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ABSTRACT

SIMULATION OF THERMAL, MECHANICAL AND OPTICAL
BEHAVIOR OF YAG CERAMICS WITH INCREASING Nd**
CONCENTRATION UNDER LASING CONDITIONS

KENAR, Necmettin
Ph.D., Department of Physics
Supervisor: Prof. Dr. Giilay OKE

May 2007, 142 pages

Two-dimensional thermal, mechanical and optical simulations are carried out
to investigate the effect of Nd** concentration on thermal, mechanical and optical
behavior of Nd:YAG ceramic laser materials under continuous wave laser operation.

In the analyses, rods are pumped longitudinally with laser diodes, in three,
six, nine and twelve fold structures.

Rods having diameters of 3 and 6 mm are pumped with 808 nm and 885 nm
sources separately having Nd" concentrations of 0.6, 1,2, 3,4 and 6 at. %.

Total absorbed pump power are kept constant for all rods. Absorbed pump
power distribution are obtained for each rod using ray tracing method and Beer’s
Law.

In the analysis, temperature dependent material properties are incorporated.
Nonlinear numerical solutions of thermal and stress equations have been performed.
Temperature and stress results are obtained to investigate the effect of Nd
concentration on the optical properties of ceramic YAG laser material. Analysis
results reveal that, increase in Nd** concentration of YAG ceramic laser material,
decreases the temperature and stress developed during optical pumping. Rods
pumped with 808 nm source have large temperature and stress values compared to

885 nm pumped ones.
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Optical path difference (OPD) of each ray passed trough the material is
calculated using thermal and elastic strain results together with photo-elastic
constants of Nd:YAG material. Focal length and depolarization of each rod is
calculated numerically from OPD results. Focal length of each rod is found to
increase, in contrary depolarization is found to decrease with increase in the dopant

concentration.

Keywords: Solid-state lasers, diode pumped lasers, ceramic laser materials, thermo-

optical effects.
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LAZER ISINIMI SIRASINDA Nd** YOGUNLUGUNUN ARTMASI iLE
YAG SERAMIKLERININ ISIL, MEKANIK VE OPTIKSEL
DAVRANISLARININ BILGISAYAR ORTAMINDA INCELENMESI

KENAR, Necmettin
Doktora, Fizik Bolimii

Tez Yoneticisi: Prof. Dr. Giilay OKE

Mayis 2007, 142 sayfa

Stirekli ¢aligma kipinde ¢alisan seramik Nd:YAG lazer malzemelerinde Nd**
yogunlugunun lazer malzemesinin 1s1l, mekanik ve optik 6zellikleri {izerine etkilerini
arastirmak amaci ile iki boyutlu 1s1l, mekanik ve optik analizler bilgisayar ortaminda
yapilmistir.

Analizlerde, ¢ubuklar uzunlamasina lazer diyotlar ile {i¢li, altili, dokuzlu ve
on ikili dizilislerde pompalanmistir.

Ug ve alt1 milimetre ¢aplara sahip ¢ubuklar 808 nm ve 885 nm de 1s1ma yapan
kaynaklar ile pompalanmistir. Cubuklardaki Nd** oranlart % 0.6,%1,%2,%3,%
4 ve % 6 dir.

Tiim ¢ubuklarda sogurulan pompalanan gii¢ esit tutulmustur. Cubuklardaki
sogurulan gli¢ dagilimi, 1s1n ilerletme ve Beer kanunu kullanilarak elde edilmistir.

Analizlerde sicakliga bagli malzeme ozellikleri kullanilmistir. Is1 ve gerilme
denklemlerinin ¢6ziimiinde dogrusal olmayan sayisal yontem kullanilmistir.

Nd yogunlugunun seramik malzemenin optik ozellikleri iizerine etkilerini
arastirmak icin 1s1 ve gerilme sonuclari elde edilmistir. Analiz sonuglari Nd**
yogunlugunun artmasi ile malzeme igerisinde olusan sicaklik ve gerilme degerlerinin

azaldig1 sonucunu ortaya ¢ikarmistir.
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Farkli pompalama dalga boylar1 karsilastirildiginda 808 nm ile pompalanan
cubuklarda sicaklik ve gerilme degerlerinin 885 nm ile pompalananlara gére daha
yiiksek oldugu ortaya ¢ikmistir.

Malzeme igerisinden gecen her 1sinin ugradigi optik yol farki, malzemede
olusan sicaklik ve gerilme sonuglar1 yaninda malzemenin opto-elastik 6zellikleri de
kullanilarak hesaplanmistir. Optik yol farki sonuglar1 kullanilarak ¢ubuklarda olusan
1s1] mercegin odak uzaklig1 ve toplam polarizasyon bozunumu elde edilmistir. Nd**
yogunlugunun artmasi ile 1s1l mercegin odak uzakliginin uzadigr ve polarizasyon

bozunumunun azaldig1 gozlenmistir.

Anahtar Kelimeler: Kati hal lazerler, diyot pompalamali lazerler, seramik lazer

malzemeleri, 1s1l ve optik etkiler
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CHAPTER 1

CERAMIC Nd:YAG

1.1 Introduction

First Nd:YAG (Nd:Y3Als0,,) laser material was discovered by Guesic et
al. [1] in 1964. Since its discovery, Nd:YAG was the most important solid-state laser
material. Nd:YAG lasers are used in research, medicine and industry and these
lasers are the second most available laser type in the market following CO, gas laser.

Fabrication technique used in the manufacturing of Nd:YAG single crystal
is Czochralski method, a type of melt-grown techniques. Since its discovery, grown
technique was improved and crystals with good optical quality became available in
the market. Czochralski grown single crystals have some limitations that make
difficult to scale it to high laser powers. Main limitations are:

- Dope concentrations above 1.5 % are difficult to obtain [2]

- There is variation in dope concentration in growth direction [3, 4]

- Large size crystals cannot be manufactured

- Crystal growth process takes weeks [3]

- Crystal growth process is expensive [5].

In order to overcome these limitations attempts to produce polycrystalline
laser materials was first reported by Greskovich et al. [6, 7]. However, due to
excessive scattering by residual pores less than 0.5 mm in size, the laser efficiency
was unsatisfactory. DeWith et al. [8] and Sekita et al. [9] reported efforts to fabricate
transparent YAG ceramics for optical applications, but their ceramics were of

insufficient quality to achieve the optical properties of single-crystal Nd:YAG.



Ikesue et al. [10, 11] was the first to demonstrate the possibility of fabricating
transparent Nd:YAG ceramics of sufficient quality for solid-state lasers with
reasonable efficiency. Recently, a number of studies have shown that transparent
polycrystalline Nd:YAG is equivalent or better than single crystals grown by the
Czochralski method [12-16]. Advantages of polycrystalline Nd:YAG ceramics can
be stated as follow:

- Doping concentration can be increased to as much as 9 at. %

- A homogeneous dopant distribution can be achieved

- The specimen size can be significantly increased

- Production process takes days

- Process is simple and cheaper.

Ceramic materials generally include residual pores and grain boundaries.
Pores and grain boundaries are source of scattering which results in optical loss [12,
13]. The excellent quality of the Nd:YAG ceramic with low pore volume and narrow
grain boundary ensures its near equivalence to Nd:YAG crystal in its optical and

stimulated emission properties [13].

1.2 Manufacturing Process

The fabrication process of polycrystalline Nd:YAG ceramics with good
optical quality was first reported by Ikesue et al. [10,11]. Commercially available
high-purity Y,03, Al,Os, and Nd,O3; powders of 99.99 %-99.999 % purity with
primary particle sizes less than micron are used as starting materials. These powders
are blended with the stoichiometric ratio of YAG and ball milled for 12 h in ethanol,
with 0.5 mass % tetraethyl orthosilicate (TEOS) added as a sintering aid. Then, the
alcohol solvent is removed by spray drying the milled slurry. Spherical granules (ca.
30-50 um) having a homogeneous composition are obtained. The spray-dried
powder is pressed with low pressure into required shapes in a metal mold and then

cold isostatically pressed at 98—196 MPa. Transparent Nd:YAG ceramics are



obtained after sintering under vacuum (1x10” Pa) at 1750°C for 10 h. Then, the
specimens are processed into the required configuration and used in laser oscillation.
Recently fabrication of single crystal starting with polycrystalline material
has been reported by Ikesue et al. [16]. In the case of single-crystal fabrication, after
pre-sintering the powder compacts at 1550°C for 3 h under vacuum, the surface of
the specimen is mirror polished. The polished surface of the polycrystal Nd:YAG
ceramic is bonded with an undoped YAG single crystal (seed crystal of (111),

(110), or (100) ) grown by the Czochralski method. Then, the bonded sample is

heated at 1700° — 1840°C. Continuous grain growth occurs from the seed crystal
toward the polycrystal region and finally the whole polycrystal changes into
Nd:YAG single crystal.

1.3 Optical Properties

Optical properties of a material are its transparency, fluorescence and
absorption spectrum, fluorescence decay time, refractive index and variation of
refractive index with temperature.

Fluorescence spectrum was demonstrated to be nearly the same for single
crystals and ceramics for the same concentration ratio [17]. Figure 1.1 [17] shows the
room-temperature fluorescence spectrum for 4F3/2 to 4111/2 transition of 1% Nd:YAG
single crystal and ceramics, respectively. From this figure, these two spectra are
almost identical. The main emission peak is at 1064.18 nm. Full width at half
maximum (FWHM) is 0.78 nm. With increase in dopant concentration, a little
redshift in wavelength has been observed. Figure 1.2a [17] shows the main
fluorescence peak spectra near 1064 nm for 0.6%, 1%, 2% and 4% Nd:YAG
ceramics, respectively. The four emission peaks are centered at 1064.15 nm, 1064.18
nm, 1064.24 nm and 1064.30nm for 0.6%, 1%, 2% and 4% Nd:YAG ceramics,
respectively. The redshift from 0.6% to 4% Nd:YAG ceramics is 0.12 nm. Because

of the fluorescent quenching effect, the fluorescence emission line width at 1064 nm
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is also a little broadened with the concentration increases greater than 1%. Figure
1.2b shows the FWHM of the 1064-nm fluorescence peak. The FWHMSs are 0.78 nm,
0.78 nm, 0.81 nm and 0.85 nm for 0.6%, 1%, 2% and 4% Nd:YAG ceramics,
respectively. The line widths for 0.6% and 1% Nd:YAG ceramics are identical. It
means that the fluorescent quenching effect is very weak for neodymium

concentration less than 1%, which is similar to that of single crystal.
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Figure 1. 1- Fluorescence spectrum from 1045 nm to 1085 nm; a) 1% Nd:YAG ceramic, b)
0.9% Nd:YAG single crystal [17]

Fluorescence lifetime was observed to decrease with increasing
concentration [12, 17]. As given in Figure 1.3 there is no difference in fluorescence
lifetime for ceramics and single crystals with the same concentration.

Figure 1.4 shows the absorption spectrum of ceramics and a single crystal.
Absorption spectrum keeps its pattern constant with increasing concentration. Peak
absorption at 808 nm is shown to increase linearly with concentration [17]. Also
from Figure 1.4 it can be observed that there is broadening in absorption lines with
increasing concentration. This broadening was pointed out by Dubinskii et al. [14]

and increasing rate is in order of nanometers (Figure 1.5).
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experimental data for the ceramics and the closed triangles for the single crystals [12].

