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ABSTRACT 
 
 

DENSE DEPTH MAP ESTIMATION  

FOR OBJECT SEGMENTATION  

IN  

MULTI-VIEW VIDEO 

 
 

Çığla, Cevahir 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. A. Aydın Alatan 

 
 

July 2007, 138 Pages 

 
 
 
In this thesis, novel approaches for dense depth field estimation and object 

segmentation from mono, stereo and multiple views are presented. In the first 

stage, a novel graph-theoretic color segmentation algorithm is proposed, in which 

the popular Normalized Cuts 5[6] segmentation algorithm is improved with some 

modifications on its graph structure. Segmentation is obtained by the recursive 

partitioning of the weighted graph. The simulation results for the comparison of 

the proposed segmentation scheme with some well-known segmentation methods, 

such as Recursive Shortest Spanning Tree 5[3] and Mean-Shift 6[4] and the 

conventional Normalized Cuts, show clear improvements over these traditional 

methods.   

 The proposed region-based approach is also utilized during the dense 

depth map estimation step, based on a novel modified plane- and angle-sweeping 



 v

strategy. In the proposed dense depth estimation technique, the whole scene is 

assumed to be region-wise planar and 3D models of these plane patches are 

estimated by a greedy-search algorithm that also considers visibility constraint. In 

order to refine the depth maps and relax the planarity assumption of the scene, at 

the final step, two refinement techniques that are based on region splitting and 

pixel-based optimization via Belief Propagation 6[32] are also applied.  

 Finally, the image segmentation algorithm is extended to object 

segmentation in multi-view video with the additional depth and optical flow 

information. Optical flow estimation is obtained via two different methods, KLT 

tracker and region-based block matching and the comparisons between these 

methods are performed. The experimental results indicate an improvement for the 

segmentation performance by the usage of depth and motion information. 

 

Key words: Graph-theoretic image segmentation, dense depth map estimation, 

plane and angle sweeping, multi-view video object segmentation. 
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ÖZ 
 
 

ÇOK GÖRÜNTÜLÜ VİDEODA 

NESNE BÖLÜTLEMESİ İÇİN 

SIK DERİNLİK HARİTASI KESTİRİMİ 

 
Çığla, Cevahir 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. A. Aydın Alatan 

 
 

Temmuz 2007, 138 sayfa 

 
 
 
Bu tezde, sık derinlik haritası çıkarımı ile tek, stereo ve çoklu görüntüden nesne 

bölütlemesi problemleri için öne sürülen yeni yaklaşımlar sunulmaktadır. İlk 

kısımda, yaygın olarak kullanılan düzgülü kesik görüntü bölütleme algoritmasının 

çizge yapısı üzerinde yapılan değişikliklerle geliştirilmesi ile oluşturulan çizge 

tabanlı renk bölütlemesi algoritması önerilmektedir. Bölütleme çizgenin döngüsel 

olarak parçalara ayrılmasıyla elde edilir. Önerilen yöntemin bazı iyi bilinen 

bölütleme algoritmaları, döngülü en kısa kapsayan ağaç 6[3], ortalama kayma 6[4] 

ve klasik düzgülü kesik 6[6], ile karşılaştırılması amacıyla yapılan deneylerin 

sonuçları klasik yöntemler üzerindeki gelişmeleri açıkça göstermektedir. 

 

Bölgesel tabanlı yaklaşım aynı zamanda yeni geliştirilmiş düzlem ve açı 

taramasına dayalı sık derinlik haritası kestirimi aşamasında da kullanılmaktadır. 

Önerilen sık derinlik haritası kestirimi yönteminde tüm sahnenin bölgesel olarak 

düzlemlerden oluştuğu varsayılmaktadır. Düzlemsel yamaların 3 boyuttaki 
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modelleri görünürlük kısıdı da kullanan fırsatçı bir arama algoritması ile 

kestirilmektedir. Son aşamada, derinlik haritalarını iyileştirmek ve sahnenin 

düzlemselliğini gevşetmek için bölge parçalama ve piksel tabanlı yargı yayılımına 

6[32] dayalı iki farklı yöntem önerilmektedir.  

 

Son olarak, görüntü bölütleme algoritması derinlik ve optik akış bilgilerinin 

eklenmesi ile çoklu görüntülü video nesne bölütlemesi amacıyla 

genişletilmektedir. Optik akış iki farklı yöntemle, “KLT izleme” ve bölge tabanlı 

blok eşleme, elde edilmektedir. Her iki yöntem de, önerilen bölütleme 

algoritmasındaki kullanılabilirlikleri açısından karşılaştırılmaktadır. Yapılan 

deneyler, renk bilgisine ilave olarak kullanılan derinlik ve optik akış bilgilerinin 

bölütleme performansını arttırdığını göstermektedir. 

 

Anahtar Kelimeler: Çizge kuramlı görüntü bölütleme, sık derinlik haritası 

kestirimi, düzlem ve açı tarama, çoklu görüntülü video nesne bölütlemesi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 viii

ACKNOWLEDGEMENTS 
 

 

 
I would like to express my gratitude and appreciation to my supervisor Assoc. 

Prof. Dr. Aydın Alatan for his guidance, suggestions and also for the great 

research environment he had provided. 

 
I would like to thank my family and my love Hande for their understanding, 

support and patience throughout this work. 

 

I would like to also express my thanks for their great friendship and assistance to 

Yoldaş Ataseven, Oytun Akman and Ahmet Saracoğlu. We were together for two 

invaluable years and I surely miss working with them.   

 

I would also express my gratitude to Xenophon Zabulis for his brilliant ideas and 

suggestions throughout this work. 

 

Finally, I would like to thank my friends in Multimedia Research Group for such 

a friendly research environment they had provided. I also want to thank Evren 

İmre and Alper Koz, I have learned much from our technical discussions, their 

suggestions and experiences.  

 

This work is funded by EC IST 6th Framework 3DTV NoE and partially funded 

by TÜBİTAK under Career Project 104E022. 

 

 
 
 
 



 ix

TABLE OF CONTENTS 
 
 
 

0ABSTRACT........................................................................................................... 67H66Hiv 

1H1HÖZ  ………………………………………………………………….………...….68H67Hvi 

2H2HACKNOWLEDGEMENTS................................................................................. viii 

3H3HTABLE OF CONTENTS....................................................................................... ix 

4H4HCHAPTER  

1. 5H5HINTRODUCTION ........................................................................................ 69H68H1 

6H6H1.1 Scope of the Thesis ................................................................................. 70H69H2 

7H7H1.2 Outline of the Thesis............................................................................... 71H70H3 

2. 8H8HCOLOR SEGMENTATION......................................................................... 72H71H5 

9H9H2.1 Fundamental Definitions of Graph Theory............................................. 73H72H7 

10H10H2.2 Segmentation with Recursive Shortest Spanning Tree........................... 74H73H8 

11H11H2.3 Mean Shift Segmentation...................................................................... 75H74H11 

12H12H2.4 Graph Cut Image Segmentation............................................................ 76H75H15 

13H13H2.5 Modified Normalized Cuts Method ...................................................... 77H76H19 

14H14H2.6 Experimental Results ............................................................................ 78H77H23 

3. 15H15HDENSE DEPTH FIELD ESTIMATION.................................................... 79H78H32 

16H16H3.1 Camera Model....................................................................................... 80H79H32 

17H17H3.2 Epipolar Geometry................................................................................ 81H80H34 

18H18H3.3 Literature Review for Dense Depth Estimation.................................... 82H81H38 

19H19H3.4 Proposed Stereo Dense Depth Map Estimation Algorithm .................. 83H82H42 



 x

20H20H3.4.1 Definition of Mathematical Expressions and Overview of the 

Algorithm...................................................................................................... 84H83H43 

21H21H3.4.2 Over-Segmentation of Input Images.............................................. 85H84H44 

22H22H3.4.3 Initial Depth Map Estimation via Plane and Angle Sweeping ...... 86H85H47 

23H23H3.4.3.1 Plane Sweeping....................................................................... 87H86H48 
24H24H3.4.3.2 Angle Sweeping ...................................................................... 88H87H53 
25H25H3.4.3.3 Consistency Checks for the Initial Depth Maps ..................... 89H88H56 
26H26H3.4.3.4 Iterative Update....................................................................... 90H89H58 

27H27H3.5 Proposed Multi-view Dense Depth Map Estimation Algorithm........... 91H90H61 

28H28H3.5.1 Extension to Multi-view Dense Depth Estimation ........................ 92H91H62 

29H29H3.5.2 Plane and Angle Sweeping for Multi-view Depth Estimation ...... 93H92H62 

30H30H3.5.3 Iterative Update.............................................................................. 94H93H65 

31H31H3.6 Refinement Methods............................................................................. 95H94H66 

32H32H3.6.1 Region Splitting ............................................................................. 96H95H66 

33H33H3.6.2 Belief Propagation ......................................................................... 97H96H68 

34H34H3.7 Experimental Results ............................................................................ 98H97H70 

35H35H3.7.1 Simulations on Segmentation ........................................................ 99H98H70 

36H36H3.7.2 Dense Stereo Matching.................................................................. 100H99H71 

37H37H3.7.3 Multi-view Dense Depth Map Estimation ..................................... 101H100H83 

38H38H3.7.4 Refinement Methods...................................................................... 102H101H85 

4. 39H39HMULTI-VIEW VIDEO OBJECT SEGMENTATION............................... 103H102H97 

40H40H4.1 Literature Review for Video Object Segmentation .............................. 104H103H98 

41H41H4.2 Static Scene Segmentation from Multiple Cameras ........................... 105H104H100 

42H42H4.3 Dynamic Scene Segmentation from Multiple Cameras...................... 106H105H105 

43H43H4.4 Experimental Results .......................................................................... 107H106H111 

44H44H4.4.1 Static Scene Segmentation from Multiple Cameras .................... 108H107H111 

45H45H4.4.2 Dynamic Scene Segmentation from Multiple Cameras............... 109H108H116 

5. 46H46HCONCLUSION......................................................................................... 110H109H120 

47H47H5.1 Summary of the Thesis ....................................................................... 111H110H120 



 xi

48H48H5.2 Discussions ......................................................................................... 112H111H122 

49H49H5.3 Future Work ........................................................................................ 113H112H124 

50H50HREFERENCES ................................................................................................... 114H113H125 

51H51HAPPENDICES 

  A. NORMALIZED CUTS FORMULATION............................................ 115H114H135 

 

 



 
 
1

CHAPTER 1 
 

 

INTRODUCTION 
 

 

 
Computer vision is a discipline with wide application areas and attracts many 

researchers due to its variety of innovative outcomes. The robot navigation 

systems, human motion modeling and its adaptation to animation technology, 

object segmentation and recognition, target detection, traffic surveillance, 3D data 

extraction and environment modeling are all active research areas under computer 

vision area. The recent advances in computer vision pioneered new technological 

devices and ideas that will affect future research directions. One of the most 

interesting and attractive advance is the 3D Television, aka 3DTV, which is 

supposed to be an important consumer electronic product in the near future. 

 

The idea of 3DTV has canalized the researchers towards 3D data processing, 

involving extraction, coding, transmission, and visualization. As 3D data 

processing has been improved, the application area expanded to each problem in 

computer vision. Hence, especially in the last decade, the algorithms previously 

developed for 2D data have been improved and adapted to their 3D counterparts. 

However, the transition from 2D to 3D results in diverse problems and the 

solutions to these problems are obtained via different assumptions and methods 

which are generally related to 3D geometry.  

 

The modeling of the 3D environment from 2D data and its understanding 

(analysis) are two of the fundamental and common problems for the conversion of 
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2D to 3D. The modeling part involves the extraction of 3D information of a scene, 

such as depth or surface characteristics from two or multiple 2D images. With the 

recent developments in the capture technology, multiple-video concept becomes 

popular, instead of the conventional 2D video. 3D modeling of the scene, which is 

extracted from the multi-view video, could be utilized for various purposes, such 

as multi-view video coding, image rendering from arbitrary camera positions, 

which are vital for 3D application area.  

 

Another fundamental problem is the analysis of the scene which can be examined 

in object segmentation and recognition problems. The object segmentation is the 

grouping of pixels into meaningful classes depending on the image structure, such 

as color and depth. In 3D applications, segmentation is also important for coding 

and image based rendering, especially when combined with the depth or surface 

information. 

 
 

1.1  Scope of the Thesis 
 
 
The motivation behind this study is supported by two main propositions. The first 

proposition is the excessive requirement of 3D structure in multimedia 

applications and its importance for the next generation research areas. The second 

one is the application of the extracted 3D information for the segmentation of a 

scene and extension of the well-known traditional 2D segmentation methods to 

3D. The research in this thesis is devoted to the extraction of 3D information from 

2D data via dense depth map estimation and its application to image 

segmentation. 

 

The dissertation can be analyzed in three main steps performed sequentially for 

the main purpose of the thesis. The first step is the development and evaluation of 

the performance of some image segmentation algorithms for 2D images. This step 
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provides a comparison between four different algorithms which utilize the color 

and intensity distribution among the images. In the next step, the estimation of the 

3D structure of a scene from 2D images is performed. The structure or the 

geometry is modeled via a novel dense depth map estimation algorithm. The 

stereo matching and its multi-view extension are analyzed and the solution is 

proposed based on the planarity assumption of the scene. Finally, the 2D 

segmentation and the dense depth map estimation methods are combined in order 

to propose a solution to the 3D segmentation problem in video. 

 
 

1.2 Outline of the Thesis 
 
 
The thesis is composed of three main parts involving the steps mentioned 

previously. 

 

Chapter 2 focuses on 2D segmentation methods and their comparison. First, a 

literature survey on color image segmentation algorithms is given and the 

methods are classified. Then, a modified version of a well-known global 

segmentation algorithm based on graph-cuts is introduced with its advantages 

over the previous version. Finally, the comparison of the proposed method with 

two popular methods, recursive shortest spanning tree and mean-shift, and 

normalized cuts method is achieved by the simulations on a variety of images. 

 

In Chapter 3, a novel dense depth map estimation algorithm from fully calibrated 

stereo and multiple images is proposed. Initially, some background information 

on the camera geometry and epipolar geometry is given. In the next step, the 

literature review of the stereo and multi-view dense depth map estimation 

algorithms is presented with the fundamental assumptions. In the final step, a 

novel approach to region-based dense depth map estimation algorithms is 

introduced supported with the experimental results. 
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Chapter 4 is devoted to the utilization of the proposed 2D segmentation algorithm 

with the 3D information extracted via dense depth matching and the optical flow 

information. First, a brief literature review on video object segmentation is given. 

Then, the segmentation with only one image is extended to multi-images and 

multi-view video. The performance changes on the segmentation quality are 

analyzed by the simulations on multi-view video in the experimental results 

section. 

 

Finally, Chapter 5 gives the summary of thesis and the conclusion on the 

proposed region-based dense depth estimation algorithm and its application to 3D 

segmentation. In addition, the future directions involving the enhancement of the 

proposed algorithm are described with some recommendations and remarks.   
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CHAPTER 2 
 

 

COLOR SEGMENTATION 
 

 

 
One of the most challenging problems in computer vision is color segmentation, 

which is also an important tool for image understanding. Segmentation is an 

image processing task that aims at partitioning an image into homogeneous 

regions in terms of the features of pixels extracted from the image 116H115H[1]. It is also 

desired to obtain those regions to be semantically meaningful. Segmentation 

results are usually utilized in some high-level operations, such as recognition and 

representation. The most well-known application areas of segmentation are 

vision-guided autonomous robotics, medical diagnosis, segment-based video 

compression, and the analysis of remotely sensed images 117H116H[1]. 

