

 C

R
E

A
T

IN
G

 A
P

P
LI

C
A

T
IO

N
 S

E
C

U
R

IT
Y

 L
A

Y
E

R
 B

A
S

E
D

 O
N

R
E

S
O

U
R

C
E

A
C

C
E

S
S

 D
E

C
IS

IO
N

 S
E

R
V

IC
E

M
E

H
M

E
T

 Ö
Z

E
R

 M
E

T Đ
N

S
E

P
T

E
M

B
E

R
 2

00
7

 Mehmet Özer Metin METU 2007

CREATING APPLICATION SECURITY LAYER BASED ON

RESOURCE

ACCESS DECISION SERVICE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET ÖZER METĐN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

SEPTEMBER 2007

Approval of the thesis:

CREATING APPLICATION SECURITY LAYER BASED ON RESOURCE

ACCESS DECISION SERVICE

Submitted by MEHMET ÖZER MET ĐN in partial fulfillment of the requirements for the degree of

Master of Computer Engineering in Computer Engineering Department, Middle East Technical

University by,

Prof. Dr. Canan Özgen _____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay _____________________
Department Chair, Computer Engineering Dept., METU

Dr. Cevat Şener _____________________
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Ali Doğru _____________________
Computer Engineering Dept., METU

Dr. Cevat Şener _____________________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ahmet Çoşar _____________________
Computer Engineering Dept., METU

Dr. Semih Çetin _____________________
Management Board Member, Cybersoft

Yenal Göğebakan, M.Sc. _____________________
Management Board Member, Cybersoft

Date: 03/09/2007

iii

I hereby declare that all information in this document has been obtained and presented in accordance

with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I

have fully cited and referenced all material and results that are not original to this work.

 Name, Last name: Mehmet Özer Metin

 Signature:

iv

ABSTRACT

CREATING APPLICATION SECURITY LAYER BASED ON RESOURCE

ACCESS DECISION SERVICE

Metin, Mehmet Özer

M.S., Department of Computer Engineering

Supervisor: Instructor Dr. Cevat Şener

September 2007, 176 pages

Different solutions have been used for each security aspects (access control, application security) to

secure enterprise web applications. However combining "enterprise-level" and "application-level"

security aspects in one layer could give great benefits such as reusability, manageability, and

scalability. In this thesis, adding a new layer to n-tier web application architectures to provide a

common evaluation and enforcement environment for both enterprise-level and application level

policies to bring together access controlling with application-level security. Removing discrimination

between enterprise-level and application-level security policies improves manageability, reusability

and scalability of whole system. Resource Access Decision (RAD) specification has been

implemented and used as authentication mechanism for this layer. RAD service not only provides

encapsulating domain specific factors to give access decisions but also can form a solid base to apply

positive and negative security model to secure enterprise web applications. Proposed solution has

been used in a real life system and test results have been presented.

Keywords: Access Control, Enterprise-level Security Policy, Web Application Security

v

ÖZ

KAYNAK ER ĐŞĐM KONTROLU SERVĐSĐNĐ KULLANARAK UYGULAMA

GÜVENLĐK KATMANI GEL ĐŞTĐRMEK

Metin, Mehmet Özer

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi Öğr. Gör. Dr. Cevat Şener

Eylül 2007, 176 sayfa

Erişim kontrolü, uygulama güvenliği gibi farklı güvenlik ihtiyaçlarının her birisi için farklı çözümler

kullanılmaktadır. Fakat kurumsal seviyedeki ve uygulama seviyesindeki güvenlik ihtiyaçlarını tek bir

katmanda birleştirmek, uygulamalara tekrar kullanılabilirlilik, kolay yönetilebilirlik ve

ölçeklendirilebilirlik gibi önemli faydalar sağlayabilir. Bu tezde, çok katmanlı internet uygulamalarına

yeni bir katman ekleyerek; kurumsal ve uygulama güvenlik politikalarının beraber yönetilip,

işlenebildiği genel zorlayıcılığı olan ortak bir ortam geliştirilmi ştir. Kurumsal ve uygulama güvenlik

politikalarının arasındaki ayrımı kaldırarak uygulamanın genelinde tekrar kullanılabilirliğin, kolay

yönetilebilirliğin ve ölçeklendirilebilirliğin artırılmasına çalışılmıştır. Bu katman için kaynak erişim

kontrol (RAD) belirtimi geliştirilmi ş ve erişim kontrol mekanizması olarak kullanılmıştır. RAD servisi

sadece erişim kontrolünde tanım kümesine ait etmenlerin kullanılmasına izin vermekle kalmayıp, aynı

zamanda internet tabanlı kurumsal uygulamalar için pozitif ve negatif güvenlik modellerini

uygulamak için de sağlam bir taban oluşturabilir. Önerilen çözüm kullanıma geçmiş gerçek bir

uygulamada denenmiş ve sonuçları sunulmuştur.

Anahtar Kelimeler: Erişim Kontrolü, Kurumsal Seviyeli Güvenlik Politikaları, Đnternet Tabanlı

Uygulama Güvenliği

vi

To my parents who devoted themselves to their children and to my lovely sister.

Life is so beautiful, only with them.

vii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my supervisor Dr. Cevat Şener for his guidance and

support throughout this research effort. I consider myself fortunate to have had a mentor with the

strong work ethic and unyielding patience of Dr. Cevat Şener.

I would like to thank Egemen Đmre and Evren Kapusuz for their invaluable reviews and critiques

about my thesis. I would also thank to Ferhat Y. Savcı for his mentoring for technical background. I

have learned a lot while working with him. I also would like to thank to Yenal Göğebakan for his

foresight ideas and his wisdom. I feel myself very lucky to have worked for him.

CSAAS and EYEKS are trademarks and products of Cybersoft. Various people have been involved in

developing CSAAS. I would like to praise them for their efforts. Thanks to Ceyhun and Đbrahim Onur

Yaranlı for developing earlier versions of CSAAS and special thanks to Evren Kapusuz and Aslı Acar

for helping me to finalize the latest version of CSAAS.

My love Müge, I could not finalize this thesis without your help and motivation. Thanks for your

endless support and trust.

viii

TABLE OF CONTENT

ABSTRACT .. iv

ÖZ...v

ACKNOWLEDGMENTS ..vii

TABLE OF CONTENT...viii

LIST OF TABLES...xi

LIST OF FIGURES ..xii

CHAPTER

1. INTRODUCTION ..1

1.1 Scope of the thesis..1

1.1.1 Enterprise Level Security ...2

1.1.2 Application Level Security ...4

1.1.3 Proposed Solution...6

1.2 Outline of the Thesis ..9

2. BACKGROUND AND RELATED WORK ..10

2.1 Security Incidents...10

2.1.1 Definition of Incidents..10

2.1.2 Taxonomies of Incidents...11

2.1.3 Existing Taxonomies ..12

2.1.3.1 List of Terms..12

2.1.3.2 List of Categories ...13

2.1.3.3 Result Categories ...14

2.1.3.4 Empirical Lists ...15

2.1.3.5 Matrices..15

2.1.3.6 Process-Based Taxonomy ..16

2.1.3.7 Threat Classification ..17

2.1.3.8 Vulnerability Databases ...18

2.1.4 Vulnerability Naming Standards ..18

2.1.4.1 Preliminary List of Vulnerability Example for Researchers18

2.1.4.2 Common Vulnerabilities and Exposures (CVE) ..19

2.1.4.3 Common Weakness Enumeration (CWE)..20

2.1.4.4 WASC Threat Classification..21

2.2 Access Control Mechanism..22

2.2.1 Discretionary Access Control ...24

2.2.2 Mandatory Access Control ...24

ix

2.2.3 Lattice-based Access Control ...25

2.2.4 Rule-based Access Control...25

2.2.5 Role-based Access Control...25

2.2.6 Resource-based Access Control ...28

2.3 Access Control Problems in Enterprise Applications...30

2.4 Web Application Security Vulnerabilities..32

2.4.1 Common Vulnerabilities...36

2.4.1.1 Cross Site Scripting (XSS) Attacks..38

2.4.1.2 Injection Flaws...39

2.4.1.3 Malicious File Execution ...39

2.4.1.4 Insecure Direct Object Reference...40

2.4.1.5 Cross-Site Request Forgery (Session Riding) ..40

2.4.1.6 Information Leakage and Improper Error Handling...40

2.4.1.7 Broken Authentication and Session Management..41

2.4.1.8 Insecure Cryptographic Storage ...41

2.4.1.9 Insecure Communication..41

2.4.1.10 Failure to Restrict URL Access..41

2.5 Related Works..42

2.5.1 Approaches to Encapsulate Domain Specific Factors ..42

2.5.2 Web Application Firewalls ...44

3. ACCESS CONTROL AND SECURITY SOLUTION BASED ON RAD.......................................46

3.1 RAD Implementation (CSAAS)...47

3.1.1 CSAAS Architecture ..47

3.1.2 Components of CSAAS Server ..50

3.1.3 Execution Flow...52

3.1.4 Limitations and Improvements ...54

3.2 Mapping Polices to CSAAS...55

3.2.1 Enterprise Policy Mapping ...60

3.2.2 Application Security Policy Mapping...62

3.3 Operation and Architecture of EYEKS ..63

3.3.1 Application Security Layer...65

3.3.2 Request/Response Operation Chain..69

3.3.2.1 Commands ...72

3.3.2.2 Operations ..72

3.3.2.3 Request Execution Collaboration...72

3.3.2.4 Exception Handling..75

3.3.3 Context Mapping ..76

x

3.3.4 Session Management ..82

3.3.5 Request Proxying..85

3.4 Organization-Wide Policy Execution...86

3.5 Integration with Application Servers..89

3.6 Managing EYEKS..93

3.7 Verification of Solution..97

4. EXPERIMENTAL STUDY ...102

4.1 Case Study: Real Life System..102

4.2 Experiment 1: Artificial Load Tests ...107

4.3 Experiment 2: Testing Against Web Application Attacks ...111

4.3.1 Test Environment and Setup...111

4.3.2 Test Tools ...114

4.3.3 Test Results ..114

4.3.3.1 Information Gathering..115

4.3.3.2 Business Logic Testing ..116

4.3.3.3 Authentication Testing ...116

4.3.3.4 Session Management Testing...118

5. CONCLUSION AND FUTURE WORK ...123

5.1 Future Work ...125

REFERENCES ...127

APPENDIX A...132

List of Web Application Security Vulnerabilities:..132

APPENDIX B...170

Full List of Common Web Application Attacks ...170

xi

LIST OF TABLES

Table 1 Number of security incidents...34

Table 2 Percentage of security incidents ..34

Table 3 Example Mapping-1 ..57

Table 4 Example Mapping-2 ..57

Table 5 Example Mapping-3 ..58

Table 6 Example Mapping-4 ..58

Table 7 Example Mapping-5 ..59

Table 8 Enterprise Policy Example...60

Table 9 Enterprise Policy Mapping Example ...61

Table 10 Mapping to EYEKS...62

Table 11 OWASP Testing List ...97

Table 12 Monthly Statistics of the Real Life System...103

Table 13 Average and Peek Statistics ...105

Table 14 EYEKS Performance Statistic ...108

Table 15 Example Operation Chain..112

Table 16 Example Resource- Operation and Policy Mappings ..113

Table 17 Application Fingerprint Test..115

Table 18 OWASP Testing Results..121

Table 19 Full List of Common Web Application Attacks ..171

xii

LIST OF FIGURES

Figure 1 Threat Classification...17

Figure 2 CWE Enumeration ...21

Figure 3 Conceptual Model of Access Control...23

Figure 4 RBAC Role Model ...26

Figure 5 RAD Interaction Diagram ..28

Figure 6 RAD Secured Resource..29

Figure 7 Top 6 security attacks between 2001 and 2006 ..35

Figure 8 Percentage of top 6 security attack between 2001 and 2006 ..36

Figure 9 Percentage of Vulnerabilities (2007)..38

Figure 10 CSAAS Architecture ..48

Figure 11 CSAAS Server Interfaces ...49

Figure 12 Interactions of Admin Components..50

Figure 13 Components of CSAAS Server ..51

Figure 14 Sequence Diagram of Access Decision ..53

Figure 15 Example Web Application Structure ..56

Figure 16 Architecture of EYEKS..64

Figure 17 Sequence Diagram of Request Execution...69

Figure 18 Operation Class Diagram ...71

Figure 19 Collaboration Diagram of Request Execution..74

Figure 20 Example Context Mapping...77

Figure 21 Context Resolver Class Diagram..79

Figure 22 Example Context Mapping Tree...80

Figure 23 Reverse Context Mapping Tree..81

Figure 24 The Collaboration of Creating User Session ..84

Figure 25 The Collaboration of Page Request ..84

Figure 26 Components of Apache Core..91

Figure 27 Components of EYEKS Stand-Alone Server ...92

Figure 28 Distribution of Transactions and Login Requests...104

Figure 29 Distributions of Page Requests...104

Figure 30 Daily Transactions (April 2006)...106

Figure 31 Execution Times Without EYEKS (0-300) ..109

Figure 32 Execution Times Without EYEKS (250-500) ..109

Figure 33 Payload of EYEKS...110

Figure 34 Cookie Distribution over Time...117

Figure 35 WebScarab Testing Report...119

xiii

Figure 36 Reported Vulnerabilities without EYEKS..120

Figure 37 Reported Vulnerabilities with EYEKS...120

Figure 38 XSS Attack...149

Figure 39 Session Fixation Attack..167

.

1

CHAPTER 1

INTRODUCTION

1.1 Scope of the thesis

The Internet and World Wide Web brings about new rules about how the business conducted. It

started a business revolution and a new era emerged. As business has evolved into e-business and

governments became e-governments, the Internet is now forcing enterprises to implement

collaborative business and governmental solutions that integrate internal systems. Many enterprises

have integrated Enterprise solutions such as ERP (Enterprise Resource Plan) and CRM (Customer

Relationship Management). These solutions, the so called Enterprise level software, provide business

logic support functionality (such as accounting, production scheduling, customer information

management, etc.) for an organization which aims to improve its productivity and efficiency.

Enterprise software is often categorized by the business function that it automates - such as accounting

software or sales force automation software. E-Government is one of the examples which refer to

government’s use of information technology to exchange information and services with citizens,

businesses, and other arms of government. E-Government may be applied by the legislature, judiciary

or administration and the primary delivery models are Government-to-Citizen or Government-to-

Customer (G2C), Government-to-Business (G2B) and Government-to-Government (G2G) &

Government-to-Employees (G2E). The most important anticipated benefits of e-government include

improved efficiency, convenience and better accessibility of public services. Health Informatics or e-

Health domain can also be regarded as a good example of Enterprise applications. Health care

information system builds on communication interface between various objects of health domain,

starting from patients to doctors, hospital managements and finally governmental public health

institutions. It also provides new point of views to traditional business models; patients to interact

with their systems online (B2C = "business to consumer"); improved possibilities for institution-to-

institution transmissions of data (B2B = "business to business"); new possibilities for peer-to-peer

communication of consumers (C2C = "patients to patients or doctors to doctors").

Enterprise software is often designed and implemented by an Information Technology (IT) group

within an organization. This in-house software may also be purchased from an independent software

developer that often installs and maintains the software for their customers. Another model is based

on a concept called on-demand software, or Software as a Service. Software as a service (SaaS) is a

software application delivery model where a software vendor develops a web-native software

application and hosts and operates the application for use by its customers over the Internet.

2

Because enterprise applications tend to have a broad spectrum of business requirements, starting from

employee relationship to resource planning and customer management, integration and

communication complexity become main concerns of enterprise applications. Middleware

technologies have emerged to integrate these applications into an enterprise-wide solution, providing

well-integrated, networked software infrastructure. Middleware, which is quickly becoming

synonymous with enterprise applications integration (EAI), provides interoperability between

different applications by placing middleware between layers of software to make the layers below and

on the sides work with each other. Middleware technologies push applications out to distributed

environments and unleashing the domain-specific value of each application. Consequently, this frees

application developers to focus on higher-value development instead of repetitive and tedious

application-communication and distribution tasks.

1.1.1 Enterprise Level Security

Nevertheless integration of these diverse systems also introduces a new burden to enterprise security.

Each enterprise application comes with its own security rules and access policies as well as sharing

business transactions over enterprise applications need a new set of enterprise security rules that must

be handled organization-wide. Providing integrative security for diverse enterprise applications

becomes more important than securing each of them independently. The problem of securing

information enterprises has been the focus of intensive efforts from the industry. This is why it is an

essential concern to every enterprise [1]. As a result, several well-known middleware systems have

adapted their security model to construct scalable and flexible security for distributed environments.

OMG’s Corba [2], Microsoft’s COM+ [3] and Sun’s EJB [4] all include access control mechanism

that depends on access control list (ACL). These middleware access control mechanism will be

discussed in detail in section 2.5.1.

The main purpose of all of these security models is controlling object interactions with in an

organization-wide, uniform and transparent way. However they all fail their expressiveness and

granularity when we consider enterprise applications. ACL provides limited capabilities for handling

complex policies and authorization decisions that are based on factors specific to an application

domain [5] and also a single level of granularity which is object, does not support enough abstraction

over enterprise policy rules. Enterprise applications consist of business transactions and business

services that require much more abstraction to be controlled by object interaction access control.

The complexity of access control policies in enterprise applications comes from embedded business

logic. Enterprise applications aim to map real world business rules, interactions, regulations and

sometimes laws (e-government applications) to computer domain. This mapping must also be

achieved for access control. As access control logic becomes closer to enterprise level, policy rules

become more dynamic, more domain-specific and more contexts dependent. For example the current

3

state of a workflow process, the time or other contextual information may be relevant when making an

access control decision. Göğebakan [6] and Metin [7] address the access control problems in

enterprise applications. Implementing collaborative business and governmental solutions that integrate

internal systems, introduces complex access control rules that originate from both business logic and

integration of business transactions. At this point access control rules become so called “enterprise-

level security policies”.

Since middleware infrastructures fail to evaluate enterprise-level security policies, most enterprise

applications tackle this problem by embedding access control rules within an application code that

handles domain-specific factors. The more access control rules are embedded in enterprise

applications, the more reusability and manageability of whole system reduces. Beznosov has criticized

this issue [5] and advised that the logic of security policy decision should be separated from an

application system because all security related decisions made by an application depend not only on

the application business logic but also on security policies that are enforced in the given organization

and these enterprise-level security policies are subject to changed rapidly when legislation, regulations

or company's businesses process changes. Besides, it is very hard for software vendors to know a

priori security policies enforced across customers' enterprises.

Although will be widely discusses in section 2.3, generally speaking, current enterprise application

solutions suffer from the following access control problems;

• The policy rules become too complex such that they are fine grain, domain-specific, dynamic and

context sensitive to be executed in a traditional way. For example, an online banking application

requires the EFT operation to be within a user-defined amount limit and to take place between 9:00

am and 4:00 pm.

• Largely embedded in application systems and as a result it becomes too difficult to manage and

reuse.

• Need organization-wide enforcement because of potentially large number of heterogeneous

distributed applications and users.

• Costly and error-prone because there are multiple points of control, every part of application

implements their own access policies so lack of means to assure organization-wide consistency and

end-to-end properties.

• Frequently subject to change due to legislation, regulations or businesses process changes of the

company.

4

1.1.2 Application Level Security

Although not limited to web based, nearly all of the enterprise applications has web interface such as

web services and/or web applications. Day by day more and more business is conducted via Internet

while enterprises and governments offer online service. As organizations have been increasing their

reliance on web applications, Attackers are turning their attention to these business applications.

Although network-layer defenses have become steadily matured, traditional firewalls should not be

the only protective measure in place to defend enterprise web applications. Neither other defense

systems such as Network Intrusion Detection and Prevention Systems (NIDS/NIPS) can be enough to

solve the problem. These solutions actively monitor traffic on the network for malicious activity.

NIDS solutions are often set in passive or SPAN port mode. This means that NIDS can only send TCP

resets to stop some of the bad TCP packets. A shortfall of a NIDS solution is that they can not actively

block any UDP traffic. NIPS perform the same functionality as a NIDS, except that it sits actively

inline with the data flow it is monitoring. This option is able to actively block any packet deemed

inappropriate for that network segment. Host-Based Intrusion Detection Systems (HIDS) and Host-

Based Intrusion Prevention Systems (HIPS) can also be used to protect servers. HIDS and HIPS are

parasitic software that monitors respective hosts for anomalous behavior. This software can look for

specific attacks directed at the server, whereas the network solutions monitor only the network traffic

between them.

The reason behind incapability of network layer defenses to protect enterprise web applications is that

web application attacks turns to threaten application layer instead of network layer. Application-level

web security refers to vulnerabilities inherent in the code of a web-application itself. Attackers can use

application’s own code or business logic against itself by only tampering parameters that does not still

violate network layer security policies. This makes impossible to be detected by network layer

devices. Statistics collected from SANS Institute shows that [8]; from 1Q05 to 1Q06 there has been a

20% rise in the number of application-specific vulnerabilities identified and over 50% of these are

based on web applications and greater than 80% of all malfunctions that emerged in the past year have

focused on exploiting application-layer vulnerabilities.

The most dangerous and the most unnoticeable and therefore, the hardest to prevent type of attacks are

these that exploit application layer vulnerabilities. Although these vulnerabilities have similar

patterns, they are unique to the application. Web application vulnerabilities do not have to be as a

result of common implementation bugs or mishandling of business rules. Consequently, there is no

general catch-all solution to remove weaknesses or vulnerabilities from enterprise web application.

The main reason behind web application vulnerabilities is that most of the time security is not

considered as essential design concept of enterprise application development. It must be essential to

build security concept into the Software Development Life Cycle by developing standards, policies

and guidelines that work within the development life cycle [9] otherwise even a single inexperienced

5

software developer (in most cases, software developers does not have enough knowledge or

experience about security) can cause serious security flaws.

This is why 95 % of highly used web applications have vulnerabilities [10]; even global leaders of IT

sector suffer from serious security flaws. Netscape, Amazon, Google, MSN and MySpace have been

reported to have cross site scripting vulnerabilities [11] which threatens clients of these sites and even

more dangerous impacts like credit card losses can be occurred as seen in AT&T, RI Gov, TJX,

Moneygram and PortTix cases [12].

There are various types of web applications vulnerabilities and attack vectors. The impacts also vary

greatly. Most common impact is disclosure of information where it may be as simple as revealing the

structure of web applications but may also be as dangerous as disclosure of sensible data like credit

card numbers. Unauthorized access or modifications are other serious impacts that can be used to

achieve various goals. Attack vectors are also vary a lot and are specific to the web application. Most

of the time, a number of different attack techniques are used sequentially to maximize the success

probability of the attack. The attacks, in most cases, target to reveal web application structure using

directory traversal, then may continue with analyzing response headers and session management

strategy and finally ends with injection types of attacks. These vulnerabilities are examined and

discussed widely in section 2.4. There is also a vast amount of research to define and classify security

incidents. Some researchers construct a list of terms that defines a number of attacks [13]. Some

considers origin of the vulnerabilities to build the taxonomy [14, 15]; identifying the impact of

vulnerability that describes the result of attack is another technique [16]. Stalling focuses on process,

rather than a single classification category, in order to provide a successful classification scheme for

Internet attacks [17]. There are also numerous vulnerability databases which concentrate on reporting

rather than categorizing. With all these efforts of classification, there is confusion and fuzziness about

the standardization of vulnerability names. Common Vulnerabilities and Exposures project tries to

standardize the names for all publicly known vulnerabilities and security exposures which can be

considered as a dictionary, not a database [11]. These efforts are presented in detail in section 2.1.

Some organizations and consortiums are also founded to concentrate only on web application

vulnerabilities to increase public awareness about web application security and dedicated to find and

classify possible web application attacks and offers countermeasures for them. Web Application

Security Consortium (WASC) is one of them and releases threat classification of web application

attacks [18]. Open Web Application Security Project (OWASP) is the other and publishes “Top Ten

Most Critical Web Application Security Vulnerabilities” list every year to inform the public about the

most dangerous web application vulnerabilities.

 Although there are various types of vulnerabilities and attack vectors, the source of vulnerabilities is

most of the time the same; improper handling of input validation and sanitation. Nearly 90% of web

application vulnerabilities originate from parameter tampering like injection, cross site scripting

6

(XSS), file and command execution attacks. Invalidated input was the first item in OWASP top ten

list in 2004 [19] but removed in latest list (2007) [20] because it is an essential step towards securing

the application and therefore it is not a type of vulnerability but the root of many application security

problems.

Some of the web application development frameworks like Struts have built-in data validation

mechanisms. In fact, data validation can be regarded as one of the core subjects of the positive

security model. Positive security model tries to define what is allowed or normal for the application.

The situations that are not defined are regarded as abnormal and rejected. The anomaly can be

evaluated by predefined rules (white list) or by learning. Predefined rules can be inferred

automatically by web site crawling or manually defined by strict and comprehensive resource and

parameter mappings like all web pages and their allowed parameters and headers. On the other hand,

learning can take place using statistical methods [21] or neural networks [22]. If we consider web

applications, positive security model should work with any granularity from raw HTTP packets to

HTTP parameters and headers. Network intrusion detection systems fail to satisfy this level of

granularity; mostly they evaluate only on raw packet but discard the content. Any web application

security system must allow all legitimate, acceptable traffic and content requirements and deny

everything else. This approach is highly effective at preventing unknown attacks and dramatically

reduces an organization’s attack surface by automatically eliminating exposure to all sorts of attacks.

The opposite of positive security is negative security model which identifies traffic known to be

threatening by checking traffic flows against attack signatures. However with attack vectors

increasing at such a rapid pace, solutions have less and less time to react to new attacks. Attack

signatures must be updated rapidly and frequently.

Since network layer defense systems fail to confront application level attacks, the solution has

emerged in the shape of application level firewalls, namely Web Application Firewall (WAF).

According to WASC [23] a web application firewall is "An intermediary device, sitting between a

web-client and a web server, analyzing OSI Layer-7 messages for violations in the programmed

security policy. A web application firewall is used as a security device protecting the web server from

attack." WASC has also released web application evaluation criteria [23] that can also be used for

standardization. As public awareness increases, Web application firewalls become an essential part to

secure any Enterprise web applications. For example, according to Payment Card Industry (PCI) Data

Security Standard (DSS) [24] companies must install an application layer firewall in front of Web

applications or have all custom application code reviewed for vulnerabilities by an outside

organization that specializes in application security.

1.1.3 Proposed Solution

To sum up, access control and security are most common problems of enterprise applications.

Executing enterprise-level security policies that encapsulates domain specific factors to requests that

7

suffer from web application vulnerability could probably result in error-prone access decisions. In

order to decide on enterprise-level security policies, web requests must be free from application-level

security vulnerabilities. So a correct access decision can only be granted if a request satisfies both

“enterprise-level” and “application-level” security policies. Enterprises require a comprehensive

solution that provides centralized security management, from authentication to authorization and

auditing.

The aim of this thesis to describe a centralized access and security mechanism that combines

“enterprise-level” and “application-level” security aspects together and enforce these policies to be

satisfied organization-wide and in a transparent manner. The proposed solution called EYEKS

("Erişim, YEtkilendirme ve Kişiselleştirme Sistemi" in Turkish, meaning "Access, Authorization and

Personalization System") was presented in Security of Information Networks 2007 (SIN2007) [7] The

main goal of EYEKS is to provide a common evaluation and enforcement environment for both

enterprise-level and application level policies to bring together access controlling with application-

level security. Removing separation between enterprise-level and application-level security policies

improves manageability, reusability and scalability of whole system.

Beznosov showed that separation of access decision mechanism with application itself is essential to

encapsulate domain specific factors for access decision [5]. In his model, a reference model evaluates

access decision using authorization database, gives the evaluation result to the application and leave

the enforcement to the application. Therefore EYEKS has been designed as reverse proxy that works

inline mode, installed in front of the web application to control the traffic and enforce security policies

to be satisfied. Architecture of proposed solution introduces a specific layer, so called application

security layer that is created and placed in frontier. Posterior layers consist of real web applications

and databases and have no direct access to the outside world. All communications from outside world

to backend web application is intercepted and authorized from application security layer. Each request

is parsed into HTTP headers, parameters and content, and passed to the request/response operation

chain, which is the core of application security layer. Each operation in the chain is responsible for a

specific operation like authentication, authorization, session management and logging.

The authorization mechanism of EYEKS has been chosen as Resource Access Decision (RAD)

because this facility is one of the best solutions that can be used by security-aware applications [5 and

as shown in section 3.2, is very suitable to solve access control problems of web applications. RAD is

a specification released by The Object Management Group (OMG) to specify a mechanism for

obtaining authorization decisions and administrating access decision policies [25]. EYEKS uses

CSAAS (Cybersoft Authentication and Authorization System) as authorization and authentication

engine which implements RAD specification with additional RBAC [26] capabilities [6]. The details

of CSAAS will be described in section 3.1.

8

RAD specification requires resources and their valid operations to be well defined, “Resource” can be

any entity in computer system and operation defines a valid procedure performed on any resource,

therefore any level of granularity to address access control problems of enterprise applications can be

achieved. Every resource-operation pair can be combined with a number of “policies” that defines

access policies to do requested operation on that resource. Access is granted only if that operation

satisfies attached policy rules on specified resource.

The access control problems of enterprise applications can be resolved by defining enterprise-level

policies to CSAAS. Policies are evaluated using attributes of an operation. These attributes can be

dynamic (attribute value is evaluated at the time of the request) or static (parameters that are passed

directly with an operation.) According to these attribute values, a policy grants or denies an access.

For enterprise web applications, this is a reasonable approach. A form within a web page, a whole web

page, a directory or even a whole web application can be defined as a resource or operations for a

resource in upper level of abstraction. As described before, middleware access control mechanisms

cannot provide such level of abstraction.

Any web application that requires to be controlled by EYEKS must be mapped to RAD domain as

described in section 3.2. This mapping requires all web pages and directory structure to be identified

and manually constructing resource-operation pairs. After the whole web application is mapped,

access policies (enterprise-level security policy) can be attached to suitable resource-operation pairs

that define permission on that resource. Within these policies, any domain specific access rules can be

encapsulated. EYEKS regards all request parameters as security attributes of corresponding business

operation and passes them to CSAAS. Upon reception of a page request, these parameters are resolved

and according to corresponding mapping they are passed to CSAAS with resource-operation pair.

These parameters can then be used to evaluate access decision within corresponding policy.

Mapping from enterprise web application structure to RAD domain will also provide a common way

to tackle with application security. This is believed to be the most important contribution of this

thesis. Currently, enterprises must install different solutions to access control and application security.

However removing discrimination between application-level and enterprise level security policies and

handling them by a common infrastructure would improve manageability, reusability and scalability

of whole system. This mapping directly leads us positive security model where resources and

operation of the application are strictly defined. Upon this mapping, it is also possible to check

parameters and headers of each request against allowed values, type or range.

RAD specification does not allow hierarchical resource definition, permitting only flat structure.

However it is absolute that applications need organization wide security policies. In this thesis, this

drawback has been overcome with some predefined resources. Application security layer asks for

permission on these resources when a page request, request to access any page within a directory or

more broadly any request to application has been received. By these predefined resources, it is

9

possible enforce global security policies on any page, directory or application hierarchically. Global

security enforcement also provides a negative security model to be applied. Application-security

policies that define signatures of known security exploits can be attached to these resources and

application security layer guarantees that each request must satisfy all these application security

policies in order to reach backhand enterprise applications.

To summarize, the main contributions of this thesis are the following:

• Defining an organization wide security enforcement mechanism for enterprise web applications.

• Transparently adapting an access control mechanism based on RAD specification that is capable

of using domain specific factors in access decision to address access control problems of enterprise

applications.

• Defining a common infrastructure where enterprise access rules and application security rules can

be handled by organization wide policies.

• Applying positive and negative security models to enterprise web application with RAD based

implementation.

1.2 Outline of the Thesis

This thesis is organized as follows. The next chapter contains background information about access

control mechanisms and web application security. It begins with security taxonomies and continues

with access control mechanism, further defines access control and application security problems of

enterprise web applications. At the end of the chapter related works about these two subjects are

presented. Chapter 3 describes our proposed architecture. The chapter starts with describing CSAAS,

RAD based implementation that will be used as access control mechanism and continues with

mapping web application to RAD domain. In the remaining section of this chapter, the inner structure

of EYEKS is described in detail. The chapter ends with verification of solution section that tries to

verify EYEKS implementation against the problems presented. Chapter 4 lists the experimental tests

of the EYEKS. In Chapter 5, main contributions of this thesis and some ideas for future work are

presented. In Appendix A, a complete analysis of web application security vulnerabilities is made.

This chapter also contains a classification of web application attacks according to selected security

taxonomies.

10

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Security Incidents

2.1.1 Definition of Incidents

There is no single definition of security incidents and incident responses. Throughout the literature

there is no agreement on what an incident is. Instead individuals, foundations and universities make

their own assessments to define what an incident is.

Lucas and Moeller [27], like most practitioners, agree on the need for a solid definition that clearly

differentiate “incident” from “non-incident”. The Network Working Group of TERENA emphasizes

the importance of a common language on security incidents, on their RFC 3067 and states that: [28]

“Computer Incidents are becoming distributed and International [sic] and involve many CSIRTs

across borders, languages, and cultures. Post-Incident information and statistics exchange is

important for future Incident prevention and Internet security improvement. The key element for

information exchange in all these cases is a common format for Incident (Object) description.”

The first classification of computer incidents was defined by Nancy and Peter Finn in an article on

Computerworld published in 1984. They divide computer crime into five categories: financial crime,

information crime, theft of property, theft of services and vandalism. However they only focus on

crime-related threats but discards the accidental or non-malicious aspects. Howard and Longstaff

define an incident as “a group of attacks that can be distinguished from other attacks because of the

distinctiveness of the attackers, attacks, objectives, sites, and timing.” [29] An attack is defined as “a

series of steps taken by an attacker to achieve an unauthorized result.” And an attacker is “an

individual who attempts one or more attacks in order to achieve an objective.” TERENA defines an

attack more solidly as “an assault on system security that derives from an intelligent threat to evade

security services and violates the security policy of a system. Attack can be active or passive, by

insider or by outsider, or via attack mediator.” In both definitions, the term attack means a malicious

intent to break down the system, however a sizeable proportion of incidents are the result of accidents

or actions undertaken without seeing any negative consequences. This strict focus on malicious

attacks does comprise just a portion of total incidents. So a more general definition of attack is needed

to cover all types of security incidents.

Grace, Kent and Kim also emphasize the need for a clear definition of what an incident are [30]. They

consider this as an inevitable aspect to create an effective indent response team. They state that “an

11

event is any observable occurrence in a system or network” and “adverse events” as “events with a

negative consequence, such as system crashes, network packet floods, unauthorized use of system

privileges, defacement of a Web page, and execution of malicious code that destroys data.” This

creates an important distinction; they called any occurrence of changes in the system that cause any

effect as “events” and also adds the term “adverse event” that cause negative effect to the system.

These authors make this distinction in ways that other authors have not.

Van Wyk and Forno focus on examples of incidents. They state simple definition of incident [31]. “In

the most basic terms, an incident is a situation in which an entity’s information is at risk, whether the

situation is real or simply perceived”. The significant part of their work is expanding the definition of

incident to include situations that are false alarms. This definition adds another perspective to the

computer security, they state that if only real incidents attracted the attention of incident response

teams, in order to prevent the further attacks and collect knowledge, the damage or exposure would

have to occur. Van Wyk and Forno states that perceiving an incident is possible by studying previous

attacks, false alarms and possible vulnerability sources to take a more proactive approach

2.1.2 Taxonomies of Incidents

Taxonomy is a classification scheme that partitions a body of knowledge and defines the relationship

of the pieces [32] Classification is the process of using taxonomy for separating and ordering. Using

these separations and ordering generalizations can be made about them, so we can say that

classifications have explanatory value. Taxonomies can also be used to predict the existence of

specimens that have not been seen before by extrapolating from the known specimens so taxonomies

have also predictive value.

Edward Amoroso, in his book Fundamentals of Computer Security Technology [33] defines what the

characteristics, a satisfactory taxonomy must have. These are;

Mutually Exclusive: classifying in one category excludes all others because categories do not

overlap,

Exhaustive: taken together, the categories include all possibilities,

Unambiguous: clear and precise so that classification is not uncertain, regardless of who is

classifying,

Repeatable: repeated applications result in the same classification, regardless of who is classifying,

Accepted: logical and intuitive so that categories could become generally approved,

Useful: could be used to gain insight into the field of inquiry.

12

Ivan Victor Krsul defines these characteristics in a more compact way and mention four distinctive

characteristics, which are; [34]

Objectivity: The features must be identified from the object known and not from the subject

knowing. The attribute being measured should be clearly observable.

Determinism: There must be a clear procedure that can be followed to extract the feature.

Repeatability: Several people independently extracting the same feature for the object must agree on

the value observed.

Specificity: The value of the feature must be unique and unambiguous.

Ulf Lindvist and Erland Jonsson were more or less in agreement with these characteristics but also

added two important characteristics [35]

Comprehensible: A satisfactory taxonomy must be able to be understood by who are in the security

field, as well as those who only have an interest in it.

Complying Terminology: An accepted terminology should be used in taxonomy to avoid confusion

and to build on previous knowledge

2.1.3 Existing Taxonomies

As some authors like Landwher and Bishop, focus on mainly attacks, some authors like Cohen,

Howard take a broader view of the taxonomies such as considering the attacker, tool or natural

disasters. So computer and security taxonomies do not necessarily focus on attacks. Regardless of

whether the taxonomy focuses on attacks or not, the common element of these taxonomies is

classifying attacks.

There are various works on creating taxonomies for computer security incidents and nearly all of them

can be categorized by their common properties

2.1.3.1 List of Terms

One of the popular and simple taxonomy of computer incidents is giving a list of single and defined

terms. Icove [13] proposed 24 terms as taxonomy, as shown below.

“Wiretapping, Dumpster diving, Eavesdropping on Emanations, Denial-of-service, Harassment,

Masquerading, Software piracy, Unauthorized data copying, Degradation of service, Traffic analysis,

Trap doors, Covert channels, Viruses and worms, Session hijacking, Timing attacks, Tunneling,

Trojan horses, IP spoofing, Logic bombs, Data diddling, Salamis, Password sniffing, Excess

privileges, Scanning.”

13

Cohen defined 39 terms in his paper. [36] and extend this list to 100 terms [37] but also added that the

classification is descriptive, non-orthogonal, incomplete, and of limited applicability. The defined 39

terms are shown below.

“Trojan horses, Toll fraud networks, Fictitious people, Infrastructure observation, E-mail overflow,

Time bombs, Get a job, Protection limit poking, Infrastructure interference, Human engineering,

Bribes, Dumpster diving, Sympathetic vibration, Password guessing, Packet insertion, Data diddling,

Computer viruses, Invalid values on calls, Van Eck bugging, Packet watching, PBX bugging,

Shoulder surfing, Open microphone listening, Old disk information, Video viewing, Backup theft,

Data aggregation, Use or condition bombs, Process bypassing, False update disks, Input overflow,

Hang-up hooking, Call forwarding fakery, Illegal value insertion, E-mail spoofing, Login spoofing,

Induced stress failures, Network services attacks Combined attacks.”

