£L00¢ 439dINT1d3S

NILIW 4370 13INHEIN

JOINH3S NOISIO3Ad SS3ODV
304dN0OSs3d
NO d3SVd d3AVT ALIINOIS NOILVYII'lddV ONILVIHO

2007

METU

Mehmet Ozer Metin

CREATING APPLICATION SECURITY LAYER BASED ON
RESOURCE
ACCESS DECISION SERVICE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET OZER METIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

SEPTEMBER 2007

Approval of the thesis:

CREATING APPLICATION SECURITY LAYER BASED ON RESOURE
ACCESS DECISION SERVICE

Submitted byMEHMET OZER MET IN in partial fulfillment of the requirements for tliegree of
Master of Computer Engineering in Computer Engineeing Department, Middle East Technical
University by,

Prof. Dr. Canan Ozgen

Dean, Graduate School Natural and Applied Sciences

Prof. Dr. Volkan Atalay

Department ChaiiComputer Engineering Dept., METU

Dr. CevatSener

SupervisorComputer Engineering Dept., METU

Examining Committee Members:
Assoc. Prof. Dr. Ali Dgru

Computer Engineering Dept., METU

Dr. CevatSener
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ahmet Gar

Computer Engineering Dept., METU

Dr. Semih Cetin

Management Board Member, Cybersoft

Yenal G@ebakan, M.Sc.

Management Board Member, Cybersoft
Date: 03/09/2007

| hereby declare that all information in this do@nhhas been obtained and presented in accordance
with academic rules and ethical conduct. | alsdatechat, as required by these rules and condluct,

have fully cited and referenced all material arglts that are not original to this work.

Name, Last name: Mehmet Ozer Metin

Signature:

ABSTRACT

CREATING APPLICATION SECURITY LAYER BASED ON RESOURE
ACCESS DECISION SERVICE

Metin, Mehmet Ozer
M.S., Department of Computer Engineering

Supervisor: Instructor Dr. Cevdener

September 2007, 176 pages

Different solutions have been used for each sgcasgpects (access control, application security) to
secure enterprise web applications. However comgitienterprise-level” and "application-level"
security aspects in one layer could give great fitsneuch as reusability, manageability, and
scalability. In this thesis, adding a new layerntdier web application architectures to provide a
common evaluation and enforcement environment foth kenterprise-level and application level
policies to bring together access controlling véplication-level security. Removing discrimination
between enterprise-level and application-level ggcpolicies improves manageability, reusability
and scalability of whole system. Resource Acces<idimm (RAD) specification has been
implemented and used as authentication mechanisrthifo layer. RAD service not only provides
encapsulating domain specific factors to give aedegisions but also can form a solid base to apply
positive and negative security model to securerprige web applications. Proposed solution has

been used in a real life system and test results been presented.

Keywords: Access Control, Enterprise-level Secupitficy, Web Application Security

iv

Oz

KAYNAK ERISIM KONTROLU SERMSINI KULLANARAK UYGULAMA
GUVENLIK KATMANI GEL ISTIRMEK

Metin, Mehmet Ozer
Yuksek Lisans, Bilgisayar MuhendigliBolumu

Tez Yoneticisi @r. Gor. Dr. CevaSener
Eylil 2007, 176 sayfa

Erisim kontrolli, uygulama glvegii gibi farkh gtvenlik ihtiyaclarinin her birisi ig farkli ¢coziimler
kullanilmaktadir. Fakat kurumsal seviyedeki ve Uggua seviyesindeki guvenlik ihtiyaclarini tek bir
katmanda birlgtirmek, uygulamalara tekrar kullanilabilirlilik, kay yonetilebilirlik ve
Olceklendirilebilirlik gibi 6nemli faydalar sdayabilir. Bu tezde, ¢ok katmanl internet uyguldanana
yeni bir katman ekleyerek; kurumsal ve uygulama emilik politikalarinin beraber yonetilip,
islenebildigi genel zorlayicigl olan ortak bir ortam gedirilmistir. Kurumsal ve uygulama guvenlik
politikalarinin arasindaki ayrimi kaldirarak uyguknin genelinde tekrar kullanilabiliin, kolay
yonetilebilirligin ve 6lgeklendirilebilirlgin artirlmasina ¢ailmistir. Bu katman igin kaynak eiim
kontrol (RAD) belirtimi geltirilmi s ve ersim kontrol mekanizmasi olarak kullanilgtir. RAD servisi
sadece egim kontroliinde tanim kiimesine ait etmenlerin kullmasina izin vermekle kalmayip, ayni
zamanda internet tabanh kurumsal uygulamalar iporitif ve negatif givenlik modellerini
uygulamak icin de ggam bir taban olgturabilir. Onerilen ¢6zim kullanima gegmgercek bir

uygulamada denengve sonuclari sunulngtur.

Anahtar Kelimeler: Egim Kontrolt, Kurumsal Seviyeli Guvenlik Politikalainternet Tabanli

Uygulama Gulvengi

To my parents who devoted themselves to their @vilénd to my lovely sister.

Life is so beautiful, only with them.

vi

ACKNOWLEDGMENTS

| would like to express my sincere appreciatiomtpsupervisor Dr. Cevatener for his guidance and
support throughout this research effort. | consiagself fortunate to have had a mentor with the

strong work ethic and unyielding patience of Drv&ener.

| would like to thank Egemeimre and Evren Kapusuz for their invaluable reviewsl critiques
about my thesis. | would also thank to Ferhat Ycséor his mentoring for technical background. |
have learned a lot while working with him. | als@uwld like to thank to Yenal G&bakan for his

foresight ideas and his wisdom. | feel myself vieigky to have worked for him.

CSAAS and EYEKS are trademarks and products of gifie Various people have been involved in
developing CSAAS. | would like to praise them fbeir efforts. Thanks to Ceyhun aftsrahim Onur
Yaranli for developing earlier versions of CSAASIapecial thanks to Evren Kapusuz and Asli Acar

for helping me to finalize the latest version ofAZs.

My love Mige, | could not finalize this thesis watlt your help and motivation. Thanks for your

endless support and trust.

Vii

TABLE OF CONTENT

Y N I O L PP PP PP iv
SRRSO v
ACKNOWLEDGMENTS ... eeee ettt e e e e e e e e e e e e nnnn e s e e e e e eeeeeennes Vi
TABLE OF CONTENT ...ttt ettt ettt e e e 22 e e e e e e et ettt b et a e e e e e e e e e eeeeeeannnnnnnnns viii
LIST OF TABLES. ... ittt e e e e e e e et e et ettt beaeaae b e e e e e e aaeaeeeeeaetnnnnn i es Xi
LIST OF FIGURESttt e e e e e e e ettt eeete e et ba b e e e e e e e e e eeeeensnnnnnan Xii
CHAPTER
1. INTRODUCTIONoitiiitittitiie et r e e e e et et et e ae e e a e e e e e e e aaeeeeeeeeenebnnn e aaraeeeeaeeneens 1
1.1 Scope Of the theSIS......ccoeee e e e e e et e e e e e e e eaeeaaes 1
1.1.1ENtErpriSe LEVEl SECUILYcieeeieiiieiiei s eeemcme e e ettt e e e e e e e e aan e s e e e e e e 2
1.1. 2 ApPlIication LEVEI SECUIMLYvviiiieiiiit ettt 4
1.1.3PropoSEa SOIULION.....ciiiiiiiiiee ittt mm ettt e s e e e e e e e e e s s aabnneeeaens 6
1.2 OUutling Of the TRESIS ..ceiiiiiei e 9
2. BACKGROUND AND RELATED WORKuiiiiiiii ettt 10
A RS 1= T ot U 1Y [o o 1= o (S 10
2.1.1Definition Of INCIAENTScvviiiieiiiee e e e 10
2.1.2Taxonomies Of INCIAENTS.c.ciiiiiiiiiie e 11
2.1.3EXIStING TAXONOIMIESccieiiieeiiieiiiee s e s e eeeeeeeeaae s e s e e e aeaeeeeeasstasn s aaaaaeseaeaeaeaeeeennnns 12
2.1.3.1 LISt Of TOIMIS .ceiiieieiiiite et e s e e

2.1.3.2 List of Categories

2.1.3.3 Result Categories

2.1.3.4 Empirical LiStS........cvvvviiiiniiiieeiiiiiiinn

2.1.3.5 MAIICES. ...ttt emmm e

2.1.3.6 Process-Based Taxonomy

2.1.3.7 Threat Classificationcceevee oo

2.1.3.8 Vulnerability DAtabasesccoiiuiiiiiemiiee e 18
2.1.4Vulnerability Naming Standardsocceeee oo 18

2.1.4.1 Preliminary List of Vulnerability Example for ReseBerscccccovveviiiiiinnnnnen, 18

2.1.4.2 Common Vulnerabilities and Exposures (CVE)

2.1.4.3 Common Weakness Enumeration (CWE)..........coumeieeeeiiiiiiiiiiiiiiiinieeeeeneeeenns
2.1.4.4 WASC Threat Classification
2.2 Access Control Mechanism............oooiccceceeiiiiiiiinneee.
2.2.1Discretionary ACCESS CONLIOl........coiiiiiiiceeee et e e e e 24
2.2.2Mandatory ACCESS CONLIOlciiiiiiiiiiie ettt 24

viii

2.2.3Lattice-bDased ACCESS CONIOLiiit e et e e e e e s e e eaaaas 25

2.2.4Rule-based ACCESS CONLIOL.......ccc.ueiiiiiiiiiiiiee et e e e e e e e 25
2.2.5Ro0le-based ACCESS CONLIOL.......cc.uiiiiiiiiiiiiie et 25
2.2.6Resource-based ACCESS CONIONuuuiiiiiiiiiiiiiiiiiiie e 28
2.3 Access Control Problems in Enterprise APPIEm@EL............ccoovvireeeiiiiiiiieie e 30
2.4 Web Application Security VUINErabiliti©S...cccc.ooooiieiiii e 32
2.4.1CommOoN VUINEraDIlItIES. e e e e 36
2.4.1.1 Cross Site Scripting (XSS) AttACKSvveeeeeiiiiiieee et 38
2.4.1.2 INJECHON FIAWScoiiiiiiiiiiiie et 39
2.4.1.3 Malicious File EXECULIONcccouiiiiiiiiiiceiiiie et e e e 39
2.4.1.4 Insecure Direct Object ReferenCe.........cceeeieiiiiiiiiiieiccie e 40
2.4.1.5 Cross-Site Request Forgery (Session RidiNg)eveeeiiieeeeiiiveieieiiicie e 0.4
2.4.1.6 Information Leakage and Improper Error Handlingeee......ceeeviiieiiiiiiveeeiiin, 40
2.4.1.7 Broken Authentication and Session Management.........ccccoovveveeeeeveveeevvnvnnnnenn. 41
2.4.1.8 Insecure CryptographiC StOrageooouurereeiiiiiiiiie i 41
2.4.1.9 Insecure COMMUNICALION.........coiiiiiiiiteeeeee et e e e e e e e e e e e e eeaaaaeeeas 41
2.4.1.10 Failure t0 ReStIHCt URL ACCESS.....uuuuuuuiiiaaaaiiieiietieeieeeeeeeeeeaaeaaaaeseeeesaeainees 41
2.5 REIAIEA WOTKS ...ttt e e e e e e e e e e e e e e e neennnnees 42
2.5.1Approaches to Encapsulate Domain Specific FACtOrS...........vvvviiiiiiiieeiveieeeeiiiii, 42
2.5.2Web Application FIreWallS............oooviiiiiceeeeiiiiis e e e e e e e e e 44
3. ACCESS CONTROL AND SECURITY SOLUTION BASED ON BA......cooviiiiiiieieeiiiiiieeeennn 46
3.1 RAD Implementation (CSAAS) ..o ettt s e e e e e e e et e et srreae s e s e e e aeaaeeeeernnes 47
3.L.ICSAAS ArCHITECIUI ..ot ee et e e e e e e e neeees 47
3.1.2C0omMPONENLS Of CSAAS SEIVEToeiiiieiiiiitemmee ettt et e s esanneeeee s 50
3. L.BEXECULION FIOW.. .ottt ettt e e e e e e e e e e e s e st eeeeeeeeeeeas 52
3.1.4Limitations and IMPrOVEMENTSeiiiiiiieeeeetiie ettt e e s e e e e 54
3.2 Mapping POlICES 10 CSAAS ...t e e rrr e e e s e e e e e e e e e e e ae e 55
3.2.1ENterprise POICY MaPPING ...ceeurrruuun e eesseseaeaaeesessssssnsnnnanssesaaasaaasseesesssnnnnnns 60
3.2.2 Application Security POIICY MapPPing.... ... cccceeeerereeeeeiiniiis e e e e e aeeeeeeeessrenen e 62
3.3 Operation and Architecture of EYEKScoiiiiiiiiiiii e 63
3.3.1APPIICAtiON SECUMLY LAYeeiiiiiiiiiiieeeee ettt e e 65
3.3.2Request/Response Operation ChaiN.......... o ceeeiiirieeeie e 69
3.3.2.1 COMMANGAS oieiiiiieeeeeee ittt eeeeee et e e et e et e e e aeaeeeeeseesaaaannnnsnbrraaeeeaaaaaaaeens 72
R J2 0 O o =] = 1o £ USRI 72
3.3.2.3 Request Execution Collaboration.............couwmmeeeieieeeeeieieeeeiiiiian e eeeeeeeeens 72
ICTRC J20 A = (o3 =T o 1 o] o P>V o |11 T N 75
R TR 1 0011 (=) (R 1Y, F= Vo] o 11 1 o S 76

3.3.4SESSI0N MANAGEMENTiiiiiiiieiiiii et cmmmmmee ettt e e et e e e s et e e e abb e e e e e e annnes 82

3.3 5 REQUESE PrOXYING...cceiittiitieee ittt eete ettt e e e e e e e st e e e e e aanneeas 85
3.4 Organization-Wide POlICY EXECULION ... cceeeiieiiiiiiiiiie ettt 86
3.5 Integration With APPlICAtION SEIVEIS.... o ieeeieieieeecee e e e e eeaeaees 89
IS\ = T = Vo LT = = S 93
3.7 Verification Of SOIULION.........uviiiii et 97
4. EXPERIMENTAL STUDY ..iiiiiiiiiiieiiie ettt sttt et bee e sme e e e nnnee e e 102
4.1 Case Study: Real Life SYSIEIMuuiiiiiiiiiie e 102
4.2 Experiment 1: Artificial LOAd TESISeeiiiiiiiiiiiie et 107
4.3 Experiment 2: Testing Against Web Applicationiaksccccveeiiiiiiiiie it e 111
4.3.1Test ENvironment and SETUP........eiiiii i e e e e a e e e e e e e aeaeaens 111
A I =T R oo PP PTPPRPT P 114
4.3.3TESERESUILScoeiiiiieiiee ettt e e e 114
4.3.3.1 Information GatheriNg...........eiiiiiii et ceeeeercee e e e e e e e e e e eeeeeaeees 115
4.3.3.2 BUSINESS LOGIC TESHNGuveeeieiiiiiiiii ettt 116
4.3.3.3 AUthentication TESHNGuuvriieeiiiitt ettt e s ib e e e e e 116
4.3.3.4 Session Management TESHINGuueeieescmeeeee e e et e et e s eenes 118
5. CONCLUSION AND FUTURE WORKcoiiiiiiiiiie ettt s 123
5.1 FULUIE WOTK ..ceiiiiiiieeiie e s+ttt et e e s e e s et e e e s e e e e e e e 125
REFERENGCES ...ttt ettt b e s b e s et e s aa bt e e snb e e e e snbe e e s nnneeeeans 127
APPENDIX Aottt s ettt E e h e s R e e et e e an et e e R e e s e e nn e 132
List of Web Application Security VulnerabilitieS:.............cooeeiiiieeeccie e, 132
APPENDIX B ..ottt ettt e et e e e et e et et e e ee e e e eernaaaaaes 170
Full List of Common Web Application ALACKSc.vvevieiiiiiiiiieeeiiiee e 170

LIST OF TABLES

Table 1 Number Of SECUNtY INCIAENTSicceeeeee e e e e e e e e e e e 34
Table 2 Percentage Of SECUNLY INCIAENTSueumummrieieeeeeiiiieiiiiiiiiissse e e e e eereeeeereeearrrn e aeeeaaees 34
Table 3 EXample MapRing-1ccccooiiiiieieeeeeeeieis s e e e e e e s s s e e e e e ae e e e e e e e e aesaernn e e e eeees 57
Table 4 EXaMPIE MaPPING-2oeiiiiiiiiiiieeeee ettt e e s e e e e s aeb e e e e e s aneneeeee s 57
Table 5 EXample MapPing-3coooiiiiieiieeeee ettt e s e e e s e e e e s ee e s 58
Table 6 EXaMPIe MaPPING-4ooeeiiiiiiiiieeeeee ettt s s e e e s s e e e e e s anbneeeee s 58
Table 7 EXample MapPiNg-5ooeoiiiiieiieee ettt s e 59
Table 8 Enterprise POlICY EXAMPIE.........co e se e e e e e e e e e e e e ee e e 60
Table 9 Enterprise Policy Mapping Example

Table 10 Mapping to EYEKS..................

Table 11 OWASP TeSHNG LIStcoiiiiiiiii i ieeeee ettt e e ee e e e

Table 15 Example Operation Chain

Table 16 Example Resource- Operation and POlICYVIBYScvvvviiienieieeereerieeee v eemmme e 113
Table 17 Application FINGEIPriNt TESE..... ..o eeeeeieeeeeiiiiis s e e e e e e e e e eeees e e e e e e aeeeeeeeannnn 115
Table 18 OWASP TeStiNG RESUILS.......uui it e e 121
Table 19 Full List of Common Web Application AttaCK.............cooviiviiiieiiiiiieie e 171

Xi

LIST OF FIGURES

Figure 1 Threat ClasSifiCatiON..............iceiie i e e e e e e e e e e e e e e e eaeeeeannas 17
Figure 2 CWE ENUMEIALIONceviiiiiii i ceeeeeeses s e e e e e e e e e et e eetaatetess s e e e e e aaeeeesseaeasssssnnnaesaeaeeaaneeennes 21
Figure 3 Conceptual Model Of ACCESS CONIO . e evvvvereiiiiiieieeeieieieeeie s reee e e e e e e e e e e e eeeaaeeeee 23
Figure 4 RBAC ROIE MOUEIcoiiiiiieii it 26
Figure 5 RAD INtEraction DIGGIAMo sseeeeesaitreeteesaitseeeessaisbeeeasassbeeeeessanbreeeeesaannnes 28
Figure 6 RAD SECUIEA RESOUITEccciiuutieecmmi et ee e e ettt e e e sttt e e e et e e e e s sbb e e e e e s s anbbneeeeesanne 29
Figure 7 Top 6 security attacks between 2001 af@ 20............cooouriiiieiiiiiiieeee e 35
Figure 8 Percentage of top 6 security attack betv@@®1 and 2006ccccceeeeee e e ... 36
Figure 9 Percentage of VUINerabilitieS (2007) «eevrrrrrmrninieiieeeeeieseeeieiiiisiaaeeeseeeeeseeeeesssnnnnnnnn 38
FIgure 10 CSAAS ArCRItECIUIEuvveeie st e s s e e e e e e e e e e s s e s e e e e e e e e e aeeeeeaesaara e e eeeeas 48
Figure 11 CSAAS Server INEIACESutecceriiii ettt 49
Figure 12 Interactions of AAMIN COMPONENTS. . e eeiiitriieeeeiiitiieee e ettt e e srree e e s sibreeeee e aaees 50
Figure 13 Components Of CSAAS SEIVET ...ttt ettt e et e s sibre e e e e e s e 51
Figure 14 Sequence Diagram Of ACCESS DECISION ..ceeeiiuriiiiieiiiiiiiieeee ittt rireee e e e 53
Figure 15 Example Web AppliCation StTUCIUIE ..coaivieeeieiecee e e e e e e e eeeanees 56
Figure 16 Architecture Of EYEKSoooo e e e e e e e e e e 64
Figure 17 Sequence Diagram of ReqQUESt EXECULIO M ..vvvvrriiieieeeeeeeiieeeieiiiiisenee e s s e e e e eeaeeeennns 69
Figure 18 Operation Class DIagramuuuuciieieeeieieieeeeiiiis e s e e e e e e e e e e e eeeeeaeeeeeaesnnnes 71
Figure 19 Collaboration Diagram of Request EXETULIO.............ccccoiiiiiiiieeiiiiiiiieeeceee i 74
Figure 20 Example ContexXt MapPing....... ... ccceeereeeeeeiiiiieee ettt e e et ee e s s sibree e e e e s sbbneeeeeeaas 77
Figure 21 Context ReSOIVEr Class DIiAgram. .. .cca i urrriieeiiiiiiieee et e e eseeee s e e 79
Figure 22 Example Context Mapping TreE.o ceieiiiieiiiiiiie ettt ee e 80
Figure 23 Reverse Context MapPiNg TIEE ... o eeeeeteeeeeeieiiiiaieeseeeearereeessrnnnnnesneeaeaaaeeeeenn 81
Figure 24 The Collaboration of Creating USer SEBSIQ............covvvvirieiiiiiiiiiie e e e eereres e e e eeeneeennns 84
Figure 25 The Collaboration 0f PAge REQUEST c.cceveeeeeiiieii e 84
Figure 26 Components Of APACNE COTE........ .o eeerrrrinninieieeeaeseereeetrinaaaaaesaeeeesereeeannnnnnn 91
Figure 27 Components of EYEKS Stand-AlONE SEIVELcuiii ittt 92
Figure 28 Distribution of Transactions and LOGIMBESES.coocuiiiiieriiiiiiieeeeeee e 104
Figure 29 Distributions Of Page REQUESTS. .. .ccaaerieiiiiiiiiie ittt 104
Figure 30 Daily Transactions (APril 2006).....cccceeerrieiiiiieie e se e e e e e e e e e e e e eeeeeennaan 106
Figure 31 Execution Times Without EYEKS (0-300).ccccuuuuuuiiiiiieieeeieeeeeiiiicsis e e e e eeeeeeeeeeennnns 109
Figure 32 Execution Times Without EYEKS (250-500).........cccuuuiiiiiiiniiieeeieeeeeeeeenn e 109
Figure 33 Payload Of EYEKSe et e e e e e e e e aeaaees 110
Figure 34 Cookie DiStribution OVEr TIMIE ..ot 117
Figure 35 WebScarab TeStiNG REPOI......... o eeeuttriiieeiiiiiiee et s e e e 119

Figure 36 Reported Vulnerabilities without EYEKS............cooiiiiiiiiee e 120
Figure 37 Reported Vulnerabilities With EYEKS ..c......cooiiiiiiii e 120
Figure 38 XSS Attack
Figure 39 Session FiXation AtACKoiiicecceeeii e e e e e e e e eaeees 167

Xii

CHAPTER 1
INTRODUCTION

1.1 Scope of the thesis

The Internet and World Wide Web brings about neveswabout how the business conducted. It
started a business revolution and a new era emeAgedusiness has evolved into e-business and
governments became e-governments, the Internetois forcing enterprises to implement
collaborative business and governmental solutibas integrate internal systems. Many enterprises
have integrated Enterprise solutions such as ERReffrise Resource Plan) and CRM (Customer
Relationship Management). These solutions, thealleccEnterprise level software, provide business
logic support functionality (such as accountingodurction scheduling, customer information
management, etc.) for an organization which aimmwrove its productivity and efficiency.

Enterprise software is often categorized by thenass function that it automates - such as accoginti

software or sales force automation software. E-@uwent is one of the examples which refer to
government’s use of information technology to exadje information and services with citizens,
businesses, and other arms of government. E-Gowsrinmay be applied by the legislature, judiciary
or administration and the primary delivery modete &overnment-to-Citizen or Government-to-
Customer (G2C), Government-to-Business (G2B) andveBunent-to-Government (G2G) &

Government-to-Employees (G2E). The most importaicgated benefits of e-government include
improved efficiency, convenience and better acbdggiof public services. Health Informatics or e-

Health domain can also be regarded as a good egaofpEnterprise applications. Health care
information system builds on communication inteefdzetween various objects of health domain,
starting from patients to doctors, hospital manag@s and finally governmental public health
institutions. It also provides new point of vietgstraditional business models; patients to interac
with their systems online (B2C = "business to comstf); improved possibilities for institution-to-

institution transmissions of data (B2B = "businésdusiness"); new possibilities for peer-to-peer

communication of consumers (C2C = "patients togmasi or doctors to doctors").

Enterprise software is often designed and impleetkity an Information Technology (IT) group
within an organization. This in-house software naégo be purchased from an independent software
developer that often installs and maintains théwsoke for their customers. Another model is based
on a concept called on-demand software, or Softwara Service. Software as a service (SaaS) is a
software application delivery model where a sofevarendor develops a web-native software

application and hosts and operates the applicdiionuse by its customers over the Internet.

Because enterprise applications tend to have altspeactrum of business requirements, starting from
employee relationship to resource planning and ocost management, integration and
communication complexity become main concerns oterpnise applications. Middleware
technologies have emerged to integrate these afipls into an enterprise-wide solution, providing
well-integrated, networked software infrastructursliddleware, which is quickly becoming
synonymous with enterprise applications integrati(BAl), provides interoperability between
different applications by placing middleware betwégyers of software to make the layers below and
on the sides work with each other. Middleware tedbgies push applications out to distributed
environments and unleashing the domain-specifinevalf each application. Consequently, this frees
application developers to focus on higher-value ettggment instead of repetitive and tedious

application-communication and distribution tasks.
1.1.1 Enterprise Level Security

Nevertheless integration of these diverse systdsasimtroduces a new burden to enterprise security.
Each enterprise application comes with its own 8gcwles and access policies as well as sharing
business transactions over enterprise applicatiers a new set of enterprise security rules that mu
be handled organization-wide. Providing integratsecurity for diverse enterprise applications
becomes more important than securing each of thaependently. The problem of securing
information enterprises has been the focus of sitenefforts from the industry. This is why it ia a
essential concern to every enterprise [1]. As alteseveral well-known middleware systems have
adapted their security model to construct scalabk flexible security for distributed environments.
OMG'’s Corba [2], Microsoft's COM+ [3] and Sun’s EJB] all include access control mechanism
that depends on access control list (ACL). Thesddhaivare access control mechanism will be

discussed in detail in section 2.5.1.

The main purpose of all of these security modelgastrolling object interactions with in an
organization-wide, uniform and transparent way. ldeer they all fail their expressiveness and
granularity when we consider enterprise applicatiohCL provides limited capabilities for handling
complex policies and authorization decisions that lased on factors specific to an application
domain [5] and also a single level of granularityiet is object, does not support enough abstraction
over enterprise policy rules. Enterprise applicadiconsist of business transactions and business

services that require much more abstraction tooléralled by object interaction access control.

The complexity of access control policies in entisg applications comes from embedded business
logic. Enterprise applications aim to map real woblusiness rules, interactions, regulations and
sometimes laws (e-government applications) to cderpdomain. This mapping must also be

achieved for access control. As access controtlbgcomes closer to enterprise level, policy rules

become more dynamic, more domain-specific and roorgexts dependent. For example the current

state of a workflow process, the time or other egtutal information may be relevant when making an
access control decision. @ébakan [6] and Metin [7] address the access comgroblems in
enterprise applications. Implementing collaborabusiness and governmental solutions that integrate
internal systems, introduces complex access conile$ that originate from both business logic and
integration of business transactions. At this paiotess control rules become so called “enterprise-

level security policies”.

Since middleware infrastructures fail to evaluatdegprise-level security policies, most enterprise
applications tackle this problem by embedding aszatrol rules within an application code that
handles domain-specific factors. The more acces#tralo rules are embedded in enterprise
applications, the more reusability and manageghilitwhole system reduces. Beznosov has criticized
this issue [5] and advised that the logic of segupolicy decision should be separated from an
application system because all security relatedsibers made by an application depend not only on
the application business logic but also on secuyndtlcies that are enforced in the given organizati
and these enterprise-level security policies abgestito changed rapidly when legislation, regoladi

or company's businesses process changes. Begidesery hard for software vendors to know a

priori security policies enforced across customemgrprises.

Although will be widely discusses in section 2.@ngrally speaking, current enterprise application

solutions suffer from the following access conpadblems;

e The policy rules become too complex such that #ireyfine grain, domain-specific, dynamic and
context sensitive to be executed in a traditionaywFor example, an online banking application
requires the EFT operation to be within a userrdefiamount limit and to take place between 9:00

am and 4:00 pm.

« Largely embedded in application systems and aswtrié becomes too difficult to manage and

reuse.

« Need organization-wide enforcement because of gatlhnlarge number of heterogeneous

distributed applications and users.

* Costly and error-prone because there are multipiatg of control, every part of application
implements their own access policies so lack ofnmeda assure organization-wide consistency and

end-to-end properties.

* Frequently subject to change due to legislatioguliaions or businesses process changes of the

company.

1.1.2 Application Level Security

Although not limited to web based, nearly all oé thnterprise applications has web interface such as
web services and/or web applications. Day by dayenamd more business is conducted via Internet
while enterprises and governments offer onlineiservAs organizations have been increasing their
reliance on web applications, Attackers are turnihgir attention to these business applications.
Although network-layer defenses have become steadliitured, traditional firewalls should not be
the only protective measure in place to defendrprige web applications. Neither other defense
systems such as Network Intrusion Detection angdpteon Systems (NIDS/NIPS) can be enough to
solve the problem. These solutions actively monitaffic on the network for malicious activity.
NIDS solutions are often set in passive or SPAN pwrde. This means that NIDS can only send TCP
resets to stop some of the bad TCP packets. Afalhart a NIDS solution is that they can not active
block any UDP traffic. NIPS perform the same fuoctlity as a NIDS, except that it sits actively
inline with the data flow it is monitoring. This tign is able to actively block any packet deemed
inappropriate for that network segment. Host-Balsgusion Detection Systems (HIDS) and Host-
Based Intrusion Prevention Systems (HIPS) can ladsased to protect servers. HIDS and HIPS are
parasitic software that monitors respective hostsahomalous behavior. This software can look for
specific attacks directed at the server, whereasétwork solutions monitor only the network traffi
between them.

The reason behind incapability of network layerethsEs to protect enterprise web applications is tha
web application attacks turns to threaten appbcakayer instead of network layer. Application-leve
web security refers to vulnerabilities inherenttie code of a web-application itself. Attackers oaa
application’s own code or business logic agairssitby only tampering parameters that does nibt sti
violate network layer security policies. This makiegossible to be detected by network layer
devices. Statistics collected from SANS Institttewss that [8]; from 1Q05 to 1Q06 there has been a
20% rise in the number of application-specific \arkbilities identified and over 50% of these are
based on web applications and greater than 80% wigdfunctions that emerged in the past year have

focused on exploiting application-layer vulneraigh.

The most dangerous and the most unnoticeable anefftine, the hardest to prevent type of attacks are
these that exploit application layer vulnerabiitieAlthough these vulnerabilities have similar
patterns, they are unique to the application. Wahlieation vulnerabilities do not have to be as a
result of common implementation bugs or mishandbifdusiness rules. Consequently, there is no
general catch-all solution to remove weaknessegubrerabilities from enterprise web application.
The main reason behind web application vulneradmsliis that most of the time security is not
considered as essential design concept of enterppplication development. It must be essential to
build security concept into the Software Developtmfe Cycle by developing standards, policies
and guidelines that work within the developmerd tifycle [9] otherwise even a single inexperienced

software developer (in most cases, software deeefogloes not have enough knowledge or

experience about security) can cause serious seflars.

This is why 95 % of highly used web applicationsdaulnerabilities [10]; even global leaders of IT
sector suffer from serious security flaws. Nets¢apaazon, Google, MSN and MySpace have been
reported to have cross site scripting vulnerabaifil1] which threatens clients of these sitesesh
more dangerous impacts like credit card lossesbeaoccurred as seen in AT&T, RI Gov, TJX,

Moneygram and PortTix cases [12].

There are various types of web applications vulniéti?@s and attack vectors. The impacts also vary
greatly. Most common impact is disclosure of infation where it may be as simple as revealing the
structure of web applications but may also be agyeius as disclosure of sensible data like credit
card numbers. Unauthorized access or modificatayesother serious impacts that can be used to
achieve various goals. Attack vectors are also gadot and are specific to the web application. Mos
of the time, a number of different attack techngjaee used sequentially to maximize the success
probability of the attack. The attacks, in mostesadarget to reveal web application structuregisin
directory traversal, then may continue with analgzresponse headers and session management
strategy and finally ends with injection types dfaeks. These vulnerabilities are examined and
discussed widely in section 2.4. There is alsosh amount of research to define and classify sgcuri
incidents. Some researchers construct a list ohdethat defines a number of attacks [13]. Some
considers origin of the vulnerabilities to buildetitaxonomy [14, 15]; identifying the impact of
vulnerability that describes the result of attaglanother technique [16]. Stalling focuses on @Esce
rather than a single classification category, ideorto provide a successful classification scheone f
Internet attacks [17]. There are also numerouseralility databases which concentrate on reporting
rather than categorizing. With all these effortxlasification, there is confusion and fuzzindssua

the standardization of vulnerability names. Comnvadnerabilities and Exposures project tries to
standardize the names for all publicly known vudtidlities and security exposures which can be

considered as a dictionary, not a database [1Hsd efforts are presented in detail in section 2.1.

Some organizations and consortiums are also foundedoncentrate only on web application
vulnerabilities to increase public awareness alwmli application security and dedicated to find and
classify possible web application attacks and effeountermeasures for them. Web Application
Security Consortium (WASC) is one of them and redsathreat classification of web application
attacks [18]. Open Web Application Security Proj@@WASP) is the other and publishes “Top Ten
Most Critical Web Application Security Vulnerabiéis” list every year to inform the public about the

most dangerous web application vulnerabilities.

Although there are various types of vulnerab#itand attack vectors, the source of vulnerabilises
most of the time the same; improper handling ofitngalidation and sanitation. Nearly 90% of web

application vulnerabilities originate from parametampering like injection, cross site scripting

(XSS), file and command execution attacks. Invagidanput was the first item in OWASP top ten
list in 2004 [19] but removed in latest list (20Q2P] because it is an essential step towards segur
the application and therefore it is not a type wiherability but the root of many application setur

problems.

Some of the web application development framewdiks Struts have built-in data validation
mechanisms. In fact, data validation can be reghie one of the core subjects of the positive
security model. Positive security model tries tdirdewhat is allowed or normal for the application.
The situations that are not defined are regardedba®rmal and rejected. The anomaly can be
evaluated by predefined rules (white list) or byarfeng. Predefined rules can be inferred
automatically by web site crawling or manually defil by strict and comprehensive resource and
parameter mappings like all web pages and thewall parameters and headers. On the other hand,
learning can take place using statistical meth@dg §r neural networks [22]. If we consider web
applications, positive security model should workkhwany granularity from raw HTTP packets to
HTTP parameters and headers. Network intrusionctiete systems fail to satisfy this level of
granularity; mostly they evaluate only on raw padiet discard the content. Any web application
security system must allow all legitimate, accelgatpaffic and content requirements and deny
everything else. This approach is highly effectatepreventing unknown attacks and dramatically
reduces an organization’s attack surface by auioait eliminating exposure to all sorts of attacks
The opposite of positive security is negative siégunodel which identifies traffic known to be
threatening by checking traffic flows against dfttasignatures. However with attack vectors
increasing at such a rapid pace, solutions hawe desdl less time to react to new attacks. Attack

signatures must be updated rapidly and frequently.

Since network layer defense systems fail to confrgoplication level attacks, the solution has
emerged in the shape of application level firewallamely Web Application Firewall (WAF).
According to WASC [23] a web application firewadl 'lAn intermediary device, sitting between a
web-client and a web server, analyzing OSI Layen&ssages for violations in the programmed
security policy. A web application firewall is usasl a security device protecting the web servanfro
attack." WASC has also released web application evaluatidaria [23] that can also be used for
standardization. As public awareness increases, ajgplication firewalls become an essential part to
secure any Enterprise web applications. For examapleording to Payment Card Industry (PCI) Data
Security Standard (DSS) [24] companies must installapplication layer firewall in front of Web
applications or have all custom application codeiesged for vulnerabilities by an outside

organization that specializes in application seguri
1.1.3 Proposed Solution

To sum up, access control and security are mostnmymproblems of enterprise applications.
Executing enterprise-level security policies thatapsulates domain specific factors to requests tha

suffer from web application vulnerability could pably result in error-prone access decisions. In
order to decide on enterprise-level security peiciveb requests must be free from applicationi-leve
security vulnerabilities. So a correct access dmtisan only be granted if a request satisfies both
“enterprise-levél and “application-levél security policies. Enterprises require a compreie

solution that provides centralized security managggnfrom authentication to authorization and

auditing.

The aim of this thesis to describe a centralizedese and security mechanism that combines
“enterprise-levél and “application-level security aspects together and enforce theseipslio be
satisfied organization-wide and in a transparennmea The proposed solution called EYEKS
("Erisim, YEtkilendirme ve Kjisellestirme Sistemi" in Turkish, meaning "Access, Autlzation and
Personalization System") was presented in Secofitgformation Networks 2007 (SIN2007) [7] The
main goal of EYEKS is to provide a common evaluateind enforcement environment for both
enterprise-level and application level policiesbting together access controlling with application-
level security. Removing separation between erigagevel and application-level security policies

improves manageability, reusability and scalabibtyvhole system.

Beznosov showed that separation of access deaissmmanism with application itself is essential to
encapsulate domain specific factors for accessidec|5]. In his model, a reference model evaluates
access decision using authorization database, gieesvaluation result to the application and leave
the enforcement to the application. Therefore EYEI&S been designed as reverse proxy that works
inline mode, installed in front of the web applicatto control the traffic and enforce securityipigls

to be satisfied. Architecture of proposed solutinimoduces a specific layer, so called application
security layer that is created and placed in fesntPosterior layers consist of real web applicetio
and databases and have no direct access to théeowtsrld. All communications from outside world

to backend web application is intercepted and aiz@d from application security layer. Each request
is parsed into HTTP headers, parameters and cortedtpassed to the request/response operation
chain, which is the core of application securityela Each operation in the chain is responsibleafor

specific operation like authentication, authoriaatisession management and logging.

The authorization mechanism of EYEKS has been ch@se Resource Access Decision (RAD)
because this facility is one of the best solutithvad can be used by security-aware applicatioranfb

as shown in section 3.2, is very suitable to salseess control problems of web applications. RAD is
a specification released by The Object Managemewuis (OMG) to specify a mechanism for
obtaining authorization decisions and administtataccess decision policies [25]. EYEKS uses
CSAAS (Cybersoft Authentication and Authorizatiogs&m) as authorization and authentication
engine which implements RAD specification with dotdial RBAC [26] capabilities [6]. The details
of CSAAS will be described in section 3.1.

RAD specification requires resources and theirdvafierations to be well defined, “Resource” can be
any entity in computer system and operation defmeslid procedure performed on any resource,
therefore any level of granularity to address as@estrol problems of enterprise applications can b
achieved. Every resource-operation pair can bebgwd with a number of “policies” that defines

access policies to do requested operation on #saturce. Access is granted only if that operation

satisfies attached policy rules on specified resaur

The access control problems of enterprise apptinatcan be resolved by defining enterprise-level
policies to CSAAS. Policies are evaluated usinglattes of an operation. These attributes can be
dynamic (attribute value is evaluated at the tirhéhe request) or static (parameters that are gasse
directly with an operation.) According to theserihtite values, a policy grants or denies an access.
For enterprise web applications, this is a reaserafproach. A form within a web page, a whole web
page, a directory or even a whole web applicatiam lse defined as a resource or operations for a
resource in upper level of abstraction. As desdribefore, middleware access control mechanisms

cannot provide such level of abstraction.

Any web application that requires to be controledEYEKS must be mapped to RAD domain as
described in section 3.2. This mapping requiresvalb pages and directory structure to be identified
and manually constructing resource-operation pafter the whole web application is mapped,
access policies (enterprise-level security policgh be attached to suitable resource-operatios pair
that define permission on that resource. Withirs¢hgolicies, any domain specific access rules ean b
encapsulated. EYEKS regards all request paramasesecurity attributes of corresponding business
operation and passes them to CSAAS. Upon recepfiarpage request, these parameters are resolved
and according to corresponding mapping they arsgohso CSAAS with resource-operation pair.

These parameters can then be used to evaluatesataEsion within corresponding policy.

Mapping from enterprise web application structurdRIAD domain will also provide a common way
to tackle with application security. This is bekelto be the most important contribution of this
thesis. Currently, enterprises must install différeolutions to access control and application sgcu

However removing discrimination between applicafievel and enterprise level security policies and
handling them by a common infrastructure would ioyer manageability, reusability and scalability
of whole system. This mapping directly leads usitp@s security model where resources and
operation of the application are strictly definddhbon this mapping, it is also possible to check

parameters and headers of each request againsedli@mlues, type or range.

RAD specification does not allow hierarchical reseudefinition, permitting only flat structure.
However it is absolute that applications need omgdion wide security policies. In this thesis,sthi
drawback has been overcome with some predefinemlimess. Application security layer asks for
permission on these resources when a page reqegstst to access any page within a directory or

more broadly any request to application has beepived. By these predefined resources, it is

possible enforce global security policies on angepalirectory or application hierarchically. Global
security enforcement also provides a negative #gcarodel to be applied. Application-security
policies that define signatures of known securixpleits can be attached to these resources and
application security layer guarantees that eaclhiastgmust satisfy all these application security

policies in order to reach backhand enterpriseiegiibns.
To summarize, the main contributions of this thesesthe following:
» Defining an organization wide security enforcemmethanism for enterprise web applications.

e Transparently adapting an access control mechan@sad on RAD specification that is capable
of using domain specific factors in access decisipaddress access control problems of enterprise

applications.

« Defining a common infrastructure where enterpriseeas rules and application security rules can

be handled by organization wide policies.

* Applying positive and negative security models nteeprise web application with RAD based

implementation.

1.2 Outline of the Thesis

This thesis is organized as follows. The next abrapbntains background information about access
control mechanisms and web application securitjpeljins with security taxonomies and continues
with access control mechanism, further defines sso®ntrol and application security problems of
enterprise web applications. At the end of the twrapelated works about these two subjects are
presented. Chapter 3 describes our proposed arthige The chapter starts with describing CSAAS,
RAD based implementation that will be used as acatrol mechanism and continues with
mapping web application to RAD domain. In the remirad section of this chapter, the inner structure
of EYEKS is described in detail. The chapter endt werification of solution section that tries to
verify EYEKS implementation against the problemsgented. Chapter 4 lists the experimental tests
of the EYEKS. In Chapter 5, main contributions bistthesis and some ideas for future work are
presented. In Appendix A, a complete analysis o wpplication security vulnerabilities is made.
This chapter also contains a classification of w@plication attacks according to selected security

taxonomies.

CHAPTER 2
BACKGROUND AND RELATED WORK

2.1 Security Incidents

2.1.1 Definition of Incidents

There is no single definition of security incidemtsd incident responses. Throughout the literature
there is no agreement on what an incident is. &astadividuals, foundations and universities make

their own assessments to define what an incident is

Lucas and Moeller [27], like most practitionersyemgyon the need for a solid definition that clearly
differentiate “incident” from “non-incident”. The &work Working Group of TERENA emphasizes

the importance of a common language on securiigémts, on their RFC 3067 and states that: [28]

“Computer Incidents are becoming distributed andetnational [sic] and involve many CSIRTs

across borders, languages, and cultures. Post-Braidinformation and statistics exchange is
important for future Incident prevention and Intetnsecurity improvement. The key element for
information exchange in all these cases is a comfoonat for Incident (Object) description.”