 

Although many different approaches to the segmentation problem have been 

proposed, the problem has not been (and still far from being) totally solved due to 

its complicated range space. The problem stems from the non-uniqueness of the 

segmentation such that even different people might partition a presented image in 

different ways. However, the uniqueness of the segmentation can be provided via 

considering some constraints and obtaining segmentations for particular and 

special purposes. The survey of the different segmentation algorithms in literature 

is given in 118H117H[1] with an excellent taxonomy. 

 

The segmentation methods can be classified into two main distinct groups, the 

histogram-based and pixel-based methods. In the histogram-based methods 119H118H[2], 
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the neighborhood relations between pixels are not considered and the 

segmentation is performed only according to the color distribution observed by 

histograms, which is actually a global approach. Hence, the resulting regions may 

have disjoint pixels which is generally not a preferred case. However, these 

methods yield satisfactory results, especially under some controlled conditions, 

such as visual product defect control in industrial applications.  

 

On the other hand, the pixel-based methods utilize the neighboring relations 

between pixels and divide images into connected regions. The pixel-based 

methods can also be classified into two sub-groups, the local and global methods. 

In the local methods 120H119H[3] 121H120H[4], the clusters are obtained by combining the pixels, the 

smallest element in an image, and the segmentation is achieved with a bottom-to-

top approach. A traditional down-to-top approach is reversed in global methods 

122H121H[6] 123H122H[7] 124H123H[8], an image is considered as a “big picture” and the segmentation is 

achieved downward by splitting it into smaller regions. Both of these methods are 

widely used and have characteristic advantages and disadvantages.  In 125H124H[3] 126H125H[4], the 

pixels belonging to the same object can be segmented separately, since only the 

local properties are considered during the clustering of the pixels. The 

perceptional properties are utilized in global methods 127H126H[6] 128H127H[7] 129H128H[8]; and the 

clustering is performed by a similar mechanism as in human perception, from 

whole to the detail. Although the global methods have a very important and 

realistic assumption, the computation can be time consuming as the image size 

increases. The computation problem is usually tried to be solved by down 

sampling the images and performing a multi resolution approach 130H129H[9]. However, 

the details of the images are usually lost during these operations. Moreover, the 

local methods perform faster and are more applicable to real time systems than 

the global methods. There are also hybrid methods 131H130H[10] which utilize different 

segmentation algorithms in one algorithm and have characteristics between local 

and global. 
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In this work, the segmentation problem is examined by comparing four different 

methods. The color segmentation performances of Recursive Shortest Spanning 

Tree (RSST) 132H131H[3], Mean-Shift 133H132H[4] and Normalized Graph Cuts 134H133H[6] are investigated 

and a modified version of 135H134H[6] is introduced in order to increase the speed and the 

performance of graph-based segmentation algorithms. In the proposed method, 

the graph is constructed by similarities between sub-regions obtained via over-

segmentation by local methods instead of between pixels, which causes the graph 

based approaches to be slower. Then the segmentation is performed by 

partitioning the graph and grouping the sub-regions into larger clusters. 

 

This chapter is composed of six main sections; in the first part the definitions and 

mathematical expressions of graph theory are presented. In the second and third 

sections, as being local methods, RSST and Mean-Shift segmentation algorithms 

are explained. The following section is devoted to normalized graph cut 

algorithm, which is one of the most well-known graph-based techniques and has 

introduced a novel approach to the image segmentation problem. In a different 

section the modified version of normalized graph cuts method is proposed and 

discussed with its advantages over 136H135H[6]. Finally, the comparison among four 

different algorithms is performed in the experimental results section with the 

resultant segmentations of different set of images. 

 
 

2.1 Fundamental Definitions of Graph Theory 
 
 
A graph is a set of vertices (nodes) and links (edges) in which, the vertices are 

connected to each other via links. The mathematical representation of a graph is 

given as G = (V, E), where V is the vertices and E is the links between vertices. In 

137H136HFigure 2.1, an example of a graph is illustrated with seven nodes and their 

connections with each other. In a weighted graph, the links are weighted and the 

connection strength among vertices is modeled via corresponding weights. If all 
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the vertices are connected each other in a graph, then the graph is denoted as a 

complete graph. However, each vertex is not necessarily linked to every other 

vertex and such a graph is called partial graph. For some graphical structures, the 

direction of the link can be important for the weighting of the graph and the 

weights may change according to the direction, this kind of graphs are called as 

directed weighted graphs. If the link between vertices shows the similarity of the 

nodes hence the direction is not important, then the graph is an undirected 

weighted graph. 

 

 

 

 
 

Figure 2.1: A simple graph with seven vertices 
 

 

 

2.2 Segmentation with Recursive Shortest Spanning Tree 
 
 
RSST 138H137H[3] is a powerful segmentation method that is a hierarchical segmentation 

scheme yielding various scales of segmentation masks. In addition, RSST requires 

no initial segmentation input and parameters, and performs relatively fast. In the 
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hierarchical scheme, the algorithm evolves from coarse to fine and the 

segmentation can be obtained with the desired number of regions. 

 

There are two functional blocks in the RSST algorithm, the initialization stage 

and the linking process as illustrated in 139H138HFigure 2.2. In the initialization step, a 

weighted graph, whose nodes are the pixels and the links as a function of pixels 

intensity values, is constructed. Hence, the image is mapped onto a graph with 

number of vertices equal to the number of pixels in the image. In the next steps, 

the vertices correspond to regions with certain amount of pixels and link weights 

between the vertices are calculated via the mean intensity of the regions. The 

mean intensity of a region is defined as vertex weight (Vi), and the link weights 

(LW(i,j)) are evaluated by a function of Vi’s and the sizes of the regions (Ni) 

which indicate the number of pixels in regions. Although, there could be different 

cost functions, the following linking cost function is preferred 141H139H[3]: 

 

ji

ji
ji NN

NN
VVjiLW

+
−=),(                               (2.1) 

After the construction of the graph, the links are sorted according to their link 

weights and the weakest link with the smallest cost value is detected. Then, the 

regions connected to each other through the weakest link are merged and the 

graph structure changes with a decrease in the number of the nodes. The vertex 

weight of the merged region is then updated and the link weights corresponding to 

all of the surrounding vertices are also revised with the new vertex weight of the 

merged region by (2.1). The merging process is illustrated in 142H140HFigure 2.3. The 

number of the vertices is decreased by one with one linking operation involving 

sorting and merging successively. The linking process is iterated until the desired 

number of vertices which is actually the required number of regions is obtained. 

The hierarchical scheme of RSST can also be performed by saving the weakest 

links detected in linking process and utilizing the same order for different scales 

of the image 143H141H[11]. 



 
 
10

 
 

Figure 2.2: The flowchart of the RSST algorithm 140H142H[3] 
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Figure 2.3: LW1 is the weakest link before merging and V’, N’ are the merged region 
properties. 

 

 

 

2.3 Mean Shift Segmentation 
 

 

Mean-Shift (MS) is an extremely versatile tool for feature space analysis and can 

provide reliable solutions for many vision tasks 144H143H[4]. MS is widely used in many 

purposes due to its adaptable and excellent qualities. During the last few years, 

segmentation has been one of the most important application areas of MS with 

high quality results.  

 

MS segmentation procedure is an extension of smoothing the observed data with 

kernels and labeling the pixels accordingly. The data, image in this case, is 

initially mapped to another color space so that the perceived color differences 

correspond to Euclidean distances in color space 145H144H[4]. A Euclidean space for a 

color space is not guaranteed; however L*u*v and L*a*b spaces were designed to 

approximate uniform color spaces perceptually 146H145H[4]. The RGB color space does not 

provide independent bases, and the new space L*u*v is constructed by the 

nonlinear dependency on RGB. L corresponds to the “lightness” or “luminance” 
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and the other coordinates define the “chrominancy”. After the color space 

transformation, the data is filtered as follows: 

 

 
1. For a pixel (x) in the image, evaluate the mean shift 

vector by (2.2)  

∑
∈

−=
)(

)).((1)(
xSx

ii
hi

xxxL
k

xf    (2.2) 

where Sh(x) is the hyper sphere centered at x with radius h 

and k is the number of pixels within the sphere.  

2. Then, assign the mean value to the corresponding pixel and 

shift the center of the hyper sphere to the new location. . 

)(' xfx =  

3. Evaluate the mean shift vector with the updated terms. 

4. Iteratively perform the first three operations until 

)(xf convergences to a number y. 

5. After executing the first four operations for all of the 

pixels in the image, the filtered data is obtained which is 

composed of y’s. 

 

The mean shift operation and its convergence are illustrated with an example 

given in 146HFigure 2.4. As observed in the example, the mean shift vector points 

towards the direction of the maximum increase in the density. The assignment of 

the convergent values to the pixels is performed after mean shift operation is 

employed for all of the pixels. Thus, the convergent mean values form the 

smoothed data.  

 

After the smoothing, the clusters NppC ...1}{ =  are determined from the set of 

}{ ijy ’s by grouping the values which are closer than a pre-determined threshold 

147H147H[4]. Finally, for each pixel a labeling to the set of clusters is performed, 
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}|{)( pijij CypxL ∈= . The steps of the algorithm are illustrated with an 

example in 148H148HFigure 2.5, the small gradient changes are successfully handled by 

Mean Shift filtering and the distinctions between the different clusters are 

performed satisfactorily.  

 

 

 

 
 

Figure 2.4: The iterative mean shift  operation  for a pixel 149H[5]. 
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Figure 2.5:  (a) The original data, (b) each pixel moves in the direction of the means and 
converges to the black points, (c) the smoothed data after mean-shift operations, (d) the 

segmentation result 149H150H[4]. 
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2.4 Graph Cut Image Segmentation 
 
 
Normalized Cut Image Segmentation (NCIS) 150H151H[6] is a global and a graph-based 

method that utilizes a splitting process beginning from the whole picture to the 

bottom as most of the segmentation methods based on graph cuts operate. The 

fundamental characteristics of graph-cuts based segmentation algorithms is the 

decomposition of eigenvectors of special matrices related with the constructed 

graph. A review of these methods that differ in terms of the matrices to be 

decomposed is given in 151H152H[12]. Based on the comparison between three well-known 

segmentation methods based on eigenvectors, the performance differences depend 

on the statistical properties of the images such as color distribution 152H153H[13]. Actually, 

NCIS method outperforms the other methods slightly for the overall case due to 

its normalization during the formulation of the segmentation problem.  

 

There are two main steps in NCIS, the construction of the graph and the iterative 

partitioning. The top-down property of the normalized cut method is provided by 

initially mapping the image to a graph that holds the relations between pixels. An 

undirected weighted graph is constructed in which the vertices correspond to 

pixels and links correspond to weights evaluated via a linking cost function given 

in (2.3). In the cost function, I is the intensity image and I(i) indicates the intensity 

value of ith pixel and X indicates the location of the pixels. In the graph, the pixels 

which are located within a circle of radius R are linked to each other; hence the 

graph is partial and the link weights defines similarities between nodes as a 

function whose range space is [0,1]. 
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The segmentation of an image is achieved by the division of the graph into 

smaller graphs which are disjoint by the cuts among the links iteratively. At each 

step, one graph (V) is partitioned into two sub-graphs, A and B, such that V=AUB, 

A∩B=Ø. A cut on a link provides the separation of the two nodes connected to 

each other with the corresponding link. In NCIS algorithm, the cuts generally 

occur on more than one link and the separation of a group of nodes from another 

group of nodes is supplied, 153H154HFigure 2.6. Every cut in the graph has a cost value 

evaluated by the summation of the link weights belonging to the removed (cut) 

links. In 154H155HFigure 2.6, the cost of the cut is the summation of the link weights of 7, 

9, and 12. 

 

 

 

 
 

Figure 2.6: A sample cut on a graph 
 

 

 

The eigenvector-based segmentation methods 155H156H[6] 156H157H[7] 157H158H[8] try to minimize a cost 

function that is totally related with the cost of the cuts and the vertex weights 

during the partitioning process. The difference between those algorithms stems 
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from the difference in the cost function to be minimized; minimum cut method 158H159H[7] 

aims to find the cut combination that will result in the minimum total cut cost as 

 

∑
∈∈

=
BjAi

jiwBACut
,

),(),(               (2.4) 

 

However, as explained in 159H160H[6], such a minimization approach divides the graph 

into very small pieces, especially if there are vertices located at distant locations, 

resulting in an inferior partition. NCIS modifies the minimum cut approach by 

normalizing the cut costs with the total weights obtained by summing the total 

link weights of the nodes in the separated groups, as follows  

 

),(
),(

),(
),(

),( VBTotalW
BACut

VATotalW
BACut

BANcut +=        (2.5) 

where 

∑
∈∈

=
VjAi

jiwVATotalW
,

),(),(         (2.6) 

 

In (2.5), Cut(A,B) indicates the cut cost evaluated between sub-graph A and sub-

graph B. TotalW(A,V) indicates the total link weight between the vertices in A and 

the whole graph V. The normalized measure reflects how tightly the nodes within 

the disjoint groups are connected to each other.       

 

The minimization of the normalized cut exactly is an np-complete problem; 

however, an approximate discrete solution can be obtained by formulating the 

problem into real value domain and using change of variables 160H161H[6]. The theoretical 

analysis and the derivation of the new formulation 161H162H[6] are explained in detail in 

the Appendix. This new formulation is given as  
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Dyy
yWDyNcut T

T )( −
=                      (2.7) 

 

where D is an NxN diagonal matrix of a graph with N nodes, indicating the total 

link weights belonging to each node individually. W is the affinity matrix of the 

graph showing the similarities between the nodes in a symmetric NxN matrix, in 

addition the diagonal entries of W are “1” since each node is totally similar to 

itself. Finally, y is a Nx1 matrix which is composed of real valued elements 

corresponding to the similarities of the nodes satisfying,  

 

01 =
−

DyT and { }biy −∈ ,1)(           (2.8) 

  

The open form of b is given in Appendix, and 
−

1 is an Nx1 matrix whose rows are 

all “1”. The distinction of the values in y determines the partitioning such that the 

same signed nodes belong to the same group. 

 

The expression in (2.7) is a Rayleigh quotient 162H163H[14] and the minimization can be 

achieved by the solution of the generalized eigenvalue system 163H164H[6]: 

 

      DyyWD λ=− )(                                                                (2.9) 

yyDWDD λ=−⇒ −− 2/12/1 )(                                         (2.10) 

 

The second smallest eigenvector of the generalized eigenvalue system in (2.9) and 

(2.10) is the real valued solution of the normalized cut problem 164H165H[6]. However, the 

solution is approximate, since y has different real valued entries after the 

eigenvalue decomposition that violates the second constraint in (2.8). The 

eigenvalue decomposition and determination of the second smallest eigenvector 
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provides a partitioning on the corresponding graph. In 165H166H[6], this criterion is utilized 

recursively in order to perform the segmentation as follows: 

 
1. Map the given image into a graph in order to relate the 

pixel (nodes) to each other via the similarity measures 

weighted on links. 

