 

 

 

4.1 Effects of Workpiece Flexibility 
 

 

In machining processes, the geometry, and thus the dynamics of the workpiece 

change continuously. During cutting, mass, stiffness and damping of the workpiece 

vary as a result of the removed mass. If the flexibility of the workpiece becomes 

comparable with tool-tool holder-spindle system at any stage of the machining 

process, the effect of work dynamics on the process dynamics and stability must be 

taken into account. For such cases, the stability diagrams should be formed by 

using the system FRF which is the addition of the tool point and the workpiece 

FRFs.  

 

As mentioned in Chapter 2, chatter stability limit is inversely proportional to the 

real part of the FRFs of the system. In the machining of a flexible workpiece, the 

part flexibility is further increased resulting in significant reduction in stable depth 

of cuts. Thus, if the effect of the workpiece flexibility is not included in the 

stability analysis, chatter can occur at unexpected speeds and depths resulting in 

problems during production. 

 

In this chapter, the effect of workpiece dynamics for an already flexible part or for 

a part whose flexibility is increased during the machining, on machining stability is 

studied in detail with case studies. Since chatter is a common problem in milling 
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operations where flexible parts such as thin walled components are machined using 

slender cutting tools, the applications are focused on milling processes. The 

workpiece is modeled both as a beam and as a plate in a finite element program, 

MSC. Marc Mentat©.  Assuming a cutting strategy which defines the workpiece’s 

geometry variation pattern, the workpiece is meshed, and by using an inverse 

process, the removed material is virtually added to the geometry of the workpiece 

continuously until the original part geometry is obtained. At every machining step, 

the FRFs of the workpiece is found by the structural modification method [43] 

using the FRF of the main body and the removed section properties. These FRFs 

are summed with the FRFs of the tool-holder-spindle assembly calculated by an 

analytical modeling approach [21-24], and used in the analytical stability diagram 

generation [16, 17].   

 

  

4.2 Case Studies 
 

 

4.2.1 Beam Model of the Workpiece 
 

 

In order to obtain FRFs at different stages and locations of the workpiece during 

machining, as a first attempt the workpiece is modeled as a beam in FE program, 

MSC. Marc Mentat©.  

 

The beam model is shown in Figure 4.1 where the respective sizes are given 

follows:  

 

Length : 100 mm 

Width : 50 mm 

Thickness : 15 mm 
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The material of the beam is steel with Young’s modulus of 200GPa, Poisson’s 

ratio of 0.3 and the density of 7800 kg/m3. As mentioned in Section 3.3.1 the 

damping coefficients a  and b  are taken as 0.03 and 0.02 respectively. The 

boundary conditions of the beam are taken as fixed-free. This model resembles a 

part clamped on the machine tool table such as a turbine or compressor blade.  

 

 

100 50

1
5

 

Figure 4.1 Beam model 

 

 

The workpiece is modeled in MSC. Marc Mentat© with beam elements (Element 

type 5) as shown in Figure 4.2. Each node of the beam element has 3 degrees of 

freedom (displacement in x axis, displacement in y axis and rotation in z axis) and 

the total degree of freedom of the model is 30 with 10 elements. 

 

 

 

Figure 4.2 Beam model in MSC. Marc Mentat© 
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4.2.1.1 Tool-Holder-Spindle Model  

 

 

As mentioned in Section 4.1, a spindle-holder-tool combination is selected, and its 

tool point FRF is used to predict the stability diagrams. The material used for the 

elements of the assembly is steel with Young’s modulus of 200GPa, Poisson’s 

ratio of 0.3 and mass density of 7800 kg/m3. The material loss factor is assumed to 

be 0.003. 

 

The geometry of the tool is shown in Figure 4.3 where the sizes are given as 

follows: 

  

Segments length(mm) : 0.10   0.01 

Outer diamaters(mm) : 25  28 

Outer diameters of segments inside the tool holder(mm) : 28 

Inner diameters of segments inside the tool holder(mm) : 0 

 

 

 

                                   

Figure 4.3 Tool geometry 
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The geometry of the tool holder is shown in Figure 4.4 where the sizes are given as 

follows: 

 

Segments length(mm) : 30   24   28 

Outer diamaters(mm) : 64   55   61 

Inner diameters(mm) :  28   28   28 

Outer diameters of segments inside the tool holder(mm) : 54   48   40   32 

Inner diameters of segments inside the tool holder(mm) : 16   16   16   16 

 

 

 

                                   

Figure 4.4 Tool holder geometry 

 

 

The geometry of the spindle is shown in Figure 4.5 where the sizes are given as 

follows: 

 

Segments length(mm) : 16   30   30   30   8   140   86   55   20    30    70 

Outer diamaters(mm) : 66   66   66    66   66   76   70   62   54   54   54 

Inner diameters(mm) :  54   48   40   32   24   24   24   24   24   24   24 
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Segments having bearings : 1 3 8 9 

Translational stiffness [N/m] : 60e7   60e7   2.5e6   2.5e6 

Translational damping [N.s/m] : 800   800   200   200 

Rotational stiffness [N/m] : 0   0   0   0 

Rotational damping [N.s/m] : 0   0   0   0 

 

 

 

                                

Figure 4.5 Spindle geometry 

 

 

In order to find the tool point FRF of this system, an analytical modeling approach 

developed by Ertürk, et. al [21-24] is used.  

 

 

4.2.1.2 Machining Process and FRFs of the Workpiece  

 

 

The workpiece is assumed to be machined in three main cutting cycles. These are 
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- Roughing cut : Thickness of the workpiece is reduced from 15 mm to 10 

mm (radial depth of cut = 5 mm) completely. 

 

- Semifinishing cut : Thickness of the workpiece is reduced from 10 mm to 5 

mm(radial depth of cut = 5 mm) completely. 

 

- Finishing cut : Thickness of the workpiece is reduced from 5 mm to 3 

mm(radial depth of cut = 2 mm) completely. 

 

The tangential and radial cutting force coefficients, Kt and Kr, used in order to 

determine the stability limits are taken as 626 MPa and 0.1597 respectively. As an 

initial assumption, the axial depth of cut is taken as 10 mm so that the workpiece is 

machined in 10 steps per cut (pass). In order to name the machining steps a coding 

convention is used. For example, B15 stands for 5.step of the first cut (roughing 

cut). In order to see the variation of the dynamics of the beam clearly, the FRFs of 

the beam at the same location, but in different cuts are compared. By comparing 

the FRFs of the workpiece in different cuts at the same location, the effect of the 

thickness change of the workpiece on the FRFs of the system, and the stability 

diagrams is studied. By comparing the FRFs of the workpiece at different locations 

(at the end, the middle and the tip of the workpiece), the effect of the location 

change during machining on the stability limits is also examined with the case 

studies.  

 

 

4.2.1.3 FRFs of the Workpiece and Stability Diagrams at the First Step of the 

Cut  

 

 

The geometry of the workpiece at the 1st step of cutting in the roughing, 

semifinishing and finishing passes are shown in Figure 4.6. In order to see the 

effect of the thickness change of the workpiece, the FRFs of the beam B11, B21 
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and B31 are drawn in Figure 4.7. The FRFs of the beam combined with the FRFs 

of the tool are given in Figure 4.8, to observe the effect of the FRFs of the 

workpiece on combined system FRFs. 

 

 

1. LAYER

1.ELEMENT

2. LAYER

1. ELEMENT

3. LAYER

1. ELEMENT

B11

B21

B31

 
Figure 4.6 Beam models at the end of first step of 1st, 2nd and 3rd cuts 
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Figure 4.7 FRFs of the workpiece at the end of first step of 1st, 2nd and 3rd cuts 
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Figure 4.8 Combined FRFs of the workpiece and tool at the end of first step of 1st, 

2nd and 3rd cuts  
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As seen from Figure 4.7 and 4.8, the magnitude of the FRFs of the workpiece 

increases as the workpiece becomes thinner as expected. While at the beginning of 

the process the flexibility of the tool is higher than that of the workpiece, at the end 

of the process the FRFs of the workpiece become dominant. The natural 

frequencies of the workpiece reduce while the thickness of the workpiece 

decreases as shown in Figure 4.7. This is expected since as the workpiece becomes 

more flexible its stiffness reduces resulting in lower natural frequencies. 

 

The stability lobe diagrams including the changing dynamics of the workpiece at 

the end of the first step of the 1st, 2nd and 3rd cuts are shown in Figure 4.9. 
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Figure 4.9 Stability lobe diagram including the FRFs of the workpiece at the end 

of first step of 1st, 2nd and 3rd cuts 

 

 

Due to trimming problem of the program used in generating the stability lobe 

diagrams, in some of the stability graphs extra curves can be seen, they should not 

be taken into consideration. 
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In the stability diagrams, the stability curves may not finish at the same spindle 

speed for different cases. The reason is the fact that the location of the first lobe, 

and the other lobes, depend on the system natural frequencies. Thus, for different 

cases, the first lobes correspond to different spindle speeds.  

 

As shown in Figure 4.9, the stability limit curve becomes lower and lower, as the 

thickness of the workpiece is reduced and becomes more flexible as expected. The 

absolute stability limit which is the minimum value of the stable depths, becomes 

lower, as the workpiece’s thickness is reduced. The same behaviour can be 

observed in the peak stability values. The peak amplitudes of the stability limit 

curve decreases due to increased FRF amplitudes. The modifications done on the 

workpiece also affects the relative peak amplitudes of the FRFs for different 

modes of the structure. The amount of change in the FRF peak amplitudes as a 

result of the mass removal can be different for different modes of the structure. 

Then, the stability lobes corresponding to different modes can move up or down 

and left and right resulting in various forms of intersections among them. As a 

result, in addition to the reduced absolute and peak stability limits, some stability 

pockets may disappear as the workpiece becomes thinner. The spindle speeds 

corresponding to the peaks of the stability curve usually move to lower speeds with 

increasing flexibility of the workpiece. In conclusion, the variation of the 

workpiece dynamics results in a significant decrease in stable axial depths and 

speeds if the workpiece is much more flexible than the tool, and the workpiece 

dynamics should be included in the system FRFs used in stability calculations.  

 

 

4.2.1.4 FRFs of the Workpiece and Stability Diagrams at the Fifth Step of the 

Cut 

 

 

The geometry of the workpiece at the 5th step of cutting in the roughing, 

semifinishing and finishing passes are shown in Figure 4.10. In order to see the 
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effect of the thickness change of the workpiece, the FRFs of the beam B15, B25 

and B35 are drawn in Figure 4.11. The FRFs of the beam combined with the FRFs 

of the tool are given in Figure 4.12 to see the variation in the combined system 

FRFs with changing of the workpiece’s thickness. 
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Figure 4.10 Beam models at the end of fifth step of 1st, 2nd and 3rd cuts 
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Figure 4.11 FRFs of the workpiece at the end of fifth step of 1st, 2nd and 3rd cuts 
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Figure 4.12 Combined FRFs of the workpiece and tool at the end of fifth step of 

1st, 2nd and 3rd cuts  
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As shown in Figure 4.11, the peak FRFs of the workpiece are less than the peak 

FRFs at the bottom (at the 1st location) of the workpiece in all cutting cycles due to 

the boundary conditions of the structure. As the tool moves from the free to the 

fixed end of the workpiece, the workpiece becomes stiffer, and thus flexibility of 

the workpiece reduces where the tool FRF is more important for stability. 

 

The stability lobe diagrams including the changing dynamics of the workpiece at 

the end of the fifth step of 1st, 2nd and 3rd cuts are shown in Figure 4.13. 
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Figure 4.13 Stability lobe diagrams including the FRFs of the workpiece at the end 

of fifth step of 1st, 2nd and 3rd cuts 

 

 

As can be seen from Figure 4.13 because the FRFs of the workpiece at the first and 

second cut are lower than the FRFs of the tool, the flexibility of the tool becomes 

dominant and the stability curves at these stages seem similar. Only some peaks of 

the stability curves take lower depths of cut values as the workpiece becomes 

thinner. At the third cut, however, the workpiece becomes as flexible as the tool. 
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The stability curve at the third cut becomes higher than the curve of the first and 

second stage at some regions of the diagram in Figure 4.13, while it is expected to 

become lower. The reason is that the material removed from the workpiece at the 

third stage is less than those of the other stages. This means that the radial depth of 

cut at the third cutting cycle (2 mm) is less than those at other two cuts (5 mm). 