Lupei et al. [18], showed the possibility of using high concentrated ceramic
laser materials with 885 nm pump source. Measurements show that the absorption
coefficients of the two peaks of the 885-nm band are approximately equal at room
temperature and become appreciable at high Nd concentrations: they increase from
~1.7cm™ at 1 at. % Nd to ~ 6.5 cm™ at 4 at. % and 13-14 cm™ at 9 at. % Nd, while
the FWHM increases from ~ 2.5 nm at 1 at. % Nd to ~3.2 nm at 9 at. % Nd. Figure



1.6 [19] shows the absorption spectrum of 1 and 9 at. % Nd concentrated YAG

ceramics near 885 nm.
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Figure 1. 4- Absorption spectra of 2.0, 3.4, and 6.6 at. % Nd:YAG ceramics (solid curves) and
1.0 at. % Nd:YAG single crystal (dashed curve) [12].

1.04

1.02

ceramic samples
1% single crystal

1.00 4

0.98 1

0.96 1

EMHM [nm]

0.94 4

0.92 1

0.90

0 2 4 6 8 10

Md-concentration [at%]

Figure 1. 5 - Concentration-dependent broadening of Nd:YAG absorption lines at 300 °K [14]



20 N
5 15t 13
§ 1°%
£l ;
5 lC

Is &
05} . g
gf
’ "
Ql'l"lﬂ?g‘a’ll.lilla T i 'I.IU
80 882 884 886 888 B0

Wavelength {nm)
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1.4 Physical Properties

Physical properties of a material to be considered are density, thermal
conductivity, specific heat, Poison’s ratio, Young’s modulus and fracture strength.

Density of ceramics is the same as that of single crystals, 4.55 g/cm” [3, 20].
In ceramics, porosity is critical factor that should be controlled through the
manufacturing process. Ceramics with transparency comparable to single crystals
require exceptionally low pore concentration (<0.001%), clean grain boundaries, and
no secondary phases [14]. Ikesue et al. [11] demonstrated that a pore volume no
greater than 1.5 ppm (i.e., 99.99985% theoretical density) is required to achieve
equivalent optical transmission properties to single crystals. In a recent paper, Ikesue
[21] reported a ceramic with 50 um grain size and relative density of 99.9999 %.

Thermal conductivity of ceramics was reported to degrade with increase of
concentration ratio. The thermal conductivity was measured to be 9.0 W/mK at 20
°C at the Nd*" concentration of 6.6 at. % [22], while that of a YAG single crystal was
12.9 W/mK [3]. However, in the technical data sheet of ceramics provided by



Baikowski Co. [20] thermal conductivity is approximately equal to the single crystal
one. Yagi et al. [23] investigated thermal conductivity of ceramic YAG at low
temperatures (Figure 1.7). Results show that there is a significant decrease in thermal
conductivity of ceramics with decrease of temperature. It is observed that ceramics
having small grain size have lower thermal conductivity. This implies that increased
grain boundaries decrease thermal conductivity. Although there was no information
for thermal conductivity at high temperatures, it is observed from Figure 1.7 that the
thermal conductivity gets close to each other for single crystal and ceramics of

different grain sizes as temperature gets high.
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Figure 1.7- The experimental results on the thermal conductivity of the YAG single crystal and
polycrystal [23]

Manufacturers of ceramic [20] and single crystal [3] YAG materials give the
same value for specific heat of YAG, 590 J/kg °C. Variations in specific heat with
temperature or dopant concentrations for ceramics are not reported up to date.

Young’s modulus and Poisson’s ratio of ceramic YAG is reported by Yagi
et al. [23] as a function of temperature. Young’s modulus is decreasing with
increasing temperature. Results are given for temperatures from 25 °C to 1400 °C

with modulus decreasing almost linearly from 308 GPa to 264 GPa respectively.



Reported Poisson’s ratio has values between 0.233 and 0.216. However Mezeix et al.
[24] reported that at room temperature the Young’s modulus and Poisson’s ration of
a ceramic YAG are 283.6 GPa and 0.226 respectively. This difference may be
because of porosity in different samples used.

The fracture strength of ceramic YAG is higher than that of single crystal.
Fracture strength of single crystal Nd:YAG is 280 MPa [3]. For ceramics, it is
reported to be 307 MPa [20] and 500 MPa [25] and this strength is constant with

increasing temperature.

1.5 Laser Performance

Over one decade have passed since lkesue et. al. [11], first reported the
optical quality of ceramic Nd:YAG. Table 1.1 gives the available literature results of
lasers using ceramic Nd:YAG as laser material. Output powers of the produced lasers
rapidly increased from mW to kW in approximately five years. Pump sources of both
808 and 885 nm have been used. As can be observed from Table 1.1, samples with
high concentration are used with 808 nm sources if ceramic thickness is small
otherwise 885 nm sources are preferred. For low concentration ceramics, with large
size 808 nm pump sources are used. Higher efficiencies were obtained for laser
materials with high concentration and 885 nm pump sources. Table 1.1 also lists
beam quality factor
M? [5] of beams obtained. M? measures how far is a beam from TEMgo beam, i.e.
value of 1.0 indicates that beam is TEMy,. For the first time a solid-state laser has
operated at 25000 Watts, using a ceramic Nd:YAG laser material [33]. This result

indicates that ceramic lasers are candidate for high power solid-state lasers.



Table 1. 1 - Ceramic Laser Reports

Optical-
Output Slope ) Pump
. Optical ) % at. )
Power | Efficiency . Size M Wavelength | Ref.
Efficiency Nd
(W) (%) (nm)
(%0)
2.5 mm
0.465 57.6 52.7 i 2 - 808 [26]
thickness
4.8 mm
0.380 53 47.6 i 1 - 808 [17]
thickness
0.847 mm
0.090 27.4 - . 34 - 808 [12]
thickness
$3mmx100
31 18.8 1 - 808 [27]
mm
d3mmx104
72 24.8 1 28 808 [28]
mm
dSmmx75m
236 62 52.5 1 - 808 [29]
m
63.5mmx87
210 48.7 0.6 18.7 808 [30]
mm
¢1.5mmx¢3
144 67 64 0.3 808 [31]
mmx41mm
1.5 mm
0.135 42 34 ) 3.8 1.6x1.6 885 [32]
thickness
6 76 66 ¢4mmx6mm | 2.5 - 885 [33]
25000 - - 100x100x20 - - - [34]




CHAPTER 2

THERMO-OPTIC EFFECTS

2.1 Introduction

The optical pumping process in a solid-state laser material is associated with
the generation of heat for a number of reasons [5]:

- The energy difference of the photons between the pump band and
the upper laser level is lost as heat to the host lattice and causes
the so called quantum defect heating.

- Similarly, the energy difference between the lower laser level and
the ground state is thermalized.

- Since the quantum efficiency of the fluorescence processes
involved in the laser transition is less than unity, heating due to
quenching mechanism takes place.

- Absorption by the host material also leads to heating.

Generated heat in laser material is a source of thermal distortions. These
distortions can be divided in two classes: optical distortions and fluorescence
distortions. Optical distortions are thermal lensing, birefringence, and depolarization.
Fluorescence distortions are increase in population of lower laser level due to excess
heat, degradation in fluorescence intensity and shift in fluorescence wavelength.

The magnitude of the thermal distortion is determined by the amount of heat
deposited per unit volume into the laser material. Deposited heat on the other hand is
determined by the thermal, mechanical, and optical parameters of the laser material

selected, beside the reasons stated above.
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Thermal distortions are responsible for laser efficiency decrease and beam
quality reductions in laser oscillators and amplifiers. To overcome such problems

active laser medium should be cooled effectively.

2.2 Heat Dissipation Factor

Part of the energy absorbed by the active ions in laser material is lost due to
the quantum defect, caused by the difference between the absorbed pump and the
emitted energy quanta; all this is transformed into heat by interactions with phonons
in the upper (the difference between the pump and metastable state energy) or in the
lower levels (the difference between the lower laser level and the ground state). The
energy transfers that determine the reduction of the emission quantum efficiency, is a
source of heating in solid-state laser materials. This effect could be clearly observed
in the value of the fractional thermal load, defined as the fraction of the absorbed
power that is transformed into heat. In presence of laser emission with wavelength A,
and with extraction efficiency n;, the fractional thermal load for Nd:YAG, taking

into account the emission quantum efficiency, is given by Lupei et al. [35]

A A
up :1_(1_77L)(1_1'82CNd)l_p_77L/,i_p (2.1)

av L

where A, 1s average fluorescence wavelength, A, is pump wavelength and Cygq is the
% Nd concentration.

Similar equation is given by Fan [36],

A

A
s =1—np[(1—nLh,f+an (2.2)

av
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where 1, is the pump quantum efficiency, n is the radiative quantum efficiency for
the upper metastable level.

Comparing the two equations for heat fraction, they look to be very similar.
Lupei incorporates concentration in Eq. (2.1) while Fan (Eq. 2.2) gives it as radiative
efficiency factor. Fan also incorporates the efficiency of pumped light to be absorbed
by active ions in the medium.

These two equations can be used for Q-switched lasers and amplifiers
assuming 1 =0, while for continuous wave (CW) lasers ny=1. For CW lasers thermal
efficiency factor is the same for both equations. However, either of equations does
not encounter nonradiative sites and so there are small differences between
calculated and measured data.

Goldring et al. [37] uses the assumption that an excited ion has a probability
to decay fluorescently (y), (o) the probability to decay by stimulated emission and
(B) to decay nonradiatively. Sum of the probabilities is equal to 1. y can be ignored
since in CW lasers fraction of pump power is almost equal to fluorescent power. The

heat fraction equation can be written as

=1 A 2.3
m = —7a+ﬂ- (2.3)

L

Goldring suggests that B should be found experimentally, by obtaining a
value of 8% from his investigations. Fan also reports a factor of 10 % for
nonradiative sites. Lupei et al. obtained very similar results for calculated and
measured data, since any nonradiative decay is included in the concentration
function.

So nn determines the fraction of absorbed pump power which is responsible

for thermal distortion in a laser material.
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2.3 Temperature Distribution

In rod shaped laser materials, heat is removed from barrel surface, by a
flowing fluid. Starting from steady state heat equation in cylindrical coordinates (2.4)
and assuming constant surface temperature and uniform heat generation, equations
2.5 and 2.6 for temperature distribution in the laser rod and rod surface temperature

respectively are obtained [38].

li(rd_Tj+i:0 (2.4)
rdr\ dr) k
2 2
qr. r
T(ry=—"2|1-—|+T 2.5
(r) 4k( Ffj s (2.5)
T =1+ (2.6)
2h

Heat power dissipated in laser rod is given by ¢ in watts per volume. 7, is

used for coolant temperature and /4 represents convection constant in watts per area
time temperature. Convection constant is a function of coolant fluid physical
properties, flow tube geometry and flow velocity [8].

Figure 2.1 shows the temperature distribution across the laser rod for
different heat powers. Temperature profile has a parabolic distribution with
maximum at the center of the rod. Temperature difference between the center and

surface of the rod is increasing with increase in heat power.