2. Construct the D and W matrices through the link weights. 

3. Solve the generalized eigenvalue system in (2.9) and 

(2.10) and determine the second smallest eigenvector. 

4. Use the determined eigenvector to bipartition the graph. 

5. Decide if the current partition should be subdivided and 

if necessary recursively partition the graphs. 

 

In the fourth step of the proposed algorithm, the partitioning is performed by 

thresholding the eigenvector and labeling it into two portions, as the nodes above 

a threshold and the ones below the threshold. This threshold is determined by a 

one-dimensional search between the minimum and the maximum values within 

the entries of the eigenvector, and the partition that minimizes the normalized cut 

value given in (2.7). The decision of repartitioning the segmented regions depends 

on the minimum normalized cut value evaluated during the one dimensional 

search. If the value is small enough, then the repartitioning is not performed for 

the corresponding region. If it has a high value, then the recursive partitioning 

continues. A simple illustration of the partitioning process for a graph is given in 

166H167HFigure 2.7; the segmentation is performed iteratively grouping the nodes by 

minimizing the normalized cut value. 

 

 

2.5 Modified Normalized Cuts Method 
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In NCIS algorithm, the constructed graph for a typical (200 x 300) image has 

60,000 nodes and the affinity matrix is of size (60,000 x 60,000). Although, the 

 
 

Figure 2.7: A sample recursive partition of a graph in three iterations. 
 

 

 

affinity matrix is sparse and most of the entries are zero, the eigenvalue 

decomposition of such a matrix is time consuming. As the image size increases, 

the speed of the algorithm will be slower and the memory requirements may 

cause some problems. NCIS approaches to the problem of large sizes by down 

sampling the images and decrease the size of the affinity matrix considerably. 

Unfortunately, the down sampling operation causes the local intensity information 

to be lost and the object boundaries to be distorted at the final segmentation.  

 

In this thesis, a modified normalized cuts algorithm is proposed in order to 

overcome the oversize problem without losing the local intensity information 

observed in down sampling. The graph is constructed from the regions obtained 

by the over-segmentation of the original image through Mean Shift 67H168H[4], so that the 

local properties are embedded to the local regions and the number of the vertices 

in the graph is decreased to hundreds. The new graph structure (for the red 

squared region) is illustrated with an example in Figure 2.8. The random colored 

image corresponds to the over-segmented regions in the square and the centroids 

of these regions are utilized as the nodes of the graph. 
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Each node in the graph represents a small group of pixels, Si, and the mean 

intensity of Si is utilized as the characteristic of the node. The link weights are 

calculated via the linking cost function (2.3) described in NCIS method. The new 

representation of the graph structure causes an irregular distribution of the nodes 

among the graph as shown in Figure 2.9. The reason of such a node distribution is 

due to the different sizes of Si’s, as observed in Figure 2.8.  

 

 

 

 
 

Figure 2.8: The modified graph structure 
 

 

 

The irregular distribution of Si’s on the graph introduces a tendency to group the 

regions having more connections together without checking the similarities in 

between. This tendency is based on the formulation of the NCIS; when the 

minimization problem is analyzed it is observed that the normalization parameter 
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TotalW(A,V) is dependent on the total link cost which is obtained for each node 

by the summation of equal number of link weights for the regular graph. 

 
 

Figure 2.9: Segment based graph has an irregular structure. 
 

 

 

Therefore, each link weight affects the partitioning process with the same ratio. In 

the irregular distribution however, since the number of links for each node differ, 

the nodes with more links have more terms in the summation and will result in a 

higher confidence, although the link weights are not strong enough. This 

phenomenon surpasses the weak links over the strong links, if they belong to a 

node having higher number of links and causes instabilities in the decomposition 

of the eigenvectors which results in an erroneous segmentation, although the NC 

is minimized.  

 

The irregular distribution can be handled by enforcing each node to have same 

number of links. However, since the graph is undirected and the affinity matrix is 

symmetric, it is not easy to implement such an approach. The equalization method 

can be approximated by limiting the number of links for each node and allowing 

less variation on the distribution of the number of links. The limitation provides 

nodes to have similar number of links which can remove the suppression on 



 
 
23

strong links belonging to nodes with less links. Although the solution does not 

force nodes to have same number of links, it dramatically decreases the 

irregularity. 

 
 

2.6 Experimental Results 
 
 
In this section, comparison of the algorithms is performed on different images and 

the effects of the modification on the NC segmentation algorithm are analyzed in 

detail. The first image utilized during the experiments is given in Figure 2.10 with 

its ground truth for segmentation. Mosaic 169H169H[3] image is complicated in the local 

sense; however, the global characteristics help to separate the regions having 

different textures. The segmentation results of RSST, MS, NC and the modified 

NC are given in Figure 2.11. As it can be observed, the modified NC outperforms 

other methods and segments the image similar to the ground truth for 

segmentation. RSST also gives an acceptable segmentation output compared with 

the other local method MS. When the segmentation result for MS is analyzed, the 

tendency to smooth the similar textured regions can be observed clearly. The 

second image (Cow 170H170H[3]) in 171HFigure 2.12 has different characteristics compared to 

Mosaic; the local methods perform better segmentations than the global methods. 

However, the difference is not significant enough; in addition the proposed 

modified NC method refines the normalized cut algorithm and segments the 

image similar as the local methods. The Objects image in Figure 2.14 is best 

segmented with the proposed method, since the details of the cup object in the 

scene can also be observed although it is not differentiated in the ground truth, as 

shown in 173HFigure 2.15. RSST also performs quite well compared with the other 

local segmentation method, MS. The refinement of the segmentation is clearly 

observed among the global techniques, as the proposed method preserves the local 

characteristics during the global minimization. For the Baseball image in 174HFigure 
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2.16 and 175HFigure 2.17, the performance of MS and RSST is better compared to the 

graph-based methods.  

Up to this point, the visual quality of the segmentation methods have been 

measured in subjective terms; however, for an objective comparison the Mean-

Square error values of the resultant segmentations should be utilized with respect 

to the ground truth. MSE is evaluated as follows: 
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        (2.11) 

 

where G is the ground truth segmentation mask of the image and Gk is the 

segmentation mask of the kth method. The resultant MSE plots for the images 

above are given in Figure 2.18. 

 

According to the MSE plots, the proposed segmentation method has the minimum 

MSE values for the Mosaic and the Baseball images, the Mean-Shift 

segmentation is best for the image Objects and NCIS has the minimum MSE for 

the Cow image. In the overall case, the proposed method has the minimum total 

MSE for the images given above. Hence, the proposed algorithm provides some 

refinements over the Normalized-Cut segmentation method in both visual and 

MSE criteria. In addition, considering the well-known local methods of RSST and 

MS, the proposed algorithm is compatible with the state of art segmentation 

algorithms and unites the advantages of the local and global methods. 

 

In eigen based approaches, the eigenvectors indicate the regions to be segmented 

according to different values assigned to its entries. A sample plot of the second 

eigenvector for the Objects image is given in Figure 2.19, the eigenvector 

distribution among the pixels indicate the regions to be separated by the different 

value levels. In the eigen-plots, the red colored pixels have higher values in the 

eigenvector and the blue pixels have smaller values. 
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In the proposed method, due to the irregular distribution of the nodes 

corresponding to small patches, limiting the number of links for each node is 

performed. Such a limitation provides the tendency of grouping the nodes having 

higher number of links to be removed to some extent and a better segmentation of 

the image. The second and third smallest eigenvectors of the Mosaic image is 

given in Figure 2.20, for the unlimited link and the limited link cases of the 

modified NC. In this figure, (a), (b) correspond to the 2nd and 3rd smallest 

eigenvectors for the case where the link number is limited. The regions to be 

segmented are clearly observed with high value changes at the actual object 

boundaries; however for the unlimited case, the eigenvectors in (c) and (d) do not 

have the segmentation information properly. The reason behind this fact is that, 

the nodes of the graph are distributed irregularly; hence the regions to be 

separated are determined according to the number of the links instead of the 

strength of the links. The segmentation according to the extracted eigenvectors is 

given in 179HFigure 2.21 for both of the cases. The increase in the performance of the 

segmentation is clearly observed, the segmentation for the limited case is more 

realistic and closer to the ground truth than the partitioning without the limiting 

the number of the links for each node. Thus, the modification in the construction 

of the affinity matrix improves the segmentation results. 
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Figure 2.10: (a) the Mosaic image, (b) the ground truth segmentation.  

 
 

Figure 2.11: The segmentation results of Mosaic (a) RSST, (b) MS, (c) Normalized Cut, (d) 
Modified NC. 
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Figure 2.12: Cow image (a) the color, (b) ground truth segmentation. 
 

 

 

 
 

Figure 2.13: The segmentation results of Mosaic (a) RSST, (b) MS, (c) Normalized Cut, (d) 
Modified NC. 
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Figure 2.14: (a) The objects color image, (b) the ground truth segmentation 
 

 

 

 
 

Figure 2.15: The segmentation results of the object image (a) RSST, (b) MS, (c) Normalized 
Cut, (d) Modified NC. 
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Figure 2.16: The Baseball image with its ground truth segmentation. 
 

 

 

 
 

Figure 2.17: The segmentation masks of the Baseball image (a) RSST, (b) MS, (c) 
Normalized Cut, (d) Modified NC. 
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Figure 2.18: The Mean-Square error plots of the algorithms for the images above 
 

 

 

 
 

Figure 2.19: (a) The plot of the second smallest eigenvector with NC method, (b) with 
modified NC method. The red colors indicate higher values and blue colors indicate smaller 

values.  
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Figure 2.20: (a), (b) the second and the third smallest eigenvector of the Mosaic image with 
the number of links limited; (c), (d) the eigenvectors for the unlimited case. 

 

 

 

 
 

Figure 2.21: The segmentation results of the Mosaics (a) unlimited link, (b) limited link 
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CHAPTER 3 
 

 

DENSE DEPTH FIELD ESTIMATION 
 

 

 
This chapter starts with a brief introduction about the geometric relations between 

3-D scene points and their projected 2-D images. This background material is 

followed by a literature survey on dense depth estimation methods. In the 

following sections, a novel algorithm is presented in three main parts. In the first 

part, segment-based stereo matching is explained which involves plane- and 

angle-sweeping operations. In the following part, this algorithm is extended to 

multi-view case by exploitation of existing tools in stereo matching. The 

refinement methods, which are based on segment split algorithm and pixel-based 

optimization via belief propagation, are discussed in the next section. Finally, 

experimental results are given on different type of data sets and the reliability of 

the algorithms is discussed.  

 
 

3.1 Camera Model 
 
 
The observation of a scene through an imaging device can be modeled via a 

transformation from 3D world coordinates to 2D image coordinates. Except for 

certain special cases, the corresponding transformation is non-linear due to the 

radial lens distortion 180H171H[16] resulted from the physical structure of the lenses. 

However, the non-linear characteristics of the transformation can be removed by 
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pre-processing or be neglected and the basic linear pinhole camera model is 

obtained. 

 

 

 

 
 

Figure 3.1: Basic Pinhole Camera Model 
 

 

 

In basic pinhole camera model, a point in 3D world is projected onto 2D image 

plane by the intersection of a line passing through the 3-D point and a fixed 

location, called as the camera center, which is located at focal length (f) distance 

from the image plane. Such a transformation from 3D to 2D can be represented by 

a 3x4 matrix which is denoted as camera projection matrix 181H172H[16]. 
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In equation 3.1, the 3D world and the camera coordinate systems are located on 

the same Euclidean system, however in general case; there is also a 
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transformation between these two coordinate systems. Therefore, the camera 

projection matrix should be generalized by applying a rotation and a translation 

transformation between two coordinate systems. The inclusion of this 

transformation leads to the following form 

 

XtRKPXx ]|[==                                   (3.2) 

 

where K matrix (3x3) is the intrinsic parameters derived via focal length and 

internal calibration information; R matrix (3x3) is the rotational and t (3x1) matrix 

is the translational transformation among Euclidean systems, known as exterior 

parameters. X denotes the point in 3D world coordinates and x is the pixel 

coordinates on the image plane. A camera is denoted as calibrated, if both 

exterior and the interior parameters are known a priori. 

 
 

3.2 Epipolar Geometry 
 
 
Two arbitrarily located cameras in a 3D scene define a geometric relation, known 

as epipolar geometry, which has specific properties. In Figure 3.2, the elements of 

the epipolar geometry, such as epipolar plane, baseline, epipole and epipolar 

lines, are illustrated. The plane defined by a 3D point and two camera centers is 

denoted as epipolar plane, whereas the baseline is the line connecting two camera 

centers and the epipoles are the intersections of the baseline with the image 

planes. Epipolar lines are the intersections of the image planes with the epipolar 

plane and all of the epipolar lines pass through epipoles 182H173H[16]. 

 

Each point in one image is mapped to a distinct epipolar line in the other image; 

hence they are quite important in computer vision. This property is illustrated in 

Figure 3.3 with an example indicating the role of epipolar lines in 3D information 

extraction. In Figure 3.3183H, the back projection of the point x in camera-1 to 3D and 
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its corresponding projections to the image plane of camera-2 are shown. By using 

the epipolar relation between two images, the 3D position of a point in one of the 

images can be extracted, if its correspondence is known at the other image.   

 

 

 

 
 

Figure 3.2: The epipolar geometry 
 

 

 

In addition to epipolar geometry, there is another special transformation between 

a camera and a plane in 3D. This transformation can be denoted as homography 

which is defined as the point-to-point mapping between a 3D point on a ground 

plane and its observed 2D point in image plane, Figure 3.4. The homography 

matrix can be derived from the given projection matrix (3.3) and the plane 

equation of a 3D plane (3.4). 
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Figure 3.3: The correspondence of x is on its corresponding epipolar line which is shown in 
red 

 

 

 

By writing the value of Z in terms of plane parameters and other independent 

variables, as 

0)(
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Then the image formation equation can be rewritten as follows  
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The third variable in the last term of (3.6) can be removed with the transformation 

of  the projection matrix into a 3x3 matrix by embedding the third column into the 

other columns according to plane parameters, as 

 

 

 

 
 

Figure 3.4: The planes in 3D define homographic relation between different cameras 
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Hence, the reduced matrix forms the homography matrix between the camera and 

the 3D plane, (3.8). 
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3.3 Literature Review for Dense Depth Estimation  
 
 
Dense depth-map estimation has attracted many researches due to its wide 

application areas in computer vision, such as 3D object modeling 184H174H[17], 

segmentation and image-based rendering 185H175H[18]. There are mainly two approaches 

for dense depth estimation, stereo 186H176H[20] and multi-view 187H177H[51] matching. In stereo 

approach, the images taken from two horizontally aligned cameras are utilized to 

estimate the horizontal shifts, or disparities of each pixel. This system is similar 

to the human-vision system, with horizontal placement of the cameras as the eyes.  