 

Stability diagrams can be generated in terms of axial depth of cut for a given depth 

of cut and also in terms of radial depth of cut for a given axial depth of cut [48]. 

The stable axial depth of cut is usually inversely proportional with stable radial 

depth of cut. In other words, for a chatter-free cutting taking smaller radial depth 

of cut can result in higher stable axial depth of cut. This is the reason for having 

higher absolute stable axial depths in third cutting cycle than those in other two 

cycles.    

 

 

4.2.1.5 FRFs of the Workpiece and Stability Diagrams at the Ninth Step of the 

Cut 

 

 

The geometry of the workpiece at the 9th step of cutting in the roughing, 

semifinishing and finishing passes are shown in Figure 4.14. In order to see the 

effect of the thickness change of the workpiece at this location, the FRFs of the 

beam B19, B29 and B39 are given in Figure 4.15. The FRFs of the beam combined 

with the FRFs of the tool are given in Figure 4.16 to see the variation in the 

combined system FRFs with changing of the workpiece’s thickness. 
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Figure 4.14 Beam models at the end of ninth step of 1st, 2nd and 3rd cuts 
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Figure 4.15 FRFs of the workpiece at the end of ninth step of 1st, 2nd and 3rd cuts 
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Figure 4.16 Combined FRFs of the workpiece and tool at the end of ninth step of 

1st, 2nd and 3rd cuts 

 

 

The FRFs of the workpiece near to the fixed end have the lowest values compared 

to the other locations, as the stiffness of the workpiece is the largest in this region. 

Since the FRFs of the workpiece are very low compared to those of the tool, total 

FRFs of the system and the tool are nearly the same as seen in Figure 4.16. In such 

a case, only the FRF of the tool can be used to predict the stability diagrams 

accurately. 

 

The stability lobe diagrams including the changing dynamics of the workpiece at 

the end of the ninth step of the 1st, 2nd and 3rd cuts are shown in Figure 4.17. Since 

the stability diagrams of B19 and B29 are the same, they seem as one curve in 

Figure 4.17. 
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Figure 4.17 Stability lobe diagrams including the FRFs of the workpiece at the end 

of ninth step of 1st, 2nd and 3rd cuts 

 

 

The FRFs of the system is the same at all the cuts since the system dynamics is 

mainly governed by the tool FRF at this location. Therefore, the stability curves 

are the same for all cuts at this location except the finishing cut where the radial 

depth of cut is different than the previous two cuts. From the results presented in 

this section, it can be concluded that the variation of the workpiece dynamics does 

not affect the stability limits when the tool is much more flexible than the 

workpiece in which case the workpiece dynamics can be neglected.  

 

 

4.2.1.6 Variation of the Workpiece Dynamics 

 

 

In this section, the variation of the workpiece dynamics as a result of the mass 

removal is analyzed in terms of peak FRF values and natural frequencies. Every 

step in the machining cycle is numbered as used to present the variations. The 
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changes in the 1st and 2nd natural frequencies of the workpiece are given in Figure 

4.18. In addition, the variations in the peak FRF amplitudes of the workpiece for 

the first two natural frequencies are shown in Figure 4.19. 
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Figure 4.18 Variation in the 1st and 2nd natural frequencies of the workpiece during 

machining 

 

 

At every cut, the variation in the natural frequencies of the workpiece shows a 

similar trend. The natural frequency of the workpiece increases until the workpiece 

is machined from the free end to the middle of the workpiece. Then, the frequency 

decreases while machining from the middle to the head of the workpiece. This 

behaviour can be explained by considering the respective stiffnesses of the part at 

the free and fixed ends. The material removed from the free end does not affect the 

stiffness of the beam as it is mainly determined by the workpiece thickness at the 

fixed end. Thus, the removed mass from the free end results in increased natural 

frequencies. The situation is the opposite for the fixed end where the removed 

material results in significant loss of stiffness. However, since the motion is quite 

limited at this location the removed mass does not affect the inertial forces. Thus, 

the mass removal from the fixed end results in reduced natural frequencies.   
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Figure 4.19 Variation of the peak FRF amplitudes of the workpiece at the 1st and 

2nd natural modes  

 

 

Change in the magnitude of the FRFs of the workpiece shows an expected 

behaviour as mentioned in Section 4.2.1.4 The FRF values of the workpiece 

decrease as the location is varied from the free end to the fixed end of the 

workpiece.  

 

 

4.2.1.7 Variation of the Stable Spindle Speeds and Depth of Cuts  

 

 

In this section, the effect of the variation of the part dynamics as a result of the 

mass removal on stability is analyzed in terms of stable depth of cut values and 

corresponding spindle speeds. The variation in maximum stable depth of cut and 

spindle speeds for the 1st and 2nd lobes of the stability diagram are given in Figure 

4.20 and 4.21 for different machining steps. 
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Figure 4.20 Variation of the stable depth of cuts for the 1st and 2nd stability lobes 

during machining of the workpiece 
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Figure 4.21 Variation of the spindle speeds corresponding to the 1st and 2nd lobes 

during machining of the workpiece 

 

 

The variation patterns for the stable spindle speeds and depth of cuts in the first 

and the second lobes can be explained by examining the FRF variations during 

machining as presented in the previous sections. For instance, in the roughing cut 

from 1st step to 4th step, since the FRFs of the workpiece are higher than the FRFs 

of the tool at these locations, the workpiece dynamics become dominant in the 

overall FRFs of the system. However, the amplitude of the workpiece’s FRFs 

reduces due to the movement of the locations where the FRFs calculated from free 

end to the middle of the workpiece, and the stable depth of cuts in the 1st and 2nd 

lobes take higher values. After the 4th step, the FRFs of the tool become more 

flexible than the workpiece and the variation in the stable depth of cuts and speeds 

nearly remains constant. The same trend can be observed in the semifinishing cut 

as well. In the finishing cut, the workpiece becomes very flexible and the increase 

in the stable depth of cuts continues until the 7th step, as the workpiece FRFs are 

still dominant according to those of the tool. After this step, the FRFs of the tool 

start to dominate stability and due to the flexibility of tool the stable depth of cuts 

decreases. 

 

If the stable depth of cuts at the same locations but different cutting cycles are 

compared from the roughing cut to the finishing cut, stable depths become smaller 

between 1st - 4th step locations due to increase in the flexibility of the workpiece. In 

the roughing and the semifinishing cut the stable depth of cuts take nearly same 

values at between 5th and 9th step locations, since only the tool dynamics affect the 

stability. In the finishing cut until the 7th step, the workpiece dynamics dominate 

the stability curve and stable axial depth of cuts get higher values than the other 

two cuts. From 7th step to the fixed end, the tool start to affect the stability and the 

stable depth values reduce. 
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The spindle speeds corresponding to stable depth of cuts nearly remain constant at 

the roughing and the semifinishing cut; only at the 1st and 2nd steps of these cuts a 

decrease is observed. These locations are the most effective regions of the FRFs of 

the workpiece on stability and the flexibility of the workpiece causes these falls in 

Figure 4.21. In the finishing cut the decrease in the spindle speeds of the lobes 

corresponds to the machining from the 1st step to 4th step. Since the workpiece 

becomes significantly flexible at these steps of the machining, the decrease is 

observed in a wider region of the machining process than other two cuts. Also 

another observation from the Figure 4.20 and 4.21 is that the machining steps in 

which the stable depth of cuts show a fall in value are the common with the steps 

in which the spindle speeds decrease. 

 

In conclusion, the variations in chatter-free depth of cuts and spindle speeds are 

consistent with the variation in the workpiece dynamics, and the influence of the 

workpiece flexibility on the chatter stability can be observed easily when the 

workpiece is as flexible as the tool.  

 

 

4.2.1.8 Minimum Chatter-Free Machining Time 

 

 

As mentioned before, chatter is one of the most important limitations on the 

productivity and the part quality. Performing stability analysis to predict chatter-

free depth of cuts at the high spindle speeds becomes very important to increase 

the stable mass removal rate. This will lead to minimized machining time 

increasing the productivity. In this study, two methods are used in order to 

determine the possible minimum chatter-free machining time of the workpiece.  

 

In the first method, one common maximum chatter-free depth of cut and the 

corresponding spindle speed values are identified for every cut, and used for the 

whole cut. In order to find the common maximum depth of cut value, all the 
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stability diagrams are drawn on one graph for the considered cut such as roughing.  

Firstly, at the first lobe, a common peak point is determined on the graph as shown 

in Figure 4.22. After finding this point from the data exactly, 80 percent of the 

depth of cut value at this point can be taken as the maximum chatter-free depth of 

cut. If this value is lower than the common peak point at the 2nd lobe, the same 

procedure is repeated for this lobe. Using the depth of cut and corresponding 

spindle speed values, the machining time is calculated. The maximum stable depth 

of cut and spindle speed combination in the stability lobes give the minimum time. 
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Figure 4.22 Graphical representation of the first method used for machining 

conditions for minimum machining time 

 

 

In the second method, for every step of a cut, the possible maximum depth of cut 

and the corresponding spindle speed are identified, and used for that specific pass. 

After finding the maximum stable depth of cut and corresponding spindle speed of 

every step of a cut as shown in Figure 4.23, total time of the corresponding cut is 

determined by summing the machining time of all steps of a cut. 

 

Maximum 
common point 

1.lobe 

2.lobe 
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Figure 4.23 Graphical representation of the second method for machining 

conditions for minimum machining time 

 

 

Machining time in a milling process is given as, 

 

f

w

m
V

l
nopt .=                                                                                                        (4.1) 

 

where mt  is machining time,  

           nop  is number of pass(step),  

           wl  is cutting length at one pass(step) and  

          fV  is feed rate. 

 

fV  can be found as 

 

ttf nfNV ..=                                                                                                        (4.2) 
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where N is the number of teeth(flutes) of the cutter, 

          tf  is feed per tooth (in  mm/rev per tooth) 

          tn  is rotational frequency of the cutter(in rpm). 

 

In machining time calculations, tf  is taken as 0.15 for roughing cut and 0.10 for 

semi-finishing and finishing cuts. These values are used for all cases as the effect 

of the feed on the stability is minimal. N is taken as 4 assuming a 4 fluted milling 

cutter, and wl  is 50 mm in the beam model. nop is determined by dividing the 

length of the workpiece (100 mm in the beam model) to the maximum axial depth 

of cut and tn  is taken maximum spindle speed corresponding maximum axial 

depth of cut. 

 

For example, if the semi-finishing cut of the workpiece given in Section 4.2.1 is 

considered, the graph of the stability diagrams at every step of the semi-finishing 

cut is determined as shown in Figure 4.24. By the help of this graph, the maximum 

common chatter-free depth of cut and the corresponding speed are determined. In 

the first lobe, the depth of cut and the spindle speed are in the ranges of 1.60-1.64 

mm and 6400-6450, respectively. Because this point is at the intersection of the 

stability curve of B20 and B22, more exact values of the intersection point is found 

by using the data points used in the stability diagram. In this case, the depth of cut 

at the intersection is found as 1.62 mm at 6420 rpm. Then taking 80 percent of the 

depth of cut value as a safety factor, the stable depth of cut is obtained as 1.29 mm. 