Ambiguities are almost inevitable when preparing lists of terms for taxonomies; the terms tend not to

be mutually exclusive, which is the main characteristics of a satisfactory taxonomy. For example, the

terms virus and logic bomb are not mutually exclusive since a virus may contain a logic bomb. And

also attacks do not consist of only one type of attack but a combination of different methods. As a

result, developing a comprehensive list of methods for attacks would not provide a classification

scheme that yields mutually exclusive categories (even if the individual terms were mutually

exclusive), because actual attacks would have to be classified into multiple categories

2.1.3.2 List of Categories

Listing of categories is a variation of the list of terms. Lists of categories are in fact distinctive

categories holding definitions of underlying terms. Cheswick and Bellovin in their paper on firewalls

[14] classify attacks into seven categories as follows;

“1.Stealing passwords - methods used to obtain other users’ passwords,

2. Social engineering - talking your way into information that you should not have,

3. Bugs and backdoors - taking advantage of systems that do not meet their specifications, or

replacing software with compromised versions,

4. Authentication failures - defeating of mechanisms used for authentication,

5. Protocol failures - protocols themselves are improperly designed or implemented,

6.Information leakage - using systems such as finger or the DNS to obtain information that is

necessary to administrators and the proper operation of the network, but could also be used by

attackers,

7. Denial-of-service - efforts to prevent users from being able to use their systems.”

14

Aslam develops a classification scheme which focuses on security faults that result in security

incidents. [38] In this narrow point of view, he divides software faults into two broad categories.

Coding Faults that result from errors in programming logic, missing requirements, or design error;

and Emergent Faults resulting from improper installation or administration of software so that

software faults are present even if there are no faults in coding part.

One of the newest taxonomy falls into this kind of taxonomy is Lough’s taxonomy. In 2001 Daniel

Lough proposed another taxonomy named VERDICT (Validation Exposure Randomness Deallocation

Improper Conditions Taxonomy) that is based on characteristics of attacks. Lough proposed four

characteristics of attacks; [15]

Improper Validation: Insufficient or incorrect validation results in unauthorized access to

information or a system.

Improper Exposure: A system or information is improperly exposed to attack.

Improper Randomness: Insufficient randomness results in exposure to attack.

Improper Deallocation: Information is not properly deleted after use and thus can be vulnerable to

attack.

List of categories are an improvement because the taxonomy have some structure of terms, but this

type of taxonomy suffers from the same problems as on large list of terms. For example Bishop and

Bailey [39] shows that Aslam classification does not satisfy the specificity requirement as it is

possible to classify a fault in more than one classification categories. So this type of taxonomies also

suffers from satisfying mutual exclusive characteristic.

2.1.3.3 Result Categories

This classification identifies the impact of vulnerability; in fact it is another variation of the list

methods to group all attacks into basic categories that describe the result of attack. Cohen’s taxonomy

[36] also covers result categories such as corruption, leakage and denial, where corruption is the

unauthorized modification of information, leakage is when information ends up where it should not

be, and denial is when computer or network services are not available for use [36]. Russell and

Gangemi use similar categories but define them using opposite terms: 1) secrecy and confidentiality;

2) accuracy, integrity, and authenticity; and 3) availability [40].

This type of taxonomy has a useful framework because most individual attacks eventually fall into

one of these categories. Although the attack techniques, tools can be various, the impact list would be

compact. One drawback of these taxonomies is an attack can result in not only direct impact but also

indirect impact. So there might be confusion on which categories it belongs to. However result

15

categorization scheme ends up with empirical, lists, vulnerability databases and decision tree

taxonomies, which are serious improvements in taxonomies of security incidents

2.1.3.4 Empirical Lists

A variation of result categories is to develop a longer list of categories based upon a classification of

empirical data. Neumann and Parker classified actual attacks and came up with eight categories. Three

classical categories (corruption, leakage and denial) now extended into eight distinct categories so that

it covers more types of attack impact, which would not be classified by Cohen’s taxonomy. Neumann

and Parker list it as follows; [41]

“External Information Theft (glancing at someone’s terminal).

 External Abuse of Resources (smashing a disk drive).

 Masquerading (recording and playing back network transmission).

 Pest Programs (installing a malicious program).

 Bypassing Authentication or Authority (password cracking).

 Authority Abuse (falsifying records).

 Abuse Through Inaction (intentionally bad administration).

 Indirect Abuse (using another system to create a malicious program).”

However Amoroso critiques the list as follows; [33]

“A drawback of this attack taxonomy is that the eight attack types are less intuitive and harder to

remember than the three simple threat types in the simple threat categorization. This is unfortunate,

but since the more complex list of attacks is based on actual occurrences, it is hard to dispute its

suitability.”

Such extended lists of result categories can be suitable for classifying large number of actual attacks

and if carefully constructed, these list would have satisfy able taxonomies characteristics stated above.

However, being able to classify known attacks is not sufficient, as Amoroso said, a successful

taxonomy must be logical and intuitive, so that new attacks can also be classified using the same

taxonomy. There must be additional structure showing the relationship of the categories.

2.1.3.5 Matrices

The most used representation style of taxonomies is in matrix form. Perry and Wallich create one of

the first matrix taxonomy. They present a classification scheme based on two dimensions;

16

vulnerabilities and potential perpetrators. This allows categorization of incidents into a simple matrix

[83]. The individual cells of the matrix represent combinations of potential perpetrators: operators,

programmers, data entry clerks, internal users, outside users, and intruders, and the potential effects:

physical destruction, information destruction, data diddling, theft of services, browsing, and theft of

information.

One of the most valuable works of matrix approach to security incident taxonomy is found in

Landwehr’s “A Taxonomy of Computer Program Security Flaws, with Examples” paper [84]. They

present taxonomy of computer security flaws based on three dimensions;

• Genesis: How a security flaw occurs,

• Time of Introduction: In which life-cycle of the software, a security flaw arises,

• Location: Where and in which state, a security flaw occurs,

Although, Landwehr’s taxonomy is a good effort for classifying security incidents, it has many

drawbacks. First of all Landwehr used the terms, such as Trojan horse, virus, trapdoor and logic/time

bomb for which there are no accepted definitions. The taxonomy includes several “other” categories

which make the flaws not to represent an exhaustive list. On the other hand most of the attacks could

use several flaws and behave differently in different platforms. So it is hard to classify entire attack

using this taxonomy.

2.1.3.6 Process-Based Taxonomy

The focus of this kind of taxonomies is toward a process, rather than a single classification category,

in order to provide both a successful classification scheme for Internet attacks, and also a taxonomy

that would aid in thinking about computer and network security.

Stallings presents a simple process model that classifies security threats [17]. The model is focused

only information in transit. Stallings defines four categories of attack as follows:

“1.Interruption - An asset of the system is destroyed or becomes unavailable or unusable.

2. Interception - An unauthorized party gains access to an asset.

3. Modification - An unauthorized party not only gains access to, but tampers with an asset.

4. Fabrication - An unauthorized party inserts counterfeit objects into the system.”

Interception is viewed by Stallings as a passive attack, and interruption, modification and fabrication

are viewed as active attacks. While this is a simplified view with limited utility, its emphasis on the

process of attack is useful.

17

2.1.3.7 Threat Classification

The classification of the threat due to the vulnerabilities was designed by Power [42]. In this

classification, figure 1, threats are divided into four categories, threats that threaten availability and

usefulness, integrity and authenticity, confidentiality and possession, exposure to threats. Each threat

category is divided into possible outcomes. But this classification is critiqued to be ambiguous. The

categories Observe and Access are concrete actions while the category Steal is subjective, also it is

possible to Access and Steal simultaneously.

Figure 1 Threat Classification

18

2.1.3.8 Vulnerability Databases

Several groups have constructed vulnerability databases. Private databases of restricted distribution

include the CMET database at the Air Force Information Warfare (AFIW) Center; the database

maintained by Mike Neumann; the database at the Computer Emergency Response Team (CERT); the

database of the Australian Computer Emergency Response Team (AUSCERT); and the internal

vulnerability databases at Netscape, Sun, and Haystack Labs.

National Vulnerability Database is a comprehensive security vulnerability database that integrates all

publicly available U.S. Government vulnerability resources and provides references to industry

resources. It is based on CVE vulnerability naming standard. It integrates together all publicly

available U.S. government vulnerability resources within a single search engine and an average of 18

vulnerabilities is added on their database everyday.

These databases are freely available in the Internet and commonly used by various security related

organizations and companies. Most of them have a simple characterization that includes information

regarding the systems affected by the vulnerability and the potential ultimate impact that the

vulnerability can have in a system and manner of possible attack. However, these categorizations are

list type and fail to be a successful taxonomy.

2.1.4 Vulnerability Naming Standards

2.1.4.1 Preliminary List of Vulnerability Example for Researchers

The Preliminary list of vulnerability examples for researchers is written by Steve Christey and is a

working document that lists over 1400 diverse, real-world examples of vulnerabilities, identified by

their CVE number [85]. Apart from past efforts that have largely focused on high-level theories,

taxonomies, or schemes that do not sufficiently cover the wide variety of security issues, PLOVER

provides an effective vocabulary for describing vulnerabilities at a low level of detail within a detailed

conceptual framework.

In section 3 and 4 of this document, Christey gives definitions of security concepts with

corresponding naming standards. He defines attack as follows; [PLOVER 2006, [DEFS].CDEFS.Core

definitions]. ”The set of actions by which an ATTACKER follows an ATTACK VECTOR to exploit a

VULNERABILITY to achieve a desired CONSEQUENCE.” In this definition, “attack vector” stands

for a set of “manipulations” and “channels” where “channels” defines an interface between two

entities of any system (Figure 7). Channels divided into three remote, local and physical. Remote

channels mean any user to server or server to server interactions. Local channels are program

interactions with local environment such as memory, file or programmatic interactions such as process

invocation, object reference, data stream. Physical channels include serial ports, keyboard, CD drive,

etc. Manipulations can be data or step manipulations.

19

Christey defines vulnerability as [PLOVER 2006, [DEFS].CDEFS.Core definitions]; “A WIFF in a

specific product, or a design intended for a class of products that provide the same functionality that

has at least one ATTACK VECTOR.” where WIFF’s are “Weakness, Idiosyncrasy, Flaw, or Fault.

An algorithm, sequence of code, or a configuration in the product, whether it arises from

implementation, design, or other processes, that can cross data or object boundaries that could not be

crossed during normal operation of the product.”

Attack vector consist of minimal set of MANIPULATIONS, and CHANNELs, that are required to

cause the product to reach a WIFF. This definition is an important definition because Christey now

able to categories attacks that use multiple WIFF’s where most of the taxonomies fail to be mutually

exclusive. Christey introduces, MULTI-FACTOR VULNERABILITY as “A vulnerability that

contains two or more WIFFs, two or more manipulations, or two or more attack channels.” and

MULTI-CHANNEL VULNERABILITY as “A vulnerability whose attack vector contains two or

more attack channels that must be controlled by the attacker.”

Christey also categories vulnerabilities according to their origin, identifying in which phase of

software life cycle the vulnerability is introduced. According to Christey, although most vulnerability

tends to occur in any of several phases, some vulnerability can be introduced in one phase or another.

In section 8, “Genesis of vulnerabilities”, he divided the origin into 9 categories; design,

implementation, bundling, distribution, installation, configuration, documentation, patch and removal.

As a result of PLOVER work, the vulnerabilities are organized within a detailed conceptual

framework that currently enumerates 290 individual types of WIFFs and lists over 1400 diverse, real-

world examples of vulnerabilities, identified by their CVE names. This work is a great step over

standardization of enumeration of vulnerabilities and lead to OVAL (Open Vulnerability and

Assessment Language), the standard for determining vulnerability and configuration issues on

computer system. Depending on OVAL, the Department of Defense, give the statement of works to

explain the relevant requirements that must be met by software suppliers, assessment and reporting

tool developers, remediation tool developers.

2.1.4.2 Common Vulnerabilities and Exposures (CVE)

CVE is a list of information security vulnerabilities and exposures that aims to provide common

names for publicly known problems. It is a dictionary and a result of collaborative efforts of CVE

Editorial Board, which consist of numerous security-related organizations such as security tool

vendors, academic institutions, and government as well as other security experts. It is freely available

for both download and review. CVE was founded in 1999 and since then it tries to enumerate

common vulnerabilities. It does not provide any taxonomy; instead CVE is designed to allow

vulnerability databases and other capabilities to be linked together, and to facilitate the comparison of

security tools and services. As such, CVE does not contain information such as risk, impact; fix

20

information, or detailed technical information. CVE only contains the standard name with status

indicator, a brief description, and references to related vulnerability reports and advisories.

CVE gives two new definition to the term vulnerability; “universal vulnerability” and “exposure”

[11]. CVE defines universal vulnerability as follows”A "universal" vulnerability is one that is

considered vulnerability under any commonly used security policy which includes at least some

requirements for minimizing the threat from an attacker.” And states “exposure” as

“An exposure is a state in a computing system (or set of systems) which is not a universal

vulnerability, but either:

1. allows an attacker to conduct information gathering activities

2 .allows an attacker to hide activities

3 .includes a capability that behaves as expected, but can be easily compromised

4 .is a primary point of entry that an attacker may attempt to use to gain access to the system or data

5 .is considered a problem according to some reasonable security policy”

In fact, these two definitions are very broad and it is hard to decide whether a security incident is a

“universal vulnerability” or an “exposure”. However the term “universal vulnerability” is used for

entries, which are considered as vulnerabilities under any security policy and exposure as entries,

which violate some of the security policies. Under these definitions, “denial of service by flooding a

network” and “remote command execution as user nobody" are examples of universal vulnerability

and “running services such as finger” and “inappropriate settings for Windows NT auditing policies”

can be called exposures.

2.1.4.3 Common Weakness Enumeration (CWE)

PLOVER is a starting point for creation of CWE. CWE tries to give a formal enumeration of the set of

security Weakness, Idiosyncrasies, Faults, Flaws (WIFFs) to serve as a common language for

describing software security vulnerabilities. Although the basis of CWE is PLOVER work, CWE also

includes the thoughts in the McGraw/Fortify “Seven Kingdoms” taxonomy, Howard, LeBlanc &

Vieag’s 19 Deadly Sins and Secure Software’s CLASP.

At the top of the hierarchy, CWE categories WIFFs into two; By Location and By Motivation/Intent.

Motivation/Intent group is divided into Intentional and Inadvertent. Intentional WIFFs are weakness

that occurs intentionally and Inadvertent flaw may occur in requirements and as well as during

specification and coding. Intentional flaws are also divided into malicious flaws and non-malicious

flaws. Malicious flaws cover Trojan horses, trapdoors and other malicious software that can leak into

21

the software. Functional requirements that are written without regard to security requirements can lead

to non-malicious flaws.

Location category describes the origin of flaws, a flaw can occur because of the environment used,

some faults in configuration or the coding mistakes. Coding faults are divided into two source code

and byte/object code. Source code describes coding errors that lead to weakness and byte/object code

is a category that tries to describe the weaknesses that rise from bad linking and complying practices.

Source code category is divided into seven categories, these are; Data Handling, API Abuse, Security

Features, Time and State, Error Handling, Code Quality, Encapsulation which describes bad coding

practices that can leak to vulnerabilities. A high level hierarchy of CWE is given in figure-2.

Figure 2 CWE Enumeration

2.1.4.4 WASC Threat Classification

Web application security consortium has been released a classification of web application threats.

According to this classification, web application suffers from 6 classes of attacks; Authentication,

Authorization, Client-side Attacks, Command Execution, Information Disclosure and Logical Attacks.

22

Authentication type of attacks covers attacks that target a web site’s validation of the identity of a

user, service or application mechanism. Authorization type of attacks aims bypassing authentication

mechanisms to perform any action without sufficient permissions. Client-side Attacks focuses on the

abuse or exploitation of a web site's users. The Command Execution section covers attacks designed

to execute remote commands by injecting malicious input on the web site. Information Disclosure

types of attacks tries to reveals sensitive data, such as developer comments or error messages or the

full structure of web site which may aid an attacker in exploiting the system. Logical Attacks section

covers the abuse of a web application’s logic flow; attacker may bend expected procedural flow in

order to perform a certain malicious action

2.2 Access Control Mechanism

Security of computer systems can be conventionally defined by two terms, protection and assurance.

Protection is based on the idea that it is always possible to define most of the threats that may happen,

and to build mechanisms that can prevent the threats [2]. The protection mechanisms must provide the

essential services of accountability, availability and authorization. Accountability mechanisms make

sure that any actions done by the users or other system active entities (subjects) towards the system

resources (objects) are logged and the logs should be sufficient to map the subject to a controlling

user. Availability mechanisms ensure either service continuity or service and resource recovery after

interruption. Authorization mechanisms should ensure that the rules governing the use of system

resources are enforced application-widely. Access control mechanisms allow system owner to define

these governing rules and to enforce them. The term “authorization” also implies the process of

making access control decisions.

In any access control model, the entities that can perform actions in the system are called subjects; and

the entities representing resources to which access may need to be controlled are called objects (see

also Access Control Matrix). Subjects and objects should both be considered as software entities,

rather than as human users: any human user can only have an effect on the system via the software

entities that they control. Access control has been exercised at different places and levels of

abstraction, e.g. network, database, operating system and middleware controls, each with different

emphasis. Control to protected resources can also be addressed from a single system or an

organization point of view.

Broadly, access control models used by current systems tend to fall into one of two classes: those

based on capabilities and those based on access control lists (ACLs). In a capability-based model,

access to the object requires holding a capability that object defines; another party provides access by

transmitting such a capability over a secure channel. In an ACL-based model, a subject's access to an

object depends on whether its identity is on a list associated with the object; editing the list controls

access.

23

Beznosov clarifies the structure of traditional access control mechanisms using the conceptual model

of reference monitor [43]. A reference monitor is a part of the security subsystem, responsible for

mediating access by subjects to system resources as shown in figure 3. So the access control becomes

the act of checking access requests against authorization rules from the authorization database when a

subject requires action on system objects and enforcing them. A set of the rules is sometimes called a

policy. Authorization rules commonly have a subject-action-object structure, which specifies what

subject(s) can perform what action(s) on what object(s). Permitted actions are called access rights.

Thus a subject has a particular access right to an object if the action is permitted towards that object.

So a reference monitor requires authorization rules and three groups of information: 1) the access

request, 2) the subject who made the request, and 3) the object to be accessed to make an authorization

decision.

Figure 3 Conceptual Model of Access Control

24

2.2.1 Discretionary Access Control

Discretionary access control (DAC) is a kind of access control, defined by the TCSEC [44] as "A

means of restricting access to objects based on the identity of subjects and/or groups to which they

belong. The controls are discretionary in the sense that a subject with certain access permission is

capable of passing that permission (perhaps indirectly) on to any other subject (unless restrained by

Mandatory Access Control)."

The basis of this kind of security is that an individual user, or program operating on the user's behalf,

is allowed to specify explicitly the types of access other users (or programs executing on their behalf)

may have to information under the user's control. Access controls may be discretionary in capability,

profile, access control list, protection bits and password based [45].

Discretionary security differs from mandatory security in that it implements the access control

decisions of the user. Mandatory controls are driven by the results of a comparison between the user's

trust level or clearance and the sensitivity designation of the information. Discretionary controls are

not a replacement for mandatory controls. In any environment in which information is protected,

discretionary security provides for a finer granularity of control within the overall constraints of the

mandatory policy. However Discretionary access control mechanisms restrict access to objects based

solely on the identity of subjects who are trying to access them. This basic principle of discretionary

access control contains a fundamental flaw that makes it vulnerable to Trojan horses [46].

2.2.2 Mandatory Access Control

Mandatory access control, as defined in the DoD's Trusted Computer Security Evaluation Criteria

[44], is "A means of restricting access to objects based on the sensitivity (as represented by a label) of

the information contained in the objects and the formal authorization (i.e. clearance) of subjects to

access information of such sensitivity."

MAC's basic idea is denying users to full control over the access to resources that they create. The

system security policy entirely determines the access rights granted, and a user may not grant less

restrictive access to their resources than the administrator specifies. For MAC, the access control

decision is granted by verifying the compatibility of the security properties of the data and the

clearance properties of the individual MAC is most commonly applicable to Classified National

Security Information where best effort mechanisms are inadequate; absolute enforcement is mandated.

If individuals or processes exist in the system environment that may be denied access to any of the

data in the system environment, then the system must be trusted to enforce MAC. This implies

varying degrees of robustness in the system. For example, more robustness is indicated for system

environments containing classified Top Secret information and uncleared users than for one with

Secret information and users cleared to at least Confidential. To promote consistency and eliminate

25

subjectivity in degrees of robustness, an extensive scientific analysis and risk assessment of the topic

produced a landmark benchmark standardization quantifying security robustness capabilities of

systems and mapping them to the degrees of trust warranted for various security environments.

Such architecture prevents an authenticated user or process at a specific classification or trust-level

from accessing information, processes or devices in a different level. This provides a containment

mechanism of users and processes, both known and unknown (an unknown program (for example)

might comprise an untrusted application where the system should monitor and/or control accesses to

devices and files).

2.2.3 Lattice-based Access Control

Lattice-based access control (LBAC) is a complex method to control information flow of the system.

It decides access on combination of objects and subjects by checking partial ordering of the security

levels.

A lattice is used to define the levels of security that an object may have, and that a subject may have

access to, in such a way that any two security levels always have a greatest lower bound and least

upper bound. If two objects A and B are inherited by another object C, that object is assigned a

security level formed by the join of the levels of A and B, and if two subjects need to access some

secure data, their access level is defined to be the meet of the subjects’ levels. A subject is allowed to

access an object only if the security level of the subject is greater than or equal to that of the object.

2.2.4 Rule-based Access Control

Rule-based access control is an example of mandatory access control where the system decides on

actions of subjects on objects by evaluating a chain of rules that have been defined previously. In fact

all MAC-based systems implement a simple form of rule-based access control to determine whether

access should be granted or denied, however rule-based access control differs from others due to

expressional ability. With a set of well defined rules, the access control logic can be embedded purely

in rules that can be evaluated at run time.

Rule-based access control is a strategy to manage user access to one or more systems, where business

changes trigger the application of rules, which specify access changes. These rule evaluation can give

system dynamic manner, when rules depends dynamic variables that can be changed during execution

2.2.5 Role-based Access Control

Role-based access control (RBAC) is an alternative to traditional discretionary (DAC) and mandatory

access control (MAC) policies [47] [48]. RBAC's main motivation is the ability to specify and enforce

enterprise-specific security policies in a way that maps naturally to an organization structure. RBAC

suits well for expressing policies particularly suited for commercial application.

26

Within RBAC, access control policies must be expressed in terms of the organization structure and

roles that individuals have. There is a direct mapping from organization view to access control domain

view so that it is not necessary to translate a natural organization view into access control mechanism.

In fact RBAC is a form of non-discretionary access control that the users are constrained by the

organization's protection.

Within the RBAC framework, a user is a person, a role is a collection of job functions, and an

operation represents a particular mode of access to a set of one or more protected RBAC objects. And

there is a many-to-many relationship between users, role and operations as shown in figure 4. For

example, a single user can be associated with one or more roles, and a single role can have one or

more user members. Roles can be created for various job positions in an organization. System objects

that requires authorization is matched with possible operations.

Figure 4 RBAC Role Model

Roles can have overlapping responsibilities and privileges, that is, users belonging to different roles

may need to perform common operations, so that it would be inefficient to specify repeatedly these

operations for each role. Consequently, RBAC introduces the concept of role hierarchies. A role

hierarchy defines roles that have unique attributes and that may "contain" other roles, that one role

may implicitly include the operations, constraints, and objects that are associated with another role.

With these basic foundations, Ferraiolo defines nine rules for RBAC access control; [49]

27

Rule 1 (Role Hierarchy): If a subject is authorized to access a role and that role contains another

role, then the subject is also allowed to access the contained role.

Rule 2 (Static Separation of Duty): A user is authorized as a member of a role only if that role is not

mutually exclusive with any of the other roles for which the user already possesses membership.

Rule 3 (Cardinality): The capacity of a role cannot be exceeded by an additional role member.

Rule 4 (Role Authorization): A subject can never have an active role that is not authorized for that

subject.

Rule 5 (Role Execution): A subject can execute an operation only if the subject is acting within an

active role.

Rule 6 (Dynamic Separation of Duty): A subject can become active in a new role only if the

proposed role is not mutually exclusive with any of the roles in which the subject is currently active.

Rule 7 (Operation Authorization): A subject can execute an operation only if the operation is

authorized for the role in which the subject is currently active.

Rule 8 (Operational Separation of Duty): A role can be associated with an operation of a business

function only if the role is an authorized role for the subject and the role had not been assigned

previously to all of the other operations.

Rule 9 (Object Access Authorization): A subject can access an object only if the role is part of the

subject's current active role set, the role is allowed to perform the operation, and the operation to

access the object is authorized.

Sandru [48] provides a characterization of RBAC models as follows;

1. RBAC0: The basic model with users associated with roles and roles associated with permissions.

2. RBAC1: Role hierarchies are added to RBAC0.

3. RBAC2: RBAC1 with adding constraints on user to role, role to role and role to permission

associations.

RBAC system enables administration of a broad range of authorized operations more easily and

provides great flexibility and breadth of application. System administrators can control access at a

level of abstraction that is natural to the way that enterprises typically conduct business rules. This is

in contrast to conventional methods such as access control list (ACL), capabilities models.

28

2.2.6 Resource-based Access Control

The Resource Access Decision (RAD) specification released by The Object Management Group

(OMG) is a mechanism for obtaining authorization decisions and administrating access decision

policies [25]. In Beznosov’s work this facility is cited as one of the best solutions that can be used by

security-aware applications [5].

The major motivations behind RAD specification can be listed as follows;

• The application logic must be separated from authorization logic by providing a logically single

point of administrative reference monitoring separated from application systems.

• The authorization decisions for resources (objects) must be defined for any nature and granularity

as long as those resources defined according to RAD’s resource naming scheme.

• More than one authorization engine for decisions can be consulted about the same request or

different requests. These engines can support different authorization policies, can be integrated with

legacy systems and can be managed by independent authorities.

• Authorization decisions can be granted using request-specific or user-specific factors which may

dynamically changed during execution.

The main objective of RAD is to separate authorization logic from application logic. Authorization

logic is encapsulated into an authorization service external to the application. The interaction diagram

is shown in figure 5.

Figure 5 RAD Interaction Diagram

29

RAD specification requires resources and their valid operations to be well defined, resource can be

any entity in the computer system and operation defines a valid procedure performed on any resource.

Every resource-operation pair can be combined with a number of “policies” that defines access

policies to do requested operation on that resource. Access is granted only if that operation satisfies

attached policy rules on specified resource. Policies are evaluated using attributes of an operation.

These attributes can be dynamic (attribute value is evaluated at the time of the request) or static

(parameters that are passed directly with an operation.) According to these attribute values, a policy

grants or denies an access. A conceptual model of these relations is given in figure 6.

Resource

Operation

Secured Resource

Policy

1

1

represented by
1

1..* has
0..*

1..*

defines access policy

Figure 6 RAD Secured Resource

RAD allows different kinds of policy evaluators that can be plugged in to the system. All kinds of

policies can be evaluated by adding capable policy evaluator. Access decisions can be evaluated by

combining different kinds of policy evaluators to evaluate different kinds of policies.

Barkley shows that RBAC can be combined with RAD by introducing RBAC policy evaluator so that

RAD can also use all capabilities and advantages of RBAC system [2]. In this thesis, an access control

mechanism that uses RAD specification and with RBAC policy evaluator is implemented. The details

of the concept can be found in section 3.1.

30

2.3 Access Control Problems in Enterprise Applications

The Internet is forcing enterprises to implement collaborative business and governmental solutions

that integrate internal systems. Enterprise applications such as ERP (Enterprise Resource Plan), CRM

(Customer Relationship Management) and SCM (Supply Chain Management) have now all become

online and web-based. Enterprise information portal technologies have emerged to integrate these

applications into a cohesive whole. These enterprise applications must satisfy complex access control

rules that rise from both business logic and integration of business transactions in order to be secure.

At this point access control rules break from black-list or white-list implementations, but become so

called “enterprise-level security policies”. However as access control logic becomes closer to

enterprise level, policy rules become more dynamic, more domain-specific, and more contexts

dependent. In fact, all business objects in enterprise applications can be a source of access policies

with their underlying business rules. And collection of these domain-specific access policies defines

the “enterprise-level security” policies. Traditional access control mechanisms fail to employ domain-

specific factors in access decisions and therefore unsuitable to fulfill the needs of enterprise access

control. [5, 43]

Most enterprise applications tackle this problem by embedding access control rules within an

application code that handles domain-specific factors. The more access control rules are embedded in

enterprise applications, the more reusability and manageability of whole system reduces. But

according to the separation of concerns principle [50] “enterprise-level security” policies must be

separated from application code and handled independently by the external access control mechanism.

However, even if the application leaves access control decisions to the external system and interact

with the access control service though API, it is the developer’s responsibility to enforce the

application-specific access policy in the code. [51]. Embedding this imperative access control makes it

difficult to adapt the access logic to policy or application changes. Imperative access control

enforcement is error prone and hard to spread over organization-wide.

Beznosov [43] lists 7 evaluation criteria to comprise an access control system, which also directly

reflects access control problems in enterprise applications;

Granularity of protected resource: Enterprise applications may require different granularity levels

to protect resources. Whole application can be defined as a resource as well as database tables,

sensitive methods and interfaces can be regarded as a resource for enterprise application. So enterprise

applications require allowing authorization decisions on fine-grained resources.

Support for policies specific to an organization or application domain: There are different kinds

of access control mechanism as described in section 2.2. Enterprise application may require different

kind of access control mechanisms in order to reflect all kind of enterprise policies, so in general the

31

more access control policy types an access control system supports, the easier it is to configure for

enterprise policies.

Information used for making authorization decisions: Information about the subject can be divided

into two types, security-related and security-unrelated. Typical access control mechanism only use

security related information such as subject’s identity, group membership, security clearance, however

enterprise applications also requires security-unrelated information about the subject such as person

age, data comes from work-flow execution.

Use of application-specific information: Beznosov [5] has defined domain (application)-specific

factors in security decisions as follows; “An application-specific factor is a certain characteristic or

property of an application’s resource, produced, modified and processed in the course of normal

application execution and not for the sole purpose of a security policy decision.” In this point of view

all business objects in enterprise applications can be the source of access policies with their

underlying business rules and collection of these domain-specific access policies defines “enterprise-

level security” policies. These policies are domain-specific, dynamic and context sensitive to be

executed in a traditional way. For example, an online banking application requires for EFT operation

to be in an amount limit that is predefined by the user and only between 9:00 am and 5:00 pm.

Support for consistency of policies across multiple applications: Enterprise applications are

increasingly interconnected to form information enterprise, which consists of many self-contained,

heterogeneous and yet integrated application systems. The basic problem of access control in such an

environment is to enforce organization wide security policies across these applications. On the other

hand, application developers tend to embed access control rules in application systems hard coded

which result in costly and error-prone application because there are multiple points of control, every

part of application implements their own access policies. With the separation of concern principle [50]

“enterprise-level security” policies should be handled with in a uniform, fine-grained and transparent

way.

Support for changes: Enterprise application policies tend to be changed frequently as business rules

changes; hence the access control mechanism that governs enterprise application must easily reflect

this dynamic manner. However in traditional information systems, access rules are largely embedded

in application systems and as a result it becomes hard to be manageable and reusable.

Scalability: Enterprise applications are most likely to be increased in the number of users and

integrated application systems; therefore access control mechanism must scale well as business

changes.

32

2.4 Web Application Security Vulnerabilities

There is an increasing tendency that web application attacks are becoming dominant over other

software security attacks. Confronted with steadily maturing network-layer defenses, attackers are

increasingly turning their attention to the application layer and the corresponding business

applications that are being served. At the same time, organizations have been increasing their reliance

on web applications, in particular to meet the needs of the extended enterprise – that is, the growing

population of distributed users. According to statistics regarding web application vulnerabilities shows

the growing problem [8].

• From 1Q04 to 1Q05 there has been a 20% rise in the number of application-specific

vulnerabilities identified.

• Over 50% of all new vulnerabilities being identified on a weekly basis are attributed to web

applications.

• Greater than 80% of all malfunctions that emerged in the past year have focused on exploiting

application-layer vulnerabilities (estimate compiled from various sources).

CVE statistics also gives the same result; the most notable trend is the sharp rise in public reports for

vulnerabilities that are specific to web applications. These statistics are shown in Table 1 and 2. Table

1 shows, the number of reported security attacks and their types between 2001 and 2006. Table 2

shows the percentages of these security attacks. These statistics give some important clues about

attack trends.

• Buffer overflows (mostly targeting products) were number one year after year, but that changed

in 2005 with the rise of web application vulnerabilities, including cross-site scripting (XSS), SQL

injection and remote file inclusion. In fact, so far in 2006, buffer overflows are only fourth.

• The increase of percentage of web application attacks is tremendous, by the year 2006, the

percentage becomes over %70.

• Even if web application attacks are dominant over other kind of security attacks, it is only the tip

of the iceberg since most of the web security incidents are not reported; on the other hand product

based security incidents are well-reported.

• As the importance of web application increases, attackers seem to turn their attention to web

applications and web applications have become a must for all kind of businesses. Security impacts on

web applications have become too risky.

33

• Although buffer overflows and other product or vendor based attacks can also be a reason for web

application attacks. XSS and injection attacks directly aim web applications and web application

server products have nothing to do to eliminate these kinds of increasing trends.

• In 2001, the percentage of XSS attacks was below 5%, SQL injection and PHP file inclusion was

near 0%. In five years the total percentage of these attacks has increased over 45%.

• Although the total number of incidents has increased fourfold between the years 2001 and 2006,

the number of product vendor, network and OS based incidents remained steady. This shows that

either the security mechanisms have become more successful in preventing these kinds of attacks or

the attackers have turned their attention to web application attacks.

One can easily say that the main boosting factor of web security attacks is turning the spotlight to web

applications because of the increase in global e-commerce, increase in global use of valuable

information online and increase of global internet use, the web application domain has important

contributing factors to this increase in web vulnerabilities, these could be;

• Most of the web application attacks depend on basic data manipulations that are very simple to

perform.

• There is a plethora of freely available web applications. Much of the code is alpha or beta, written

by inexperienced programmers with easy-to-learn languages such as PHP, and distributed on high-

traffic sites. Even some important web applications use these freely distributed web applications. The

large number of these applications is probably a major contributor to the overall trends.

• With injection vulnerabilities including XSS, every input has the potential to be an attack vector,

which does not occur with other vulnerability types. This leaves more opportunity for a single mistake

to occur in a program that otherwise protects against these attacks.

• Apart from usage of freely available web applications, there is an increasing trend to use open

source projects for web applications. A fully functional web application can be built in easily by

integrating these open source projects together. There is always greater risk for these open source

projects, since most of them did not consider security breaches only concentrate on the functionality.

• Web applications tend to have larger attack surfaces than other applications as; there are lots of

input entry points to web applications. Most of them have not centric input handling mechanisms,

consequently, nearly all web application developers in a project handles user input and even if one

entry point is vulnerable, the whole web application will be under great risk.

• Most security professionals concentrate on the network or product security. However applying

security patches, integrating antivirus and anti-trojan software are not enough to securing web

applications.

34

Table 1 Number of security incidents

Security Attacks Total 2001 2002 2003 2004 2005 2006
Total 16192 1434 2138 1173 2534 4538 4375
Cross-site scripting 2247 32 187 88 276 725 939
Buffer overflow 2156 279 433 264 391 445 344
SQL injection 1416 6 38 35 140 584 613
Directory traversal 764 127 110 34 104 195 194
PHP remote file
inclusion 561 1 6 9 36 95 414
Information leak 540 37 89 30 95 175 114
DoS caused by
malformed input 463 69 110 29 87 82 86
Symbolic link
following 329 64 45 41 72 87 20
Format string
vulnerability 296 46 39 32 61 76 42
Cryptographic error 261 55 58 18 22 68 40
Privilege Errors 233 36 46 12 32 67 40
Metachar injection 218 55 56 8 26 59 14
Permission Errors 215 39 39 15 24 48 50
Numeric Errors 160 1 8 16 47 36 52
DoS caused by
flooding 131 29 36 6 31 10 19
Default or hard-coded
password 125 16 27 2 28 36 16
Weak/bad
authentication 124 22 27 6 17 21 31
Sensitive data under
web document root 88 2 5 3 5 33 40
Form-field Error 81 10 17 6 6 19 23
Untrusted search path
vulnerability 71 12 6 10 14 15 14

Table 2 Percentage of security incidents

Security Attacks Overall 2001 2002 2003 2004 2005 2006
Cross-site
scripting 13.9% 2.2% 8.7% 7.5% 10.9% 16.% 21.5%
Buffer overflow 13.3% 19.5% 20.3% 22.5% 15.4% 9.8% 7.9%
SQL injection 8.7% 0.4% 1.8% 3.0% 5.5% 12.9% 14.%
Directory
traversal 4.7% 8.9% 5.1% 2.9% 4.1% 4.3% 4.4%
PHP remote file
inclusion 3.5% 0.1% 0.3% 0.8% 1.4% 2.1% 9.5%
Information leak 3.3% 2.6% 4.2% 2.6% 3.7% 3.9% 2.6%
DoS caused by
malformed input 2.9% 4.8% 5.1% 2.5% 3.4% 1.8% 2.0%
Symbolic link
following 2.0% 4.5% 2.1% 3.5% 2.8% 1.9% 0.5%

35

Table 2 (continued)
Format string
vulnerability 1.8% 3.2% 1.8% 2.7% 2.4% 1.7% 1.0%
Cryptographic
error 1.6% 3.8% 2.7% 1.5% 0.9% 1.5% 0.9%
Privilege Errors 1.4% 2.5% 2.2% 1.0% 1.3% 1.5% 0.9%
Metachar
injection 1.3% 3.8% 2.6% 0.7% 1.0% 1.3% 0.3%
Permission Errors 1.3% 2.7% 1.8% 1.3% 0.9% 1.1% 1.1%
Numeric Errors 1.0% 0.1% 0.4% 1.4% 1.9% 0.8% 1.2%
DoS caused by
flooding 0.8% 2.0% 1.7% 0.5% 1.2% 0.2% 0.4%
Default or hard-
coded password 0.8% 1.1% 1.3% 0.2% 1.1% 0.8% 0.4%
Weak/bad
authentication 0.8% 1.5% 1.3% 0.5% 0.7% 0.5% 0.7%
Sensitive data
under web
document root 0.5% 0.1% 0.2% 0.3% 0.2% 0.7% 0.9%
Form-field Error 0.5% 0.7% 0.8% 0.5% 0.2% 0.4% 0.5%
Untrusted search
path vulnerability 0.4% 0.8% 0.3% 0.9% 0.6% 0.3% 0.3%

0

100

200

300

400

500

600

700

800

900

1000

2001 2002 2003 2004 2005 2006

Cross-site scripting

Buffer overflow

SQL injection

Directory traversal

PHP remote file
inclusion

Information leak

Figure 7 Top 6 security attacks between 2001 and 2006

36

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

2001 2002 2003 2004 2005 2006

Cross-site scripting

Buffer overf low

SQL injection

Directory traversal

PHP remote file
inclusion

Information leak

Figure 8 Percentage of top 6 security attack between 2001 and 2006

2.4.1 Common Vulnerabilities

A typical web application attack executes 5 main scenarios, starting with vulnerabilities scan to

launching the attack. The steps are listed below;

Act 1: The Scan

The hacker starts by running a port scan to detect the open HTTP and HTTPS ports for each server

and retrieving the default page from each open port.

Act 2: Information Gathering

The hacker then identifies the type of server running on each port and each page is parsed to find

normal links (HTML anchors). This enables the hacker to determine the structure of the site and the

logic of the application. Then the attacker analyzes the found pages and checks for comments and

other possibly useful bits of data that could refer to files and directories that are not intended for

public use.

37

Act 3: Testing:

The hacker goes through a testing process for each of the application scripts or dynamic functions of

the application, looking for development errors to enable him to gain further access into the

application.

Act 4: Planning the Attack

When the hacker has identified every bit of information that can be gathered by passive (undetectable)

means, he selects and deploys attacks. These attacks center on the information gained from the passive

information gathering process.

Act 5: Launching the Attack

After all of these procedures, the hacker engages in open warfare by attacking each Web application

that he identified as vulnerable during the initial review of the site.