Two views can also be aligned horizontally by rectification 188H178H[19], if the cameras 

are not parallel to each other. An excellent taxonomy of the stereo algorithms is 

given by Szeliski et.al in 189H179H[20]. On the other hand, in multi-view approach, the 

matching is performed among multiple images 190H180H[21]- 191H181H[25]. Although, the past 

research efforts focus on stereo matching more, the advances in capture 

technology and the emerging new applications, such as free-view TV or 3DTV,  
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that require multiple images, has resulted in a tendency towards the multi-view 

matching.  

 

Most of the dense depth estimation algorithms approach the problem by making 

use of two basic assumptions, namely the smoothness of the depth field and the 

high level of visual similarity between image neighborhoods of corresponding 

pixels. The solution for the dense matching problem is usually classified into two 

groups, as local and global techniques 192H182H[20], in both stereo and multi-view cases. 

Both classes utilize the high-level visual similarity by enforcing the matches to 

have similar intensity values or variation within a kernel.  

 

In local methods 193H183H[26]- 194H184H[29], the smoothness of the depth map is imposed explicitly 

and a “winner-take-all” style optimization utilized generally. The matching cost 

function is aggregated by summation or averaging over a support region. The 

window size determines the smoothness: As window size increases the depth map 

becomes smoother. In 195H185H[26], the window size is modulated with respect to the 

intensity gradient in order to use the observed data more efficiently. The 

advantage of the local methods is their real time performance; however they do 

not yield high quality depth maps as global methods do, since they are strongly 

dependent on the intensity values only and the uniqueness of the matching is not 

enforced for all of the images.  

 

In global methods 196H186H[30]- 197H187H[37], the smoothness constraint is utilized implicitly by 

enforcing neighboring pixels to have similar depth values. These methods are 

formulated in an energy-minimization framework and the objective is to optimize 

the global energy for the estimated depth map. Belief propagation via Markov 

Random Field formulation 198H188H[30]199H189H[31]200H190H[32], graph cuts 201H191H[33]202H192H[34]203H193H[35] and dynamic 

programming 204H194H[36]205H195H[37] are the most common optimization methods used in dense 

depth estimation algorithms. 
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Dense depth estimation is a challenging problem due to scene complexity and the 

limitation of the observed data. The complexity problem is tried to be solved by 

some assumptions about the scene, such as planarity 206H196H[38], slanted surfaces 207H197H[39], 

and ordering constraint 208H198H[36], however, all of them indicate specific scene models 

and will not cover all kinds of scenes. Moreover, the occlusions limit the 

observation of the data, and this problem is usually approached by increasing the 

number of the images taken, as in the multiple-view scenario. Since dense depth 

estimation algorithms rely on high visual similarity, they especially fail at un-

textured regions, where the color variation is less, occlusions and object 

boundaries where depth discontinuities are observed.  

 

In the last decade, many region-based dense depth estimation algorithms 209H199H[38], 

210H200H[40]- 211H201H[49] resulting in high quality depth maps have been proposed in order to 

handle depth discontinuities and occlusions, as well as preserve object boundaries. 

The importance of these algorithms is due to the fact that they are neither local 

nor global, although they combine the advantages of both of these methods into a 

single approach efficiently. These algorithms rely on the assumption that the 

scene is composed of small non-overlapping planes, all of which correspond to 

distinct segments obtained via grouping pixels of homogenous color. Hence, 

smoothness constraint is valid within each segment and depth distribution is 

allowed to change sharply between segment boundaries, which generally 

correspond to object boundaries as well.  

 

Region-based stereo matching algorithms mainly consists of 4 steps: In the first 

step, the reference image is over-segmented, in order to obtain non-overlapping 

plane masks. After the segmentation stage, the initial depth map is estimated by 

local stereo matching algorithms for both of the images and the reliable points are 

determined. In the next step, plane parameters are estimated for each segment by 

the help of the reliable points. In the final step, the depth (disparity) distribution 

between segments is determined by different optimization techniques, such as 

greedy search 212H202H[38], 213H203H[45], belief propagation 214H204H[40], graph-cuts 215H205H[42]. The initial 
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segmentation step provides the detection of regions where the planarity 

assumption is valid and distinguishing the regions located at object boundaries 

and having sharp intensity changes. Therefore, in order to estimate the depth 

discontinuities at object boundaries, the segmentation information becomes 

crucial.  

 

Apart from the algorithms mentioned above, the algorithm of Microsoft Research 

Group 216H206H[46] proposes a different approach. In 217H207H[46], there is local matching in the 

segment domain, while treating them as point regions (super pixels) to be 

matched, instead of local matching in the pixel domain, as in the second step of 

region-based algorithms. In addition, 218H208H[46] utilizes a different optimization 

technique and aims to find multiple depth fields corresponding to different images 

used during the depth estimation at the same time. Such an approach is similar to 

the proposed algorithm in the next section, in terms of segment matching and its 

extension to the multi-view.  

 

Although, they result in realistic depth maps, segment-based stereo matching 

algorithms are generally studied in the context of narrow-baseline stereo and for 

almost fronto-parallel cameras, except for the method in 219H209H[46] so far. Hence, they 

are also expected to suffer from wide-baselines and occlusions, as most other 

stereo algorithms. In addition, considering the local stereo matching step of these 

algorithms, it is obvious that they could also suffer for the untextured and large 

regions, since they utilize pixel matching in local domain which might be 

deceptive. Region-based algorithms perform better, where the scene is composed 

of almost planar surfaces; however for more natural scenes including round 

shaped objects, randomly changing surfaces; they might fail due to the planarity 

assumption. 
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3.4 Proposed Stereo Dense Depth Map Estimation 
Algorithm 

 
 
In this work, a novel region-based approach to the dense depth estimation 

problem with some basic differences from the traditional region-based approaches 

is proposed. Special attention is devoted to overcome the difficulties resulting 

from large untextured regions, considerably wide-baseline views, and the effects 

of enlarging or shrinking of some regions due to rotation of cameras which 

validates the fronto-parallel positioning of stereo cameras. In the proposed 

method, each segment that is obtained via color over-segmentation of the images 

is utilized to extract the “primitives” to be matched instead of the individual 

pixels. The term over-segmentation implies the action of obtaining an image with 

relatively high number of regions (relative to the semantic objects in the scene 

and total number of pixels) as a result of any segmentation method. Therefore, 

large and untextured regions are expected to be handled relatively easily, since 

local matching of pixels, which is not reliable at the untextured regions, is 

avoided. The proposed approach provides a strict relation between the pixels 

belonging to the same segment.  

 

The algorithm also provides a multi-view extension, which is important to obtain 

more reliable depth maps by increasing the number of the observed views. The 

major step of the proposed method is plane and angle sweeping of the segments in 

3D during the matching process of the segments. In the angle sweeping stage 

especially, the enlarging and shrinking of the regions are also taken into 

consideration according to the camera positions. Thus, the slanted planar regions 

are handled as well.  

 

The fundamental assumption for all segment-based dense depth estimation 

algorithms is the scene planarity which is often acceptable in man-made 

structures. However, this assumption is not valid in every scene that makes this 
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approach less desirable. In order to relax the planarity assumption and estimate 

the non-planar objects, such as balls, trees, cones; finally a pixel-based refinement 

could be performed, that results in reliable and more realistic depth maps.  

 
 

3.4.1 Definition of Mathematical Expressions and Overview of 
the Algorithm  

 
 
In order to clarify the algorithm, the utilized variables and functions should be 

explicitly defined. In this content, a color image is defined by I, whereas a depth 

image is denoted by DI. As a result of any type of segmentation on I, the ith 

segment is defined as Si, the number of pixels in Si is given as Ni and the set of the 

boundary pixels is expressed with Bi. The dense matching is considered as a 

labeling function, )( iSL , which assigns planes (Di(α,β)) to the segments, Si. The 

union of these disjoint segments forms I¸simply as  

 

U
N

i
iSI

1=

=    ∋   ∅=∩ ji SS , ji ≠∀ and SSS ji ∈,         (3.9) 

 

Moreover, an arbitrary region in an image is denoted as Ri. Di defines the ith depth 

plane and Di(α,β) defines the rotated ith depth plane by the angles α,β around x- 

and y-axes, respectively. Finally, the set of neighboring segments for Si is defined 

by NBi.  

 

Considering the general structure of region-based dense depth field estimation 

algorithms, which result in accurate depth fields, there are mainly four steps and 

the distinctions between these algorithms are mostly generated from different 

optimization techniques at the final stage. In the proposed approach 220H210H[49], the 

number of steps is decreased to three by merging the second and third steps of the 

traditional algorithms with some distinctive methods, such as plane- and angle-
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sweeping. In order to perform these sweeping methods, the epipolar geometry 

between the cameras should be known. Hence, the proposed stereo algorithm 

takes two images and the associated epipolar geometry as input and determines 

the depth field of the image which is assumed to be the reference view.  

 

In the first step of the algorithm, both of the stereo images are over-segmented in 

order to determine regions which correspond to planar patches. In the following 

step, the initial depth map of the reference view is estimated via plane, angle 

sweeping and left-right consistency check between both of the views. Finally, an 

iterative update of the segment location and rotations in 3D is provided via a 

greedy search algorithm, making use of visibility and reconstruction quality 

constraints which finalizes the estimated depth map. The flowchart of the 

algorithm is given in Figure 3.5 and an example is illustrated with the steps of the 

algorithm in Figure 3.6. In the following sections, each of these steps is explained 

in detail. 

 
 

3.4.2 Over-Segmentation of Input Images 
 
 
The main assumption of the algorithm is modeling of the scene via planar 3-D 

patches. For the extraction of these patches and a reliable planar model, these 

planar regions are assumed to correspond to the segments, Si, of homogenous 

color in the images, which usually belong to the same object. Such an approach 

provides similar depth values for the similar colored neighboring pixels.  

 

In order to model the scene properly, the extracted segments should involve 

similarly colored pixels and preserve the local variations in a region, thus the 

over-segmentation becomes a crucial step. If the number of extracted segments,  
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Figure 3.5: The flowchart of the proposed algorithm. 
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Figure 3.6: The steps of the algorithm on a sample stereo image. 
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N, is low, then the local intensity variation might be lost. On the other hand, if it is 

high, then the algorithm converges to pixel-based methods and the local 

information is utilized inefficiently. In this work, two different color segmentation 

algorithms with different characteristics have been employed and the effects of 

different segmentation results are examined. As mentioned in the prior chapter, 

the utilized segmentation algorithms are Recursive Shortest Spanning Tree 

(RSST) 221H211H[3] and Mean Shift (MS) 222H212H[4]. The randomly colored over-segmented 

images via RSST and MS are presented in the experimental results section. From 

these figures, it can be easily observed that MS is insensitive to small intensity 

gradient changes, while RSST divides similar colored regions, even if there is a 

slight gradient change in intensity. Hence, in the following steps, MS is utilized as 

the initial over-segmentation algorithm. 

 

The planarity assumption of the scene enforces depth variation within each Si to 

be smooth, since each segment defines a plane in 3D. Besides, the smoothness is 

also valid between neighboring segments, NBi, which have similar color 

distributions. Hence, depth discontinuities are expected to be observed only at the 

segment boundaries, which have high intensity differences. This approach 

preserves depth discontinuities at the object boundaries, as long as there is an 

intensity gradient among the pixels in NBi, which is the usual case. Finally, the 

over-segmented regions are taken as input for the following initial depth map 

estimation step. 

 
 

3.4.3 Initial Depth Map Estimation via Plane and Angle 
Sweeping 

 
 
Upon the identification of the candidate planar regions via over-segmentation, the 

initial 3D model is constructed. When the related work on segment-based stereo is 

investigated in the literature, it can be observed that most of the algorithms 

perform a simple block matching in the pixel domain and then a plane-fitting 
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operation in order to estimate 3D plane models for each segment 223H213H[40]- 224H214H[49]. 

During the model estimation step, only the pixels, which are reliable in left-right 

consistency check, are utilized.  

 

In the proposed method, a novel approach based on plane- and angle-sweeping is 

utilized instead of these two steps of the traditional methods. One of the novel 

parts of the proposed algorithm is performing a matching for a group of pixels 

(segment) to a region (Ri) as Si→Ri, instead of matching pixels individually. The 

new approach increases the robustness of the algorithm against noise and 

repeating regions, since it utilizes similarity of a group of pixels, instead of a sole 

pixel. Application of plane- and angle-sweeping for the segments individually is 

another novel approach of the algorithm which provides a plane search without 

violating the planarity assumption. 

 

There are three main parts in the initial depth map estimation step. In the first 

part, plane sweeping is performed and Di’s are assigned for all Si. In angle 

sweeping, the planes are rotated around x- and y-axis and the best orientation with 

the depth position are determined, Di(α,β). The plane and angle sweeping are 

performed for both of the images and the 3D plane parameters are estimated for 

each segment in these images. At the final step, the reliable segments of the 

reference view are determined by a left-right consistency cross-check by the 

extracted plane parameters. For the unreliable segments, a final search is 

performed and the initial depth map estimate is obtained. 

 
 

3.4.3.1 Plane Sweeping 
 
 
The plane sweeping approach has been introduced by 225H215H[51], in order to match 

object boundaries between multiple images. The main idea stems from the 

requirement of relating multiple edge images to each other and extracting depth 
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information. In this manner, a surface in the reference view can be easily back-

projected to 3D space and by using the projection matrices, the corresponding 

locations of the surface in the other views are determined easily. The relation 

between images is defined via homographies which also determines the projective 

transformations between planes. In order to extract the homographic relations, the 

depth planes which are parallel to the reference image plane are defined at 

different depth values. 

 

In this work, plane sweeping is utilized in order to assign Di values for the 

segments, Si. As indicated, the depth (i.e. distance from the reference image 

plane) is assumed to be constant among a plane and the scene is sampled with a 

number of planes that are parallel to the reference image plane, as in Figure 3.7. 

The distance between parallel planes are determined by the disparity range and 

the epipolar geometry between the reference view and the closest neighboring 

view. 

 

Once the plane equations are determined, the relation between two views can be 

defined via homographies with the given projection matrices, which are explicitly 

given in the following equations: 
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where Pj
i corresponds to the jth column of the projection matrix of the ith camera 

(Ii) and ni indicates the plane normal parameters. In the equations, Hi(d) defines 

the homography from the dth 3D plane to the ith cameras image plane and Hi,j 

defines the homography from the ith camera to the jth camera. In the stereo case i, j 

are equal to 1 and 2, respectively (see Figure 3.8). 
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Figure 3.7: The space is divided into parallel depth planes perpendicular to the principal 
axis of the reference camera. 

 

 

 

Each homography defines a one-to-one mapping function between two images, 

which is defined as follows: 

 

2: IIf refH →  , 2)( IRSf iiH ⊂=∋          (3.12) 

ii RxSxxHx ∈∈= ',,'          (3.13) 

 

In the plane sweeping part, the aim is to estimate the best depth plane for each Si. 