In order to find the spindle speed which is at the middle of this intersection lobe 

exactly, the intersection speeds of this lobe must be determined. For this purpose, 

all intersection speeds which have the determined maximum common stable depth 

of cut value (1.29 mm in this case) on the each stability curve of a corresponding 

cut are found as shown in Figure 4.25.  The maximum of the lower spindle speeds 

of the stability curves and the minimum of the higher spindle speeds of the 

stability curves are selected in order to find the middle of the inner intersection 

lobe. In this case, they are found as 6286 and 6540 rpm. Taking the average of 

these speeds, optimum (middle) spindle speed is calculated as 6413 rpm as shown 



   
 58 

in Figure 4.26. At the end, optimum depth of cut and spindle speed are determined 

as 1.29 mm and 6413 rpm. 
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Figure 4.24 Stability diagrams at every step of the semi-finishing cut 
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Figure 4.25 Spindle speeds values of the stability curves at the first lobe at the 

depth of cut = 1.29 mm  

Maximum 
common peak 

d.o.c = 1.29mm line 



   
 59 

 

 

 

Figure 4.26 Average spindle speed of inner intersection lobe at the depth of cut of 

1.29 mm  

 

 

After the optimum depth of cut and spindle speed values are determined, nop  can 

be found as  

 

 78
29.1

100

cut ofdepth  axial maximum
=








=








= roundup

L
roundupnop            (4.3) 

 

By taking N , the number of the teeth of the cutter as 4, tf  the feed per tooth as 

0.1 and using the optimal spindle speed 6413 rpm, feed rate can be calculated as 

 

mm/min 2.256564131.04.. === xxnfNV ttf                                                  (4.4) 
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Then the machining time of the semi-finishing cut by using one common depth of 

cut and spindle speed is found as 

 

min52.1
2.2565

50
.78. ===

f

w

m
V

l
nopt                                                                 (4.5) 

 

By applying the same procedure to determine one common depth of cut and 

spindle speed at every cut, the machining time values are found as shown in Table 

4.1. 

 

 

Table 4.1 Machining time calculation parameters at every cut 

  
Spindle 
speed(rpm) 

Depth of 
cut(mm) nop 

Feed per 
tooth Time(min)  

Roughing cut 8940 3.32 31 0.15 0.29 

Semi-finishing cut 6413 1.29 78 0.1 1.52 

Finishing cut 3143 0.53 189 0.1 7.52 

    Total time 9.33 

 

 

If maximum chatter-free depth of cut and spindle speed are found for every 

step(pass) in one cut using the second method, the results are found as shown in 

Table 4.2-4.4. B10, B20 and B30 correspond to the first machining steps of the 

roughing, semifinishing and finishing cuts. Here “0”(zero) means that the FRFs of 

unmachined workpiece at every cut  is used in order to determine stability limit 

curve.  

 

 

Table 4.2 Machining time calculation parameters at the roughing cut 

Roughing cut 
Spindle 

speed(rpm) 
Depth of 
cut(mm) 

nop 
Feed per 

tooth 
Time(min) 

B10 8753 4.45 3 0.15 0.03 

B11 8978 3.82 4 0.15 0.03 

B12 9068 3.63 3 0.15 0.03 

B13 7568 6.77 2 0.15 0.02 
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B14-B19 8213 16.10 4 0.15 0.04 

    Total time 0.15 

 

 

Table 4.3 Machining time calculation parameters at the semi-finishing cut 

Semi-finishing 
cut 

Spindle 
speed(rpm) 

Depth of 
cut(mm) nop 

Feed per 
tooth Time(min)  

B20 6240 2.01 5 0.1 0.10 

B21 6675 2.02 5 0.1 0.09 

B22 7508 3.00 4 0.1 0.07 

B23 7868 5.13 2 0.1 0.03 

B24 7965 7.59 2 0.1 0.03 

B25 7830 8.25 2 0.1 0.03 

B26-B29 8220 16.71 3 0.1 0.05 

    Total time 0.40 

 

 

Table 4.4 Machining time calculation parameters at the finishing cut 

Finishing cut 
Spindle 
speed(rpm) 

Depth of 
cut(mm) nop 

Feed per 
tooth Time(min)  

B30 3047 0.90 12 0.1 0.49 

B31 3255 0.88 12 0.1 0.46 

B32 3465 1.37 8 0.1 0.29 

B33 3683 1.85 6 0.1 0.20 

B34 3743 2.87 4 0.1 0.13 

B35 7290 11.83 1 0.1 0.02 

B36 7275 11.99 1 0.1 0.02 

B37-B39 8190 44.53 1 0.1 0.02 

    Total time 1.63 

 

 

Full machining time can be found in the second method as, 

 

           Full machining time = 0.15 + 0.40 + 1.63 = 2.18 min = 130.8 s              (4.6) 

 

As shown in Table 4.1, full machining time is found as 9.33 minutes (559.8 s) if 

the first method is used. As a result, taking maximum depth of cut and spindle 

speed at every step of the process reduced the machining time to one forth of the 

time compared to the case where one common depth of cut and spindle speed are 

used for every cutting cycle. Using the stability lobe diagrams found by combining 
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the FRFs of the tool and the workpiece, the maximum chatter-free values can be 

calculated at the intermediate stages of the process, and the machining time can be 

shortened significantly. 

 

 

4.2.1.9 Effect of the Different Radial Depths of Cuts on the Stable Machining 

Time 

 
 
 
In this section the effect of the radial depth of cut on the stability is discussed and 

the results of the previous section are compared with the new machining process 

which has the different radial depths at the roughing, semifinishing and finishing 

cuts. 

 

The same beam and tool-holder-spindle models in Section 4.2.1 are used in this 

machining process. 

 

 

4.2.1.9.1 Machining with Different Radial Depth of Cut  

 

 

The machining with different radial depth of cut than the previous section is 

studied in this section. Again the machining consists of three main cuts: 

 

- Roughing cut : Thickness of the workpiece is reduced from 15 mm to 8 

mm (radial depth of cut = 7 mm) completely. 

 

- Semi-finishing cut : Thickness of the workpiece is reduced from 8 mm to 4 

mm(radial depth of cut = 4 mm) completely. 
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- Finishing cut : Thickness of the workpiece is reduced from 4 mm to 3 

mm(radial depth of cut = 1 mm) completely. 

 

Again the axial depth of cut is taken as 10 mm as an initial assumption so that the 

workpiece is machined in 10 steps per cut (pass). The FRFs of the workpiece at the 

first step of the machining at the previous section and at this section are compared 

according to the roughing, semifinishing and finishing cuts. In the figures the 

graphs with “n” subscript which stands for “new machining” represent the FRFs of 

the workpiece at the machining explained in this section. 

 

The FRFs of the workpiece at the previous and the new machining of the 1st steps 

of the roughing, semifinishing and finishing cuts are given in Figure 4.27, 4.28 and 

4.29 respectively. 
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Figure 4.27 The FRFs of the workpiece at the first step of the roughing cut of the 

previous and new machining process 
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Figure 4.28 The FRFs of the workpiece at the first step of the semifinishing cut of 

the previous and new machining process 
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Figure 4.29 The FRFs of the workpiece at the first step of the finishing cut of the 

previous and new machining process 
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As shown in Figure 4.28 and 4.29, The FRFs of the workpiece at the semifinishing 

and finishing cuts of the new machining are higher than those of the previous 

machining. Only at the roughing cut the FRFs of the workpiece are at the same 

level in both machining. The reason is that the thickness of the unmachined region 

of the beam is the same at the roughing cut, whereas this thickness is lower at the 

new machining than the previous one at the other two cuts.  

 

The stability diagrams including the FRFs of the workpiece at the first steps of the 

roughing, semifinishing, finishing cut at the previous and new machining are given 

in Figure 4.30, 4.31 and 4.32, respectively.  
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Figure 4.30 The stability diagram including the FRFs of the workpiece at the first 

step of the roughing cut of the previous and new machining process 
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Figure 4.31 The stability diagram including the FRFs of the workpiece at the first 

step of the semifinishing cut of the previous and new machining process 
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Figure 4.32 The stability diagram including the FRFs of the workpiece at the first 

step of the finishing cut of the previous and new machining process 
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From these results, it can be concluded that the stability values of the high speeds 

in the semifinishing reduce at the new machining since the workpiece is more 

flexible at the new machining due to thinner unmachined thickness of the 

workpiece. In the semifinishing cut, the peak stability of the new machining is 

higher because of smaller radial depth of cut value. In the roughing cut the 

absolute and peak stability also get lower at the new machining due to the larger 

radial depth of cut. 

 

 

4.2.1.9.2 Minimum Chatter-Free Machining Time 

 

 

In this section the chatter-free machining time of the new process is calculated 

using the two methods mentioned in Section 4.2.1.8. 

 

The machining time found using the first method is given in Table 4.5. 

 

Table 4.5 Machining time calculation parameters at every cut using first method 

 
Spindle 

speed(rpm) 
Depth of 
cut(mm) 

nop 
Feed per 

tooth 
Time(min) 

Roughing cut 9135 1.92 53 0.15 0.48 

Semi-finishing cut 5138 0.79 126 0.1 3.07 

Finishing cut 2465 1.03 98 0.1 4.97 

    Total time 8.52 

 

 

The machining times of the roughing, semifinishing and the finishing cut found by 

using the second method are given in Table 4.6, 4.7 and 4.8, respectively. 

 

 

Table 4.6 Machining time calculation parameters at the roughing cut 

Roughing cut 
Spindle 

speed(rpm) 
Depth of 
cut(mm) 

nop 
Feed per 

tooth 
Time(min) 

B10 8768 3.11 4 0.15 0.04 
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B11 9158 2.35 5 0.15 0.05 

B12 9293 2.09 5 0.15 0.04 

B13 8168 16.74 1 0.15 0.01 

B14-B19 8228 13.55 5 0.15 0.05 

    Total time 0.19 

 

 

Table 4.7 Machining time calculation parameters at the semifinishing cut 

Semi-finishing cut 
Spindle 

speed(rpm) 
Depth of 
cut(mm) 

nop 
Feed per 

tooth 
Time(min) 

B20 4695 1.11 10 0.1 0.27 

B21 5528 1.41 8 0.1 0.18 

B22 6023 2.01 5 0.1 0.10 

B23 6023 2.52 4 0.1 0.08 

B24 6638 2.42 5 0.1 0.09 

B25 20600 26.60 1 0.1 0.01 

B26-B29 8228 24.47 2 0.1 0.03 

    Total time 0.76 

 

 

Table 4.8 Machining time calculation parameters at the finishing cut 

Finishing cut 
Spindle 

speed(rpm) 
Depth of 
cut(mm) 

nop 
Feed per 

tooth 
Time(min) 

B30 2444 1.04 10 0.1 0.51 

B31 2553 1.36 8 0.1 0.39 

B32 2651 2.15 5 0.1 0.24 

B33 2723 3.42 3 0.1 0.14 

B34 2720 5.28 2 0.1 0.09 

B35 4508 6.10 2 0.1 0.06 

B36 12945 62.84 1 0.1 0.01 

B37 13260 74.56 1 0.1 0.01 

B38 8228 150.34 1 0.1 0.02 

B39 8198 110.58 1 0.1 0.02 

    Total time 1.49 

 

 

Full machining time can be found in the second method as, 

 

           Full machining time = 0.19 + 0.76 + 1.49 = 2.44 min = 146.4 s            (4.7) 

 

The machining times found in the previous section where the radial depth of cuts 

are 5 mm, 5 mm, 2 mm in the roughing, semifinishing and finishing cuts 
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respectively are compared with those found in this section where the radial depth 

of cuts are 7 mm, 4 mm, 1 mm in the roughing, semifinishing and finishing cuts 

respectively. The machining times determined by using the first method at the two 

machining processes are given in Table 4.9. 