The Open Web Application Security Project (OWASP) [52] is one of the foundations that is dedicated

to find and classify possible web application attacks and offers countermeasures for them. OWASP

publishes “Top Ten Most Critical Web Application Security Vulnerabilities” list to inform the public

about the most dangerous vulnerabilities. The Top Ten list is generated according to data accumulated

by MITRE’s [53] vulnerability trend list consisting of CVE’s [11] data. According to “Top Ten Most

Critical Web Application Security Vulnerabilities” list published in 2007; Cross-side scripting (XSS),

Injection Flaws, Malicious File Execution, Insecure Direct Object Reference, Cross Site Request

Forgery (CSRF), Information Leakage and Improper Error Handling, Broken Authentication and

Session Management, Insecure Communications and Failure to Restrict URL Access. The occurrence

percentages of these vulnerabilities according to MITRE’s date are given in figure 9.

38

Figure 9 Percentage of Vulnerabilities (2007)

2.4.1.1 Cross Site Scripting (XSS) Attacks

A web application is vulnerable to XSS attacks when they allow injection of malicious scripts as

inputs of user and as a result of generating dynamic pages from this infected input, these malicious

scripts could be executed from client browsers and could affect all web site clients. Although secure

execution of JavaScript code is based on a sandboxing mechanism, which allows the code to perform

a restricted set of operations only and JavaScript programs downloaded from different sites are

protected from each other using a compartmentalizing mechanism, called the same-origin policy,

scripts may be confined by the sand-boxing mechanisms and conform to the same-origin policy, but

still violate the security of a system. This can be achieved when a user is lured into downloading

malicious JavaScript code (previously created by an attacker) from a trusted web site.

Two main classes of XSS attacks exist: stored attacks and reflected attacks. In a stored XSS attack, the

malicious JavaScript code is permanently stored on the target server (e.g., in a database, in a message

forum, in a guestbook, etc.). In a reflected XSS attack, on the other hand, the injected code is

“reflected” off the web server such as in an error message or a search result that may include some or

all of the input sent to the server as part of the request. Reflected XSS attacks are delivered to the

victims via e-mail messages or links embedded on other web pages. When a user clicks on a malicious

link or submits a specially crafted form, the injected code travels to the vulnerable web application

and is reflected back to the victim’s browser

39

2.4.1.2 Injection Flaws

Injection Flaws are one of the most common web application vulnerabilities and consist of various

attack techniques such as SQL, LDAP and XML injection. Injection occurs when user-supplied data is

sent to an interpreter as part of a command or query. Without validation, the attacker can easily

manipulate command or query with insertion of special characters and command. SQL injection can

be given as an example of injection flaws. SQL injection attacks are one of the most dangerous

instantiation of injection attacks. In this attack technique malicious SQL commands are injected into

request parameters in order to affect the execution of predefined SQL commands. SQL injection

attacks threats most of the subjects of computer security;

Confidentiality: Most common consequence of SQL injection attacks is loss of confidentiality. Since

SQL databases hold sensitive data, unauthorized access to these data could generate more dangerous

consequences.

Authentication: Most of the applications use SQL databases for storing authentication data. If a SQL

injection occurs in the authentication part of the system, the attacker can bypass all authentication

mechanisms.

Authorization: Authorization modules that use the SQL database are another critical part of the web

application. If they are vulnerable to SQL injection attacks, it would be possible to change

authorization information and a security breach can be opened for an application.

Integrity : By SQL injection, it is also possible to make changes or deletions that threats integrity of

whole database.

2.4.1.3 Malicious File Execution

Application developers will often directly use input and stream file functions that come from the user

directions. Without necessary checks, an attacker can manipulate the application to execute malicious

commands and files. Code injection can be studied as an example of this kind of attack. In code

injection, the application allows inputs to be fed directly into an output file that is later processed as

code. Different from XSS or HTML injection techniques which is executed on the client side, direct

static code injection vulnerability enables malicious codes to be executed at server side but this can

result from XSS or HTML injection as the same special characters can be involved. One example of

direct static code injection is Server-Side Includes (SSI) injection, which is a server-side exploit

technique that allows an attacker to send code into a web application, which will later be executed

locally by the web server. SSI Injection exploits a web application's failure to sanitize user-supplied

data before they are inserted into a server-side interpreted HTML file. Before serving an HTML web

page, a web server may parse and execute Server-side Include statements before providing it to the

user. In some cases (e.g. message boards, guest books, or content management systems), a web

40

application will insert user-supplied data into the source of a web page. If an attacker submits a

Server-side Include statement, he may have the ability to execute arbitrary operating system

commands or include a restricted file's contents the next time the page is served

2.4.1.4 Insecure Direct Object Reference

A direct object reference occurs when a developer exposes a reference to an internal implementation

object, such as a file, directory, database record, or key, as a URL or form parameter. An attacker can

manipulate direct object references to access other objects without authorization. Path manipulation

attack can be an example of this kind of attack. This attack technique involves adding special

characters in file and directory names. These manipulations are intended to generate multiple names

and therefore multiple access points for the same object. Just like path traversal attacks, path

equivalence attacks also threaten disclosure of information. If any application restricts directory

access programmatically, these restrictions can be bypassed by adding special characters in requested

file or directory. Thus, application might fail to parse requested URL and misinterpret the request.

Path equivalence attacks can also used for bypassing security restrictions depends on black list.

Consider an example of an application that allows uploading and a black list to eliminate malicious

file formats such as symbolic links. An attacker can bypass this black list check by adding trailing

dots to extension of a file, allowing him to traverse to the target file or directory. When an attacker

collects enough information about the application using path traversal and path equivalence attacks

then he could plan new attacks to break into the application.

2.4.1.5 Cross-Site Request Forgery (Session Riding)

Cross-Site Request Forgery is about forcing an unknowing user to execute unwanted actions on a web

application in which he is currently authenticated. CSRF is an attack that tricks the victim into loading

a page that contains a malicious request. It is malicious in the sense that it inherits the identity and

privileges of the victim to perform an undesired function on the victim's behalf, like changing the

victim's e-mail address, home address, or password, or making a purchase. CSRF attacks target

functions that cause a state change on the server.

CSRF works like XSS attack: An attacker identifies a URL on a Website that initiates typical Web

functions such as making a purchase, changing an email address or transferring funds and takes that

URL and loads it to a web page he controls with malicious code injected to be executed later.

2.4.1.6 Information Leakage and Improper Error Handling

A system information leak occurs when system data or debugging information leaves the program

through an output stream or logging function. An attacker can cause errors to occur by submitting

unusual requests to the web application. The response to these errors can reveal detailed system

information, deny service, and cause security mechanisms to fail or crash the server.

41

2.4.1.7 Broken Authentication and Session Management

Without using proper authentication and session management techniques, an attacker can hijack user

or administrative accounts, bypass authorization controls and cause privacy violations. Session

hijacking is a typical example of such attacks. Using session hijacking attack, the attacker tries to take

control of a user session by obtaining or generating an authentication session ID. Session hijacking

involves an attacker using captured, brute forced or reverse-engineered session IDs to seize control of

a legitimate user's session while that session is still in progress. In most applications, after successfully

hijacking a session, the attacker gains complete access to all of the user's data, and is permitted to

perform operations instead of the user whose session was hijacked.

2.4.1.8 Insecure Cryptographic Storage

Protecting sensitive data using cryptography is a common technique for web applications, however

applications frequently uses poorly designed cryptography either using unproven algorithms or

improper implementation of strong algorithms.

2.4.1.9 Insecure Communication

Transferring sensitive data on an unsecured channel could cause stealing of private information.

Sniffing application traffic can be given as an example. Sniffing application traffic simply means that

the attacker is able to view network traffic and will try to steal credentials, confidential information, or

other sensitive data. Anyone with physical access to the network is able to sniff the traffic. Also,

anyone with access to intermediate routers, firewalls, proxies, servers, or other networking gear may

be able to see the traffic as well. By sniffing application traffic, an attacker gain sensitive information

about the web site. If this communication is not protected, the attacker can reveal user cookies, session

id, user id and password that can be used to generate other attacks later.

2.4.1.10 Failure to Restrict URL Access

Frequently, the only protection for a URL is that links to that page are not presented to unauthorized

users. However, a motivated, skilled, or just plain lucky attacker may be able to find and access these

pages, invoke functions, and view data. Path traversal is typical example; this attack technique

involves providing relative or absolute path information as a part of request information. Such attacks

try to access files that are normally not accessible by anyone and if such a request is received, it must

be denied. This attack risks information disclosure of systems. Although it does not directly threaten

the integrity of the system, the attacker can gain access to sensitive data such as password and

configuration files and by using it, he can do more dangerous attacks to the system.

42

Apart from these techniques, there are numerous number of different types of attacks, A detailed list

(consisting 58 different vulnerabilities) and description of web application vulnerabilities with

classification according to Plover taxonomy described in section 2.1.4 are given in Appendix-A.

2.5 Related Works

As discussed in section 1.1, the scope of this thesis covers two important problems; one is

encapsulating domain specific factors in access control and the other is web application security

vulnerability. Encapsulating domain specific factors in access control is not new concept and has been

investigated in several researches. One of the earliest examples can be found in OSI access control

framework [54] published in 1994. From then on, both academic researchers and various distributed

application systems vendors have tried to encapsulate domain-specific factors. On the other hand,

confronting web application security vulnerabilities is considerably new and mainly handled by

software security vendors. The solution is called, web application firewalls. According to web

application security consortium (WASC) [23] a web application firewall is "An intermediary device,

sitting between a web-client and a web server, analyzing OSI Layer-7 messages for violations in the

programmed security policy. A web application firewall is used as a security device protecting the

web server from attack."

2.5.1 Approaches to Encapsulate Domain Specific Factors

These approaches can be classified into three categories;

Middleware infrastructures: Most common distributed application technologies, such as J2EE [4],

.NET [55], DCOM [3], JAAS [56] and CORBA [2] has integrated access control engines. These

middleware technologies has been deeply discussed and compared in Beznosov’s works [5] [43] [57]

[58].

CORBA Security service (CS) [2] defines interfaces to a collection of objects to enforce a range of

security policies. It provides abstraction from an underlying security technology so that CORBA-

based applications can be independent from the particular security infrastructure provided by the user

environment. This generality makes CS free from any particular access control model. Instead, it

could be configured to support various access control models.

Access control in Java Authentication and Authorization Service (JAAS) is enforced only on system

resources, such as files, sockets, etc., but not on Java objects and other application resources. JAAS

has very generic and extensible support for different privilege attributes that can be easily defined via

new classes. The security basics depend on code bases of Java classes, the identity of the code signer

and the value of the subject privilege attribute. These attributes are all passed to JAAS via Policy class

interface for authorization decisions.

43

The security model of DCOM is based on access control lists (ACL) to code authorization policies.

DCOM provides DCOM Security API to enforce policies outside of objects with the presence of

process and host-specific policies. DCOM defines component-specific policy where there is no

distinction among different objects and their methods in the same OS process and host-wide policy to

define interaction of object within the same host. Although component- and host-wide policies can be

used to implement a fine grain access control in an application-specific way, application-specific

policies cannot be enforced and only security-related attributes of subjects and objects can serve as

input for external access control mechanisms.

The core of J2EE depends on EJB security architecture where each EJB or each method of EJB can be

mapped to an allowed role and users can be assigned to a role depending on RBAC fashion. EJB

security allows any user attributes to be reduced to roles and so that the domain specific rules can be

evaluated. However EJB security fails to be fine-grained, the only resources of the system are EJB’s

methods no other abstraction can be possible.

The main purpose of all these technologies is to control object interactions within an organization-

wide, uniform and transparent way. However they all fail their expressiveness and granularity when

we consider enterprise applications. Enterprise applications consist of business transactions and

business services that require much more abstraction to be controlled by object interaction access

control.

Access control frameworks: A sizeable amount of research has been conducted on access control

frameworks [59-62]. The main idea of these frameworks is to supply a uniform access control

interface that requests access permissions from the centralized authorization engine. Authorization

engines are able to interpret and execute enterprise-policy rules that are defined policy specification

languages such as Ponder [63] and eXtensible Access Control Markup Language (XACML) [62].

Ponder tries to define a common declarative, object-oriented language that will provide a unified

approach to specify security and management policies for distributed object systems. It enables non-

discretionary access control where administrators have the authority to specify security policies that

are enforced by the access control system. Ponder supports access control by providing authorization,

delegation, and information filtering and refrain policies. These policies can be made up of composite

policies to facilitate policy management in large, complex enterprises. They provide the ability to

group policies and structure them to reflect organizational structure. Users can be assigned to roles

and groups as in RBAC. XACML is development effort of a standard access control policy language

that enables the use of arbitrary attributes in policies to encapsulate domain-specific factor, role-based

access control and dynamic policies to reflect required changes to the applications. Some important

terms that differs XACML from other access control languages are; XACML specifies an "Access

Control Decision Function" (ADF), and defines its interactions with an "Access Control Enforcement

Point" (AEF) so provides differentiation of ADF from AEF. XACML defines a "Policy Decision

44

Point" (PDP), and defines its interactions with a "Policy Enforcement Point" (PEP) so not only

provides a framework for policies but as well as a language.

These frameworks are powerful for expressiveness in enterprise-level security policies, however they

are not transparent. It is the developer’s duty to ask for authorization request whenever required; if the

developer misinterprets the policy or forgets to ask for authorization then there will be no access

control on sensible data. Thus, it is hard to be organization-wide and avoid being error-prone. To

guarantee access control over the whole application, one method is code weaving using aspect

oriented languages [51, 64]. In these methods, source codes are weaved to use access control

frameworks. This guarantees that application layer is weaved to be under access control, however the

presentation layer of enterprise web application is still open to unauthorized request.

Commercial Access Managers: Most of the commercial application server venders have access

manager’s products such as BEA WebLogic [65], Oracle [65], and IBM WebSphere [65]. These

access managers have also the capability to integrate into other application servers. There are also

other vendor’s product that can integrate into variety of application servers such as AssureAccess [68]

and WebDeamon [69]. The common strategy of these products is managing user identities and roles

assigned to appropriate privileges. They control access over the presentation layer, control web

resources, however apart from BEA WebLogic Enterprise Security; they all suffer from supporting

domain-specific access control policies [5]. All of them uses RBAC [26] method, however RBAC

fails to separate enforcement function and decision function that is needed to evaluate domain-specific

access policies [5]. WebLogic Enterprise Security uses a somewhat different strategy, although it also

uses RBAC to manage user identities and roles, it introduces policy evaluators that can also control

application-layer of web applications by evaluating request attributes.

2.5.2 Web Application Firewalls

Nowadays there are both academic proposals for web application firewalls [70], as well as open-

source [71] and commercial ones [72] [73]. David Scott and Richard Sharp [70] propose a Security

Gateway in front of the application and web servers to validate and transform client request. They

construct a Security Policy Description Language (SPDL) to specify a set of validation constraints

and transformation rules. With in these rules, a security officer or developers can define parameter

names; maximum and minimum length of parameter values and appends a MAC code for security-

critical hidden-form parameters to prevent users from modifying data. Upon reception of a client

request by security gateway the request parameters are checked according to the rules defined in

SPDL.

ModSecurity [71] is a fully open source web application firewall that is designed as a module of

Apache Server. It implements the ModSecurity Rule Language and policy rule evaluator to work with

HTTP transaction data. ModSecurity also provides a core set of rules to detect violations of the HTTP

45

protocol and a locally defined usage policy. These core sets are designed in a way that they provide

protection from common web attacks, automation detection, Trojan protection and error hiding.

Security officers or developers can customize the behavior of ModSecurity by adding validation rules

for request parameters. ModSecurity divide the execution of HTTP requests into 5 phases; request

headers, request body, response header, response body and logging. The core rules and validation

rules can be attached to any of these phases.

Traffic Shield [72] is a commercial web application product implemented by the vendor f5. Its

countermeasure against web application attacks is so called application flow model which is in fact a

detailed model (or policy) of the ways users interact with the application. The product learns the

allowed operations of the application by analyzing the incoming and outgoing traffic and tailors its

model accordingly. For each web page presented to the user, the model describes the structure of the

HTTP or HTTPS requests that are generated by the client side source code of the Web page and the

authorized transitions to other Web pages. The model, or policy, can be built using only a few key

factors (in order to minimize complexity) or using very detailed descriptions (in order to increase

granularity) or anywhere in between depending on the desired security posture of the application.

Secure Sphere [73] from Imperva is a full compact product that has network firewall, intrusion

prevention systems (IPS), intrusion detection systems and a built-in web application firewall. Like

Traffic Shield, Secure Sphere has an automated process called Dynamic Profiling that examines live

traffic to create a model of application structure and dynamics. It also allows manual tailoring of its

model. The main difference of Secure Sphere from Traffic Shield is that Secure Sphere can work on

passive mode as well as inline mode; on the other hand traffic shield only operates as inline mode. In

passive mode the flow of web traffic is not intercepted but analyzed using sniffing and if any

malicious request is detected, it will send TCP reset message. However in inline mode the firewall

acts like an active device such as bridge, router or reverse proxy, intercepts coming connections and

control the flow of information.

In either case, all web application firewall products obey the WASC’s definition of web application

firewalls. They are all installed in DMZ before web applications as a separate traffic. They work

mostly on inline mode, intercepting coming traffic; analyze OSI Layer-7 messages for violations in

the programmed security policy. Most of them have learning capability that by investigating web

traffic of the application, they can adapt themselves by figuring out legal operations and construct a

positive security model from these. They also have a negative security model which especially targets

web application attacks. Like most the anti-virus products, they can upgrade and patches themselves

for new kinds of attacks by connecting and fetching attack signatures from the product’s main servers.

46

CHAPTER 3

ACCESS CONTROL AND SECURITY SOLUTION BASED ON RAD

In this chapter, the details of our proposed model to address the problems of access control and

application security are described. Our solution EYEKS ("Erişim, YEtkilendirme ve Kişiselleştirme

Sistemi" in Turkish, meaning "Access, Authorization and Personalization System") brings together

encapsulating domain specific factors in access control and confronting application security

vulnerabilities in enterprise web applications. EYEKS provides a modular access control service that

can decides on application-specific policies that are required by the enterprise application’s complex

business logic as well as policies that controls web application security vulnerabilities.

EYEKS uses CSAAS as authorization engine which is in fact Resource Access Decision (RAD)

implementation with additional RBAC [26] capabilities which was presented in Akademik Bilişim

Conference 2005 [6]. RAD has been chosen as the access decision mechanism since this facility is one

of the best solutions that can be used by security-aware applications as described in Beznosov’s work

[5]. The implementation details of RAD facility can be found in section 3.1. On the other hand, as it

will be shown in section 3.2, web applications suit well to be controlled using RAD specification.

As mentioned in section 2.2, the best way to encapsulate application specific policies is to separate

access decision mechanisms from the application itself and leaves enforcement to the application;

EYEKS is designed to be a separate layer that can be integrated into any n-tier enterprise web

application as a first layer that guarantees application wide enforcement. This, so called Application

Security Layer, is installed in the Demilitarized Zone (DMZ) sits between external network and

organization’s internal network to increase the security (described in section 3.3.1). EYEKS intercepts

user requests, checks violations of both enterprise policies and application security policies, authorize

the request and using HTTP tunneling described in section 3.3.5 proxying the backend enterprise web

application.

EYEKS is designed as a chained structure so that user requests are processed by traversing possible

chain of execution. Possible operations can be added, removed, arranged according to application

security requirements. Chain elements are allowed to extract information from user request, check for

authentication and authorization, create or change HTTP session. Briefly it allows all kind of

manipulation to user request and response. EYEKS also provides a powerful API, so that application

developers can easily integrate their required chain operations into the system. The details of chained

structure are given in section 3.3.2.

47

EYEKS adds session management capabilities apart from HTTP session. User requests are authorized

and managed according to EYEKS session (section 3.3.4). A successful authentication creates

EYEKS session and EYEKS guaranties this session is carried out through all user operations. EYEKS

session can be based on header based or cookie based encrypted tokens. This session management

facility also allows Single-Sign-On feature for the whole enterprise application.

EYEKS consult to access decision mechanism many times during execution of user request. This

mechanism can be managed using RAD implementation to add new policies that must be satisfied

during request. Both enterprise policies and application security policies can be controlled using single

application. This architecture provides EYEKS to be dynamic so that it reflects any policy changes at

the time of execution. Policy execution details are given in section 3.4.

The whole application security layer (EYEKS) can be built on any J2EE based application server.

Alternatively, EYEKS can be executed as a stand-alone application without the need for a server, to

be free from any security breaches of application servers. Integration issues will be covered in section

3.5.

In the following sections, the architecture of EYEKS will be described in detail. Then a verification of

the solution will be introduced

3.1 RAD Implementation (CSAAS)

3.1.1 CSAAS Architecture

The overall architecture of CSAAS is given in figure 10. As shown, CSAAS consist of 4 main

components, which are installed on different sites, and 8 sub-components within.

48

Figure 10 CSAAS Architecture

Client: This component is in fact not a process, but a library that is an interface between CSAAS

Server component and application itself. In EYEKS, application security layer uses this library to ask

access decisions to CSAAS Server. This component consists of 2 sub-components; CSAAS Client,

which handles remote method invocation to CSAAS Server and CSAAS Service, is a wrapper of

CSAAS Client and provides interface between the application program (Application security layer)

and CSAAS Server.

Server: This component is a core part of CSAAS and works as a stand-alone process. Server

component consists of two sub-components; CSAAS Server and CSAAS Commons. CSAAS Server

is the implementation of RAD specification and responsible for deciding on authorization requests. A

remote object, IRMICsaasInterface, is registered to RMI registry which provides access from CSAAS

Clients. CSAAS Commons is a utility library and is used by both CSAAS Server and CSAAS Admin

components. CSAAS Commons handles object to relational mapping of CSAAS objects and mainly

responsible for querying and updating the CSAAS database. It also provides cache management of

database objects that improves performance. The interface between CSAAS Client and CSAAS

Server is shown in figure 11.

49

Figure 11 CSAAS Server Interfaces

Admin: This component implements management functionalities of CSAAS such as managing

operations, resources, user groups, policies, dynamic attributes, policy evaluators and decision

combinators. Because of security concerns, no direct access between client computers and Csaas

network is allowed. Admin component also implements a proxy service that serves to Admin GUI

component. Admin component consist of three sub-components; Admin Proxy provides necessary

service proxies that bridge Admin GUI to CSAAS Admin. Admin Proxy implements a single action

servlet that can be deployed on any J2EE supported application server such as Tomcat and receives

any commands coming from Proxy Client sub-component of Admin GUI and invokes necessary

operations from CSAAS Admin. CSAAS Admin is core implementation of CSAAS management and

provides business operations. CSAAS Admin sends “clear cache” message to CSAAS Server

whenever an update operation is done on CSAAS Server components described in section 3.1.2. As in

Server component, CSAAS Component is also used for handling object to relational mapping of

CSAAS objects and mainly responsible for querying and updating the CSAAS database.

Admin GUI: This package provides user interface to manage CSAAS functionalities. CSAAS Admin

GUI and Proxy Client are two sub-components of Admin GUI. CSAAS Admin GUI provides

graphical user interfaces based on Java Swing components. Admin GUI uses Proxy Client to access

CSAAS Admin and carry out the administrative operations. Proxy Client provides service proxies that

bridges Admin GUI to CSAAS Admin by inserting method name and method arguments that will be

invoked on CSAAS Admin into HTTP request parameters. Whenever Admin Proxy receives such

messages, it will unpack the messages and invoke corresponding method with given arguments and

send the response back containing the result. The collaboration diagram of the communication

50

between Admin GUI and CSAAS Admin and also between CSAAS Admin and CSAAS Server is

shown in figure 12.

Figure 12 Interactions of Admin Components

3.1.2 Components of CSAAS Server

CSAAS Server is composed of following components as specified in OMG specification [25] and

Beznosov’s work [74]. All components and their interactions are well defined in OMG’s specification

and here the details are omitted. The relationships among these components are given in figure 13.

1. Access Decision Object (ADO)

2. Policy Evaluator Locator (PEL)

3. Dynamic Attribute Service (DAS)

4. Decision Combinator (DC)

5. Policy Evaluator (PE).

51

0
..
*

Figure 13 Components of CSAAS Server

Applications (especially in this case Application Security Layer) interact with CSAAS Server only

through the Access Decision Object (ADO). ADO provides a single, uniform interface to the clients

and other CSAAS interfaces. Whenever the ADO receives an authorization decision request, it

consults Policy Evaluator Locator (PEL) object which decides what Decision Combinator (DC) and

Policies Evaluators (PE) to be used. A PEL maintains mapping of resources to DC’s and PE’s. A

secured resource access can be controlled by zero or more access control policies. Policy Evaluator

(PE) is responsible for the evaluation of such policies. PE evaluates and returns a grant or denial of

access, when the attributes of access result is not enough to evaluate an access, PE returns

DECISION_UNKNOWN. There is a one-to-many relation from PE objects to policies and many-to-

many relation from policies to resources. Because as a PE object can evaluate one or more policies for

a given resource, policies associated with a resource don’t have to be evaluated by a single PE object.

Evaluation decision can be distributed among several PE objects.

The results of the access policies for a given resource can be combined under Decision Combinator

(DC) object to combine all evaluations into an authorization decision which is sent back to client. A

DC object is controlled by a combination policy which is in fact business logic under that DC. DC can

52

be added to the CSAAS Server using different implementations such as basic logical operation like

AND, OR or complex combinators like hierarchies of PE objects where a decision from a higher level

PE can override decisions from lower-level PE objects.

To evaluate an access policy, a PE needs security attributes that come with authorization request. PE

objects use these security attributes as criteria for evaluating access control policies. The security

attributes can contain both static and dynamic attributes. Static attributes represent the characteristic of

the principal (such as user name, user role) or business logic (such as amount to be transferred of an

EFT operation). Static attributes are supplied by the client and used without alteration. On the other

hand, a dynamic attribute can only be determined at the time an access request comes and evaluated

by CSAAS itself. Dynamic attributes most probably denote relationships between a principal and a

resource, which also reflects business rules of the application. Whenever PE asks for a dynamic

attribute to ADO, ADO delegates the discovery of dynamic attribute to Dynamic Attribute Server,

which locates and finds the value of the attribute. The location of dynamic attributes can be database,

other process or another object within the same virtual machine.

3.1.3 Execution Flow

Authorization decisions are computed though a sequence of operations carried out the CSAAS Server

components. The sequence is triggered by an accessAllowed message coming from application system

to ADO object. ADO object executes the flow and returns the result back to the system. The execution

sequence can be found in figure 14 and is described below;

1. An application server (AS for short) contacts the ADO server for an authorization decision to

perform an operation on a resource by a principal with a list of security attributes.

2. The ADO object requests the PEL object to locate necessary DC and PEs associated with the

resource.

3. The PEL returns to the ADO a reference to a DC and a set with zero or more references to PE

objects.

4. The ADO requests the DAS for any dynamic attributes to evaluate dynamic attribute value.

5. The DAS returns to the ADO a set of dynamic attributes with their values to be used in obtaining

an authorization decision. The DAS can add dynamic attributes or remove existing attributes from set.

6. The ADO sends to the DC a set of PE servers for evaluation of policies that control access to the

resource.

7. The DC requests each PE in to authorize or deny the operation on the resource given the security

attributes of the principal.

53

8. Each PE in evaluates zero or more access policies associated with the resource and sends back the

result to DC.

9. The DC combines all replies from all PE and combines them into a single grant or denies

response. This response, the authorization decision, is returned to the ADO server.

10. 10. The ADO returns the authorization decision from the DC server to the application system.

11. The application system (here Application Security Layer) receives the authorization decision

from the ADO server and enforces it.

Figure 14 Sequence Diagram of Access Decision

54

3.1.4 Limitations and Improvements

CSAAS was implemented with some limitations and improvements over RAD specification. OMG

specifies ADO, PE, DC, PEL and DAS as distributed objects so that any ADO, PE, DC object can be

distributed among any RAD implementation that can accessed during execution but to simplify the

design CSAAS only implements IRMICsaasInterface object as distributed which is a wrapper of ADO

object. However PE, DC and DAS objects are invoked using reflection mechanism of Java so that any

policy evaluator, decision combinatory, dynamic attribute service implementation can be added to

CSAAS without altering the binaries of the implementation.

On the other hand, many improvements are made over RAD specification. These are;

RBAC: Since nearly all enterprise applications needs rule-based access control, CSAAS implements

RBAC policy evaluator, which adds role-based, access capability to RAD.

Cache Management: To improve the performance cache management is also added whenever PEL

locates policy evaluators or DAS locates dynamic attribute service corresponding data (for example,

resource, operation pair, need policy evaluators, decision combinators) are fetched from database and

inserted into the cache.

Logging: A logging mechanism is also added. CSAAS logs the time of access request decision, which

operation is trying to be executed on which resource, what the decision is and how the decision is

evaluated so that any malicious request can be tracked.

Warnings: On some very important and sensitive resources (such as banking accounts) or any

incoming access requests carrying out by some users (for example, login operation of a suspicious

user) can be reported as a warning message. Warning messages can be configured as to be inserted to

database or to be sent as a TCP message to a specific location so that security administrations can

monitor sensitive operations.

Implemented Dynamic Attribute Providers: To be evaluated by Dynamic Attribute Service, Java

dynamic attribute provider (JDAP) and SQL dynamic attribute provider (SQLDAP) are implemented.

JDAP enables any java class to be added to CSAAS on run time to evaluate dynamic attributes.

Hence, this gives application developers the power to implement any kind of dynamic attribute

evaluations. SQLDAP can be configured to connect any database and execute SQL statements that

can be used as dynamic attribute.

Implemented Decision Combinators: Predefined basic logical operations such as AND, OR as well

as AND over OR (policy1 OR policy2) AND … (policyN OR policyN+1), OR over AND (policy1 AND

policy2) OR … (policyN AND policyN+1), First Couple AND then OR (policy1 AND policy2) OR …

policyN OR policyN+1, First Couple OR then AND OR (policy1 OR policy2) AND … policyN AND

policyN+1 are implemented to combine policy evaluators.

55

Implemented Policy Evaluators: Most popular policy evaluators such as Java policy evaluator

(JPE), JavaScript policy evaluator (JSPE), rule policy evaluator (RPE) and RBAC policy evaluator

(RBAC) are implemented. RBAC evaluates access according to role-based access decision; JPE gives

the application system developers the power to evaluate policies by java class. JSPE enables java

script to be written to evaluate results and though RPE, security administrators can write basic logical

rules to evaluator’s policies.

3.2 Mapping Polices to CSAAS

As mentioned in section 2.2.6, RAD specification requires resources and their valid operations to be

well defined. Therefore, the first step before mapping the policies is to define resources and their

operations. RAD allows any granularity level of resources, so there is no common way as to how

resources should be named. Depending on the structure of enterprise web application, security officer

must decide what kind of resources and their possible operations will be defined. Although every

enterprise application requires a distinct way of resource naming, some common patterns can be

defined.

For basic kind of web applications, that does not build on any Model View Controller architecture.

(For example web application consist of a number of jsp pages that manages view, control and model

altogether as given in figure 15) the possible resource and operation definitions may be;

56

Figure 15 Example Web Application Structure

1. Choosing each jsp page as resources and defining VIEW and SUBMIT as operations on them

where VIEW operation is responsible for viewing jsp page (e.g. HTTP get request on jsp page) and

SUBMIT operation is responsible for any form submit operation resulted from that page. Resources

and operations are shown below according to the given example in figure 15.

57

Table 3 Example Mapping-1

Resource Operations
login.jsp VIEW,SUBMIT
Errorlogin.jsp VIEW,SUBMIT
welcome.jsp VIEW,SUBMIT
addItemToWharehouse.jsp VIEW,SUBMIT
removeItemFromWharehouse.jsp VIEW,SUBMIT
listItems.jsp VIEW,SUBMIT
logout.jsp VIEW,SUBMIT
Exit.jsp VIEW,SUBMIT

2. Adding one more level of granularity, html forms on pages can be chosen as resources and VIEW

and SUBMIT operations can be defined as previously. Resource and operations are shown below

according to this mapping.

Table 4 Example Mapping-2

Resource Operations
login.jsp VIEW,LoginForm
Errorlogin.jsp VIEW
welcome.jsp VIEW,OperationListForm, LogoutForm
addItemToWharehouse.jsp VIEW,AddItemForm, LogoutForm
removeItemFromWharehouse.jsp VIEW,RemoveItemForm, LogoutForm
listItems.jsp VIEW,ListItemForm, LogoutForm
logout.jsp VIEW
Exit.jsp VIEW

3. If jsp pages are distributed among logical directories, directories can be chosen as resources and

in this case operations will be jsp page names on those directories. Resource and operations are shown

below according to this mapping.

58

Table 5 Example Mapping-3

Resource Operations
/webapplication/loginoperations login.jsp, errorlogin.jsp, welcome.jsp

/webapplication/operations addItemToWhareHouse,
removeItemToWhareHouse,
listItemToWhareHouse,

/webapplication/logoutoperations logout.jsp, exit.jsp

4. If the whole enterprise application is deployed on different web contexts (Web contexts can be

deployed on the same application server or on different application servers.) the best way is to define

each web context as resources and each page as operations on that web context. Resource and

operations are shown below according to this mapping.

Table 6 Example Mapping-4

Resource Operations

Webapplication

login.jsp, errorlogin.jsp, welcome.jsp,
addItemToWharehouse.jsp,
removeItemFromWharehouse.jsp, listItems.jsp,
logout.jsp, exit.jsp

On the other hand; if enterprise web applications use MVC pattern on their applications, the mappings

are much more straightforward. Controller servlets (mostly called action or dispatcher servlets)

become resources and their possible view actions becomes operations of CSAAS. To give an example,

we can consider Struts framework, which is an open source framework that enables applications to use

the MVC pattern. In Struts framework, actions and flow of web application is controlled by

ActionServlets. Possible actions are passed to ActionServlets as request parameters. Consider a case

where we have “Item.do” action servlet that has 3 actions “viewItem”,”addItem” and “removeItem”

and according to these actions “Item.do” forward action to viewItem.jsp, addItem.jsp and

59

removeItem.jsp. Therefore, in this case, it is much more reasonable to define “Item.do” as resource

and viewItem, addItem and removeItem actions become operations. If we reconsider the previous

example and state that “Login.do” controls login and logout operations, “Operation.do” controls add,

remove, list operations. Resource and operations are become as shown in Table 7.

Table 7 Example Mapping-5

Resource Operations
Login.do login, errorlogin, welcome, logout, exit

Operation.do
addItemToWhareHouse,
removeItemToWhareHouse,
listItemToWhareHouse,

As mentioned before, RAD specification, as well as CSAAS, does not limit the granularity level of

resources, therefore, enterprise applications are free to define a mixture of mapping techniques. In

order to comply with free of granularity level, EYEKS introduces Context concept, which will be

covered more deeply in section 3.3.3. EYEKS’s Context is well mapped to Web application’s context

but extends web application context. In EYEKS any path within the web application can be defined as

EYEKS’s context and mapping strategy is defined on that context. To use different kinds of resource

mapping strategy in EYEKS, system administrations can assign different paths to different contexts

and apply mapping strategies. Continuing the above example, “/webapplication/loginoperation”,

“/webapplication/

operations” and “/webapplication/logoutoperation” can define 3 contexts and under loginoperation,

the system can map resources as described in the first strategy above, under operation, mappings can

be done according to the MVC pattern and under logoutoperation, mappings can be chosen as the

second strategy described above.

When a request arrives to EYEKS, firstly EYEKS determines which context a request belongs to and

depending on the assigned mapping strategy, resource and operations are tried to be identified. If the

request does not satisfy the mapping strategy or resource and operation mapping is undefined, EYEKS

simply rejects the request without doing other operations. So the whole web application must be

mapped to the resource-operation pair. After successfully naming the resources and possible

operations, web application becomes directly mapped to RAD domain.

60

3.2.1 Enterprise Policy Mapping

Defining resources and their possible operations to CSAAS, enables accessing to those resource

possible. At this stage everyone can access to every resource on that enterprise application. Next step

will be to write enterprise-level access policies that cover all business access rules of the system.

However, it is important to distinguish business access rules from business flow rules. Business flow

rules should not be regarded as enterprise-level access policies. Enterprise-level access policies must

only define which conditions must be satisfied in order to access be granted. It is more reasonable if a

different person other than the developer of an application (usually a security officer) to define the

access policies. Access control policies most possibly will be discovered during the analysis phase of

application domain. However it will be possible to be changed after the product is delivered.

Consider a typical example from the health informatics domain, where there are four roles; patient,

physician, department secretary and general practitioner. Example access control rules are listed

below;

Rule 1: A physician will be granted access to a patient's data if a contact exists to which he was

assigned. The access rights are only valid until 30 days after the contact was closed.

Rule 2: The system provides the possibility to overrule the access decision, if the user requesting

access to his own data.

Rule 3: A department secretary can create contract and assign a physician to a patient, can not see

patient's data.

Rule 4: The patient's general practitioner has view access to all the patient's contacts, whether these

contacts have been closed or not, however can not modify patient's data.

According to these rules; use cases of application can be ADDCONTRACT, CLOSECONTRACT,

VIEWPATIENTDATA, MODIFYPATIENTDATA, and ASSIGNPYHSICIAN. At first glance, these

use cases seems to be controlled only using RBAC policies, however defining contact validity period

or viewing patient data requires more policies to satisfy the rules. Possible policies that controls these

use cases can be seen in table 8.

Table 8 Enterprise Policy Example

Use Case Policy Definition

ADDCONTRACT AddContractPolicy Can be controlled using only RBAC.

61

Table 8 (continued)

CLOSECONTRACT CloseContractPolicy Can be controlled using only RBAC.

VIEWPATIENTDATA ViewPatientDataPolicy
Check whether physician is assigned to
that patient or whether he is patient's
general practitioner.

MODIFYPATIENTDATA ModifyPatientDataPolicy
Check whether physician is assigned to
that patient

ASSIGNPYHSICIAN AssignPyhsician
Check whether secretary assign physician
under her department

However, Rule 1 and Rule 2 are still not satisfied. CheckContactValidityPolicy must be added to

satisfy Rule 1 and CheckUserReasonPolicy policy must be added to satisfy rule 2. And also

ViewPatientDataPolicy and ModifyPatientDataPolicy can be redefined as CheckPatientPhysianPolicy

and CheckPatientPractitioner policies. RAD specification, policies can made chain to control access,

in short a full design of access policies will be;

Table 9 Enterprise Policy Mapping Example

Use Case Controlled by
ADDCONTRACT RBAC (No need to define another policy)
CLOSECONTRACT RBAC (No need to define another policy)

VIEWPATIENTDATA
(RBAC AND ((CheckPatientPhysianPolicy AND
CheckContactValidityPolicy) OR CheckPatientPractitioner)
OR CheckUserReasonPolicy

MODIFYPATIENTDATA
RBAC AND CheckPatientPhysianPolicy AND
CheckContactValidityPolicy

ASSIGNPYHSICIAN RBAC AND AssignPyhsicianPolicy

As seen CheckContractValidityPolicy and CheckPatientPhysianPolicy can use both control

VIEWPATIENTDATA and MODIFYPATIENTDATA use cases.

Another example can be given regarding the banking domain to show how mappings are done from

web application page to RAD domain; consider an EFT operation that doeft.jsp is responsible, which

has possible operations of VIEW and SUBMIT, where VIEW operation gets request parameters

62

USERID (which user is requested) and ACCOUNT_INFO (which account will be displayed) and

generate a web page showing account details. On that page SUBMIT operation is possible that post

USERID, ACCOUNT_INFO, TRANS_ACC_INFO, which denotes the account the money will be

transferred to, and TRANS_AMOUNT, the amount of the money transfer. The parameters of

“doeft.jsp” page can be regarded as security attributes that are used for evaluating policies which were

described in section 3.1.