14



3m T T L. T T
— 25 ’
,,,,, S0 - -
0= 75 W - S 7
..... 100 . b
1 e e —
g Ll l
=4
= T S
br} A . IR . !
& wo- . L S n
L)
H
£71| ST R

Radial distance {mm)

Figure 2.1- Temperature distribution across the laser rod of f6xS0mm
(h=2 W/em® °K, k=0.13 W/ecm°K, T,=298 °K)

2.4 Thermal Stresses

The temperature gradients generate mechanical stresses in the laser rod,
since the hotter inside volume is constrained from expansion by the cooler outer
volume. The stresses in a cylindrical rod, caused by a temperature distribution 7(7),
can be calculated from the equations given by Timoshenko and Goodier [39]. Radial
(or), azimuthal (o4 ) and axial (o,) stresses in an isotropic rod with free ends and

uniform power density distribution are according to

o (r)= 08 -1’ .7)

o,(r)= 05 -1?) 2.8)
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o.(z)=20s(2r* - r*) 2.9)

where the factor S = aF [1 6k(1— v)]_1 contains the material parameters; E is Young’s

modulus; v is Poisson’s ratio; and a is the thermal coefficient of expansion. The
stress components o, 6, and G, represent compression of the material when they are
negative and tension when they are positive. As plotted on Figure 2.2 the center of
the rod is under compression. The radial component of the stress goes to zero at the
rod surface, but the tangential and axial components are in tension on the rod surface.
The tensile strength of Nd:YAG is 1800-2100 kg/cm?® [5]. It is suggested that in order
to avoid thermal fatigues, stress induced in the rod should be five times less than the

tensile strength of material [5].
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Figure 2. 2— Radial, azimuthal and axial stress components within Nd:YAG crystal rod as a
function of radial distance

2.5 Stress Birefringence

When an optical isotropic material is subjected to stress, it becomes

anisotropic optically. The change of the refractive index is called stress birefringence
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or photo-elastic effect. The refractive index of a crystal is specified by the optical
indicatrix, an ellipsoid whose coefficients are the components of the relative

impermeability tensor [40]

3
D> B xx, =1 (2.10)

i,j=1

The impermeability tensor components B;; are given by

1
By=—3 Q2.11)
ij

where nj; are the indices. Unstressed indices are given by

B = (2.12)

2
Ro

For YAG (a cubic material) which is optically isotropic in absence of stress,
no,11=No22=Np 33 With all other ng;;=0. Changes in the index of refraction are specified
using the difference between the unstressed and stressed impermeability components

using

3
B, =By, + Y. 7m0, » [40] (2.13)

i,j.kl=1

where the m is the forth-rank piezo-optic coefficients and o are the stress
components.
Following the equations above will reveal the result that there will be

different indices in each principal direction. Laser materials with rod shape will
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exhibit different indices of refraction n, and ny for radially and azimuthally polarized
light respectively. If a linearly polarized light (in y-direction) is incident on such a
laser material, the field vector will have different components in radial and azimuthal
direction and relative amplitudes of the two components will depend on azimuthal

and radial coordinates (Figure 2.3).

Figure 2. 3 — State of refractive index in rod shaped material

2.6 Refractive Index Distribution

In rod shaped laser materials there are two distinct contributions to
refractive index changes that occur when significant heating of the material is
present. The first is the change in refractive index with temperature. Because the
temperature of a YAG rod varies with radial distance (Figure 2.1) then so will the
index of refraction. The second contribution arises from the stresses or strains that
occur in solid-state laser materials. Stresses and strains also vary with radial distance,
so will their contribution to the refractive index.

Total index of refraction can be written as
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n, ,(r)=n,+An, (r)+ Ang_(r) (2.14)

where Anr is index contribution of temperature difference and Ang;, 1s index
contribution of stress with corresponding birefringence component. Temperature

contribution is given by
dn
An,(r)=[T(r)- T, (—] (2.15)

dn . - . . .
where o is temperature variation coefficient of refractive index. Stress

contribution can be approximated by

Ang  =——Tu0y - (2.16)

Brown [41] derived equations of contributions to refractive index for radial

and azimuthally polarized light for a rod with uniformly dissipated heat as

dn
d 2 Qi 3
A”r(”)zﬁ[%"'%j_%’”z —%[7[110',,(1’)+ 7[120'¢(l")+ 7[130'2(1”)] (2.17)
0 dn
d 2 I 3
Anq,(r):ﬁ(%%—rk}—ﬁf Pt =T mo, () e mo, ()4 me. ()] @18)
respectively.
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2.7 Depolarization

Birefringence induced in laser rod due to thermal stress is a source of loss
for a laser operating with linearly polarized beam. In such lasers polarization
selective optical elements are used in order to obtain linearly polarized light. When a
linearly polarized light passes through laser medium that has birefringence, there will
be phase difference between the components of polarization vector along the

principal axes of the pumped laser material given by

5=277ZL(An¢ ~An,). (2.19)

Rate of depolarization at a point in laser material is given by
.2 I 5
d(r,¢)=sin’(2¢)sin (3] (2.20)

where, A is the wavelength of laser beam, L is the length of material, Any and An, are
the azimuthal and radial index change given in cylindrical coordinate system. Total

depolarization across a rod shaped laser material is given by

D,(r)= #L [ ar.p)agar. 2.21)

Dy(r) gives the fraction of laser power that is reflected out of the resonator

by a polarization selective optical element.
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2.8 Thermal Lens Effect

The thermal lens is formed by heating in the laser rod. This heating causes a
temperature gradient and a stress distribution in the rod. The effect of the stress is to
bend the end face of the rod into an approximately parabolic shape giving the rod the
properties of a spherical lens. The temperature gradient causes a refractive index
gradient along the radius of the crystal resulting in a gradient-index (GRIN) lens. In
the case of a homogeneously pumped rod the bending effect will be present at both
ends of the rod resulting in a thick lens - a combination of a spherical lens formed by
the end effects and a GRIN lens formed by the temperature gradient.

Focal length of a pumped laser rod is given by

MM
fos :lﬁ(ld_;_kac, nls om,(’z) )j 51, (2.22)

In Eq. 3.1, C,4 [5] is a result of birefringence properties of the Nd:YAG
crystal. So two existing polarization in the lasing medium will be subject to two
different refractive indices, which means that there will be two different focal lengths
separated by 90°.

First term in Eg. 2.1 is the effect of GRIN lens, second term is the effect of
birefringence and the third term is the rod end effect. All these three constituents of
thermal lens should be considered in optically pumped laser rods.

Figure 2.4 depicts the behavior of thermal lens concerning heating power,
crystal length and crystal radius. Keeping crystal dimensions constant and increasing
heat power there is a decrease of focal length as plotted on Figure 2.4a.

Keeping heat power constant and decreasing the length of crystal is crucial
since focal length is decreasing, however increasing the length does not effect focal

length much as can be understood from Figure 2.4b. On the other hand, keeping
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crystal length and heating power constant and increasing laser rod radius increases
the focal length as depicted on Figure 2.4c.

Ratio of the focal lengths of the two polarizations is always far from unity,
which implies that there is always an astigmatic beam in rod shaped solid-state
lasers. Only by increasing diameter and decreasing the length of a laser rod, focal
lengths ratio gets closer to unity.

As a result, to have large focal lengths we should have less heat power, long

laser rods with large diameters.
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CHAPTER 3

ABSORBED POWER DISTRIBUTION

3.1 Introduction

In analytical analysis of laser material frequently it is assumed that absorbed
power is uniformly distributed through the volume. Previous equations used in
calculation of temperature and stress distribution are obtained also by the assumption
of uniform power distribution. Therefore, thermal lens and depolarization are also the
result of this assumption.

In reality, a material absorbs radiation according to Beer’s Law (3.1) and
absorbed power decays exponentially in the direction of pump beam propagation.
Also in case of pumping with laser diode, the intensity distribution of pump beam
and location of pump source also has effect on the absorbed power distribution.

In the following sections, the method used for calculating the power
distribution across a rod shaped material will be presented. Results for two different
rod radii materials, with four different pump structures and two different pump

sources are given.
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3.2 Pump Structure

In the analysis, we have assumed a flow tube with 5.5 mm inner and 7 mm
outer radius. Pumping diodes are placed just 0.5 mm apart from the outer surface of
the flow tube. Four different pumping structures, 3, 6, 9 and 12-fold pumping and
two different rod diameters, 3 mm and 6 mm, have been considered. Laser rods have
a length of 50 mm and all are side pumped as shown in Figure 3.1. Tube material is
assumed to be made of sapphire. Sapphire has a lower index of refraction and a
lower absorption coefficient compared to quartz, which is frequently used as tube
material. In addition, sapphire has large fracture strength and chemical durability.
However, it is expensive compared to quartz.

Tube structure and diode tube spacing are kept the same for the two
different rods in order to eliminate the change in the beam profiles in the pump

structure.

sopphire Tube

Oicde Loser

a)

/ / | Al

% Vaa\ N TN

3 Fold Pump & Feld Pump 9 Fold Pump 12 Feld Pump
b)

Figure 3. 1- Model Used for the analysis

25



3.3 Pump Source

In selection of pump source, the following criteria should be considered:
- Pump wavelength should be near or identical to one of the
absorption peaks of laser material
- FWHM of pump wavelength should be equal or less than the
FWHM of absorption peak pumped
- In order to decrease quantum defect loss, pump wavelength
should be close to emission wavelength of laser material pumped
Most popular source for pumping Nd:YAG material is 808 nm diode laser.
Another source is 885 nm diode, importance of which has increased with the success
in production of highly doped ceramic laser materials.
In this study absorbed power distribution has been calculated for two
different pump wavelengths, 808 nm and 885 nm. Figure 3.2 gives the absorption
coefficient for both wavelengths as a function of Nd** %at. concentration. Analyses

have been carried out for six different Cng % at. ratios, 0.6, 1.0, 2.0, 3.0, 4.0 and 6.0.

a0

|
£ 808 mn- [17]
A 808 mm- [12]
00 885 nm- [18]

]

- -

Absorbtion Coefficient (1icm)

% Id Concentration

Figure 3. 2 - Absorption coefficients of ceramic Nd:YAG for 808 nm and 885 nm
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For both wavelengths, absorption coefficient linearly increases with
increasing dopant concentration. Absorption coefficients for 808 nm are higher than
the coefficients for 885 nm. So, 808 nm beams will be absorbed in shorter distances,
while 885 nm sources will travel longer distances in material before they are
absorbed efficiently.

Beam intensity of diode lasers is assumed to posses a Gaussian distribution
in the plane perpendicular to the rod axis and no variation is assumed in the direction
of rod axis. Divergence angle of pump beam is assumed to be 30° with an emitting
thickness of 1 micron. In addition, polarization of pump source is assumed to be
parallel to the plane of incidence, i.e. in the plane perpendicular to the direction of

rod axis.

3.4 Ray Tracing

Ray tracing pattern is obtained by assumption that all rays travel in the plane
perpendicular to rod axis. Assumed beam profile is divided in s number of individual
rays (Figure 3.3). Each ray has its own slope and starting height. First ray (rp) and the
last ray (rs.1) have angles that are equal to half of the angle of divergence of the
pump source. Heights of the two beams are equal to the half of the emitting source
thickness. The rays that are emerging between the first and last ray has angles
decreasing by a factor equal to the source divergence angle divided by the ray
number. Ray heights also decrease by a factor equal to the source thickness divided
by the ray number.