 

 

Table 4.9 Machining time calculation parameters at every cut of the previous and 

new machining using first method 

 Previous Machining  New Machining  

 
Spindle 

speed(rpm) 
Depth of 
cut(mm) 

Time 
(min) 

Spindle 
speed(rpm) 

Depth of 
cut(mm) 

Time 
(min) 

Roughing cut 8940 3.32 0.29 9135 1.92 0.48 

Semi-
finishing cut 

6413 1.29 1.52 5138 0.79 3.07 

Finishing cut 3143 0.53 7.52 2465 1.03 4.97 

  
Total 

time(min) 
9.33  

Total 
time(min) 

8.52 

 

 

In the roughing cut, it can be seen that the new machining takes longer time than 

the previous machining. Since the radial depth of the cut in the new machining (7 

mm) is larger than that in the previous machining (5 mm), the stable axial depth of 

cut is lower in the new machining according to the previous one. As a result, the 

machining takes long with the new machining strategy. 

 

In the semifinishing cut, again the machining time is longer in the new process. 

The reason for that is the difference in the flexibility of the workpiece in the 

semifinishing cuts of the two machining processes as shown in Figure 4.28. The 

thickness of the workpiece at the beginning of the semifinishing cut in the new 

machining is 8 mm as this value is 10 mm in the previous machining. Thus the 

stable axial depth of cut value is smaller in the new machining due to the 

workpiece flexibility and the machining takes longer. 
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In the finishing cut, the effect of the radial depth of cuts is observed on the 

machining time again. The new machining with smaller radial depth of cut (1 mm) 

takes shorter time than the previous machining with radial depth of cut of 2 mm. 

 

The machining times determined by using the second method at the two machining 

processes are given in Table 4.10, 4.11 and 4.12. 

 

 

Table 4.10 Machining time calculation parameters in the roughing cut of the 

previous and new machining using second method 

 Previous Machining  New Machining  

Roughing cut 
Spindle 

speed(rpm) 
Depth of 
cut(mm) 

Time 
(min) 

Spindle 
speed(rpm) 

Depth of 
cut(mm) 

Time 
(min) 

B10 8753 4.45 0.03 8768 3.11 0.04 

B11 8978 3.82 0.03 9158 2.35 0.05 

B12 9068 3.63 0.03 9293 2.09 0.04 

B13 7568 6.77 0.02 8168 16.74 0.01 

B14-B19 8213 16.10 0.04 8228 13.55 0.05 

 
 

Total 
time 

0.15  
Total 
time 

0.19 

 

 

Table 4.11 Machining time calculation parameters in the semifinishing cut of the 

previous and new machining using second method 

 Previous Machining  New Machining  

Semifinishing 
cut 

Spindle 
speed(rpm) 

Depth of 
cut(mm) 

Time 
(min) 

Spindle 
speed(rpm) 

Depth of 
cut(mm) 

Time 
(min) 

B20 6240 2.01 0.10 4695 1.11 0.27 

B21 6675 2.02 0.09 5528 1.41 0.18 

B22 7508 3.00 0.07 6023 2.01 0.10 

B23 7868 5.13 0.03 6023 2.52 0.08 

B24 7965 7.59 0.03 6638 2.42 0.09 

B25 7830 8.25 0.03 20600 26.60 0.01 

B26-B29 8220 16.71 0.05 8228 24.47 0.03 

 
 

Total 
time 

0.40  
Total 
time 

0.76 
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Table 4.12 Machining time calculation parameters in the finishing cut of the 

previous and new machining using second method 

 Previous Machining   New Machining  

Finishing 
cut 

Spindle 
speed 
(rpm) 

Depth of 
cut(mm) 

Time 
(min) 

Finishing 
cut 

Spindle 
speed 
(rpm) 

Depth of 
cut(mm) 

Time (min) 

B30 3047 0.90 0.49 B30 2444 1.04 0.51 

B31 3255 0.88 0.46 B31 2553 1.36 0.39 

B32 3465 1.37 0.29 B32 2651 2.15 0.24 

B33 3683 1.85 0.20 B33 2723 3.42 0.14 

B34 3743 2.87 0.13 B34 2720 5.28 0.09 

B35 7290 11.83 0.02 B35 4508 6.10 0.06 

B36 7275 11.99 0.02 B36 12945 62.84 0.01 

B37-B39 8190 44.53 0.02 B37 13260 74.56 0.01 

    B38 8228 150.34 0.02 

    B39 8198 110.58 0.02 

 
 Total time 1.63   

Total 
time 

1.49 

 
 

Full 
machining 

time 
2.18   

Full 
machinin

g time 
2.44 

 

 

The trend observed in the machining times of the previous and new machining 

when the first method is used can be observed in the machining times determined 

when the second method is used. The machining times are generally reduced in the 

second method. In the roughing cut, the new machining takes longer time as shown 

in Table 4.10 due to the larger radial depth of cut as mentioned before. In the 

semifinishing cut, due to more flexible workpiece in the new machining, more 

time spends in the new process. As in the first method, in the finishing cut the 

machining time of the new process is shorter than the time of the previous process 

because of the smaller radial depth in the new machining. In the total machining 

time, the previous machining takes shorter with a small difference.  From these 

results it can be said that the machining time can be minimized by using the effects 

of the radial depth of cut and the workpiece flexibility. Also taking higher radial 

depth in the roughing cut has small effect on the machining time due to the same 

starting thickness of the workpiece and this property can be used to shorten the 

machining time by higher mass removal in the roughing cut. 
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4.2.1.10 Effect of the Different Cutting Strategies on the Stable Machining 

Time 

 

 

In this section the effect of the cutting patterns on the stability is discussed and the 

results of the two machining with previous cutting strategy are compared with 

those of the machining with new cutting strategy. 

 

In Section 4.2.1.8 and 4.2.1.9, the thickness of the workpiece is reduced through 

the length of the workpiece uniformly. For instance, at the end of the roughing cut 

with a radial depth of cut of 5 mm the workpiece’s thickness is reduced from 15 

mm to 10 mm everywhere. This cutting pattern can be called as “layer removal”. 

 

In the new cutting strategy the workpiece’s thickness is reduced to its final 

thickness at the same location. For instance at the first step the thickness of the free 

end of the workpiece is reduced from 15 mm to 10 mm. At the second step, the 

thickness of the same location is reduced from 10 mm to 5 mm and at the third step 

this thickness is reduced to 3 mm at the same location as shown in Figure 4.33. 

Thus the thickness of the end of the workpiece takes the final value of the 

machining. After that step, the same process is done at the next location of the 

workpiece. At the end of the whole process, the workpiece has a thickness of 3 mm 

everywhere. This cutting pattern can be called as “step removal”. 

 

The same beam and tool-holder-spindle models in Section 4.2.1 are used in this 

machining process. 
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1. STEP B1

2. STEP B2

3. STEP B3

Figure 4.33 Beam models at the end of 1st, 2nd and 3rd steps in the “step removal” 

cutting 

 

 

4.2.1.10.1 Machining with Step Removal  

 

 

The step removal machining is studied in this section. Again in the roughing, 

semifinishing and finishing steps the radial depths are 5 mm, 5 mm and 2 mm 

respectively. 

 

Again the axial depth of cut is taken as 10 mm as an initial assumption. The FRFs 

of the workpiece at the first, second, third steps of the “step removal” and those at 

the first steps of the “layer removal” in the roughing, semifinishing, finishing cuts 

are compared. In the figures the graphs with “s” subscript stand for “step removal” 

machining, the graphs with “l” subscript stand for “layer removal” machining. 
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The FRFs of the workpiece at the 1st step of the roughing cut of the layer removal 

and at the first step of the step removal are given in Figure 4.34. 
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Figure 4.34 The FRFs of the workpiece at the 1st step of the roughing cut of the 

layer removal and at the 1st step of the step removal 

 

 

The FRFs of the workpiece at the first step of the step removal are higher than 

those at the first step of the roughing cut of the layer removal since the locations 

where the FRFs of the workpiece calculated are different at two methods. Due to 

the different machining strategies, the FRFs of the workpiece at the 1st step of the 

step removal are calculated at the free end of the workpiece (at the 10th node of the 

beam model) as the FRFs of the workpiece at the first step of the roughing cut of 

the layer removal are calculated at the first location of the workpiece (at the 9th 

node of the beam model). Thus the magnitudes of the FRFs at the step removal are 

higher due to high workpiece flexibility at the free end. In addition, the peaks of 

the two FRFs are at the same frequencies since the geometry of the workpiece is 

exactly the same. 
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The FRFs of the workpiece at the 1st step of the semifinishing cut of the layer 

removal and at the 2nd step of the step removal are given in Figure 4.35. 
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Figure 4.35 The FRFs of the workpiece at the 1st step of the semifinishing cut of 

the layer removal and at the 2nd step of the step removal 

 

 

Since unmachined thickness of the workpiece is higher at the second step of the 

step removal (15 mm), the workpiece is more rigid at the step removal. As a result 

the workpiece at the first step of the semifinishing cut of the layer removal has the 

higher FRF levels and lower natural frequency due to high flexibility of the 

workpiece. 

 

The FRFs of the workpiece at the 1st step of the finishing cut of the layer removal 

and at the 3rd step of the step removal are given in Figure 4.36. 
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Figure 4.36 The FRFs of the workpiece at the 1st step of the finishing cut of the 

layer removal and at the 3rd step of the step removal 

 

 

The same behaviour at the semifinishing cut of the layer removal is observed at 

this step. At the 3rd step of the step removal the FRFs of the workpiece is the 

nearly the same with the previous steps since the thickness of  the unmachined 

region is still 15 mm and the flexibility of the workpiece does not increase 

significantly. However, at the first steps of the every cut of the layer removal the 

workpiece gets more flexible due to the layer mass removal which means that the 

unmachined region of the workpiece gets thinner at each cut of the layer removal.  

 

The stability diagram including the FRFs of the workpiece at the 1st step of the 

roughing cut at the layer removal and at the 1st step of the step removal are given 

in Figure 4.37.  
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Figure 4.37 The stability diagram including the FRFs of the workpiece at the 1st 

step of the roughing cut of the layer removal and at the 1st step of the step removal  

 

 

As shown in Figure 4.37 the stability curves of the first steps of the layer and the 

step removal are nearly the same as expected from the FRFs of the workpiece at 

these machining steps as seen in Figure 4.34. Only some peak stabilities are 

smaller at the 1st step of the step removal due to the higher workpiece FRFs.  

 

The stability diagrams including the FRFs of the workpiece at the 1st step of the 

semifinishing cut at the layer removal and at the 2nd step of the step removal are 

given in Figure 4.38.  
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Figure 4.38 The stability diagrams including the FRFs of the workpiece at the 1st 

step of the semifinishing cut of the layer removal and at the 2nd step of the step 

removal 

 

 

The stability curve including the workpiece effect at the 2nd step of the step 

removal is higher than that at the 1st step of the semifinishing cut of the layer 

removal. This is due to the fact that the workpiece is more rigid and has lower 

FRFs at the 2nd step of the step removal as seen in Figure 4.35. 

 

The stability diagram including the FRFs of the workpiece at the 1st step of the 

finishing cut at the layer removal and at the 3rd step of the step removal are given 

in Figure 4.39.  
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Figure 4.39 The stability diagram including the FRFs of the workpiece at the 1st 

step of the finishing cut of the previous and new machining process 

 

 

Since only the thickness of the free end of the workpiece reduces at the step 

removal, as in the layer removal the whole workpiece gets thinner, the stability 

values at the 3rd step of the step removal are higher as shown in Figure 4.39. 

 

From these results, it can be observed that the stability values of the step removal 

machining are higher due to the cutting pattern which keeps the unmachined 

region of the workpiece at the maximum thickness. It can be concluded that the 

machining time becomes shorter in the step removal process. 

 

 

4.2.1.10.2 Minimum Chatter-Free Machining Time 

 

 

In this section the chatter-free machining time of the step removal process is 

calculated using the second method mentioned in Section 4.2.1.8. 
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The machining times of the step removal found by using the second method are 

given in Table 4.13. In this table, B1_0, B1_1 and B1_2 stand for the 1st step of the 

roughing, semifinishing and finishing cut of the step removal, respectively.  