The first classification of computer incidents waefined by Nancy and Peter Finn in an article on
Computerworld published in 1984. They divide congpudrime into five categories: financial crime,
information crime, theft of property, theft of se®s and vandalism. However they only focus on
crime-related threats but discards the accidentatom-malicious aspects. Howard and Longstaff
define an incident as “a group of attacks that lsardistinguished from other attacks because of the
distinctiveness of the attackers, attacks, objestigites, and timing.” [29] An attack is defined“a
series of steps taken by an attacker to achieveirmuthorized result.” And an attacker is “an
individual who attempts one or more attacks in otdeachieve an objective.” TERENA defines an
attack more solidly as “an assault on system sigctivat derives from an intelligent threat to evade
security services and violates the security potifya system. Attack can be active or passive, by
insider or by outsider, or via attack mediator."doth definitions, the term attack means a maligiou
intent to break down the system, however a sizgatalportion of incidents are the result of accident
or actions undertaken without seeing any negatwesequences. This strict focus on malicious
attacks does comprise just a portion of total ieotd. So a more general definition of attack islede

to cover all types of security incidents.

Grace, Kent and Kim also emphasize the need ftea definition of what an incident are [30]. They

consider this as an inevitable aspect to createffagtive indent response team. They state that “an

10

event is any observable occurrence in a systenevank” and “adverse events” as “events with a
negative consequence, such as system crashes,rkgiacket floods, unauthorized use of system
privileges, defacement of a Web page, and execuifomalicious code that destroys data.” This
creates an important distinction; they called anguorence of changes in the system that cause any
effect as “events” and also adds the term “advexsnt” that cause negative effect to the system.

These authors make this distinction in ways thia¢ioauthors have not.

Van Wyk and Forno focus on examples of incidenteyTstate simple definition of incident [31]. “In
the most basic terms, an incident is a situatiowhich an entity’s information is at risk, whethée
situation is real or simply perceived”. The sigeefint part of their work is expanding the definitioi
incident to include situations that are false akrfhis definition adds another perspective to the
computer security, they state that if only realideats attracted the attention of incident response
teams, in order to prevent the further attacks @oilbct knowledge, the damage or exposure would
have to occur. Van Wyk and Forno states that pérggian incident is possible by studying previous

attacks, false alarms and possible vulnerabilityses to take a more proactive approach

2.1.2 Taxonomies of Incidents

Taxonomy is a classification scheme that partitiarigody of knowledge and defines the relationship
of the pieces [32] Classification is the processisig taxonomy for separating and ordering. Using
these separations and ordering generalizations bearmade about them, so we can say that
classifications have explanatory value. Taxonontas also be used to predict the existence of
specimens that have not been seen before by ekdtimygofrom the known specimens so taxonomies
have also predictive value.

Edward Amoroso, in his book Fundamentals of Comp&exurity Technology [33] defines what the
characteristics, a satisfactory taxonomy must h@iliese are;

Mutually Exclusive: classifying in one category excludes all othersabse categories do not
overlap,

Exhaustive: taken together, the categories include all polgsisi,

Unambiguous: clear and precise so that classification is notewain, regardless of who is
classifying,

Repeatable repeated applications result in the same classifin, regardless of who is classifying,
Accepted: logical and intuitive so that categories coulddiae generally approved,

Useful: could be used to gain insight into the field afuiry.

11

Ivan Victor Krsul defines these characteristics in arencompact way and mention four distinctive

characteristics, which are; [34]

Objectivity: The features must be identified from the objecovikn and not from the subject

knowing. The attribute being measured should barljl@bservable.
Determinism: There must be a clear procedure that can be folldwextract the feature.

Repeatability: Several people independently extracting the saatife for the object must agree on

the value observed.
Specificity: The value of the feature must be unique and ungumiois.

UIf Lindvist and Erland Jonsson were more or lgsagreement with these characteristics but also

added two important characteristics [35]

Comprehensible: A satisfactory taxonomy must be able to be undetstyy who are in the security

field, as well as those who only have an intenest i

Complying Terminology: An accepted terminology should be used in taxontorgvoid confusion

and to build on previous knowledge
2.1.3 Existing Taxonomies

As some authors like Landwher and Bishop, focusn@inly attacks, some authors like Cohen,
Howard take a broader view of the taxonomies suxlcansidering the attacker, tool or natural
disasters. So computer and security taxonomiesodan@cessarily focus on attacks. Regardless of
whether the taxonomy focuses on attacks or not,ctimon element of these taxonomies is

classifying attacks.

There are various works on creating taxonomiesdonputer security incidents and nearly all of them

can be categorized by their common properties
2.1.3.1 List of Terms

One of the popular and simple taxonomy of compinteidents is giving a list of single and defined
terms. Icove [13] proposed 24 terms as taxonomghawn below.

“Wiretapping, Dumpster diving, Eavesdropping on Hatons, Denial-of-service, Harassment,
Masquerading, Software piracy, Unauthorized datpytng, Degradation of service, Traffic analysis,
Trap doors, Covert channels, Viruses and wormssi8eshijacking, Timing attacks, Tunneling,
Trojan horses, IP spoofing, Logic bombs, Data digll Salamis, Password sniffing, Excess

privileges, Scanning.”

12

Cohen defined 39 terms in his paper. [36] and ekthis list to 100 terms [37] but also added that t
classification is descriptive, non-orthogonal, ingete, and of limited applicability. The defineél 3
terms are shown below.

“Trojan horses, Toll fraud networks, Fictitious gae, Infrastructure observation, E-mail overflow,
Time bombs, Get a job, Protection limit pokingrasfructure interference, Human engineering,
Bribes, Dumpster diving, Sympathetic vibration, $%esrd guessing, Packet insertion, Data diddling,
Computer viruses, Invalid values on calls, Van Helgging, Packet watching, PBX bugging,
Shoulder surfing, Open microphone listening, Oldkdinformation, Video viewing, Backup theft,
Data aggregation, Use or condition bombs, Procegsabsing, False update disks, Input overflow,
Hang-up hooking, Call forwarding fakery, lllegallua insertion, E-mail spoofing, Login spoofing,

Induced stress failures, Network services attaakskined attacks.”

Ambiguities are almost inevitable when preparirsgsliof terms for taxonomies; the terms tend not to
be mutually exclusive, which is the main charasters of a satisfactory taxonomy. For example, the
terms virus and logic bomb are not mutually exslessince a virus may contain a logic bomb. And
also attacks do not consist of only one type dackitbut a combination of different methods. As a
result, developing a comprehensive list of methfmisattacks would not provide a classification
scheme that yields mutually exclusive categoriegerieif the individual terms were mutually

exclusive), because actual attacks would have mdssified into multiple categories
2.1.3.2 List of Categories

Listing of categories is a variation of the list ®frms. Lists of categories are in fact distinctive
categories holding definitions of underlying terr@heswick and Bellovin in their paper on firewalls

[14] classify attacks into seven categories a®vadl,
“1.Stealing passwords - methods used to obtainraibers’ passwords,
2. Social engineering - talking your way into infation that you should not have,

3. Bugs and backdoors - taking advantage of systifyats do not meet their specifications, or

replacing software with compromised versions,
4. Authentication failures - defeating of mecharsigreed for authentication,
5. Protocol failures - protocols themselves arerioperly designed or implemented,

6.Information leakage - using systems such as fimgethe DNS to obtain information that is
necessary to administrators and the proper operatid the network, but could also be used by

attackers,

7. Denial-of-service - efforts to prevent usersrfrbeing able to use their systems.”

13

Aslam develops a classification scheme which foguse security faults that result in security
incidents. [38] In this narrow point of view, hevities software faults into two broad categories.
Coding Faultsthat result from errors in programming logic, rmgsrequirements, or design error;
and Emergent Faultsresulting from improper installation or adminisioa of software so that

software faults are present even if there are albbsfin coding part.

One of the newest taxonomy falls into this kindtaonomy is Lough’s taxonomy. In 2001 Daniel
Lough proposed another taxonomy named VERDICT @&ion Exposure Randomness Deallocation
Improper Conditions Taxonomy) that is based on atteristics of attacks. Lough proposed four

characteristics of attacks; [15]

Improper Validation: Insufficient or incorrect validation results in withorized access to

information or a system.
Improper Exposure: A system or information is improperly exposed tiaek.
Improper Randomness:Insufficient randomness results in exposure tacétt

Improper Deallocation: Information is not properly deleted after use #imas can be vulnerable to
attack.

List of categories are an improvement becauseakenomy have some structure of terms, but this
type of taxonomy suffers from the same problemsratarge list of terms. For example Bishop and
Bailey [39] shows that Aslam classification doed satisfy the specificity requirement as it is

possible to classify a fault in more than one dfacsgion categories. So this type of taxonomiesoal

suffers from satisfying mutual exclusive charatiri
2.1.3.3 Result Categories

This classification identifies the impact of vulability; in fact it is another variation of the tis
methods to group all attacks into basic categdhasdescribe the result of attack. Cohen’s taxgnom
[36] also covers result categories suchcaguption, leakage and denjalvhere corruption is the
unauthorized modification of information, leakagewhen information ends up where it should not
be, and denial is when computer or network servemesnot available for use [36]. Russell and
Gangemi use similar categories but define themguspposite terms: 1) secrecy and confidentiality;

2) accuracy, integrity, and authenticity; and ikability [40].

This type of taxonomy has a useful framework beeamsst individual attacks eventually fall into
one of these categories. Although the attack teglas, tools can be various, the impact list wod b
compact. One drawback of these taxonomies is aokatian result in not only direct impact but also

indirect impact. So there might be confusion on olihtategories it belongs to. However result

14

categorization scheme ends up with empirical, ,listglnerability databases and decision tree

taxonomies, which are serious improvements in taroas of security incidents

2.1.3.4 Empirical Lists

A variation of result categories is to develop ager list of categories based upon a classification
empirical data. Neumann and Parker classified dettecks and came up with eight categories. Three
classical categories (corruption, leakage and tjemiav extended into eight distinct categoriestsat t
it covers more types of attack impact, which wondd be classified by Cohen’s taxonomy. Neumann

and Parker list it as follows; [41]

“External Information Theft (glancing at someon&sminal).
External Abuse of Resources (smashing a disk)drive
Masquerading (recording and playing back netwaeaagsmission).
Pest Programs (installing a malicious program).

Bypassing Authentication or Authority (passwordoking).
Authority Abuse (falsifying records).

Abuse Through Inaction (intentionally bad admirgigon).

Indirect Abuse (using another system to createaicious program).”

However Amoroso critiques the list as follows; [33]

“A drawback of this attack taxonomy is that thehgigttack types are less intuitive and harder to
remember than the three simple threat types insttmple threat categorization. This is unfortunate,
but since the more complex list of attacks is bamedictual occurrences, it is hard to dispute its

suitability.”

Such extended lists of result categories can katdaifor classifying large number of actual atsack
and if carefully constructed, these list would haatisfy able taxonomies characteristics statedabo
However, being able to classify known attacks i$ swfficient, as Amoroso said, a successful
taxonomy must be logical and intuitive, so that nattacks can also be classified using the same

taxonomy. There must be additional structure shgule relationship of the categories.

2.1.3.5 Matrices

The most used representation style of taxonomi@s fisatrix form. Perry and Wallich create one of

the first matrix taxonomy. They present a clasaifim scheme based on two dimensions;

15

vulnerabilities and potential perpetrators. Thiswas categorization of incidents into a simple rnixatr
[83]. The individual cells of the matrix represem@mbinations of potential perpetrators: operators,
programmers, data entry clerks, internal userssideitusers, and intruders, and the potential effect
physical destruction, information destruction, ddiddling, theft of services, browsing, and theffit o

information.

One of the most valuable works of matrix approaghsécurity incident taxonomy is found in
Landwehr’s “A Taxonomy of Computer Program SecuFtgws, with Examples” paper [84]. They

present taxonomy of computer security flaws basetheee dimensions;

e Genesis: How a security flaw occurs,

« Time of Introduction: In which life-cycle of the #avare, a security flaw arises,
e Location: Where and in which state, a security feurs,

Although, Landwehr’s taxonomy is a good effort fdassifying security incidents, it has many

drawbacks. First of all Landwehr used the termshsas Trojan horse, virus, trapdoor and logic/time
bomb for which there are no accepted definitiortse Taxonomy includes several “other” categories
which make the flaws not to represent an exhausisteOn the other hand most of the attacks could
use several flaws and behave differently in diffiénglatforms. So it is hard to classify entire ekta

using this taxonomy.
2.1.3.6 Process-Based Taxonomy

The focus of this kind of taxonomies is toward agass, rather than a single classification category
in order to provide both a successful classificaisheme for Internet attacks, and also a taxonomy

that would aid in thinking about computer and netngecurity.

Stallings presents a simple process model thasifiles security threats [17]. The model is focused

only information in transit. Stallings defines fatategories of attack as follows:
“1.Interruption - An asset of the system is destbgr becomes unavailable or unusable.

2. Interception - An unauthorized party gains asdesan asset.

3. Modification - An unauthorized party not onlyigmaccess to, but tampers with an asset.
4. Fabrication - An unauthorized party inserts ctarfeit objects into the system.”

Interception is viewed by Stallings as a passitaclf and interruption, modification and fabricatio
are viewed as active attacks. While this is a giiegl view with limited utility, its emphasis on ¢h

process of attack is useful.

16

2.1.3.7 Threat Classification

The classification of the threat due to the vulbdittes was designed by Power [42]. In this
classification,figure 1, threats are divided into four categories, threla#d threaten availability and
usefulness, integrity and authenticity, confiddittiaand possession, exposure to threats. Eaclatthre
category is divided into possible outcomes. Bus$ ttiassification is critiqued to be ambiguous. The
categorieObserveand Accessare concrete actions while the categBtgalis subjective, also it is

possible tcAccessandStealsimultaneously.

Drestrony damage or contamitmte
— Threats to <: Dery, prolong or delay use of
avajlabilitj,r atd access
usefulness
Erter, user, produce false data
Modifir, replace or reorder
L Thteats ta Misreprasant
integrity and -
Threais = authentivity Repudiate
Misgse of fulto use as
locess
Disclose
Threats to Chserre oy Montor
® confidentiality
atid possession Copy
Steal
Exposure to Endangzer by exposue to anr
| threats cther threats

Figure 1 Threat Classification

17

2.1.3.8 Vulnerability Databases

Several groups have constructed vulnerability degab. Private databases of restricted distribution
include the CMET database at the Air Force InforomatWarfare (AFIW) Center; the database
maintained by Mike Neumann; the database at thepDiten Emergency Response Team (CERT); the
database of the Australian Computer Emergency Regpdeam (AUSCERT); and the internal
vulnerability databases at Netscape, Sun, and Helystabs.

National Vulnerability Database is a comprehensi@eurity vulnerability database that integrates all
publicly available U.S. Government vulnerabilitysoeirces and provides references to industry
resources. It is based on CVE vulnerability namstgndard. It integrates together all publicly

available U.S. government vulnerability resourcébiw a single search engine and an average of 18

vulnerabilities is added on their database everyday

These databases are freely available in the Irtenmé commonly used by various security related
organizations and companies. Most of them havenglsi characterization that includes information
regarding the systems affected by the vulnerabiihd the potential ultimate impact that the
vulnerability can have in a system and manner skiide attack. However, these categorizations are

list type and fail to be a successful taxonomy.

2.1.4 Vulnerability Naming Standards

2.1.4.1 Preliminary List of Vulnerability Example for Researchers

The Preliminary list of vulnerability examples fogsearchers is written by Steve Christey and is a
working document that lists over 1400 diverse,-watld examples of vulnerabilities, identified by
their CVE number [85]. Apart from past efforts tHave largely focused on high-level theories,
taxonomies, or schemes that do not sufficientlyecate wide variety of security issues, PLOVER
provides an effective vocabulary for describingneshbilities at a low level of detail within a diétd

conceptual framework.

In section 3 and 4 of this document, Christey giwdfinitions of security concepts with
corresponding naming standards. He defines attaééllaws; [PLOVER 2006, [DEFS].CDEFS.Core
definitions]. "The set of actions by which an ATTACKER followsfaimTACK VECTOR to exploit a
VULNERABILITY to achieve a desired CONSEQUENGQR.this definition,“attack vector” stands

for a set of*manipulations” and “channels” where “channels” defines an interface between two
entities of any system (Figure 7). Channels dividtgd three remote, local and physical. Remote
channels mean any user to server or server to rsémeractions. Local channels are program
interactions with local environment such as memflg/,or programmatic interactions such as process
invocation, object reference, data stream. Physicahnels include serial ports, keyboard, CD drive,

etc. Manipulations can be data or step manipulation

18

Christey defines vulnerability as [PLOVER 2006, [Bf].CDEFS.Core definitions]A WIFF in a
specific product, or a design intended for a clakproducts that provide the same functionalityttha
has at least one ATTACK VECTORWhere WIFF's aréWeakness, ldiosyncrasy, Flaw, or Fault.
An algorithm, sequence of code, or a configurationthe product, whether it arises from
implementation, design, or other processes, thataass data or object boundaries that could not be

crossed during normal operation of the product.”

Attack vector consist of minimal set of MANIPULATNS, and CHANNELSs, that are required to
cause the product to reach a WIFF. This definiteoan important definition because Christey now
able to categories attacks that use multiple Wik#igre most of the taxonomies fail to be mutually
exclusive. Christey introduces, MULTI-FACTOR VULNBRBILITY as “A vulnerability that
contains two or more WIFFs, two or more manipulasipor two or more attack channelsahd
MULTI-CHANNEL VULNERABILITY as “A vulnerability whose attack vector contains two o

more attack channels that must be controlled byattecker.”

Christey also categories vulnerabilities accordingtheir origin, identifying in which phase of
software life cycle the vulnerability is introducesiccording to Christey, although most vulneratpilit
tends to occur in any of several phases, some rability can be introduced in one phase or another.
In section 8, “Genesis of vulnerabilities”, he died the origin into 9 categories; design,

implementation, bundling, distribution, installaticconfiguration, documentation, patch and removal.

As a result of PLOVER work, the vulnerabilities aoeganized within a detailed conceptual
framework that currently enumerates 290 individypes of WIFFs and lists over 1400 diverse, real-
world examples of vulnerabilities, identified byeth CVE names. This work is a great step over
standardization of enumeration of vulnerabilitiesd alead to OVAL (Open Vulnerability and
Assessment Language), the standard for determimirigerability and configuration issues on
computer system. Depending on OVAL, the Departnoéridefense, give the statement of works to
explain the relevant requirements that must be byesoftware suppliers, assessment and reporting

tool developers, remediation tool developers.
2.1.4.2 Common Vulnerabilities and Exposures (CVE)

CVE is a list of information security vulnerabié8 and exposures that aims to provide common
names for publicly known problems. It is a dictionand a result of collaborative efforts of CVE
Editorial Board, which consist of numerous securélated organizations such as security tool
vendors, academic institutions, and governmentelsas other security experts. It is freely avdiab
for both download and review. CVE was founded ir®4d%nd since then it tries to enumerate
common vulnerabilities. It does not provide anyotwomy; instead CVE is designed to allow
vulnerability databases and other capabilitieseditiked together, and to facilitate the compariebn

security tools and services. As such, CVE doescootain information such as risk, impact; fix

19

information, or detailed technical information. C\ihly contains the standard name with status

indicator, a brief description, and referencesetated vulnerability reports and advisories.

CVE gives two new definition to the term vulnerdlil “universal vulnerability” and “exposure”
[11]. CVE defines universal vulnerability as folle% "universal" vulnerability is one that is
considered vulnerability under any commonly usecusty policy which includes at least some

requirements for minimizing the threat from an ekier.” And states “exposure” as

“An exposure is a state in a computing system (@ a&f systems) which is not a universal

vulnerability, but either:

1. allows an attacker to conduct information gathgractivities

2 .allows an attacker to hide activities

3 .includes a capability that behaves as expedtetican be easily compromised

4 .is a primary point of entry that an attacker natempt to use to gain access to the system ar dat
5 .is considered a problem according to some reatensecurity policy”

In fact, these two definitions are very broad anid ihard to decide whether a security inciderda is
“universal vulnerability” or an“exposure”. However the ternuniversal vulnerability” is used for
entries, which are considered as vulnerabilitiedenrany security policy and exposure as entries,
which violate some of the security policies. Untierse definitions, “denial of service by flooding a
network” and “remote command execution as user dgbare examples of universal vulnerability
and “running services such as finger” and “inappiadp settings for Windows NT auditing policies”

can be called exposures.
2.1.4.3 Common Weakness Enumeration (CWE)

PLOVER is a starting point for creation of CWE. CWIges to give a formal enumeration of the set of
security Weakness, Idiosyncrasies, Faults, Flaw$FP&) to serve as a common language for
describing software security vulnerabilities. Altlgh the basis of CWE is PLOVER work, CWE also
includes the thoughts in the McGraw/Fortify “Seviéimgdoms” taxonomy, Howard, LeBlanc &
Vieag's 19 Deadly Sins and Secure Software’s CLASP.

At the top of the hierarchy, CWE categories WIFfR® itwo; By Location and By Motivation/Intent.
Motivation/Intent group is divided into Intentionahd Inadvertent. Intentional WIFFs are weakness
that occurs intentionally and Inadvertent flaw magcur in requirements and as well as during
specification and coding. Intentional flaws areoatBvided into malicious flaws and non-malicious

flaws. Malicious flaws cover Trojan horses, trapdoand other malicious software that can leak into

20

the software. Functional requirements that aretevritvithout regard to security requirements cad lea

to non-malicious flaws.

Location category describes the origin of flawdlaav can occur because of the environment used,
some faults in configuration or the coding mistakésding faults are divided into two source code
and byte/object code. Source code describes caiings that lead to weakness and byte/object code
is a category that tries to describe the weaknabsgsise from bad linking and complying practices
Source code category is divided into seven categptirese are; Data Handling, APl Abuse, Security
Features, Time and State, Error Handling, Code iQu&lncapsulation which describes bad coding

practices that can leak to vulnerabilities. A higlel hierarchy of CWE is given iigure-2

Weaknesses

Location Motivation

[Envirnnment] [Cnnﬂgl-,lratinn] [Cc:de] { Inten;:innal] [Inadv;t‘tent]

[Snurc:n; Cude] [ijte-Cnde] Tilalicions]

Diata Handling Mon-roalicious]

&PT Bbuse
Security Features
Time and State

Error Handli

Code Chaalitsy

Encapeulation

e

Figure 2 CWE Enumeration

2.1.4.4 WASC Threat Classification

Web application security consortium has been rekbas classification of web application threats.
According to this classification, web applicationffers from 6 classes of attacks; Authentication,

Authorization, Client-side Attacks, Command Execntilnformation Disclosure and Logical Attacks.

21

Authentication type of attacks covers attacks thaget a web site’s validation of the identity of a
user, service or application mechanism. Authoriratiype of attacks aims bypassing authentication
mechanisms to perform any action without sufficipaetmissions. Client-side Attacks focuses on the
abuse or exploitation of a web site's users. Thear@and Execution section covers attacks designed
to execute remote commands by injecting malicioysii on the web site. Information Disclosure
types of attacks tries to reveals sensitive dateh @1s developer comments or error messages or the
full structure of web site which may aid an attacikeexploiting the system. Logical Attacks section
covers the abuse of a web application’s logic flattacker may bend expected procedural flow in

order to perform a certain malicious action

2.2 Access Control Mechanism

Security of computer systems can be conventiorg®fined by two terms, protection and assurance.
Protection is based on the idea that it is alwassible to define most of the threats that may eapp
and to build mechanisms that can prevent the thfghtThe protection mechanisms must provide the
essential services of accountability, availabilityd authorization. Accountability mechanisms make
sure that any actions done by the users or othtetersyactive entities (subjects) towards the system
resources (objects) are logged and the logs sHmildufficient to map the subject to a controlling
user. Availability mechanisms ensure either sereimetinuity or service and resource recovery after
interruption. Authorization mechanisms should eaestirat the rules governing the use of system
resources are enforced application-widely. Accesgrol mechanisms allow system owner to define
these governing rules and to enforce them. The taumhorization” also implies the process of

making access control decisions.

In any access control model, the entities thatpEaform actions in the system are called subjectd;

the entities representing resources to which acecessneed to be controlled are called objects (see
also Access Control Matrix). Subjects and objetisukl both be considered as software entities,
rather than as human users: any human user carhaméy an effect on the system via the software
entities that they control. Access control has beerrcised at different places and levels of

abstraction, e.g. network, database, operatingesysind middleware controls, each with different

emphasis. Control to protected resources can aéscaddressed from a single system or an

organization point of view.

Broadly, access control models used by currenesysttend to fall into one of two classes: those
based on capabilities and those based on acces®lcists (ACLs). In a capability-based model,
access to the object requires holding a capaltiidy object defines; another party provides acbgss
transmitting such a capability over a secure chiatmen ACL-based model, a subject's access to an
object depends on whether its identity is on ad&gociated with the object; editing the list colstr

access.

22

Beznosov clarifies the structure of traditional egx control mechanisms using the conceptual model
of reference monitor [43]. A reference monitor ipart of the security subsystem, responsible for
mediating access by subjects to system resourcesoas infigure 3.So the access control becomes
the act of checking access requests against azdltion rules from the authorization database when a
subject requires action on system objects and enfpthem. A set of the rules is sometimes called a
policy. Authorization rules commonly have a subjaction-object structure, which specifies what
subject(s) can perform what action(s) on what dfggcPermitted actions are called access rights.
Thus a subject has a particular access right tobgact if the action is permitted towards that chje
So a reference monitor requires authorization raled three groups of information: 1) the access
request, 2) the subject who made the request, Jatiek dbject to be accessed to make an authonizatio

decision.

® i
S

Authorization

Databhase

\»_______‘___‘__‘__'____d___f/

Decisions

Objects

Reference

Actions
—- Monitor E—

Figure 3 Conceptual Model of Access Control

23

2.2.1 Discretionary Access Control

Discretionary access control (DAC) is a kind of egx control, defined by the TCSEC [44]"&s

means of restricting access to objects based ondintity of subjects and/or groups to which they
belong. The controls are discretionary in the settsd a subject with certain access permission is
capable of passing that permission (perhaps indiygon to any other subject (unless restrained by

Mandatory Access Control)."

The basis of this kind of security is that an indial user, or program operating on the user'slheha
is allowed to specify explicitly the types of aceedher users (or programs executing on their lfehal
may have to information under the user's contracess controls may be discretionary in capability,

profile, access control list, protection bits argsword based [45].

Discretionary security differs from mandatory sétyuin that it implements the access control
decisions of the user. Mandatory controls areaifriby the results of a comparison between thesuser'
trust level or clearance and the sensitivity deddigm of the information. Discretionary controlear
not a replacement for mandatory controls. In anyirenment in which information is protected,
discretionary security provides for a finer gramiijaof control within the overall constraints dig
mandatory policy. However Discretionary access raymhechanisms restrict access to objects based
solely on the identity of subjects who are tryingatcess them. This basic principle of discretipna

access control contains a fundamental flaw thatasidkvulnerable to Trojan horses [46].
2.2.2 Mandatory Access Control

Mandatory access control, as defined in the DoDlsf€d Computer Security Evaluation Criteria
[44], is"A means of restricting access to objects basethersensitivity (as represented by a label) of
the information contained in the objects and thenfal authorization (i.e. clearance) of subjects to

access information of such sensitivity."

MAC's basic idea is denying users to full contrekothe access to resources that they create. The
system security policy entirely determines the asagghts granted, and a user may not grant less
restrictive access to their resources than the mdtrator specifies. For MAC, the access control
decision is granted by verifying the compatibiliey the security properties of the data and the
clearance properties of the individual MAC is masimmonly applicable to Classified National

Security Information where best effort mechanisnesimadequate; absolute enforcement is mandated.

If individuals or processes exist in the systemimmment that may be denied access to any of the
data in the system environment, then the systemt mmeistrusted to enforce MAC. This implies

varying degrees of robustness in the system. Fample, more robustness is indicated for system
environments containing classified Top Secret mfation and uncleared users than for one with

Secret information and users cleared to at leasfi@ntial. To promote consistency and eliminate

24

subjectivity in degrees of robustness, an extenstientific analysis and risk assessment of thetop
produced a landmark benchmark standardization dyisgt security robustness capabilities of

systems and mapping them to the degrees of trusamiad for various security environments.

Such architecture prevents an authenticated uspromess at a specific classification or trustdeve
from accessing information, processes or devices different level. This provides a containment
mechanism of users and processes, both known datbwn (an unknown program (for example)
might comprise an untrusted application where trgtesn should monitor and/or control accesses to

devices and files).

2.2.3 Lattice-based Access Control

Lattice-based access control (LBAC) is a complexhme to control information flow of the system.
It decides access on combination of objects anfestshby checking partial ordering of the security

levels.

A lattice is used to define the levels of secutiitgt an object may have, and that a subject mag hav
access to, in such a way that any two securityldegkvays have a greatest lower bound and least
upper bound. If two objects A and B are inheritgdamother object C, that object is assigned a
security level formed by the join of the levelsAfand B, and if two subjects need to access some
secure data, their access level is defined to denkket of the subjects’ levels. A subject is alldwe

access an object only if the security level ofgbbject is greater than or equal to that of theatbj

2.2.4 Rule-based Access Control

Rule-based access control is an example of mandataress control where the system decides on
actions of subjects on objects by evaluating arcbérules that have been defined previously. b fa

all MAC-based systems implement a simple form dé-+hased access control to determine whether
access should be granted or denied, however rgledbaccess control differs from others due to
expressional ability. With a set of well definedes) the access control logic can be embeddedypurel

in rules that can be evaluated at run time.

Rule-based access control is a strategy to marsgyeagcess to one or more systems, where business
changes trigger the application of rules, whichcffgeaccess changes. These rule evaluation can give

system dynamic manner, when rules depends dynaari@hbles that can be changed during execution

2.2.5 Role-based Access Control

Role-based access control (RBAC) is an alterndtivteaditional discretionary (DAC) and mandatory
access control (MAC) policies [47] [48]. RBAC's manotivation is the ability to specify and enforce
enterprise-specific security policies in a way thetps naturally to an organization structure. RBAC

suits well for expressing policies particularlytsdi for commercial application.

25

Within RBAC, access control policies must be expeesin terms of the organization structure and
roles that individuals have. There is a direct niiagfrom organization view to access control domain
view so that it is not necessary to translate arahbrganization view into access control mechanis

In fact RBAC is a form of non-discretionary accessitrol that the users are constrained by the

organization's protection.

Within the RBAC framework, a user is a person, ke i@ a collection of job functions, and an
operation represents a particular mode of acceassat of one or more protected RBAC objects. And
there is a many-to-many relationship between usets,and operations as shownfigure 4. For
example, a single user can be associated with omeoce roles, and a single role can have one or
more user members. Roles can be created for vgobysositions in an organization. System objects

that requires authorization is matched with possiierations.

Users

Roles

Objects 1.*

Operations

Figure 4 RBAC Role Model

Roles can have overlapping responsibilities andilpges, that is, users belonging to different sole

may need to perform common operations, so thabitldvbe inefficient to specify repeatedly these
operations for each role. Consequently, RBAC intcms$ the concept of role hierarchies. A role
hierarchy defines roles that have unique attribates that may "contain" other roles, that one role

may implicitly include the operations, constrairged objects that are associated with another role.

With these basic foundations, Ferraiolo defineg mirles for RBAC access control; [49]

26

Rule 1 (Role Hierarchy): If a subject is authorized to access a role aatl ible contains another

role, then the subject is also allowed to accesstimtained role.

Rule 2 (Static Separation of Duty):A user is authorized as a member of a role ontlyaf role is not

mutually exclusive with any of the other roles ¥arich the user already possesses membership.
Rule 3 (Cardinality): The capacity of a role cannot be exceeded by ditiadal role member.

Rule 4 (Role Authorization): A subject can never have an active role that tsanthorized for that

subject.

Rule 5 (Role Execution):A subject can execute an operation only if thejextthis acting within an

active role.

Rule 6 (Dynamic Separation of Duty): A subject can become active in a new role onlyhd

proposed role is hot mutually exclusive with anyhs roles in which the subject is currently active

Rule 7 (Operation Authorization): A subject can execute an operation only if therafpen is

authorized for the role in which the subject isrently active.

Rule 8 (Operational Separation of Duty):A role can be associated with an operation of siness
function only if the role is an authorized role fibre subject and the role had not been assigned

previously to all of the other operations.

Rule 9 (Object Access Authorization):A subject can access an object only if the roleag of the
subject's current active role set, the role isvedid to perform the operation, and the operation to

access the object is authorized.

Sandru [48] provides a characterization of RBAC eisds follows;

1. RBACO: The basic model with users associated witbsrand roles associated with permissions.
2. RBACL: Role hierarchies are added to RBACO.

3. RBAC2: RBAC1 with adding constraints on user toeralole to role and role to permission

associations.

RBAC system enables administration of a broad rasfgauthorized operations more easily and
provides great flexibility and breadth of applicat System administrators can control access at a
level of abstraction that is natural to the wayt #aterprises typically conduct business rulessT#i

in contrast to conventional methods such as aamdsol list (ACL), capabilities models.

27

2.2.6 Resource-based Access Control

The Resource Access Decision (RAD) specificatioeased by The Object Management Group
(OMG) is a mechanism for obtaining authorizatiorcidens and administrating access decision
policies [25]. In Beznosov’'s work this facility Gted as one of the best solutions that can be biged

security-aware applications [5].
The major motivations behind RAD specification tenlisted as follows;

e The application logic must be separated from aightion logic by providing a logically single

point of administrative reference monitoring sepestdrom application systems.

» The authorization decisions for resources (objeutsdt be defined for any nature and granularity

as long as those resources defined according to'®R#&Bource naming scheme.

 More than one authorization engine for decisions lsa consulted about the same request or
different requests. These engines can supportréliffeauthorization policies, can be integrated with

legacy systems and can be managed by independéotitias.

« Authorization decisions can be granted using reteggecific or user-specific factors which may

dynamically changed during execution.

The main objective of RAD is to separate authoiazatogic from application logic. Authorization
logic is encapsulated into an authorization sereixternal to the application. The interaction déagr

is shown infigure 5.

2:Authorization

1: Application Request, Request Resou rce
: Application Access
Client . .
Service Decision
4: Reply to Application Reply to SerVICG
Requets Authorization
Request

Figure 5 RAD Interaction Diagram

28

RAD specification requires resources and theirdvajperations to be well defined, resource can be
any entity in the computer system and operatioindsfa valid procedure performed on any resource.
Every resource-operation pair can be combined withumber of “policies” that defines access

policies to do requested operation on that resoukceess is granted only if that operation satssfie

attached policy rules on specified resource. Redi@re evaluated using attributes of an operation.
These attributes can be dynamic (attribute valuevesluated at the time of the request) or static
(parameters that are passed directly with an operatAccording to these attribute values, a policy

grants or denies an access. A conceptual modhksétrelations is given figure 6.

Resource 1

represented by 1 |Secured Resource

Hl
Operation
1..* has
0..*

defines access policy

Policy

Figure 6 RAD Secured Resource

RAD allows different kinds of policy evaluators thezan be plugged in to the system. All kinds of
policies can be evaluated by adding capable p@i@tuator. Access decisions can be evaluated by

combining different kinds of policy evaluators teatuate different kinds of policies.

Barkley shows that RBAC can be combined with RADiiyoducing RBAC policy evaluator so that
RAD can also use all capabilities and advantag&®B#AC system [2]. In this thesis, an access control
mechanism that uses RAD specification and with RBGcy evaluator is implemented. The details

of the concept can be found in section 3.1.

29

2.3 Access Control Problems in Enterprise Applications

The Internet is forcing enterprises to implemeritatmrative business and governmental solutions
that integrate internal systems. Enterprise apiitioa such as ERP (Enterprise Resource Plan), CRM
(Customer Relationship Management) and SCM (Su@plggin Management) have now all become
online and web-based. Enterprise information paeahnologies have emerged to integrate these
applications into a cohesive whole. These ente@gplications must satisfy complex access control
rules that rise from both business logic and irgégn of business transactions in order to be secur
At this point access control rules break from blskor white-list implementations, but become so
called “enterprise-level security policies”However as access control logic becomes closer to
enterprise level, policy rules become more dynamiore domain-specific, and more contexts
dependent. In fact, all business objects in enpapplications can be a source of access policies
with their underlying business rules. And collentiof these domain-specific access policies defines
the “enterprise-level security” policies. Traditadraccess control mechanisms fail to employ domain-
specific factors in access decisions and therafosaitable to fulfill the needs of enterprise asces
control. [5, 43]

Most enterprise applications tackle this problem dmbedding access control rules within an
application code that handles domain-specific factbhe more access control rules are embedded in
enterprise applications, the more reusability andnageability of whole system reduces. But
according to the separation of concerns principle] [‘enterprise-level security” policies must be
separated from application code and handled indkpely by the external access control mechanism.
However, even if the application leaves accessrobdecisions to the external system and interact
with the access control service though API, it e tdeveloper's responsibility to enforce the
application-specific access policy in the code].[Enbedding this imperative access control makes i
difficult to adapt the access logic to policy orplgation changes. Imperative access control

enforcement is error prone and hard to spreadargamization-wide.

Beznosov [43] lists 7 evaluation criteria to comsprian access control system, which also directly

reflects access control problems in enterpriseiegibns;

Granularity of protected resource: Enterprise applications may require different gitarity levels
to protect resources. Whole application can benddfias a resource as well as database tables,
sensitive methods and interfaces can be regardadesource for enterprise application. So enteepri

applications require allowing authorization deaisi@mn fine-grained resources.

Support for policies specific to an organization orapplication domain: There are different kinds
of access control mechanism as described in se2tithrEnterprise application may require different

kind of access control mechanisms in order to cefd kind of enterprise policies, so in genetsd t

30

more access control policy types an access cosysiem supports, the easier it is to configure for

enterprise policies.

Information used for making authorization decisions Information about the subject can be divided

into two types, security-related and security-ustiesd. Typical access control mechanism only use
security related information such as subject’s figngroup membership, security clearance, however
enterprise applications also requires securitylated information about the subject such as person

age, data comes from work-flow execution.

Use of application-specific information: Beznosov [5] has defined domain (application)-dpec
factors in security decisions as follows; “An apption-specific factor is a certain characteristic
property of an application’s resource, produceddifred and processed in the course of normal
application execution and not for the sole purpafsa security policy decision.” In this point ofevis

all business objects in enterprise applications banthe source of access policies with their
underlying business rules and collection of them@ain-specific access policies defines “enterprise-
level security” policies. These policies are domsgpecific, dynamic and context sensitive to be
executed in a traditional way. For example, anmanltanking application requires for EFT operation

to be in an amount limit that is predefined by tiser and only between 9:00 am and 5:00 pm.

Support for consistency of policies across multipleapplications: Enterprise applications are

increasingly interconnected to form information ezptise, which consists of many self-contained,
heterogeneous and yet integrated application sgstéhe basic problem of access control in such an
environment is to enforce organization wide segypitlicies across these applications. On the other
hand, application developers tend to embed acaassot rules in application systems hard coded
which result in costly and error-prone applicattetause there are multiple points of control, every
part of application implements their own accesscpes. With the separation of concern principle][50

“enterprise-level security” policies should be higadwith in a uniform, fine-grained and transparent

way.

Support for changes:Enterprise application policies tend to be changeguently as business rules
changes; hence the access control mechanism thatngoenterprise application must easily reflect
this dynamic manner. However in traditional infotioa systems, access rules are largely embedded

in application systems and as a result it becoraes to be manageable and reusable.

Scalability: Enterprise applications are most likely to be iasedl in the number of users and
integrated application systems; therefore accesgralomechanism must scale well as business

changes.

31

2.4Web Application Security Vulnerabilities

There is an increasing tendency that web applicatitiacks are becoming dominant over other
software security attacks. Confronted with steadigturing network-layer defenses, attackers are
increasingly turning their attention to the appiica layer and the corresponding business
applications that are being served. At the same,torganizations have been increasing their redianc
on web applications, in particular to meet the seefdthe extended enterprise — that is, the growing
population of distributed users. According to stiats regarding web application vulnerabilitieswho

the growing problem [8].

e From 1Q04 to 1QO05 there has been a 20% rise innilmaber of application-specific

vulnerabilities identified.

« Over 50% of all new vulnerabilities being identifien a weekly basis are attributed to web

applications.

e Greater than 80% of all malfunctions that emergethe past year have focused on exploiting

application-layer vulnerabilities (estimate comgifeom various sources).

CVE statistics also gives the same result; the motble trend is the sharp rise in public repfots
vulnerabilities that are specific to web applicaioThese statistics are shownTeible 1 and 2. Table

1 shows, the number of reported security attacksthed types between 2001 and 200&ble 2
shows the percentages of these security attacksseThtatistics give some important clues about

attack trends.

« Buffer overflows (mostly targeting products) wenemtber one year after year, but that changed
in 2005 with the rise of web application vulnerilak, including cross-site scripting (XSS), SQL

injection and remote file inclusion. In fact, so iia 2006, buffer overflows are only fourth.

« The increase of percentage of web application ldtas tremendous, by the year 2006, the

percentage becomes over %70.

« Even if web application attacks are dominant otBenkind of security attacks, it is only the tip
of the iceberg since most of the web security ietd are not reported; on the other hand product

based security incidents are well-reported.

* As the importance of web application increasesiclrs seem to turn their attention to web
applications and web applications have become da fousall kind of businesses. Security impacts on

web applications have become too risky.

32

» Although buffer overflows and other product or ventased attacks can also be a reason for web
application attacks. XSS and injection attacks aliyeaim web applications and web application

server products have nothing to do to eliminatsehends of increasing trends.

* In 2001, the percentage of XSS attacks was below32t injection and PHP file inclusion was

near 0%. In five years the total percentage ofdlatacks has increased over 45%.

» Although the total number of incidents has increafeirfold between the years 2001 and 2006,
the number of product vendor, network and OS baseidents remained steady. This shows that
either the security mechanisms have become mossitl in preventing these kinds of attacks or

the attackers have turned their attention to welliegtion attacks.

One can easily say that the main boosting factevedf security attacks is turning the spotlight t&bw
applications because of the increase in global nercerce, increase in global use of valuable
information online and increase of global internse, the web application domain has important

contributing factors to this increase in web vultislities, these could be;

* Most of the web application attacks depend on bdata manipulations that are very simple to

perform.

« There is a plethora of freely available web appigses. Much of the code is alpha or beta, written
by inexperienced programmers with easy-to-learguages such as PHP, and distributed on high-
traffic sites. Even some important web applicatioss these freely distributed web applications. The

large number of these applications is probably ppnw@ontributor to the overall trends.

« With injection vulnerabilities including XSS, evenyput has the potential to be an attack vector,
which does not occur with other vulnerability typ&his leaves more opportunity for a single mistake

to occur in a program that otherwise protects agjahese attacks.

« Apart from usage of freely available web applicasiothere is an increasing trend to use open
source projects for web applications. A fully fuoo@al web application can be built in easily by
integrating these open source projects togetheerelfs always greater risk for these open source

projects, since most of them did not consider sgchreaches only concentrate on the functionality.

* Web applications tend to have larger attack susfaban other applications as; there are lots of
input entry points to web applications. Most of théave not centric input handling mechanisms,
consequently, nearly all web application developera project handles user input and even if one

entry point is vulnerable, the whole web applicatdll be under great risk.

* Most security professionals concentrate on the okdver product security. However applying
security patches, integrating antivirus and amiam software are not enough to securing web

applications.