To determine the actual pattern of pump light in the rod, each ray is traced
individually by using the Snell’s law together with geometry. In Figure 3.4 traced
rays are shown for 3 mm and 6 mm rods. Ray tracing outside the rod was not

performed since it is not in the scope of the analysis. Reflected rays, except the rays
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that reflect from the internal surface of the rod, are not traced. Each ray has four

passes through the rod, one is refracted and the other three are reflected rays.

W,
P
‘&?”571
Figure 3. 3 — Ray discretization for ray tracing
0006 b 0006~ b
0004 b 0004 b
000z | 0002 |
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~0.006 - - ~0.006 —

I L 1 1 1 1 1 1 L 1 1 1
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a) b)

Figure 3. 4 — Ray tracing results; a) 3 mm rod, b) 6 mm rod
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3.5 Absorption

Distribution of absorbed power in the laser rod was determined from ray
tracing pattern. Intensity distribution of a pump source, which is assumed to be
Gaussian, is discretized as shown in Figure 3.5. Thus, each ray is assigned a power.
Assuming that absorption of radiation obeys Beer’s law (3.1) and that the intensity is
distributed among the reflected and refracted beams at each surface according to
Fresnel’s equations (3.2), distribution of absorbed pump power can be obtained by
using Eq.3.3. Coefficients of reflections are calculated for parallel polarization (TM

wave) using Fresnel’s equations.

I(x)=1,e™ (3.1)
_n cos(6,)—n, cos(6,)

k= n, cos(@, )+ n, cos(6,) G-2)

ple)= Lz ) (3.3)

Where 1, is initial power for each ray traced, I(x) is power at location x, R is
coefficient of reflected light at any surface, a is the absorption coefficient at location
x, n; index of refraction of incident ray medium, n; index of refraction of the
transmitted ray medium, 6; and 0 are angles that incident and transmitted ray made
with the surface normal respectively. x is (1-R?) or R? for external or internal
reflection respectively. p(x) is power density at location x in power per volume. X is
local coordinate in direction of ray trajectory.

Rod cross section is divided into squares (Figure 3.6a) and a power was
calculated for each square using Eq. 3.3. Corresponding to the grid given in Figure

3.6a a matrix (Figure 3.6b) that contains powers absorbed at each square of the rod

29



cross section was formed. This matrix represents the power distribution due to a
single source. In the pump structures of laser rods considered in this study, there are
3, 6, 9 and 12 fold pump source distributions. To obtain the distributions
corresponding to these structures the matrix of single source is rotated by a proper
angle and rotated matrices are summed to obtain the desired distribution. The

procedure is illustrated in Figure 3.7 for the three-fold structure.

REelative Intensity (au.)

-4907% 2007 0 3.10"
ERadius (m)

—— Ray Stnp Intensity
— Gaussian Distnbution

Figure 3. 5 — Intensities assigned to each individual ray

Matrix rotation is performed around the center point of the rod (matrix) and
each rotated matrix has the same size and total power. This ensures that the sources
at all folds are identical.

Total power absorbed by the rod is the same in each pump structure. So in
each pump structure, a single pump source has a power that is equal to total pump
power divided by the fold number.

Calculated power distributions are plotted as shown in Tables A2.1-4. In
each table, rows represent corresponding Nd % at. concentration, while columns
represent the pump structure. It should be noted that absorbed power density plots
given in the following tables are independent from pump power value, i.e. they

represent the normalized power densities. As can be observed from these four tables

30



pump structure has an evident impact on the absorbed pump power distribution. Also

absorption coefficient determines the effective pump length in the material.
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Figure 3. 6 — Grid used in power distribution calculations (a) , b)representative power matrix
for 11x11 grid

Figure 3. 7 — Step wise power density matrix constraction

Power density distributions of 3 mm and 6 mm rods pumped with the 808
nm source are given in Tables A2.1 and Table A2.2, respectively. As can be
observed from these tables, as Nd % at. concentration increases, the high power
density regions (in red) move toward the outer surface of the rod. This situation
facilitates the heat removal process, but from lasing point of view, makes it difficult
to obtain beams with Gaussian profile or uniform intensity. This observation is not
valid for the rods pumped with 885 nm source (Table A2.3, Table A2.4). Both rods
(3 mm and 6 mm) can be pumped up to high concentration without any unpumped

region in the rod centre by 885 nm pump source.
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It can be concluded that 808 nm pump sources are suitable for low
concentration large size materials or for laser materials with small size and high
dopant concentration. On the other hand 885 nm sources are suitable for large size
high concentration laser materials.

Figures 3.8 and 3.9 give the radial variation of absorbed power density.

Each rod has its own distribution that will affect the beam quality of laser obtained.
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In the rods considered (3 mm and 6 mm), distribution of pump power beside
power density is also important. Figure 3.10 and Figure 3.11 give the percentage of

absorbed power as a function of radial distance. Using Eq. 3.4 power absorbed in a
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shell of thickness Ar is calculated. Related figures are plotted by dividing the

calculated power by total absorbed power.

P(r) = J:)L jozﬂ Lrj;fr p(r, H)rdrd 0dz (3.4)

As can be observed from Figures 3.10 and 3.11, in 808 nm pumped rods
power is accumulated near the rod surface where in 885 nm source pumped rods

most of the power is located in the inner parts of the rods.
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CHAPTER 4

THERMO-ELASTICITY ANALYSIS

4.1 Introduction

Absorbed pump power in a laser crystal is the source of heat generation in a
laser material. Although in Chapter 2, absorbed power was assumed to be uniformly
distributed through the material volume, in Chapter 3 it was shown that absorbed
power has nonuniform variations in a rod shape laser materials.

Also material properties of Nd:YAG are not constant but a function of
temperature.

Temperature-dependent material properties and spatial variation of absorbed
power introduce nonlinearities in temperature and stress equations. These
nonlinearities make it impossible to solve these governing equations analytically. In
order to obtain a solution, numerical methods should be used. In this study, finite
element analysis (FEA) method is used to calculate temperature, thermal gradient
and stress distributions in the laser rods pumped. In the following sections, we
develop the mathematical model used for the calculation of the aforementioned

distributions. The results obtained are then presented and discussed.
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4.2 Heat Equation

General heat equation in cylindrical coordinates is given by Eq. 4.1 [38] as

li(kra—T}rizi ka—T +£(k8_Tj+q=& or , 4.1)
ror or) r-og\ o¢) o0z\ oz "ot

where 7 , ¢ and z are radial, azimuthal and axial distances in cylindrical coordinate
system, respectively. In addition, 7 is temperature, k is heat conduction coefficient, &
is material density, c, is specific heat and g is volumetric power generation.

Since our calculations are for continuous wave (cw) lasers and we assume

no absorbed power variation in the rod axis direction (z direction) Eq. 4.1 can be

written as
lg(k,,a_Tj_,_izi k&_T +4=0 4.2)
r or or) r-og\ O0¢

Also we should include the temperature dependence of heat conduction
coefficient k, and coordinate dependence of absorbed power density. In this case,

heat equation has a form of
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a ;;j¢)j+nhp(r,¢)= 0, (4.3)

r or

where 7, is heat dissipation factor and p(r, @) is absorbed power density per

volume.
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In order to solve Eq. 4.3 boundary conditions should be imposed. Rods are
cooled from their barrel surface with a flowing liquid coolant (water in our case).

Boundary conditions on the barrel surface are given by

oT(r.g) i
o __k(T(r,¢))(T(r’¢)_T°°)’ at r=r,.

(4.4)

Since Eq. 4.3 is nonlinear in both temperature and coordinate basis,
analytical solutions are difficult to obtain, however numerical solutions are possible

and easier.

4.3 Elasticity Equations

Stress equations of equilibrium in cylindrical coordinates are given by

oo, o, -0
aGrr _l_l [ + aO-zr + 144 124 +Fr — O
or r 0¢ 0z r

oo oo oo o
v 1% L +2—L1+F, =0 [42] (4.5)
or r 0¢ 0z r
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0
9o, +l O +ao-” +&+FZ =0.
or r 0¢ 0z r

where ¢ and F are the stress and force, respectively in the corresponding

direction.

Strain equations are given by

rr

= +r -r

orog op’ or’ or
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where € is the strain in corresponding direction.

(4.6)
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The constitutive equations (Hook’s Law) for a homogeneous, isotropic body

in cylindrical coordinate system are
&£ :l[a —V(O' +0 ) +ar
r E r 1) z s
1
£y = E[G”’ o, +0.)+ar,

£, :%[O'Z —V(O'r +0'¢> +ar,

l+v I+v l+v
Ey=—"0,,,E, =——0C,,E, =——0_ 42], 4.7
where 7=7T-T7,.

In analysis plain strain approximation is applied since we have rod radius
that is less than the rod length. So, 3D structure is reduced to 2D. Also &.=0, £xz=0,
€,,~¢€, , and our equation are now given by

Equilibrium stress equations

Ir

0 —
900, (1%  On %% 4 F =0
or r 0¢ r

00,, +180'¢¢
or r O¢ r

x _g 45
. (4.5)
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Strain equations,

) 62(7’8%) _ 825” p 52(7’8¢¢)_r o€

orog op° or’ or

Hook’s Law,
g, :%[ar —v(a¢ +az) +ar,
& :%[% o, +0.)+ar,

&, =%[GZ —v(ar +G¢)]+0{Z',

To obtain a solution for thermo-elastic problem differential equations of
equilibrium together with compatibility equation, the generalized Hook’s law and
boundary conditions should be solved.

Generalized Hook’s law is also temperature dependent as material
properties like Young’s modulus of elasticity, Poisson’s ratio and thermal expansion
coefficient.

From the governing equations for stress, it is evident that to obtain results

close to the real, thermal and elasticity equations should be solved simultaneously.
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4.4 Finite Element Analysis

Numerical analysis are performed using the commercial FEA software

ANSYS®. Newton-Raphson method is utilized through nonlinear analysis. 2D couple

field element PLANE 13 [43] with four degree of freedom is selected to discretize

the system. Each node has 2 structural (UX and UY) and one temperature degree of

freedom. Plain strain solution type is selected for structural analysis. Models used in

the analysis have 14583 nodes and 28764 elements. Model boundary conditions are

given in Table 4.1. Material properties used in the analysis are given in Appendix 1.

Nodal heat generation loads are applied using absorption power density distributions

obtained in Chapter 3 and multiplied by heat coefficient defined by the pump and the

stimulated emission wavelength. Heat coefficients are 0.241 and 0.168 for 808 nm

and 885 nm pump sources, respectively.

Table 4. 1- Boundary conditions

g Convection coefficient 2 kW/m2K
% on barrel surface

=) Temperature of coolant 298 K
S 2 Thermal fAuid

ol Material initial 208 K
E Temperature

= 2
2 Structural Press;rlif(;rclebarrel 2 kg/em
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4.5 Results

4.5.1 Temperature distributions

Results of temperature distribution in the rods are given in Tables A3.1 to
A3.4. Temperature distribution is not dependent on azimuthal coordinate for rods
pumped with 885 nm sources (Table A3.3 and Table A3.4). However, rods pumped
with 808 nm sources have dependence on azimuthal coordinate with 3 and 6 fold
pump structure. This dependence increases with increasing % at. Nd dopant
concentration. As observed from these tables, with increase in dopant concentration
area of maximum temperature (in rod central parts) is increasing and this means a
decrease in thermal gradient in these parts.