 

 

Table 4.13 Machining time calculation parameters at the step removal process 

using second method 

All_steps 
Spindle 
speed(rpm) 

Depth of 
cut(mm) nop 

Feed 
per 
tooth Time(min)  

B1_0 8745 4.46 3 0.15 0.03 

B1_1 9105 3.27 4 0.1 0.05 

B1_2 11160 7.49 2 0.1 0.02 

B2_0 7365 6.11 2 0.15 0.02 

B2_1 7643 10.93 1 0.1 0.02 

B2_2 12765 15.84 1 0.1 0.01 

B3_0 8363 12.76 1 0.15 0.01 

B3_1 13890 9.16 2 0.1 0.02 

B3_2 14115 41.68 1 0.1 0.01 

B4_0 8190 22.10 1 0.15 0.01 

B4_1 8190 22.07 1 0.1 0.02 

B4_2 8175 64.91 1 0.1 0.02 

B5_0 8205 21.27 1 0.15 0.01 

B5_1 8205 21.26 1 0.1 0.02 

B5_2 8250 38.72 1 0.1 0.02 

B6_0 8228 19.60 1 0.15 0.01 

B6_1 8228 19.60 1 0.1 0.02 

B6_2 8225 52.08 1 0.1 0.02 

B7_0 8235 19.45 1 0.15 0.01 

B7_1 8235 19.49 1 0.1 0.02 

B7_2 8220 51.65 1 0.1 0.02 

B8_0 8235 19.16 1 0.15 0.01 

B8_1 8228 19.16 1 0.1 0.02 

B8_2 8220 51.27 1 0.1 0.02 

B9_0 8235 19.11 1 0.15 0.01 

B9_1 8235 19.11 1 0.1 0.02 

B9_2 8228 51.03 1 0.1 0.02 

B10_0 8235 19.08 1 0.15 0.01 

B10_1 8235 19.08 1 0.1 0.02 

B10_2 8228 50.89 1 0.1 0.02 

    
Total 
time 

0.48 
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Full machining time of the step removal process is 0.48 minutes as seen from 

Table 4.13 as this value is 2.18 minutes in the layer removal process in Section 

4.2.1.8. The layer removal machining takes 4.5 times longer than the step removal 

process and it means that to machine such a workpiece can be shortened very 

significantly using the step removal process. The similar cutting patterns can be 

developed by examining the workpiece geometry, its cutting and boundary 

conditions in detail and the machining time can be minimized using both 

maximum stability values from the stability diagrams and selecting an efficient 

cutting strategy. 

  

The step removal process is also applied to the machining with different radial 

depth of cuts (7 mm, 4 mm, 1 mm) at the roughing, semifinishing and finishing 

cuts. This machining was explained in Section 4.2.1.9.1 in detail. In this section, 

this machining process is performed by the step removal cutting strategy and the 

machining times obtained are given in Table 4.14.    

 

 

Table 4.14 Machining time calculation parameters at the step removal process of 

the machining with different radial depth of cuts using second method 

All_steps 
Spindle 
speed(rpm) 

Depth of 
cut(mm) nop 

Feed per 
tooth Time(min)  

B1_0 8768 3.11 4 0.15 0.04 

B1_1 9105 3.69 3 0.1 0.04 

B1_2 11115 19.20 1 0.1 0.01 

B2_0 11985 2.16 5 0.15 0.03 

B2_1 12585 5.51 2 0.1 0.02 

B2_2 12690 49.78 1 0.1 0.01 

B3_0 13515 4.54 3 0.15 0.02 

B3_1 14040 13.86 1 0.1 0.01 

B3_2 13875 122.34 1 0.1 0.01 

B4_0 8190 14.90 1 0.15 0.01 

B4_1 8153 18.76 1 0.1 0.02 

B4_2 8220 222.05 1 0.1 0.02 

B5_0 8213 14.40 1 0.15 0.01 

B5_1 8205 27.24 1 0.1 0.02 

B5_2 8228 99.21 1 0.1 0.02 

B6_0 8228 13.88 1 0.15 0.01 

B6_1 8228 25.21 1 0.1 0.02 
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B6_2 8205 115.53 1 0.1 0.02 

B7_0 8235 13.82 1 0.15 0.01 

B7_1 8228 24.68 1 0.1 0.02 

B7_2 8205 113.83 1 0.1 0.02 

B8_0 8235 13.76 1 0.15 0.01 

B8_1 8228 24.42 1 0.1 0.02 

B8_2 8198 111.77 1 0.1 0.02 

B9_0 8235 13.70 1 0.15 0.01 

B9_1 8235 24.04 1 0.1 0.02 

B9_2 8168 97.04 1 0.1 0.02 

B10_0 8243 13.65 1 0.15 0.01 

B10_1 8228 24.50 1 0.1 0.02 

B10_2 8175 96.99 1 0.1 0.02 

 
   

Total 
time 

0.48 

 

 

As mentioned in Section 4.2.1.9.2, the machining time for this machining with 

layer removal was calculated by using the second method as 2.44 minutes. The 

same machining with the step removal strategy takes 0.48 minutes which is 1/5 of 

the machining time with layer removal.  

 

In both examples, the machining times reduce significantly using the step removal 

cutting strategy. Using the appropriate cutting patterns which can be found by 

studying the workpiece dynamics and maximum stability values in detail, the 

machining time can be minimized significantly. 

 

 

4.2.1.11 Summary of the Results of the Beam Model 

 

 

In Section 4.2.1, in order to see the effect of the thickness change of the workpiece 

at the same location, the FRFs of the workpiece and the stability diagrams at 

different cuts (roughing, semifinishing and finishing cuts) were compared. It was 

observed that the magnitudes of the workpiece’s FRFs take higher values as the 

workpiece becomes thinner and more flexible. Also the natural frequencies of the 

workpiece reduce with thinning workpiece due to the stiffness reduction of the 
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workpiece. The absolute and peak stability values decrease due to increased FRF 

amplitudes of the workpiece with thickness reduction. At the same time the spindle 

speeds corresponding to peaks of the stability curve take lower values due to 

reduced natural frequencies of the system. 

 

In addition, the variation of the workpiece FRF and the stability limits due to the 

change on the cutting location, i.e. the location where the workpiece’s FRFs are 

calculated, was studied. In order to see this effect the FRFs of the workpiece and 

the stability diagrams at different cutting steps (at different locations) were 

examined. It was observed that the FRFs of the workpiece take the highest values 

at the free end of the workpiece which is a cantilever beam, and the magnitudes of 

the FRFs reduce as the location of the FRFs changes from the free end to the fixed 

end of the workpiece. This is an expected result as the stiffness of the fixed end of 

the workpiece is higher than that of the free. The natural frequencies of the 

workpiece increase as the material is removed from the free end or near to the free 

end due to less stiffness reduction in removing the material from the free end. On 

the contrary the material removed from the fixed end results in decreasing natural 

frequencies due to significant stiffness loss. According to the FRF magnitudes of 

the workpiece relative to those of the tool, the absolute and peak stabilities become 

higher or lower during machining of the workpiece from the free end to the fixed 

end. The stability limits usually increase as machining from the free end to the 

middle of the workpiece, then they remain constant as machining from the middle 

to the fixed end since the FRFs of the workpiece become lower than those of the 

tool and the tool FRFs become dominant at the system FRFs. The similar change 

can be observed in the corresponding spindle speeds of the peaks of the stability 

curve. However, this may change depending on the workpiece and tool geometry 

and materials.   

 

In Section 4.2.1.8, the minimum chatter-free machining time values were 

calculated and studied in detail. Using both one common maximum stable depth of 

cut for every cut and one maximum stable depth of cut for every machining step, 

the machining times were estimated. From the results, it was concluded that 
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finding the maximum stable depth of cuts at higher speeds for every machining 

step reduces the machining time significantly and results in higher chatter-free 

productivity. 

 

The effect of using different radial depth of cuts on the stable machining was also 

studied. It is known that increasing the radial depth of cut results in decrease in the 

stable axial depth of cut. From the analysis of the stable machining times with 

different radial depths at different passes, it was concluded that taking higher radial 

depths in the first cut (roughing cut) can cause the reduction of the total machining 

time by decreasing the number of total machining steps. Taking lower radial 

depths in the final cuts (semifinishing/finishing cuts) results in the higher stable 

axial depth of cuts and shorter machining times. 

 

In addition to the cutting parameters, the machining strategy may also have 

significant effects on the variation of the workpiece dynamics and the stable 

machining time.  The effects of different cutting strategies on the stable machining 

time were analyzed using the beam model. The layer removal method which is the 

reduction of the workpiece’s thickness at everywhere equally in each cut was 

compared with the step removal method which is the reduction of the thickness to 

its final dimension by taking the material from the same location step-by-step. It 

should be mentioned here that this is only feasible when all passes, i.e. roughing, 

semi-finishing and finishing, are done using the same tool. Otherwise, step 

removal method is not feasible since the tool has to be changed at every step 

resulting in excessive tool change time. Since the thickness of the unmachined part 

of the workpiece remains its initial value, the FRFs of the workpiece in the step 

removal process take lower values in the machining steps compared to the layer 

removal. Also, the natural frequencies of the workpiece become higher at the step 

removal. It can be said that the machined workpiece is stiffer during the step 

removal machining compared to the layer removal process. Then it can be 

concluded that lower stable machining times can be obtained by considering 

different cutting methods. The machining times of the layer and step removal 
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processes with radial depth of cuts 5 mm, 5 mm, 2 mm at steps of the roughing, 

semifinishing and finishing respectively can be given in Table 4.15. 

 

 

Table 4.15 The machining times of the step and layer removal with the radial depth 

of cuts 5 mm, 5 mm, 2 mm of corresponding cuts 

 
Step 

Removal 
   

Layer 
Removal 

  

All_steps 
Spindle 

speed(rpm) 

Depth 
of 

cut(mm) 

Time 
(min) 

All steps 
Spindle 

speed(rpm) 

Depth 
of 

cut(mm) 

Time 
(min) 

B1_0 8745 4.46 0.03 B10 8753 4.45 0.03 

B1_1 9105 3.27 0.05 B11 8978 3.82 0.03 

B1_2 11160 7.49 0.02 B12 9068 3.63 0.03 

B2_0 7365 6.11 0.02 B13 7568 6.77 0.02 

B2_1 7643 10.93 0.02 B14-B19 8213 16.10 0.04 

B2_2 12765 15.84 0.01 B20 6240 2.01 0.10 

B3_0 8363 12.76 0.01 B21 6675 2.02 0.09 

B3_1 13890 9.16 0.02 B22 7508 3.00 0.07 

B3_2 14115 41.68 0.01 B23 7868 5.13 0.03 

B4_0 8190 22.10 0.01 B24 7965 7.59 0.03 

B4_1 8190 22.07 0.02 B25 7830 8.25 0.03 

B4_2 8175 64.91 0.02 B26-B29 8220 16.71 0.05 

B5_0 8205 21.27 0.01 B30 3047 0.90 0.49 

B5_1 8205 21.26 0.02 B31 3255 0.88 0.46 

B5_2 8250 38.72 0.02 B32 3465 1.37 0.29 

B6_0 8228 19.60 0.01 B33 3683 1.85 0.20 

B6_1 8228 19.60 0.02 B34 3743 2.87 0.13 

B6_2 8225 52.08 0.02 B35 7290 11.83 0.02 

B7_0 8235 19.45 0.01 B36 7275 11.99 0.02 

B7_1 8235 19.49 0.02 B37-B39 8190 44.53 0.02 

B7_2 8220 51.65 0.02     

B8_0 8235 19.16 0.01     

B8_1 8228 19.16 0.02     

B8_2 8220 51.27 0.02     

B9_0 8235 19.11 0.01     

B9_1 8235 19.11 0.02     

B9_2 8228 51.03 0.02     

B10_0 8235 19.08 0.01     

B10_1 8235 19.08 0.02     

B10_2 8228 50.89 0.02     

  
Total 
time 

0.48 
 

 Total 
time 

2.18 
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Comparing the machining times of every step is not appropriate here, since the 

location where the workpiece’s FRFs calculated is not the same at the mutual steps 

of the two processes. However, by looking at all steps in Table 4.15, the maximum 

stable axial depth of cuts and the spindle speeds are usually higher for the step 

removal process. Thus, the total machining time is also shorter for the step removal 

than the layer removal method. The same trend can be seen for different radial 

depth of cuts, i.e. 7 mm, 4 mm, 1 mm. The step removal machining takes 0.48 

minutes whereas with the layer removal takes 2.44 minutes. Also, it can be 

concluded that the radial depth of cuts of the machining are less effective at the 

step removal case as seen in the results of two cases.   