Actually, utilization of 3D planes is crucial, since the multi-view extension of the 

algorithm can be easily obtained. In addition, such a parameterization also yields 

rotation around x- and y-axis that is simpler to perform. After the homographies 

are extracted for different depth planes, H(d), the depth values are assigned to the 

segments by minimizing a cost function based on intensity similarity measure 

between two views. For an arbitrary segment Si, the cost function corresponding 

to the dth plane can be written as: 
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Figure 3.8: The homographic relation between two views via depth planes 
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When the cost function in (3.14) is analyzed, it can be observed that all the pixels 

have contribution to the cost value of the segment. However, when typical scene 

geometry is considered, there might be partially occluded sub-regions within 

some segments which will result in unreliable cost values. As illustrated in 226H216HFigure 

3.9, segment-A has an occluded region (black) which can not be observed by the 

other camera. Hence, the contribution from such an invisible part should be 

eliminated to form a more reliable cost function. The elimination is not trivial, 

since the visibility of the pixels can not be determined, unless all the neighboring 

depth values are known.  
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Figure 3.9: Typical example for partially occluded segments.  

 

 

 

A simple idea is proposed in order to initially handle such cases at the plane- and 

angle-sweeping step. It is assumed that if the pixel similarity cost is above a 

threshold, than it should be in the partially occluded region within the segment 

Thus, the contribution of the pixel should be discarded in the summation term. 

Although the assumption is not valid for all cases, it provides some refinement 

and reliability in the cost function. Some tests have been performed in the 

experimental results section in order to compare the original cost function and the 

modified version, and the improvement can be observed clearly in the 

simulations. This new cost function could be written in the following way: 
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In (3.15), Nthreshold is the number of pixels that have costs below the threshold. 

Initial depth planes are estimated by minimizing the modified cost function in 

(3.15) for each segment in both of the images, as 

))((minarg)(
:1

dCSL
iSMdi =

=     SSi ∈∀                          (3.17) 

 

In other words, for each Si in both of the views, a labeling is performed via 

minimization over M given depth planes. Moreover, the plane list is sorted in the 

ascending order of the cost values, so that the best K planes are determined for 

each segment. This step is also important, since the sole application plane 

sweeping might not give the best depth plane due to the inaccurate constant depth 

assumption. The determined K planes is taken into consideration in the angle 

sweeping step and such a limited input to the angle sweeping step speeds up the 

algorithm.  

 
 

3.4.3.2 Angle Sweeping 
 
 
In the previous step, the planes are constructed towards the direction of the 

principal axis of the reference camera. Therefore, all the segments are assumed to 

have constant depth values among their pixels. The constant depth assumption is 

valid as long as the size of Si is considerably small, since small segments 

correspond to regions where depth variation is limited. However, as the segment 

size increases, the area of the surface in 3-D space becomes larger and the 

constant depth assumption might be violated. Actually, such a scenario is valid, as 

long as there are slanted or complex surfaces in the scene. Considering the 

planarity assumption of the proposed algorithm, only slanted surfaces are focus 

upon, and the complex surfaces which involve more natural shapes are simply out 

of the scope of this thesis.  
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In order to increase the range of the algorithm from the constant depth surfaces to 

slanted surfaces, the angle sweeping 227H217H[55] is required. In angle sweeping, the 

segments which are assumed not to locate at constant depth (having areas larger 

than an Area Threshold, AT) are rotated in x and y directions (α,β) around their 

centroids (see Figure 3.10). The rotation is performed within the angle range of 

the viewing rays from the camera centers to the centeroid of the segment in 3-D 

according to the corresponding depth, since the segment should be observed by 

both of the cameras properly. The homographic relation between stereo images 

via the segment planes is not violated, since rotation only changes the normal 

directions of the planes. Hence, the new homographies can be determined, after 

accordingly modulating the plane normals with respect to the rotation angle in x 

and y directions as follows: 
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Moreover, the rotations also do not disturb the smoothness between the pixels 

belonging to the same segment, since the depth values change according to the 

new plane parameters which defines slanted surfaces.  

 

In angle sweeping, the cost function that is utilized in plane sweeping step is 

extended to a new penalty term with three parameters; two rotation angles, and a 

depth, to define finer descriptions of the planes as follows 
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Figure 3.10: The segments are rotated around their centroids. 
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Thus the optimization is performed in three dimensions. Moreover, the labeling 

function defined in (3.17) is modified according to the increase in the number of 

parameters to obtain, as in (3.21). 
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The angle parameters for considerably small segments are set to zero. In order to 

save time and computation, angle sweeping is performed for only K planes which 

result with the best K plane sweeping costs, instead of the whole space. 
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As a result, after the employment of the sweeping operations consecutively for 

each segment in both of the stereo images; the plane parameters are extracted via 

angle positions (αi ,βi) and depth locations (di). This information also provides the 

depth values for each related pixel within the segments individually. Hence, two 

depth maps are obtained independently for both views. The cross relation between 

these depth maps should be considered in order to obtain more reliable depth 

maps, since the extraction is performed independently up to this stage. In the next 

step, the depth map for the reference view is refined via left-right consistency 

cross check. 

 
 

3.4.3.3 Consistency Checks for the Initial Depth Maps 
 
 
The reliability of a depth map in stereo images is usually checked by comparing 

the depth maps of the two different views extracted independently 228H218H[38]- 229H219H[45]. 

However, the matching should be crosswise, in other words, if a pixel in the 

reference view is matched to a point in the other image by the help of 3-D 

information defined for one of the views, then this matched pixel should also 

point back the same pixel, as in Figure 3.11. In Case-1 for Figure 3.11, the 

estimated depth can be assumed to be reliable for the pixel in the left view, 

whereas for Case-2, it is obvious that the resultant depth value is erroneous. 

Hence, the reliable regions in a depth map can be detected by such a procedure. 

 

In the case of segment matching, the problem, as well as the solution, is both 

similar. The reliable segments are detected via a left-right consistency check in 

pixel domain. The reliability measure of a segment is defined as the percentage of 

the reliable pixels that it contains. If the percentage of the reliable pixels within a 

segment is above a threshold (noting that 70% is used throughout this thesis), 

then the segment can be assumed to be “reliable”. After performing this check for 

each segment, the reliable segments and depth map can be determined.  
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Figure 3.11: Left-right consistency check between two views 
 

 

 

After the reliability check, there will be a set of inconsistent segments which 

contain unreliable pixels. The reason behind such a result can be due to noise, 

violation of planarity assumption, repeated structures or wrong segmentation due 

to lack of texture. In order to complete the resulting depth map and fill the holes 

due to inconsistent regions, a new search is performed via plane and angle 

sweeping only for the inconsistent segments. During that stage, one-to-one 

correspondence property is utilized to obtain a more realistic depth map. One-to-

one correspondence is a very powerful constraint, since each pixel in the 

reference view should have only one correspondence in the second view, or vice-

versa. In order to apply this property, initially the second image is reconstructed 

by (3.22). 
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where Ri corresponds to the mapping of the reliable segment, Si, in the reference 

view to the other view through the estimated homographies.  

 As a result of the reconstruction, the texture values for some regions will be 

undetermined, since the segments, which are not reliable, are not warped to the 

second image. Thus, the search for the inconsistent segments is performed within 

the planes which map the segments to those unfilled regions. In other words, the 
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unreliable segments are enforced to be mapped to the undetermined regions.  

During the search, the visual similarity is calculated with a similar cost function 

that is utilized during plane- and angle-sweeping step. The visibility can also be 

constrained, since the depth values for the reliable segments have been obtained. 

Therefore, the cost function is modified by considering the visible pixels. The 

updated cost function can be written as follows: 
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where Nvisible corresponds to the number of pixels that are visible during the 

warping of Si  and xdHx ref ).,,(' 2, βα=  

 
 

3.4.3.4 Iterative Update 
 
 
In the first two steps of the proposed algorithm, over-segmentation of the stereo 

images is determined and then an initial depth map of the reference view is 

estimated via plane- and angle-sweeping. During this procedure, only the intensity 

similarity has been utilized and no constraints on (neighboring) segments have 

been considered. As mentioned at the beginning of the chapter, the depth map of a 

scene should be smooth, especially where the intensity variation is low. The 

smoothness is enforced to exist within segments by assigning planes in 3-D for 

each segment, but no smoothness assumption is enforced for different segments 

that belong to the same surface. In order to obtain smoother and more realistic 

depth maps, the initial estimate should be refined by some extra constraints. In 

this section, two more constraints are utilized for enforcing smoothness between 

segments and the visibility of the points.  
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In order to constrained the assumptions above, the minimized cost function in 

(3.20) is updated with a smoothness term that takes depth differences of the pixels 

on the boundaries of the segments, Bi’s, into account, as follows 
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In the above equation, DI is the current depth map, Vi is the set of visible pixels, 

and λ is the weighting factor of the smoothness term. In (3.24), the reconstructed 

image, Ir, is obtained by warping all of the segments in the reference image onto 

the other view via the homographies between two images as follows 
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The reconstruction quality determines the reliability of the estimated depth map as 

given in (3.24). During such a reconstruction, some pixels in Ir will have more 

than one correspondence from the pixels on the reference image. In this case, the 

pixel, closer to the camera, is rendered which is actually the visibility constraint, 

as illustrated in Figure 3.12. The reconstructed image is stored in a Z-buffer 230H220H[45] 

and the pixels on the top of this Z-buffer are utilized for the intensity filling in 

order to implement visibility. The intensity similarity between the reconstructed 

image and the original one is measured among the visible pixels as well.  

 

The minimization of ( )βα ,,' DC
iS  in (3.24) with respect to D, α, β for each 

segment is np-complete and there are different types of approximate solutions, 

such as graph-cuts 231H221H[41], belief propagation 232H222H[40]. In this thesis, a method, which is 
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Figure 3.12: Visibility problem: Black regions indicate the invisible pixels, whereas the gray 
ones are visible 

 

 

 

similar to the greedy search algorithm given in 233H223H[38] and 234H224H[45], is utilized. In this 

method, for each segment, a search is performed in the depth space bounded with 

the depth planes of its neighboring segments. If the segment is considerably large, 

angle-sweeping is also applied within the bounded region. The model, angle and 

depth combination, which gives the best improvement in the cost function, is 

assigned to the segment, if there is no more improvement; hence, the current 

model remains unchanged. As an example; for the segment with plane d4 in 

Figure 3.13, a greedy search is performed among the depth space bounded with 

planes d1, d2 and d3 and the best plane model is determined. The update of these 

models is achieved after the search is performed for all of the segments, since the 

best models are determined according to the previous models of the neighboring 

segments. The update search is iterated until the number of the updated segments 

is below a threshold, (noting that 5% of the total number of the segments is used 

throughout this thesis). 

 

 



 
 
61

 
 

Figure 3.13: The neighboring segments bound the search space. 
 

 

 

The iterative update method smoothes resulting depth map, since the segments are 

enforced to have similar planar models with their neighboring segments. 

Moreover, the visibility is considered rigorously and the partial occlusion problem 

that is explained during plane-sweeping step is also handled successfully. The 

contribution from the invisible pixels is neglected; hence, the intensity similarity 

part of the cost function becomes more reliable. 

 
 

3.5 Proposed Multi-view Dense Depth Map Estimation 
Algorithm 

 
 
If the advances in 3-D application areas are examined, popularity for multiple 

camera setups and multi-view video is observed in the last couple of years. The 

increase in the number of captured images from different cameras increases the 

number of the observed data for the same scene. Hence, utilizing two images, 

instead of multiple images in such cases makes stereo matching algorithms 

undesirable. As explained in the previous section, stereo matching has some 

problems due to the limitation of the observed data and they might fail for wider 
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baseline image pairs in which the scene contains occlusions frequent and repeated 

patterns. The utilization of multiple images removes the disadvantage of the 

limitation of data and makes the extension of stereo algorithms to multi-view 

inevitable. Considering the formulation of the proposed segment based stereo 

matching algorithm, the extension to multi-view is relatively simpler. The planar 

structures are already in 3D; hence, the projection of these planes to the additional 

images can be easily obtained by only the utilization of new projection matrices. 

 
 

3.5.1 Extension to Multi-view Dense Depth Estimation 
 
 
The general structure of the multi-view extension is also similar to the stereo 

matching case 235H225H[56]. In the first step, the over-segmentation of the reference image 

takes place, as in its stereo counterpart. There is only a minor difference in the 

segmentation step, such that only the reference image is segmented, while the 

other images are not processed during this step. In the second step, the initial 

plane parameters for the segments in the reference view are estimated via plane 

and angle sweeping. Finally, the plane parameters are updated with the same 

optimization technique, as given in the stereo matching method. The results 

obtained by the multi-view extension are presented in the experimental results 

subsection. 

 
 

3.5.2 Plane and Angle Sweeping for Multi-view Depth Estimation 
 
 
Upon obtaining the candidate plane patches in the reference view, as in stereo 

matching algorithm, the initial plane positions and orientations are determined by 

the sweeping approaches. Initially, the space is divided into parallel planes among 

the principal direction of the reference camera. The depth values for the planes are 

determined according to the epipolar relations between of the reference view and 



 
 
63

the closest neighboring view. The sweeping methods are performed sequentially, 

as in the stereo part. First, for each segment, the best K number of plane positions 

is determined, after minimizing a cost function based on the intensity similarity. 

Contribution from multiple images during warping step enhances the cost 

function for multi-view case over stereo matching. The mapping is provided from 

the reference view to the other views (k) as follows:  
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In (3.26), Ri
k corresponds to a region in kth image to which Si is mapped. For each 

camera, the homography matrices between the reference camera and itself among 

depth planes (as illustrated in Figure 3.14) are determined by (3.10) and (3.11), 

after modulating the plane normals according to α and β as in (3.18) and (3.19). In 

addition, the cost function is also extended to the multiple-view case, as given in 

(3.27). 
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In (3.27), Nk
Threshold indicates the number of pixels of Si that are below the 

threshold when the segment is warped to the kth camera. Initially, the angle 

parameters α and β are set to zero for all of the segments in the plane sweeping 
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part. After the best K depth planes are determined for each segment by (3.27), 

angle sweeping is applied among these depth planes. Considerably large 

segments, where the constant depth assumption is erroneous, are rotated in x and 

y directions around their centroids and the best angle positions and depth 

locations are estimated by the minimization of (3.27). Finally, the initial depth 

map estimate of the reference image is obtained after the labeling of plane 

parameters to segments, as 
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Figure 3.14: The segments in the reference view are mapped to other images via 
homographies.  
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3.5.3 Iterative Update 
 
 
The initial depth map should be refined with the smoothness and visibility 

constraints, as explained in the stereo matching section. The method in multi-view 

case is similar to the update approach in stereo matching. Initially, the 

reconstruction of each image is performed from the depth map and the reference 

view as follows:  
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Then, the cost function in (3.27) is modified with the additional smoothness term 

calculated among neighboring segments. In addition, the contribution of visible 

pixels is utilized instead of the pixels below the intensity similarity threshold in 

order to handle the occlusions; and the total cost is obtained by the summation of 

the cost values belonging to each image individually. Thus, the modified cost 

function can be given as 
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The final depth map is estimated, after performing an iterative greedy search for 

each segment as in the stereo matching part. At each iteration, the models which 

give the best improvement in the cost function are assigned to the segments. The 

updates are performed at the end of the iterations and finally, the iterations stop 

when the updated segment number is below a threshold.  
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3.6 Refinement Methods 
 
 
The proposed segment-based dense depth map estimation algorithm relies on the 

initial segmentation of the reference view. The extracted patches are treated as 

super-pixels and the best orientation with the depth value is searched for each 

super-pixel among the 3-D space. This approach provides good estimates, 

especially at the untextured and planar regions. Considering the general structure 

of the algorithm, the segmentation is based on only the color information, since 

there is no extra information, such as depth or any interactive segmentation as an 

initial input. Therefore, the reliability of the proposed method is strongly related 

with the initial segmentation. Hence, any errors during the segmentation of the 

reference view might cause errors in the estimation of the depth and orientation of 

the patches. Throughout the proposed method, the scene structure is assumed to 

be planar. In general, scenes might contain different structured objects such as 

curved shapes, irregular surfaces or natural shapes. The proposed algorithm is 

incapable of handling these cases due to planarity assumption. In order to increase 

the overall performance and decrease the segmentation and planarity dependency 

of the algorithm, some modifications are necessary. 