33

Table 1 Number of security incidents

Security Attacks Total 2001|2002 | 2003 | 2004 | 2005| 2006
Total 16192 14342138 | 1173 | 2534 | 4538| 4375
Cross-site scripting 2247 32 187 88 276 725 93
Buffer overflow 2156 279| 433 264 391 445 344
SQL injection 1416 6 38 35 140 584 613
Directory traversal 764 127 110 34 104 195 194
PHP remote file
inclusion 561 1 6 9 36 95 414
Information leak 540 37 89 30 95 175 114
DoS caused by
malformed input 463 69 110 29 87 82 86
Symbolic link
following 329 64 45 41 72 87 20
Format string
vulnerability 296 46 39 32 61 76 42
Cryptographic error 261 55 58 18 22 68 40
Privilege Errors 233 36 46 12 32 67 40
Metachar injection 218 55 56 8 26 59 14
Permission Errors 215 39 39 15 24 48 50
Numeric Errors 160 1 8 16 47 36 52
DoS caused by
flooding 131 29 36 6 31 10 19
Default or hard-coded
password 125 16 27 2 28 36 16
Weak/bad
authentication 124 22 27 6 17 21 31
Sensitive data under
web document root 88 2 5 3 5 33 40
Form-field Error 81 10 17 6 6 19 23
Untrusted search path
vulnerability 71 12 6 10 14 15 14
Table 2 Percentage of security incidents
Security Attacks | Overall | 2001 2002 2003 2004 2005 | 0GB
Cross-site
scripting 13.9% 2.2% 8.7% 7.5% 10.9% 16.% 21.5%
Buffer overflow |13.3% 19.5% 20.3% | 22.5%| 15.49 9.8% 7.9%
SQL injection 8.7% 0.4% 1.8% 3.0% 5.5% 12.99 14.%
Directory
traversal 4.7% 8.9% 5.1% 2.9% 4.1% 4.3% 4.4%
PHP remote file
inclusion 3.5% 0.1% 0.3% 0.8% 1.4% 2.1% 9.5%
Information leak | 3.3% 2.6% 4.2% 2.6% 3.7% 3.9% 2.6%
DoS caused by
malformed input | 2.9% 4.8% 5.1% 2.5% 3.4% 1.89 2.0%
Symbolic link
following 2.0% 4.5% 2.1% 3.5% 2.8% 1.9% 0.5%

34

Table 2 (continued)

Format string

vulnerability 1.8% 3.2% 1.8% 2.7% 2.4% 1.7% 1.0%
Cryptographic

error 1.6% 3.8% 2.7% 1.5% 0.9% 1.5% 0.9%
Privilege Errors | 1.4% 2.5% 2.2% 1.0% 1.3% 1.5% 0.9%
Metachar

injection 1.3% 3.8% 2.6% 0.7% 1.0% 1.3% 0.3%
Permission Error$1.3% 2.7% 1.8% 1.3% 0.9% 1.1% 1.1%
Numeric Errors | 1.0% 0.1% 0.4% 1.4% 1.9% 0.8% 1.2%
DoS caused by

flooding 0.8% 2.0% 1.7% 0.5% 1.2% 0.2% 0.4%
Default or hard-

coded password | 0.8% 1.1% 1.3% 0.2% 1.1% 0.8% 0.4%
Weak/bad

authentication 0.8% 1.5% 1.3% 0.5% 0.7% 0.5% 0.7%
Sensitive data

under web

document root 0.5% 0.1% 0.2% 0.3% 0.2% 0.7% 0.9%
Form-field Error | 0.5% 0.7% 0.8% 0.5% 0.2% 0.4% 0.5%
Untrusted search

path vulnerability| 0.4% 0.8% 0.3% 0.9% 0.6% 0.3% 3%.

1000
900 Yok - -
/ —e— Cross-site scripting
800
200 // —=— Buffer overflow
600 SQL injection

500 / .
Directory traversal

400 A\
300 —x— PHP remote file

v o /4 / inclusion
N

—e— Information leak

2001 2002 2003 2004 2005 2006

Figure 7 Top 6 security attacks between 2001 and @6

35

25.00%

/_A /‘ —e&— Cross-site scripting
20.00% +——F—

—m— Buffer overflow

15.00% SQL injection

Directory traversal
10.00%

—¥— PHP remote file
inclusion

5.00% —e— Information leak

0.00% ‘ ‘ ‘ ‘
2001 2002 2003 2004 2005 2006

Figure 8 Percentage of top 6 security attack betwae2001 and 2006

2.4.1 Common Vulnerabilities

A typical web application attack executes 5 maienseios, starting with vulnerabilities scan to
launching the attack. The steps are listed below;

Act 1: The Scan

The hacker starts by running a port scan to detecbpen HTTP and HTTPS ports for each server

and retrieving the default page from each open port
Act 2: Information Gathering

The hacker then identifies the type of server mgron each port and each page is parsed to find
normal links (HTML anchors). This enables the hadkedetermine the structure of the site and the
logic of the application. Then the attacker anadytee found pages and checks for comments and
other possibly useful bits of data that could referfiles and directories that are not intended for

public use.

36

Act 3: Testing:

The hacker goes through a testing process for efttte application scripts or dynamic functions of
the application, looking for development errors @nable him to gain further access into the

application.
Act 4: Planning the Attack

When the hacker has identified every bit of infotimathat can be gathered by passive (undetectable)
means, he selects and deploys attacks. Thesestewter on the information gained from the passive
information gathering process.

Act 5: Launching the Attack

After all of these procedures, the hacker engagepéen warfare by attacking each Web application
that he identified as vulnerable during the initiew of the site.

The Open Web Application Security Project (OWASE?][is one of the foundations that is dedicated
to find and classify possible web application dtaand offers countermeasures for them. OWASP
publishes “Top Ten Most Critical Web Applicationcbety Vulnerabilities” list to inform the public
about the most dangerous vulnerabilities. The Tep [ist is generated according to data accumulated
by MITRE’s [53] vulnerability trend list consistingf CVE’s [11] data. According to “Top Ten Most
Critical Web Application Security Vulnerabilitiedist published in 2007; Cross-side scripting (XSS),
Injection Flaws, Malicious File Execution, Insecubérect Object Reference, Cross Site Request
Forgery (CSRF), Information Leakage and ImpropaoiEHandling, Broken Authentication and
Session Management, Insecure Communications ataté&#d Restrict URL Access. The occurrence

percentages of these vulnerabilities according EORE’s date are given ifigure 9.

37

30.00% -

25.00% -

20.00% -

15.00% -

10.00% A

5.00% A

I
L
I
L

0.00% -

Cross-site
scripting
Execution
handling
Broken
authentication
and session
Insecure
cryptographic
storage
Insecure
cryptographic

{CSRF)
management

Injection Flaws
Malicious File
Insecure Direct
Object Reference
Cross-site
Request Forgery
Information
Leakage and
improper error
communications [
Failure to restrict
URL access

Figure 9 Percentage of Vulnerabilities (2007)

2.4.1.1 Cross Site Scripting (XSS) Attacks

A web application is vulnerable to XSS attacks wlhiegy allow injection of malicious scripts as

inputs of user and as a result of generating dyongrages from this infected input, these malicious
scripts could be executed from client browsers @ndd affect all web site clients. Although secure
execution of JavaScript code is based on a sand@gawechanism, which allows the code to perform
a restricted set of operations only and JavaSgripgrams downloaded from different sites are
protected from each other using a compartmentaglizilechanism, called the same-origin policy,
scripts may be confined by the sand-boxing mechaiand conform to the same-origin policy, but
still violate the security of a system. This candmhieved when a user is lured into downloading

malicious JavaScript code (previously created bgttacker) from a trusted web site.

Two main classes of XSS attacks exist: stored lkedtand reflected attacks. In a stored XSS atthek, t
malicious JavaScript code is permanently storethenarget server (e.g., in a database, in a messag
forum, in a guestbook, etc.). In a reflected XSfackt, on the other hand, the injected code is
“reflected” off the web server such as in an em&ssage or a search result that may include some or
all of the input sent to the server as part of ridguest. Reflected XSS attacks are delivered to the
victims via e-mail messages or links embedded barawveb pages. When a user clicks on a malicious
link or submits a specially crafted form, the inggt code travels to the vulnerable web application

and is reflected back to the victim’s browser

38

2.4.1.2 Injection Flaws

Injection Flaws are one of the most common web iepibn vulnerabilities and consist of various
attack techniques such as SQL, LDAP and XML ing@ttinjection occurs when user-supplied data is
sent to an interpreter as part of a command oryquafithout validation, the attacker can easily
manipulate command or query with insertion of sglecharacters and command. SQL injection can
be given as an example of injection flaws. SQL dtign attacks are one of the most dangerous
instantiation of injection attacks. In this attaelchnique malicious SQL commands are injected into
request parameters in order to affect the executiopredefined SQL commands. SQL injection

attacks threats most of the subjects of computarig;

Confidentiality: Most common consequence of SQL injection attashsss of confidentiality. Since
SQL databases hold sensitive data, unauthorizegsado these data could generate more dangerous

consequences.

Authentication: Most of the applications use SQL databases fomgt@uthentication data. If a SQL
injection occurs in the authentication part of #ystem, the attacker can bypass all authentication

mechanisms.

Authorization: Authorization modules that use the SQL databasenother critical part of the web
application. If they are vulnerable to SQL injecti@ttacks, it would be possible to change

authorization information and a security breachlmampened for an application.

Integrity : By SQL injection, it is also possible to make hes or deletions that threats integrity of
whole database.

2.4.1.3 Malicious File Execution

Application developers will often directly use in@and stream file functions that come from the user
directions. Without necessary checks, an attackemaanipulate the application to execute malicious
commands and files. Code injection can be studgedraexample of this kind of attack. In code
injection, the application allows inputs to be ficectly into an output file that is later procedsses
code. Different from XSS or HTML injection techniggiwhich is executed on the client side, direct
static code injection vulnerability enables malicsocodes to be executed at server side but this can
result from XSS or HTML injection as the same spkecharacters can be involved. One example of
direct static code injection is Server-Side Incld8SI) injection, which is a server-side exploit
technique that allows an attacker to send codeamieeb application, which will later be executed
locally by the web server. SSI Injection exploitsvab application's failure to sanitize user-supplie
data before they are inserted into a server-sitgpgreted HTML file. Before serving an HTML web
page, a web server may parse and execute Sereetrsillide statements before providing it to the

user. In some cases (e.g. message boards, gudst, lmyocontent management systems), a web

39

application will insert user-supplied data into theurce of a web page. If an attacker submits a
Server-side Include statement, he may have thdtyalid execute arbitrary operating system

commands or include a restricted file's contergsgxt time the page is served
2.4.1.4 Insecure Direct Object Reference

A direct object reference occurs when a develogpoges a reference to an internal implementation
object, such as a file, directory, database reaoréley, as a URL or form parameter. An attacker ca
manipulate direct object references to access ahjercts without authorization. Path manipulation
attack can be an example of this kind of attackis Tdittack technique involves adding special
characters in file and directory names. These mdatipns are intended to generate multiple names
and therefore multiple access points for the samjecb Just like path traversal attacks, path
equivalence attacks also threaten disclosure afrnmdtion. If any application restricts directory
access programmatically, these restrictions cabypassed by adding special characters in requested
file or directory. Thus, application might fail fwarse requested URL and misinterpret the request.
Path equivalence attacks can also used for bygassourity restrictions depends on black list.
Consider an example of an application that allopading and a black list to eliminate malicious
file formats such as symbolic links. An attacken deypass this black list check by adding trailing
dots to extension of a file, allowing him to traserto the target file or directory. When an attacke
collects enough information about the applicatiemg path traversal and path equivalence attacks

then he could plan new attacks to break into theieation.
2.4.1.5 Cross-Site Request Forgery (Session Riding)

Cross-Site Request Forgery is about forcing an owkmg user to execute unwanted actions on a web
application in which he is currently authenticat€&RF is an attack that tricks the victim into lvad

a page that contains a malicious request. It igcinak in the sense that it inherits the identityl a
privileges of the victim to perform an undesiredidtion on the victim's behalf, like changing the
victim's e-mail address, home address, or passwarrdnaking a purchase. CSRF attacks target

functions that cause a state change on the server.

CSRF works like XSS attack: An attacker identife$)RL on a Website that initiates typical Web
functions such as making a purchase, changing aail eshdress or transferring funds and takes that

URL and loads it to a web page he controls withici@ls code injected to be executed later.
2.4.1.6 Information Leakage and Improper Error Handling

A system information leak occurs when system datdetugging information leaves the program
through an output stream or logging function. Ataeker can cause errors to occur by submitting
unusual requests to the web application. The respdo these errors can reveal detailed system

information, deny service, and cause security mashas to fail or crash the server.

40

2.4.1.7 Broken Authentication and Session Management

Without using proper authentication and sessionagament techniques, an attacker can hijack user
or administrative accounts, bypass authorizationtrots and cause privacy violations. Session
hijacking is a typical example of such attacks.rngssession hijacking attack, the attacker trigske
control of a user session by obtaining or genegasin authentication session ID. Session hijacking
involves an attacker using captured, brute foraqekeerse-engineered session IDs to seize control o
a legitimate user's session while that sessiofillinsprogress. In most applications, after sissfally
hijacking a session, the attacker gains completesscto all of the user's data, and is permitted to

perform operations instead of the user whose sesgg hijacked.
2.4.1.8 Insecure Cryptographic Storage

Protecting sensitive data using cryptography iomroon technique for web applications, however
applications frequently uses poorly designed cryraphy either using unproven algorithms or

improper implementation of strong algorithms.
2.4.1.9 Insecure Communication

Transferring sensitive data on an unsecured charmgld cause stealing of private information.
Sniffing application traffic can be given as anmyde. Sniffing application traffic simply means tha
the attacker is able to view network traffic and iy to steal credentials, confidential infornati or
other sensitive data. Anyone with physical accesthé network is able to sniff the traffic. Also,
anyone with access to intermediate routers, firlswaroxies, servers, or other networking gear may
be able to see the traffic as well. By sniffing kiggtion traffic, an attacker gain sensitive infa@tion
about the web site. If this communication is nattpcted, the attacker can reveal user cookiespsess

id, user id and password that can be used to geenattzer attacks later.
2.4.1.10 Failure to Restrict URL Access

Frequently, the only protection for a URL is thiaikk to that page are not presented to unauthorized
users. However, a motivated, skilled, or just plaicky attacker may be able to find and accessethes
pages, invoke functions, and view data. Path temleis typical example; this attack technique
involves providing relative or absolute path infation as a part of request information. Such attack
try to access files that are normally not accesdilyl anyone and if such a request is receivedugtm

be denied. This attack risks information disclosofesystems. Although it does not directly threaten
the integrity of the system, the attacker can gainess to sensitive data such as password and

configuration files and by using it, he can do moaagerous attacks to the system.

41

Apart from these techniques, there are numeroudhauwf different types of attacks, A detailed list
(consisting 58 different vulnerabilities) and déstion of web application vulnerabilities with
classification according to Plover taxonomy desamliin section 2.1.4 are given in Appendix-A.

2.5Related Works

As discussed in section 1.1, the scope of thisighesvers two important problems; one is
encapsulating domain specific factors in accesdraband the other is web application security
vulnerability. Encapsulating domain specific fastar access control is not new concept and has been
investigated in several researches. One of théestdxamples can be found in OSI access control
framework [54] published in 1994. From then on,lbatademic researchers and various distributed
application systems vendors have tried to encafesalamain-specific factors. On the other hand,
confronting web application security vulnerabilities considerably new and mainly handled by
software security vendors. The solution is callegb application firewalls. According to web
application security consortium (WASC) [23] a welpkcation firewall is"An intermediary device,
sitting between a web-client and a web server, yaiay) OS| Layer-7 messages for violations in the
programmed security policy. A web application fiedwis used as a security device protecting the
web server from attack.”

2.5.1 Approaches to Encapsulate Domain Specific Factors

These approaches can be classified into threearédsg

Middleware infrastructures: Most common distributed application technolog®s;h as J2EE [4],
.NET [55], DCOM [3], JAAS [56] and CORBA [2] hastagrated access control engines. These
middleware technologies has been deeply discussd@mpared in Beznosov’s works [5] [43] [57]
[58].

CORBA Security service (CS) [2] defines interfatesa collection of objects to enforce a range of
security policies. It provides abstraction from @mderlying security technology so that CORBA-
based applications can be independent from thépkat security infrastructure provided by the user
environment. This generality makes CS free from pasticular access control model. Instead, it

could be configured to support various access obnmiodels.

Access control in Java Authentication and AuthdiiraService (JAAS) is enforced only on system
resources, such as files, sockets, etc., but ndtaga objects and other application resources. JAAS
has very generic and extensible support for diffepgivilege attributes that can be easily defined
new classes. The security basics depend on coés b&dava classes, the identity of the code signer
and the value of the subject privilege attributikeJe attributes are all passed to JAAS via Polasysc

interface for authorization decisions.

42

The security model of DCOM is based on access abligts (ACL) to code authorization policies.
DCOM provides DCOM Security API to enforce policieatside of objects with the presence of
process and host-specific policies. DCOM definemmonent-specific policy where there is no
distinction among different objects and their melha the same OS process and host-wide policy to
define interaction of object within the same hédthough component- and host-wide policies can be
used to implement a fine grain access control inapplication-specific way, application-specific
policies cannot be enforced and only security-eeladttributes of subjects and objects can serve as

input for external access control mechanisms.

The core of J2EE depends on EJB security architeethere each EJB or each method of EJB can be
mapped to an allowed role and users can be assignadole depending on RBAC fashion. EJB
security allows any user attributes to be reducemblies and so that the domain specific rules @n b
evaluated. However EJB security fails to be finahged, the only resources of the system are EJB’s
methods no other abstraction can be possible.

The main purpose of all these technologies is tatrob object interactions within an organization-

wide, uniform and transparent way. However thefailltheir expressiveness and granularity when
we consider enterprise applications. Enterpriseliegipns consist of business transactions and
business services that require much more abstrattidoe controlled by object interaction access

control.

Access control frameworks: A sizeable amount of research has been conducteatcess control
frameworks [59-62]. The main idea of these framdwois to supply a uniform access control
interface that requests access permissions frontehé&alized authorization engine. Authorization
engines are able to interpret and execute enterpadbcy rules that are defined policy specificatio
languages such as Ponder [63] and eXtensible Acdaissol Markup Language (XACML) [62].

Ponder tries to define a common declarative, oljeented language that will provide a unified
approach to specify security and management pslicie distributed object systems. It enables non-
discretionary access control where administratangetthe authority to specify security policies that
are enforced by the access control system. Ponggosts access control by providing authorization,
delegation, and information filtering and refraiolipies. These policies can be made up of composite
policies to facilitate policy management in largemplex enterprises. They provide the ability to
group policies and structure them to reflect orgational structure. Users can be assigned to roles
and groups as in RBAC. XACML is development effofta standard access control policy language
that enables the use of arbitrary attributes incps to encapsulate domain-specific factor, rasdal
access control and dynamic policies to reflect ireguchanges to the applications. Some important
terms that differs XACML from other access contlaguages are; XACML specifies an "Access
Control Decision Function" (ADF), and defines it¢dractions with an "Access Control Enforcement
Point" (AEF) so provides differentiation of ADF fro AEF. XACML defines a "Policy Decision

43

Point" (PDP), and defines its interactions with Rolicy Enforcement Point" (PEP) so not only

provides a framework for policies but as well dargguage.

These frameworks are powerful for expressivenesniarprise-level security policies, however they
are not transparent. It is the developer’s dutgdio for authorization request whenever requirethdf
developer misinterprets the policy or forgets t& &% authorization then there will be no access
control on sensible data. Thus, it is hard to bgaoization-wide and avoid being error-prone. To
guarantee access control over the whole applicatiole method is code weaving using aspect
oriented languages [51, 64]. In these methods,csogpdes are weaved to use access control
frameworks. This guarantees that application l&yeveaved to be under access control, however the

presentation layer of enterprise web applicatiostilsopen to unauthorized request.

Commercial Access Managers:Most of the commercial application server vendease access
manager’'s products such as BEA WebLogic [65], @rd6b], and IBM WebSphere [65]. These
access managers have also the capability to ineegrt other application servers. There are also
other vendor’s product that can integrate intoetsrof application servers such as AssureAcceds [68
and WebDeamon [69]. The common strategy of thesdyats is managing user identities and roles
assigned to appropriate privileges. They contraleas over the presentation layer, control web
resources, however apart from BEA WebLogic Entsgi$ecurity; they all suffer from supporting
domain-specific access control policies [5]. All them uses RBAC [26] method, however RBAC
fails to separate enforcement function and deciiontion that is needed to evaluate domain-specifi
access policies [5]. WebLogic Enterprise Secur#igaua somewhat different strategy, although it also
uses RBAC to manage user identities and rolestribduces policy evaluators that can also control

application-layer of web applications by evaluatieguest attributes.
2.5.2 Web Application Firewalls

Nowadays there are both academic proposals for apgtication firewalls [70], as well as open-

source [71] and commercial ones [72] [73]. Davi®tBand Richard Sharp [70] propose a Security
Gateway in front of the application and web serveryalidate and transform client request. They
construct aSecurity Policy Description Languad8PDL) to specify a set of validation constraints
and transformation rules. With in these rules, eusty officer or developers can define parameter
names; maximum and minimum length of parameteresahnd appends a MAC code for security-
critical hidden-form parameters to prevent useosnfrmodifying data. Upon reception of a client

request by security gateway the request paramaterchecked according to the rules defined in
SPDL.

ModSecurity [71] is a fully open source web appgima firewall that is designed as a module of
Apache Server. It implements the ModSecurity Ruidaduage and policy rule evaluator to work with

HTTP transaction data. ModSecurity also providesra set of rules to detect violations of the HTTP

44

protocol and a locally defined usage policy. Thesee sets are designed in a way that they provide
protection from common web attacks, automation aiete, Trojan protection and error hiding.
Security officers or developers can customize tigabior of ModSecurity by adding validation rules
for request parameters. ModSecurity divide the ettes of HTTP requests into 5 phases; request
headers, request body, response header, respodgeabd logging. The core rules and validation

rules can be attached to any of these phases.

Traffic Shield [72] is a commercial web applicatipmoduct implemented by the vendfy. Its
countermeasure against web application attacks taked application flow model which is in fact a
detailed model (or policy) of the ways users interaith the application. The product learns the
allowed operations of the application by analyzihg incoming and outgoing traffic and tailors its
model accordingly. For each web page presentditetaiser, the model describes the structure of the
HTTP or HTTPS requests that are generated by teetdide source code of the Web page and the
authorized transitions to other Web pages. The imadepolicy, can be built using only a few key
factors (in order to minimize complexity) or usingry detailed descriptions (in order to increase

granularity) or anywhere in between depending endédsired security posture of the application.

Secure Sphere [73] from Imperva is a full compaacidpct that has network firewall, intrusion
prevention systems (IPS), intrusion detection systand a built-in web application firewall. Like
Traffic Shield, Secure Sphere has an automatedepsocalleddynamic Profilingthat examines live
traffic to create a model of application structarel dynamics. It also allows manual tailoring of it
model. The main difference of Secure Sphere froaffitrShield is that Secure Sphere can work on
passive mode as well as inline mode; on the otaed traffic shield only operates as inline mode. In
passive mode the flow of web traffic is not intgytael but analyzed using sniffing and if any
malicious request is detected, it will send TCRetemessage. However in inline mode the firewall
acts like an active device such as bridge, routgeeerse proxy, intercepts coming connections and

control the flow of information.

In either case, all web application firewall prottuobey the WASC's definition of web application
firewalls. They are all installed in DMZ before welpplications as a separate traffic. They work
mostly on inline mode, intercepting coming traffanalyze OSI Layer-7 messages for violations in
the programmed security policy. Most of them hagariing capability that by investigating web
traffic of the application, they can adapt themsslby figuring out legal operations and construct a
positive security model from these. They also havegative security model which especially targets
web application attacks. Like most the anti-virusducts, they can upgrade and patches themselves
for new kinds of attacks by connecting and fetchattgck signatures from the product’s main servers.

45

CHAPTER 3

ACCESS CONTROL AND SECURITY SOLUTION BASED ON RAD

In this chapter, the details of our proposed mddehddress the problems of access control and
application security are described. Our solutionEIK® ("Erisim, YEtkilendirme ve Ksisellestirme
Sistemi” in Turkish, meaning "Access, Authorizatiand Personalization System™) brings together
encapsulating domain specific factors in accesstrabrand confronting application security
vulnerabilities in enterprise web applications. BEprovides a modular access control service that
can decides on application-specific policies thatr@quired by the enterprise application’'s complex

business logic as well as policies that controlb @gplication security vulnerabilities.

EYEKS uses CSAAS as authorization engine whichnidact Resource Access Decision (RAD)
implementation with additional RBAC [26] capabiis which was presented in Akademik it
Conference 2005 [6]. RAD has been chosen as thesaatecision mechanism since this facility is one
of the best solutions that can be used by secavitgre applications as described in Beznosov’'s work
[5]. The implementation details of RAD facility cdne found in section 3.1. On the other hand, as it

will be shown in section 3.2, web applications suéll to be controlled using RAD specification.

As mentioned in section 2.2, the best way to endapes application specific policies is to separate
access decision mechanisms from the applicati@ff itsxd leaves enforcement to the application;
EYEKS is designed to be a separate layer that @amntegrated into any n-tier enterprise web
application as a first layer that guarantees apfitio wide enforcement. This, so called Application
Security Layer, is installed in the Demilitarizedri® (DMZ) sits between external network and
organization’s internal network to increase theusiég (described in section 3.3.1). EYEKS intercept
user requests, checks violations of both enterpridieies and application security policies, auther
the request and using HTTP tunneling describeeédatian 3.3.5 proxying the backend enterprise web

application.

EYEKS is designed as a chained structure so thatnesjuests are processed by traversing possible
chain of execution. Possible operations can be dgdasnoved, arranged according to application
security requirements. Chain elements are allowegktract information from user request, check for
authentication and authorization, create or chaHJdP session. Briefly it allows all kind of
manipulation to user request and response. EYEK® @ovides a powerful API, so that application
developers can easily integrate their requiredrcbakrations into the system. The details of clthine

structure are given in section 3.3.2.

46

EYEKS adds session management capabilities aamt HTTP session. User requests are authorized
and managed according to EYEKS session (sectio)3.2 successful authentication creates
EYEKS session and EYEKS guaranties this sessioarised out through all user operations. EYEKS
session can be based on header based or cookig¢ &asepted tokens. This session management

facility also allows Single-Sign-On feature for tvbole enterprise application.

EYEKS consult to access decision mechanism mangstiduring execution of user request. This
mechanism can be managed using RAD implementaticadtd new policies that must be satisfied
during request. Both enterprise policies and appba security policies can be controlled usingyn

application. This architecture provides EYEKS todyaamic so that it reflects any policy changes at

the time of execution. Policy execution details giteen in section 3.4.

The whole application security layer (EYEKS) canthélt on any J2EE based application server.
Alternatively, EYEKS can be executed as a standelapplication without the need for a server, to
be free from any security breaches of applicatemers. Integration issues will be covered in secti
3.5.

In the following sections, the architecture of EY&EMiill be described in detail. Then a verificatioin

the solution will be introduced

3.1 RAD Implementation (CSAAS)

3.1.1 CSAAS Architecture

The overall architecture of CSAAS is given figure 10. As shown, CSAAS consist of 4 main

components, which are installed on different sitges] 8 sub-components within.

47

P
CBant Sarver

Caassamenong
CraaslBent -\-\-\-""‘ﬁ-...,
[Tmhepei i iawed (R

I Cuey Databass
|

CsaasSerer
CraasBervice

deardacts (RN}

o

Czaas Database

Updatn Catabasr

1

Sedmin GUI

CeapsCammans

PremyClland ""'--.,__‘_

adminiziatietinarations (HTTP}

{I

%
AdminProxy %

\
N

-
CeazsddminGLUI T
Ceaasfdmin

Figure 10 CSAAS Architecture

Client: This component is in fact not a process, but eatipthat is an interface between CSAAS
Server component and application itself. In EYEBplication security layer uses this library to ask
access decisions to CSAAS Server. This componamists of 2 sub-components; CSAAS Client,
which handles remote method invocation to CSAASv&eand CSAAS Service, is a wrapper of
CSAAS Client and provides interface between theliegiion program (Application security layer)
and CSAAS Server.

Server: This component is a core part of CSAAS and worksaastand-alone process. Server
component consists of two sub-components; CSAASesaand CSAAS Commons. CSAAS Server
is the implementation of RAD specification and @sgible for deciding on authorization requests. A
remote object, IRMICsaaslInterface, is registereRM registry which provides access from CSAAS
Clients. CSAAS Commons is a utility library andused by both CSAAS Server and CSAAS Admin
components. CSAAS Commons handles object to reltimapping of CSAAS objects and mainly
responsible for querying and updating the CSAASloiase. It also provides cache management of
database objects that improves performance. Treface between CSAAS Client and CSAAS
Server is shown in figure 11.

48

«interface»
IRMICsaasInterface (from CsaasServer)

+accessAllowed()
+multiAccessAllowed()
+authenticate()
+authenticationWithSinglePassword()
+changePassword()
+getSecurityQuestions()
+checkSecurityQuestions()

CsaasService (from CsaasClient) CsaasServer (from CsaasServer)

Figure 11 CSAAS Server Interfaces

Admin: This component implements management functiomalitf CSAAS such as managing
operations, resources, user groups, policies, dynatiributes, policy evaluators and decision
combinators. Because of security concerns, no tdaecess between client computers and Csaas
network is allowed. Admin component also implemeatproxy service that serves to Admin GUI
component. Admin component consist of three subpmrants; Admin Proxy provides necessary
service proxies that bridge Admin GUI to CSAAS AdmAdmin Proxy implements a single action
servlet that can be deployed on any J2EE suppaetication server such as Tomcat and receives
any commands coming from Proxy Client sub-compor@nfdmin GUI and invokes necessary
operations from CSAAS Admin. CSAAS Admin is corepiementation of CSAAS management and
provides business operations. CSAAS Admin sefadear cache” message to CSAAS Server
whenever an update operation is done on CSAAS Beoreponents described in section 3.1.2. As in
Server component, CSAAS Component is also usechdodling object to relational mapping of

CSAAS objects and mainly responsible for queryind apdating the CSAAS database.

Admin GUI: This package provides user interface to manageASSiinctionalities. CSAAS Admin

GUI and Proxy Client are two sub-components of Adr@UI. CSAAS Admin GUI provides

graphical user interfaces based on Java Swing coemp®. Admin GUI uses Proxy Client to access
CSAAS Admin and carry out the administrative opiere. Proxy Client provides service proxies that
bridges Admin GUI to CSAAS Admin by inserting methname and method arguments that will be
invoked on CSAAS Admin into HTTP request paramet&enever Admin Proxy receives such
messages, it will unpack the messages and invokesponding method with given arguments and

send the response back containing the result. Tlaboration diagram of the communication

49

between Admin GUI and CSAAS Admin and also betw€SAAS Admin and CSAAS Server is

shown infigure 12

AdminClient (from CsaasAdminGU])| _ invokeOperations || oxyCHient (from ProxyClient

+invokeOperations()

+manageAdministrativeOperations()

I

manageAdministrativeOperations nvoke

GUI El (from CsaasAdminGUI) AdminProxy (from AdminProxy)

+invoke()

doAdministrativeOperations

CsaasAdmin (from CsaasAdmin)

+doAdministrativeOperations()

clearCache

IRMICsaaslnterface (from CsaasServer)

«interfacex»

+clearCache()

C

Server (from C Server)

Figure 12 Interactions of Admin Components

3.1.2 Components of CSAAS Server

CSAAS Server is composed of following componentspecified in OMG specification [25] and

Beznosov's work [74]. All components and their naietions are well defined in OMG'’s specification

and here the details are omitted. The relationshiipsng these components are givefigare 13

1. Access Decision Object (ADO)
2. Policy Evaluator Locator (PEL)
3. Dynamic Attribute Service (DAS)
4. Decision Combinator (DC)

5. Policy Evaluator (PE).

50

Resource 1

1
\1‘ Secured Resource CSAAS Result
. -ACCESS_ALLOWED
1"/' | ACCESS_NOT_ALLOWED
Operation -DECISON_UNKNOWN
1
Returns
Control Atcess

Policy 1 PolicyEvaluator Locates PolicyEvaluatorLocator

Constilts

0.1

DecisionCombinator

Access Decision Object

Figure 13 Components of CSAAS Server

Applications (especially in this case Applicatioac8rity Layer) interact with CSAAS Server only
through the Access Decision Object (ADO). ADO pd®s a single, uniform interface to the clients
and other CSAAS interfaces. Whenever the ADO reign authorization decision request, it
consults Policy Evaluator Locator (PEL) object whitecides what Decision Combinator (DC) and
Policies Evaluators (PE) to be used. A PEL maistairapping of resources to DC’s and PE’s. A
secured resource access can be controlled by zermie access control policies. Policy Evaluator
(PE) is responsible for the evaluation of suchgiedi. PE evaluates and returns a grant or denial of
access, when the attributes of access result isenotigh to evaluate an access, PE returns
DECISION_UNKNOWN. There is a one-to-many relatisarh PE objects to policies and many-to-
many relation from policies to resources. Becawgsa BE object can evaluate one or more policies for
a given resource, policies associated with a regodon’t have to be evaluated by a single PE object

Evaluation decision can be distributed among séWREaobjects.

The results of the access policies for a givenuescan be combined under Decision Combinator
(DC) object to combine all evaluations into an auittation decision which is sent back to client. A

DC object is controlled by a combination policy akiis in fact business logic under that DC. DC can

51

be added to the CSAAS Server using different imgletaitions such as basic logical operation like
AND, OR or complex combinators like hierarchiedP& objects where a decision from a higher level

PE can override decisions from lower-level PE otsjec

To evaluate an access policy, a PE needs secttrityuses that come with authorization request. PE
objects use these security attributes as criteniaefaluating access control policies. The security
attributes can contain both static and dynamidoattes. Static attributes represent the charatiteds

the principal (such as user name, user role) oinbss logic (such as amount to be transferred of an
EFT operation). Static attributes are supplied limy ¢lient and used without alteration. On the other
hand, a dynamic attribute can only be determinetth@atime an access request comes and evaluated
by CSAAS itself. Dynamic attributes most probabBndte relationships between a principal and a
resource, which also reflects business rules ofaglication. Whenever PE asks for a dynamic
attribute to ADO, ADO delegates the discovery ohalyic attribute to Dynamic Attribute Server,
which locates and finds the value of the attriblitee location of dynamic attributes can be database

other process or another object within the samealimachine.

3.1.3 Execution Flow

Authorization decisions are computed though a seopief operations carried out the CSAAS Server
components. The sequence is triggered by an actes®dl message coming from application system
to ADO object. ADO object executes the flow andires the result back to the system. The execution

sequence can be foundfigure 14and is described below;

1. An application server (AS for short) contacts thB@\ server for an authorization decision to

perform an operation on a resource by a principtl svlist of security attributes.

2. The ADO object requests the PEL object to locateessary DC and PEs associated with the

resource.

3. The PEL returns to the ADO a reference to a DC asét with zero or more references to PE

objects.
4. The ADO requests the DAS for any dynamic attribtitesvaluate dynamic attribute value.

5. The DAS returns to the ADO a set of dynamic attelsuwith their values to be used in obtaining

an authorization decision. The DAS can add dynattitbutes or remove existing attributes from set.

6. The ADO sends to the DC a set of PE servers fduatian of policies that control access to the

resource.

7. The DC requests each PE in to authorize or dengpleeation on the resource given the security

attributes of the principal.

52

8. Each PE in evaluates zero or more access polisggmted with the resource and sends back the
result to DC.

9. The DC combines all replies from all PE and combitieem into a single grant or denies

response. This response, the authorization decisi@aturned to the ADO server.
10. 10. The ADO returns the authorization decision fithen DC server to the application system.

11. The application system (here Application Securityyér) receives the authorization decision

from the ADO server and enforces it.

Application System Access Decision Object || PolicyEvaluatorLocator Dynamic Attribute Provider | | Decision Combinator Policy Evaluator

| |

; :

accessAllowed(ResourceName, Operation, AttributeList) |
| |

|

|

I

;
|
|
I
|
|
|
|

| i

getPolicyEvalutor(ResourceName) |

| |
I
|
|
|
|
|
|
I
|
|
|

|

|

|
getDynamicAttributes(ResourceName, Operation, AttributeList)
N

combineDecisions(ResourceName, Operation, AttributeList, PolicyEvaluator)
| N

] :
evaluate(ResourceName, Operation, AttributeList)
i

I
|
|
|
|
|
|
|

e
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 14 Sequence Diagram of Access Decision

53

3.1.4 Limitations and Improvements

CSAAS was implemented with some limitations and riowements over RAD specification. OMG
specifies ADO, PE, DC, PEL and DAS as distributbgects so that any ADO, PE, DC object can be
distributed among any RAD implementation that caoeased during execution but to simplify the
design CSAAS only implementBMICsaasInterfac®bject as distributed which is a wrapper of ADO
object. However PE, DC and DAS objects are invaksidg reflection mechanism of Java so that any
policy evaluator, decision combinatory, dynamicibtite service implementation can be added to
CSAAS without altering the binaries of the implertzion.

On the other hand, many improvements are madeRAEBx specification. These are;

RBAC: Since nearly all enterprise applications needs-balsed access control, CSAAS implements
RBAC policy evaluator, which adds role-based, asoapability to RAD.

Cache Management:To improve the performance cache management ésaalded whenever PEL
locates policy evaluators or DAS locates dynamicbatte service corresponding data (for example,
resource, operation pair, need policy evaluatagsisibpn combinators) are fetched from database and
inserted into the cache.

Logging: A logging mechanism is also added. CSAAS logdithe of access request decision, which
operation is trying to be executed on which reseuwhat the decision is and how the decision is

evaluated so that any malicious request can bkedac

Warnings: On some very important and sensitive resourcesh(sis banking accounts) or any
incoming access requests carrying out by some \(gargxample, login operation of a suspicious
user) can be reported as a warning message. Warmesgages can be configured as to be inserted to
database or to be sent as a TCP message to aispacition so that security administrations can

monitor sensitive operations.

Implemented Dynamic Attribute Providers: To be evaluated by Dynamic Attribute Service, Java
dynamic attribute provider (JDAP) and SQL dynanitdlaute provider (SQLDAP) are implemented.
JDAP enables any java class to be added to CSAA®uprtime to evaluate dynamic attributes.
Hence, this gives application developers the potgeimplement any kind of dynamic attribute
evaluations. SQLDAP can be configured to connegt database and execute SQL statements that

can be used as dynamic attribute.

Implemented Decision Combinators:Predefined basic logical operations such as ANR,&9 well
as AND over ORpolicyl OR policy2) AND ... (policyN OR policyN+OR overAND (policyl AND
policy2) OR ... (policyN AND policyN+1kirst Couple AND then ORpolicyl AND policy2) OR ...
policyN OR policyN+1First Couple OR then AND ORpolicyl OR policy2) AND ... policyN AND

policyN+1 are implemented to combine policy evaluators.

54

Implemented Policy Evaluators: Most popular policy evaluators such as Java poéiggluator
(JPE), JavaScript policy evaluator (JSPE), rulécgotvaluator (RPE) and RBAC policy evaluator
(RBAC) are implemented. RBAC evaluates access doupto role-based access decision; JPE gives
the application system developers the power touawel policies by java class. JSPE enables java
script to be written to evaluate results and thoRfte, security administrators can write basic labic

rules to evaluator’s policies.
3.2 Mapping Polices to CSAAS

As mentioned in section 2.2.6, RAD specificatioquiees resources and their valid operations to be
well defined. Therefore, the first step before magphe policies is to define resources and their
operations. RAD allows any granularity level ofoesces, so there is no common way as to how
resources should be named. Depending on the steuatienterprise web application, security officer
must decide what kind of resources and their ptessiperations will be defined. Although every
enterprise application requires a distinct way @ource naming, some common patterns can be
defined.

For basic kind of web applications, that does ndtdbon any Model View Controller architecture.
(For example web application consist of a numbgspfpages that manages view, control and model

altogether as given iiigure 15 the possible resource and operation definitioay be;

55

lloginoperations

Jlogin.jsp

LoginFomm

ferrorlogin. jsp

fwelcome.jsp

Ciparation Lag
LisiFoerm Form

i)

==

Logoud Additem
Fasrm Foarm

(additemToWharehouse jsp

i

fwebapplication foperations

fegoutoperations

TV s [
llemFarm Fomm

flistitems jsp
=

Lizilterms chl
Farm Fam

flogout jsp

fexitjsp

Figure 15 Example Web Application Structure

(iremoveltemFromWharehouse jsp
!

1. Choosing each jsp page as resources and definieyvVvand SUBMIT as operations on them

where VIEW operation is responsible for viewing spge (e.g. HTTP get request on jsp page) and

SUBMIT operation is responsible for any form suboyieration resulted from that page. Resources

and operations are shown below according to thenggxample ifigure 15

56

Table 3 Example Mapping-1

Resource Operations
login.jsp VIEW,SUBMIT
Errorlogin.jsp VIEW,SUBMIT
welcome.jsp VIEW,SUBMIT
addltemToWharehouse.jsp VIEW,SUBMIT
removeltemFromWharehouse.jsp VIEW,SUBMIT
listitems.jsp VIEW,SUBMIT
logout.jsp VIEW,SUBMIT
Exit.jsp VIEW,SUBMIT

2. Adding one more level of granularity, html forms jpaiges can be chosen as resources and VIEW
and SUBMIT operations can be defined as previouRsource and operations are shown below

according to this mapping.

Table 4 Example Mapping-2

Resource Operations

login.jsp VIEW,LoginForm

Errorlogin.jsp VIEW

welcome.jsp VIEW,OperationListForm, LogoutForm

addltemToWharehouse.jsp

VIEW,AddItemForm, Logoutfor

removeltemFromWharehouse.jsp

VIEW,RemoveltemFormgolutForm

listitems.jsp VIEW,ListltemForm, LogoutForm
logout.jsp VIEW
Exit.jsp VIEW

3. If jsp pages are distributed among logical dirdegrdirectories can be chosen as resources and

in this case operations will be jsp page namesoset directories. Resource and operations are shown

below according to this mapping.

57

Table 5 Example Mapping-3

Resource Operations
/webapplication/loginoperations login.jsp, erroitogsp, welcome.jsp
Iwebapplication/operations additemToWhareHouse,

removeltemToWhareHouse,
listitemToWhareHouse,

Iwebapplication/logoutoperations logout.jsp, esfl.j

4. If the whole enterprise application is deployeddifferent web contexts (Web contexts can be
deployed on the same application server or onreiffieapplication servers.) the best way is to @efin
each web context as resources and each page aatioperon that web context. Resource and

operations are shown below according to this mappin

Table 6 Example Mapping-4

Resource Operations

login.jsp, errorlogin.jsp, welcome.jsp,
addltemToWharehouse.jsp,
removeltemFromWharehouse.jsp, listitems.jsp
logout.jsp, exit.jsp

Webapplication

On the other hand; if enterprise web applicatioses MVC pattern on their applications, the mappings
are much more straightforward. Controller servigtsostly called action or dispatcher servlets)
become resources and their possible view actioosrbes operations of CSAAS. To give an example,
we can consider Struts framework, which is an ggmmce framework that enables applications to use
the MVC pattern. In Struts framework, actions amowf of web application is controlled by
ActionServlets. Possible actions are passed tooAStrviets as request parameters. Consider a case
where we havéltem.do” action servlet that has 3 actiofxgewltem”,”addltem” and “removeltem”

and according to these actioritem.do” forward action to viewltem.jsp, additem.jsp and

58

removeltem.jsp. Therefore, in this case, it is moadre reasonable to defifigem.do” as resource
and viewltem, addltem and removeltem actions becop®rations. If we reconsider the previous
example and state that “Login.do” controls logim dmgout operations, “Operation.do” controls add,

remove, list operations. Resource and operatitmbecome as shown Trable 7

Table 7 Example Mapping-5

Resource Operations

Login.do login, errorlogin, welcome, logout, exit
addltemToWhareHouse,

Operation.do removeltemToWhareHouse,
listitemToWhareHouse,

As mentioned before, RAD specification, as wellGBAAS, does not limit the granularity level of
resources, therefore, enterprise applications ree tb define a mixture of mapping techniques. In
order to comply with free of granularity level, EXE introduces Context concept, which will be
covered more deeply in section 3.3.3. EYEKS’s Ernis well mapped to Web application’s context
but extends web application context. In EYEKS aathpwithin the web application can be defined as
EYEKS'’s context and mapping strategy is definedrat context. To use different kinds of resource
mapping strategy in EYEKS, system administratioas assign different paths to different contexts
and apply mapping strategies. Continuing the abexample,“/webapplication/loginoperation;
“/webapplication/

operations” and “/webapplication/logoutoperationtan define 3 contexts and under loginoperation,
the system can map resources as described inrshestfiategy above, under operation, mappings can
be done according to the MVC pattern and underJagmeration, mappings can be chosen as the

second strategy described above.