Maximum temperatures developed in the rods are plotted as a function of
dopant concentration in Figure 4.1. From the figure, it is observed that there is
decrease in maximum temperature with increasing dopant concentration. There is no
effect of pump structure on maximum temperature generated in rods pumped with
885 nm sources (Figures 4.1c and 4.1d). But this not the case for 808 nm pumped
ones. For 3 mm rod at 6 % at. Nd concentration maximum temperature of 3-fold
pump structure is higher than the other three (Figure 4.1a). For 6 mm rod the same
situation is observed for 6-fold structure also beside 3-fold one (Figure 4.1b). As can
be observed from the absorbed pump power density plots in Table A2.1, after 1 % at.
Nd concentration for 3- fold structure and after 3% at. Nd for 6-fold structure (Table
A2.2), absorbed power is localized close to the surface resulting in thermal spots as
given in Table A3.1 and Table A3.2, respectively.

Temperature variations with respect to radial distance are plotted on Figure
4.2 for 9-fold pump structure. In 3 mm rods, central temperatures are higher than for
6 mm rods. In addition, temperature dispersion (considering dopant concentration) is
higher for rods pumped with 808 nm sources. As concentration increases, there are

constant temperature regions as it is more easily seen for 808 nm pumped rods.
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Constant temperature also means that at these regions there is no absorbed pump

power and no contribution to simultaneous emission during lasing.
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Figure 4. 1 — Maximum temperature in rods a) 3 mm and b) 6 mm using 808 nm pump source
and in rods ¢) 3mm and d) 6 mm using 885 nm pump source as a function of % at. Nd
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Figure 4. 2 — Temperature distribution as a function of radial distance of 9-fold pump structure
a) 3mm and b) 6mm rods with 808 nm pump source and ¢) 3mm and d) 6mm rods with 885 nm
pump source

4.5.2 Thermal Gradient Distribution

Thermal gradient describes the change in temperature within a unit distance.
Results of thermal gradient are shown in Tables A4.1-A4.4. Rods with 3 mm
diameter and 885 nm pump source have radial dependent thermal gradient (Table
A4.3) independent of pump structure. Also rods with 9 and 12-fold pump structures
have azimuthal angel free distribution for all diameters and pump sources. 3 and 6-
fold structures lose their azimuthal angle free distribution with increase in dopant
concentration. Maximum thermal gradients are located close to the rod surface, while

minimum gradients are located in the center or at maximum heat regions. High
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thermal gradients point out the maximum heat flow regions and low gradients

regions where heat flow is low.
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Figure 4. 3- Maximum thermal gradient in rods a) 3 mm and b) 6 mm using 808 nm pump
source and in rods ¢) 3mm and d) 6 mm using 885 nm pump source as a function of % at. Nd

concentrations.

Figure 4.3 depicts maximum thermal gradient behavior in laser ceramic rods

as a function of dopant concentration. From this figure the difference between pump

structures is apparent, thermal gradient is inversely proportional to fold number of

pump structure. In 3-fold structure, thermal gradient is increasing with the

concentration ratio for both pump sources. Thermal gradient in 3 mm rod slightly
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decreases with increasing concentration ratio for 6,9 and 12-fold pump structures for
both pump sources. However, with the 6 mm rod the situation is not the same,
thermal gradient is increasing with increasing concentration for 6-fold pump but
slightly decreases for 9 and 12-fold pump structures.

Variation of thermal gradient with radial distance is given in Figure 4.4.
Generally getting close to the rod surface thermal gradient is increasing. Type of

increase, changes from converging to exponential with increasing dopant
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4.5.3 Radial Stress

Radial stress distributions are given in Tables A5.1-A5.4. Radial stress in 3
mm and 808 nm pumped rod (Table A5.1) is independent from azimuthal coordinate
for all structures but 3-fold one. The same is situation for 6 mm and 885 nm pumped
rod (Table A5.4). In Table A5.2 (6 mm, 808 nm), radial stress is dependent on
azimuthal coordinate for all pump structures except for 12-fold one. For 3 mm and
885 nm pumped rod, radial stress is independent from azimuthal coordinate for all

pump structures (Table A5.3).
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Figure 4.5 depicts the variation of maximum azimuthal stress with dopant
concentration. There is a decrease in stress for all rods with increase in dopant
concentration. Maximum radial stress in all rods is compressive. Comparing the
pump structures maximum stress is developed in 3-fold pump structure.

In Figure 4.6 variation of radial stress with radial distance is given. Stress is
negative through the rod and decreasing to zero at the rod surface. Maximum is

located at the center of the rod.
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4.5.4 Azimuthal Stress

Azimuthal stress distributions are given in Tables A6.1-A6.4. Radial stress
does not have an azimuthal dependence except for 3-fold pump structure at high
concentrations. Inner parts of rods are under compression and outer parts are in
tension for all rods pumped.

Variation of maximum azimuthal stress as a function of dopant
concentration is given on Figure 4.7. With increasing dopant concentration there is
decrease in maximum azimuthal stress. Stress decreases with slope up for 808 nm
pumped rods and with slope down for 885 nm pumped ones. 3-fold pump structure
has higher stress compared to others. There is decrease in stress with increase in fold
number.

Figure 4.8 depicts the stress variations along the radius of a rod. As
observed from the figure central part of rod is under negative stress meaning
compression and outer part is under positive stress meaning tension. Almost at the
center of the radial distance of each rod, azimuthal stress is zero, point where stress is

changing from compression to tension.
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4.5.5 Axial Stress

Axial stress distributions are given in Tables A7.1-A7.2. Axial stress in 3
mm and 808 nm pumped rod (Table A7.1) is independent from azimuthal coordinate
for all structures but 3-fold one. The same is situation for 6 mm and 885 nm pumped
rod (Table A7.4). In Table A7.2 (6 mm, 808 nm), axial stress is dependent on
azimuthal coordinate for all pump structures except for 12-fold one. For 3 mm and
885 nm pumped rod, axial stress is independent from azimuthal coordinate for all

pump structures (Table A7.3).
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Maximum axial stresses resulted in the rods are plotted as a function of
dopant concentration in Figure 4.9. From the figure, it is observed that there is
decrease in maximum stress with increasing dopant concentration. There is no effect
of pump structure on maximum stress generated in rods pumped with 885 nm
sources (Figures 4.9c and 4.9d). But this is not the case for 808 nm pumped ones. For
3 mm rod at 6 % at. Nd concentration maximum stress of 3-fold pump structure is
higher than the other three (Figure 4.9a). For 6 mm rod the same situation is

observed for 6-fold structure also beside 3-fold one (Figure 4.9b).
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In Figure 4.10 variation of axial stress with radial distance is given. Stress is

negative and increasing to zero at the rod surface. Maximum is located at the center

of the rod as for azimuthal stress.
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4.5.6 Shear Stress

Shear stress distributions across pumped rods are given in Tables AS.1-
A8.4.

Maximum shear stresses resulted in the rods are plotted as a function of
dopant concentration in Figure 4.11. From the figure, it is observed that there is
decrease in maximum stress with increasing dopant concentration. 3-fold pump
structure has higher stress compared to others. There is decrease in stress with

increase in fold number.

0.3 T T T T T T T
Fese 3- Fold Fump o 3- Fold Pump
[+-++ - Fold Pump +++ 6- Fold Pump
030 9- Fold Pump 9- Fold Pump
|00 12- Fold Purap o o0 12- Fold Pump []
025 -
= =
0s-
% 02 B %
4 ol | &
s g o4 i
A E
[ [ . . N
by o -
e
n2F + 4
k) o =
[T
-
L e D
‘ i : - T e L
0 1 2 3 4 5 [ 0 1 2 3 4 5 3
% HNd Concentration % Nd Concentration
a) b)
0L T 07 T T T
Feses 3 Fold Dump v 3- Fold Pump
H-++ 6- Fold Pump [+++ &- Fold Pump
0.1HEe0 9- Fold Pump 4 06[7250 9- Fold Pump
e 12- Fold Pump [-¢< 12- Fold Pump
s =
- 0o - —
S =
% % 04 g
:?J 006 — %
& &
5 9 03 —
= =
¥ opaf - @
02- -
peemeemm
ooz B SRR
o e S T R Eee a1k TR -
| | | | | s e el Sl St S
o 1 2 3 4 3 & a 1 2 3 4 3 6
% MNd Concentration % IMd Conceniration
©) d)

Figure 4. 11 - Maximum shear stress in rods a) 3 mm and b) 6 mm using 808 nm pump source
and in rods ¢) 3mm and d) 6 mm using 885 nm pump source as a function of % at. Nd
concentrations.

57



4.5.7 Von Mises Stress

Results of von Mises stress distribution through the rods are given in Tables
A9.1 to A9.4. Stress distribution is not dependent on azimuthal coordinate for 885
nm pump source (Table A9.3 and Table A9.4). 808 nm source pumped rods have
dependence on azimuthal coordinate with 3 and 6-fold pump structure. This
dependence increases with increasing % at. Nd dopant concentration. As observed
from these tables with increase in dopant concentration, area of maximum stress (in
rod central parts) is increasing.

Maximum stresses resulted in the rods are plotted as a function of dopant
concentration in Figure 4.12. From the figure, it is observed that there is decrease in
maximum stress with increasing dopant concentration. There is no effect of pump
structure on maximum stress generated in rods pumped with 885 nm sources
(Figures 4.12c and 4.12d). However, this not the case for 808 nm pumped ones. For
3 mm rod at 6 % at. Nd concentration, maximum stress of 3-fold pump structure is
higher than the other three (Figure 4.12a). For 6 mm rod the same situation is
observed for 6-fold structure also beside 3-fold one (Figure 4.12b).

Stress variations with respect to radial distance are plotted on Figure 4.13
for 9-fold pump structure. In 3 mm rods, central stresses are higher than for 6 mm

rods. Stress in 885 nm source pumped rods is less than 808 nm pumped ones.
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CHAPTER 5

OPTICAL ANALYSIS

5.1 Introduction

Stress and temperature developed in materials have influence on the optical
properties of that material. Stress causes index variations that result in change in
refractive index differently in each principal direction, known as birefringence effect.
Temperature also causes refractive index changes, which do not result in
birefringence, since temperature is independent of direction. Birefringence causes a
depolarization of a polarized light, which results in loss for linearly polarization
operating lasers.

Temperature and stress are different at each point through out the pumped
laser material resulting in refractive index variations. Since index of refraction is
different at each point laser material behaves like a GRIN lens, trying to focus light
passing through it. Also focused light is highly aberrated, which is the effect of
different focal distances of each point in the material.

Results of Chapter 4 will be used in calculation of optical properties of

materials through the following sections of this chapter.
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5.2 Temperature Index Variations

Refractive index of material is dependent on temperature through thermal
coefficient of refraction. This coefficient is also temperature dependent, and its
variation as a function of temperature is given by Eq. 5.1, [44]. This equation is
derived by curve fitting to data reported by many researchers in temperature range

50-450 °K.