 

In this part, two different solutions to the problems resulting from initial 

segmentation and planarity assumption are proposed, respectively. In the first sub-

section, the region-split algorithm for the segmentation errors is presented. Next, 

the pixel-based refinement via belief propagation is introduced which is proposed 

to relax the planarity modeling and optimize the final depth map in pixel domain 

 
 

3.6.1 Region Splitting 
 
 

The region splitting algorithm aims to decrease the dependency of the initial 

segmentation on the depth map estimation algorithm. Due to color or intensity 
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similarity, some regions that are located at different depths in the 3D scene can be 

merged into one single segment; hence, they are forced to locate on the same 

plane. Such regions should be detected, separated and re-estimated to refine 3D 

model of the scene correctly. 

 

Detection of mis-segmented regions is a difficult problem, since each segment has 

strong color consistency among their pixels. Such a property enforces to utilize 

additional information besides the color distribution, in order to split the 

mismatched segments. In the proposed approach, the extracted depth/orientation 

information of the segments is utilized to detect the sub-regions for splitting. The 

algorithm has two steps; in the first step, the segments are re-segmented within 

their bounds and they are divided into subregions which have stronger color 

consistency than the whole segment (3.33), as  

 

{ }imiiii SSSSS ,.....,,, 321→  }{ Ni ,...,2,1∈∀                 (3.33) 

 

After the re-segmentation step, the extracted 3D model (depth/orientation) is 

tested and the reliability of the model is determined for each sub-region. If 

),,(),,( iiiSiiiS DCDC
iim

βαβα > , then a new depth search is performed for the 

corresponding sub-region, Sim. The depth that gives the minimum cost is assigned 

to the region and if it is out of some predetermined bound (noting that %5 is used 

through this thesis) of the initial depth than the sub-region is splitted from the 

segment. Hence, the mis-segmented regions are detected and separated when the 

procedure is applied for all of the segments. As a result, a new segmentation 

output is obtained by the separated segments which have a stronger color 

consistency than the previous segments. 

 

After the detection and splitting operations; the depth map is refined via a re-

estimation of the plane parameters with the new segment distribution. During the 

refinement, the steps explained in stereo and multi-view matching are utilized, 
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which are plane-sweeping, angle-sweeping and finally, iterative update. Hence, 

the initial segmentation is updated with the splitted version and the final depth 

map is estimated. 

 

The splitting method can be summarized in Figure 3.15. The initial segment is 

divided into a number of sub-regions that are illustrated with different colors and 

then the sub-regions that do not fit correctly to the estimated plane model of the 

initial segment are detected via model check and the cost value comparison. 

Hence, a new segment is obtained. Moreover, the separated sub-regions are also 

considered as distinct segments so that a finer segmentation can be obtained.  

 

 

 

 
 

Figure 3.15: The steps of the region splitting algorithm.  
 

 

 

3.6.2 Belief Propagation 
 
 
The proposed algorithm is based on the planarity assumption, in which the scene 

is modeled via plane patches, and every object has planar characteristics. Such an 

assumption enforces each object in the scene to be composed of planes. However, 

this property is not valid for each case and as a result the depth map estimation 

can be erroneous. In order to overcome such an error, a final step is proposed to 

refine the depth maps in pixel wise manner. The operations performed in pixel 
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domain can provide us the relaxation of the estimated planar surfaces and come 

out with more realistic, continuous and optimized depth maps. 

 

The belief propagation (BP) is a well known optimization technique, especially 

used in the Markov Random Fields and proved to work quite well 236H226H[32]. BP is also 

widely used in computer vision discipline for dense depth map estimation 

algorithms and results in realistic depth maps 237H227H[30] 238H228H[31]. In this work, BP is 

utilized in order to refine depth values of the pixels, since BP can be easily 

adapted to the current system and have a smoothing effect that can eliminate the 

small discontinuities between the pixels located at the boundaries of the segments. 

 

The method can be described as follows; the estimated depth map by the proposed 

planarity assumption is utilized during the initial cost evaluation of the algorithm 

described in 239H229H[31]. In 240H230H[31], cost values are assigned for the candidate depth planes 

for each pixel and the depth map is extracted by iterative belief propagation 

among the neighboring pixels. In this case, the initial costs of the pixels are 

evaluated according to the initial depth map as follows: 
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where d is the current depth value of the pixel (x,y) in the depth map, and 

)1,,).(()1,','( , yxdHyx ikref= . The depth values away from the initial depth plane 

of a pixel are penalized by the depth differences with the corresponding initial 

depth. Finally, the refined depth map is obtained by optimizing the cost function 

interrupted with the initial depth map. 
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3.7 Experimental Results 
 
 
The experimental results related to the over-segmentation, plane- and angle-

sweeping in stereo and multi-view dense depth map estimation algorithms are 

given in this section. During the experiments, different data sets are utilized in 

order to indicate the robustness of the proposed algorithm. The segmentation 

section focuses on the importance of the initial segmentation during the detection 

of the planar patches and two fundamental methods are compared. In the next 

section, the results for the individual steps for the stereo matching algorithm are 

presented with the extracted depth maps. Moreover, the modified cost function 

and its benefits over the original cost function are also investigated and clarified. 

Finally, the examples of multi-view dense depth map estimation and the depth 

map refinements are illustrated. 

 
 

3.7.1 Simulations on Segmentation 
 
 
The results for the over-segmentation algorithm that is performed by RSST 241H231H[3] 

and Mean-Shift 242H232H[4] algorithms on Break-dancer 243H233H[53] multi-view image sequence 

are illustrated in Figure 3.16. The segmentation results are colored randomly in 

order to better differentiate the segments from each other. In Figure 3.17, the 

segmentation results for a frame from Uli 244H234H[54] multi-view image sequence are 

given. In addition, the over-segmentation of the reference view of Teddy 245H235H[52] 

stereo image data set is also given in Figure 3.18. 

 

As it can be observed from Figure 3.16, Figure 3.17 and Figure 3.18, the Mean-

shift algorithm segments the smooth regions and the regions that have small 

gradient changes better than the RSST algorithm. RSST is sensitive to small 

gradient changes, especially in Figure 3.16, the floor and the walls; and in Figure  

3.17 the white wall are divided into multiple regions, although the regions belong 



 
 
71

to the same structure. However, the mean-shift segmentation algorithm handles 

the gradient changes and detects the whole structure of similar color without 

dividing into multiple segments. Due to its better performance of Mean Shift 

algorithm, in the depth map extraction step, this algorithm is preferred in order to 

determine the candidate planar patches.   

 
 

3.7.2 Dense Stereo Matching 
 
 
In the first step of the stereo matching algorithm, the best depth planes for each 

segment in both of the view are determined via plane sweeping, as presented in 

Figure 3.19. In this figure, the lighter regions correspond to pixels closer to the 

reference camera, i.e., smaller depth values. The modified cost function in (3.15) 

and its previous version (3.14) are compared in Figure 3.20. As it can be 

observed, with the original cost function, the number of regions that mismatch 

and have unreliable depth values is higher. 

 
At the second step of the algorithm, angle sweeping is performed in order to 

model larger segments and the depth maps are updated, as in Figure 3.21. After 

estimating the depth maps for both of the views, the reliable segments of the 

reference view are detected by a left-right consistency check and a new search is 

performed to fill the unreliable regions. In Figure 3.22, the red-colored regions 

indicate the unreliable segments. After the iterative greedy search optimization 

which considers smoothness and visibility, the final depth map is extracted and 

shown in Figure 3.23. The convergence curve of the algorithm, which shows the 

decrease in the number of refined segments along iterations, is also given in 

Figure 3.24. The number of the updated segments decreases sharply in the first 

five steps and the algorithm converges generally after 5-6 steps. 

 

 



 
 
72

 
(a) 

       
(b) 

 

   
     (c) 

 
Figure 3.16: (a) Break-dancer reference image, Segmentation via (b) Mean-Shift,  

 and (c) RSST. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 3.17:  (a) Uli reference color image, Segmentation via (b) Mean-Shift and (c) RSST. 
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(a) 

  
(b) 

 

   
(c) 

 
Figure 3.18: (a) Teddy reference image, Segmentation via (b) Mean-Shift and (c) RSST. 
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The algorithm is tested on the well-known stereo test bed at 246H236H[52] (Middlebury), 

where many stereo dense matching algorithm results are compared with each 

other. The images are taken from narrow baseline cameras and the occlusions are 

limited. The following results have been obtained for three other images given in 

with their ground truths, Figure 3.25, Figure 3.26. The reconstructed and the 

original images are also given in Figure 3.27. The white regions in the 

reconstructed images correspond to the discontinuities between the segments. The 

proposed algorithm ranked 23rd in the overall case in which the comparison is 

made upon the ground truth images provided by 247H237H[52]. In addition, it can be 

observed that the boundaries are preserved and the depth discontinuities are 

handled in the proposed method. 

 

In addition to those data sets, another comparison has been performed between 

the proposed algorithm, an active 3D camera device which detects the depth of a 

scene via infrared light and a stereo (Bumblebee) camera. The active 3D camera is 

CSEM Swissranger SR 300 and utilizes the flight time of infrared light and gives 

the depth field of a scene in real-time, whereas Bumblebee camera has a built-in 

software and estimates the depth map in real-time based on local methods. The 

stereo images (METU-1, METU-2) taken by the Bumblebee camera are given in 

Figure 3.28 and Figure 3.30; the estimated depth maps via three different methods 

are illustrated in Figure 3.29, Figure 3.31 accordingly. In these figures, the scales 

of the depth images are different for the three different methods. The results 

indicate that, the proposed algorithm models the planar surfaces quite well, 

although the texture information is not sufficient. 
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       (a)      (b) 

     
(c) (d)    
 

Figure 3.19: The left and right views of Cones 248H238H[52] are given in (a) and (b) , (c) and (d) 
indicate the depth map via plane sweeping for both of the views. 

 

      
(a) (b) 
 

Figure 3.20: (a) The estimated depth map without thresholding in the cost function, (b) The 
depth map obtained after the modification. 
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(a) (b) 
 

Figure 3.21: The depth maps estimated by angle sweeping for (a) left and (b) right views. 
 
 

 
 

Figure 3.22: Red colored regions are detected as unreliable after the cross-check. 
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(a) (b) 
 

Figure 3.23: (a) The final depth map for Cones, (b) the ground truth given by 249H239H[52]. 
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Figure 3.24: The convergence curve of the proposed iterative update algorithm 
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Figure 3.25: (a) Tsukuba, (b) Teddy, (c) Venus stereo data sets. 
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Figure 3.26: The left column is the estimated depth maps; right column is the ground truth 
images 
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Figure 3.27: The left column corresponds to the reconstructed images; the right column is 
the original images. 
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Figure 3.28: METU-1 stereo images captured by the Bumblebee camera. 
 

 

 

 
 

Figure 3.29: (a) Proposed method, (b) Bumblebee camera, (c) CSEM Swissranger SR 3000 
for METU-1 
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Figure 3.30: METU-2 stereo data that is utilized during experiments. 
 

 

 

 
 

Figure 3.31: (a) Proposed method, (b) Bumblebee output for METU-2 
 

 

 

3.7.3 Multi-view Dense Depth Map Estimation 
 
 
During this part of the experiments, three different multi-view sequences are 

utilized, Microsoft Break-dancer 250H240H[53], Microsoft Ballet 251H241H[53] and HHI Uli 252H242H[54]. 

The Break-dancer sequence is given in Figure 3.32 with the seven views from 

different cameras. The depth maps estimated via plane sweeping only and (plane 
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+ angle) sweeping are illustrated in Figure 3.33, as can be observed the (plane + 

angle) approach gives better results as explained previously on multi-view depth 

estimation chapter. The effects of the iterative update can be clearly seen in 

Figure 3.34. In order to compare the proposed algorithm with 253H243H[46] which provides 

the multi-view data and the depth map is given in Figure 3.35. The depth map of 

254H244H[46] is smoother than the estimated depth map, but the proposed algorithm 

performs better 255H245H[46], especially at the planar structures, such as the ground floor. 

The extracted 3D model is also illustrated in Figure 3.36; the ground floor is 

estimated without depth discontinuities as can be observed in Figure 3.36. The 

reconstruction of the nearest neighboring view is also illustrated in Figure 3.37 

with the original view. 

 

 

 

 
 
Figure 3.32: Break-dancer multi-view video sequence with seven different camera locations. 
 

 

 

The other set of data provided by 259H246H[53] is the Ballet sequence given in Figure 3.38 

and the extracted depth field is illustrated by Figure 3.39. The planar regions and 

the objects boundaries are modeled reliably. Uli sequence is given in Figure 3.40 

with the estimated depth map in Figure 3.41. In this sequence, the lightening 

condition changes for different cameras, however the proposed algorithm 
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estimates the depth map without being much affected from lightening changes 

due to the region matching property.  

 
 

3.7.4 Refinement Methods 
 
 
Some extra tests have been performed to check whether the proposed splitting 

method performs fine and refines the depth map after segmentation. In the first 

experiment setup, the reference image is intentionally segmented into small 

number of regions so that there will certainly exist erroneously segmented regions 

in the scene. In Figure 3.42, the resultant depth map of the Cones 261H247H[52] image 

sequence is given with such erroneous segmentation results. The regions that do 

not fit to the corresponding 3D model are detected with the proposed method and 

illustrated as red colored regions in Figure 3.42. After the detection, the depth 

map is re-estimated as given in Figure 3.42. When the refined depth map is 

analyzed it can be observed that, some of the segmentation errors are detected and 

re-estimated successfully. Since the initial segmentation is obtained in small 

number of segments intentionally, the number of the regions to be splitted is high.  

 

In the second experiment setup, the depth estimation algorithms are processed 

with a segmentation result that has sufficient number of segments, which is the 

typical case for the matching algorithm. Then the subregions that are mis-

segmented are detected with the same method and the final depth is refined. In 

Figure 3.44, the depth maps of a frame from Microsoft Break-dancer (Figure 

3.43) sequence are illustrated with three steps. In (a), the initial depth map is 

given; in (b) the mis-segmented regions are successfully detected and given in red 

color and in (c) refined depth map is illustrated. 
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(a) 

 

 
(b) 

 
Figure 3.33: (a) The depth map of 4th view estimated from 7 cameras via plane-sweeping, (b) 

The depth map via angle sweeping (darker regions are closer to the camera).  
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(a) 

 

 
(b) 

 
Figure 3.34: (a) The depth map without iterative update, (b) the final depth map. 
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Figure 3.35: The depth map provided by Microsoft Research 256H248H[53] via 257H258249H[46].  
 