When a request arrives to EYEKS, firstly EYEKS det@es which context a request belongs to and
depending on the assigned mapping strategy, res@und operations are tried to be identified. If the
request does not satisfy the mapping strategysmuree and operation mapping is undefined, EYEKS
simply rejects the request without doing other apens. So the whole web application must be
mapped to the resource-operation pair. After swfag naming the resources and possible

operations, web application becomes directly mappdRlIAD domain.

59

3.2.1 Enterprise Policy Mapping

Defining resources and their possible operationlC8AAS, enables accessing to those resource
possible. At this stage everyone can access ty egsource on that enterprise application. Next ste
will be to write enterprise-level access policieattcover all business access rules of the system.
However, it is important to distinguish businessess rules from business flow rules. Business flow
rules should not be regarded as enterprise-lexasacpolicies. Enterprise-level access policiest mus
only define which conditions must be satisfied ider to access be granted. It is more reasonahle if
different person other than the developer of arliegon (usually a security officer) to define the
access policies. Access control policies most pbssiill be discovered during the analysis phase of

application domain. However it will be possiblelbt® changed after the product is delivered.

Consider a typical example from the health infoingatiomain, where there are four roles; patient,
physician, department secretary and general prawit Example access control rules are listed

below;

Rule 1: A physician will be granted access to a patieddita if a contact exists to which he was

assigned. The access rights are only valid untd@®gs after the contact was closed.

Rule 2: The system provides the possibility to overrule #tcess decision, if the user requesting

access to his own data.

Rule 3: A department secretary can create contract arignaasphysician to a patient, can not see

patient's data.

Rule 4: The patient's general practitioner has view actesdl the patient's contacts, whether these

contacts have been closed or not, however can adifyrpatient’'s data.

According to these rules; use cases of applicateom be ADDCONTRACT, CLOSECONTRACT,
VIEWPATIENTDATA, MODIFYPATIENTDATA, and ASSIGNPYHSCIAN. At first glance, these
use cases seems to be controlled only using RBAiCigm) however defining contact validity period
or viewing patient data requires more policiesdtisy the rules. Possible policies that contrbksse

use cases can be seemable 8

Table 8 Enterprise Policy Example

Use Case Policy Definition

ADDCONTRACT AddContractPolicy Can be controlledngsionly RBAC.

60

Table 8 (continued)

CLOSECONTRACT

CloseContractPolicy Can be controlisthg only RBAC.

VIEWPATIENTDATA

Check whether physician is assigned to
ViewPatientDataPolicy | that patient or whether he is patient's
general practitioner.

MODIFYPATIENTDATA

Check whether physician is assigned to

ModifyPatientDataPolicy that patient

ASSIGNPYHSICIAN

AssignPyhsician Check whether secretary assign physici

under her department

However, Rule 1 and Rule 2 are still not satisfi€theckContactValidityPolicy must be added to

satisfy Rule 1 and CheckUserReasonPolicy policy tnhes added to satisfy rule 2. And also

ViewPatientDataPolicy and ModifyPatientDataPoli@nde redefined as CheckPatientPhysianPolicy

and CheckPatientPractitioner policies. RAD speatfan, policies can made chain to control access,

in short a full design of access policies will be;

Table 9 Enterprise Policy Mapping Example

Use Case Controlled by
ADDCONTRACT RBAC (No need to define another policy)
CLOSECONTRACT RBAC (No need to define another pglic

VIEWPATIENTDATA

(RBAC AND ((CheckPatientPhysianPolicy AND
CheckContactValidityPolicy) OR CheckPatientPragtigr)
OR CheckUserReasonPolicy

MODIFYPATIENTDATA

RBAC AND CheckPatientPhysianPolicy AND
CheckContactValidityPolicy

ASSIGNPYHSICIAN

RBAC AND AssignPyhsicianPolicy

As seen CheckContractValidityPolicy and CheckP#fbgsianPolicy can use both control
VIEWPATIENTDATA and MODIFYPATIENTDATA use cases.

Another example can be given regarding the ban&imain to show how mappings are done from

web application page to RAD domain; consider an Bpé&ration thatioeft.jspis responsible, which

has possible operations of VIEW and SUBMIT, wherlEW operation gets request parameters

61

USERID (which user is requested) and ACCOUNT _INR@i¢h account will be displayed) and
generate a web page showing account details. Qrpétee SUBMIT operation is possible that post
USERID, ACCOUNT_INFO, TRANS_ACC_INFO, which denoté®e account the money will be
transferred to, and TRANS_AMOUNT, the amount of theney transfer. The parameters of
“doeft.jsp” page can be regarded as security attributes thatsed for evaluating policies which were

described in section 3.1.

<doeft.jsp,VIEW> resource-operation pair can bekdoh with an enterprise security policy
(EFTTimeCheckPolicy) that defines when a view ofienais allowed, for example between working
hours (9 am — 5 pm) and also with VIEWAccountPolibgt checks whether the account belongs to
specified user. <doeft.jsp,SUBMIT> pair can also bentrolled by the same policies as
<doeft.jsp,VIEW> policy and additionally linked wita security policy that checks for whether the
transfer could be allowed (TransAmountPolicy), éoample checks whether the transfer amount is
less than the upper limit of user defined EFT ofi@na These policies can be defined by security
officer to CSAAS so that the access control ruldklve separated from application code, which can
be governed freely as access control rules chamgg®ut modifying the source code of the
application. As seen in the example, all entergasel security policies can be linked with every

related resource-operation and they are reusaldppMg can be seen in table;

Table 10 Mapping to EYEKS

Resource Operation | Parameters Policy
VIEW USERID EFTTimeCheckPolicy
ACCOUNT_INFO VIEWAccountPolicy
Doeft.jsp USERID EFTTimeCheckPolicy
supmiT | ACCOUNT_INFO VIEWAccountPolicy
TRANS_ACC_INFO TransAmountPolicy
TRANS AMOUNT

3.2.2 Application Security Policy Mapping

Nearly 80% of web application attacks are becatdiggmmeter manipulation or more generally data
validation vulnerabilities. Improper input validati was on the top of OWASP Top Ten Security
Vulnerabilities list, published in 2005. [19] A edul centric design of data validation would freebw

application from these vulnerabilities. However dking against possible vulnerability exploits and

validating input at every point of entry to web Aggtion is costly, error-prone and unmanageable.

62

These “application-level” security policies to eiivate web attack risks must be taken into

consideration.

CSAAS can also be used for evaluating “applicaterel” security policies. Different policies can be
written to validate request parameters and to chliegkiest from known security exploits. Since in
EYEKS, application security layer controls useeguest and asks for access permission to CSAAS,

it is guaranteed that enforcement on request wilMplate security policies organization wide.

Considering the previous example, a security offican define DoEftViewSecurityPolicy on
<doeft.jsp, VIEW> pair and DoEftSubmitSecurity Rglion <doeft.jsp, SUBMIT> that defines
possible parameters and their expected valuesafth pair. On the other hand application security
policies that checks for known security exploits d@e added on resource to fulfill whole security

policy chain.

For general use, some policies that check for kneggurity exploits has already been implemented
and built in to the system. Security officers carkéd these policies to any <resource, operation>
pairs in the application. These predefined polisiest with SECURITY tag and can be extended or

altered according to application security needes€tare;

SECURITY_PARAM_REG_EX_POLICY: Defines possible values for all request paramieter
regular expression format. That can be used tdatdiall possible parameter and values using regula

expression.

SECURITY_INJECTION_POLICY: checks all request parameters against injectioa offattacks
that can be extended to cover all types of possilgetion such as SQL injection XML injection and
XSS.

These policies are not a full set of applicatiortusity policies to eliminate web application
vulnerabilities. However they can be seen as exasnpl securing web applications to prove that by
extending these policies, it is possible that EYEX8vides a common way to fight against security
exploits and can be used as a full defense sysgins them. The details of the application segurit

policy execution mechanism will be given in sect®4.
3.3 Operation and Architecture of EYEKS

Architecture of the proposed solution, EYEKS thdbvas CSAAS to be used to manage access
control organization wide is shown figure 16 A specific layer, so called application secultityer,

is created and placed in the frontier. Posterigers consist of real web applications and databases
and have no direct access to the outside worldcédhmunications from outside world to backend
web application is intercepted and authorized frapplication security layer. EYEKS runs as a
service proxy for posterior web applications. lieequests, targeting web applications, are

intercepted and EYEKS evaluates these requestsdiiegdo enterprise and application level security

63

and redirects, alters or rejects. If a request uthenticated, it will replay the request to web
applications and pass the response back to thet el@éng HTTP Tunneling. The response can be

controlled and filtered by EYEKS that eliminateskrdf information disclosure

EYEKS provides authentication and secure sessiodlimg mechanisms. EYEKS can handle basic
authentication methods and can also bridge to gnigerlegacy authentication systems such as LDAP.
EYEKS introduces EYEKS session, which can be dooekie-based, or parameter based. With
session management, EYEKS eliminates unsafe handfiuser sessions and also provides single-

sign-on feature to posterior web applications.

EYEKS Web Application Layer

Wb Apglicetion

Appllcanion Sty
Layer e Aulhoszed
Fimaue

Wil Applicatian

Lonta b froniriagd e

T

CEANE Aapbmalm
Rimagmrsa

Wb Agpication

Figure 16 Architecture of EYEKS

CSAAS has been placed in this layer and can ontgnconicate with application security server.
Whenever a request is intercepted, EYEKS mapseitpgerst to RAD specification domain, determine
resource operation pair as described in section Betjuest parameters and HTTP headers are
extracted from the request and passed to CSAA8@sity attributes with resource, operation pairs.
CSAAS evaluates the request according to entermézess rules and send the result back to

application security layer, stating whether theuesy is authorized or not.

64

3.3.1 Application Security Layer

Application security layer can be run as stand-alearver or deployed on any kind of J2EE based
application servers. After configured accordingiy,intercepts all requests coming from client.
Although can be extended as described in secti®.3Application Security Layer executes 3 main

scenarios; Login, Page Request and Logout.

Login Scenario: This scenario begins if;

« Client makes a request to login page of any backgpdication.
¢ Client times-out and makes another request.

* Client makes a request which has invalid or noroke

Scenario continues sequentially as follows:
1. Client provides any login credentials such as igspassword pair, hardware token, LDAP key.

2. Application security layer finds out what backergplication the user wants to login from the

requested login page.

3. Application security layer tries to authenticate tlser using applicable authentication methods

that the user provides.

4. If authentication fails, corresponding messagerépgared and sent back to user as a response to

the request.

5. If authentication succeeds, application securityetaasks if user has LOGIN rights on the

requested resource (web application) if yes sceramtinues, otherwise login request is denied.
6. Distributed session for the user is created amalintserted in database or LDAP.

7. A unique token is created and encrypted from whesurrent time and client IP.

8. Log manager creates a login log and stores itacstore provided (Database or file).

9. Application security layer makes a HTTP/HTTPS rexjue the proper web application and tries

to fetch the welcome page.

10.When the welcome page is received, created tekamserted to the page and sent back to the

client browser.

Page Request Scenariof his scenario begins at every page request matieehyser.

65

Scenario continues sequentially as follows:

1. Token is resolved from the client request and deed. User id, next request id fields are
extracted.

2. If token is valid (user is not timed-out and sequeif the request is true), all parameter and
value pairs are extracted from the request. Theluisn of which web application the request

belongs to is carried out.

3. CSAAS tries to authorize the user request usinge pagme as operation, web application as

resource and parameter value pairs to be usediaypd authorization.

4. |If the user is an authorized user to use that wafpepuser session is activated by session

manager, otherwise the request is denied.
5. New token is generated from the coming token. (negtiest id is rewritten)

6. Application security layer makes a HTTP/HTTPS rexue proper web application and gets the

requested page.
7. Log manager creates an access log and storethi &iore provided (Database or file).
8. New token is inserted to the coming page and s&ck to the client browser.

Logout: This scenario starts if a request is interceptedl identified as logout operation. Scenario

continues sequentially as follows:

1. Token is resolved from the client request and daed. User id, next request id fields are

extracted.
2. User session is dropped from database.
3. Log manager creates an access log and storehi¢ tetdre provided (Database or file).

4. Application security layer make a HTTP/HTTPS requesproper web application and gets the

logout page.
5. Logout page is sent back to client.

Application security layer is designed as logicd#lyered structure. All user requests are captated
uppermost layer and processed though the innerdaged then dispatched to the backend web

applications. The logical layers for applicatiocsdty layer are (from uppermost to innermost lyer

1. Request Listener Layer:

66

Request listener is the interception point of #iktrt requests. This layer consists of two différen
implementations that implements ISessionHandlegriate; one is for HTTP Component based
stand-alone server implementation which will becdiégd in section 3.5 and the other one is Servlet
based implementation that can be deployed on aR§ I¥ased application server. As well as any
other web application, common listener port is 80HTTP requests and 443 for HTTPS requests.
Free from interceptor interface, it must be confeglito hold root address (/) so all requests to
application security layer can be intercepted. Rstuistener Layer extracts the HTTP Request, such
as gathering headers, request parameters ancbidsest generates a SessionHolder object and passes

it to Request Parser Layer.
2. Request Parser Layer:

Although there is not a strict logical border testaiguish this layer, in fact it is one of the pre-
operations belonging to OperationsManager clag® foperation layer, since it is must and critical
operation called ContextResolveOperation, it camdgarded as a specific layer. This layer is where
all requests are evaluated to find which scenarimeliongs which will be described in section 3.3.2.
After finding operation command (from now on therd/i@Command is used for scenario), a request
operation chain is constructed as stated in cordigan files and execution continues with operation

layer.
3. Operation Layer:

Operation Layer is a core part of the whole apfiicasecurity layer; it is where all requests are
evaluated and managed. As will be described in sestion, various operations can be registered to
all served contexts and can be sequentially exddatéorm an operation chain. These operations vary
from context resolving, authentication and authadion to session management, request and content
filtering. SessionHolder object, which is generafean request listener layer, is the connectiompoi
of all these operations. An operation can add, fyaxti remove attributes and their values for furthe
use. Operations can break the chain by raisingptixees if any expected event or state is reached. F
example, authorization, session management opesatian raise exception if any defined security
rule is violated. Operations can connect to CSAAS ask for authorization or validate application
security policies whenever needed. At some pointhan execution of operations there must be a
request dispatcher operation, which makes a reduelsackend web applications according to the
current state of SessionHolder object, the respanstored again in SessionHolder and execution of

operations continues.

Security officer can manage these operations aouprtb the security needs of backend web
application. Therefore if any web application ol grath within a web application does not require
any security mechanism, for example just consistihgnages belonging to the web application, the

operation chain will only contain request dispatabgeration.

67

4. Request Dispatcher Layer:

Request dispatcher layer is in fact, a specialige€ération that sits in the middle of the operation
chain. But since it is the boundary operation betwapplication security layer and posterior web
application, it can be regarded as a layer. Reglisgatcher layer has two different implementatjons
as request listener layer, one depends on HTTPCoemp® libraries and the other uses Java built-in
HTTP connection libraries. Request dispatcher nethaindles with HTTP tunneling, requesting the
original page from backend web application. Thaitiebf HTTP tunneling concept will be given in
section 3.3.5.

The sequence diagram of executing a client reqgisegliven infigure 17 Client requests are
intercepted by Security Layer and depending on émgntation (HTTPComponent based or Servlet
based) though a suitable interface (SessionHandleBessionHolder object is created and passed to
OperationsManager object. OperationsManager findstwcommand to be executed according to the
request and executes corresponding operations.cha@m one of the operations a request that
mimics the original client request is sent to posteweb applications and the response is captured.
The response is then processed through the opeidia@n again. After the whole operation chain is
executed, SessionHolder object is passed to Sgcayier and as in the case of interception the

response is sent back to client though configuessi®nHandler interface.

68

ClientBrowser SecurityLayer SessionHandler OperationsManager Posteior Web Application

|
1
|
requestintercepted !

|
|
|
|
|
|
|
|
|
|
|
|
|
N

executeCommand(sessionHolder)

T |
| |
| |
| |
| |
| |
| |
| |
i i
handleRequest() ! !
| |
| |
1 1
sessionHolder | 1
K ——mmmm 1 1
: : :
} | |
executeSession(SessionHolder) | |
| | |
T |
| |
i i
! executeCommqnd(sessionHoIder)
i sendRequest i
|
| |
1 1
1 1 getResponse
| P
|
|
|
|
|
|
|
|
|
|
|
|

|
sessionHolder
I

|
|
|
|
|
a
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 17 Sequence Diagram of Request Execution

3.3.2 Request/Response Operation Chain

Operation chain is controlled by a singleton cla®@perationsManager, which is initialized as

application security layer's startup and controe@xion of application security layer. After the

69

request listener layer intercepts a request, itateee and passes a SessionHolder object to
OperationsManager, which holds all information tedato request and response. The attributes of

SessionHolder object are;

int direction: Responsible for holding execution direction. ki set from SessionHandler class to
FROM_BROWSER after redirection RedirectOperati@ssisets to TO_ BROWSER.

String method: Responsible for holding HTTP Method. For exampBET, POST, SET from
SessionHandler class.

List<NameValuePair> headerMap: Responsible for holding HTTP Headers. Initiallyt $eom

SessionHandler class and then changed by Redirec@mn class.

List<NameValuePair> requestParameters:Responsible for holding Request Parameters. llyitia

set from SessionHandler class and then changeadyeRtOperation class.

String content: Responsible for holding String Content of HTTP pase. Set from

RedirectOperation class, after getting response fiedirection used for text/html content type.

byte[] binaryContent: Responsible for holding binary Content of HTTP passe. Set from
RedirectOperation class after getting response fesdirection used for binary content type.

String contentType: Responsible for holding content type of HTTP remsyp set from

RedirectOperation class.

String contentEncoding: Responsible for holding content encoding of HTE3ponse, Set from

RedirectOperation class.

String targetURI: Responsible for holding whole target URI of theuest, for example /web-

apps/content/index.jsp?parameterl=1¶meteratdr@en SessionHandler class.

String targetURIBase: Responsible for holding targetURI without paramegtart of the request, for

example previous URI becomes /web-apps/contentlijgge Set from SessionHandler class.

int statusCode: Responsible for holding status code of HTTP respoet from RedirectOperation

class after redirection.

IRequestContext requestContext: Holds the context information about the request Bom

ContextResolveOperation.
Token token: Holds the encrypted token, which depends on essian.

String requestIP: Hold the IP information of the request.

70

UserSession userSessiodpplication security layer fetches user sessidarmation such as userid,

sequence number of the request, timestamp fronopppte provider (LDAP or database).

UserAccount userAccount: Holds user account information retrieved from bate such as last

login details, successful and unsuccessful lodwrination.

SessionHolder object exists during execution afquest and ends after a response is sent back to th

client. All operations in operation chain can ascbe attributes of this object and modify thencalh

be regarded as a communication interface for epehation.

As can be seen in class diagram giverfignre 18 OperationsManager object consists of a list of

commands and pre/post operations. Pre operatiensxacuted before any command is executed and

post operations are executed after successful e@aaf a command.

OperationsManager

+registerPreOperation()
+registerPostOperation()
+addCommand()
+executeSession()

* -commandList

«interface»
I0OperationCommand

+isCommandResponsible()
+executeCommand()
+registerOperation()

B

-pre/postOperationList

«interface»
IEyeksOperationChainElement

+executeOperation()

-operationList

AbstractOperationComman

+registerOperation()

AN

ChainOperations
ChainOperations

+executeCommand()
LoginCommand PageRequestCommand LogoutCommand

+isCommandResponsible()

+isCommandResponsible()

+isCommandResponsible()

Figure 18 Operation Class Diagram

71

ChainOperations

3.3.2.1 Commands

System scenarios (Login, PageRequest, and Logaet)dafined using Command classes that
implement IOperationCommand and extend Abstract@merCommand. The system is designed
using Chain of Responsibility pattern so that eaCflommand class must implement
isCommandResponsible method that returns a Boolelr that defines responsibility. Whenever a
request arrives, OperationsManager calls isCommesidhsible method of every command class
that is registered and finds which command to lexeted. Every command has registered operations

that must be executed to fulfill the scenario.

isCommandResponsible method, has a parameter Bdsditer so Command class can define their
responsibilities according to every attribute akguest (such as HTTP method type, the names and
values of headers or request parameter, requestddRient type, etc) The system has 3 predefined
commands that take responsibility according to esgWRI; LoginCommand checks if a request
target a specific login URL that can be defined ioonfiguration file and LoginCommand checks for
a specific logout URL that also defined in configtion file. PageRequest takes responsibility if a

targeted URI is valid.

The system can be extended by implementing IOmer@dmmand interface and adding to class path.
For example FileUploadCommand class can be defitmedvelcome uploaded files that takes
responsibility if content type is “application/otream” or “multipart/form-data” where HTTP
method is a POST.

3.3.2.2 Operations

The operations of Application Security Layer mustpiement IEyeksOperationChainElement
interface by implementing executeOperation metlnad takes SessionHolder object. Operations can
do any operations like modifying session holdeugalsuch as request parameters, headers, response
content, checking access and authorization thougAAS, adding logs or updating user account.
Operations can be registered directly to Operalilamager as pre or post operations that are executed
regardless of responsible command or registerétbtomand classes that define possible operations
of commands. Any operation can break executionnchmgi raising an Exception that extends
EyeksExceptionBase class. Like command classessybstem can be extended by adding new

operation classes that implements IOperationComrirdadace and added to class path.
3.3.2.3 Request Execution Collaboration

A more detailed description of EYEKS request exieciitwhich was given in section 3.3.1, is shown
in figure 19

72

1. The execution starts if a request is intercepte8dxqurity Layer. Security layer passes the request
object (for servlet based implementation the reguelject is HttpServletRequest and for
HTTPComponent based implementation, it is HttpReguwbject.) to SessionHandler object (for
servlet based implementation session handler objisct ServletSessionHandler and for
HTTPComponent based implementation, it is HttpCongmisSessionHandler) by calling

handleRequest method. SessionHandler returns &ekdaer object and Security Layer.

2. Security Layer passes SessionHolder object to GipasManager by calling executeSession

method.

3. OperationsManager fetches pre operations from pusly registered pre operations and
sequentially executes them by calling executeOjeranethod of each object. SessionHolder is

passed as an argument.

4. One of the mandatory pre operations is ContextRe€ieration. ContextResolveOperation
passes targeted URI (from SessionHolder) to CoR&salver object, demand to which context a
request targeted. Context name is returned aggstram resolvePath method of ContextResolver

object then context name is inserted in Sessiorgtaltject to be used in the future.

5. After all pre operation execution are finished, @pensManager tries to find which command is
responsible for handling the coming request by irggllisCommandResponsible method of

OperationCommand objects.

6. After finding responsible command, OperationsMamnagells executeCommand method of

responsible OperationCommand objects.

7. Responsible OperationCommand object fetches regibteperations and executes them

sequentially by calling executeOperation methodawth operation.

8. OperationsManager fetches pre operations from pusly registered pre operations and

sequentially executes them by calling executeOeratethod of each object.

9. SessionHolder object is passed to SessionHoldecbby calling handleResponse

73

SecurityLayer

| ~——1: handleRequest

9: handleResponse
2: executeSession «in_ter'face»
ISessionHandler

+handleRequest()
+handleResponse()

OperationsManager

6: executeCommand

+registerPreOperation()
+registerPostOperation()
+addCommand()
+executeSession()

5: isCommandResponsible

«interface»
IOperationCommand
+isCommandResponsible()
+executeCommand)()
+registerOperation()

8: executePostOperations

3: executePreOperations

7: executeOperations

«interface»
|IEyeksOperationChainElement

+executeOperation()

T

ContextResolveOperation

+executeOperation()

4: resolvePath

ContextResolver

Figure 19 Collaboration Diagram of Request Executio

After execution of all necessary operations on rigguest, SessionHandler object creates response
object (for servlet based implementation the regualsjiect is HttpServietResponse and for

HTTPComponent based implementation, it is HttpRaspabject.) and send it to client as a response
of the request.

74

3.3.2.4 Exception Handling

Any operation (object that implements IEyeksOperaiihainElement) could break the execution
chain by raising an exception that extends Eyekspt@nBase. EYEKS has 6 types of implemented
exceptions that extend EyeksExceptionBase;

Eyeks Authentication Exception: captures authentication exception that can beedaifom
operations that are responsible for the authemditat mechanism such as
AuthenticationCheckOperation, UserLoginOperationsutcessful login tries, tries to access locked
accounts can lead to authentication exception. @nother hand, any exception, raised within the
authentication mechanism, such as failure to conicate with external authentication system
(CSAAS) is catch and converted to Eyeks authembisaxception.

Eyeks Authorization Exception: captures authorization exceptions, for examplenaheequest fails
to satisfy enterprise access policies or applicatiecurity policies. Any communication error with
CSAAS or any unexpected errors coming from CSAAScaptured and converted to Eyeks

authorization exception.

Eyeks Context Resolver Exceptioncaptures any exception during context resolve ajmar. If any
request is failed to be mapped any defined con@omtext Resolver object raises this exception. The

responsible operation, ContextResolveOperation doesatch this exception and directly throws it.

Eyeks Page Request Exceptionlf an exception occurs during fetching a page flomekend web
applications or any error occurs during HTTP tuimgl Eyeks Page Request exception is generated
and raised.

Eyeks Database ExceptionAny exception coming from database server. (Sicltannection or
SQL errors) is captured and converted to Eyeks & exception. After conversion, the responsible

operation raises it to break operation chain.

Eyeks Session Exceptiontf a request comes from unauthenticated user osef session is invalid

(possibly time out) or replay attack is detectegels Session exceptions are generated and thrown.

Security Layer captures any exceptions that arsedaifrom operation chain and passes it to
EyeksExceptionDispatcher object, which is a simglebbject add responsible for generating
appropriate error messages. Multi-language errasages are stored in a configuration files, called
message.properties EyeksExceptionDispatcher otrjestto map mnemonic of exceptions messages

to original error messages.

The templates of error pages are stored with EYER®or pages can be designed independently;
however the place to show the message must be ethbelith <MESSAGE> tag.

75

EyeksExceptionDispatcher search appropriate emage gemplate for this tag and replace it with the

original error message.

For example, AuthenticationCheckOperation, whictaisheck for authentication request added to
LoginCommand, raises EyeksAuthenticationExceptiith & message UNSUCCESS. Security Layer
captures this exception and passes it to EyeksHrofpspatcher object. This object loads
appropriate configuration file according to requiestyuage (by checking Accept-Language header)
and maps UNSUCCESS to error message, which is [ithvaser name or password.”

tr.com.eyeks.exceptions.EyeksAuthenticationExceptitNSUCCESS, Unsuccessful login try.
3.3.3 Context Mapping

The initial step of nearly all web application aka is to reveal underlying web application stroetu

Hence, web applications must prevent informaticakdgie about the structure of the application. A
web context is basically a directory or directomusture that is published on the web. Like reverse
proxies, EYEKS allows mappings of different congetd virtual structure of application. So from the
client’s point of view, whole application seemsbi served from only one web context, but since it i

just virtual, the directory information of real webntext will be safe.

An example of typical context mapping is givenfigure 2Q Assume that real web application is
served from two different servers, where one ispplication server that serves web application and
the other is a web server that just serves statib wontent. The context deployed on application
server can be labeled as Context 1 and the codégtbyed on web server is labeled as Context 2. As
mentioned in section 3.2, to use different kindsregource mapping strategy in EYEKS, a sub-
directory consists of “shoppingChart” and “custotngirectories, is labeled as a different context,

called Context 3.

76

EYEKS

i@

fimages

]

/library

i

Idownloads |-

Iproducts }.

i

e

/shopping

/myportal

| linternal /
L ”;’ : ”,r' Y, |

4 Application SQNér \ 4 Web Server’/" AR
Context 1 \ Context2/

/application [static

flogin 14

\,\/imag/es

)

/portal

(Co/n’"rextl 3/ w

/éhoppingQHért

. % . J

Figure 20 Example Context Mapping

/downloads

As can be seen in the figure, original directodar be virtually mapped (context2’s /static/prodoct
Eyeks’s /product) or renamed (contextl's /appla@fortal/ customer to Eyeks’'s /shopping/my
portal).

77

Therefore, from client’s point of view, the wholeslvapplication consists of structure what is define
in EYEKS and there is no way to reveal real strectu

The context mappings are defined using two diffecemfiguration files;‘context.properties”holds
context definitions and their properties like theaene the context is deployed, on which port it ssrv

A possible context configuration for a given exaenisl below.

eyeks.contextl.name=contextl
eyeks.contextl.host=backhandserverl
eyeks.contextl.port=8080
eyeks.contextl.protocol=http
eyeks.contextl.welcomepage=/login/welcome.jsp

eyeks.context2.name=context2
eyeks.context2.host=backhandserver2
eyeks.context2.port=80
eyeks.context2.protocol=http

eyeks.context3.name=context3
eyeks.context3.host=backhandserverl
eyeks.context3.port=8080
eyeks.context3.protocol=http
eyeks.context3.basepath=/application/portal

As seen in the configuration file, a context camligohally have “welcomepage” and “basepath”
properties, where “welcomepage” refers to the eafion path if a web application requires
authentication. After successful login, EYEKS redis the request to this path. “basepath” property
can be used if a context is a sub-context of soifmer oeal context.

The mappings are defined fpath.properties” configuration file. This file has entities in arfioat

like “EyeksPath” => “context name”,
be.

realpath” . The configuration file for a given example will

. limages => context2, /static/images

. llibrary => context2, /static/library

. /[downloads => context2, /static/library/downlcad
. Iproducts => context2, /static/products

. Ishopping => context3, /shoppingChart

. Ishopping/myportal => context3, /customer

. Ishopping/login => contextl, /application/login

. linternal => context1, /interni

O~NO U WNPE

The mapping rule can overwrite previous rules,example & rule is overwritten by the™and 7"
rules. Any request target in a location under /g will be mapped by"5rule, but request target
under /shopping/myportal will be mapped BYya#hd under /shopping/login will be mapped Byrile.
Therefore, for example /shopping/Chart/additemT@®igChart.do will be mapped by ruld o
context3 and /shoppingChart/Chart/additemToShoyiptiagt.do; /shopping/login/Login.do will be

78

mapped by rule %7 to contextl and /application/login/Login.do; /spam/myportal/customerPortal
IviewCustomer.jsp will be mapped by ruld® @ context 3 and /customer/customerPortal/view
Customer.jsp. The details of redirection operatidhbe covered in section 3.3.5.

ContextResolver object is responsible for contexapping and path conversion operations.
ContextResolver has one instance of ContextBuiidel one instance of PathBuilder objects; that
manages context operations and path operationeatsgy. Init method of ContextResolver

initialize configuration files (as described abow)d passes file handlers to corresponding build
methods of relevant objects. Build methods of kadifects, read configuration files and load contexts
and path mappings. On the other hand, ContextBuddevides necessary methods to manipulate the

mappings dynamically. Corresponding class diagsagiven infigure 21

0.1 ContextResolver
+init() 0.1
+addContext()
1 +getContext() 1
+addPath()
- +resolvePath() PathBuilder
ContextBuilder +resolveReversePath()
- +addPath()
iZSZ!dc(lmexto +getPath()
+getContext() +addReversePath()
9 I +getReversePath()
! 1
. AbstractPathNode
-AbstractPathNode parent
«interface» -Lis?<AbstractPath Node> childList
IRequestContext -String pathName
’ ReversePathNode
PathNode List<Pathinfo> pathinfoList
BasicContext SubContext -Pathinfo pathinfo | | get<String> allContextListUnderThisNode

[

1 1
1 1

PathInfo

-String contextName
-String path

Figure 21 Context Resolver Class Diagram

79

PathBuilder object holds two different trees fottpeesolution, one of them consisting of PathNode
objects and the other one consist of ReversePathibibcts. Each PathNode object has Pathinfo
object, which refers to which context it, belongs and what path is used to transform. A

corresponding path tree for given example is givelow.

{ /)
N

A\ 4 A 4 A Y

A4 A4 A
images library downloads shopping products internal
Context2 Context2 Context2 Context3 Context2 Context1
/static/images) \ /static/library)\ /static/downloads / \ /shoppingChart) \ /static/products /internal

A
myportal login
Context3 Context1

[customer /application/login

Figure 22 Example Context Mapping Tree

The resolve path algorithm, tries to find most éagimatch of targeting request path. For exampge if
request targets a path /shopping/myportal/custoona&Pview Customer.jsp, firstly root node is
traversed, then shopping node and finally mypartale. The path to transform which is /customer is
fetched on this node and the remaining part ofetapgth which is /customerPortal/viewCustomer.jsp
is added to this path, so the translated pathbeilfcustomer/customerPortal/view Customer.jsp and
context is found on myportal node as Context3. @e bther hand if a request targets
/shopping/Chart/additemToShoppingChart.do path. $earch will be ended on shopping node,
/shoppingChart is fetched and added to remaining th,pa which becomes
/shoppingChart/Chart/additemToShoppingChart.docamdext is found on this node as Context3.

After redirecting the request to backhand serveesolving reverse paths are also necessary,
especially if the application requires HTTP sesdiased on cookies. However resolving reverse path
is more complex, Eyeks’s paths must be unique aouintual nodes can be mapped to only one real
path. However, different contexts can most probaidywe the same directory name, so going

backwards is problematic. To resolve this namelmisfwe can use context name which is resolved

80

already during forward pass. To give more spedafiample that reflects reverse path resolution,

consider the example below;

1. /pathl => context0, /web-apps/content

2. /pathl/path2 => context2, /content

3. Ipathl/path2/path3 => contextl, /web-apps
4. [pathl/path2/path4 => context3, /content

Different from PathNode, for reserve path resolut®eservePathNode’s are used for constructing
tree. ReservePathNode has list of Pathinfo objgbeye each of them holds preceding context names
and paths. For the example above, the correspotidiagvill be:

web-apps content
(context1,/path1/path2/path3) (context2,/path1/path2)
(contextO,path1) (context3,/path1/path2/path4)

A4
content
(contextO,path1)

Figure 23 Reverse Context Mapping Tree

So web-apps node holds (contextl, /path/path/pa®aB)info for &' rule and also holds preceding
node path information (context0, /pathl) becaustheff' rule. On content node, there is a naming
conflict, so it holds (contextt2, /pathl/path2) B rule, and (context3, /pathl/path2/path4) f8r 4

rule.

So if a request targets /pathl/server/showStaigjr path. At the first step, forward path is tesd
to be /web-apps/content/server/showStatistics jsbcantext is contextO by applyind fule and after
redirection, we have (contextO, /web-apps/contentés/showStatistics.jsp) passed as parameter to

resolveReversePath method. The algorithm travensdsapps and then content node and finds

81

reverse path as pathl and append remaining p#meokserve path so that the full reverse path will

be /pathl/server/showStatistics.jsp.

ContextResolveOperationis a must and is one of the pre-operations of ESElgeration chain. It is
responsible for starting context resolve sequenbis operation gets client’s target request URirfro
SessionHolder object and starts context resolvingdliing “resolvePath” method of ContextResolver

object. The return values, context and forward piateet to SessionHolder object.

The reverse operation is done beaderReverseDirectionOperation which is one of the post
operations of EYEKS and is a mandatory operatidmaitkend applications use HTTP Session. This
operation’s responsibility is to track headers tlbatme back from backend applications after
redirection to find “Set-Cookie” header. This heattas “Path” property, reflecting which path a
session cookie must send back from client browséne server. Since we have used virtual paths in
client browser and HTTP Sessions are created frackdnd servers depending on real paths, these
real paths must be converted to virtual EYEKS pather retrieving “Path” value in header, this
operation calls resolveReversePath method of CtRésolver by passing context name and path.
The old “Path” value is replaced by return valuetto$ function, so that it will be inserted in “Set

Cookie” header.
3.3.4 Session Management

There are three typical session management teadsiiquookie based URL rewriting, hidden form

fields. EYEKS could allow backend applications teate and manage their HTTP Sessions only if all
operations in the operation chain preserve HTTRIdérsa Also to use cookie based HTTP sessions,
one of the post operations, HeaderReverseRedingypieration must also be added to operation
chain. URL rewriting is the most insecure way ohdliing sessions, so EYEKS rejects any session
carried out by URL rewriting. In order to use hidderm field based session handling, session

parameter must be defined to CSAAS as a safe p&aafoe all possible resource-operation pairs.

Application security layer introduces EYEKS Sessidmere the method not only considers security
but also considers distribution execution so atikemd web application can share the same session
which is not possible using HTTP Session. Sessianagement is handled using encrypted token,
which holds user credentials such as user id amaest sequence number to identify the user. Using
sequence information avoids session hijacking senef a malicious user hijacks this encrypted
token, sending it back to the application secuager will not work. This token is inserted in eyer
response to user request and it is granted tkall send back with the next user request. As inTAT
Sessions, EYEKS Session can be handled by tworeliffenethods, cookie based and hidden form
field. Cookie based EYEKS Session management is dgrHeaderManagedTokenGetOperation and
HeaderManagedTokenPutOperation operations. Therefbrcookie based mechanism is chosen,

HeaderManagedTokenGetOperation must be insertestebeédirection operation, where it checks

82

request headers for the Cookie calledEKSTOKEN, decrypt it, and convert it to Token object and
put this object to SessionHolder. HeaderManagedi®ktOperation must be inserted to the operation
chain after redirection operation, where it cheBlessionHolder object for Token object, encrypt it

and put the encrypted token to response headessttiyg the cooki€ YEKSTOKEN .

User session consist of userid, timestamp, a segueamber, login IP and can be stored either in
database or LDAP where userid is a primary keyi#f stored in database or DN (distinguished name)
if stored in LDAP. Userid refers to the user thagih to the system, timestamp holds the timestainp o

the last request and sequence number refers taghsequence number of the user’s request.

Token object consist of userid, timestamp and auesece number and is initially created by

UserLoginOperation which is one of the login opers that can be added to the operation chain.
Userid refers to the user id that login to the eysttimestamp holds the timestamp of the token
creation and sequence number refers to the sequemnaeer of the user’'s request. After a successful
login, UserLoginOperation creates token, sets ssmpi@aumber to 1 and inserts to SessionHolder as

well as creating a session record either in databatDAP.

If added to the operation chain, it is SessionChepkration that checks for the coming token.
SessionCheck operation makes a request to CSAA8vEy client request with resource as context
name and operation #AGE_REQUEST so thatthe validity of token can be controlled by CSAAS.
SessionCheck operation also passes current timpstéimestamp of the token, login IP, current
request IP, sequence coming from the token andesegufrom the database. System administrator
can assign different kinds of policies on this <@xtName, PAGE_REQUEST> pair that controls
Eyeks session. By default session policy contratether login IP is equal to current request IP,
sequence of the token is equal to sequence frordatabase, current timestamp is both bigger then

timestamp of the token and within the time-out peri

The collaboration of creating user session durisgruogin operation and checking user session

during the page request is given in following figsir

83

e
1 createsToken —» esé\o(\ EveksDBManager 5. createTokenHeader —»

e
2©
@
UserLoainO i HeaderManagedTokenPutOperation
serLoginOperation
%,
S,
@,7}

SessionHolder

Figure 24 The Collaboration of Creating User Sessio

CSAASInterface

EyeksDBManager

N

2. extractSessionToken —» 9. createTokenHeader —»

HeaderManagedTokenGetOperation HeaderManagedTokenPutOperation

SessionHolder

Figure 25 The Collaboration of Page Request

84

Before user session is created, users must loglyeks. In fact, UserLoginOperation is the last
operation in the login sequence. Users must beeatitated and login policies like checking
maximum login tries is exceeded or not and chechiltmved login IP must be satisfied before any

user session to be done.

In order to use Eyeks login and session, a usesuatanust be created. Like Eyeks session, user
account can be stored either in a database or #PLIn either way, user account consists of user id
status code referring account status (ACTIVE_ACCQAQUNOCK, LOCKED_ PASSWORD and
DISABLED), last successful login time, last sucdekkgin IP, last fail login time; last fail logifP,

current login try number, last password change &me description fields.

Two different Eyeks operations have been implenteriteat can be added to login sequence.
PreAuthenticationCheckOperation retrieves useriichviis a request parameter for login operation,
using userid fetches user account and user seaijeonts from database or LDAP, using these values
make a request to CSAAS with resource as contemtenaperation as LOGIN_REQUEST and
security attributes as user account attributes Itiggn 1P, account status code, last successfuhlog
time, last successful login IP, last fail login &mast fail login IP and current login try numbér.
CSAAS sends back access_allowed value, this oparainds successfully; on the other hand if
CSAAS’s response is access_not_allowed, PreAutteithCheckOperation creates an Eyeks

Authentication Exception with REASON message confingn CSAAS's result list.

After pre authentication policies are satisfiedwrawthentication and login policies must be sahfi
AuthenticationCheckOperation is responsible forhantication check and asks CSAAS for access
decision on login operation. This operation firsthetrieves USERID and PASSWORD request
parameters from session holder object and asks GSfaAauthentication. After CSAAS sends back
the authentication answer (is authenticated or, tloi§ operation makes another request to CSAAS to
check login policies with resource as context namperation as LOGIN with attributes authentication
result and login try number. If user’s login requsstisfies all policies attached to LOGIN openatio
on requested context, corresponding updates witldre on user account and user session objects in
database or LDAP, otherwise an Eyeks AuthenticaBeaoeption will be thrown with REASON

message coming from CSAAS'’s result list.

Using these two operations, Login behavior of EYEE& be controlled by adding any policy
<Context name, LOGIN_REQUEST> and <Context nameGLN>> pairs. System administrator can
force any login policy to be satisfied by each togequest to fulfill enterprise application secyrit
needs.

3.3.5 Request Proxying

As mentioned before, application security laydocated in DMZ and no direct connection is allowed

from client browser to backend servers as mentionedection 3.3.1. In order to achieve this,

85

application security layer acts as a proxy thagricgpts the client request, while keeping themealiv
opens a hew HTTP connection to backend servergdyying the request, getting the response and

dispatching it to original request as response.

Session Handler classes are responsible for captthie request and creating a session holder object
for each request that holds request attributes ridcpiest headers, parameters, content. Within the
operation chain there must a redirection operatiiat takes request attributes from session holder
object, creates a HTTP connection to backend seied sets the response again to session holder
object. After a successful execution of the whoperation chain, Session Handler classes take
responsibility again, receiving the response irsisesholder and passing it to the original conrecti

as response.

As in the case of Session Handler classes, theretven different implementations of request
redirecting (proxying) operation depending on iligtion of the application security layer. If
installation was chosen as stand alone server dameion HTTPComponents library, then request
redirecting operation was HTTPComponentsRedireat@jmsn and otherwise (servlet base
implementation deployed on third party applicatsmmver) HTTPServletRedirectOperation. In either
case, request headers, request parameters angtrewpibod (if it is a POST request, request coptent
is retrieved from session holder and creates a HTd®hection to a server that was previously
identified before during context mapping operat{BB8.3). After a response is received, response is

parsed into status code, headers, content typeandnt and added into session holder object.
3.4 Organization-Wide Policy Execution

During execution of the operation chain, Eyeks attesCSAAS to decide on the login behavior,
validating domain specific enterprise rules and ckimgy for known types of web application
vulnerabilities. If the request does not satisfe af these policies, Eyeks breaks the operatiomcha

and responds to the client with an appropriaterenessage.

To apply some predefined policies organization widlgeks introduces some predefined operations
and resources that can be secured by applyingigeliefined by Enterprise access and security.rules
System administrators can extend these rules biypgaew policies to all of these operation-resource

pairs for applying new rules.

Login Policies: control login request to backend application. rif @pplication requires user login,
System administrators should define LOGIN_REQUESIO &OGIN operations on the context
resource and should attach policies to satisfyrprise login rules. For example, if the enterpriges
require that the users coming from some predefioedtion should login to the system, a policy like
IPCheckPolicy that checks the IP’s of user whethey are coming from a safe location must be
defined and attach this policy should be attaclhed[€ontext Name], LOGIN> pair. Or if login to a

web application is only allowed during a specifime interval (e.g.: working hours), a policy,

86

LoginTimeCheckPolicy, can be added to < [Contextmdp LOGIN_REQUEST> pair and system
administrator should check the system time.