 

 

4.2.2 Plate Model of the Workpiece 
 

 

In order to obtain FRFs at different stages and locations of the workpiece during 

machining, secondly the workpiece is modeled as a plate in the FE program, MSC. 

Marc Mentat©.  

 

The plate model is shown in Figure 4.40 where the respective sizes are given 

follows:  

 

Length : 100 mm 

Width : 80 mm 

Thickness : 15 mm 

 

The material of the beam is steel with Young’s modulus of 200 GPa, Poisson’s 

ratio of 0.3 and the density of 7800 kg/m3. As mentioned in Section 3.3.1 the 

damping coefficients a  and b  are taken as 0.03 and 0.02 respectively. The 

boundary conditions of the plate are taken as fixed-free-free-free. 
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Figure 4.40 Plate model 

 

 

The workpiece is modeled in MSC. Marc Mentat© with shell elements (Element 

type 139) as shown in Figure 4.41. Each node of the shell element has 6 degrees of 

freedom (displacement in x axis, displacement in y axis, displacement in z axis, 

rotation in x axis, rotation in y axis and rotation in z axis) and the total degree of 

freedom of the model is 150 with 20 elements. 
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Figure 4.41 Plate model in MSC. Marc Mentat© 

 

 

4.2.2.1 Tool-Holder-Spindle Model 

 

 

As mentioned in Section 4.2.1.1, the same spindle-holder-tool combination and its 

tool point FRF is used to predict the stability diagrams of the plate model.  

 

 

4.2.2.2 Machining Process and FRFs of the Workpiece  

 

 

The workpiece is assumed to be machined in three main cutting cycles. These are 
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- Roughing cut : Thickness of the workpiece is reduced from 15 mm to 10 

mm (radial depth of cut = 5 mm) completely. 

 

- Semifinishing cut : Thickness of the workpiece is reduced from 10 mm to 

5 mm(radial depth of cut = 5 mm) completely. 

 

- Finishing cut : Thickness of the workpiece is reduced from 5 mm to 3 

mm(radial depth of cut = 2 mm) completely. 

 

The tangential and radial cutting force coefficients, Kt and Kr, used in order to 

determine the stability limits are taken as 626 MPa and 0.1597 respectively. As an 

initial assumption, the axial depth of cut is taken as 20 mm so that the workpiece is 

machined in 20 steps per cut and in a pass 4 steps are machined as shown in Figure 

4.42. As mentioned in Section 4.2.1.2, a similar coding convention is used in order 

to name the machining steps. For example, P15 stands for 5th step of the first cut 

(roughing cut). The machining steps of the workpiece in the roughing cut are 

shown in Figure 4.42. In order to see the variation of the dynamics of the plate 

clearly, the FRFs of the plate at the same location, but in different cuts are 

compared as done with the beam model. By comparing the FRFs of the workpiece 

in different cuts at the same location, the effects of the thickness change of the 

workpiece on the FRFs of the system and on the stability diagrams are studied. By 

comparing the FRFs of the workpiece at different locations, the effect of the 

location change during machining on the stability limits is also examined with case 

studies.  
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Figure 4.42 The machining steps of the plate model in the roughing cut 

 

 

4.2.2.3 FRFs of the Workpiece and Stability Diagrams at the First Step of the 

Cut 

 

 

In order to see the effect of the thickness change of the workpiece, the FRFs of the 

plate P11, P21 and P31 are drawn in Figure 4.43. The FRFs of the plate combined 

with the FRFs of the tool are given in Figure 4.44, to observe the effect of the 

FRFs of the workpiece on combined system FRFs. 
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Figure 4.43 FRFs of the workpiece at the end of first step of 1st, 2nd and 3rd cut 
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Figure 4.44 Combined FRFs of the workpiece and tool at the end of first step of 

1st, 2nd and 3rd cuts 
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As seen from Figure 4.43 and 4.44, the magnitude of the FRFs of the workpiece 

increases, as the workpiece becomes thinner as observed in the beam model. The 

natural frequencies of the workpiece become smaller while the thickness of the 

workpiece decreases as shown in Figure 4.43 due to increasing flexibility of the 

workpiece. 

 

The stability lobe diagrams including the changing dynamics of the workpiece at 

the end of the first step of the 1st, 2nd and 3rd cuts are shown in Figure 4.45. 
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Figure 4.45 Stability lobe diagram including the FRFs of the workpiece at the end 

of first step of 1st, 2nd and 3rd cuts 

 

 

As shown in Figure 4.45, the absolute stability limit which is the minimum value of 

stable depths, becomes lower, as the thickness of the workpiece is reduced. 

Similarly, the peak amplitudes of the stability limit curve decreases, and some 

lobes even disappear as the workpiece becomes thinner. The spindle speeds 

corresponding to the stability lobes usually move to lower speeds with increasing 

flexibility of the workpiece. It can be concluded that the reduction in the stiffness 
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of the workpiece causes a significant decrease in stable axial depths and speeds if 

the workpiece is much more flexible than the tool and the workpiece dynamics 

should include in the system FRFs used in stability calculations.  

 

 

4.2.2.4 FRFs of the Workpiece and Stability Diagrams at the Second Step of 

the Cut 

 

 

In order to see the effect of the thickness change of the workpiece, the FRFs of the 

plate P12, P22 and P32 are drawn in Figure 4.46. The FRFs of the plate combined 

with the FRFs of the tool are given in Figure 4.47 to see the variation in the 

combined system FRFs with changing workpiece thickness. 
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Figure 4.46 FRFs of the workpiece at the end of second step of 1st, 2nd and 3rd cuts 
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Figure 4.47 Combined FRFs of the workpiece and tool at the end of second step of 

1st, 2nd and 3rd cuts 

 

 

As can be seen in Figure 4.46, the peak FRFs of the workpiece are nearly the same 

as the peak FRFs at the 1st location of the workpiece in all cutting cycles. The only 

difference is the FRF magnitude of the 2nd natural frequency. Since the 2nd mode 

shape of the plate is the first torsional mode, the middle of the plate becomes the 

nodal line of the 2nd mode so that the peak of the FRF of 2nd natural frequency at 

second location is not seen clearly. As a result, the 2nd mode does not affect the 

stability at this location.  

 

The stability lobe diagrams including the changing dynamics of the workpiece at 

the end of the second step of 1st, 2nd and 3rd cuts are shown in Figure 4.48. 
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Figure 4.48 Stability lobe diagram including the FRFs of the workpiece at the end 

of second step of 1st, 2nd and 3rd cuts 

 

 

As shown in Figure 4.48, the stability curves at the second location are not very 

different than the first location, only the peak amplitudes of the stability curve are 

lower than those of the first location due to the reduction in the workpiece’s 

thickness. 

 

 

4.2.2.5 FRFs of the Workpiece and Stability Diagrams at the Ninth Step of the 

Cut  

 

 

In order to see the effect of the thickness change of the workpiece, the FRFs of the 

plate P19, P29 and P39 are drawn in Figure 4.49. The FRFs of the plate combined 

with the FRFs of the tool are given in Figure 4.50 to see the variation in the 

combined system FRFs with changing workpiece thickness. 
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Figure 4.49 FRFs of the workpiece at the end of ninth step of 1st, 2nd and 3rd cuts 
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Figure 4.50 Combined FRFs of the workpiece and tool at the end of ninth step of 

1st, 2nd and 3rd cuts 
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As shown in Figure 4.49, the peak FRFs of the workpiece are less than the peak 

FRFs at the free end ( at the 1st and 2nd  location) of the workpiece in all cutting 

cycles due to the boundary conditions as mentioned in Section 4.2.1.4. Since the 

workpiece is stiffer at the middle, its FRFs become lower than those at the free end 

of the workpiece although the workpiece gets thinner. Similarly it can be observed 

that the first natural frequencies of the plate at three cuts increase due to the same 

phenomenon. 

 

The stability lobe diagrams including the changing dynamics of the workpiece at 

the end of the ninth step of 1st, 2nd and 3rd cuts are shown in Figure 4.51. 
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Figure 4.51 Stability lobe diagrams including the FRFs of the workpiece at the end 

of ninth step of 1st, 2nd and 3rd cuts 

 

 

As can be seen from Figure 4.51, since the FRFs of the workpiece at the first and 

second cuts are lower than the FRFs of the tool, the flexibility of the tool becomes 

dominant and absolute stability levels at these stages are the same. The higher 
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peaks of the stability curve of the second cut take lower depths of cut values than 

the first cut as the workpiece becomes thinner. At the third cut, however, the 

workpiece becomes as flexible as the tool. The absolute stability level of the 

workpiece at the third cut is higher than those of the first and second stages as seen 

in Figure 4.51, due to small radial depth of cut at the third cut.  

 

 

4.2.2.6 FRFs of the Workpiece and Stability Diagrams at the Tenth Step of the 

Cut  

 

 

In order to see the effect of the thickness change of the workpiece at this location, 

the FRFs of the plate P110, P210 and P310 are given in Figure 4.52. The FRFs of 

the plate combined with the FRFs of the tool are given in Figure 4.53 to see the 

variation in the combined system FRFs with changing workpiece thickness. 
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Figure 4.52 FRFs of the workpiece at the end of tenth step of 1st, 2nd and 3rd cuts 
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Figure 4.53 Combined FRFs of the workpiece and tool at the end of tenth step of 

1st, 2nd and 3rd cuts 

 

 

The FRF levels of the workpiece at the tenth step of all the cuts are nearly the same 

with those of the ninth step as shown in Figure 4.52. The FRF magnitudes of the 

second natural frequency of the workpiece get very low since this location 

coincides with the nodal line of the second mode (first torsional mode) of the 

workpiece. The FRFs of the workpiece at tenth step become lower than those of 

the free end as explained in previous section. 

 

The stability lobe diagrams including the changing dynamics of the workpiece at 

the end of the tenth step of the 1st, 2nd and the 3rd cuts are shown in Figure 4.54.  
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Figure 4.54 Stability lobe diagrams including the FRFs of the workpiece at the end 

of tenth step of 1st, 2nd and 3rd cuts 

 

 

Like at the ninth step, at the 1st and 2nd cuts the absolute stabilities are the same 

except some peak stability values. As mentioned at the previous section, the 

absolute stability of the system at the third cut is higher than the other two cuts 

because of small radial depth. Since both the tool and the workpiece have the 

comparable FRFs, both of their effect should be included in the stability diagrams.  

 

 

4.2.2.7 FRFs of the Workpiece and Stability Diagrams at the Seventeenth step 

of the Cut  

 

 

In order to see the effect of the thickness change of the workpiece at this location, 

the FRFs of the plate P117, P217 and P317 are given in Figure 4.55. The FRFs of 

the plate combined with the FRFs of the tool are given in Figure 4.56 to see the 

variation in the combined system FRFs with changing workpiece thickness. 
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Figure 4.55 FRFs of the workpiece at the end of seventeenth step of 1st, 2nd and 3rd 

cuts 

 

 

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

0 500 1000 1500 2000 2500 3000

Frequency [Hz]

M
a

g
n

it
u

d
e

[F
R

F
(w

)]
 [

m
/N

]

P117+tool

P217+tool

P317+tool

tool

 

Figure 4.56 Combined FRFs of the workpiece and tool at the end of seventeenth 

step of 1st, 2nd and 3rd cuts 
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As mentioned before, the FRFs of the workpiece near to the fixed end have very 

low values compared to the other locations due to increase in the stiffness of the 

workpiece. Since the FRFs of the workpiece are very low compared to those of the 

tool, total FRFs of the system and the tool are nearly the same except in the third 

cut as seen in Figure 4.56. In such a case, only the FRF of the tool can be used to 

predict the stability diagrams accurately. 