 

 

 
 

Figure 3.36: The extracted 3D model of the scene. 
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Figure 37: (a) The reconstruction of the nearest neighboring view, (b) original view. 
 

 

 

 
 

Figure 3.38: Ballet multi-view video sequence with five different camera locations. 
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Figure 3.39: Estimated depth map of  3rd view via the proposed algorithm, darker regions 
are closer to the reference view. 

 

 

 

 
 

Figure 3.40: The Uli multi-view video sequence provided via 260H250H[54]. 
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Figure 3.41: The depth map of the reference view (3rd camera), lighter regions are closer to 
the camera. 

 

 

 

             
         (a)       (b)   

 
(c) 

 
Figure 3.42: (a) The initial depth map, (b) the detected mis-segmented regions, (c) the 

refined depth map with new segmentation 
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Figure 3.43: A frame from Break-dancer sequence. 
 

 

 

Finally, the effect of Belief Propagation (BP) refinement is illustrated in the 

following figures. The BP is applied to the estimated depth map at the final stage 

and the relaxation of pixels from the planar models is provided. The intensity of 

the depth maps are augmented in order to observe the changes clearly. In Figure 

3.45, the refined depth map is illustrated. After the BP refinement, the estimated 

depth map becomes smoother and the mis-matched regions are handled 

successfully. In addition, the fuzzy effects observed at the segment boundaries are 

removed and a more robust depth map is obtained. Other examples corresponding 

to different images are given in Figure 3.46 and Figure 3.47. 

 
 
 
 
 
 
 
 
 



 
 
93

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 3.44: (a) The initial depth map, (b) the detected mis-segmented regions, (c) the 

refined depth map with new segmentation 
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(a) 

 

 
(b) 

 
Figure 3.45: (a) The depth map with planar assumption, (b) the refined depth map via Belief 

Propagation.  
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(a) 

 

 
(b) 

 
Figure 3.46: The smoothness of the depth map increases with BP refinement over the initial 

depth map. 
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(a) 

 

 
(b) 

 
Figure 3.47: The refinement for the Uli multi-view image sequence.  
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    CHAPTER 4 
 

 

MULTI-VIEW VIDEO OBJECT SEGMENTATION 
 

 

 
Segmentation problem is one of the most common and endeavored problems in 

video processing which is related with analysis, compression and visualization of 

the content. As mentioned in Chapter 2, segmentation can be defined as 

differentiating the semantically meaningful objects in a scene from each other and 

defining a new and meaningful representation which helps to interpret the images. 

 

This chapter is composed of 4 parts; in the first part, a classification of video 

object segmentation methods and a brief literature review are presented. The 

following section is devoted to the static scene segmentation from multiple 

cameras, which includes the extracted depth information to the color within a 

graph structure. A weighted graph is constructed with link weights obtained 

according to depth and color, and then a recursive partitioning is performed in 

order to segment semantically meaningful regions. In the third part, dynamic 

scene segmentation is proposed with the update of the link weights by motion 

vectors. Finally, the experimental results are illustrated on various data and the 

comparisons between color, color and motion, and dynamic scene segmentation 

are given. 
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4.1 Literature Review for Video Object Segmentation  
 
 
From the perspective of this thesis, the video object segmentation can be analyzed 

in two main categories, as segmentation in mono-view and multi-view video. So 

far, due to the limitations of the capture technology, video content was usually 

captured via only single camera, whose examples are commonly encountered on 

television or internet. Hence, most of the segmentation algorithms have been 

developed for only mono-view sequences, which utilize color and/or motion 

information among pixels. These algorithms can be classified into three main 

groups, as given in 262H251H[57]; spatial, temporal and spatio-temporal segmentation. The 

spatial segmentation is performed via the color information. In spatial methods, 

the main assumption is about the equivalence of the boundaries of semantically 

meaningful objects in video with the boundaries of the similar colored patches. 

This assumption fails, if the foreground and background regions have smooth 

intensity changes in between. In addition, as soon as the objects make a relative 

motion between each other, even these similar colored patches display a 

consistency of optical flow which defines the boundary between objects. The 

segmentation based on the motion of the patches or pixels is defined as the 

temporal segmentation. However, optical flow is usually unreliable at object 

boundaries and might still cause mis-segmentations. In order to overcome the 

limitations faced during spatial and temporal segmentation, the spatio-temporal 

methods combining both color and motion information, have been proposed by 

many researchers 263H252H[57].  

 

The spatio-temporal approaches might be classified into two main categories 264H253H[57]; 

the algorithms tracking regions from frame to frame and the algorithms that 

consider the whole 3D volume of the pixels within video segments. In the first 

category, the frames are segmented by using the motion or color information and 

the regions belonging to the previous frames are projected into the next frame 

through motion compensation; then the projections are compared with the current 
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regions in order to enforce the coherence between the regions 265H254H[58]266H255H[59]267H256H[60]268H257H[61]. 

The motion similarity is verified by the optical flow vectors. The main 

disadvantage of these methods is the over partition of large regions with large 

depth ranges, especially at the background of the image. This problem is solved 

with model-based approaches, such as assigning affine motion models to the 

pixels or patches 269H258H[62] and 270H259H[63]. In 271H260H[63], a region-based motion segmentation 

method is achieved by the integration of color segmentation and motion. The 

second type of methods involves the segmentation of regions over the 3D spatio-

temporal pixel volume obtained by the accumulation of frames into a video stack. 

The studies in this category have been pioneered by 272H261H[64] and 273H262H[65]. The methods in 

274H263H[66] and 275H264H[67] have modeled the volume with a graph, whose nodes correspond to 

pixels of the consecutive frames. In this graph, the volume pixels are connected to 

each other via links, whose strengths are related to the feature components of 

color, pixel coordinates and motion vectors. The partitioning is performed by 

clustering the data involved in the graph. 

 

The increase in the number of cameras provides additional information about the 

scene that can be extracted by two- or multiple-view geometrical relations. The 

3D model of the scene can be obtained by the estimation of the dense depth field, 

as explained in Chapter 4. Hence, the solution to the segmentation problem in 

multi-view video is inevitably based on the fusion of depth and color information 

by the motion vectors. The multi-view segmentation has received relatively less 

attention so far, since the capture technology has recently begun providing multi-

view data with high visual quality. The preliminary studies on this problem have 

started with the segmentation on stereo images, which were the only available 

multi-view content in the past. The depth-based segmentation is introduced by 

276H265H[68], which utilizes a Markovian statistical approach to obtain segmentation of the 

depth map estimated from the initial disparity and camera parameters. In 277H266H[69], the 

segmentation is achieved by a depth map, refined by contour matching in which 

the contours are obtained from the color image. Thus, the depth and color 
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information are combined to refine the depth map and segment the foreground 

object with high precision.  

 

The segmentation from both depth and color images can be performed in various 

ways. The method in 278H267H[70] utilizes a Markovian framework based on shape, 

intensity and color cues, while 279H268H[71] approaches to the problem as a displacement 

vector relaxation problem. In 280H269H[72] and 281H270H[73], the segmentation output is obtained 

by comparison of the edge information for both depth and color. The active 

contour modeling provides the conjunction of edges extracted independently from 

both of the images in 282H271H[72]. On the other hand, a simple region growing-based 

segmentation that preserves the edge information is introduced in 283H272H[73]. A 

complete system detecting the moving objects and segmenting the 3D 

environment, according to color, depth and motion is introduced with 284H273H[74] and 

285H274H[75].  

 

The research efforts on multi-view video segmentation have focused on only 

stereo image sequences, however as multi-view data becomes available, the 

segmentation problem should be considered in the context of multiple (more than 

two) camera scenario and the algorithms should utilize the observed data more 

efficiently. The requirement of the multi-view segmentation leads to extend the 

proposed color segmentation algorithm in Chapter 2 to the multi-view case. Such 

an extension could be achieved in two different ways; the stationary image 

segmentation which only deals with the frames at the same instant belonging to 

different cameras and dynamic scene segmentation involving the motion vectors 

in addition to color and depth.  

 

4.2 Static Scene Segmentation from Multiple Cameras 
 
 

The color segmentation of an image might contain errors, if the semantic objects 

have different colored sub-regions within their boundaries. An example for such a 
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case is given in Figure 4.1, where the body of the man has sub-regions with 

different dominant colors; hence, the color-based segmentation will over-partition 

this person into distinct sub-regions. Multi-view observation of a scene provides 

the essential information about the depth structure and 3D model of the scene via 

epipolar constraints. The approximate shape and spatial positions of the objects in 

the scene can be estimated by analyzing the depth or 3D information extracted 

form multi-views. According to the coherence principle, the regions with smooth 

depth variations should belong to the same object, which is a realistic assumption 

since common objects do not have sharp depth discontinuities. Thus, the depth 

information can be utilized to refine the color segmentation based on the 

coherence principle.  

 

 

 

 
 

Figure 4.1: The objects may have different colored sub-regions 
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The proposed segmentation scheme is similar to the proposed modified 

normalized cut method that is introduced in Chapter 2. The image is initially over-

segmented to determine the non-overlapping similar colored patches, Si, such that 

each pixel in the patches belongs to the same object. Each Si is defined by two 

parameters, the mean intensity of the pixels Ii, and the spatial location SLi, 

corresponding to the center of mass of the patch. The parameterization of the 

dense depth extraction algorithm in Chapter 3 is also similar to the color 

segmentation parameterization. In depth map estimation, for each Si, labeling of 

depth and angles is performed, as 

 

( )iiii DSL βα ,,)( =                     (4.1) 

 

in order to define the 3D structure. Hence, after the extraction of the depth map, 

the definition of Si’s is increased to five parameters including depth location Di, 

and angle positions around x and y-axis, αi and βi. 

 

A weighted graph is constructed to define similarities between nodes 

corresponding to Si’s, as in Chapter 2. The link weights are calculated with a 

function based on intensity and depth. Although, the segments are defined with 

five parameters; during segmentation only two of them are being utilized. The 

reason behind this approach can be clearly observed from Figure 4.2. During the 

calculation of link weights, the smoothness of the depth field between segments 

should be determined by the depth information only, the segments B and C in 

Figure 4.2 should have strong link with each other since the depth variation is 

smooth between them. However, if the depth planes and angle positions are 

utilized in order to determine the depth similarity, they will have a weak link 

since the centroids are located at different depths and the angle positions are 

diverse from each other. Thus, in order to impose the coherence principle to the 

color segmentation correctly, only depth values of the pixels at the segment 

boundaries are utilized for the depth similarity of the neighboring segments.   
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The similarities between non-neighboring segments, however, are detected by the 

depth and color parameters of the centroids of the segments, since they do not 

have neighboring pixels. For example in Figure 2, segments A and C will have 

strong link weight; however, since A is disjoint to B and B is connected with C, 

the effect of the corresponding link will be decreased in the recursive partitioning 

stage. The link weights are calculated in different ways for unconnected segments 

and neighboring segments consequently in (4.2) and (4.3):  

 

 

 

 
 

Figure 4.2: The smoothness can be imposed with depth information only. 
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In (4.2), σd and σi correspond to weighting factor of the depth and color 

similarities, whereas in (4.3), Dij
2 and Iij

2 are obtained by using (4.4) and (4.5) as 
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where Bi and Bj correspond to boundary set of the ith and jth segments, D and I are 

the color and depth images and NB indicates the number of boundary pixels 

between two segments in the equations below 

 

The combination of depth and color is obtained by the weighting factors, σd and 

σi. The ratio between these factors affects the importance of the information 

related with the color and depth information. During the experiments, the factors 

are assigned such that similar contributions could be obtained form both color and 

depth images. 

 

After the construction of the graph as in Figure 4.3, the same procedure given in 

Chapter 2 is followed during the partitioning process. In Figure 4.3, the random 

colored regions indicate different segments in the squared region and the nodes of 

the graph correspond to the centroids of the segments. 
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Figure 4.3: A graph is constructed based on the color and depth images, (the graph 
corresponding to the region in the square is illustrated). 

 

 

 

4.3 Dynamic Scene Segmentation from Multiple Cameras 
 
 
Consecutive frames of a video sequence contain motion information of the pixels 

with respect to time and this information is crucial for the segmentation of the 

moving objects in a scene. In general, it is assumed that the pixels which have 

similar motion vectors belong to the same object; and in the region-based 

segmentation case, this assumption can be stated as the regions having similar 

motion vectors belong to the same object. The extraction of the motion vectors 

from video is usually obtained by the optical flow equation. In this formulation, 

considering two consecutive frames with time interval t, the optical flow equation 

can be stated as 286H275H[76]: 
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where u and v denote the horizontal and vertical displacements of a pixel located 

at (x,y) whose intensity is equal to I(x,y). 

 

There are different approaches for solution of the optical flow equation. In this 

thesis, two different approaches are examined, which are Kanade-Lucas-Tomasi 

tracker (KLT) 287H276H[77] and a region-based block matching method, similar to 288H277H[78]. 

KLT assumes a constant motion vector (u,v) within a block, W, in time and spatial 

axis, around the center point, as shown in Figure 4.4. KLT determines the optical 

flow by solving the relation below derived for minimizing the error between the 

reference and the target regions in the consecutive frames based on the constant 

motion assumption. 
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In (4.7), Ix and Iy indicate the derivatives of the intensity image with respect to x, 

y; and It indicate the temporal derivative (difference) between the consecutive 

frames. The leftmost matrix defines the cornerness of the corresponding (i,j) 

point. Equation (4.7) advocates that, the pixels with high cornerness values could 

be tracked along the frames. Thus, KLT tracker needs good feature points in the 

image in order to estimate optic flow.  
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Figure 4.4: KLT assumes a constant motion vector within a window. 
 

 

 

The aforementioned segmentation scheme utilizes segments, Si’s, in the graph 

structure, which are defined by depth and color. Therefore, after the estimation of 

the optical flow, a model is required to be assigned for each segment in order to 

refine the link weights with those motion vectors. The assignment for KLT 

method is performed by fitting an affine motion model according to the motion 

vectors among the pixels within each segment. The procedure is defined as 

follows: 

 
1. Determine the feature points and their motion vectors via 

KLT tracker. 

2. Within each segment check if there exist any feature points 

or not. 

3. If there are available feature points, then fit an affine 

optic flow model to the segment by (4.8), given below. 

4. If there is no feature point within the segment, then 

assign zero motion to all of the pixels in that segment.   

The affine motion model can be stated as 
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where the unknown parameters of the affine motion model (a1, a2, a3, b1, b2, b3, c1, 

c2, 1) can be extracted by reformulating the problem into Ax=0 format, as below 
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  (4.9) 

 

The solution of (4.9) is obtained by performing an SVD decomposition of matrix 

A, and taking the eigenvector corresponding to the minimum eigenvalue as the 

solution. 

 

The experiments on KLT tracker illustrate that for large moving objects and 

untextured surfaces in the scene, the number of feature points is not enough to 

assign motion models to all of the segments belonging to the object. Hence, in 

order to perform reliable motion assignments for the objects that involve 

inadequate feature points, a region-based block matching method is proposed. In 

this approach, constant motion model is assumed for the pixels belonging to the 

same segment. Thus, optical flow is estimated by an exhaustive search for each Si 
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in two dimensions, x and y, such that the blocks are considered as the over-

segment shapes. Finally, an iterative update of the motion vectors is performed in 

order to smooth the optical flows and force the neighboring segments to have 

similar motion vectors.  