D1)=-3.510" (1=, J548-107 (71, ) 705107 (7 -1, )1 5.1

In Eq. 5.1, n is refractive index, T is temperature at which thermal
coefficient of refraction will be calculated and 7). is reference temperature. Figure
5.1 gives the plot of Eq. 5.1. Thermal coefficient of refraction is increasing with
increase in temperature. Therefore, refractive index is dependent on temperature
distribution and on thermal coefficient of refraction as given in Eq.5.2, where n, is

the refractive index of material at 7.

n(Ty=n, +T- S—Z(T) (5.2)

Using the temperature distribution results of FEA performed previously

refractive index distributions are given in Tables A10.1-A10.4.
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5.3 Birefringence

Stress also has influence on refractive index but, unlike temperature, it is a
vectorial quantity. So different directions will have different refractive indices.
Impermeability matrix of a material defines its refractive index (Assuming magnetic
permeability to be 1). There are two ways of calculating the stress-induced index
change. One is to use stress data and Eq. 2.13, the other is to use strain data and Eq.
5.3. The first way requires piezo-optic matrix, which is a function of elasticity
modulus and Poisson’s ratio, both temperature dependent quantities. The second

method is actually the same with first one but uses directly the results of FEA.

3
B, =B, + zp[jklgkl (5.3)

i,j.k,I=1
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In Eq. (5.3), B is indicatrix matrix, p is material stress optic coefficients in
<111> Nd:YAG single crystal direction [40] and ¢ is strain obtained by stress
analysis.

Results of Eq. 5.3 will reveal the difference in refractive indices in radial

and azimuthal direction, which results in birefringence.

5.4 Depolarization

Birefringence has effect on polarization of light passing through the
material. In ceramics, single crystals are oriented randomly so it is difficult to
calculate depolarization effect. Shoji and Taira [45] analytically show that it is
possible to decrease depolarization by using <110> cut single crystals. In addition,
maximum depolarization was found for <111> grown single crystal Nd:YAG [45].
Shoji et.al. [46] experimentally show that total depolarization induced in ceramic
materials is similar to single crystals in value. Khazanov [47] was the first to point
out theoretically the effect of beam spatial modulation (both amplitude and phase) in
ceramics, which is dependent on average grain size to material length ratio. This
prediction is verified experimentally by Mukhin et.al. [48].

In calculations of depolarization, total depolarization is the primary concern
and it is assumed ceramics to behave like <I111> oriented single crystals. Eqs 2.19,

2.20 and 2.21 are used to determine state of depolarization.
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5.5 Focal Length

Temperature and stress developed in laser material results in index
variations, which cause focusing of a beam passing through it. Focusing is a result of
optical path difference of individual rays passing through the material. Optical path
difference (OPD) is a function of index change and length of path traveled. Although
there are many analytical expressions for calculation of focal length of a laser rod
[5],[41],[49] , they are not suitable if azimuthal variation of OPD is present.
Numerical calculation of focal length is usually done by first assuming a lens profile
(i.e. spherical) and then fitting a spherical curve to OPD data [50], [51], [52].

Equation is given as

2
r

OPD(r)=OPD, — (5.4)

where OPD, is optical path difference at the center of the rod and R is the curvature
of a spherical mirror. A.E. Siegman [53] defines the index variation across a laser rod

as

(5.5)

where L,,; 1s rod length and f is laser rod focal length. Again by [41] and [53],

inverse of focal length is defined as second order differential of OPD given as

1_ 8’0PD(r,9) (5.6)
f or? ' '
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Also Chen et al. [54], defines focal length as

1 __-2(0PD(r.4)-OPDr,.¢)) (5.7)
! (r=r,)

The four equations given above are actually the same. Eq. (5.4) and (5.5) are
the same if (5.5) is multiplied by rod length. In addition, Eq. (5.7) is equal to (5.4) if
r, is assumed to be at r=(0. The three equations 5.4, 5.5 and 5.7 are definitions of

second differential of OPD, that is, they are equal to Eq. (5.6).

5.6 Results

5.6.1 Temperature Index Variations

Temperature variations of refractive index are calculated using Eq. (5.2).
Tables A10.1 and A10.2 give the results of 3 mm and 6 mm rods respectively for 808
nm pump source. Moreover, Tables A10.3 and A10.4 give the results of 3 mm and 6
mm rods respectively for 885 nm pump source. Maximum index is at the center of
the rod for all pump structures for 885 nm pumped rods and 9 and 12-fold pump
structures for 808 nm source. Index variations have radial dependence except for 3
and 6- fold pump structures of 808 nm pumped rods.

Figure 5.2 depicts index variations averaged to radial distance. Highest
index develops at center of the rod. Lower % Nd concentrations have higher
refractive index. Index is the same for all concentrations at the surface of the rod.

Rods pumped with 808 nm sources have higher indexes compared to 885 nm
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pumped ones. In addition, 3 mm diameter rods have higher indexes compared to 6
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Figure 5. 2— Thermal index variation as a function of radial distance of 9-fold pump structure a)

3mm and b) 6mm rods with 808 nm pump source and ¢) 3mm and d) 6mm rods with 885 nm
pump source

5.6.2 Birefringence

In Tables Al11.1-A11.4 and Tables A12.1-A12.4 refractive index
distributions across the rods for radially and azimuthally polarized light is given,
respectively.

Higher refractive indexes occur at the center of the rod for 3 mm and 885
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nm source pumped materials of azimuthally polarized light. Other rods and pump
sources have radial and azimuthal coordinate dependent index variations except for:
3 mm 808 nm pumped rods with 0.6 and 1.0 % Nd concentration using 9 and 12 fold
pump structure, 6 mm 808 nm pumped rods with 0.6 % Nd concentration using 9 and
12 fold pump structure, 6 mm 885 nm pumped rods with 0.6, 1.0, 2.0, 3.0, 4.0 % Nd
concentration using 9 and 12 fold pump structure.

Radially polarized light index distribution is free of azimuthal angle
dependence for 885 nm source pumped rods. Maximum refractive index is located at
the center of the rods. For 808 nm pumped 3 mm rods with 6, 9 and 12-fold pump
structure and 6 mm rods with 9 and 12-fold pump structure also have azimuthal
angle free index distribution. While the rest of 808 nm pumped rods posses, both
azimuthal and radial coordinate dependent refractive index distributions.

Figure 5.3 depicts the variation of refractive index for azimuthally polarized
light along the rod radius. For 808 nm pumped rods, having low Nd concentration
maximum index is at the rod center and decreasing at the rod surface. Nevertheless,
as Nd concentration increases maximum is located at the rod surface while there is
constant index in the rod inner parts. However, for 885 nm pumped rods maximum
occurs at the rod center and decreasing at the rod surface for both rod diameters.

Variations of refractive index for radially polarized light are given in Figure
5.4. For all rods and pump sources maximum occurs at the rod center and minimum
at the rod surface. Considering Nd concentration, maximum refractive index at the
rod center is for low Nd concentrated rods while at the rod surface maximum is for

high Nd concentrated rods.
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Compared to temperature induced refractive index change, stress induced

ones are less. Figure 5.5 gives the ratio between OPD resulted stress induced

refractive index change for azimuthally polarized light to temperature induced one.

At rod center ratio is low and it is high at the surface. The ratio of stress induced

refractive index change for radially polarized light to temperature induced one is

given in Figure 5.6. At the rod center maximum occurs and minima are located at rod

surface.
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5.6.3 Depolarization

Depolarization distribution is given in Tables A13.1-A13.4. Regions of

depolarization are located at four regions separated by 90° azimuthally. Unpolarized

regions are in the form of cross and located between the depolarization regions.

Depolarization regions move the surface for all rods as Nd concentration is

increasing. Comparing rods with same Nd concentration, highly depolarized regions

of 808 nm source are close to the surface than the 885 nm pumped ones. In 3-fold
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pumped rods as the Nd concentration increases there are still four depolarization

regions but in two of the depolarization is higher the other two.

Total depolarization of light passing through the rods is given in Figure 5.7.

Total depolarization is decreasing with increase in Nd concentration. There is no

difference between total depolarization values of light passing through the rods with

different pump structures. Rods pumped with 885 nm sources have higher

depolarization values compared to 808 nm pumped ones.
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5.6.4 Focal Length

Focal length results are given in Figures 5.8 and 5.9 for azimuthally and

radially polarized lights, respectively. For both polarizations, focal length is

increasing with increasing Nd concentration. Rods with 3 mm diameter have short

focal lengths compared to 6 mm ones. In addition, rods pumped with 808 nm sources

have longer focal lengths compared to 885 nm source pumped ones.

Focal Length (m)

Focal Length (m)

0z

04

0.4

0z
0

036

03s

034

033

032

ik}

——+ 3 - Fold Pumping
e3¢ 6 - Fold Pumping
9 - Fold Pumping
o0 12 - Fold Pumping
) g
e £
¥
// [,
a 1
< [
e
=
o
s
/./
.,._o-l
1 2 3 4 &
% Nd Concentration
a)
++ 3 - Feld Pumping
a6 - Fold Pumping -
9 - Feld Pumping -~
+a 12 - Fold Pumping .
~ =
e
/
o al |
o i
- 5]
- /‘
e
o
[ —

03
o

% Md Concentration

)

h—+ 3 - Fold Pumping

bexs 6 - Fold Pumping
& - Fold Pumping

le-oo 12 - Fold Pumping

% IMd Concentration

b)

H—++ 3 - Fold Pumping

bessc 6 - Fold Pumping
9 - Fold Pumping

leoo 12 - Fold Pumping

% Md Concentration

d)

Figure 5. 8- Azimuthally polarized light focal length as a function of % Nd** at. concentration a)
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pump source
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Percentage difference between focal lengths of radially and azimuthally
polarized lights is given in Figure 5.10. Ratio is increasing with increasing Nd
concentration. In addition, ratio is higher for 808 nm source pumped compared to
885 nm source pumped ones, which means that polarization astigmatism is higher for
808 nm source pumped rods.

It is known that contribution of temperature to focal length is larger
compared to stress induced focal lengths. The influence of stress is generally to
reduce the focal length of laser rod. Figures 5.11 and 5.12 show the percentage

influence of stress induced OPD on focal length. In the figures, negative percentage
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indicates the reducing while positive one indicates increasing effect of stress on focal

length.
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Figure 5. 10- Ratio of the difference of radially polarized light focal length and azimuthally
polarized light focal length to the azimuthally polarized light one as a function of % Nd*" at.
concentration a) 3mm and b) 6mm rods with 808 nm pump source and ¢) 3mm and d) 6mm

rods with 885 nm pump source

Contribution of stress to the azimuthally polarized light focal length is
positive for rods with Nd** concentration above 1 % at. and pumped with 808 nm
sources. In all other cases studied stress induced OPD reduces the focal length of a
laser rod. Reducing effect of stress is larger for radially polarized light (Figure 5.12),

in contrast to OPD ratios given in Figures 5.5 and 5.6 where stress induced OPD to
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temperature induced OPD is higher for azimuthally polarized light. Generally it can
be assumed that higher OPD will have larger effects on focal length. However, the
location of higher OPD is more important in such cases. Stress induced OPD for
azimuthally polarized light (Figure 5.5) is less in the rod center while increases
towards the rod surface. This condition results in an approximately equal
contribution at each point on the rod to the temperature induced OPD. This
contribution does not change the temperature induced OPD distribution but only
increases the value of it (Figure 5.13a). While the stress induced OPD for radially
polarized light is higher at the rod center and is decreasing towards the rod surface.
This contribution increases total OPD at the rod center and does not affect the OPD
induced by temperature in regions close to rod surface, which results in different

OPD distribution (Figure 5.13b).
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Figure 5. 11 — Percentage contribution of stress induced OPD to the focal length calculated from
temperature induced OPD of azimuthally polarized light as a function of % Nd** at.
concentration a) 3mm and b) 6mm rods with 808 nm pump source and ¢) 3mm and d) 6mm
rods with 885 nm pump source
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CHAPTER 6

DISCUSSION

6.1 Introduction

In the preceding chapters, results obtained from the analysis are individually
presented. In this chapter effect of dopant concentration, pump structure and pump
wavelength on the optical behavior of laser medium will be discussed considering
the calculated absorbed power, temperature and stress distribution. In addition,
computed results will be compared with the available knowledge on the subject in

the literature.