<doeft.jsp,VIEW> resource-operation pair can be linked with an enterprise security policy

(EFTTimeCheckPolicy) that defines when a view operation is allowed, for example between working

hours (9 am – 5 pm) and also with VIEWAccountPolicy that checks whether the account belongs to

specified user. <doeft.jsp,SUBMIT> pair can also be controlled by the same policies as

<doeft.jsp,VIEW> policy and additionally linked with a security policy that checks for whether the

transfer could be allowed (TransAmountPolicy), for example checks whether the transfer amount is

less than the upper limit of user defined EFT operation. These policies can be defined by security

officer to CSAAS so that the access control rules will be separated from application code, which can

be governed freely as access control rules changes without modifying the source code of the

application. As seen in the example, all enterprise-level security policies can be linked with every

related resource-operation and they are reusable. Mapping can be seen in table;

Table 10 Mapping to EYEKS

Resource Operation Parameters Policy

VIEW
USERID
ACCOUNT_INFO

EFTTimeCheckPolicy
VIEWAccountPolicy

Doeft.jsp
SUBMIT

USERID
ACCOUNT_INFO
TRANS_ACC_INFO
TRANS_AMOUNT

EFTTimeCheckPolicy
VIEWAccountPolicy
TransAmountPolicy

3.2.2 Application Security Policy Mapping

Nearly 80% of web application attacks are because of parameter manipulation or more generally data

validation vulnerabilities. Improper input validation was on the top of OWASP Top Ten Security

Vulnerabilities list, published in 2005. [19] A careful centric design of data validation would free web

application from these vulnerabilities. However checking against possible vulnerability exploits and

validating input at every point of entry to web application is costly, error-prone and unmanageable.

63

These “application-level” security policies to eliminate web attack risks must be taken into

consideration.

CSAAS can also be used for evaluating “application-level” security policies. Different policies can be

written to validate request parameters and to check request from known security exploits. Since in

EYEKS, application security layer controls user’s request and asks for access permission to CSAAS,

it is guaranteed that enforcement on request will not violate security policies organization wide.

Considering the previous example, a security officer can define DoEftViewSecurityPolicy on

<doeft.jsp, VIEW> pair and DoEftSubmitSecurity Policy on <doeft.jsp, SUBMIT> that defines

possible parameters and their expected values for each pair. On the other hand application security

policies that checks for known security exploits can be added on resource to fulfill whole security

policy chain.

For general use, some policies that check for known security exploits has already been implemented

and built in to the system. Security officers can linked these policies to any <resource, operation>

pairs in the application. These predefined policies start with SECURITY tag and can be extended or

altered according to application security needs. These are;

SECURITY_PARAM_REG_EX_POLICY: Defines possible values for all request parameter in a

regular expression format. That can be used to validate all possible parameter and values using regular

expression.

SECURITY_INJECTION_POLICY: checks all request parameters against injection type of attacks

that can be extended to cover all types of possible injection such as SQL injection XML injection and

XSS.

These policies are not a full set of application security policies to eliminate web application

vulnerabilities. However they can be seen as examples of securing web applications to prove that by

extending these policies, it is possible that EYEKS provides a common way to fight against security

exploits and can be used as a full defense system against them. The details of the application security

policy execution mechanism will be given in section 3.4.

3.3 Operation and Architecture of EYEKS

Architecture of the proposed solution, EYEKS that allows CSAAS to be used to manage access

control organization wide is shown in figure 16. A specific layer, so called application security layer,

is created and placed in the frontier. Posterior layers consist of real web applications and databases

and have no direct access to the outside world. All communications from outside world to backend

web application is intercepted and authorized from application security layer. EYEKS runs as a

service proxy for posterior web applications. Client requests, targeting web applications, are

intercepted and EYEKS evaluates these requests according to enterprise and application level security

64

and redirects, alters or rejects. If a request is authenticated, it will replay the request to web

applications and pass the response back to the client using HTTP Tunneling. The response can be

controlled and filtered by EYEKS that eliminates risk of information disclosure

EYEKS provides authentication and secure session handling mechanisms. EYEKS can handle basic

authentication methods and can also bridge to enterprise legacy authentication systems such as LDAP.

EYEKS introduces EYEKS session, which can be done cookie-based, or parameter based. With

session management, EYEKS eliminates unsafe handling of user sessions and also provides single-

sign-on feature to posterior web applications.

Figure 16 Architecture of EYEKS

CSAAS has been placed in this layer and can only communicate with application security server.

Whenever a request is intercepted, EYEKS maps the request to RAD specification domain, determine

resource operation pair as described in section 3.2. Request parameters and HTTP headers are

extracted from the request and passed to CSAAS as security attributes with resource, operation pairs.

CSAAS evaluates the request according to enterprise access rules and send the result back to

application security layer, stating whether the request is authorized or not.

65

3.3.1 Application Security Layer

Application security layer can be run as stand-alone server or deployed on any kind of J2EE based

application servers. After configured accordingly, it intercepts all requests coming from client.

Although can be extended as described in section 3.3.2. Application Security Layer executes 3 main

scenarios; Login, Page Request and Logout.

Login Scenario: This scenario begins if;

• Client makes a request to login page of any backend application.

• Client times-out and makes another request.

• Client makes a request which has invalid or no token.

Scenario continues sequentially as follows:

1. Client provides any login credentials such as user id password pair, hardware token, LDAP key.

2. Application security layer finds out what backend application the user wants to login from the

requested login page.

3. Application security layer tries to authenticate the user using applicable authentication methods

that the user provides.

4. If authentication fails, corresponding message is prepared and sent back to user as a response to

the request.

5. If authentication succeeds, application security layer asks if user has LOGIN rights on the

requested resource (web application) if yes scenario continues, otherwise login request is denied.

6. Distributed session for the user is created and also inserted in database or LDAP.

7. A unique token is created and encrypted from user id, current time and client IP.

8. Log manager creates a login log and stores it to the store provided (Database or file).

9. Application security layer makes a HTTP/HTTPS request to the proper web application and tries

to fetch the welcome page.

10.When the welcome page is received, created token is inserted to the page and sent back to the

client browser.

Page Request Scenario: This scenario begins at every page request made by the user.

66

Scenario continues sequentially as follows:

1. Token is resolved from the client request and decrypted. User id, next request id fields are

extracted.

2. If token is valid (user is not timed-out and sequence of the request is true), all parameter and

value pairs are extracted from the request. The resolution of which web application the request

belongs to is carried out.

3. CSAAS tries to authorize the user request using page name as operation, web application as

resource and parameter value pairs to be used in policy of authorization.

4. If the user is an authorized user to use that web page, user session is activated by session

manager, otherwise the request is denied.

5. New token is generated from the coming token. (next request id is rewritten)

6. Application security layer makes a HTTP/HTTPS request to proper web application and gets the

requested page.

7. Log manager creates an access log and stores it to the store provided (Database or file).

8. New token is inserted to the coming page and sent back to the client browser.

Logout: This scenario starts if a request is intercepted and identified as logout operation. Scenario

continues sequentially as follows:

1. Token is resolved from the client request and decrypted. User id, next request id fields are

extracted.

2. User session is dropped from database.

3. Log manager creates an access log and store it to the store provided (Database or file).

4. Application security layer make a HTTP/HTTPS request to proper web application and gets the

logout page.

5. Logout page is sent back to client.

Application security layer is designed as logically layered structure. All user requests are captured at

uppermost layer and processed though the inner layers and then dispatched to the backend web

applications. The logical layers for application security layer are (from uppermost to innermost layer):

1. Request Listener Layer:

67

Request listener is the interception point of all client requests. This layer consists of two different

implementations that implements ISessionHandler interface; one is for HTTP Component based

stand-alone server implementation which will be described in section 3.5 and the other one is Servlet

based implementation that can be deployed on any J2EE based application server. As well as any

other web application, common listener port is 80 for HTTP requests and 443 for HTTPS requests.

Free from interceptor interface, it must be configured to hold root address (/) so all requests to

application security layer can be intercepted. Request Listener Layer extracts the HTTP Request, such

as gathering headers, request parameters and user tokens, generates a SessionHolder object and passes

it to Request Parser Layer.

2. Request Parser Layer:

Although there is not a strict logical border to distinguish this layer, in fact it is one of the pre-

operations belonging to OperationsManager class from operation layer, since it is must and critical

operation called ContextResolveOperation, it can be regarded as a specific layer. This layer is where

all requests are evaluated to find which scenario it belongs which will be described in section 3.3.2.

After finding operation command (from now on the word Command is used for scenario), a request

operation chain is constructed as stated in configuration files and execution continues with operation

layer.

3. Operation Layer:

Operation Layer is a core part of the whole application security layer; it is where all requests are

evaluated and managed. As will be described in next section, various operations can be registered to

all served contexts and can be sequentially executed to form an operation chain. These operations vary

from context resolving, authentication and authorization to session management, request and content

filtering. SessionHolder object, which is generated from request listener layer, is the connection point

of all these operations. An operation can add, modify or remove attributes and their values for further

use. Operations can break the chain by raising exceptions if any expected event or state is reached. For

example, authorization, session management operations can raise exception if any defined security

rule is violated. Operations can connect to CSAAS and ask for authorization or validate application

security policies whenever needed. At some point in the execution of operations there must be a

request dispatcher operation, which makes a request to backend web applications according to the

current state of SessionHolder object, the response is stored again in SessionHolder and execution of

operations continues.

Security officer can manage these operations according to the security needs of backend web

application. Therefore if any web application or any path within a web application does not require

any security mechanism, for example just consisting of images belonging to the web application, the

operation chain will only contain request dispatcher operation.

68

4. Request Dispatcher Layer:

Request dispatcher layer is in fact, a specialized operation that sits in the middle of the operation

chain. But since it is the boundary operation between application security layer and posterior web

application, it can be regarded as a layer. Request dispatcher layer has two different implementations,

as request listener layer, one depends on HTTPComponents libraries and the other uses Java built-in

HTTP connection libraries. Request dispatcher module handles with HTTP tunneling, requesting the

original page from backend web application. The details of HTTP tunneling concept will be given in

section 3.3.5.

The sequence diagram of executing a client request is given in figure 17. Client requests are

intercepted by Security Layer and depending on implementation (HTTPComponent based or Servlet

based) though a suitable interface (SessionHandler), a SessionHolder object is created and passed to

OperationsManager object. OperationsManager finds which command to be executed according to the

request and executes corresponding operations chain. From one of the operations a request that

mimics the original client request is sent to posterior web applications and the response is captured.

The response is then processed through the operation chain again. After the whole operation chain is

executed, SessionHolder object is passed to SecurityLayer and as in the case of interception the

response is sent back to client though configured SessionHandler interface.

69

Figure 17 Sequence Diagram of Request Execution

3.3.2 Request/Response Operation Chain

Operation chain is controlled by a singleton class, OperationsManager, which is initialized as

application security layer’s startup and control execution of application security layer. After the

70

request listener layer intercepts a request, it creates and passes a SessionHolder object to

OperationsManager, which holds all information related to request and response. The attributes of

SessionHolder object are;

int direction: Responsible for holding execution direction. Initially set from SessionHandler class to

FROM_BROWSER after redirection RedirectOperation class sets to TO_BROWSER.

String method: Responsible for holding HTTP Method. For example, GET, POST, SET from

SessionHandler class.

List<NameValuePair> headerMap: Responsible for holding HTTP Headers. Initially set from

SessionHandler class and then changed by RedirectOperation class.

List<NameValuePair> requestParameters: Responsible for holding Request Parameters. Initially

set from SessionHandler class and then changed by RedirectOperation class.

String content: Responsible for holding String Content of HTTP response. Set from

RedirectOperation class, after getting response from redirection used for text/html content type.

byte[] binaryContent: Responsible for holding binary Content of HTTP response. Set from

RedirectOperation class after getting response from redirection used for binary content type.

String contentType: Responsible for holding content type of HTTP response, set from

RedirectOperation class.

String contentEncoding: Responsible for holding content encoding of HTTP response, Set from

RedirectOperation class.

String targetURI: Responsible for holding whole target URI of the request, for example /web-

apps/content/index.jsp?parameter1=1¶meter2=2, set from SessionHandler class.

String targetURIBase: Responsible for holding targetURI without parameter part of the request, for

example previous URI becomes /web-apps/content/index.jsp. Set from SessionHandler class.

int statusCode: Responsible for holding status code of HTTP response. Set from RedirectOperation

class after redirection.

IRequestContext requestContext: Holds the context information about the request, Set from

ContextResolveOperation.

Token token: Holds the encrypted token, which depends on user session.

String requestIP: Hold the IP information of the request.

71

UserSession userSession: Application security layer fetches user session information such as userid,

sequence number of the request, timestamp from appropriate provider (LDAP or database).

UserAccount userAccount: Holds user account information retrieved from database such as last

login details, successful and unsuccessful login information.

SessionHolder object exists during execution of a request and ends after a response is sent back to the

client. All operations in operation chain can access the attributes of this object and modify them. It can

be regarded as a communication interface for each operation.

As can be seen in class diagram given in figure 18; OperationsManager object consists of a list of

commands and pre/post operations. Pre operations are executed before any command is executed and

post operations are executed after successful execution of a command.

+isCommandResponsible()

+executeCommand()

+registerOperation()

«interface»

IOperationCommand

+registerOperation()

+executeCommand()

AbstractOperationCommand

+isCommandResponsible()

LoginCommand

+isCommandResponsible()

PageRequestCommand

+isCommandResponsible()

LogoutCommand

+executeOperation()

«interface»

IEyeksOperationChainElement

ChainOperations

+registerPreOperation()

+registerPostOperation()

+addCommand()

+executeSession()

OperationsManager

ChainOperations

ChainOperations

1

-commandList*

1

-pre/postOperationList*

1

-operationList *

Figure 18 Operation Class Diagram

72

3.3.2.1 Commands

System scenarios (Login, PageRequest, and Logout) are defined using Command classes that

implement IOperationCommand and extend AbstractOperationCommand. The system is designed

using Chain of Responsibility pattern so that each Command class must implement

isCommandResponsible method that returns a Boolean value that defines responsibility. Whenever a

request arrives, OperationsManager calls isCommandResponsible method of every command class

that is registered and finds which command to be executed. Every command has registered operations

that must be executed to fulfill the scenario.

isCommandResponsible method, has a parameter SessionHolder so Command class can define their

responsibilities according to every attribute of a request (such as HTTP method type, the names and

values of headers or request parameter, request URI, content type, etc) The system has 3 predefined

commands that take responsibility according to request URI; LoginCommand checks if a request

target a specific login URL that can be defined in a configuration file and LoginCommand checks for

a specific logout URL that also defined in configuration file. PageRequest takes responsibility if a

targeted URI is valid.

The system can be extended by implementing IOperationCommand interface and adding to class path.

For example FileUploadCommand class can be defined to welcome uploaded files that takes

responsibility if content type is “application/octet-stream” or “multipart/form-data” where HTTP

method is a POST.

3.3.2.2 Operations

The operations of Application Security Layer must implement IEyeksOperationChainElement

interface by implementing executeOperation method that takes SessionHolder object. Operations can

do any operations like modifying session holder values such as request parameters, headers, response

content, checking access and authorization though CSAAS, adding logs or updating user account.

Operations can be registered directly to OperationsManager as pre or post operations that are executed

regardless of responsible command or registered to Command classes that define possible operations

of commands. Any operation can break execution chain by raising an Exception that extends

EyeksExceptionBase class. Like command classes, the system can be extended by adding new

operation classes that implements IOperationCommand interface and added to class path.

3.3.2.3 Request Execution Collaboration

A more detailed description of EYEKS request execution, which was given in section 3.3.1, is shown

in figure 19.

73

1. The execution starts if a request is intercepted by Security Layer. Security layer passes the request

object (for servlet based implementation the request object is HttpServletRequest and for

HTTPComponent based implementation, it is HttpRequest object.) to SessionHandler object (for

servlet based implementation session handler object is ServletSessionHandler and for

HTTPComponent based implementation, it is HttpComponentsSessionHandler) by calling

handleRequest method. SessionHandler returns SessionHolder object and Security Layer.

2. Security Layer passes SessionHolder object to OperationsManager by calling executeSession

method.

3. OperationsManager fetches pre operations from previously registered pre operations and

sequentially executes them by calling executeOperation method of each object. SessionHolder is

passed as an argument.

4. One of the mandatory pre operations is ContextResolveOperation. ContextResolveOperation

passes targeted URI (from SessionHolder) to ContextResolver object, demand to which context a

request targeted. Context name is returned as string from resolvePath method of ContextResolver

object then context name is inserted in SessionHolder object to be used in the future.

5. After all pre operation execution are finished, OperationsManager tries to find which command is

responsible for handling the coming request by calling isCommandResponsible method of

OperationCommand objects.

6. After finding responsible command, OperationsManager calls executeCommand method of

responsible OperationCommand objects.

7. Responsible OperationCommand object fetches registered operations and executes them

sequentially by calling executeOperation method of each operation.

8. OperationsManager fetches pre operations from previously registered pre operations and

sequentially executes them by calling executeOperation method of each object.

9. SessionHolder object is passed to SessionHolder object by calling handleResponse

74

+registerPreOperation()

+registerPostOperation()

+addCommand()

+executeSession()

OperationsManager

+handleRequest()

+handleResponse()

«interface»

ISessionHandler

SecurityLayer

1: handleRequest

2: executeSession

+executeOperation()

«interface»

IEyeksOperationChainElement

3: executePreOperations

+executeOperation()

ContextResolveOperation

ContextResolver

4: resolvePath

+isCommandResponsible()

+executeCommand()

+registerOperation()

«interface»

IOperationCommand

5: isCommandResponsible

6: executeCommand

7: executeOperations

8: executePostOperations

9: handleResponse

Figure 19 Collaboration Diagram of Request Execution

After execution of all necessary operations on the request, SessionHandler object creates response

object (for servlet based implementation the request object is HttpServletResponse and for

HTTPComponent based implementation, it is HttpResponse object.) and send it to client as a response

of the request.

75

3.3.2.4 Exception Handling

Any operation (object that implements IEyeksOperationChainElement) could break the execution

chain by raising an exception that extends EyeksExceptionBase. EYEKS has 6 types of implemented

exceptions that extend EyeksExceptionBase;

Eyeks Authentication Exception: captures authentication exception that can be raised from

operations that are responsible for the authentication mechanism such as

AuthenticationCheckOperation, UserLoginOperation. Unsuccessful login tries, tries to access locked

accounts can lead to authentication exception. On the other hand, any exception, raised within the

authentication mechanism, such as failure to communicate with external authentication system

(CSAAS) is catch and converted to Eyeks authentication exception.

Eyeks Authorization Exception: captures authorization exceptions, for example when a request fails

to satisfy enterprise access policies or application security policies. Any communication error with

CSAAS or any unexpected errors coming from CSAAS is captured and converted to Eyeks

authorization exception.

Eyeks Context Resolver Exception: captures any exception during context resolve operation. If any

request is failed to be mapped any defined context, Context Resolver object raises this exception. The

responsible operation, ContextResolveOperation does not catch this exception and directly throws it.

Eyeks Page Request Exception: If an exception occurs during fetching a page from backend web

applications or any error occurs during HTTP tunneling, Eyeks Page Request exception is generated

and raised.

Eyeks Database Exception: Any exception coming from database server. (Such as connection or

SQL errors) is captured and converted to Eyeks Database exception. After conversion, the responsible

operation raises it to break operation chain.

Eyeks Session Exception: If a request comes from unauthenticated user or if user session is invalid

(possibly time out) or replay attack is detected. Eyeks Session exceptions are generated and thrown.

Security Layer captures any exceptions that are raised from operation chain and passes it to

EyeksExceptionDispatcher object, which is a singleton object add responsible for generating

appropriate error messages. Multi-language error messages are stored in a configuration files, called

message.properties EyeksExceptionDispatcher object tries to map mnemonic of exceptions messages

to original error messages.

The templates of error pages are stored with EYEKS. Error pages can be designed independently;

however the place to show the message must be labeled with <MESSAGE> tag.

76

EyeksExceptionDispatcher search appropriate error page template for this tag and replace it with the

original error message.

For example, AuthenticationCheckOperation, which is a check for authentication request added to

LoginCommand, raises EyeksAuthenticationException with a message UNSUCCESS. Security Layer

captures this exception and passes it to EyeksExceptionDispatcher object. This object loads

appropriate configuration file according to request language (by checking Accept-Language header)

and maps UNSUCCESS to error message, which is “Invalid user name or password.”

tr.com.eyeks.exceptions.EyeksAuthenticationException, UNSUCCESS, Unsuccessful login try.

3.3.3 Context Mapping

The initial step of nearly all web application attacks is to reveal underlying web application structure.

Hence, web applications must prevent information leakage about the structure of the application. A

web context is basically a directory or directory structure that is published on the web. Like reverse-

proxies, EYEKS allows mappings of different contexts to virtual structure of application. So from the

client’s point of view, whole application seems to be served from only one web context, but since it is

just virtual, the directory information of real web context will be safe.

An example of typical context mapping is given in figure 20. Assume that real web application is

served from two different servers, where one is an application server that serves web application and

the other is a web server that just serves static web content. The context deployed on application

server can be labeled as Context 1 and the context deployed on web server is labeled as Context 2. As

mentioned in section 3.2, to use different kinds of resource mapping strategy in EYEKS, a sub-

directory consists of “shoppingChart” and “customer” directories, is labeled as a different context,

called Context 3.

77

Figure 20 Example Context Mapping

As can be seen in the figure, original directories can be virtually mapped (context2’s /static/product to

Eyeks’s /product) or renamed (context1’s /application/portal/ customer to Eyeks’s /shopping/my

portal).

78

Therefore, from client’s point of view, the whole web application consists of structure what is defined

in EYEKS and there is no way to reveal real structure.

The context mappings are defined using two different configuration files; “context.properties” holds

context definitions and their properties like the where the context is deployed, on which port it serves.

A possible context configuration for a given example is below.

As seen in the configuration file, a context can additionally have “welcomepage” and “basepath”

properties, where “welcomepage” refers to the redirection path if a web application requires

authentication. After successful login, EYEKS redirects the request to this path. “basepath” property

can be used if a context is a sub-context of some other real context.

The mappings are defined in “path.properties” configuration file. This file has entities in a format

like “EyeksPath” => “context name”,”realpath” . The configuration file for a given example will

be.

The mapping rule can overwrite previous rules, for example 5th rule is overwritten by the 6th and 7th

rules. Any request target in a location under /shopping will be mapped by 5th rule, but request target

under /shopping/myportal will be mapped by 6th and under /shopping/login will be mapped by 7th rule.

Therefore, for example /shopping/Chart/addItemToShoppingChart.do will be mapped by rule 5th to

context3 and /shoppingChart/Chart/addItemToShoppingChart.do; /shopping/login/Login.do will be

eyeks.context1.name=context1
eyeks.context1.host=backhandserver1
eyeks.context1.port=8080
eyeks.context1.protocol=http
eyeks.context1.welcomepage=/login/welcome.jsp

eyeks.context2.name=context2
eyeks.context2.host=backhandserver2
eyeks.context2.port=80
eyeks.context2.protocol=http

eyeks.context3.name=context3
eyeks.context3.host=backhandserver1
eyeks.context3.port=8080
eyeks.context3.protocol=http
eyeks.context3.basepath=/application/portal

1. /images => context2, /static/images
2. /library => context2, /static/library
3. /downloads => context2, /static/library/downloads
4. /products => context2, /static/products
5. /shopping => context3, /shoppingChart
6. /shopping/myportal => context3, /customer
7. /shopping/login => context1, /application/login
8. /internal => context1, /internal

79

mapped by rule 7th to context1 and /application/login/Login.do; /shopping/myportal/customerPortal

/viewCustomer.jsp will be mapped by rule 6th to context 3 and /customer/customerPortal/view

Customer.jsp. The details of redirection operation will be covered in section 3.3.5.

ContextResolver object is responsible for context mapping and path conversion operations.

ContextResolver has one instance of ContextBuilder and one instance of PathBuilder objects; that

manages context operations and path operations respectively. Init method of ContextResolver

initialize configuration files (as described above) and passes file handlers to corresponding build

methods of relevant objects. Build methods of both objects, read configuration files and load contexts

and path mappings. On the other hand, ContextBuilder provides necessary methods to manipulate the

mappings dynamically. Corresponding class diagram is given in figure 21.

Figure 21 Context Resolver Class Diagram

80

 PathBuilder object holds two different trees for path resolution, one of them consisting of PathNode

objects and the other one consist of ReversePathNode objects. Each PathNode object has PathInfo

object, which refers to which context it, belongs to and what path is used to transform. A

corresponding path tree for given example is given below.

Figure 22 Example Context Mapping Tree

The resolve path algorithm, tries to find most logical match of targeting request path. For example if a

request targets a path /shopping/myportal/customerPortal/view Customer.jsp, firstly root node is

traversed, then shopping node and finally myportal node. The path to transform which is /customer is

fetched on this node and the remaining part of target path which is /customerPortal/viewCustomer.jsp

is added to this path, so the translated path will be /customer/customerPortal/view Customer.jsp and

context is found on myportal node as Context3. On the other hand if a request targets

/shopping/Chart/addItemToShoppingChart.do path. The search will be ended on shopping node,

/shoppingChart is fetched and added to remaining path, which becomes

/shoppingChart/Chart/addItemToShoppingChart.do and context is found on this node as Context3.

After redirecting the request to backhand servers, resolving reverse paths are also necessary,

especially if the application requires HTTP session based on cookies. However resolving reverse path

is more complex, Eyeks’s paths must be unique so that virtual nodes can be mapped to only one real

path. However, different contexts can most probably have the same directory name, so going

backwards is problematic. To resolve this name conflicts we can use context name which is resolved

81

already during forward pass. To give more specific example that reflects reverse path resolution,

consider the example below;

Different from PathNode, for reserve path resolution ReservePathNode’s are used for constructing

tree. ReservePathNode has list of PathInfo objects where each of them holds preceding context names

and paths. For the example above, the corresponding tree will be:

Figure 23 Reverse Context Mapping Tree

So web-apps node holds (context1, /path/path/path3) PathInfo for 3rd rule and also holds preceding

node path information (context0, /path1) because of the 1st rule. On content node, there is a naming

conflict, so it holds (contextt2, /path1/path2) for 2nd rule, and (context3, /path1/path2/path4) for 4th

rule.

So if a request targets /path1/server/showStatistics.jsp path. At the first step, forward path is resolved

to be /web-apps/content/server/showStatistics.jsp and context is context0 by applying 1st rule and after

redirection, we have (context0, /web-apps/content/server/showStatistics.jsp) passed as parameter to

resolveReversePath method. The algorithm traverses web-apps and then content node and finds

1. /path1 => context0, /web-apps/content
2. /path1/path2 => context2, /content
3. /path1/path2/path3 => context1, /web-apps
4. /path1/path2/path4 => context3, /content

82

reverse path as path1 and append remaining part of the reserve path so that the full reverse path will

be /path1/server/showStatistics.jsp.

ContextResolveOperation is a must and is one of the pre-operations of EYEKS operation chain. It is

responsible for starting context resolve sequence. This operation gets client’s target request URI from

SessionHolder object and starts context resolving by calling “resolvePath” method of ContextResolver

object. The return values, context and forward path, is set to SessionHolder object.

The reverse operation is done be HeaderReverseDirectionOperation, which is one of the post

operations of EYEKS and is a mandatory operation if backend applications use HTTP Session. This

operation’s responsibility is to track headers that come back from backend applications after

redirection to find “Set-Cookie” header. This header has “Path” property, reflecting which path a

session cookie must send back from client browser to the server. Since we have used virtual paths in

client browser and HTTP Sessions are created from backend servers depending on real paths, these

real paths must be converted to virtual EYEKS path. After retrieving “Path” value in header, this

operation calls resolveReversePath method of ContextResolver by passing context name and path.

The old “Path” value is replaced by return value of this function, so that it will be inserted in “Set-

Cookie” header.

3.3.4 Session Management

There are three typical session management techniques; cookie based URL rewriting, hidden form

fields. EYEKS could allow backend applications to create and manage their HTTP Sessions only if all

operations in the operation chain preserve HTTP headers. Also to use cookie based HTTP sessions,

one of the post operations, HeaderReverseRedirectionOperation must also be added to operation

chain. URL rewriting is the most insecure way of handling sessions, so EYEKS rejects any session

carried out by URL rewriting. In order to use hidden form field based session handling, session

parameter must be defined to CSAAS as a safe parameter for all possible resource-operation pairs.

Application security layer introduces EYEKS Session where the method not only considers security

but also considers distribution execution so all backend web application can share the same session

which is not possible using HTTP Session. Session management is handled using encrypted token,

which holds user credentials such as user id and request sequence number to identify the user. Using

sequence information avoids session hijacking so even if a malicious user hijacks this encrypted

token, sending it back to the application security layer will not work. This token is inserted in every

response to user request and it is granted that it will send back with the next user request. As in HTTP

Sessions, EYEKS Session can be handled by two different methods, cookie based and hidden form

field. Cookie based EYEKS Session management is done by HeaderManagedTokenGetOperation and

HeaderManagedTokenPutOperation operations. Therefore, if cookie based mechanism is chosen,

HeaderManagedTokenGetOperation must be inserted before redirection operation, where it checks

83

request headers for the Cookie called EYEKSTOKEN, decrypt it, and convert it to Token object and

put this object to SessionHolder. HeaderManagedTokenPutOperation must be inserted to the operation

chain after redirection operation, where it checks SessionHolder object for Token object, encrypt it

and put the encrypted token to response headers by setting the cookie EYEKSTOKEN .

User session consist of userid, timestamp, a sequence number, login IP and can be stored either in

database or LDAP where userid is a primary key if it is stored in database or DN (distinguished name)

if stored in LDAP. Userid refers to the user that login to the system, timestamp holds the timestamp of

the last request and sequence number refers to the last sequence number of the user’s request.

Token object consist of userid, timestamp and a sequence number and is initially created by

UserLoginOperation which is one of the login operations that can be added to the operation chain.

Userid refers to the user id that login to the system, timestamp holds the timestamp of the token

creation and sequence number refers to the sequence number of the user’s request. After a successful

login, UserLoginOperation creates token, sets sequence number to 1 and inserts to SessionHolder as

well as creating a session record either in database or LDAP.

If added to the operation chain, it is SessionCheck operation that checks for the coming token.

SessionCheck operation makes a request to CSAAS for every client request with resource as context

name and operation as PAGE_REQUEST so that the validity of token can be controlled by CSAAS.

SessionCheck operation also passes current timestamp, timestamp of the token, login IP, current

request IP, sequence coming from the token and sequence from the database. System administrator

can assign different kinds of policies on this <ContextName, PAGE_REQUEST> pair that controls

Eyeks session. By default session policy controls whether login IP is equal to current request IP,

sequence of the token is equal to sequence from the database, current timestamp is both bigger then

timestamp of the token and within the time-out period.

The collaboration of creating user session during user login operation and checking user session

during the page request is given in following figures.

84

2. insertToken

3.
cre

ate
Us
erS

es
sio

n

4.
 g
et
To
ke
n

6.
 a
dd
H
ea
de
r

Figure 24 The Collaboration of Creating User Session

Figure 25 The Collaboration of Page Request

85

Before user session is created, users must login to Eyeks. In fact, UserLoginOperation is the last

operation in the login sequence. Users must be authenticated and login policies like checking

maximum login tries is exceeded or not and checking allowed login IP must be satisfied before any

user session to be done.

In order to use Eyeks login and session, a user account must be created. Like Eyeks session, user

account can be stored either in a database or in LDAP. In either way, user account consists of user id,

status code referring account status (ACTIVE_ACCOUNT, LOCK, LOCKED_PASSWORD and

DISABLED), last successful login time, last successful login IP, last fail login time; last fail login IP,

current login try number, last password change time and description fields.

Two different Eyeks operations have been implemented that can be added to login sequence.

PreAuthenticationCheckOperation retrieves userid which is a request parameter for login operation,

using userid fetches user account and user session objects from database or LDAP, using these values

make a request to CSAAS with resource as context name, operation as LOGIN_REQUEST and

security attributes as user account attributes like login IP, account status code, last successful login

time, last successful login IP, last fail login time, last fail login IP and current login try number. If

CSAAS sends back access_allowed value, this operation ends successfully; on the other hand if

CSAAS’s response is access_not_allowed, PreAuthenticationCheckOperation creates an Eyeks

Authentication Exception with REASON message coming from CSAAS’s result list.

After pre authentication policies are satisfied, now authentication and login policies must be satisfied.

AuthenticationCheckOperation is responsible for authentication check and asks CSAAS for access

decision on login operation. This operation firstly, retrieves USERID and PASSWORD request

parameters from session holder object and asks CSAAS for authentication. After CSAAS sends back

the authentication answer (is authenticated or not), this operation makes another request to CSAAS to

check login policies with resource as context name, operation as LOGIN with attributes authentication

result and login try number. If user’s login request satisfies all policies attached to LOGIN operation

on requested context, corresponding updates will be done on user account and user session objects in

database or LDAP, otherwise an Eyeks Authentication Exception will be thrown with REASON

message coming from CSAAS’s result list.

Using these two operations, Login behavior of EYEKS can be controlled by adding any policy

<Context name, LOGIN_REQUEST> and <Context name, LOGIN> pairs. System administrator can

force any login policy to be satisfied by each login request to fulfill enterprise application security

needs.

3.3.5 Request Proxying

As mentioned before, application security layer is located in DMZ and no direct connection is allowed

from client browser to backend servers as mentioned in section 3.3.1. In order to achieve this,

86

application security layer acts as a proxy that intercepts the client request, while keeping them alive,

opens a new HTTP connection to backend servers by proxying the request, getting the response and

dispatching it to original request as response.

Session Handler classes are responsible for capturing the request and creating a session holder object

for each request that holds request attributes like request headers, parameters, content. Within the

operation chain there must a redirection operation that takes request attributes from session holder

object, creates a HTTP connection to backend servers and sets the response again to session holder

object. After a successful execution of the whole operation chain, Session Handler classes take

responsibility again, receiving the response in session holder and passing it to the original connection

as response.

As in the case of Session Handler classes, there are two different implementations of request

redirecting (proxying) operation depending on installation of the application security layer. If

installation was chosen as stand alone server depending on HTTPComponents library, then request

redirecting operation was HTTPComponentsRedirectOperation and otherwise (servlet base

implementation deployed on third party application server) HTTPServletRedirectOperation. In either

case, request headers, request parameters and request method (if it is a POST request, request content)

is retrieved from session holder and creates a HTTP connection to a server that was previously

identified before during context mapping operation (3.3.3). After a response is received, response is

parsed into status code, headers, content type and content and added into session holder object.

3.4 Organization-Wide Policy Execution

During execution of the operation chain, Eyeks consults CSAAS to decide on the login behavior,

validating domain specific enterprise rules and checking for known types of web application

vulnerabilities. If the request does not satisfy one of these policies, Eyeks breaks the operation chain

and responds to the client with an appropriate error message.

To apply some predefined policies organization wide, Eyeks introduces some predefined operations

and resources that can be secured by applying policies defined by Enterprise access and security rules.

System administrators can extend these rules by adding new policies to all of these operation-resource

pairs for applying new rules.

Login Policies: control login request to backend application. If an application requires user login,

System administrators should define LOGIN_REQUEST and LOGIN operations on the context

resource and should attach policies to satisfy enterprise login rules. For example, if the enterprise rules

require that the users coming from some predefined location should login to the system, a policy like

IPCheckPolicy that checks the IP’s of user whether they are coming from a safe location must be

defined and attach this policy should be attached to <[Context Name], LOGIN> pair. Or if login to a

web application is only allowed during a specific time interval (e.g.: working hours), a policy,

87

LoginTimeCheckPolicy, can be added to < [Context Name], LOGIN_REQUEST> pair and system

administrator should check the system time.

 < [Context Name], LOGIN_REQUEST> pair is called before any login operation is done.

PreAuthenticationCheckOperation is the operation responsible for constructing and sending the

request to CSAAS. Login IP, account status code, last successful login time, last successful login IP,

last fail login time, last fail login IP and the current number of total login trials are passed to CSAAS

to be used by attached policies. As an example, three predefined policies are attached to this

operation-request pair (StatusPolicy, ReLoginPeriodPolicy and MultipleLoginPolicy). All of these

policies are implemented as java policy evaluator and are added to CSAAS classpath as a jar file.

StatusPolicy implements status check, if the status of the user account is open account, then

StatusPolicy returns an access_allowed decision. If the user account is locked or disabled, it put the

reason message to result list and returns access_not_allowed. ReLoginPeriodPolicy checks relogin

time period if the user’s account is locked for multiple unsuccessful login tries. It checks the account

status, if it is locked, and then checks last fail login time. If the user last unsuccessful login trial was

30 minutes ago, it returns access_allowed otherwise returns access_not_allowed. MultipleLoginPolicy

decides on whether multiple logins are allowed or not by checking session parameters, if a user has an

active session it denies new login try and returns access_not_allowed, otherwise returns

access_allowed. These three policies are combined with FirstCoupleOrThenAnd decision

combinatory, that makes the rule (StatusPolicy OR ReLoginPeriodPolicy) AND MultipleLoginPolicy)

means that the user can login to the system although the account is locked because of unsuccessful

login tries and if the user waits for re-login time period but in either cases multiple login tries were

denied.

< [Context Name], LOGIN> pair is called after checks on < [Context Name], LOGIN_REQUEST>

pair are done. AuthenticationCheckOperation is the responsible operation for constructing and sending

the request to CSAAS. Authentication status and number of login trials are passed to CSAAS to be

used by attached policies. For instance, two policies are attached to this pair (LoginPolicy and RBAC

policy). Login policy implements the java policy evaluator and checks whether authentication result is

successful or not. If successful it returns access_allowed, otherwise checks the number of login trials

whether it is smaller than the allowed maximum unsuccessful login number or not. If it is smaller, it

puts the reason message as UNSUCCESS to result list, otherwise puts JUST_LOCKED. The other

policy was RBAC policy, which executes RBAC rule and checks user’s organization hierarchy if the

user has a right to login to the application, defined by context name.

Page Request Policies: controls all page requests to backhand applications. Eyeks defines three page

request operations; SessionCheckOperation, DirectoryCheckOperation and PageCheckOperation that

consults CSAAS for access decision on < [Context Name], PAGE_REQUEST>, < [Context Name],

[Directory Name]>, < [Directory Name], [Page Name]> operation-resource pairs respectively.

Security administrators can attach security or enterprise access control policies on these operation-

88

resource pairs to control application behavior. These three pairs form a hierarchy of application

resources where any policy attached to < [Context Name], PAGE_REQUEST> pair will be executed

organization widely, < [Context Name], [Directory Name]> controls directory specific policies and <

[Directory Name], [Page Name]> pair controls page specific policies with in specific directory.

SessionCheckOperation, as described in section 3.3.4, is mainly responsible to decide the validity of

user session. However it can also be used for validating organization wide policies like security

policies targeting web application attacks. It operates on a generic operation PAGE_REQUEST under

context name that enables for every request, EYEKS asks CSAAS for access decision. So if any

policy is attached to this operation-resource pair, it is guaranteed that it will be executed organization

wide.

DirectoryCheckOperation can be mainly used against directory traversal attacks; however it can also

be used for applying directory specific enterprise access rules. If added to the operation chain, EYEKS

will ask CSAAS for access decision giving target directory as an operation and context name as

resource. This enables if the enterprise application requires organization hierarchy for access control,

RBAC policy to be assigned on this operation-resource chain.