 

The stability lobe diagrams including the changing dynamics of the workpiece at 

the end of the tenth step of the 1st, 2nd and 3rd cuts are shown in Figure 4.57. Since 

the stability diagrams of P117 and P217 are the same, they seem as one curve in 

Figure 4.57. 
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Figure 4.57 Stability lobe diagrams including the FRFs of the workpiece at the end 

of seventeenth step of 1st, 2nd and 3rd cuts 

 

 

The FRFs of the system is nearly the same at all the cuts since the system 

dynamics is mainly governed by the tool FRF at this location. Therefore, the 
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stability curves are the same for all cuts at this location except the finishing cut 

where the radial depth of cut is different than the previous two cuts. As a result, it 

can be concluded that the workpiece dynamics can be neglected when the tool is 

much more flexible than the workpiece since the variation of the workpiece 

dynamics does not affect the stability limits.  

 

 

4.2.2.8 FRFs of the Workpiece and Stability Diagrams at the Eighteenth step 

of the Cut 

 

 

In order to see the effect of the thickness change of the workpiece at this location, 

the FRFs of the plate P118, P218 and P318 are given in Figure 4.58. The FRFs of 

the plate combined with the FRFs of the tool are given in Figure 4.59 to see the 

variation in the combined system FRFs with changing workpiece thickness. 
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Figure 4.58 FRFs of the workpiece at the end of eighteenth step of 1st, 2nd and 3rd 

cuts 
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Figure 4.59 Combined FRFs of the workpiece and tool at the end of eighteenth 

step of 1st, 2nd and 3rd cuts 

 

 

As like at the seventeenth step, the FRFs of the workpiece have the lowest values 

according to the other locations. As shown in Figure 4.58, again the peaks of the 

second natural frequencies disappear due to coinciding with the nodal line of the 

first torsional mode. Total FRF of the system is given by the FRF of the tool since 

the FRF of the workpiece is very low compared to that of the tool as shown in 

Figure 4.59. Only the FRF of the tool can be used to predict the stability diagrams 

accurately in such cases. 

 

The stability lobe diagrams including the changing dynamics of the workpiece at 

the end of the tenth step of the 1st, 2nd and 3rd cuts are shown in Figure 4.60. Since 

the stability diagrams of P118 and P218 are the same, they seem as one curve in 

Figure 4.60. 
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Figure 4.60 Stability lobe diagrams including the FRFs of the workpiece at the end 

of eighteenth step of 1st, 2nd and 3rd cuts 

 

 

The FRFs of the system are the same at all the cuts as it was the case at the 

seventeenth step due to dominance of the tool FRFs on the system dynamics at this 

location. Except the finishing cut which has smaller radial depth of cut, the 

stability curves are the same at this location. As a result, in such a case the FRFs of 

the workpiece can be neglected when finding stability diagrams. 

 

 

4.2.2.9 Variation of the Workpiece Dynamics 

 

 

In this section, the variation of the workpiece dynamics as a result of mass removal 

is analyzed in terms of peak FRF values and natural frequencies. Every step in the 

machining cycle is numbered according to the machining order (sequence). The 

changes in the 1st, 2nd and 3rd natural frequencies of the workpiece are given in 
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Figure 4.61. In addition, the variations in the peak FRF amplitudes of the 

workpiece for the first three natural frequencies are shown in Figure 4.62. 
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Figure 4.61 Variation in the 1st, 2nd and 3rd natural frequencies of the workpiece 

during machining. 

 

 

As seen in the beam model of the workpiece, the variation in the natural 

frequencies of the workpiece shows a similar trend at every cut. The natural 

frequency of the workpiece increases until the workpiece is machined from the 

free end to the middle of the workpiece. Then, the frequency decreases while 

machining from the middle to the fixed end of the workpiece. This behaviour was 

explained in Section 4.2.2.6 by considering the respective stiffnesses of the 

workpiece at the free and fixed ends. The material removed from the free end does 

not affect the stiffness of the plate significantly so that the removed mass from the 

free end results in increased natural frequencies. The situation is just the opposite 
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for the fixed end where the removed material results in significant loss of stiffness 

and the mass removal from the fixed end results in reduced natural frequencies.   
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Figure 4.62 Variation of the peak FRF amplitudes of the workpiece at the 1st, 2nd 

and 3rd  natural modes  

 

 

Change in the magnitudes of the FRFs of the workpiece show an expected 

behaviour as mentioned earlier in Section 4.2.2.5. The FRF values of the 

workpiece decrease as the location is varied from the free end to the fixed end of 

the workpiece due to the respective stiffnesses of the workpiece at different 

locations. As the workpiece becomes more flexible at each cut compared to the 

previous cut, the amplitudes of the peak FRFs at the free end of the workpiece (at 

the 1st, 20th and 40th steps) become higher and higher as shown in Figure 4.62. 
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4.2.2.10 Variation of the Stable Spindle Speeds and Depth of Cuts  

 

 

In this section, the effect of the variation of the workpiece dynamics as a result of 

the mass removal on stability is analyzed in terms of stable depth of cut values and 

corresponding spindle speeds. The variation in maximum stable depth of cut and 

spindle speeds for the 1st and 2nd lobes of the stability diagram are given in Figure 

4.63 and 4.64 for different machining steps. 
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Figure 4.63 Variation of the stable depth of cuts for the 1st and the 2nd stability 

lobes during machining of the workpiece.  
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Figure 4.64 Variation of the spindle speeds corresponding to the 1st and the 2nd 

lobes during machining of the workpiece. 

 

 

The variation patterns for the stable spindle speeds and depth of cuts in the first 

and the second lobes can be explained by examining the FRF variations during 

machining as presented in the previous sections. For instance, in the roughing cut 

from 1st step to 8th step, since the FRFs of the workpiece are higher than the FRFs 

of the tool at these locations, the workpiece dynamics become dominant in the 

FRFs of the system and the first steps of the cut take the lowest stable depth 

values. However, the amplitudes of the workpiece’s FRFs reduce due to the 

movement of the locations where the FRFs are calculated, from free end to the 

middle of the workpiece and the stable depth of cuts in the 1st and 2nd lobes take 

higher values. After the 8th step, the FRFs of the tool become more flexible than 

the workpiece and the variation in the stable depth of cuts and speeds nearly 

remains constant. The similar trend can be observed in the semifinishing cut; 

however the stable depth of cut values remain constant after 12th step of the 

semifinishing cut due to increasing flexibility of the workpiece. In the finishing 
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cut, the workpiece becomes very flexible and the increase in the stable depth of 

cuts continues until the last step, because the workpiece FRFs are still dominant 

according to those of the tool.  

 

If the stable depth of cuts at the same locations but different cutting cycles are 

compared, from the roughing cut to the finishing cut stable depths become smaller  

between 1st - 8th step locations due to increase in the flexibility of the workpiece. In 

the roughing and the semifinishing cut the stable depth of cuts take almost the 

same values at the constant regions, since only the tool dynamics affect the 

stability. In the finishing cut until the last step, the workpiece dynamics dominate 

the stability curve and stable axial depth of cuts get higher values compared to the 

other two cuts.  

 

The spindle speeds corresponding stable depth of cuts nearly remain constant at 

the roughing and the semifinishing cuts; only at the 1st steps of these cuts a 

decrease is observed. The first location is the most effective region of the FRFs of 

the workpiece on stability, and the flexibility of the workpiece causes sudden drops 

in speeds at the 20th and 40th steps in Figure 4.64. The speed values remain 

constant when the tool FRFs become dominant on the system FRFs. In the 

finishing cut the lowest region of the spindle speeds of the lobes corresponds to the 

machining from the 1st step to 7th step. Since the workpiece becomes significantly 

flexible at these steps of the machining, the decrease is observed in a wider region 

of the machining process compared to the other two cuts. Another observation 

from Figures 4.63 and 4.64 is that the machining steps in which the stable depth of 

cuts show a fall in value are the same as the steps in which the spindle speeds 

decrease. 

 

In conclusion, the variation in chatter-free depth of cuts and spindle speeds is 

consistent with the variation in the workpiece dynamics, and the influence of the 

workpiece flexibility on the chatter stability can be observed easily when the 

workpiece is as flexible as the tool. The stable depth of cuts attain low values at the 

first cutting steps of every cut due to low FRFs of the workpiece at the free end. 
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They take higher values while machining from the middle to the head of the 

workpiece, as it is the case in the FRFs of the workpiece. 

 

 

4.2.2.11 Minimum Chatter-Free Machining Time 

 

 

As mentioned in Section 4.2.1.8, stability analysis in order to predict chatter-free 

depth of cuts at the high spindle speeds becomes an important necessity to increase 

the stable mass removal rate. This will lead to minimized machining time. In this 

study, two methods used in the beam model of the workpiece are used in order to 

determine the possible minimum chatter-free machining time of the workpiece.  

 

In the first method, one common maximum chatter-free depth of cut and the 

corresponding spindle speed values are identified for every cut, and used for the 

whole cut as explained in Section 4.2.1.8.  

 

In the second method, for every 4 steps of a cut (because  the depth of cut and the 

spindle speed are not changed until the tool leaves the workpiece) , the possible 

maximum depth of cut and the corresponding spindle speed are identified and used 

for that specific pass.  

 

Machining time in a milling process is given as by combining Equation 4.1 and 

4.2, 
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.. ==                                                                               (4.8) 

 

where mt  is machining time,  

           nop  is number of pass (step),  

           wl  is cutting length at one pass (step), 
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          fV  is feed rate, 

          N is the number of teeth (flutes) of the cutter, 

          tf  is feed per tooth (in  mm/rev per tooth), 

          tn  is rotational frequency of the cutter (in rpm). 

 

In machining time calculations, tf  is taken as 0.15 for roughing cut and 0.10 for 

semifinishing and finishing cuts. These values are used for all cases as the effect of 

the feed on the stability is minimal. N is taken as 4 assuming a 4 fluted milling 

cutter, and wl  is 80 mm in the plate model. nop is determined by dividing the 

length of the workpiece (100 mm in the plate model) to the maximum axial depth 

of cut and tn  is taken maximum spindle speed corresponding to maximum axial 

depth of cut. Then, the optimum depth of cut and spindle speed values are 

determined as explained in Section 4.2.1.8 in detail. 

 

By applying the procedure of the first method to determine one common depth of 

cut and spindle speed at every cut, the machining time values are found as shown 

in Table 4.16. 