6.2 Effect of Dopant Concentration

Dopant concentration is included in analytical equations of focal length for
end pumped rod laser crystals [55], and side pumped slab lasers [56]. However, for
side pumped rod lasers dopant concentration was not included since it is difficult to
define analytically the ray tracing structure on the barrel surface of a rod, since it
depends on the cooling tube, used laser rod size, distance of pump source etc. In
addition, calculations computed in order to define the effect of thermal distortions on

laser, started with the assumption that absorbed power density is uniformly
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distributed throughout the crystal volume [5]. However, absorption profile of pump
radiation is dependent on pump structure and dopant concentration (Table A2.1-4).
Although it is difficult to include dopant concentration in analytical calculations, it is
possible to include it in numerical calculations as it was done throughout this work.

Calculations carried out in this study reveal the effect of dopant
concentration in Nd:YAG ceramics on continuous wave operating lasers with rod
shaped active medium and side pumped pump structure. Material properties of single
crystal Nd:YAG were used but the results can be applied to ordinary ceramic
materials as well.

Our results show that by increasing dopant concentration it is possible to
decrease maximum temperature (Figure 4.1) and stress (Figure 4.12) in laser medium
and consequently it is possible to improve efficiency and beam properties, since
temperature and stress are the main cause of optical distortions.

We showed that by increasing dopant concentration there is possibility to
decrease the effects of thermal distortions on laser beam (Figure 5.7), which seams to
be in contradiction with the results of Sennaroglu [57], where it was observed that in
end-pumped Nd:YVO, continuous wave (cw) lasers, increase in dopant
concentration tends to decrease both efficiency and output power of a laser.
However, it should be noted that in that study [57], laser rods, having lengths
inversely proportional to doping concentration, were end pumped. Absorbed power
was almost equal for each sample and laser crystals were conductively cooled
through a cooper case kept at constant temperature. Copper case temperature was the
same for each sample, but since the cooling surface is decreasing with increase in
dopant concentration, cooling efficiency is decreasing. Therefore, by that study it is
difficult to conclude on the effects of dopant concentration since more heat is stored
in the sample with high dopant concentration due to insufficient cooling.

In our computations, we kept the material size the same for each dopant
concentration. So the power that can be extracted is directly related to the absorbed
power distribution that is a function of dopant concentration.

Birefringence which results in loss through depolarization in linearly

polarized lasers is one of the inherent problems in solid-state lasers. In our study,
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depolarization is found to decrease in <I111> oriented ceramic laser materials by
increase in dopant concentration (Figure 5.7). However, Shoji et al. [46],
experimentally show that depolarization is increasing with increase in dopant
concentration under non-lasing condition. In a later study by Shoji et al. [58] it was
shown that under lasing conditions depolarization is much less than those under non-
lasing conditions, but different dopant concentrations were not considered. Also
Khazanov [47] theoretically and Mukhin et al. [48] experimentally showed that by
increase in rod length to average grain size ratio in ceramics it is possible to decrease
depolarization. Although dopant concentration is not mentioned in these two studies,
it is known that to obtain ceramics with high dopant concentrations, average grain
size should be decreased [59].

Shoji et al. [45] showed that depolarization in <100> and <110> crystals, is
low than the <111> oriented single crystals. Since ceramics are constituted from
differently oriented single crystal grains, it should be expected that depolarization
will decrease compared to <111> oriented single crystals.

It can be concluded that in ceramic laser materials there is a 3-fold
mechanism that decreases total depolarization; (1) different grain orientations, (2)
increase in rod length to average grain size ratio and (3) increase in dopant
concentration.

In this study, efficiency of laser was not considered directly, but Ikesue [16]
has showed that laser efficiency is decreasing with increase in dopant concentration.
Again, samples were end-pumped and sample sizes are not mentioned. It was
concluded that increase in grain boundary is the reason for efficiency decrease [16].
Since there is decrease in average grain size in ceramic material with increase in
dopant concentration [59], there is increase in grain boundary also, giving rise to
scattering loss of laser radiation. However, it is possible to increase efficiency in
linearly polarized laser, through decrease in depolarization with increase in dopant
concentration.

Up to date, there are no reports on variation of M” value with dopant
concentration. However, there are analytical equations that relate M” to resonator

stability parameters [60] and to rod diameter and dioptric power of thermal lens [61].
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M? value of a laser beam is affected from both resonator parameters and thermal lens
induced through pumping. Wyss et. al. [62] related both resonator and thermal
lensing parameters to predict the M? value in plane-plane resonators. Equation given

in [62] can be modified as a function of thermal lens as given in Eq. (6.2).

a4 1)1
M(f)—4/1 f[LR fj+2 62

From this equation it can be stated that with increase in focal length there
will be decrease in M? value, which means improvement in beam quality. In our
work it was shown that, by increasing dopant concentration it is possible to increase
the focal length of thermal lens induced under lasing conditions with increase in
dopant concentration. This will cause decrease in M? and beam quality of laser beam
can be increased.

TEMyo mode operation can be considered for rods that have pumped central
regions for all dopant concentrations. That is, it is hard to state that it is possible to
obtain TEMyy mode oscillation in rods with high dopant concentration and 808 nm
pump source since the central parts of the rods are completely unpumped (Table
A2.1 and Table A2.2). Also it was shown that as dopant concentration is increasing
absorbed pump power moves towards the rod surface leaving central parts with less
absorbed power or even unpumped, leading to efficiency decrease. Efficiency
decrease is a consequence of the limiting size of operation of the fundamental mode.
Murdough and Denman [63] calculated that the radius of a cylindrical volume in
which TEMy oscillation can be obtained is limited to 1.1 mm independent of rod
diameter. Also in [61], it was stated that fundamental mode can be only obtained in
regions where there is no depolarization. In addition, while absorbed power is
increasing there is decrease in available volume for the operation of TEMy, mode
[61].

Our results show that, there is increase in available region of TEMy, mode
with increase in dopant concentration but this leads to decrease in available laser

power in that region. Therefore, there is need for optimization of available laser
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power and laser beam size in case of TEMy, operation. In addition, laser rods with
small radius and low dopant concentration are more suitable for TEMy, operation
since absorbed power and power density at central regions are higher compared to

rods with high radius and high dopant concentration (Figure 3.8-3.11)

6.3 Effect of Pump Structure

Pump structure is not of consideration in literature; however the distribution
of absorbed power is discussed [5], [64]. Best beam of a solid-state laser can be
obtained if absorbed power is uniformly distributed through the lasing region. Due to
this fact in analytical calculations, assumption of uniformly absorbed power is used
[5].

Distribution of absorbed power depends on the intensity distributions of
pump source, geometry and refractive index of cooling sleeve, laser rod size, and the
distance of pump source from the cooling tube surface. In computations carried out
through this work, four different fold structures were used. Geometrical values of
cooling tube, distance of pump source from cooling tube surface and pump beam
intensity distribution were kept constant since we are interesting in influence of
dopant concentration. However, from our investigations we can obtain some general
rules about side pumping of solid-state laser rods with laser diodes.

From our results we can observe that keeping all other factors constant
higher fold structures result in more uniform absorbed power distribution (Table
A2.1-4). However, if the distance between cooling tube and laser diode is increased
in lower fold structures, uniformity of absorbed power can be enhanced.

One of the main advantages of solid-state lasers is their compactness. To
obtain desired absorbed power distribution there should be a decision between using
high or lower fold structures. Since lower fold structures will result in larger
resonators while high fold structures will produce compact resonators with more

parts.
84



In addition, it should be noted that, due to the intensity distribution of laser
diode pump sources it is not possible to obtain uniform absorbed power distribution
through the active laser volume.

In pumping of small rod diameters it will be preferable to use lower fold
structure but as the rod size is increasing fold structure should be increased.

Our result show that as far as the uniformity of absorbed power is
considered there is no much difference in the temperature values induced in the rod
(Figure 4.1). However as the uniformity is destroyed temperatures are higher in
lower fold structures (Figure 4.1).

Temperature gradients are in direct relation with the pump structure, higher
gradients are induced in lower fold pump structures (Figure 4.3). In addition, stress
components like radial (Figure 4.5), azimuthal (Figure 4.7) and shear (Figure 4.11)
stresses are affected from the pump structure. However, axial (Figure 4.9) and von
Mises (Figure 4.12) stresses like temperature are not affected by pump structure if
absorbed power is almost uniform.

Focal lengths (Figure 5.8, Figure 5.9) seem to be not affected from pump
structure if uniformity is obtained but components of focal length (Figure 5.11,Figure
5.12) are affected. This implies that aberrations induced in lower fold structures are
higher than the ones induced in higher fold structure.

So fold structure should be optimized considering the beam properties of the
laser to be obtained and number of components, which lead to difficulties in

construction of a laser resonator.

6.4 Effect of Pump Wavelength

Two different pump wavelengths were used through the computations, 808
nm and 885 nm. Quantum defect between 808 nm pump wavelength and 1064 nm

laser wavelength is higher compared to 885 nm one, which increases the loss of
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available laser power in the laser medium of 808 nm pumped Nd:YAG lasers. This
leads to higher temperatures (Figure 4.1), higher stresses (Figure 4.12), higher
depolarization (Figure 5.7) and lower thermal lens focal lengths (Figure 5.8, Figure
5.9) in 808 nm source pumped laser Nd:YAG materials compared to 885 nm source
pumped ones.

In addition 808 nm wavelength has higher absorption coefficients compared
to 885 nm one (Figure 3.2). This difference in absorption coefficient leads to
different application places of the two pump source. Generally we can state that 808
nm pump sources are suitable for pumping of laser rods with smaller diameter, while
885 nm is suitable for rods with large diameters. This division of application places
arises from the fact that as the absorption coefficient is increasing distance in which
it will be completely absorbed is decreasing, according to Beer’s law, and vice versa.

Availability of highly doped ceramic Nd:YAG laser materials make it
possible to replace Nd:YVO, crystal with ceramic Nd:YAG pumped with 808 nm
source in high power microchip laser [65]. Furthermore, 885 nm pump source that
have lower absorption coefficient, can be used effectively in large area pumped

solid-state lasers [34].
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CHAPTER 7

CONCLUSION

In this thesis, numerical calculations were carried out to predict the effect of
dopant concentration in Nd:YAG ceramics on continuous wave operating lasers with
rod shaped active medium and side pumped pump structure. Material properties of
single crystal Nd:YAG were used but the results can be applied to ordinary ceramic
materials as well.

Our results show that by increasing dopant concentration it is possible to
decrease maximum temperature and stress in a solid-state laser medium and
consequently to improve efficiency and beam properties of a solid-state laser, since
temperature and stress are the main cause of optical distortions.

Birefringence, which results in loss through depolarization in linearly
polarized lasers is one of the inherent problems in solid-state lasers. In our study,
depolarization is found to decrease in <111> oriented ceramic laser materials by
increase in dopant concentration. So, decrease in depolarization with increase in
dopant concentration results in increase of efficiency in linearly polarized lasers.