PageCheckOperation is used for executing access control policies specific to a page. If added to

operation chain, EYEKS will ask CSAAS for access decision giving target page as an operation and

target directory as resource. DirectoryCheckOperation and PageCheckOperation can be executed

using open-world or closed-world assumption. If closed-world assumption is chosen, then every

possible directory and page must be defined as an operation and every directory must also be defined

as a resource. On the other hand every possible operation-resource mapping must be defined as

permission to CSAAS. So for example, if a web application has M directories and for each directory it

has N possible pages, then there must be M resources, M+N operations, and MxN permissions to be

defined to CSAAS. For open-world assumption, it is not needed to define every possible directory and

page mappings. It is enough to define directories that need to extend organization-wide policies with

directory specific policies and if any page specific policy is need; it is enough to define pages that

need exceptions.

These three operations and respective operation-resource pairs are not intended to be used for

encapsulating enterprise (applications specific) access control rules, but for organization-wide security

policies like targeting web application attacks. Best way to encapsulate application specific access

control rules is mapping these policies to resources of web application as described in section 3.2,

Enterprise policy mapping.

Security Policies: As described in section 3.2.2, Eyeks provides a common way to verify application

security policies, targeting web application attacks. To be applied organization-widely, these policies

must be attached to operation-resource pairs that are given page request policies. For example if any

security policy is attached to < [Context Name], PAGE_REQUEST> pair, it is guaranteed that it will

89

be executed for every page request. So there is no need to be attached these security policies to every

possible operation-resource pair.

As mentioned in section 2.4, Web application security vulnerabilities, input validation is a crucial

concept to fight against application security vulnerabilities. CSAAS provides a generic security policy

SECURITY_PARAM_REG_EX_POLICY which enables all security attributes (request parameters

of a request) will be matched with regular expressions that validate the possible safe values. If this

policy added to any organization-wide operation-resource pairs (like PAGE_REQUEST operation) for

every request the parameters are checked against any kind of manipulation and attack.

In order to achieve this, CSAAS provides a UI where the security administrator can define every

allowed parameter with its expected regular expression for a web page. For example consider a web

page doeft.jsp as given in section 3.2.1 where doeft.jsp has 2 operations VIEW and SUBMIT and

possible parameters of VIEW operation are USERID and ACCOUNT_INFO; possible parameters of

SUBMIT operation are USERID, ACCOUNT_INFO, TRANS_ACC_INFO and TRANS_AMOUNT.

Security administrator can define possible values for these parameters using regular expressions.

When Eyeks consults CSAAS for PAGE_REQUEST operation,

SECURITY_PARAM_REG_EX_POLICY evaluates the request by finding which operation and

resource pair is targeted to and finds possible request parameters and corresponding regular

expression and evaluates these values using Java RegEx API. If any parameter is found not to match

with regular expression, CSAAS returns access_not_allowed and the request will be denied by

EYEKS. Like page request policies this policy can be executed using closed or open world

assumption, where in closed world assumption it is mandatory to define all parameter with their

values if any other parameter is found in the request, the request will be denied. It is enough to define

only critical parameter if open-world assumption is chosen.

On the other hand, a security policy, SECURITY_INJECTION_POLICY , is written to check all

request parameters against injection type of attacks that can be extended to cover all types of possible

injection such as SQL, LDAP, XML injection and XSS. Although it is not an effective

implementation of injection flaw detection mechanism, it is a demonstration of how security policies

targeting specific web application attack could be written and executed by Eyeks. It uses blacklist

implementation, where it checks against forbidden keywords like special characters as * ' % @! ; < >

and special keywords as script, select, cn that can be used for SQL, LDAP and XML injection attacks

and XSS.

3.5 Integration with Application Servers

Application security layer can run as a stand-alone server or can integrate into any J2EE based

application servers like Tomcat or JBoss. Stand-alone HTTP server is implemented using

HTTPComponents library which is an open source project supported by Apache itself.

90

HttpComponents provides abstraction over HTTP protocol and extends java.net package by providing

an efficient, up-to-date, and feature-rich set of components that can be used to assemble custom,

standards compliant client- and server-side HTTP services. HttpComponents project strives to

conform to the following specifications endorsed by the Internet Engineering Task Force (IETF):

• RFC 1945 - Hypertext Transfer Protocol -- HTTP/1.0.

• RFC 2116 - Hypertext Transfer Protocol -- HTTP/1.1.

• RFC 2117 - HTTP Authentication: Basic and Digest Access Authentication.

• Netscape Cookie Draft - Persistent Client State. (HTTP cookies, preliminary specification)

• RFC 2109 - HTTP State Management Mechanism (HTTP cookies, version 1).

• RFC 2965 - HTTP State Management Mechanism (HTTP Cookies, version 1, second revision).

The application security layer stand-alone server implementation does not provide a fully functional

web server like Apache, however, it implements a multi-threaded and thread-safe HTTP proxy that

intercepts a HTTP request, handles the HTTP communication between clients and backhand servers.

HTTPComponent library does not implement a server but provides basic building blocks of

abstracting HTTP protocol.

The following are the components of the Apache core:

HTTP_PROTOCOL: contains routines that directly communicates with the client (through the

socket connection), following the HTTP protocol. All data transfers to the client are done using this

component.

HTTP_MAIN: the component that startups the server and contains the main server loop that waits for

and accepts connections. It is also in charge of managing timeouts.

HTTP_REQUEST: the component that handles the flow of the request processing, dispatching

control to the modules in the appropriate order. It is also in charge with error handling.

HTTP_CORE: the component implementing the most basic functionality that can be used by all

other components.

91

Figure 26 Components of Apache Core

On the other hand; HTTPComponents library does not contain HTTP_MAIN component of Apache,

which implements the server and handles the connections but fully implements HTTP_PROTOCOL

and HTTP_CORE components of Apache. So for this thesis, a basic implementation of a multi-

threaded server that handles coming HTTP connections is implemented. In the figure, the components

of the implemented HTTP server depending on HTTPComponents library are shown. HTTP_MAIN

component is replaced by the application security layer main process and HTTP_REQUEST is

replaced by the HTTP Request Handler, that is a worker thread that dispatches the request and

response to HTTPComponentsSessionHandler object that creates SessionHolder object and passes it

to OperationManager object to start the execution of the operation chain (in section 3.3.2)

92

Figure 27 Components of EYEKS Stand-Alone Server

The other implementation, which is Servlet based, can be integrated into any kind of J2EE application

server. Servlet based implementation is designed as a typical web application and consists of only one

servlet, which is called as EyeksMainServlet that must be mapped to the root context. A typical

web.xml for Eyeks as a web application is;

<web-app>

 <display-name>
 Eyeks Application Security Layer
 </display-name>
 <description>
 Application Security Layer interface for Servlet based implementations
 </description>

 <servlet>
 <servlet-name>EyeksMainServlet</servlet-name>
 <description>Main listener servlet</description>
 <servlet-class>tr.com.eyeks.securitylayer.EyeksMainServlet</servlet-class>
 <init-param>
 <param-name>configuration_folder</param-name>
 <param-value>configuration</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>EyeksMainServlet</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>

</web-app>

93

EyeksMainServlet captures all client requests and dispatches the request and response to

EyeksServletSessionHandler object, which creates SessionHolder object and passes it to

OperationManager object to start executing operation chain (in section 3.3.2) like in the

HTTPComponent case.

In either way, StartUpService’s start method must be called at the time of start up. In

HTTPComponent based implementation, StartUpService is called in main method of SecurityLayer

before any listener and worker threads are initialized and in servlet based implementation it must be

called from init method of EyeksMainServlet. StartUpService is responsible for creating singleton

instances of Manager objects within an order. StartUpService starts with initializing

ConfigurationManager object which loads configuration files (which will be discusses in next section)

and continues with EyeksDBManager, ContextResolver, OperationsManager and finally

EyeksExceptionDispatcher in order. These managers load their configurations according to

configuration files passing from ConfigurationManager’s file streams to their build or init methods.

3.6 Managing EYEKS

The operation and behavior of Eyeks can be configured through five configuration files.

context.properties: As described in Context Mapping section 3.3.3, configures contexts that will be

served by Eyeks. A number of context (N starts with 1) can be defined into Eyeks. This configuration

file has the format:

eyeks.contextN.name: Name of the context, must match with path.properties and operation properties.

eyeks.contextN.host: IP address or DNS name of backhand server.

eyeks.contextN.port: In which port, does the backend application listen to.

eyeks.contextN.protocol: Which protocol does backend application uses (HTTP or HTTPS).

eyeks.contextN.welcomepage: To which path, Eyeks directs the login request after successful login

operation.

A typical context configuration example is given in section 3.3.3.

session.properties: Configures the implementation method and storage information of user account

and user session (which was described in section 3.3.4. The configuration file holds two

configurations, one is user session and the other is user account. User session configuration starts with

usersession.classname which refers the implementation method (LDAP or database), where it take full

class name of the class that implements IUserSessionDBManager interface. Currently two different

user session storage is implemented, database or LDAP. For database storage, the configuration file

format is as follows:

94

usersession.classname: Full class name of user session handler

usersession.database.driver: Full database driver name.

usersession.database.url: Database URL.

usersession.database.user: User name to connect to database

usersession.database.password: Password of database user.

An example configuration for MySQL database is as follows;

User account configuration is the same as user session. The only change is that usersession tag is

replaced with useraccount. So typical configuration for MySQL database becomes;

The implementation methods of user account and user session does not have to be the same. User

sessions can be stored into LDAP to improve performance, where user account can be stored in

database.

message.properties: holds the error messages of Eyeks, where an exception is raised from any of the

operation chain element to break the execution chain. This file consists of three comma separated

values where the first value represents the class name of the exception, second name represents the

short name of error message and the third value represents the full message to be presented to the user.

The exception handling mechanism was discussed in section 3.3.2.4 and a typical example for

authentication error messages is as follows:

usersession.classname = tr.com.eyeks.database.ImplUserSessionJDBCManager
usersession.database.driver =org.gjt.mm.mysql.Driver
usersession.database.url = jdbc:mysql://localhost:3306/csaas
usersession.database.user = csaas
usersession.database.password = csaas

useraccount.classname = tr.com.eyeks.database.ImplUserAccountJDBCManager
useraccount.database.driver =org.gjt.mm.mysql.Driver
useraccount.database.url = jdbc:mysql://localhost:3306/csaas
useraccount.database.user = csaas
useraccount.database.password = csaas

tr.com.eyeks.exceptions.EyeksAuthenticationException,UNSUCCESS,Unsuccessful login try
tr.com.eyeks.exceptions.EyeksAuthenticationException,DISABLED,Account has been disabled
tr.com.eyeks.exceptions.EyeksAuthenticationException,JUST_LOCKED,Account has just locked
tr.com.eyeks.exceptions.EyeksAuthenticationException,LOCK_PASSWORD,Account lock
because of password
tr.com.eyeks.exceptions.EyeksAuthenticationException,UNKNOWNCONTEXT,Path is not
allowed!

95

operation.properties: is used for constructing operation chain of Eyeks, which was described in

3.3.2. It has 3 configuration lists; pre-operations list, post operations list, commands and their

operations list depending on contexts. As mentioned in 3.3.2, pre and post operations will be executed

regardless of the context where pre-operations are executed before any command operation and post-

operations are executed after executing all command operations. The format of pre-operations in

configuration file is;

preOperations.N: The operation class that implements IEyeksOperationChain Element interface.

Where N starts with N and goes to a number of pre-operations in order. The format of post-operations

is the same as pre-operations but the corresponding tag is postOperations.

After configuring pre and post operations, the commands and their operations must be configured.

Commands can be configured using fallowing syntax.

[NameForOperationList].contextN.name: Context name for command class (Context names must be

defined previously in context.properties)

[NameForOperationList].contextN.commandClass: Full name of the responsible command class that

implements IOperationCommand.

And operations can be added to defined command as follows:

[NameForOperationList].contextN.operationList.M: Full name of the operation class that implements

IEyeksOperationChainElement.

So from these constructs, a number of responsible commands can be defined for each context defined

previously and a number of operations can be attached to each command. A typical example of

operations.property file is given below.

96

Where three commands (Login, PageRequest and Logout) are defined for context, DynamicContext,

and for login command six, for page request command five and for logout o command four operations

were attached.

path.properties: As described in section 3.3.3, Context Mapping, this file holds mappings from real

paths of the contexts to Eyeks paths that will be served. The entities in this file has format like

“EyeksPath” => “context name”,”realpath”. The sample configuration was given in section 3.3.3 in

details.

preOperations.1=tr.com.eyeks.operations.chain.pre.ContextResolveOperation
postOperations.1=tr.com.eyeks.operations.chain.post.HeaderReverseRedirectionOperation

loginOperations.context1.name=DynamicContext
loginOperations.context1.commandClass=tr.com.eyeks.operations.LoginCommand
loginOperations.context1.operationList.1=tr.com.eyeks.operations.chain.login.PreAuthenticatio
nCheckOperation
loginOperations.context1.operationList.2=tr.com.eyeks.operations.chain.login.AuthenticationCh
eckOperation
loginOperations.context1.operationList.3=tr.com.eyeks.operations.chain.login.UserLoginOperat
ion
loginOperations.context1.operationList.4=tr.com.eyeks.operations.chain.login.FetchWelcomePa
geOperation
loginOperations.context1.operationList.5=tr.com.eyeks.operations.chain.pagerequest.HttpComp
onentsRedirectOperation
loginOperations.context1.operationList.6=tr.com.eyeks.operations.chain.pagerequest.HeaderMa
nagedTokenPutOperation

pageRequestOperations.context1.name=DynamicContext
pageRequestOperations.context1.commandClass=tr.com.eyeks.operations.PageRequestComman
d
pageRequestOperations.context1.operationList.1=tr.com.eyeks.operations.chain.pagerequest.Pa
rameterListPrintOperation
pageRequestOperations.context1.operationList.2=tr.com.eyeks.operations.chain.pagerequest.He
aderManagedTokenGetOperation
pageRequestOperations.context1.operationList.3=tr.com.eyeks.operations.chain.pagerequest.Ses
sionCheckOperation
pageRequestOperations.context1.operationList.4=tr.com.eyeks.operations.chain.pagerequest.Htt
pComponentsRedirectOperation
pageRequestOperations.context1.operationList.5=tr.com.eyeks.operations.chain.pagerequest.He
aderManagedTokenPutOperation

logoutOperations.context1.name=DynamicContext
logoutOperations.context1.commandClass=tr.com.eyeks.operations.LogoutCommand
logoutOperations.context1.operationList.1=tr.com.eyeks.operations.chain.pagerequest.HeaderM
anagedTokenGetOperation
logoutOperations.context1.operationList.2=tr.com.eyeks.operations.chain.pagerequest.SessionC
heckOperation
logoutOperations.context1.operationList.3=tr.com.eyeks.operations.chain.logout.SessionDelete
Operation
logoutOperations.context1.operationList.4=tr.com.eyeks.operations.chain.logout.RedirectLogout
Operation

97

3.7 Verification of Solution

Verifying a security product is a hard and most probably an impossible job, because the verification

method mainly depends on security testing. Security testing, by itself, isn't a particularly good

measure of how secure an application is, because there are an infinite number of ways that an attacker

might be able to make to break an application, and it isn't simply possible to test all of the

possibilities. However, security testing has the unique power to absolutely show that there is a

problem.

There are mainly three design considerations of Eyeks; encapsulating domain specific factors

(enterprise rules) to decide on access decision, apply these rules organization-widely and transparently

and secure application from web application attacks.

Encapsulating domain specific factors have been discussed in 2.2.6 and 2.5.1 sections in detail. An

access control mechanism, depending on RAD specification, was shown to be one of the best ways to

take access decision mechanism out of application. Considering this, CSAAS has been implemented

as the access control mechanism with some improvements over RAD. Access decisions can easily be

deployed on CSAAS as shown in section 3.2.

To guarantee enterprise rules to be executed organization-widely, Eyeks has been implemented as a

separate layer which will be deployed in front of web application and control all access to backhand

applications. Access decisions and security aspects are executed transparently on this layer. No direct

connection is allowed from client to backhand applications so that Eyeks will be an application

gateway, HTTP proxy for backhand applications.

Eyeks has also been designed to confront various web application attacks and also can be extended for

future attacks. However, verifying this feature requires a well structured and organized security

testing. OWASP [9] has released a security testing guide, which can be used for a base-line to

construct security testing. In this section, security test sets and what countermeasures, what aspects

have been considered to secure web applications will be presented.

In this thesis, OWASP Testing Guide 2007 V.2.0 release candidate 1 document was used to generate

test sets and to verify the solution. The test sets of this document are given in table 11.

Table 11 OWASP Testing List

Category

Ref. Number

Name

Information Gathering OWASP-IG-001 Application Fingerprint

98

Table 11 (continued)
OWASP-IG-002 Application Discovery
OWASP-IG-003 Spidering and googling
OWASP-IG-004 Analysis of error code
OWASP-IG-005 SSL/TLS Testing
OWASP-IG-006 DB Listener Testing
OWASP-IG-007 File extensions handling

OWASP-IG-008 Old, backup and unrefered
files

Business logic testing

OWASP-BL-001 Testing for business logic

OWASP-AT-001 Default or guessable
account

OWASP-AT-002 Brute Force
OWASP-AT-003 Bypassing authentication

schema
OWASP-AT-004 Directory traversal/file

include
OWASP-AT-005 Vulnerable remember

password and pwd reset

Authentication Testing

OWASP-AT-006 Logout and Browser Cache
Management Testing

OWASP-SM-001 Session Management
Schema

OWASP-SM-002 Session Token Manipulation
OWASP-SM-003 Exposed Session Variables
OWASP-SM-004 Session Riding
OWASP-SM-005 HTTP Exploit
OWASP-DV-001 Cross site scripting
OWASP-DV-002 HTTP Methods and XST
OWASP-DV-003 SQL Injection
OWASP-DV-004 Stored procedure injection
OWASP-DV-005 ORM Injection
OWASP-DV-006 LDAP Injection
OWASP-DV-007 XML Injection
OWASP-DV-008 SSI Injection
OWASP-DV-009 XPath Injection
OWASP-DV-010 IMAP/SMTP Injection
OWASP-DV-011 Code Injection
OWASP-DV-012 OS Commanding
OWASP-DV-013 Buffer overflow

Session Management

OWASP-DV-014 Incubated vulnerability
OWASP-DS-004 Writing User Provided Data

to Disk
OWASP-DS-005 Failure to Release

Resources
OWASP-DS-006 Storing too Much Data in

Session
OWASP-WS-001 XML Structural Testing
OWASP-WS-002 XML content-level Testing

Denial of Service Testing

OWASP-WS-003 HTTP GET
parameters/REST Testing

OWASP-WS-001 XML Structural Testing
OWASP-WS-002 XML content-level Testing Web Services Testing
OWASP-WS-003 HTTP GET

parameters/REST Testing

99

Table 11 (continued)
OWASP-WS-004 Naughty SOAP attachments

OWASP-WS-005 Replay Testing

AJAX Testing OWASP-AJ-001 Testing AJAX

And counter measures to prevent these vulnerabilities are shown below.

Application Fingerprint: Eyeks has two different implementations, as a stand-alone server and as a

deployment on any J2EE servers. In either case, adding HideApplicationHeaderOperation to the

operation chain will remove backhand web application fingerprints from headers and shuffle headers.

However if deployed on java application servers, fingerprints of web server (the application server

that Eyeks deployed on.) are still one and can be revealed.

Application Discovery: Due to Eyeks’s context mapping mechanism (section 3.3.3). Eyeks can serve

more than one web application as if there is only one. So it hides backhand applications. If not

intentionally deployed on front hand servers, there is no way to discover other applications.

Spidering and Googling: Eyeks’s layered structure (3.3.1) and context mapping (3.3.3) are designed

to hide backhand web application from spidering and googling. Google can only reveal virtual paths

and names not real paths.

Analysis of error code: Exception handling mechanism (3.3.2.4) has been designed to confront

information disclosure by error codes. Any kind of exceptions (due to backhand applications and as

well as inner exception of Eyeks) have been caught and converted to generic error page.

SSL/TLS Testing: No countermeasure to confront attacks about SSL/TLS has been implemented.

DB Listener Testing: Eyeks has been designed only for web application layer attacks. DB Listener

testing is out of scope.

File Extensions Handling: Although a virtual path concept has been implemented, no operation has

been implemented to hide file extensions. However, a new operation that holds file extension

mappings and hides them from client can easily be implemented and due to Eyeks operation chain

mechanism (3.3.2), can easily be added to Eyeks.

Old, Backup and Unreferenced Files: Due to the layered structure (3.3.1), context mapping (3.3.3)

and page request policies were executed using closed world assumption (3.4). There is no chance to

guess and fetch unreferenced files without intentionally mapped to Eyeks.

100

Testing for Business Logic: There is no way to validate if business logic of an application has errors.

However CSAAS enables to encapsulate business access logic from application code and provides

more manageable and error-prone implementation. And Eyeks makes the request to validate enterprise

rules organization-widely.

Default or Guessable Account: Eyeks does not hold user account or user passwords; however

implements the authentication mechanism using CSAAS. CSAAS can use legacy system to access

user account. Therefore, guessable user accounts are application responsibility.

Brute Force: As guessable accounts, the strength of user passwords is application responsibility.

However, Eyeks provides an account locking mechanism to prevent brute force attacks (3.3.4).

Bypassing authentication schema: By default, Eyeks uses form based authentication to confront

complex authentication mechanisms. All authentication requests are passed to CSAAS and it can be

used as a bridge between application legacy authentication mechanism and Eyeks. Session tokens

(3.3.4) and login policies (3.4) both target authentication bypassing attacks.

Directory traversal/file include: Eyeks tackles directory traversal attacks by organization-wide

policies (page request policy) (3.4) and context mapping (3.3.3). All requests are catch by application

security layer and passed to CSAAS to authorize. DirectoryCheckOperation and PageCheckOperation

try to eliminate directory traversal attacks.

Vulnerable remember password and pwd reset: Browser caching is automatically turned off by

Eyeks and on the other hand CSAAS has password reset and security questions mechanism however

by default, there are not used.

Logout and Browser Cache Management Testing: Eyeks chain operations have logout command

(3.3.2.1) which manages logout operations of whole system. Eyeks session and session tokens are

become invalid after logout operation.

Session Management Schema: Eyeks session is handled through Eyeks session management schema

(3.3.4). Three kinds of session management have been implemented; Header based, cookie based and

within the content itself.

Session Token Manipulation: Session tokens hold user id, timestamp, sequence number of the

request and a random variable in a serialized form with encryption. Non-predictable, non-generatable

tokens are used.

Exposed Session Variables: Reusing session tokens is not allowed by Eyeks. Session token has a

sequence number and a timestamp so that every new request invalidates the previous token.

101

Session Riding: Form based authentication with carrying session token within the content removes

the risk of session riding. Eyeks’s ContentPutTokenOperation and ContentGetTokenOperation

handles carrying session token within the content.

HTTP Exploit: Eyeks’s HeaderCheckOperation checks every header of the request and response for

invalid header values. Also by using HeaderCheckOperation, it is also possible to define every

allowed header that is checked for each request.

Injection Attacks: (Cross site scripting, XST, SQL, stored procedure, ORM, LDAP, XML, SSI,

XPath, IMAP/SMTP, Code, Command injection) Mapping each resources (pages) to CSAAS (3.2),

provides a common way to validate each parameter against injection attacks. Using the closed world

assumption and page request policies (3.4), it is possible to write regular expressions to validate user

inputs. On the other hand a common injection check policy has been written and if added to

organization-wide resource-operations pairs (3.4,) every request is checked against injection

vulnerabilities using black-list of known attack vectors. It is also possible to implement specialized

policies against each injection attack and easily added to CSAAS as organization-wide policy.

Locking Customer Accounts: Eyeks’s session mechanism has a temporary locking mechanism that

can be controlled by session operation and policies (3.3.4).

User Specified Object Allocation: Eyeks has nothing to do with this vulnerability. It is each web

application responsibility to manage object allocation.

User Input as a Loop Counter: Eyeks has nothing to do with this vulnerability. It is each web

application responsibility to manage application logic.

Writing User Provided Data to Disk: Eyeks has nothing to do with this vulnerability. It is each web

application responsibility to manage disk operations.

Failure to Release Resources: Eyeks has nothing to do with this vulnerability. It is each web

application responsibility to manage releasing resources.

Storing too Much Data in Session: Eyeks has nothing to do with this vulnerability. It is each web

application responsibility to manage session data.

Web Services Testing: Eyeks does not support web services.

AJAX Testing: Eyeks does not support AJAX.

102

CHAPTER 4

EXPERIMENTAL STUDY

EYEKS can be evaluated using four aspects; performance, capability of encapsulating access policies,

capability of eliminating web attacks. In this thesis two experimental results will be presented. First

results have been collected from a running real life system which has been using EYEKS as an

application security layer. These results help us to evaluate performance of EYEKS on a highly loaded

system and besides show how real life access problems can be solved by EYEKS. The second

evaluation will be done on the test results taken from a test platform where EYEKS has been used as

an application security layer to control access on a simple test web application, implemented using

Java JSP and Struts technology. The main aim of this experiment is evaluating EYEKS against web

application attacks. A vulnerability test set has been prepared using OWASP Testing Guide which

was introduced in section 3.7 and applied to this test platform.

4.1 Case Study: Real Life System

EYEKS has been implemented and used for one of the biggest e-government projects of Turkey. The

system became online on October 2004, and is being used for nearly 2.5 years. The work and the

results were presented in an International Conference on Security of Information Networks (SIN

2007) [7]. This earlier version of EYEKS differs only for some concepts from the version presented in

the thesis. The only changes are; Request/Response operation chain has been newly implemented to

provide a more generic framework, previous version can only be deployed on Java application servers,

however for this thesis, a stand-alone server was implemented.

Project was started with 13,466 registered users and by January 2007, 181,747 users have been

registered. Because of the business domain of the application, the number of login and page requests

is irregular and differs a lot from month to month. The application executes mainly one business

transaction, which consists of five successful page requests and HTML form posts and corresponding

database operations.

Project consists of four different web applications that use EYEKS as an application security layer.

These four applications are defined to EYEKS as different contexts with proper mappings so that

EYEKS can serve to all of them. EYEKS was installed to 3 servers. Two machines have four Solaris

Ultra SPARC CPU with 8GB Ram and one machine have two Solaris Ultra SPARC CPU with 2GB

Ram. On the other hand all of the backhand applications run on six Solaris Ultra SPARC CPU

machine with 8GB Ram. As soon as the system was launched, the registered users and usage statistics

are increased rapidly and still continue to increase.

103

Table 12 shows monthly statistics of the number of registered users, executed transactions, login and

page requests.

Table 12 Monthly Statistics of the Real Life System

MONTHS USERS TRANSACTIONS LOGIN
PAGE
REQUEST

OCTOBER [2004] 13,446 34,534 131,448 975,481
NOVEMBER [2004] 15,811 91,465 237,809 2,648,826
DECEMBER [2004] 18,638 174,725 532,658 5,124,684
JANUARY [2005] 20,984 452,782 1,530,232 13,592,516
FEBRUARY [2005] 23,403 380,682 1,310,556 11,401,426
MARCH [2005] 41,519 955,901 3,058,883 27,606,421
APRIL [2005] 53,342 1,511,975 3,931,135 43,937,994
MAY [2005] 55,642 1,780,000 5,615,023 49,786,600
JUNE [2005] 56,543 1,004,445 3,022,113 23,735,035
JULY [2005] 57,250 1,728,969 5,390,383 39,576,100
AUGUST [2005] 58,037 2,053,585 4,115,414 48,649,429
SEPTEMBER [2005] 59,585 1,138,612 2,618,807 26,176,690
OCTOBER [2005] 60,271 2,019,727 4,440,552 50,735,542
NOVEMBER [2005] 60,903 2,218,907 5,000,212 57,602,826
DEC [2005] 61,607 1,243,317 2,565,332 28,745,489
JANUARY [2006] 62,555 2,184,729 5,001,502 58,157,486
FEBRUARY [2006] 64,549 2,518,218 5,113,201 69,830,185
MARCH [2006] 65,794 2,346,147 5,006,541 61,210,975
APRIL [2006] 65,950 2,717,194 5,911,656 76,054,260
MAY [2006] 66,069 2,865,000 6,411,211 84,889,950
JUNE [2006] 87,938 1,005,555 2,156,987 23,982,487
JULY [2006] 88,821 1,730,000 3,929,987 43,180,800
AUGUST [2006] 89,112 2,056,987 4,419,877 52,103,481
SEPTEMBER [2006] 96,004 1,100,562 2,409,652 25,312,926
OCTOBER [2006] 120,432 2,001,532 4,066,579 52,039,832
NOVEMBER [2006] 126,245 3,124,236 6,910,198 63,808,771
DECEMBER [2006] 150,324 1,245,330 2,776,630 26,837,801
JANUARY [2007] 181,747 1,010,336 2,062,146 25,591,811

Following figures show monthly distribution of executed transactions, login and page requests

1
0

4

91,465

174,725

452,782

380,682

955,901

1,511,975

1,780,000

1,004,445

1,728,969

2,053,585

1,138,612

2,019,727

2,218,907

1,243,317

2,184,729

2,518,218

2,346,147

2,717,194

2,865,000

1,005,555

1,730,000

2,056,987

1,100,562

2,001,532

3,124,236

1,245,330

1,010,336

237,809

532,658

1,530,232

1,310,556

3,058,883

3,931,135

5,615,023

3,022,113

5,390,383

4,115,414

2,618,807

4,440,552

5,000,212

2,565,332

5,001,502

5,113,201

5,006,541

5,911,656

6,411,211

2,156,987

3,929,987

4,419,877

2,409,652

4,066,579

6,910,198

2,776,630

2,062,146

34,534131,448

-

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

OCTOBER [2004]

NOVEMBER [2004]

DECEMBER [2004]

JANUARY [2005]

FEBRUARY [2005]

MARCH [2005]

APRIL [2005]

MAY [2005]

JUNE [2005]

JULY [2005]

AUGUST [2005]

SEPTEMBER [2005]

OCTOBER [2005]

NOVEMBER [2005]

DECEMBER [2005]

JANUARY [2006]

FEBRUARY [2006]

MARCH [2006]

APRIL [2006]

MAY [2006]

JUNE [2006]

JULY [2006]

AUGUST [2006]

SEPTEMBER [2006]

OCTOBER [2006]

NOVEMBER [2006]

DECEMBER [2006]

JANUARY [2007]

Transactions
Login R

equests

F
igure 28 D

istribution of T
ransactions and Login R

equests

9 7 5 ,4 8 1

2 ,6 4 8 ,8 2 6

5 ,1 2 4 ,68 4

1 3 ,5 9 2 ,5 1 6

1 1 ,4 01 ,4 2 6

2 7 ,6 0 6 ,4 21

4 3 ,9 3 7 ,9 9 4

4 9 ,7 8 6 ,6 0 0

2 3 ,7 3 5 ,0 3 5

3 9 ,5 7 6 ,1 0 0

4 8 ,6 49 ,4 2 9

2 6 ,1 76 ,6 9 0

50 ,7 3 5 ,5 4 2

5 7 ,60 2 ,8 2 6

2 8 ,7 4 5 ,4 8 9

58 ,1 5 7 ,4 8 6

6 9 ,8 3 0 ,1 8 5

6 1 ,2 1 0 ,9 75

7 6 ,0 5 4 ,2 6 0

8 4 ,8 8 9 ,9 5 0

2 3 ,9 8 2 ,4 87

4 3 ,1 8 0 ,8 0 0

5 2 ,1 0 3 ,4 8 1

2 5 ,3 1 2 ,9 2 6

5 2 ,0 3 9 ,8 3 2

6 3 ,8 0 8 ,7 7 1

2 6 ,8 3 7 ,8 0 1

2 5 ,5 9 1 ,81 1

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

OCTOBER [2004]

NOVEMBER [2004]

DECEMBER [2 004]

JANUARY [2 005]

FEBRUARY [2005]

MARCH [2 005]

APRIL [2005]

MAY [2005]

JUNE [2005]

JULY [2005]

AUGUST [2005]

SEPTEMBER [2005]

OCTOBER [2005]

NOVEMBER [2005]

DECEMBER [2 005]

JANUARY [2 006]

FEBRUARY [2006]

MARCH [2 006]

APRIL [2006]

MAY [2006]

JUNE [2006]

JULY [2006]

AUGUST [2006]

SEPTEMBER [2006]

OCTOBER [2006]

NOVEMBER [2006]

DECEMBER [2 006]

JANUARY [2 007]

F
igure 29 D

istributions of P
age R

equests

105

As shown in the graphics, the distribution of page request and login numbers varies a lot and are

totally irregular, some months like April, May and November takes two or three time more traffic than

previous months like June, July and September. Table 13 gives statistics about how many business

transactions; login and page request has been done per month in last year respectively. Last column

stands for the total request numbers on a peek day.

Table 13 Average and Peek Statistics

 Start Average Peek Peek Day

Transactions 34,534 1,856,324 3,124,236 649,024

Login 131,448 3,559,883 6,910,198 833,670

Page Request 975,481 39,046,279 63,808,771 4,128,295

The irregularity of monthly distribution is also true for days in a months, next figure shows daily

distribution of transaction numbers. In fact, the overall traffic is concentrated in the third week of the

months where it takes nearly 70-80% of monthly traffic. This is because of the business of application.

Business rules require deadliness for some business tractions in a month so that the traffic increases

rapidly in the last week of deadlines.

106

6,705
1,710

21,889

32,892
38,887

42,799
51,389

42,021

7,567
66,504
70,719

71,779
81,830

81,455

89,341
26,599

161,336

229,242

276,581
313,348

248,148
186,258

80,326
292,906

45,273
25,793

45,269
78,234

4,634
850

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 APRIL - 2006
DAILY TRANSACTION NUMBERS

Figure 30 Daily Transactions (April 2006)

So the performance issue on high loads is critical for both the backhand application and EYEKS. The

system must scale well to handle with high traffic in a responsible time and also must highly available.

The users of the system also increase rapidly, within 2 year period, the number of users multiplied by

ten and the increasing number of users still continues. So overall system must also handle with

increasing number of users as well as traffic burst on some days of the month.

 EYEKS scales and responses very well with this situation, the statistics show that on even peek days,

average peek CPU usage has not been over 27 % where backend servers (8 servers) usage is 92 %.

The whole application (four different web applications) has been written in Java using J2EE

technology. All four applications uses MVC pattern so that there are only one controller servlet for

each application. The resource and operation mappings are done according to rule 4 which was

described in section 3.2. Each application has been defined as resources of the system and so that 4

resources has been defined. The operations are mapped as allowed actions of each controller servlet,

which consist of totally 67 operations. The system mainly uses RBAC policy evaluator for which 8

different roles are defined hierarchically according to business needs. Other from RBAC policy,

enterprise security rules of project has been implemented using 11 user-defined policies. The policies

107

are mainly time based that defines deadlines of business transactions and also defines sequence of

successfully executed user action to access more secure resource. These policies are mapped to 210

different resource-operation mappings as permissions that cover whole application.

EYEKS has also been used as authentication mechanism that provides single-sign-on for whole

application. Form based authentication has been used to verify user passwords. One-time passwords

has also been generated and verified for more critical operations. The authentication mechanism also

provides authentication based on security questions that have been used for integration with call center

application. EYEKS also can authenticate users coming from IVR (Interactive Voice Response)

application so that call center operator can use the system in place of the client for assistance.

The session management of EYEKS depends on LDAP implementation in this case, where user

session attributes are stored to LDAP after successful login operation. On each request, user session is

fetched from LDAP using DN of the user that is stored in encrypted EYEKSTOKEN. Token’s are

stored within each web page and are checked for validity for each request as described in section

3.3.4.

There are no application level security policies to check for known security exploits are implemented

however every parameter of each web page is well-defined and defined in CSAAS using the closed

world assumption. The only place that checks for web application attacks are authorization

mechanism where the login requests are checked for common injection attacks such as SQL and

LDAP injection. However the system is secured for directory traversal, information disclosure, broken

authentication and session management types of attacks by default. EYEKS logs also showed that in

last 3 months (November, December 2006 and January 2007), total number of 865,327 requests than

and as well as, 938,787 incorrect password tries per mount are found to be malicious and denied.

The experience with running real life system proves that EYEKS provides great benefits to enterprise

applications. First of all frees whole application from embedding access decision rules in application

source code that improves manageability of the system. The access decision rules can be added

changed or removed dynamically without changing application code and removes the need of

redeployment. On the other hand provides a secure authentication and authorization mechanism that

covers whole application with no additional effort. The experiment also shows that EYEKS was very

scalable and gives high performance under heavily loads.

4.2 Experiment 1: Artificial Load Tests

The real life system described in previous section has been also tested under artificial load tests. The

testing tool has been chosen as Apache JMeter, which is a 100% pure Java desktop application

designed to load test functional behavior and measure performance. Apache JMeter can be used to test

performance both on static and dynamic resources (files, Servlets, Perl scripts, Java Objects). It can be

108

used to simulate a heavy load on a server, network or object to test its strength or to analyze overall

performance under different load types.

These load tests consist of 12 successive system scenario operations to execute a business transaction

starting from login request to logout request and tries to mimic typical user behavior. Thirteen

different load tests are constructed for each targets number of 20 to 500 concurrent users. These tests

run on the system with EYEKS and without EYEKS to compare the payload of EYEKS. The statistics

are shown in table.

Table 14 EYEKS Performance Statistic

Concurrent Users

Avg. Execution

time with EYEKS
(s)

Avg. Execution time
without EYEKS (s)

Payload

20 0.629 0.586 0.074246

50 1.577 1.468 0.074148

70 2.219 2.065 0.074319

100 3.202 2.980 0.074527

130 4.247 3.952 0.074765

160 5.438 5.058 0.075064

200 7.276 6.765 0.075590

250 18.205 16.913 0.076421

300 44.629 41.402 0.077950

350 108.014 99.986 0.080288

400 261.435 241.109 0.084302

450 638.744 585.894 0.090204

500 1582.747 1438.696 0.100126

The backhand application (without EYEKS) scales well until the number of 250 concurrent users.

However after 250 users, the response time becomes increasing exponentially and when the system

has 500 concurrent users the average execution time for a business transaction becomes 24 minutes.

The corresponding graphics will show this behavior.

109

Execution times without EYEKS

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

0 50 100 150 200 250 300

Figure 31 Execution Times Without EYEKS (0-300)

Execution times without EYEKS

0.000

200.000

400.000

600.000

800.000

1000.000

1200.000

1400.000

1600.000

250 300 350 400 450 500 550

Figure 32 Execution Times Without EYEKS (250-500)

110

On the other hand, the average payload of EYEKS is very stable on increasing number of concurrent

users. The execution times of business transaction suffer only 8 % if EYEKS was installed in front of

web applications. EYEKS scales very well where at 20 concurrent users the payload was 7.4 % and at

500 concurrent users the payload only increases to 10%. The following graphic shows the payloads

over number of concurrent users.

Payload of EYEKS

0

0.02

0.04

0.06

0.08

0.1

0.12

0 100 200 300 400 500 600

Figure 33 Payload of EYEKS

This high level of scalability is because of CSAAS’s caching mechanism. After the first execution of

business scenario, all necessary elements of RAD specification to decide on access decision like

operations, resources and policies have all been fetched and cached. The only time consuming

operation for CSAAS was retrieving user role (due to RBAC policy). The remaining evaluation is

done in memory so that no other I/O operation has been needed. After each user’s page request, the

roles of these roles will be cached so that for the remaining operations, no access to database has been

needed.

EYEKS has been using connection pooling with persistent HTTP connections that allow pipelining of

client request. So that HTTP connection establishment occurs very less. The payload is due to I/O

operations from these sockets and mostly RMI communication between EYEKS and CSAAS

111

4.3 Experiment 2: Testing Against Web Application Attacks

In this section, the solidity of EYEKS against web application attacks will be investigated. For this

purpose, an open source web application that is available publicly has been chosen and EYEKS was

installed in front of it as an application security layer.