< [Context Name], LOGIN_REQUESTyair is called before any login operation is done.
PreAuthenticationCheckOperation is the operatiogpoasible for constructing and sending the
request to CSAAS. Login IP, account status cod#,daccessful login time, last successful login IP,
last fail login time, last fail login IP and thercent number of total login trials are passed tAABS

to be used by attached policies. As an examplesetipredefined policies are attached to this
operation-request pair (StatusPolicy, ReLoginPé&taity and MultipleLoginPolicy). All of these
policies are implemented as java policy evaluatut are added to CSAAS classpath as a jar file.
StatusPolicy implements status check, if the statighe user account is open account, then
StatusPolicy returns aaccess_allowedlecision. If the user account is locked or disapleput the
reason message to result list and ret@osess_not_allowedReLoginPeriodPolicy checks relogin
time period if the user’s account is locked for tiplé unsuccessful login tries. It checks the actou
status, if it is locked, and then checks last Ifagin time. If the user last unsuccessful logialtivas

30 minutes ago, it returns access_allowed othemeisensaccess_not_allowed/ultipleLoginPolicy
decides on whether multiple logins are allowed arby checking session parameters, if a user has an
active session it denies new login try and retuanscess_not_allowed otherwise returns
access_allowed These three policies are combined with FirstGs@prhenAnd decision
combinatory, that makes the rule (StatusPolicy @RdginPeriodPolicy) AND MultipleLoginPolicy)
means that the user can login to the system althtlug account is locked because of unsuccessful
login tries and if the user waits for re-login tirperiod but in either cases multiple login triesreve
denied.

< [Context Name], LOGIN>pair is called after checks ean[Context Name], LOGIN_REQUEST>
pair are done. AuthenticationCheckOperation ig@sponsible operation for constructing and sending
the request to CSAAS. Authentication status andbermof login trials are passed to CSAAS to be
used by attached policies. For instance, two pdieire attached to this pair (LoginPolicy and RBAC
policy). Login policy implements the java policyauator and checks whether authentication result is
successful or not. If successful it returns acaakswved, otherwise checks the number of login grial
whether it is smaller than the allowed maximum wassgsful login number or not. If it is smaller, it
puts the reason message as UNSUCCESS to resubbthstrwise puts JUST_LOCKED. The other
policy was RBAC policy, which executes RBAC ruledachecks user’s organization hierarchy if the

user has a right to login to the application, defitny context name.

Page Request Policiescontrols all page requests to backhand applicatibBgeks defines three page
request operations; SessionCheckOperation, DingctwckOperation and PageCheckOperation that
consults CSAAS for access decision on < [Contexndla PAGE_REQUEST>, < [Context Name],
[Directory Name]>, < [Directory Name], [Page Namepperation-resource pairs respectively.

Security administrators can attach security or rpnige access control policies on these operation-

87

resource pairs to control application behavior. sehéhree pairs form a hierarchy of application
resources where any policy attached to < [Contethd], PAGE_REQUEST> pair will be executed
organization widely, < [Context Name], [Directoryahe]> controls directory specific policies and <

[Directory Name], [Page Name]> pair controls pagecific policies with in specific directory.

SessionCheckOperation, as described in sectiod,3s3mainly responsible to decide the validity of
user session. However it can also be used for atéigl organization wide policies like security
policies targeting web application attacks. It @bes on a generic operation PAGE_REQUEST under
context name that enables for every request, EYBKIS CSAAS for access decision. So if any
policy is attached to this operation-resource pais guaranteed that it will be executed orgatiiza

wide.

DirectoryCheckOperation can be mainly used agalitettory traversal attacks; however it can also
be used for applying directory specific enterpeseess rules. If added to the operation chain, EYEK
will ask CSAAS for access decision giving targetediory as an operation and context name as
resource. This enables if the enterprise applinatguires organization hierarchy for access cgntro

RBAC policy to be assigned on this operation-resewhain.

PageCheckOperation is used for executing accessotgulicies specific to a page. If added to
operation chain, EYEKS will ask CSAAS for accessisien giving target page as an operation and
target directory as resource. DirectoryCheckOpenatind PageCheckOperation can be executed
using open-world or closed-world assumption. Ifseld-world assumption is chosen, then every
possible directory and page must be defined agparaton and every directory must also be defined
as a resource. On the other hand every possibleatiperesource mapping must be defined as
permission to CSAAS. So for example, if a web aggtion has M directories and for each directory it
has N possible pages, then there must be M resguveeN operations, and MxN permissions to be
defined to CSAAS. For open-world assumption, itas needed to define every possible directory and
page mappings. It is enough to define directoties heed to extend organization-wide policies with
directory specific policies and if any page speciblicy is need; it is enough to define pages that

need exceptions.

These three operations and respective operatianies pairs are not intended to be used for
encapsulating enterprise (applications specifickas control rules, but for organization-wide sigur

policies like targeting web application attackssBway to encapsulate application specific access
control rules is mapping these policies to resaummeweb application as described in section 3.2,

Enterprise policy mapping.

Security Policies: As described in section 3.2.2, Eyeks providesramon way to verify application
security policies, targeting web application ats&acko be applied organization-widely, these padicie
must be attached to operation-resource pairs teagigen page request policies. For example if any
security policy is attached to < [Context Name],GEA REQUEST> pair, it is guaranteed that it will

88

be executed for every page request. So there ieead to be attached these security policies toyever

possible operation-resource pair.

As mentioned in section 2.4, Web application ségurulnerabilities, input validation is a crucial
concept to fight against application security vuilities. CSAAS provides a generic security pplic
SECURITY_PARAM_REG_EX_POLICY which enables all security attributes (request patars

of a request) will be matched with regular expm@ssithat validate the possible safe values. If this
policy added to any organization-wide operatioretese pairs (like PAGE_REQUEST operation) for

every request the parameters are checked againktrahof manipulation and attack.

In order to achieve this, CSAAS provides a Ul where security administrator can define every
allowed parameter with its expected regular exjpoest®r a web page. For example consider a web
page doeft.jsp as given in section 3.2.1 wheretdsefhas 2 operations VIEW and SUBMIT and
possible parameters of VIEW operation are USERID AGCOUNT_INFO; possible parameters of
SUBMIT operation are USERID, ACCOUNT_INFO, TRANS_ECINFO and TRANS_AMOUNT.
Security administrator can define possible valuasthese parameters using regular expressions.
When Eyeks consults CSAAS for PAGE_REQUEST opematio
SECURITY_PARAM_REG_EX_ POLICY evaluates the request by finding which operatiod a
resource pair is targeted to and finds possibleugsy parameters and corresponding regular
expression and evaluates these values using JagExRePl. If any parameter is found not to match
with regular expression, CSAAS returns access_Hotved and the request will be denied by
EYEKS. Like page request policies this policy cae executed using closed or open world
assumption, where in closed world assumption itnandatory to define all parameter with their
values if any other parameter is found in the retjube request will be denied. It is enough targef

only critical parameter if open-world assumptiorl®sen.

On the other hand, a security poliSGECURITY_INJECTION_POLICY , is written tocheck all
request parameters against injection type of adttitdt can be extended to cover all types of plessib
injection such as SQL, LDAP, XML injection and XS<hough it is not an effective
implementation of injection flaw detection mechamist is a demonstration of how security policies
targeting specific web application attack couldvmitten and executed by Eyeks. It uses blacklist
implementation, where it checks against forbiddeymords like special characters*ds» @! ; < >

and special keywords asript, select, crthat can be used for SQL, LDAP and XML injectidtaeks
and XSS.

3.5Integration with Application Servers

Application security layer can run as a stand-alseever or can integrate into any J2EE based
application servers like Tomcat or JBoss. StandaldHTTP server is implemented using

HTTPComponents library which is an open source eumtojsupported by Apache itself.

89

HttpComponents provides abstraction over HTTP maltand extendmva.netpackage by providing
an efficient, up-to-date, and feature-rich set ofnponents that can be used to assemble custom,
standards compliant client- and server-side HTTR/iges. HttpComponents project strives to

conform to the following specifications endorsedthy Internet Engineering Task Force (IETF):

RFC 1945 - Hypertext Transfer Protocol -- HTTP/1.0.

* RFC 2116 - Hypertext Transfer Protocol -- HTTP/1.1.

« RFC 2117 - HTTP Authentication: Basic and Digestéss Authentication.

* Netscape Cookie Draft - Persistent Client Statd.T(Pl cookies, preliminary specification)
e RFC 2109 - HTTP State Management Mechanism (HT TRies, version 1).

« RFC 2965 - HTTP State Management Mechanism (HTTékiés, version 1, second revision).

The application security layer stand-alone seragrlémentation does not provide a fully functional
web server like Apache, however, it implements dtitreaded and thread-safe HTTP proxy that
intercepts a HTTP request, handles the HTTP contation between clients and backhand servers.
HTTPComponent library does not implement a servat provides basic building blocks of

abstracting HTTP protocol.
The following are the components of the Apache core

HTTP_PROTOCOL: contains routines that directly communicates wthik client (through the
socket connection), following the HTTP protocoll data transfers to the client are done using this

component.

HTTP_MAIN: the component that startups the server and cartlagnmain server loop that waits for

and accepts connections. It is also in charge ofagiag timeouts.

HTTP_REQUEST: the component that handles the flow of the reqpestessing, dispatching

control to the modules in the appropriate ordeis &élso in charge with error handling.

HTTP_CORE: the component implementing the most basic funatipnthat can be used by all

other components.

90

HITF_MAIN

[server loop)
dispatch to
twifrom HTTP_PROTOCOL HTTP_REQUEST e
HTTE Client (tmplementation) (phases of request) toodules

HTTF_CORE | e !
- - . . 1 1
(rnedn funcionalityg | ' !

1
1 1
: Bodule :
1 1
ALLOC [!
UTILITIES (res. pools) ' Intgracts |
: e, 1

Figure 26 Components of Apache Core

On the other hand; HTTPComponents library doescoatain HTTP_MAIN component of Apache,
which implements the server and handles the coimmscbut fully implements HTTP_PROTOCOL
and HTTP_CORE components of Apache. So for thisishea basic implementation of a multi-
threaded server that handles coming HTTP connextoimplemented. In the figure, the components
of the implemented HTTP server depending on HTTP@orents library are shown. HTTP_MAIN
component is replaced by the application secuidtyel main process and HTTP_REQUEST s
replaced by the HTTP Request Handler, that is akevothread that dispatches the request and
response to HTTPComponentsSessionHandler objectitbates SessionHolder object and passes it

to OperationManager object to start the executicth@ operation chain (in section 3.3.2)

91

Application Security Layer

Main Process —
y v
HTTP Protocol
<:‘> (implemented by HTTP Request Handler <:‘>
To/From HTTPComponent) Dispatch to

HTTP Client Session

A [Handler

HTTP Core S
— (implemented by L
HTTPComponent)

Figure 27 Components of EYEKS Stand-Alone Server

The other implementation, which is Servlet based, lze integrated into any kind of J2EE application
server. Servlet based implementation is designedtggical web application and consists of only one
servlet, which is called as EyeksMainServlet thatstrbe mapped to the root context. A typical

web.xml for Eyeks as a web application is;

<web-app>

<display-name>
Eyeks Application Security Layer
</display-name>
<description>
Application Security Layer interface for Set\based implementations
</description>

<servlet>
<servlet-name>EyeksMainServlet</servlet-name>
<description>Main listener servlet</descripti>
<servlet-class>tr.com.eyeks.securitylayer EspdainServlet</servlet-class>
<init-param>
<param-name>configuration_folder</param-nam
<param-value>configuration</param-value>
</init-param>
</servlet>

<servlet-mapping>
<servlet-name>EyeksMainServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

</web-app>

92

EyeksMainServlet captures all client requests arnspadches the request and response to
EyeksServiletSessionHandler object, which createssi@®Holder object and passes it to
OperationManager object to start executing opematehain (in section 3.3.2) like in the

HTTPComponent case.

In either way, StartUpService'start method must be called at the time of start up. In
HTTPComponent based implementation, StartUpSergicglled in main method of SecurityLayer
before any listener and worker threads are irggiand in servlet based implementation it must be
called frominit method of EyeksMainServlet. StartUpService is oesfble for creating singleton
instances of Manager objects within an order. BgBervice starts with initializing
ConfigurationManager object which loads configuratfiles (which will be discusses in next section)
and continues with EyeksDBManager, ContextResolv€perationsManager and finally
EyeksExceptionDispatcher in order. These manageesi Itheir configurations according to

configuration files passing from ConfigurationMarég file streams to thebuild or init methods
3.6 Managing EYEKS

The operation and behavior of Eyeks can be cordidjtinrough five configuration files.

context.properties: As described in Context Mapping section 3.3.3 figoines contexts that will be
served by Eyeks. A number of context (N starts itltan be defined into Eyeks. This configuration

file has the format:

eyeks.contextN.namBame of the context, must match with path.propsréind operation properties.
eyeks.contextN.hodP address or DNS name of backhand server.

eyeks.contextN.portn which port, does the backend application ligten
eyeks.contextN.protocdlVhich protocol does backend application uses (H®THTTPS).

eyeks.contextN.welcomepade which path, Eyeks directs the login requestradiiccessful login

operation.
A typical context configuration example is giversiection 3.3.3.

session.properties:Configures the implementation method and storafamation of user account
and user session (which was described in secti@4.3.The configuration file holds two
configurations, one is user session and the otheser account. User session configuration statis w
usersession.classnam#ich refers the implementation method (LDAP otattase), where it take full
class name of the class that implemdhtserSessionDBManageénterface. Currently two different
user session storage is implemented, database APLBor database storage, the configuration file

format is as follows:

93

usersession.classnanteull class name of user session handler
usersession.database.drivéiull database driver name.
usersession.database.ubBatabase URL.
usersession.database.ustiser name to connect to database
usersession.database.passwdpadssword of database user.

An example configuration for MySQL database isa®vs;

usersession.classname = tr.com.eyeks.database.sapgbdssionJDBCManager
usersession.database.driver =org.gjt.mm.mysql.Drive
usersession.database.url = jdbc:mysql://localha308/csaas
usersession.database.user = csaas

usersession.database.password = ¢

User account configuration is the same as useiosesEhe only change is that usersession tag is
replaced with useraccount. So typical configurafmmMySQL database becomes;

useraccount.classname = tr.com.eyeks.database.lsapRécountJIDBCManager
useraccount.database.driver =org.gjt.mm.mysql.Drive
useraccount.database.url = jdbc:mysql://localho808/csaas
useraccount.database.user = csaas

useraccount.database.password = ¢t

The implementation methods of user account and ss&sion does not have to be the same. User
sessions can be stored into LDAP to improve perforce, where user account can be stored in
database.

message.propertiesholds the error messages of Eyeks, where an éandptraised from any of the
operation chain element to break the executionnchEtis file consists of three comma separated
values where the first value represents the classenof the exception, second name represents the
short name of error message and the third valuesepts the full message to be presented to the use
The exception handling mechanism was discussededtion 3.3.2.4 and a typical example for

authentication error messages is as follows:

tr.com.eyeks.exceptions.EyeksAuthenticationExecepidSUCCESS,Unsuccessful login try
tr.com.eyeks.exceptions.EyeksAuthenticationExecepiSABLED,Account has been disabled
tr.com.eyeks.exceptions.EyeksAuthenticationExeceptld T_LOCKED,Account has just locked
tr.com.eyeks.exceptions.EyeksAuthenticationExeepCK_PASSWORD,Account lock
because of password
tr.com.eyeks.exceptions.EyeksAuthenticationExcepidKNOWNCONTEXT,Path is not
allowed!

94

operation.properties: is used for constructing operation chain of Eyekhjch was described in
3.3.2. It has 3 configuration lists; pre-operatidist, post operations list, commands and their
operations list depending on contexts. As mentidne3l3.2, pre and post operations will be executed
regardless of the context where pre-operationgxeeuted before any command operation and post-
operations are executed after executing all comn@petations. The format of pre-operations in

configuration file is;

preOperations.N:The operation class that implements IEyeksOper@tain Element interface.
Where N starts with N and goes to a number of perations in order. The format of post-operations

is the same as pre-operations but the correspomainig postOperations.

After configuring pre and post operations, the cands and their operations must be configured.

Commands can be configured using fallowing syntax.

[NameForOperationList].contextN.nam€&ontext name for command class (Context names baust
defined previously in context.properties)

[NameForOperationList].contextN.commandClagsill name of the responsible command class that
implementdOperationCommand

And operations can be added to defined commandllasvt:

[NameForOperationList].contextN.operationList.Mull name of the operation class that implements
IEyeksOperationChainElement

So from these constructs, a number of responstdtamands can be defined for each context defined
previously and a number of operations can be athdb each command. A typical example of

operations.property file is given below.

95

preOperations.1=tr.com.eyeks.operations.chain.poat€xtResolveOperation
postOperations.1=tr.com.eyeks.operations.chain.plestderReverseRedirectionOperation

loginOperations.contextl.name=DynamicContext
loginOperations.contextl.commandClass=tr.com.ep@ksations.LoginCommand
loginOperations.contextl.operationList.1=tr.com ley@perations.chain.login.PreAuthenticatio
nCheckOperation

loginOperations.contextl.operationList.2=tr.com ley@perations.chain.login.AuthenticationCh
eckOperation

loginOperations.contextl.operationList.3=tr.com ley@perations.chain.login.UserLoginOperat
ion

loginOperations.contextl.operationList.4=tr.com ley@perations.chain.login.FetchWelcomePa
geOperation

loginOperations.contextl.operationList.5=tr.com ley@perations.chain.pagerequest.HttpComp
onentsRedirectOperation

loginOperations.contextl.operationList.6=tr.com ley@perations.chain.pagerequest.HeaderMa
nagedTokenPutOperation

pageRequestOperations.contextl.name=DynamicContext
pageRequestOperations.contextl.commandClass=treyaks.operations.PageRequestComman
d

pageRequestOperations.contextl.operationList. letneyeks.operations.chain.pagerequest.Pa
rameterListPrintOperation
pageRequestOperations.contextl.operationList.2etneyeks.operations.chain.pagerequest.He
aderManagedTokenGetOperation
pageRequestOperations.contextl.operationList.3etn.eyeks.operations.chain.pagerequest.Ses
sionCheckOperation
pageRequestOperations.contextl.operationList.4etne@yeks.operations.chain.pagerequest.Htt
pComponentsRedirectOperation
pageRequestOperations.contextl.operationList.5etn.@yeks.operations.chain.pagerequest.He
aderManagedTokenPutOperation

logoutOperations.contextl.name=DynamicContext
logoutOperations.contextl.commandClass=tr.com.egpksations.LogoutCommand
logoutOperations.contextl.operationList.1=tr.coneley.operations.chain.pagerequest.HeaderM
anagedTokenGetOperation
logoutOperations.contextl.operationList.2=tr.coneley.operations.chain.pagerequest.SessionC
heckOperation
logoutOperations.contextl.operationList.3=tr.coneley.operations.chain.logout.SessionDelete
Operation
logoutOperations.contextl.operationList.4=tr.coneley.operations.chain.logout.RedirectLogout
Operation

Where three commands (Login, PageRequest and Logoaitdefined for contexDynamicContext,
and for login command six, for page request comnimedand for logout o command four operations
were attached.

path.properties: As described in section 3.3.3, Context Mappings file holds mappings from real
paths of the contexts to Eyeks paths that will beved. The entities in this file has format like

“EyeksPath” => “context name”,"realpath”. The sample configuration was given in section3i

details.

96

3.7 Verification of Solution

Verifying a security product is a hard and mostbataly an impossible job, because the verification
method mainly depends on security testing. Secudsting, by itself, isn't a particularly good
measure of how secure an application is, becaese #re an infinite number of ways that an attacker
might be able to make to break an application, @&nn't simply possible to test all of the
possibilities. However, security testing has theque power to absolutely show that there is a

problem.

There are mainly three design considerations ofkEyencapsulating domain specific factors
(enterprise rules) to decide on access decisiqiy éipese rules organization-widely and transpdyent

and secure application from web application attacks

Encapsulating domain specific factors have beeoudged in 2.2.6 and 2.5.1 sections in detail. An
access control mechanism, depending on RAD spatidit, was shown to be one of the best ways to
take access decision mechanism out of applicaGomsidering this, CSAAS has been implemented
as the access control mechanism with some improvesnoeer RAD. Access decisions can easily be

deployed on CSAAS as shown in section 3.2.

To guarantee enterprise rules to be executed aafgon-widely, Eyeks has been implemented as a
separate layer which will be deployed in front afbnapplication and control all access to backhand
applications. Access decisions and security aseetexecuted transparently on this layer. No tlirec
connection is allowed from client to backhand amilons so that Eyeks will be an application

gateway, HTTP proxy for backhand applications.

Eyeks has also been designed to confront variobisapplication attacks and also can be extended for
future attacks. However, verifying this feature uiegs a well structured and organized security
testing. OWASP [9] has released a security tesgjngle, which can be used for a base-line to
construct security testing. In this section, saguest sets and what countermeasures, what aspects

have been considered to secure web applicatiohbevgresented.

In this thesis, OWASP Testing Guide 2007 V.2.0aséecandidate 1 document was used to generate
test sets and to verify the solution. The testgktlis document are given fable 11

Table 11 OWASP Testing List

Category Ref. Number Name

Information Gathering OWASP-1G-001 Application Fergrint

97

Table 11 (continued)

OWASP-1G-002 Application Discovery
OWASP-IG-003 Spidering and googling
OWASP-1G-004 Analysis of error code
OWASP-IG-005 SSL/TLS Testing
OWASP-1G-006 DB Listener Testing
OWASP-1G-007 File extensions handling
OWASP-IG-008 Old, backup and unrefered

files

Business logic testing

OWASP-BL-001

Testing for business logic

Authentication Testing

OWASP-AT-001

Default or guessable
account

OWASP-AT-002

Brute Force

OWASP-AT-003

Bypassing authentication
schema

OWASP-AT-004

Directory traversal/file
include

OWASP-AT-005

Vulnerable remember
password and pwd reset

OWASP-AT-006

Logout and Browser Cache
Management Testing

Session Management

OWASP-SM-001

Session Management
Schema

OWASP-SM-002

Session Token Manipulation

OWASP-SM-003

Exposed Session Variables

OWASP-SM-004

Session Riding

OWASP-SM-005

HTTP Exploit

OWASP-DV-001

Cross site scripting

OWASP-DV-002

HTTP Methods and XST

OWASP-DV-003 SQL Injection
OWASP-DV-004 Stored procedure injectior
OWASP-DV-005 ORM Injection
OWASP-DV-006 LDAP Injection
OWASP-DV-007 XML Injection
OWASP-DV-008 SSI Injection

OWASP-DV-009

XPath Injection

OWASP-DV-010

IMAP/SMTP Injection

OWASP-DV-011

Code Injection

OWASP-DV-012

OS Commanding

OWASP-DV-013

Buffer overflow

OWASP-DV-014

Incubated vulnerability

Denial of Service Testing

OWASP-DS-004

Writing User Provided Data
to Disk

OWASP-DS-005

Failure to Release
Resources

OWASP-DS-006

Storing too Much Data in
Session

OWASP-WS-001

XML Structural Testing

OWASP-WS-002

XML content-level Testing

OWASP-WS-003

HTTP GET
parameters/REST Testing

Web Services Testing

OWASP-WS-001

XML Structural Testing

OWASP-WS-002

XML content-level Testing

OWASP-WS-003

HTTP GET
parameters/REST Testing

98

Table 11 (continued)

OWASP-WS-004 Naughty SOAP attachments
OWASP-WS-005 Replay Testing
AJAX Testing OWASP-AJ-001 Testing AJAX

And counter measures to prevent these vulnerasilégre shown below.

Application Fingerprint: Eyeks has two different implementations, as adstdane server and as a
deployment on any J2EE servers. In either caseingddideApplicationHeaderOperation to the
operation chain will remove backhand web applicafiagerprints from headers and shuffle headers.
However if deployed on java application serversgdirprints of web server (the application server

that Eyeks deployed on.) are still one and carebealed.

Application Discovery: Due to Eyeks’s context mapping mechanism (se@&i8rB8). Eyeks can serve
more than one web application as if there is omg.oSo it hides backhand applications. If not

intentionally deployed on front hand servers, thiengo way to discover other applications.

Spidering and Googling:Eyeks’s layered structure (3.3.1) and context map8.3.3) are designed
to hide backhand web application from spidering gadgling. Google can only reveal virtual paths

and names not real paths.

Analysis of error code: Exception handling mechanism (3.3.2.4) has beeigued to confront
information disclosure by error codes. Any kindeaceptions (due to backhand applications and as

well as inner exception of Eyeks) have been caagttconverted to generic error page.
SSL/TLS Testing:No countermeasure to confront attacks about SSLAdsSbeen implemented.

DB Listener Testing: Eyeks has been designed only for web applicatgerl attacks. DB Listener

testing is out of scope.

File Extensions Handling: Although a virtual path concept has been impleetnho operation has
been implemented to hide file extensions. Howewemew operation that holds file extension
mappings and hides them from client can easilynhpglémented and due to Eyeks operation chain

mechanism (3.3.2), can easily be added to Eyeks.

Old, Backup and Unreferenced Files:Due to the layered structure (3.3.1), context nrapg3.3.3)
and page request policies were executed usingchseld assumption (3.4). There is no chance to

guess and fetch unreferenced files without intesatig mapped to Eyeks.

99

Testing for Business Logic:There is no way to validate if business logic wfagplication has errors.
However CSAAS enables to encapsulate business satmgis from application code and provides
more manageable and error-prone implementation.Byaks makes the request to validate enterprise

rules organization-widely.

Default or Guessable Account:Eyeks does not hold user account or user passwbaigever
implements the authentication mechanism using CSA@SAAS can use legacy system to access

user account. Therefore, guessable user accoungpplication responsibility.

Brute Force: As guessable accounts, the strength of user padsvi® application responsibility.

However, Eyeks provides an account locking mechamdsprevent brute force attacks (3.3.4).

Bypassing authentication schemaBy default, Eyeks uses form based authenticatioianfront
complex authentication mechanisms. All authenticatiequests are passed to CSAAS and it can be
used as a bridge between application legacy autla¢ion mechanism and Eyeks. Session tokens
(3.3.4) and login policies (3.4) both target autieation bypassing attacks.

Directory traversalffile include: Eyeks tackles directory traversal attacks by omgion-wide
policies (page request policy) (3.4) and contexppirag (3.3.3). All requests are catch by appligatio
security layer and passed to CSAAS to authorizeedoryCheckOperation and PageCheckOperation

try to eliminate directory traversal attacks.

Vulnerable remember password and pwd resetBrowser caching is automatically turned off by
Eyeks and on the other hand CSAAS has passwortlaedesecurity questions mechanism however

by default, there are not used.

Logout and Browser Cache Management TestingEyeks chain operations have logout command
(3.3.2.1) which manages logout operations of wiaylstem. Eyeks session and session tokens are

become invalid after logout operation.

Session Management Schem&yeks session is handled through Eyeks sessioagearent schema
(3.3.4). Three kinds of session management have inggdemented; Header based, cookie based and

within the content itself.

Session Token Manipulation: Session tokens hold user id, timestamp, sequeoogber of the
request and a random variable in a serialized faitim encryption. Non-predictable, non-generatable

tokens are used.

Exposed Session VariablesReusing session tokens is not allowed by EyekssiSe token has a

sequence number and a timestamp so that everyetpuest invalidates the previous token.

100

Session Riding:Form based authentication with carrying sessiorrokithin the content removes
the risk of session riding. Eyeks's ContentPutTd@keeration and ContentGetTokenOperation

handles carrying session token within the content.

HTTP Exploit: Eyeks’'s HeaderCheckOperation checks every headitieaequest and response for
invalid header values. Also by using HeaderCheck&jmn, it is also possible to define every

allowed header that is checked for each request.

Injection Attacks: (Cross site scripting, XST, SQL, stored proced@®@&M, LDAP, XML, SSI,
XPath, IMAP/SMTP, Code, Command injection) Mapp#ach resources (pages) to CSAAS (3.2),
provides a common way to validate each paramet@nsiginjection attacks. Using the closed world
assumption and page request policies (3.4), ibssiple to write regular expressions to validater us
inputs. On the other hand a common injection chpokcy has been written and if added to
organization-wide resource-operations pairs (3&very request is checked against injection
vulnerabilities using black-list of known attackcters. It is also possible to implement specialized

policies against each injection attack and easitled to CSAAS as organization-wide policy.

Locking Customer Accounts: Eyeks’s session mechanism has a temporary logkieghanism that

can be controlled by session operation and pol{@es4).

User Specified Object Allocation: Eyeks has nothing to do with this vulnerability.id each web

application responsibility to manage object allamat

User Input as a Loop Counter: Eyeks has nothing to do with this vulnerability.igt each web

application responsibility to manage applicatiogi¢o

Writing User Provided Data to Disk: Eyeks has nothing to do with this vulnerabilityidteach web
application responsibility to manage disk operation

Failure to Release ResourcesEyeks has nothing to do with this vulnerability. it each web

application responsibility to manage releasing ueses.

Storing too Much Data in SessionEyeks has nothing to do with this vulnerabilityidteach web

application responsibility to manage session data.
Web Services TestingEyeks does not support web services.

AJAX Testing: Eyeks does not support AJAX.

101

CHAPTER 4

EXPERIMENTAL STUDY

EYEKS can be evaluated using four aspects; perfocmecapability of encapsulating access policies,
capability of eliminating web attacks. In this tleetvo experimental results will be presented. tFirs
results have been collected from a running real §fstem which has been using EYEKS as an
application security layer. These results helpousvialuate performance of EYEKS on a highly loaded
system and besides show how real life access pmsblean be solved by EYEKS. The second
evaluation will be done on the test results takemfa test platform where EYEKS has been used as
an application security layer to control accessasimple test web application, implemented using
Java JSP and Struts technology. The main aim sfekperiment is evaluating EYEKS against web
application attacks. A vulnerability test set hasib prepared using OWASP Testing Guide which

was introduced in section 3.7 and applied to #mss$ platform.
4.1 Case Study: Real Life System

EYEKS has been implemented and used for one dbitigeest e-government projects of Turkey. The
system became online on October 2004, and is h#sed for nearly 2.5 years. The work and the
results were presented in an International Conteremn Security of Information Networks (SIN

2007) [7]. This earlier version of EYEKS differslgrior some concepts from the version presented in
the thesis. The only changes are; Request/Respmesation chain has been newly implemented to
provide a more generic framework, previous versiam only be deployed on Java application servers,

however for this thesis, a stand-alone server mapéeimented.

Project was started with 13,466 registered useds tan January 2007, 181,747 users have been
registered. Because of the business domain ofppkcation, the number of login and page requests
is irregular and differs a lot from month to monifhe application executes mainly one business
transaction, which consists of five successful paggiests and HTML form posts and corresponding

database operations.

Project consists of four different web applicatidhat use EYEKS as an application security layer.
These four applications are defined to EYEKS agediht contexts with proper mappings so that
EYEKS can serve to all of them. EYEKS was instalie® servers. Two machines have four Solaris
Ultra SPARC CPU with 8GB Ram and one machine haxeSolaris Ultra SPARC CPU with 2GB
Ram. On the other hand all of the backhand appdicatrun on six Solaris Ultra SPARC CPU
machine with 8GB Ram. As soon as the system wahad, the registered users and usage statistics

are increased rapidly and still continue to inceeas

102

Table 12 shows monthly statistics of the numberegfstered users, executed transactions, login and

page requests.

Table 12 Monthly Statistics of the Real Life System

PAGE
MONTHS USERS | TRANSACTIONS | LOGIN REQUEST
OCTOBER [2004] 13,446 | 34,534 131,448 975,481
NOVEMBER [2004] 15,811 | 91,465 237,809 2,648,826
DECEMBER [2004] 18,638 174,725 532,658 5,124,684
JANUARY [2005] 20,984 | 452,782 1,530,232 13,592,516
FEBRUARY [2005] 23,403 | 380,682 1,310,556 11,401,426
MARCH [2005] 41,519 | 955,901 3,058,883 27,606,421
APRIL [2005] 53,342 1,511,975 3,931,135 43,937,994
MAY [2005] 55,642 1,780,000 5,615,023 49,786,600
JUNE [2005] 56,543 | 1,004,445 3,022,113 23,735,035
JULY [2005] 57,250 1,728,969 5,390,388 39,576,100
AUGUST [2005] 58,037 | 2,053,585 4,115,414 48,649,429
SEPTEMBER [2005] 59,585 1,138,612 2,618,807 2689,
OCTOBER [2005] 60,271 | 2,019,727 4,440,582 50,735,54
NOVEMBER [2005] 60,903 | 2,218,907 5,000,21p 57,6P8,8
DEC [2005] 61,607 1,243,317 2,565,332 28,745,489
JANUARY [2006] 62,555 | 2,184,729 5,001,502 58,158,48
FEBRUARY [2006] 64,549 | 2,518,218 5,113,200 69,886,1
MARCH [2006] 65,794 | 2,346,147 5,006,541 61,210,975
APRIL [2006] 65,950 | 2,717,194 5,911,656 76,054,260
MAY [2006] 66,069 | 2,865,000 6,411,211 84,889,950
JUNE [2006] 87,938 | 1,005,555 2,156,987 23,982,487
JULY [2006] 88,821 1,730,000 3,929,98Y 43,180,800
AUGUST [2006] 89,112 | 2,056,987 4,419,877 52,103,481
SEPTEMBER [2006] 96,004 1,100,562 2,409,6%2 2532,
OCTOBER [2006] 120,432 2,001,532 4,066,519 52,8B,8
NOVEMBER [2006] 126,245| 3,124,236 6,910,198 63,308,
DECEMBER [2006] 150,324 1,245,330 2,776,630 26,8037,
JANUARY [2007] 181,747| 1,010,336 2,062,146 25,591,8

Following figures show monthly distribution of exged transactions, login and page requests

103

70T

s1sanbay abed Jo suonnquisiq 6Z ainbi

= N w & ol [o2] —~ (o] ©
S £ S 85 o &5 9o S 9
o o o o o o o o o
o o o o o o o o o
S S & 5 & S5 S S 9
o o o o o o o o o
o o o o o o o o o
o o o o o o o o o o
Il Il Il Il Il Il Il Il I}
975,481
| % 2,648,826
5,124,684
| 13,592,516
401,426
606,421
43,937,994
49,786,600
| 735,035
39,576,100
48,649,429
50,735,542
57,602,826
69,830,185

52,103,481

2,039,832
63,8

25,591,811

08,771

s1sonkdy uIbo] pue suonoesuel] Jo uonngLisiqg gz a.nbi4

= n w > o ki Py o0
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
' o o o o o o o o
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
3438448
I 257800
[4357658
= §(1,530,232
' 310,556
- 3,058,883
— = 3,931,135
I 2
SE 5,615,023
= 3,022,113
e SR 5,390,383
390, a
I 3
2 4,115,414 5‘_>|
8 6 =
— 2,618,807 2
o
1 -
== 4,440,552 g
>
1 2 00 2]
5,000,212 =
4 -
2,565,332 8
— 24 799 =)
5,001,502 2
I 2 2 o
5,113,201 2
1 46 14 g
5,006,541 =
—
= 5,911,656
26
o 6,411,211
> 156,987
1
St 3,929,987
—— QRB 08
4,419,877
) 2 409,652
1]
= 4,066,579
I 8
: 6,910,198
e 2 776,630
I 010

5 062,146

As shown in the graphics, the distribution of paggquest and login humbers varies a lot and are
totally irregular, some months like April, May aNgvember takes two or three time more traffic than
previous months like June, July and Septemibahle 13gives statistics about how many business

transactions; login and page request has been memmonth in last year respectively. Last column
stands for the total request numbers on a peek day.

Table 13 Average and Peek Statistics

Start Average Peek Peek Day
Transactions 34,534 1,856,324 3,124,236 649,024
Login 131,448 3,559,883 6,910,198 833,670
PageRequest 975,481 39,046,279 63,808,771 4,128,295

The irregularity of monthly distribution is alsou& for days in a months, next figure shows daily
distribution of transaction numbers. In fact, themll traffic is concentrated in the third weektbé
months where it takes nearly 70-80% of monthlyfizaf his is because of the business of application
Business rules require deadliness for some busingstsons in a month so that the traffic increases
rapidly in the last week of deadlines.

105

APRIL - 2006

= 80 DAILY TRANSACTION NUMBERS

29 4,634
2 ¥8,234
27 15,269
2% P5,793
25 15,273
2 292,906
23 B0,326
2 186,258
2 248,148
20 313,348
19 276,581
18 229,242
17 161,336
16 26,599
15 89,341
14 81,455
3 81,830
12 71,779
u 70,719
10 66,504
7,567

9
8 42,021

7 51,389

6 42,799

5 38,887

4 32,892

3 21,889

2 1,710

1 6,705

I I I T T I T !

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000

Figure 30 Daily Transactions (April 2006)

So the performance issue on high loads is crifmaboth the backhand application and EYEKS. The
system must scale well to handle with high traffi@ responsible time and also must highly avaélabl

The users of the system also increase rapidlyjm&hyear period, the number of users multiplied by
ten and the increasing number of users still coetn So overall system must also handle with

increasing number of users as well as traffic bomssome days of the month.

EYEKS scales and responses very well with thigasibn, the statistics show that on even peek days,

average peek CPU usage has not been over 27 % lndoekend servers (8 servers) usage is 92 %.

The whole application (four different web applicais) has been written in Java using J2EE
technology. All four applications uses MVC pattesm that there are only one controller servlet for
each application. The resource and operation mgppare done according to rule 4 which was
described in section 3.2. Each application has lgedined as resources of the system and so that 4
resources has been defined. The operations areeshaspallowed actions of each controller servlet,
which consist of totally 67 operations. The systaainly uses RBAC policy evaluator for which 8
different roles are defined hierarchically accogdito business needs. Other from RBAC policy,

enterprise security rules of project has been implged using 11 user-defined policies. The policies

106

are mainly time based that defines deadlines oinkas transactions and also defines sequence of
successfully executed user action to access meoreeseesource. These policies are mapped to 210

different resource-operation mappings as permisdioait cover whole application.

EYEKS has also been used as authentication mechathiat provides single-sign-on for whole
application. Form based authentication has beed teseerify user passwords. One-time passwords
has also been generated and verified for morecaritiperations. The authentication mechanism also
provides authentication based on security questimatshave been used for integration with call eent
application. EYEKS also can authenticate users wgnffom IVR (Interactive Voice Response)

application so that call center operator can usesyistem in place of the client for assistance.

The session management of EYEKS depends on LDAReimgntation in this case, where user
session attributes are stored to LDAP after sufgklegin operation. On each request, user session

fetched from LDAP using DN of the user that is stbin encrypted EYEKSTOKEN. Token's are

stored within each web page and are checked fadityafor each request as described in section
3.3.4.

There are no application level security policiesheck for known security exploits are implemented
however every parameter of each web page is wélett and defined in CSAAS using the closed
world assumption. The only place that checks forbwapplication attacks are authorization
mechanism where the login requests are checkeddimon injection attacks such as SQL and
LDAP injection. However the system is secured foeatory traversal, information disclosure, broken
authentication and session management types akattey default. EYEKS logs also showed that in
last 3 months (November, December 2006 and Jari@fy), total number of 865,327 requests than
and as well as, 938,787 incorrect password triesnoeint are found to be malicious and denied.

The experience with running real life system proteg EYEKS provides great benefits to enterprise
applications. First of all frees whole applicativom embedding access decision rules in application
source code that improves manageability of theesystThe access decision rules can be added
changed or removed dynamically without changingliegfion code and removes the need of
redeployment. On the other hand provides a seauttree@tication and authorization mechanism that
covers whole application with no additional effoFhe experiment also shows that EYEKS was very

scalable and gives high performance under heanélgld.
4.2 Experiment 1: Artificial Load Tests

The real life system described in previous sectias been also tested under artificial load tedts. T
testing tool has been chosen as Apache JMeter,hwikia 100% pure Java desktop application
designed to load test functional behavior and nreagerformance. Apache JMeter can be used to test

performance both on static and dynamic resourdes,(Servlets, Perl scripts, Java Objects). Itlman

107

used to simulate a heavy load on a server, netaodbject to test its strength or to analyze overal
performance under different load types.

These load tests consist of 12 successive systenaiso operations to execute a business transaction
starting from login request to logout request andstto mimic typical user behavior. Thirteen
different load tests are constructed for each targember of 20 to 500 concurrent users. These test

run on the system with EYEKS and without EYEKS ¢onpare the payload of EYEKS. The statistics
are shown in table.

Table 14 EYEKS Performance Statistic

_Avg. !Execution Avg. Execution time
Concurrent Users | time W|t(hS)EYEKS without EYEKS (s) Payload
20 0.629 0.586 0.074246
50 1.577 1.468 0.074148
70 2.219 2.065 0.074319
100 3.202 2.980 0.074527
130 4.247 3.952 0.074765
160 5.438 5.058 0.075064
200 7.276 6.765 0.075590
250 18.205 16.913 0.076421
300 44.629 41.402 0.077950
350 108.014 99.986 0.080288
400 261.435 241.109 0.084302
450 638.744 585.894 0.090204
500 1582.747 1438.696 0.100126

The backhand application (without EYEKS) scaleslwetil the number of 250 concurrent users.
However after 250 users, the response time becimesasing exponentially and when the system
has 500 concurrent users the average executionftime business transaction becomes 24 minutes.
The corresponding graphics will show this behavior.

108

18.000

16.000

Execution times without EYEKS .

14.000

12.000

10.000

8.000

6.000

4.000

2.000

0.000

50 100 150 200 250

300

Figure 31 Execution Times Without EYEKS (0-300)

1600.000

Execution times without EYEKS

1400.000

1200.000

1000.000

800.000

600.000

400.000

200.000

0.000

250

300 350 400 450 500

550

Figure 32 Execution Times Without EYEKS (250-500)

109

On the other hand, the average payload of EYEK®&Ig stable on increasing number of concurrent
users. The execution times of business transasti€far only 8 % if EYEKS was installed in front of
web applications. EYEKS scales very well where@t@ncurrent users the payload was 7.4 % and at
500 concurrent users the payload only increasd9%. The following graphic shows the payloads

over number of concurrent users.

0.12
Payload of EYEKS
0.1 .
/
0.08 .
¢ o o . ¢ ¢
0.06
0.04
0.02
0 T T T T T 1
0 100 200 300 400 500 600

Figure 33 Payload of EYEKS

This high level of scalability is because of CSA88aching mechanism. After the first execution of
business scenario, all necessary elements of RAdRifgmation to decide on access decision like
operations, resources and policies have all bewhdd and cached. The only time consuming
operation for CSAAS was retrieving user role (doeRBAC policy). The remaining evaluation is
done in memory so that no other I/O operation heenmeeded. After each user’s page request, the
roles of these roles will be cached so that forréeaining operations, no access to database eas be
needed.

EYEKS has been using connection pooling with pegsisHTTP connections that allow pipelining of
client request. So that HTTP connection establistinoecurs very less. The payload is due to I/O
operations from these sockets and mostly RMI conication between EYEKS and CSAAS

110

4.3 Experiment 2: Testing Against Web Application Attadks

In this section, the solidity of EYEKS against wapplication attacks will be investigated. For this
purpose, an open source web application that iBaée publicly has been chosen and EYEKS was

installed in front of it as an application secutdyer.

The chosen web application was ADF Toy Store Depmi@ation [75], which is realized by Oracle
to demonstrate their newly build framework callec€e Application Development Framework. This
is a basic online shopping application for toy etpiit allows user login, listing of products undey
categories, searching for a specific product, enlordering and shipment. The reasons behind
choosing ADF Toy Store application are; it refleats functionalities of a typical online shopping
application, considerably simple application sasiteasy to configure, it is a public open source

application and it is made up with latest techn@eguch as ADF and Java Server Faces (JSF).