Furthermore, it was shown that, by increasing dopant concentration it is
possible to increase the focal length of thermal lens induced under lasing conditions
with increase in dopant concentration. This will possibly cause decrease in M? value
of a multi-mode laser beam.

It is observed that when TEM;,, mode operation is considered, low
concentration rods are more suitable, since efficiency will be greater compared to
highly doped ones.

Pump structure was also one of the parameters considered in the

calculations. In pumping of small rod diameters, it is preferable to use lower fold
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structure but as the rod size increases number of folds should be increased in order to
get desired absorbed pump power uniformity.

Two different pump wavelengths were used through the computations, 808
nm and 885 nm. Generally, we can state that 808 nm pump sources are suitable for
pumping of laser rods with smaller diameter and higher concentration, while 885 nm
is suitable for rods with large diameters and low concentration.

Although numerical results state that it is possible to improve laser beam
properties it is not verified experimentally yet. Future work of this study should

include 3D numerical analysis and experimental verification of the results obtained.
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MATERIAL PROPERTIES

Al.1 Mechanical Properties

Density — 4.55 g/cm’

Table Al.1- Youngs Modulus and Poissons Ratio [23]

[20]

APPENDIX I

Temperature

(°C)

25

200

400

600

800

1000

1200

1400

Young’s
Modulus
(GPa)

308

304

300

293

287

281

274

264

Poisson’s

Ratio

0.233

0.238

0.234

0.224

0.228

0.216

0.221

0.23

A1.2 Thermal Properties

Thermal Conductivity

a

KT)= —— -

In(b-T)°

d

T .[41

]

(Al.1)
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Thermal Expansion

b
o(T) =aT [41]

Thermal variation of refractive index

) _((35.57+0.0548-K2-T—0.00005-K*-T%)-10°

T [44]

A1.3 Optical Properties

Sellemier Equation for YAG

\/1 2.293-22 37052, [66]
2 2 2 2
7010957 T 217825

Elasto-Optic Constants of Nd:YAG

p11=-0.029, p12=0.0091, pss=-0.0615, [5]

(A1.2)

(A1.3)

(Al.4)
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APPENDIX I1

ABSORBED POWER DENSITY DISTRIBUTION

source

Table A2. 1- Absorbed power density distribution of 3mm rod pumped with 808 nm

Pump Structure

Nd % at. Concentration
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Table A2. 2 - Absorbed power density distribution of 6 mm rod pumped with 808 nm

source
Pump Structure
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source

Table A2. 3 - Absorbed power density distribution of 3 mm rod pumped with 885 nm

Pump Structure

Nd % at. Concentration
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Table A2. 4 - Absorbed power density distribution of 6 mm rod pumped with 885 nm

source

Pump Structure
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APPENDIX III

TEMPERATURE DISTRIBUTION RESULTS

Table A3. 1- Temperature distribution of 3mm rod pumped with 808 nm source

Pump Structure

Nd % at. Concentration
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Table A3. 2- Temperature distribution of 6 mm rod pumped with 808 nm source

Pump Structure

Nd % at. Concentration
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Table A3. 3- Temperature distribution of 3 mm rod pumped with 885 nm source

Pump Structure
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Table A3. 4- Temperature distribution of 6 mm rod pumped with 885 nm source

Pump Structure
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APPENDIX IV

TEMPERATURE GRADIENT RESULTS

Table A4. 1- Thermal gradient distribution of 3 mm rod pumped with 808 nm source

Pump Structure

Nd % at. Concentration
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Table A4. 2- Thermal gradient distribution of 6 mm rod pumped with 808 nm source

Pump Structure

Nd % at. Concentration
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Table A4. 3- Thermal gradient distribution of 3 mm rod pumped with 885 nm source

Pump Structure

Nd % at. Concentration
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Table A4. 4- Thermal gradient distribution of 6 mm rod pumped with 885 nm source

Pump Structure
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RADIAL STRESS RESULTS

APPENDIX V

Table AS.1- Radial stress distribution of 3 mm rod pumped with 808 nm source

Pump Structure

Nd % at. Concentration
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Table AS5.2- Radial stress distribution of 6 mm rod pumped with 808 nm source

Pump Structure
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Table AS5.3- Radial stress distribution of 3 mm rod pumped with 885 nm source

Pump Structure
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Table AS5.4- Radial stress distribution of 6 mm rod pumped with 885 nm source

Pump Structure
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APPENDIX VI

AZIMUTHAL STRESS RESULTS

Table A6. 1-Azimuthal stress distribution of 3 mm rod pumped with 808 nm source

Pump Structure

Nd % at. Concentration

3-Fold 6-Fold 9-Fold 12-Fold
" 00 ® ®
000 @®
0006
0006
909000
909000

111



Table A6. 2- Azimuthal stress distribution of 6 mm rod pumped with 808 nm source

Pump Structure
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Table A6. 3- Azimuthal stress distribution of 3 mm rod pumped with 885 nm source

Pump Structure

Nd % at. Concentration

000 ®
000®
©00@®
000@®
000@®
000®

113



Table A6. 4- Azimuthal stress distribution of 6 mm rod pumped with 885 nm source

Pump Structure
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AXITAL STRESS RESULTS

APPENDIX VII

Table A7.1- Axial stress distribution of 3 mm rod pumped with 808 nm source

Pump Structure

Nd % at. Concentration
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Table A7.2- Axial stress distribution of 6 mm rod pumped with 808 nm source

Pump Structure

Nd % at. Concentration
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Table A7.3- Axial stress distribution of 3 mm rod pumped with 885 nm source

Pump Structure
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Table A7.4- Axial stress distribution of 6 mm rod pumped with 885 nm source

Pump Structure

Nd % at. Concentration
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APPENDIX VIII

SHEAR STRESS RESULTS

Table A8. 1- Shear stress distribution of 3 mm rod pumped with 808 nm source

Nd % at. Concentration
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Table A8. 2— Shear stress distribution of 6 mm rod pumped with 808 nm source

Pump Structure
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Table A8.3- Shear stress distribution of 3 mm rod pumped with 885 nm source

Pump Structure
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Table A8. 4- Shear stress distribution of 6 mm rod pumped with 885 nm source

Pump Structure
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Nd % at. Concentration

1 S
| S
| S
| S
| @

[S—
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APPENDIX IX

VON MISES STRESS RESULTS

Table A9. 1 — Von Mises stress distribution of 3 mm rod pumped with 808 nm source

Pump Structure

Nd % at. Concentration

oXoXoXo
90000
0000
®0006
2000
L00®
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Table A9. 2 — Von Mises stress distribution of 6 mm rod pumped with 808 nm source

Pump Structure

3-Fold

6-Fold

9-Fold

12-Fold

Nd % at. Concentration

0000
2000
2000
LY
°08e
LT
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Table A9. 3— Von Mises stress distribution of 3 mm rod pumped with 885 nm source

Pump Structure

3-Fold

6-Fold

9-Fold

12-Fold

Nd % at. Concentration

0000
0000
0000
0000
0000
0000

[S—
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Table A9.4- Von Mises stress distribution of 6 mm rod pumped with 885 nm source

Pump Structure

3-Fold

6-Fold

9-Fold

12-Fold

Nd % at. Concentration

Q0000
0000
0000
0000
0000
2000
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APPENDIX X

INDEX VARIATION DUE TO TEMPERATURE

source

Table A10. 1 - Thermal index change distribution of 3 mm rod pumped with 808 nm

Pump Structure

3-Fold

6-Fold

9-Fold

12-Fold

Nd % at. Concentration

o ©
5o, O
@ ©
@ ®
@ ®
1@ @®
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source

Table A10. 2 - Thermal index change distribution of 6 mm rod pumped with 808 nm

Pump Structure

Nd % at. Concentration

3-Fold 6-Fold 9-Fold 12-Fold
Q000
0000
2000
2980@®
2000@
& L& X
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source

Table A10. 3- Thermal index change distribution of 3 mm rod pumped with 885 nm

Pump Structure

Nd % at. Concentration

0000
Q000
Q000
0000
0000
00006
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source

Table A10. 4- Thermal index change distribution of 6 mm rod pumped with 885 nm

Pump Structure

Nd % at. Concentration

3-Fold 6-Fold 9-Fold 12-Fold
Q00
000
000
000
000
@00

1

(O8]
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nm source for radially polarized light

APPENDIX XI

INDEX VARIATON FOR RADIALLY
POLARIZED LIGHT

Table A11. 1- Stress induced index change distribution of 3 mm rod pumped with 808

Pump Structure

Nd % at. Concentration

Q90 00
00060
00006
006006
@00 ®
000 @®
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nm source for radially polarized light

Table A11. 2- Stress induced index change distribution of 6 mm rod pumped with 808

Pump Structure

Nd % at. Concentration

0000
0000
000®
200®
2800
2000
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Table A11. 3- Stress induced index change distribution of 3 mm rod pumped with 885

nm source for radially polarized light

Pump Structure

Nd % at. Concentration

0000
0000
0000
0000
0000
0000
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Table Al1. 4- Stress induced index change distribution of 6 mm rod pumped with 885

nm source for radially polarized light

Pump Structure

3-Fold 6-Fold 9-Fold 12-Fold

0.6

Nd % at. Concentration

000000

000000

1

(O8]
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APPENDIX XII

INDEX VARIATION FOR AZIMUTHALLY
POLARIZED LIGHT

nm source for azimuthally polarized light

Table A12. 1- Stress induced index change distribution of 3 mm rod pumped with 808

Pump Structure

Nd % at. Concentration

3-Fold 6-Fold 9-Fold 12-Fold
oy

1

2

3

4

6
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Table A12. 2- Stress induced index change distribution of 6 mm rod pumped with 808

nm source for azimuthally polarized light

Pump Structure

Nd % at. Concentration

3-Fold 6-Fold 9-Fold 12-Fold
FAY
0.6 . ‘
1
2
3
4
6
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nm source for azimuthally polarized light

Table A12. 3 - Stress induced index change distribution of 3 mm rod pumped with 885

Pump Structure

Nd % at. Concentration

3-Fold 6-Fold 9-Fold 12-Fold
®®
1 ®®
| ®®
| OJO,
| ®®
| @®

137



nm source for azimuthally polarized light

Table A12. 4- Stress induced index change distribution of 6 mm rod pumped with 885

Pump Structure

Nd % at. Concentration

3-Fold 6-Fold 9-Fold 12-Fold
1 ©®
| ©®
| ©®
| O,
| ©
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APPENDIX XIII

DEPOLARIZATION

Table A13. 1- Depolarization distribution of 3 mm rod pumped with 808 nm source

Pump Structure

6-Fold

9-Fold

12-Fold

Nd % at. Concentration

0.6
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Table A13. 2- Depolarization distribution of 6 mm rod pumped with 808 nm source

Pump Structure

6-Fold

9-Fold

12-Fold

Nd % at. Concentration

0.6
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Table A13. 3- Depolarization distribution of 3 mm rod pumped with 885 nm source

Pump Structure

3-Fold

6-Fold

9-Fold

12-Fold

Nd % at. Concentration

0.6
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Table A13. 4 - Depolarization distribution of 6 mm rod pumped with 885 nm source

Pump Structure

3-Fold

6-Fold

9-Fold

12-Fold

Nd % at. Concentration

0.6
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