The chosen web application was ADF Toy Store Demo application [75], which is realized by Oracle

to demonstrate their newly build framework called Oracle Application Development Framework. This

is a basic online shopping application for toy stores; it allows user login, listing of products under toy

categories, searching for a specific product, online ordering and shipment. The reasons behind

choosing ADF Toy Store application are; it reflects all functionalities of a typical online shopping

application, considerably simple application so it is easy to configure, it is a public open source

application and it is made up with latest technologies such as ADF and Java Server Faces (JSF).

ADF Toy Store application has been implemented using Java with Model/View/Controller (MVC)

design pattern. It is implemented using two existing J2EE application frameworks: Apache Struts and

Oracle Application Development Framework (ADF). Struts has been used as controller, ADF has

been used to implement model. View layer has used standard Struts and JSTL tag libraries as well as

JSF to simplify building the web UI

4.3.1 Test Environment and Setup

ADF Toy Store application has been ported to Oracle JDeveloper 10.1.3.3 and run on embedded OC4J

application server with Java JRE 1.5.0_06. Application deployed on /ADFToyStore web context and

run on port 8988.ADF Toy Store uses Oracle database by default so Oracle 10g Express Database has

been installed and configured accordingly.

EYEKS has been installed as stand-alone server with Java JRE 1.5.0_06. For session management

database implementation has been chosen and so MySQL Server 5.0 has been installed and configured

accordingly.

ADF Toy Store can be deployed as a WAR or EAR file and from client of view, it has four

directories; faces holds jsp pages, images holds image files, templates holds template files and adf

holds java-script and configuration files need by JSF.

Two different Eyeks contexts have been defined and mapped as described in section 3.3.3.

StaticContext is the default context and mapped to mytoystore web context, faces directory is mapped

to /mytoystore/faces directory within ApplicationContext and templates directory is mapped to

ScriptContext. Corresponding mappings are shown below.

112

For StaticContext, HttpComponentsRedirectOperation was the only operation that has been added to

operation chain. Since this context only holds static context like images or templates, no other security

checks like token and content filtering, authorization, authentication or session management was

required.

ScriptContext can be under more security risks like cross-site scripting, session riding attacks so

before HttpComponentsRedirectOperation, PageCheckOperation has been added to operation chain

with closed world assumption. As mentioned in section 3.4. PageCheckOperation ask CSAAS for

permission on < [Directory Name], [Page Name]>. Since there is only one directory and three script

files in this context. adf has been added to CSAAS as a resource and necessary scripts and cascading

style sheets are added as operation as can be seen in table 15.

ApplicationContext’s operation chain has been more complicated since it needs authentication,

authorization and session management. Whole chain of operations for pre/post operations and

commands are given in the table below.

Table 15 Example Operation Chain

Pre Operations
ContextResolveOperation
HeaderCheckOperation

Login Command

PreAuthenticationCheckOperation
AuthenticationCheckOperation
UserLoginOperation
FetchWelcomePageOperation
HttpComponentsRedirectOperation
HeaderManagedTokenPutOperation

Page Request
Command

HeaderManagedTokenGetOperation
SessionCheckOperation
HttpComponentsRedirectOperation
HeaderManagedTokenPutOperation

Logout Command LogoutOperation
Post Operations HeaderReverseRedirectionOperation

/ADFToyStore � /mytoystore (StaticContext)
 /staticfiles (StaticContext)

/images � /images (StaticContext)
 /templates � /templates (ScriptContext)
 /adf � /scripts (StaticContext)
 /faces � /faces (ApplicationContext)

113

ADF Toy Store application consists of 17 JSP pages and these pages must be mapped to CSAAS in

order to be used for enterprise access control and application security. The best mapping strategy can

be fourth strategy which suggests context name as resource and each page name as possible operations

on that resource must be defined to CSAAS. On the other hand some other resource and operation

pairs, as well as, policy mappings must be defined as described in section 3.4. A full set of resources,

operations and attached policies will be given in table 16.

Table 16 Example Resource- Operation and Policy Mappings

Resource Operation Policy
Adf /styles/oracle-desktop-en-

gecko.css
/jslib/CommonFormat.js
/jslib/CoreFormat.js
/jslib/DataFormat.js
/jslib/DataFiels.js
/jslib/CharSets.js

LOGIN_REQUEST
StatusPolicy,
ReLoginPeriodPolicy
MultipleLoginPolicy

LOGIN
LoginPolicy
RBAC policy

PAGE_REQUEST
SECURITY_PARAM_REG_EX_POLICY
SECURITY_PARAM_REG_EX_POLICY
SECURITY_INJECTION_POLICY

ApplicationContext

accountcreated.jsp
accountupdated.jsp
confirmshoppinginfo.jsp
editaccount.jsp
help.jsp
home.jsp
index.jsp
register.jsp
search.jsp
showcategory.jsp
showproduct.jsp
showproductdetails.jsp
signin.jsp
thankyou.jsp
yourcart.jsp

114

4.3.2 Test Tools

CAL9000: All security testing activity is handled by CAL9000 tool [76]. CAL9000 is one of the

OWASP projects that are a collection of web application security testing tools that complements the

feature set of automated scanners. CAL9000 is written in Javascript and provides flexibility and

functionality for more effective manual testing efforts. It mainly targets XSS attacks which collects

XSS attack signatures from RSnake [77] and also provides character encoder/decoder, manually

crafting and sending HTTP requests to servers (GET, POST, HEAD, TRACE, TRACK, OPTIONS,

CONNECT, PUT, DELETE, COPY, LOCK, MKCOL, MOVE, PROPFIND, PROPPATCH,

SEARCH and UNLOCK methods supported), sending single requests or launch automated attacks

with more than one request at a time, viewing the status codes, response headers and body, isolating

the script, form and cookie information in the response, IP Encoder/Decoder and string generator.

Httprint: is another testing tool to test web server fingerprints. It relies on web server characteristics

to accurately identify web servers [78].

Wget: is used for web content crawling [79].

DirBuster: is a multi threaded java application designed to brute force directories and files names on

web/application servers [80].

NMap: Nmap ("Network Mapper") is a free and open source utility for network exploration or

security auditing. It is also useful for tasks such as network inventory, managing service upgrade

schedules, and monitoring host or service uptime [81].

WebScarab: WebScarab is a framework for analyzing web applications. It is written in Java,

WebScarab has several modes of operation, implemented by a number of plug-ins. Some usable

features are extracting Scripts and HTML comments from HTML pages, observing traffic between the

browser and the web server, allowing HTTP and HTTPS requests and responses modification on the

fly, revealing hidden fields, allowing editing and replay of previous requests, collecting and analyzing

session ID’s and performing automated substitution of parameters. In its most common usage,

WebScarab operates as an intercepting proxy, allowing the operator to review and modify requests

created by the browser before they are sent to the server, and to review and modify responses returned

from the server before they are received by the browser. WebScarab is able to intercept both HTTP

and HTTPS communication. The operator can also review the conversations (requests and responses)

that have been passed through WebScarab [82].

4.3.3 Test Results

The test sets are generated using OWASP testing guide, mentioned in section 3.7.

115

4.3.3.1 Information Gathering

Application Fingerprint: Httprint tool has been used to evaluate for application signature. However

it fails to reveal EYEKS application layer signature. The results are given below.

(EYEKS running on port 8070, backhand application server which is embedded OC4J running on

8988, a test apache server running on 8080)

Table 17 Application Fingerprint Test

Host Port Banner Reported Banner Reduced
Localhost 8080 Apache-Coyote/1.1 Apache-Tomcat/4.1.29
localhost 8988 Oracle Containers for J2EE TUX/2.0 (Linux)
localhost 8070 Unspecified Error…

So EYEKS (if deployed on stand-alone server) does not reveal backhand application fingerprints.

Application Discovery:

Web application discovery aims to identify web applications on a given infrastructure. The offered

test sets consist of trying different base URLs, ports and virtual hosts. Other than /mystore context

which is explicitly mapped, no other context can be accessed. Port scan is done using NMap tool, it

finds that three web servers are running on target computer however this is because all of the

applications (including EYEKS) are deployed on the same machine for testing purposes. Targeting

virtual hosts is related with DNS configuration, so no test can be done on this testing environment.

As a result, EYEKS hinders backhand web applications however port scanning and virtual host

tracking is related with deployment of the whole application so EYEKS can not handle improper

configuration and deployment.

Spidering and Googling: Spidering a web site means creating a map of the application with all points

of access to the application. For this purpose wget tool has been used with the option: wget –r –x –S

http://localhost:8070/mystore which searches though the targeted web site and downloads the

structure recursively. It fetched images through /mytoystore/staticfiles /images directory but failed on

/mystore/application and /mystore/templates directories. The only successful page that is downloaded

was /mystore/application/home.jsp which is a welcome page of the application, for the other page

links, it downloaded error.html page which indicates login was needed. Googling could not be tested.

116

Analysis of error code: The purposes of error code analysis is generating unexpected error problems

on web applications, then analyze the response error page to reveal web application technology like

the database or application server information. Various malformed HTTP requests have been

generated using CAL9000, but no sensible information could be fetched. However when backhand

web application inserted error codes within a successful HTTP response, EYEKS could not sense that

error code has been revealed. So it can be said that EYEKS is partially successful on this test set,

additional content filtering operation must be added to operation chain to hide sensible error codes

generated by backhand web applications.

SSL/TLS testing: EYEKS does not handle improper configuration of SSL/TSL, no countermeasure

to confront attacks about SSL/TLS has been implemented. So this test set has been skipped.

DB Listener testing: is out of scope and has been skipped.

File extension handling: EYEKS fails to obscure file extensions. By inspecting file extensions, it is

possible to infer underlying technologies. For example /mystore/application/home.jsp is a welcome

page and reveals that J2EE technology has been used for web application.

Old, backup and unrefered files: It depends on the context and mappings. This test set is handled

using DirBuster tool. Any files on StaticContext can be retrieved, however on ScriptContext and

ApplicationContext contexts, test files could not be retrieved. So with this test configuration, EYEKS

do not reveal sensitive information though unrefered files.

4.3.3.2 Business Logic Testing

Testing for business logic: OWASP states that if a web application is an e-commerce application,

most probable places of business logic errors are product ordering, checkout business scenarios so

additional business logic test has been done on yourcart.jsp and confirmshoppinginfo.jsp. Various

parameter manipulations have been tested using CAL9000 but no dangerous business errors can be

generated like ordering a product by mimicking another registered user

4.3.3.3 Authentication Testing

Default or Guessable Account: Guessable user accounts are application responsibility. So no testing

has been done.

Brute Force: EYEKS successfully locked user accounts after 3 unsuccessful login tries and opens a

locked account after 20 minutes so brute forcing user account would not be possible.

Bypassing authentication schema: Authentication schema can be bypassed by a direct page request,

parameter manipulation, session ID prediction and SQL injection. Direct page request has been tested

while spidering testing using wget. The results were satisfiable; none of the pages under

117

ApplicationContext which requires authentication could be fetched. For to analyze session ID

prediction, WebScarab tool has been used for capturing and analyzing EYEKSTOKEN values. 250

tokens has been captured and analyzed. The following snapshot has been taken from WebScarab and

shows the result. The EYEKSTOKEN seems to form a pattern so that it can be predictable; however

the range of edit distance values is infinity. In fact minimum edit distance has been found to be 3.56

E+37, so it is easy to say that Eyeks session ID’s can be impossible to predict. However if backhand

application has implemented unsafe handling of their own session ID, the system would still

vulnerably to session ID prediction. Bypassing authentication schema using SQL injection has been

inspecting using WebScrab. WebScrab founds that signing.jsp can be vulnerably to possible injection

but this is a false alarm because although it is possible to inject SQL statements in parameter values at

client side, EYEKS will refuse this kind of attacks and response a proper error message. Further

testing using WebScrab and CAL9000 show that authentication mechanism is safe from SQL

injection attacks.

Figure 34 Cookie Distribution over Time

118

Directory traversal/file include: Some part of this test set has been executed during spidering test

successfully. For testing these kinds of attacks in detail, a test set has been prepared including

directory traversal though different encoding techniques like hexadecimal encoding (%XX), Unicode

encoding (%uUUUU), named encoding (<) and with double encodings like URL over Hex, Unicode

over Hex. The results were successful; EYEKS would not allow directory traversal even if different

kinds of encodings have been used. The tested web application does not contain file operations, so file

inclusion through input vector enumeration could not be tested.

Logout and Browser Cache Management Testing: Logout operation testing consists of testing

logout function if session remains after logout and after logout can any cached pages be accessible or

not. Testing logout functionality is handled by backing the previous pages and trying to continue

operation, checking if session token (EYEKSTOKEN) expires and checking response pages headers

whether Cache Control: no-cache header is included. Test results show that although session token

remains valid, no further operations are allowed after logout and every page under ApplicationContext

contains no-cache header.

4.3.3.4 Session Management Testing

Session Management Schema: This test set contains analyzing methods to identify session

management technique of the web application. Response headers, cookies and content have been

checked to identify the mechanism. WebScarab has been used for this purpose and it has been

founded that the application uses cookie based session management named EYEKSTOKEN.

Session Token Manipulation: In this test set, session ID’s of application were tested against

predictability and randomness. As described previously, the session ID’s has been analyzed using

WebScarab and found to be secure from any types of brute force and reverse engineering attacks.

Minimum edit distance is found to be 3.56 E+37 and session ID contains 457 characters with in

character set [a-z] U [A-Z] U {%}.

Exposed Session Variables: Session variables can easily be exposed, since it does not transfer

session variables or cookies using SSL. However session tokens can not be reused every new request

invalidate previous token.

Session Riding: Session riding is very hard to test since it needs a number of different attack vectors

to be executed, however form based authentication with carrying session token within the content

removes risk of session riding. Current configuration of test web application uses cookie based session

management however can be configured to use content based session management to remove the risk.

HTTP Exploit and Injection Attacks: (Cross site scripting, XST, SQL, stored procedure, ORM,

LDAP, XML, SSI, XPath, IMAP/SMTP, Code, Command injection) HTTP exploit and injection

attacks have been tested automatically using WebScarab and manually using CAL9000. WebScarab

119

reports that 12 operations with 4 different pages can possibly be vulnerably to injection attacks as can

be seen in following snapshot.

Figure 35 WebScarab Testing Report

The test results of web application without EYEKS are shown in figure 36. Without installing

EYEKS, test web application is found to be vulnerable to XSS attacks and possibly more kinds of

injection attacks.

120

Figure 36 Reported Vulnerabilities without EYEKS

However, after installing EYEKS as an application security layer, No XSS attacks have been reported.

On the other hand, EYEKS fails against Carriage Return/Line Feed type of attack that can be result in

HTTP Exploits such as HTTP Response Splitting.

Figure 37 Reported Vulnerabilities with EYEKS

In fact, further investigations about XSS attacks show that EYEKS is still vulnerable to XSS attacks if

an attack also includes character encoding attacks. Some examples of the injection are;

Unicoded XSS attack: <DIV STYLE="background-
image:\0075\0072\006C\0028'\006a\0061\0076\0061\0073\0063\0072\0069\0070\0074\003a\006
1\006c\0065\0072\0074\0028.1027\0058.1053\0053\0027\0029'\0029">
Hex Encoding: <IMG
SRC=javascript:a
Cert('XSS')>
Broken up javascript: @im\port'\ja\vasc\ript:alert("XSS")';

121

Test results show that EYEKS is still safe from SQL, LDAP and code injection. EYEKS rejects these

kinds of attacks with proper error messages.

 Denial of service testing, web services testing and AJAX testing was not executed since denial of

service testing depends on backhand web application and EYEKS does not support web service,

AJAX security. A summary of web application security test results is given in table 18.

Table 18 OWASP Testing Results

Category

Test Name Result

Application Fingerprint Successful
Application Discovery Successful
Spidering and googling Successful

Analysis of error code
Partially successful, could no filter
backhand application errors.

SSL/TLS Testing Not responsible
DB Listener Testing Not responsible
File extensions handling Fails

Information
Gathering

Old, backup and unrefered files Successful

Business logic
testing

Testing for business logic
No errors were found, but improper
configuration could result
vulnerabilities.

Default or guessable account Not responsible
Brute Force Successful
Bypassing authentication schema Successful
Directory traversal/file include Successful
Vulnerable remember password and
pwd reset

Not responsible

Authentication
Testing

Logout and Browser Cache
Management Testing

Successful

Session Management Schema Successful
Session Token Manipulation Successful

Exposed Session Variables
Fails however does not cause security
risk.

Session Riding
Successful if content managed
session tokens have been used.

HTTP Exploit Fails because of CRLF vulnerability

Cross site scripting
Fails if different kinds of encoding
have been used.

HTTP Methods and XST Successful
SQL Injection Successful
Stored procedure injection Not tested
ORM Injection Successful
LDAP Injection Successful
XML Injection Not tested
SSI Injection Successful

Session
Management

XPath Injection Not tested

122

Table 18 (continued)
IMAP/SMTP Injection Not tested
Code Injection Successful
OS Commanding Successful
Buffer overflow Not tested
Incubated vulnerability

Writing User Provided Data to Disk Successful
Failure to Release Resources Not responsible
Storing too Much Data in Session Not responsible
XML Structural Testing Not responsible
XML content-level Testing Not responsible
HTTP GET parameters/REST Testing Not responsible

Denial of
Service Testing

XML Structural Testing Not responsible
XML content-level Testing Not supported
HTTP GET parameters/REST Testing Not supported
Naughty SOAP attachments Not supported

Web Services
Testing

Replay Testing Not supported
AJAX Testing Testing AJAX Not supported

0

123

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, a fully implemented solution EYEKS that secures web application is presented. Adding

a new layer to web application that deals with all security aspects makes application developers free

from thinking about security issues of the application, and also leads to more functional, structured

and scalable system.

The most important access control problem of enterprise applications is encapsulating domain specific

factors in access decisions. Middleware infrastructures are incapably of providing enough abstraction

to evaluate enterprise-level security policies. Enterprise application developers tackle this problem by

embedding access control rules within an application code that handles domain-specific factors.

However enterprise access control rules aims to implement enterprise security policies that are mostly

stated by legislations, regulations or company's business processes so that they are subject to

frequently changes and modifications. It is very hard to tackle these frequent modifications with

embedding access control rules into application code since every change requires a new software

cycle of deployment and testing processes. As a result, it reduces reusability and manageability of

whole system. EYEKS handles this problem by introducing transparent access control evaluation

using RAD service. RAD specification has been shown to be one of the best authorization

mechanisms to encapsulate domain specific factors in access control. Enterprise web applications can

be mapped to RAD domain by defining resources and operations of the system and any access to

those secured resources can be controlled by defining enterprise-level security policies to RAD that

are deduced from complex access control rules of the application. This enables access control logic of

the application to be managed outside of the application and directly by RAD implementation.

Security officer, who is ideally non-developer person, can manage access control policies and verify

that they satisfy security requirements of the system without bothering with application code. EYEKS

reflects access control changes simultaneously without requiring redeployment of the applications that

improves manageability and reusability of the system significantly.

EYEKS not only verifies and enforces “enterprise-level security (access) policies” but also can

provide a common evaluation and enforcement environment for application level policies. The

mapping from web application structure to RAD domain also provides a well structured and efficient

positive security model by naming all allowed resources and operations of the system. This is the

main contribution and aspect of this thesis. Although using positive security model is an essential to

secure web application and prevents most of the dangerous types of attacks, a negative security model

that targets specific attack types may also be needed. EYEKS also allows attack signatures to be

defined as security policies that can be added to the system to build a negative security model.

124

EYEKS has been designed as reverse proxy that works inline mode, installed in front of the web

applications and introduces a specific layer, so called application security layer to control the traffic

and enforce security policies to be satisfied. The layered operations structure enables full control over

request-response chain of HTTP protocol where any kind of verifications and manipulations can be

done by adding suitable operations to operation chain. All aspects of web application security like

session management, authentication, authorization and content checking have been implemented as

atomic operations and can be added according to web applications security needs. Although EYEKS

is a self-sufficient tool that can be used with any kind of web applications, still can be extended by

implementing new operations. EYEKS operations has simple interface that must be implemented to

adapt currently unsupported operations.

EYEKS has been used for two e-government projects in Turkey and Azerbaijan since October 2004.

The experience with these real life systems has shown that EYEKS offers great benefits to enterprise

web applications. First of all, the powerful authorization and authentication mechanism has been freed

developers from considering access control issues. Separating enterprise-level policies from

application code gives flexibility to developers since access and security requirement changes no

longer effects whole application code but only a revision is needed for access policies. On the other

hand this approach leads us to continued security where access control and security requirements are

handled independently during analysis, design and implementation phases and updated within each

phases, besides it also simplify overall analysis, design and implementation efforts. The performance

results are also very promising. Although the overall traffic is concentrated in the third week of the

months where it takes nearly 70-80% of monthly traffic, the average peek CPU usage has not been

over 27 % where backend servers (8 servers) usage is 92 % on even peek days. The artificial stress

tests are also strengthen these results; although after number of 250 concurrent users, the backhand

applications’ response time becomes increasing exponentially and the payload of EYEKS is still

stable and have an average of 8%. However the performance related test sets are generated by only

considering the number of user as parameter, the tests can be extended to cover the results of

increasing the number of policies. The caching mechanism of CSAAS tries to target performance

drawback for increasing number of users and policies. Although the expected result is that EYEKS

will response steadily, more test can be done to inspect system performance for increasing number of

policies as a future work.

Another test set targets EYEKS defense to web application attacks, OWASP web application testing

guide has been used as a guideline and various security tests has been performed. For this purpose, a

public available, open source web application has been chosen and EYEKS was installed in front of it

as an application security layer. Positive security model has been constructed by mapping the

application to RAD domain and a basic negative security model has been implemented by policies.

The testing results shows that EYEKS very well confronts information gathering and session stealing

types of attacks. However there are also security breaches with some type of injection attacks that

125

shows that injection detection policy is not strength enough to detect all kind of injections. This is not

a surprising result since injection detection policy has been using a set of black list (holding injection

attack signatures) and attacker can bypass black list check by hiding attack with different type’s

encodings.

EYEKS introduces some improvements as well as some limitations over related works. As access

control mechanism, it can compete with other policy based access control mechanisms. Its

expressional power to encapsulate domain specific factors is not behind its competitors. As web

application firewall, EYEKS can not be regarded as a full product. It can gain web application firewall

characteristics by adding strong attack detection policies. Although can be extended, current detection

policies of EYEKS are surpassed by broad range of attack signatures supplied by on-market web

application firewalls. The other limitation is EYEKS can only run as reverse proxy mode, but other

products can also run on bridge and router modes. Although reverse proxy has some advantages like

information hiding and give full power to manipulate the traffic, it lacks of performance while

handling dual sessions of both party. One of the important advantages of EYEKS over web

application firewall products is secure handling of user authentication and session management. Web

application firewalls do not interfere authentication and session management mechanisms of backhand

applications. If they have security flaws with these mechanisms, they would be still vulnerably to

these kinds of attacks even if they are behind web application firewalls. On the other hand, EYEKS

can mandate web application’s authentication and session management mechanisms by using strong

authentication and session handling methods

The real strength of EYEKS comes out when we consider both aspects together. A centralized view of

security aspects enables web application to be more manageable. It also improves the traceability of

the system, the security and access control requirements can be directly mapped to enterprise-level

and application level security policies and traced through EYEKS. Business depended enterprise-

level security policies and protection mechanisms (application-level security policies) can be added

together to form a full security policy chain that can be managed on RAD specification. RAD

implementations offer high available, fine-grain, extensible and dynamic access control mechanism

which suits well for web application authorization needs. As a result, adding an application security

layer that controls organization-wide security policies, could give great benefits such as reusability,

manageability, scalability to all kind of web application

5.1 Future Work

EYEKS must be regarded as a security framework rather than a full product. The core of EYEKS only

provides a common evaluation and enforcement environment for both enterprise-level and application

level policies, so its strength depends directly on policies that are defined. From this point of view, for

the most efficient usage, the design and implementation of backhand enterprise applications must be

126

considered according to EYEKS so that EYEKS will lead the process of continued security. Although

EYEKS succeeds to fulfill its claims, there are still some points that can be improved.

First of all, defining resource and operations requires manual process and can be quite cumbersome.

Most of the web application firewalls have automated process to construct positive security model.

EYEKS can be extended to reveal resources, operations and also security attributes (parameters)

automatically. This can be achieved by integrated web crawler or by learning process that tracks

normal execution of enterprise web applications.

Client-side security can also be improved using EYEKS; form and parameter sealing, validation of

Javascripts and support for XML based technologies like AJAX can be added to the system as a future

work. Although EYEKS can be deployed on multiple instances, the load-balancing and fault tolerance

features does not supported and must be accomplished though load-balancing switches so one of the

feature work can be adding load-balancing and fault-tolerance features to EYEKS.

The other improvement can be done on RAD specification rather than EYEKS. RAD limits resources

to a flat structure; however a hierarchical view of resource will improve the manageability of policies

significantly. This will also improve EYEKS manageability.

EYEKS has lack of SSL support with is in fact essential for any web security products. Supporting

SSL and digital signatures for authentication and authorization is another planned future work

127

REFERENCES

[1] NSF, “Information Technology Research Program Requirements,” National Science Foundation,
1999.

[2] Blakley B., “CORBA Security: an Introduction to Safe Computing with Objects”, First ed.
Reading: Addison-Wesley, 1999.

[3] Microsoft, “DCOM Architecture”, Microsoft, 1998.

[4] Sun, Enterprise, “JavaBeans Specification Documentation 3.0 Final Release”, 2006.

[5] Beznosov K., “Object Security Attributes: Enabling Application-Specific Access Control in
Middleware”. In DOA'02, pages 693-710, London, UK, October 2002.

[6] Göğebakan Y., “Cok Katmanlı Internet Uygulamalarında Yetkilendirme Problemi”, Akademik
Bili şim Konferansı 2005.

[7] Metin M.Ö., Şener C., Göğebakan Y., “Creating Application Security Layer Based on Resource
Access Decision Service”, International Conference on Security of Information and Networks, SIN
2007

[8] SANS Institute, “SANS Top-20 Internet Security Attack Targets”, http://www.sans.org/top20/,
(last accessed August 28 2007)

[9] Open Web Application Security Project (OWASP), “The OWASP Testing Guide version 2”,
http://www.owasp.org/index.php/OWASP_Testing_Project, (last accessed August 28 2007)

[10] Shin S., “Web Application Security Threats and Counter Measures”, http://www.javapassion.com
/j2ee/WebSecurityThreats.pdf, (last accessed August 28 2007)

[11] Common Vulnerabilities and Explosures (CVE), “All Exposures List”, http://cve.mitre.org/cve/,
(last accessed August 28 2007)

[12] Privacy Rights ClearingHouse, “A Chronology of Data Breaches”, http://www.privacyrights.org
/ar/ChronDataBreaches.htm, (last accessed August 28 2007)

[13] Icove D., Seger K. And VonStorch W., “Computer Crime: A Crimefighter's Handbook”, O'Reilly
& Associates, Inc., Sebastopol, CA, 1995.

[14] Cheswick W.R., Bellovin S.M., “Firewalls and Internet Security: Repelling the Wily Hacker”,
Addison-Wesley Publishing Company, Reading, MA, 1994.

[15] Lough D. L., “A Taxonomy of Computer Attacks with Applications to Wireless Networks”,

[16] Cohen F.B., “Protection and Security on the Information Superhighway”, John Wiley & Sons,
New York, 1995.

[17] Stallings W., “Network and Internetwork Security Principles and Practice”, Prentice Hall,
Englewood Cliffs, NJ, 1995.

128

[18] Web Application Security Consortium (WASC), “Threat Classification”, http://www.webappsec
.org/projects/threat/ , (last accessed August 28 2007).

[19] Open Web Application Security Project (OWASP), “The Ten Most Critical Web Application
Security Vulnerabilities”, http://www.owasp.org/index.php/Top_10_2004 , (last accessed August 28
2007)

[20] Open Web Application Security Project (OWASP), “The Ten Most Critical Web Application
Security Vulnerabilities”, http://www.owasp.org/index.php/Top_10_2007 , (last accessed August 28
2007)

[21] Krügel C., Vigna G., “Anomaly Detection of Web-. Based Attacks”, in Proc. 10th ACM
Conference on Computer and Communications Security.

[22] Zhang L., White G.B., “Analysis of Payload Based Application Level Network” Anomaly
Detection, 40th Annual Hawaii International Conference on System Sciences (HICSS'07).

[23] Web Application Security Consortium (WASC), “Web Security Glossary”,
http://www.webappsec.org/projects/glossary/ , (last accessed August 28 2007).

[24] Payment Card Industry (PCI), “Data Security Standard (DSS) version 1.1”,
https://www.pcisecuritystandards.org/tech/index.htm, (last accessed August 28 2007).

[25] OMG Security Specifications, “Resource Access Decision (RAD) Version 1.0”,
http://www.omg.org/technology/documents/formal/resource_access_decision.htm , (last accessed
August 28 2007).

[26] Ferraiolo D.F, Sandhu R., Gavrila S., Kuhn D.R., Chanramouli R., “Proposed NIST Standard for
Role-Based Access Control”, National Institute of Standards and Technology (NIST).

[27] Lucas J., Moeller B., “The Effective Incident Response Team”, Addison-Wesley Professional;
1st edition (September 26, 2003).

[28] RFC 3067, “Incident Object Description and Exchange Format Requirements”, The Trans-
European Research and Education Networking Association (TERENA).

[29] Howard J. D., Longstaff T.A., “A Common Language for Computer Security Incidents”, Sandia
National Laboratories (1998).

[30] Grance T., Kent K., Kim B., “Computer Security Incident Handling Guide”, NIST Publication
SP800-61.

[31] Van Wyk K.R., Forno R.. “Incident Response”, O’Reilly Press, ISBN # 0-59600-130-4.
[32] IEEE, “The IEEE Standard Dictionary of Electrical and Electronics Terms”, Sixth Edition,
Institute of Electrical and Electronics Engineers, Inc., New York, NY, 1996.

[33] Amoroso E.G., “Fundamentals of Computer Security Technology”, Prentice-Hall PTR, Upper
Saddle River, NJ, 1994.

[34] Krsul I., “Software Vulnerability Analysis”, PhD Thesis, Purdue University.

[35] Lindqvist U., Jonsson E., “How to Systematically Classify Computer Security Intrusions,”
Proceedings of the 1997 IEEE Symposium on Security and Privacy, IEEE Computer Society Press,
Los Alamitos, CA, May, 1997, pp. 154-163.

[36] Cohen F.B., “Protection and Security on the Information Superhighway”, John Wiley & Sons,
New York, 1995.

129

[37] Cohen F.B, “Information System Attacks: A Preliminary Classification Scheme,” Computers and
Security, Vol. 16, No. 1, 1997, pp. 29-46.

[38] Aslam T., “A Taxonomy of Security Faults in the UNIX Operating System,” Master of Science
Thesis, Purdue University (1995).

[39] Bishop M., Bailey D., “A Critical Analysis of Vulnerability Taxonomies”. Tech. Rep.
Department of Computer Science at the University of California, September 1996.

[40] Russell D., Gangemi G.T., “Computer Security Basics”, O'Reilly & Associates; 1 edition
(January 1991).

[41] Neumann P., Parker D., “A Summary of Computer Misuse Techniques” Proceedings of the 12th
National Computer Security Conference, 1989.
[42] Power R., “Current And Future Danger: A CSI Primer of Computer Crime & Information
Warfare”, CSI Bulletin.

[43] Beznosov K., “Engineering Access Control for Distributed Enterprise Applications”, PhD Thesis,
Florida International University, July, 2000.

[44] United States Department of Defense, Trusted Computer System Evaluation Criteria, DoD
Standard 5200.28-STD (1985).

[45] United States Department of Defense, Understanding Discretionary Access Control in Trusted
Systems.

[46] Boebert, W.E., and Ferguson, C.T., “A Partial Solution to the Discretionary Trojan Horse
Problem”, 9th Security Conference, DoD/NBS, September 1985, pp 141-144.

[47] Ferraiolo D., Kuhn D. R., “Role-based access control”, in 15th National Computer Security
Conference. NIST/NSA, 1992.

[48] Sandhu R., Coyne E. J. Feinstein H. L., and Youman C. E. “Role-based access control models”.
IEEE Computer, 29(2), February 1996.

[49] Ferraiolo D., Cugini J., and Kuhn D. R... “Role-based access control: Features and motivations”,
in Annual Computer Security Applications Conference. IEEE Computer Society Press, 1995.

[50] Ossher H., Tarr P., “Using multidimensional separation of concerns to (re)shape evolving
software”, ACM, 44(10):43-50, 2001.

[51] Verhanneman T., Piessens F., De Win B., Truyen E., Joosen W., “A Modular Access Control
Service for Supporting Application-Specific Policies”, IEEE Computer Society, June 2006 (vol. 7, no.
6), art. no. 0606-o6001 1541-4922.

[52] Open Web Application Security Project (OWASP), Home site, http://www.owasp.org/, (last
accessed August 28 2007)

[53] MITRE Corparation, Home site, http://www.mitre.org, (last accessed August 28 2007)

[54] Open Systems Interconnection (OSI), “Information Technology -- Open Systems Interconnection
-- Security frameworks in open systems -- Part 3: Access control”, ISO/IEC JTC1 10181-3, 1994.

[55] Microsoft, “Building Secure ASP.NET Applications: Authentication, Authorization, and Secure
Communication”, Microsoft Press, 2002. (at MS web site).

130

[56] Lai C., Gong L., Koved L., Nadalin A., and Schemers R., “User Authentication And
Authorization In The Java Platform”, in Proceedings of Annual Computer Security Applications
Conference, Phoenix, Arizona, USA, 1999, pp. 285-290.

[57] Beznosov K., “Access Control Mechanisms in Commercial Middleware”, Tutorial JavaPolis,
Antwerpen, Belgium, 16 December, 2004.

[58] Beznosov K., “Middleware and Web Services Security Mechanisms”, in lecture, Katholieke
Universiteit Leuven, Brussels, Belgium 2 March, 2005, pp.65.

[59] Jajodia S., Samarati P., Sapino M. L., and Subrahmanian V. S., “Flexible support for multiple
access control policies”, ACM Trans. Database Syst., 26(2):214–260, 2001.

[60] Ryutov T., Neuman C., “Access Control Framework for Distributed Applications”, IETF,
Internet Draft draft-ietf-cat-acc-cntrl-frmw-03, March 9 2000.

[61] Ryutov T., Neuman C., “Generic Authorization and Access control Application Program
Interface: C-bindings”, IETF, draft-ietf-cat-gaa-bind-03, March 9 2000.

[62] OASIS Core Specification, “eXtensible Access Control Markup Language (XACML) Version
2.0”.

[63] Damianou N., Dulay N., Lupu E., and Sloman M.. “The Ponder Policy Specification Language”,
LNCS, 1995:18-28,2001.

[64] Verhanneman T., Piessens F., De Win B., Truyen E., Joosen W., “Implementing a Modular
Access Control Service to Support Applications Specific Policies in CaesarJ”, 6th International
Middleware Conference November 28th 2005, Grenoble, France.

[65] BEA, “BEA Web Logic Enterprise Security version 4.2”, http://edocs.bea.com/wles/docs42
/index.html (last accessed August 28 2007).

[66] Oracle Access Manager, http://www.oracle.com/technology/products/id_mgmt/coreid_acc
/index.html, (last accessed August 28 2007).

[67] IBM WebSphere, http://www-306.ibm.com/software/websphere/, (last accessed August 28
2007).

[68] Entegrity AssureAccess Product, Home Site, http://www.entegrity.com/products/aa/aa.shtml,
(last accessed August 28 2007).

[69] Zhao C., Chen Y., Xu D., Heilili N., Lin Z., “Integrative Security Management for Web-Based
Enterprise Applications”, Department of Information Science, Peking University.

[70] Scott D., Sharp R., “Abstracting Application-Level Web Security”, The 11th International World
Wide Web Conference (WWW2002), May 2002.

[71] ModSecurity, “Open Source Web Application Firewall”, http://www.modsecurity.org/, (last
accessed August 28 2007).

[72] TrafficShield® Application Firewall, f5 Home Site, http://www.f5.com/products/TrafficShield/,
(last accessed August 28 2007).

[73] Imperva SecureSphere®, Imperva Home Site, http://www.imperva.com/products/securesphere/,
(last accessed August 28 2007).

131

[74] Beznosov K., Deng Y., Blakley B., Burt C. and Barkley J., “A Resource Access Decision Service
for CORBA-based Distributed Systems.”, in proceedings of the Annual Computer Security
Applications Conference, Phoenix, Arizona, U.S.A, December 6-10, 1999.

[75] Muench S., ADF Toystore Demo Application, Oracle, http://www.oracle.com/technology/
products/jdev/collateral/papers/10g/adftoystore.html, (last accessed August 28 2007).

[76] Open Web Application Security Project, “OWASP CAL9000 Project”, http://www.owasp.org
/index.php/Category:OWASP_CAL9000_Project, (last accessed August 28 2007).

[77] RSnake's Security Stuffs/Hacks, http://ha.ckers.org/, (last accessed August 28 2007).

[78] “Httprint web server fingerprinting tool version is build 301 (beta)”, http://net-square.com/htt
print/, (last accessed August 28 2007).

[79] GNU Wget, http://www.gnu.org/software/wget/, (last accessed August 28 2007).

[80] Open Web Application Security Project, “OWASP DirBuster Project”, http://www.owasp.org
/index.php/Category:OWASP_DirBuster_Project, (last accessed August 28 2007).

[81] Nmap, “Free Security Scanner for Network Exploration & Security Audits”, http://insecure.org/
nmap/, (last accessed August 28 2007).

[82] Open Web Application Security Project, OWASP WebScarab Project, http://www.owasp.org/
index.php/Category:OWASP_WebScarab_Project, (last accessed August 28 2007).

[83] Perry T., Wallich P., "Can Computer Crime Be Stopped?," IEEE Spectrum, Vol. 21, No. 5.

[84] Landwehr C.E., Bull A.R., McDermott J.P, and Choi W.S, "A Taxonomy of Computer Security
Flaws," ACM Computing Surveys, Vol. 26, No. 3, September, 1994, pp. 211-254.

[85] Preliminary List Of Vulnerability Examples for Researchers (PLOVER),
http://cve.mitre.org/docs/plover/plover.html, (last accessed August 28 2007).

132

APPENDIX A

LIST OF WEB APPLICATION SECURITY VULNERABILITIES:

1.1 Path Traversal Attacks:

This attack technique involves providing relative or absolute path information as a part of request

information. Such attacks try to access files that are normally not accessible by anyone and if this kind

of request has come, it must be denied. This attack threatens information disclosure of systems.

Although it does not directly threatens integrity of the system, the attacker can reveal sensitive data

such as password and configuration files and by using it, he can do more dangerous attacks to the

system. Path traversal attacks divided into two categories;

1.1.1 Relative Path Traversal:

This is a subcategory of path traversal attacks; the attacker constructs a path that contains relative

traversal sequences such as “...”. Examples are stated below.

• In the form of '../filedir' path traversal.

• In the form of '/../filedir' path traversal.

• In the form of '/directory/../filename' path traversal.

• In the form of 'directory/../../filename' path traversal. CAN-2002-0298

• In the form of '..\filename' path traversal CAN-2002-0661, CVE-2002-0946, CAN-2002-1042,

CAN-2002-1209, CVE-2002-1178

• In the form of '\..\filename’ path traversal. CAN-2002-1987, CAN-2005-2142

• In the form of '\directory\..\filename' path traversal. CVE-2002-1987

• In the form of 'directory\..\..\filename' path traversal. CVE-2002-0160

• In the form of '...' path traversal.