ADF Toy Store application has been implemented qusiava with Model/View/Controller (MVC)
design pattern. It is implemented using two exgti@EE application frameworks: Apache Struts and
Oracle Application Development Framework (ADF).usér has been used as controller, ADF has
been used to implement model. View layer has utattlard Struts and JSTL tag libraries as well as
JSF to simplify building the web Ul

4.3.1 Test Environment and Setup

ADF Toy Store application has been ported to Orableveloper 10.1.3.3 and run on embedded OC4J
application server with Java JRE 1.5.0_06. Applicatieployed on /ADFToyStore web context and
run on port 8988.ADF Toy Store uses Oracle databgsiefault so Oracle 10g Express Database has
been installed and configured accordingly.

EYEKS has been installed as stand-alone server Jeitta JRE 1.5.0_06. For session management
database implementation has been chosen and so IM$8@Qer 5.0 has been installed and configured

accordingly.

ADF Toy Store can be deployed as a WAR or EAR éiled from client of view, it has four
directories;facesholds jsp pagesmagesholds image filestemplatesholds template files anddf

holds java-script and configuration files need By .J

Two different Eyeks contexts have been defined amapped as described in section 3.3.3.
StaticContext is the default context and mappenytoystore web contextacesdirectory is mapped
to /mytoystore/faces directory within Application@ext andtemplatesdirectory is mapped to

ScriptContext. Corresponding mappings are showovhel

111

/ADFToyStore > /mytoystore (StaticContext)
[staticfiles (StaticContext)
/images > /images (StaticContext)

ltemplates > /templates (ScriptContext)
[adf > [scripts (StaticContext)
faces > faces (ApplicationContext)

For StaticContext, HttpComponentsRedirectOperatias the only operation that has been added to
operation chain. Since this context only holdsistaintext like images or templates, no other sgcur
checks like token and content filtering, authotimat authentication or session management was

required.

ScriptContext can be under more security risks tkess-site scripting, session riding attacks so
before HttpComponentsRedirectOperation, PageChestdfipn has been added to operation chain
with closed world assumption. As mentioned in sett8.4. PageCheckOperation ask CSAAS for
permission on < [Directory Name], [Page Name]>.c8ithere is only one directory and three script
files in this context. adf has been added to CSARA% resource and necessary scripts and cascading

style sheets are added as operation as can bendeéfe 15

ApplicationContext’s operation chain has been mooeplicated since it needs authentication,
authorization and session management. Whole chhioperations for pre/post operations and

commands are given in the table below.

Table 15 Example Operation Chain

ContextResolveOperation
HeaderCheckOperation
PreAuthenticationCheckOperation
AuthenticationCheckOperation
UserLoginOperation
FetchWelcomePageOperation
HttpComponentsRedirectOperation
HeaderManagedTokenPutOperation
HeaderManagedTokenGetOperation
Page Request SessionCheckOperation

Command HttpComponentsRedirectOperation
HeaderManagedTokenPutOperation
Logout Command | LogoutOperation

Post Operations HeaderReverseRedirectionOperation

Pre Operations

Login Command

112

ADF Toy Store application consists of 17 JSP pagebsthese pages must be mapped to CSAAS in
order to be used for enterprise access controbaptication security. The best mapping strategy can
be fourth strategy which suggests context namessurce and each page name as possible operations
on that resource must be defined to CSAAS. On therdhand some other resource and operation
pairs, as well as, policy mappings must be defimedescribed in section 3.4. A full set of resosirce

operations and attached policies will be givetaisie 16

Table 16 Example Resource- Operation and Policy Majpngs

Resource Operation Policy
Adf [styles/oracle-desktop-en-
gecko.css

fjslib/CommonFormat.js
/jslib/CoreFormat.js
/jslib/DataFormat.js
[jslib/DataFiels.js
[jslib/CharSets.js

StatusPolicy,
LOGIN_REQUEST RelLoginPeriodPolicy
MultipleLoginPolicy

LoginPolicy

LOGIN RBAC policy

SECURITY_PARAM_REG_EX_POLICY]
PAGE_REQUEST SECURITY_PARAM_REG_EX_POLICY]
SECURITY_INJECTION_POLICY

accountcreated.jsp
ApplicationContext accountupdated.jsp
confirmshoppinginfo.jsp
editaccount.jsp
help.jsp

home.jsp

index.jsp

register.jsp

search.jsp
showcategory.jsp
showproduct.jsp
showproductdetails.jsp
signin.jsp

thankyou.jsp
yourcart.jsp

113

4.3.2 TestTools

CAL9000: All security testing activity is handled by CAL9DQool [76]. CAL9000 is one of the
OWASP projects that are a collection of web appilicasecurity testing tools that complements the
feature set of automated scanners. CAL9000 is emrith Javascript and provides flexibility and
functionality for more effective manual testingatk. It mainly targets XSS attacks which collects
XSS attack signatures from RSnake [77] and alswiges character encoder/decoder, manually
crafting and sending HTTP requests to servers (GEIST, HEAD, TRACE, TRACK, OPTIONS,
CONNECT, PUT, DELETE, COPY, LOCK, MKCOL, MOVE, PRGMD, PROPPATCH,
SEARCH and UNLOCK methods supported), sending simghjuests or launch automated attacks
with more than one request at a time, viewing thtus codes, response headers and body, isolating
the script, form and cookie information in the r@sge, IP Encoder/Decoder and string generator.

Httprint: is another testing tool to test web server fingatp. It relies on web server characteristics

to accurately identify web servers [78].
Woget: is used for web content crawling [79].

DirBuster: is a multi threaded java application designedrtaebforce directories and files names on

web/application servers [80].

NMap: Nmap ("Network Mapper") is a free and open sourtityufor network exploration or
security auditing. It is also useful for tasks swhnetwork inventory, managing service upgrade

schedules, and monitoring host or service uptinié [8

WebScarab: WebScarab is a framework for analyzing web apptioa. It is written in Java,
WebScarab has several modes of operation, impleddoy a number of plug-ins. Some usable
features are extracting Scripts and HTML commemsfHTML pages, observing traffic between the
browser and the web server, allowing HTTP and HTT&ftiests and responses modification on the
fly, revealing hidden fields, allowing editing aneplay of previous requests, collecting and anatyzi
session ID's and performing automated substitutbddnparameters. In its most common usage,
WebScarab operates as an intercepting proxy, aitpuhie operator to review and modify requests
created by the browser before they are sent teghesr, and to review and modify responses returned
from the server before they are received by thevbeo. WebScarab is able to intercept both HTTP
and HTTPS communication. The operator can als@vethe conversations (requests and responses)

that have been passed through WebScarab [82].

4.3.3 Test Results

The test sets are generated using OWASP testinlg guientioned in section 3.7.

114

4.3.3.1 Information Gathering

Application Fingerprint: Httprint tool has been used to evaluate for apgibie signature. However
it fails to reveal EYEKS application layer signauf he results are given below.

(EYEKS running on port 8070, backhand applicatienver which is embedded OC4J running on
8988, a test apache server running on 8080)

Table 17 Application Fingerprint Test

Host Port Banner Reported Banner Reduced
Localhost 8080 Apache-Coyote/1.1 Apache-Tomca@8.1.
localhost 8988 Oracle Containers for J2EE TUX/2iyx)
localhost 8070 Unspecified Error...

So EYEKS (if deployed on stand-alone server) dagseveal backhand application fingerprints.
Application Discovery:

Web application discovery aims to identify web dggtions on a given infrastructure. The offered
test sets consist of trying different base URLgstpand virtual hosts. Other than /mystore context
which is explicitly mapped, no other context candeeessed. Port scan is done using NMap tool, it
finds that three web servers are running on taogehputer however this is because all of the
applications (including EYEKS) are deployed on #ane machine for testing purposes. Targeting

virtual hosts is related with DNS configuration,remtest can be done on this testing environment.

As a result, EYEKS hinders backhand web applicatibpwever port scanning and virtual host
tracking is related with deployment of the wholelagation so EYEKS can not handle improper
configuration and deployment.

Spidering and Googling: Spidering a web site means creating a map offpécation with all points
of access to the application. For this purpagettool has been used with the optiovget —r —x —S
http://localhost:8070/mystorevhich searches though the targeted web site aminldads the
structure recursively. It fetched images throdglytoystore/staticfiles /imagelrectory but failed on
/mystore/applicatiorand/mystore/templatedirectories. The only successful page that is doaded
was /mystore/application/home.jsghich is a welcome page of the application, fag tther page

links, it downloadeckrror.html page which indicates login was needed. Googlingdcoot be tested.

115

Analysis of error code: The purposes of error code analysis is generatirggpected error problems
on web applications, then analyze the response page to reveal web application technology like
the database or application server information.ioler malformed HTTP requests have been
generated using CAL9000, but no sensible infornmatiould be fetched. However when backhand
web application inserted error codes within a sssfté HTTP response, EYEKS could not sense that
error code has been revealed. So it can be saicENMBKS is partially successful on this test set,
additional content filtering operation must be atide operation chain to hide sensible error codes
generated by backhand web applications.

SSL/TLS testing: EYEKS does not handle improper configuration o §SL, no countermeasure
to confront attacks about SSL/TLS has been impléeterso this test set has been skipped.

DB Listener testing: is out of scope and has been skipped.

File extension handling:EYEKS fails to obscure file extensions. By insjagtfile extensions, it is
possible to infer underlying technologies. For eglammystore/application/home.jsig a welcome

page and reveals that J2EE technology has beerfarse@b application.

Old, backup and unrefered files: It depends on the context and mappings. Thissetsis handled
using DirBuster tool. Any files on StaticContextnche retrieved, however on ScriptContext and
ApplicationContext contexts, test files could netretrieved. So with this test configuration, EYEKS

do not reveal sensitive information though unreddiies.
4.3.3.2 Business Logic Testing

Testing for business logic:OWASP states that if a web application is an efoence application,
most probable places of business logic errors awdugt ordering, checkout business scenarios so
additional business logic test has been donearrcart.jsp and confirmshoppinginfo.jspVarious
parameter manipulations have been tested using G20 %ut no dangerous business errors can be

generated like ordering a product by mimicking &eotregistered user
4.3.3.3 Authentication Testing

Default or Guessable AccountGuessable user accounts are application resplitysiBio no testing
has been done.

Brute Force: EYEKS successfully locked user accounts after Suocessful login tries and opens a

locked account after 20 minutes so brute forcirgr ascount would not be possible.

Bypassing authentication schemaAuthentication schema can be bypassed by a ¢iesge request,
parameter manipulation, session ID prediction a@d $jection. Direct page request has been tested

while spidering testing usingvget. The results were satisfiable; none of the pagedemun

116

ApplicationContext which requires authenticationulcb be fetched. For to analyze session ID
prediction, WebScarab tool has been used for dagtand analyzing EYEKSTOKEN values. 250
tokens has been captured and analyzed. The folipsmapshot has been taken from WebScarab and
shows the result. The EYEKSTOKEN seems to formtéepaso that it can be predictable; however
the range of edit distance values is infinity. &ctfminimum edit distance has been found to be 3.56
E+37, so it is easy to say that Eyeks session ¢Bisbe impossible to predict. However if backhand
application has implemented unsafe handling ofrtlmein session ID, the system would still
vulnerably to session ID prediction. Bypassing antftation schema using SQL injection has been
inspecting using WebScrab. WebScrab foundsdigaiing.jspcan be vulnerably to possible injection
but this is a false alarm because although it &sitade to inject SQL statements in parameter veadiies
client side, EYEKS will refuse this kind of attack®id response a proper error message. Further
testing using WebScrab and CAL9000 show that atideion mechanism is safe from SQL

injection attacks.

Cookie values over time

- e [] | I | L] (TR |]] (¥ LR 1] e ® omw

@
2
m
=

EEEIEE mEIEE @ WmE § N = = N NN B WE BENE EEE N EEEN W SN SENEE EES IEEEE

L] L] (] L] L]
- I EEE S EESIED S m SIS N SN S NSRS SEEEE E B N . .

161118 161120 181125 161130 16:41:35 181140 181145 181150 184155 181200 181205 181210 181215 16:12:20
DatefTime

Figure 34 Cookie Distribution over Time

117

Directory traversalffile include: Some part of this test set has been executed dspiatgring test
successfully. For testing these kinds of attackslétail, a test set has been prepared including
directory traversal though different encoding teghes like hexadecimal encoding (%XX), Unicode
encoding (%uUUUU), named encoding (&It) and withubte encodings like URL over Hex, Unicode
over Hex. The results were successful; EYEKS wadd allow directory traversal even if different
kinds of encodings have been used. The tested p@lration does not contain file operations, se fil

inclusion through input vector enumeration could e tested.

Logout and Browser Cache Management TestingLogout operation testing consists of testing
logout function if session remains after logout after logout can any cached pages be accessible or
not. Testing logout functionality is handled by kiag the previous pages and trying to continue
operation, checking if session token (EYEKSTOKEMpiees and checking response pages headers
whether Cache Control: no-cache header is includiedt results show that although session token
remains valid, no further operations are alloweadrdbgout and every page under ApplicationContext

contains no-cache header.
4.3.3.4 Session Management Testing

Session Management SchemaThis test set contains analyzing methods to ifiergession
management technique of the web application. Respdwaders, cookies and content have been
checked to identify the mechanism. WebScarab has lused for this purpose and it has been

founded that the application uses cookie basedosesmnagement named EYEKSTOKEN.

Session Token Manipulation: In this test set, session ID’s of application weested against
predictability and randomness. As described preshguhe session ID’s has been analyzed using
WebScarab and found to be secure from any typdsuié force and reverse engineering attacks.
Minimum edit distance is found to be 3.56 E+37 aedsion ID contains 457 characters with in
character sdb-z] U [A-Z] U {%}.

Exposed Session VariablesSession variables can easily be exposed, sindees not transfer
session variables or cookies using SSL. Howevesi@esokens can not be reused every new request

invalidate previous token.

Session Riding:Session riding is very hard to test since it needsimber of different attack vectors
to be executed, however form based authenticatibim earrying session token within the content
removes risk of session riding. Current configunatbf test web application uses cookie based sessio

management however can be configured to use cdmdset session management to remove the risk.

HTTP Exploit and Injection Attacks: (Cross site scripting, XST, SQL, stored proced@ieM,
LDAP, XML, SSI, XPath, IMAP/SMTP, Code, Commandeafion) HTTP exploit and injection

attacks have been tested automatically using WebBead manually using CAL9000. WebScarab

118

reports that 12 operations with 4 different pagas mossibly be vulnerably to injection attacksas ¢

be seen in following snapshot.

1] Date | hethod Host Path P. Status Qrigin | Possible Injection
3 |[200700.. |GET |hitpilocalhost 8988 JADFTovStorefaces/showeategory jsp 200 Ok Froxy L]
4 |[200700... |GET |hitpilocalhost 8988 IADFToyStorefadiistyles/cacheforacle-deskiop-10_1_3 . 200 0k Froxy L]
A 200700, |GET |hitpilocalhost 8988 IADFToyStorefadfijsLibsiCommont0_1_3_3_0js 200 0k Froxy L]
B [2007/0... [GET |hitpoiflocalhost 8988 ADFToyStoredimagesibranding. gif 200 0k Prowy []
T [20070.. [GET |hitpoiflocalhost 8988 ADFToyStorefadfimagestt.gif 200 0k Proyy []
5 [20070.. |BET |hitpeiflocalhost 8958 PADFTovStoreiadiimagesfcachelighes. gif 200 0K Prawy []
Y [2007M0.. |BET |hitpeiflocalhost 8958 ADFTovStoreiadiimagesfcacheligheas. gif 200 0K Prawy []
10 (200700, |GET |hitpilocalhost8988 [(ADFToyStorefadfimagesicachelcghec.aif 200 2k Proxy L]
11 200700, |GET |hitpilocalhost 8988 |favicon.ico 404 Mot Fou... |Prosy L]
12200700, |GET |hitpilocalhost 8988 JADFTovStorefadfiimagesicachelcseparator gif 200 0K Froxy L]
13 [200700... |POST |hitpilocalhost 8988 ADFTovStorefaces/showeategory jsp 200 Ok Froxy v
14 [200700... |GET |hitpilocalhost 8988 IADFToyStorefadfimagesioracletnavpd.gif 200 0k Froxy L]
16 |[200700... |GET |hitpilocalhost 8988 IADFToyStorefadiiimagesioracletnavn.gif 200 0k Froxy L]
16 [200700... |POST |hitpilocalhost 8988 IADFTovStore/faces/showeategorny jsp 200 0k Froxy v
17 (20070, [POST |hitpoiflocalhost 8988 ADFToyStorefaces/showproduct jsp 200 0k Proyy v
19 [20070... |POST |hitpeiflocalhost 8958 WADFTovStorefaces/showeategon.jsp 200 0K Prawy v
20 |20070... |POST |hitpeiflocalhost 8958 PADFTovStorefaces/showpraductjsp 200 0K Prawy v
21 |200700.. |GET |hitpdlocalhost 8982 (ADFToyStorefadfimagesicacheleniblUpdaBlok.gif 200 2k Proxy L]
220200700, |GET |hitpiilocalhostB988 (ADFToyStorefadimanesicachelenfbChecyP 90 aif 200 0k Prowy L]
23 200700, |POST |hitpocalhost 8988 JADFTovStorefaceshourcartjsp 200 0K Froxy v
241200700 |POST |hitplocalhost 8988 JADFTovStorefaceshourcartjsp 200 0K Froxy ¥
25 (200700, |GET |hitpailocalhost 8988 IADFToyStorefadiimagesicachelienhConfBJEY gif 200 0k Froxy L]
26 (200700, |POST |hitpilocalhost 8988 IADFTovStore/facesieviewcheckout jsp 302 Moved .. (Prosy L]
27 |200700.. |GET |hitpilocalhost 8988 IADFToyStorelfaces/signinjsp 7200 Ok Froxy v
28 (20070, [GET |hitpoiflocalhostB988 PADFToyStorefadfimagesrerror gif 200 0k Proyy []
29 (200700, [BET |hitpeilocalhost 8958 PADFTovStorsiadiimagesicache/en/blogio9s- oif 200 QK Prawy []
30 (20070, |BET |hitpflocalhost 8958 PADFTovStoreiadiimagesfcachelombts. gif 200 0K Prawy []
31 |20070... |POST |hitpflocalhost 8958 WADFTovStorefaces/signingsp 302 Maoved ... |Praxy []
32200700, |GET |hitplocalhostB988 (ADFToyStarefaces/sioninsp D200 Ok Prowy ¥
33200700, |POST |hitp:localhost 8988 JADFToyStorefaces/signinjsp 200 0K Froxy v
34200700, |POST |hitplocalhost 8988 JADFTovStorefaces/showeategory jsp 302 Moved .. [Proxy L]
35 |200700.. |GET |hitpilocalhost 8988 JADFToyStorefaces/signinjsp 7200 Ok Froxy ¥
A6 200700, |POST |hitplocalhost 8988 IADFToyStoreffaces/signingsp 200 0 Froxy ¥

Figure 35 WebScarab Testing Report

The test results of web application without EYEK® a&hown infigure 36 Without installing
EYEKS, test web application is found to be vulnézato XSS attacks and possibly more kinds of

injection attacks.

119

|n] Date Methad Host Fath Status Qrigin }@3 C?_ F
13 |[2007/08/04... POST hitp:iflocalhost 988 /ADFToyStoreffacesishoweategoryjsp (200 0K |Provy 4 L]
16 2007508/04.. POST hitpeiflocalhost B985 UADF TowStoredfacesishoweategoryjsp 200 0K |Proxy V] []
17 2007/08/04.. |POST hitpeiflacalhost B985 UADF TowStoreffacesishowproduct jsp 200 0K |Prosy V] []
149 2007508/04.. POST hitpeiflocalhost B985 UADF TowStoredfacesishoweategoryjsp 200 0K |Proxy V] []
20 2007508/04.. POST hitpeiflocalhost B985 UADF TowStoreffacesishowproduct jsp 200 0K |Proxy V] []
23 2007508/04.. POST hitpeiflocalhost B985 JADF TowStoreffacesiourcart jsp 200 0K |Progy [v] [
24 2007508/04.. POST hitpeiflocalhost B985 JADF TowStoreffacesiourcart jsp 200 0K |Progy V] []
27 20070804 |GET hitp:iflocalhostB988 JADFToyStoreffacesssigninjsp 200 0K |Proxy v] [
32 2007508/04.. | GET hitpeiflocalhost B985 JADF TowStoredfacesisigninjsp 200 0K |Progy V] v]
33 |2007708/04.. POST hitp:flocalhost 8888 JADFToyStorefacesssigninjsp 000K |Proxy v] [
35 2007508/04.. | GET hitpeiflocalhost B985 JADF TowStoredfacesisigninjsp 200 0K |Progy V] []
36 [2007708/04.. POST hitp:flocalhost 6988 /ADFToyStoreffacesssigninjsp 2000k |Proxy ¥] [¥]

Figure 36 Reported Vulnerabilities without EYEKS

However, after installing EYEKS as an applicatiecigity layer, No XSS attacks have been reported.
On the other hand, EYEKS fails against CarriagaiRétine Feed type of attack that can be result in
HTTP Exploits such as HTTP Response Splitting.

18] Date Method Host Path Status Origin HES CRLF
13 2007/08/04 1., |POST http:iflocalhost8070 fmystorefaces/showcategonyjsp 200 0K Prosy Ll =
16 2007/08504 1.., |POST hitp:iflacalhost:8070 fmystorefaces/showcategory.jsp 200 Ok Prozy L L]
17 2007i08M4 1__ [POST hitpilocalnnstan7o iystorefaces/showproduct jsp 200 0K Prisy L =
19 2007/08/04 1... |POET hitp.Mocalhosta070 ‘mystoreffaces/showcategory.jsp 200 0K Proxy L =
20 2007i08/04 1., |POST hitp:localhost 3070 fmystorefacesshowproduct jsp 200 0K Prosy [l =
23 2007/08504 1.., |POST http:/ilocalhostB070 fmystorefaces/yourcattsp 200 Ok Prozy L L]
74 2007i08M4 1__ [POST Fitpfilocalhnsta070 iystoreiacesiourcar jsp 200 0K Py L &
27 2007/08/04 1., |GET hitp.Mocalhost 3070 ‘mystorefaces/signin.jsp 200 0K Proxy Ll =
32 2007/08/04 1... |GET hitp:ilocalhostB070 fmystorefaces/signinjsp 200 Ok Prozy E ¥
33 2007/08m4 1. [POST Fitpefilocalhostan7a irystorefaces/signin jzp 200 0K Prixy =
25 200710804 1. |GET httg:iiocalhost 8070 \mystorelfacesisignin jsp 200 0l Priy L] -
el 20070804 1... [POST |htip:Mocalhost 2070 |fmystoreffacesisignin,jsp 200 0K Froxy = ¥

Figure 37 Reported Vulnerabilities with EYEKS

In fact, further investigations about XSS attadksvs that EYEKS is still vulnerable to XSS attacks i
an attack also includes character encoding att&@ks.e examples of the injection are;

Unicoded XSS attack:<DIV STYLE="background-
image:\0075\0072\006C\0028'006a\0061\0076\006 B@W63\0072\0069\0070\0074\003a\006
1\006¢\0065\0072\0074\0028.1027\0058.1053\0053%002B"\0029">

Hex Encoding: <IMG
SRC=ڮHXE6LEHXT6&H#XOL&HXT 3&HXO3&HEXT 2&H#X6I&HXT 0&KT A&H#XIA&LHEX61&HXO
CEHXOSEHXT2E&HXTA&HX2BEHAX2T &HX58E&HX53&HXE3&HX2T)

Broken up javascript: @im\port\ja\vasc\ript:alert("XSS")";

120

Test results show that EYEKS is still safe from SQDAP and code injection. EYEKS rejects these

kinds of attacks with proper error messages.

Denial of service testing, web services testind AdAX testing was not executed since denial of
service testing depends on backhand web applicaimh EYEKS does not support web service,

AJAX security. A summary of web application secut#st results is given itable 18

Table 18 OWASP Testing Results

Category Test Name Result
Application Fingerprint Successful
Application Discovery Successful
Spidering and googling Successful
Information . Partially successful, could no filter
Gathering Analysis of error code backha¥1d application errors.
SSL/TLS Testing Not responsible
DB Listener Testing Not responsible
File extensions handling Fails
Old, backup and unrefered files Successful
No errors were found, but improper
Business logic | Testing for business logic configuration could result
testing vulnerabilities.
Default or guessable account Not responsible
Brute Force Successful
Authentication Bypassing authentic_ati_on schema Successful
Testing Directory traversal/file include Successful
Vulnerable remember password and .
Not responsible
pwd reset
Logout and Browser Cache
. Successful
Management Testing
Session Management Schema Successful
Session Token Manipulation Successful
Exposed Session Variables Ir:i:lll(ls however does not cause security
. - Successful if content managed
Session Riding s
session tokens have been used.
HTTP Exploit Fails because of CRLF vulnerability
. Cross site scripting Fails if different kinds of encoding
Session have been used.
Management HTTP Methods and XST Successful
SQL Injection Successful
Stored procedure injection Not tested
ORM Injection Successful
LDAP Injection Successful
XML Injection Not tested
SSI Injection Successful
XPath Injection Not tested

121

Table 18 (continued)

IMAP/SMTP Injection Not tested
Code Injection Successful
0OS Commanding Successful
Buffer overflow Not tested
Incubated vulnerability

Writing User Provided Data to Disk Successful

Denial of
Service Testing

Failure to Release Resources

Not responsible

Storing too Much Data in Session

Not responsible

XML Structural Testing

Not responsible

XML content-level Testing

Not responsible

HTTP GET parameters/REST Testin

0

Not responsible

XML Structural Testing

Not responsible

XML content-level Testing Not supported
Web Services |HTTP GET parameters/REST Testing Not supported
Testing Naughty SOAP attachments Not supported
Replay Testing Not supported
AJAX Testing Testing AJAX Not supported
0

122

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, a fully implemented solution EYEKEt secures web application is presented. Adding
a new layer to web application that deals withsalturity aspects makes application developers free
from thinking about security issues of the appiaratand also leads to more functional, structured

and scalable system.

The most important access control problem of entg@pplications is encapsulating domain specific
factors in access decisions. Middleware infrastmgd are incapably of providing enough abstraction
to evaluate enterprise-level security policies.efmtise application developers tackle this problgm
embedding access control rules within an applicatode that handles domain-specific factors.
However enterprise access control rules aims tdeiment enterprise security policies that are mostly
stated by legislations, regulations or company'sirtass processes so that they are subject to
frequently changes and modifications. It is verydh#o tackle these frequent modifications with
embedding access control rules into applicationecsitice every change requires a new software
cycle of deployment and testing processes. As altrés reduces reusability and manageability of
whole system. EYEKS handles this problem by intohog transparent access control evaluation
using RAD service. RAD specification has been shawnbe one of the best authorization
mechanisms to encapsulate domain specific factoaséess control. Enterprise web applications can
be mapped to RAD domain by defining resources gretations of the system and any access to
those secured resources can be controlled by dgfiemterprise-level security policies to RAD that
are deduced from complex access control ruleseo&fiplication. This enables access control logic of
the application to be managed outside of the agjdic and directly by RAD implementation.
Security officer, who is ideally non-developer mmsrscan manage access control policies and verify
that they satisfy security requirements of theaystvithout bothering with application code. EYEKS
reflects access control changes simultaneouslyowitrequiring redeployment of the applications that

improves manageability and reusability of the syssggnificantly.

EYEKS not only verifies and enforces “enterpriseele security (access) policies” but also can

provide a common evaluation and enforcement enmeort for application level policies. The

mapping from web application structure to RAD domalso provides a well structured and efficient
positive security model by naming all allowed res®s and operations of the system. This is the
main contribution and aspect of this thesis. Aljlowsing positive security model is an essential to
secure web application and prevents most of thgetans types of attacks, a negative security model
that targets specific attack types may also be etteBYEKS also allows attack signatures to be

defined as security policies that can be addedhéoslystem to build a negative security model.

123

EYEKS has been designed as reverse proxy that wolike mode, installed in front of the web
applications and introduces a specific layer, dedaapplication security layer to control the fiaf
and enforce security policies to be satisfied. [Hyered operations structure enables full contvelro
request-response chain of HTTP protocol where ang &f verifications and manipulations can be
done by adding suitable operations to operationnchfdl aspects of web application security like
session management, authentication, authorizationcantent checking have been implemented as
atomic operations and can be added according toapplications security needs. Although EYEKS
is a self-sufficient tool that can be used with &inyd of web applications, still can be extended by
implementing new operations. EYEKS operations liaple interface that must be implemented to

adapt currently unsupported operations.

EYEKS has been used for two e-government projeciurkey and Azerbaijan since October 2004.
The experience with these real life systems hawshbat EYEKS offers great benefits to enterprise
web applications. First of all, the powerful auization and authentication mechanism has been freed
developers from considering access control issisparating enterprise-level policies from
application code gives flexibility to developersi@ access and security requirement changes no
longer effects whole application code but only @gien is needed for access policies. On the other
hand this approach leads us to continued secuhigrevaccess control and security requirements are
handled independently during analysis, design amuleémentation phases and updated within each
phases, besides it also simplify overall analydésign and implementation efforts. The performance
results are also very promising. Although the oWdraffic is concentrated in the third week of the
months where it takes nearly 70-80% of monthlyfitathe average peek CPU usage has not been
over 27 % where backend servers (8 servers) usa@2 % on even peek days. The artificial stress
tests are also strengthen these results; althoftlghraumber of 250 concurrent users, the backhand
applications’ response time becomes increasing reqaally and the payload of EYEKS is still
stable and have an average of 8%. However the npeaiftce related test sets are generated by only
considering the number of user as parameter, this ®an be extended to cover the results of
increasing the number of policies. The caching raatdm of CSAAS tries to target performance
drawback for increasing number of users and palicithough the expected result is that EYEKS
will response steadily, more test can be donegpdot system performance for increasing number of

policies as a future work.

Another test set targets EYEKS defense to web egqidin attacks, OWASP web application testing
guide has been used as a guideline and variousityeteists has been performed. For this purpose, a
public available, open source web application feenlchosen and EYEKS was installed in front of it
as an application security layer. Positive secunitgdel has been constructed by mapping the
application to RAD domain and a basic negative sgcmodel has been implemented by policies.
The testing results shows that EYEKS very well comnts information gathering and session stealing

types of attacks. However there are also securigadhes with some type of injection attacks that

124

shows that injection detection policy is not stréngnough to detect all kind of injections. Thigs
a surprising result since injection detection pol@as been using a set of black list (holding itijec
attack signatures) and attacker can bypass blatlctieck by hiding attack with different type’s

encodings.

EYEKS introduces some improvements as well as slimmi&ations over related works. As access
control mechanism, it can compete with other polisgsed access control mechanisms. Its
expressional power to encapsulate domain spedifitofs is not behind its competitors. As web
application firewall, EYEKS can not be regardedadsll product. It can gain web application firewal
characteristics by adding strong attack detectwities. Although can be extended, current detectio
policies of EYEKS are surpassed by broad rangettatla signatures supplied by on-market web
application firewalls. The other limitation is EYEKcan only run as reverse proxy mode, but other
products can also run on bridge and router modklodgh reverse proxy has some advantages like
information hiding and give full power to manipwathe traffic, it lacks of performance while
handling dual sessions of both party. One of the@oitant advantages of EYEKS over web
application firewall products is secure handlingusér authentication and session management. Web
application firewalls do not interfere authentioateand session management mechanisms of backhand
applications. If they have security flaws with themechanisms, they would be still vulnerably to
these kinds of attacks even if they are behind amflication firewalls. On the other hand, EYEKS
can mandate web application’s authentication aisdiee management mechanisms by using strong
authentication and session handling methods

The real strength of EYEKS comes out when we cemndidth aspects together. A centralized view of
security aspects enables web application to be mamgageable. It also improves the traceability of
the system, the security and access control ragaeines can be directly mapped to enterprise-level
and application level security policies and tratkecbugh EYEKS. Business depended enterprise-
level security policies and protection mechanisapplication-level security policies) can be added
together to form a full security policy chain thean be managed on RAD specification. RAD

implementations offer high available, fine-graixtemsible and dynamic access control mechanism
which suits well for web application authorizatineeds. As a result, adding an application security
layer that controls organization-wide security pi@$, could give great benefits such as reusability

manageability, scalability to all kind of web amaition

5.1 Future Work

EYEKS must be regarded as a security frameworlerdttan a full product. The core of EYEKS only
provides a common evaluation and enforcement emwiemt for both enterprise-level and application
level policies, so its strength depends directlyolicies that are defined. From this point of vjdar

the most efficient usage, the design and implentientaf backhand enterprise applications must be

125

considered according to EYEKS so that EYEKS wildeghe process of continued security. Although

EYEKS succeeds to fulfill its claims, there ardl sttme points that can be improved.

First of all, defining resource and operations mgumanual process and can be quite cumbersome.
Most of the web application firewalls have autordapgocess to construct positive security model.
EYEKS can be extended to reveal resources, opagsatimd also security attributes (parameters)
automatically. This can be achieved by integratezb wrawler or by learning process that tracks

normal execution of enterprise web applications.

Client-side security can also be improved using E8Eform and parameter sealing, validation of

Javascripts and support for XML based technololgiesAJAX can be added to the system as a future
work. Although EYEKS can be deployed on multiplstances, the load-balancing and fault tolerance
features does not supported and must be accomplitbegh load-balancing switches so one of the

feature work can be adding load-balancing and faldtance features to EYEKS.

The other improvement can be done on RAD specificatither than EYEKS. RAD limits resources
to a flat structure; however a hierarchical viewesource will improve the manageability of pol&ie

significantly. This will also improve EYEKS manadpiity.

EYEKS has lack of SSL support with is in fact essgrior any web security products. Supporting

SSL and digital signatures for authentication amdhearization is another planned future work

126

REFERENCES

[1] NSF, “Information Technology Research Program Rements,” National Science Foundation,
1999.

[2] Blakley B., “CORBA Security: an Introduction toafé Computing with Objects”, First ed.
Reading: Addison-Wesley, 1999.

[3] Microsoft, “DCOM Architecture”, Microsoft, 1998.
[4] Sun, Enterprise, “JavaBeans Specification Docuatemt 3.0 Final Release”, 2006.

[5] Beznosov K., “Object Security Attributes: Enablifgpplication-Specific Access Control in
Middleware”. In DOA'02, pages 693-710, London, WGtober 2002.

[6] Gogebakan Y., “Cok Katmanli Internet Uygulamalarindatkilendirme Problemi”, Akademik
Bili sim Konferansi 2005.

[7] Metin M.O., Sener C., Ggebakan Y., “Creating Application Security Layer Bdson Resource
Access Decision Service”, International ConferenoeSecurity of Information and Networks, SIN
2007

[8] SANS Institute, “SANS Top-20 Internet Security AttaTargets”, http://www.sans.org/top20/
(last accessed August 28 2007)

[9] Open Web Application Security Project (OWASP), ETODWASP Testing Guide version 27,
http://www.owasp.org/index.php/OWASP_Testing_Prjjéast accessed August 28 2007)

[10] Shin S., “Web Application Security Threats and GeuMeasures’http://www.javapassion.com
/i2ee/WebSecurityThreats.pdfast accessed August 28 2007)

[11] Common Vulnerabilities and Explosures (CVE), “Akposures List”http://cve.mitre.org/cve/
(last accessed August 28 2007)

[12] Privacy Rights ClearingHouse, “A Chronology of B&reaches”http://www.privacyrights.org
/ar/ChronDataBreaches.htiflast accessed August 28 2007)

[13] Icove D., Seger K. And VonStorch W., “Computerriei A Crimefighter's Handbook”, O'Reilly
& Associates, Inc., Sebastopol, CA, 1995.

[14] Cheswick W.R., Bellovin S.M., “Firewalls and Intet Security: Repelling the Wily Hacker”,
Addison-Wesley Publishing Company, Reading, MA,4.99

[15] Lough D. L., “A Taxonomy of Computer Attacks witpplications to Wireless Networks”,

[16] Cohen F.B., “Protection and Security on the Infation Superhighway”, John Wiley & Sons,
New York, 1995.

[17] Stallings W., “Network and Internetwork Securityirftiples and Practice”, Prentice Hall,
Englewood Cliffs, NJ, 1995.

127

[18] Web Application Security Consortium (WASC), “Thtezlassification”,http://www.webappsec
.org/projects/threat/ (last accessed August 28 2007).

[19] Open Web Application Security Project (OWASP), &Tien Most Critical Web Application
Security Vulnerabilities” http://www.owasp.org/index.php/Top_10_2004last accessed August 28
2007)

[20] Open Web Application Security Project (OWASP), &Tfien Most Critical Web Application
Security Vulnerabilities” http://www.owasp.org/index.php/Top_10 200Tlast accessed August 28
2007)

[21] Krigel C., Vigna G., “Anomaly Detection of Web-.afed Attacks”, in Proc. f0ACM
Conference on Computer and Communications Security.

[22] zhang L., White G.B., “Analysis of Payload Basegphcation Level Network” Anomaly
Detection, 48 Annual Hawaii International Conference on Systaiesces (HICSS'07).

[23] Web Application Security Consortium (WASC), “Web ecdrity Glossary”,
http://www.webappsec.org/projects/glossarftast accessed August 28 2007).

[24] Payment Card Industry (PCl), “Data Security Stadda(DSS) version 1.1
https://www.pcisecuritystandards.org/tech/index,hiast accessed August 28 2007).

[25] OMG Security Specifications, “Resource Access Beai (RAD) Version 1.07,
http://www.omg.org/technology/documents/formal/nes@ access_decision.htm (last accessed
August 28 2007).

[26] Ferraiolo D.F, Sandhu R., Gavrila S., Kuhn D.Rha@amouli R., “Proposed NIST Standard for
Role-Based Access Control”, National Institute tdriflards and Technology (NIST).

[27] Lucas J., Moeller B., “The Effective Incident Reape Team”, Addison-Wesley Professional,
1st edition (September 26, 2003).

[28] RFC 3067, “Incident Object Description and Exclarigprmat Requirements”, The Trans-
European Research and Education Networking Associ@lERENA).

[29] Howard J. D., Longstaff T.A., “A Common Language Computer Security Incidents”, Sandia
National Laboratories (1998).

[30] Grance T., Kent K., Kim B., “Computer Security ident Handling Guide”, NIST Publication
SP800-61.

[31] Van Wyk K.R., Forno R.. “Incident Response”, O'RePress, ISBN # 0-59600-130-4.
[32] IEEE, “The IEEE Standard Dictionary of Electricahd Electronics Terms”, Sixth Edition,
Institute of Electrical and Electronics Enginedns,., New York, NY, 1996.

[33] Amoroso E.G., “Fundamentals of Computer Securigghhology”, Prentice-Hall PTR, Upper
Saddle River, NJ, 1994.

[34] Krsul 1., “Software Vulnerability Analysis”, PhDhesis, Purdue University.

[35] Lindqvist U., Jonsson E., “How to Systematicallyassify Computer Security Intrusions,”
Proceedings of the 1997 IEEE Symposium on Secarity Privacy, IEEE Computer Society Press,
Los Alamitos, CA, May, 1997, pp. 154-163.

[36] Cohen F.B., “Protection and Security on the Infation Superhighway”, John Wiley & Sons,
New York, 1995.

128

[37] Cohen F.B, “Information System Attacks: A Prelianip Classification Scheme,” Computers and
Security, Vol. 16, No. 1, 1997, pp. 29-46.

[38] Aslam T., “A Taxonomy of Security Faults in the UNOperating System,” Master of Science
Thesis, Purdue University (1995).

[39] Bishop M., Bailey D., “A Critical Analysis of Vukrability Taxonomies”. Tech. Rep.
Department of Computer Science at the Universitg@alifornia, September 1996.

[40] Russell D., Gangemi G.T., “Computer Security Bg5idO'Reilly & Associates; 1 edition
(January 1991).

[41] Neumann P., Parker D., “A Summary of Computer Igésliechniques” Proceedings of the 12th
National Computer Security Conference, 1989.

[42] Power R., “Current And Future Danger. A CSI Pringér Computer Crime & Information
Warfare”, CSI Bulletin.

[43] Beznosov K., “Engineering Access Control for Dimtted Enterprise Applications”, PhD Thesis,
Florida International University, July, 2000.

[44] United States Department of Defense, Trusted CeenpBystem Evaluation Criteria, DoD
Standard 5200.28-STD (1985).

[45] United States Department of Defense, UnderstanBisgretionary Access Control in Trusted
Systems.

[46] Boebert, W.E., and Ferguson, C.T., “A Partial 8olu to the Discretionary Trojan Horse
Problem”, 9th Security Conference, DoD/NBS, Septeni®85, pp 141-144.

[47] Ferraiolo D., Kuhn D. R., “Role-based access ahtin 15th National Computer Security
Conference. NIST/NSA, 1992.

[48] Sandhu R., Coyne E. J. Feinstein H. L., and You@aB. “Role-based access control models”.
IEEE Computer, 29(2), February 1996.

[49] Ferraiolo D., Cugini J., and Kuhn D. R... “Rolased access control: Features and motivations”,
in Annual Computer Security Applications ConferentEE Computer Society Press, 1995.

[50] Ossher H., Tarr P., “Using multidimensional separaof concerns to (re)shape evolving
software”, ACM, 44(10):43-50, 2001.

[51] Verhanneman T., Piessens F., De Win B., Truyenl&sen W., “A Modular Access Control
Service for Supporting Application-Specific Poli€iglEEE Computer Society, June 2006 (vol. 7, no.
6), art. no. 0606-06001 1541-4922.

[52] Open Web Application Security Project (OWASP), Hosite, http://www.owasp.org/ (last
accessed August 28 2007)

[53] MITRE Corparation, Home sitéttp://www.mitre.org (last accessed August 28 2007)

[54] Open Systems Interconnection (OSI), “Informatia@chnology -- Open Systems Interconnection
-- Security frameworks in open systems -- Part &e%s control”, ISO/IEC JTC1 10181-3, 1994.

[55] Microsoft, “Building Secure ASP.NET Application8uthentication, Authorization, and Secure
Communication”, Microsoft Press, 2002. (at MS wib)s

129

[56] Lai C., Gong L., Koved L., Nadalin A., and SchemeR., “User Authentication And
Authorization In The Java Platform”, in Proceedimgfs Annual Computer Security Applications
Conference, Phoenix, Arizona, USA, 1999, pp. 286-29

[57] Beznosov K., “Access Control Mechanisms in Comna¢rdiddleware”, Tutorial JavaPolis,
Antwerpen, Belgium, 16 December, 2004.

[58] Beznosov K., “Middleware and Web Services Secukitychanisms”, in lecture, Katholieke
Universiteit Leuven, Brussels, Belgium 2 March, 200p.65.

[59] Jajodia S., Samarati P., Sapino M. L., and Subaaiien V. S., “Flexible support for multiple
access control policies”, ACM Trans. Database S26(2):214-260, 2001.

[60] Ryutov T., Neuman C., “Access Control Framework fistributed Applications”, IETF,
Internet Draft draft-ietf-cat-acc-cntrl-frmw-03, ¥ 9 2000.

[61] Ryutov T., Neuman C., “Generic Authorization anac@ss control Application Program
Interface: C-bindings”, IETF, draft-ietf-cat-gaantdi03, March 9 2000.

[62] OASIS Core Specification, “eXtensible Access Contvlarkup Language (XACML) Version
2.0".

[63] Damianou N., Dulay N., Lupu E., and Sloman M.. &Tionder Policy Specification Language”,
LNCS, 1995:18-28,2001.

[64] Verhanneman T., Piessens F., De Win B., TruyenJ&sen W., “Implementing a Modular
Access Control Service to Support Applications $pedolicies in CaesarJ”, 6th International
Middleware Conference November 28th 2005, Grendbience.

[65] BEA, “BEA Web Logic Enterprise Security version2% http://edocs.bea.com/wles/docs42
/index.html(last accessed August 28 2007).

[66] Oracle Access Managerhttp://www.oracle.com/technology/products/id_mgrot&id _acc
/index.htm| (last accessed August 28 2007).

[67] IBM WebSphere,http://www-306.ibm.com/software/webspherelast accessed August 28
2007).

[68] Entegrity AssureAccess Product, Home Shétp://www.entegrity.com/products/aa/aa.shtml
(last accessed August 28 2007).