 

The assignment of the initial motion vectors to the segments is based on the mean 

absolute difference (MAD) similarity measure; the MAD for Si is explicitly given 

in (4.10) as,  
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where the motion vectors for each segment are extracted by the minimization of 

MAD over the search space in two dimensions,  
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After the initial motion assignment, the motion vectors are iteratively updated 

with the additional smoothness constraint between the neighboring segments. In 

the smoothness constraint, the difference of the motion vectors between the 

neighboring regions are summed up and weighted in order to add to the similarity 

measure, MAD defined in (4.12). The weight of the smoothness term affects the 

smoothness degree of the optical flow distribution.  
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The minimization of (4.12) is obtained by an exhaustive search within the 

neighborhood of the initial motion vectors. The minimization procedure is given 

as follows: 

 
1. For a segment Si, that has (ui,vi) as initial motion vector, 

calculate the cost values corresponding to the motion 

vectors within the range of (ui-n,ui+n) for u and (vi-n,vi+n) 

for v component. (e.g. n is taken as 3 throughout this 

thesis) 

2. Determine the motion vector that has the minimum cost 

value. 

3. Perform the first two operations for every segment. 

4. After all segments are visited update the motion vectors. 

5. Iterate the search for several times until no updates 

exist. 

 
The most important property of the region-based block matching is about the 

modeling of the untextured regions, such that they are modeled with larger over-

segments. Moreover, during the motion assignment, the utilization of large 

number of pixels increases the reliability of the model. In addition, the size of the 

segments changes according to the texture distribution of the image. As a result, 

high textured regions are represented with more segments, whereas untextured 

regions are modeled with less number of segments. This property provides 

adaptive detail scale for the representation of the regions according to the region 

complexity. 

 
The dynamic scene segmentation is achieved by the additional motion 

information after the estimation of the optical flow. The graph links are updated 

with the motion vectors as follows:  
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where σm is the weighting factor of the motion vectors. 
 
 

4.4 Experimental Results 
 
 
The experiments are divided into two parts; in the first part, the effect of 3-D 

depth information on the segmentation of the image is analyzed. During these 

experiments, the images that are obtained from stereo and multiple cameras are 

utilized in order to extract the depth information. The second part involves the 

additional temporal information of the video sequences, belonging to the 

reference camera and the segmentation is further refined via the optical flow 

information of the objects in the scene. 

 

4.4.1 Static Scene Segmentation from Multiple Cameras 
 
 
Uli multi-view sequence, in Figure 4.5, is utilized as the first test data with its 

depth map obtained by the algorithm explained in Chapter 3. The segmentation is 

performed for only color, only depth and color with depth images. During the 

partitioning, the color weighting factor, σi, is taken as 0.0005 and depth weighting 

factor σd is taken as 0.003. The segmentation results for the random colored 

regions are given in the Figures 4.6, 4.7 and 4.8. 
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(a) (b) 
 

Figure 4.5: The color image and estimated depth map for a time instant from Uli multi-view 
image sequence. 

 

 

 

 
 

Figure 4.6: Segmentation via only color information. 
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Figure 4.7: Segmentation via only depth information. 

 

 

 

 
 

Figure 4.8: The segmentation with depth and color. 
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The increase in the performance of the segmentation can be observed easily; the 

semantic objects are extracted better (such as head and body), instead of 

classifying the image as the composition of foreground and background. Ballet is 

the second multi-view image sequence, shown in Figure 4.9, whose segmentation 

results are presented in Figure 4.10. As it can be observed, the (color + depth) 

segmentation gives more reliable representation of the scene with respect to using 

only color segmentation. In these examples, the objects are segmented 

successfully based on only the depth information, since the objects are located at 

different depths.  

 

In Figure 4.11, a frame from Akko&Kayo multiple image sequence 289H278H[79] and the 

depth map estimate are given. The color and (color + depth) segmentation results 

are given in Figure 4.12 for the corresponding image. The refinement of the 

segmentation with the additional depth information is clearly observed. 

 

 

 

 
 

Figure 4.9: A frame of the reference view from Ballet sequence with the estimated depth 
map. 
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(a)     (b) 

 
(c) 

 
Figure 4.10: (a) the segmentation with only color, (b) segmentation with only depth, (c) the 

depth and color segmentation.  
 

 

 

  
(a) (b) 

 
Figure 4.11: A frame from the Akko&Kayo sequence and its estimated depth map 
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Figure 4.12: (a) segmentation with only color, (b) segmentation both with depth and color. 
 

 

 

4.4.2 Dynamic Scene Segmentation from Multiple Cameras 
 
 
During the experiments of this part, the consecutive frames of the reference view 

are utilized in order to extract the optical flow. Initially, the optical flow estimates 

of KLT tracker and proposed region-based block matching method are compared. 

The first image sequence is from Akko&Kayo multiple image sequence 290H279H[79] 

image sequence 290H280H[79], as shown in Figure 4.13. The estimated motion vectors are 

illustrated in Figure 4.14 with their magnitudes, where blue colors indicate the 

stationary regions. The region-based block matching preserves the object 

boundaries and estimates the motion vectors of the untextured regions robustly. 

Moreover, KLT tracker estimates the motion vectors of the textured and high 

cornerness regions quite acceptable. However, KLT tracker fails at the object 

boundaries and stationary uniform colored regions. As a result, in the motion 

segmentation, region-based block matching is utilized due to its reliable motion 

estimates. The estimated depth map of the first frame is given in Figure 4.15, 

whereas the segmentation results obtained with (color + depth); and (color + 

depth + motion) are illustrated in Figure 4.16. The refinement after the inclusion 
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of the motion information can be observed clearly, since the motion vectors 

improve the information of depth and color and detect the moving objects in the 

scene. Finally, in Figure 4.17 the segmentation results of the frame in Figure 4.10, 

are illustrated with the additional motion information. The estimated motion 

vectors of the corresponding frame are also given in Figure 4.18. The effect of the 

motion information on segmentation quality is clearly observed; the boundaries 

between the moving objects and stationary regions are extracted very well. 

 

 

 

      
 

Figure 4.13:Two consecutive frames of the reference camera of Akko&Kayo multi-view video 

 

 

 

 
 

Figure 4.14: The estimated motion vectors, (a) KLT, (b) Region-based block matching 
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Figure 4.15: The depth map of the first frame. 
 

 

 

 
 

Figure 4.16: (a) (color + depth) segmentation, (b) (color + depth + motion) segmentation 
results. 
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Figure 4.17: (a) (color + depth) segmentation, (b) (color + depth + motion) segmentation 
results. 

  

 
 

Figure 4.18: The magnitude of the estimated motion vectors, lighter regions indicates larger 
motion. 
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CHAPTER 5 
 

 

CONCLUSION 
 

 

 

5.1 Summary of the Thesis 
 
 
In this thesis, novel methods for dense depth field estimation and object 

segmentation from mono, stereo and multiple views are presented. As the first 

contribution, a graph-theoretic color segmentation algorithm is proposed. This 

method improves the well-known Normalized Cuts segmentation algorithm 

with some modifications on its graph structure. Small-sized regions that are 

obtained after over-segmentation of the image are utilized, as the nodes of the 

weighted graph, instead of the conventional utilization of image pixels. The 

color similarities between these subregions are utilized in order to calculate the 

link weights between the nodes (regions). Segmentation is achieved by 

partitioning the graph through minimization of the normalized cuts measure. 

Moreover, for a region-based approach, a bias, due to varying node distribution 

(note that there is constant number of nodes for pixel-based strategy due to the 

regular grid) on the normalized cut measure is also improved by using some 

limitations on the number of links for each node. The proposed segmentation 

scheme is compared with some well-known segmentation methods, such as 

Recursive Shortest Spanning Tree and Mean-Shift and the conventional 

Normalized Cuts. The simulation results on different type of images show clear 

improvements over these traditional methods.   
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The proposed region-based approach is also utilized during the dense depth 

map estimation step, based on a novel plane- and angle-sweeping strategy. The 

regions are considered as super-pixels and the whole scene is assumed to be 

region-wise planar, in which the super-pixels correspond to these planar 

patches. The position and rotation of the plane patches are estimated robustly 

by minimizing a segment-based cost function, which considers occlusions as 

well. The quality of depth map estimates is measured with reconstruction 

quality of the conjugate views, after warping segments into these views by the 

resulting homographies. Then, a greedy-search algorithm is applied to refine 

the reconstruction quality and update the plane equations with visibility 

constraint. In the final step, two refinement techniques, region splitting and 

pixel-based Belief Propagation are proposed in order to refine the depth maps 

and relax the planarity assumption of the scene. The algorithm is applied on 

different stereo and multi-view data sets that result with high quality depth 

maps and indicate the robustness of the method among different type of scenes. 

 

Finally, a novel multi-view video object segmentation is presented, as a result 

of an extension of the proposed image segmentation algorithm by updating the 

link strengths with the additional depth and optical flow information. In the first 

step, segmentation of a scene from multiple cameras is obtained and the 

refinement of the segmentation results over color segmentation is observed 

with the additional depth information. In the following step, optical flow 

constrained is incorporated in addition to depth and color for segmentation of 

the objects. The optical flow estimation is obtained via two different methods, 

which are KLT tracker and region-based block matching and comparisons 

between these methods are performed. During simulations, the improvement in 

video object segmentation is clearly observed, as a result of the utilization of 

structure and motion information in addition to color. 
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5.2 Discussions 
 
 

During simulations, it is observed that the top-to-down characteristic of the 

Normalized Cuts image segmentation algorithm might cause the local color 

distribution to be ineffective in the graph, since each node corresponds to pixel 

intensities and the number of the links is extremely high. In such a complex 

graph structure, the global link weights become more important than the 

individual links. However, utilization of over-segmented regions, as the graph 

nodes, provides an initial step of combining similar colored pixels in the local 

area. Hence, the details of the image are modeled effectively in the graph. 

Therefore, the final segmentation with the proposed method results in more 

detailed partitioning of the image than the traditional Normalized Cuts.  

 

The other fundamental drawback of the Normalized Cuts method are the 

requirement of large memory and the slow operation speed, which are the 

results of intense graph structure. In the proposed modification scheme, the 

decrease in the number of nodes also decreases the complexity of the graph and 

the segmentation is achieved faster with less memory.  However, utilization of 

high number of segments causes varying (not constant) node distribution in the 

graph. Such a distribution also creates a bias towards the nodes having high 

number of links and the importance of link weights is decreased. In order to 

overcome such a bias, the number of links for each node is made limited and a 

more uniform distribution of the links among the nodes is tried to be achieved. 

The limitation increases the segmentation performance, as presented in the 

results of the experiments. 

 

The region-based approach for the dense depth map estimation provides object 

boundaries and depth discontinuities to be preserved at the estimated depth 

maps, since discontinuities and object boundaries are inline with that of over-
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segmented region boundaries, in general. Moreover, the untextured regions are 

modeled by large regions which include high number of pixels. Hence, as a 

result, the depth maps of these regions are estimated quite accurately in terms 

of their boundaries, whereas pixel-based approaches fail, especially at 

untextured regions. However, the initial over segmentation affects the success 

of the algorithm, since the planar regions are obtained by the over-segmented 

regions. If the pixels located at different depths are grouped into the same 

segments, then the resultant depth map might be erroneous. In order to 

overcome such cases, region splitting refinement is proposed as a final step and 

the regions, which are segmented incorrectly, are detected.  

 

The multiple camera extension for the dense depth map estimation algorithm is 

achieved in a relatively straightforward manner, due to the fact that 3D planes 

are utilized during plane- and angle-sweeping methods. The increase in the 

number of cameras yields more reliable estimation of the depth map. Moreover, 

in addition to color similarity, the visibility and smoothness constraints also 

improve the estimated 3D models during the greedy search optimization. The 

dependency of the proposed algorithm on the initial segmentation is decreased 

by region splitting. The region split algorithm detects the incorrectly segmented 

regions, and refines the depth map at the final step. However, the detection of 

all of the mis-segmented is not achieved, since the strong color consistencies 

within the pixels of the segments prevent any the splitting of the subregions. 

The planarity assumption of the scene is not valid, as long as there are curved 

and more natural shapes, such as trees or balls. Thus, the pixel-based BP 

refinement is proposed that provides smoother depth maps and removes the 

fuzziness at the object boundaries.  

 

The segmentation performance is increased with the additional depth 

information for the multiple camera scenario. During the experiments, the 
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weight coefficients of the links related with color and depth are selected to be 

close to each other, since the importance between these different information 

sources is not known a priori.  The segmentation method is extended to multi-

view video object segmentation by additional motion information. The motion 

vectors are determined from the video sequence of the reference view in the 

multiple camera setup for two different ways. In the first method, KLT tracker 

determines the feature points and their motion vectors between two frames. 

However, KLT tracker fails in the flat regions and around actual object 

boundaries, thus the motion assignment to the segments is not achieved 

robustly. In order to assign robust motion models for each segment, a region-

based block matching is utilized. According to the experimental results; the 

object boundaries, flat regions and textured surfaces are handled by the 

proposed method. The comparisons between KLT and region-based block 

matching show that, region-based block matching gives more reliable results 

for the graph-theoretic video object segmentation purpose.    

 
 

5.3 Future Work 
 
 
Dense depth map estimation from stereo or multiple cameras is achieved for 

only one view which is considered as the reference view; however, 3D 

applications, such as 3DTV, might require depth field for each view. Thus, the 

proposed region-based approach might be extended in order to estimate the 

depth field, not only for a single view, but for all of the cameras. The extension 

might provide more reliable depth maps, as long as the cross-checks are 

performed between the neighboring cameras. In addition, different global 

optimization techniques, such as graph cuts or belief propagation, might be 

applied for the assignment of the depth planes to segments instead of greedy 

search algorithm in order to improve the depth map quality. 
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APPENDIX A 
 

 

NORMALIZED CUTS FORMULATION 
 

 

 
Assume a graph, V, with N nodes is partitioned into two disjoint sets A and B; and 

let x be the N-dimensional indicator, such that xi = 1 if node i is in A and xi = -1 

otherwise. Let the total connection form node i to all other nodes is defined by 

d(i) such that ∑=
j

ijwid )(  where w(i,j) indicate the link weight between nodes i 

and j. According to the definitions of x and d, the normalized cut value can be 

written as: 
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Let the NxN diagonal matrix whose entries are d(i)’s be D and W be an NxN 

symetric matrix of w(i,j)’s such that W(i,j) = wij, then, define k as: 

 

∑
∑
>=

i

x

id

id
k i

)(

)(
0

 



 
 
136

and 
−

1 be an Nx1 vector with all ones. For xi>0 and xj<0, the indicator vectors can 

be defined as 
2
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, hence Ncut(A,B) can be written as: 
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The scale does not change the optimum partitioning; hence, it can be discarded. 

Let the following auxiliary variables be equal to, 
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then, the above equation can be expanded as follows: 
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The last term can be dropped since it is equal to zero, 
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Thus, the normalized cut value can be formulated as: 
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