CVE-2001-0615 - "..." or "...." in chat server

CVE-2001-0963 - "..." in cd command in FTP server

CVE-2001-1193 - "..." in cd command in FTP server

133

CAN-2001-1131 - "..." in cd command in FTP server

CAN-2001-0480 - "..." in GET or CD command in FTP server

CAN-2002-0288 - "..." in web server

CAN-2002-0784 - HTTP server protects against ".." but allows "..."

CAN-2003-0313 - Directory listing of web server using "..."

CAN-2005-1658 - Triple dot

• In the form of '....'(Multiple dots) path traversal.

CVE-2000-0240 - read files via "/........../" in URL

CVE-2000-0773 - read files via "...." in web server

CAN-1999-1082 - read files via "......" in web server (doubled triple dot?)

CAN-2004-2121 - read files via "......" in web server (doubled triple dot?)

CAN-2001-0491 - multiple attacks using "..", "...", and "...." in different commands

CVE-2001-0615 - "..." or "...." in chat server

• In the form of '....//' path traversal.

• In the form of '.../...//' path traversal. CAN-2005-2169, CAN-2005-0202

1.2 Absolute Path Traversal

This is a subcategory of path traversal attacks; the attacker constructs an absolute path as input and

tries to access arbitrary file. Examples are;

• In the form of '/absolute/pathname/target' path traversal.

CAN-2002-1345 - Multiple FTP clients write arbitrary files via absolute paths in server responses

CAN-2001-1269 - ZIP file extractor allows full path

CAN-2002-1818 - Path traversal using absolute pathname

CAN-2002-1913 - Path traversal using absolute pathname

CAN-2005-2147 - Path traversal using absolute pathname

134

• In the form of ‘\absolute\pathname\here’ path traversal. CVE-1999-1263, CAN-2003-0753,

CAN-2002-1344, CAN-2002-1525, CAN-2000-0614

1.3 Path Equivalence Attacks

This attack technique involves adding special characters in file and directory names. These

manipulations are indented to generate multiple names and so multiple access points for the same

object. Just like path traversal attacks, path equivalence attacks also threaten disclosure of

information. If any application restricts directory access programmatically, these restrictions can be

bypassed by adding special characters in requested file or directory so application might fail to parse

requested URL and misinterpret the request. Path equivalence attacks can also used for bypassing

security restrictions depends on black list. Consider an example of an application that allows

uploading and a black list to eliminate malicious file formats such as symbolic links. An attacker can

bypass this black list check by adding trailing dots to extension of a file. So he can traverse to target

file or directory. When an attacker collects enough information about the application using path

traversal and path equivalence attacks then he could plan new attacks to break into the application. So

eliminating these kinds of attacks are extremely important for security. Examples are;

• In the form of 'filedir.' path equivalence.

CAN-2002-1114 - Source code disclosure using trailing dot.

CAN-2002-1986 - Source code disclosure using trailing dot.

CAN-2004-2213 - Source code disclosure using trailing dot.

CVE-2005-3293 - Source code disclosure using trailing dot.

CAN-2004-0061 - Bypass directory access restrictions using trailing dot in URL.

CAN-2000-1133 - Bypass directory access restrictions using trailing dot in URL.

CVE-2001-1386 – Bypass check for “.Ink” extension using “.Ink.”

• In the form of ‘filedir…’ (Multiple dots) path equivalence.

BUGTRAQ: 20040205 – Apache, Resin Reveals JSP Source Code.

CAN-2004-0281 - Multiple trailing dots allows directory listing.

• In the form of ‘file.ordir’ (Internal dot) path equivalence.

• In the form of ‘file…ordir’ (Multiple internal dot) path equivalence.

• In the form of 'filedir ' (Trailing space) path equivalence.

135

CAN-2001-0693 - Source disclosure via trailing encoded space "%20"

CAN-2001-0778 - Source disclosure via trailing encoded space "%20"

CAN-2001-1248 - Source disclosure via trailing encoded space "%20"

CAN-2004-0280 - Source disclosure via trailing encoded space "%20"

CAN-2004-2213 - Source disclosure via trailing encoded space "%20"

CAN-2005-0622 - Source disclosure via trailing encoded space "%20"

CAN-2005-1656 - Source disclosure via trailing encoded space "%20"

CAN-2002-1603 - Source disclosure via trailing encoded space "%20"

CVE-2001-0054 - Multi-Factor Vulnerability (MVF). Directory traversal and other issues in FTP

server using Web encodings such as "%20"; certain manipulations have unusual side effects.

CAN-2002-1451 - Trailing space ("+" in query string) leads to source code disclosure.

• In the form of ' filedir' (Leading space) path equivalence.

• In the form of ‘file (space) name’ (Internal space) path equivalence.

CAN-2000-0293 - Filenames with spaces allow arbitrary file deletion when the product does not

properly quote them; some overlap with path traversal.

CVE-2001-1567 - "+" characters in query string converted to spaces before sensitive file/extension

(internal space), leading to bypass of access restrictions to the file.

• In the form of ‘/./’ path equivalence. CVE-2000-0004, CAN-2002-0304, BID:6042, CAN-

2002-0112, CAN-1999-1083, CAN-2004-0815 - "/./////etc" cleansed to ".///etc" then "/etc

• In the form of ‘filedir*’ path equivalence.

CAN-2004-0696 - List directories using desired path and "*"

CAN-2002-0433 - List files in web server using "*.ext"

1.4 Path Manipulation Attack

136

Path Manipulation attack might occur in web application if an attacker can manipulate the request

parameter which specifies a path used in some operation on file system and by manipulating the

parameter, if web application run with enough privileges, an attacker would gain a capability to

change, or rewrite the specified resource. The example code snippet shows this kind of weakness.

In this code snippet, the developer assumes that it gets a parameter “fileName” specifying a valid file

and does some modification on this file according to business rule and did not consider whether this

parameter can be changed my malicious user or not. When an attacker finds this weakness, he could

send a malicious HTTP request with “fileName” with value “../../tomcat/conf/server.xml” and since

this code has not any checks about the parameter, application server configuration file can be

overwritten and web application would break down. Path manipulation attack’s likelihood is high to

very high according to CWE List and as shown in the example it would cause extremely severe

results.

1.5 Special Element Injection

This category deals with various problems that involve special elements such as reserved word and

special characters. The main problem area of this category is parsing errors that comes with using

special characters and reserved words with in request parameters. Most of these vulnerabilities are

because of poor coding practices. Although SQL injection and cross site scripting are also a kind of

special element injection, since they are technology specific, they will be described in their own

categories.

The attacker tries to break the code by inserting various special characters or reserved words in valid

request parameters. The most harmless impact is information leakage by breaking the execution for

example getting the error code or stack trace. After collecting the system information, the attacker

could try to bypass authentication and authorization or insert malicious code into the web application

considering the various methods that can be used for special element insertion attacks; CWE declares

the likehood of exploit of special element insertion attacks as high to very high and dangerousness of

impacts as high.

Some commonly used attacks techniques and reported attacks are listed as follows;

String fileName = request.getParameter(“fileName”);

File file = new File(“/usr/local/workingfiles/”+fileName);

…

FileOutputStream fileStream = new FileOutputStream(“file);

137

• By inserting ‘Parameter Delimiter’. The attacker inserts field separator into input parameter.

CAN-2003-0307 - attacker inserts field separator into input to specify admin privileges.

• By inserting ‘Value Delimiter’. The attacker inserts delimiters between values.

CAN-2000-0293 - multiple internal space, insufficient quoting - program does not use proper

delimiter between values

• By inserting ‘Record Delimiter’. The attacker inserts carriage returns and ‘|’ fields separator to

insert more and malicious records to the system.

CAN-2004-1982 - carriage returns in subject field allow adding new records to data file

CVE-2001-0527 - attacker inserts carriage returns and "|" field separator characters to add new

user/privileges.

• By inserting ‘Line Delimiter’. The attacker inserts line breaks to insert malicious input to the

system.

CVE-2002-0267 - linebreak in field of PHP script allows admin privileges when written to data file.

• By inserting ‘Section Delimiter’. One example of a section delimiter is the boundary string in a

multipart MIME message.

• By inserting ‘Input Terminator’. If an application parses input using special input delimiters, an

attacker could break down the code by inserting false input delimiters. CVE-2000-0319, CVE-2000-

0320 - MFV. mail server does not properly identify terminator string to signify end of message,

causing corruption, possibly in conjunction with off-by-one error.

CAN-2001-0996 - mail server does not quote end-of-input terminator if it appears in the middle of a

message.

CAN-2002-0001 - improperly terminated comment or phrase allows commands..

• By inserting ‘Input Leader’. If an application uses special input leader characters representing

start of the input, an attacker could break down the code by inserting false input leaders.

• By inserting ‘Quoting Element’. If an application allows quoting elements, an attacker could try

to break down the code by inserting duplicate quotes or missing leading/trailing quotes.

CAN-2003-1016 - MIE. MFV tool bypass AV/security with fields that should not be quoted, duplicate

quotes, missing leading/trailing quotes.

138

• By inserting ‘Escape, Meta or Control Sequence’ If an application uses special escape, meta or

control sequence characters, an attacker could break down the code, change execution by inserting

malicious characters or commands.

CVE-2002-0542 - mail program handles special "~" escape sequence even when not in interactive

mode.

CVE-2000-0703 - setuid program does not filter escape sequences before calling mail program.

CVE-2002-0986 - mail function does not filter control characters from arguments, allowing mail

message content to be modified.

CVE-2003-0020, CAN-2003-0083 - Terminal escape sequences not filtered from log files.

CVE-2003-0021, CVE-2003-0022, CVE-2003-0023, CVE-2003-0063, CAN-2000-0476 - terminal

escape sequences not filtered by terminals when displaying files.

CAN-2001-1556 - MFV. (multi-channel). Injection of control characters into log files that allow

information hiding when using raw Unix programs to read the files.

• By inserting ‘Comment Element’. The attacker could attack the application by inserting duplicate

comment elements or missing leading/trailing comment elements. Mostly used for cross site scripting.

CAN-2002-0001 - mail client command execution due to improperly terminated comment in address

list

CAN-2004-0162 - MIE. RFC822 comment fields may be processed as other fields by clients.

CAN-2004-1686 - well-placed comment bypasses security warning

CAN-2005-1909, CAN-2005-1969 - information hiding using a manipulation involving injection of

comment code into product.

• By inserting ‘Variable Name Delimiter’. The attacker could insert special characters such as ‘$’,

‘%’ to bypass the black list of available commands.

CAN-2005-0129 - "%" variable is expanded by wildcard function into disallowed commands.

CAN-2002-0770 - server trusts client to expand macros, allows macro characters to be expanded to

trigger resultant infoleak.

• By inserting ‘Wildcard or Matching Element’. The attacker could insert wildcard or matching

element, which could result in unexpected behaviors. Most used for SQL injection.

CAN-2002-0433, CAN-2002-1010 - bypass file restrictions using wildcard character

139

CVE-2001-0334 - wildcards generate long string on expansion

CAN-2004-1962 - SQL injection involving "/**/" sequences

• By inserting ‘White Space Elements’. The attacker could insert white space characters into the

input and these characters could overlap separator characters or delimiters.

CAN-2002-0637 - Virus protection bypass with RFC violations involving extra whitespace, or

missing whitespace.

CAN-2004-0942 - CPU consumption with MIME headers containing lines with many space

characters, probably due to algorithmic complexity (RESOURCE.AMP.ALG).

CAN-2003-1015 - Whitespace interpreted differently by mail clients.

• By inserting ‘Grouping Element / Paired Delimiter’. If an application does not properly handle

the characters that are used to mark the beginning and ending of a group of entities, such as

parentheses, brackets, and braces, the attacker can break down the code by inserting or deleting these

characters from input causing crashes and buffer overflows.

CAN-2004-0956 - crash via missing paired delimiter (open double-quote but no closing double-quote)

CVE-2000-1165 - crash via message without closing ">"

CVE-2005-2933 - buffer overflow via mailbox name with an opening double quote but missing a

closing double quote, causing a larger copy than expected

• By inserting ‘Null Character / Null Byte’. Inserting null characters can result in various

interpretation errors. The application could parse failing parsing the input.

CAN-2005-2008, CVE-2005-3293 - source code disclosure using trailing null

CAN-2005-2061 - trailing null allows file include

CAN-2002-1774 - null character in MIME header allows detection bypass

CVE-2004-0189 - decoding function in proxy allows regular expression bypass in ACLs via URLs

with null characters

CVE-2005-3153, CVE-2005-4155 - null byte bypasses PHP regexp check

1.6 Command Injection

Command Injection attacks are subset of injection attacks, in which the attacker manipulates the

request parameters to control the calling external processes. Dynamically generating operating system

140

commands that include user input as parameters can lead to command injection attacks. An attacker

can insert operating system commands or modifies the command that will be executed. CWE declares

the likehood of exploit of command injection attacks as high to very high and dangerousness of

impacts as very high. Following example shows how a command injection occurs;

String operationType = request.getParameter(“opttype”);

String cmdToExecute = new String (“bash /usr/local/somebatchjop.sh ” +opttype;

System.Runtime.getRuntime().exec(cmd);

In this example, the developer wants to get some command parameter from the request and tries to

execute some batch process. (For example, to do backup operation of an administrative web

application.) However an attacker can manipulate opttype parameter and adds “& rm -rf

/usr/local/JBoss”, and tries to delete the application server folder. Even Runtime.exec() command

executes only one command per call. Creating bash shell enables executing multiple commands. With

this vulnerably code, an attacker can execute whatever system commands, as he wants.

Command injection vulnerabilities occur when these three conditions are satisfied: 1. Input of the

application enters from an untrusted source. 2. The data is part of a string that is executed as a

command by the application. 3. By executing the command, the application gives an attacker a

privilege that the attacker would not otherwise have.

1.7 Argument Injection or Modification

Argument injection or modification vulnerability is not a vulnerability that is used for web application

attacks. This vulnerability is in fact affects standalone applications that has interaction with OS

commands and which takes arguments from the OS. The attacker tries to inject or modify the

arguments of application so that he can gain more privileges or execute malicious code. For example,

if an application is configured to take init file URL from the command line and read an init file to load

some dynamic link libraries, the attacker could able to execute malicious DLL’s by changing the init

file location to malicious file from altering command line arguments.

However, from web application view, there is a unique but serious security flaw in Java Web Start,

client-side deployment technology for java applications. Java Web Start handles java virtual machine

properties defined in JNLP files. A malicious user can modify these JNLP files and pass malicious

command line arguments to the Java virtual machine. They can be used to disable the Java "sandbox"

and compromise the system. The attack can be carried out when the victim user views a web page

crafted by the attacker.

141

A few system properties are considered "secure" and if defined in a JNLP file, they are passed to the

Java executable (javaw.exe) via the -Dproperty=value command line argument. However, a malicious

user can use this feature to inject extra command line arguments to the Java executable.

For instance, a JNLP file can contain this property tag:

<property name="sun.java2d.noddraw" value="true HELLO" />

The property "sun.java2d.noddraw" is considered secure by Web Start, so it is accepted and the

startup command for the application is something like this:

javaw.exe -Dsun.java2d.noddraw=true HELLO (other args) your.application

This would produce a Web Start error message saying the main class can't be found, as javaw.exe

interprets "HELLO" as the main class name instead of "your.application". The problem is that Web

Start fails to use quote symbols around the property argument.

To exploit the flaw, an attacker can pass command line arguments affecting the Java security policies.

Normally an unsigned, untrusted Java applet operates inside a "sandbox" and can't e.g. access local

files. By exploiting this flaw, the default "sandbox" security policy can be overridden with an arbitrary

policy file hosted on the attacker's web server. The new policy can grant full permissions to the

application, which could then e.g. read or write arbitrary files on the victim system, or download and

launch viruses, keyloggers or other malware. The attacker may set up a JNLP file on a web server so

that it will be launched without further user interaction when the victim visits the site, e.g. with the

IFRAME tag.

Although this attack is in fact web browser attack vector, the attacker could

replace an existing JNLP file on a web site with a malicious one. So that any web application can be

source of this vulnerability.

1.8 Resource Injection

This vulnerability enables an attacker to access or modify otherwise protected system resources.

Resource injection attacks resemble path manipulation attacks so that it covers path manipulation

attack, which is related to file system resources but also considers all kind of system resources such as

data sources, system ports.

An application is vulnerable to resource injection attacks when these two condition occurs; 1. An

attacker can specify the identifier used to access a system resource. For example, an attacker might be

able to specify part of the name of a file to be opened or a port number to be used. 2. By specifying

the resource, the attacker gains a capability that would not otherwise be permitted. CWE declares the

likehood of exploit of resource insertion attacks as high and dangerousness of impacts as very high.

142

1.9 Code Injection

Many of code injection attacks are under-studied, and terminology is not sufficiently precise

according to CWE. However CWE describes tree main categories under code injection vulnerability;

1.9.1 Direct Dynamic Code Evaluation:

If a web application uses an interpreter and allows inputs to be fed directly into a function (e.g. "eval")

that is dynamically evaluated and executed the input as code. Perl, Python and PHP technologies are

among these that use an interpreter so that they are vulnerably to this kind of attacks. Some attacks are

listed as follows;

CAN-2002-1750, CAN-2002-1751, CAN-2002-1752, CAN-2002-1753, CAN-2005-1527, CAN-

2005-2837 are examples of direct code injection into Perl ‘eval’ function.

CAN-2005-2498 and CAN-2005-1921 are examples of MFV. code injection into PHP ‘eval’

statement using nested constructs that should not be nested.

CAN-2001-1471 is example of MFV. invalid value prevents initialization of variables, which can be

modified by attacker and later injected into PHP ‘eval’ statement.

1.9.2 Direct Static Code Injection:

The product allows inputs to be fed directly into an output file that is later processed as code.

Different from XSS or HTML injection techniques which is executed on the client side, direct static

code injection vulnerability enables malicious codes to be executed at server side but this can be

resultant from XSS or HTML injection because the same special characters can be involved. One

example of direct static code injection is Server-Side Includes (SSI) injection.

SSI Injection (Server-side Include) is a server-side exploit technique that allows an attacker to send

code into a web application, which will later be executed locally by the web server. SSI Injection

exploits a web application's failure to sanitize user-supplied data before they are inserted into a server-

side interpreted HTML file. Before serving an HTML web page, a web server may parse and execute

Server-side Include statements before providing it to the user. In some cases (e.g. message boards,

guest books, or content management systems), a web application will insert user-supplied data into the

source of a web page. If an attacker submits a Server-side Include statement, he may have the ability

to execute arbitrary operating system commands, or include a restricted file's contents the next time

the page is served.

The following SSI tag can allow an attacker to get the root directory listing on a UNIX based system.

< !--#exec cmd="/bin/ls /" -- >

143

The following SSI tag can allow an attacker to obtain database connection strings, or other sensitive

data contained within a .NET configuration file.

<!--#INCLUDE VIRTUAL="/web.config"-->

Some direct static code injection attacks are listed as follows;

CVE-2002-0495 - Perl code directly injected into CGI library file from parameters to another CGI

program

CAN-2005-1876 - direct PHP code injection into supporting template file

CAN-2005-1894 - direct code injection into PHP script that can be accessed by attacker

CAN-2003-0395 - PHP code from User-Agent HTTP header directly inserted into log file

implemented as PHP script.

1.9.3 PHP File Inclusion Attack:

This vulnerability is specific to PHP technology, however since it is likehood of exploit is considered

as very high according to CVE, it is treated as an sub category of code injection attack techniques.

When a PHP product uses "require" or "include" statements, or equivalent statements, that use

attacker-controlled data to identify code or HTML to be directly processed by the PHP interpreter

before inclusion in the script this vulnerability could be occur. Some examples of this vulnerability

are;

CAN-2004-0285, CAN-2004-0030, CVE-2004-0068, CAN-2005-2157, CAN-2005-2162, CAN-2005-

2198, CVE-2004-0128 are examples of modification of assumed-immutable configuration variable in

include file allows file inclusion via direct request.

CAN-2005-1864, CAN-2005-1869, CAN-2005-1870, CAN-2005-2154, CAN-2002-1704, CAN-

2002-1707, CAN-2005-1964, CAN-2005-1681, CAN-2005-2086 are examples of PHP file inclusion.

CAN-2004-0127 and CAN-2005-1971 are examples of Directory traversal vulnerability in PHP

include statement.

CVE-2005-3335 is example of PHP file inclusion issue, both remote and local; local include uses ".."

and "%00" characters as a manipulation, but many remote file inclusion issues probably have this

vector.

1.10 LDAP Injection

Lightweight Directory Access Protocol (LDAP) is a widely used protocol for accessing information

directories. LDAP injection vulnerability enables an attacker to reveal sensitive and secret information

144

from the system and generating authentication and authorization errors that result in more dangerous

situations. If a web application does not properly filter or quote special characters or reserved words

that are used in LDAP queries or responses and allows attackers to modify the syntax, contents, or

commands of the LDAP query before it is executed, LDAP injection could be occurred.

LDAP injection techniques have very similar like SQL injections. Although there can several LDAP

injection techniques, some example injection is stated as follows;

Consider a web application that has page called ldap-search.jsp that takes a parameter userid and

return back user information. Such a code can be vulnerably to these kinds of attacks.

• Insertion of special characters like $,@ can destroy query structure and reveals technical

information as error page. An attacker can gain type of LDAP implementation, line of query code.

(Example http://some.site/ldap-search.jsp?userid=((##$!!))

• Insertion of (|(cn=*) can reveal cn value of specified user. (Example http://some.site/ldap-

search?userid=someuser(|(cn=*))

• Insertion of (|(objectclass=*) can reveal list of available object classes. (Example

http://some.site/ldap-search?userid=someuser(|(objectclass=*))

• Insertion of (|(homedirectory=*) can reveal home directory of specified user. (Example

http://some.site/ldap-search?userid=someuser(|(homedirectory=*))

• Insertion of (*) can reveal home directory of specified user. (Example http://some.site/ldap-

search?userid=someuser=*)

Main purpose of most of the LDAP injection attacks is revealing sensitive information. However

LDAP injection can be solely used to bypassing authentication and authorization of web application

and result in more dangerous consequences. CWE states that besides there are a few reported LDAP

injection attacks, this vulnerability is found very frequently by third party codes.

1.11 SQL Injection

SQL injection attacks are one of the most dangerous instantiation of injection attacks. In this attack

technique malicious SQL commands are injected into request parameters in order to effect the

execution of predefined SQL commands. SQL injection attacks threats most of the subjects computer

security.

Confidentiality: Most common consequence of SQL injection attacks is loss of confidentiality. Since

SQL databases hold sensitive data, unauthorized access to these data could generate more dangerous

consequences.

145

Authentication: Most of the applications use SQL databases for storing authentication data. If a SQL

injection occurs in authentication part of the system, all authentication mechanism can be bypassed by

the attacker.

Authorization: Authorization modules that use SQL database are another critical part of the web

application. If they are vulnerably to SQL injection attacks, it would be possible to change

authorization information and a security breach can be opened for an application.

Integrity: By SQL injection, it is also possible to make changes or deletions that threats integrity of

whole database.

There are various SQL insertion techniques, however we can categories these techniques into five;

insertion using multiple SQL statements, authorization bypass, using SELECT command, using

INSERT command, using stored procedures.

Insertion using multiple SQL statements: Although not all database servers is vulnerably to

insertion using multiple SQL statements, some important ones such as Microsoft® SQL Server 2000

allows multiple SQL statements separated by semicolons to be executed at once, as a result becomes

vulnerably. This type of attack allows the attacker to execute arbitrary commands against the database.

A typical example of this attack is shown below;

String userId=Request.getParameter(“userid”);

String itemNo=Request.getParameter(“itemno”);

String sqlQuery = “SELECT * FROM items WHERE owner= ‘ “+userId+” ’ AND itemno=

”+itemNo;

Statement.executeQuery(sqlQuery);

Assume that the regular execution of this code from a web application is

http://somesite.com/searchitems.jsp?userid=someuser&itemno=5 which selects someuser’s items with

item no 5. However if an attacker generates this request as http://somesite.com/seachitems.jsp

?userid=someuser&itemno=5;DELETE FROM items;-- Then the query to be executed becomes

SELECT * FROM items WHERE owner=’someuser’ AND itemno=5; DELETE FROM items; now

there are two distinct sql statement to executed by database server sequentially, which result in

deleting all items from database.

Authorization bypass: The simplest SQL injection technique type is bypassing logon form. The code

in the following example shows vulnerably code.

String sqlQuery = "SELECT username FROM users WHERE username = ‘" & strUsername & "‘

AND password = ‘" & strPassword & "‘"

146

Statement.executeQuery(sqlQuery);

// if statement has return some rows

If rowCount >0 boolAuthenticated = False;

else

boolAuthenticated = True;

A valid request for this code is http://somesite.com/logon.jsp?userid=someuser&password=

somepassword. However if an attacker supplies userid field with ‘ OR 1=1 and password field with ‘

OR 1=1 then this will give sqlQuery the following values;

SELECT username FROM users WHERE username= ‘’ OR 1=1 AND password=’’ OR 1=1

This is a valid SQL statement and returns all usernames from users table and the code only checks that

if that user exists, this request would bypass this authentication check. If an attacker knows a valid

username, he can supply userid field with that user and password field with ‘OR 1=1 so that he can

login to the system as that user without knowing his password, so that an attacker now has all

privileges to do any operation of a valid user.

Using SELECT command: The most dangerous injections that threaten confidentiality of the web

application are result from select command attacks. There are various techniques that depend on the

coding structure of web application; however underlying attack manner is the same for all kinds of

attacks. Firstly an attacker tries to reveal the SQL query structure of the web page. This can be done

trying lots of quotes, parenthesis, WHERE, OR statement combinations. For example if the related

SQL query is as follows;

SQLString = "SELECT FirstName, LastName, Title FROM Employees WHERE Employee = " &

intEmployeeID

The injection will be simple adding ‘OR 1=1 will enough to allow injection, however if the SQL

query is like this:

SQLString = "SELECT FirstName, LastName, Title FROM Employees WHERE EmployeeID = ‘" &

strCity & "‘"

The injection can be done by adding ‘ OR ‘1’=’1 to get rid of syntax errors. An attacker tries different

combination to determine the structure. When he receives a blank page, or a valid page, the injection

is successful. The next step of attack is inserting UNION statement to that query. For example if some

part of the web application uses the following code;

147

mySQL="SELECT LastName, FirstName, Title, Notes, Extension FROM Employees WHERE (City =

‘" & strCity & "‘)"

so when an attacker injects this value;

“‘) UNION SELECT OtherField FROM OtherTable WHERE (‘‘=‘”,

now the following query is send to server, which is a valid SQL query;

SELECT LastName, FirstName, Title, Notes, Extension FROM Employees WHERE (City = ‘‘)

UNION SELECT OtherField From OtherTable WHERE (‘‘=‘‘)

It is valid request and database server only complains about a bad table name, so the next step is

choosing a valid system table name for example for MS SQL server these are sysobjects syscolumns

or for Oracle SYS.USER_OBJECTS SYS.TAB SYS.USER_TABLES SYS.USER_VIEWS

SYS.ALL_TABLES SYS.USER_TAB_COLUMNS SYS.USER_CONSTRAINTS SYS.USER_

TRIGGERS SYS.USER_CATALOG. After that all an attacker must do is finding the exact column

number and type, he can do this by trying various injections like;

‘UNION ALL SELECT 9,9 FROM SysObjects WHERE ‘=‘

‘UNION ALL SELECT 9,9,9 FROM SysObjects WHERE ‘=‘

‘UNION ALL SELECT 9,9,9,9 FROM SysObjects WHERE ‘=‘

Now the injection is successfully done, and he can reveal all table names from SYS.USER_TABLES

and find corresponding columns from SYS.USER_TAB_COLUMNS so that he can query any table in

that web application.

Using the INSERT command: The insert command can also be used for revealing sensitive

information. Common uses of INSERT in web application are user registrations, bulleting boards,

adding items to shopping carts, etc. To take advantage of an INSERT vulnerability, an attacker must

be able to view the information that he has submitted. Consider an example user registration form

with following SQL string;

SQLString = "INSERT INTO userregistration VALUES (‘" & strUserName & "‘, ‘" & strUserMail &

"‘, ‘" & strUserPhone & "‘)"

If an attacker fill out the form like this;

Name: ‘ + (SELECT TOP 1 FieldName FROM TableName) + ‘

Email: blah@blah.com

Phone: 333-333-3333

148

Then the insert query becomes;

INSERT INTO userregistration VALUES (‘‘ + (SELECT TOP 1 AnyFieldName FROM

AnyTableName) + ‘‘, ‘blah@blah.com’, ‘333-333-3333’)

So that when the user list his registration information, he can now see his selection query (SELECT

TOP 1 AnyFieldName FROM AnyTableName) result in the name value so that he can reveal any

information from the web application.

Using stored procedures:

SQL injection can be used for accessing stored procedures and lead to more dangerous consequences.

All database servers have already built-in stored procedures which can be used for reporting,

management, monitoring activities and these procedures can be used using SQL injection depending

on the permissions of the web application’s database user. Two most dangerous stored procedures of

MS SQL server that can be used are xp_cmdshell and sp_makewebtask. xp_cmdshell takes a single

argument which is the command to be executed in SQL server’s user shell. Using xp_cmdshell, an

attacker can executed any command such as deletion of sensitive data or broken down the whole

database server. If an attacker makes a request to a JSP page which has SQL injection vulnerability as

shown below; he can delete entire disk.

http://somesite.com/search.jsp?userid=someuser’ ;EXEC master.dbo.xp_cmdshell ‘cmd.exe delete c:*

While xp_cmdshell threatens integrity, sp_makewebtask threatens confidentiality. sp_makewebtask

takes first argument as output file and second argument as SQL query to be executed. So if an attacker

manage to execute sp_makewebtask procedure, he can report any SQL query to a file which has

public access. Afterwards he can request previously created file as HTTP request. As an example

using query below, he can generate a web page that list all customer information.

http://somesite.com/seach.jsp?userid=someuser’;EXECmaster.dbo.sp_makewebtask‘\public\output.ht

ml; ‘SELECT * from Customers’

SQL injection attacks are one of the most common and most easy to generate security exploits of web

applications. Not only application that directly access database servers but also some commonly used

technologies for accessing database servers like Hibernate or HibersonicSQL are also vulnerable to

SQL injection attacks.

1.12 Cross Site Scripting (XSS) Attacks

Nowadays, all web application depends on dynamic page generation which requires user input to

change behavior of a web page. Without proper input validation, web applications are easy to

vulnerable from XSS attacks. A web application is vulnerable to XSS attacks when they allow

149

injection of malicious scripts as inputs of user and as a result of generating dynamic pages from this

infected input, these malicious scripts could be executed from client browsers and could affect all web

site clients. Although secure execution of JavaScript code is based on a sandboxing mechanism, which

allows the code to perform a restricted set of operations only and JavaScript programs downloaded

from different sites are protected from each other using a compartmentalizing mechanism, called the

same-origin policy, scripts may be confined by the sand-boxing mechanisms and conform to the

same-origin policy, but still violate the security of a system. This can be achieved when a user is lured

into downloading malicious JavaScript code (previously created by an attacker) from a trusted web

site.

Two main classes of XSS attacks exist: stored attacks and reflected attacks. In a stored XSS attack, the

malicious JavaScript code is permanently stored on the target server (e.g., in a database, in a message

forum, in a guestbook, etc.). In a reflected XSS attack, on the other hand, the injected code is

“reflected” off the web server such as in an error message or a search result that may include some or

all of the input sent to the server as part of the request. Reflected XSS attacks are delivered to the

victims via e-mail messages or links embedded on other web pages. When a user clicks on a malicious

link or submits a specially crafted form, the injected code travels to the vulnerable web application

and is reflected back to the victim’s browser. A typical reflected cross site scripting scenario is shown

in following figure.

Figure 38 XSS Attack

150

Some XSS attack techniques are;

Basic XSS: Basic XSS involves, web applications that involves lack of filtering of any special

characters, such as “<” “>” and “&”. This exploit is very common and it is the easiest technique of

XSS attack. Some observed example of basic XSS attacks are;

CVE-2002-0938 - XSS attack using a parameter in a link.

CAN-2002-1495 - XSS attack via attachment filenames in web-based email product.

CAN-2003-1136 - HTML injection in posted message.

CAN-2004-2171 - XSS attack result from not quoted in error page.

XSS in Error Pages: This Weakness occurs when a web developer displays input on an error page

(e.g. a customized 403 Forbidden page). If an attacker can influence a victim to view/request a web

page that causes an error, then the attack may be successful. Some observed examples are;

CVE-2002-0840 - XSS attack in default error page from Host: header.

CVE-2002-1053 - XSS attack in error message.

CAN-2002-1700 - XSS attack in error page from targeted parameter.

Script in IMG Tags: An attacker could attack web application in the form of HTML IMG tags.

Attackers can embed XSS exploits into the values for IMG attributes (e.g. SRC) that is streamed and

then executed in a victim's browser. Some observed examples are;

CAN-2002-1649, CAN-2002-1803, CAN-2002-1804, CAN-2002-1805, CAN-2002-1806, CAN-

2002-1807, CAN-2002-1808.

XSS Using Script in Attributes: XSS attacks can be inserted in a web page using dangerous

attributes within tags such as “onmouseover”, “onload”, “onerror”, or “style”. Some observed

examples are;

CAN-2001-0520 – XSS attack by bypassing filtering of SCRIPT tags using onload in BODY, href in

A, BUTTON, INPUT.

CVE-2002-1493 – XSS attack on guestbook in STYLE or IMG SRC attributes.

CAN-2002-1965 – XSS attack using Javascript in onerror attribute of IMG tag.

CAN-2002-1495 - XSS attack in web-based email product via onmouseover event.

CAN-2002-1681 - XSS attack via script in <P> tag.

151

CAN-2003-1136 - XSS attack using Javascript in onmouseover attribute.

CAN-2004-1935 - XSS attack using onload, onmouseover, and other events in an e-mail attachment.

CAN-2005-0945 - XSS attack using Onmouseover and onload events in img, link, and mail tags.

CAN-2003-1136 - XSS attack using Onmouseover attribute in e-mail address or URL.

XSS using script via encoded URI schemes: Although web application uses filtering of malicious

scripts, an attacker could cloak the script using URI encodings. Some observed examples are;

CAN-2005-0563 - Cross-site scripting (XSS) vulnerability in Microsoft Outlook Web Access (OWA)

component in Exchange Server 5.5 allows remote attackers to inject arbitrary web script or HTML via

an email message with an encoded javascript: URL ("javAsc
ript:") in an IMG tag.

CAN-2005-2276 - Cross-site scripting (XSS) vulnerability in Novell Groupwise WebAccess 6.5

before July 11, 2005 allows remote attackers to inject arbitrary web script or HTML via an e-mail

message with an encoded javascript URI (e.g. "jAvascript" in an IMG tag).

CAN-2005-0692 – XSS attack by bypassing the script filter using encoded script within BBcode IMG

tag.

CVE-2002-0117 - XSS attack by bypassing the script filter using Encoded "javascript" in IMG tag

CAN-2002-0118 - XSS attack by bypassing the script filter using Encoded "javascript" in IMG tag.

Doubled character XSS manipulations: An attacker could disguise injected script tag using

doubling of the “<<” character. It is a very basic kind of XSS attack, but some examples exist in CVE

database such as;

CAN-2002-2086 - XSS using "<script".

CAN-2001-1157 – XSS attack using extra "<" in front of SCRIPT tag.

Invalid characters in identifiers: Some whitespace characters such as CLRF, null can be discarded

by some web browsers so that insertion of these characters in malicious scripts could bypass script

filtering of web application but since some web browsers discard these characters, the injected script

would be executed correctly.

CAN-2004-0595 – On this attack XSS filter doesn't filter null characters before looking for dangerous

tags, which are ignored by web browsers.

152

Alternate XSS syntax: An attacker could try to bypass script filter by alternating XSS syntax, an if a

web application’s script filter could not detect insertion of alternate script syntax, then an attacker

could inject malicious script to success the attack. One example of successful XSS attack is CVE-

2002-0738 where the attacker inject the script in the form of &={script}.

1.13 XML Injection

XML injection is similar to SQL injection vulnerability. It occurs when web site uses user supplied

information to query XML data. By sending malformed information into the web site, an attacker can

find out how the XML data is structured or access data that they may not normally have access to just

like SQL injection. Although XML injection uses for loss of confidentially, it can be used for

bypassing authentication and authorization if these modules depends on XML data.

Querying XML is done with XPath, a type of simple descriptive statement that allows the xml query

to locate a piece of information. When using XML for a web site it is common to accept some form of

input on the query string to identify the content to locate and display on the page.

Although all of the insertion techniques that is described in SQL injection section can be also used, a

simple example can be given as a web application that authenticate users depends on XML document

that has xml snippet as given below;

<?xml version="1.0" encoding="utf-8"?>
<Employees>
 <Employee ID="1">
 <FirstName>First User Name </FirstName>
 <LastName>First User Last Name</LastName>
 <UserName>FirstUser</UserName>
 <Password>somepassword1</Password>
 <Role>Admin</Role>
 </Employee>
 <Employee ID="2">
 <FirstName> Second User Name </FirstName>
 <LastName> Second User Last Name </LastName>
 <UserName>SecondUser</UserName>
 <Password>somepassword2</Password>
 <Role>User</Role>
 </Employee>
</Employees>

Consider this web application has a login form that post username and password fields as request

parameters and web application tries to match this username, password data to match record of XML

document.

String username = Request.getParameter(“username”);

String password = Request.getParameter(“password”);

String findUserXPath = "//Employee[UserName/text()='" + username + "' And

153

 Password/text()='" + password + "']";

This works fine, if users enter valid username and password, then it would fetch corresponding record,

if not it would return nothing. But if a malicious user inject username field with someuser' or 1=1 or

'a'='a, then XPath query becomes //Employee[UserName/text()='someuser' or 1=1 or 'a'='a' And

Password/text()=''] and this is logically equivalent to //Employee[(UserName/text()='someuser' or

1=1) or ('a'='a' And Password/text()='')]. In this case, only the first part of the XPath needs to be true.

The password part becomes irrelevant, and the UserName part will match ALL employees because of

the "1=1" part. So it will allow an attacker to login as any user in the system without supplying a valid

password.

Although there are very few publicly reported examples in CVE database, XML injection

vulnerability is as serious and dangerous vulnerability as SQL injection that threatens mostly

confidentiality of web applications.

1.14 Missing XML Validation

XML validation is an important concept for web application. Since nearly all web application requires

XML form of data for processing or integrating without proper validation web application becomes

vulnerably to be affected by code or data injection. To be vulnerably a web application is not

necessary to accept XML as a user supplied input, most of the times XML form of data is dynamically

generated and passes to other parts of the web application to be directly parsed and executed. So if a

web application uses XML form of data, it might be vulnerably to malicious code injection even if it

does not expect XML input from user.

So all XML data must be validated by DTD or XML schema, by accepting an XML document without

validating it against a DTD or XML schema, it is possible to provide unexpected, unreasonable, or

malicious input.

1.15 HTTP Response Splitting

HTTP response splitting is one of the most dangerous attacks that lead to many different type of

application attacks and if not properly handled threaten nearly all concepts of computer security. By

HTPP response splitting, an attacker made application server to generate two or more HTTP response

for one valid user request and one or more of these responses are malicious and gives an attacker to

full control the response as if it is a valid response that comes from a legimate site.

If an application allows writing unvalidated data into an HTTP header, this would be result for an

attacker to specify the entirety of the HTTP response rendered by the browser. HTTP response

splitting vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently an HTTP request.

154

2. The data is included in an HTTP response header sent to a web user without being validated for

malicious characters. For example the application must allow input that contains CR (carriage return,

also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header.

As a result of injecting these characters in the header of a valid response it will not only give attackers

control of the remaining headers and body of the response the application intends to send, but also

allows them to create additional responses entirely under their control.

A typical HTTP response splitting example can be as follows; consider a web application that receives

an input from the request and tries to set it to a cookie header of an HTPP response.