[69] Zhao C., Chen Y., Xu D., Heilili N., Lin Z., “Inggative Security Management for Web-Based
Enterprise Applications”, Department of InformatiSnience, Peking University.

[70] Scott D., Sharp R., “Abstracting Application-Lewsfeb Security”, The 1 International World
Wide Web Conference (WWW2002), May 2002.

[71] ModSecurity, “Open Source Web Application Firevjalhttp://www.modsecurity.org/(last
accessed August 28 2007).

[72] TrafficShield® Application Firewall, f5 Home Sitéitp://www.f5.com/products/TrafficShield/
(last accessed August 28 2007).

[73] Imperva SecureSphere®, Imperva Home Sitg://www.imperva.com/products/securesphere/
(last accessed August 28 2007).

130

[74] Beznosov K., Deng Y., Blakley B., Burt C. and BakJ., “A Resource Access Decision Service
for CORBA-based Distributed Systems.”, in procegdinof the Annual Computer Security
Applications Conference, Phoenix, Arizona, U.S.&cBmber 6-10, 1999.

[75] Muench S., ADF Toystore Demo Application, Oraclgtp://www.oracle.com/technology/
products/jdev/collateral/papers/10g/adftoystorelh{fast accessed August 28 2007).

[76] Open Web Application Security Project, “OWASP CAO® Project”,http://www.owasp.org
/index.php/Category:OWASP_CAL9000_Projdtast accessed August 28 2007).

[77] RSnake's Security Stuffs/Hackdtp://ha.ckers.orgflast accessed August 28 2007).

[78] “Httprint web server fingerprinting tool versios build 301 (beta)”http://net-square.com/htt
print/, (last accessed August 28 2007).

[79] GNU Wget,http://www.gnu.org/software/wget{last accessed August 28 2007).

[80] Open Web Application Security Project, “OWASP Didder Project” http://www.owasp.org
/index.php/Category:OWASP_DirBuster_Projdtast accessed August 28 2007).

[81] Nmap, “Free Security Scanner for Network Explanatk& Security Audits” http://insecure.org/
nmap/ (last accessed August 28 2007).

[82] Open Web Application Security Project, OWASP Wetr8b Projecthttp://www.owasp.org/
index.php/Category:OWASP_WebScarab_Proj@ast accessed August 28 2007).

[83] Perry T., Wallich P., "Can Computer Crime Be Stajshe|EEE Spectrum, Vol. 21, No. 5.

[84] Landwehr C.E., Bull A.R., McDermott J.P, and ChoiSNV'A Taxonomy of Computer Security
Flaws,” ACM Computing Surveys, Vol. 26, No. 3, Sapber, 1994, pp. 211-254.

[85] Preliminary List Of Vulnerability Examples for Remchers (PLOVER),
http://cve.mitre.org/docs/plover/plover.htnilast accessed August 28 2007).

131

APPENDIX A

LIST OF WEB APPLICATION SECURITY VULNERABILITIES:

1.1 Path Traversal Attacks:

This attack technique involves providing relativeatsolute path information as a part of request
information. Such attacks try to access files tratnormally not accessible by anyone and if thd k

of request has come, it must be denied. This attamkatens information disclosure of systems.
Although it does not directly threatens integritiytioe system, the attacker can reveal sensitiva dat
such as password and configuration files and bggudi he can do more dangerous attacks to the
system. Path traversal attacks divided into twegaties;

1.1.1 Relative Path Traversal:

This is a subcategory of path traversal attacks;attacker constructs a path that contains relative

traversal sequences such as “...”. Examples atedisbelow.

e Inthe form of../filedir' path traversal.

¢ Inthe form of/../ffiledir' path traversal.

* Inthe form of/directory/../filename' path traversal.

* Inthe form ofdirectory/../../filename’ path traversal. CAN-2002-0298

e In the form of'..\filename' path traversal CAN-2002-0661, CVE-2002-0946, CAN)2-1042,
CAN-2002-1209, CVE-2002-1178

¢ Inthe form of \..\filename’ path traversal. CAN}®2-1987, CAN-2005-2142
* Inthe form of \directory\..\filename' path trasal. CVE-2002-1987
¢ In the form of 'directory\..\..\filename' path teagal. CVE-2002-0160

* Inthe form of ..." path traversal.

CVE-2001-0615 - "..." or "...." in chat server
CVE-2001-0963 - "..." in cd command in FTP server
CVE-2001-1193 - "..." in cd command in FTP server

132

CAN-2001-1131 - "..." in cd command in FTP server

CAN-2001-0480 - "..." in GET or CD command in FTéheer
CAN-2002-0288 - "..." in web server

CAN-2002-0784 - HTTP server protects against "ut'dlows "..."
CAN-2003-0313 - Directory listing of web serverngi'..."
CAN-2005-1658 - Triple dot

¢ Inthe form of "...."(Multiple dots) path traversal

CVE-2000-0240 - read files via "/.......... /"in UR

CVE-2000-0773 - read files via "...." in web server

CAN-1999-1082 - read files via "......" in web serydoubled triple dot?)
CAN-2004-2121 - read files via "......" in web serydoubled triple dot?)
CAN-2001-0491 - multiple attacks using "..", ".dhd "...." in different commands
CVE-2001-0615 - "..." or "...." in chat server

e Inthe form of '..../[' path traversal.

e Inthe form of ".../.../I' path traversal. CAN-20R569, CAN-2005-0202
1.2 Absolute Path Traversal

This is a subcategory of path traversal attackes;attacker constructs an absolute path as input and

tries to access arbitrary file. Examples are;

« In the form of ‘Absolute/pathname/target'path traversal.

CAN-2002-1345 - Multiple FTP clients write arbitydiles via absolute paths in server responses
CAN-2001-1269 - ZIP file extractor allows full path

CAN-2002-1818 - Path traversal using absolute patten

CAN-2002-1913 - Path traversal using absolute @atien

CAN-2005-2147 - Path traversal using absolute patten

133

 In the form of “\absolute\pathname\here’ path trasé CVE-1999-1263, CAN-2003-0753,
CAN-2002-1344, CAN-2002-1525, CAN-2000-0614

1.3 Path Equivalence Attacks

This attack technique involves adding special attera in file and directory names. These
manipulations are indented to generate multipleesaand so multiple access points for the same
object. Just like path traversal attacks, path edence attacks also threaten disclosure of
information. If any application restricts directoagcess programmatically, these restrictions can be
bypassed by adding special characters in requéideat directory so application might fail to pars
requested URL and misinterpret the request. Patlivalgnce attacks can also used for bypassing
security restrictions depends on black list. Comsidn example of an application that allows
uploading and a black list to eliminate malicioils formats such as symbolic links. An attacker can
bypass this black list check by adding trailingsdtat extension of a file. So he can traverse tgetar
file or directory. When an attacker collects enougformation about the application using path
traversal and path equivalence attacks then hel qgdah new attacks to break into the applicatian. S

eliminating these kinds of attacks are extremelydrntant for security. Examples are;
¢ Inthe form of filedir.' path equivalence.

CAN-2002-1114 - Source code disclosure using trgitot.

CAN-2002-1986 - Source code disclosure using trgitot.

CAN-2004-2213 - Source code disclosure using trgidot.

CVE-2005-3293 - Source code disclosure using tigitlot.

CAN-2004-0061 - Bypass directory access restristiasing trailing dot in URL.
CAN-2000-1133 - Bypass directory access restristiasing trailing dot in URL.
CVE-2001-1386 — Bypass check for “.Ink” extensi@mng “.Ink.”

* Inthe form of ‘filedir...” (Multiple dots) path equalence.

BUGTRAQ: 20040205 — Apache, Resin Reveals JSP 8dlode.
CAN-2004-0281 - Multiple trailing dots allows dittecy listing.

¢ Inthe form of ‘file.ordir’ (Internal dot) path egualence.

* Inthe form of ‘file...ordir’ (Multiple internal dotpath equivalence.

¢ Inthe form of filedir ' (Trailing space) path egalence.

134

CAN-2001-0693 - Source disclosure via trailing edexb space "%20"
CAN-2001-0778 - Source disclosure via trailing edexb space "%20"
CAN-2001-1248 - Source disclosure via trailing esexb space "%20"
CAN-2004-0280 - Source disclosure via trailing edexb space "%20"
CAN-2004-2213 - Source disclosure via trailing esexb space "%20"
CAN-2005-0622 - Source disclosure via trailing edemb space "%20"
CAN-2005-1656 - Source disclosure via trailing esexb space "%20"
CAN-2002-1603 - Source disclosure via trailing edexb space "%20"

CVE-2001-0054 - Multi-Factor Vulnerability (MVF). itectory traversal and other issues in FTP
server using Web encodings such as "%20"; certampulations have unusual side effects.

CAN-2002-1451 - Trailing space ("+" in query strjrigads to source code disclosure.
¢ Inthe form of ' filedir' (Leading space) path eiéence.
* Inthe form of ‘file (space) name’ (Internal spapath equivalence.

CAN-2000-0293 - Filenames with spaces allow arhjtriile deletion when the product does not

properly quote them; some overlap with path traalers

CVE-2001-1567 - "+" characters in query string cent@d to spaces before sensitive file/extension

(internal space), leading to bypass of accessatstss to the file.

. In the form of ‘/./' path equivalence. CVE-2000-@Q0CAN-2002-0304, BID:6042, CAN-
2002-0112, CAN-1999-1083, CAN-2004-0815 - "/./tkfecleansed to ".///etc" then "/etc

¢ In the form of ‘filedir*’ path equivalence.
CAN-2004-0696 - List directories using desired patll "*"

CAN-2002-0433 - List files in web server using 't'e

1.4 Path Manipulation Attack

135

Path Manipulation attack might occur in web apgiama if an attacker can manipulate the request
parameter which specifies a path used in some tperan file system and by manipulating the
parameter, if web application run with enough peiges, an attacker would gain a capability to

change, or rewrite the specified resource. The pl@oode snippet shows this kind of weakness.

String fileName = request.getParameter(“fileName”);

File file = new File(“/usr/local/workingfiles/"+fileName);

FileOutputStream fileStream = new FileOutputStredite];

In this code snippet, the developer assumes tlgatsta parametéfileName” specifying a valid file
and does some modification on this file accordimdpaisiness rule and did not consider whether this
parameter can be changed my malicious user oMloen an attacker finds this weakness, he could
send a malicious HTTP request wifileName” with value®“../../tomcat/conf/server.xml'and since
this code has not any checks about the paramepgtication server configuration file can be
overwritten and web application would break dowathPmanipulation attack’s likelihood is high to
very high according to CWE List and as shown in éxample it would cause extremely severe

results.
1.5 Special Element Injection

This category deals with various problems that imespecial elements such as reserved word and
special characters. The main problem area of thisgory is parsing errors that comes with using
special characters and reserved words with in sgqo@rameters. Most of these vulnerabilities are
because of poor coding practices. Although SQLciipa and cross site scripting are also a kind of
special element injection, since they are technolsgecific, they will be described in their own

categories.

The attacker tries to break the code by inserteugous special characters or reserved words il vali
request parameters. The most harmless impactasniiation leakage by breaking the execution for
example getting the error code or stack trace.rAftdlecting the system information, the attacker
could try to bypass authentication and authorimatipinsert malicious code into the web application
considering the various methods that can be usespfercial element insertion attacks; CWE declares
the likehood of exploit of special element insartettacks as high to very high and dangerousness of

impacts as high.

Some commonly used attacks techniques and repattgeeks are listed as follows;

136

« By inserting ‘Parameter Delimiter’. The attackeserts field separator into input parameter.
CAN-2003-0307 - attacker inserts field separattw input to specify admin privileges.
« By inserting ‘Value Delimiter’. The attacker insedelimiters between values.

CAN-2000-0293 - multiple internal space, insuffitiequoting - program does not use proper
delimiter between values

e By inserting ‘Record Delimiter'. The attacker insecarriage returns and ‘|’ fields separator to

insert more and malicious records to the system.
CAN-2004-1982 - carriage returns in subject fidldwa adding new records to data file

CVE-2001-0527 - attacker inserts carriage retumd §" field separator characters to add new

user/privileges.

« By inserting ‘Line Delimiter’. The attacker inserige breaks to insert malicious input to the

system.
CVE-2002-0267 - linebreak in field of PHP scrigbals admin privileges when written to data file.

« By inserting ‘Section Delimiter’. One example okaction delimiter is the boundary string in a

multipart MIME message.

* By inserting ‘Input Terminator’. If an applicatiqmarses input using special input delimiters, an
attacker could break down the code by insertingefahput delimiters. CVE-2000-0319, CVE-2000-
0320 - MFV. mail server does not properly identi§rminator string to signify end of message,

causing corruption, possibly in conjunction witli-bf-one error.

CAN-2001-0996 - mail server does not quote endapfi terminator if it appears in the middle of a

message.
CAN-2002-0001 - improperly terminated comment orgsle allows commands..

e By inserting ‘Input Leader’. If an application ussgecial input leader characters representing

start of the input, an attacker could break dovendibde by inserting false input leaders.

« By inserting ‘Quoting Element’. If an applicatioiicavs quoting elements, an attacker could try

to break down the code by inserting duplicate gaiotemissing leading/trailing quotes.

CAN-2003-1016 - MIE. MFV tool bypass AV/securitytiifields that should not be quoted, duplicate

quotes, missing leading/trailing quotes.

137

e By inserting ‘Escape, Meta or Control Sequencerfapplication uses special escape, meta or
control sequence characters, an attacker coulck lwtean the code, change execution by inserting
malicious characters or commands.

CVE-2002-0542 - mail program handles special "~¢ape sequence even when not in interactive

mode.
CVE-2000-0703 - setuid program does not filter pecsequences before calling mail program.

CVE-2002-0986 - mail function does not filter camticharacters from arguments, allowing mail

message content to be modified.
CVE-2003-0020, CAN-2003-0083 - Terminal escape sages not filtered from log files.

CVE-2003-0021, CVE-2003-0022, CVE-2003-0023, CVB2M063, CAN-2000-0476 - terminal

escape sequences not filtered by terminals wheategisg files.

CAN-2001-1556 - MFV. (multi-channel). Injection @bntrol characters into log files that allow

information hiding when using raw Unix programséad the files.

e By inserting ‘Comment Element’. The attacker coatthck the application by inserting duplicate

comment elements or missing leading/trailing comineégments. Mostly used for cross site scripting.

CAN-2002-0001 - mail client command execution duémproperly terminated comment in address

list
CAN-2004-0162 - MIE. RFC822 comment fields may becessed as other fields by clients.
CAN-2004-1686 - well-placed comment bypasses sgcwarning

CAN-2005-1909, CAN-2005-1969 - information hidinging a manipulation involving injection of

comment code into product.

e By inserting ‘Variable Name Delimiter’. The attacksould insert special characters such as ‘$’,

‘%’ to bypass the black list of available commands.
CAN-2005-0129 - "%" variable is expanded by wildtéunction into disallowed commands.

CAN-2002-0770 - server trusts client to expand mscallows macro characters to be expanded to

trigger resultant infoleak.

* By inserting ‘Wildcard or Matching Element’. Thetatker could insert wildcard or matching

element, which could result in unexpected behavidisst used for SQL injection.

CAN-2002-0433, CAN-2002-1010 - bypass file resinics using wildcard character

138

CVE-2001-0334 - wildcards generate long string xyma@sion
CAN-2004-1962 - SQL injection involving "/**/" se@mces

« By inserting ‘White Space Elements’. The attackewld insert white space characters into the

input and these characters could overlap sepachtwacters or delimiters.

CAN-2002-0637 - Virus protection bypass with RFQIlations involving extra whitespace, or

missing whitespace.

CAN-2004-0942 - CPU consumption with MIME headermsntaining lines with many space
characters, probably due to algorithmic compleRESOURCE.AMP.ALG).

CAN-2003-1015 - Whitespace interpreted differetyymail clients.

e By inserting ‘Grouping Element / Paired Delimitelf.an application does not properly handle
the characters that are used to mark the beginamy ending of a group of entities, such as
parentheses, brackets, and braces, the attackdreak down the code by inserting or deleting these

characters from input causing crashes and bufferflows.
CAN-2004-0956 - crash via missing paired delim{tggen double-quote but no closing double-quote)
CVE-2000-1165 - crash via message without closiig "

CVE-2005-2933 - buffer overflow via mailbox namethwian opening double quote but missing a
closing double quote, causing a larger copy thaneeted

e By inserting ‘Null Character / Null Byte'. Insergnnull characters can result in various

interpretation errors. The application could pdasing parsing the input.
CAN-2005-2008, CVE-2005-3293 - source code disclsising trailing null
CAN-2005-2061 - trailing null allows file include

CAN-2002-1774 - null character in MIME header aldetection bypass

CVE-2004-0189 - decoding function in proxy allovegyular expression bypass in ACLs via URLs
with null characters

CVE-2005-3153, CVE-2005-4155 - null byte bypasdd® Pegexp check
1.6 Command Injection

Command Injection attacks are subset of injectitiacs, in which the attacker manipulates the

request parameters to control the calling extgpnadesses. Dynamically generating operating system

139

commands that include user input as parameterseeainto command injection attacks. An attacker
can insert operating system commands or modifiesdmmand that will be executed. CWE declares
the likehood of exploit of command injection attacks high to very high and dangerousness of

impacts as very high. Following example shows ha@mmand injection occurs;
String operationType = request.getParameter(“op&l)p

String cmdToExecute = new String (“bash /usr/losathebatchjop.sh ” +opttype;
System.Runtime.getRuntime().exec(cmd);

In this example, the developer wants to get sonmentand parameter from the request and tries to
execute some batch process. (For example, to d&upaoperation of an administrative web
application.) However an attacker can manipulajgtitype parameter and adds “& rm -rf
/usr/local/JBoss”, and tries to delete the apgbeatserver folder. EveiRuntime.exec(fommand
executes only one command per call. Creating blasl enables executing multiple commands. With

this vulnerably code, an attacker can execute wkatgystem commands, as he wants.

Command injection vulnerabilities occur when thésee conditions are satisfied: 1. Input of the
application enters from an untrusted source. 2. &k is part of a string that is executed as a
command by the application. 3. By executing the mamd, the application gives an attacker a

privilege that the attacker would not otherwiseéav
1.7 Argument Injection or Modification

Argument injection or modification vulnerability it a vulnerability that is used for web applioati
attacks. This vulnerability is in fact affects sdatone applications that has interaction with OS
commands and which takes arguments from the OSe aktacker tries to inject or modify the
arguments of application so that he can gain margges or execute malicious code. For example,
if an application is configured to take init fileRLL from the command line and read an init filedad
some dynamic link libraries, the attacker couldeatol execute malicious DLL’s by changing the init

file location to malicious file from altering commé line arguments.

However, from web application view, there is a wicput serious security flaw in Java Web Start,

client-side deployment technology for java applmaé. Java Web Start handles java virtual machine
properties defined in JNLP files. A malicious usan modify these JNLP files and pass malicious

command line arguments to the Java virtual macfiihey can be used to disable the Java "sandbox"
and compromise the system. The attack can be daotie when the victim user views a web page

crafted by the attacker.

140

A few system properties are considered "secure'ifatdeffined in a JNLP file, they are passed to the
Java executable (javaw.exe) via the -Dproperty=evalommand line argument. However, a malicious
user can use this feature to inject extra commizedarguments to the Java executable.

For instance, a JNLP file can contain this proptaty
<property name="sun.java2d.noddraw" value="true HBL />

The property "sun.java2d.noddraw” is considerecuisedy Web Start, so it is accepted and the

startup command for the application is somethike this:
javaw.exe -Dsun.java2d.noddraw=true HELLO (othgsgayour.application

This would produce a Web Start error message sayiagnain class can't be found, as javaw.exe
interprets "HELLO" as the main class name instelatiyour.application”. The problem is that Web

Start fails to use quote symbols around the prg@egument.

To exploit the flaw, an attacker can pass commargdrguments affecting the Java security policies.
Normally an unsigned, untrusted Java applet operagde a "sandbox” and can't e.g. access local
files. By exploiting this flaw, the default "sandticsecurity policy can be overridden with an ardiyr
policy file hosted on the attacker's web servere Hew policy can grant full permissions to the
application, which could then e.g. read or writbitaary files on the victim system, or download and
launch viruses, keyloggers or other malware. Theckér may set up a JNLP file on a web server so
that it will be launched without further user irgetion when the victim visits the site, e.g. witle t
IFRAME tag.

Although this attack is in fact web browser attackector, the attacker could
replace an existing JNLP file on a web site withhaicious one. So that any web application can be

source of this vulnerability.
1.8 Resource Injection

This vulnerability enables an attacker to accessnodify otherwise protected system resources.
Resource injection attacks resemble path manipulagittacks so that it covers path manipulation
attack, which is related to file system resouragsaltso considers all kind of system resources sisch

data sources, system ports.

An application is vulnerable to resource injectattacks when these two condition occurs; 1. An
attacker can specify the identifier used to aceesgstem resource. For example, an attacker mgght b
able to specify part of the name of a file to bermgd or a port number to be used. 2. By specifying
the resource, the attacker gains a capabilitywlvatild not otherwise be permitted. CWE declares the

likehood of exploit of resource insertion attackshégh and dangerousness of impacts as very high.

141

1.9 Code Injection

Many of code injection attacks are under-studiexd @erminology is not sufficiently precise
according to CWE. However CWE describes tree maiagories under code injection vulnerability;

1.9.1 Direct Dynamic Code Evaluation:

If a web application uses an interpreter and allmpsits to be fed directly into a function (e.gvag)
that is dynamically evaluated and executed thetiagiwcode. Perl, Python and PHP technologies are
among these that use an interpreter so that tleeyudinerably to this kind of attacks. Some attaanles

listed as follows;

CAN-2002-1750, CAN-2002-1751, CAN-2002-1752, CANG201753, CAN-2005-1527, CAN-

2005-2837 are examples of direct code injection Rerl ‘eval’ function.

CAN-2005-2498 and CAN-2005-1921 are examples of Mdde injection into PHP ‘eval’
statement using nested constructs that shouldennebted.

CAN-2001-1471 is example of MFV. invalid value yeats initialization of variables, which can be

modified by attacker and later injected into PH¥alestatement.
1.9.2 Direct Static Code Injection:

The product allows inputs to be fed directly into autput file that is later processed as code.
Different from XSS or HTML injection techniques whiis executed on the client side, direct static
code injection vulnerability enables malicious code be executed at server side but this can be
resultant from XSS or HTML injection because thensaspecial characters can be involved. One

example of direct static code injection is ServieleSncludes (SSI) injection.

SSI Injection (Server-side Include) is a serveesidploit technique that allows an attacker to send
code into a web application, which will later beeedted locally by the web server. SSI Injection
exploits a web application's failure to sanitizerasupplied data before they are inserted intaeese

side interpreted HTML file. Before serving an HTMeb page, a web server may parse and execute
Server-side Include statements before providing ithe user. In some cases (e.g. message boards,
guest books, or content management systems), apg@ication will insert user-supplied data into the
source of a web page. If an attacker submits aefeaide Include statement, he may have the ability
to execute arbitrary operating system commandgaude a restricted file's contents the next time

the page is served.
The following SSI tag can allow an attacker totpetroot directory listing on a UNIX based system.

< l--ffexec cmd="/bin/Is /" -- >

142

The following SSI tag can allow an attacker to ab@atabase connection strings, or other sensitive

data contained within a .NET configuration file.
<I--#INCLUDE VIRTUAL="/web.config"-->
Some direct static code injection attacks arediste follows;

CVE-2002-0495 - Perl code directly injected into IGiBrary file from parameters to another CGI

program
CAN-2005-1876 - direct PHP code injection into soipimg template file
CAN-2005-1894 - direct code injection into PHP gtthat can be accessed by attacker

CAN-2003-0395 - PHP code from User-Agent HTTP headgectly inserted into log file

implemented as PHP script.
1.9.3 PHP File Inclusion Attack:

This vulnerability is specific to PHP technologpwever since it is likehood of exploit is considire

as very high according to CVE, it is treated assab category of code injection attack techniques.
When a PHP product uses "require" or "include" estents, or equivalent statements, that use
attacker-controlled data to identify code or HTMb lhe directly processed by the PHP interpreter
before inclusion in the script this vulnerabilitgudd be occur. Some examples of this vulnerability

are,

CAN-2004-0285, CAN-2004-0030, CVE-2004-0068, CAN3BER157, CAN-2005-2162, CAN-2005-
2198, CVE-2004-0128 are examples of modificatiomsgumed-immutable configuration variable in

include file allows file inclusion via direct regste

CAN-2005-1864, CAN-2005-1869, CAN-2005-1870, CAN3BR154, CAN-2002-1704, CAN-
2002-1707, CAN-2005-1964, CAN-2005-1681, CAN-20@B& are examples of PHP file inclusion.

CAN-2004-0127 and CAN-2005-1971 are examples ofe@ary traversal vulnerability in PHP
include statement.

CVE-2005-3335 is example of PHP file inclusion esshoth remote and local; local include uses "..
and "%00" characters as a manipulation, but mampote file inclusion issues probably have this

vector.
1.10 LDAP Injection

Lightweight Directory Access Protocol (LDAP) is adely used protocol for accessing information

directories. LDAP injection vulnerability enables attacker to reveal sensitive and secret inforanati

143

from the system and generating authentication amidoaization errors that result in more dangerous
situations. If a web application does not propdiitgr or quote special characters or reserved word
that are used in LDAP queries or responses anevaliiitackers to modify the syntax, contents, or

commands of the LDAP query before it is executddAP injection could be occurred.

LDAP injection techniques have very similar like IS@jections. Although there can several LDAP

injection techniques, some example injection itestas follows;

Consider a web application that has page cdlegp-search.jspthat takes a parameteserid and

return back user information. Such a code can beevably to these kinds of attacks.

» Insertion of special characters like $,@ can dgsmaery structure and reveals technical
information as error page. An attacker can gaire tgp LDAP implementation, line of query code.

(Examplehttp://some.site/ldap-search.jsp?userid=({§#%

e Insertion of (J(cn=*) can reveal cn value of specifuser. (Exampleéttp://some.site/ldap-

search?userid=someuser(|(ch¥*

* Insertion of (|(objectclass=*) can reveal list ofvadable object classes. (Example

http://some.site/ldap-search?userid=someuser({{iwtgass=})

e Insertion of (J(homedirectory=*) can reveal homeediory of specified user. (Example

http://some.site/ldap-search?userid=someuser(|(tioeatory=>))

e Insertion of (*) can reveal home directory of spieci user. (Examplénttp://some.site/ldap-

search?userid=someuseryF*

Main purpose of most of the LDAP injection attadksrevealing sensitive information. However
LDAP injection can be solely used to bypassing autication and authorization of web application
and result in more dangerous consequences. CWES stedt besides there are a few reported LDAP

injection attacks, this vulnerability is found vergquently by third party codes.
1.11 SQL Injection

SQL injection attacks are one of the most dangenastaintiation of injection attacks. In this attack
technique malicious SQL commands are injected nefguest parameters in order to effect the
execution of predefined SQL commands. SQL injecttincks threats most of the subjects computer

security.

Confidentiality: Most common consequence of SQL injection atté&eksss of confidentiality. Since
SQL databases hold sensitive data, unauthorizegsado these data could generate more dangerous

consequences.

144

Authentication: Most of the applications use SQL databases fomgt@uthentication data. If a SQL
injection occurs in authentication part of the eystall authentication mechanism can be bypassed by
the attacker.

Authorization: Authorization modules that use SQL database aothan critical part of the web
application. If they are vulnerably to SQL injecticattacks, it would be possible to change

authorization information and a security breachlampened for an application.

Integrity: By SQL injection, it is also possible to make oje® or deletions that threats integrity of
whole database.

There are various SQL insertion techniques, howeercan categories these techniques into five;
insertion using multiple SQL statements, authoizeat bypass, using SELECT command, using

INSERT command, using stored procedures.

Insertion using multiple SQL statements: Although not all database servers is vulnerably t
insertion using multiple SQL statements, some irigrdrones such as Microsoft® SQL Server 2000
allows multiple SQL statements separated by sewnsoto be executed at once, as a result becomes
vulnerably. This type of attack allows the attackeexecute arbitrary commands against the database

A typical example of this attack is shown below;
String userld=Request.getParameter(“userid”);
String itemNo=Request.getParameter(“itemno”);

String sqlQuery = “SELECT * FROM items WHERE owner=userld+” ’ AND itemno=

"+itemNo;
Statement.executeQuery(sqlQuery);

Assume that the regular execution of this code from web application s

http://somesite.com/searchitems.jsp?userid=somgitsamo=5 which selectsomeuser’stems with

item no 5. However if an attacker generates thiguest ashttp://somesite.com/seachitems.jsp

?userid=someuser&itemno=5;DELETE FROM items[hen the query to be executed becomes
SELECT * FROM items WHERE owner="someuser’ AND iteox5; DELETE FROM items; now

there are two distinct sgl statement to executeddépbase server sequentially, which result in

deleting all items from database.

Authorization bypass: The simplest SQL injection technique type is bgpaslogon form. The code
in the following example shows vulnerably code.

String sqlQuery = "SELECT username FROM users WHEBREname = ™ & strUsername & ™

AND password = " & strPassword &

145

Statement.executeQuery(sqlQuery);

/I if statement has return some rows

If rowCount >0 boolAuthenticated = False;
else

boolAuthenticated = True;

A valid request for this code ishttp://somesite.com/logon.jsp?userid=someuser&passw

somepassworcHowever if an attacker supplies userid field withR 1=1 and password field with
OR 1=1 then this will give sqlQuery the followinglues;

SELECT username FROM users WHERE username= " ORAND password=" OR 1=1

This is a valid SQL statement and returns all use@es from users table and the code only checks that
if that user exists, this request would bypass ghithentication check. If an attacker knows a valid
username, he can supply userid field with that aser password field with ‘OR 1=1 so that he can
login to the system as that user without knowing password, so that an attacker now has all

privileges to do any operation of a valid user.

Using SELECT command: The most dangerous injections that threaten cenfidlity of the web
application are result from select command attatkere are various techniques that depend on the
coding structure of web application; however unglag attack manner is the same for all kinds of
attacks. Firstly an attacker tries to reveal thd $Qery structure of the web page. This can be done
trying lots of quotes, parenthesis, WHERE, OR statet combinations. For example if the related

SQL query is as follows;

SQLString = "SELECT FirstName, LastName, Title FR@Mployees WHERE Employee = " &
intEmployeelD

The injection will be simple adding ‘OR 1=1 will eagh to allow injection, however if the SQL

query is like this:

SQLString = "SELECT FirstName, LastName, Title FR@Mployees WHERE EmployeelD = ™ &
strCity & "

The injection can be done by adding ‘ OR ‘1'="1get rid of syntax errors. An attacker tries diffare
combination to determine the structure. When heives a blank page, or a valid page, the injection
is successful. The next step of attack is insetihgON statement to that query. For example if some

part of the web application uses the following code

146

mySQL="SELECT LastName, FirstName, Title, Noteteriston FROM Employees WHERE (City =
" & strCity & ™)"

so when an attacker injects this value;
“) UNION SELECT OtherField FROM OtherTable WHERET,
now the following query is send to server, whicl igalid SQL query;

SELECT LastName, FirstName, Title, Notes, Exten&iB@®M Employees WHERE (City = “)
UNION SELECT OtherField From OtherTable WHERE (*)=*

It is valid request and database server only complabout a bad table name, so the next step is
choosing a valid system table name for exampleMBrSQL server these are sysobjects syscolumns
or for Oracle SYS.USER_OBJECTS SYS.TAB SYS.USER TEB SYS.USER_VIEWS
SYS.ALL TABLES SYS.USER_TAB COLUMNS SYS.USER _CON&AIRTS SYS.USER_
TRIGGERS SYS.USER_CATALOG. After that all an attacknust do is finding the exact column
number and type, he can do this by trying variojeciions like;

‘UNION ALL SELECT 9,9 FROM SysObjects WHERE ‘="
‘UNION ALL SELECT 9,9,9 FROM SysObjects WHERE ‘=
‘UNION ALL SELECT 9,9,9,9 FROM SysObjects WHERE ‘=*

Now the injection is successfully done, and he reaeal all table names from SYS.USER_TABLES
and find corresponding columns from SYS.USER_TAB LOBINS so that he can query any table in

that web application.

Using the INSERT command: The insert command can also be used for reveaemgitive
information. Common uses of INSERT in web applimatare user registrations, bulleting boards,
adding items to shopping carts, etc. To take adwgnbdf an INSERT vulnerability, an attacker must
be able to view the information that he has suleitiConsider an example user registration form
with following SQL string;

SQLString = "INSERT INTO userregistration VALUES & strUserName & ™, "' & strUserMail &
", " & strUserPhone &)"

If an attacker fill out the form like this;

Name: ‘ + (SELECT TOP 1 FieldName FROM TableName) +
Email: blah@blah.com

Phone: 333-333-3333

147

Then the insert query becomes;

INSERT INTO userregistration VALUES (* + (SELECT OGP 1 AnyFieldName FROM
AnyTableName) + *, ‘blah@blah.com’, ‘333-333-3333’

So that when the user list his registration infaiora he can now see his selection query (SELECT
TOP 1 AnyFieldName FROM AnyTableName) result in tieene value so that he can reveal any
information from the web application.

Using stored procedures:

SQL injection can be used for accessing storedgaaes and lead to more dangerous consequences.
All database servers have already built-in storedcgedures which can be used for reporting,
management, monitoring activities and these praesdoan be used using SQL injection depending
on the permissions of the web application’s datahes®r. Two most dangerous stored procedures of
MS SQL server that can be used gpecmdshellandsp_makewebtaskxp_cmdshell takes a single
argument which is the command to be executed in S€ler’s user shell. Using xp_cmdshell, an
attacker can executed any command such as deletisensitive data or broken down the whole
database server. If an attacker makes a requasi$® page which has SQL injection vulnerability as

shown below; he can delete entire disk.

http://somesite.com/search.jsp?userid=someuseE(EKaster.dbo.xp _cmdshell ‘cmd.exe delete c:*

While xp_cmdshell threatens integrity, sp_makewsbtdreatens confidentiality. sp_makewebtask
takes first argument as output file and secondraegit as SQL query to be executed. So if an attacker
manage to execute sp_makewebtask procedure, heepart any SQL query to a file which has

public access. Afterwards he can request previoastated file as HTTP request. As an example

using query below, he can generate a web pagéighall customer information.

http://somesite.com/seach.jsp?userid=someuser’;EXaster.dbo.sp _makewebtask'\public\output.ht
ml; ‘SELECT * from Customers’

SQL injection attacks are one of the most commahraaost easy to generate security exploits of web
applications. Not only application that directlycass database servers but also some commonly used
technologies for accessing database servers likerktaite or HibersonicSQL are also vulnerable to

SQL injection attacks.
1.12 Cross Site Scripting (XSS) Attacks

Nowadays, all web application depends on dynamigepgeneration which requires user input to
change behavior of a web page. Without proper inglidation, web applications are easy to

vulnerable from XSS attacks. A web application idnerable to XSS attacks when they allow

148

injection of malicious scripts as inputs of used @s a result of generating dynamic pages from this
infected input, these malicious scripts could beceked from client browsers and could affect albbwe
site clients. Although secure execution of JavgBadde is based onsandboxing mechanisrwhich
allows the code to perform a restricted set of af@ns only and JavaScript programs downloaded
from different sites are protected from each otileng a compartmentalizing mechanism, called the
same-origin policy scripts may be confined by the sand-boxing meishas and conform to the
same-origin policy, but still violate the securitya system. This can be achieved when a userdd lu
into downloading malicious JavaScript code (presipicreated by an attacker) from a trusted web

site.

Two main classes of XSS attacks exist: stored ledtand reflected attacks. In a stored XSS atthek, t
malicious JavaScript code is permanently storethentarget server (e.g., in a database, in a messag
forum, in a guestbook, etc.). In a reflected XS, on the other hand, the injected code is
“reflected” off the web server such as in an em@ssage or a search result that may include some or
all of the input sent to the server as part of ibguest. Reflected XSS attacks are delivered to the
victims via e-mail messages or links embedded barawveb pages. When a user clicks on a malicious
link or submits a specially crafted form, the inggt code travels to the vulnerable web application
and is reflected back to the victim’s browser. fital reflected cross site scripting scenario @vai

in following figure.

Usar Attacker's Trusted
= Server Senver
1: User visits the
attackers Web site
____________ -

2: User clicks on a malicious nk and an HTTP
request containing JavaScripf code is sent to
the trusted server

3: The trustsd sarver refurns jan ermor message containing
the name of the rescurce (i.el, the JavaScript code)

4: The JavaScript code is executed and the user's
cockie associated with the trusted server is sent
o the attackers server

Figure 38 XSS Attack

149

Some XSS attack techniques are;

Basic XSS: Basic XSS involves, web applications that involtask of filtering of any special
characters, such as “<” “>” and “&”. This explo& very common and it is the easiest technique of

XSS attack. Some observed example of basic XS&kattae;

CVE-2002-0938 - XSS attack using a parameter inka |

CAN-2002-1495 - XSS attack via attachment filenameseb-based email product.
CAN-2003-1136 - HTML injection in posted message.

CAN-2004-2171 - XSS attack result from not quoteeéiiror page.

XSS in Error Pages: This Weakness occurs when a web developer disphays on an error page
(e.g. a customized 403 Forbidden page). If an lettacan influence a victim to view/request a web

page that causes an error, then the attack maydoessful. Some observed examples are;
CVE-2002-0840 - XSS attack in default error pagefiHost: header.

CVE-2002-1053 - XSS attack in error message.

CAN-2002-1700 - XSS attack in error page from teedgarameter.

Script in IMG Tags: An attacker could attack web application in thenfoof HTML IMG tags.
Attackers can embed XSS exploits into the valuedMss attributes (e.g. SRC) that is streamed and

then executed in a victim's browser. Some obseexadhples are;

CAN-2002-1649, CAN-2002-1803, CAN-2002-1804, CANG201805, CAN-2002-1806, CAN-
2002-1807, CAN-2002-1808.

XSS Using Script in Attributes: XSS attacks can be inserted in a web page usingedains
attributes within tags such as “onmouseover”, “adlp “onerror”, or “style”. Some observed

examples are;

CAN-2001-0520 — XSS attack by bypassing filteriidS€RIPT tags using onload in BODY, href in
A, BUTTON, INPUT.

CVE-2002-1493 — XSS attack on guestbook in STYLEW®E SRC attributes.
CAN-2002-1965 — XSS attack using Javascript in aattribute of IMG tag.
CAN-2002-1495 - XSS attack in web-based email pcbglia onmouseover event.

CAN-2002-1681 - XSS attack via script in <P> tag.

150

CAN-2003-1136 - XSS attack using Javascript in onseover attribute.

CAN-2004-1935 - XSS attack using onload, onmousea@rel other events in an e-mail attachment.
CAN-2005-0945 - XSS attack using Onmouseover atolaginevents in img, link, and mail tags.
CAN-2003-1136 - XSS attack using Onmouseover aiigilin e-mail address or URL.

XSS using script via encoded URI schemegtlthough web application uses filtering of maligg

scripts, an attacker could cloak the script usifi} Encodings. Some observed examples are;

CAN-2005-0563 - Cross-site scripting (XSS) vulndigbin Microsoft Outlook Web Access (OWA)
component in Exchange Server 5.5 allows remoteladta to inject arbitrary web script or HTML via
an email message with an encoded javascript: URNAsc
ript:") in an IMG tag.

CAN-2005-2276 - Cross-site scripting (XSS) vulndigbin Novell Groupwise WebAccess 6.5
before July 11, 2005 allows remote attackers tecinprbitrary web script or HTML via an e-mail

message with an encoded javascript URI (e.g. "j&&&cript” in an IMG tag).

CAN-2005-0692 — XSS attack by bypassing the sditlipt using encoded script within BBcode IMG
tag.

CVE-2002-0117 - XSS attack by bypassing the séilipt using Encoded "javascript” in IMG tag
CAN-2002-0118 - XSS attack by bypassing the sdilier using Encoded "javascript” in IMG tag.

Doubled character XSS manipulations: An attacker could disguise injected script tagngsi
doubling of the “<<” character. It is a very bakind of XSS attack, but some examples exist in CVE

database such as;
CAN-2002-2086 - XSS using "<script".
CAN-2001-1157 — XSS attack using extra "<" in froftSCRIPT tag.

Invalid characters in identifiers: Some whitespace characters such as CLRF, nulbeatiscarded
by some web browsers so that insertion of theseacters in malicious scripts could bypass script
filtering of web application but since some webvsers discard these characters, the injected script

would be executed correctly.

CAN-2004-0595 — On this attack XSS filter doesittéif null characters before looking for dangerous

tags, which are ignored by web browsers.

151

Alternate XSS syntax:An attacker could try to bypass script filter Hieenating XSS syntax, an if a
web application’s script filter could not detecsémtion of alternate script syntax, then an attacke
could inject malicious script to success the attd2ke example of successful XSS attack is CVE-
2002-0738 where the attacker inject the scriphenform of &={script}.

1.13 XML Injection

XML injection is similar to SQL injection vulnerdty. It occurs when web site uses user supplied
information to query XML data. By sending malformiafbrmation into the web site, an attacker can
find out how the XML data is structured or acceatadhat they may not normally have access to just
like SQL injection. Although XML injection uses fdoss of confidentially, it can be used for

bypassing authentication and authorization if thesdules depends on XML data.

Querying XML is done with XPath, a type of simplesdriptive statement that allows the xml query
to locate a piece of information. When using XML &web site it is common to accept some form of

input on the query string to identify the contemtdcate and display on the page.

Although all of the insertion techniques that isah&bed in SQL injection section can be also used,
simple example can be given as a web applicatianabthenticate users depends on XML document
that has xml snippet as given below;

<?xml version="1.0" encoding="utf-8"?>
<Employees>
<Employee ID="1">
<FirstName>First User Name </FirstName>
<LastName>First User Last Name</LastName>
<UserName>FirstUser</UserName>
<Password>somepasswordl</Password>
<Role>Admin</Role>
</Employee>
<Employee |ID="2">
<FirstName> Second User Name </FirstName>
<LastName> Second User Last Name </LastName>
<UserName>SecondUser</UserName>
<Password>somepassword2</Password>
<Role>User</Role>
</Employee>
</Employees>

Consider this web application has a login form thast username and password fields as request
parameters and web application tries to matchubésname, password data to match record of XML

document.
String username = Request.getParameter(“username”);
String password = Request.getParameter(“password”);

String findUserXPath = "//Employee[UserName/text{}=username + " And

152

Password/text()="" + password + "]";

This works fine, if users enter valid username password, then it would fetch corresponding record,
if not it would return nothing. But if a maliciousser inject username field widomeuser' or 1=1 or
'‘a'='a, then XPath query becomé&Employee[UserName/text()='someuser' or 1=1 or"a' And
Password/text()="]and this is logically equivalent tSEmployee[(UserName/text()="'someuser' or
1=1) or (‘'a'='a’ And Password/text()=")]In this case, only the first part of the XPatled®to be true.
The password part becomes irrelevant, and the WseeNpart will match ALL employees because of
the "1=1" part. So it will allow an attacker to lngs any user in the system without supplyinglalva

password.

Although there are very few publicly reported ex#spin CVE database, XML injection
vulnerability is as serious and dangerous vulnétpbas SQL injection that threatens mostly

confidentiality of web applications.
1.14 Missing XML Validation

XML validation is an important concept for web apption. Since nearly all web application requires
XML form of data for processing or integrating witlt proper validation web application becomes
vulnerably to be affected by code or data injectidio be vulnerably a web application is not
necessary to accept XML as a user supplied inpost of the times XML form of data is dynamically
generated and passes to other parts of the welcafm to be directly parsed and executed. So if a
web application uses XML form of data, it might \agnerably to malicious code injection even if it

does not expect XML input from user.