 

 

Table 4.16 Machining time calculation parameters at every cut using first method 

  
Spindle 

speed(rpm) 
Depth of 
cut(mm) 

nop 
Feed per 

tooth 
Time(min) 

Roughing cut 9090 3.3 30 0.15 0.44 

Semi-finishing cut 11490 1.3 75 0.1 1.31 

Finishing cut 5918 1.0 96 0.1 3.24 

    Total time 4.99 

 

 

If maximum chatter-free depth of cut and spindle speed are found for every 4 step 

(pass) in one cut using the second method, the results are found as shown in Table 

4.17 - 4.19. If the maximum stable depth of cuts and the speeds are the same as the 

other steps, the total machining time will be as shown in the same row of the table. 
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Table 4.17 Machining time calculation parameters at the roughing cut 

Roughing cut 
Spindle 

speed(rpm) 
Depth of 
cut(mm) 

nop 
Feed per 

tooth 
Time(min) 

P10-P13 8723 3.3 6 0.15 0.09 

P14-P17 8183 18.6 2 0.15 0.03 

P18-P119 8220 15.5 4 0.15 0.06 

    Total time 0.18 

 

 

Table 4.18 Machining time calculation parameters at the semi-finishing cut 

Semi-finishing cut 
Spindle 

speed(rpm) 
Depth of 
cut(mm) 

nop 
Feed per 

tooth 
Time(min) 

P20-P23 6608 1.9 11 0.1 0.33        

P24-P27 7793 4.6 5 0.1 0.13 

P28-P211 7755 6.3 4 0.1 0.10 

P212-P219 8205 16.9 3 0.1 0.07 

    Total time 0.63 

 

 

Table 4.19 Machining time calculation parameters at the finishing cut 

Finishing cut 
Spindle 

speed(rpm) 
Depth of 
cut(mm) 

nop 
Feed per 

tooth 
Time(min) 

P30-P33 6000 1.1 19 0.1 0.63 

P34-P37 6780 2.6 8 0.1 0.24 

P38-P311 6635 4.4 8 0.1 0.15 

P312-P315 8303 7.4 3 0.1 0.07 

P316-P319 8175 49.3 1 0.1 0.02 

    Total time 1.11 

 

 

Full machining time can be found in the second method as, 

 

           Full machining time = 0.18 + 0.63 + 1.11 = 1.92 min = 115.2 s            (4.9) 

 

As shown in Table 4.16, full machining time is found as 4.99 minutes (299.4 s) if 

the first method is used. As a result, taking maximum depth of cuts and spindle 

speeds at every 4 steps of the process reduce the machining time to 2/5 of the time 

required when one common depth of cut and spindle speed are used for every 

cutting cycle. Using the stability lobe diagrams found by combining the FRFs of 
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the tool and the workpiece, the maximum chatter-free values can be calculated at 

the intermediate stages of the process, and the machining time can be shortened 

significantly. 

 

 

4.2.2.12 Summary of the Results of the Plate Model 

 

 

The FRFs of the workpiece and the corresponding stability diagrams of the plate 

model are similar to those of the beam model at almost the same locations. The 

FRFs of the plate increase as the workpiece becomes thinner during the machining 

as it is the case in the beam model. Similarly, the natural frequencies of the 

workpiece reduce with decreasing thickness of the workpiece. The stability limits 

also reduce due to the increased FRFs. In machining from the free end to the fixed 

end, the same trend in the FRFs of the beam model can be also observed in the 

plate model. The FRFs of the workpiece reduce while the workpiece is machined 

from the free end to the fixed end due to higher stiffness at the fixed end. The 

natural frequencies increase as machining to the middle of the plate, and then the 

frequencies decrease while machining from the middle to the fixed end. This is due 

to the difference in the stiffnesses of the fixed and the free end of a cantilever 

workpiece as it is in the beam model.  The stability limits take higher values as 

machining towards the fixed end until the FRFs of the tool becomes dominant, and 

then the stability limits remain constant. However, this behavior may change 

depending on the workpiece and tool geometry and materials. 

 

In the plate model the second mode of the workpiece is different from the second 

mode of the beam model. It is the first torsional mode of the plate whereas in the 

beam model it is the second bending mode. The nodal line of the first torsional 

mode passes from the middle of the plate (parallel to the x axis). Therefore, in the 

FRFs at the middle of the plate, the peak of the second mode is not seen clearly. 

Thus the second mode does not affect the stability at these locations. 
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The minimum chatter-free machining time was studied for the plate model as well. 

As in the beam model, using both methods, the machining times were estimated 

and it was observed that using the maximum stable depth of cuts at higher speeds 

for every machining step reduces the machining time significantly.  
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CHAPTER 5 

 

 

SUMMARY AND CONCLUSION 

 

 

In this thesis, the effect of workpiece dynamics on the prediction of the stability 

diagrams in order to avoid self-excited chatter vibrations is studied in detail. In 

order to predict chatter-free depth of cuts at high speeds analytically, the frequency 

response functions (FRFs) of the system which consists of a tool-holder-spindle 

combination must be known. In the case of high workpiece flexibility, the 

workpiece dynamics should also be included into the overall system dynamics, and 

the changing dynamics of the workpiece must be considered in the stability 

calculations. 

 

 In order to determine the changing dynamics of the workpiece during the 

machining process an exact structural modification method, Matrix Inversion [43] 

was used. The FRFs of the unmodified workpiece and the modification parameters 

used in the structural modification method were found by using finite element (FE) 

models. The FRFs of the unmodified workpiece were calculated by using the 

modal parameters (eigenfrequencies and eigenvectors) obtained from the modal 

analysis of the FE model. The modification stiffness and mass matrices were also 

taken from the finite element program by using the FE model of the modifying 

elements. In order to read the modal parameters from the output file of the MSC. 

Marc© finite element program and write in a matrix form, a computer program 

was written in Visual C++ 6.0©. The structural modification method was also 

programmed in Matlab© in order to perform the structural modification by using 

the FRFs of unmodified workpiece and modification matrices. The verification of 

the program was made by comparing the FRFs of the modified workpiece obtained 
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from the computer program developed in this thesis with those obtained from the 

MSC. Marc©. 

 

By obtaining the FRFs of the workpiece at the intermediate stages of the 

machining, first, the effect of the variation of the workpiece dynamics on the 

system FRFs which are found by the summation of the FRFs of the workpiece and 

tool-holder-spindle combination at the tip of the tool was studied. Secondly the 

effect of the changing workpiece dynamics on chatter stability was examined by 

using an analytical stability diagram generation method [16, 17]. Summary of 

important conclusions are given below. 

 

In order to make an initial judgment  about the effect of the workpiece flexibility  

and to decide whether it should be included in the analysis the workpiece FRF at 

the end of the machining and at the most flexible location must be compared with 

the tool point FRF. If the FRF of the workpiece is similar to or higher than the tool 

point FRF, the workpiece’s FRF must be taken into account while determining the 

stability diagrams.. 

 

 

5.1 Effect of Part Dynamics on FRFs 
 

 

By considering the machining steps of a workpiece, the effect of the change in the 

workpiece dynamics on FRFs of the workpiece and the system was studied in 

detail in this thesis. By modeling the workpiece first as a beam and then as a plate 

in a FE program, the workpiece dynamics’ effects on the FRFs were investigated 

with various case studies. 

 

It is observed that mainly two important parameters affect the FRFs of the 

workpiece. The first is the location where the FRFs of the workpiece are calculated 

(cutting location). Depending on the boundary conditions of the workpiece, the 
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location of the cutting affects the magnitudes of the FRFs calculated at this 

location. Due to the nature of the machining process, the point of contact of the 

tool with the workpiece changes continuously. Thus, the location of the FRFs also 

changes at every machining step due to changing point of contact. The case studies 

performed in this study showed that the FRFs of the workpiece at the free end take 

the highest value compared to the other locations. It means that the flexibility of 

the workpiece is the highest at the free end as expected. Moving from the free end 

to the fixed end of a cantilever workpiece, the magnitudes of the FRFs of the 

workpiece become smaller. If the FRFs of the workpiece at this region are 

comparable or higher than those of the tool, the machining of this region becomes 

more critical. 

 

The second parameter is the change in the thickness of the machined workpiece.  It 

is observed that the thickness change of the workpiece due to machining affects the 

FRFs of the workpiece. As the workpiece gets thinner during the machining, the 

magnitudes of the FRFs of the workpiece become higher since the workpiece 

becomes more flexible. Also, the frequencies of the peak FRFs (which are the 

natural frequencies of the workpiece) become lower with decreasing thickness, and 

it changes the total system FRF significantly, especially when the peak frequencies 

of the workpiece coincide with those of the tool. 

 

In a machining operation, both the thickness of the workpiece is reduced and the 

location of the point where FRFs are calculated for the stability calculations 

change, and thus both parameters affect the FRFs of the workpiece significantly. 

The FRFs of the workpiece during the machining or before the machining may 

become comparable to the tool point FRFs. Since the system FRFs found by 

adding the FRFs of the workpiece and tool are used in the analytical generation of 

the stability diagrams, the workpiece dynamics can effect the stability only if the 

FRFs of the workpiece are in the same order of magnitude with the tool point 

FRFs. By examining the variation of the workpiece dynamics during machining, it 

can be decided when to include workpiece dynamics in the stability calculations. 
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Also cutting patterns or some parameters can be changed in order to perform stable 

and high performance machining by observing the changing workpiece dynamics. 

 

In order to observe the effect of different radial depth of cuts in machining, the 

variation of the workpiece FRF was examined by performing several case studies. 

It is observed that taking more mass from the workpiece at the initial cut can be 

advantageous in order to decrease the machining steps and minimizing the 

machining time, since the workpiece FRF changes less at the initial cut where the 

thickness of the workpiece is maximum during machining. 

 

Also different cutting patterns were compared in this study. It is observed that with 

different cutting strategies, the stability limits in the machining can be increased so 

that the machining time can be minimized in order to maximize the productivity by 

avoiding chatter. 

 

 

5.2 Effect of Part Dynamics on Chatter Stability 
 

 

In this study the chatter stability prediction was carried out by using the stability 

lobe diagrams generated by using the analytical formulations given in [16, 17]. In 

order to obtain the stability curves, the system FRFs must be known. The FRFs of 

the system can be found by combining the FRFs of the tool assembly and the 

workpiece. When the FRFs of the workpiece are comparable (or become 

comparable at any stages of the machining) to the tool point FRFs, the effects of 

the workpiece dynamics on the process dynamics and the stability must be taken 

into account. As the stability limit is inversely proportional to the real part of the 

FRF of the system, the stability limit decreases if the system FRF increases. It may 

be the case when the flexibility of the workpiece becomes higher during the 

machining.  
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In this thesis, it is observed that while machining the regions of the workpiece 

where the FRF of the workpiece is at similar or higher levels compared to the tool 

point FRF, the stability limits of the system decrease significantly. Especially 

while machining the free end of a cantilever workpiece, the stability curve takes 

the lowest values. Then the peaks of the lobes in the stability diagrams take smaller 

values, which means that the maximum stable depth of cut values becomes 

smaller. Furthermore, the spindle speeds corresponding to maximum stable depths 

also lower when machining highly flexible regions of the workpiece. 

 

The effect of the radial depth of cut on stability diagrams was also studied in this 

thesis. The radial depth of cut can also be used to generate the stability diagrams 

instead of the axial depth of cut. Usually the stable axial depth of cut is inversely 

proportional to the stable radial depth of cuts [48]. Thus taking higher radial depth 

of cut in machining causes reduction in the stable axial depth of cut values and 

makes the machining time longer. 

 

 In this thesis, the effect of the different machining strategies on the stability and 

the machining time is also studied in detail. It is observed that by using a cutting 

pattern which is selected by considering the geometry, boundary and the cutting 

conditions of the workpiece, the stability limits of the system can be increased and 

the machining time can be reduced significantly. 

 

 

5.3 Suggestion for Future Work 
 

 

In this study, the structural modification method without adding new degrees of 

freedom is used in order to find the FRFs of the modified workpiece during the 

machining process. The workpiece is modeled as a beam and as a plate by using 

finite elements, and then modifications are made by changing the thickness of the 

workpiece without adding extra degrees of freedom in the finite element program.  
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As a future work, this study can be enhanced to 3-D finite element models and 

structural modification methods with additional degrees of freedom can be used. 

Thus a variety of different and large workpiece models can be studied and their 

effects on the chatter stability can be observed.  
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APPENDIX A 
 

 

OUTPUT FILE FORMAT OF MSC. MARC MENTAT© 

 

 

 

 

Figure A.1 The element stiffness matrix format given in the output file of MSC. 

Marc Mentat© 
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Figure A.2 The element mass matrix format given in the output file of MSC. Marc 

Mentat© 

 

 

 

Figure A.3 Eigenfrequency and eigenvector format given in the output file of 

MSC. Marc Mentat© 