String userSelection = request.getParameter(“selectedvalue”);

...

Cookie cookie = new Cookie(“selection”, userSelection);

cookie.setMaxAge(cookieExpiration);

response.addCookie(cookie);

Here, the developer assumes that “selectedvalue” is under his control and it will consist of standard

alpha-numeric characters, such as "BlueTheme" (assume that this user selection represents a site

theme selection), is submitted in the request the HTTP response including this cookie might take the

following form:

HTTP/1.1 200 OK ... Set-Cookie: selectedvalue=BlueTheme ...

If an attacker submits a malicious string, such as "BlueTheme\r\nHTTP/1.1 200 OK\r\n...", then the

HTTP response would be split into two responses of the following form:

HTTP/1.1 200 OK ... Set-Cookie: author= selectedvalue=BlueTheme

HTTP/1.1 200 OK ... –Malicious Response-

The second response is completely controlled by the attacker and can be constructed with any header

and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a

variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning,

cross-site scripting and page hijacking.

Cross-User Defacement: An attacker can make a single request to a vulnerable server that will cause

the sever to create two responses, the second of which may be misinterpreted as a response to a

different request, possibly one made by another user sharing the same TCP connection with the server.

This can be accomplished by convincing the user to submit the malicious request themselves, or

155

remotely in situations where the attacker and the user share a common TCP connection to the server,

such as a shared proxy server. In the best case, an attacker can leverage this ability to convince users

that the application has been hacked, causing users to lose confidence in the security of the

application. In the worst case, an attacker may provide specially crafted content designed to mimic the

behavior of the application but redirect private information, such as account numbers and passwords,

back to the attacker.

Cache Poisoning: The impact of a maliciously constructed response can be magnified if it is cached

either by a web cache used by multiple users or even the browser cache of a single user. If a response

is cached in a shared web cache, such as those commonly found in proxy servers, then all users of that

cache will continue receive the malicious content until the cache entry is purged. Similarly, if the

response is cached in the browser of an individual user, then that user will continue to receive the

malicious content until the cache entry is purged, although the user of the local browser instance will

be affected.

Cross-Site Scripting: Once attackers have control of the responses sent by an application, they have a

choice of a variety of malicious content to provide users. Cross-site scripting is common form of

attack where malicious JavaScript or other code included in a response is executed in the user's

browser. The variety of attacks based on XSS is almost limitless, but they commonly include

transmitting private data like cookies or other session information to the attacker, redirecting the

victim to web content controlled by the attacker, or performing other malicious operations on the

user's machine under the guise of the vulnerable site. The most common and dangerous attack vector

against users of a vulnerable application uses JavaScript to transmit session and authentication

information back to the attacker who can then take complete control of the victim's account.

Page Hijacking: In addition to using a vulnerable application to send malicious content to a user, the

same root vulnerability can also be leveraged to redirect sensitive content generated by the server and

intended for the user to the attacker instead. By submitting a request that results in two responses, the

intended response from the server and the response generated by the attacker, an attacker can cause an

intermediate node, such as a shared proxy server, to misdirect a response generated by the server for

the user to the attacker. Because the request made by the attacker generates two responses, the first is

interpreted as a response to the attacker's request, while the second remains in limbo. When the user

makes a legitimate request through the same TCP connection, the attacker's request is already waiting

and is interpreted as a response to the victim's request. The attacker then sends a second request to the

server, to which the proxy server responds with the server generated request intended for the victim,

thereby compromising any sensitive information in the headers or body of the response intended for

the victim.

156

1.16 Process Control

Process control vulnerabilities take two forms;

1. An attacker can change the command that the program executes: the attacker explicitly controls

what the command is. If data enters the application from an untrusted source and if the data is used as

or as part of a string representing a command that is executed by the application, by manipulating the

input string it is possible that the application can call untrusted malicious code and gives an attacker a

privilege or capability that the attacker would not otherwise have.

2. An attacker can change the environment in which the command executes: the attacker implicitly

controls what the command means. An example of this is if an application loads a native library from

the environment, it is possible that an attacker can replace the library or insert a malicious with the

same name of the indented library and take control of execution. For example if an application loads a

library using System.loadlibrary(library.dll) which takes only library name not absolute path, the

mapping from a library name to a specific filename is done in a system-specific manner. If an attacker

is able to place a malicious copy of library.dll higher in the search order than file the application

intends to load, then the application will load the malicious copy instead of the intended file.

1.17 Log Forging

Log forging attack does not threaten the integrity or confidentially of a web application, in fact it does

not directly aim web application, instead it forge log entries or inject malicious content into logs.

Applications typically use log files to store a history of events or transactions for later review,

statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing

log files may be performed manually on an as-needed basis or automated with a tool that

automatically culls logs for important events or trending information. By inserting malicious, most of

the time garbage entries, an attacker can misdirect reviews of logs and makes them useless.

Log forging vulnerabilities occur when: 1. Data enters an application from an untrusted source. 2. The

data is directly written to an application or system log file.

As an example of Log forging, assume that a web application tries to log all authentication requests as

in following code.

String userid = request.getParamater(“userid”);
String password = request.getParamater(“password”);
…
Boolean isAuthenticate = authenticate(userid,password);
Logger.info(“LOGIN USERID= “+userid”+”,”+isAuthentice);
…
And when a user logout logs as;
Logger.infor(LOGOUT USERID=”+userid);
In a normal case, the authentication log will be like following;
…

157

LOGIN USERID=e112901,true
LOGIN USERID=maliciousUser,false
LOGIN USERID=e112089,false
LOGOUT USERID=e112901
…

However, if an attacker post userid parameter as

maliciousUser%0aLOGIN%20USERID=e112901%2cfalse%0aLOGIN%20USERID=e112901%2ctru

e%0aLOGOUT%20USERID=e112901

then the log becomes; (The injected code is shown in bold)

…
LOGIN USERID=e112901,true
LOGIN USERID=maliciousUser,
LOGIN USERID=e112901,true
LOGOUT USERID=e112901,false
LOGIN USERID=e112089,false
LOGOUT USERID=e112901

So by log forging it is possible to ruin the log files. In the most case, an attacker may be able to insert

false entries into the log file by providing the application with input that includes appropriate

characters. If the log file is processed automatically, the attacker can render the file unusable by

corrupting the format of the file or injecting unexpected characters. A more subtle attack might

involve skewing the log file statistics. Forged or otherwise, corrupted log files can be used to cover an

attacker's tracks or even to implicate another party in the commission of a malicious act. In the worst

case, an attacker may inject code or other commands into the log file and take advantage of

vulnerability in the log processing utility.

1.18 Buffer and Numeric Errors

Buffer overflow attacks and numeric errors are not directly threaten web applications itself, but

threatens web servers or application server products. An attacker use buffer overflows to corrupt

execution stack of web application. By sending malicious input to a web application, an attacker can

inject malicious codes and cause the web application to execute them. Buffer overflows and numeric

errors found widely in server products and can pose significant risk to users of these products.

Although it is unlikely to find buffer overflows in web application itself, it is still possible especially

for web applications that use third party dynamic link libraries or shared objects such as graphics

library to generate images or reporting tools.

The reason behind buffer overflow and numeric errors threaten especially application servers not

directly web application is that application servers that have buffer overflow vulnerabilities are

publicly known and even if there is no report about buffer overflow attack, an attacker can easily try

buffer overflow attack techniques on application server since errors that is generated in application

158

server code is directly reflected to attacker which gives an attacker important clues, on the other hand

for a web application, if properly configured, the ability to exploit the flaw is significantly reduced by

the fact that the source code and detailed error messages for the application are not visible to the

attacker.

Some common buffer overflow flow and numeric error attack techniques are; stack overflow attack,

heap overflow attack, buffer underwrite, buffer overwrite, unchecked array indexing, length parameter

inconsistency, format string vulnerability, improper string length checking, integer overflow, integer

underflow, integer coercion error, sign extension error, signed to unsigned conversion error, unsigned

to signed conversion error, numeric truncation error numeric byte ordering error. [CWE]

Although all known web servers, application servers are vulnerably to buffer overflows, Java and

J2EE environments, web application that use these technologies, are immune to these attacks.

1.19 Cleansing, Canonicalization and Comparison Errors

Web applications, does cleansing and filtering for validation of data and also canonicalize the names

of resources. However inappropriate combination of these steps might lead to overlooking of possible

malicious attempts. Malicious codes or unacceptable input may disguise from the filtering and black

listing mechanisms of web applications. Misinterpreting the input when they are differently encoded is

also studied under this category.

Encoding Errors: If a web application does not properly handle input when an input has been

modified to use encoding, this can result in overlooking of malicious attacks. An attacker could try to

hide malicious data by trying different kind of encodings, mixing or doubling encodings. In CWE,

encoding errors are discussed in five categories; Alternate Encoding, Double Encoding, Mixed

Encoding, Unicode Encoding, URL Encoding.

Case Sensitivity Errors: If a web application fails to handle case sensitive data, this can lead to

several possible consequences; case-insensitive passwords will reduce the size of the key space and

makes brute force attacks easier, an attacker can bypass filters or access controls using alternate names

with lowercase, uppercase, mixed case, multiple interpretation errors using alternate names.

Early Validation Errors: If validation of data step is done before cleansed or canonicalized,

validation would be susceptible to various manipulations that result in dangerous inputs that are

produced by canonicalization and cleansing.

Collapse of Data into Unsafe Value: If a web application cleanses or filters data in a way that causes

the data to "collapse" into an unsafe value, it might lead to various vulnerabilities. Some examples are;

CAN-2004-0815 - "/.////" in pathname collapses to absolute path.

CVE-2005-3123 - "/.//..//////././" is collapsed into "/.././" after ".." and "//" sequences are removed.

159

CAN-2002-0325 - ".../...//" collapsed to "..." due to removal of "./" in web server.

CAN-2002-0784 - "///./../.../" claimed to work - "./" removal would produce "///..."

CAN-2005-2169 - Regular expression intended to protect against directory traversal reduces ".../...//"

to "../".

Partial Comparison Errors: If a web application evaluate user input as only partially compared to

the desired input before a match is determined. An attacker can find a way to bypass security checks.

For example, an attacker might succeed in authentication by providing a small password that matches

the associated portion of the larger, correct password.

1.20 Information Leak

A system information leak occurs when system data or debugging information leaves the program

through an output stream or logging function. An attacker can cause errors to occur by submitting

unusual requests to the web application. The response to these errors can reveal detailed system

information, deny service, cause security mechanisms to fail, or crash the server. There are various

sources of information leak. Some of the important ones are;

Information Leak through Error Messages: An attacker can use error messages that reveal

technologies, operating systems, and product versions to tune the attack against known vulnerabilities

in these technologies. The application uses diagnostic methods that provide significant

implementation details such as stack traces as part of its error handling mechanism. For example,

following code snippet reveals path environment variable in error message. An attacker could generate

various attacks, including process control (inserting malicious dll’s in path folders.).

String path = System.getenv("PATH");
…
System.err.println(“Can not find ”+filename+” on path=”+path);

Or in following example, system exception is reflected as output, which could reveal system

information, which is the most common information source for generating SQL injection attacks.

try {
Connection conn=getConnection
…
 }
catch(Exception ex){
ex.printStackTrace();
}

Information Leak through Sent Data: The accidental leaking of sensitive information through sent

data refers to the transmission of data which are either sensitive in and of itself or useful in the further

exploitation of the system through standard data channels. Most common reason of this kind of

leakage is unexpected errors generated by the web application such as product error codes, especially

from database vendors, such as shown below;

160

Warning: mysql_pconnect(): Access denied for user: 'root@localhost' (Using password: N1nj4) in

/usr/local/www/wi-data/includes/database.inc on line 4

Information Leak through File and Directory: Without proper administration of web application

servers, files or directories that hold sensitive information might leak through the system. Especially

front hand servers are under higher risks. An attacker could scan the web servers using directory

listing attack techniques and if properly not restricted, he might gain sensitive information through

these files. Some sources of file and directory information leaks are backup files, core dump files,

source files, log files and through CVS repository.

Information Leak through Data Queries: An attacker could gain information not only directly

accessing but also inferring information using statistics. If a web application supplies some statistics

about the system to malicious users, there is a change that an attacker could infer sensitive data from

user data statistics for example by gaining online user information; an attacker could generate session-

fixation or hijacking attacks aiming that users.

Information Leak through Debug Information: If debug information is not totally cleaned from the

final product, an attacker could use these debug information to reveal sensitive information. Although

developers try to hide debug information, most of the time in hidden fields of a web page, there is

always high risk that it will be revealed.

Information Leak through Caching: If a web application does not use a restrictive caching policy

for forms and web pages that potentially contain sensitive information, there is a risk that this

information could be stored in a client-side cache (with most browsers) and left behind for other users

to find. Malicious user could use this cached information to generate various attacks.

1.21 Information Loss or Omission

Information loss vulnerabilities does not directly lead to any attack, but threatens security of a web

application by loosing security-relevant information that used for monitoring and auditing. CWE gives

three categories under this subject;

Truncation of Security-Relevant Information: The application truncates the display, recording, or

processing of security-relevant information in a way that can obscure the source or nature of an attack.

Some observed examples of this category are;

CAN-2005-0585 - Firefox before 1.0.1 and Mozilla before 1.7.6 truncates long sub-domains or paths,

facilitating phishing.

CAN-2004-2032 – Netgear RP114 bypass URL filter via a long URL with a large number of trailing

hex-encoded space characters.

161

CAN-2003-0412 - Sun ONE Application Server 7.0 does not log complete URI of a long request

(truncation).

Omission of Security-Relevant Information: The application does not record or display information

that would be important for identifying the source or nature of an attack. Some observed examples of

this category are;

CAN-1999-1029 – A web application does not record login attempts if user disconnects before

maximum number of tries.

CAN-2002-1839 - Sender's IP address not recorded in outgoing e-mail.

CVE-2000-0542 - Failed authentication attempt not recorded if later attempt succeeds.

Obscured Security-relevant Information by Alternate Name: The software records security-

relevant information according to an alternate name of the affected entity, instead of the canonical

name which lead to omission of security-relevant information.

CAN-2002-0725 - Attacker performs malicious actions on a hard link to a file, obscuring the real

target file.

1.22 Credentials Management Errors

Credential management is one of the fundamental concepts for securing web applications. Commonly,

web applications handles credentials based on user id password pairs; however stronger methods of

credentials management techniques such as hardware tokens are also used but such mechanisms are

cost prohibitive for web applications. This kind of weaknesses occurs when a web application

transmits or stores authentication credentials and uses an insecure method that is susceptible to

unauthorized interception or retrieval. CWE reports these common weaknesses about credential

management of web applications;

• Storing passwords in plaintext storage or in configuration files makes them open to any kind of

attacks. An attacker could retrieve these password files easily and could login into system with any

user’s credential.

• Storing passwords in a recoverable format is another common weakness for web application and

is no different from storing password in plaintext storage. The use of recoverable passwords

significantly increases the chance that passwords will be used maliciously.

• Unprotected transport of credentials is also an important weakness for web applications since

user credentials can also be captured during transmission from client side to server side. Without

encrypting HTTP messages using SSL user passwords are vulnerable from eavesdropping or altering

message contents

162

• Using Weak passwords increases the chance that passwords will be guessed. If a web application

does not force strong passwords, application would be vulnerably from brute force attacks.

• Using Hard-Coded Passwords is common developer mistake and seriously weaken web

application security. Embedding a super user password (enables developers to login as any user for

debugging) or writing passwords in a source code (especially for creating database connection) are

some examples of using hard-coded passwords. If attackers have access to the byte codes for

application, they can use decompiler to access the disassembled code, which will contain the values of

the passwords used.

• Missing Password Field Masking during login process will increase the potential for attackers to

observe and capture passwords.

• Weak Cryptography for Passwords lowers the security of web application. Storing passwords

with weak cryptographic methods such as Base 64 encoding would enable attackers to reconvert the

passwords.

• Not allowing password aging is a weakness for a web application because the users will have no

incentive to update passwords in a timely manner and as passwords age, the probability that they are

compromised grows.

1.23 Permission, Privilege, and Access Control Errors

Nearly all web applications have user management module, handling a number of user groups, user

roles and user permission. A successfully design of permission and access control mechanism is a

must for securing a web application. Accidentally assigning an incorrect privilege to a malicious user

would threaten whole security of the system. CWE reports some common weaknesses of web

applications while handling permissions, privileges and access controls, these are;

• Incorrect Privilege Assignment occurs when a web application incorrectly assigns a privilege to a

particular user group or role. Some observed examples are;

CVE-2005-2741 - Product allows users to grant themselves certain rights that can be used to escalate

privileges.

CAN-2005-2496 - Product uses group ID of a user instead of the group, causing it to run with

different privileges. This is resultant from some other unknown issue.

CVE-2004-0274 - Product mistakenly assigns a particular status to an entity, leading to increased

privileges.

• Unsafe Privilege is a weakness occurs when a privilege or a role can be used to perform an

operation that was not intended. Some observed examples are;

163

CAN-2004-2204 - Gain privileges using functions/tags that should be restricted (Accessible entities).

CAN-2004-0380 - Bypass domain restrictions using a particular file that references unsafe URI

schemes (Accessible entities).

CAN-2005-1742 - Inappropriate actions allowed by a particular role(Unsafe privileged actions).

CAN-2005-2173 - Users can change certain properties of objects to perform otherwise unauthorized

actions (Unsafe privileged actions).

• Privilege Chaining occurs when two or more distinct privileges or roles combined or chained

together in a way that the resulting chain allows operations that would not be allowed.

• Privilege Management Error in a product is a serious error and with a buggy implementation web

application becomes unable to properly track, modify, record or reset privileges.

• Privilege Context Switching Error occurs when a web application could not manage cross

privilege boundaries. Examples are;

CAN-2003-1026 - Web browser cross domain problem when user hits "back" button.

CAN-2002-1770 - Cross-domain issue - third party product passes code to web browser, which

executes it in unsafe zone.

• Insecure default permissions occurs when an overlooked permission is assigned default value of

user roles. This vulnerability might result in various side-effects.

• Insecure inherited permissions during assignment of a user role, an overlooked permission could

be gained unintentionally.

• Insecure execution-assigned permissions occurs when a web application changes or reassign

permission in a insecure way that can result in side-effects.

• Access Control Bypass can be occur by using SQL attack techniques described before, An

attacker could bypass access control module and could do unauthorized operations.

1.24 Authentication Attacks

Authentication is the key issue of web application security. Without proper authentication mechanism,

all works to secure a web application becomes meaningless. A significant percentage of web

application attacks are targeting to break down authentication mechanisms. Although it is known that

authentication is critical and various kinds of attack can be done to bypass authentication mechanisms,

still a significant percentage of web applications suffer from having a secure authentication.

164

Some common authentication attacks techniques and common design errors are described below;

Authentication Before Parsing and Canonicalization: Authentication must be done after parsing

and canonicalization, if not there is a change that web application might fail to require authentication

for protected zones. An attacker could try path traversal attack techniques to bypass authentication for

protected zones.

Authentication Bypass by Alternate Name: If a web application performs authentication based on

the name of resources such as pages, but there are alternate names referring the same resource.

Authentication mechanism might be bypassed by supplying alternate name of the resource such using

different encoding for requesting the same web page. An attacker tries one or combination of

equivalent encodings, canonicalization, multiple trailing slash, trailing space, mixed case, and other

equivalence attack techniques described above.

Authentication Bypass by Alternate Path: If a web application has protected zones that requires

authentication however it also has an alternate path or channel that does not require authentication.

Malicious user could use alternate path to reach protected zones.

Authentication Bypass by Assumed-Immutable Data: If authentication mechanism of a web

application depends on assumed-immutable data but that can be controlled or modified by the attacker

such as cookies. An attacker could bypass authentication by setting certain cookies. Some observed

examples are;

CAN-2002-1730, CAN-2002-1734 - Authentication bypass by setting certain cookies to "true".

CAN-2002-2064 - Admin access by setting a cookie.

CAN-2002-2054 - Attacker could gain privileges by setting cookie.

CAN-2004-1611 - Product trusts authentication information in cookie.

CAN-2005-1708 - Authentication bypass by setting admin-testing variable to true.

CAN-2005-1787 - Attacker could bypass authentication and gain privileges by setting a variable.

Replay Attack: Authentication mechanism of web applications can be easily broken by replay attack

if it is possible for a malicious user to sniff network traffic and replay it the server giving same effect

as the original message. By using replay attack, an attacker could login the system as owner of the

captured message and has all privileges as him.

Authentication Bypass by Spoofing: If a web application does authentication depends on self-

reported IP address, self-reported DNS name or referrer field in HTTP requests, it could be vulnerably

to spoofing attacks. Malicious users can fake authentication information, claim any IP address, DNS

cache could be vulnerably to cache poisoning so DNS names are easy to be spoofed and also the

165

referrer field in HTTP requests can be easily modified and, as such, is not a valid means of message

integrity checking.

Man-in-the-Middle Attack: A web application’s authentication mechanism is susceptible to man-in-

the-middle attacks when it fails to adequately and consistently authenticate the identity of both ends of

a communication channel. An attacker can place himself/herself in the middle of two communicating

parties and impersonate each.

Reflection Attack: If a web application’s authentication mechanism depends on shared secret key

authentication and not properly designed. It could be vulnerably to reflection attack. An attacker could

use reflection attack techniques and bypass the authentication.

Account lockout attack: In an account lockout attack, the attacker attempts to lockout all user

accounts, typically by failing login more times than the threshold defined by the authentication

system. For example, if users are locked out of their accounts after three failed login attempts, an

attacker can lock out their account for them simply by failing login three times. This attack can result

in a large scale denial of service attack if all user accounts are locked out.

Some common errors that can lead to authentication error so lowers the application security strength

are using single-factor authentication; using password based authentication if passwords are not

encrypted or non-reversible or if password aging is not considered or password strength is not

enforced; having a missing step in authentication design; multiple failed authentication attempts are

not prevented and no authentication for critical function.

1.25 Sniffing Application Traffic Attack

Sniffing application traffic simply means that the attacker is able to view network traffic and will try

to steal credentials, confidential information, or other sensitive data. Anyone with physical access to

the network is able to sniff the traffic. Also, anyone with access to intermediate routers, firewalls,

proxies, servers, or other networking gear may be able to see the traffic as well. By sniffing

application traffic, an attacker gain sensitive information about the web site. If this communication is

not protected, the attacker can reveal user cookies, session id, user id and password that can be used to

generate other attacks later.

1.26 Cross-Site Request Forgery (Session Riding)

Cross-Site Request Forgery is about forcing an unknowing user to execute unwanted actions on a web

application in which he is currently authenticated. CSRF is an attack that tricks the victim into loading

a page that contains a malicious request. It is malicious in the sense that it inherits the identity and

privileges of the victim to perform an undesired function on the victim's behalf, like change the

166

victim's e-mail address, home address, or password, or purchase something. CSRF attacks target

functions that cause a state change on the server.

CSRF works like XSS attack: An attacker identifies a URL on a Website that initiates typical Web

functions such as making a purchase, changing an email address or transferring funds and takes that

URL and loads it to a web page he controls with malicious code injected to be executed later. The

following example has an attack embedded in the img request below:

The actual attack occurs when the user visits the attacker-controlled web page via a legit link, which

forces the browser -- using legitimate, authenticated cookies -- to make malicious requests. In this

example it will issue a request to www.mybank.com to the transferFunds.do page with the specified

parameters. The browser will think the link is to get an image, even though it actually is a funds

transfer function. For most sites, such a request will normally automatically include any credentials

associated with the site, such as the user's session cookie, basic auth credentials, IP address, Windows

domain credentials, etc. Therefore, if the user has authenticated to the site, the site will have no way to

distinguish this from a legitimate user request.

In this way, the attacker can make the victim perform actions that they didn't intend to, such as logout,

purchase item, change account information, or any other function provided by the vulnerable website.

1.27 Session Fixation Attack

Session fixation attack is one of the most complex attack techniques that must combine cross-site

scripting or DNS cache poisoning or network based attack techniques in order to succeed. But the

impacts of session fixation is extremely dangerous, with a successful attack, the attacker would login

in to the system as victim and gain all privileges of the victim. In session fixation attack, the attacker

tries to fixes the user’s session ID before the user logs into the target server so that he can then

generate malicious requests with that fixed session ID. Although the session fixation attack techniques

are complex, the reason of vulnerability for web application authenticating a user without first

invalidating the existing session, thereby continuing to use the session already associated with the

user. For example, J2EE web application where the application authenticates users with

LoginContext.login() without first calling HttpSession.invalidate() makes whole application to be

vulnerably to session fixation attack.

167

Figure 39 Session Fixation Attack

Session fixation attack has three phases; session setup phase, session fixation phase and session

entrance phase.

Session Setup Phase: Firstly, the attacker either sets up trap session on the target server and obtains

that session’s ID or selects an arbitrary session ID to be used in the attack. The attack technique

depends on the session management mechanism on web servers and can be classified into two

categories; permissive those that accept arbitrary session IDs, strict those that only accept known

session IDs, which have been locally generated previously. For a permissive mechanism, the attacker

only needs to make up a random trap session ID and store it to use at session fixation phase. For strict

mechanism the session setup phase becomes more complicated. Now the attacker will have to actually

establish a trap session with the target server possibly from different account, extract the trap session

ID from response and store it to user at next phase. If a time out mechanism is set for user sessions,

the attacker also needs to keep alive the session by sending arbitrary requests periodically to web

server.

Session Fixation Phase: Next, the attacker needs to introduce trap session ID to the user’s browser to

fix victim session. The attack technique used in this phase is chosen according to session ID transport

mechanism of a web application;

168

• If the web application depends on session IDs stored in an URL argument, the attacker needs to

trick the victim into logging in to the target web server through the malicious link including the trap

session ID obtained from the previous step provided. This malicious link can be at attacker own web

site or can be send to the victim by email. While it is the only method that can be done, it is quite

impractical and risky for detection.

• If the web application store session IDs in a hidden form, the attacker needs to trick the victim

into logging in to the target web server through a look-like login form that comes from attacker web

server. In order to do this, an attacker must exploit a cross-site scripting vulnerability with page-

hijacking to construct a malicious login form with the trap session ID obtained from the previous step.

However, if victim is affected by this kind of cross-site vulnerability, there is no need to continue

session fixation attack since a malicious login form could just direct the user’s login credentials to the

attacker’s web server.

• If the web application’s session mechanism depends on cookies. There are various and more

effective techniques to fix trap session ID to victim’s browser. Some of these are exploiting cross-site

script or meta tag injection for issuing a cookie, break into a host in domain and install a cookie-

issuing web server, by DNS poisoning add a cookie-issuing server to the domain on user’s DNS

server, modify the response from any server to issue a cookie.

Session Entrance Phase: After the attacker successfully completed previous phases, all he has to do

is wait for the victim to login to the system, then the attacker can enter the trap session and assume the

user’s identity. If web application does not dedicate users session to user login IP, there is no way to

differentiate attacker’s requests from victim requests so he can do any operation that the victim has

been permitted.

1.28 Session Hijacking Attack

Using session hijacking attack, the attacker tries to take control of a user session by obtaining or

generating an authentication session ID. Session hijacking involves an attacker using captured, brute

forced or reverse-engineered session IDs to seize control of a legitimate user's session while that

session is still in progress. In most applications, after successfully hijacking a session, the attacker

gains complete access to all of the user's data, and is permitted to perform operations instead of the

user whose session was hijacked.

There are several problems with session ID’s. If encryption is not used (typically SSL), Session IDs

are transmitted in the clear and are susceptible to eavesdropping.

There are three primary techniques for hijacking sessions;

169

Brute force attack: The attacker tries multiple IDs until successful. There are lots of brute force

attack tools, that generates HTTP requests with possible session ID’s. If the attacker finds a valid ID,

he could continue using the vulnerably site as if he were a valid user.

Reverse Engineering: In many cases, IDs are generated in a non-random manner and can be

calculated. Many of the popular websites use algorithms based on easily predictable variables, such as

time or IP address, in order to generate the Session IDs, causing their session IDs to be predictable.

Stealing: - Stealing session ID’s from valid users is the last but effective case that can be used Using

different types of techniques like sniffing network traffic, using trojans on client PCs, using the HTTP

referrer header where the ID is stored in the query string parameters, and using cross-site scripting

attacks, the attacker can acquire the Session ID.

In a "referrer" attack, the attacker entices a user to click on a link to another site (a hostile link, say

www.hostile.com):

GET /index.html HTTP/1.0

Host: www.attackersite.com

Referrer: www.targetside.com/viewmsg.asp?msgid=438933&SID=2343X32VA92

The browser sends the referrer URL containing the session ID to the attacker's site -

www.hostile.com, and the attacker now has the session ID of the user.

Session IDs can also be stolen using script injections, such as cross-site scripting. The user executes a

malicious script that redirects the private user's information to the attacker. Sniffing network traffic

can be used if the transportation of session ID’s is done on open channel that can be eavesdropping,

Inserting Trojan on victim PC’s can steal cookies and send them back to the attacker site.

170

APPENDIX B

FULL LIST OF COMMON WEB APPLICATION ATTACKS

Below, common web application attacks are given in a table. The attacks are categorized in Source

Taxonomies column depending on PLOVER taxonomy and also OWASP Top Ten Most Critical

Web Application Security Vulnerabilities. As stated in Security Incidents section, all vulnerabilities

that are explained in this section are categorized under Location->Code->Source Code node. Parent

Category column is used to combine several related attack into a parent category, for example relative

path traversal and absolute path traversal attack have similar character and combined under path

traversal attacks category. So the real category of an attack that has a parent category is combination

of source taxonomy and parent category. So relative path traversal is in fact belongs to Data

Validation->Input Validation->Pathname traversal and equivalence errors->Path Traversal Attacks.

Causal Nature describes if an attack depends other attacks to be occur. Likelihood of exploit shows

the rank of attack likeness. Impacts column describes the consequence of an attack category and can

be disclosure of information, unauthorized modification, unauthorized access and disruption of

service. This distinction is depended on National Vulnerabilities Database web site.

Table 19 Full List of Common Web Application Attacks

Web
Application
Attack

Source Taxonomies
Parent
Category

Causal
Nature

Likelihood of
Exploit

Impacts

Relative Path
Traversal

Data Validation->Input Validation->Pathname Traversal
and Equivalence Errors
A2 – Broken Access Control

Path Traversal
Attacks

Independent Very High Disclosure of Information

Absolute Path
Traversal

Data Validation->Input Validation->Pathname Traversal
and Equivalence Errors
A2 – Broken Access Control

Path Traversal
Attacks

Independent Very High Disclosure of Information

Path Equivalence
Attacks

Data Validation->Input Validation->Pathname Traversal
and Equivalence Errors
A2 – Broken Access Control

 Independent Very High Disclosure of Information

Path
Manipulation
Attack

Data Validation->Input Validation->Pathname Traversal
and Equivalence Errors
A2 – Broken Access Control

 Independent Very High Disclosure of Information

Special Element
Injection

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-6 Injection

 Independent Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

Command
Injection

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-6 Injection

 Independent Rare Unauthorized Access

Argument
Injection or
Modification

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-6 Injection

 Independent Rare
Unauthorized Modification
Unauthorized Access

Resource
Injection

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-6 Injection

 Independent Medium Unauthorized Access

Direct Dynamic
Code Evaluation

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-6 Injection

Code Injection Independent Medium
Disclosure of Information
Unauthorized Modification

 1
7

1

Table 19 (continued)

Direct Static
Code Injection

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-6 Injection

Code Injection Independent Medium
Disclosure of Information
Unauthorized Modification

PHP File
Inclusion Attack

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-6 Injection

Code Injection Independent High
Disclosure of Information
Unauthorized Modification

LDAP Injection
Data Validation->Input Validation->Injection
A1- Invalidated Input, A-6 Injection

 Independent Very Few
Disclosure of Information
Unauthorized Modification
Unauthorized Access

SQL Injection
Data Validation->Input Validation->Injection
A1- Invalidated Input, A-6 Injection

Independent

Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

Basic XSS
Data Validation->Input Validation->Injection
A1- Invalidated Input, A-4 XSS Flaws

Cross Site
Scripting (XSS)
Attacks

Independent

Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

XSS in Error
Pages

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-4 XSS Flaws

Cross Site
Scripting (XSS)
Attacks

Independent Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

Script in IMG
Tags

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-4 XSS Flaws

Cross Site
Scripting (XSS)
Attacks

Independent Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

XSS Using
Script in
Attributes

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-4 XSS Flaws

Cross Site
Scripting (XSS)
Attacks

Independent Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

XSS using script
via encoded URI
schemes

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-4 XSS Flaws

Cross Site
Scripting (XSS)
Attacks

Independent Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

Doubled
character XSS
manipulations

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-4 XSS Flaws

Cross Site
Scripting (XSS)
Attacks

Independent Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

1
7

2

Table 19 (continued)

Invalid
characters in
identifiers

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-4 XSS Flaws

Cross Site
Scripting (XSS)
Attacks

Independent Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

Alternate XSS
syntax

Data Validation->Input Validation->Injection
A1- Invalidated Input, A-4 XSS Flaws

Cross Site
Scripting (XSS)
Attacks

Independent Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

XML Injection
Data Validation->Input Validation->Injection
A1- Invalidated Input, A-6 Injection

Missing XML
Validation

Medium Unauthorized Modification

Missing XML
Validation

Data Validation->Input Validation
A1- Invalidated Input

 Independent Medium Unauthorized Modification

Cross-User
Defacement

Data Validation->Input Validation->HTTP Response
Splitting
A1- Invalidated Input, A-6 Injection

HTTP Response
Splitting

XSS Attacks High
Disclosure of Information
Unauthorized Access

Cache Poisoning
Data Validation->Input Validation->HTTP Response
Splitting
A1- Invalidated Input, A-6 Injection

HTTP Response
Splitting

XSS Attacks High Unauthorized Access

Page Hijacking
Data Validation->Input Validation->HTTP Response
Splitting
A1- Invalidated Input, A-6 Injection

HTTP Response
Splitting

XSS Attacks High Unauthorized Access

Process Control
Data Validation->Input Validation
A1- Invalidated Input

 Independent Rare
Unauthorized Modification
Disruption of Service

Log Forging
Data Validation->Output Validation
A1- Invalidated Input, A-6 Injection

 Independent Medium Disruption of Service

Buffer and
Numeric Errors

Data Validation->Range Errors & Numeric Errors
A1 – Invalidated Input, A5 Buffer Overflows

 Independent

Rare

Disclosure of Information
Disruption of Service

Encoding Errors
Data Validation->Representation Errors
A2 – Broken Access Control

Cleansing,
Canonicalization
and Comparison
Errors

Independent Medium Unauthorized Access

1
7

3

Table 19 (continued)

Case Sensitivity
Errors

Data Validation->Representation Errors
A2 – Broken Access Control

Cleansing,
Canonicalization
and Comparison
Errors

Independent High Unauthorized Access

Early Validation
Errors

Data Validation->Representation Errors
A2 – Broken Access Control

Cleansing,
Canonicalization
and Comparison
Errors

Independent High Unauthorized Access

Collapse of Data
into Unsafe
Value

Data Validation->Representation Errors
A2 – Broken Access Control

Cleansing,
Canonicalization
and Comparison
Errors

Independent Rare Unauthorized Access

Partial
Comparison
Errors

Data Validation->Representation Errors
A2 – Broken Access Control

Cleansing,
Canonicalization
and Comparison
Errors

Independent High Unauthorized Access

Information
Leak through
Error Messages

Data Validation->Information Management Errors
A7 – Improper Error Handling

Information
Leak

Independent High Disclosure of Information

Information
Leak through
Sent Data

Data Validation->Information Management Errors
A8 – Insecure Storage

Information
Leak

Independent High Disclosure of Information

Information
Leak through
File and
Directory

Data Validation->Information Management Errors
A8 – Insecure Storage

Information
Leak

Path Traversal
Attacks

Very High Disclosure of Information

Information
Leak through
Data Queries

Data Validation->Information Management Errors
A8 – Insecure Storage

Information
Leak

Independent Medium Disclosure of Information

Information
Leak through
Debug
Information

Data Validation->Information Management Errors
A7 – Improper Error Handling

Information
Leak

Independent High Disclosure of Information

1
7

4

Table 19 (continued)

Information
Leak through
Caching

Data Validation->Information Management Errors
A8 – Insecure Storage

Information
Leak

Independent Medium Disclosure of Information

Truncation of
Security-
Relevant
Information

Data Validation->Information Management Errors
A7 – Improper Error Handling

Information Loss
or Omission

Independent

Medium Disruption of Service

Omission of
Security-
Relevant
Information

Data Validation->Information Management Errors
A7 – Improper Error Handling

Information Loss
or Omission

Independent

Medium Disruption of Service

Obscured
Security-
Relevant
Information by
Alternate Name

Data Validation->Information Management Errors
A7 – Improper Error Handling

Information Loss
or Omission

Independent Medium Disruption of Service

Credentials
Management
Errors

Security Features
A3 – Broken Authentication and Session Management,
A8 – Insecure Storage

 Independent Very High
Disclosure of Information
Unauthorized Access

Permission,
Privilege, and
Access Control
Errors

Security Features
A2 – Broken Access Control, A3 – Broken
Authentication and Session Management

Independent
Injection
Attacks

Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

Authentication
Before Parsing
and
Canonicalization

Security Features->Authentication Attacks
A3 – Broken Authentication and Session Management

Authentication
Attacks

Cleansing,
Canonicalizati
on and
Comparison
Errors

Very High
Disclosure of Information
Unauthorized Access

Authentication
Bypass by
Alternate Name

Security Features->Authentication Attacks
A3 – Broken Authentication and Session Management

Authentication
Attacks

Special
Element
Injection

Very High
Disclosure of Information
Unauthorized Access

1
7

5

Table 19 (continued)

Authentication
Bypass by
Alternate Path

Security Features->Authentication Attacks
A3 – Broken Authentication and Session Management

Authentication
Attacks

Special
Element
Injection

Very High
Disclosure of Information
Unauthorized Access

Authentication
Bypass by
Assumed-
Immutable Data

Security Features->Authentication Attacks
A3 – Broken Authentication and Session Management

Authentication
Attacks

XSS Attack,
All Cookie
based attacks

Very High
Disclosure of Information
Unauthorized Access

Replay Attack
Security Features->Authentication Attacks
A3 – Broken Authentication and Session Management

Authentication
Attacks

Independent Very High
Disclosure of Information
Unauthorized Access

Authentication
Bypass by
Spoofing

Security Features->Authentication Attacks
A3 – Broken Authentication and Session Management

Authentication
Attacks

Independent Very High
Disclosure of Information
Unauthorized Access

Man-in-the-
Middle Attack

Security Features->Authentication Attacks
A3 – Broken Authentication and Session Management

Authentication
Attacks

Independent Medium
Disclosure of Information
Unauthorized Access

Reflection
Attack

Security Features->Authentication Attacks
A3 – Broken Authentication and Session Management

Authentication
Attacks

Independent Medium
Disclosure of Information
Unauthorized Access

Account lockout
attack

Security Features->Authentication Attacks
A3 – Broken Authentication and Session Management,
A9 – Denial of Service

Authentication
Attacks

Independent Very High Disruption of Service

Sniffing
Application
Traffic Attack

A8 – Insecure Storage Independent Medium
Disclosure of Information

Cross-Site
Request Forgery
(Session Riding)

Time and State
A3 – Broken Authentication and Session Management

XSS Attack,
All Cookie
based attacks

Very High
Unauthorized Modification
Unauthorized Access

Session Fixation
Attack

Time and State
A3 – Broken Authentication and Session Management

XSS Attack,
All Cookie
based attacks

Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

Session
Hijacking Attack

Time and State
A3 – Broken Authentication and Session Management

Sniffing
Application
Traffic Attack

Very High
Disclosure of Information
Unauthorized Modification
Unauthorized Access

1
7

6