So all XML data must be validated by DTD or XML stha, by accepting an XML document without
validating it against a DTD or XML schema, it isgstble to provide unexpected, unreasonable, or

malicious input.
1.15 HTTP Response Splitting

HTTP response splitting is one of the most dangemttacks that lead to many different type of

application attacks and if not properly handlece#ten nearly all concepts of computer security. By
HTPP response splitting, an attacker made appicaterver to generate two or more HTTP response
for one valid user request and one or more of thesgonses are malicious and gives an attacker to

full control the response as if it is a valid resge that comes from a legimate site.

If an application allows writing unvalidated datad an HTTP header, this would be result for an
attacker to specify the entirety of the HTTP resmomendered by the browser. HTTP response

splitting vulnerabilities occur when:
1. Data enters a web application through an untrusteidce, most frequently an HTTP request.

153

2. The data is included in an HTTP response headeénsenweb user without being validated for
malicious characters. For example the applicatiaistrallow input that contains CR (carriage return,
also given by %0d or \r) and LF (line feed, alseegi by %0a or \n)characters into the header.

As a result of injecting these characters in thedie of a valid response it will not only give akars
control of the remaining headers and body of tlepease the application intends to send, but also

allows them to create additional responses entiretier their control.

A typical HTTP response splitting example can bé#sws; consider a web application that receives

an input from the request and tries to set it to@kie header of an HTPP response.

String userSelection = request.getParameter(“seleatue”);

Cookie cookie = new Cookie(“selection”, userSelmut)j
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);

Here, the developer assumes ttemtiectedvalue”is under his control and it will consist of stardia
alpha-numeric characters, such as "BlueTheme" (fassinat this user selection represents a site
theme selection), is submitted in the request th@& P response including this cookie might take the

following form:
HTTP/1.1 200 OK ... Set-Cookie: selectedvalue=BhgsTe ...

If an attacker submits a malicious string, suchiBlaeTheme\r\nHTTP/1.1 200 OK\r\n...", then the
HTTP response would be split into two responsab®following form:

HTTP/1.1 200 OK ... Set-Cookie: author= selectegeaBlueTheme
HTTP/1.1 200 OK ... —Malicious Response-

The second response is completely controlled bytteecker and can be constructed with any header
and body content desired. The ability of attackeiconstruct arbitrary HTTP responses permits a
variety of resulting attacks, including: cross-usifacement, web and browser cache poisoning,

cross-site scripting and page hijacking.

Cross-User DefacementAn attacker can make a single request to a vubteiserver that will cause
the sever to create two responses, the second ichwhay be misinterpreted as a response to a
different request, possibly one made by another sts@ring the same TCP connection with the server.

This can be accomplished by convincing the usesuiomit the malicious request themselves, or

154

remotely in situations where the attacker and ger share a common TCP connection to the server,
such as a shared proxy server. In the best cassfaker can leverage this ability to convincersise
that the application has been hacked, causing uselsse confidence in the security of the
application. In the worst case, an attacker mayigeospecially crafted content designed to mime th
behavior of the application but redirect privatéormation, such as account numbers and passwords,

back to the attacker.

Cache Poisoning:The impact of a maliciously constructed resporae e magnified if it is cached
either by a web cache used by multiple users on &ve browser cache of a single user. If a response
is cached in a shared web cache, such as thoseadynfound in proxy servers, then all users of that
cache will continue receive the malicious contemtil tthe cache entry is purged. Similarly, if the
response is cached in the browser of an individiser, then that user will continue to receive the
malicious content until the cache entry is purgdthough the user of the local browser instancé wil

be affected.

Cross-Site Scripting: Once attackers have control of the responsesyeant application, they have a
choice of a variety of malicious content to provigeers. Cross-site scripting is common form of
attack where malicious JavaScript or other codéuded in a response is executed in the user's
browser. The variety of attacks based on XSS isosintimitless, but they commonly include
transmitting private data like cookies or othersg@s information to the attacker, redirecting the
victim to web content controlled by the attacker,performing other malicious operations on the
user's machine under the guise of the vulneralde Bhe most common and dangerous attack vector
against users of a vulnerable application usesStai@ to transmit session and authentication

information back to the attacker who can then takaplete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application ém@ malicious content to a user, the
same root vulnerability can also be leveraged direet sensitive content generated by the serveér an
intended for the user to the attacker instead. Byrstting a request that results in two responies,
intended response from the server and the respgmmegated by the attacker, an attacker can cause an
intermediate node, such as a shared proxy sexvenjddirect a response generated by the server for
the user to the attacker. Because the request matte attacker generates two responses, thadirst
interpreted as a response to the attacker's requieis¢ the second remains in limbo. When the user
makes a legitimate request through the same TCHRection, the attacker's request is already waiting
and is interpreted as a response to the victimsast. The attacker then sends a second requibst to
server, to which the proxy server responds withstever generated request intended for the victim,
thereby compromising any sensitive informationhie headers or body of the response intended for

the victim.

155

1.16 Process Control

Process control vulnerabilities take two forms;

1. An attacker can change the command that the progranutes: the attacker explicitly controls
what the command is. If data enters the applicdtiom an untrusted source and if the data is used a
or as part of a string representing a commandishexecuted by the application, by manipulating the
input string it is possible that the applicatiom @all untrusted malicious code and gives an attaak

privilege or capability that the attacker would otiterwise have.

2. An attacker can change the environment in whichctiramand executes: the attacker implicitly
controls what the command means. An example ofighifsan application loads a native library from
the environment, it is possible that an attacker replace the library or insert a malicious witle th
same name of the indented library and take coofrekecution. For example if an application loads a
library using System.loadlibrary(library.dll) whictakes only library name not absolute path, the
mapping from a library name to a specific filenameone in a system-specific manner. If an attacker
is able to place a malicious copy of library.dighér in the search order than file the application

intends to load, then the application will load thalicious copy instead of the intended file.
1.17 Log Forging

Log forging attack does not threaten the integritgonfidentially of a web application, in factibes

not directly aim web application, instead it forlpg entries or inject malicious content into logs.
Applications typically use log files to store atbiy of events or transactions for later review,
statistics gathering, or debugging. Depending enntature of the application, the task of reviewing
log files may be performed manually on an as-neebladis or automated with a tool that
automatically culls logs for important events @miting information. By inserting malicious, most of

the time garbage entries, an attacker can misdies@ws of logs and makes them useless.

Log forging vulnerabilities occur when: 1. Dataenstan application from an untrusted source. 2. The

data is directly written to an application or systeg file.

As an example of Log forging, assume that a welligaijon tries to log all authentication requesds a
in following code.

String userid = request.getParamater(“userid”);

String password = request.getParamater(“password”);

Boolean isAuthenticate = authenticate(userid,pas$o
Logger.info(*LOGIN USERID= “+userid"+”",”+isAuthente);

And when a user logout logs as;

Logger.infor(LOGOUT USERID="+userid);
In a normal case, the authentication log will lixe fiollowing;

156

LOGIN USERID=e112901,true
LOGIN USERID=maliciousUser,false
LOGIN USERID=e112089,false
LOGOUT USERID=e112901

However, if an attacker post userid parameter as

maliciousUser%0aLOGIN%20USERID=e112901%2cfalse%0alN¥620USERID=e112901%2ctru
€%0aLOGOUT%20USERID=e112901

then the log becomes; (The injected code is shaviioid)

LOGIN USERID=e112901,true
LOGIN USERID=maliciousUser,
LOGIN USERID=e112901,true
LOGOUT USERID=e112901 false
LOGIN USERID=e112089,false
LOGOUT USERID=e112901

So by log forging it is possible to ruin the loge§. In the most case, an attacker may be ablestoti
false entries into the log file by providing thepépation with input that includes appropriate
characters. If the log file is processed autombyicséhe attacker can render the file unusable by
corrupting the format of the file or injecting umpected characters. A more subtle attack might
involve skewing the log file statistics. Forgedodherwise, corrupted log files can be used to caver
attacker's tracks or even to implicate anotheryparthe commission of a malicious act. In the wors
case, an attacker may inject code or other commamdsthe log file and take advantage of

vulnerability in the log processing utility.

1.18 Buffer and Numeric Errors

Buffer overflow attacks and numeric errors are dwoectly threaten web applications itself, but

threatens web servers or application server pradun attacker use buffer overflows to corrupt

execution stack of web application. By sending oialis input to a web application, an attacker can
inject malicious codes and cause the web applicaticexecute them. Buffer overflows and numeric
errors found widely in server products and can psigmificant risk to users of these products.

Although it is unlikely to find buffer overflows iveb application itself, it is still possible esjzly

for web applications that use third party dynanmik llibraries or shared objects such as graphics

library to generate images or reporting tools.

The reason behind buffer overflow and numeric srribreaten especially application servers not
directly web application is that application sessghat have buffer overflow vulnerabilities are
publicly known and even if there is no report aboutfer overflow attack, an attacker can easily try

buffer overflow attack techniques on applicationvee since errors that is generated in application

157

server code is directly reflected to attacker wigoles an attacker important clues, on the othadha
for a web application, if properly configured, thlility to exploit the flaw is significantly redudéoy
the fact that the source code and detailed err@sages for the application are not visible to the

attacker.

Some common buffer overflow flow and numeric erattack techniques are; stack overflow attack,
heap overflow attack, buffer underwrite, buffer ovete, unchecked array indexing, length parameter
inconsistency, format string vulnerability, impropring length checking, integer overflow, integer

underflow, integer coercion error, sign extensioore signed to unsigned conversion error, unsigned

to signed conversion error, numeric truncationrentgmeric byte ordering error. [CWE]

Although all known web servers, application servars vulnerably to buffer overflows, Java and

J2EE environments, web application that use thexdenblogies, are immune to these attacks.
1.19 Cleansing, Canonicalization and Comparison Errors

Web applications, does cleansing and filteringvalidation of data and also canonicalize the names
of resources. However inappropriate combinatiothege steps might lead to overlooking of possible
malicious attempts. Malicious codes or unacceptaigat may disguise from the filtering and black

listing mechanisms of web applications. Misintetimg the input when they are differently encoded is

also studied under this category.

Encoding Errors: If a web application does not properly handle inpditen an input has been
modified to use encoding, this can result in oweking of malicious attacks. An attacker could oy t
hide malicious data by trying different kind of edings, mixing or doubling encodings. In CWE,
encoding errors are discussed in five categoridterdate Encoding, Double Encoding, Mixed

Encoding, Unicode Encoding, URL Encoding.

Case Sensitivity Errors: If a web application fails to handle case sensitilata, this can lead to
several possible consequences; case-insensitigsvpais will reduce the size of the key space and
makes brute force attacks easier, an attackeryyaasb filters or access controls using alternateesa

with lowercase, uppercase, mixed case, multipkerjmetation errors using alternate names.

Early Validation Errors: If validation of data step is done before cleansedcanonicalized,
validation would be susceptible to various manipakes that result in dangerous inputs that are

produced by canonicalization and cleansing.

Collapse of Data into Unsafe Valuelf a web application cleanses or filters data imegy that causes

the data to "collapse" into an unsafe value, ithihlgad to various vulnerabilities. Some examptles a
CAN-2004-0815 - "/.//I[" in pathname collapses bs@ute path.

CVE-2005-3123 - “/./I../lIIII.1.I" is collapsed int/.././" after ".." and "/[" sequences are renthve

158

CAN-2002-0325 - ".../.../I" collapsed to "..." dteeremoval of "./" in web server.
CAN-2002-0784 - "//l.]..]...I" claimed to work /" removal would produce "///..."

CAN-2005-2169 - Regular expression intended togmtoagainst directory traversal reduces ".../...//
to "./".

Partial Comparison Errors: If a web application evaluate user input as oraytiplly compared to
the desired input before a match is determinedatacker can find a way to bypass security checks.
For example, an attacker might succeed in autteigit by providing a small password that matches

the associated portion of the larger, correct passw
1.20 Information Leak

A system information leak occurs when system datdetugging information leaves the program

through an output stream or logging function. Ataeker can cause errors to occur by submitting
unusual requests to the web application. The respaoo these errors can reveal detailed system
information, deny service, cause security mechasignfail, or crash the server. There are various

sources of information leak. Some of the importars are;

Information Leak through Error Messages: An attacker can use error messages that reveal
technologies, operating systems, and product vesdio tune the attack against known vulnerabilities
in these technologies. The application uses diagnomethods that provide significant
implementation details such as stack traces asqgpdts error handling mechanism. For example,
following code snippet reveals path environmenialde in error message. An attacker could generate
various attacks, including process control (inggrtinalicious dilI's in path folders.).

String path = System.getenv("PATH");

System.err.printin(“Can not find "+filename+” ontha"+path);

Or in following example, system exception is refigt as output, which could reveal system

information, which is the most common informatia@usce for generating SQL injection attacks.

try {

Connection conn=getConnection
}

catch(Exception ex){
ex.printStackTrace();

}

Information Leak through Sent Data: The accidental leaking of sensitive informatiorotigh sent
data refers to the transmission of data which #hersensitive in and of itself or useful in thether
exploitation of the system through standard datanohkls. Most common reason of this kind of
leakage is unexpected errors generated by the p@ization such as product error codes, especially

from database vendors, such as shown below;

159

Warning: mysqgl_pconnect(): Access denied for useot@localhost' (Using password: N1nj4) in

lusr/local/www/wi-data/includes/database.inc orelih

Information Leak through File and Directory: Without proper administration of web application
servers, files or directories that hold sensitivioimation might leak through the system. Espegiall
front hand servers are under higher risks. An k#iacould scan the web servers using directory
listing attack techniques and if properly not riestd, he might gain sensitive information through
these files. Some sources of file and directorprimiation leaks are backup files, core dump files,
source files, log files and through CVS repository.

Information Leak through Data Queries: An attacker could gain information not only didgct
accessing but also inferring information usingist&s. If a web application supplies some stassti
about the system to malicious users, there is agehéhat an attacker could infer sensitive datenfro
user data statistics for example by gaining onliser information; an attacker could generate sessio
fixation or hijacking attacks aiming that users.

Information Leak through Debug Information: If debug information is not totally cleaned frohet
final product, an attacker could use these debfagrivation to reveal sensitive information. Although
developers try to hide debug information, mosthaf time in hidden fields of a web page, there is

always high risk that it will be revealed.

Information Leak through Caching: If a web application does not use a restrictivensag policy
for forms and web pages that potentially containsig®ve information, there is a risk that this
information could be stored in a client-side cafhith most browsers) and left behind for other aser

to find. Malicious user could use this cached infation to generate various attacks.

1.21 Information Loss or Omission

Information loss vulnerabilities does not diredidad to any attack, but threatens security of a web
application by loosing security-relevant informatitnat used for monitoring and auditing. CWE gives
three categories under this subject;

Truncation of Security-Relevant Information: The application truncates the display, recordirrg, o
processing of security-relevant information in aywlaat can obscure the source or nature of ankattac

Some observed examples of this category are;

CAN-2005-0585 - Firefox before 1.0.1 and Mozillddre 1.7.6 truncates long sub-domains or paths,
facilitating phishing.

CAN-2004-2032 — Netgear RP114 bypass URL filter ailong URL with a large number of trailing
hex-encoded space characters.

160

CAN-2003-0412 - Sun ONE Application Server 7.0 does log complete URI of a long request
(truncation).

Omission of Security-Relevant Information: The application does not record or display infaiora
that would be important for identifying the souarenature of an attack. Some observed examples of

this category are;

CAN-1999-1029 — A web application does not recardin attempts if user disconnects before

maximum number of tries.
CAN-2002-1839 - Sender's IP address not recordedtigoing e-mail.
CVE-2000-0542 - Failed authentication attempt ecbrded if later attempt succeeds.

Obscured Security-relevant Information by Alternate Name: The software records security-
relevant information according to an alternate narh¢he affected entity, instead of the canonical

name which lead to omission of security-relevafdarimation.

CAN-2002-0725 - Attacker performs malicious actias a hard link to a file, obscuring the real
target file.

1.22 Credentials Management Errors

Credential management is one of the fundamentalepis for securing web applications. Commonly,
web applications handles credentials based onidgeassword pairs; however stronger methods of
credentials management techniques such as hardelaes are also used but such mechanisms are
cost prohibitive for web applications. This kind weaknesses occurs when a web application
transmits or stores authentication credentials ases an insecure method that is susceptible to
unauthorized interception or retrieval. CWE repdtiese common weaknesses about credential
management of web applications;

e Storing passwords in plaintext storagein configuration filesmakes them open to any kind of
attacks. An attacker could retrieve these passyilasl easily and could login into system with any
user’s credential.

» Storing passwords in a recoverable forngmanother common weakness for web application and
is no different from storing password in plaintestorage. The use of recoverable passwords

significantly increases the chance that passwoillibevused maliciously.

« Unprotected transport of credentiails also an important weakness for web applicat&inse
user credentials can also be captured during trigsgmn from client side to server side. Without
encrypting HTTP messages using SSL user passwoedautnerable from eavesdropping or altering

message contents

161

* Using Weak passwordscreases the chance that passwords will be gdiese web application

does not force strong passwords, application wbalglulnerably from brute force attacks.

e Using Hard-Coded Passwords common developer mistake and seriously weakefd w
application security. Embedding a super user pask\enables developers to login as any user for
debugging) or writing passwords in a source codpdeially for creating database connection) are
some examples of using hard-coded passwords. dtlats have access to the byte codes for
application, they can use decompiler to accesdiassembled code, which will contain the values of
the passwords used.

e Missing Password Field Maskirduring login process will increase the potental dttackers to
observe and capture passwords.

* Weak Cryptography for Passwordtswers the security of web application. Storingsg@ords
with weak cryptographic methods such as Base 6d4ding would enable attackers to reconvert the

passwords.

* Not allowing password aginiy a weakness for a web application because thes wéll have no
incentive to update passwords in a timely manndrampasswords age, the probability that they are

compromised grows.
1.23 Permission, Privilege, and Access Control Errors

Nearly all web applications have user managemenmtuheo handling a number of user groups, user
roles and user permission. A successfully desigpesfmission and access control mechanism is a
must for securing a web application. Accidentaligigning an incorrect privilege to a malicious user
would threaten whole security of the system. CWPRorts some common weaknesses of web

applications while handling permissions, privilegesl access controls, these are;

< Incorrect Privilege Assignment occurs when a welliegtion incorrectly assigns a privilege to a

particular user group or role. Some observed exasrgle;

CVE-2005-2741 - Product allows users to grant tredwes certain rights that can be used to escalate

privileges.

CAN-2005-2496 - Product uses group ID of a usetean$ of the group, causing it to run with
different privileges. This is resultant from sontbey unknown issue.

CVE-2004-0274 - Product mistakenly assigns a padeicstatus to an entity, leading to increased

privileges.

« Unsafe Privilege is a weakness occurs when a egeilor a role can be used to perform an
operation that was not intended. Some observenhges are;

162

CAN-2004-2204 - Gain privileges using functionséalgat should be restricted (Accessible entities).

CAN-2004-0380 - Bypass domain restrictions usingaaticular file that references unsafe URI

schemes (Accessible entities).
CAN-2005-1742 - Inappropriate actions allowed Ipagticular role(Unsafe privileged actions).

CAN-2005-2173 - Users can change certain propedfiesbjects to perform otherwise unauthorized

actions (Unsafe privileged actions).

* Privilege Chaining occurs when two or more distipdileges or roles combined or chained

together in a way that the resulting chain allowsrations that would not be allowed.

« Privilege Management Error in a product is a seriewror and with a buggy implementation web

application becomes unable to properly track, mgdécord or reset privileges.

e Privilege Context Switching Error occurs when a wagtplication could not manage cross

privilege boundaries. Examples are;
CAN-2003-1026 - Web browser cross domain probleraminser hits "back™ button.

CAN-2002-1770 - Cross-domain issue - third partgduct passes code to web browser, which

executes it in unsafe zone.

« Insecure default permissions occurs when an ovieeb@ermission is assigned default value of

user roles. This vulnerability might result in \ars side-effects.

« Insecure inherited permissions during assignmeiat aser role, an overlooked permission could

be gained unintentionally.

* Insecure execution-assigned permissions occurs vehereb application changes or reassign

permission in a insecure way that can result in-gffects.

e Access Control Bypass can be occur by using SQdclattechniques described before, An

attacker could bypass access control module and downauthorized operations.

1.24 Authentication Attacks

Authentication is the key issue of web applicaseurity. Without proper authentication mechanism,
all works to secure a web application becomes megdess. A significant percentage of web
application attacks are targeting to break dowhentication mechanisms. Although it is known that
authentication is critical and various kinds ofalt can be done to bypass authentication mechanisms

still a significant percentage of web applicatisn$fer from having a secure authentication.

163

Some common authentication attacks techniques @meanon design errors are described below;

Authentication Before Parsing and Canonicalization:Authentication must be done after parsing
and canonicalization, if not there is a change Wt application might fail to require authentioati
for protected zones. An attacker could try pathersal attack techniques to bypass authentication f

protected zones.

Authentication Bypass by Alternate Name:If a web application performs authentication basad
the name of resources such as pages, but theraltareate names referring the same resource.
Authentication mechanism might be bypassed by sumpklternate name of the resource such using
different encoding for requesting the same web page attacker tries one or combination of
equivalent encodings, canonicalization, multiplglimg slash, trailing space, mixed case, and other

equivalence attack techniques described above.

Authentication Bypass by Alternate Path:If a web application has protected zones thatiregu
authentication however it also has an alternath patchannel that does not require authentication.

Malicious user could use alternate path to reaokepted zones.

Authentication Bypass by Assumed-Immutable Data:lf authentication mechanism of a web
application depends on assumed-immutable datehbtitbn be controlled or modified by the attacker
such as cookies. An attacker could bypass auttaiaticby setting certain cookies. Some observed

examples are;

CAN-2002-1730, CAN-2002-1734 - Authentication bypay setting certain cookies to "true".
CAN-2002-2064 - Admin access by setting a cookie.

CAN-2002-2054 - Attacker could gain privileges lgjtsg cookie.

CAN-2004-1611 - Product trusts authentication infation in cookie.

CAN-2005-1708 - Authentication bypass by settingnadtesting variable to true.
CAN-2005-1787 - Attacker could bypass authenticatiad gain privileges by setting a variable.

Replay Attack: Authentication mechanism of web applications careasily broken by replay attack
if it is possible for a malicious user to sniff werk traffic and replay it the server giving sanffeet
as the original message. By using replay attackattatker could login the system as owner of the

captured message and has all privileges as him.

Authentication Bypass by Spoofing:If a web application does authentication depenalsself-
reported IP address, self-reported DNS name orrezféeld in HTTP requests, it could be vulnerably
to spoofing attacks. Malicious users can fake autb&tion information, claim any IP address, DNS

cache could be vulnerably to cache poisoning so Di®es are easy to be spoofed and also the

164

referrer field in HTTP requests can be easily miedifand, as such, is not a valid means of message

integrity checking.

Man-in-the-Middle Attack: A web application’s authentication mechanism iscgptible to man-in-
the-middle attacks when it fails to adequately andsistently authenticate the identity of both eofds
a communication channel. An attacker can place dlitherself in the middle of two communicating

parties and impersonate each.

Reflection Attack: If a web application’s authentication mechanismedels on shared secret key
authentication and not properly designed. It cdxdd/ulnerably to reflection attack. An attackerldou

use reflection attack techniques and bypass theatitation.

Account lockout attack: In an account lockout attack, the attacker attentptéockout all user
accounts, typically by failing login more times thaéhe threshold defined by the authentication
system. For example, if users are locked out of thecounts after three failed login attempts, an
attacker can lock out their account for them simphfailing login three times. This attack can fesu

in a large scale denial of service attack if arusccounts are locked out.

Some common errors that can lead to authenticatimor so lowers the application security strength
are using single-factor authentication; using pasdwbased authentication if passwords are not
encrypted or non-reversible or if password agingnas considered or password strength is not
enforced; having a missing step in authenticatiesigh; multiple failed authentication attempts are

not prevented and no authentication for criticalction.
1.25 Sniffing Application Traffic Attack

Sniffing application traffic simply means that ta#acker is able to view network traffic and wily t

to steal credentials, confidential information,ather sensitive data. Anyone with physical access t
the network is able to sniff the traffic. Also, ameg with access to intermediate routers, firewalls,
proxies, servers, or other networking gear may bke 4 see the traffic as well. By sniffing
application traffic, an attacker gain sensitiveommfiation about the web site. If this communicai®n
not protected, the attacker can reveal user coogéssion id, user id and password that can betased

generate other attacks later.
1.26 Cross-Site Request Forgery (Session Riding)

Cross-Site Request Forgery is about forcing an owkmg user to execute unwanted actions on a web
application in which he is currently authenticat€&RF is an attack that tricks the victim into lioad
a page that contains a malicious request. It idcinak in the sense that it inherits the identity a

privileges of the victim to perform an undesirechdtion on the victim's behalf, like change the

165

victim's e-mail address, home address, or passwamrgurchase something. CSRF attacks target

functions that cause a state change on the server.

CSRF works like XSS attack: An attacker identife®)RL on a Website that initiates typical Web
functions such as making a purchase, changing ail eadress or transferring funds and takes that
URL and loads it to a web page he controls withici@ls code injected to be executed later. The

following example has an attack embedded in therieqgest below:

The actual attack occurs when the user visits ttaeleer-controlled web page via a legit link, which
forces the browser -- using legitimate, authentidatookies -- to make malicious requests. In this
example it will issue a request to www.mybank.canhe transferFunds.do page with the specified
parameters. The browser will think the link is tet @n image, even though it actually is a funds
transfer function. For most sites, such a requétnarmally automatically include any credentials
associated with the site, such as the user's sessakie, basic auth credentials, IP address, Wusdo
domain credentials, etc. Therefore, if the usershdbenticated to the site, the site will have @y o

distinguish this from a legitimate user request.

In this way, the attacker can make the victim penfactions that they didn't intend to, such as lago
purchase item, change account information, or @ingrdunction provided by the vulnerable website.

1.27 Session Fixation Attack

Session fixation attack is one of the most comm@éack techniques that must combine cross-site
scripting or DNS cache poisoning or network basgdck techniques in order to succeed. But the
impacts of session fixation is extremely dangereout) a successful attack, the attacker would login
in to the system as victim and gain all privilegéghe victim. In session fixation attack, the aekiar
tries to fixes the user’s session ID before ther Usgs into the target server so that he can then
generate malicious requests with that fixed sedlorithough the session fixation attack technigjue
are complex, the reason of vulnerability for welplagation authenticating a user without first
invalidating the existing session, thereby contiguto use the session already associated with the
user. For example, J2EE web application where tippliGation authenticates users with
LoginContext.login()without first calling HttpSession.invalidate(inakes whole application to be
vulnerably to session fixation attack.

166

http/fonline worldbank dom
flogin jsp?sessionid=1234

loain e 2eacsionid=
@ GET /login jsp?sessionid=1234 >
@ username & password >

user online.worldbank.dom

Figure 39 Session Fixation Attack

Session fixation attack has three phases; sessiup phase, session fixation phase and session

entrance phase.

Session Setup Phaseirstly, the attacker either sets up trap sessiothe target server and obtains
that session’s ID or selects an arbitrary sessidriol be used in the attack. The attack technique
depends on the session management mechanism orseredxs and can be classified into two
categories;permissivethose that accept arbitrary session IBsict those that only accept known
session IDs, which have been locally generatediquely. For a permissive mechanism, the attacker
only needs to make up a random trap session IDstamd it to use at session fixation phase. Foctstri
mechanism the session setup phase becomes moréaadeth Now the attacker will have to actually
establish a trap session with the target servesilplgsirom different account, extract the trap sass

ID from response and store it to user at next phdsetime out mechanism is set for user sessions,
the attacker also needs to keep alive the sessicsehding arbitrary requests periodically to web

server.

Session Fixation PhaselNext, the attacker needs to introduce trap sedBido the user’s browser to
fix victim session. The attack technique used is fthase is chosen according to session ID trahspor

mechanism of a web application;

167

» If the web application depends on session IDs dtatean URL argument, the attacker needs to
trick the victim into logging in to the target wabrver through the malicious link including theptra

session ID obtained from the previous step providdts malicious link can be at attacker own web
site or can be send to the victim by email. Whilésithe only method that can be done, it is quite

impractical and risky for detection.

« If the web application store session IDs in a hidfélam, the attacker needs to trick the victim

into logging in to the target web server througlo@k-like login form that comes from attacker web

server. In order to do this, an attacker must ekglocross-site scripting vulnerability with page-

hijacking to construct a malicious login form withe trap session ID obtained from the previous.step
However, if victim is affected by this kind of cmesite vulnerability, there is no need to continue
session fixation attack since a malicious logimfarould just direct the user’s login credentialshte

attacker’s web server.

« If the web application’s session mechanism depemdgookies. There are various and more
effective techniques to fix trap session ID to wits browser. Some of these are exploiting cross-si

script or meta tag injection for issuing a cooliegak into a host in domain and install a cookie-
issuing web server, by DNS poisoning add a codgeing server to the domain on user's DNS

server, modify the response from any server tceeissoookie.

Session Entrance PhaseAfter the attacker successfully completed previphases, all he has to do
is wait for the victim to login to the system, thifwe attacker can enter the trap session and agbeme
user’s identity. If web application does not dethbcasers session to user login IP, there is notwvay
differentiate attacker’s requests from victim regfgseso he can do any operation that the victim has

been permitted.
1.28 Session Hijacking Attack

Using session hijacking attack, the attacker tteesake control of a user session by obtaining or
generating an authentication session ID. Sessjacking involves an attacker using captured, brute
forced or reverse-engineered session IDs to saimérat of a legitimate user's session while that
session is still in progress. In most applicaticefter successfully hijacking a session, the attack

gains complete access to all of the user's dathjsapermitted to perform operations instead of the

user whose session was hijacked.

There are several problems with session ID’s. trgption is not used (typically SSL), Session IDs

are transmitted in the clear and are susceptibéavesdropping.

There are three primary techniques for hijackirgsems;

168

Brute force attack: The attacker tries multiple IDs until successflihere are lots of brute force
attack tools, that generates HTTP requests witkiplessession ID’s. If the attacker finds a valiy |

he could continue using the vulnerably site agifsere a valid user.

Reverse Engineering:In many cases, IDs are generated in a non-rand@mnen and can be
calculated. Many of the popular websites use algms based on easily predictable variables, such as

time or IP address, in order to generate the Se$Bis, causing their session IDs to be predictable.

Stealing: - Stealing session ID’s from valid users is that laut effective case that can be used Using
different types of techniques like sniffing netwdr&ffic, using trojans on client PCs, using theTHT
referrer header where the ID is stored in the qudripng parameters, and using cross-site scripting

attacks, the attacker can acquire the Session ID.

In a "referrer" attack, the attacker entices a tgalick on a link to another site (a hostile lirday

www.hostile.com):

GET /index.html HTTP/1.0

Host: www.attackersite.com

Referrer: www.targetside.com/viewmsg.asp?msgid=338$1D=2343X32VA92

The browser sends the referrer URL containing thlessisn ID to the attacker's site -

www.hostile.com, and the attacker now has the aed8i of the user.

Session IDs can also be stolen using script imgastisuch as cross-site scripting. The user exeeute
malicious script that redirects the private usifsrmation to the attacker. Sniffing network fiaf

can be used if the transportation of session IB'ddne on open channel that can be eavesdropping,
Inserting Trojan on victim PC’s can steal cookiad aend them back to the attacker site.

169

APPENDIX B

FULL LIST OF COMMON WEB APPLICATION ATTACKS

Below, common web application attacks are givea table. The attacks are categorize®aurce
Taxonomies column depending on PLOVER taxonomy and also OWA®P Ten Most Critical
Web Application Security Vulnerabilities. As statedSecurity Incidents section, all vulnerabilities
that are explained in this section are categorizadker Location->Code->Source Code nodarent
Category column is used to combine several related attatckd parent category, for example relative
path traversal and absolute path traversal attasle Isimilar character and combined under path
traversal attacks category. So the real categoanddttack that has a parent category is combimatio
of source taxonomy and parent category. So relgpiath traversal is in fact belongs to Data
Validation->Input Validation->Pathname traversaldaequivalence errors->Path Traversal Attacks.
Causal Nature describes if an attack depends other attacks tcber. Likelihood of exploit shows
the rank of attack likenesbnpacts column describes the consequence of an attacgargtand can
be disclosure of information, unauthorized modifima, unauthorized access and disruption of

service. This distinction is depended on Nationalnérabilities Database web site.

170

T.T

Table 19 Full List of Common Web Application Attacks

Web_ . : Parent Causal Likelihood of
Application Source Taxonomies . Impacts
Category Nature Exploit
Attack
. Data Validation->Input Validation->Pathname Trawgrs
Relative Path : Path Traversal . . .
and Equivalence Errors Independent Very High Disclosure of Information
Traversal Attacks
A2 — Broken Access Control
Absolute Path Data Val.ldatlon—>lnput Validation->Pathname Traedrs Path Traversal . . _
and Equivalence Errors Independent Very High Disclosure of Information
Traversal Attacks
A2 — Broken Access Control
Path Equivalence Data Validation->Input Validation->Pathname Trawatrs
4 and Equivalence Errors Independent Very High Disclosure of Information
Attacks
A2 — Broken Access Control
Path Data Validation->Input Validation->Pathname Trawgrs
Manipulation and Equivalence Errors Independent Very High Disclosure of Information
Attack A2 — Broken Access Control
. S I L Disclosure of Information
Spem_al Element | Data Vall_dat|0n—>lnput Val|dgt|o_n—>lnject|on Independent Very High Unauthorized Modification
Injection Al- Invalidated Input, A-6 Injection .
Unauthorized Access
C(_)mmand Data Vall_dat|0n—>lnput Val|dgt|o_n—>lnject|on Independent Rare Unauthorized Access
Injection Al- Invalidated Input, A-6 Injection
Argument I I Lo . I
S Data Validation->Input Validation->Injection Unauthorized Modification
Injection or . N Independent Rare .
e Al- Invalidated Input, A-6 Injection Unauthorized Access
Modification
R(_esoyrce Data Val|_dat|on->|nput VaI|d§1t|o_n—>InJect|0n Independent Medium Unauthorized Access
Injection Al- Invalidated Input, A-6 Injection
Direct Dynamic | Data Validation->Input Validation->Injection Code Injection Independent Medium Disclosure of Information

Code Evaluation

Al- Invalidated Input, A-6 Injection

Unauthorized Modification

[AA)

Table 19 (continued)

Direct Static

Data Validation->Input Validation->Injection

Disclosure of Information

Code Injection | Al- Invalidated Input, A-6 Injection Code Injection Independent Medium Unauthorized Modification
PHP File Data Validation->Input Validation->Injection Code Iniection Indenendent High Disclosure of Information
Inclusion Attack | Al- Invalidated Input, A-6 Injection) P g Unauthorized Modification
S I L Disclosure of Information
LDAP Injection Data Vall_dat|0n—>lnput Val|dgt|o_n—>lnject|on Independent Very Few Unauthorized Modification
Al- Invalidated Input, A-6 Injection :
Unauthorized Access
o S L Disclosure of Information
SQL Injection Data Vall_dat|on->|nput VaI|d§1t|o_n->|nJect|on Independent Very High Unauthorized Modification
Al- Invalidated Input, A-6 Injection ;
Unauthorized Access
o S _— Cross Site Disclosure of Information
Basic XSS Data Val|_dat|on->lnput Validation->Injection Scripting (XSS) Independent Very High Unauthorized Modification
Al- Invalidated Input, A-4 XSS Flaws :
Attacks Unauthorized Access
. S I — Cross Site Disclosure of Information
XSS in Error Data Validation->Input Validation->Injection e , : P
Pages Al- Invalidated Input, A-4 XSS Flaws Scripting (XSS) | Independent Very High Unauthor!zed Modification
Attacks Unauthorized Access
. o I I Cross Site Disclosure of Information
Script in IMG Data Validation->Input Validation->Injection o : . P
Tags Al- Invalidated Input, A-4 XSS Flaws Scripting (XSS) | Independent Very High Unauthor!zed Modification
Attacks Unauthorized Access
XSS Using S S L Cross Site Disclosure of Information
Script in gfﬁs\/glﬂz?ggﬂH&U;lefggoglzvl\gecuon Scripting (XSS) | Independent Very High Unauthorized Modification
Attributes put, Attacks Unauthorized Access
XSS using script C TS Cross Site Disclosure of Information
via encoded URI Data Vall_dat|0n >Input Validation->Injection Scripting (XSS) | Independent Very High Unauthorized Modification
Al- Invalidated Input, A-4 XSS Flaws :
schemes Attacks Unauthorized Access
Doubled o I I Cross Site Disclosure of Information
character XSS Data Validation->Input Validation->Injection Scripting (XSS) | Independent Very High Unauthorized Modification

manipulations

Al- Invalidated Input, A-4 XSS Flaws

Attacks

Unauthorized Access

€LT

Table 19 (continued)

N

Invalid s N I Cross Site Disclosure of Information
characters in zifa}n\\//aalllgz;?gg—lzln&u;_/zl;((jsagoggvlvgjecnon Scripting (XSS) | Independent Very High Unauthorized Modification
identifiers but, Attacks Unauthorized Access
S I S Cross Site Disclosure of Information
gl/tr?g?te XSS 'liilta}g\/gll%z?ggEI;&U%V;I;?;EOSI:VIQect|on Scripting (XSS) | Independent Very High Unauthorized Modification
i Y Attacks Unauthorized Access
_— Data Validation->Input Validation->Injection Missing XML . . L
XML Injection Al- Invalidated Input, A-6 Injection Validation Medium Unauthorized Modification
Missing XML Data Validation->Input Validation . . e
Validation Al- Invalidated Input Independent Medium Unauthorized Modificatio
Data Validation->Input Validation->HTTP Response
Splitting . .
Cross-User ; At HTTP Response . Disclosure of Information
Al- Invalidated Input, A-6 Injection L)
Defacement P : Splitting XSS Attacks High Unauthorized Access
Data Validation->Input Validation->HTTP Response
Cache Poisoning Splitting gTI'iI;;’nResponse XSS Attacks High Unauthorized Access
Al- Invalidated Input, A-6 Injection piting
Data Validation->Input Validation->HTTP Response
Page Hijacking | Splitting gTI'il;EnResponse XSS Attacks High Unauthorized Access
Al- Invalidated Input, A-6 Injection piting
Data Validation->Input Validation Unauthorized Modification
Process Control Al- Invalidated Input Independent Rare Disruption of Service
. Data Validation->Output Validation
Log Forging Al- Invalidated Input, A-6 Injection Independent Medium Disruption of Service
Buffer and Data Validation->Range Errors & Numeric Errors Indenendent Disclosure of Information
Numeric Errors | Al — Invalidated Input, A5 Buffer Overflows P Rare Disruption of Service
Cleansing,
Encoding Errors Data Validation->Representation Errors Canonicalization Independent Medium Unauthorized Access

A2 — Broken Access Control

and Comparison
Errors

V.1

Table 19 (continued)

Case Sensitivity

Data Validation->Representation Errors

Cleansing,
Canonicalization

Errors A2 — Broken Access Control and Comparison Independent High Unauthorized Access
Errors
Cleansing,
Early Validation | Data Validation->Representation Errors Canonicalization : .
Errors A2 — Broken Access Control and Comparison Independent High Unauthorized Access
Errors
Cleansing
Collapse of Data o . N
. Data Validation->Representation Errors Canonicalization .
into Unsafe A2 — Broken Access Control and Comparison Independent Rare Unauthorized Access
Value
Errors
Partial Cleansing,
. Data Validation->Representation Errors Canonicalization , .
Comparison . Independent High Unauthorized Access
A2 — Broken Access Control and Comparison
Errors
Errors
Information s : .
Leak through Data Valldat|0n—>lnformat|(_)n Management Errors Information Independent High Disclosure of Information
A7 — Improper Error Handling Leak
Error Messages
Information S :)
Leak through Data Validation->Information Management Errors Information Independent High Disclosure of Information
A8 — Insecure Storage Leak
Sent Data
Information
Leak through Data Validation->Information Management Errors Information Path Traversal . . .
File and A8 — Insecure Storage Leak Attacks Very High Disclosure of Information
Directory
Information s . .
Data Validation->Information Management Errors Information . . .
Leak throu_gh A8 — Insecure Storage Leak Independent Medium Disclosure of Information
Data Queries
Information
Leak through Data Validation->Information Management Errors Information . . :
) Independent High Disclosure of Information
Debug A7 — Improper Error Handling Leak

Information

G.T

Table 19 (continued)

Information

Data Validation->Information Management Errors

Leak through A8 — Insecure Storage :_ngg[(matlon Independent Medium Disclosure of Information
Caching
Truncguon of Data Validation->Information Management Errors .
Security- A7 — Improper Error Handlin Information Loss Independent | Medium Disruption of Service
Relevant prop 9 or Omission P b
Information
Omission of
Security- Data Valldat|0n—>lnformat|(_)n Management Errors Inform_atu_)n Loss| Independent Medium Disruption of Service
Relevant A7 — Improper Error Handling or Omission
Information
Obscured
Security- S . .
Data Validation->Information Management Errors Information Loss : . . .
Relevant . o Independent Medium Disruption of Service
; A7 — Improper Error Handling or Omission
Information by
Alternate Name
Credentials Security Features Disclosure of Information
Management A3 — Broken Authentication and Session Management, Independent Very High ;
Unauthorized Access
Errors A8 — Insecure Storage
E(rei\r/ri?ésselog,n d Security Features Independent Disclosure of Information
g€, A2 — Broken Access Control, A3 — Broken Injection Very High Unauthorized Modification
Access Control henticati ; K hori
Errors Authentication and Session Management Attacks Unauthorized Access
Authentication gfr?:r?i?agli,zati
Before Parsing | Security Features->Authentication Attacks Authentication on and Very High Disclosure of Information
and A3 — Broken Authentication and Session Management Attacks Comparison yHig Unauthorized Access
Canonicalization P
Errors

gutr;esr;utfatmn Security Features->Authentication Attacks Authentication gﬁaerﬁ?rllt Verv Hiah Disclosure of Information

yp y A3 — Broken Authentication and Session Management Attacks S yHig Unauthorized Access
Alternate Name Injection

9.7

Table 19 (continued)

gutr;esr;ngatlon Security Features->Authentication Attacks Authentication gr;enﬁfrllt Verv High Disclosure of Information
yp y A3 — Broken Authentication and Session Management Attacks - yrig Unauthorized Access
Alternate Path Injection
Authentication XSS Attack
Bypass by Security Features->Authentication Attacks Authentication All Cookie ' Verv Hiah Disclosure of Information
Assumed- A3 — Broken Authentication and Session Management Attacks yHig Unauthorized Access
based attacks
Immutable Data
Replay Attack Security Features->Authentication Attacks Authentication Independent Verv Hiah Disclosure of Information
piay A3 — Broken Authentication and Session Management Attacks P yHig Unauthorized Access
Authentication | Security Features->Authentication Attacks Authentication Disclosure of Information
Bypass by A3 — Broken Authentication and Session Management Attack Independent Very High horized A
Spoofing ttacks Unauthorized Access
Man-in-the- Security Features->Authentication Attacks Authentication Independent Medium Disclosure of Information
Middle Attack A3 — Broken Authentication and Session Management Attacks P Unauthorized Access
Reflection Security Features->Authentication Attacks Authentication Indenendent Medium Disclosure of Information
Attack A3 — Broken Authentication and Session Management Attacks P Unauthorized Access
Account lockout Security Features->Authentication Attacks Authentication
A3 — Broken Authentication and Session Management, Independent Very High Disruption of Service
attack) . Attacks
A9 — Denial of Service
Sniffing Disclosure of Information
Application A8 — Insecure Storage Independent] Medium
Traffic Attack
Cross-Site Time and State XSS Atta.‘Ck’ . Unauthorized Modification
Request Forgery . . All Cookie Very High .
; L A3 — Broken Authentication and Session Management Unauthorized Access
(Session Riding) based attacks
Session Fixation| Time and State XSS Attack, Disclosure of Information
L . All Cookie Very High Unauthorized Modification
Attack A3 — Broken Authentication and Session Management .
based attacks Unauthorized Access
. . Sniffing Disclosure of Information
Session Time and State Application Very High Unauthorized Modification

Hijacking Attack

A3 — Broken Authentication and Session Managemen

t

Traffic Attack

Unauthorized Access

